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The world we live in is getting increasingly influenced by computers. Their performances have
improved drastically, as predicted by Moore’s laws, whose observation was that the number of transistors
in a dense integrated circuit doubles about every two years. Consequently to this growth, and thanks to the
huge progress of computer science in the last decades, more and more problems are today being solved
using computer aided techniques and the time where Bobby Fischer was discombobulating the Greenblat
computer at chess is far behind us. Naturally, the use of computers has not only been standardized in the
practice of chess but in a very wide and diverse range of areas, from medicine to air transport through
biology and musical composition. This exponential growth of computers’ capabilities and usages led
to the development of a rich panel of very advanced research fields, and increased the number of sub-
domains of computer science. These include, among others, software engineering, computer graphics and
visualization, artificial intelligence, computer architecture, theory of computation, quantum information
science, and formal methods to name a few.

All these disciplines have seen their development guided by families of very concrete applications. For
instance, the increasing popularity of multi-core architectures accelerated the development of concurrent,
parallel and distributed systems. In these systems, several computations are executing simultaneously,
and potentially interacting with each other. In the field of information transmission, the continual usage of
communication and the sharing of sensible informationmade it necessary to develop and study techniques
for secure communications in the presence of malevolent third parties. Hence the emergence of advanced
security protocols in cryptanalysis. Also, the introduction of computers in critical embedded systems,
such as aircraft autopilot systems or autonomous vehicles made it necessary to have robust methods of
software validation to minimize the risk of potentially harmful errors.

In a parallel way, the different fields of computer science have become more and more specialized to
answer the specific needs of their different uses, which makes it difficult to have them be aware of each
other’s progress and share their techniques. Even though the motivations of these fields are very diverse,
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2 CHAPTER 1. INTRODUCTION

the techniques they develop to meet their goals share a lot of common ingredients, may this be data,
algorithms, languages or architectures. For instance, we can cite the emergence of the General-purpose
computing on graphics processing units (GPGPU) which is the use of a graphics processing unit to
perform computation in applications traditionally handled by the central processing unit (CPU). GPGPU
pipelines were developed for graphics processing purposes as highly parallel units, and were found later
on to fit scientific computing needs as well, and have since been developed also in this direction. They
are now used in a regular way in bioinformatics, machine learning and molecular dynamics.

Another example of a fruitful collaboration between two research fields is the use of Artificial
Intelligence techniques in formal verification, more precisely the use of SAT-SMT solvers in Model
Checking [Mon16]: for instance, the Alt-Ergo prover [CIM13, BCC+12] is dedicated to first-order
logical formulas coming from program specifications. The theory used in an SMT solver captures
specific properties of the program, hence, the link between Artificial Intelligence and Model Checking
strongly relies on the definition and management of specific constraint languages. In formal Verification,
these specific languages are used to express invariants of a program, in Artificial Intelligence, they are
meant to extend the expressivity of the boolean solvers. In practice, the development of modern SMT
solvers has really been driven simultaneously by researchers from both fields.

More generally, verification often needs efficient algorithms to compute either the satisfiability of
some problems, or some smallest invariant in some language. On the other hand, several Artificial
Intelligence techniques have been developed to solve or prove the satisfiability of logical formulas. The
notion of tractable constraint languages is at the heart of these two fields. We believe that there are still
many possibly successful interactions between Verification and Artificial Intelligence.

1.1 Objective

In this thesis, we exploit the idea of cross-fertilization of computer science fields, and apply it to one
member of the formal verification family which is Abstract Interpretation and one area of combinatorial
optimization which is Constraint Programming. Both of these fields are interested in the computation
of a space of states defined by a system of equations, which corresponds, in one case, to the semantic
equations associated to a program, and in the other, to the constraints to be satisfied for a problem.
Our objective is to improve Constraint Programming techniques by importing techniques from Abstract
Interpretation. More precisely we will abstract core notions of Constraint Programming, construct
effective combinations of Constraint Programming and Abstract Interpretation and implement them in
a constraint solver. We now present briefly these two fields and explain what interest there is in this
hybridization.

1.1.1 Constraint Programming

With the growth of computers capabilities, which makes them the perfect tool for combinatorial explo-
ration of big spaces, it can be tempting to solve combinatorial problems by heavy computations, not
to say exhaustive search. But, while a brute-force search is simple to implement, and will always find
a solution if it exists, its cost is proportional to the number of candidate solutions. This makes this
technique impractical in many cases as the search space tends to grow very quickly as the size of the
problem increases. For many real-world applications, they remain too large and an exhaustive search
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is not tractable enough to be used. Constraint Programming (CP) is a set of techniques that help to
speed-up a brute-force algorithm, or to reduce the search space, that is, by using heuristics specific to
the problem class. The ultimate goal being that computers solve the problem, we just have to ennunciate
it. It is a programming paradigm for declarative description of problems and effective solving of large
problems. Constraint programming makes it possible to formalize such problems by using variables
to define a certain space and constraints to describe a result to be achieved (accessibility of certain
objects for example) within this space. These constraints come with effective algorithms for solving
highly combinatorial problems. It is especially useful in areas of planning and scheduling. This field
of combinatorial optimization was first introduced in [Mon74] and nowadays the problems solved are
getting bigger, both in terms of number of variables and number of constraints, and the constraint solvers
are also becoming more complete as they are able to handle more and more kinds of constraints. In 2015,
the robot-lab Philaewoke up on the comet 67P/Churyumov-Gerasimenko to perform a series of different
kinds of signal analysis. These correspond to sequences of activities constrained by two very scarce
resources: energy of the main battery and data storage capacity. These experiments were scheduled
using Constraint Programming. This field has nowadays a large amount of academic and industrial
applications: scheduling and planning problems [GH11, AHP+18], harmonization/composition in music
[PRP16], or computer security [LCM18].

1.1.2 Abstract Interpretation

Two other interesting consequences of the growth of computer’s capabilities are the fact that programs
are nowadays embedded in critical systems, such as planes and missiles, and they are also getting bigger
and more complex. For instance, the size of the code embedded in the Lockheed Martin F-22 Raptor
plane is between one and two million lines of code, and that of a modern car software, a few tens of
millions. With the size of the programs, increased the risk of programming errors and the difficulty to
find them. The embeding of programs in critical sytems made it necessary to develop formal verification
techniques, to validate software, and their important size revealed the need for automated verification
techniques, as it is a huge task to performmanually a verification on millions of lines of code. The familly
of Automatic static analysis techniques fulfill these needs, and one such being static analysis by Abstract
Interpretation. This field was first introduced by Cousot & Cousot in [CC77], with solid theoretical
bases, to address the problem of program correction, according to a semantic, which is undecidable in
the general case. To do that, semantics are mapped to abstract semantics where the properties to prove,
are abstracted into less precise properties, but become decidable. Abstract Interpretation techniques
allow static analyzers to prove interesting properties on programs, and a particularity of static analysis
by Abstract Interpretation is that they are sound by construction. Moreover, the principle of abstraction
allows the scaling of analyzing tools for the analysis of very large programs. The static analyzer Astrée,
for example, succeeded to prove that there were no overflow errors in the electric flight control codes of
the Airbus A380 series, which contains about one million lines of code. Today, Abstract Interpretation
finds several applications and many analyzers are developed and used in aerospace[SD07], biology
[NGVR12], or automotive electronic control systems[YBR+19].
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1.1.3 Combining Abstract Interpretation and Constraint Programming

Constraint Programming and Abstract Interpretation are two fields of computer science that manipulate
close mathematical concepts. Both are interested in computing a reachable state given an initial state
and a set of operations on this state, among which the filtering according to a constraint/guard. When
this reachable space is uncomputable, or too costly to compute, they both rely on efficient abstraction
techniques to produce an approximation of the space. These similarities in the objectives mean that the
techniques developed by one can perhaps be used by the other. Moreeover, the two fields sometimes
share the very same concrete problematics, and develop the same solution for it, e.g. the algorithm that
computes the smallest hull that encompasses a given space was designed independently in Constraint
Programming under the name of HC4 in [BGGP99] and under the name of bottom-up/top-down in
Abstract Interpretation in [Cou99]. For these reasons, we will be interested during this thesis in the
combination of Abstract Interpretation and Constraint Programming.

Previous work. Our work is in line with the work of Pelleau & al. on the same subject, which served as
a theoretical foundation, as well as a practical basis for our implementation. In particular, we reuse some
definitions and results of [Pel12] and [Pel15], in which the author defines abstract domains for Constraint
Programming, so as to build a generic solving method. The author also exploits the octagons abstract
domain, already defined in Abstract Interpretation to define in it CP-oriented operations, to better take
advantage of the octagonal relations expressed in the constraints.

AbSolute. We also develop the abstract solver first presented in [PMTB13a] in which the authors
apply techniques from Abstract Interpretation to Constraint Programming. In this paper, the authors
highlight some links and differences between these fields regarding fixpoint iterations, and consistencies
of Constraint Programming as abstract domains. Finally, the authors introduce a prototype of an abstract
constraint solver that leverages abstract interpretation techniques to go beyond classic solvers.

1.2 Contributions

This thesis aims at proposing a tight collaboration between the techniques of Abstract Interpretation and
Constraint Programming within a unified method of resolution of constraint satisfaction problems. We
will focus on this issue through the following five main chapters:

Chapter 2 (Preliminaries) introduces the theoretical preliminaries and replaces our work within
the state of the art of both Abstract Interpretation and Constraint Programming. It presents the related
works and concludes with a presentation of the previous work on which we base our work, mixing both
paradigms, necessary to the good interpretation of our work.

Chapters 3 and 4 focus on a generalization of abstract solver concepts. This generalization allows us
to have a more precise handling of constraints and manage more types of variables. In particular:

• in Chapter 3 (Abstract domains and domain products for Constraint Programming) , we
exploit the reduced product domains of Abstract Interpretation in a framework of constraint
resolution. Especiallywedefine a variant of the standard reduced product ofAbstract Interpretation,
but adapted toConstraint Programming purposes. This gives us amore powerful propagationwhich



1.2. CONTRIBUTIONS 5

results in a gain of time. We use these constructions to address the problem of augmenting the
kind of constraints a solver is able to solve, in a generic fashion using domain combinators.

• Chapter 4 (Discrete and Continuous abstractions for constraint solving), aims to generalize
the variables domains representation, which allows us to mix different types of variables, with
different representations. We handle both discrete and continuous variables, by proposing a unified
abstraction for the two kinds of spaces, along with the corresponding propagators, splits and size
operators.

The next two chapters focus on the design of a more intelligent solving method, in particular for
continuous constraints satisfaction problems. Themain goal of these chapters is to improve the reusability
of the results of a solver, by avoiding unnecessary exploration steps.

• In Chapter 5 (Propagation with Elimination) we develop a new technique called elimination,
whose purpose is to improve the quality of the results of a solver: it reduces the search space by
removing from it, as soon as possible, parts that are solutions which leads to better results. Some
of the ideas presented in this chapter are already introduced in [ZPTM18]. However, we bring
here a deeper attention to some points.

• In Chapter 5 (Constraint aware Exploration) we present a new exploration strategy, aware of the
constraints of a problem and called Pizza split. It defines relevant cutting points within an abstract
element and proposes a dedicated exploration strategy. We define pizza split operators for our
different abstract domains and use them to tune the solving process.

Lastly, Chapter 7 (Conclusion) summarizes our work by returning to all the results obtained during
this thesis and discusses the possible continuations and improvements of our work. The various methods
mentioned above were implemented in the AbSolute constraints solver which was used for the experi-
mental validation of the ideas described in each chapter. It has also helped us measure the performance of
these different techniques. Implementation details, documentation and additional examples are included
in the appendix.
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After we introduce some mathematical background, we present in this chapter the formal definitions
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our work.
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2.1 Theoretical Background

Both Constraint Programming and Abstract Interpretation have their theoretical foundations in mathe-
matics. These include notions of arithmetic, set theory, and theory of orders. In this section, we briefly
discuss these notions that will be crucial in the rest of this manuscript. We will focus in particular on
the notions of lattices and partial orders, fundamental in Abstract Interpretation and at the heart of our
hybrid framework, the arithmetic of intervals widely used in both Constraint Programming and Abstract
Interpretation, and the concept of fixed points that we use in several cases.

2.1.1 Order Theory

Order theory is a branch of mathematics which investigates the intuitive notion of order using binary
relations. It provides a formal framework for describing statements such as "this is less than that" or
"this precedes that". Such statements are very useful when it comes to abstracting values and comparing
such abstractions. In particular, lattices are the heart of abstract domains which are based on monotonic
functions for ordered sets, and thus are central in Abstract Interpretation.

Lattices and Posets

A lattice is an abstract structure studied in the mathematical sub-disciplines of order theory and abstract
algebra. It consists of a partially ordered set in which every two elements have a unique supremum (also
called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet). An
example is given by the natural numbers, partially ordered by divisibility, for which the unique supremum
is the least common multiple and the unique infimum is the greatest common divisor.

Definition 1. A lattice is a set S provided with two commutative and associative internal laws, usually
noted ∨ and ∧ verifying the absorption law.

∀a, b ∈ S, a ∧ (a ∨ b) = a = a ∨ (a ∧ b)

The absorption law implies the idempotence of every element of S for the two laws: a ∨ a = a and
a ∧ a = a. For example, Figure 2.1 shows an instance of a finite lattice: the lattice of the subsets of a set
{a, b, c} ordered by inclusion, with the ∨ and the ∧ relations being respectively the usual set-union and
the set-intersection.

A lattice is called a complete lattice if all its subsets have both a supremum (join) and an infimum
(meet).

From such a structure, we can define an order on S, here noted ≤ as a transitive, reflexive and
antisymmetric relation:

Definition 2. An order is a binary relation over a lattice L such that,

∀a, b ∈ L, a ≤ b⇔ a ∨ b = b

For instance, we can define on the lattice shown in Definition 2.1 an order a ⊆ b⇔ a ∨ b = b which
corresponds to the set-inclusion. Here we can notice that not every pair are comparable, e.g. with the
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∅

{a} {b} {c}

{a, b} {b, c}{a, c}

{a, b, c}

Figure 2.1: Lattice of subsets of {a, b, c} ordered by inclusion

pair {a, b}, {a, c} for which neither {a, b} ⊆ {a, c} nor {a, c} ⊆ {a, c} holds, which makes this order not a
total order.

Amore general concept than a lattice is the notion of partially ordered set A partially ordered set (also
called poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement
of the elements of a set. In a poset, not every pair of elements needs to be comparable. That is, there
may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus
generalize total orders, in which every pair is comparable.

Definition 3. A Poset (L, ≤) is a set S provided with an order such that,

∀a ∈ S, a ≤ a (reflexivity).
∀a, b ∈ S, if a ≤ b and b ≤ a, then a = b (antisymmetry).
∀a, b, c ∈ S, if a ≤ b and b ≤ c, then a ≤ c (transitivity).

To be part of a partial order, an order relation must be reflexive (each element is comparable to
itself), which is guaranteed by the idempotence, antisymmetric (no two different elements precede each
other) which is guaranteed by the commutativity of ∨ , and transitive (the start of a chain of precedence
relations must precede the end of the chain) which we have from the associativity of ∨. Also, we can
derive a poset from a lattice, as the relation a ≤ b ⇔ a ∨ b = b respects Definition 3, but some posets
do not correspond to a lattice.

A poset does not necessarily need to be finite and we call infinite poset a poset for which the
underlying set is infinite. For example, N ordered by ≤ is an infinite poset.

A more interesting example is the lattice of integer intervals, illustrated in Figure 2.1.1, ordered with
inclusion. We note [a, b] the closed interval where a ≤ b, representing the set of elements x satisfying
a ≤ x ≤ b.

Also, note that we can have posets that do not form lattices as illustrated by the Hasse diagram in
Figure 2.3: here the pair {a; b} has no unique least upper bound, but still, we have a partial order induced
by the usual visual representation of the diagram stating that if an element x is smaller than another
element y, then the point representing x is placed lower than that for y, and there is an edge between the
two.
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⊥

... [−1,−1] [0, 0] [1, 1] ... [9, 9] ...

... [−1, 0] [0, 1] ... [1, 9] ...

... [−1, 1] [0, 9] ...

... [−1, 9] ...

... [−∞, 9] ... [−1,+∞] ...

... ... ... ... ...

[−∞,+∞]

Figure 2.2: Lattice of interval of Z, with [a, b] ∨ [c, d] = [min(a, c),max(b, d)] and [a, b] ∧ [c, d] =
[max(a, c),min(b, d)]

⊥

a b

c d

>

Figure 2.3: Hasse diagram denoting an order

2.1.2 Fixed Points

A fixed point of a function is an element of the function’s domain that is mapped to itself by the function.
Abstract Interpretation makes use of them to define semantics, and more precisely, their unbounded
aspects, such as loops or recursive procedures. Approximating those fixed points is a central notion that
is used to guarantee the termination of an analysis. In Constraint Programming, they are used to define
propagation schemes when dealing with several constraints in such a way that in the end, propagation
reaches a fixed point and all constraints reach a certain level of consistency.
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Definition 4. A fixed point of a function f : S → S is an element x ∈ S such that f (x) = x. A function f
may have more than one fixed point and we note fp( f ) the set of its fixed points: {x ∈ S | f (x) = x}.

For instance, let a function f be defined on the real numbers by:

f (x) = x3 − 6x2

Then f admits 3 fixed points: fp( f ) = {0, 3 +
√

10, 3 −
√

10}.
Within a poset, we can distinguish the least (respectively greatest) fixpoints which are smaller

(respectively bigger) than all other fixed points, according to the subset ordering.

Definition 5. Given a poset (S, ≤), a least fixed point of a function f : S → S is an element x ∈ fp( f )

such that ∀y ∈ fp( f ), x ≤ y

This definition generalizes naturally to greatest fixpoints. Note that if a least (resp. greatest) fixed
point exists, then it is unique (by antisymmetry).

Notations 2.1.1

We note lfp( f ) and gfp( f ) the least fixpoint and the greatest fixpoint of a function f

Also, when a function is defined over an ordered set, it is called a monotonic function if its application
preserves or reverses the given order:

Definition 6. Given a poset (S, ≤), a function f : S → S is monotonically increasing if ∀x, y ∈ S, x ≤

y ⇒ f (x) ≤ f (y)

Which generalizes to monotonically decreasing functions when ∀x, y ∈ S, x ≤ y ⇒ f (y) ≤ f (x).
These definition lead us naturally to the Knaster-Tarski theorem enunciated in Theorem 1.

Theorem 1. Let L be a complete lattice and let f : L → L be a monotonic function. Then the set of
fixed points fp( f ) in L is also a non-empty complete lattice.

From Theorem 1 arises naturally that in particular f admits both a least and a greatest fixpoint. This
results is a theoretical mainstay of our work as both Constraint Programming problems and Abstract
Interpretation analysis can be seen as the computation of a fixed point of an equation system. The
Knaster-Tarski theorem hence ensures that there exists a smallest fixed point for any monotone function
and the Kleene theorem allows the design of iteration strategies that are guaranteed to find it by iterating
the function from the smallest element of the lattice until it reaches the smallest fixpoint, if the iterations
terminate.

2.1.3 Interval Arithmetic

Classical arithmetic computations operate over numbers. Interval arithmetic is the reasoning over ranges
of numbers. This notion is very practical as intervals are compact in memory, as two integers can
represent a potentially very large set of integers, and allow to express exactly classes of invariants that
are very useful in practice, which are bounds of variables. Both Abstract Interpretation and Constraint
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Programming rely on interval arithmetic for several uses: Interval Abstract Domain, symbolic methods
of interval linearization [Min07], expressing non-determinism, or computation with uncertainty. We
recall here the definitions of intervals, and introduce interval arithmetic as they will be very useful in the
rest of this thesis.

Definition 7. Given a totally ordered set (S, ≤), an interval I is a convex subset of S such that
∀(a, b) ∈ I,∀x ∈ S, a ≤ x ∧ x ≤ b ⇐⇒ x ∈ I.

Bounds. Bounds are the endpoints of the interval. They entirely define the interval and the interval
arithmetic can be derived from an arithmetic over the bounds as we will see.

A closed interval, noted [a; b] is an interval which includes its bounds. An open interval ]a; b[ is
an interval which excludes its bounds. Half-open intervals are intervals with only one of their bounds
excluded and are noted [a; b[ (respectively ]a; b]) when the excluded bound is the upper (respectively
lower) bound.

In the discrete case, bounds are generally always included in the interval, as removing a point
corresponding to a lower (respectively upper) bound either leads to an empty interval or can be expressed
as a closed interval as [a; b[ can be rewritten as [a; b − 1] when a < b, and as the empty set otherwise.

Discrete intervals. Integer intervals are the sets of closed subset of Z

Continuous intervals. Real intervals are defined as not-necessarily closed connected subsets of R.
Thus their endpoints can be either included or excluded.

Extended real intervals may be defined as a subset of the extended real numbers, which is the set of
all real numbers augmented with −∞ and∞.

Arithmetic

Interval arithmetic can be built from the interval’s bounds arithmetic. For example, from an additive
group (S,+), which is a set equipped with one internal composition law that generalizes the addition,
we can build another additive group on the set S2 that will correspond to the group of the interval of S
provided that we have a total order ≤ on S. Hence, given a, b, c, d ∈ S, with a ≤ b and c ≤ d we can
define the addition operation over intervals as follows:

• [a, b] + [c, d] = [a + c, b + d]

Provided that we have the substraction, multiplication and division defined overS, we can also define
the other classical arithmetic operations in a similar way:

• [a, b] − [c, d] = [a − d, b − c]

• [a, b] ∗ [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]
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• [a, b]/[c, d] = [a, b] · 1
[c,d] , where

1
[c, d]

=
[

1
d ,

1
c

]
0 < [c, d]

1
[c, 0]

=
[
−∞, 1

c

]

1
[0, d]

=
[

1
d ,∞

]

1
[c, d]

=
[
−∞, 1

c

]
∨
[

1
d ,∞

]
= [−∞,∞] 0 ∈ (c, d)

We will use a lot these kinds of operations as they are a simple way to calculate upper and lower
endpoints for the range of values of a function in one or more variables, which will be useful for both
Abstract Interpretation and Constraint Programming.

2.2 Constraint Programming

In this section, we first present the main motivations that lead to Constraint Programming, we then
introduce a few domains related to it. We finally give the formal definitions of Constraint Programming
and some examples.

2.2.1 Motivation

Constraint programming techniques arewidely used in the industrial world in the field of decision support.
Decision support is the set of techniques allowing, for a given person, to opt for the best possible decision.
Many works deal with scheduling and project management, but also logistics (vehicle tours, packaging
...), planning, and scheduling problems. In the context of the manufacturing industry, decision support
procedures make it possible to find production plans (production scheduling), to have the machines of
a workshop run in the best possible way, to reduce the waste of raw materials (cutting problems) or
energy consumption or to optimize the packaging and delivery of intermediate or finished products. In
the field of finance, investment problems are classic problems of optimization. They generally consist
in maximizing the profit (or the profit expectancy) obtained from a given amount by combining at best
the different possibilities offered to the investor. The applications in the field of computing are very
numerous too. We can cite, among other things, the choice of the location and number of servers to put
in place, the storage capacity, the computing power and the network throughput, the choice of a computer
architecture (centralized application / distributed, real-time or delayed processing, mesh or star network,
etc.), and in operating systems and program verification [MRL01].

Operations Research

Operations research can be defined as the set of rational methods and analytic techniques oriented
towards finding the best choice in how to operate in order to achieve the desired result or the best
possible result. It is part of the "decision aids" in that it proposes conceptual models to analyze and
master complex situations to enable decision-makers to understand, assess issues and arbitrate or to
make the most effective choices. Among approaches used in operations research are mathematical logic,
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simulation, network analysis, queuing theory, and game theory. It is a field of feasibility analysis based
on a solution-driven approach: from a set of potential solutions to a problem, an analysis reduces it to a
small set of solutions most likely to be usable. The alternatives derived are then subjected to simulated
implementation and, if possible, tested out in real-world situations.

Boolean Satisfiability Problem

Boolean satisfiability problems, also called SAT problems, are a family of problems where the goal
is to determine if there exists an interpretation that satisfies a given Boolean formula. It is a problem
whose origins go back to [DP60] and later on in [DLL62] with the Davis–Putnam–Logemann–Loveland
(DPLL) algorithmwhich is a complete, backtracking-based search algorithm for deciding the satisfiability
of propositional logic formulas. SAT problems ask whether the variables of a given Boolean formula can
be consistently replaced by the values true or false in such a way that the formula evaluates to true. If this
is the case, the formula is called satisfiable. On the other hand, if no such assignment exists, the function
expressed by the formula is false for all possible variable assignments and the formula is unsatisfiable.
For example, the formula a ∧ ¬b is satisfiable because one can find the values a = true and b = false,
which makes a ∧ ¬b = true. On the opposite, a ∧ ¬a is unsatisfiable.

Satisfiability Modulo Theories

Another application that often involves the DPLL algorithm is automated theorem proving or satisfiability
modulo theories (SMT), which is a SAT problem in which propositional variables are replaced with
formulas of another logical theory. It relies on combinations of background theories expressed in
classical first-order logic with equality. Examples of theories typically used in computer science are the
theory of real numbers, the theory of integers, and the theories of various data structures such as lists,
arrays[Nel80], bit vectors and so on. SMT can be thought of as a form of constraint satisfaction problem
and thus a certain formalized approach to Constraint Programming.

Constraint Programming

Constraint Programming is a resolution framework, which was first introduced in [Mon74]. It is a
paradigm of declarative programming in which a user states the mathematical laws that govern a system,
and then relies on a solver to find the satisfying instances of his specification.

2.2.2 Introductory Example

Lets consider a concrete example: The Minesweeper game. The Minesweeper is a puzzle game whose
purpose is to locate mines hidden in a virtual filed which is a 2D grid with the only indication being the
number of mines in adjacent areas for each square as shown in Figure 2.4. The game can be seen as a
constraint satisfaction problem, where each square is a variable with value in {0; 1} (denoting respectively
the absence or the presence of a mine on the given square).

The game gives visual information on the visible squares, that can be seen as constraints as they
restrict the possible values of some of the squares.

• The number inside a square indicates the number of mines in its neighborhood
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Figure 2.4: An example of a game of Minesweeper

• On the visible squares, no mine is present

On the game shown in Figure 2.4, if we note X(i, j) the square of coordinates (i, j) with j ∈ {0, 1, 2, 3, 4}
and i ∈ {0, 1, 2}, we can write down the corresponding constraint system, where the constraints are to be
understood conjunctively, as follows:

• X(0,1) + X(1,1) + X(1,0) = 2 (from square (0,0))

• X(0,0) + X(1,1) + X(1,0) + X(0,2) + X(1,2) = 2 (from square (0,1))

• X(0,1) + X(1,1) + X(1,2) + X(0,3) + X(1,3) = 1 (from square (0,2))

• X(0,1) + X(1,1) + X(2,1) + X(0,2) + X(2,2) + X(0,3) + X(1,3) + X(2,3) = 3 (from square (1,2))

• X(0,2) + X(1,2) + X(2,2) + X(0,3) + X(2,3) + X(0,4) + X(1,4) + X(2,4) = 1 (from square (1,3))

• X(0,3) + X(1,3) + X(2,3) + X(0,4) + X(2,4) = 1 (from square (1,4))

• X(1,3) + X(2,3) + X(1,4) = 1 (from square (2,4))

Which after simplification from the visible squares X(0,0) = X(0,1) = X(0,2) = X(1,2) = X(0,3) =

X(1,3) = X(0,4) = X(1,4) = X(2,4) = 0, and removal of redundant constraints, becomes:

• X(1,0) + X(1,1) = 2 (from square (0,0) and (0,1))

• X(1,1) = 1 (from square (0,2))

• X(1,1) + X(2,1) + X(2,2) + X(2,3) = 3 (from square (1,2))

• X(2,2) + X(2,3) = 1 (from square (1,3))

• X(2,3) = 1 (from square (1,4) and (2,4))

From this simplified constraint system, we are able to determine directly that X(2,3) and X(1,1) contain
a mine, and so does X(1,0) as the square X(0,0) has only two possible neighbours that may contain a mine,
and we know that it has two mines in its neighborhood, X(1,0) and X(1,1). Figure 2.5 shows the state of
the game after these deductions have been performed.

Applying the same reasoning one more step allows us to discard the square X(2,2) from the possible
mined squares and to deduce that X(2,1) does contain a mine. From this point, illustrated by Figure 2.6,
no more deduction can be made. The square X(0,2) being possibly both a mine or an empty square.
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Figure 2.5: The same game after a few step of reasoning
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Figure 2.6: Final state of the game from which we cannot perform anymore deduction

The resolution process we have just made explicit on this example is a typical form of Constraint
Programming: from a concrete application, we have modelled it in a mathematical way, using variables,
domains of possible values for these variables, and constraints over these variables. From this modelling,
we exploited the constraints both to discard impossible states of the game, and to infer the only possible
values of some variables, until we have reached a consistent system on which no more refinement can be
made.

Also, the example we have just presented features discrete variables with only two possible values. A
more realistic kind of problems, which is closer to the ones we will handle in this thesis, is the continuous
problems, where the variables generally have an infinite number of possible values, even though their
ranges are bounded.

One such is the testing of complex industrial robots [MGM15], that involve several interacting control
systems. These industrial robots are complex cyberphysical systems which require to be rigorously tested
before being deployed. In this context, the goal is to make sure that a robot’s trajectory, under some
configuration, should stay inside a given space.

A robot has a complex axis-motion system. These axes can have several degrees of freedom and
define an accessible area by the arm of the robot. The reachable space by the robot is divided into two
distinct sub-spaces. The first one is a prohibited zone, which is an area in which the robot is not allowed
to go to (because of constraints foreign to the robot: objects, humans, etc. that make the movement
of the robot potentially harmful). The remaining space is the work area in which the robot is allowed
to go. A valid trajectory then consists of segments that cross the work area without ever crossing the
prohibited zone. The modelling of the space configuration is based on basic geometric shapes (lines,
squares, triangles, circles ...) which can be seen as a constraint system defining the reachable space by
the arm of the robot but for the sake of coherence with the other problems we will illustrate here, we give
the constraints in an equational form.



2.2. CONSTRAINT PROGRAMMING 17

Support

Obstacle

Unreachable Zone

Figure 2.7: Working zone and Forbidden zone of a Single-Arm robot

x2 + y2 ≤ 2 (2.1)

2 ∗ x > −y ∨ 2 ∗ x < y (2.2)

x2 + y2 ≥ 0.5 (2.3)

x > 0.5 ∨ x < −0.5 ∨ y > 1.8 ∨ y < 1.5 (2.4)

The arm of the robot allows it to reach every point within the interior of a disk (Equation 2.1),
from which we remove a sector that is unreachable due to a mechanical constraints of the robot’s arm
(Equation 2.2). We also remove the space corresponding to the foot support of the robot itself which is
also a disk (Equation 2.3). Finally, a last constraint is due to some obstacle placed around the robot and
where the robot’s arm cannot move without provoking a dangerous collision (Equation 2.4). Figure 2.7
gives a visual representation of the space defined by these consraints, where the red hatched part is the
forbidden area.

Solving this kind of problems differs from solving a discrete problem with variables having finite
domains. Yet the goal is still the same: we want to avoid a naive exhaustive search and exploit
the structure of the problem to find solutions more effectively. State of the art solvers in Constraint
Programming handle this kind of problems by producing a coverage of the solution space with boxes.
This representation makes it possible to compute its intersection with other spaces, or to approximate its
volume and so on.

In the present work we will develop a technique inspired from continuous solvers of Constraint
Programming, that is able not only to produce a coverage of the solution space with boxes, but with any
specific shape that respects some condition as we will see later on.

2.2.3 Definitions

We now give the mathematical definitions for Constraint Programming which we illustrate with several
examples.

Constraint programming is a paradigm of declarative programming, which means that its goal is to
answer the question “What is the problem?” counter to imperative programming which describes “How
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to solve the problem?”. To do that, we give the description of problems in mathematical terms involving
constraints over variables, and rely on a solver to get the solution.

A variable is a quantity whose value is indeterminate, but on which a combination of operations is
performed. A variable is generally not fully specified, its value may even be completely unknown, but it
must belong to a set which is called its domain.

A constraint is a relationship between several variables that limits the set of values that these variables
can take simultaneously. It is a mandatory condition that must be satisfied by the solution of a problem.
Constraints can be arithmetic (equalities, inequalities) or more complex (global constraints), and can
involve one or several variables.

Definition 8. In Constraint Programming, constraint satisfaction problems (CSP) are modeled using
triplets (X,D, C), where n and m are respectively the number of variables and the number of constraints
of the problem.:

• X = {x1, ..., xn}, the variables of the problem

• D = {d1, ..., dn}, the domains of the variables such that xk ∈ dk,∀k ∈ [1, n]

• C = {c1, ..., cm}, the constraints of the problem

We call an instance (or assignment) a total mapping X → D. A mapping is said to be partial if not
all the variables are mapped to a value. The set of all the assignments is called the search-space. A
solution of a CSP is an instance that satisfies all of the constraints.

Definition 9. A solution of a CSP (X,D, C) is an instance i = {x1 → v1, ..., xn → vn} that verifies all
of the constraints by substitution of the variables with their value in i.

∀c ∈ C, c{x1 → v1, ..., xn → vn}

Notations 2.2.1

We use thereafter the following notations to designate the instances that are solutions of a CSP
and the ones that are not. We call the later the inconsistent instances.

