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Introduction

Because they can often be solved exactly, integrable models are of great interest to physicists.
Some of these models directly describe realistic physical systems. But even when they do not,
they may still provide important insights into physical phenomena. In statistical physics, for
instance, a given universality class may contain one integrable model as well as some other,
more realistic systems. In that case, all these systems share the same critical exponents, and
it suffices to compute these exponents for the integrable model. In high-energy physics, on the
other hand, integrability may allow to probe the strongly coupled regime of some quantum
field theories, a feat that is in general extremely difficult to achieve. We will focus, in this
thesis, on various aspects of integrability related to a particular conformal field theory, the
so-called fishnet theory.

The rest of the introduction is organised as follows. We begin with a historical presen-
tation highlighting the main steps in the development of integrability. We then describe the
background to the works presented in this thesis, starting with a few specific objects and
techniques—T-systems, Q-systems, Q-operators, separated variables—common to many in-
tegrable models. After that, we briefly review the solution to the spectral problem of N = 4
super Yang–Mills, where some of these techniques have found applications. We then give an
overview of most of the existing literature on the fishnet theory. Finally, we end with an
outline of the contents of the thesis.

Classical Integrability and Quantum Integrability

The first models for which integrability was defined were finite-dimensional classical Hamil-
tonian systems. Given such a system on a 2n-dimensional phase space M—a symplectic
manifold—we say that it is integrable in the Liouville sense if there exist n independent
functions H1, . . . ,Hn such that H1 = H is the Hamiltonian, and they all Poisson commute
with one another: {Hi, Hj} = 0. Any of these functions could equivalently be taken as the
Hamiltonian of the system, and together they constitute a set of (first) integrals of motion, as
they are all conserved under Hamiltonian motion. In that case, any level set, i.e. any set of the
form {x ∈ M ;Hi(x) = hi} for some fixed hi’s, that is compact and connected is diffeomor-
phic to the n-dimensional torus {(eiϕ1 , . . . , eiϕn) ∈ U(1) × · · · ×U(1)}, and, on this torus, the
angles evolve linearly with time: ϕ̇i = ωi(h1, . . . , hn). The equations of motion can moreover
be integrated by quadratures. Arnol’d [1] actually showed that, for such systems, one can
find symplectic coordinates (I1, . . . , In, ϕ1, . . . , ϕn), such that I1, . . . , In depend only on the
first integrals, and the angles are exactly the coordinates on the torus. These coordinates are
called action-angle coordinates.

1



2 INTRODUCTION

The next important step in the theory of classical integrable models originated in the
study of the Korteweg–de Vries (KdV) equation, a non-linear partial differential equation
originally obtained in the description of one-dimensional surface gravity waves on shallow
water. Korteweg and de Vries [2] proved that this equation admits progressive wave solutions
that are asymptotically constant, i.e. solitary waves. But it was only seventy years later that a
numerical study [3] showed the collective behaviour of these waves to be particle-like. Starting
from a configuration in which the waves are well separated, it appeared that they will first
interact (non-linearly) and mix, but at long times they eventually separate again and regain
their respective shapes and velocities, up to a phase shift. Such solitary waves are called
solitons. The initial-value problem for the KdV equation was solved [4] soon after, using a
method now called the inverse scattering transform. Inspired by this and the existence of an
infinite number of conservation laws [5], an interpretation of the KdV equation as an infinite-
dimensional classical integrable system was given in [6]. These methods turned out not to be
specific to the KdV equation but applicable to a vast array of non-linear systems [7, 8].

Ninety years ago, Bethe [9] solved an integrable quantum system: the XXX Heisenberg
spin chain. His method relies on an ansatz which is now known as the coordinate Bethe ansatz:
he first made an assumption on the form of the wave function depending on some complex
parameters, the momenta or, up to a reparametrisation, the rapidities. Then, he derived an
auxiliary set of equations, the Bethe Ansatz Equations (BAE), that these parameters should
satisfy for the wave function to be an eigenvector. The energy is the sum of the energies
associated to each momentum, thus giving a picture of the eigenstates as states describing a
certain number of pseudo-particles, the magnons.

Further progress then came from two-dimensional lattice models of statistical mechanics.
In 1944, Onsager [10] gave the exact solution of the two-dimensional Ising model. It was
followed, in the sixties, by the solutions to the planar dimer problem [11, 12] and to the
six-vertex or ice-type models [13–16]. The latter were explicitly solved using a Bethe ansatz
for the eigenvectors of the row-to-row transfer matrices. Around the same time, a quantum
mechanical system of particles on a line interacting via a delta function potential, introduced
for bosons by Lieb and Liniger in [17], was also solved via a Bethe ansatz [17,18].

It was thanks to the works of both Baxter [19] and the physicists of the Leningrad
school [20–22] that a general framework, called the quantum inverse scattering method
(QISM), emerged. QISM can be used to formulate and solve integrable models, including
the Heisenberg spin chain studied by Bethe and (most of) the exactly solved two-dimensional
lattice models. At the heart of this new algebraic approach lies the Yang–Baxter equation, a
cubic relation on an object called the R-matrix or R-operator.

The QISM also found several applications to quantum chromodynamics (QCD). Firstly,
it was shown [23, 24] that in the Balitsky–Fadin–Kuraev–Lipatov (BFKL) limit of QCD the
effective Hamiltonian exhibits integrability properties of a non-compact SL(2,C) spin chain.
Then, it turned out that solving the evolution equations governing the scale dependence
of certain correlation functions in QCD is equivalent to solving a non-compact Heisenberg
SL(2,R) spin chain [25–29]. Such spin chains are called non-compact because an infinite-
dimensional representation of the symmetry group, such as a principal series representation
of SL(2,C) with spins (s, s̄) = (0, 1) for the case studied in [23, 24], is associated to each
site of the chain. The quantum space in a non-compact spin chain is then some functional
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space. Accordingly, the operators—R-matrices, transfer matrices, etc.—are either differential
operators or they have an integral kernel.

Another application of integrability to high-energy physics is in one of the realisations
of the AdS/CFT correspondence [30–32]. It is indeed believed that type IIB strings in an
AdS5 × S5 background are equivalent to the four-dimensional maximally supersymmetric
Yang–Mills theory (N = 4 SYM), and that both are integrable in the planar limit (this last
conjecture is based on numerous results, starting with [33, 34], see also [35–39] for detailed
reviews). In that case, integrability is a boon that permits to derive non-perturbative results
necessary to test a correspondence relating strongly coupled strings to the weakly coupled
gauge theory and vice versa.

Universality of T- and Q-Systems

It was first observed in [19,40,41] that the transfer matrices of some two-dimensional lattice
models of statistical mechanics provide a solution to a few bilinear difference equations. These
results were generalised in [42, 43], where an infinite system of such equations was obtained.
It was also realised [43] that such a system can be defined for any simple Lie algebra g,
this is the T-system associated to g. It involves commuting objects, the T-functions Ta,s(x)
depending on a spectral parameter x, some positive integer s, and an index a labelling the
nodes of the Dynkin diagram of g. When g = Ar = sl(r + 1,C), for instance, the T-system
simply reads [43–45]

T [1]
a,sT

[−1]
a,s = Ta,s+1Ta,s−1 + Ta+1,sTa−1,s , (0.0.1)

where for a function f and an integer k we define the function f [k] by f [k](x) = f
(
x+ k

2

)
.

In this particular example, the T-system coincides with the Hirota equation of soliton theory
[46], thus making a connection with classical integrable systems. There exist also T-systems
associated to Lie super algebras [47–50].

As it happens, T-systems turned out to be ubiquitous structures. They arise in the con-
text of cluster algebras, of the ordinary differential equations/integrable models (ODE/IM)
correspondence [51], and are also relevant for solving N = 4 super Yang–Mills as we will
explain later on. In the case of compact spin chains, this is related to the representation the-
ory of Yangians and, more generally, of quantum affine algebras. In particular, for the latter,
the T-functions are q-characters [52], an analogue of usual characters for particular modules
introduced by Kirillov and Reshetikhin in [53]. The fact that these q-characters do satisfy
the T-system was proven for untwisted simply laced quantum affine algebras in [54, 55], for
generic untwisted algebras in [56], and in [57] for the twisted case.

The T-system is not the only structure that is common to many integrable models: there
exist others like the Y- or Q-systems. We will not elaborate on the relevance of the Y-system
to integrability in this thesis, the interested reader could refer to [58] for a nice review of
the interplay between T- and Y-systems. The Q-system is another, equivalent, way to en-
code the spectrum of integrable models. It is a system of equations on a finite number of
functions/commuting operators, whereas there was an infinite number of T-functions. These
Q-functions are considered to be more fundamental objects than the T-functions as it is be-
lieved that the latter can all be simply expressed in terms of the former. The uncertainty in
the previous sentence comes from the fact that the study of Q-systems is far less developed
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than that of their T and Y counterparts. Until very recently, the Q-system was actually only
known for the Lie algebras sl(r + 1,C) and their supersymmetric generalisation.

In the case of the Ar symmetry algebra, which is both the simplest and best-understood
case, there are 2r+1 Q-functions. They are labelled by subsets I of {1, . . . , r + 1} and satisfy
relations of the form

Q
[+1]
I∪{i}Q

[−1]
I∪{j} −Q

[−1]
I∪{i}Q

[+1]
I∪{j} ∝ QIQI∪{i,j} . (0.0.2)

As for the case of T-functions, these relations imply that the Q-functions are far from being
independent. It is actually possible to express all of them in terms of only r + 2 of them, a
convenient choice of the latter being Q∅ and Q{i}. Moreover, owing to the so-called gauge
symmetry exhibited by the Q-system, it is in practice always possible to assume that two
of the Q-functions, say Q∅ and Q{1,...,r+1}, are trivial so that one often says that there are
only r independent functions. In turn, a solution of the T-system can be obtained for any
collection of r + 1 functions by defining [44]

Ta,s ∝ det
1⩽i,j⩽r+1

(
Q

[a−s−2j+2sθ(a−j)]
{i}

)
, (0.0.3)

where θ is the Heaviside step function (it is 0 for negative arguments and 1 for non-negative
ones). The proportionality factor in the previous relation is a function that depends on the
model-dependent boundary conditions that one wants to satisfy.

Construction of Q-Operators

The Q-operators appeared for the first time in a work by Baxter on the eight-vertex model [59]
as operators satisfying

TQ = ϕ[−1]Q[2] + ϕ[1]Q[−2] , (0.0.4)

where T is the transfer matrix and ϕ some fixed function. More generally, the fact that
solutions of the T-system can be expressed as determinants of shifted Q-functions, cf. (0.0.3),
dates back to [44]. But the Q-functions Q{i} were defined at the time as linearly independent
solutions of the finite-difference Baxter equation, also called the quantum spectral curve,

r+1∑
a=0

(−1)aT [1−a]
a,1 Q[−2a] = 0 . (0.0.5)

The direct, i.e. without having to resort to the T-functions, construction of the Q-operators is
highly non-trivial and was at first developed on a case-by-case basis for various models [60–67].

For spin chains with infinite-dimensional representations of sl(r + 1,C) or GL(r + 1,C)
at each site, either a Verma module or a representation of the principal series, i.e. with
or without highest weight, the single-index Q-operators were then constructed in a series of
articles by Derkachov and Manashov, first for low ranks in [68–70] and then for arbitrary ranks
in [71–74]. They constructed the R-matrices intertwining these representations and showed
that they are naturally expressed as a product of r + 1 simpler operators. This property
survives the trace operation involved in the definition of the transfer matrices. As a result,
transfer matrices with infinite-dimensional representations in the auxiliary space are written
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as a product of r + 1 operators which are identified with the single-index Q-operators of
the model. Moreover, in the Verma module case, the determinant expression for the transfer
matrices with finite-dimensional auxiliary space is a consequence of the Bernstein–Gelfand–
Gelfand resolution [75].

Surprisingly, the construction of the Q-operators for the compact spin chains, including
the one originally solved by Bethe, only appeared later. Inspired by the construction done in
[63,64] for an integrable conformal field theory with Uq(ŝl(2)) symmetry, the authors of [76–79]
solved this problem for spin chains with sl(n|m) symmetry. The 2n+m Q-operators satisfying
the Q-system (0.0.2) are constructed as transfer matrices with some infinite-dimensional
auxiliary spaces, even though the quantum space is finite-dimensional, that are representation
spaces of harmonic oscillator algebras. This involved finding hitherto unknown solutions of the
Yang–Baxter equation. These solutions are not representations of the Yangian because they
are degenerate; their analogues for quantum affine algebras actually correspond to the so-
called prefundamental representations of Borel subalgebras [80,81]. Independently of [76–79],
a conceptually different approach, based on the coderivative method introduced in [82], was
successfully carried out in [83] for the construction of the Q-operators of the spin chains with
sl(n|m) symmetry.

Such explicit constructions of the Q-operators make transparent the regularity properties
in the spectral parameter of the operators and their eigenvalues. In the compact case, they
are all polynomials up to a trivial state-independent prefactor. For principal series represen-
tations, however, all the operators are meromorphic. Since, in that case, they are integral
operators, it suffices to examine their kernels to determine their asymptotic behaviour at in-
finity and the position and degree of their poles [67,84]. It appeared in several instances [85,86]
that the knowledge of these regularity properties and of the equations satisfied by the oper-
ators (Q-system or Baxter’s TQ-equation) is enough to find the eigenvalues. In the compact
case, for instance, even if it is straightforward to recover the (nested) Bethe ansatz equations,
the Bethe roots being roots of some of the Q-functions, the Q-system formulation of the spec-
tral problem appears to be much more convenient. It does not exhibit the usual drawbacks
of the Bethe equations, all its solutions are physical, and it is even possible to prove that it
is complete in some cases [87–89].

Another key feature of this approach to finding the spectrum is that it does not require
any knowledge about the form of the eigenvectors. In particular, it works in cases for which
more conventional methods like algebraic (or coordinate) Bethe ansatz are not applicable.
Non-compact spin chains based on principal series representations are typical examples of
such a situation.

Separation of Variables

The actual determination of the wave function of the eigenstates is also a very compli-
cated problem. One of the most promising approaches to this question seems to be the
technique of separation of variables (SoV) first promoted by Sklyanin, see [90] for a review.
For a classical system integrable in the Liouville sense, we say that symplectic coordinates
(p1, . . . , pn, q1, . . . , qn) are separated if there are relations of the form Φi(pi, qi, H1, . . . ,Hn) = 0
for all i ∈ {1, . . . , n}. The quantum analogue [91] comprises two sets of mutually commut-
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ing operators: the separated variables {X1, . . . , XN} having simple joint spectrum, i.e. an
eigenvector common to all the Xi’s is uniquely specified, up to multiplication by a complex
number, by its eigenvalues, and a set {P1, . . . , PN} of operators which act as ladder operators
with respect to the separated variables. Moreover, we want that (left) eigenvectors of the Xi’s
form a basis ⟨x1, . . . , xN | of the Hilbert space in which the wave function of any eigenstate
|Ψ⟩ (of the original Hamiltonian, transfer matrix, etc.) factorises according to

⟨x1, . . . , xN |Ψ⟩ =
N∏
i=1

ψi(xi) , (0.0.6)

with each ψi a solution to some equation involving the conserved charges as coefficients. The
number N of separated variables, which can be seen as the number of degrees of freedom of
the quantum system, is a priori not easy to determine.

Sklyanin [91, 92] managed to develop such techniques for the compact twisted inhomo-
geneous spin chain with GL(2,C) symmetry. His construction relies on an identification of
the separated variables with the operatorial zeros of a certain family B(x) of commuting
operators. He then sets Pi = A(Xi), where A(x) is a second family of commuting operators.
If the A and B families satisfy appropriate commutation relation, the shift property of the
Pi’s is automatically satisfied. In the compact spin chain we just mentioned, A(x) and B(x)
are simply elements of the monodromy matrix, although one has to introduce twists and
inhomogeneities in order to ensure that the operators are diagonalisable and possess a non-
degenerate spectrum. Separated variables were subsequently found for non-compact models
with the same symmetry group [67,84,93,94]. Each ψi turns out to satisfy Baxter’s equation
(0.0.4) evaluated at the eigenvalues xi of Xi and can be identified with a Q-function. It had
actually already been suggested in [95] that the Q-operators could be used, provided one has
some explicit expression for them, to construct a unitary transformation (change of basis)
going to the SoV representation. This proposal was verified in the non-compact models just
mentioned.

The situation is much more complicated for systems with higher-rank symmetry. First
of all, the identification of the A- and B-operator is far less clear. A proposal for them was
made in [96], based on a study of the classical case [97], for models with GL(3,C) symmetry.
However, even in the simplest compact GL(3,C) spin chain, this proposal does not seem to
be totally satisfying, as the shift properties of the Pi’s are not verified. Significant progress on
this subject has only been achieved recently thanks to the works of several groups [98–100].

On the one hand, Maillet and Niccoli managed to circumvent the need for an explicit
construction of the A- and B-operator, and thus of the separated variables themselves, and
constructed SoV bases for integrable models associated with the defining representation of
GL(n,C) [99,101], the quantum affine algebra Uq(ĝl(n)) [102], the Y (gl(n)) reflection algebra
[103], and the supersymmetric algebras [104] (with Vignoli). Their work is based on the
powerful observation that factorisation of the wave function is automatic if the covectors
⟨x1, . . . , xN | are obtained via the application of the conserved charges themselves on a fixed
reference covector. In the simplest spin chain with GL(2,C) symmetry [99], when all sites
carry the defining representation, the transfer matrix with defining representation in the
auxiliary space is enough to generate all the conserved charges: the number of separated
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variables coincides with the length of the chain, N = L, and one can define

⟨h1, . . . , hL| ∝ ⟨S|
L∏
i=1

T hi (ξi) (0.0.7)

for any (h1, . . . , hL) ∈ {0, 1}L, with ξ1, . . . , ξL the inhomogeneities (which should be in generic
position) and some reference covector ⟨S|. We stress that the labels of the vectors are not the
eigenvalues of some explicit operators anymore, although in this simple case, if ⟨S| is conve-
niently chosen, one can recover Sklyanin’s results [92] and the eigenvalues of the separated
variables are xi = ξi + 2hi − 1. Maillet and Niccoli proved that, for ⟨S| generic enough, the
vectors ⟨h1, . . . , hL| thus generated are linearly independent. For representations other than
the defining one, more transfer matrices are needed to generate the basis, but the result still
holds [105]. Furthermore, using fusion relations satisfied by the various commuting transfer
matrices, like the T-system, as well as the knowledge of their asymptotic behaviour, they were
able to give a precise characterisation of the spectrum of the various models they considered.
Their analysis is done for a very wide range of twist matrices, but in the particular case of
an invertible twist matrix with simple spectrum they show that the spectrum can essentially
be characterised by Baxter’s equation (0.0.5).

On the other hand, Ryan and Volin followed more closely Sklyanin’s approach and focused
on compact spin chains with GL(n,C) symmetry, first in the same rectangular representation
at each site [100], and then in arbitrary finite-dimensional representations [106]. They used
the proposal made in [98] for a polynomial B-operator B(x) that, when evaluated at the
momentum-carrying Bethe roots, could be used to create the eigenvectors of the model by
repeated application on a reference vector, just as in the GL(2,C) case. This B-operator is
explicitly expressed in terms of a sum of products of minors of the monodromy matrix, and it
had actually already appeared in [107]. Ryan and Volin first proved that the B-operator is, up
to a nilpotent term, given by a product of the generators of the Gelfand–Tsetlin subalgebra
of the Yangian [108]. This permitted them to show that the operator is diagonalisable and
to determine its spectrum. They further showed that the eigenvectors ⟨x1, . . . , xN | of B(x)
can be constructed, following [99], by application of various transfer matrices of the model,
shifted and evaluated at the inhomogeneities, on a suitably chosen reference state. For generic
representations at each site, the number of separated variables is N = Ln(n−1)

2 , and they are
labelled Xα

kj with α ∈ {1, . . . , L} and 1 ⩽ j ⩽ k ⩽ n − 1. The wave function of the model
factorises into a product of determinants:

〈
{xαkj}

∣∣∣Ψ〉 =
L∏
α=1

n−1∏
k=1

det
1⩽i,j⩽k

(
qi(xαkj)

)
, (0.0.8)

where qi is, up to a trivial normalisation, the eigenvalue of the Q-operators Q{i}.
The separation of variables is also a convenient approach to compute the norm of the

eigenstates and form factors, i.e. matrix elements of operators. The wave functions in the
SoV basis being indeed expressed in a particularly compact form, it seems natural to com-
pute such scalar products in this basis. However, the scalar product is defined in the original
basis. In order to express it in the SoV basis, one needs an additional piece of informa-
tion, the SoV measure, also called Sklyanin’s measure. It corresponds to the scalar products
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⟨x1, . . . , xN |y1, . . . , yN ⟩, where |y1, . . . , yN ⟩ is a dual SoV basis that need not be equal to
(⟨x1, . . . , xN |)†. This measure has been known for a long time for models with SL(2,C) sym-
metry. For models with higher-rank symmetry, it has only started to be understood in the
past couple of years. An ingenious method relying on the Baxter equations satisfied by the
Q-functions allowed the authors of [109] to bypass the explicit construction of the SoV bases.
They obtained a determinant expression for the measure for a spin chain with the Verma
module of sl(n,C) of highest weight (−1, 0, . . . , 0) attached to each site. The same technique
was applied in [110] to the compact spin chain with the defining representation of GL(3,C) at
each site, a construction of the dual SoV basis was also presented. These results were further
extended in [111] to a particular family of Verma modules and new determinant expressions
for several form factors were derived. The SoV measure was also computed in [112] in terms
of a solution to some recursion relations for the same model as in [110].

Spectrum of N = 4 SYM

The appearance of integrability in the planar limit of N = 4 SYM dates back to the study
by Minahan and Zarembo [33] of the one-loop dilatation operator for operators in the SO(6)
sector, i.e. which are traces of products of the scalar fields. They showed that the dilatation
operator then coincides with the Hamiltonian of an SO(6)-invariant spin chain with the
spins in the defining representation. This notably means that the spectral problem can be
reduced to solving Bethe ansatz equations. The complete one-loop dilatation operator with
PSU(2, 2|4) symmetry was then obtained in [113,114].

The one-loop dilatation operator only involves nearest-neighbour interaction, this is how-
ever no longer the case when one goes to higher loop orders: the range of the dilatation
operator grows with the loop order. The idea that the dilatation operator could be integrable
at all loop is due to [115]. It was realised in [116] that in order to determine the all-loop Bethe
ansatz equations one should focus on the scattering matrix of the excitations. This S-matrix
can be determined up to an overall phase—the dressing factor—from symmetry considera-
tions only; this was done in [117] and allowed to recover the Bethe equations proposed earlier
in [118]. The symmetry algebra is a centrally extended su(2|2) ⊕ su(2|2).