• Sol (< X,D, C >) the set of all the solutions of a CSP.

• Sol (< X,D, C >) = {x : X → D|x < Sol (< X,D, C >)} to designate the set of
inconsistent values that belong to the search-space.

From this framework, problems and solutions are well defined, but nothing determinates how to find
the solutions associated to a problem, and how to choose between solutions. We will differentiate two
very distinct forms of constraint satisfaction problems: given a problem p, one can wish to find all of its
solutions Sol (p) or find a single solution s ∈ Sol (p).

We now present some of the most used techniques to deal with these two problems.
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2.2.4 Constraint Solving Methods

Theoretically, when the search space is finite, CSP solving is an easy task. A simple exhaustive
enumeration of the search space, filtered by the constraints, is enough to build the solution space. This
is the generate-and-test procedure. The idea is simple: a complete labeling of the variables is generated
and, therefore, if this labeling satisfies all the constraints, then the solution is found, otherwise another
labeling is generated, and the process may be repeated until all of the search space has either been
discriminated as a solution or an inconsistent value. Algorithm 1 sketches this procedure, using the
following auxiliary procedures:

• generate(P): generates the next candidate solution for P. It returns NULL when all candidates have
been enumerated

• test(P,candidate) checks whether candidate is a solution for P.

• output (P, candidate): uses the solution candidate of P as appropriate to the application.

Algorithm 1 Generate-and-Test procedure
function genNtest(P) . P: a problem

candidate← generate(P)
while candidate , NULL do

if test(P,candidate) then
output(P, candidate)

else
c← generate(P,candidate)

Of course, this procedure suffers from many limitations when the search space is infinite, or simply
very large. That is why several improvements have beenmade over this algorithm like symmetry breaking
as in [GPfP06] or [Wal06] which can be applied in some cases when the problem does feature a symmetry
(e.g. eight queens puzzle), or more often, search space reduction with principles à la minimax as in
[Liu98] or [HK14] which is based on an evaluation function which provides no guarantee of being
optimal but which can be very useful in large-scale applications. Both of these techniques are orthogonal
to our work which focuses on constraint propagation to reduce the search space.

2.2.5 Propagation

Constraint propagation works by reducing the domains of the variables, strengthening the constraints,
or creating new ones. This leads to a reduction of the search space, making the problem easier to solve
by some algorithms. The notion of propagation links a constraint to its actual implementation through
propagators. Propagators are functions representing a way to infer that a constraint forbids some values
from the domains.

Definition 10. Given a CSP < X,D, C >, a function ρ : P(D) → P(D) is a propagator for a constraint
c ∈ C if and only if:

• ∀d ∈ D, ρ(d) ⊆ d (contraction)

• ∀s ∈ Sol (< X,D, {c} >), s ∈ d =⇒ s ∈ ρ(d) (completeness)
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The contraction property guarantees that a propagator can only reduce the domains of the variables
and the soundness guarantees that no solution is removed from a domain. In the Abstract Interpretation
terminology, ρ(c) is an sound over-approximation of Sol (< X,D, {c} >). Note that there may exist
several propagators, with different cost/precision trade-offs, for a single constraint (e.g. the identity
function is a valid propagator for any constraint according to our definition).

When a propagator reduces the search space in such a way that it can not reduce it more without
losing solutions (i.e. breaking the completeness property), we say that the obtained assignment (which
may be partial) is consistent. The "standard" local consistency conditions all require that all consistent
partial evaluations can be extended to another variable in such a way that the resulting assignment is
consistent. A partial evaluation is consistent if it satisfies all the constraints which involve a subset of the
assigned variables.

The notion of local consistency is central in Constraint Programming. Local consistency conditions
are properties of constraint satisfaction problems related to the feasibility of subsets of variables or
constraints. These properties give some extra information about the problem that can be used by
the solving process. Various kinds of local consistency conditions are leveraged among which node
consistency, arc-consistency, and-path consistency etc.

Definition 11. GivenX a set of variables andD their domains, a possibly partial assignments i ∈ X′ →

D with X′ ⊆ X is said to be locally consistent with respect to a constraint c if the following condition
holds:

∀x ∈ X′, ∃ j ∈ Sol (X,D, {c}), i(x) = j (x)

In other words, local consistency ensures that all consistent partial assignments can be extended to
another variable without violating the constraint.

For example, given two variables v1 ∈ {1, 2, 3, 4} and v2 ∈ {3, 4, 5, 6} and a constraint c = v1 ≥ v2,
the partial assignment {v1 → 1} is inconsistent as v2 can take no value that would satisfy c, and for
symmetrical reasons, the partial assignments {v1 → 3} and {v1 → 4} are locally consistent. This
definition can be strengthened with several conditions to obtain different forms of consistency and we
present here few of them.

Arc-consistency. A variable is arc-consistent with another one according to a binary constraint c if
each of its admissible values is consistent with some admissible value of the second variable. Formally, a
variable xi is arc-consistent with another variable x j if, for every value vi in the domain xi there exists a
value vj in the domain of x j such that (vi, vj ) satisfies the binary constraint c. A problem is arc-consistent
if every variable is arc-consistent with every other one.

Path-consistency. Path-consistency is a property that generalizes the idea of arc-consistency. It does
so by not considering pairs of variables but triplets. A pair of variables is path-consistent with a third
variable if each consistent evaluation of the pair can be extended to the other variable in such a way
that all binary constraints are satisfied. Formally, xi and x j are path consistent with xk if, for every
pair of values (a, b) that satisfies the binary constraint between xi and x j , there exists a value c in the
domain of xk such that (a, c) and (b, c) satisfy the constraints between xi and xk and between x j and xk ,
respectively.

Bound-consistency. This consistency is based on the consistency of the extreme values of the
domains, that is, the minimum and maximum values a variable can take. It denotes that, for a given
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constraint ctr , there exists for every variable vi at least one solution to ctr such that vi = vi, and every
other variable is assigned to a value located in its range, and there exists at least one solution to ctr such
that vi = vi and every other domain variable is assigned to a value located in its range, with vi and vi

being respectively the minimum and maximum values the variable vi can take.
Consistencies give hint about the satisfiability of a problem. Consistency properties generally ensure

that the domains are an over-approximation of the feasible set. This implies that when a propagator
reaches consistency, it might produce an empty domain or an unsatisfiable constraint. In this case, the
problem has no solution. Being able to prove that a problem is locally-consistent is very useful for a
solving process: for example, enforcing arc consistency establishes satisfiability of problems made of
binary constraints with no cycles (e.g. a tree of binary constraints).

Consistencies for Continuous constraint solving. In the case of continuous constraint solving, other
very useful consistencies are used to highlight crucial characteristics of a problem. For instance, instead
of reasoning on finite sets of values, we generally require an encoding that is able to express infinite sets
of values. We recall the definition of Hull-consistency [BGGP99], one of the classic local consistencies
for continuous constraints.

Let R be the set of reals extended with the infinities −∞,∞, and F ⊆ R a finite subset of reals
corresponding to binary floating-point numbers. For practical reasons, we neglect the processor precision
(whether 32 or 64 bits) as it does not influence on the techniques we use.

A closed/open floating-point interval is a connected set of reals whose lowest upper bound and
greatest lower bound are floating-point numbers.

Notations 2.2.2

The following notations are used as shorthand to designate closed, half-open, and open intervals,
where l ∈ F and h ∈ F.

• [l; h] , {r ∈ R|l ≤ r ≤ h},

• [l; h[, {r ∈ R|l ≤ r < h},

• ]l; h] , {r ∈ R|l < r ≤ h},

• ]l; h[, {r ∈ R|l < r < h},

Lifting up the interval concept to several dimensions gives us the notion of Box. It is a compact, not
necessarily closed, convex figure.

Definition 12. We call Boxes, the set B of Cartesian products of n intervals

B = i1 × · · · in , {r1 × ... · · · rn ∈ Rn |r1 ∈ i1 ∧ · · · rn ∈ in}

Given a box, one can wish to remove from it the inconsistent instanciations. However, discarding all
values of a box for which a real constraint does not hold is not achievable in general, hence a notion of
consistency is defined for boxes, which is called the hull consistency.
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Definition 13 (Hull-Consistency). LetX = x1, . . . , xn be variables over continuous domains represented
by the box D = d1, . . . , dn, and c a constraint. The domains are said to be Hull-consistent for c if and
only if:

∀D ′ ∈ B, Sol (< X,D, {c} >) ⊆ D ′ =⇒ D ⊆ D ′

In other words, the domains are Hull-consistent if and only if the box D = d1 × · · · × dn is the
smallest floating-point box containing the solutions for the constraint c, and this smallest floating-point
box always exists as B is finite and closed by intersection.

The domains which are locally consistent for all constraints are the largest common fixpoints of all
the constraint propagators [Ben96, SS08]. In practice, propagators often compute over-approximations
of the locally consistent domains. In the following, we will use the standard algorithm HC4 [BGGP99],
which propagates continuous constraints, relying on the syntax of the constraints and interval arithmetic
[Moo66], although our method could be combined with other propagators. HC4 generally does not reach
Hull consistency in a single iteration, in particular in case of multiple occurrences of the variables in the
constraints.

Local consistency computations can be seen as deductions, performed on domains by analyzing the
constraints. If the propagators return the empty set, the domains are inconsistent and the problem has
no solution. Otherwise, non-empty local consistent domains are computed. This is often not sufficient
to accurately approximate the solution set which may not be approximated by a set of linear constraints.
In that case, choices are made on the variables values. For continuous constraints, typically a domain d

is chosen and split into two (or more) parts, which are in turn narrowed by the propagators. The solver
alternates propagation and split phases until a given precision is reached, i.e. all the boxes which are
still considered are smaller than a given parameter. Of course, as soon as a box is proven to contain only
solutions, it can be removed from the search space and added to the solution set. Upon termination, the
collection of boxes returned covers the solution set S, under some hypotheses on the propagators and
splits [Ben96].

Exploration

Propagation alone does not make it possible to instantiate all the variables, and it is therefore necessary to
proceed to a supplementary process. On such idea is the exploration technique. It consists in splitting the
problem into several sub-problems (for example by instantiating a variable at each of its possible values)
and to restart filtering on each of these parts, the idea being that the obtained sub-problems should be
easier to solve.

Definition 14. Given a CSP p =< X,D, C >, a function explore : < X,D, C > → P (< X,D, C >) is
an exploration function if and only if it respects the following properties: Let p′0, ..., p′n = explore(p) be
the sub-problems obtained by exploration of the problem p,

∀s ∈ Sol (p), s ∈
⋃n

i=0 Sol (p′i ) (injection)
∀i ∈ [0, n], Sol (p′i ) ⊆ Sol (p) (surjection)

The injection property ensures that no solution is lost and the surjection property guarantees that no
solution is created by the exploration process.
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Algorithm 2 Propagation - Exploration loop
1: function solve(P:problem)
2: if ¬stop(P) then
3: P′ ← propagate(P)
4: for P′′ ∈ explore(P′) do
5: solve(P′′)

This step usually consists in building sub-problems by dividing the domains of the variables into
sub-domains or by adding constraints in each sub-problem in such a way that the added constraints are
complementary. This keeps the set of solutions the same as for every constraint c, any element of Sol (p)

satisfies either c or its complement.
We can strengthen Definition 14 to enforce a non-redundancy property, that is, no instance is a

solution of more than one sub-problem.

Definition 15. An explore function f is said to be irredundant if it is an explore function according to
Definition 14 and it satisfies the following property:

∀s ∈ Sol (p′i ), s ∈ Sol (p′j ) =⇒ i = j (irredundancy)

Even though this property is not mandatory to build a sound and complete solving process, it becomes
very handy from a practical point of view.

2.2.6 Effective Solving

Propagation tries to reduce the search space and exploration divides problems into smaller sub-problems.
Repeating these two steps in alternation is almost sufficient to build a complete solving process, the last
thing we require is to enforce termination. To do this, we can simply limit the total number of steps of the
procedure, or the maximum depth of computation. One can also continue the solving until consistency
is reached, if guaranteed to be reached or use a more problem-aware technique that measures properties
on the current sub-problem and decides accordingly if the solving must continue or not.

Algorithm 2 illustrates this procedure. Note that this sketch of a resolution procedure does not
depend on the exploration heuristic nor the propagator used. We rely on this property to develop a
generic solving method.

2.2.7 Discrete & Continuous

A continuous variable is a variable that can take infinitely many, uncountable values. For example, a
variable over a non-empty range of the real numbers is continuous, if it can take any value in that range.
In contrast, a discrete variable over a particular range of real values is one for which, for any value in the
range that the variable is permitted to take on, there is a positive minimum distance to the nearest other
permissible value. The number of permitted values is either finite (e.g. finite sets of values) or infinite
but countable (e.g. integers, non-negative integers, positive integers).

Discrete

In the discrete case, a straightforward characterization of the solution space is an enumeration of the
instances that belong to it. Also, in discrete constraints, domain labels are generally represented simply
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as enumerations of values or value combinations. Example 1 and Figure 2.8 show1 respectively an
example of a discrete CSP and its solution set.

Example 1. A constraint system with two discrete variables and two non-linear constraints:

• V = (v1, v2) ∈ Z

• D1 = [−1, 14], D2 = [−5, 10]

• C1 : (v1 − 9)2 + v2
2 ≤ 25

• C2 : (v1 + 1)2 + (v2 − 5)2 ≤ 100

Using a simple procedure like Algorithm 1 is enough to obtain the set of solutions of this problem,
but it may be interesting to use some more advanced strategies when the domains of the variable grow
larger.

v1

v2

Figure 2.8: The 25 solutions (in green) of the constraint system shown in example 1

Continuous

In the continuous case, on the other hand, finding a characterization of the solution space becomes
harder. One common representation is the box partitioning of the solution space. Here, each domain is
represented by one or a small collection of intervals. Example 2 and Figure 2.9 show respectively an
example of a discrete CSP and its solution set.

Example 2. The same constraint system as in Example 1, only with continuous variables now.

• V = (v1, v2) ∈ R

• D1 = [−1, 14], D2 = [−5, 10]

• C1 : (v1 − 9)2 + v2
2 ≤ 25

• C2 : (v1 + 1)2 + (v2 − 5)2 ≤ 100
1For the sake of clarity and simplicity, most of the figures inside this document will be in 2D, illustrating the solving of

two-variables problems, but the methods we propose tackle just as well higher dimensions spaces.
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The solving of a continuous constraint satisfaction problem can consists in paving it with an easy
to understand representation, here boxes. Even though the partitioning obtained is less precise than the
constraint description of the solution space, it is still easier to use from a practical point of view. For
instance it is easier to approximate its volume, or to generate randomly and quasi-uniformly an instance
in the solution space.

v1

v2

Figure 2.9: The 48 box solutions (in green) of the constraint system shown in example 2

2.3 Abstract Interpretation

In this section, we first present themainmotivations that lead to Abstract Interpretation, we then introduce
a few domains related to it. We finally give the formal definitions of an analysis by Abstract Interpretation
and some examples.

2.3.1 Motivation: Program Verification

Software errors (or "bugs") can cause computer systems to malfunction, with consequences ranging
from mere annoyance to large economical losses. Measuring the economical impact of a software error
is not a trivial task [SSY15], but this impact finds its culmination in critical embedded systems. In
those cases, even simple programming errors can cause the loss of human lives. For example, a famous
automobile firm was convicted by a court for a case of unintended acceleration that lead to the death of
one of the occupants. Central to the trial was the Engine Control Module’s firmware[Cum16]. Hence,
program verification to ensure that programs obey their specifications and are free from run-time errors,
is a significant part of program development, even accounting to more than half of the development
cost for critical systems. As programs are getting larger and more complex, and verification costs rise,
it is critical to employ more efficient verification methods, and in particular use automated techniques
that can leverage the power of computers. Among the most common and easily deployable verification
techniques is software testing. Software testing is an investigation conducted to provide stakeholders
with information about the quality of the software product or service under test. Software testing can
also provide an objective, independent view of the software to allow the business to appreciate and
understand the risks of software implementation. Test techniques include the process of executing a
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program or application with the intent of finding software bugs (errors or other defects), and verifying
that the software product is fit for use.

Software testing involves the execution of a software component or system component to evaluate
one or more properties of interest. In general, these properties indicate the extent to which the component
or system under test meets the requirements that guided its design and development, responds correctly
to all kinds of inputs, performs its functions within an acceptable time, is sufficiently usable, can be
installed and run in its intended environments, and achieves the general result its stakeholders desire.

Limitations. Testing methods are able to find bugs, but can not guarantee their absence as they can
not be exhaustive in case of too large or infinite inputs.

2.3.2 Formal Methods

Due to the limitations of testing, another family of program verification techniques has appeared which
is formal methods. Formal methods are a particular kind of mathematically based technique for the
specification, development and verification of software and hardware systems. The use of formal
methods for software and hardware design is motivated by the expectation that, as in other engineering
disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness
of a design. We now present some of the most widespread formal methods.

Model Checking

Model checking is a verification framework of finite state systems introduced in the early 1980’s by
[QS82] and [CE81]. Given a model of a system, and its specification, it consists in exhaustively and
automatically checking whether this model meets the given specification. Typically, one has hardware or
software systems in mind, whereas the specification contains safety requirements such as the absence of
deadlocks and similar critical states that can cause the system to crash. Model checking is a technique for
automatically verifying correctness properties of finite-state systems. In order to solve such a problem
in an algorithmic way, both the model of the system and the specification are formulated in some precise
mathematical language. To this end, the problem is formulated as a task in logic, namely to check
whether a given structure satisfies a given logical formula. This general concept applies to many kinds
of logic and suitable structures. A simple model checking problem is verifying whether a given formula
in the propositional logic is satisfied by a given structure. One of the characteristics of model checking
is the use of rather powerful specification languages, based on temporal logic [Bou09].

Limitations. Exhaustiveness narrow the use of Model Checking to relatively small models, either
finite or regular. So we rarely check the actual program, but rather a very simplified model, written by
hand for the purposes of verification.

Proof Assistants

Aproof assistant is a tool to assistwith the development of formal proofs by human-machine collaboration.
This involves some sort of interactive proof editor, withwhich a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer. For example Coq[Ler09] allows
the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find
formal proofs, and extracts a certified program from the constructive proof of its formal specification.
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Coq works within the theory of the calculus of inductive constructions, a derivative of the calculus
of constructions. Coq is not an automated theorem prover but includes automatic theorem proving
tactics and various decision procedures. An example application of Coq and its support for certified
program extraction is CompCert, a formally verified optimizing compiler for a large subset of the C99
programming language [KLW14].

Limitations. As a proof assistant requires manpower and is not an automated tool, it is well adapted
to a design of software which is done at the same time as the proof of correction, hand in hand, but less
to a verification of the entirety of a program already written. Also, the guarantees it can provide are still
limited to what the user wants/manages to prove, and thus still subject to human omission.

Static Analysis

In a more automatic way, static analysis allows gathering knowledge about the runtime behaviour of a
program without even running it. There are several forms of static analysis which share these common
characteristics: these analyzes always terminate, are automatic as they don’t require any action from the
user, they rely on approximations to bypass problems of undecidability and to ensure efficiency, and they
are sound as they consider over-approximations of all behaviors.

The principal advantage of static analysis is the fact that it can reveal errors that do not manifest
themselves until a disaster occurs weeks, months or years after release. It can also be useful for the
purpose of program optimization. If a compiler can prove that a program is safe, then it does not need
to emit dynamic safety checks, allowing the resulting compiled binary to run faster and to be smaller.

One well-known example of static analysis is type checking. Static type checking is the process of
verifying the type safety of a program based on analysis of a program’s text. If a program passes a static
type checker, then the program is guaranteed to satisfy some set of type safety properties for all possible
inputs. Static type checking can be considered a limited form of program verification.

Static type checking is rather conservative as it rejects programs that may be valid but which are hard
to prove correct.

1 l e t x = 2 in
2 ( i f x mod 2 = 0 then 5 e l s e " f i v e " ) + 1

Listing 2.1: A correct program rejected by type checking

For instance, Program 2.1 fails to pass the type check (in most statically typed languages, here
OCaml), because the value of the condition (x mod 2) cannot be statically determined, even though in
this case it is true and the program would not produce an error if it ran.

Type safety contributes to program correctness, but might only guarantee correctness for a certain
kind of errors that are prohibited by the type system. In a type system with automated type checking a
program may prove to run incorrectly yet be safely typed, and produce no compiler errors.

For instance, Program 2.2 illustrates a division by zero which is an unsafe and incorrect operation,
but a type checker running at compile time only does not scan for divisions by zero in most languages,
and then it is left as a runtime error. However, other kinds of static analyzes focus on proving value-based
properties and not only type-based ones, and may be able to detect such errors.
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1 l e t a = 6 in
2 l e t x = 0 in
3 l e t y = 3 in
4 i f a mod 2 = 0 then 2 / x e l s e a ∗ y + 1

Listing 2.2: A incorrect program accepted by type checking

1 (1) i n t i = 0 ;
2 (2) i n t j = 0 ;
3 (3) i n t e r r ;
4 (4) wh i l e (5) ( i < 100) {
5 (6) e r r = rand ( ) ;
6 (7) i = i +1 ;
7 (8) j = j + e r r ;
8 (9)
9 }

10 (10) a s s e r t ( j <=100) ;
11 (11)

Listing 2.3: a simple C program with a loop

We now present one such framework, which is widely used for static analysis purposes, which is
Abstract Interpretation.

2.3.3 Abstract Interpretation

Abstract Interpretation is an automated framework of static program verification which was introduced
in [CC76] and [CC77]. One of its many practical applications is to prove the absence of runtime errors
during the execution of a program by considering an over-approximation of the program’s behaviour and
proving safety properties on this over-approximation.

Introductory Example

With the exception of the simplest examples, the verification of the safety properties is rarely complete.
Automation of such an analysis requires the use of numerical methods to verify some approximation of
properties. One major technique used in program verification is the over-approximation of the reachable
sets of program points.

Consider the simple loop in Program 2.3: variables i and j start initialized at zero and the variable err

is uninitialized. At each iteration, variable err is updated to a random value (in [0; 1]), i is incremented
by one, and j is incremented by err. A forward invariant analysis would find that, at the end of the loop,
j ∈ [0; 100], err ∈ [0; 1] and i = 100, hence the assertion holds. We explain in detail in the current
section how to obtain such invariants.

2.3.4 Definitions

We now give the formal definitions for Abstract Interpretation which we illustrate with several examples.
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Transition systems

Transition systems are used to describe the behavior of discrete systems. They are a very useful tool to
formalize the semantics of programs.

Definition 16. A transition system is a pair (Σ, τ) where Σ is a set of states, and τ ⊆ P(Σ × Σ) a set of
transition relations between states.

Notations 2.3.1

Given two states σ, σ′, we note σ → σ′ ∈ τ the transition relation starting in the state σ, which
after one execution step, leads to the state σ′.

Also we define the function post : P(Σ) → P(Σ) to compute the set of reachable states from a set of
states S in one transition:

postτ (S) , {σ′ |∃σ ∈ S : σ → σ′}

Small-step operational semantics define methods to evaluate expressions one computation step at a
time. They are generally used to describe the behaviour of a program in terms of the behavior of its parts
(instructions, commands), providing a structural inductive view on its meaning. They can be seen as a
transition system. To use transition systems to describe behaviours of programs, we often augment them
with initial and final states:

Notations 2.3.2

LetI ⊆ Σ be a set of distinguished initial states andF ⊆ Σ be a set of distinguished final states. We
also distinguish a set of blocking states B that have no successor: B , {σ |∀σ′ ∈ Σ, σ → σ′ < τ}

to model runtime errors, and correct program termination.

We can augment the blocking states, with two special states thatwe noteα andω, denoting respectively
the correct and incorrect termination of a program. Our transition system can then be augmented by
adding transition from blocking states to either α or ω.

Many verification problems (absence of division by zero, unhandled exception etc.) can be reduced
to inferring the reachable program states, and verifying some properties over those states. In order to
do that, one needs to reason over not only one execution trace but the set of all possible ones, using a
collecting semantics. An execution trace of a program is a representation of the execution of this program
as a sequence of consecutive states.

Definition 17. The collecting semantics is the semantics that computes the set of all possible traces. It
can be defined according to a set of initial states I as follows:

T (I) = {s0 → · · · sn |s0 ∈ I,∀i, si → si+1 ∈ τ}

From this set of all possible traces, we can now obtain the set R (I) of all reachable states from I
which is defined by:
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R (I) = {s |s0 → · · · → s ∈ T (I)}

A proof of correction of a program (i.e. absence of runtime errors) then consists in proving that the
intersection of the program’s reachable states and the blocking states is empty:

Theorem 2. A program starting in I is correct if and only if ω < R (I)

Also note that the set of reachable states can also be expressed in fixpoint form, following [Cou78]:

R (I) = lfp(F ) with F (S) , I ∪ postτ (S)

To apply concretely this scheme to a program, we instantiate the states of our transition system to a
control location in L and an environment in E mapping each variable to its value:

Σ , L × E

If we go back to Program 2.3, we can now formulate its concrete invariant equation system. The goal
is to associate to each control location l ∈ L a variable Xl with a value in P (E) which denotes the set of
possible environments when the program reaches control state l. Note that this equation system can be
derived automatically from the control-flow graph of the program.

X1 = I

X2 = τ{i = 0}X1

X3 = τ{ j = 0}X2

X4 = τ{err = >}X3

X5 = X4 ∪ X9

X6 = τ{i < 100}X5

X7 = τ{err = rand()}X6

X8 = τ{i = i + 1}X7

X9 = τ{ j = j + err }X8

X10 = τ{i ≥ 100}X5

X11 = τ{ j ≤ 100}X10

Concrete semantic is not computable: computing exactly the set of all possible behaviours of a
program for all possible inputs is impossible if the size of the input is unbounded and, in practice, too
hard when this size is big. Also even when the size of the input is limited, non-determinism makes the
set of traces potentially unbounded. Even if we consider only one execution of a program, termination
problems that can not be solved at compile-time arise: a major constraint that has to satisfy a static
analysis is to terminate otherwise it is not usable in practice. Abstract Interpretation tackles this issue by
computing an over-approximation of the behaviours of the program and also uses methods for enforcing
termination of the analysis at the cost of a more approximate but yet sound program invariant.

Theorem 3. Let p be a program starting in I, R](I) an over-approximation of the reachable states such
that R (I) ⊆ R](I), and B] an over-approximation of the erroneous states such that B ⊆ B], then:
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R](I) ∩ B] = ∅ → R (I) ∩ B = ∅ ⇔ p is correct

Naturally, if over-approximations of some sets do not intersect, then the original sets do neither.
The principal challenge of a static analyzer by Abstract Interpretation is to use an easy to compute
approximation (i.e. easier than the concrete semantic), while trying to be precise enough to be able to
prove: R](I) ∩ B] = ∅.

To do that Abstract Interpretation relies on abstracting a concrete semantics into an abstract one and
translating the operations of the program into the operation of an abstract domain’s operation to make it
computable. Depending on the abstract domain used, the abstract semantic will be more or less precise,
and more or less expensive to compute.

2.3.5 Forward Analysis

Finding invariants at program points is made by solving a system of semantic equations, derived from
the program to analyze and from the abstract domain used. The corresponding abstract elements used
live usually in lattices, and are manipulated by the equation systems instead of the concrete values. Of
course, analyzers can rely on widenings to speed up and guarantee the finding of an over-approximated
invariant at the expense of accuracy sometimes, i.e. they reach a post-fixed point or a fixed point, but
not necessarily the least fixed point of the semantic equations. In a forward analysis, each program
instruction is associated with a transfer function that takes the element obtained from the instruction
befrore, and returns this element modified according to the current element. The program is therefore
associated with a composition of transfer functions, and computing its the reachability space corresponds
to the computation of the smallest fixed point of this composition of functions. The calculation of the
fixed point is necessary for analyzing loops or recursive function, or any instruction that induces a cycle
in the control flow graph of the program. The functions associated with the instructions of the loop are
applied multiple times, until the fixed point is reached, which is guaranteed by the use of the widening.
Several iterative schemes are possible. For simplicity we apply every equation at each step, but other
iteration scheme are possible (work-list, chaotic iterations[Bou93]).

2.3.6 Abstract Domains

We now present and formally define the principle of abstract domains which is a core notion in Abstract
Interpretation.

As explained before, Abstract domains are based on the idea of abstraction. Logically, the abstraction
relation can be seen as the inverse relation of the implication in the sense that if A implies B, then B

abstracts A. For instance if we consider the predicate P(x) which is true if the condition x ≡ 0 mod 4
is verified, then the predicate Q(x) which is true if the condition x ≡ 0 mod 2 is verified, can be seen as
an abstraction of the predicate P: ∀x ∈ N, P(x) =⇒ Q(x), and the resulting sets respect the inclusion
{x |P(x)} ⊆ {x |Q(x)}

Using this idea, abstract domains exploit the notion of correspondence between sets of concrete
values and abstract values through a Galois connection.
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Figure 2.10: Abstraction of the same concrete element, with different abstract domains

Galois Connection

Abstract domains associate concrete properties (values, for example) to abstract properties (types, ranges
of values). The abstract properties must always be sound approximations of the concrete ones. The
concrete properties, and abstract values both live in lattices and when all concrete properties have a
more precise corresponding abstraction, the correspondence is called a Galois connection. A Galois
connection is a very interesting relationship between two partially ordered sets.

Definition 18. Let (A, ≤A) and (B, ≤B) be two partially ordered sets. A monotone Galois connection
between these posets consists of two monotone functions: F : A→ B and G : B → A such that ∀a ∈ A

and ∀b ∈ B, we have:

F (a) ≤B b =⇒ a ≤A G(b).

Abstract domains embed a Galois connection, together with abstract versions of the operations of
the program: Let D and D] be respectively the domain of concrete values and the domain of abstract
values, an abstract domain defines an abstraction function and a concretization function that form a
Galois connection.

The abstraction function, noted α associates an abstract element to a concrete one. Figure2.10 shows
an example of application of an abstraction function over the same set of points, with some of the most
used abstract domains: the Boxes, Octagons, Polyhedra and Ellipsoids abstract domains.

αD] : D → D]

Its symmetrical is the concretization function, noted γ. It associates to an abstract element a set of
concrete values. It allows an analyzer to associate a concrete semantic for an abstract value. Figure2.11
shows an example of application of a concretization function from different abstract elements, with the
previous abstract domains.

γD] : D] → D

Note that Abstract domains may enjoy an abstraction function that forms a Galois connection together
with the concretization, but this is not mandatory. In this case, every concrete element has an optimal
abstraction. In the later definitions, we will not require an abstraction function, but only a concretization
one.

An abstract interpreter is able to evaluate a program using abstract values instead of concrete ones.
The result of the evaluation gives information about the behaviour of each step of the program. These
information hold not only for a single execution but for all of the possible executions of the program in
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Figure 2.11: Concretization of different abstract elements

each step of the program. To be able to do so, the analyzer relies on an abstract domain, which instead of
applying operations on concrete values, will rather define abstract operations. These abstract operations
will reason on abstract elements and to be semantically correct, they must maintain the same behavior
as their concrete counterpart in terms of property used for abstract values.

Abstract domains are thus defined according to a set of operations available in a concrete semantic.

Definition 19. Given a concrete semantic L, abstract domains for this semantic are given by:

• a set D] of machine-representable abstract values,

• a partial order (D], v,>],⊥]) relating the amount of information given by abstract values,

• a concretization function γD] giving a concrete meaning to each abstract element.

• an abstract operator O][r] for each rule r of the semantic L

• abstract set operators
⋃] and⋂], useful for computing the collecting semantic

• an algorithm to decide the ordering v]

Non-Relational Numerical Domains

A non-relational domain is an abstract domain that abstracts each variable separately, without any
communication between these abstractions. They are unable to infer relationships between variables
hence their name. A non-relational numerical abstract domain is given by: a subset of P(V → I)

(a set of environment sets) together with a machine encoding, effective and sound abstract operators,
and an iteration strategy ensuring convergence in finite time. It also must feature a concretization
function γ : D] → P(I) giving a concrete meaning to each abstraction, which can be decomposed
using a concretization function γ′ : (V → D]) → P(V → I) at the variable level such that: γ′(X ) =

ρinV→ I| f orallvinV, ρ(v)inγ(X (v))

An example of non-relational abstract domain is illustrated in Figure 2.12, where
⋂] and ⋃] are

implicitly defined as the least upper bound and greatest lower bound.
From this lattice, we can easily define an abstraction function α as there is a Galois connection

between the signs and the concrete values. Given a set of concrete values S, the abstraction function
α : P(I) → D] is such that:
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∅

< 0 >

≤ ≥

>

Figure 2.12: Lattice of the sign abstract domain

α(S) =




⊥ if S = ∅

< else if ∀s ∈ S = s < 0

> else if ∀s ∈ S = s > 0

0 else if S = {0}

≤ else if ∀s ∈ S = s ≤ 0

≥ else if ∀s ∈ S = s ≥ 0

> otherwise

2.3.7 State of the Art Tools

We end this section by quickly presenting some of the state of the art tools used in Abstract Interpretation:

• The static analyzer Astrée : Analyseur statique de logiciels temps-réel embarqués (real-time
embedded software static analyzer) [BCC+02, BCC+03] aims at proving the absence of Run Time
Errors (RTE) in programs written in the C programming language. On personal computers,
such errors, commonly found in programs, usually result in unpleasant error messages and the
termination of the application, and sometimes in a system crash. In embedded applications, such
errors may have critical consequences.

• The static analyzer AstréeA : Analyseur statique de logiciels temps-réel asynchrones embarqués
(real-time asynchronous embedded software static analyzer) [Min15] aims at proving the absence
of Run Time Errors (RTE) in large scale asynchronous embedded software. AstréeA is built upon
Astrée.

• More recently appearedMOPSA [MOJ18], a multi-language platform that simplifies the construc-
tion of semantic static analyzers defined by Abstract Interpretation. It provides a highly modular
and extensible design: semantic abstractions of numeric values, pointers, objects, control flow, as
well as syntax-driven iterators, are defined in small, reusable domains with loose coupling, that
can be combined and reused to a greater extent than in state of the art.
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• Frama-C is an extensible and collaborative platform dedicated to source-code analysis of C
software. It has a plug-in system that can specialize different types of analysis. Among the
existing plugins, Evolved Value Analysis (EVA) uses the abstract interpretation through a modular
architecture including several abstract domains. Frama-C is used, for example, in the verification
of critical code in the nuclear industry.

• Julia is a static analyzer for Java, Android and .NET. based on Abstract Interpretation methods. It
analyses all possible execution paths of a program in a sound way. Moreover it is able to analyze
bytecode and provides help for the correction of errors.

• The Polyspace static code analysis tool, for the C, C++, and Ada programming languages, uses
formal methods to prove the absence of critical run-time errors under all possible control flows
and data flows. They include checkers for coding rules, security vulnerabilities, code metrics, and
several classes of bugs.

• The Infer analyzer of Facebook performs verification checks for resource leaks, reachability
annotations, and concurrency race conditions. It provides support for Java, C, C++, and Objective-
C , and is deployed at Facebook in the analysis of its Android and iOS apps.

2.4 Mixing Abstract Interpretation and Constraint Solving

The aim of this thesis is to build and exploit a tight collaboration between abstract interpretation and
constraint programming. Themain goal is to push the limits of these two domains bymaking them benefit
from each other strength: Constraint programming provides powerful but computationally expensive
algorithms to reduce domains with an arbitrary given precision whereas AI does not provide fine control
over domain precision: in CP, we systematically refine a solution (split) without changing abstraction.
While in AI the design of more expressive abstract domains is privileged. Incorporating some Abstract
Interpretation mechanisms into a Constraint Programming paradigm would make constraint solvers
benefit from the several abstract domains and their implementations that have been developed over the
years in Abstract Interpretation, and we explain later on how it would allow the design of an efficient and
generic constraint solver.

The first step of this work is to set the theoretical foundations of an hybrid method combining two
substantially different paradigms. Once the interactions between CP and IA are well formalized, the next
issue is to handle constraints of general forms and potentially non-linear abstract domains.

2.4.1 Common Points and Differences

In order to exploit the links between the two fields, let us identify their similarity and disparities.

About precision. Abstraction is key notion in Abstract Interpretation. It makes analyzes computable but
less precise. In Constraint Programming, one never really sacrifices the precision, because the resolution
continues until the desired accuracy is achieved. It is a big difference with Abstract Interpretation. In
Constraint Programming, changing the abstraction just changes the way (and thus the efficiency with
which) one reaches the goal. In Abstract Interpretation, changing the abstraction changes the result and
whether the static analysis succeeds to prove the absence of error or not.
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About computations. Numerical abstract domains of Abstract Interpretation are designed for machine
integers and floatting points abstraction as the analyses are driven by a programming language’s semantic.
This is not the case in Constraint Programming as its main usage are driven by real world applications
and thus, computations are made to approximate the real numbers.

About disjunctions. A usual way of representing disjunctions in Abstract Interpretation is the powerset
abstract domain. Given an abstract domain, the powerset operator yields a new abstract domain which
corresponds to the powerset of the original one and the operations are accordingly extended. This makes
the new domain able to represent in the best possible way the concrete disjunctions. In Constraint
Programming the exploration process is the natural of considering disjunctions. This is a more powerful,
yet expensive, form of disjunction as it does not requite a concrete disjunction (a logical or ∨) to appear
in the problem, but can be used as soon the representation loses accuracy.

About soundness and completeness. Soundness and completeness do not refer to same mathematical
concepts in Constraint Programming and Abstract Interpretation. Generally speaking, being sound for
a tool means that if the tool says that the desired property is true, then it is actually true. Symetrically,
being complete means that everything that is true within the given theory is discovered by the tool.
Soundness and Completeness are then interpreted differently depending on the type of property. In
Abstract Interpretation, the desired property is generally "the program has no incorrect behavior". To
prove it, analyzers try to find invariants that respect the propery and that will hold for every possible
execution trace of the program. Thus, an analysis that will lose execution traces is not sound anymore and
considering an over-approximation of the execution traces is enough to prove the property. In Constraint
Programming, the property of interest is "this instance is a solution". As, the main goal is to find the
solutions of a problem, being soundmeans that the results of the solving process are indeed solutions, and
only solutions, of the constraint system. For a solver, considering an under-approximation of the states
is sufficient to be sound. Basically, "sound" means the same thing in CP and AI, it is just the property of
interest that changes. As this thesis focuses on the use of Abstract Interpretation techniques in Constraint
Programming world, we keep the meanings that are generally used in Constraint Programming. This
implies that a result that does not include all of the actual solutions of a problem is still considered
as sound as long as is does not return non-solution instances. Mathematically, a sound result is an
under-approximation of the solution space. In a similar way, completeness refers to the fact that all of
the solutions are returned by the solving method, and adding non-solutions to the result does not break
the completeness property. Mathematically, a complete result is an over-approximation of the solution
space. In practice, solving methods are often complete and unsound, and static analyzers are often sound
and incomplete.

In this thesis, we develop methods that can be, at the choice of the user, correct or complete.

2.4.2 Abstract Domains in Continuous Constraint Solving

Akey point in theworkwe present in this thesis is the use of abstract domains in aConstraint Programming
world. In Abstract Interpretation, abstract domains have been introduced to propose a computable
approximation of program states [CC77]. For example, with the Interval abstract domain, each variable
of a program is mapped to an interval with floating point bounds, and a program state is a Cartesian
product of such intervals (box). An abstract domain is a partially ordered set (poset), where several
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operations can be made: transfer functions compute the result of an operation on an abstract element,
the meet operator represent intersections of abstract elements, etc. Several recent research projects have
been interested in the links between Constraint Programming and Abstract Interpretation. For instance,
in [MBR16], the authors address the problem of proving an invariance property of a loop in a numeric
program, by inferring automatically a stronger inductive invariant. The algorithm they present is based
on both abstract interpretation and constraint solving. The computation of the effect of a loop is made
using a numeric abstract domain and as in constraint satisfaction, it successively splits and tightens a
collection of abstract elements until an inductive invariant is found. Another example, in an application
framework closer to constraint programming, is [Tal18] where the author proposes a formal lattice-based
definition of constraint programming, as well as a programming language to define exploration strategies
for a constraint solver within posets. Also, abstract domains have already been extended to be used in a
CP solver in [PMTB13b] and this work will serve as a starting point for us. We recall the main definitions
and algorithms in this section. All of the definitions follow closely [Pel15].

Constraint Language

Let us consider a simple constraint description language, whose BNF grammar is presented in 2.13 and
2.14. The language uses a finite, fixed setV of real-valued and integer-valued variables, simple numeric
expressions arith-expr and boolean expressions bool-expr, based on arithmetic comparison operators, or
logical operators. We will be reasonning on the same language all along in this work.

Constraints are boolean expressions involving either comparisons of atomic arithmetical expressions,
or conjunctions, disjunctons and negations of other constraints.

<bool-expr> F <arith-expr> � <arith-expr> � ∈ {>, ≥, <, ≤,=,,}
| ¬ <bool-expr> negation
| <bool-expr> ∨ <bool-expr> disjunction
| <bool-expr> ∧ <bool-expr> conjunction

Figure 2.13: Boolean expression syntax

Arithmetical expressions include real constants, variables, usual operators over expressions and
function calls among a list of predefined functions.

<arith-expr> F c c ∈ R
| V variables
| <arith-expr> � <arith-expr> � ∈ {+,−, ∗, /,%}
| - <arith-expr> opposite
| ident ’(’<arith-expr>(’,’ <arith-expr>)*’)’ function calls

Figure 2.14: Arithmetical expression syntax

We now define the semantic associated to this language using a big-step semantic. We instantiate
the Abstract Interpretation framework on properties of numeric constraint satisfaction problems. The
main intuition behind this idea is that contraint satisfaction problems can be seen as programs. Let
us consider that a program state is given by an environment in E that maps each variable to a value:
E , V → R and let us suppose given an initial state I specified as a subset of environments I ⊆ E,
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a constraint satisfaction problem can then be seen as nested guards, and defining the corresponding
semantic only requires defining the semantic function associated to guards τ{bool-expr}. The semantic
function τ{bool-expr}, which is also called transfer function in Abstract Interpretation associates to a
set of environments before an instruction the set of environments reachable after the instruction. In our
case, it will only act as a filtering function. Boolean expression semantic is presented in Figure 2.15 and
relies on semantics of expressions ~e�ρ which is presented in Figure 2.16.

~b�ρ : E → P ({t, f })
~e1�e2�ρ , {t |∃v1 ∈ ~e1�ρ, v2 ∈ ~e2�ρ : v1�v2} ∪ { f |∃v1 ∈ ~e1�ρ, v2 ∈ ~e2�ρ : ¬(v1�v2)}
~¬b�ρ , {t | f ∈ ~b�ρ} ∪ { f |t ∈ ~b�ρ}
~b1 ∨ b2�ρ , {t |t ∈ ~b1�ρ ∪ ~b2�ρ} ∪ { f | f ∈ ~b1�ρ ∩ ~b2�ρ}

~b1 ∧ b2�ρ , {t |t ∈ ~b1�ρ ∩ ~b2�ρ} ∪ { f | f ∈ ~b1�ρ ∪ ~b2�ρ}

Figure 2.15: Boolean expression semantic

~e�ρ : E → P ({R})
~c�ρ , {x ∈ R, x = c}
~V�ρ , {ρ(V )}
~−e�ρ , {−v |v ∈ ~e�ρ}
~e1�e2�ρ , {v1�v2 |v1 ∈ ~e1�ρ, v2 ∈ ~e2�ρ, v2 , 0 ∨ (� , / ∧ � , %)}
~name(x1, ..., xn)�ρ , { f (v1, ..., vn) |∀i ∈ [1, n], vi ∈ ~ei�ρ, f = runtime(name)}

Figure 2.16: Arithmetical expression semantic

Abstract Semantics

The concrete semantics is generally not computable as it manipulates values of R. Even if it were
not the case, for example if we were manipulating a more computer-friendly, finite data-type (such
as machine integers or floating-point numbers), indeed the semantics becomes computable, but yet, it
remains impractical because of its size. We tackle this problem in an Abstract Interpretation fashion
by reasonning on abstract properties instead of concrete sets. We first define a set D] of computer-
representable properties, so-called abstract elements, together with a data-structure encoding and a
partial order ⊆] denoting the precision order between abstract elements, and a monotonic concretization
function γ : D] → E.

To define an abstract domain over this language, one has to define abstract versions F] : D] → D]

of all the operators defined in the concrete semantic, in our case, only τ]{bool-expr}.
Defining such an operator is enough to provide an abstract version of the big-step semantic, which

is this time computable. Abstract semantics output an abstract invariant over-approximating the optimal
invariant computed by the concrete semantics. Abstract domains should feature a concretization function
(to associate a concrete meaning to an abstract elment) and may enjoy an abstraction function that forms a
Galois connection. Some domains do enjoy it (such as intervals and octagons), but other, useful domains
do not (such as polyhedra). For example there is no best polyhedron over-approximating a circle, as it
would require such a polyhedron to have an infinite number of generators lying on the perimeter of the
circle.
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2.4.3 From Abstract Interpretation to Abstract Solving

Using the asbtract interpretation we have just defined, we are now going to augment it to produce a
Constraint Solving framework. In order to do that we identify the main goals, and means to achieve those
goals, and then we lift these to abstract domains. A classical solving method alternates two main steps:
propagation and exploration. The abstract-solving method is defined by lifting up these operations to
abstract domains. An abstract domain must thus feature a consistency operation, a split operator noted
(⊕) (which could also be called instanciation, for discrete domains). Also, in order to have a terminating
process, we need to define a termination criterion, i.e. a precision predicate that we use to verify if an
abstract element is too "small" to be refined. From these requirements, we augment Definition 19 to
make it CP-compatible.

Definition 20. Given a concrete semantic L, abstract domains for this semantic are given by:

• a set D] of machine-representable abstract values,

• a partial order (D], v,>],⊥]) relating the amount of information given by abstract values,

• a concretization function γD] giving a concrete meaning to each abstrac element.

• an abstract operator O][r] for each rule r of the semantic L

• abstract set operators
⋃] and⋂], useful for computing the collecting semantic

• an algorithm to decide the ordering v

Along with:

• a size function τ2,

• a splitting operator on D], ⊕D] : D] → P(D]),

• a consistency, along with an effective algorithm to reach consistency.

Size Function

According to an ordered set E, a size function τ : E → R+ gives a metric on the size of an abstract
element. It is used for the termination condition and should be designed such that an abstract element
e ∈ E is considered as a solution if τE (e) is less or equal than a parameter r ∈ R+. Usually r is very
small and close to 0. Note that a size function may enjoy a monotonicity property: Let E] an abstract
domain and (E, ≤) its underlying poset, then we say that τE] is monotonic if and only if:

∀a, b ∈ E, a ≤E b =⇒ τE] (a) ≤ τE] (b)

Even though it is not mandatory, it is still a desirable feature of a size function.
2We have already used the symbol τ in the context of the definition of transition system to designate the set of transition

relations, as it is customary to do so. Still, to stay in accordance with the notations used in [Pel15], we redefine it to designate
the measure function of abstract elements
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Split Operator

We call split the action of dividing an abstract element into smaller ones with respect to the order of the
abstract elements.

Definition 21. The splitting operator ⊕E associated with a poset E, ≤E must respect some conditions.
Let e ∈ E, then:

• | ⊕E (e) | must be finite, ensuring the finite width of the search tree,

• ∀ei ∈ ⊕E (e), τE (ei) < τE (e) ensuring finite depth of the search tree (termination),

• ∪ ⊕E (e) = e enforcing that splitting does not lose nor create solutions (completeness and
soundness)

Termination and Redundancy

Both the size function and the split heuristic must respect the decreasing scheme ∀x ∈ ⊕E (e), τE (x) <

τE (e), as stated in Proposition 3.3.1 in [Pel12] so that there exists no infinite decreasing chain.
A supplementary condition which is not mandatory but gives better properties to the solving method

is the perfect cover condition which guarantees that all the elements resulting from the split of an element
e do not intersect with each other:

∀a, b ∈ ⊕E (e), a , b =⇒ a ∩ b = ∅

This property ensures that no concrete instance is handled twice during the resolution.

Consistency Operator

The consistency is a property of satisfiability of an element according to a constraint or a set of constraints.
Along with an effective algorithm to compute the consistent elements, it is used for the propagation phase
of our solving method. We define it as follows:

Definition 22. Given a set of variable X and their domains D, let c be a constraint, and D] an abstract
domain and L, ≤L the underlying poset. An abstract element d is said to be D]-consistent with respect
to c if and only if it is the least element of L containing all the solutions of that abstract element for c:

∀d ′ ∈ L, Sol (< X,D, {c} >) ⊆ γ(d ′) =⇒ d ≤L d ′

Abstract Domain Based Solving: the Algorithm

Using Definition 20 we can now define a solving method that does not depend on the abstract domain
employed. This solving method follows the classical techniques from Constraint Programming that use
propagation to reduce the domain of the variables and exploration to build smaller sub-problems from
the original one.
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Algorithm 3 Abstract solving
1: function solve(D, C, r) . D: domains, C: constraints, r: real
2: cover← ∅ . solutions
3: explore← ∅ . elements to explore
4: e =init(D) . initialization
5: push e in explore
6: while explore , ∅ do
7: e ← pop(explore)
8: e ← filter(e, C)
9: if e , ∅ then
10: if τ(e) ≤ r then
11: cover← cover ∪ e
12: else
13: push ⊕(e) in explore

By alternating propagation and exploration, Algorithm 3 builds a disjunction of abstract elements
that covers the solution space. It uses two auxiliary functions: init ∈ D → B, filter ∈ B → B.
Firstly, init creates an abstract element from the initial domains of the problem. Here we assume
that the initial domain is exactly represented in the abstract domain. Then, filter corresponds to the
propagation loop: it applies the propagator for each constraint in turn. Other orders are possible but we
restrict ourselves to a simple round-robin for now.

This solving method works as follows: at each step, the current abstract element is tightened using the
propagators on the constraints (function filter). After propagation, if the tightened abstract element is
not empty, two cases are possible:

• if the abstract element is small enough with respect to a parameter r (τ(e) ≤ r), then it is added to
the set of solutions cover

• if the size of the abstract element is larger than r and may contain solutions, then it is divided using
a split operator ⊕ and the process is repeated on the resulting abstract elements.

Initialization

This step is the entry point of the solving method. It builds an abstract element form the possible values
of the domains of the variables. In an Abstract Interpretation terminology, it is an abstraction function.
In our particular case, there often exists a best abstraction function as the domains of the variables are
expressed as a convex envelopp of some points, which our domains can express without losing precision.

function init(D) . D: domains of the variables
e′ ← ⊥
for i ∈ D do

e′ ← e′ ∪ α(i)
return e′

This procedure initializes by over-approximation the domains of the variables. This is the product of
the possible abstractions of the values of the variables.
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Filtering

function filter(e, C) . e : abstract element C: constraints
e′ ← e
for ci ∈ C do

e′ ← consA(e′, ci)
return e′

This procedure allows the filtering of an element according to a set of constraints. We filter the
abstract element with each constraint in a round-robin order. Of course, different kinds of consistencies
are possible, and this resolution method does not depend on the used consistency.

As is, Algorithm 3 builds a disjunction of elements that over-approximates the solution space. All
of the elements are split until they are too small to be split again, according to the size function of
the abstract domain employed. In [CJ09], Chabert & Jaulin showed a way to derive more expressive
resolution techniques applying symbolic methods on the constraints. We follow this idea by adding a
solving step to our resolution technique that stops the iteration as soon as an element satisfies entirely
the constraint system, as shown by Algorithm 4

In order to do so, we define a third auxialiary procedure satisfies ∈ B × C → {true, false}. This
procedure checks whether an abstract element satisfies all the constraints, that is, if it contains only
solutions. Of course, this procedure should have a sound behaviour, that is: in cas it use approximation,
it is allowed to answer "false" in the case where the element satisfies all the same constraints, but never
"true" in the case where the element violates at least one constraint. This function corresponds to a
contractor as defined in [CJ09]. We incorporate to the algorithm a satisfaction test before going to the
next iteration.

Algorithm 4 Abstract solving
1: function solve(D, C, r) . D: domains, C: constraints, r: real
2: sols← ∅ . sound solutions
3: undet← ∅ . indeterminate solutions
4: explore← ∅ . elements to explore
5: e =init(D) . initialization
6: push e in explore
7: while explore , ∅ do
8: e ← pop(explore)
9: e ← filter(e, C)
10: if e , ∅ then
11: if satisfies(e, C) then
12: sols← sols ∪ e
13: else
14: if τ(e) ≤ r then
15: undet← undet ∪ e
16: else
17: push ⊕(e) in explore

This improved version of the algorithm works just like the first one except that after propagation, if
the tightened abstract element is not empty, three cases are now possible:
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• if the abstract element contains only solutions (function satisfies), then it is directly added to
the set of solutions sols.

• if the abstract element is small enough it is added to the set of undeterminate solutions undet—
i.e., the abstract elements which may contain both solutions and non-solutions, and are considered
small enough to be left out of the search.

• Otherwise it is split (⊕) and the process is repeated on the resulting abstract elements.

Not only the satisfaction test accelerates the resolution process as it avoids superfluous iterations but
it also refines the results. At the end of the solving, we can now differentiate two kinds of elements, the
ones that are undeterminate, which we stopped splitting because of the size termination criterion, and
the ones that do satisfy the constraint system. Moreover, the implementation of this improvement is very
simple as it does not require to manipulate the representation of the abstract elements, but can be defined
in a generic way reusing the propagation.

Satisfaction Test

function satisfies(e, C) . e : abstract element C: constraints
for ci ∈ C do

if consA(e,¬ci) , ⊥ then
return false

return true

This procedure takes an abstract element and a list of constraints and returns true if and only
if the abstract element satisfies all the constraints. An element is considered to satisfy a constraint
if it possesses an empty over-approximation with the negation of constraints. Here we could be more
precise/efficient using an abstract domain specific satisfaction test, but thismore genericmethod facilitates
the implementation of new domains.

Termination of the Solving Method

To ensure the termination of the solver, we impose that any series of reductions, splits, and choices
eventually outputs a small enough element for τ, following Definition 10 from [PMTB13b]:

The search procedure can be understood as a search tree browsing: each node corresponds to a
search space and the children of a node are built by application of the split operator. Moreover, the set
of nodes at a given depth corresponds to a disjunction approximating the solution. In addition, a serie of
reductions and split correspond to a tree branch which, by the above definition is finite.

2.4.4 The AbSolute Solver

The AbSolute solver is an open source constraint solver based on abstract domains. It is built upon
a rigorous theoritcal framework which is Abstract Interpretation, and features several techniques and
classical heuristic from Constraint Programming. The solver is written in OCaml in a functional style
and implements the solving method we have just presented. It is usable with several numeric abstract
domains (Interval, Congruences, Octagon, Polyhedra) and domain combinators thus having several
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resolution means in one solver. It features a constraint problem description language, wery similar to the
ones presented in Figure 2.15 and Figure 2.16, presented in Appendix section A.1, and a visualization
tool that allows the user to picture the results of the solver, also described in AppendixA.3.

1 /∗ s imp l e example wi th t r i g o n om e t r i c a l f u n c t i o n s ∗ /
2 i n i t {
3 r e a l x = [ −10 ; 10 ] ;
4 r e a l y = [ −5 ; 5 ] ;
5 }
6 c o n s t r a i n t s {
7 y < ( s i n x ) + 1 ;
8 y > ( cos x ) − 1 ;
9 }

Listing 2.4: a simple example of CSP using AbSolute’s description language

Listing 2.4 illustrates an instance of a constraint satisfaction problem described in AbSolute’s syntax.
Figure 2.17 shows the graphical output of its resolution using the box abstract domain.

Figure 2.17: AbSolute’s 2D graphical output of the solutions of Listing 2.4

AbSolute’s standard ouput also indicates interesting properties about the results3 such as the number
of inner elements and outer elements.

Number of inner elements 6832
Total inner volume 40.823365

Number of outer elements 6528
Total outer volume 0.374564

Inner ratio 0.9909
Solving time 0.134s

3We omit here the complete list of solutions as there are a lot of them.
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AbSolute relies on Apron[JM09], an abstract domains library dedicated to the static analysis of
the numerical variables of a program by Abstract Interpretation. However, a lot of extensions to the
libray were needed to make it fit Constraint Programming purposes (especially regarding the addition of
split and size functions). The resolution is parametric in terms of precision, number of iterations, split
heuristic etc, and can be done using one abstract domain, or several working together as we will see
in Chapter 3. The solver can be used to solve problems containing real variables, integer variables or
mixed integer-real problems as we will see in Chapter 4.

In this thesis, we will heavilly rely on this solver to experiment different techniques and implement
the improvements we propose in this work. Each following chapter will be presented as the detail of a
theoretical framework followed by a small implementation section andwill be endedwith an experimental
section, in which we compare the results we obtain with different configurations of AbSolute or against
other state of the art solvers.
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Constraint Programming

Abstract

A major issue in Constraint Programming is the fact that some solvers are very efficient on a
specific constraint language, but can not (or hardly) be extended to tacklemore general languages, both
in terms of variable representation (discrete, or continuous) and constraint type (global, arithmetic
...). For instance, linear constraints are usually solved with linear programming techniques (LP). But
it is then difficult to add new non-linear constraints to the problem: the user must either linearize or
reformulate his/her constraint and keep the LP solver, switch to another solving method, or use an
external solver in the LP method to refine the variable bounds with the non-linear constraints. In this
chapter we adapt one very popular technique used in Abstract Interpretation to combine the power of
several analysis, which is the Reduced product abstract domain. This domain is a good way to build
both more precise analyses and extensible solver in a generic way. In this chapter, we present some of
the abstract domains we use in our work, and their versions lifted to constraint solving, among which
the polyhedra abstract domain. We also propose a modified version of the reduced product that is,
we believe, better suited for Constraint Programming purposes. We will especially detail a particular
instance of it which is the Box-Polyhedra reduced product. Finally we define general metrics for the
quality of the results of a solver, and present a benchmark with respect to this metrics. Experiments
show promising results and good performances.
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3.1 Related Works

Solvers are in practice very different in the constraint languages they handle, yet, many different solving
methods share common ingredients. In particular, they commonly use a consistency/propagation/bound
computation algorithm, and a branching/splitting/instanciation process. Previous works [PTB14] showed
how to unify these operations by re-defining a generic notion of domain, inspired from abstract domains
of Abstract Interpretation. A generic solving process on CP abstract domains has been introduced in
[PMTB13b], and implemented in the AbSolute abstract solver. Given an abstract domain (for instance,
the continuous boxes), the generic solver calls the appropriate propagators and splits on this abstract
domains (for instance, Hull consistency and splits for boxes). What is new, and important, in this
abstract solver is that it is modular, that is, it can apply the same formal method, parametrized with
different abstract domains in a generic way. The principal properties of the solver, which are termination,
completeness and correctness, depend on the properties of the abstract domain it uses.

Several abstract domains have already been defined inAbstract Interpretation: Intervals [CC77], Poly-
hedra [CH78], Octagons [Min04,Min06a], Ellipsoids [Fer04]. Cartesian products of floating-point inter-
vals already existed independently in CP to solve continuous problems (withHull consistency[BGGP99]),
and integer intervals for discrete constraints. In this case, the consistency level of the solver is often
bound-consistency which is very relevant for interval based abstractions [vHYGD08, Pug98]. More
recently, the Octagons have been defined for continuous constraints (with ad-hoc propagation and explo-
ration heuristics) [PTB14].

These domains feature different precision (e.g. Octagons are more precise than Boxes, but less
precise than polyhedra) and come at different costs (e.g. Boxes have a linear complexity in terms of
variables and Polyhedra are exponential). Also, some domains are designed to capture very specific
properties over concrete values and ignore (or at least propose a very coarse approximation for) the other
properties (e.g. Ellipsoids). Choosing which domain one has to use is not a trivial task as these facts
must be taken into account.

Table 3.1 sums-up the characterics of the some of the most widespread abstract domains: Boxes,
Difference Bound Matrices [Dil90, ACD93], Ocatagon [Min01], Ocatahedra [CC04], Zonotopes [GP06,
GP08, GGP09] and Polyhedra. They all are restriction of the polyhedra abstract domain, which may turn
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equation type complexity example best α
Boxes ±xi ≤ c O(n) x ≤ 10 X

Difference Bound Matrices x − y ≤ c O(n2) x − y ≤ 1 X
Octagon ±xi ± x j ≤ c O(n2) x + y ≤ 1 X

Octahedron ±xi ... ± xk ≤ c O(2n) x + y − z ≤ 3 X
Zonotopes x = αx

0 +
∑n

i=1 α
x
i ε i O(cn) x = 3 + ε1 + 2ε2 ×

Polyhedra a · xi + ... + b · x j ≤ c O(cn) 2x + 3y − 4z ≤ 3 ×

Table 3.1: comparison of different abstract domains, regarding expressivity, complexity and featuring of
a Galois connection

out to be too expensive in some cases. We present them with respect to the type of equations they are
able to express, their space complexity in terms of variable, and the fact that they feature or not a Galois
connection. The choice of the abstract domain to use is generally done before the analysis according to
the target program and the analysis time granted. For example, a program supposed to be fast, like a
compiler will probably not resort to a very expensive relational analysis but rather to an interval analysis
or a weakly relational analysis using an abstract domain like Octagons.

Moreover, another kind of abstract domains exists, which is the abstract domains combinator. These
abstract domains are built upon one or several abstract domains to improve and/or combine their precision.
Such domains are very useful in practice as they easily enable the creation of very expressive combined
domains in a modular and generic way. For example the Trace Partitioning abstract domain[RM07]
allows the partitioning of execution traces of a program to be based on the history of the control flow
(e.g. which branch of a conditional statement was taken), allowing a path sensitive analysis. It handles in
a generic way the abstraction of the conrtol flow and uses another abstract domain (generally a numeric
one) to handle the value analysis which will be more accurate thanks to the partitioning. Another very
popular abstract domain combinator is the Reduced Product abstract domain[CCM11] which we rely on
in this chapter.

A reduced product uses elements of the components of the product to represent conjunctions of
properties from these domains. Additionally, operations in the reduced product apply a reduction operator
to communicate information between the base domains, thus improving the precision. We present here
a domain combinator that builds up an abstract domain from two base domains. Note that this domain
composition generalizes well to an arbitrary number of abstract domains as the obtained abstract domain
can be itself an element of a reduced product. This feature allows us a good composabilty: From an
analyzer point of view, a product acts just like a regular domain. In order to be usable in a Constraint
Programming framework, we will have to define a split operator and a precision function, along with
a propagator. Also, a major difference between the reduced product we define here and the classical
reduced product defined in Abstract Interpretation is that we introduce a hierarchy between the domains,
one of them being specialized to a certain kind of problems only, and thus avoiding a redundancy of
information between the two components of the product.

After we illustrate the shortcomings of a single abstract domain based resolution, we will recall the
mandatory notions to understand how the reduced product operates, and will then focus on the use and
design of a version of this product applied to constraint solving.
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3.2 Introductory Example

The abstract domain parametrized resolution method allows using any abstract domain for solving
problems. However, all domains are not equivalent, and each has its own strengths and weaknesses. Let
us consider a concrete example: Example 3 gives a problem where both linear and non linear constraints
are used.

Example 3. An example with 2 variables (x, y) ∈ R2 subject to 2 linear constraints and one non-linear
constraint.

• x ∈ [−5; 5]

• y ∈ [−5; 5]

Constrained with:

• y ≤ 2x + 10

• 2y ≥ x − 8

• x2 + y2 ≥ 3

Figure 3.1 illustrates the resolution of this problem using the Interval abstract domain, and the
Polyhedra abstract domain.

(a) Solving using the Polyhedra abstract domain (b) Solving using the Interval abstract domain

Figure 3.1: Comparing the solving of a problem using different abstract domains

With the interval abstract domain, the time needed to reach the given precision is very small, 0.1
second, even though there is no constraint in the problem that intervals are able to express, that is
constraint of the form xi ≤ c. The resolution with the Polyhedra abstract domain is much slower, 1.2
second, despite the fact that the first round of propagation discards the two linear constraints as they
are encoded exactly inside a polyhedron. This important computation time is due to the fact that the
polyhedra lose a lot of time to deal with nonlinear constraints because they require the use of an additional
linearization step. We start from this observation to propose a combination of these domains, able to
exploit the strengths of the domains, without having to suffer their weaknesses.
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3.3 Reduced Product

Firstly, lets introduce Cartesian products. A Cartesian product is an operation that builds a set from two
base sets, and the definition can be easily extended to any number of sets. For sets A and B, the Cartesian
product A × B is the set of all ordered pairs (a, b) where a ∈ A and b ∈ B. In terms of abstract domain,
the Cartesian product is defined analogously, with its operations often being their counterparts in the
base domain, applied component-wise.

Definition 23. Let {Da, va, αa, γa} and {Db, vb, αb, γb} be two abstract domains. The cartesian product
{Da×b, va×b} is an abstract domain ordered by the relation va×b

(x1, x2) va×b (y1, y2) , x1 va y1 ∧ x2 vb y2

γa×b (x1, x2) , γa (x1) ∩ γb (x2)

αa×b (v) , (αa (v), αb (x2))

Where the abstraction function is naturally derived from the base domains and the concretization
is the intersection of the concretizations of the base domains. For example, Figure 3.2 illustrates the
application of the abstraction function for the Cartesian product of the Interval abstract domain with the
Congruence abstract domain[Gra89].

Example 4. Abstracting the the set of points s = {(0, 1), (0, 2), (2, 2), (6, 2), (2, 3)} using a Cartesian
product of Intervals and Congruences yields the following abstract value: ([0, 6], 2Z), ([1, 3],Z)

(a) s (b) γ(α(s))

Figure 3.2: Cartesian product of interval and congruences

As is, a Cartesian product uses both the expressivity of its components independantly without having
them communicating. Using a Cartesian product thus yields the same result as running two analyses
with each abstract domain independently: a naive way of implementing abstract operators is component
by component. This way, a loss of precision would arise from the control flow joins where information
learned in a branch by one of the two domains is not communicated to the other as in the following
example:

Example 5. Consider the guard x < 10 where x is associated to the abstract element [0, 20] with the
intervals and 4Z with the congruences, the transfer function filters effectively the interval, but can not
refine the congruence. It gives us: [0, 10], 4Z, inducing a loss of precision as 9 and 10 are values that x
can not take, even though the fact that x ∈ [0; 8] is expressible with boxes.
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Hence the use of a communication between components of the analysis. Also note that no loss
of precision is due to the definition of the abstraction function α and the concretization one γ. A
reduced product is a Cartesian product, which uses the same α and γ, but augmented with a reduction
operator, which computes a better representation of an abstract pair. It is of particular interest as it allows
propagating information between the two abstract domains, which refines both abstract elements at once.