A physically equivalent S-matrix was shown [119] to describe the scattering of world-
sheet excitations in the AdS5 × S5 string sigma model. In that case, the S-matrix, up to
the dressing factor, follows from the assumption that the excitations are created by the
action of a Zamolodchikov–Faddeev algebra [120,121] and that they have centrally extended
su(2|2) ⊕ su(2|2) symmetry.

An equation that the dressing factor should satisfy, the crossing equation, was proposed
in [122] based on the quantum group structure of the symmetry. The solution relevant to
N = 4 SYM was conjectured in [123,124]. It was proven in [125] that this conjecture indeed
satisfies the crossing equation. At the same time, the solution to the crossing equation with
the minimal number of singularities in the physical strip was shown in [126] to coincide with
the conjectured dressing factor.

The Bethe equations thus derived, though valid at all loop orders, are only asymptotic
in the sense that they yield the conformal dimensions of infinitely long operators. Their
application to operators of finite length is valid only up to terms exponentially small in the
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length—the wrapping corrections. These corrections can be added one by one [127], they are
then called Lüscher corrections because the expression of the leading correction in relativistic
quantum field theories was obtained in [128]. For integrable 1+1-dimensional field theories, it
is also possible to resum all these terms, the conformal dimension is then encoded in a system
of integral equations called the thermodynamic Bethe ansatz (TBA) [129]—TBA equations
were actually derived for the first time in [130] in the study of the thermodynamic limit of the
Lieb–Liniger model. The formulation of the TBA equations for integrable field theories relies
solely on the knowledge of the dispersion relation and the scattering matrix of the excitations
in a dual theory dubbed the mirror theory. The mirror S-matrix and the associated bound
states for strings in an AdS5 × S5 background were determined in a series of articles by
Arutyunov and Frolov [125,131–133], while the complete spectral equations appeared in the
form of the Y-system [134] before the TBA equations were formulated [135–137].

The solution to the spectral problem was later greatly simplified [138,139] by expressing it
in terms of a solution to a Q-system. This formulation is the most efficient way to determine
the spectrum and is known as the quantum spectral curve (QSC), it is nicely reviewed in
[38,39]. As we explained before, even if the Q-system is entirely fixed by the symmetry algebra,
psu(2, 2|4) for AdS5/CFT4, the regularity properties of the Q-functions must depend on the
specifics of the model. In the case at hand, these properties are quite intricate and were also
worked out in [138,139] starting from the TBA and Y-system formulations. The Q-functions
have branch cuts whose positions are determined by the ’t Hooft coupling, their asymptotic
behaviour is determined by the charges of the operator under consideration, and they satisfy
some sewing conditions relating different Q-functions and their monodromies around the
branch points. The QSC was then extended in [140] to describe deformations of N = 4 SYM.

Before moving on to the fishnet theory, let us emphasise that these progressive advances
in the solution to N = 4 SYM were deeply interwoven with similar progress on the string side
of the correspondence, such as the proof that the sigma model on AdS5 × S5 is classically
integrable [34], or the development of the classical spectral curve [141, 142]. In particular,
the TBA, as developed in [129], should a priori only be applicable to the string theory but,
because of the correspondence, the same equations describe the spectrum of N = 4 SYM.
In the much simpler case of the fishnet theory, however, the TBA equations can be derived
directly from the conformal field theory as we will show in this thesis.

The Fishnet Theory

The integrability of planar N = 4 SYM gives hope for an exact solution of this strongly
coupled field theory. Although this would be a remarkable achievement in itself, it would
also, in this case, deepen our understanding of the AdS/ CFT correspondence. It remains
nonetheless an arduous task and many results are still conjectural. It thus seems reasonable
to begin by studying simpler integrable theories.

The fishnet theory is a non-unitary quantum field theory of two Nc ×Nc matrix complex
scalar fields X and Z interacting via a single quartic interaction vertex with coupling ξ2. It
was originally [143] obtained in four dimensions as a double-scaling limit (strong imaginary
twist and weak coupling) of the γ-deformation of N = 4 SYM, and was subsequently gen-
eralised to arbitrary dimension [144]. The main interest of this theory comes from the very
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simple structure of its Feynman graphs in the planar limit, i.e. Nc → +∞ but ξ2 remains
finite. Owing to the chiral nature of the interaction, there are very few of them. What is more,
all those graphs are of fishnet type: the bulk of these diagrams is nothing but a piece of a
square lattice. This important restriction ensures that the theory is conformal if one includes
some specific double-trace counterterms [145] (see also [146] for an investigation of the spon-
taneous conformal symmetry breaking in the fishnet theory) that were already present in the
γ-deformation of N = 4 SYM [147]. This property of the Feynman graphs also ensures inte-
grability of the theory. Zamolodchikov [148] had first observed this several decades ago when
he treated fishnet Feynman graphs on the torus as an integrable statistical physics system,
and was able to obtain the partition function in the thermodynamic limit. The Yang–Baxter
relation guaranteeing integrability being here an integral identity called the star-triangle re-
lation. It turns out that a more explicit connection can be made with some non-compact
conformal spin chains studied in [149]. One can indeed exhibit an integral operator which,
upon repeated application, yields all the graphs appearing in the perturbative expansion of
some correlators. This operator is then explicitly shown to belong to the conserved charges
of a non-compact spin chain [143, 150]. Being a non-compact spin chain with a higher-rank
symmetry, its solution is not yet known but is expected to be achievable through the methods
of Q-operators and separation of variables described above. This thesis will contain results
in that direction.

Even though we will only study the fishnet theory just described, let us mention that
several theories with a similar regular structure of their Feynman graphs have also been
proposed. Firstly, the double-scaling limit can be taken such that three fermions and three
scalars remain coupled [143]. In that case, the structure of the graphs is more involved [151]
and integrability is already much less apparent (although it was still visible at the level
of the graphs for an intermediate theory with three scalars and two fermions [151, 152]).
Then, a double-scaling limit of the γ-deformed ABJM model [153, 154] was presented [155]
which contains three scalars interacting via a single sextic coupling, the bulk of the graphs
being pieces of a triangular lattice. This was further investigated in [156] where theories with
graphs based on a hexagonal lattice were also introduced. Finally, it was shown in [157] that
a theory of only two fermions and one scalar, which had appeared in [156], can be obtained
through the procedure of γ-deformation followed by double-scaling limit applied to an N = 2
superconformal field theory; the authors of [157] also studied integrability and conformality
of this theory.

Harking back to the square fishnet theory, the anomalous dimension of a few short oper-
ators, as well as some structure constants, can be determined exactly using integrability in
a relatively straightforward manner [144,158,159]—some four-particle scattering amplitudes
can also be computed [160]—but for most operators the result is still very hard to reach. When
dealing with the original four-dimensional fishnet theory, one can use the results obtained for
N = 4 SYM from which it descends. It is, for instance, possible to take the double-scaling
limit in the asymptotic Bethe ansatz equations describing the conformal dimensions of long
operators, as was done in [155], or to take the limit directly in the twisted quantum spectral
curve as in [150]. This is however not possible for the fishnet theory in other dimensions, or
even in four dimensions, if one includes an additional anisotropy parameter. In such cases, it
seems that one needs to derive from first principles the relevant quantum spectral curve.
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The chirality of the interaction in the fishnet theory induces a dilatation operator which,
though integrable, exhibits properties very different from that of N = 4 SYM. In particular,
it is non-diagonalisable, and, as a consequence, there exist logarithmic multiplets. This was
first realised by Caetano [161] and further investigated in [150]. Moreover, it was noticed [162]
that the one-loop dilatation operator (of the fishnet theory and, more generally, of the theory
with three fermions and three scalars) coincides with the Hamiltonian of some “eclectic” spin
chains. The correspondence with a spin chain was done via a restriction to a certain class of
local operators (traces of products of scalars) as in [33]. In the usual Heisenberg spin chain,
the interaction is simply a permutation of two adjacent spins, whatever the state they are
in. In these eclectic spin chains, however, the interaction is still nearest-neighbour but only
some specific configurations can be permuted. The authors of [162,163] studied these unusual
chains in detail. They showed that the quantum inverse scattering method cannot be used
to find its eigenvectors, even though the Hamiltonian can still be obtained from a family of
commuting transfer matrices. Being non-unitary, it is not a surprise that the Hamiltonian
is non-diagonalisable, so the only thing one can hope for is to bring it to Jordan normal
form. It was nonetheless pointed out in [163] that the size and the multiplicity of the Jordan
blocks seems to be highly structured, thus giving hope for a systematic understanding of this
spectrum.

The simplicity of the fishnet theory also allowed a rigorous derivation of its holographic
dual. This was achieved by Gromov and Sever: they first showed in [164] that the strong
coupling dual of the theory is a classically integrable chain of point-like particles on the light-
cone in six-dimensional Minkowski space, which they named the fishchain model. They then
proceeded [165] to derive the dual at finite coupling by quantising this classical model for
a subsector of the operators in the fishnet theory. They eventually extended their construc-
tion to all operators [166]. The fact that the quantum fishchain lives in AdS5 had already
transpired in [167].

Some of the planar integrals relevant to the fishnet theory had already been studied
extensively in the past. Such is the case, in four dimensions, of the ladder diagrams computed
in [168], or of the (one-)wheel graphs computed in [169], for instance. With the discovery of
the fishnet theory came new advances. On the one hand, the (massless) Yangian symmetry of
a vast class of single trace correlators of the theory, each given by a single Feynman graph, was
derived in [170,171] thus providing severe constraints on these integrals. A Yangian symmetry
for a class of Feynman integrals with massive propagators was then discovered [172, 173],
and an interpretation of these integrals as the scattering amplitudes in a massive version of
the fishnet theory was also derived [174]. On the other hand, several equivalent expressions
for a class of four-point integrals in four dimensions were given in [175], one of which can
be obtained rigorously from the integrability of an open non-compact spin chain [176, 177].
These expressions were then used [178] to examine the thermodynamic limit of the four-point
integrals. The result was different from that obtained by Zamolodchikov [148] for periodic
graphs, thus showing a strong dependence on the boundary conditions. The same integrals
in two dimensions were also computed directly from integrability [179]. The results, both in
two and four dimensions, admit a remarkable determinant representation.
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Outline of the Thesis

The first chapter of this thesis will be devoted to a reminder of some well-known results
regarding quantum integrable models, and in particular compact spin chains. After a quick
presentation of the Bethe ansatz equations for the simplest XXX spin chain, the concepts
of R-matrix and transfer matrix are introduced. The fusion procedure, used to construct
new R-matrices starting from known ones, is exemplified in the GL(2,C) case. The simplest
R-matrices for symmetry groups of higher ranks are shown, and the appearance of nested
Bethe ansatz equations is explained.

We present, in the next two chapters, the fishnet theory and its connection with an
integrable non-compact conformal spin chain. We explain how the fishnet theory in four di-
mensions arose as a double-scaling limit of the γ-deformation of N = 4 SYM. The importance
of the chiral interaction for conformality of the theory is reviewed. Scalar principal series of
the conformal group, as well as the spin chains involving these infinite-dimensional represen-
tations, are described. We show that the graph-building operators producing the perturbative
expansion of some correlators are part of the conserved charges of the chain, thus exempli-
fying integrability of the theory. The solution to the simple case of a closed chain of length
two is also reviewed, thus providing the exact results for some conformal dimensions and
structure constants.

The diagonalisation of the graph-building operator related to the open spin chain is per-
formed in the fourth chapter. This is done in arbitrary dimension d [180], thus generalising
the known results in two and four dimensions. The eigenstates of the operator of length N
can be interpreted as N -particle states. There are infinitely many types of particles labelled
by integers l ⩾ 0; they all live on a one-dimensional space and have an additional internal
O(d,C) symmetry: a particle of type l transforms in the symmetric traceless representation
of rank l of the group O(d,C). Though the order of the particles a priori matters in the
definition of the N -particle states, it is explicitly shown that the exchange of two particles
in a given state yields the same state up to mixing of the internal degrees of freedom. This
mixing is governed by the O(d,C)-invariant R-matrices acting in the tensor product of two
symmetric traceless representations. The N -particle states are also shown to be orthogonal
up to the symmetry just mentioned. These computations are based on explicit expressions
for the fused R-matrices that were not known before.

The graph-building operators can be seen as the (exponential of minus the) Hamiltonian
of the interacting particles. Because of integrability, the energy of an N -particle state is just
the sum of the individual energies. What is more, the scattering matrix can be extracted
from the asymptotic behaviour of the two-particle states; it contains a matrix part, which is
nothing else than the O(d,C)-invariant R-matrix, and a non-trivial scalar phase. From this
scattering data, one can write down TBA equations [181] for the dimensions of multi-magnon
operators of the type

OJ,M (x) = Tr
(
XMZJ

)
+ . . . . (0.0.9)

Those TBA equations are presented in the fifth chapter. From them one can immediately
extract the asymptotic Bethe ansatz (ABA) equations describing the dimensions of operators
in the limit J → +∞. The TBA is also explored at finite coupling, following the findings
of [167] in four dimensions. A correspondence with a two-dimensional non-linear sigma model
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in AdSd+1 is established.
After reviewing the Ar Q-system for compact spin chains, we propose, in the sixth

chapter, a Dr Q-system. Our proposal [182] is based on the recent construction [183] of
some Q-operators for the spin chain with defining representation of the orthogonal group at
each site. We also obtain several new expressions for the transfer matrices in terms of the
Q-operators. Some of these expressions are the analogues of (0.0.3) for Ar symmetry and
constitute a quantisation of the classical Weyl character formula. Other expressions we pro-
pose for the transfer matrices seem to be a consequence of relations on infinite-dimensional
modules akin to the Bernstein–Gelfand–Gelfand resolution.

We summarise, in a brief conclusion, our main achievements, and we present a few possible
future directions of research. Finally, we include three appendices. We present, in the first
one, the conventions for Lie algebras used throughout the thesis. The basic integral relations
needed for the Feynman diagram computations are contained in the second appendix, as well
as the explicit computation of some of the Feynman graphs appearing in the fifth chapter.
And we provide, in the last appendix, additional information regarding the results of the
sixth chapter.

Our own results are all presented in the last three chapters (and the associated appen-
dices); these are based respectively on the following works:

• Mirror channel eigenvectors of the d-dimensional fishnets, arXiv:2108.12620 with Sergey
Derkachov and Enrico Olivucci.

• Thermodynamic Bethe Ansatz for Biscalar Conformal Field Theories in Any Dimen-
sion, Phys. Rev. Lett. 125 (2020) with Benjamin Basso, Vladimir Kazakov, and De-
liang Zhong.

• QQ-systems and Weyl-type transfer matrices in integrable SO(2r) systems, JHEP 02
(2021) with Vladimir Kazakov and Rouven Frassek.





Chapter 1

Compact Integrable Spin Chains

We review in this chapter some elementary facts about compact spin chains. We first explain
the coordinate Bethe ansatz on the simplest spin chain: the XXX Heisenberg spin chain with
GL(2) symmetry1 originally studied by Bethe [9]. After having managed to write the Bethe
ansatz equations, we proceed to the construction of a family of operators commuting with
the Hamiltonian. This is naturally done in the framework of the quantum inverse scattering
method. We thus introduce Yang’s R-matrix and the Yang–Baxter relation. We also explain,
on this particular example with GL(2) symmetry, the fusion procedure used to construct
new solutions to the Yang–Baxter relation. We finally touch upon models with higher-rank
symmetry. In particular, we motivate, from the point of view of the coordinate Bethe ansatz
for the Heisenberg spin chain with GL(N) symmetry, the appearance of the nested Bethe
equations.

Several of the notions introduced here will be useful in the next chapters. Firstly, the
definition in Chapter 3 of the non-compact spin chain relevant to the fishnet theory requires
particular solutions of the Yang–Baxter equation. Then, the fusion procedure will be used in
Chapter 4 to give explicit expressions for some O(d)-invariant R-matrices. The eigenvectors
of the non-compact model solved in the same chapter will be shown to satisfy properties
analogous, if not identical, to those of the eigenvectors of the compact spin chain with GL(N)
symmetry solved here. Finally, the Q-system presented in Chapter 6 will be shown to include
the nested Bethe ansatz equations.

1.1 The GL(2) Heisenberg Spin Chain

We consider a discrete quantum system of L spins 1
2 on a chain with nearest neighbour

interactions and periodic boundary conditions. More precisely, the Hamiltonian is

H = L−
L−1∑
i=1

Pii+1 − PL1 , (1.1.1)

1In order to shorten the notations, we denote by GL(N) the group of N × N invertible complex matrices.
The group of invertible real square matrices, which will almost never appear, will be denoted GL(N,R).

15
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and it acts on the quantum space (C2)⊗L. In the previous expression, Pij = Pji for i ̸= j
denotes the permutation of spins at sites i and j without modifying the other spins:

Pij (v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vL) = v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vL , (1.1.2)

where all the vk’s are in C2. We introduce the usual spin operators at each site

S⃗i = I2 ⊗ · · · ⊗ σ⃗

2 ⊗ · · · ⊗ I2 , (1.1.3)

where I2 is the 2 × 2 identity matrix, the operator σ⃗ appears only at the ith site and its
components are the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
. (1.1.4)

We will also denote by |↑⟩ and |↓⟩ the two vectors of the basis in which the Pauli matrices
are written. In terms of the spin operators, the Hamiltonian can be rewritten

H = L

2 − 2
L−1∑
i=1

S⃗i · S⃗i+1 − 2 S⃗1 · S⃗L . (1.1.5)

The Hamiltonian commutes with the operator P of translation by one site

P (v1 ⊗ · · · ⊗ vL) = vL ⊗ v1 ⊗ · · · ⊗ vL−1 . (1.1.6)

Our goal is to diagonalise simultaneously these two operators, and to determine their spec-
trum.

We first remark that that there is a global GL(2) invariance: for any G ∈ GL(2), we have

[H,G⊗ · · · ⊗G] = [P, G⊗ · · · ⊗G] = 0 . (1.1.7)

This implies that the Hamiltonian commutes with the associated representation of the Lie
algebra gl(2), and with the total spin S⃗ = ∑L

i=1 S⃗i of the system in particular. Its spectrum
will consequently be degenerate.

There are two obvious eigenvectors, |↑ . . . ↑⟩ and |↓ . . . ↓⟩, both having energy 0. We now
(arbitrarily) decide to call |↓ . . . ↓⟩ the vacuum and that M -particle states, for 0 ⩽ M ⩽ L,
will refer to linear combinations of states made of M spins up |↑⟩ and L − M spins down
|↓⟩. It is clear that M -particle states are exactly the eigenvectors of Sz, the z-component
of the total spin, with eigenvalue M − L

2 , and that they are stable under the action of
the Hamiltonian. In order to shorten the notations we shall write |∅⟩ for the vacuum and
|i1, . . . , iM ⟩ with i1, . . . , iM distinct integers between 1 and L for the state made of M spins
up at sites i1, . . . , iM and spins down at the other sites.
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One-particle Sector One-particle eigenvectors of P are trivially found to be

|p⟩ =
L∑
j=1

eipj |j⟩ with eiLp = 1 . (1.1.8)

These are also eigenvectors of the Hamiltonian:

P |p⟩ = e−ip |p⟩ and H |p⟩ = 2(1 − cos p) |p⟩ . (1.1.9)

We thus obtained L new eigenvectors, one of which (p = 0) has the same energy as the
vacuum and is actually in the same SU(2) multiplet:

|0⟩ = S+ |∅⟩ , (1.1.10)

where S+ = Sx+iSy

2 is the usual ladder operator. The other new eigenvectors all have an
energy strictly higher than the vacuum.

Two-particle Sector We now look for eigenvectors of the form

|p1, p2⟩ =
∑

1⩽j<k⩽L
ψp1,p2(j, k) |j, k⟩ , (1.1.11)

with the wave function given by

ψp1,p2(j, k) = eip1j+ip2k +S(p1, p2) eip1k+ip2j . (1.1.12)

This wave function in particular satisfies

ψp1,p2(j + 1, k) + ψp1,p2(j − 1, k) + ψp1,p2(j, k + 1) + ψp1,p2(j, k − 1)
= 2 (cos p1 + cos p2)ψp1,p2(j, k) . (1.1.13)

For |p1, p2⟩ to be an eigenvector of P, the eigenvalue can only be e−i(p1+p2), and it is easy to
see that

P |p1, p2⟩ = e−i(p1+p2) |p1, p2⟩ ⇐⇒ e−iLp1 = eiLp2 = S(p1, p2) . (1.1.14)

This is nothing but the appropriate periodicity condition on the wave function

ψp1,p2(j − L, k) = ψp1,p2(k, j) = ψp1,p2(j, k + L) . (1.1.15)

The action of the Hamiltonian on |j, k⟩ for 1 ⩽ j < k ⩽ L is given by

H |j, k⟩ = 4 |j, k⟩ − |j − 1, k⟩ − |j + 1, k⟩ − |j, k − 1⟩ − |j, k + 1⟩ , (1.1.16)

if j + 1 < k and (j, k) ̸= (1, L), and else by

H |j, j + 1⟩ = 2 |j, j + 1⟩ − |j − 1, j + 1⟩ − |j, j + 2⟩ , (1.1.17)
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with the understanding that the chain is periodic (i.e. |j, L+ 1⟩ = |j, 1⟩ and |0, k⟩ = |L, k⟩).
As a consequence, one can write

H |p1, p2⟩ = 2(2 − cos p1 − cos p2) |p1, p2⟩

+
L∑
j=1

(ψp1,p2(j + 1, j + 1) + ψp1,p2(j, j) − 2ψp1,p2(j, j + 1)) |j, j + 1⟩ , (1.1.18)

where we have used the property (1.1.13) and the condition (1.1.15). We thus get an eigen-
vector if the coefficients in front of |j, j + 1⟩ in the second line vanish, this is equivalent
to

S(p1, p2) = −1 + eip1+ip2 −2 eip2

1 + eip1+ip2 −2 eip1
. (1.1.19)

Together with the condition (1.1.14) this equation restricts the values of eip1 and eip2 . It is
possible to show that solving these equations would give L(L−1)

2 new eigenvectors, one of
which would be (proportional to) S2

+ |∅⟩ (when p1 = p2 = 0) and L − 1 others would be
(proportional to) S+ |p⟩ for p ̸= 0 (when {p1, p2} = {0, p}).