Definition 24. Given an abstract domain {Da, va, αa, γa}, A reduction operator ρa ∈ Da → Da is such
that:

∀d ∈ Da, ρa (d) va d ∧ γa (ρa (d)) = γa (d)

This operator is used to propagate information between the two base components of the Reduced
product. Its utility is to reduce the loss of precision induced by the abstraction, by filtering each of the
component of an abstract value with the inconsistent values of the other components. In the presence
of a Galois connection, one can define a better reduction operator in a genreic way as: ρ = α ◦ γ. If
there is no Galois connection, a specialized reduction operator should be designed. For instance, if we
once again consider the reduced product of the Interval abstract domain with the Congruence abstract
domain, a reduction operator could reduce the following abstract values as shown:

Example 6.

ρ([0, 10], 2Z) = ([0, 10], 2Z)

ρ([0, 10], 1 + 2Z) = ([1, 9], 1 + 2Z)

ρ([10, 10], 2Z) = ([10, 10], 0Z + 10)

ρ([0, 10], 12 + 37Z) = ⊥

Of course, according to Definition 24, the identity function is a correct reduction operator, yet most
of the time very imprecise. In the following sections we present some abstract domains we use within a
reduced product for which we are able to define a most precise reduction operator.

Notations 3.3.1

In the following, we note Da×b the reduced product of abstract domains a and b

In the Constraint Programming terminology, a reduced product propagates information from one
abstract element to another and vice-versa. It can be applied to any abstract domains, whether discrete
or not, Cartesian or not. Applying reductions component-wise is more precise than using each abstract
domain independently as it reduces the loss of precision of each abstract domain with the other’s
precision. With reduced products, we can solve a problem using different abstract domains, each
applying its consistency independently and from time to time communicating their information to the
other domains. Detailed examples are given in Section 3.6.



3.4. LIFTING THE REDUCED PRODUCT TO CONSTRAINT PROGRAMMING 53

3.4 Lifting the Reduced Product to Constraint Programming

We now add to the definition of reduced product the requirement of our abstract solving method: a split
operator, a precision function, and a consistency operator.

3.4.1 Product Splits

The splitting operation fits a products representation and can be naturally derived from the base domains.

Definition 25. Given two abstract domains A and B, a reduced product split operator ⊕A×B : A × B →

P (A × B) is given by:

⊕a×b (A, B) = {(x, y) |x ∈ ⊕a (A), y ∈ ⊕b (B)}

Here, we simply map an abstract pair (a, b) of a product to all of the possible pairs resulting from the
splits of a and b. This split is illustrated in the Example 7 with one integer variable, using a box-parity
abstract domain (Where the letter ’O’ stands for ’odd’ and the letter ’E’ stands for ’even’)

Example 7 (Split operator with the Box-Parity reduced product).

⊕box,parity ([0, 10],>) = {(x, y) |x ∈ ⊕box ([0, 10]), y ∈ ⊕parity (>)}

= {([0, 5],O); ([0, 5], E); ([6, 10],O); ([6, 10], E)}

Example 7 shows that after a split, it is possible to perform another reduction operation to improve
the precision. Indeed, after the split is performed, we obtain four elements that could be tightened using
the reduction operator :

{ρ([0, 5],O); ρ([0, 5], E); ρ([6, 10],O); ρ([6, 10], E)} = {([1, 5],O); ([0, 4], E); ([7, 9],O); ([6, 10], E)}

Hence we propose to systematically follow the application of the split operator with the reduction
operator, which gives us the following split operator:

Definition 26. Given two abstract domains A and B, a self-reducing reduced product split operator
⊕A×B : A × B → P (A × B) is given by:

⊕A×B (a, b) = {ρ(x, y) |x ∈ ⊕A(a), y ∈ ⊕B (b)}

Proposition 1 (Product split). The product split operator is a correct split operator according to Defi-
nition 21.

Proof. Let us proove that ⊕A×B is a finite, correct and complete split operator:

• We have ∀a, b, | ⊕A×B (a, b) | is equal to | ⊕A (a) | ∗ | ⊕B (b) |. Since both ⊕A and ⊕B respect
Definition 21, | ⊕A (a) | and | ⊕B (b) | are finite and so is | ⊕A (a) | ∗ | ⊕B (b) |.
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• Correction and completion propoerties are trivially lifted to the produt as ⊕A and ⊕B are both
correct and complete.

�

Of course other splits are possible as this one can be considered as over-aggressive as is would
create potentially a lot of abstract elements. For example a round robin strategy performing a split on
each element in turn can be possible, or a more chaotic strategy based on randomly choosing which
abstract domain will perform the split is also possible. Also, if the two used domains have their abstract
elements comparable, then we can simply choose the component to be split according the standard
heuristic largest-first. In fact, even splitting with only one abstract domain, as explicited in Example 8,
and neglecting the other is still a correct strategy, but would require to have an adapted precision function,
that would take into account only the corresponding component of the product, to enforce the termination
of our solving method.

Example 8 (Product split - Only left).

⊕A×B (a, b) = {(x, y) |x ∈ ⊕A(a), y = b}

3.4.2 Product Precision Functions

The precision function also fits well a product representation and can be derived from the two base
precision functions.

τa×b (A, B) = max(τa (A), τb (B))

Which ensures that the solving process continues as long as at least one of the abstract elements is big
enough to be split. Also, depending on the product combination considered one could give a specialized
size function that would be designed specifically for the combination of the underlying abstract domains.

3.4.3 Products Consistencies

The product’s consistency is also naturally derived from the base domain’s consistencies. Definition 22
can easily be extended to deal with products, as follows:

Definition 27. Let c be a constraint, and D]
A×B

a product of domains D]
A
and D]

B , and (LA, ≤A),
(LB, ≤B) the underlying posets. An abstract element (a, b) is said to be D]

A×B
-consistent if and only if a

is the least element of LA containing all the solutions for c and b is the least element of Lb containing
all the solutions for c:

a = αA(c) ∧ b = αB (c)
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3.5 Abstract Domains for Constraint Programming

In order to use the solving process presented previously, we need to define abstract domains. We present
here in detail some of themost used ones in Abstract Interpretation, whichwe also implemented inside the
AbSolute solver. Some are Cartesian ones (corresponding to representations existing in CP), relational
ones (non-Cartesian) and even abstract domains corresponding to products of abstract domains.

In this chapter, we first give the Cartesian abstract domains corresponding to the representations
existing in CP. We then describe some of the relational (non-Cartesian) abstract domains available in
the Apron abstract domains library. We next define a variation of the classical reduced product abstract
domain, which gets rid of the redundant information shared by the product’s components. Finally
we introduce two abstract domains corresponding to products of abstract domains, and measure their
performances in the benchmark section.

3.5.1 Abstractions for Constraint Programming Consistencies

Constraint Programming techniques use several representations for the domains of the variables and
exploit different methods for propagating constraints and splitting over these representations. These
representations and the operations dedicated to them can be seen as abstract domains of Abstract
Interpretation. The most widespread representation for the domains of the variables are integer sets and
integer ranges for discrete problems, and real range with floating point bounds for continuous ones. We
show in this section how these methods can be formalized as abstract domains as we use them in a unified
framework. We detail here these representations and their operators as abstract domains.

Example 9 (Integer Cartesian Product). LetV be variables over finite discrete domains. We call integer
Cartesian product any Cartesian product of integer sets in D. Integer Cartesian products form a finite
lattice: S = {

∏
i Xi | ∀i, Xi ⊆ Di }

This kind of representation are very precise for the discrete and integer values as they allow the direct
enumeration of possible values but become very expensive when the domains of the variables increase.
Indeed, the size of these representations grow linearly with the size of the variables’s domain. Hence,
other representation may be needed in that case.

Example 10 (Integer Box). Let V be variables over finite discrete domains. We call integer box a
Cartesian product of integer intervals in D. We note ~a, b� with a ≤ b to represent the set {x ∈ Z|a ≤
x ≤ b}. Integer boxes form a finite lattice: N = {

∏
i~ai, bi� | ∀i, ~ai, bi� ⊆ Di, ai ≤ bi } ∪ {∅}

With this representation, we can recognize the idea of abstraction central to Abstract Interpretation
and widely used in Constraint Programming, whose main motivation is to sacrifice precision in favor of
efficiency and tractability of calculations. Here, the size of the representation does not dependant on the
size of the domains of the variables and is constant: only two values per variables are kept in memory,
corresponding to its lower and upper bounds. However some operations (e.g. union, muliplication) may
induce a loss of precision.

Along with the machine representation and the partial order, according to Definition 20, we require
a split operation for these representations to perform the exploration step of our solving process.
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Example 11 (Split for the Integer Cartesian Product). Let V be variables over discrete domains, let vi
be the variable chosen for branching, and x ∈ Di its chosen value. The splitting operator is:

⊕s (D1 × · · · × Dn) = { D1 × · · · × {x} × · · · × Dn,

D1 × · · · × Di \ {x} × · · · × Dn}

In the CP-terminology, this split is an instanciation of the variable vi.

Example 12 (Split for the Integer Boxes). Let (V) be variables over discrete domains, let vi be the
variable chosen for the split and Di = ~a, b� its domain. Let a be the chosen value for vi. The splitting
operator is:

⊕ib (D1 × · · · × Dn) = { D1 × · · · × ~a, a� × · · · × Dn,

D1 × · · · × ~(a + 1), b� × · · · × Dn}

Example 13 (Split for the Boxes). Let (V) be variables over continuous domains, let vi be the variable
chosen for the split and Di = [a, b] its domain as an interval. Let h = a+b

2 rounded to the nearest float.
The splitting operator is:

⊕b (D1 × · · · × Dn) = { D1 × · · · × [a, h] × · · · × Dn,

D1 × · · · × [h, b] × · · · × Dn}

Integer Cartesian Products Abstract Domains. This abstract domain is based upon the lattice given
in Example 9 and is ordered by inclusion. Its consistency corresponds to the generalized arc-consistency.
The splitting operator instantiates a value to a given variable, and is given in Example 11. The precision
function τs uses the size of the largest domain minus one:

τs (D1 × · · · × Dn) = max
i

(|Di | − 1)

If a solution is found, all variables are instantiated, all sets are singletons and τs is equal to 0. This
ensures that for any r > 0 the solving process terminates.

Integer Boxes Abstract Domain. This abstract domain is based on the lattice in Example 10 with
inclusion. It consists in a cartesian products of sets of consecutive integers. Its consistency is the bound-
consistency. Its splitting operator assigns a variable to one of its bounds, and is given in Example 12.
We use as precision function the length of the largest dimension, like with τs, if the element is a solution,
τib is equal to 0:

τib ({a1, b1} × . . . × {an, bn}) = max
i

(bi − ai)
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3.5.2 A Relational Abstract Domain: the Polyhedra

Some abstract domains do not correspond to a Cartesian product. This means that they do not only keep
one independant information per variable but they can also express relations about several variables. One
such abstract domain is the polyhedra abstract domains which can be very useful in practice. We recall
its definition in this section, then we augment it with our requirements to make it CP-compatible. We
finish by measuring the performances of its implementation in AbSolute, within a reduced product.

The polyhedra domain [CH78] abstracts sets as convex, closed polyhedra. Modern implementations
[JM09] generally follow the “double description approach” and maintain two dual representations for
each polyhedron: a set of linear constraints and a set of generators. These are two complementary
representations of the same data and the consistency between the two representations is maintained
using Chernikova’s algorithm [LV92]. A generator is either a vertex or a ray of the polyhedron. A ray
corresponds to a vector along which, starting from any vertex of the polyhedron, any point is part of the
polyhedron. However, the polyhedra we use do not have rays given that they are bounded.

A polyhedron can then be defined either as :

• the convex hull of vertices and rays called generators. Given a finite set of points {v1, . . . , vk } and
their convex hull conv{v1, . . . , vk }, the polyhedron is then the Minkowski sum:

P = conv{v1, . . . , vk } +

m∑
i=1

αiri

with ∀i, αi ∈ R+

• or as the solution set of a finite number of half-space/hyperplane- constraints of the form: A~x+b ≥ 0
or A~x + b > 0

(a) Linear constraint conjunctions
defining a polyhedron

x ≥ 1
x ≤ 4
y ≥ 1
y ≤ 4
2 × y − x ≤ 6
2 × y − x ≥ 0
2 × x + y ≥ 4

(b) The corresponding equation sys-
tem

(c)Generator representation of a poly-
hedron

Figure 3.3: Constraint and generator representation of a polyhedron

Figure 3.3 gives a visual of the different representations for a same polyhedron. The graphical
representation 3.3a, the set of linear constraints 3.3b and the generators representation 3.3c.

Each representation has its benefits and its drawbacks, operators being generally easier to define in
one representation than the other, and that is the reason why we keep the double representation in our
case. We define the initialization, the consistency and the splitting operator of a polyhedron on the set of
linear constraints. The size function is defined using the generators representation.
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The abstract consistency in polyhedra is an important matter. It highly depends on the constraints
nature. For linear constraints, the consistency can be directly computed by adding1 the constraints to the
polyhedron representation: this way, the algorithm which builds the polyhedron computes the generators
in one shot, hence the consistent polyhedron for the considered constraints. In AbSolute, this step can
be done once and for all during the initialization of the polyhedron.

For non-linear constraints, different approximations can be used, quasi-linearization [Min06b], lin-
earization for the polynomial constraints [MFK+16], or computing the hull box, to name a few. As
AbSolute is based upon Apron, it uses the same polyhedra consistency: the quasi-linearization.

The initialization of the polyhedron is performed using the set of linear constraints. The polyhedron
can either be initialized using only the constraints corresponding to the domains in the CSP, or using also
the linear constraints of the CSP.

Precision Function for Polyhedra

Adapting to polyhedra the precision function we defined on boxes naturally gives us a definition based
on the maximal Euclidian distance between pairs of vertices as shown on Figure 3.4.

Figure 3.4: Maximal distance between two vertices

It is defined as follows:

τp (P) = maxgi,g j ∈P | |gi − gj | |

If we assume fixed the number of dimensions, computing τp (P) in a brute force way (checking all
pairs of vertices of P) takes O(n2) time.

This problematic is well known as the diameter problem or the furthest pair problem. Given a set of
point P ∈ Rd (with d the number of dimensions considered), it consists in finding the maximum distance
δ between any two points of P (also called diameter of P). In the cases d ∈ {1; 2; 3} there are several
efficient algorithms[Ram97, Bes01] but they do not behave well when d grows larger.

As the precision function does not need to be accurate, we can use here an approximation algorithm
for the diameter problem. For example, using the size of the largest dimension of the smallest enclosing
box of the polyhedron can be sufficient.

1Of course, to keep a reasonable memory consumption, one has to remove the redundant constraints from the polyhedra
(e.g. “x < 5” is redundant according to “x < 2” and does not need to be kept in the constraint representation)
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Polyhedral Split

The split operator and the precision function should be designed in accordance so that the solving process
terminates. The splitting operator duplicates the set of constraints representing the polyhedron, and then
adds one constraint to each resulting set, the two added constraints being complementary, to ensure the
fact that we do not lose solutions. Let V be variable over continuous domains, let P be a polyhedron,∑

i∈{1,n} αivi be the linear constraint corresponding to the split we want to perform and h the value where
to split. The splitting operator is:

⊕p (P) = { P ∪ {
∑

i∈{1,n} αivi ≤ h}, P ∪ {
∑

i∈{1,n} αivi > h}}

How is this constraint computed? Taking advantage of the fact that we have already computed a pair
of distant generators of the polyhedra with the precision function, we can reuse the computations for
our splitting stragtegy: we first compute a line l that goes through these two generators, and from l, we
compute an orthogonal line to it, l ′, preserving the intuition that we want to split into our polyhedron
into two “big” parts. It is then sufficient to build the constraints corresponding to l ′ > 0 and l ′ ≤ 0 which
will be added into each of the two obtained polyhedra.

3.6 Specialized Reduced Product

In its classic form, the reduced product abstract domain handles a given statement with both of its
components and then propagates the gathered information between them using the reduction operator.
This is well adapted to a use in Abstract Interpretation but less to Constraint Programming: as there is
no a priori knowledge on the statements to be interpreted during a program analysis, if a domain fails
to find an invariant (or finds a very coarse one) on a given statement (e.g. because it uses expressions
that are not well handled by the domain, for instance a quadratic expression abstracted with a linear
conjuction domain), it may still be more accurate on the next statement. In a constraint satisfaction
problem, all of the constraints are enunciated right from the begining of the problem. Then the solver
works by performing several refinement iterations with the constraints to reduce the search-space using
the abstract domains. But here, if a domain fails to filter the search-space using a given constraint because
the constraint is not exactly representable with the abstract domain, then it will fail at every iteration of
the solving process for the same reasons, inducing an important loss of time.

To tackle this issue, we define a specialized reduced product. We propose to establish a hierarchy
between the components of the abstract domain: one of them will be a specialized component, i.e. it
will be interested in a certain kind of constraints only, and the other one will be a default domain that
will take care of the constraints the specialized domain does not handle.

Definition 28. A specialized reduced product Dspe×def is a reduced product with a dispatch function
δ : C → {true; f alse} that given a constraint c assigns it to the specialized domain spe when the
dispatch function returns true, or leaves it to the default domain def otherwise.

In order to achieve this, we add to our definition of the reduced product a dispatch function that
attribuates a constraint to the specialized domain if the later is able to encode it, and otherwise lets the
default domain deal with the constraint. When an abstract element of the specialized domain satisfies
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a constraint, we then solve the remaining part of the problem using the default domain (if the default
domain is itself a reduced product, we repeat the same process). Each time we propagate the constraints,
then the reduced product with the specialized element is applied on the resulting element.

3.6.1 Specialized Consistency

The main idea of the specialized reduced product is to exploit the forces of the abstract domains without
having to deal with their weaknesses. We thus define a specialized consistency following this idea, by
attributing each constraint to one of the component of the product according the constraints the domains
are able to handle efficiently.

Definition 29. Let c be a constraint, and D]
spe×def

a product of domains D]
spe and D]

def
, δ its dispatch

function, and (Lspe, ≤spe), (Ldef , ≤def ) the underlying posets. An abstract element (a, b) is said to be
D]

spe×def
-consistent if :




a = αspe (c) if δ(c) = true

b = αdef (c) otherwise

Also, note that thanks to the generic definition of the satisfaction test introduced in Chapter 2 and
based on the reuse of propagation, there is no need to define a specialized satisfaction test for this reduced
product.

3.6.2 Specialized Split

The split we have defined for products representation is a valid split for our specialized representation but
can lead to unecessary splits when the constraints remaining to solve concern only one of the components
of the products. Hence we propose here a split operator that takes into account a set of constraints to
solve:

Definition 30. Let C be a set of constraints, and D]
spe×def

a product of domains D]
spe and D]

def
, δ its

dispatch function, the split operator ⊕spe×def is defined as follows:

⊕spe×def (a, b) =




{(x, b) |x ∈ ⊕spe (a)} if ∀c ∈ C, δ(c) = true

{(a, y) |y ∈ ⊕def (b)} if ∀c ∈ C, δ(c) = f alse

{(x, y) |x ∈ ⊕spe (a), y ∈ ⊕def (b)} otherwise

Also, as the constraints can be removed from the constraint set as soon as they are proven to be
satisfied, the components of the product handling those constraints are not split anymore from this point.
This is due to the use of the dispatch function taking account the nature of the constraints, and if no
constraint fit the specialized abstract domain, we simply stop splitting it. This is one of the main reasons
we use a variant of the reduced product abstract domain instead of the regular one, as we want to avoid
splitting elements systematically.
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3.7 The Box-Polyhedra Instance

Now that we saw that an abstract domain can also correspond to a product of different abstract domains,
we present here one such combination which is particularly powerful in AbSolute.

Remark (Precision-cost trade-off)When choosing an abstract domain to usewhen solving a problem,
an interesting question to ask is if a polyhedron can represent exactly a hyper-cube or an octagon, why
not use the Polyhedra abstract domain all the time during an analysis ? The answer is two-fold: firstly
the Polyhedra abstract domain features in most of its operations a worst case complexity which is both
exponential in space and time. In comparison, the interval abstract domain and the octagon abstract
domain come respectively with linear and polynomial worst case complexity. Secondly, the polyhedra
abstract domain does not feature a best abstraction function in the general case thus requiring some
further development of linearization techniques to be able to use it in an actual implementation: as
polyhedra can generally not compute a best approximation for non-linear spaces, one has to find a linear
approximation of an expression over some range to be efficient. Thus, a solver tuned for Polyhedra
only will be very slow in the general case (especially in presence of several variables and in presence of
non-linear constraints), due to the expensive cost of the operation and to the additional processing step
which involves linearization.

3.7.1 The Oracle

The Box-Polyhedra abstract domain is particularly useful when solving problems which involve both
linear and non-linear constraints. Here, an interesting idea is to use the Polyhedra domain as a specialized
domain working only on the linear subset of the problem, or the easy-to-linearize part of the problem.
We use the Box domain as the default domain to solve the rest of the problem, i.e. expressions formed
of non-algebraic functions like sin, log, etc.

Linearization

Polyhedra must work with linear expression, hence the need to transform non-linear expression into linear
ones in a sound way. We can use the intervalization [JM09] techniques based on replacing variables
with their ranges. This approach yields an affine expression with interval as coefficients. As a heuristic,
we decide to apply this technique for the polynomial expression that possess one unique variable with a
degree superior to one, and handle the rest of the constraints using the default domain. This translates
into the following oracle function:

δ(c) = ∃x ∈ sup(c), deg(x) > 1,∧¬∃y ∈ sup(c), deg(y) > 1 ∧ y , x

Where is_polynomial (c) is an auxilliary procedure that computes true if the given expression is a
multivariate polynomial. Also, sup(c) is the set of variables of the constraint c and deg(v) is the degree
of the variable v.

Using this oracle, we can partition the memory representation of the problems accordingly. More
precisely, let Cl bet the set of polynomial constraints, considered as linearizable, and Vl the set of
variables appearing inCl, and letCnl be the set of non-linearizable constraints andVnl the set of variables
appearing in Cnl. We build an over-approximation of the space defined by Cl with the Polyhedra domain.
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(a) Solving the linear part (b) Solving the non-linear part.

(c) Intersection of both resolutions

Figure 3.5: Example of the Reduced product of Box-Polyhedra.

By construction, this polyhedron is consistent with respect to Cl once it is created (conjunctions of linear
constraints can be expressed with a convex polyhedron with no loss of precision). In short terms, the
linear constraints are propagated once and for all at the initialization of the polyhedron. The variables
Vnl appearing in at least one non-linear constraint are then represented with the box domain and the
sub-problem containing only the constraints in Cnl is solved accordingly.

3.7.2 Consistency

Figure 3.5 gives an example of the Box-Polyhedra abstract domain applied on Problem 3 with both linear
and non-linear constraints. Figure 3.5a illustrates the consistent polyhedron (for the linear constraints),
Figure 3.5b the union of boxes solving the non-linear constraints, and Figure 3.5c the intersection of both
abstract elements obtained with the reduced product.

As, by construction, the initial polyhedron is consistent for all the linear constraints of the problem,
the operators in the reduced abstract domain box-polyhedra are defined only on the box part. Let
X = Xb × Xp with Xb the box and Xp the polyhedron.

Definition 31 (Box-Polyhedra Consistency). Let C = Cl ∪ Cnl with Cnl (resp. Cl) the set of non-linear
(resp. linear) constraints. The box-polyhedra consistent element is the product of the smallest consistent
box including the solutions of Cnl with the initial polyhedron.

This definition of the consistency is equivalent to the Product-consistency as, by construction, the
initial polyhedron is consistent for the linear constraints (Cl).

Let X = Xb × Xp with Xb the box and Xp the polyhedron. The splitting operator splits on a variable
in Vnl = (v1, . . . , vk ) (in a dimension in Xb):

⊕(X ) = ⊕(Xb) × Xp

Finally, the size function is:
τ(X ) = τ(Xb)
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Thus, we take advantage of both the precision of the polyhedra and the generic aspect of the boxes.
Moreover, we bypass the disadvantages bound to the use of polyhedra.

Proposition 2 (Completness of solving with the Box-Polyhedra abstract domain). The solving method
in Algorithm 3 with the abstract domain is complete.

Proof. The Box-polyhedra consistency is complete; then, by Definition 10 in [PMTB13b], the abstract
solving method using the Box-Polyhedra abstract domain is complete. �

3.8 Implementation and Benchmarks

We have implemented the reduced product presented in this chapeter inside the AbSolute solver and
its performances have been compared with the defaultsolver of Ibex 2.3.1 [CJ09], on a computer
equipped with an Intel Core i7-6820HQCPU at 2.70GHz 16GBRAM running the GNU/Linux operating
system.

3.8.1 Quality of a Cover

Before we present the results we obtained, let us discuss quality metrics. Of course, when solving
continuous problems, different covers are possible and there does not exist a best one in the general case.
Nonetheless, it is possible to compare the quality of two coverages produced by a solver according to
several criteria among which:

Complete vs Correct. A solving method is generally either correct2, i.e. its output contains only
solution as illustrated by Figure 3.6a, or complete, i.e. its output contains all of the solutions, as in
Figure 3.6b. When able to discriminate wheter an element satisfies a constraint system or not as shown
in Figure 3.6c, we can produce a more interesting cover of the solution space that can be considered as
both correct and complete depending on which set of elements one considers.

(a) Correct solving (b) Complete solving (c) Correct and Complete solving

Figure 3.6: Comparing a complete solving to correct solving

In that case, we call the elements that satisfy a given problem the inner elements. We call the ones
that do not satisfy it (or can not be proven as satisfying element) the outer elements. Using this kind of
property we can add a novel quality metric for the output of the solver which concerns the proportion of
inner elements.

Definition 32. Given a CSP P, and a set of abstract elements covering its solution space, we can
distinguish the subsets I, of inner elements, and O of outer elements such that:

2Here we use the term correct in the Constraint Programming sense
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∀x ∈ I, γ(x) ⊆ Sol (P)

∀x ∈ Sol (P), @i ∈ I, x ∈ γ(i) → ∃o ∈ Ox ∈ γ(o)

The first condition explicits that I under-approximates Sol (p) and the second ensures that I ∪ O

over-approximates Sol (p).
Inner ratio. Exploiting the discrimination between inner elements and outer elements we can also

assume that not all elements are equivalent and propose a volume metric for our abstract elements. On
the entire volume of the cover, we compute the ratio from inner elements. When close to 1, this measure
ensures a better reusability of the result: as the outer elements are not guaranteed to contain any solution,
they may be subject to further refinement. Also certain applications could even discard those (e.g. when
computing under-approximations of some space), and keep only the inner elements. Also, in the discrete
case, the combinatorial enumeration can be limited to the outer elements, to be sure to have exactly all
the solutions and only solutions.

(a) Inner ratio 0.2 (b) Inner ratio : 0.6

Figure 3.7: Comparing the inner ratio of two covers of the same solution space

Definition 33. Given an abstract domain D], let vol : D → R a function that computes the volume of an
abstract element, we want to maximize the ratio:∑

i∈I vol(i)∑
i∈I vol(i) +

∑
o∈O vol(o)

This metric is the principal witness of the efficiency of the solver as it gives a concrete measure over
the obtained cover: at the begining of the solving process, this ratio is equal to 0, as we begin the search
within one outer element and as the solving goes, this ratio grows toward 1 as more and more inner
solutions are found and the volume of outer elements is always decreasing. However, this metric requires
the definition of a volume metric over our abstract element which is not straightforward. This metric is
meant to be a good approximation of the number of concrete instances abstracted by a given element and
sould be designed by taking into account the continuity of the search space.

Cardinality. The number of elements: the fewer elements will be in the cover space, the easier it
will be to reuse the solver results. Figure 3.8 illustrates two covers of a same space that have different
cardianalities. From a user point-of-view, the one with the smallest cardinality is easier to work with as
it represents exactly the same amout of information in a denser way. Also, from a solver point-of-view,
it shows that it has avoided superfluous exploration steps.
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(a) 4 elements in the cover (b) 2 elements in the cover

Figure 3.8: Comparing cardinalities of two covers of the same solution space

Definition 34. Given an abstract domain D, we want to minimize the number of abstract elements in the
cover:

|O | + |I |

Redundancy. If the results obtained do not intersect with each other, then we say of the resolution
that it is non-redundant. This property guarantees that one does not treat several times the same concrete
instantiations. Figure 3.9 gives an example of a redundant cover and a non-redundant one.

(a) Redundant cover (b) Irredundant cover

Figure 3.9: Redundant vs Irredundant

Definition 35. Given an abstract domain equiped with a meet operation ∩, we want our cover C to
satisfy the following property:

∀x, y ∈ C, x ∩ y = ∅ ∨ x = y

We will use the metrics we have just defined to compare the results of both AbSolute and Ibex, and
they will hold for the other chapters of this thesis. The resolution method that we define thereafter is as
well adapted to a complete resolution than to a correct one. It is non-redundant and we define later on a
technique of resolution able to reduce the number of elements returned by the solver, and maximize the
inner ratio.

3.8.2 Experiments

Problems for this benchmark have been selected from the Coconut benchmark3.
The selection has focused on problems with only linear constraints, only non-linear constraints or

both as this is the main focus of this work. Also, we have fixed the precision (the maximum size of
the solutions, with respect to the size metric of the employed domain) to 10−3 for all problems for both
solvers, which is a reasonable precision for this kind of problems.

3Available at http://www.mat.univie.ac.at/~neum/glopt/coconut/

http://www.mat.univie.ac.at/~neum/glopt/coconut/
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Table 3.2: Comparing Ibex and AbSolute with the interval domain.

problem #var #ctrs time, AbS time, Ibex #sols AbS #sols, Ibex
booth 2 2 3.026 26.36 19183 1143554
cubic 2 2 0.007 0.009 9 3

descartesfolium 2 2 0.011 0.004 3 2
parabola 2 2 0.008 0.002 1 1
precondk 2 2 0.009 0.002 1 1
exnewton 2 3 0.158 26.452 14415 1021152
supersim 2 3 0.7 0.008 1 1
zecevic 2 3 16.137 17.987 4560 688430
hs23 2 6 2.667 2.608 27268 74678

aljazzaf 3 2 0.008 0.02 42 43
bronstein 3 3 0.01 0.004 8 4
eqlin 3 3 0.07 0.008 1 1
kear12 3 3 0.043 0.029 12 12
powell 4 4 0.007 0.02 4 1
h72 4 0 0.007 0.012 1 1

vrahatis 9 9 0.084 0.013 2 2
dccircuit 9 11 0.118 0.009 1 1

i2 10 10 0.101 0.010 1 1
i5 10 10 0.099 0.020 1 1

combustion 10 10 0.007 0.012 1 1
st_miqp5 7 15 1.5 174.661 2135.269 292

hs5 2 1 0.05 81.672192 152.101994 3501
supersim 2 3 0.1 7.116 8.472 2

The first three columns of the table describe the problem: name, number of variables and number of
constraints. The next columns indicate the time and number of solutions (i.e. abstract elements) obtained
with AbSolute (col. 4 & 6) and Ibex (col. 5 & 7).

3.8.3 Analysis

We must define here the concept of solution for both solvers. Ibex and AbSolute try to entirely cover
a space defined by a set of constraints with a set of elements. In Ibex, these elements are only boxes.
In AbSolute, these are both polyhedra and boxes. Thus, the performance metric we adopt is, given a
minimum size for the output elements, the number of elements required to cover the solution space.
According to this metric, on most of these problems, AbSolute outperforms or at least competes with
Ibex in terms of time and solution number. We justify the good results obtained by our method by two
main facts: firstly, the linear constraints solving is almost immediate with our method. For example,
the booth problem is composed of one linear constraint and one non-linear constraint. The linear
constraint is directly representable with a polyhedron and thus, the solving process immediately finds
the corresponding solution, while working only with boxes makes the search go through many splits
before obtaining a set of boxes smaller than the required precision. Secondly, after each split operation,
AbSolute checks for each resulting abstract element if it satisfies the set of constraints. If it is the case,
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the propagation/split phase stops for this element. This makes it possible to stop the computation as
soon as possible. The defaultsolver of Ibex does not perform this verification and thereby goes much
slower. This makes our implementation competitive on problems with only non-linear constraints. For
the exnewton problem which only involves non-linear constraints (the resolution thus only uses boxes),
we also obtain very good performances. Note that disabling the satisfaction verification in AbSolute
leads to results with the same number of solutions as for Ibex, but still with a gain in time. For instance,
with this configuration, on exnewton without the satisfaction check, we obtain 1130212 elements in
9.032 seconds.

Finally, regarding the solving time, the two methods have similar solving time. But we can notice
that on bigger problems, using a polyhedron to represent the search space can be costly.

3.9 Conclusion

3.9.1 Contributions

In this chapter, we have shown that it is possible to define a constraint solving method based entirely on
abstract domains, and introduced a well-defined way of solving problems with several domains together.

The framework we have presented is based on the idea of using an expressive domain able to encode
exactly a certain kind of constraints, and a low-cost domain to abstract the constraints that can not be
represented exactly (with no loss of precision) in the specialized domain. This allows us to get the
best of both domains, while keeping the solver properties. The Box-Polyhedra product, for instance, is
particularly adapted to problems with linear and non-linear constraints.