Coordinate Bethe Ansatz Now that we have understood the form of the eigenvectors
for small number of particles, we are ready to propose an ansatz for an arbitrary number of
them: we look for M -particle eigenvectors of the form

|p1, . . . , pM ⟩ =
∑

j1<···<jM
ψp(j1, . . . , jM ) |j1, . . . , jM ⟩ , (1.1.20)

with the wave function given by

ψp(j1, . . . , jM ) =
∑

σ∈SM

a(σ) ei
∑M

k=1 pσ(k)jk , (1.1.21)

for some coefficients a(σ) to be determined (they will obviously depend on pk’s, but we do
not indicate it in order to lighten the notations). We will refer to the pk’s as the momenta of
the particles. If we first require that |p1, . . . , pM ⟩ be an eigenvector of P, then the eigenvalue
is necessarily e−i(p1+···+pM ), and the wave function must satisfy

ψp(j1, . . . , jM + L) = ψp(jM , j1, . . . , jM−1) . (1.1.22)

Assuming that the pk’s are generic, this entails that, for any permutation τ , the coefficients
must satisfy

a(τ(12 · · ·M))
a(τ) = e−iLpτ(1) , (1.1.23)

where (12 · · ·M) is the cyclic permutation 1 7→ 2 7→ · · · 7→ M 7→ 1.
If we now act on our ansatz with the Hamiltonian, we get

H |p1, . . . , pM ⟩ =
(

M∑
k=1

ε(pk)
)

|p1, . . . , pM ⟩ + . . . , (1.1.24)
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where ε(p) = 2(1 − cos p) and the last ellipsis stands for terms involving states containing
adjacent up spins. The cancellation of these unwanted terms imposes the values of the co-
efficients a(σ). If we consider, for instance, the terms proportional to |j1, j1 + 1, j3, . . . , jM ⟩
with the indices strictly ordered and such that only j1 and j1 + 1 are neighbours, then the
condition reads

ψp(j1, j1, j3, . . . , jM ) + ψp(j1 + 1, j1 + 1, j3, . . . , jM ) = 2ψp(j1, j1 + 1, j3, . . . , jM ) . (1.1.25)

This is in turn equivalent to
a(σ(12))
a(σ) = S(pσ(1), pσ(2)) , (1.1.26)

for any permutation σ, and with S the same function as in (1.1.19) for the 2-particle case. It
is easy to see that the following conditions must also hold:

a(σ(jj + 1))
a(σ) = S(pσ(j), pσ(j+1)) , (1.1.27)

for any j strictly smaller than M . Since any permutation can be decomposed into a product
of elementary transpositions (jj+1), these conditions are already enough to determine all the
coefficients. The only question is whether it can be done in a consistent way: the decomposition
of a permutation in terms of elementary transpositions is not unique and as such there could a
priori be several ways of defining a(σ) for a generic permutation. In order to show consistency,
one simply needs to verify that the two decompositions

(13) = (12)(23)(12) = (23)(12)(23) (1.1.28)

lead to the same prescription for a((13)). It is immediate, both decompositions give

a(13)
a(Id) = −(1 + eip2+ip3 −2 eip3)(1 + eip1+ip3 −2 eip3)(1 + eip1+ip2 −2 eip2)

(1 + eip2+ip3 −2 eip2)(1 + eip1+ip3 −2 eip1)(1 + eip1+ip2 −2 eip1) . (1.1.29)

As a consequence, we obtain, for an arbitrary permutation σ,

a(σ)
a(Id) = ϵ(σ)

∏
j<k

1 + eipσ(j)+ipσ(k) −2 eipσ(j)

1 + eipj+ipk −2 eipj
, (1.1.30)

where ϵ(σ) is the signature of the permutation. It can be shown that such coefficients also
guarantee the cancellation of all the other unwanted terms (when more than two up spins are
adjacent). One should notice, however, that these conditions are generically not consistent
with the periodicity of the wave function expressed in (1.1.22) or (1.1.23). Consistency requires
the momenta of the particles to satisfy the so-called Bethe ansatz equations

eiLpj = −
M∏
k=1

S(pk, pj) = (−1)M+1
M∏
k=1

1 + eipk+ipj −2 eipj

1 + eipk+ipj −2 eipk
, (1.1.31)

for all j in {1, . . . ,M}. Since everything is algebraic in the exponentials eipj , it is common to
introduce the rapidity u through

u = 1
2 cot

(
p

2

)
⇐⇒ eip =

u+ i
2

u− i
2
. (1.1.32)



20 CHAPTER 1. COMPACT INTEGRABLE SPIN CHAINS

The energy of an excitation and the scattering matrix are then given by

ε(u) = 1
u2 + 1

4
, S(p1, p2) = S(u1 − u2) = u2 − u1 + i

u2 − u1 − i , (1.1.33)

and the Bethe equations read(
uj + i

2
uj − i

2

)L
= −

M∏
k=1

uj − uk + i
uj − uk − i . (1.1.34)

1.2 R-Matrix and the Yang–Baxter Equation

We present here a purely algebraic way of constructing models that generalise the Heisenberg
spin chain from before. We begin with the simple case of the Heisenberg spin chain and then
proceed to present models based on higher-rank symmetry groups.

1.2.1 GL(2)-Invariant R-Matrix in Defining Representation

For x a complex number, let
R(x) = x I2 ⊗ I2 + P (1.2.1)

be an operator acting on C2 ⊗ C2, P being the permutation operator. We shall refer to x as
the spectral parameter and to R as the R-matrix. Introducing, for 1 ⩽ i, j ⩽ 2, the matrices
eij with a single non-zero coefficient, equal to 1, at the i-th row and the j-th column, one can
write

P = eij ⊗ eji and R(u) = x I2 ⊗ I2 + eij ⊗ eji , (1.2.2)

where summation is understood with respect to repeated indices. This R-matrix is GL(2)
invariant since for any 2 × 2 matrix G one has

[R(x), G⊗G] = 0 . (1.2.3)

We also point out for further use that R is invertible with inverse given by

R−1(x) = x I2 ⊗ I2 − P
x2 − 1 = −R(−x)

x2 − 1 , (1.2.4)

and that
R(±1) = ∓2

( I2 ⊗ I2 ± P
2

)
= ∓2P± , (1.2.5)

where P± are the orthogonal projectors onto (anti)symmetric tensors.
We now remark that, if we define three operators on C2 ⊗C2 ⊗C2 in the following fashion:

R12(x) = x I2 ⊗ I2 ⊗ I2 + P12 = x I2 ⊗ I2 ⊗ I2 + eij ⊗ eji ⊗ I2 , (1.2.6)
R23(x) = x I2 ⊗ I2 ⊗ I2 + P23 = x I2 ⊗ I2 ⊗ I2 + I2 ⊗ eij ⊗ eji , (1.2.7)
R13(x) = x I2 ⊗ I2 ⊗ I2 + P13 = x I2 ⊗ I2 ⊗ I2 + eij ⊗ I2 ⊗ eji , (1.2.8)
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then they satisfy the Yang–Baxter equation

R12(x)R13(x+ y)R23(y) = R23(y)R13(x+ y)R12(x) . (1.2.9)

The proof is straightforward and goes as follows, one expands both sides and notices that,
after some trivial cancellation of the terms cubic and quadratic in the spectral parameters,
this is equivalent to

x (P13P23 + P12P23) + y (P12P23 + P12P13) + P12P13P23

= x (P23P12 + P23P13) + y (P13P12 + P23P12) + P23P13P12 . (1.2.10)

This last equation holds because the permutations satisfy

P13P23 = P23P12 = P12P13 and P12P23 = P23P13 = P13P12 . (1.2.11)

Let us now introduce L+ 1 copies of C2, we denote them V0, V1, . . . , VL. The quantum
space of our model will be H = V1 ⊗ · · · ⊗ VL, while V0 will be called the auxiliary space.
We define R0,k(x) = x Id +P0k for k ⩾ 1. Let the fundamental monodromy matrix be

M(x) = R0L(x) . . .R02(x)R01(x) =
(
A(x) B(x)
C(x) D(x)

)
, (1.2.12)

where the matrix structure acts in the auxiliary space, while A(x), B(x), C(x), and D(x) are
operators on H. Let the fundamental transfer matrix be its trace over the auxiliary space:

T(x) = Tr0(M(x)) = A(x) +D(x) . (1.2.13)

If we introduce a second auxiliary space V′
0 = C2 and define a second monodromy matrix

M′(x) = R0′L(x) . . .R0′2(x)R0′1(x), then the following equation holds:

R0,0′(x− y)M(x)M′(y) = M′(y)M(x)R0,0′(x− y) . (1.2.14)

The proof consists in noticing that R0j and R0′k commute when j ̸= k, and in applying
repeatedly the Yang–Baxter equation (1.2.9) for the R-matrix:

R00′(x− y)M(x)M′(y) = R00′(x− y)R0L(x)R0′L(y) . . .R02(x)R0′2(y)R01(x)R0′1(y)
= R0′L(y)R0L(x)R00′(x− y) . . .R02(x)R0′2(y)R01(x)R0′1(y)
= R0′L(y)R0L(x) . . .R0′2(y)R02(x)R0′1(y)R01(x)R00′(x− y)
= M′(y)M(x)R00′(x− y) . (1.2.15)

Multiplying both sides of (1.2.14) with R−1
00′(x− y) from the right and taking the trace with

respect to both auxiliary spaces, we immediately get

T(x)T(y) = T(y)T(x) . (1.2.16)

If we write

T(x) = 2xL +
L∑
j=1

tjx
L−j , (1.2.17)
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with tk an operator on H, the previous commutation relation is equivalent to

[tj , tk] = 0 for all j, k in {1, . . . , L}. (1.2.18)

Let us now take a closer look at the coefficients tk. It is clear that

t1 =
L∑
k=1

Tr0 (P0k) = L (1.2.19)

is trivial. The next coefficient is

t2 =
∑

1⩽k<j⩽L
Tr0 (P0jP0k) =

∑
1⩽k<j⩽L

Pjk . (1.2.20)

Expressing t2 in terms of the spin operators S⃗i at the different sites we see that it is nothing
else than the Casimir operator for the global sl(2) symmetry:

t2 = S⃗ · S⃗ + L2

4 − L . (1.2.21)

On the other hand,

tL = T(0) = Tr0 (P0L . . .P01) = P12P23 . . .PL−1,L = P , (1.2.22)

with P the operator of translation by one site (1.1.6). This is a direct consequence of the fact
that

P0L . . .P01 = P12P23 . . .PL−1,LPL0 . (1.2.23)

Similarly, one has

tL−1 = T′(0) =
L∑
k=1

Tr0
(
P0L . . . P̂0k . . .P01

)

= P23 . . .PL−1,L +
L−1∑
k=2

P12 . . .Pk−1,k+1 . . .PL−1,L + P12 . . .PL−2,L−1 , (1.2.24)

where the hat over P0k means that this operator is omitted from the product. It is then easy
to check that

tL−1P−1 =
L∑
k=1

Pk,k+1 + PL1 = L−H , (1.2.25)

where H is exactly the Hamiltonian (1.1.1) of the GL(2) spin chain. Since P−1 = T−1(0),
this can be rewritten

H = L− T−1(0)T′(0) = L− (ln T)′(0) . (1.2.26)

Since [T(x),T(y)] = 0 implies [T(x),T′(y)] = 0, we have in particular [T(x), H] = 0. This
means that we have found a whole family of operators commuting with H; such operators
are called (conserved) charges.
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1.2.2 GL(2)-Invariant R-Matrix in Symmetric Representations

We now use the so-called fusion procedure [184,185] to construct new R-matrices that satisfy
a cubic relation similar to the Yang–Baxter relation (1.2.9). These R-matrices will be used
to obtain new transfer matrices commuting with the fundamental one defined above.

Let Sl(C2) be the vector space of rank-l symmetric tensors in 2 dimensions; it is in
particular generated by vectors of the form v ⊗ · · · ⊗ v = v⊗l for v ∈ C2. For any x ∈ C, we
now define R(1,l)(x) : C2 ⊗ Sl(C2) → C2 ⊗ Sl(C2) in the following way:

s⊗ t⊗l ·
[
R(1,l)(x)v ⊗ w⊗l

]
=
(
x+ 1 − l

2

)
(s · v)(t · w)l + l(s · w)(t · v)(t · w)l−1 , (1.2.27)

with v, w, s, and t all in C2, and where v · w = v∗
iwi is the natural inner product on C2.

Equivalently, we could have written

[
R(1,l)(x)v ⊗ C

]
ij1...jl

=
(
x+ 1 − l

2

)
viCj1...jl +

l∑
k=1

vjkCij1...ĵk...jl , (1.2.28)

where C is a symmetric tensor of rank l. The first term corresponds to the identity operator
while the sum corresponds to the analogue of the permutation operator (we have to sum in
order to get a symmetric tensor). Notice that R(1,1) = R. For any two spectral parameters x
and y, the following relation holds between operators on C2 ⊗ C2 ⊗ Sl(C2):

R12(x)R(1,l)
13 (x+ y)R(1,l)

23 (y) = R(1,l)
23 (y)R(1,l)

13 (x+ y)R12(x) . (1.2.29)

The indices indicate as before on which of the three spaces the operators act non trivially. In
order to prove this, let us first show that the new R-matrices satisfy the fusion relations

R(1,1)
(
x− l

2

)
R(1,l)

(
x+ 1

2

)
v ⊗ w⊗(l+1) =

(
x+ 2 − l

2

)
R(1,l+1)(x)v ⊗ w⊗(l+1) . (1.2.30)

Before proving this relation, let us emphasise that it does not imply that the operators
themselves are proportional, as they are not even defined on the same spaces: R(1,1)(x)R(1,l)(y)
acts on C2 ⊗ C2 ⊗ Sl(C2) whereas R(1,l+1)(x) acts on C2 ⊗ Sl+1(C2). What it means is that
the restriction of the first one to C2 ⊗ Sl+1(C2) ⊂ C2 ⊗ (C2 ⊗ Sl(C2)) is proportional to the
second one. It is fairly easy to check using the explicit form (1.2.28) for the R-matrix:

R(1,1)
(
x− l

2

)
R(1,l)

(
x+ 1

2

)
v ⊗ w⊗(l+1)

= R(1,1)
(
x− l

2

)[(
x+ 2 − l

2

)
v ⊗ w⊗(l+1) +

l∑
k=1

w⊗(1+k) ⊗ v ⊗ w⊗(l−k)
]

=
(
x+ 2 − l

2

)[(
x− l

2

)
v ⊗ w⊗(l+1) +

l∑
k=0

w⊗(1+k) ⊗ v ⊗ w⊗(l−k)
]

=
(
x+ 2 − l

2

)
R(1,l+1)(x)v ⊗ w⊗(l+1) .
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Now that we have the fusion relations, we can use induction to prove the Yang–Baxter relation
(1.2.29). It holds for l = 1 because it is then exactly equation (1.2.9) from before. Assuming
that it is verified for some l ⩾ 1, we can write, for Z some element of C2 ⊗ C2 ⊗ Sl+1(C2),

R12(x)R(1,l+1)
13 (x+ y)R(1,l+1)

23 (y)Z

= R12(x)
R(1,1)

13′

(
x+ y − l

2

)
R(1,l)

13′′

(
x+ y + 1

2

)
R(1,1)

23′

(
y − l

2

)
R(1,l)

23′′

(
y + 1

2

)
(
x+ y + 2−l

2

) (
y + 2−l

2

) Z

= R12(x)
R(1,1)

13′

(
x+ y − l

2

)
R(1,1)

23′

(
y − l

2

)
R(1,l)

13′′

(
x+ y + 1

2

)
R(1,l)

23′′

(
y + 1

2

)
(
x+ y + 2−l

2

) (
y + 2−l

2

) Z

=
R(1,1)

13′

(
x+ y − l

2

)
R(1,1)

23′

(
y − l

2

)
R(1,l)

13′′

(
x+ y + 1

2

)
R(1,l)

23′′

(
y + 1

2

)
(
x+ y + 2−l

2

) (
y + 2−l

2

) R12(x)Z

=
R(1,1)

13′

(
x+ y − l

2

)
R(1,l)

13′′

(
x+ y + 1

2

)
R(1,1)

23′

(
y − l

2

)
R(1,l)

23′′

(
y + 1

2

)
(
x+ y + 2−l

2

) (
y + 2−l

2

) R12(x)Z

= R(1,l+1)
23 (y)R(1,l+1)

13 (x+ y)R12(x)Z .

On the first and last lines we have operators acting on C2 ⊗ C2 ⊗ Sl+1(C2), on all the
intermediate lines we have operators acting on a larger space, C2 ⊗C2 ⊗C2 ⊗ Sl(C2), which
contains the previous one, so that we can still act on Z. The indices of the R-matrices
indicate the factors on which they act non-trivially, 3′ being the third copy of C2 while 3′′

stands for Sl(C2). We have used the fact that R-matrices with different indices commute
among themselves, and, in going from the third to the fourth line, that the Yang–Baxter
relation holds for rank-1 and rank-l symmetric tensors.

We use these newly obtained R-matrices to construct new transfer matrices. The proce-
dure is similar to the one for the fundamental transfer matrix save that the auxiliary space
V0 is now taken to be some Sl(C2). More precisely, for any positive integer l, we define

Tl(x) = Tr0
[
R(1,l)
L0 (x) . . .R(1,l)

20 (x)R(1,l)
10 (x)

]
. (1.2.31)

Of course, T1 = T. The Yang–Baxter relation (1.2.29) ensures that these new transfer ma-
trices commute with the original one:

[T(x),Tl(y)] = 0 . (1.2.32)

They thus also commute with the Hamiltonian and give some new conserved charges. One
could actually show that they commute among themselves

[Tl(x),Tl′(y)] = 0 . (1.2.33)

This requires constructing some R-matrix R(l,l′) and showing that it satisfies the Yang–Baxter
equation with R(1,l) and R(1,l′), but we will not do it here.
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1.2.3 Higher-Rank Symmetry

Until now, we have only considered a model with GL(2) symmetry. It is however possible
to exhibit R-matrices, that is to say solutions of the Yang–Baxter equation, with different
symmetry groups. Let us present here the R-matrices in the defining representations of the
classical groups.

• For the complex general linear group GL(N), the only invariant operators on CN ⊗CN
being the identity and the permutation operators, the R-matrix is the same as in the
N = 2 case, namely

RGL(N)(x) = x Id +P . (1.2.34)

It is sometimes referred to as Yang’s R-matrix since it appeared for the first time in
Yang’s study [18] of the extension of the Lieb–Liniger model to distinguishable particles.

• For the orthogonal group

O(N) =
{
M ∈ GL(N) | tMM = IN

}
, (1.2.35)

there is one more invariant operator, K, defined by Kj1j2i1i2
= δi1i2δ

j1j2 . It satisfies

K2 = NK , PK = KP = K . (1.2.36)

The R-matrix is then given by

RO(N)(x) = x(x+ κ) Id +(x+ κ)P− xK , (1.2.37)

where κ = N−2
2 . It is sometimes referred to as the Zamolodchikovs’ R-matrix since it

was found in [120].

• For the symplectic group (in that case N is even)

Sp(N) =
{
M ∈ GL(N) | tMSM = S

}
with S =

(
0 I N

2
−I N

2
0

)
, (1.2.38)

there exists also a third invariant operator K̄ defined by K̄j1j2i1i2
= Si1i2S

j1j2 . It satisfies

K̄2 = NK̄ , PK̄ = K̄P = −K̄ , (1.2.39)

and the R-matrix is given by [186]

RSp(N)(x) = x(x+ κ̄) Id +(x+ κ̄)P− xK̄ , (1.2.40)

where κ̄ = N+2
2 .

In each case, the R-matrix that is given is a solution of the Yang-Baxter equation

RG
12(x)RG

13(x+ y)RG
23(y) = RG

23(y)RG
13(x+ y)RG

12(x) . (1.2.41)
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Once we have a solution, we can multiply it by an arbitrary scalar function R(x) → f(x)R(x)
and get another solution. But if we only look for solutions of the Yang–Baxter equation, such
prefactors are inconsequential. They become relevant, however, when the R-matrix is actually
the S-matrix of some quantum field theory because then there exist other constraints on the
S-matrix, such as unitarity or crossing symmetry, that can only be satisfied thanks to some
properly chosen scalar prefactor.

We have also seen that, once we have a solution of the Yang–Baxter equation, it is
interesting to look for new R-matrices, acting in different representations of the symmetry
group, consistent with the original one. More precisely, we look for a representation ρ of the
symmetry group on a vector space V and an operator RG,ρ(x) on CN ⊗V which is G-invariant:

∀G ∈ G ,
[
RG,ρ(x), G⊗ ρ(G)

]
= 0 , (1.2.42)

and satisfies the Yang–Baxter equation

RG
12(x)RG,ρ

13 (x+ y)RG,ρ
23 (y) = RG,ρ

23 (y)RG,ρ
13 (x+ y)RG

12(x) , (1.2.43)

where as usual the indices indicate on which of the three factors in CN ⊗CN ⊗V the operators
act non trivially. When G = GL(N), there exists such an R-matrix for any representation ρ,
it suffices indeed to imitate the definition of the permutation operator in terms of generators,
P = eij ⊗ ej,i, and to set

RGL(N),ρ(x) = x Id +eij ⊗ Eρji , (1.2.44)

where Eρji are the images of the generators in the representation ρ. If we consider in particular
the irreducible representation ρl on Sl(CN ), it is clear that this definition coincides with the
one given earlier in (1.2.28) (the formula for N > 2 being exactly the same as the one for
N = 2) up to a shift:

RGL(N),ρl

(
x+ 1 − l

2

)
= R(1,l)(x) . (1.2.45)

For the other groups, it is not that easy and the R-matrices actually exist only for some
specific representations, the Kirillov–Reshetikhin modules [53], of the associated Yangian or
extended Yangian. We also point out that such R-matrices, acting in the tensor product of
two different representations, are sometimes called L-matrices.

We can then go on and look for G-invariant R-matrices acting in two representations ρ
and ρ′ different from the defining one. In that case, all the Yang–Baxter equations that can
be written should hold:

RG,ρρ′

12 (x)RG,ρρ′′

13 (x+ y)RG,ρ′ρ′′

23 (y) = RG,ρ′ρ′′

23 (y)RG,ρρ′′

13 (x+ y)RG,ρρ′

12 (x) (1.2.46)

for any three representations for which the R-matrices have been constructed.
In the following, whenever possible without ambiguity, and in order to simplify notations,

we will refrain from indicating the symmetry group of the R-matrix. The three R-matrices
presented at the beginning of this subsection would thus all be denoted R(x).
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1.3 Nested Bethe Ansatz Equations

1.3.1 The GL(N) Heisenberg Spin Chain

We now consider the Heisenberg spin chain with a higher-rank symmetry group. The Hamil-
tonian is still given by (1.1.1) but it is now defined on H = (CN )⊗L for some N ⩾ 3, i.e. the
symmetry group is now GL(N).

Vectors of the form v⊗L for arbitrary v ∈ CN are still eigenvectors with zero eigenvalue.
If {e1, . . . , eN} is an orthonormal basis, then we define the vacuum |∅⟩ = e⊗L

N . Turning our
attention to excited states, the first thing to notice is that, in contradistinction to the N = 2
case, there are now several ways of inserting excitations at a given site: there are N−1 flavours
represented by e1, . . . , eN−1. If i1, . . . , iM are distinct integers between 1 and L and a1, . . . , aM
are all between 1 and N − 1 (not necessarily distinct), we will write |i1, . . . , iM ⟩a1...aM

for the
state with eaj at site ij and eN at all the other sites. If C ∈ (CN−1)⊗M is a rank-M tensor,
then we define

C · |i1, . . . , iM ⟩ = Ca1...aM |i1, . . . , iM ⟩a1...aM
. (1.3.1)

One-particle eigenstates are of the form

|p;C⟩ =
L∑
j=1

eipj C · |j⟩ with eiLp = 1 (1.3.2)

and C an arbitrary vector in CN−1. They satsify H |p;C⟩ = 2(1 − cos p) |p;C⟩ = ε(p) |p;C⟩.
For a higher number of particles, we generalise the ansatz (1.1.20)-(1.1.21) and look for

eigenvectors of the form

|p1, . . . , pM ;C⟩ =
∑

j1<···<jM
ψp(j1, . . . , jM ;C) · |j1, . . . , jM ⟩ (1.3.3)

with a wave function given by

ψp(j1, . . . , jM ;C) =
∑

σ∈SM

ei
∑M

k=1 pkjσ(k) Š(σ)C , (1.3.4)

where C is a rank-M tensor, and Š(σ) : (CN−1)⊗M → (CN−1)⊗M are operators to be deter-
mined. Once again, one can derive two types of conditions on these operators by requiring
that |p1, . . . , pM ;C⟩ be an eigenvector of both P and H. The first of these are periodicity
conditions, they are

P(N−1)ψp(j1, . . . , jM + L;C) = ψp(jM , j1, . . . , jM−1;C) , (1.3.5)

where P(N−1) is the analogue of P acting on (CN−1)⊗M . If the momenta are in generic
position, this is equivalent to

Š((1 · · ·M)σ)C = eipσ−1(M)L P(N−1)Š(σ)C (1.3.6)

for all permutations σ ∈ SM . The second conditions are, as before, much more cumber-
some to write explicitly because there are many unwanted terms that arise when acting on
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|p1, . . . , pM ;C⟩ with H. Considering those that involve |j1, j1 + 1, j3, . . . , jM ⟩, with the indices
strictly ordered and such that only j1 and j1 + 1 are neighbours, one obtains the condition

ψp(j1, j1, j3, . . . , jM ;C) + ψp(j1 + 1, j1 + 1, j3, . . . , jM ;C)

= (Id + P(N−1)
12 )ψp(j1, j1 + 1, j3, . . . , jM ;C) , (1.3.7)

where P(N−1)
12 is the permutation operator acting on vectors with N−1 components (not to be

confused with P(N)
12 = P12 appearing in the Hamiltonian). Inserting the form of the ansatz, one

sees that both sides are linear combinations of functions ei(pσ−1(1)+pσ−1(2))j1+i
∑L

k=3 pσ−1(k)jk .
For any permutation σ, there is exactly one other permutation, namely (12)σ, for which
the same function appears. Grouping those terms together, and after some straightforward
algebra, one shows that

Š((12)σ)C = Š12(pσ−1(1), pσ−1(2))Š(σ)C (1.3.8)

must hold. We have introduced the two-body S-matrix

Šij(pi, pj) =
(eipj − eipi)P(N−1)

ij − (eipi −1)(eipj −1)
1 + ei(pi+pj) −2 eipi

, (1.3.9)

which, in terms of the rapidities ui = 1
2 cot

(pi
2
)
, reads more simply

Šij(pi, pj) = Šij(ui − uj) =
(ui − uj)P(N−1)

ij − i
ui − uj + i

=
P(N−1)
ij R(i(ui − uj))

i(ui − uj) − 1 , (1.3.10)

where we have recognised the GL(N − 1)-invariant R-matrix (1.2.34). We point out that the
S-matrix is unitary

Šij(pj , pi)Šij(pi, pj) = Id . (1.3.11)
It is clear that, besides (1.3.8), the operators Š(σ) have to satisfy similar conditions for

which (12) is replaced with any (kk + 1) for k ∈ {1, . . . ,M − 1}. All these conditions can be
satisfied at once if we define the operators in the following way: if σ = (k1k1 +1) · · · (klkl+1),
then we set

Š(σ) = Šk1k1+1 · · · Šklkl+1 , (1.3.12)
where it is understood that the arguments of Škk+1 depend on the operators to the right of
it. Because the S-matrix is unitary (an equation which now reads Šij Šij = Id) and satisfies
Yang–Baxter relation, this definition is unambiguous. One has for instance

Š((13)) = Š12(p2, p3)Š23(p1, p3)Š12(p1, p2) = Š23(p1, p2)Š12(p1, p3)Š23(p2, p3) . (1.3.13)

Furthermore, with this definition, one can write

Š(σ)Š(τ) = Š(pτ−1(1), . . . , pτ−1(M);σ)Š(p1, . . . , pM ; τ) = Š(p1, . . . , pM ;στ) = Š(στ) , (1.3.14)

where, one last time, we have displayed the explicit arguments of the operators. In particular,
this means that our putative eigenvectors satisfy

|p1, . . . , pM ;C⟩ =
∣∣∣pσ−1(1), . . . , pσ−1(M); Š(σ)C

〉
(1.3.15)
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for all permutations σ ∈ SM . It turns out that for this choice of operators Š(σ), and if (1.3.6)
holds, then

H |p1, . . . , pM ;C⟩ =
(

M∑
k=1

ε(pk)
)

|p1, . . . , pM ;C⟩ . (1.3.16)

The periodicity conditions (1.3.6) for permutations that are powers of (1 · · ·M) can be
rewritten using the explicit form of Š((1 · · ·M)), they are then equivalent to

Skk−1(uk − uk−1) · · · Sk1(uk − u1)SkM (uk − uM ) · · · Skk+1(uk − uk+1)C = e−ipkLC (1.3.17)

for all k ∈ {1, . . . ,M}, with Sij = P(N−1)
ij Šij . This is nothing but requiring that C be an

eigenvector of the GL(N − 1) inhomogeneous spin chain of length M with transfer matrix

T(u1, . . . , uM ;u) = Tr0 [S0M (u− uM ) . . . S01(u− u1)] . (1.3.18)

It indeed trivially holds that

T(u1, . . . , uM ;uk) = −Skk−1(uk − uk−1) · · · Sk1(uk − u1)SkM (uk − uM ) · · · Skk+1(uk − uk+1) .
(1.3.19)

In that way we managed to reduce our original problem to a simpler one since the new
spin chain is shorter and has a smaller symmetry group. The natural way to proceed is to
make a new ansatz for C, similar to (1.3.3) and (1.3.4), and to repeat what has just been
done. The only new feature is that one now needs to compute the eigenvalue of the transfer
matrix T (u1, . . . , uM ;u) in order to write the conditions (1.3.17) requiring it to be equal to

e−ipkL =
(
uk− i

2
uk+ i

2

)L
. This can be achieved through the so-called algebraic Bethe ansatz, we

shall not explain it here and only present the resulting Bethe equations.

1.3.2 Transfer Matrix Eigenvalues

The authors of [187] found expressions for the transfer matrix eigenvalues valid for more
general GL(r + 1)-invariant spin chains. Let us give them here for completeness. The spin
chain is of length L with quantum space H = Vλ(1) ⊗ · · · ⊗Vλ(L) , where Vλ is the space of the
finite-dimensional irreducible representation with highest weight λ = ∑r+1

i=1 λiεi (see Appendix
A.1 for an explicit description of the weights, roots, etc.). We also introduce a (constant)
diagonal twist matrix D = Diag(τ1, . . . , τr+1) and some inhomogeneities x1, . . . , xL. The
transfer matrix of interest is the one with the defining representation in the auxiliary space:

T(x1, . . . , xL;x) = Tr0
[
DRρ

λ(L)
0L (x− xL) · · · Rρ

λ(1)
01 (x− x1)

]
, (1.3.20)

with Rρλ(x) = x Id +eij⊗Eρλ
ji the GL(r+1)-invariant R-matrix acting on Cr⊗Vλ mentioned

in Section 1.2.3. The first thing to notice is that, in contradistinction to what we have studied
in the previous chapters, the presence of a twist breaks the global GL(r+ 1) symmetry down
to the centraliser of the twist matrix D. For twists in generic position, this is simply the
Cartan subgroup of diagonal matrices.
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The transfer matrix eigenvalues are characterised by r polynomials qa(x) = ∏Ka
j=1(x−ya,j),

and given by2

T (x1, . . . , xL;x) = τ1

L∏
i=1

(x− xi + λ
(i)
1 )q

[−1]
1 (x)
q

[+1]
1 (x)

+
r∑

a=2
τa

L∏
i=1

(x− xi + λ(i)
a )

q
[a+1]
a−1 (x)q[a−2]

a (x)
q

[a−1]
a−1 (x)q[a]

a (x)
+ τr+1

L∏
i=1

(x− xi + λ
(i)
r+1)q

[r+2]
r (x)
q

[r]
r (x)

, (1.3.21)

where q[k](x) = q
(
x+ k

2

)
. The roots of the polynomials, called Bethe roots, have to satisfy

the Bethe equations

− τ1
τ2

L∏
i=1

y1,j − xi + λ
(i)
1 − 1

2

y1,j − xi + λ
(i)
2 − 1

2

= q
[2]
1 (y1,j)q[−1]

2 (y1,j)
q

[−2]
1 (y1,j)q[+1]

2 (y1,j)
for 1 ⩽ j ⩽ K1 , (1.3.22)

− τa
τa+1

L∏
i=1

ya,j − xi + λ
(i)
a − a

2

ya,j − xi + λ
(i)
a+1 − a

2

=
q

[−1]
a−1(ya,j)q[+2]

a (ya,j)q[−1]
a+1(ya,j)

q
[+1]
a−1(ya,j)q[−2]

a (ya,j)q[+1]
a+1(ya,j)

(1.3.23)

for 2 ⩽ a ⩽ r − 1 and 1 ⩽ j ⩽ Ka, and

− τr
τr+1

L∏
i=1

yr,j − xi + λ
(i)
r − r

2

yr,j − xi + λ
(i)
r+1 − r

2

=
q

[−1]
r−1 (yr,j)q[2]

r (yr,j)
q

[+1]
r−1 (yr,j)q[−2]

r (yr,j)
for 1 ⩽ j ⩽ Kr . (1.3.24)

It is notable that, even though this is not how they were obtained, these equations can be
recovered from the final form (1.3.21) of the eigenvalue solely by requiring it to have no pole.

Since the transfer matrix commutes with the (global) action of the Cartan subgroup
of GL(r + 1), its eigenvectors have definite weights. For the eigenvector associated to the
eigenvalue (1.3.21), the weight is given by

λ =
L∑
i=1

λ(i) −
r+1∑
a=1

(Ka −Ka−1)εa , where K0 = Kr+1 = 0 . (1.3.25)

This can be read off from the behaviour of the transfer matrix when x → +∞. On the one
hand, the definition as the trace of the twisted monodromy matrix indeed implies that

T(x1, . . . , xL;x) = xL Tr(D) + xL−1
(
r+1∑
a=1

τaEaa − Tr(D)
L∑
i=1

xi

)
+ . . . , (1.3.26)

where Eij = ∑L
i=1E

λ(i)
ij are the generators of the global action of GL(r + 1). On the other

hand, the asymptotic behaviour of the function (1.3.21) is simply

T (x1, . . . , xL;x) = xL Tr(D) + xL−1
(
r+1∑
a=1

τa

(
L∑
i=1

λ(i)
a +Ka−1 −Ka

)
− Tr(D)

L∑
i=1

xi

)
+ . . . .

(1.3.27)
Matching the previous two equations gives exactly the weight (1.3.25) for the eigenvector.

2The roots of [187] were called u
(a)
j , ours differ from theirs by a constant shift: ya,j = u

(a)
j + a

2 .



Chapter 2

From N = 4 Super Yang–Mills to
The Fishnet Theory

We are going to review, in this chapter, the derivation of the fishnet theory in four dimensions
as a double-scaling limit of the N = 4 superconformal Yang–Mills (SYM) theory, and its
generalisation to arbitrary dimension. The rudiments of N = 4 SYM recalled in the first
section, as well as much more information on this theory, can be found in numerous references
such as the thesis [35] and the review [36]. The content presented in the last two sections is
also reviewed in [188].

2.1 N = 4 Super Yang–Mills

2.1.1 Fields and Lagrangian

N = 4 SYM [189, 190] is a gauge theory with gauge boson A, six real scalar fields ϕm and
four Weyl spinors ψa. All these fields are in the Lie algebra of the gauge group which will be
taken to be SU(Nc), they are thus Nc×Nc traceless Hermitian matrices. They have, however,
different transformation properties under a gauge transformation U(x) ∈ SU(Nc). Namely,
the fermions and scalars transform in the adjoint representation, but the gauge boson does
not:

ϕm 7→ UϕmU
−1 , ψa 7→ UψaU

−1 , Aµ 7→ UAµU
−1 − ig−1(∂µU)U−1 , (2.1.1)

where we have introduced a dimensionless coupling constant g. We define the covariant deriva-
tive Dµ on any field W by

DµW = ∂µW − ig[Aµ,W ] . (2.1.2)

This in turn serves to define the field strength F as the commutator of two covariant deriva-
tives:

[Dµ, Dν ]W = −ig[Fµν ,W ] ⇔ Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.1.3)

31
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It transforms in the adjoint representation of the gauge group. We can now write the La-
grangian of the N = 4 super Yang–Mills theory:

LYM = − Tr
(

1
2F

µνFµν +DµϕmDµϕm − g2

2 [ϕm, ϕn][ϕm, ϕn]

+ 2ψ̄aσ̄µDµψa − igσabmψaαεαβ[ϕm, ψbβ] − igσ̄mabψ̄aα̇εα̇β̇[ϕm, ψ̄bβ̇]
)
, (2.1.4)

where ε is the totally antisymmetric tensor of su(2) with ε12 = ε1̇2̇ = 1, and σµ, σ̄µ, σm, σ̄m are
the chiral projections of the gamma matrices in four and six dimensions (see Appendix A.2.2
for an example of a construction of such matrices). They satisfy the following relations:

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = 2ηµν I2 , (2.1.5)

σmσ̄n + σnσ̄m = σ̄mσn + σ̄nσm = 2δmn I4 , (2.1.6)

where we recall that In denotes the n× n identity matrix.
The equations of motion are

DµDµϕm = g2[ϕn, [ϕn, ϕm]] + ig
2 σ

ab
mε

αβ{ψaα, ψbβ} + ig
2 σ̄

m
abε

α̇β̇{ψ̄aα̇, ψ̄bβ̇} , (2.1.7)

DνF
µν = ig[ϕm, Dµϕm] − igσ̄µ,α̇β{ψ̄aα̇, ψaβ} , (2.1.8)

σ̄µ,α̇βDµψaβ = igσ̄mabεα̇β̇[ϕm, ψ̄bβ̇] . (2.1.9)

The action is simply the integral of the Lagrangian density:

SYM = 1
g2
YM

�
LYM [g = 1]d4x . (2.1.10)

It will prove convenient to define λ = g2
YMNc and to rescale the fields W 7→ λW such that

the action becomes
SYM = Nc

�
LYM [g = λ]d4x . (2.1.11)

2.1.2 Symmetries

There is a global SU(4) symmetry, called an R-symmetry: the fermions transform in the
defining representation, the gauge boson transforms in the trivial one, whereas the scalars
transform in the defining representation of SO(6,R) (remember that SU(4) is the universal
cover of SO(6,R)). More precisely, the Lagrangian is unchanged if we perform the following
substitutions:

ψa 7→ Uabψb , ψ̄a 7→ U∗
abψ̄

b , ϕm 7→ O(U)mnϕn , (2.1.12)

where U ∈ SU(4) is arbitrary and O(U) is the (unique) element of SO(6,R) such that
U∗σmU † = σnO(U)nm.

It can be shown that the theory is also invariant under the action of the N = 4 super
Poincaré algebra generated by Pµ for translations, Mµν for Lorentz transformations and
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sixteen supercharges Qaα and Q̄α̇a. In particular, the supercharges generate the following
transformation:

[Qa, ϕm] = σabmψb , (2.1.13)

{Qaα, ψbβ} = −1
2σ

µ
αγ̇ σ̄

νγ̇γεγβδ
a
bFµν + ig

2 εβασ̄
m
bcσ

ca
n [ϕm, ϕn] , (2.1.14)

{Qaα, ψ̄bβ̇} = σbamσ
µ

αβ̇
Dµϕ

m , (2.1.15)

[Qa, Aµ] = σµψ̄
a . (2.1.16)

Furthermore, the classical scale invariance of the action (all fields are massless and the
coupling is dimensionless) survives at the quantum level [191]. In other words, the beta
function vanishes, meaning that the theory also has conformal symmetry, which introduces
a dilatation generator as well as four special conformal transformation generators. Joined
with the previous supercharges, these conformal generators imply the existence of sixteen
new supercharges. All these symmetries combine into the full symmetry algebra of N = 4
super Yang–Mills: psu(2, 2|4). Apart from the Lorentz and internal symmetries, which are
manifestly realised in the quantum theory, the generators of the superconformal algebra
receive quantum corrections and as such depend on the coupling constant.

2.1.3 The Planar Limit

It was shown by ’t Hooft [192] that if one considers the following limit of the theory

g2
YM → 0 , Nc → +∞ , λ = g2

YMNc fixed , (2.1.17)

then only the Feynman graphs with planar topology survive, i.e. those graphs that can be
drawn on the plane without crossing lines. This comes from the fact that the planar topology
is the one that maximises the number of closed gauge index loops for a given number of
vertices. Let us repeat here the short derivation of this fact. First of all, one should notice
that because all of the fields transform under the adjoint representation of SU(Nc), they
carry two gauge indices. A propagator always identifies the two indices of one field with the
two indices of another. A trace involving more than two fields, on the other hand, identifies
the indices of one field with those of two different fields. The interaction vertices correspond
to such traces.

Let us only consider correlation functions of local gauge-invariant operators, meaning that
we consider operators that are products of traces of products of fields and covariant derivatives
of fields. Now, each closed index loop of the graph will contribute a factor∑Nc

i=1 δii = Nc while,
because of the form of the action, each propagator comes with a factor N−1

c and each vertex
with a factor Nc. Consequently, if a given graph contains L index loops, P propagators, and
V vertices then the corresponding factor will be NL+V−P

c . But the Euler relation states that

L+ V − P = 2C − 2G− T , (2.1.18)

with C the number of connected components of the graph, G the minimal genus of a surface
on which the graph can be drawn without lines intersecting, and T the number of traces in
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the operators (T is the number of vertices that do not contribute a factor of Nc). This means
that the leading contributions come from graphs for which each connected component has
planar topology.

In view of the overwhelming evidence (see [35–39], and references therein), there is no
doubt that N = 4 SYM is integrable in the planar limit. However, the origin of this integra-
bility is not completely clear yet.

2.2 The γ-Deformation of N = 4 SYM

2.2.1 Definition

The deformation of N = 4 SYM we are about to define dates back to [193–195].
We first group the six real scalars into three complex scalars. If the matrices σm and σ̄m

are conveniently chosen, one may do it in the following way:

φ1 = ϕ1 + iϕ2 , φ2 = ϕ3 + iϕ4 , φ3 = ϕ5 + iϕ6 . (2.2.1)

The weight vectors qB = (q1
B, q

2
B, q

3
B) of each of the fundamental fields B with respect to the

internal su(4) symmetry are given by

B ψ1 ψ2 ψ3 ψ4 A φ1 φ2 φ3
q1
B +1

2 −1
2 −1

2 +1
2 0 1 0 0

q2
B −1

2 +1
2 −1

2 +1
2 0 0 1 0

q3
B −1

2 −1
2 +1

2 +1
2 0 0 0 1

Roughly speaking, the Lagrangian of the γ-deformed theory is obtained by replacing all
products BC of two fields with a ∗-product defined by

B ∗ C = e
i
2 qB∧qC BC , (2.2.2)

where
qB ∧ qC = − det(qB,qC ,γ) and γ = (γ1, γ2, γ3) . (2.2.3)

It reads (see [147] for instance)

Lγ = −Nc Tr
(1

4F
µνFµν + 1

2D
µφ†

iDµφ
i + ψ̄aσ̄µDµψa

)
+ Lint , (2.2.4)

with

Lint = NcgTr
(

− g

4{φ†
i , φ

i}{φ†
j , φ

j} + g e−iϵijkγk φ†
iφ

†
jφ

iφj

− e− i
2γ

−
j ψ̄jφjψ̄4 + e

i
2γ

−
j ψ̄4φjψ̄j + iϵijk e

i
2 ϵjkmγ

+
m ψkφiψj

− e
i
2γ

−
j ψ4φ

†
jψj + e− i

2γ
−
j ψjφ

†
jψ4 + iϵijk e

i
2 ϵjkmγ

+
m ψ̄kφ†

i ψ̄
j
)
, (2.2.5)
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where summation over doubly and triply repeated indices is understood and contraction of
two undotted/dotted spinors is done through ϵαβ/ϵα̇β̇. The combinations γ±

j of the twists
that appear in the Lagrangian are defined in the following way:

γ±
1 = −γ3 ± γ2

2 , γ±
2 = −γ1 ± γ3

2 , γ±
3 = −γ2 ± γ1

2 . (2.2.6)

Notice that the twists γ1, γ2, and γ3 have to be real for the Lagrangian to be Hermitian.
When they take arbitrary (real) values, all the supersymmetry is broken but the theory seems
to remain integrable [39, 158], provided one includes some specific counterterms [147]. Part
of the supersymmetry can be restored if we take particular values for the twists.

2.2.2 The Double-Scaling Limit

The authors of [143] proposed a double-scaling limit of the γ-deformed theory that simplifies
the theory while seemingly preserving integrability. The limit is defined by

g → 0 , γj → i∞ , such that ξj = e− i
2γj g remains fixed (2.2.7)

for all 1 ⩽ j ⩽ 3. Notice that unitarity has been broken when the twists were taken to
be imaginary. As mentioned in Introduction, this makes the dilatation generator not diago-
nalisable anymore [150, 161, 162], and the presence of non-trivial Jordan blocks implies the
existence of logarithmic multiplets of operators.

In that limit, the gauge boson A completely decouples from the rest of the fields, and
only some of the quartic and Yukawa interactions are preserved:

Lφψ = −Nc Tr
(1

2∂
µφ†

i∂µφ
i + ψ̄aσ̄µ∂µψa

)
+ Lφψ,int (2.2.8)

and

Lφψ,int = Nc Tr
[
ξ2

1φ
†
2φ

†
3φ2φ3 + ξ2

2φ
†
3φ

†
1φ3φ1 + ξ2

3φ
†
1φ

†
2φ1φ2 + i

√
ξ2ξ3(ψ3φ1ψ2 + ψ̄3φ†

1ψ̄
2)

+ i
√
ξ1ξ2(ψ2φ3ψ1 + ψ̄2φ†

3ψ̄
1) + i

√
ξ3ξ1(ψ1φ2ψ3 + ψ̄1φ†

2ψ̄
3)
]
. (2.2.9)

Now that the gauge boson has decoupled, U(Nc) is only a global (flavour) symmetry.