The principle is generic enough to add as many specialized domains as one wishes. For instance,
the Congruence domain would allow us to efficiently represent constraints of the form: a ≡ b (mod n).
Therefore, one possible perspective of this work is to explore other specialized domains to broaden the
set of constraints that can be efficiently solved with a dedicated method.

3.9.2 Perspectives

The promising results obtained with the AbSolute solver open the way to the development of hybrid
solvers, at the frontier of Constraint Programming and Abstract Interpretation able to naturally handle
different representations. In future work, we wish to improve our solving method by adapting and
integrating advanced methods from the Constraint Programming literature, in particular specialized
propagators for global constraints. The AbSolute solver is built on abstractions in a modular way, so
that existing and new methods can be combined together. This opens many possibilities for mixing
abstract domains, and new heuristics will be developed for choosing the appropriate abstract domain
depending on the shape of the constraints. For example, the design of a product mixing standard abtsract
domains of Abstract Interpretation and a more CP-oriented abstract domain which would implement a
global constraint seems a promising idea. Ultimately, each problem could be automatically solved in the
abstract domains which best fits it, as it is the case in Abstract Interpretation with a good distribution of
constraints in relation to abstract domains, thus avoiding redundant computations and enjoying a better
precision.
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Discrete and Continuous Abstractions for
Constraint Solving

Abstract

Continuous problems and discrete problems are very different in nature and most constraint
solvers are generally built to handle one kind of problem, either discrete or continuous but not
both. While discrete solvers can heavily rely on exhaustive enumeration algorithms to reach to
targeted consistency, for instance node consistency or arc consistency, this can not be achieved in
the continuous case. Consequently, continuous solvers generally deploy other techniques, such as
interval-based computations, to prune the search-space and they generally reach other consistencies
such as hull-consistency or bound-consistency. In this chapter, we propose a framework that is able to
handle discrete, continuous and mixed discrete and continuous problems in a unified way. To do this,
we start from the HC4 algorithm, as it is appropriate for Cartesian representations, and we extend it
to make it handle not only interval products, but discrete representations too. We introduce a generic
representation for discrete values and continuous values, along with conversion rules inspired from
implicit type conversion of numerical values as found in several dynamic programming languages.
Finally, we extend our representation with some adapted exploration heuristics and we measure the
efficiency of the obtained solving technique on the MINLPLib benchmark.
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4.1 Related Works

Discrete constraint satisfaction problems are a lot more studied in literature than continuous ones. For
example, the XCSP3 competition’s[LR19] format involves only integer variables, both for satisfaction
and optimization problems. The distribution of discrete and continuous solvers illustrates this disparity
as there exist several solvers that tackle discrete problems:

• Choco Solver[PFL14] is an Open Source Constraint Programming library written in Java. It is one
of the most used discrete solvers.

• OR-Tools is an open source software suite, written in C++ mainly, for optimization, tuned for
tackling problems such as vehicle routing, flows, integer and linear programming, and constraint
programming.

• Concrete is a CSP constraint solver written in Scala. It solves CSP instances using depth-first
search and arc-consistency (or weaker variants for propagation). It uses persistent data structures
for managing domain states and some constraint states.

This list is not exhaustive and one can cite several other solvers/library such as Gecode[Sch02],
GnuProlog [DAC12], Eclipse [AW07].... All of these solvers are very specialized and are able to handle
a large variety of global constraints such as allDifferent, allEqual, noOverlap etc. Some solvers opt for a
portfolio approach, like Sunny-CP[AGM15], which consists in combining a variety of different constraint
solvers for solving a given problem. This enables a significant boost of the performance compared to
single solvers, especially when multicore architectures are exploited, but these remain limited to discrete
constraints only.

Yet, continuous constraint satisfaction problems are at the core of many real-world applications,
including planning, scheduling, control, and diagnosis of physical systems such as car, planes, and
factories. This raises the question of their scarcity in the Constraint Programming literature. These
problems are generally called numerical CSPs. When dealing with a continuous problem, users are
generally facing two options: either choosing to discretize its problem (potentially applying some scaling
transformations to simulate a continuous behaviour), and then use a standard discrete solver to obtain
the solutions. This option may require additional work with the results to retrieve an approximated
continuous property. This can be unsatisfactory as the discretization is a workaround to avoid the use of
a continuous resolution technique and has the disadvantage of being potentially incomplete.
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The other option is to simply use a solver dedicated to continuous problems. Those are generally
based upon a propagation/exploration technique to build a cover of the solution space, and use interval
arithmetic. Among those are:

• Realpaver [GB06] is a nonlinear constraint solver. It implements interval-based computations
in a branch-and-bound framework. Its key feature is to combine several methods from various
fields: interval fixed-point operators, constraint propagation and local consistency techniques, local
optimization using gradient descent methods and meta-heuristics, and several search strategies.

• Ibex [TC07] is a C++ numerical library based on interval arithmetic and Constraint Programming.
Its goal is to find a characterization with boxes of a space implicitly defined by constraints.

One could also cite the less recent Declic Language [BGG97] and Global optimization language
Numerica [vHMD97]. The main difference between those solvers and AbSolute is the fact that they
are limited to interval based computations, which leads to covers consisting in box disjunctions while
AbSolute builds disjunctions of abstract elements corresponding to an abstract domain given in parameter.
Hence the cover can consist in Octagons, Polyhedra etc. Also, even if both kinds of applications, fully-
discrete and fully-continuous can be handled with well established solvers, very few methods exist for
the handling of mixed discrete and continuous problems, even though benchmarks for such applications
exist. For example the Minlplib [BDM03] gathers several mixed problems. Minlp refers to optimization
problems with continuous and discrete variables and nonlinear functions in the objective function and/or
the constraints. Software developed for MINLP generally follow two approaches:

• Outer approximations/Generalized Bender’s Decomposition. These algorithms alternate between
solving a mixed-integer LP master problem and nonlinear programming sub-problems.

• Branch-and-Bound: Branch-and-bound methods for mixed-integer LP can be extended to MINLP
with a number of heuristics added to improve their performance.

But these solutions remain workarounds as they are not fully dedicated to mixed discrete/continuous
solving. Another example is [Ber10] where the author proposes a variant of the HC4 algorithm where
integer variables are filtered according to an integrity constraint when encountered during the top-down
part of the algorithm.

In this work, we propose a more general idea, that applies not only for integer variables but for any
discrete representation. Firstly, we present it in the form of an interval arithmetic augmented with a flag
that specifies if a given interval abstracts a continuous or a discrete space: this is in essence, a reduced
product between the interval abstract and the very simple flag abstract domain which we illustrate as a
lattice in Figure 4.1. We then refine this abstraction to further characterize the nature of the discrete space
and improve precision using a revisited version of a well known abstraction of Abstract Interpretation
which is the congruence abstract domain.

4.2 HC4 Propagation

Constraint in continuous problems are generally very distinct from constraints in discrete problems and
analogously, propagators for continuous representations are very different from the ones for discrete
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∅

discrete

continuous

Figure 4.1: Lattice of the flag abstract domain

representations. As propagators strongly depend on the domains representations, defining a propagator
for the allDifferent constraint would not make a lot of sense with continuous domains, as it would not
filter effectively the domains of the variables (except in degenerate cases). We propose in this section to
revise a well-known propagator of continuous representations, which is HC4, to make it handle discrete
ones also.

Solving numerical systems manipulating real-values usually requires interval arithmetic based tech-
niques due to the uncertainty implied by the rounding-errors. For example, Interval Newton algorithms
generalize to intervals standard numerical analysis methods [JKDW01, MKC09]. The algorithm we are
interested in is the HC4 algorithm which given some domains and one constraint computes the smallest
box, included in the domains of the variables, that encloses all of the solutions of the constraint.

Introductory Example

Let us consider a concrete example. Given variables x and y both with real-interval ranges in [−2, 5] and
a constraint c enforcing that 2 ∗ y + x ≤ 2, we are going to compute the smallest box (a two-dimension
square in this case) that contains all of the solutions for c. In order to do so, the first step is the interval
evaluation of the expression, which is illustrated in Figure 4.2.

x y
[−2, 5] [−2, 5]

≤

+ 2

× x

2 y

[−2, 5]

[−2, 5]

[−4, 10]

[−6, 15]

[−6, 15] [2, 2]

Figure 4.2: Interval evaluation of the expression 2 ∗ y + x ≤ 2

Using a tree decomposition of the constraint, and a store containing the initial ranges for the variables,
we evaluate both sides1 of it using a bottom-up traversal of the tree. Each operation is mapped into its
counterpart using interval arithmetic. With the given domains, the evaluation of the left side yields the

1In practice, one would more likely perform a symbolic transformation, removing the value 2 to both sides of the expression
and evaluate only its left side. This simplifies the implementation work of the comparison operators, as every value will be
compared to 0.
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interval [−6, 15], and the evaluation of the right side gives the singleton [2, 2]. Note that it is possible for
this step to over-approximate the result. In this case, consistency is not reached but the completeness of
the solving method still holds.

The second step of the algorithm is the top-downfiltering part of an expression illustrated in Figure 4.3.
Its goal is to refine the two intervals we obtained during the bottom-up step, by keeping only the values
that may satisfy the condition. In our case, we want the smallest intervals [i, j] such that:

∀x ∈ i ∩ [−6, 15], ∃y ∈ j ∩ [2, 2], x ≤ y ∧ ∀y ∈ j ∩ [2, 2], ∃x ∈ i ∩ [−6, 15], x ≤ y

In other words, we keep all the values that have a chance to satisfy the constraints, and we remove all
of the one that can not for sure satisfy it. Here, not all of the values in [−6, 15] are less than or equal to 2,
so we can remove the values from 3 to 15. We then propagate recursively the obtained intervals in both
branches of the expression, and filter accordingly the annotated nodes: for each operation we had during
the evaluation step, we can now refine its argument(s) now that we know an interval the result has to stay
in. When a variable is reached, we update its domain bounds in the store if needed. Here too, if not all
the values are removed from the intervals, the solving method is still complete even though consistency
is not reached.

x y
[−2, 5] [−2, 2]

≤

+ 2

× x

2 y

≤[−6, 2] [2, 2]

[−6, 2]

[−4, 4]
[−2, 5]

[−2, 2]

Figure 4.3: Filtering of the expression 2 ∗ y + x ≤ 2

Applying these two steps only once leads generally to a larger hull than the smallest one enclosing
all of the solution points. In particular in presence of several occurrences of the same variable, it would
possibly lose precision. To reach Hull-Consistency, the bottom-up part and the top-down part have to be
repeated alternatively until a fixpoint is reached2.

4.2.1 A Non-Relational Abstract Domain for Constraint Solving

One interesting feature of this algorithm, which we exploit in this chapter, is that it holds not only for
intervals but for any representation onwhichwe are able to define the following operations: first, the usual
arithmetic operations (+,−,×, /) used for the evaluation step. Second, the filtering tests (<, ≤, >, ≥,=,,)

that initiate the pruning of the expressions. Finally, the filtering versions of the arithmetic operations,
used for propagating the pruning toward the leaf of the expression during the top-down step. Also,

2As our solving method does not need to reach Hull-Consistency at every iterations, and as the result is going to be subject
to further splits and propagations, in the AbSolute solver we have made the choice to proceed to only one iteration of each step.
This is assuming that the gain of speed will allow the resolution process to make more iterations, which will make up for the
potential loss of precision
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some set-theoretic operations are required: as the top-down step requires an intersection operation, the
representation used has to form a meet-semi-lattice, i.e. for all elements x and y, the greatest lower
bound of the set {x, y} exists. Moreover, the representation is meant to be embedded into a non-relational
abstract domain within a Cartesian product. Hence we need to define on it an order relation from which
we can lift the order over the product representation: let n be the number of variables and xi the element
associated to the i-th variable of our Cartesian representation of the search space.

n∏
i=1

xi ⊆
n∏
i=1

x ′i ↔ ∀i ∈ [1..n], xi ⊆ x ′i

Size and Split for Non-Relational Abstract Domains

Altogether with the product representation, and the propagating function, the CP-version of our abstract
domain requires a size function and an exploration heuristic. In accordance with the non-relational
handling of constraints, we can define a variable selection heuristic and assign the splitting and measure
work to the chosen representation. Such heuristic can be largest-first or most-constrained for example.

Definition 36. Let us suppose that we have ⊕r , a correct, complete, and irredundant splitting operator
over the chosen representation and n the number of variables. Let vi, i ∈ [1.n] be the variable to split and
di its associated representation: the splitting operations over abstract elements of our non-relational
domains is then given by:

⊕(e) = {d1 × · · · × x × · · · × dn |x ∈ ⊕r (di)}

Proposition 3. Non-relational split. The non-relation split operator is correct, complete and irredundant.

Proof. By definition of the Cartesian product, ⊕ is trivially complete, correct and irredundant. �

In a similar way, the size function computes the size of the domain of the chosen variable, which
makes both the size function and the split heuristic consistent with the termination criterion.

Definition 37. Let us suppose that we have τr , the splitting operator over the chosen representation and
n the number of variables. The size function is then given by:

τ(e) = max{τd (d1) × · · · × τr (dn)}

Defining other useful operations such as the set-theoretic ones (∪,∩) is easy as they are naturally
lifted to a product representation using pairwise operations over the variables.

We are now going to explicit one such representation, which is well suited for continuous ranges of
values.

4.3 Interval Representation

A natural abstraction of contiguous sets of values is intervals. They allow the representation of the values
they contain using only a lower bound and an upper bound.
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4.3.1 Continuous Arithmetic Challenges

Machine-representable types such as integers and floating point numbers are finite and discrete. Since
real numbers R are infinite and continuous, they cannot be represented in computer architectures, in the
general case. This makes the problem of defining an abstraction for continuous values not trivial and in
particular we have to address two problems: fixed precision and rounding errors.

Fixed precision fixes the number of digits/bits used to represent a certain number. This limits the
range of all the operations to certain values (generally ±232 or ±264) which causes the problem of
arithmetic overflow. An arithmetic overflow error occurs when an arithmetic operation attempts to create
a numeric value that is outside a given range. A solution to postpone (and in practice almost completely
eliminate) the overflowing problem is the use of arbitrary precision representations. Those grow along
with the number to represent and the calculations are performed on numbers whose digits of precision
are limited only by the available memory of the host system. Of course, their unbounded size makes
them slower than fixed-size representations and they are principally used in applications where the speed
of arithmetic is not a limiting factor, or where precise results with very large numbers are required.

Rounding errors occur when the result of a calculation is not exactly representable with the type being
used. For example the result of 1

3 would require an infinite number of decimals to be represented and will
be rounded toward a close representable value depending on the rounding-mode of the processor being
used. When a sequence of calculations involving round-off errors are made, errors may accumulate,
sometimes completely obfuscating the calculation. A solution to limit rounding errors is the use of more
symbolic representations such as rational numbers which are numbers that can be expressed as a ratio of
two integers. This avoids rounding errors due to certain arithmetic operations such as division.

4.3.2 Continuous Intervals

To represent real ranges of values, we can use pairs of bounds which correspond to included or excluded
endpoints for an interval. The bounds should belong to a subset of R to be comparable with reals, and
also have to be representable exactly on computers.

Definition 38. Let B be a subset of R. A real interval with bounds in B is a pair ((l, bl), (u, bu)) where
(l, u) ∈ B2 are the endpoints of the interval and (bl, bu) ∈ {true, f alse}2 are flags denoting the inclusion
(true) or exclusion (false) of the endpoints of the interval. The concretization γ of such an interval is
given by:

γ((l, true), (u, true)) = {x ∈ R | l ≤ x ≤ u}

γ((l, true), (u, f alse)) = {x ∈ R | l ≤ x < u}

γ((l, f alse), (u, true)) = {x ∈ R | l < x ≤ u}

γ((l, f alse), (u, f alse)) = {x ∈ R | l < x < u}

Notations 4.3.1

• We note B2
R the set of real intervals with excluded or included bounds in B, where B ⊆ R.

• We note B2
Z the set of integer intervals with bounds in B, where B ⊆ N.
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Note that the interval arithmetic we present here does not depend on the computer representation
used for the bounds. Those only have to satisfy some requirements, such as implementing a total order,
providing arithmetic operation etc. Moreover, due to the possibility of rounding-error when using some
operations, we require for each operator � two version of it: one that rounds the result toward∞when the
exact result can not be computed, which is noted �+ and one that rounds the result toward −∞ which is
noted �−3. The image of an interval under a function f should be computed using the appropriate version
of the operators, depending on the monotonicity of f . For example, if f is a monotonically increasing
function, then the image of and interval ((l, bl), (u, bu)) under f is given by (( f −(l), bl), ( f +(u), bu)).

In the Absolute solver, several types of bound are implemented, with careful handling of rounding
errors including integer, floating-point and multi-precision rational bounds.

We have to define a meet relation, noted∩ over our representation. Here, when dealing with operands
with only closed bounds, the result has closed bounds too. When at least one of the operand has one of
its bounds open, the result will have the corresponding bound open too, as the ∩ operator must respect
the relation:

∀x ∈ a ∩ b, x ∈ a ∧ x ∈ b

When one of the operand has both its bounds open, the result will have both its bound open too for
the same reasons. Hence, using Booleans to encode the kind of bounds (open or closed) allow us to use
the conjunction operator ∧ to describe the behaviour of the bounds.

Definition 39. Ameet relation∩ : B2
R×B2

R → B2
R∪∅ is a binary operation such that ((l1, bl1 ), (u1, bu1 ))∩

((l2, bl2 ), (u2, bu2 )) = r where :

r = ∅ if and only if l1 > u1 ∨ l1 = u1 ∧ ¬(bl1 ∧ bu1 ) ∨ l2 > u2 ∨ l2 = u2 ∧ ¬(bl2 ∧ bu2 )

otherwise,

r = ((l3, bl3 ), (u3, bu3 )), where

l3 = max(l1, l2)

bl3 =




bl1, if l1 > l2

bl2, if l1 < l2

bl1 ∧ bl2 if l1 = l2

u3 = min(u1, u2)

bu3 =




bu1, if u1 < u2

bu2, if u1 > u2

bu1 ∧ bu2 if l1 = l2

We can also define a join relation, which is not mandatory, but will prove handy to define some
arithmetical operators. It corresponds to the convex hull of its two argument and may thus over-
approximate the result when applied on disjoint intervals. It has to respect the relation below:

∀x ∈ a ∪ b, x ∈ a ∨ x ∈ b

Symmetrically, we can use the disjunction operator ∨ to describe the behaviour of the bounds.

3Most processors today allow to set the rounding mode used.
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Definition 40. A join relation ∪ : B2
R × B2

R → B2
R is a binary operation where ((l1, bl1 ), (u1, bu1 )) ∪

((l2, bl2 ), (u2, bu2 )) = ((l3, bl3 ), (u3, bu3 )) is such that:

l3 = min(l1, l2)

bl3 =




bl1, if l1 < l2

bl2, if l1 > l2

bl1 ∨ bl2 if l1 = l2

u3 = max(u1, u2)

bu3 =




bu1, if u1 > u2

bu2, if u1 < u2

bu1 ∨ bu2 if l1 = l2

4.3.3 Interval Arithmetic and Filtering

Now that we have defined the set-theoretic operators over our representation, lets define an arithmetic
over it. The algorithm we use can be decomposed into two steps: one evaluation step and one filtering
step. We now detail the evaluation operations and filtering operation for real intervals.

We extend the interval arithmetic presented in the preliminary Section 2.1.3 tho handle included and
excluded bounds.

Interval Arithmetic Evaluation Rules

The evaluation step of the algorithm computes an interval which contains all the possible values for the
expression evaluated. It requires to define arithmetic operations over the used representation, and, in
order to be sound, these operations have to encompass the behaviour of their concrete counterparts. For
instance, for every binary operator a�b, we have to define an evaluation rule noted �eval. This rule has
to compute an over-approximation of the result of a�b in order to preserve the soundness property.

�eval (a, b) = i → ∀x ∈ a,∀y ∈ b, x�y ∈ i

Once again, we can note that an evaluation rules that returns the interval [∞,−∞] is valid for all
operator, but still, in order to be precise, we try to compute when it exists the smallest over-approximation.
An evaluation rule �eval is optimal if it respects the following property:

�eval (a, b) = min{i |∀x ∈ a∀y ∈ b, x�y ∈ i}

Provided that we have arithmetic operation over bounds of our continuous intervals, that can be
rounded toward∞ and −∞, we can now define arithmetic operation, over our continuous intervals with a
sound handling of round-off errors. When the result for a bound can not be exactly computed, it should
be rounded toward ∞ (respectively −∞) if it concerns an upper (respectively lower) bound. We have
implemented in the AbSolute solver all the evaluation rules for the operations presented in Appendix A.1.
For sake of concision we do not give all the evaluation rules in this section but illustrate the method on
some of them:

• −eval ((l, bl), (u, bu)) = ((−−u, bu), (−+l, bl))

• ((l1, bl1 ), (u1, bu1 )) +eval ((l2, bl2 ), (u2, bu2 )) = ((l1 +
− l2, bl1 ∧ bl2 ), (u1 +

+ u2, bu1 ∧ bu2 )
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• ((l1, bl1 ), (u1, bu1 )) ∗eval ((l2, bl2 ), (u2, bu2 )) = (min(ac, ad, bc, bd),max(ac, ad, bc, bd)) where,

ac = (l1 ∗
− l2, bl1 ∧ bl2 )

ad = (l1 ∗
− u2, bl1 ∧ bu2 )

bc = (u1 ∗
− l2, bu1 ∧ bl2 )

bd = (u1 ∗
− u2, bu1 ∧ bu2 )

• expeval (((l, bl), (u, bu))) = ((exp−(l), bl), (exp+(u), bu))

where both the min and max functions return a closed bound if the numerical values are identical
and one of them is included in the interval.

These arithmetic evaluation rules can now be used within the evaluation step of the algorithm: for
any constraint of the form e1 ./ e2, we can evaluate e1 and e2 inductively using our evaluation rules,
having for each expression node, the result of evaluating the corresponding sub-expression. When both
branches are evaluated, the resulting interval over-approximate the possible values of the underlying
expression.

Interval Filtering Rules

The evaluation step of the algorithm computes over-approximations of the spaces defined by both
branches of the constraint. The filtering step of the algorithm reduced these approximation to make them
compatible according to the comparison operator. It requires to define filtering operation over to used
representation. In order to be precise, these operations have to remove as much inconsistent values as
possible without losing soundness. As this step follows the evaluation step and reuses its result, filtering
operations can be seen as conditions to satisfy for the result.

Comparison Operators

First, we have to define filtering techniques for the comparison operators of the intervals. When dealing
with an equality constraint, the corresponding operation on intervals is simply the intersection as we
have to remove from both arguments all the values that can not be in the other argument. For the case of
inequalities the filtering works as follows: given two intervals i, j, if we have i ≤ j we can remove from
i all the values that are greater than the upper bound of j as they have no chance of being less or equal
than any value in j. Symmetrically, we can remove from j all the values that are smaller than the lower
bound of i for the same reason. The remaining rules for ≥ and > can be easily deduced from the ones
above.

Definition 41. A filtering rule ≤ f ilter : B2
R × B2

R → B2
R ∪ ∅ × B2

R ∪ ∅ for the (≤) comparison operator
is defined by: given two intervals i1 = ((l1, bl1 ), (u1, bu1 )) and i2 = ((l2, bl2 ), (u2, bu2 )), i1 ≤ f ilter i2 is
equal to:

(∅, ∅) if i1 ∩ i2 = ∅

otherwise,
r = ((l3, bl3 ), (u3, bu3 )), where
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l3 = min(l1, l2)

bl3 =




bl1, if l1 < l2

bl2, if l1 > l2

bl1 ∨ bl2 if l1 = l2

u3 = max(u1, u2)

bu3 =




bu1, if u1 > u2

bu2, if u1 < u2

bu1 ∨ bu2 if l1 = l2

From the resulting filtered interval, we have to propagate the filtering towards the leafs of the tree.
The idea is to define backward versions of the regular operators, that will enforce necessary conditions
for the constraint to be respected. Given two interval arguments, we compute a subset of each argument
by removing points that cannot satisfy the constraint. The result may also be empty in the case no point
can satisfy the predicate.

Top-Down Filtering Rules

For each evaluation rule �eval, we have a corresponding filtering rule noted � f ilter . All of the filtering
rules take one more parameter than their evaluation counterparts which corresponds to the constraint
they should satisfy. For example, for a binary operator �, we define � f ilter which takes three parameters:
the two parameters of � and the target result a�b have to stay in.

Definition 42. Given a binary operator �, a rule � f ilter : B2
R × B2

R × B2
R → (B2

R × B2
R) ∪ (∅ × ∅) is a

filtering rule for � if the equality � f ilter (a, b, c) = (a′, b′) respects the following conditions:

• a′ ⊆ a ∧ b′ ⊆ b (filtering)

• ∀x ∈ a, x < a′ → @y ∈ b, x�y ∈ c (soundness 1)

• ∀y ∈ b, y < b′ → @x ∈ a, x�y ∈ c (soundness 2)

Here the filtering condition ensures that a rule only removes values from its arguments. Note that,
in case the filtering operator empties an element, this information is passed to the other element in the
product within � f ilter , hence, the situation where one element is empty and not the other one cannot
happen. Both soundness conditions guarantees that if a value was removes, it was indeed inconsistent.
Notice that a filtering condition does not need to remove all the inconsistent values. A filtering rule is
considered complete if it respects the following property:

� f ilter (a, b, c) = c → ∀x ∈ a,∀y ∈ b, x�y ∈ c

We can now illustrate the filtering rules over the same examples as before:

− f ilter (a, r) = a ∩ −eval (r)

+ f ilter (a, b, r) = (a ∩ −eval (r, b)), (b ∩ −eval (r, a))

∗ f ilter (a, b, r) =




(a ∩ /eval (r, b), b ∩ /eval (r, a)), for 0 < a ∧ 0 < b

(a ∩ /eval (r, b), b), for 0 < a ∧ 0 ∈ b

(a, b ∩ /eval (r, a)), for 0 ∈ a ∧ 0 < b

(a, b), for 0 ∈ a ∧ 0 ∈ b
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Here the filtering property is obviously respected, as all the results are obtained by intersection with
the arguments. Moreover, the soundness condition is also respected as these operations are based upon
evaluation rules as a + b = r =⇒ b = r − a ∧ a = r − b. As evaluation rules over-approximate the
result, filtering rules behave similarly.

Thanks to these rules, we have now defined an evaluation and a filtering unit that work on continuous
interval with included or excluded bounds that can be used within the HC4 algorithm.

4.3.4 Exploration and Measurement

To meet the requirements of the solving method, we also need to define a split operation over this
representation, and a way of measuring it.

Split Operation

We propose as an exploration method a simple bisection. Let h = l+u
2 , we have:

⊕(((l, bl), (u, bu))) = {i1, i2}

with:

i1 = ((l, bl), (h, true)) (4.1)

i2 = ((h, f alse), (u, bu)) (4.2)

Obviously, this split operator is correct as ∀x ∈ ⊕(i), x ⊆ i, hence no value are added by the split
operation. This split is also complete as for all intervals i, ⊕(i) forms a perfect cover of i. To preserve
the irredundancy property of our solving method, we make sure that new bound of the obtained intervals
h is contained by only them: For the real intervals, it should be closed for one of them and open for the
other.

Of course, we can discuss other splitting operators, such being a splitting operator that forces
monotonicity over the result of the split. As the Box abstract domain is built upon interval arithmetic,
and operation in interval arithmetic are usually more expensive when the intervals do not have a constant
sign (e.g. the multiplication of two interval requires to test the sign of the intervals, and then split them
to reach monotonic interval, then join back the result), this allows the solver to be more efficient. This
splitting operator operates in a way that allows it to obtain monotonic intervals when not already the case
and gives good results in practice.

⊕monotonic (M) =



⊕real (M, 0) if ai ≤ 0 ≤ bi ∧ m < i ≤ n

⊕mixed (M) otherwise

Size Function

The size function is simply defined as the difference between the upper bound and the lower bound,
disregarding the fact that bounds may be open or closed. It is given by:

τ((l, bl), (u, bu)) = u − l

This is compatible with the split operation, as splitting a (non-singleton) interval will always produces
strictly smaller intervals according to τ.
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4.4 Discrete Representation

Now that we have an appropriate representation for continuous domains, we are going to define one for
domains that can take a discrete set of values. To represent integer ranges of values, we can use pairs of
integer bounds which correspond to the (included) endpoints of the range.

Definition 43. An integer interval is a pair (l, u), where (l, u) ∈ Z2, denoting the set of integer values x

such that l ≤ x ∧ x ≤ u.

This representation is very common and is well adapted to contiguous integer domains but may lose
precision on some operation such as multiplication as shown in Example 14, where the result should be
trivially even, but still, the resulting interval abstracts odd values.

Example 14. (0, 10) ∗ (2, 2) = (0, 20)

One way to improve precision is to augment the interval representation with an abstraction that keeps
track of the minimum distance between two consecutive values in the domain of a variable. In order
to do so, we can go from the congruences abstract domain [Gra89] and make it CP-compatible. This
representation is able to abstract infinite, discrete, equal-spaced set of integers with the notation aZ + b,
whose concretization is given by: γ(aZ + b) = {ak + b|k ∈ Z} when a , 0 and is simply the singleton
{b} when a = 0. This abstract domain is meant to express properties of the form “the integer valued
variable X is congruent to c modulo m”, and is based on the partial order:

(aZ + b) v (a′Z + b′) ↔ a′ | a ∧ b ≡ b′ (mod a′)

Using this abstract domain in product with the integer intervals, we now obtain a discrete finite
abstraction, able to express bounds for the possible values and the sparsity of the interval if need be.

In our case, since our domains are bounded, an element of such a product can be seen as a tuple
(l, u, δ), where (l, u) ∈ Z2 and δ ∈ R> , denoting the set of values x ∈ R such that l ≤ x ∧ x ≤ u ∧ ∃k ∈

N, x = l + δ ∗ k.
Example 15 shows how this improved representation is able not to lose precision on the same

multiplication.

Example 15. (0, 10, 1) ∗ (2, 2, 1) = (0, 20, 2)

With this product, we can now abstract efficiently integer domains with congruences pattern, but
when the space between values in smaller than one, this representation does not hold anymore.

In order to overcome this issue, we adapt this representation to any kind of discrete space and not
only integers.

Definition 44. Let B a computer representable subset of R, d discrete interval is a tuple (l, u, d) ∈ B3,
denoting the set of discrete values x ∈ R such that l ≤ x ∧ x ≤ u ∧ ∃k ∈ N = l + k ∗ d.

This representation is a reduced product at a non-relational level of abstraction, and thus, the methods
we have propose in the previous chapter also apply here to define the abstraction, concretization and
set-theoretic operations also apply here. This is using the reduction operator (reduce) which given an
interval i = [l, u] and a congruence element c = aB+ b, reduces the interval in such a way that its bounds
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belong to aB+ b. It is not necessary to reduce the congruence element except in degenerate cases where
the interval is a singleton or becomes empty after the reduction. It is such that reduce(i, c) = [l ′, u′]
where:

l ′ =



l if l mod a = b

(l/a + 1) ∗ a + b if l mod a , b
and u′ =




u if u mod a = b

(u/a − 1) ∗ a + b if u mod a , b

Hence we do not define all the operations but simply recall a few over the congruences for sake of
concision, the original framework, over rational, being described in [Gra97].

4.4.1 Evaluation and Filtering

Let d = aB + b and d ′ = a′ + b′ be two abstract values of the congruence domain. Then we define:

• −evald = (a,−b)

• d +eval d ′ = gcd(a, a′)B + (b + b′)

We don’t give the proofs of these operators as they are easily lifted from [Gra92].

Comparison

As the operators <, ≤, >≥ are not very useful over congruences, we can consider that they leave the
abstract element unchanged. For the equality constraints, the filtering to be applied uses the meet:

= f ilter (a, b) = (a ∩ b), (b ∩ a)

Top-Down Filtering Rules

The top-down filtering versions of the congruence operators follow the same principle than the one for
intervals and we do not detail it here.

4.4.2 Exploration and Measurement

To meet the requirements of the solving method, we also need to define a split operation over this
representation, and propose a way of measuring it.

Split Operation

Our discrete representation is a product of interval and congruences and as seen in Chapter 3, we can
define several splits over a product representation. As we have already defined a split operator for
intervals, we now define one for congruences. A natural split for congruences is to divide an element
into two sub-elements, and to keep one value on two for the first, and the other for the second.

Definition 45. Let aZ + b be a congruence abstract element, we define a split operator ⊕ such that:

⊕(aZ + b) = {a2Z + b, a(2Z + 1) + b}
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Proposition 4 (Congruence split). The congruence split operator is a correct split operator according
to Definition 21.

Proof. Let us prove that ⊕ is a finite, correct and complete split operator. We recall4 that γ(aZ + b) =

{x |∃k ∈ N, x = a ∗ k + b}.

• Trivially ∀x, | ⊕ (x) | is finite and equal to 2.

• We now prove that ⊕ is correct, i.e. ∀x ′ ∈ ⊕(x), x ′ v x. In this case, we have to prove :
2 ∗ aZ + b ≤ aZ + b ∧ a(2Z + 1) + b ≤ aZ + b ⇔ γ(2 ∗ aZ + b) ⊆ γ(aZ + b) ∧ γ(a(2Z +
1) + b) ⊆ γ(aZ + b): First, we explicit that γ(2aZ + b) = {x |∃k ∈ Z, x = 2 ∗ a ∗ k + b}. Also,
we have: ∃k ∈ Z, x = 2 ∗ a ∗ k + b → ∃k ′ ∈ Z, x = a ∗ k ′ + b with k ′ = 2 ∗ k. Hence
{x |∃k ∈ N, x = a ∗ k + b} ⊆ {x |∃k ∈ N, x = 2 ∗ a ∗ k + b}. For similar reasons, we obtain that
γ(a(2Z + 1) + b) ⊆ γ(aZ + b), which makes the ⊕ operator correct.

• Finally, we also prove that ⊕ is complete, i.e. ∀e ∈ γ(x), ∃x ′ ∈ ⊕(x), e ∈ γ(x ′). In this case, we
have to prove : ∀x ∈ γ(aZ, b), x ∈ γ(a2Z + b) ∨ x ∈ γ(a(2Z + 1) + b): First, we explicit that
γ(aZ + b) = {x |∃k ∈ Z, x = a ∗ k + b}. By induction over kmod2:

– case 0: ∃k ′ such that k = 2 ∗ k ′, thus x ∈ γ(aZ, b) → x ∈ γ(a2Z + b)

– case 1: ∃k ′ such that k = 2 ∗ k ′ + 1, thus x ∈ γ(aZ, b) → x ∈ γ(a(2Z + 1) + b)

�

Moreover we have from the inductive reasoning of the proof of completion that 2 ∗ aZ + b∩ a(2Z +
1) + b = ∅ which makes the ⊕ operator irredundant.

Also note here, we have made the choice of splitting an abstract element in only two sub-elements,
but we can also define a more aggressive splitting operator ⊕k that would partition an abstract element
into k sub-elements as following:

Definition 46. Let aZ + b be a congruence abstract element, we define a split operator ⊕k such that:

⊕k (aZ + b) = {k ∗ (aZ + i) + b|i ∈ [0; k − 1]}

From this definition we can adjust how much we want to split an abstract element and the previous
definition is a particular of this one with k = 2.

As for the split defined in Definition 63, we can define a dispatch function that branches toward the
congruence split or the interval split according to a set of constraints.

Size Function

As seen in Chapter 3, a size function over a product representation can be defined as the maximum value
of the sizes of its components. We thus define a size function for the congruence domain. Defining a
size function over infinite sets is not trivial and we will here focus on the space between two consecutive
value of an element, disregarding the offset.

4operators are taken from [Min02]
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Definition 47. Let d = aB + b be an abstract element of the congruences domain, its size is given by:

τ(d) = 1/a

Which means, the more space we have between our elements the smaller the value will be considered.
This size function is in accordance with the split defined in previous section as it respects for all abstract
element of the congruences domain:

∀x ∈ split(d), τ(x) < τ(d)

Still, in this case, it could be irrelevant to use the generic size function of the reduced product
proposed in Section 3.4.2 as it is possible to compute the exact cardinality of a non-empty element of
this product. Hence we propose a specialized size function:

Definition 48. Let id = [a, b], d be an abstract element of the congruences/interval reduced product, its
size is given by:

τ(id) = (b − a)/d

This size function corresponds exactly to the number of elements of an abstract element.

4.5 For Mixed Integer-Real CSPs

We now have a representation that abstracts continuous set of values but behaves poorly on discrete sets,
and one that is entirely dedicated to discrete values. To deal with mixed problems, e.g. problems with
both integer and real variables, we define a mixed discrete-continuous abstract domain.

Definition 49. Given a discrete set Sd and a continuous one Sc, a mix representation is a member of the
disjoint union:

Sd ] Sc =
⋃

i∈{d,c }

{(x, i) |x ∈ Si }

The elements of the disjoint union are ordered pairs (x, i) where i serves as an auxiliary flag that
indicates which Si the element x came from.

We are now going to instantiate this mixed representation using both the continuous intervals and
the discrete product of interval and congruences. We will then define arithmetic evaluation and filtering
rules over this mixed representation that we will use inside the HC4 algorithm.

4.5.1 From the Order Theory Perspective

The mixed abstraction as a disjoint union of continuous intervals C and discrete interval/congruence
products D is very handy as both of these sets feature a partial order (noted respectively ≤c and ≤d)
and conveniently, for all discrete interval/congruence product element d ∈ D there exists a smallest
continuous interval c ∈ C such that c abstracts d, i.e.:

∀c′ ∈ D,∀x ∈ d, x ∈ c′ → c ⊆ c′

Given a discrete interval i with a and b bounds as lower and upper bounds, the corresponding smallest
continuous interval j ∈ D is given by ((a, true), (b, true)). Moreover, every element from i also belong
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to j. This makes our continuous representation a sound abstraction of the discrete one, which will allow
us to define easily the operations over the mix representation given that we provide casting functions
from to D to C.

From this property, we can define a monotonic function upcast from D to C :

upcast((a, b), d) = (a, true), (b, true)

This function respects:

∀i, j ∈ D, i ≤d j → upcast(i) ≤c upcast( j)

We use this function to define an order over the disjoint union as follows:

Definition 50. LetM = D ] C. We can define a partial order over it as follows: ∀x, y ∈ M, x ≤ y iff:




x ≤d y, if x ∈ D ∧ y ∈ D

x ≤c y, if x ∈ C ∧ y ∈ C

upcast(x) ≤c y, if x ∈ D ∧ y ∈ C

x = (a, true), (b, true) ∧ a = b ∧ a ∈ γd (y) if x ∈ C ∧ y ∈ D

This order, which is build from the interval inclusion and the usual order over congruences is
illustrated by the lattice on Figure 4.4. We use the notations (a, b), d to designate a discrete interval with
lower bound a and upper bound b and a distance d between each value of the domain, and we use the
usual notation [a, b], [a, b[... over continuous interval.

[0,100]

(2,100)1, [0,100[

(20,80),2

]200,300]

[0,300]

(6,42),6 (60,80),4 [70,90[

[60,90]

(72,80),4

]− inf, in f [

(-10.5,101.5),0.5

(1,93),4

⊥

(1,93),8

...

...

......

Figure 4.4: Lattice of mixed discrete/congruence interval and lattice of continuous intervals

From this lattice, we can explicit the meet and join relations: computing the intersection of two
discrete intervals, (respectively continuous) yields a discrete (respectively continuous) interval. When
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meeting one discrete interval with a continuous one, in order to be precise, we can make the resulting
interval discrete too5 as is has to be included in its arguments and one of them is discrete.

Definition 51. Consider the setM = D]C, we can define a meet operation over it ∩ : M→ M→ M∪∅:
x ∩ y = z where z is equal to:




x ∩d y, when x ∈ D ∧ y ∈ D

x ∩c y, when x ∈ C ∧ y ∈ C

x ∩d downcast(y) when x ∈ D ∧ y ∈ C

downcast(x) ∩d y when x ∈ C ∧ y ∈ D

Trivially, when joining two discrete (respectively continuous) intervals, the result is also a discrete
(respectively continuous) interval. When joining one discrete interval with a continuous one, in order to
be sound, the resulting interval has to be continuous too.

Definition 52.




x ∪d y, if x ∈ D ∧ y ∈ D

x ∪c y, if x ∈ C ∧ y ∈ C

x ∪ upcast(y) if x ∈ C ∧ y ∈ DI

upcast(y) ∪ y if x ∈ D ∧ y ∈ C

These join and meet relation can be seen as casting functions that allow our two representations to
communicate. We use them to define evaluation and filtering rules.

4.5.2 Evaluation and Filtering

We exploit the fact that an arbitrary expression defines a space that is either discrete or continuous, to
refine our evaluation and filtering rules using the mixed abstraction. We augment our rules to define
the behaviour our the arithmetic when an operation is applied on two argument that have a different
continuity. Figure 4.5 illustrates the behaviour of the addition on this mixed representation.

+ =

+ =

+ =

Figure 4.5: Concrete spaces define by addition of intervals according to their continuity. Dotted segment
denote discrete intervals and plain ones continuous intervals

In all the evaluation operations, whenever we can not guarantee the discrete property of the result,
we make it continuous as it is a sound over-approximation. In the way, when our filtering rules is able to
infer the discrete nature of the result, we regain precision and make it discrete.

5even though its correct to make it continuous as all of our functions do not need to be exact and can compute an
over-approximation
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4.5.3 Exploration and Measurement

Both of the exploration and the measurement operations lifts naturally to the union representation as it
consists in a simple dispatch.

Size Function

The precision function corresponds to the size of the largest dimension:

τm({a1, b1} × . . . × {am, bm} × [am+1, bm+1] × . . . × [an, bn]) = max
i

(bi − ai)

Choosing a r < 1 guarantees that all the integer variables are instantiated when the solvers terminates.

Split Operator

We now give the split operator for our unified representation, which is a simple dispatch according to the
continuity: If v is a variable with a finite number of values then we use the discrete split operator ⊕dis
and we use the continuous split operator ⊕con otherwise, where ⊕dis and ⊕con are given respectively by:

Definition 53. Let v be the variable we want to split, and r its associated abstraction. The split operator
⊕ is defined as follows:

⊕(r) =



⊕D(r) if r ∈ D

⊕C(r) if r ∈ C

Proposition 5 (Mixed split). The mixed discrete-continuous split operator is a correct, complete split
operator according to Definition 21.

Proof. ⊕dis and ⊕con are both correct, complete, and produce a finite number of elements. Trivially, as
the mixed split branches either in ⊕dis or ⊕con, it is also correct complete and produce a finite number
of elements. �

4.6 Discrete-Continuous HC4

Thanks to the mix discrete-continuous representation, we are now able to use the bottom-up top-down
procedure with a more expressive non-relational abstract domain. This gain of precision is more
interesting than using an integrity constraint on integer variables as it generalizes to any discrete set of
values, not only integers and it is able to detect inconsistencies sooner.

For example if we consider the Problem 16, we can see that the left side x/2 of the constraint
evaluates to the discrete abstract value [0; 5], 0.5 and the right side evaluates to the continuous interval
[0; 3]. After propagation of the (=) operator, we obtain for both sides the discrete element [0; 3], 0.5,
and the variables are updated accordingly: x is any integer in [0; 6] and y is any real in [0; 1] of the form
(1/6)k. In one round of propagation, we have found all the solution of the constraint. If we were using
a filtering of the integer variables, it would have not be the case, as only the variable x would have been
filtered. Moreover, several stages of exploration would have been necessary to divide the variable x and
enumerate it to obtain the same level of precision, without counting the potential split of the variable y.
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Example 16. An example with one real variable y and one integer variable x, subject to 1 constraint.

• x ∈ N ∧ x ∈ [0; 10]

• y ∈ R ∧ y ∈ [0; 1]

Constrained with:

• x/2 = 3 ∗ y

4.7 Experiments

We now discuss the implementation and performance aspects of this work. We have implemented
the mixed discrete-continuous abstract domain inside the AbSolute solver and measure its performance
over the minlp benchmark which involves both problems with continuous and discrete variables. We
have selected problems with both integer and real variables. We compare the resolution times obtained
with our mixed discrete continuous abstract domain with a simple technique consisting in enforcing an
integrity constraint on integer variables when one is encountered.

4.7.1 Analysis

The abstract domain we have developped maintains a more expensive representation than a simple
interval, and the computations we perform with it are naturally more costly. However, we are still able
to outperform the integrity constraint-based strategy with it. 16 over 22 examples where solved faster
using our mixed representation, sometimes improving the resolution time by a factor of 2. This is due
to the fact that our improved precision allows the solver to maintain a more precise abstraction and
inconsistencies are detected sooner. This early detection results in a lot of computations being avoided.
This confirms our intuition that a mixed representation is more interesting than a fully-continuous one
with additional processing for discrete variables. Also, even when no discrete variable is present in a
problem, a discrete behaviour may still appear due to the constraints, or the constants of the problem, in
which case our method can still apply counter to the integrity constraint-base technique.

4.8 Conclusion

4.8.1 Contributions

The abstractions we have defined in this chapter are more general than the usual interval representation
used in continuous solving. For the discrete spaces, it also subsumes the bound consistency as they do
not only keep the lower and upper bounds for each variable but also the minimum “distance” between
two consecutive possible values of a variable. This representation, along with the arithmetic and filtering
procedures we have defined on it is able to deal with both discrete representations as well as continuous
ones, while minimizing the loss of precision and maintaining efficiency. It goes beyond the classic
integrity constraint applied on integer variables, as it can express any kind of discrete sets, and not only
integers (e.g. {0.5, 1, 1.5, 2...}), and is able to detect inconsistencies much sooner as it is more precise.
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Table 4.1: Comparing the mixed discrete continuous abstract domain with the filtering of discrete
variables.

problem #var #ctrs time, Mixed time, Filter
booth 2 2 4.338 6.36

descartesfolium 2 2 0.002 0.113
cubic 2 2 0.003 0.006

parabola 2 2 0.002 0.008
precondk 2 2 0.014 0.004
exnewton 2 3 0.750 1.342
supersim 2 3 0.012 0.008
zecevic 2 3 19.583 17.382
hs23 2 6 1.982 6.239

aljazzaf 3 2 0.008 0.021
bronstein 3 3 0.608 0.401
eqlin 3 3 0.073 0.008
kear12 3 3 0.491 0.601
powell 4 4 0.143 0.321
h72 4 0 0.007 0.012

vrahatis 9 9 0.062 0.115
dccircuit 9 11 0.188 0.456

i2 10 10 0.107 0.100
i5 10 10 0.026 0.211

combustion 10 10 0.003 0.011
st_miqp5 7 15 1.661 2.507

hs5 2 1 1.672 3.498
supersim 2 3 7.116 14.673

Our implementation and preliminary results are encouraging and give a good hope concerning the
design of a generic constraint solver, able to mix different representation, either discrete or continuous,
transparently and efficiently.

4.8.2 Perspectives

Now thatwe are able to handle discrete variables, furtherwork could concern the incorporation of standard
heuristics over the discrete inside our solver.This opens the possibility of new real-world applications as
it is common for applications requiring the use of continuous variables to also use discrete variables.
For example, layout problems are often parameterized by an integer number of containers, or one of the
moving axes of a robot moves continuously but with an integer number of tasks to perform. Also this
work can be used as a starting point for the design of other non relational abstract domains for Constraint
Programming, for example a powerset representation can be an interesting addition to the AbSolute
solver, on the same principle than the product we used.
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Propagation with Elimination

Abstract

In continuous constraint programming, the solving process alternates propagation steps, which
reduce the search space according to the constraints, and branching steps. In practice, the solvers
spend a lot of computation time in propagation to separate feasible and unfeasible parts of the
search space. The constraint propagators cut the search space into two sub-spaces: the inconsistent
one, which can be discarded, and the consistent one, which may contain solutions and where the
search continues. The status of all this consistent subspace is thus indeterminate. In this chapter,
we introduce a technique called elimination. It refines the analysis of the consistent subspace by
dividing it in a more relevant way than a standard split. Elimination relies on the propagation of the
negation of the constraints, and a new difference operator to efficiently compute the obtained set as
an union of boxes, thus it uses the same representations and algorithms as those already existing in
the solvers. Combined with propagation, elimination allows the solver to focus on the frontiers of
the constraints, which is the core difficult part of the problem. We have implemented this method in
the AbSolute solver, within all of our abstract domains, and present experimental results on classic
benchmarks with good performances.
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5.1 Motivation and Related Works

Solving a constraint satisfaction problem on a finite domain is a NP-complete problem in the general case.
Constraint solvers generally rely on propagation to filter the domains and exploration to build “easier”
sub-problems. The efficiency of a solver depends on the choices made by the exploration process, an
these choices are often guided by heuristics. Depending on the type of constraint, and type of variables,
these heuristics vary a lot. On discrete variables, such heuristics can for example try and provoke early
failures (such as fail-first [HE79] or dom /w deg [BHLS04]). On continuous variables, classic heuristics
include: largest first [Rat94], which consists in splitting the largest domain; round robin, where the
domains are processed successively; or maximal smear [Han92], choosing the domain with the greatest
slope based on the derivatives of the constraints. Also, even when the variable is fixed, the way the
domains are splitted can vary: for example in [ZMRM17], domain splitting strategies involve simple
bisection 3-way, 5-way and 6-way split, where interval floating point domains are splitted in two intervals
but some points of interest are put aside to be handled separately. Closer to the work we present in this
chapter, [DCM08, Vio07] and [KB05] whose principles are based on the discovery and memorization
of associations variable/values that lead to infeasible instances. It is therefore a learning system that
enriches the knowledge of the solver about the problem and increases its efficiency as it progresses.

In this chapter, we propose to add a new resolution step, also based on the infeasible region of the
search space, but no learning mechanism. This step is complementary to constraint propagation, and
postpones the exploration step, we call it the elimination step. This step divides the search space into three
sub-spaces: one containing only solutions, one containing only inconsistent instanciations and the last one
where the constraints are indeterminate — it may contain solutions as well as non-solutions. Our solving
method will thus alternates three steps: propagation, elimination, and exploration. It offers another way
of reasoning on the constraints, since we are not only exploiting the constraints’ consistencies (as does
propagation) but also the constraint inconsistencies. With this improved reasoning, the interesting zones
of the search space are better targeted: zones without solutions are discarded by propagation, and zones
with only solutions are set aside by elimination into the solution space, which means in practice that they
also are excluded from the search. The search effort can then focus on the indeterminate space — the
part of the search space effectively requiring deeper exploration by the solver. For sake of clarity, we will
first illustrate the method within the interval abstract domain, before generalizing to any abstract domain
and defining the necessary operators for polyhedra, the reduced product abstract domain, and the mix
discrete-continuous representation.

5.2 Limitations of a Propagation-Exploration Loop

Firstly, we illustrate how a propagation exploration loop can be maladjusted in some cases, by showing
its results over the following example:
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Example 17. An example with 2 variables (x, y) ∈ R2 subject to 1 constraint.

• x1 ∈ [1; 50]

• x2 ∈ [−1.5; 1]

Constrained with:
cos(ln(x)) > y

Resolution:
Abstract domain used Box

Inner solutions 3717
Inner volume 36.73
Outer solutions 2048
Outer volume 0.94
Inner ratio 97.49
Solving time 0.04s
Precision 0.03

Figure 5.1 shows the result obtained with Algorithm 5, for the problem 17.
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x 2

Figure 5.1: Output of AbSolute using the Box abstract domain, with precision set 0.3, largest-first as a
split heuristic and an unbounded number of iteration

Using the largest-first heuristic induces the solving process goes through a lot of exploration step,
some of which are irrelevant. In this case, one of the variable, x1, has a much larger domain than the
other, which causes the exploration to focus mainly on this variable. Using another variable selection
strategy (e.g. first-fail) would not settle this issue as it would also produce unnecessary split but on the
x2 variable. Figure 5.1 shows that some of the inner elements could be merged to obtain fewer, but larger
inner boxes. This observation reflects the fact that some exploration steps are unnecessary.

Remark The neediness of an exploration step is not a clearly defined measure, but here, we will
consider that if an exploration step produces a set of element that we could merge together at the end of
the solving process, without loosing the correctness property, than this step is unnecessary.

This has a result the production of a cover composed of a large number of boxes, which can make
it impractical for a reuse. The elimination step we introduce in the next section pushes the reasoning
based on the constraints one step further, before branching to the exploration, in order to avoid these
superfluous steps.
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5.3 Another Point of View

A concrete instanciation either satisfy a constraint, or its negation. This is not the case for abstract
element as an abstraction function may induce approximation and loss of precision.

The propagation step reduces the search space by removing non-consistent sub-spaces. Elimination
aims at reducing the search space by focusing on the frontiers of the problem. This is done in three
steps: computing the elimination for each constraint, combining the result with the domains with a new
difference operator, and finally integrate this mechanism in the solving process.

We firstly introduce the concept of elimination for a single constraint. It relies on the constraint
propagator to over-approximate the set of instanciations that can not be solutions. We will refer to these
instanciations as inconsistent instanciations. By elimination, the rest of the search space can only contain
solutions.

Let V = x1, . . . , xn be variables in domains D = d1, . . . , dn, and c a constraint on x1, . . . , xn.
We define a function θc : B → B such that θc (d1, . . . , dn) = ρ¬C (d1, . . . , dn). It can be seen as a
complementary propagation step. Combining this function with propagation, we can partition the search

space relatively to the satisfiability of the constraint c. Let SC = ρC (d1, . . . , dn), an over-approximation
of Sol (< X,D, , {c} >) and SC = θC (d1, . . . , dn) an over-approximation of Sol (< X,D, {c} >). We can
differentiate from this partitioning three kinds of instanciations:

• the instanciations that belong to Sc and not to Sc: they are guaranteed to be inconsistent and can
be discarded from the search-space.

Sc \ Sc ∩ Sol (< X,D, {c} = ∅

• the instanciations that belong to Sc, and not to Sc: they are guaranteed to be consistent and can
also be discarded from the search-space to be added into the solution set.

Sc \ SC ⊆ Sol (< X,D, {c}

• the remaining instanciations that belong to both SC and SC : they are indeterminate.

This form of reasoning can be seen as a new contraction, in the same framework as the contractors
described in [JW93] and used in Ibex [CJ09] to perform a smarter exploration. We add an automatic
propagation on the negation of the constraints, to identify sub-spaces containing only solutions. We thus
reason on the negation of the constraints, hence we compute sets which are not boxes: to overcome this
issue, we also add an operator on boxes to efficiently compute the difference of two boxes (or the relative
complementary of one box in another) as a union of boxes. Thus, our method can be integrated into any
solver without changing its domain representation nor modifying the propagators.

Figure 5.2 shows an example of this partitioning. For the constraint y ≤ x3 (filled with blue), the box
SC (dashed), computed through propagation, over-approximates the solutions and the box Θ (hatched
in green), computed by applying propagation over the negation of the constraint, over-approximates the
inconsistencies. We can see that the complement of Θ under-approximates the set of solutions, while
the complement of R under-approximates the set of inconsistencies. The intersection Θ ∩ R can contain
both solutions and inconsistencies.
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RΘ

Figure 5.2: Given the constraint y ≤ x3, in blue, the box R over-approximates the solutions and the
hatched box Θ over-approximates the inconsistencies.

Once this partitioning is done, the inconsistent part can be discarded (as usual) and the consistent
one can be directly added to the set sols of solutions. What remains is the indeterminate space in which
the solving process continues. This principle is then generalized to the case of several constraints: the
consistent part is the intersection of all the consistent parts associated to each constraint. Symmetrically,
the inconsistent part is the union of all the inconsistent parts associated to each constraint. What remains
is the indeterminate part.

Remark In practice, in the case of continuous constraints, elimination can rely on the original propa-
gation algorithms of the considered constraint, since we can easily compute the negation of a constraint
(based on predicates <,=, ≤). It would also be valid for discrete constraints provided that the same prop-
erty holds. Indeed, primitive constraints could be dealt with elimination, but handling global constraints
would require to specifically define their negations and introduce dedicated propagators. Constraints
languages based on atomic constraints could be dealt with our framework (for instance the primitive
constraints of CLP(FD), i.e the arithmetic constraints, but not global constraints: the propagation of the
negation of a global constraint (for instance, all_different) cannot be done with the same algorithm as
the global constraint (in our example, this would require another global constraint at_least_two_equal
to express the negation of all_different, with a specific propagator).

The indeterminate space is defined as an intersection of boxes, which results in a box. Hence, the
solving process continues within a box, as in a classic propagation-based solver, except that the box is
possibly smaller as we intersect the result of propagation with the result of elimination. However, SC \SC
is not necessarily a box. Computing this set difference requires taking the complement of a box relative
to another box. In the following section, we define a set difference operator over boxes. It computes the
difference as a set of boxes, that can be directly added to sols.

5.4 Difference Operator

The abstract domain used classically in Abstract Interpretation are generally not closed under difference.
For example, given two boxes B1 and B2, their difference B1 \ B2 is not necessarily a box. However,
we can express it as a collection of boxes that covers B1 \ B2. A cover is sufficient to have a sound and
complete resolution method, and is easier to build as we will see in the current section. Our difference
operator should thus satisfy the following properties:

Definition 54 (Difference operator). A difference operator 	 : B×B → P(B) is a binary operator such
that ∀B1, B2 ∈ B:
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1. |B1 	 B2 | is finite;

2. ∀b ∈ (B1 	 B2) ⇒ b ∩ B2 = ∅;

3. B1 = (B1 ∩ B2) ∪
⋃
{ b ∈ B1 	 B2 }.

The first condition ensures that the solving method produces a finite set of boxes. The second one
ensures that the operator eliminates from the box B1 the values inside the box B2. Finally, the third
condition guarantees that the difference of B1 and B2, union B2, covers the initial box B1. The second
condition is related to soundness and the third one to completeness.

Our difference operator on boxes uses the constraint conjunction representation. A box can be defined
as a conjunction of constraints B =

∧
i=1,...,p ci, where each constraint ci = ±xi / ai, with / ∈ {<, ≤},

gives a lower or an upper bound— not necessarily included— on xi. Using the constraint representation
allows our difference operator to handle potentially unbounded boxes.

Note that it is mandatory to be able to express both strict and large inequalities. Otherwise, a problem
would arise as the negation of ±xi > ai would not be exactly representable, and we would have no way
to ensure property Def. 54.2. As the difference operator is used to compute S, an under-approximation
of the set of solutions, adding to S the closure of boxes which should actually be open, could add to it
points that are not solutions to the problem, and thus break the soundness criterion.

Each ci defines a half-space, and the intersection between a box and a half-space is still a box1. A
first step is thus to compute the difference between two boxes, by considering each half space of the box
to remove independently.

Definition 55 (Difference for boxes). Let B1 and B2 be two boxes, with B2 represented as the set of
constraints C2. The difference of B1 and B2 is:

B1 	 B2
∆
= {B1 ∩ (¬c) | c ∈ C2} (5.1)

c2

c3
c4

c1

B1

B2

Figure 5.3: Result of a difference of two boxes : B1 − B2

This naive method can result in widely overlapping boxes in the output. Nevertheless, it is an
acceptable difference operator as it satisfies Def. 54.

Proposition 6. 	 is valid difference operator according to definition 54.

Proof. Let us prove that 	 is a finite, correct and complete difference operator.
1as the half-space are parallel to the variables axis.
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• Obviously ∀B1, B2, |B1 	 B2 | is finite and equal to number of constraint of B2, |C2 |.

• LetC2 = {c1∧c2∧...∧cn}, the correction property come simply from the identity: B1\B2 = B1∩BC
2

and as BC
2 = {c1∧ c2∧ ...∧ cn}C can be expressed as {¬c1∨¬c2∨ ...∨¬cn} thanks to DeMorgan’s

laws, we have trivially that B1 \ B2 = B1 ∩ {¬c1 ∨¬c2 ∨ ...∨¬cn} which rewrites in our definition
{B1 ∩ (¬c) | c ∈ C2} thanks to the distributivity of the conjunction over the disjunction. As this
intersection does not loose precision, B1 \ B2 = B1 ∩ BC

2 has an empty intersection with B2 by
definition of the complementation.

• We now show that we do not loose any instance of B1 that could potentially be solution, i.e.
B1 = (B1 ∩ B2) ∪

⋃
{ b ∈ B1 	 B2 }. By definition of the complement, B2, BC

2 is a partition of
any subset, in particular B1. Hence B1 is entirely covered by B1 ∩ B2 and by B1 \ B2 and we do
not loose solutions.

�

As a side note, we can state from the proof 5.4 that we can define a generic difference operator over
any abstract domain closed by intersection given that we can express the complementary of an abstract
element exactly, as a powerset of elements for example.

Non-Redundant Difference Operator

We are now able to cover the difference of two boxes, without loosing the soundness. However, to
guarantee a non-redundancy property over the result, this cover should be made a partition. This would
prevent boxes from overlapping and have instanciations covered by several elements. We then strengthen
our definition with the following property:

Figure 5.3 shows an example of the application of the difference operator on two boxes. The left-side
of the figure gives the initial boxes B1 and B2, with B2 represented by the constraints {c1, . . . , c4}. The
right-side of the figure shows the result of the naive difference operator. Here, B1 \ B2 is covered by three
elements, one per constraint of C2, after removing the constraints that, intersected with B1, yield the
empty set (c4 in this case). Overlapping boxes in the output appear in a darker shades. This overlapping
implies that some instanciations may be covered by more than one box: the result is redundant.

We now propose an improved difference operator in order to obtain non-overlapping boxes when
building a partition of B1 \ B2.

5.4.1 Toward Irredundancy

Definition 56 (Non-redundant difference operator). A non-redundant difference operator is a difference
operator with respect to Definition 54, and respects furthermore the following property:

1. ∀x, y ∈ (B1 	 B2), x ∩ y = ∅

We enforce in this strengthened definition that no pair of element of the result intersect to maintain
an irredundant solving method.
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Definition 57 (Non-redundant difference for boxes). Let B1 and B2 be two boxes and B2 is represented
by the set of constraints C2 = {c1, . . . , cp}. The difference of B1 and B2 is defined as:

B1 	irr B2
∆
=




B1 ∩ (¬ci) ∩
⋂
j<i

cj | i ∈ {1, . . . , p}



(5.2)

c2

c3
c4

c1

B1

B2

Figure 5.4: Result of a non redundant difference of two boxes : B1 − B2

For similar reasons to the naive difference operator, Def. 54.1–3 is also satisfied for the non-redundant
difference operator. Additionally, we strengthen the property that B1 	irr B2 is a cover for B1 \ B2 by
making this cover a partition, i.e, the elements of B1 	irr B2 are pairwise disjoints: we ensure that, for
any pair of boxes bi, bj ∈ B1 	irr B2 such that i , j, we have bi ∩ bj = ∅.

Proposition 7. 	irr is a valid difference operator.

Proof. 	irr is a valid difference operator for the same reasons than the redundant operator 	. �

Proposition 8. 	irr is an irredundant difference operator.

Proof. If |B1 	 B2 | = 1 then, trivially, B1 	 B2 is a partition of B1 \ B2. If |B1 	 B2 | > 1, we have to
prove that the elements of B1 	 B2 are pairwise disjoints. Let C2 = {c1, ..., cp} be the constraints of B2,
and bi, bj be respectively the i-th and the j-th value of B1 	 B2 according to (5.2), with i, j ∈ 1..p and
i , j. Then, bi is constrained by ¬ci. Assuming w.l.o.g. that i < j, then bj is constrained by ci, and
bi ∩ bj = ∅. We also have to prove that B1 = B1 \ B2 ∪ B2, or equivalently, ∪ibi = B1 \ B2: let x ∈ ∪ibi
be an instanciation of B1. By definition of B2, there is at least a constraint ci ∈ C2 such that x does not
satisfy. Let i0 be the smallest such i, then x ∈ bi0 . Thus, the whole of B1 \ B2 is covered by the boxes
bi. �

5.4.2 Difference Operator for Other Abstract Domains

As our solving method can be used within any abstract domain, we show how to define a difference
operator for the other representations we use to have the elimination technique enabled with those.

Difference operator for octagons and polyhedra

Interestingly enough, the definition of the difference operator holds for any kind of linear constraint
conjunction, as long as the representation is closed under intersection and complementation (as the
difference A \ B can be rewritten in A ∩ BC). Given that the domains feature both strict and large
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P1

P2

Figure 5.5: Difference operator for polyhedra

constraints, our definition holds also for the polyhedra abstract domain as exemplified by Figure5.5
and the octagon2 abstract domain. Figure 5.5 illustrates an application of the non-redundant difference
operator over polyhedra.

We omit the formal definition and proofs of this operator with polyhedra, as the ones we gave for the
interval abstract domain manipulate conjunction of linear constraint and can be reused for polyhedra.

Difference operator for Reduced Product

In chapter 3, we defined domain products to exploit the expressivity of several domains. We also define a
difference operation for these tomake the elimination available with any combination of domain products.

Definition 58. Let (A × B) and (C × D)′ be two abstract elements of the reduced product abstract
domain and D1 and D2 the underlying abstract domains with 	D1 and 	D2 their correct, complete and
irredundant difference operators. The difference operator 	 over the reduced product D1 × D2 is given
by:

(A × C) 	 (B × D) = {(x, y) |x ∈ A 	D1 C ∧ y ∈ B 	D2 D}

Proposition 9 (Product difference). The product difference operator is a correct difference operator
according to Definition 56.

Proof. Let us prove that 	 is a finite, correct and complete difference operator. As seen previously
(A × B) 	 (C × D) is equivalent to (A × B) ∩ (C × D)C . As a product is a conjunction, we can use De
Morgan’s laws:

(A × B) 	 (BC × D) = (A × B) ∩ (CC ∪ BC )

= (A ∩ CC ) ∩ (B ∩ DC )

= (A 	D1 C) ∩ (B 	D2 D)

Since both 	D1 and 	D2 are correct, complete and irredundant difference operators from hypotheses, 	
is a finite, correct and complete difference operator. �

2The standard implementations of the octagon abstract domain (e.g. Apron’s octagons) are designed for programverification
purposes and generally feature only large constraints. This is due to the fact that the spaces they have to abstract are discrete as
they correspond to either floating point or integer spaces. This makes the use of those implementations inappropriate with the
elimination technique.
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Difference Operator for the Mixed Discrete-Continuous Representation

In chapter 4, we defined abstractions for mixed discrete-continuous spaces, and we now show the the
elimination step can also be used within these abstractions. All we have to do is to define a difference
operator for it. We have that this representation corresponds to a product and we have just defined and
elimination operator over products. Hence, all we have to do is to define an difference operator over
congruences and lift it to the product representation. To do that, we can notice that A \ B is equivalent to
A \ (A∩ B) as the set difference operation corresponds to the set of elements that belong to first operand
but not to the second. This allows us to handle only the cases where the second operand is included in
the first one.