2.3 The Fishnet Theory

2.3.1 Lagrangian and Feynman Rules

If one sets two of the coupling constants ξ1, ξ2, ξ3 to zero in the previous model, the fermions
as well as one of the scalars decouple, and only one quartic interaction between two complex
scalars remain [143]:

L = −Nc Tr
[
∂µX

†∂µX + ∂µZ
†∂µZ − (4πξ)2X†Z†XZ

]
, (2.3.1)

where we have renamed and rescaled the fields and the coupling. We recall that X and Z are
Nc ×Nc matrices.
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X X† X X† Γ(δ̃)
Γ(δ)

4−δπ− d
2

(x−y)2δ̃

Z Z† Z Z† Γ(δ)
Γ(δ̃)

4−δ̃π− d
2

(x−y)2δ

(4π) d
2 ξ2

Figure 2.1: Feynman rules for the fishnet theory (2.3.2). On the left we show the double line
notation taking into account the matrix indices of the fields, indices are conserved along a
line. The other two columns describe the simplified rules, valid in the planar limit. In that
case, the arrows are mainly there to remind us of the chirality of the interaction.

This theory was then generalised in [144] in arbitrary dimension d and with an additional
deformation parameter δ such that 0 < δ < d

2 in the following way:

L(d,δ) = −Nc Tr
[
X†(−∂µ∂µ)δX + Z†(−∂µ∂µ)δ̃Z − (4π)

d
2 ξ2X†Z†XZ

]
, (2.3.2)

where
δ̃ = d

2 − δ , (2.3.3)

and we now work in Euclidean signature so that (−∂µ∂µ)α can be understood as the operator
of multiplication by (p2)α in Fourier space. In position space, this becomes

[(−∂µ∂µ)αf ](x) =
4αΓ

(
d
2 + α

)
Γ(−α)

�
f(y)

(x− y)2( d
2 +α)

ddy
π

d
2
. (2.3.4)

In the deformed theory, the two scalar fields have different bare dimensions: δ̃ for X and
δ for Z.

Feynman Rules The free propagators are given by

⟨(X†)ij(x)Xkl(y)⟩0 = δjkδilΓ(δ̃)
Nc4δπ

d
2 Γ(δ)(x− y)2δ̃

, (2.3.5)

⟨(Z†)ij(x)Zkl(y)⟩0 = δjkδilΓ(δ)
Nc4δ̃π

d
2 Γ(δ̃)(x− y)2δ

. (2.3.6)

The propagators and the single interaction vertex are represented in double-line notation in
Figure 2.1.
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Figure 2.2: Three quartic interactions: we (arbitrarily) decide that the one on the left cor-
responds to Tr

(
X†Z†XZ

)
, present in the Lagrangian, whereas the one on the middle cor-

responds to Tr
(
Z†X†ZX

)
absent from the Lagrangian and thus forbidden. The one on the

right is then associated to Tr
(
X†Z†ZX

)
and is also forbidden, in particular it shows that

black and red lines should really cross one another and cannot simply graze.

From now on we will work in the planar limit

Nc → +∞ , ξ2 fixed . (2.3.7)

This means, in particular, that we will only consider planar Feynman graphs. For correlation
functions of trace operators, in that limit, the dependence on Nc appears only as an overall
trivial factor (cf. Subsection 2.1.3). We can thus drop the double-line notation and use a
simplified version of the Feynman rules as depicted in Figure 2.1.

2.3.2 Mass and Coupling Renormalisation

When drawing Feynman graphs for the fishnet theory, the main point to remember is that,
because the fields are complex matrix fields and because there is only one allowed interaction
vertex, the lines can only cross in a very specific way, see Figure 2.2.

Let us investigate the possible running of the mass and of the coupling constant. If we
first consider the possible corrections to the propagator, one can easily convince oneself that
the only allowed planar contributions are those depicted on the left of Figure 2.3. There is
one graph at each order of the coupling constant. And it is easy to see that they all have the
same dependence on the flavour indices and on the number of flavour such that

⟨(X†)ij(x)Xkl(y)⟩ = ⟨(X†)ij(x)Xkl(y)⟩0 + δijδkl
N2
c

(+∞∑
m=1

ξ2mGm(x− y)
)
, (2.3.8)

with Gm that depends neither on ξ2 nor on Nc. There exists a similar expression for Z fields.
Recalling that the free propagator is itself only of order N−1

c , we see that, in the planar limit,
there is no mass renormalisation. When Nc is finite, however, the functions Gm need to be
taken into account and, since they involve propagators between two coinciding points, this
requires regularisation.

Concerning the coupling constant, one realises that it is impossible to draw planar Feyn-
man graphs that would renormalise it. However, even though the coupling ξ2 does not run,
the theory is not automatically conformal. It was indeed proven that some double-trace
couplings are perturbatively generated [145]. As a consequence, in order to renormalise the
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X X† X X†

Figure 2.3: Diagrams with an arbitrary number of concentric circles separating the two points
would generate the mass if they were not suppressed in the planar limit. The right diagram,
on the other hand, would not be suppressed but is not allowed because it involves a forbidden
interaction vertex, indicated here with a blue circle (if one had reversed the arrow on the
black circle, the blue circle would have been around the other intersection).

theory, one should include the corresponding counterterms from the start, this means adding
the following terms to the Lagrangian1

Ldt = α2
1

[
Tr(XX) Tr

(
X†X†

)
+ Tr(ZZ) Tr

(
Z†Z†

)]
− α2

2 Tr(XZ) Tr
(
X†Z†

)
− α2

3 Tr
(
XZ†

)
Tr
(
ZX†

)
. (2.3.9)

Let us first notice that, because of the U(1) ×U(1) symmetry associated with the multiplica-
tion by a phase of the fields X and Z, the counterterms have to contain the same number of
fields X and X† and, separately, the same number of Z and Z†. Then, it is also important to
remark that, for the new couplings to be dimensionless, one should set α2

1 = 0 when δ ̸= d
4 .

We now present the results of [144] and [158] concerning the renormalisation of these
couplings. One can show that there exist two fixed points for this theory given by

(α2
1, α

2
2, α

2
3) = (α2

+(ξ2), ξ2, ξ2) or (α2
1, α

2
2, α

2
3) = (α2

−(ξ2), ξ2, ξ2) , (2.3.10)

where α2
± are the two roots of the beta function for α2

1:

β1 = a(ξ2) + α2
1b(ξ2) + α4

1c(ξ2) . (2.3.11)

The coefficients a, b, and c were determined perturbatively to order O(ξ14) for the original
fishnet theory, i.e. (d, δ) = (4, 1), using dimensional regularisation for the following two-point
correlation function 〈

Tr
(
X2(x)

)
Tr
(
(X†)2(0)

)〉
. (2.3.12)

The resulting perturbative expansion for α2
± is

α2
± = ±iξ

2

2 − ξ4

2 ∓ i3ξ
6

4 + ξ8 ± i65ξ10

48 − 19ξ12

10 +O(ξ14) . (2.3.13)

1These counterterms are enough if the fields are traceless. If this is not true one should include additional
multi-trace counterterms such as Tr(X) Tr

(
X†Z†Z

)
[147].
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Though these counterterms have to be included, and the new couplings have to take
specific values depending on ξ2, for the theory to be truly scale invariant, in the following,
we will not have to take them into account. They are indeed suppressed in the planar limit
with respect to the original interaction vertex. They will thus not contribute to the specific
correlation functions we shall be interested in. We stress that these couplings are in general
relevant in the planar limit—after all, the results presented above were obtained in that
limit—but that there still exist some correlators to which they do not contribute.





Chapter 3

Non-compact Conformal Spin
Chain

We will present, in this chapter, the integrable spin chain relevant for the fishnet theory in
dimension d ⩾ 2. The symmetry group is the Euclidean conformal group, and the repre-
sentations under consideration are infinite-dimensional principal series representations. We
begin with the construction of the model using the relevant R-matrix. We then explain, in
Section 3.3, how it naturally arises when considering two-point correlation functions in the
fishnet theory. The last section is devoted to a presentation of the solution in the simple case
of a chain of length 2.

3.1 Scalar Principal Series Representations

3.1.1 Definitions and Representation Theory Results

Let us consider the Lorentz group in d+ 2 dimensions with metric ηµν = Diag(1, . . . , 1,−1),
where the indices take values 1, . . . , d+ 1, 0. it is given by

O(d+ 1, 1) =
{
M ∈ GL(d+ 2,R) | tMηM = η

}
. (3.1.1)

It is well-known that the (global) Euclidean conformal group in d dimensions is isomorphic
to the subgroup

O↑(d+ 1, 1) =
{
M ∈ O(d+ 1, 1) | M0

0 ⩾ 1
}
. (3.1.2)

This subgroup has two connected components: the one containing the identity is the sub-
group SO↑(d+ 1, 1) of matrices with unit determinant, and the other contains the inversion
I = Diag(1, . . . , 1,−1, 1). At the level of the generators, the isomorphism is realised via the
following identification:

Lij = Xij , Pi = Xi0 +Xid+1 , Ki = Xi0 −Xid+1 , D = X0d+1 , (3.1.3)

where Xµν = η(eµν − eνµ) are the natural generators of so(d+ 1, 1) while Lij , Pi, Ki and D
are the generators of rotations, translations, special conformal transformations and dilations.

41
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Here and in the following we assume that Latin indices i, j, k, etc. take values between 1
and d, whereas Greek indices µ, ν, ρ, etc. take values between 0 and d + 1. It is clear that
special conformal transformations decompose into the successive application of an inversion,
a translation and another inversion, ebiKi = I ebiPi I, since this holds at the level of the
generators. The quadratic Casimir invariant is

XµνX
µν = LijLij − PiKi −KiPi − 2D2 . (3.1.4)

The scalar principal series representations [196, 197] ρ∆ are characterised by a complex
number ∆, called the conformal dimension, and defined on the space

V∆ = L2
(
Rd, (1 + x2)2 Re(∆)−dddx

)
. (3.1.5)

The different elements of the conformal group act as expected:

• rotations
[
ρ∆
(
eωijL

ij
)
f
]

(x) = f(e−ωijL
ij
x),

• translations
[
ρ∆
(
ebiP

i
)
f
]

(x) = f(x− b),

• dilations (a > 0)
[
ρ∆
(
aD
)
f
]

(x) = 1
a∆ f

(
x
a

)
,

• inversion [ρ∆(I)f ](x) = 1
x2∆ f( x

x2 ).

In general, these representations are not unitary, but there exists an invariant inner prod-
uct in two important cases:

• unitary principal series: ∆ = d
2 + iν with ν real, and the representation is unitary for

the usual inner product on L2(Rd).

• complementary series: 0 < ∆ < d, and, in this case, the representations are unitary for
a new inner product defined by

⟨f, g⟩ = 1
Γ
(
∆ − d

2

) � f(x)∗g(y)
(x− y)2(d−∆) ddxddy . (3.1.6)

The prefactor is important, it is there to cancel the poles of (x−y)−2(d−∆) and to ensure
positivity of the inner product. When ∆ = d

2 , for instance, the latter reduces to that
of L2(Rd), which is consistent with the fact that we are in the unitary principal series
with ν = 0. Representations of the complementary series naturally arise in the study of
the fishnet theory, as we shall explain below.

For the reader familiar with the notion of discrete series representations, we point out
that the conformal group does not have any when d is even. For odd d, none of these unitary
representations appear in the scalar principal series.

The only equivalence between the principal series representations are between represen-
tations ρ∆ and ρd−∆ when −∆ /∈ N, ∆ − d /∈ N. The intertwining operator G∆ : Vd−∆ → V∆
is given by

[G∆f ](x) = Γ(∆)
Γ
(
d
2 − ∆

) � f(y)
(x− y)2∆

ddy
π

d
2
. (3.1.7)
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These equivalent representations are moreover irreducible. When n ∈ N, however, the space
V−n contains a finite-dimensional subspace of polynomials stable under the action of the
conformal group. On the other hand, Vd+n contains an infinite-dimensional invariant sub-
space on which the conformal group acts unitarily (one of the exceptional series of unitary
representations).

As follows from the explicit expression for the representations, the generators of the
conformal group act as first-order differential operators:

ρ∆(Pi) = −∂i , ρ∆(Lij) = xi∂j − xj∂i , ρ∆(D) = −∆ − xi∂i ,
ρ∆(Ki) = 2xi(∆ + xj∂j) − x2∂i ,

(3.1.8)

where we have also denoted ρ∆ the representation of the Lie algebra. For unitary represen-
tations, these generators are anti-Hermitian. The quadratic Casimir invariant is

ρ∆(Xµν)ρ∆(Xµν) = 2∆(d− ∆) . (3.1.9)

This is in accordance with the fact that representations ∆ and d− ∆ are equivalent.

Other Principal Series Representations The most general principal series representa-
tions of the conformal group are labelled by the highest weight λ of an irreducible finite-
dimensional representation of SO(d,R), and a complex number ∆. The representation space
is [196,197]

Vλ,∆ = Vλ ⊗ L2
(
Rd, (1 + x2)2 Re(∆)−dddx

)
, (3.1.10)

where Vλ is the space of the representation of the orthogonal group.
The scalar representations considered above obviously correspond to the trivial repre-

sentation, λ = 0, of SO(d,R). For all λ, the representations are unitary when Re(∆) = d
2 ,

those constitute the unitary principal series. In the last section of this chapter we will need
representations of the orthogonal group on symmetric traceless tensors, i.e. λ = lε1, we will
then write Vl,∆ in place of Vlε1,∆.

3.1.2 R-Matrices and Star-Triangle Relation

We begin with the so(d,C)-invariant R-matrix acting in Cd⊗V , with V the 2⌊ d
2 ⌋-dimensional

space of spinor representations (cf. Appendix A.2.2 for a reminder of the relation between
gamma matrices and spinor representations) of the orthogonal algebra [198]:

R(s)(x) = x Id −1
8Lij ⊗ [γi, γj ] , (3.1.11)

where Lij = eij − eji are the generators of the orthogonal algebra, and the superscript (s)
stands for spinorial. Let us prove that it satisfies indeed the Yang–Baxter relation

R12(x)R(s)
13 (x+ y)R(s)

23 (y) = R(s)
23 (y)R(s)

13 (x+ y)R12(x) , (3.1.12)

with R12 given by (1.2.37).
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This equation relates two polynomials in x and y, it suffices to verify that it holds for
each coefficient. It is non-trivial only for the coefficients of the monomials x2, xy, and x. Let
us consider the coefficients of x2, one has to show that

1
8Lij ⊗ Lkl ⊗ [γi, γj ][γk, γl] − (κ+ P−K)Id ⊗ Lij ⊗ [γi, γj ]

= 1
8Lij ⊗ Lkl ⊗ [γk, γl][γi, γj ] − Id ⊗ Lij ⊗ [γi, γj ](κ+ P−K) , (3.1.13)

where κ = d
2 − 1. It suffices to remark that

P−K = −1
2Lij ⊗ Lij , (3.1.14)

and to use the fact that Lij and [γi,γj ]
4 satisfy the same commutation relations to write

1
4Lij ⊗ Lkl ⊗ [[γi, γj ], [γk, γl]] = Lkl ⊗ [Lij , Lkl] ⊗ [γi, γj ] = −4Lij ⊗ Ljk ⊗ [γk, γi] , (3.1.15)

which is equivalent to (3.1.13). The computation is similar for the coefficient in front of xy.
For the coefficient in front of x, however, one has to prove that

1
8(κ+ P−K)Lij ⊗ Lkl ⊗ [γi, γj ][γk, γl] − κP Id ⊗ Lij ⊗ [γi, γj ]

− 1
8Lij ⊗ Lkl ⊗ [γk, γl][γi, γj ](κ+ P−K) + κ Id ⊗ Lij ⊗ [γi, γj ]P = 0 . (3.1.16)

The terms involving P
8 clearly compensate one another. For the others, we first write

− κP Id ⊗ Lij ⊗ [γi, γj ] + κ Id ⊗ Lij ⊗ [γi, γj ]P
= 2κ (−eil ⊗ elj ⊗ [γi, γj ] + elj ⊗ eil ⊗ [γi, γj ]) . (3.1.17)

We then look at

−K8 Lij ⊗ Lkl ⊗ [γi, γj ][γk, γl] = −K2 eij ⊗ ekl ⊗ [γi, γj ][γk, γl] (3.1.18)

= −1
2eij ⊗ eil ⊗ [γk, γj ][γk, γl] (3.1.19)

= 2κ eij ⊗ eil ⊗ [γj , γl] + 2(1 + 2κ)K , (3.1.20)

where we used γkγjγk = −2κγj and γkγjγlγk = 2(κ− 1)γjγl + 4δjl. Similarly, one has

1
8Lij ⊗ Lkl ⊗ [γk, γl][γi, γj ]K = 2κ eij ⊗ ekj ⊗ [γi, γk] − 2(1 + 2κ)K . (3.1.21)

Finally, we can add the previous results and write

1
8Lij ⊗ Lkl ⊗ [γi, γj ][γk, γl]K− K

8 Lij ⊗ Lkl ⊗ [γi, γj ][γk, γl]

− κP Id ⊗ Lij ⊗ [γi, γj ] + κId ⊗ Lij ⊗ [γi, γj ]P = 2κLij ⊗ Ljk ⊗ [γk, γi] , (3.1.22)
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which, according to (3.1.15), cancels out exactly the remaining two terms of (3.1.16).
It is also possible [198,199] to construct an R-matrix R(s),(s) acting on V ⊗V , and satisfying

the Yang–Baxter relation both on Cd ⊗ V ⊗ V and on V ⊗ V ⊗ V . This R-matrix is not as
simple as those we have seen before and, since we do not need it for what follows, we do not
give its expression.

Let us remark that, in even dimension d, the space of the spinor representation is reducible,
see (A.2.19), and the R-matrix actually decomposes into two smaller matrices:

R(s)(x) =
(

R(+)(x) 0
0 R(−)(x)

)
, (3.1.23)

with
R(+)(x) = x Id −1

8Lij ⊗ (σiσ̄j − σj σ̄i) (3.1.24)

and
R(−)(x) = x Id −1

8Lij ⊗ (σ̄iσj − σ̄jσi) . (3.1.25)

For the sake of brevity we will, for the moment, restrict ourselves to even dimension d = 2r,
r is the rank of the orthogonal algebra.

The so(d+ 1, 1)-invariant R-matrices acting in the tensor product of the defining and the
spinor representations, or in the tensor product of two spinor representations, are obtained
in a similar fashion. We only need a representation of the Clifford algebra Cld+1,1(R). Let us
construct one starting from the one we used for Cld(R):

Γi = σx ⊗ γi =
(

0 γi
γi 0

)
, (3.1.26)

for 1 ⩽ i ⩽ d, and

Γd+1 = σy ⊗ I2r =
(

0 −i I2r

i I2r 0

)
, Γ0 = iσx ⊗ σz ⊗ I2r−1 =

(
0 iσz ⊗ I2r−1

iσz ⊗ I2r−1 0

)
.

(3.1.27)
Using the notations of Appendix A.2.2, one has Γi = πd+2(γi), Γd+1 = πd+2(γd+2), and
Γ0 = iπd+2(γd+1) so that {Γµ,Γν} = 2 ηµν holds indeed. These matrices are of the form

Γµ =
(

0 Σµ

Σ̄µ 0

)
, with ΣµΣ̄ν + ΣνΣ̄µ = Σ̄µΣν + Σ̄νΣµ = 2 ηµν I2r . (3.1.28)

We are now ready to present the R-matrix acting on V ⊗ V∆, it is given by [149]

R(s,∆)(u) = u− 1
8 [Γµ,Γν ] ⊗ ρ∆(Xµν) =

(
R(+,∆)(u) 0

0 R(−,∆)(u)

)
, (3.1.29)

where both blocks are of size 2r. One of them is

R(+,∆)(u) = u− 1
8
(
ΣµΣ̄ν − ΣνΣ̄µ

)
⊗ ρ∆(Xµν) (3.1.30)

= u− 1
2

(
ρ∆(Lij)σiσ̄j−σj σ̄i

4 − ρ∆(D) i ρ∆(Pi)σi
−i ρ∆(Ki)σ̄i ρ∆(Lij) σ̄iσj−σ̄jσi

4 + ρ∆(D)

)
, (3.1.31)
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with now each block of size 2r−1.
The R-matrix R(∆1,∆2) acting on V∆1 ⊗V∆2 and satisfying the Yang–Baxter relation with

R(+,∆1) and R(+,∆2) was constructed in [149]. It is an integral operator, and its action on
Φ ∈ V∆1 ⊗ V∆2 reads

[
R(∆1,∆2)(u)Φ

]
(x1, x2) =

�
R(∆1,∆2)(u;x1, x2|y1, y2)Φ(y1, y2)ddy1ddy2

πd
, (3.1.32)

with kernel given by

R(∆1,∆2)(u;x1, x2|y1, y2) = 42u
Γ
(
u+ d

2 + ω
)

Γ
(
u+ d

2 − ω
)

Γ (−u− ω) Γ (−u+ ω)

× 1
x

2(−u−ζ)
12 (x2 − y1)2(u+ d

2 −ω)(x1 − y2)2(u+ d
2 +ω)y

2(−u+ζ)
12

, (3.1.33)

where
ζ = d

2 − ∆1 + ∆2
2 and ω = ∆1 − ∆2

2 . (3.1.34)

Let us point out that we conventionally decide to include a factor π− d
2 in the integra-

tion measure over d-dimensional variables. This is done so as to remove all factors of π from
the kernels of most of the operators we shall consider in the following. There is one no-
table exception: the identity operator on functions of L variables now has a kernel given by∏L
i=1 π

d
2 δ(d)(xi − yi).

We first notice that, when ∆1 = ∆2 = ∆, i.e. ω = 0, the R-matrix reduces to the
permutation operator for some specific value of the spectral parameter: R(∆,∆)(0) = P. This
is because

lim
ϵ→0

ϵ

(x− y)2( d
2 −ϵ) = π

d
2

Γ
(
d
2

)δ(d)(x− y) (3.1.35)

as distributions.
Let us now show that the R-matrix satisfies the inversion relation

R(∆1,∆2)(u)R(∆1,∆2)(−u) = Id (3.1.36)

and the Yang–Baxter relation on V∆1 ⊗V∆2 ⊗V∆3 . In terms of kernels, the latter is equivalent
to

�
R(∆1,∆2)

12 (u;x1, x2|z1, z2)R(∆1,∆3)
13 (u+ v; z1, x3|y1, z3)R(∆2,∆3)

23 (v; z2, z3|y2, y3)
∏3
i=1 ddzi
π

3d
2

=
�

R(∆2,∆3)
23 (v;x2, x3|z2, z3)R(∆1,∆3)

13 (u+v;x1, z3|z1, y3)R(∆1,∆2)
12 (v; z1, z2|y1, y2)

∏3
i=1 ddzi
π

3d
2

.

(3.1.37)

Before going further, let us present two well-known integral relations [200–205] that will
be used repeatedly in many a computation in this thesis. They are proven, together with
several other useful formulae, in Appendix B.1.
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a
x y = 1

(x−y)2a •z =
� ddz

π
d
2

z•a b
x y = A0(a)A0(b)A0(d− a− b)

a+ b− d
2

x y

a

c•b

x

y z

= A0(a)A0(b)A0(c) c̃

ã

b̃

x

y z

Figure 3.1: Conventions for graphical representation of the integrals involving only propaga-
tors with arbitrary weights, examples of the chain and star-triangle relations.

• Chain relation (a and b are complex numbers)
�

π− d
2 ddz

(x− z)2a(z − y)2b = A0(a)A0(b)A0(d− a− b)
(x− y)2(a+b− d

2 ) . (3.1.38)

Using the limit (3.1.35), one sees that the particular case a + b = d is actually a
representation of the delta distribution:

�
π− d

2 ddz
(x− z)2a(z − y)2(d−a) = A0(a)A0(d− a)π

d
2 δ(d)(x− y) . (3.1.39)

• Star-triangle relation, valid for a+ b+ c = d,
�

π− d
2 ddw

(w − x)2a(w − y)2b(w − z)2c = A0(a)A0(b)A0(c)
(x− y)2c̃(y − z)2ã(z − x)2b̃

. (3.1.40)

We use the following notations:

ã = d

2 − a and A0(a) = Γ(ã)
Γ(a) = 1

A0(ã) . (3.1.41)

The proof of the inversion relation is then a direct consequence of (3.1.39) and reads
�

R(∆1,∆2)(u;x1, x2|z1, z2)R(∆1,∆2)(−u; z1, z2|y1, y2)ddz1ddz2
πd

= A0(−u+ ω)A0(−u− ω)A0(u+ ω)A0(u− ω) 1
x

2(−u−ζ)
12 y

2(u+ζ)
12

×
�

π−dddz1ddz2

(x2 − z1)2(u+ d
2 −ω)(x1 − z2)2(u+ d

2 +ω)(z2 − y1)2(−u+ d
2 −ω)(z1 − y2)2(−u+ d

2 +ω)

=
(
x2

12
y2

12

)u+ζ

πdδ(d)(x1 − y1)δ(d)(x2 − y2) = πdδ(d)(x1 − y1)δ(d)(x2 − y2) .
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Figure 3.2: Graphical representation of the proof of the Yang–Baxter relation (3.1.37), each
drawing is obtained from the previous one applying the star-triangle relation (3.1.40). The
line indices have not been displayed for clarity, but they indeed coincide on the rightmost
drawing, so do the proportionality constants coming from the star-triangle relation. This
graphical proof first appeared in [67], where the d = 2 case was studied.

In the following, in order to avoid writing explicitly all the integrals, we will follow a
widespread convention and represent them as Feynman graphs as is explained in Figure 3.1.
The kernel of the R-matrix, for instance, would then just be a square while the proof of the
Yang–Baxter relation (3.1.37) is shown in Figure 3.2.

3.2 The Spin Chain
Thanks to the R-matrices described in the previous section, it is possible to construct an
integrable spin chain in which each site carries a scalar principal series representation of the
conformal group. Let L be the length of the chain and ∆i be the conformal dimension at
site i, the quantum space is thus H = V∆1 ⊗ · · · ⊗ V∆L

. The transfer matrices with spinorial
auxiliary space are

T±(u) = Tr±
(
R(±,∆L)

0L (u) · · · R(±,∆1)
01 (u)

)
, (3.2.1)

with the trace taken over a finite-dimensional space, whereas the transfer matrices

T∆(u) = Tr∆
(
R(∆,∆L)

0L (u) · · · R(∆,∆1)
01 (u)

)
(3.2.2)

involve a trace over an infinite-dimensional one. We recall that, because of the various Yang–
Baxter relations satisfied by the different R-matrices, all these transfer matrices commute
with one another.
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Since R(+,∆i)
0,i (u) = u − 1

4ΣµΣ̄νρ∆i
(Xµν), the transfer matrix T+ is a polynomial in u of

degree L, and its coefficients are differential operators:

T+(u) = 2ruL +
L∑
k=1

uL−kt+,k , (3.2.3)

with

t+,k =
∑

1⩽i1<···<ik⩽L

Tr
(
Σµk

Σ̄νk
· · · Σµ1Σ̄ν1

)
(−4)k ρ∆ik

(Xµkνk) · · · ρ∆i1
(Xµ1ν1) . (3.2.4)

One can show, using the explicit construction we gave of the matrices Σµ and Σ̄ν , that they
satisfy the following trace identities:

Tr
(
ΣµΣ̄ν

)
= 2rηµν , Tr

(
ΣµΣ̄νΣρΣ̄σ

)
= 2r[ηµνηρσ − ηµρηνσ + ηµσηρν ] . (3.2.5)

As a consequence, the first two coefficients are

t+,1 = −2r−2
L∑
i=1

ρ∆i
(Xµ

µ) = 0 (3.2.6)

and

t+,2 = −2r−3 ∑
1⩽i<j⩽L

ρ∆i
(Xµν)ρ∆j

(Xµν)

= −2r−4
(

L∑
i=1

ρ∆i
(Xµν)

)(
L∑
i=1

ρ∆i
(Xµν)

)
+ 2r−3

L∑
i=1

∆i(d− ∆i) , (3.2.7)

which is, up to a constant, none other than the quadratic Casimir element for the represen-
tation of the conformal algebra on H.

The transfer matrix T∆, on the other hand, is an integral operator. Its kernel is

T∆(u;x1, . . . , xL|y1, . . . , yL) =
�

R(∆,∆L)
0L (u;w1, xL|wL, yL) · · · R(∆,∆2)

02 (u;w3, x2|w2, y2)

× R(∆,∆1)
01 (u;w2, x1|w1, y1)

L∏
i=1

ddwi
π

d
2
, (3.2.8)

where wL+1 = w1. This kernel is depicted in Figure 3.3.

Isotropic Case When all sites carry the same representation, i.e. ∆i = ∆ for all i, it is
possible to define a Hamiltonian with nearest-neighbour interaction. Making use of the fact
that R(∆,∆)(0) = P, we define

H = (ln T∆)′(0) =
L∑
i=1

H
(∆)
ii+1 , (3.2.9)

with [149]

H
(∆)
ij = PijR′(∆,∆)(0) = 2 ln

(
x2
ij

)
+ x

2( d
2 −∆)

ij ln
(
∂µi ∂iµ∂

µ
j ∂jµ

)
x

2(∆− d
2 )

ij . (3.2.10)
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• • •

x4 x3 x2 x1

y4 y3 y2 y1

x0 y0

−u + ∆0+∆4−d
2

u + ∆0−∆4+d
2

u + ∆1−∆0+d
2

−u − ∆0+∆1−d
2

Figure 3.3: Kernel of the monodromy matrix R(∆,∆L)
0,L (u) · · · R(∆,∆1)

0,1 (u) for a spin chain of
length L = 4. For clarity, only some of the line indices have been written, any other index
is equal to one already written up to ∆4,∆1 → ∆i. The kernel of the transfer matrix T∆ is
obtained by tracing over the auxiliary space, i.e. setting x0 = y0 and integrating over it (with
a factor π− d

2 ).

3.3 Integrability of the Fishnet Theory

We now return to the fishnet theory and consider the two-point function

GJ(x) = ⟨Tr
(
ZJ(0)

)
Tr
(
(Z†)J(x)

)
⟩ . (3.3.1)

If J ⩾ 3, the only graphs contributing to this correlator in the planar limit are the globe graphs
shown in Figure 3.4. The important thing to notice is that these graphs can be constructed
iteratively if we introduce the graph-building operator FJ,δ with kernel [143,144]

FJ,δ(x1, . . . , xJ |y1, . . . , yJ) = 1∏J
i=1(xi − yi)2δ(yi − yi+1)2δ̃

, (3.3.2)

represented in Figure 3.5. The perturbative expansion of the correlator is indeed given by

GJ(x) = J

(
A0(δ̃)

4δ̃π d
2x2δ

)J [
1 + x2Jδ

+∞∑
k=1

ξ2k
� FkJ,δ(x, . . . , x|y1, . . . , yJ)

y2δ
1 . . . y2δ

J

J∏
i=1

ddyi
π

d
2

]
, (3.3.3)

where, for a given k ⩾ 1, the integral corresponds exactly to the globe graph with k magnons
wrapping around the poles. The overall factor of J comes from the different ways of con-
tracting Tr

(
ZJ
)

and Tr
(
(Z†)J

)
in a planar way. The previous equation is only a formal

equality and requires regularisation since the integrals are all divergent. There is indeed an
ultraviolet divergence in the globe graphs that comes from the integration regions near the
origin and the point x. In other words, FkJ,δ(x1, . . . , xJ |y1, . . . , yJ) diverges when all the xi’s
go to the same point x for k > 1, and the previous integral has an extra divergence in the
region yi → 0. If we work in dimensional regularisation, the dimension becomes d − 2ϵ and
we replace ξ2 with µ−2ϵξ2, for some mass scale µ, in order to keep the dimensionless ξ2. The
divergences are then reduced to a pole in the integrals at ϵ = 0. We also have to renormalise
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Figure 3.4: Example of a globe graph (left) that appears in the perturbative expansion of
G6(x), and of its amputated version (right), a wheel graph. The North and South poles
correspond to positions 0 and x respectively. The divergent part of the globe graph is 2/(x2)6

times that of the wheel graph. A similar drawing with two wrappings can be found in [143].

the operators: Tr
(
ZJ
)

→
√

Z(ϵ, ξ) Tr
(
ZJ
)
. Since the theory is conformal, the renormalised

two-point function GJ,R = ZGJ should have a limit, when ϵ → 0, of the form

lim
ϵ→0

GJ,R(x) = CJ(ξ)
x2Jδ(µ2x2)γJ (ξ) . (3.3.4)

The function γJ is the anomalous dimension of the operator Tr
(
ZJ
)
, whereas CJ is a normal-

isation constant. Using the fact that GJ depends on µ solely through µ−2ϵξ2, it is standard
to show that, in the minimal subtraction scheme, necessarily Z(ϵ, ξ) = exp

(
Z1(ξ2)
ϵ

)
for some

function Z1, and γJ(ξ) = −ξ2Z ′
1(ξ2).

It was noticed in [144, 150] that the graph-building operator is actually part of the con-
served charges of the spin chain constructed in the previous sections. Let us indeed consider
a chain of length J with a conformal dimension at each site ∆ = δ. The transfer matrix with
auxiliary conformal dimension δ̃ has a pole at u = −d

4 , and a direct application of (3.1.35)
shows that the behaviour close to this pole is dominated by the operator FJ,δ according to

Tδ̃

(
−d

4 + ϵ

)
∼ FJ,δ(

ϵΓ
(
d
2

))J , when ϵ → 0 . (3.3.5)

Since δ and δ̃ are both real and between 0 and d
2 , we are considering representations of the

complementary series. In order to compute the anomalous dimension γJ , one would have to
diagonalise FJ,δ. What we have just observed is that this problem is the same as solving
a non-compact conformal spin chain. Apart from J = 2, a case that we treat in the next
section, this remains highly non-trivial and the solution is not known at the moment.
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Figure 3.5: Kernels of the graph-building operators F6,δ (left) and Λ4,δ̃ (right).

In the next two chapters, we will instead consider another family of graph-building oper-
ators. We first point out that since all the information we want is contained in the ultraviolet
divergence of the globe graphs, it is equivalent to look instead at the wheel graphs, see Fig-
ure 3.4. FJ,δ allows to construct all such graphs with a given number J of spokes, but one
can also introduce [179] some operator ΛN,δ̃ that builds the graphs with a given number N
of circles. The wheel graph with J spokes and N circles is thus formally given by the two
(divergent) expressions

Tr
(
ΛJ
N,δ̃

)
=

�
FNJ,δ(0, . . . , 0|y1, . . . , yJ)

J∏
i=1

ddyi
π

d
2
. (3.3.6)

The operator ΛN,δ̃ acts on V⊗N
d
2 +δ with a kernel given by

ΛN,δ̃(x1, . . . , xN |y1, . . . , yN ) = 1∏N
i=1(xi − yi)2δ̃(xi−1 − xi)2δ

, (3.3.7)

for x0 = 0, see Figure 3.5.
While FJ,δ was associated to a closed spin chain, these operators rather correspond to an

open one. They turn out to be easier to handle: it is possible to diagonalise them, and, from
this, one can extract all the information required to formulate the thermodynamic Bethe
ansatz equations for the conformal dimensions γJ . This will be the subject of the next two
chapters. Based on the situation in 2 dimensions, we believe that the diagonalisation of ΛN,δ̃
is an important step towards the solution of this non-compact spin chain via separation of
variables. Indeed, when d = 2, the conformal group is SL(2,C) and the eigenvectors of ΛN,δ̃
have already been known for some time [206]. They actually correspond to the eigenvectors
of the operator A appearing in the 2 × 2 monodromy matrix, and they are very similar to the
basis of separated variables [67]. The situation is however much less clear in higher dimensions
for the moment.
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3.4 The J = 2 Case
If the spin chain contains only two sites, then the only non-trivial coefficient of T± is the
total Casimir operator. In other words, the conformal symmetry alone is enough to determine
the eigenvectors of the model: the decomposition of the quantum space into eigenspaces of
the chain is the same as the decomposition into irreducible representations of the conformal
group.

For any real ν and integer l, there exists an equivariant map Π(l,ν)
δ,δ from Vd−δ ⊗ Vd−δ onto

Vl, d
2 +iν , cf. (3.1.10), with kernel given by

ζ⊗l · Π(l,ν)
δ,δ (x0|x1, x2) = 1

x2δ
12

(
x2

12
x2

10x
2
20

)∆−l
2 [

ζ ·
(
x10
x2

10
− x20
x2

20

)]l
, (3.4.1)

where ζ ∈ Cd is some reference null vector (ζ2 = 0), ζ⊗l = ζ⊗ · · · ⊗ ζ is a symmetric traceless
tensor of rank l, ζ · x = ζµxµ, and ∆ = d

2 + iν. The kernel also admits a representation as a
conformal three-point function

Π(l,ν)
δ,δ (x0|x1, x2) = ⟨Tr(Z(x1)Z(x2))Ol,∆(x0)⟩ , (3.4.2)

for some operator Ol,∆ with scaling dimension ∆ and spin l. These projectors satisfy the
orthogonality relations [196]

�
ζ ′⊗l′ · Π(l′,ν′)

δ,δ (x′
0|x1, x2) ζ⊗l · Π(l,ν)

d−δ,d−δ(x0|x1, x2)ddx1ddx2
πd

= 2πδl,l′
ρl(ν)

(
δ(ν − ν ′)π

d
2 δ(d)(x00′)(ζ̄ ′ · ζ)l + cl(ν)δ(ν + ν ′)

[
G(l,∆)(x00′)ζ̄ ′⊗l

]
· ζ⊗l

)
, (3.4.3)

where the measure is

ρl(ν) = 2l−1
Γ
(
d
2 + l

)
Γ
(
d
2 − 1 + iν

)
Γ
(
d
2 − 1 − iν

)
l! Γ(iν)Γ(−iν)

[(
d

2 + l − 1
)2

+ ν2
]
, (3.4.4)

cl(ν) =

Γ
(
d−∆+l

2

)
Γ
(

∆+l
2

)
2

=

Γ
(
d
4 + l−iν

2

)
Γ
(
d
4 + l+iν

2

)
2

, (3.4.5)

and one has

[
G(l,∆)(x)ζ⊗l

]
· η⊗l = kl(∆)

(
ζ · η − 2 ζ·x η·x

x2

)l
x2∆ , kl(∆) = Γ(∆ + l)Γ(d− ∆ − 1)

Γ(d− ∆ + l − 1)Γ
(
d
2 − ∆

) .
(3.4.6)

There are two terms in the orthogonality relation because the representations (l,∆) and
(l, d− ∆) are equivalent. The intertwining operator between these representations is [196]

G(l,∆) : Vl,d−∆ −→ Vl,∆ , (3.4.7)
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with kernel given above. When l = 0, this is exactly the operator G∆ introduced in (3.1.7).
The projectors onto these two equivalent representations are related by the application of the
intertwining operator according to [207]

G(l,∆)Π
(l,−ν)
δ,δ = 1

cl(ν)Π(l,ν)
δ,δ , (3.4.8)

or, in terms of kernels,
� [

G(l,∆)(x00′)Π(l,−ν)
δ,δ (x′

0|x1, x2)
]

· η⊗lddx′
0

π
d
2

= 1
cl(ν)η

⊗l · Π(l,ν)
δ,δ (x0|x1, x2) , (3.4.9)

where η2 = 0. In a CFT, the kernel of the operator G(l,d−∆) is also used to define the nonlocal
“shadow operator” Õl,d−∆ associated to a rank-l symmetric traceless operator Ol,∆ [208]. In
other words, if the projector is the three-point function (3.4.2) then[

G(l,d−∆)Π
(l,ν)
δ,δ

]
(x0|x1, x2) = ⟨Tr(Z(x1)Z(x2))Õl,d−∆(x0)⟩ . (3.4.10)

Furthermore, it is known [196] that for δ > d
4 (remember that the fishnet theory was defined

for 0 < δ < d
2) the tensor product Vδ ⊗ Vδ decomposes only into unitary principal series

representations, i.e. one has the following completeness relation:

1
2

+∞∑
l=0

� +∞

−∞
ρl(ν)

�
Π(l,ν)
δ,δ (x0|x1, x2) · Π(l,ν)

d−δ,d−δ(x0|y1, y2)ddx0

π
d
2

dν
2π

= πdδ(d)(x1 − y1)δ(d)(x2 − y2) . (3.4.11)

Even if, from conformal invariance, we know that there exists an eigenvalue T (l,ν)
∆0

(u) ∈ C
such that

Π(l,ν)
d−δ,d−δT∆0(u) = T

(l,ν)
∆0

(u)Π(l,ν)
d−δ,d−δ , (3.4.12)

there is no simple expression for this eigenvalue in general. We recall that ∆0 denotes the
(arbitrary) conformal dimension of the auxiliary space. However, when ∆0 = δ̃ and u → −d

4 ,
it is much simpler to compute the eigenvalues fl(ν) of F2,δ, they are given by

fl(ν) = A2
0(δ)

Γ
(
−d

4 + δ + l+iν
2

)
Γ
(
−d

4 + δ + l−iν
2

)
Γ
(

3d
4 − δ + l+iν

2

)
Γ
(

3d
4 − δ + l−iν

2

) . (3.4.13)

Let us now apply these results to the computation of

G(x1, x2, x3, x4) = ⟨Tr(Z(x1)Z(x2)) Tr
(
Z†(x3)Z†(x4)

)
⟩ . (3.4.14)

Since the anisotropic case δ ̸= d
4 considered here is almost identical to the isotropic case con-

sidered in [144,158,159], the rest of the section is simply a review of some of the computations
of these articles.

If δ is in generic position, then there is no counterterm contributing to this four-point
function, and all the graphs are of wheel type. This is similar to what was considered in the
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2δ̃ 2δ̃ 2δ̃
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x1

x2

x3

x4

Figure 3.6: One of the graphs appearing in the expansion of G(x1, x2, x3, x4). The vertical
lines have weight 2δ̃ because they contain two magnon propagators. The same graph with
x1 ↔ x2 should also be considered.

previous section, but now the points are split, see Figure 3.6. As a consequence, if δ > d
4 ,

there is no divergence and we can directly make use of the fact that the sum is of geometric
type:

G(x1, x2, x3, x4) =
(
A0(δ̃)
4δ̃π d

2

)2

(x2
34)2δ̃

[
F2,δ

1 − ξ4F2,δ

]
(x1, x2|x3, x4) + (x1 ↔ x2) . (3.4.15)

Inserting the completeness relation allows us to write

(x2
34)2δ̃

[
F2,δ

1 − ξ4F2,δ

]
(x1, x2|x3, x4) = (x2

34)2δ̃

2

+∞∑
l=0

� +∞

−∞

ρl(ν)
f−1
l (ν) − ξ4

×
�

Π(l,ν)
δ,δ (x0|x1, x2) · Π(l,ν)

d−δ,d−δ(x0|x3, x4)ddx0

π
d
2

dν
2π . (3.4.16)

The projectors clearly satisfy (x2
34)2δ̃Π(l,ν)

d−δ,d−δ(x0|x3, x4) = Π(l,ν)
δ,δ (x0|x3, x4) and the parity

property Π(l,ν)
δ,δ (x0|x2, x1) = (−1)lΠ(l,ν)

δ,δ (x0|x1, x2), so that only even spins contribute to the
full correlator, which becomes

G(x1, x2, x3, x4) =
(
A0(δ̃)
4δ̃π d

2

)2 +∞∑
l=0

� +∞

−∞

ρ2l(ν)
f−1

2l (ν) − ξ4

×
�

Π(2l,ν)
δ,δ (x0|x1, x2) · Π(2l,ν)

δ,δ (x0|x3, x4)ddx0

π
d
2

dν
2π . (3.4.17)

The integral over x0 is called a conformal partial wave and can be expressed as a sum of
two conformal blocks [196,208,209]:

�
Π(l,ν)
δ,δ (x0|x1, x2) · Π(l,ν)

δ,δ (x0|x3, x4)ddx0

π
d
2

= (−2)−l

(x2
12x

2
34)δ

(
g(l,∆)(u, v)
cl(ν)kl(ν) +

g(l,d−∆)(u, v)
cl(−ν)kl(−ν)

)
,

(3.4.18)
with cl, kl defined in (3.4.5) and (3.4.6) respectively, ∆ = d

2 + iν, and the conformal blocks
behave as

g(l,∆)(u, v) ∼ u
∆−l

2 (1 − v)l , when u → 0 , v → 1 . (3.4.19)
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The two conformal invariants are

u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
. (3.4.20)

We thus have
G(x1, x2, x3, x4) = G(u, v)

(x2
12x

2
34)δ , (3.4.21)

with

G(u, v) =
(
A0(δ̃)
4δ̃π d

2

)2 +∞∑
l=0

� +∞

−∞

g(2l,∆)(u, v)
f−1

2l (ν) − ξ4µ2l(ν)dν
2π , (3.4.22)

and

µl(ν) = 2ρl(ν)
(−2)lcl(ν)kl(ν) = (−1)l

Γ
(
d
2 + l

)
Γ
(
d
2 + iν − 1

)
Γ
(
d
2 − iν + l

)
Γ2
(
d
4 + l+iν

2

)
l! Γ (iν) Γ

(
d
2 + iν + l − 1

)
Γ2
(
d
4 + l−iν

2

) .