Definition 59. Let aZ + b and a′Z + b′ be two abstract elements of the congruence abstract domain,
with a′Z + b′ ≤ aZ + b. The difference operator 	 over the congruences is such that: let k = a′/a, and
k = k0∗k1∗· · ·∗kn its integer prime factorization in increasing order. Let {c0, c1, . . . , cm} = ⊕k0 (aZ+b),
we have:

(aZ + b) 	 (a′Z + b′) =



∅, if k = 1
{ck−1, ck+1, . . . , cm |a ∗ k = a′} ∪ (ck 	 (a′Z + b′)) if k > 1




Intuitively, when computing a 	 b, we go from the bigger value a toward the bottom of the lattice,
splitting it successively and collecting the values that do not include b. We explicit an application of this
difference operator over the following example, illustrated by figure 5.6:

Example 18. Having 36/3 = 12 = 2 ∗ 2 ∗ 3, we obtain :

3Z + 1 	 36Z + 27 = {6Z + 4, 12Z + 1, 36Z + 7, 36Z + 15}

3Z + 1

6Z + 1 6Z + 4

12Z + 1 12Z + 7

36Z + 7 36Z + 15 36Z + 27

Figure 5.6: Decomposition of 3Z + 1 to compute the difference with 36Z + 15

Proposition 10 (Mixed discrete-continuous difference). The congruence difference operator is a correct
difference operator according to Definition 56.

Proof. Let us prove that 	 is a finite, correct and complete difference operator.

• when a = a′, we have a′/a = 1 and trivially aZ+ b	 a′Z+ b′ = ∅, which is correct and complete.
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• When a < a′, let k0, k1 dotskn prime factorization of k = a′/a. As for all ki, we have a′ can be
divided by a ∗ ki, by construction, we have the identity:

∀ki, (aZ + b) 	 (a′Z + b′) =
⋃

x, x ∈ ⊕ki (aZ + b) 	 (a′Z + b′)

By construction, ∃c ∈ ⊕ki (aZ+ b) such that a′Z+ b′ ≤ c. Then by associativity of the disjunction
we have:

(aZ + b) 	 (a′Z + b′) = (⊕k (aZ + b) \ c) ∪ (c 	 (a′Z + b′))

�

5.5 A new solving step

Computing S̃ = θC (d1, . . . , dn)∩ρC (d1, . . . , dn) by employing both propagation and elimination reduces
the search space, because it allows the solver to quickly identify parts of the solutions. In fact, when the
propagation of ρC is done, we propose an elimination step θC before splitting. Rather than performing
arbitrary splits anywhere on a box, the elimination identifies parts of the box containing only solutions,
and allows the solver to perform splits on the part of the search space that can not be discriminated as
containing only solutions, nor as containing no solution. More precisely, elimination makes the split
happen exactly at the frontier of the constraint.

Figure 5.7: Splitting of a box

Figures 5.7 and 5.8 compare the results of the split of a box and the elimination followed by a split.
We can see that the splitting frontier in Fig. 5.7 does not take into account the constraint while, in Fig. 5.8,
the boxes containing only solutions are kept (boxes on both sides of the parabola). Then, the splitting
operator splits the remaining box in two.

Where the Algorithm 6 gives the pseudo-code associated with our solving method with the new
elimination step.

The difference with the default algorithm is in line 18–23. This algorithm processes elements that do
not satisfy at least one constraint. The function complement computes enon−cons, an over-approximation

Figure 5.8: Difference, then split of a box
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Algorithm 5 Solving without / with elimination
1: function solve(D, C, r , elim) . D: domains, C: constraints, r: real, set elim to
2: false for classic solving, true for elimination
3: sols B ∅ . sound solutions
4: undet B ∅ . indeterminate solutions
5: explore B ∅ . boxes to explore
6: e B init(D) . initialization
7: push e in explore
8: while explore , ∅ do
9: e B pop(explore)
10: e B filter(e, C)
11: if e , ∅ then
12: if satisfies(e, C) then
13: sols B sols ∪ e
14: else
15: if τ(e) ≤ r then
16: undet B undet ∪ e
17: else
18: if !elim then
19: push ⊕(e) in explore . Classic solving process
20: else
21: (S, E) = elimination(e, C) . Solving with elimination
22: sols B sols ∪ S
23: push ⊕(E) in explore

Algorithm 6 Elimination function
1: function elimination(e, c) . e: box, c: a single constraints
2: enon−cons ← complement(e, C)
3: econs ← e 	 enon−cons
4: S ← ∅
5: for ei ∈ econs do
6: S ← S ∪ eireturn (S, ⊕(e ∩ enon−cons))

of the inconsistencies. Then, the difference operator is used to find the boxes containing only solutions.
Finally, solving continues in the indeterminate search space e ∩ enon−cons (instead of e).

Figure 5.9 shows the results obtained with our propagation/elimination/split loop on the CSP given
previously, and gives for the same precision, much more satisfactory results: we require less elements
to cover more space and in a comparable amount of time, showing that this technique deduces more
relevant frontier than using a simple propagation/split loop.

5.5.1 For Several Constraints

When dealing with several constraints, conjunctively, the samemethod applies but can be quite imprecise.
As the negation of a conjunction of constraint is a disjunction of constraint, using De Morgan’s law, we
explain in this section how computing symbolically the difference over each constraint can lead to more
precise results. We thus propose this more precise procedure, that handles each constraint separately. It
processes the constraints in turn applying each time the difference operator over the single constraint.
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Figure 5.9: Solving with elimination : 125 inner boxes, 256 outer boxes. Inner boxes represent 98% of
the coverage area. Computation time: 0.008s

Algorithm 7 Elimination for several constraints
1: function eliminationset(e, C) . e: box, C: a set of constraints
2: Remove← {e}
3: Continue← ∅
4: while C , ∅ do
5: c ← pop(C)
6: NewRemove← ∅
7: for r ∈Remove do
8: (S, x) ← elimination(r, c)
9: Continue← Continue ∪x
10: for s ∈ S do
11: NewRemove← NewRemove ∪s
12: Remove← NewRemove

return (Remove, Continue)

From this constraint we separate the element that satisfy it from the rest, and verify if they satisfy the
other constraint too. It gives us at the end of the traversal of the constraint store a list of abstract elements
to remove from the original one, and a list of element where the search must continue.

Figure 5.10 illustrates the use of the elimination technique over an example with several constraints.

5.5.2 Difference for Disjunction Constraints

Thanks to this difference operator, we can now eliminate solutions from the search space but we can also
improve precision and performances over the propagation of disjunctive constraints. Indeed, when the
solver encounters a constraint of the form c1 ∨ c2, it solves independently the problem with the constraint
c1 and with the constraint c2 before joining and pushing the results into the solution list sol. With
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Figure 5.10: Resolution with elimination using simbolic difference over several constraints.

aρ(< X,D < {c1}) and b = (< X,D < {c1}:

sol ← a ∪ b

This of course can break our irredundancy property as Sol (< X,D < {c1} >) and Sol (< X,D <

{c2} >) might intersect and even more so, their over-approximations. To solve issue we can now simply
define an irredundant union of two abstract element a and b as:

sol ← a ∪ (b 	 a)

,
Which has the nice property of adding the intersection of a and b only once into the solution list.

5.6 Implementation and Benchmark

We now discuss implementation and performances aspects of this work.

5.6.1 Efficient Implementation

The general intuition of doing a propagation step on the negation of a constraint works correctly but can
lead to an inefficient implementation. Satisfy test and pruning both require to work on the negation of
the constraint and all of the three steps, satisfy test and pruning have to proceed to the same evaluation
(Top-down) part of the HC4 algorithm. An idea that leads to a more efficient resolution is to factorize
the evaluation part of the three steps.

5.6.2 Experiments

We have implemented our technique for boxes in the open-source solver AbSolute3. This solver is based
on the method presented in [PMTB13b], where we integrated our elimination step. We rely on the
abstract domain representation in AbSolute, which is based on constraints, to efficiently implement the
constraint negation necessary for the elimination step. The unified constraint representation makes it
possible to have an implementation of the difference operator that is lightweight and generic.

3https://github.com/mpelleau/AbSolute

https://github.com/mpelleau/AbSolute
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5.6.3 Protocol

We tested our method on problems with continuous variables from the MinLPLib and the Coconut4
benchmarks. For minimization problems, we first transform them into satisfaction problems, which can
be handled by the solver. This transformation consists in adding an objective variable to the problem
that will act as the value to minimize. Default bounds for unconstrained variables are set to −107 for
the lower bound and 107 for the upper bound as our method requires the domains of the variables to be
bounded. All of the runs are made with a time limit set to 300 seconds and no memory limit. Precision
was fixed to 10−3 (i.e., the size limit where exploration stops), and branching depth was limited by 50.
The solver was run on a Dell server with two 12-core Intel Xeon E5-2650 CPU at 2.20GHz, although
only one core was used, and 128GB RAM.

We have tested the solving with the elimination step against the default solving method of the
AbSolute solver over all of the problems that the solver’s functionalities (types, constraint, arithmetic
functions) are able to cover, that is 197 problems.

Table 5.3 shows the results obtained over problems of the minlp benchmark and table 5.1 presents
the one obtained over the Coconut benchmark.

Table 5.1: Comparing solving with and without elimination step, Coconut benchmark

with elimination without elimination
problem |X|, |C| #I #E δ t #I #E δ t

COCONUT problems
abs1 1,2 2047 3072 0.99 0.04 4092 4096 0.99 0.06

aljazzaf 2,3 2309 19405 0.58 0.89 0 14319 0 0.54
allinitu 1,5 318 5066 0.07 3.26 0 5066 0 2.50
ampl 2,2 2 13930 0.99 0.66 0 13107 0.0 0.46
booth 1,2 90 45 0.12 0.11 0 45 0 0.13

cpr2ani10-10 10,10 0 14 0 0.09 0 14 0 0.09
dispatch 3,4 47 10642 0.07 3.39 0 15426 0 2.42
ex1411 2,5 1.78e6 2.59e6 0.98 217.08 1.95e6 3.74e6 0.98 237.89
ex1413 4,3 4884 34893 0.25 0.52 0 32698 0 0.78

ex_newton 2,5 638 950 0.95 0.45 729 892 0.93 0.57
griewank 1,2 19972 31868 0.99 1.44 29645 35105 0.98 2.30
h-s-f1 2,2 0 29 0 0.01 0 29 0 0.01
h73 3,4 19 1284 0.89 0.06 0 978 0 0.05
h76 3,4 24 174 0.04 0.05 0 82 0 0.05
hs23 6,2 825 2132 0.99 0.43 1315 1801 0.98 0.58
kear11 8,8 0 844 0 0.05 0 844 0 0.05
mickey 2,5 4315 12709 0.99 2.40 8372 9858 0.99 2.73
monfroy 3,4 0 745 0 0.08 0 745 0 0.05
nonlin1 2,3 1550 1978 0.95 0.49 2059 1772 0.82 0.69

4All informations about the problems can be found at http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
and http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html
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nonlin2 3,2 4238 10560 0.92 0.39 8643 10692 0.88 0.42
tame1 2,3 29 3004 0.51 0.21 0 3177 0 0.31
zy2 3,3 6260 28147 0.99 1.00 13179 22499 0.74 0.85

Table 5.3: Comparing solving with and without elimination step, Minlp benchmark

with elimination without elimination
problem |X|, |C| #I #E δ t #I #E δ t

MINLP problems
csched1a 23,29 0 8192 0 6.44 0 8192 0 4.85
deb10 130,183 0 0 0 0.01 0 0 0 0.01

dosemin2d 119,166 0 0 0 0.181 0 0 0 0.177
eg_all_s 26,8 1 54 0.99 2.99 0 16 0 2.47
eg_int_s 26,8 1 54 1.00 2.85 0 16 0 2.35

elf 39,55 0 3272 0 9.56 0 3276 0 8.84
ex1222 4,4 8 60927 0.01 1.39 0 61787 0 0.97
ex1223a 10,8 746 27097 0.01 20.60 0 48283 0 21.40
ex1223b 10,8 820 44084 0.01 40.22 0 500510 0 29.41
ex1252a 35,25 0 11 0 0.03 0 11 0 0.02
ex1264a 36,25 0 10544 0 8.80 0 10544 0 6.26
ex1266 96,181 0 20340 0 78.44 0 20340 0 75.08
gbd 5,5 576 31829 0.19 1.27 0 22927 0 0.93

prob03 2,3 0 625979 0 10.81 0 581831 0 6.77
procsel 8,11 0 2603850 0 289.98 0 2603850 0 271.85
qapw 256,451 0 0 0 1.201 0 0 0 1.233
sep1 32,30 0 26615 0 20.05 0 26615 0 19.24
st_e13 4,3 378 3102 0.02 0.05 0 18 0 0.50

st_miqp2 4,5 1352 38104 0.38 2.29 0 4564 0 0.31
st_miqp3 2,3 27 1117 0.24 0.03 0 1051 0 0.02
st_miqp4 5,7 3 21921 0.01 4.46 0 39152 0 3.43
st_miqp5 14,8 187 2080 0.01 4.71 0 6324 0 2.38
st_test1 2,6 1559 244337 0.03 18.70 0 231494 0 15.97
st_test2 3,7 4521 81280 0.06 46.85 0 338122 0 32.60
st_test4 6,7 116 33995 0.01 3.13 0 22076 0 2.29
st_test5 12,11 22 29520 0.01 7.82 0 11167 0.00 7.55
synthes1 7,7 97 33747 0.01 4.18 0 1285 0 5.16

tls2 25,38 0 18030 0 27.46 0 18030 0 26.81
windfac 14,15 0 19561 0 6.66 0 19561 0 6.51
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Figure 5.11: Comparison between the classic solving method and our method. On the left, comparison
of the ratio, a mark above the bisector (in plain blue) means that our method is better than the classic
solving. On the right, comparison of the computation time, a mark above the bisector (in plain blue)
means that our method is slower than the classic solving.

5.6.4 Analysis

These runs highlight one very crucial feature of our method: it is able to quickly find boxes that contain
only solutions of problems where the default solving method fails to do so (problems aljazzaf, allintu,
ex1222, gbd, ...): on the whole benchmark, for almost 30% of the problems (58 out of 197), solving with
the elimination step exhibited at least one solution while the default solving method did not succeed to
do so. This comes for no time loss in average: on the whole benchmark, solving with elimination was
slightly slower than without (1157 minutes against 1032 minutes). In fact, 39% of the problems (39
out of 197) were solved faster with the elimination than without (problems ex1411, mickey, ex1223a,
synthes1...). This illustrates the fact that results of the solver are more precise: elimination avoids
unnecessary splits, better identify the constraints frontiers, and compute within the same process inner
and outer approximation for no (or little) overhead. A better analysis of the results shows that the default
solving method spends time splitting variables with large ranges, while elimination focuses on the shape
of the constraints to locates areas than can be directly removed from the search space and added to the
solution set.

Figure 5.11 summarizes the results obtained with our method compared to the classic solving,
regarding computation times and inner volume ratio.

Another conclusion of the analysis of this benchmark is about the solution coverage. The experiments
show that the coverage of the solution space is significantly more accurate with the elimination step.
On all of the runs, our method always find a greater or equal inner volume than the one found by the
default method. Moreover, it also reduces the number of elements involved in the partition in the same
time, which means that the inner approximation is achieved with less, bigger elements. This is shown by
examples chi andmickeywhere both methods achieve a 0.99 ratio of inner volume, only with elimination,
we need half the elements required by the default solving method to do so. On the whole benchmark,
on average, we need 40 times less elements to cover the same inner volume with elimination. This
property may become very handy as it allows a better re-usability of the results since we need to treat
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fewer elements to cover the solution space. The δ columns indicates the part of the returned elements
that corresponds to an inner approximation, i.e. contains only solutions. This ratio is always greater
with the elimination step. On the whole benchmark, the average ratio is of 0.49 of inner volume for the
elimination while it is of 0.27 without. This confirms that the elimination step allows the solving process
to target more efficiently the parts of the research space that contain only solution.

These good results confirm the intuition that cutting an element according to the constraints it does
not satisfy can be more interesting than cutting it arbitrarily regardless of the constraints. Since solvers
are often used as a pre-computation for other programs, reducing the size of their output (i.e., reducing the
number of boxes required to represent a solution at a given precision) can be an important feature. Also,
note that, by quickly identifying solutions and removing them from the search space, the elimination
step makes it possible to carry out fewer propagation and exploration steps. Finally, it is interesting to
notice that when all elimination steps fail to reduce the search-space, to resulting slow-down is constant,
as at every step, we do two rounds of propagation instead of one. However the speed-up elimination may
bring is depending on the problem and can be very significant.

5.7 Conclusion

5.7.1 Contributions

In this chapter, we have focused our work on improving the resolution technique based on abstract
domains. The goal was to propose results that are both simpler to obtain and easier to reuse. In that
context, we have developed a way of improving the quality of the results of a solver, while maintaining
and on some examples improving the resolution times. Also, we believe that the covers computed
with the elimination are more relevant to the end user and facilitate its work. Moreover, this technique
integrate well with the reduced product and the mixed discrete-continuous representation we have define
in chapters 4 and 3 as it is sufficient to lift the corresponding operator to these representations to have it
available with these domains. Our implementation in the AbSolute solver shows good results using this
technique.

5.7.2 Perspectives

Further work regarding the use of elimination include adapting it within global constraint propagators.
Indeed, using the negation of a constraint does not always make sense when dealing with global con-
straints. Also, the design of activation heuristics is worth considering. For example, elimination proves
to be very efficient when the solution ratio of the search-space is high. Such heuristics can be to activate
it over inequalities constraint in priority, or over constraints known do reduce sparsely the solution space.
In an Abstract Interpretation point of view, more work can be needed to lift this technique to other abstract
domains such as ellipsoids or zonotopes which are not closed under intersection which may result in a
different way of implementing the difference operator, probably in a more symbolic way.
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Constraint Aware Exploration Strategy

Abstract

In the previous chapter we have studied a way of improving the quality of the cover of the
solution set, based on propagation. In this chapter, we continue with the same goal but with a
different approach, focusing on exploration. We introduce a technique called pizza splitting which
splits an element in several relevant parts, taking into account a constraint. Pizza splitting is based
on a heuristic that allows it to find a key point of the search space to guide the split. From this point,
it defines interesting splitting frontiers for the abstract elements. It reinforces the filtering potential
of both propagation and elimination as the resulting split is likely to produce elements that can be
discarded immediately. Combined with propagation and elimination pizza splitting allows the solver
to focus on the frontiers of the constraints, which is the core difficult part of the problem and to
reduce the number of unnecessary splits. The work we present in this chapter is still in progress and
have not been fully implemented yet.
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6.1 Motivation and Related Works

Solvers efficiency highly depends on the choices made during the exploration phase. Hence, whether by
regarding the type of problem one has to solve, or in a more general purpose fashion, the design of specific
exploration strategies is very often necessary to improve the solving process. For example, in [Ref04],
the author proposes a search strategy based on the concept of the impact of a variable. The impact
measures the importance of a variable for the reduction of the search space, and uses learning from the
observation of domain reduction to guide the search. Other strategies involve a counting-based search
instead of an impact-based one, as in [ZP09] where some constraint-centered heuristics are proposed
to guide the exploration of the search space toward areas that are likely to contain a high number of
solutions. More recently, in [ZMRM17], the authors introduce new strategies dedicated to floating point
problems, that take advantage of the properties of floating point domains (e.g., domain density), to select
values that are likely to provoke a rounding error. Closer to our work, Mind The Gaps [BMR05] uses
the idea from [Han92, Rat94] and uses partial consistencies to find interesting splitting points within the
domain, according to the “gaps" in the search space: splitting the domains by taking into account such
gaps can lead to a significant reduction of the search space.

In this chapter, we propose a strategy for continuous solving. Its goal is to avoid the flaws of a
standard bisection which can be irrelevant in some cases as it does not take into account the solutions-
space configuration, i.e. the constraints, but only the search-space configuration, i.e. the variables. This
has the consequences of producing partitions of the solution space or even making the method fail to find
interior solutions for a given precision. The strategy we define adopts a constraint-centered approach
to find a key point on the frontier of the search space, to guide the split. Better targeting the constraint
boundary may be of crucial importance for defining inductive invariants as in [MBR16], where the choice
of the splitting frontier has a strong impact on chances of success of the solving method. Note that we
focus on proposing a better cover of the solution space, with respect to the metrics defined in chapter 3,
without having to suffer a too large time overhead, and the speeding-up of the solving process is not our
main goal.

6.2 Intuition

Thanks to a combination of propagation and elimination, we can now exploit at maximum the filtering
capabilities of the constraints, both regarding the consistent instanciations and inconsistent ones. However
when both propagation and elimination fail to remove elements from the search space, that means that
the abstract element that encompasses the solution space and the one including its complementary are
mingled. In this case the resolution entirely relies on a good exploration choice that would allow the
solving process to get out of this situation where propagators are inefficient. In this section, we develop
a new exploration strategy, meant to be used in this specific scenario that helps making less arbitrary
splits than the standard bisection strategies. It exploits the intuition that a good split is likely to produce
elements that can be directly discarded as satisfying the constraint or not. It can be decomposed into two
steps:

• a point selection phase, tunable with several strategies, which should be used to guide the split,

• a splitting operator, that splits with respect to a point, which we call pizza split.
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6.2.1 Example

Let us illustrate the problem we want to address by considering a concrete example. This example
involves an ellipse constraint that accepts the interior of the ellipse.

Example 19. An example with 2 variables (x, y) ∈ R2 subject to 1 constraint.

• x1 ∈ [−5; 5]

• x2 ∈ [−5; 5]

• u = 0.5

• v = 1.5

• t = 45

Constrained with:
(1/9) ∗ ((x−u) ∗ cos(t)+ (y− v) ∗ sin(t))2+ (1/4) ∗

((x − u) ∗ sin(t) − (y − v) ∗ cos(t))2 ≤ 1

Resolution:
Abstract domain used Box

Inner solutions 38
Inner volume 14.28
Outer solutions 64
Outer volume 7.21
Inner ratio 6.45
Solving time 0.4s
Precision 0.001

Figure 6.1 illustrates some of the first iterations of the solving process. Here the propagation reduces
the current element to a smaller box that encompasses the ellipse, and the elimination is not useful as
the inconsistent space is neither convex nor connected, which yields an important over-approximation:
the smallest box that contains all the inconsistencies is the same that the one containing all the solutions.
Due to this poor precision, the efficiency of the solving method will entirely depend on the the next
exploration steps. Here, using a strategy such as the bisection of a variable is not very effective as the
following propagation/elimination rounds will always remove a small portion of the search space. This
can be explained by the fact that the elements produced by a split are unlikely to entirely satisfy the
constraints or to be entirely inconsistent.

We are going to formalize the intuition that a better split could have yielded better results by producing
elements that are likely to be in one of these two situations. Both propagation and elimination fail to
reduce efficiently the search space as the solution space and the inconsistent one are both abstracted into
the same element. Moreover, even after an exploration step, the obtained sub-problems find themselves
in the same situation where propagation and elimination remain not very effective. By the end of the
solving process, this has as an effect the production of a cover of the solution space made of a lot of small
abstract elements. In the same spirit than in the previous chapter, we are going to build a technique that
reduces the number of elements of the cover and avoid unnecessary computations.

6.3 Splitting According to a Constraint

Approximating with linear numerical abstract domain elements such as intervals or polyhedra a complex
shape with non-linear constraints involved is a difficult task. Indeed, as these domains feature only linear
constraints, it would require an infinite number of generators lying on the frontier of the constraint to
approximate with no loss of precision a non-linear space. Our main intuition in this chapter is that the
split operation can be much more efficient if it is guided: having a witness point of the boundary of a
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(a) First iteration of the solving process (b) After 2 iterations

(c) After 4 iterations (d) After 16 iterations

Figure 6.1: Propagation/Elimination/Split loop over Example19

constraint can help defining relevant cutting frontiers for this constraint. Another way of understanding
this idea is that if we find one point, on the boundary of the considered constraint, and enforce the
resulting elements of the next split operation to have this point along their vertices or situated on one of
their constraint, then by the end of the solving process, our abstract elements will have a significant part
of their generators on the frontier of the constraint. We believe that the partition of the solution space
obtained that way will be of a particular interest as it would result in less arbitrary splits, and thus less
elements in our cover.

To define a relevant exploration of an abstract element with respect to a constraint, we propose to
divide the problem into two parts: the definition of a heuristic keypoint that determines a key point in
relation to the constraint, and the splitting of this element with respect to this key point using a new
split operator called pizza split and noted (⊗). Both of these part are meant to be used as illustrated by
Algorithm 8.

Algorithm 8 Splitting of an element according to a constraint
function split(e,c) . e: an abstract element . c: a constraint

p← keypoint(c)
output(⊗(e, p))

We will firstly explain how to split an abstract element according to a point, and then discuss the
different heuristics possible to find such a point. Finally we incorporate this technique to our method of
resolution and illustrate its operation on some examples.

6.4 Splitting According to a Point

In this section we focus on how to split an abstract element, once an interesting point has been found,
using this point. An interesting idea is that if the point is on the boundary of a constraint and it is also
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on the boundary, or on one of the vertices, of an abstract element, then there is a chance that the whole
abstract element is on one side of the constraint or the other. In both cases, propagation or

elimination should be able to remove it from the search space. Following this idea, we now define
a split operation that takes not only an abstract element but also an instance (X → D), and splits the
element in such a way that all of the resulting element have this instance as one of their vertices or
situated on one of its constraints. This split operator should respect the same properties as in 21.

Definition 60 (Pizza split operator). A pizza split operator ⊗ : B × (X → D) → P(B) is a binary
operator such that:

| ⊗ (e, p) | must be finite, ensuring the finite the width of the search tree,

∀ei ∈ ⊗(e, p), τE (ei) < τE (e) ensuring finite depth of the search tree (termination),

∪ ⊗ (e, p) = e enforcing that splitting does not lose solutions (completeness),

and ∀ei ∈ ⊗(e, p), ei = e =⇒ e is a least element of E ensuring that the splitting operators does not lose
nor create elements (completeness and soundness).

From this definition, we are going to define a splitting strategy that splits an element in a more
aggressive way than a standard bisection, and takes advantage of the point used.

6.4.1 Pizza Split Operator for Boxes

As boxes are Cartesian products of intervals, we can decompose the definition of the split operator into
a split over intervals and lift this operator to the Cartesian product.

Definition 61. Given a real interval i = (l, bl), (u, bu) and a value s ∈ itv, with ls < u the pizza splitting
of i according to s is:

⊗itv (i, s) = i1, i2

with:

i1 = ((l, bl), (s, true)) (6.1)

i2 = ((s, f alse), (u, bu)) (6.2)

Here, we voluntarily impose that the point is different from the bounds of the interval, so that the
cutting operator is effective. Moreover, as we will see later, the way in which we determine these points
will ensure that they can not be on the edge of an interval. This split is complete and correct as it produces
a perfect cover of the original interval. Moreover both of the resulting intervals have the given point as
one of their endpoints. Also, note that the split operator given in 4.3.4 can be seen as a particular of this
one, where s is equal to the middle point of the interval l+u

2 .
From this split, we can define the split over the boxes abstract domain.

Definition 62. Given a real box B = {i1× i2×· · ·× in} and an instance s = {x1 → v1, x2 → v2, . . . , xn →

vn}, with s ∈ γ(B), the pizza splitting of B according to s is:

⊗box (B, s) = Bn
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with:

Bn = {i × b|b ∈ P(Bn−1), i ∈ ⊗itv (in, s(vn))}

B1 = {i ∈ ⊗itv (in, s(v1))}

This operator corresponds to all the boxes we obtain by repeating the split along a variable, and
splitting the resulting elements along the next variables, until we have split all of the variables. Figure
6.2 illustrates the results of this split operator.

p

Figure 6.2: Pizza split operator for the interval abstract domain

It is interesting to notice that this split creates more elements than the standard bisection as it created
2n boxes against 2, where n is the number of variables. However, it is based on the idea that the elements
are chosen in a better way, and will be easy to discard from the search space during the next propagation
rounds and elimination rounds. Also, we can split only the variables appearing in the constraint involved,
to avoid the creation of a too large number of abstract elements.

Proposition 11. Pizza split The Pizza split operator for the box abstract domain is correct, complete and
irredundant.

Proof. As the split over interval is correct complete and irredundant, by definition of the Cartesian
product, ⊗ is trivially complete, correct and irredundant. �

Pizza Split Operator for Polyhedra

Splitting a polyhedron according to a point is more difficult: in two dimensions, a solution is to find a
triangulation of the polyhedron such as all of the resulting triangles have the given point as one as their
vertices as illustrated in Figure 6.3.

p

Figure 6.3: Triangulation of a two dimensions polyhedron, according to the point p
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In higher dimensions, one possibility is to divide a polyhedron into a set of simplices such that all
of the simplices have the given point as one of their generators, but this is not trivial. For example, it
is NP-complete to compute the smallest number of tetrahedra needed to triangulate a convex 3-polytope
[BDLRG04]. Nevertheless, we can still look at different solutions that are easier to calculate. For
instance, we can use the same strategy as for boxes and split along the variables of the polyhedron as
shown in Figure 6.4.

p

Figure 6.4: Pizza split operator for the polyhedra abstract domain

Another strategy, closer to the splitting of polyhedra introduced in chapter 3 is to build splitting
frontiers from the generators of the polyhedron. We can for all the generators of the polyhedron compute
a line l that goes through this generator and the splitting point. We can then build two polyhedron with
the constraint l > 0 in one and the constraint l ≤ 0 in the other. We can repeat this operation with the
obtained sub-elements for the rest of the generators.

Also, in order to not over-split we can refine this strategy by beginning with the closest generators,
and stopping as soon we have handled a certain number of the generators, or as soon as the generators are
further than a given threshold. This reflects the idea that the closer a generator is to the splitting point,
the more the elements resulting from the cut having this generator as one of theirs will have a chance
of being entirely on one side or the other of the constraint. When the generators are more distant from
the cutting point, the resulting elements are bigger, and thus less likely to be entirely on one side of the
constraint. The result of this method is illustrated in Figure 6.5.

p

g1

g2

g3

Figure 6.5: Pizza split for the polyhedra according to point p, from the three closest generators g1,g2 and
g3

6.4.2 Pizza Split Operator for the Reduced Product

To have our new exploration strategy enabled within our reduced product abstract domains, we define the
corresponding pizza split operator. Its definition within our specialized reduced product is very natural
as our product uses a dispatch function to attribute a constraint to one of its components. Hence, we
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only have to select one abstract domain according to the constraint, and perform the pizza splitting with
it. However the definition is now made at the constraint level split, and not anymore at the point level, as
the product uses the constraint to define which of its component will be assigned the operation.

Definition 63. Let c be a constraint, and D]
A×B

a product of domains D]
A
and D]

B, and δ its dispatch
function. The split operator splitA×B according to a constraint is defined as follows:

splitA×B ((a, b), c) =



{(x, b) |x ∈ splitA(a, c)} if δ(c) = true

{(a, y) |y ∈ splitB (b, c)} if δ(c) = f alse

6.5 Finding a Point on the Boundary of a Constraint

Now that we have a splitting operator able to divide abstract elements according to a point, we have to
define a way to find an interesting point for the split operation. In this section we focus on finding a point
on the boundary of a single constraint of a numerical CSP. We recall that a point is an instance which is
a total mapping from variables to real values.

Definition 64. Given a set of variables X and their domainD, the boundary of an inequality constraint
c of the form e1 ./ e2, with ./∈ {<, >, ≤, ≥}, is the set of points p such that:

{p ∈ Sol (< X,D, {c′} >), with c′ = e1 = e2}

If the given constraint is an equality of the form e1 = e2, in this case we will look for only one
arbitrary point that satisfies it. If it is an inequality e1 ≤ e2 or e1 < e2, then we reduce the problem to
the first case by looking at the constraint e1 = e2. In both cases, the problem to be solved is simpler than
the original problem, because we are now searching for a single solution of an equality constraint rather
than all of the solutions of an arbitrary system of constraints.

6.5.1 In Turn Instanciation

The first idea for finding a point lying on the boundary of a constraint e1 = e2 is simply to instantiate
each variable in turn to a given value of its domains, and verify if the instance we obtain satisfies the
constraint. Of course doing a propagation round between the successive instanciations makes it possible
to detect early failures and guide the next instanciations. Moreover, we can reduce the search-space by
considering only the variables appearing in the considered constraint as there is no need to instantiate the
other variables. This method has been studied a lot in Constraint Programming and following this idea,
we can use various heuristics to determine the order of instanciation of the variables. For instance, the one
proposed in [Bré79] chooses the variable having the smallest domain (dom) and appearing in the largest
number of constraints deg. In others words, the chosen variable is the one that maximizes dom + deg.
Another related way of choosing a variable, presented in [BR96] is to choose the variable maximizing
the (dom)/deg ratio. Once the variable to be instantiated chosen, we have to choose by which value to
instantiate it. Here too, a lot of different strategies have been developed, choosing the value maximizing
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the number of possible solutions [DMP89, KDG04] or the sum of the domains size[FD95] or even a
simple bisection.

Median. In our case, a heuristic that is not necessarily guaranteed to find a point is sufficient. In
case it fails, we can still use the standard bisection method. Thereby, a naive heuristic to apply is the
following: we first instantiate the discrete variables using the smallest-first heuristic to the median value
of their domains and then the continuous one also to their median value using the largest-first heuristic.
We also perform a propagation round between each instanciation to detect early failures and narrow
the possibilities for the next variable instanciations. This heuristic is based on the idea that splitting
according to a central point, then we avoid the creation of too small elements that, when if removed from
the search space, will not significantly reduce its size.

Exploiting consistency. Another idea is, as we perform filtering rounds during the instanciation process,
to exploit the characteristics of the propagators being used. For example, with the interval abstract
domain, we use the HC4 algorithm which computes the smallest enclosing box of a space defined by
a constraint. This guarantees1 that the obtained hull contains solution points on its boundaries: this is
the hull-consistency property. Hence an interesting heuristic is to choose for each variable one of its
bounds, perform a propagation round and repeat the process for the next variables. Once an instance is
found using this method, we still have to check that it indeed satisfies the constraint as the HC4 algorithm
compute a smallest floating-point box that encompasses a real space. If it is the case, the heuristic
succeeded.

−2
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(a) Fixing variable y to −2

−2 −1 0 1 2

−4

−3
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(b) Fixing variable x to −2

Figure 6.6: Point selection strategy

Figure 6.6 illustrate this technique over the constraint below, where in each sub-figure the highlighted
part in red is the part remaining of the solution space after fixing a variable:

z = x2 − y2

1disregarding possible rounding errors
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With the corresponding domains : x ∈ [−2; 2], y ∈ [−2; 2]z ∈ [−4; 4]. After a first round of
propagation, the variable y is fixed to its minimum value −2, which gives a constraint with only two
variables left, x and z:

z = x2 − 4

After a new round of propagation, we are able to narrow the domain for z to [−2; 0]. We now can fix
the variable x to its minimum value −2. A last round of propagation fixes the remaining variable z to 0.
The heuristic succeeded and find the point: (−2,−2, 0).

Tuning the Heuristic

One flaw of this point selection strategy is that it chooses a point that is on the boundary of the initial
abstract element. This can be problematic because the sub-elements resulting from the cut can also
choose this same point during their exploration step. In this case the pizza split will be ineffective. To
avoid this problem, we propose to narrow the selection of a point to an interior region of the abstract
element. This is done by a shrinking operation that computes an homothetic transformation according
to the centroid of the abstract element as illustrated in Figure 6.7.

Definition 65. Given an abstract element defined by a set of generators G, its shrunk associated element
is given by the set of generators G′ such that:

G′ = {B + λ
−→
Bg |g ∈ G}

Where B is the centroid of G, −→Bg the vector going from B to g and λ a real value in ]0; 1[

B

Figure 6.7: Shrinking operation of a box

Here, it is important to select a ratio λ different from zero otherwise the selected point is always
the centroid of the abstract element, and different from one otherwise the shrunk element is the element
itself. Moreover, the interest of this shrinking operation is twofold: it makes it possible to avoid the
selection of a point on the boundary of the abstract element, but can also make it possible to detect that
the boundary of the constraint considered is inconsistent with the shrunk element. Indeed, as we perform
propagation steps during the point selection, we can perform one before fixing a variable. From there,
two cases are possible:

• either the shrunk element is consistent with the boundary of the constraint, in which case we can
proceed to the point selection,
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• either it is inconsistent in which case we have still learned some information about the problem:
the shrunk element either entirely satisfies the original constraint, or is entirely inconsistent with
it. We can in this case use it to define a splitting operation using the difference operator introduced
in the previous chapter.

(a) e intersects the frontier of c (b) e does not intersect the frontier of c

Figure 6.8: Different possible splittings according to a constraint c, and a shrunk element e

Figure 6.8 illustrates these two different possibilities and the resulting splitting operations, with our
running example problem. In both cases, we have managed to build a partition of the original abstract
element, where one member of the partition (the hatched one) can be discarded from the search space.
In the first case it is inconsistent, and in the second, it satisfies the constraint.

Also, note that randomizing the selection of the ratio λ can be interesting to make the behaviour of
the heuristic non-deterministic. This allows to embed it in a k-retry procedure: when the heuristic fails
to find a point, it is allowed to retry k times, by taking a bigger value for λ at each try, before failing.

6.5.2 Gradient Descent

Another way to find a point on the boundary of a constraint, is to reduce the problem to an optimization
problem. For example we can use a gradient algorithm to perform this task. This is a differentiable
optimization algorithm and is therefore intended to minimize a differentiable real function defined on
an Euclidean space. The algorithm is iterative and therefore proceeds by successive improvements. At
a current point, a displacement is made in the direction opposite to the gradient, so as to decrease the
function. The key here, is given an inequality e1 < e2, finding a minimization problem whose solution
is a solution for e1 = e2. This is achieved by minimizing (e1 − e2)2.

Indeed, as (e1 − e2)2 is always positive, the minimum possible value it can take is 0, and when it is
the case, e1 − e2 = 0. If the minimum value we obtain is equal to 0, then the heuristic succeeded and the
instance for which (e1 − e2)2 = 0 is on the boundary of the constraint. Otherwise, we can choose to split
the element using this point, if the minimum of the expression (e1 − e2)2 is close enough to 0. Indeed,
with floating calculations with rounding, it may be very unlikely (or even impossible in some cases) to
find exactly one instance for which the expression (e1 − e2)2 is equal to zero.

6.6 Implementation and Preliminary Results

We have implemented the pizza split technique inside AbSolute Even though this implementation work
is still at an experimental stage, we have been able to test the performances of the pizza split on some
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Table 6.1: Comparing the pizza split and the standard bisection, with respect to computation time and
inner ratio.

#var inner ratio, Standard inner ratio, Pizza time, Standard time, Pizza
2 0.280 0.648 0.007 0.007
2 0.882 0.907 0.011 0.012
2 0.280 0.986 0.032 0.052
2 0 0.001 0.371 0.564
2 0 0.013 1.932 2.752
3 0 0.019 6.817 9.899
3 0.579 0.795 0.787 0.654
3 0.280 0.643 0.856 1.227
4 0.891 0.937 1.401 2.644
5 0 0 20.401 30.982

examples and the first results obtained are encouraging. Table 6.1 summarizes some of the results
obtained with as the propagation based point selection heuristic. Constraints and domains have been
selected from real problems of theMinLp benchmark. The first column indicates the number of variables
involved in the considered constraint. The second and third column compare the inner ratios obtained
with the standard split and with our new technique, and the last two column show the corresponding
resolution times in seconds.

From the analysis of the result, we notice that our new split strategy tends to be slower than the
standard one but the splitting it defines yield better inner-approximations of the solution space. The fact
that the inner ratio is always better with the pizza split technique confirms that it helps discarding areas
immediately where the standard bisection would create unsure elements, and in particular we can notice
that with the pizza split enabled, our resolution method is able to find solution for 3 of 1O problems
where the standard bisection fails to do so.

6.7 Conclusion

6.7.1 Contributions

In this chapter, we have continued the objective fixed by chapter 5 to improve the quality of the results
of a solver. Our main idea was to guide the split, to define relevant splitting frontiers, when propagation
and elimination were ineffective. We have proposed a new split operator, that splits according to a
point, along with some point selection strategy to guide the exploration step and build a more interesting
partition of our abstract elements.

6.7.2 Future Work

Our perspective of continuation include the experimentation of the pizza split operator on realistic
benchmarks, with the different point selection heuristics we have presented. Adapting this technique
to several constraints will also be a necessary step to make its use effective. Also, we believe that the
development of activation heuristics will be required to make this split operator efficient. These could
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be its activation on non-linear constraints, or on convex shapes for which this operator seems to give the
best results according to our preliminary experimentation. Also, the general idea of finding one solution
instance of a problem to guide the building of the whole solution set can be interesting and adapted to
other solving techniques.
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Conclusion

In this thesis, the aim was to propose a tight collaboration between the techniques of Abstract
Interpretation andConstraint Programmingwithin a unifiedmethod of resolution of constraint satisfaction
problems. Thiswork addresses the problemof the design of aConstraint solver based on abstract domains,
in a generic and modular way. It uses both the theoretical and practical basis of Abstract Interpretation
combined with some standard techniques of Constraint Programming, and some ones, to bypass the
restriction of more standard constraint solvers, such as the dedication to a certain type of constraints
or variables. Our effort also consisted in the design of a robust method, aware of floating-point errors
with a sound handling of rounding errors. This method is implemented within the AbSolute constraint
solver and applied on several examples. Experiments prove that our methods improve the efficiency and
provide more relevant answers. In this chapter we briefly recall the contributions of our work and discuss
the future works.

7.1 Contributions

We have defined in the Chapter 2, Preliminaries, the theoretical basis necessary to the understanding
of our work. We have then situated our task within the state of the art of both Abstract Interpretation
and Constraint Programming and in particular, in the continuity of the work of Pelleau & al., in
[Pel12, Pel15, PMTB13a]. We have during this thesis continued this work both from a theoretical and
practical point of view.

In the two next chapters, Abstract domains and domain products for Constraint Programming,
and Discrete and Continuous abstractions for constraint solving, we worked on the generalization of
abstract solver concepts. The benefits of this generalization are threefold: it allows us to handle more
efficiently different kinds of constraints, handle more problems, and define a generic way of augmenting
a solvers capabilities. In particular, the third chapter replaces the standard notion of domains (in the CP
sense) by more general representations imported from Abstract Interpretation. This is done in order to
exploit the relational domains of Abstract Interpretation in a framework of constraint resolution. This
allows us a more powerful mechanism of propagation, which reduces the resolution time. We use these
constructions to define a standard way of augmenting the kind of constraints a solver is able to solve,
using an abstract domain combinator: the reduced product, adapted to Constraint Programming purposes.
The fourth chapter continues with the idea of generalization by focusing on mixing different types of
variables. We proposed an abstraction that fits both discrete or continuous variables, based on a product
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of both real and discrete intervals, and the congruence abstract domain. This representation comes along
with the corresponding propagators, splits and size operators.

In the two following chapters, Propagation with Elimination and Constraint aware Exploration,
we have focused our attention on the development of techniques to obtain more relevant results from a
point of view of their reusability. In particular, the cardinality of the partition of the solution space is
minimized and its inner ratio is maximized. Also, the results we obtain suit both complete and correct
resolution techniques and provide a guarantee of non-redundancy: no solution is covered by more than
one abstract element. Chapter four explicits a new technique called elimination, whose purpose is to
improve the quality of the results of a solver by reducing the search space by removing from it, as soon
as possible, parts that are solutions. This reduction of the search space is able to significantly reduce the
computation time on some example. It also leads to better results according to themetrics we have defined
for comparing different covers of a solution space, moreover, it integrates well using the abstractions we
have defined in the previous chapters. The sixth chapter presented ongoing ideas that follow the same
purposes. We define in it a new exploration strategy, aware of the constraints of a problem and called
Pizza split, meant to avoid the flaws of a standard bisection. Its goal is to find relevant cutting points
within an abstract element, and split it accordingly, using a dedicated split operator.

Our work has been concretized under the form of an implementation in the AbSolute solver. The
results we have obtained with it are very promising and validate on a practical level the techniques we
have built. Also, it is interesting to notice that our implementation differs from most of the modern
implementations of constraints solvers by its functional style. The use of immutable data structures,
used in recursive procedures, and duplicated during branching in the search space, has allowed us to
completely avoid the implementation of backtracking techniques, which usually represent an important
part of the development of constraint solvers. This choice of paradigm is fundamental with respect to
performance, and our good results show that a functional style is as well adapted to this problematic,
although our implementation has always privileged genericity and modularity over performance.

7.2 Perspectives

7.2.1 Short Term

The promising results obtained with the AbSolute constraint solver open the way to the development of
hybrid solvers, at the frontier of Constraint Programming and Abstract Interpretation able to naturally
handle different representations. In a short term perspective, we wish to improve our solving method
by adapting and integrating advanced methods from the Constraint Programming literature, in particular
specialized propagators for global constraints, under the form of a specialized reduced product. The
AbSolute solver is built on abstractions in a modular way, so that new methods and already existing
ones can be combined together without difficulty. This opens many possibilities for mixing abstract
domains, and new heuristics will be developed for choosing the appropriate abstract domain depending
on the nature of the constraints involved in a problem. Ultimately, each problem could be automatically
solved in the abstract domains which best fits it, thus avoiding redundant computations and enjoying a
better precision. Also, now that we are able to handle efficiently both discrete and continuous variables,
we can incorporate standard heuristics over the discrete representations inside our solver, and this also
opens the possibility of new global constraints inside the AbSolute constraint solver, dedicated to discrete
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problems.
Further work regarding the use of elimination include adapting it within non-arithmetic constraints.

Indeed, using the negation of a constraint is not straightforward when dealing with global constraints,
and when it is the case, the design of a new propagator may be necessary. Also, the design of activation
heuristics is worth considering. For example, elimination proves to be very efficient when the solution
ratio of the search-space is high, and symmetrically ineffective when a problem is unsatisfiable. Such
heuristics can be used to activate it over inequality constraints in priority, or over constraints known
to reduce sparsely the solution space. From an Abstract Interpretation point of view, more work can
is needed to lift the splitting and difference techniques to other abstract domains such as ellipsoids or
zonotopes which are not closed under intersection, and it is not trivial to find a cover of such elements,
not to say a partition. This may result in a different way of implementing the split operator and difference
operator, potentially in a more symbolic way. Further work regarding the use of the pizza split inside
solvers includes firstly a rigorous benchmarking of its capabilities against other exploration strategies,
and in a second time, a study of its adaptation to other constraints. Of course the design of activation
heuristics may be a necessary step to improve the performance of this split operator, for example, it may
work best when a continuity hypothesis over the shape of the constraints is known, or when the key points
are easy to determine.

7.2.2 Long Term

The mixing of discrete and continuous abstractions not only improves the efficiency of the our solving
method but also broadens the spectrum of possible applications. A lot of real world problematics
may enjoy the use of a mixed technique able to handle both discrete and continuous representations
transparently: from computer-aided design, to robotics, the continuous nature of problems appear as
soon as the problems take into account physical constraints (volumes, weights ...) and the discrete part
arises from constraint such as the number of available resources (number of blades in a fan or the number
of container for layout problems). From a broader point of view, our work on reduced products could
also provide a basis for solver co-operation, something that is widely used in Constraint Programming
and Operation Research, but in practice in an ad-hoc fashion. For example, the reduced product of
intervals and polyhedra can be seen as a cooperation between a continuous constraint solver and an
LP-solver (linear programming) and, in the same way, one could imagine a reduced product involving
CP techniques and SAT-solvers.

Also, our efforts have mainly focused on solving constraint satisfaction problems, and it would be
interesting to see to what extent the techniques we developed are reusable in the context of optimization
problems. Other work ideas may relate to the development of constraint propagators for user-defined
constraints. Indeed, as in Abstract Interpretation, the analyzers are able to handle the definition of new
functions, during a programs analysis, we could exploit this idea to have it enabled for user-defined
constraints.

Finally, this thesis had as main concern the application of Abstract Interpretation techniques for
constraint solving and a natural question is to what extent can program verification take advantage of
Constraint Programming methods? Constraint Programming provides efficient techniques to improve
the precision of an abstraction, using expensive computations to reach an arbitrary given precision.
Abstract Interpretation does not provide such mechanisms to improve on-the-fly the precision of the



126 CHAPTER 7. CONCLUSION

abstract domain being used. Incorporating some Constraint Programming mechanisms (splits, search
tree) in abstract domains would enable, in the presence of false alarms, the automatic refinement of the
abstraction being used and could help discard false alarms.
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Improvement to the AbSolute Solver

Abstract

AbSolute is a constraint solver based on abstract domains from the theory of abstract interpretation
and has served as a practical basis for experiments in this thesis. It features a modular and functional
OCaml implementation and is available through the opam package manager. Its tunable solving
method in terms of precision, heuristics, propagation loop, output formatting and abstract domain
makes it able to solve a large variety of constraint satisfaction problems. During this thesis, we have
developed some techniques to improve the performances of the solver. Also, we have augmented its
capabilities with a lot a features, some of which we did not have the opportunity to introduce in the
previous chapters. This annex is meant to briefly address these points and discuss the implementation
aspects of this work.

A.1 Problem description language

To describe constraint satisfaction problems, AbSolute features a description language which we present
in this section. It allows the user to declare variables, and constraints, and annotate the problem with
comments easily in text file, as illustrated in example A.1.

1 /∗ A po lynomia l c o n s t r a i n t ove r two v a r i a b l e s ∗ /
2 i n i t {
3 r e a l x = [ −10 ; 10 ] ;
4 r e a l y = [ −5 ; 5 ] ;
5 }
6 c o n s t r a i n t s {
7 ( x−2) ^2 + ( y−2) ^2 <= 4 ;
8 }

Listing A.1: a simple example of CSP using AbSolute’s description language

Problems are divided in two parts: the variables declaration in the init tag and the constraints
declaration in the constraint tag. Variable are described according to their type (integer or real variables)
and their range. Constraints are enumerated in sequence and interpreted conjunctively A third optional
tag can be added to describe the results of the problem. This description will be used to verify the validity
of the implementation as we will see in the section A.4.
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A.1.1 The grammar of the language

We present now the grammar of the language in its BNF form. Constraints are Boolean expression over
the variables of the problem. They manipulates arithmetical expressions as explicated in figure A.1.

<bool-expr> F <arith-expr> � <arith-expr> � ∈ {>, ≥, <, ≤,=,,}
| ¬ <bool-expr> negation
| <bool-expr> ∨ <bool-expr> disjunction
| <bool-expr> ∧ <bool-expr> conjunction

Figure A.1: Boolean expression syntax

Arithmetic expressions, whose grammar is given in table A.2 include constants, variables, usual
operators and function calls among a list of predefined functions listed in table A.1.

<arith-expr> F c c ∈ R
| V variables
| <arith-expr> � <arith-expr> � ∈ {+,−, ∗, /,%}
| - <arith-expr> opposite
| ident ’(’<arith-expr>(’,’ <arith-expr>)*’)’ function calls

Figure A.2: Arithmetical expression syntax

Available functions

We have extended the standard arithmetic with several functions that make the constraint language more
practical and allow us to tackle more problem. Those are:

Name Description
max maximum value of two numbers
min minimum value of two numbers
sqrt Square root of a number
ln Logarithm of a number
exp Image of a number with respect to the exponentiation
cos Cosine of a number
sin Sinus of a number
acos Arc cosine of a number
asin Arc sinus of a number
tan Tangent of a number
atan Arc tangent of a number

Table A.1: Available functions in the constraint language of AbSolute

A.2 Global architecture of the solver

The AbSolute solver is implement in a generic way at several level. The main solving loop, based on
propagation and exploration is completely independent from the abstract domains, these one being chosen
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dynamically, at solving time. In the same fashion, the abstract domains are built as separate units defining
a representation and providing the necessary operations over this representation for the resolution : split,
size, propagation etc. By the end of the solving process, the solver returns a collection of abstract element,
tagged either as sure elements, i.e. satisfying the constraints, or as unsure, i.e. not necessarily satisfying
the constraint. Also, the implementation of different abstract domains maintains this modularity and
factorizes the common treatment of the different domains. For example, the propagation of Boolean
expressions is made transparently, without having to know the numerical underlying abstract domain.
From there, the different abstract domains are separated into two categories: the relational and the
non-relational abstract domains. The relational abstract, i.e. the Octagon and Polyhedra reuses the
features of Apron to define abstraction for numerical expressions (no Boolean expression are allowed).
We define the split, size and propagators in a generic way using a decomposition of the abstract value into
a set of linear constraints or a set of generators. The non-relational abstract domains, i.e. intervals and
congruences are handled within a Cartesian representation of the search space, where for each variable
is associated a representation. Here again, the variable selection, filtering and evaluation do not depend
on the representation used for the variables. This allows us to have easily several kinds of non-relational
abstract domains as soon as we are able to define the required operations for the used representation.
Lastly, as we use several kind of intervals (real and discrete), with different types of bounds, (integer,
floats and rationals), we have defined an interval arithmetic parametrized by the type of bound being
used and once again, our interval do not depend on the representation used for the bounds. Those
only have to fulfill some requirement, such as providing arithmetic operations with a sound handling of
rounding errors. Finally, all of these abstract domains can be combined into domain products, and be used
transparently, as we provide for the different possible combinations the associated reduction operation
that ensure the communication between the two components. Figure A.3 summarizes the hierarchy of
the different units mentioned above.

AbSolute

Solver

Domains - over boolean expressions

Domains - over arithmetical expressions

Products Single domains

Non-relationnals

Intervals

Floatting-Points Integer Multi-precision Rationnals

Congruences

Relationnals (Apron)

Octagons Polyhedra

Figure A.3: Hierarchy of the different abstract domains of AbSolute
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A.3 Visualization

We have implemented several visualization means inside AbSolute to be able to have a graphical
representation of the solution space. This tools were a key feature to perform a quick, even though not
very rigorous, testing of the solver soundness. It also gives a more comprehensive output than a textual
output.

A.3.1 2-dimensions visualization

The implementation of a visualization interface of abstract elements follows the same principle of
modularity than the rest of the solver. The visualization tool does not need to know the representation
of the abstract domain being used. It only requires a set of operation to be available in the abstract such
as a conversion of element into a list of shapes to draw. In the case where the problem contains more
than two variables, it also needs a projection function for our abstract elements: the solution space is
projected on the first two variables of the problem in the order of their declaration in the problem. This
process is shared between all of our different visualization back-ends.

A.3.2 OCaml Graphics

The graphical interface provided with AbSolute is launched automatically at the end of the resolution
when the -v is specified option on the command line. It is based on the Graphics module of OCaml and
displays all the abstract elements returned by the solver. In the case where the problem contains more
than two variables, the solution space is projected on the first two variables of the problem in the order
of their declaration. Figure A.4, illustrates this interface.

Figure A.4: AbSolute’s 2D graphical output of the solutions of the problem 22
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A.3.3 Latex

AbSolute also features another visualization back-endwhich is thePGF/TikZ1. This is a pair of languages
for producing vector graphics from a geometric/algebraic description. It allows the solver to generate a
latex code corresponding to the drawing of the solution space, as illustrated in Figure 23.

\ do cumen t c l a s s { s t a n d a l o n e }

\ u sepackage { x c o l o r }
\ u sepackage { pgf , t i k z }

\ d e f i n e c o l o r { s u r e }{ rgb }{0 . 4 , 0 . 8 , 1}
\ d e f i n e c o l o r { un su r e }{ rgb }{0 , 0 . 9 , 0}

\ beg in { document }
\ beg in { t i k z p i c t u r e }

\ draw [ f i l l = s u r e ] ( 0 . 1 5 6 , −0.265) r e c t a n g l e ( 0 . 2 5 0 , −0 .176 ) ;
\ draw [ f i l l = s u r e ] ( 0 . 0 7 0 , −0.176) r e c t a n g l e ( 0 . 1 2 5 , −0 .088 ) ;
\ draw [ f i l l = s u r e ] ( 0 . 0 6 2 , −0.088) r e c t a n g l e ( 0 . 1 2 5 , 0 . 0 0 0 ) ;
\ draw [ f i l l = s u r e ] ( 0 . 1 2 5 , −0.176) r e c t a n g l e ( 0 . 2 5 0 , 0 . 0 0 0 ) ;
. . .
\ draw [ f i l l = un su r e ] ( 0 . 1 0 4 , −0.279) r e c t a n g l e ( 0 . 1 5 6 , −0 .228 ) ;
\ draw [ f i l l = un su r e ] ( 0 . 0 6 2 , −0.228) r e c t a n g l e ( 0 . 1 5 6 , −0 .176 ) ;
\ draw [ f i l l = un su r e ] ( 0 . 1 5 6 , −0.353) r e c t a n g l e ( 0 . 2 5 0 , −0 .265 ) ;
\ draw [ f i l l = un su r e ] ( 0 . 0 1 5 , −0.176) r e c t a n g l e ( 0 . 0 7 0 , −0 .088 ) ;
. . .

\ end { t i k z p i c t u r e }
\ end { document }

Listing A.2: TikZ code generation of the problem 22

A.3.4 3D

To be able to have a more meaningful visualization for problems with a lot of variables, we have
implemented in AbSolute an OBJ file output. OBJ is a file format containing the description of a
3D geometry. Geometric shapes can be defined by polygons or smooth surfaces such as rational and
non-rational surfaces. Each surface is described by a set of vertices (accompanied by texture coordinates
and normals at each vertex) and a set of faces. To be able to visualize our solutions sets in this format,
we have to convert abstract element into vertices and build the faces between those vertices. Figures A.5
and A.6 show screen-shots of this visualization using a viewer of OBJ files.

Figure A.7 summarizes the hierarchy of the different tools of visualization of AbSolute.

1The reader of this manuscript having a minimal knowledge of TikZ has probably already understood this from the figure5.1
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Figure A.5: Different views of the 3D OBJ output of the solutions of the problem 23

Figure A.6: Different views of the 3D OBJ output of the solutions of the problem 24

AbSolute

Visualisations

Textual 2-dimensions scenes

Latex output OCaml Graphics

3-dimensions scene

Obj generation

Figure A.7: Hierarchy of the different visualization tools of AbSolute

A.4 Testing framework

Wehave incorporated into the solver a testing framework to improve the robustness of the implementation.
This testing framework uses two different methods to check the validity of the implementation: First,
using extra-information of a problem, if present, it verifies some properties about the results. And second,
it generates randomly instance from the results of the solver and then verifies if these are indeed solutions
of the constraint problem.

A.4.1 From the annotation of a problem:

The extra-information of a problem come in the form of an additional solutions tag, in which we can
specify four possible annotations:

• Instances that are solutions. We make sure that these belong to an abstract element of the partition
returned by the solver. This is a completeness test.
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• Instances that do not satisfy at least one constraint. We make sure that these do not belong to any
sure element of the partition. This is a soundness test.

• The user can also add the unfeasible annotation to specify that the given problem admits no
solution.

• The tautology annotation can be used to specify that the problem admits only solution within the
declared domains.

Also, the testing framework ensures that all of the instances specified as solutions in the annotations
belong to one and only one abstract element. This is an irredundancy test. Figure A.8 illustrates the
syntax for the annotations.

1 /∗ e x p o n e n t i a l t e s t ∗ /
2
3 i n i t {
4 r e a l x = [ −100 ; 100 ] ;
5 r e a l y = [ −100 ; 100 ] ;
6 }
7
8 c o n s t r a i n t s {
9 exp ( x ) = y ;

10 }
11
12 s o l u t i o n s {
13 {y =1; x =0};
14 ! { y =1; x =0 . 001} ;
15 ! { y =0 . 9 9 ; x=0}
16 }

Listing A.3: a simple example of CSP using AbSolute’s description language

Figure A.8: Example of annotation used by the testing framework of AbSolute.

A.4.2 From the solver’s output

The second method used by the solver to test the validity of the result is based on a random generation
of instances within the abstract elements of the cover of the solution space. For every element tagged
as sure i.e. satisfying the constraints, we generate randomly a certain number of instances and verify
that they are indeed solutions of the problem. This requires our abstract elements to define a random
generation procedure, that we detail now.

Random generators

For boxes. As boxes are Cartesian product of interval, simply generate a for each variable a uniformly
randomly chosen value from the interval. This generation is lifted easily to the Cartesian representation.

For polyhedra The random generation of a point within a bounded polyhedra, in a uniform way, is not
as easy. Of course, we can use a rejection sampling by generating point with the minimum enclosing box
of a polyhedron and reject them if the obtained instance does not belong to the polyhedron. Repeating
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this step until a point inside the polyhedron is found is correct, when this algorithm terminates. The
problem is that the complexity of this procedure is proportional to the ratio volumebox

volumepoly
, and in particular,

in presence of equalities in the polyhedron, this ratio is infinite and this algorithm do not terminate in
the general case. To address this problem, we have made the choice of fixing a variable to one value of
its range after fixed number of tries. We repeat this process with the polyhedron where this variable has
been removed. This is giving-up on uniformity to enforce termination.
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Constraint satisfaction problem examples

This section presents some of the problems used to illustrate the work we have done in this thesis. Prob-
lems are presented according to their name, number of variables and their type (discrete or continuous),
and number of constraints. Extra information about the resolution are then given.

Example 20. An example with 2 variables (x, y) ∈ R2 subject to 1 constraint.

• x ∈ [1; 50]

• y ∈ [−1.5; 1]

Constrained with:
cos(ln(x)) > y

Abstract domain used Box
Inner solutions 10193
Inner volume 37.29
Outer solutions 8192
Outer volume 0.36
Inner ratio 99.03
Solving time 0.13s
Precision 0.01

Example 21. A simple example with 2 variables (x, y) ∈ R2 subject to 2 trigonometrical constraints.

• x ∈ [−10; 10]

• y ∈ [−4; 4]

Constrained with:

• y < sin(x) + 1

• y > cos(x) − 1
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Abstract domain used Box
Inner solutions 6832
Inner volume 40.82
Outer solutions 6528
Outer volume 0.37
Inner ratio 99.09
Solving time 0.13s
Precision 0.01

Example 22. Mickey problem from the Coconut benchmark: 2 variables (x, y) ∈ R2 subject to 2
constraints.

• x ∈ [−3; 3]

• y ∈ [−3; 3]

Constrained with:

• ((2. ∗ (y2.)) − x) <= 0.

• (((x2.) + (4. ∗ (y2.))) − 4.) <= 0.

Abstract domain used Box
Inner solutions 356
Inner volume 2.082
Outer solutions 358
Outer volume 0.06
Inner ratio 96.84
Solving time 0.019s
Precision 0.02

Example 23. Spoon problem: 3 variables (x, y, z) ∈ R3 subject to 1 constraint.

• x ∈ [−3; 3]

• y ∈ [−3; 3]

• z ∈ [−3; 3]

Constrained with:
((3 ∗ x2 + (y − 1.9)2 + (2 ∗ z)2 − 1)2 + (0.2 ∗ z)) ∗ (((((0.8 ∗ z + 1.2)3 + (5 ∗ y − 6))2 + (4 ∗ x)2 − 0.5) ∗

((x)2 + (y + 6)2 + (z − 2.8)2 − 0.3) ∗ (x2 + (y − 1)2 + (z + 3.3)2 − 0.03) + 290) ∗ (9 ∗ x2 + (y − 0.1 ∗ z +

2.5)2 + (4 ∗ z − 5 + y)2 − 1) − 400) − 99 = 0
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Abstract domain used Box
Inner solutions 0
Inner volume 0
Outer solutions 356098
Outer volume 0.09
Inner ratio 0
Solving time 72.62s
Precision 0.01

Example 24. Diabolo problem: 3 variables (x, y, z) ∈ R3 subject to 1 constraint.

• x ∈ [−5; 5]

• y ∈ [−5; 5]

• z ∈ [−5; 5]

Constrained with:
x2 = (y2 + z2)2

Abstract domain used Box
Inner solutions 0
Inner volume 0
Outer solutions 470720
Outer volume 1.42
Inner ratio 0
Solving time 11.37s
Precision 0.02





Abstract
We investigate in this thesis a tight collaboration between techniques of Abstract Interpretation and Constraint
Programming within a unified method of resolution of constraint satisfaction problems. This work addresses
the problem of the design in a generic and modular way of a constraint solver based on abstract domains,
which capture specific properties of program or constrained variables. We exploit the assets of both fields to
bypass the restriction of standard constraint solvers, such as the dedication to a certain type of constraints or
variables. Our effort also consists in the design of a robust method, providing soundness properties even in the
context of floating-point errors. Moreover, we are interested in different techniques allowing the construction
of a partition of a solution space that can be easily reused, both from a quantitative and a qualitative point of
view. Our work has been concretized in the form of an implementation within the AbSolute constraint solver
and applied on several examples. Our experiments show that our methods improve the solver’s efficiency or
the quality of the results according to the metrics we have defined.

Résumé
Nous étudions dans cette thèse une collaboration étroite entre les techniques de l’Interpretation Abstraite et de
la Programmation Par Contraintes au sein d’une méthode unifiée de résolution de problèmes de satisfaction
de contrainte. Ce travail aborde le problème de la conception de manière générique et modulaire d’un
solveur de contraintes basé sur des domaines abstraits qui permettent l’inférence de propriétés spécifiques
d’un programme ou d’un système de contraintes. Nous exploitons les atouts des deux domaines pour
contourner les restrictions des solveurs de contraintes standards, telles que la spécialisation à un certain type
de contraintes ou de variables. Notre travail consiste aussi à concevoir une méthode robuste tenant compte
des problématiques liées à l’utilisation de calculs en précision flottante avec une gestion correcte des erreurs
d’arrondi. De plus, nous nous intéressons à différentes techniques permettant la construction d’une partition
d’un espace de solution qui peut être facilement réutilisée, tant d’un point de vue quantitatif que qualitatif.
Notre travail a été concrétisé sous la forme d’une implémentation dans le solveur de contraintes AbSolute et
appliqué sur plusieurs exemples. Les expériences que nous avons menées au sein de ce solveur montrent que
nos méthodes améliorent l’efficacité du solveur et la qualité de ses résultats par rapport aux métriques que
nous avons defini.
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