(3.4.23)
When u → 0, because of the asymptotic behaviour (3.4.19) of the conformal blocks, one

can close the contour in the lower half-plane and compute the integral by residues. The result
is of the form

G(u, v) =
+∞∑
l=0

∑
∆
C2

(2l,∆)g(2l,∆)(u, v) , (3.4.24)

expected of the correlation function of four identical scalar fields in a conformal field theory.
Each term of the sums represents the total contribution of a multiplet with a primary of spin
2l and conformal dimension ∆, and C(2l,∆) are the structure constants appearing in the OPE.

There are poles coming from the conformal blocks, from the measure µ2l, and from the
denominator. However, the first two series of poles are spurious as they are independent of
the model and only come from conformal symmetry. We thus expect that they cancel, and
this is what happens, as we shall now explain. The conformal block g(l,∆) has a pole at
∆ = l + d− 1 − 2n for integer n such that 1 ⩽ 2n ⩽ l with residue given by [210,211]1

g(l,l+d−1−2n+ϵ) ∼ rl,2n
ϵ
g(l−2n,l+d−1) , (3.4.25)

with
rl,n = (−1)n+1n l!

(n!)2(l − n)!
(d+ l − n− 2)n(

d
2 + l − n

)
n

(
d
2 + l − n− 1

)
n

(1 − n

2

)2

n
. (3.4.26)

The contribution of all these residues to the integral in G is thus

−
+∞∑
l=0

∑
1⩽2n⩽2l

r2l,2n
g(2l−2n,2l+d−1)

f−1
2l

(
i
(
2n+ 1 − 2l − d

2

))
− ξ4

µ2l

(
i
(

2n+ 1 − 2l − d

2

))

= −
+∞∑
l=0

+∞∑
n=1

r2l+2n,2n
g(2l,2l+2n+d−1)

f−1
2l+2n

(
i
(
1 − 2l − d

2

))
− ξ4

µ2l+2n

(
i
(

1 − 2l − d

2

))
. (3.4.27)

1We have used the convention of [212] for the definition of the conformal block; it does not coincide with
the definition in [211]: ghere

(l,∆) = 2lgthere
∆l . The residues get modified accordingly.
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On the other hand, the only poles of the measure µl in the lower half-plane Im(ν) < 0 ⇔
Re(∆) > d

2 are simple poles located at ∆ = d + l + 2n − 1, for integer n ⩾ 1, and it is
straightforward to check that the residue is given by

µl

(
−i
(
d

2 + l + 2n− 1
)

+ ϵ

)
∼ irl+2n,2n

ϵ
µl+2n

(
i
(

1 − l − d

2

))
. (3.4.28)

Consequently, the contributions from the residues of the conformal blocks and the measure
combine to give

+∞∑
l=0

+∞∑
n=1

r2l+2n,2ng(2l,2l+2n+d−1)µ2l+2n

(
i
(

1 − 2l − d

2

))

×

 1
f−1

2l

(
−i
(
d
2 + 2l + 2n− 1

))
− ξ4

− 1
f−1

2l+2n

(
i
(
1 − 2l − d

2

))
− ξ4

 = 0 (3.4.29)

because the eigenvalue (3.4.13) satisfies

fl

(
−i
(
d

2 + l + 2n− 1
))

= fl+2n

(
i
(

1 − l − d

2

))
. (3.4.30)

Because the conformal partial waves (3.4.18) form a basis of the space of four-point functions
of scalar operators with given conformal dimension, the form (3.4.22) of the four-point func-
tion is specific neither to the correlation function we are considering nor to the fishnet CFT.
In the general case, the same expression (with a some over all spins, not only even ones) will
hold if (f−1

2l (ν) − ξ4)−1 is replaced with some appropriate, model-dependent, function. The
cancellation of the spurious poles should thus be universal, and this was proven in [212,213].
For the fishnet theory, this cancellation was detailed in [159].

Eventually, the only poles left are those found at the solutions of
(
f

(2l,ν)
2,δ

)−1
= ξ4 which,

in terms of the scaling dimension ∆ = d
2 + iν of the exchanged operator, reads

Γ
(
δ̃ + l + ∆

2

)
Γ
(
δ̃ + l + d−∆

2

)
Γ
(
−δ̃ + l + ∆

2

)
Γ
(
−δ̃ + l + d−∆

2

) = A2
0(δ)ξ4 , Re(∆) > d

2 . (3.4.31)

When 2δ̃ /∈ N, there are infinitely many, generically complex, solutions to the previous equa-
tion. They can easily be determined perturbatively because, when ξ2 = 0, they are situated
at the zeros of the left-hand side:

∆l,n = 2δ + 2l + 2n+ 2A2
0(δ)ξ4

(−1)n+1Γ
(
2δ − d

2 + 2l + n
)

n! Γ
(
d
2 + 2l + n

)
Γ
(
2δ̃ − n

) +O(ξ8) , (3.4.32)

for l and n in N. When 2δ̃ = m ∈ N, the left-hand side becomes a polynomial of degree
2m (actually, a polynomial of degree m in ν2), and there are only up to m solutions with
Re(∆) > d

2 .
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Finally, let us consider the solution with the smallest possible real value, i.e.

∆0,0 = 2δ − 2A2
0(δ)ξ4

Γ
(
2δ − d

2

)
Γ
(
d
2

)
Γ
(
2δ̃
) +O(ξ8) . (3.4.33)

It is associated to a scalar operator of bare dimension 2δ. It also determines the leading
asymptotic behaviour of the four-point function when u → 0. This solution is thus the
conformal dimension of Tr

(
Z2). We now remark that, when δ → d

4 , the previous expansion
of ∆0,0 manifestly fails. Going back to (3.4.31) for l = 0 and putting δ = d

4 there, one realises
that [144]

∆0,0 = d

2 ± 2iξ2

Γ
(
d
2

) ±
iξ6
[
ψ′(1) − ψ′

(
d
2

)]
Γ3
(
d
2

) +O(ξ10) , (3.4.34)

where ψ = Γ′

Γ . This agrees with the fact that for δ = d
4 the counterterms should be taken into

account: the two possible solutions correspond to the two different values of the coupling α±,
which, as we explained in Subsection 2.3.2, starts at order ξ2.



Chapter 4

O(d) R-Matrices and
Graph-Building Operators

The content of this chapter and of Appendix B.1 reproduces most of [180], up to some changes
in presentation, notably regarding the figures. Appendices B and E of the article have not
been included in this thesis, since they correspond to very recent work done by S. Derkachov
and E. Olivucci respectively.

The main goal of this chapter will be to find a complete basis of eigenvectors of the
graph-building operators ΛN,δ̃ for arbitrary N . An interpretation of these eigenvectors as
N -particle states in some O(d)-invariant theory describing infinitely many massless particles
will emerge. The theory in question will have one type of particle for each integer l ∈ N,
and such a particle will transform in the rank-l symmetric traceless representation of the
orthogonal group. In the spirit of [176, 177, 179], we shall investigate possible applications
to the computations of some fishnet four-point correlators such as those studied in [175].
However, because the scattering matrix between the particles will be, up to a scalar phase,
the relevant O(d)-invariant R-matrix, we shall need some efficient representation of these
matrices. This is what we will begin with, presenting new explicit representations of O(d)-
invariant solutions to the Yang–Baxter relation. Of particular interest to us will be integral
representations of these matrices.

4.1 O(d)-Invariant R-Matrices

For l ∈ N, we denote by Vl the (complex) vector space of symmetric traceless tensors of rank
l, in dimension d. We shall denote its dimension by dl. We will sometimes refer to l as the
spin.

As explained above, this section contains explicit expressions for the R-matrices Rl1,l2
acting in the tensor product Vl1⊗Vl2 , and satisfying the Yang–Baxter relation in Vl1⊗Vl2⊗Vl3
for arbitrary l1, l2, l3. Our starting point will be the Zamolodchikovs’ R-matrix [120]

∀C ∈ V1 ⊗ V1, [R1,1(u)C]µν = 1
u+ i

[
uCµν + iCνµ − iu

u+ id−2
2
Cρρδ

µν

]
. (4.1.1)

59
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In a first part, we apply the fusion procedure [184, 185] to the construction of the general
R-matrices Rl1,l2 . The fusion procedure was used for the calculation of R-matrices R1,2,R1,3
and R2,2 by N. MacKay [214], and for R1,l by N. Reshetikhin [215], we therefore generalise
their results. We will then argue that there exist equivalent integral representations of these
matrices. Those integral representations can be used to give direct proofs of the unitarity
of the R-matrices, and of the Yang–Baxter relation. And they will be used extensively in
the next section as they also allow to prove symmetry properties of the eigenvectors of the
graph-building operators under the exchange of particles.

The equivalence of the two expressions for Rl1,l2—the integral representation and the
representation obtained directly by fusion procedure—is far from obvious. The proof is very
technical and we do not reproduce it here, but it is in Appendix B of [180]. Finally, we should
note that the spectral decomposition for the general R-matrices Rl1,l2 was actually obtained
thirty years ago by N. MacKay [214,216]. His result is in some sense complementary to both
our expressions and we check their equivalence in the case of R1,l.

4.1.1 From Fusion

We show in this subsection that the R-matrix acting on Vl1 ⊗ Vl2 is given by the following
matrix elements

ζ⊗l1
1 ⊗η⊗l2

1 ·
[
Rl1,l2(u)ζ⊗l1

2 ⊗ η⊗l2
2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

∑
k⩾0 ,n⩾0

k+n⩽min(l1,l2)

l1!l2!
k!n!(l1 − k − n)!(l2 − k − n)!

× (ζ1 · η1 ζ2 · η2)k (ζ1 · η2 η1 · ζ2)n(
iu+ 4−l1−l2−d

2

)
k

(
−iu+ 2−l1−l2

2

)
n

(ζ1 · ζ2)l1−k−n(η1 · η2)l2−k−n , (4.1.2)

where all contractions of tensor indices, abbreviated with a dot, are done using the Euclidean
metric δµν , and ζ1, ζ2, η1, and η2 are four null vectors in Cd: one has for instance

ζ2
1 = ζ1 · ζ1 = ζ1µζ

µ
1 = ζµ1 ζ

ν
1 δµν = 0 . (4.1.3)

We also use the Pochhammer symbol

(a)l = Γ(a+ l)
Γ(a) =

l−1∏
k=0

(a+ k) . (4.1.4)

The proof of (4.1.2) is done in two steps. We first apply fusion to increase one of the
spins, keeping the other equal to 1. In that case, the previous formula contains only three
terms and reads

ζ1 ⊗ η⊗l
1 ·

[
R1,l(u)ζ2 ⊗ η⊗l

2

]
= 1
u+ i l+1

2

[(
u− i l − 1

2

)
ζ1 · ζ2(η1 · η2)l

+ il ζ1 · η2 η1 · ζ2(η1 · η2)l−1 − il
u− i l−1

2
u+ id+l−3

2
ζ1 · η1 ζ2 · η2(η1 · η2)l−1

]
. (4.1.5)
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Equivalently, we could have written, for C ∈ V1 ⊗ Vl,

[R1,l(u)C]µν1···νl = 1
u+ i l+1

2

[(
u− i l − 1

2

)
Cµν1···νl + i

l∑
j=1

Cνjµν1···ν̂j ···νl

− i
u− i l−1

2
u+ id+l−3

2

l∑
j=1

δµνjC
ρ ν1···ν̂j ···νl
ρ + 1

u+ id+l−3
2

∑
1⩽j<k⩽l

δνjνkC
ρ µν1···ν̂j ···ν̂k···νl
ρ

]
. (4.1.6)

Before proving this last formula, we point out that, when u = i l+1
2 , it reduces to the

orthogonal projector P(l+1)
1,l onto Vl+1 ⊂ V1 ⊗ Vl. This is important because it justifies why

the fusion procedure gives new solutions of the Yang–Baxter relation. A proof of this fact
goes as follows: first, one notices, from (4.1.6), that R1,l

(
i l+1

2

)
C is symmetric traceless in all

l+1 indices. After that, it is enough to remark that its contraction with any other symmetric
traceless tensor C ′ ∈ Vl+1 is given by C ′ · C.

The proof is made by induction, (4.1.6) clearly holds for l = 1, so we assume that it holds
for some l ⩾ 1. Let us show it for l + 1, where the fusion procedure states that

P(l+1)
1′,l R1,1′

(
u− il

2

)
R1,l

(
u+ i

2

)
P(l+1)

1′,l = R1,l+1(u) . (4.1.7)

We remind the reader that, because of the Yang–Baxter equation, the left projector is useless
and could be removed. Consequently, applying the left-hand side to C ∈ V1 ⊗ Vl+1 ⊂ V1 ⊗
V′

1 ⊗ Vl gives

[
R1,1′

(
u− il

2

)
R1,l

(
u+ i

2

)
C

]µν1···νl+1

= 1
u+ i2−l

2

[(
u− il

2

)[
R1,l

(
u+ i

2

)
C

]µν1···νl+1

+ i
[
R1,l

(
u+ i

2

)
C

]ν1µν2···νl+1
− i

u− il
2

u+ id−2−l
2

[
R1,l

(
u+ i

2

)
C

]ρρν2···νl+1
δµν1

]
. (4.1.8)

We now use equation (4.1.6) to write the second term in the right-hand side as

[
R1,l

(
u+ i

2

)
C

]ν1µν2···νl+1
= 1
u+ i l+2

2

[(
u− i l − 2

2

)
Cν1µν2···νl+1 + i

l+1∑
j=2

Cνjµν1···ν̂j ···νl+1

− i
u− i l−2

2
u+ id+l−2

2

l+1∑
j=2

δν1νjCρµρν2···ν̂j ···νl+1 + 1
u+ id+l−2

2

∑
2⩽j<k⩽l+1

δνjνkCρµρν1···ν̂j ···ν̂k···νl+1

]
,

(4.1.9)

and, using the fact that C is symmetric traceless in the last l + 1 indices, the third term is

[
R1,l

(
u+ i

2

)
C

]ρρν2···νl+1
=

(
u− i l−2

2

) (
u+ id−l−2

2

)
(
u+ i l+2

2

) (
u+ id+l−2

2

)Cρρν2···νl+1 . (4.1.10)

Putting everything together we straightforwardly recover (4.1.6) for R1,l+1(u).
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We now turn our attention to the general case of two arbitrary spins, i.e. Equation (4.1.2).
It suffices to prove it for l1 ⩽ l2, which we shall do by induction on l1 for given l2. We have
just verified it for l1 = 1. If we assume it holds for some l1 ⩽ l2 − 1, one just needs to use
fusion,

ζ⊗l1+1
1 ⊗ η⊗l2

1 · Rl1,l2
(
u+ i

2

)
R1,l2

(
u− il1

2

)
ζ⊗l1+1

2 ⊗ η⊗l2
2

= ζ⊗l1+1
1 ⊗ η⊗l2

1 · Rl1+1,l2(u)ζ⊗l1+1
2 ⊗ η⊗l2

2 , (4.1.11)

to compute Rl1+1,l2(u). In the previous equation, the product of the two R-matrices is taken
in Vl2 . In order to compute this product, one may insert a resolution of the identity of Vl2
between the two matrices. More explicitly, if {Cj,l}1⩽j⩽dl

is an orthonormal basis of Vl (for
the inner product (C,C ′) = C∗

µ1...µl
C ′µ1...µl = C∗ · C ′), one can write

ζ⊗l1+1
1 ⊗ η⊗l2

1 · Rl1,l2 (a)R1,l2 (b) ζ⊗l1+1
2 ⊗ η⊗l2

2

=
dl2∑
j=1

ζ⊗l1
1 ⊗ η⊗l2

1 ·
[
Rl1,l2(a)ζ⊗l1

2 ⊗ Cj,l2

]
ζ1 ⊗ C∗

j,l2 ·
[
R1,l2(b)ζ2 ⊗ η⊗l2

2

]
. (4.1.12)

According to formulae (4.1.5) and (4.1.2), for R1,l2 and Rl1,l2 respectively, we can thus
write

ζ⊗l1+1
1 ⊗ η⊗l2

1 · Rl1,l2
(
u+ i

2

)
R1,l2

(
u− il1

2

)
ζ⊗l1+1

2 ⊗ η⊗l2
2

=

(
iu+ l2−l1−1

2

)
l1+1(

iu− l1+l2+1
2

)
l1+1

∑
k+n⩽l1

l1!l2!
k!n!(l1 − k − n)!(l2 − k − n)!

(ζ1 · η1)k (η1 · ζ2)n(ζ1 · ζ2)l1−k−n(
iu+ 3−l1−l2−d

2

)
k

(
−iu+ 3−l1−l2

2

)
n

dl2∑
j=1

(ζ⊗k
2 ⊗ ζ⊗n

1 ⊗ η
⊗(l2−k−n)
1 · Cj,l2)

[
ζ1 · ζ2 (C∗

j,l2 · η⊗l2
2 ) +

lζ1 · η2 (C∗
j,l2

· ζ2 ⊗ η
⊗(l2−1)
2 )

−iu+ 1−l1−l2
2

+
lζ2 · η2 (C∗

j,l2
· ζ1 ⊗ η

⊗(l2−1)
2 )

iu+ 3+l1−l2−d
2

]
. (4.1.13)

The only additional formulae needed are

dl2∑
j=1

(ζ⊗k
2 ⊗ ζ⊗n

1 ⊗ η
⊗(l2−k−n)
1 · Cj,l2)(C∗

j,l2 · η⊗l2
2 ) = (η2 · ζ2)k(η2 · ζ1)n(η2 · η1)l2−k−n (4.1.14)
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and

dl2∑
j=1

(ζ⊗k
2 ⊗ζ⊗n

1 ⊗η⊗(l2−k−n)
1 ·Cj,l2)(C∗

j,l2 ·ζ⊗η⊗(l2−1)
2 ) = (η2 · ζ2)k−1(η2 · ζ1)n−1(η2 · η1)l2−k−n−1

l2

×
[
(l2 − k − n)η1 · ζ ζ1 · η2 ζ2 · η2 + nζ1 · ζ η1 · η2 ζ2 · η2 + kζ2 · ζ η1 · η2 ζ1 · η2

− 2ζ · η2
d+ 2(l2 − 2) [(l2 − k − n)n η1 · ζ1 ζ2 · η2 + (l2 − k − n)k η1 · ζ2 ζ1 · η2 + kn ζ1 · ζ2 η1 · η2]

]
.

(4.1.15)

The first one is trivial since η⊗l2
2 ∈ Vl2 and {Cj,l2}1⩽j⩽dl2

is an orthonormal basis of Vl2 . The
second one is a consequence of

dl2∑
j=1

C
µ1···µl2
j,l2

(C∗
j,l2 · ζ ⊗ η

⊗(l2−1)
2 ) = 1

l2

[
l2∑
i=1

ζµiηµ1
2 . . . η̂µi

2 . . . η
µl2
2

− 2
d+ 2(l2 − 2)

∑
1⩽i<j⩽l2

ζ · η2 δ
µiµjηµ1

2 . . . η̂µi
2 . . . η̂

µj

2 . . . η
µl2
2

]
, (4.1.16)

which is the orthogonal projection of ζ ⊗ η
⊗(l2−1)
2 ∈ V1 ⊗Vl2−1 onto Vl2 ⊂ V1 ⊗Vl2−1, as we

already explained at the beginning of this section (recall that this projector is nothing else
than R1,l2−1

(
i l22
)
).

Using these formulae, we can compute the sum over dl2 appearing in (4.1.13):

dl2∑
j=1

(ζ⊗k
2 ⊗ ζ⊗n

1 ⊗ η
⊗(l2−k−n)
1 · Cj,l2)

[
ζ1 · ζ2 (C∗

j,l2 · η⊗l2
2 )

+
l ζ1 · η2 (C∗

j,l2
· ζ2 ⊗ η

⊗(l2−1)
2 )

−iu+ 1−l1−l2
2

+
l ζ2 · η2 (C∗

j,l2
· ζ1 ⊗ η

⊗(l2−1)
2 )

iu+ 3+l1−l2−d
2

]

= (η2 · ζ2)k(η2 · ζ1)n(η2 · η1)l2−k−n−1(
−iu+ 1−l1−l2

2

) (
iu+ 3+l1−l2−d

2

) [(ζ1 · ζ2)(η2 · η1)
(

−iu+ 1 − l1 − l2
2 + n

)

×
(

iu+ 3 + l1 − l2 − d

2 + k

)
+ (η1 · ζ2)(η2 · ζ1)(l2 − k − n)

(
iu+ 3 + l1 − l2 − d

2 + k

)

+ (η1 · ζ1)(η2 · ζ2)(l2 − k − n)
(

−iu+ 1 − l1 − l2
2 + n

)]
. (4.1.17)

Plugging it back into (4.1.13), the only thing left to do is to rewrite the sum ∑
k+n⩽l1

into a sum ∑
k′+n′⩽l1+1. The terms contributing to a given pair (k′, n′) come from (k, n) ∈

{(k′, n′), (k′−1, n′), (k′, n′−1)}. When (k, n) = (k′, n′), the contribution (without the tensors)
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is

l1!l2!
k′!n′!(l1 + 1 − k′ − n′)!(l2 − k′ − n′)!

l1 + 1 − k′ − n′

iu+ 3+l1−l2−d
2

iu+ 3+l1−l2−d
2 + k′(

iu+ 3−l1−l2−d
2

)
k′

(
−iu+ 1−l1−l2

2

)
n′

,

(4.1.18)
when (k, n) = (k′ − 1, n′), it is

l1!l2!
k′!n′!(l1 + 1 − k′ − n′)!(l2 − k′ − n′)!

k′

iu+ 3+l1−l2−d
2

1(
iu+ 3−l1−l2−d

2

)
k′−1

(
−iu+ 1−l1−l2

2

)
n′

,

(4.1.19)
and when (k, n) = (k′, n′ − 1), it is

l1!l2!
k′!n′!(l1 + 1 − k′ − n′)!(l2 − k′ − n′)!

n′

iu+ 3+l1−l2−d
2

iu+ 3+l1−l2−d
2 + k′(

iu+ 3−l1−l2−d
2

)
k′

(
−iu+ 1−l1−l2

2

)
n′

.

(4.1.20)
The sum of the previous three terms is

(l1 + 1)!l2!
k′!n′!(l1 + 1 − k′ − n′)!(l2 − k′ − n′)!

1(
iu+ 3−l1−l2−d

2

)
k′

(
−iu+ 1−l1−l2

2

)
n′

, (4.1.21)

thus proving formula (4.1.2) for (l1 + 1, l2).

Extension of (4.1.2) to Symmetric Tensors We now want to compute x⊗l1 ⊗ y⊗l2 ·[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
when ζ2 = η2 = 0 but x2 ̸= 0 and y2 ̸= 0. Since Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

belongs to Vl1 ⊗ Vl2 , only the symmetric traceless parts of x⊗l1 and y⊗l2 are needed. Let us
call Xl the symmetric traceless part of x⊗l, it is given by

Xµ1···µl
l =

⌊ l
2 ⌋∑

p=0

(x2)p(
2 − l − d

2

)
p

2p
∑

{i1,j1},...,{ip,jp}

p∏
k=1

δµik
µjk

∏
i/∈{i1,j1,...,ip,jp}

xµi , (4.1.22)

where, for a given p, we sum over the l!
(l−2p)!p!2p possible ways of forming p pairs among l

elements. We can thus write

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
= Xl1 ⊗ Yl2 ·

[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
, (4.1.23)

and then apply (4.1.2).
Let us start with only one vector that is not null : α2 = 0 but y2 ̸= 0, we have

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

∑
k,n⩾0

(−l1)k+n(−l2)k+n
k!n!

× (ζ · η)k(α · η)n(α · ζ)l2−k−n(
iu+ 4−l1−l2−d

2

)
k

(
−iu+ 2−l1−l2

2

)
n

(
Yl2 · α⊗k ⊗ ζ⊗n ⊗ η⊗(l2−k−n)

)
. (4.1.24)
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We then use the explicit expression for Yl2 to compute

Yl2 · α⊗k ⊗ ζ⊗n ⊗ η⊗(l2−k−n) =
⌊ l2

2 ⌋∑
q=0

∑
a+b⩽q

(−k)a+b(−n)q−b(n+ k − l2)q−a
a!b!(q − a− b)!

(y2)q(
2 − l2 − d

2

)
q

2q

× (α · ζ)a(α · η)b(ζ · η)q−a−b(α · y)k−a−b(y · ζ)n+b−q(y · η)l2+a−k−n−q , (4.1.25)

which implies

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

⌊ l2
2 ⌋∑

q=0

∑
K,N⩾q
a+b⩽q

(−1)q+a(−l1)K+N+a−q(−l2)K+N
(K − q)!(N − q)!a!b!(q − a− b)!

× (α · ζ)l1+q−N−K(α · η)N (ζ · η)K(y2)q(α · y)K−q(y · ζ)N−q(y · η)l2−N−K

2q
(
2 − l2 − d

2

)
q

(
iu+ 4−l1−l2−d

2

)
K+a+b−q

(
−iu+ 2−l1−l2

2

)
N−b

, (4.1.26)

where we have changed summation indices from k, n to K = k + q − a − b and N = n + b.
Recalling the Gauss identity

n∑
k=0

(−n)k(u)k
k!(v)k

= (v − u)n
(v)n

, (4.1.27)

one can perform the sums over a and b:

∑
a+b⩽q

(−1)q+a(−l1)K+N+a−q
a!b!(q − a− b)!

1(
iu+ 4−l1−l2−d

2

)
K+a+b−q

(
−iu+ 2−l1−l2

2

)
N−b

= 1(
iu+ 4−l1−l2−d

2

)
K

(
−iu+ 2−l1−l2

2

)
N

q∑
a=0

(−l1)K+N+a−q
(
d
2 + l1 + l2 −K −N − 1

)
q−a

a!(q − a)!

= (−l1)K+N−q
q!

(−1)q
(
2 − l2 − d

2

)
q(

iu+ 4−l1−l2−d
2

)
K

(
−iu+ 2−l1−l2

2

)
N

. (4.1.28)

One eventually gets

α⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

⌊ l2
2 ⌋∑

q=0

∑
K,N⩾q

(−l1)K+N−q(−l2)K+N (−N)q
q!(K − q)!N !

× (y2)q(α · ζ)l1+q−N−K(α · η)N (ζ · η)K(α · y)K−q(y · ζ)N−q(y · η)l2−N−K

2q
(
iu+ 4−l1−l2−d

2

)
K

(
−iu+ 2−l1−l2

2

)
N

. (4.1.29)
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The same procedure allows one to compute x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
: we now

have to insert

Xl1 · y⊗(K−q) ⊗ ζ⊗(l1+q−N−K) ⊗ η⊗N

=
⌊ l1

2 ⌋∑
p=0

∑
a+b+c⩽p

(−K + q)2p−a−b−2c(N +K − l1 − q)b+c(−N)a+c
2p−a−b−ca!b!c!(p− a− b− c)!

(x2)p(y2)p−a−b−c(
2 − l1 − d

2

)
p

2p

× (y · η)a(y · ζ)b(ζ · η)c(x · y)K−q+2c+a+b−2p(x · ζ)l1+q−N−K−b−c(x · η)N−a−c . (4.1.30)

After the change of summation indices q′ = q+p−a− b− c, k = K+ c, n = N +p−a− c the
sums over a, b and c can be performed through repeated application of the Gauss identity
(4.1.27). One eventually obtains

x⊗l1 ⊗ y⊗l2 ·
[
Rl1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
=

(
iu+ l2−l1

2

)
l1(

iu− l1+l2
2

)
l1

⌊ l1
2 ⌋∑

p=0

⌊ l2
2 ⌋∑

q=0

∑
k⩾p+q
n⩾0

(−l1)k+n−q(−l2)k+n−p(−n)p(−n)q
p!q!(k − p− q)!n!

× (x2)p(y2)q(x · ζ)l1+q−n−k(x · η)n−p(ζ · η)k(x · y)k−p−q(y · ζ)n−q(y · η)l2+p−n−k

2p+q
(
iu+ 4−l1−l2−d

2

)
k

(
−iu+ 2−l1−l2

2

)
n

. (4.1.31)

4.1.2 Spectral Decomposition

The spectral decomposition of the R-matrix was computed by N. MacKay [214, 216]. Since
it is clear from our expression (4.1.2) that the completely symmetric traceless tensors are
eigenvectors with eigenvalue 1, the normalisation is fixed, and MacKay’s result reads

Rl1,l2(u) =
∑

0⩽m⩽n⩽min(l1,l2)

m∏
p=1

u− id+l1+l2−2−2q
2

u+ id+l1+l2−2−2q
2

n∏
q=1

u− i l1+l2+2−2q
2

u+ i l1+l2+2−2q
2

P(l1+l2−2n,n−m)
l1,l2

,

(4.1.32)
where P(n1,n2)

l1,l2
is the projector onto the subrepresentation of Vl1 ⊗ Vl2 with highest weight

n1ω1 + n2ω2, the ωa’s being fundamental weights (see Appendix A.2.1). When one of the
spins is equal to one, the previous decomposition reads

R1,l(u) = P(l+1,0)
1,l +

u− i l+1
2

u+ i l+1
2
P(l−1,1)

1,l +
u− id+l−3

2
u+ id+l−3

2

u− i l+1
2

u+ i l+1
2
P(l−1,0)

1,l . (4.1.33)

Let us check that this coincides with the expression (4.1.6) for the R-matrix. We first introduce
some operators P, K1, and K2, in terms of which the R-matrix reads

R1,l(u) = 1
u+ i l+1

2

[(
u− i l − 1

2

)
Id + iP − i

u− i l−1
2

u+ id+l−3
2

K1 + 1
u+ id+l−3

2
K2

]
. (4.1.34)
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We have already explained that P(l+1,0)
1,l = R1,l

(
i l+1

2

)
. In terms of the new operators, this

becomes
P(l+1,0)

1,l = 1
l + 1

[
Id + P − 2

d+ 2l − 2 (K1 + K2)
]
. (4.1.35)

We claim that the other two projectors are

P(l−1,1)
1,l = 1

l + 1

[
l Id − P + 1

d+ l − 3 (2K2 − (l − 1)K1)
]

(4.1.36)

and
P(l−1,0)

1,l = 1
(d+ 2l − 2)(d+ l − 3) [(d+ 2l − 4)K1 − 2K2] . (4.1.37)

It is clear that P(l+1,0)
1,l +P(l−1,1)

1,l +P(l−1,0)
1,l = Id, and that (4.1.33) is equal to (4.1.34). It remains

to check that they are indeed orthogonal projectors; this is a tedious but straightforward
computation that we do not show here.

4.1.3 Integral Representation

For ζ2 = η2 = 0 but x2 and y2 arbitrary, one has[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
· (x⊗l1 ⊗ y⊗l2)

= Fl1,l2(λ)
�

z2
(
λ+ l1+l2

2 −1
)
(ζ · (y − v))l1(η · (x− v))l2

(z − x)2
(
λ+ l21

2

)
(z − y)2

(
λ+ l12

2

)
(z − v)2

(
d−1+ l1+l2

2 −λ
) ddzddv

πd
, (4.1.38)

where

Fl1,l2(λ) =
Γ
(
1 − l1+l2

2 − λ
)

Γ
(
1 + l1+l2

2 + λ
)

Γ
(
d− 1 + l1+l2

2 − λ
)

Γ
(
1 + l1+l2

2 − λ
)

Γ
(
d+l1+l2

2 − 1 − λ
)

Γ
(
1 − l1+l2+d

2 + λ
) . (4.1.39)

Though we will not prove1 here that this integral formula coincides with (4.1.31), we
will still perform a few consistency checks. The first one is to restrict ourselves to the case
x2 = y2 = 0, and we show right below how to recover exactly (4.1.2) in this case. Other
checks consist in assuming that these integrals define indeed an operator on Vl1 ⊗ Vl2 , and
then verifying that unitarity and the Yang–Baxter relation hold, which we do in the next
subsection. Of course, if these integrals are actually homogeneous harmonic polynomials in x
and in y, then the restriction to null vectors characterise them uniquely. And we don’t have
to verify the Yang–Baxter relation because the R-matrices constructed from fusion satisfy
it automatically. It is nonetheless interesting to do so because it is not clear that we can
perform all the usual manipulations on them. The integral over v is indeed not convergent,
and it is actually a representation of a certain sum of derivatives of delta functions. The
simplest example of such an integral would be (3.1.39), for x = 0 and y = v, in which we
naïvely perform an inversion z 7→ z

z2 and v 7→ v
v2 to obtain

�
π− d

2 ddv
(z − v)2(d−a) = A0(a)A0(d− a)π

d
2
δ(d)( z

z2 )
z2(d−a) . (4.1.40)

1The proof is very technical and can be found in Appendix B of [180].
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Once we have done this neither the left-hand side nor the right-hand side is well-defined but
we understand it as equivalent to the integral before the inversion. In order to apply it to
specific wave functions in the next section, we will actually only need representations of the
R-matrices before the inversion. Namely, we will use

[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
·
[(

x

x2 − w

w2

)⊗l1
⊗
(
y

y2 − w

w2

)⊗l2
]

= Fl1,l2(λ)x
2
(
λ+ l21

2

)
y2
(
λ+ l12

2

)
w2
(
λ+ l1+l2

2 −1
)

×
� (z − w)2

(
λ+ l1+l2

2 −1
) [
ζ ·
(
y
y2 − v

v2

)]l1 [
η ·
(
x
x2 − v

v2

)]l2
(z − x)2

(
λ+ l21

2

)
(z − y)2

(
λ+ l12

2

)
(z − v)2

(
d−1+ l1+l2

2 −λ
)
v2
(

1− l1+l2
2 +λ

) ddzddv
πd

. (4.1.41)

Integral Formula for Null Vectors When x2 = y2 = 0, one can perform the integral
over z using Symanzik’s trick [217]: if the parameters a1, . . . , aN satisfy ∑N

k=1 ak = d, then it
holds that

�
π− d

2 ddz∏N
k=1(z − xk)2ak

= 1∏N
k=1 Γ(ak)

�
RN

+

e
−

∑
i,j

αiαj (xi−xj )2∑N

k=1 γkak(∑N
k=1 γkak

) d
2

N∏
k=1

αak−1
k dαk , (4.1.42)

where the parameters γ1, . . . , γN can be chosen arbitrarily, as long as γk ⩾ 0 and they are
not all zero. In our case, N = 4 and we choose three of the parameters to be 0 whereas the
last one is set to 1, we thus obtain

� Γ
(
λ+ l21

2

)
Γ
(
λ+ l12

2

)
Γ
(
1 − l1+l2

2 − λ
)

Γ
(
d− 1 + l1+l2

2 − λ
)

(z − x)2
(
λ+ l21

2

)
(z − y)2

(
λ+ l12

2

)
z2
(

1− l1+l2
2 −λ

)
(z − v)2

(
d−1+ l1+l2

2 −λ
) ddz
π

d
2

=
�
R4

+

α
λ+ l21

2 −1
1 α

λ+ l12
2 −1

2 α
− l1+l2

2 −λ
3 α

d
2 −2+ l1+l2

2 −λ
4 e− α1α2

α4
(x−y)2−α1(x−v)2−α2(y−v)2−α3v2 4∏

k=1
dαk

=
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)
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) . (4.1.43)

As a consequence, when x and y are null vectors, the formula (4.1.38) reduces to

[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
·(x⊗l1⊗y⊗l2) =

Γ
(
d
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)
Γ
(
d
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) (
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2

)
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)
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(y − v)2( d
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2 +l2−1)

ddv
π

d
2
. (4.1.44)

This is now perfectly well-defined. This new identity can be proven as follows. After having
stripped the right-hand side (RHS) of the (x, y)-independent prefactor, it can be represented
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as (it is important to notice that one can only impose x2 = y2 = 0 after having taken the
derivatives):

RHS = (x− y)2
(

−λ+ d+l1+l2−2
2
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Since α1 + α2 + α3 = 1, one can write

(ζ · (α1y + α3(y − x)))l1−k =
l1−k∑
m=0

(
l1 − k

m

)
((1 − α2)ζ · y)m(−α3ζ · x)l1−k−m (4.1.45)

and

(η · (α1x+ α2(x− y)))l2−k =
l2−k∑
n=0

(
l2 − k

n

)
((1 − α3)η · x)n(−α2η · y)l2−k−n . (4.1.46)

The integral that then appears is of the form
�

[0,1]3
αa−1

1 αb−1
2 αc−1

3 (1 − α2)m(1 − α3)nδ(1 − α1 − α2 − α3)dα1dα2dα3
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m∑
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(
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n
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Γ(a+ b+ c+m+ q) , (4.1.47)

where we used the Gauss identity (4.1.27) in the form ∑r
l=0
(r
l

)
(−1)l Γ(A+l)

Γ(B+l) = Γ(A)
Γ(B+r)(B−A)r.

In our case, the parameters actually are a = −λ + 2−l1−l2
2 , b = λ + l1+l2

2 − n, and c =
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λ + l1+l2
2 − m. In particular, a + b = 1 − n so that (a + b + p)n = (1 + p − n)n = 0 unless

p ⩾ n, and one of the formulae above for the integral shows that it vanishes unless m ⩾ n.
Similarly, a+ c = 1 −m so that we also need n ⩾ m. In the end, the integral is

�
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α
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2
1 α
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)
n

. (4.1.48)

Putting everything together yields (we also use (x− y)2 = −2x · y)

RHS =
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(
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×
[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
· (x⊗l1 ⊗ y⊗l2) . (4.1.49)

4.1.4 Properties of the R-Matrices

Unitarity The representation (4.1.2) clearly shows that the R-matrices are symmetric and
transform simply under complex conjugation:

tRl1,l2 = Rl1,l2 , Rl1,l2(u)∗ = Rl1,l2(−u∗) . (4.1.50)

From the integral representation, on the other hand, it is easy to see that the inverse is
obtained by changing the sign of the spectral parameter

Rl1,l2(u)Rl1,l2(−u) = Idl1
⊗ Idl2

. (4.1.51)

With the help of the two previous relations, this amounts to saying that the R-matrix is
unitary when u is real.

The proof of unitarity goes as follows. We first use twice the integral representation to
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write[
Rl1,l2(iλ)Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
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(
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(
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π2d .

(4.1.52)

After the change of variables (v′, z′) 7→ (v′ − v, z′ − v), the integral over v reduces to an
application of (3.1.39). This produces δ(d)(z − z′) which allows us to perform the integral
over z′, we get[
Rl1,l2(iλ)Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
· (x⊗l1 ⊗ y⊗l2)

=
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2 +λ
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�

(ζ · (x− v′))l1(η · (y − v′))l2δ(d)(v′)ddv′ = (ζ · x)l1(η · y)l2 . (4.1.53)

We have once more used (3.1.39).

Crossing Symmetry From the explicit representation (4.1.2) of the R-matrix, one imme-
diately deduces the crossing property

t2Rl1,l2
(

i2 − d

2 − u

)
=

(
−iu+ d+l2−l1−2

2

)
l1

(
iu− l1+l2

2

)
l1(

−iu+ d−l1−l2−2
2

)
l1

(
iu+ l2−l1

2

)
l1

Rl1,l2(u) , (4.1.54)

where t2 denotes transposition in Vl2 only.

Yang–Baxter Relation The fusion procedure being a way to construct new solutions of
the Yang–Baxter relation, we know that the expression (4.1.2) satisfies it. It is however also
possible to show it directly for the integral representation as we now explain. We want to
show that, for arbitrary null vectors ζ, η, and θ, we have

Rl1,l2(−iλ)Rl1,l3(−i(λ+ µ))Rl2,l3(−iµ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3

= Rl2,l3(−iµ)Rl1,l3(−i(λ+ µ))Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3 . (4.1.55)

It suffices to verify that the scalar product with any vector of the form x⊗l1 ⊗ y⊗l2 ⊗ z⊗l3

for x, y, and z real, is the same for both sides. After taking the scalar product and using
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the integral representation (without writing the scalar prefactors Fli,lj ), the left-hand side
becomes

[Rl1,l2(−iλ)Rl1,l3(−i(λ+ µ))Rl2,l3(−iµ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3 ] · x⊗l1 ⊗ y⊗l2 ⊗ z⊗l3
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(4.1.56)

At the last step we have simply performed the change of variables (w′′, v′′) 7→ (w′′ −v, v′′ −v),
so that the integral over v is now computed by a simple application of the star-triangle
identity. At the same time, we find it convenient to define z̃ = z − y, and to perform the
change of variables (w′, v′) 7→ (y − w′, y − v′). We obtain

[Rl1,l2(−iλ)Rl1,l3(−i(λ+ µ))Rl2,l3(−iµ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3 ] · x⊗l1 ⊗ y⊗l2 ⊗ z⊗l3
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)
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Figure 4.1: The denominators of the integrands of (4.1.57) (on the left) and of (4.1.58) (on
the right) are both proportional to the one in the middle. Keeping track of the proportionality
constants shows that (4.1.57) = (4.1.58).
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(4.1.57)

Similar manipulations for the right-hand side of the Yang–Baxter relation give

[Rl2,l3(−iµ)Rl1,l3(−i(λ+ µ))Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2 ⊗ θ⊗l3 ] · x⊗l1 ⊗ y⊗l2 ⊗ z⊗l3
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w2
(
µ+ l3−l2

2

)
(w − z̃)2

(
µ+ l2−l3

2

)
(w − y)2

(
1− l2+l3

2 −µ
)
(w′ − w′′)2

(
1− d+l2+l3

2 +µ
)

× π−dddw′′ddv′′

(w′′ − x)2
(
λ+µ+ l3−l1

2

)
(w − w′)2

(
d+l3−l1

2 −λ−µ
)
w′′2

(
1− l1+l3

2 −λ−µ
)
(w′′ − v′′)2

(
d−1+ l1+l3

2 −λ−µ
)

× (ζ · (z̃ + v′))l1(η · (v′ − v′′))l2(θ · (x− v′′))l3 π−dddw′ddv′

(w′ − v′′)2
(
λ+ l2−l1

2

)
(w′ − z̃)2

(
λ+ l1−l2

2

)
(w − w′′)2

(
d+l1+l2

2 −1+λ
)
(w′ − v′)2

(
d−1+ l1+l2

2 −λ
) .

(4.1.58)

Notice that the numerators of the integrands of the last two formulae are the same, and
that these do not involve w, w′, and w′′. Consequently, if we can prove that the integrals over
these three variables coincide, then we are done. This is actually a straightforward application
of the star-triangle identity as depicted in Figure 4.1.

Additional Property For ζ and η two null vectors, it holds that

(ζ · ∇)l1(η · ∇)l2x2
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2 +λ
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)
. (4.1.59)
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In order to prove it, one first needs to compute y⊗(l1+l2) ·
[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
for arbitrary

y. We use equation (4.1.38) to write (after having performed the integral over z using the
star-triangle relation)
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. (4.1.60)

It is interesting to notice that this last formula is more difficult to obtain starting from the
expression (4.1.31) for the R-matrix, as it requires knowing the somewhat mysterious identity

(
λ+ l2−l1

2

)
l1(

λ− l1+l2
2

)
l1

∑
p,q,n⩾0

p⩽⌊ l1
2 ⌋, q⩽⌊ l2

2 ⌋
p+q⩽k

(−l1 + k)n−q(−l2 + k)n−p(−n)p(−n)q
p!q!(k − p− q)!n!2p+q

(
−λ+ 2−l1−l2

2

)
n

= (2λ)k
2kk!

(
λ− l1+l2

2

)
k

,

(4.1.61)
which should hold as long as k ⩽ min(l1, l2).

Returning to the proof of (4.1.59), we can write

[
Rl1,l2(−iλ)ζ⊗l1 ⊗ η⊗l2

]
· ∇⊗(l1+l2)x2

(
l1+l2+2−d

2 −λ
)

=
min(l1,l2)∑
k=0

l1!l2!
k!(l1 − k)!(l2 − k)! (2ζ · η)k

×
(2λ)k

(
λ+ d−2−l1−l2

2

)
k(

λ+ 4−l1−l2−d
2

)
k

(ζ · ∇)l1−k(η · ∇)l2−kx2
(

l1+l2+2−d

2 −k−λ
)

=
min(l1,l2)∑
k=0

min(l1,l2)−k∑
j=0

l1!l2!2l1+l2−k−j

k!j!(l1 − k − j)!(l2 − k − j)! (ζ · η)k+j(ζ · x)l1−k−j(η · x)l2−k−j

× x2
( 2−l1−l2−d

2 +k+j−λ
) (2λ)k(−1)k(
λ+ 4−l1−l2−d

2

)
k

(4 − l1 − l2 − d

2 + k + j − λ

)
l1+l2−k−j

=
(4 − l1 − l2 − d

2 − λ

)
l1+l2

min(l1,l2)∑
p=0

l1!l2!2l1+l2−p

p!(l1 − p)!(l2 − p)!

× (ζ · η)p(ζ · x)l1−p(η · x)l2−p(
λ+ 4−l1−l2−d

2

)
p

x2
( 2−l1−l2−d

2 +p−λ
)
. (4.1.62)
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On the other hand, one has

(ζ·∇)l1(η·∇)l2x2
(

l1+l2+2−d

2 +λ
)

=
min(l1,l2)∑
p=0

l1!l2!2l1+l2−p

p!(l1 − p)!(l2 − p)!

(4 − l1 − l2 − d

2 + p+ λ

)
l1+l2−p

× (ζ · η)p(ζ · x)l1−p(η · x)l2−px2
( 2−l1−l2−d

2 +p+λ
)
, (4.1.63)

and, since (4 − l1 − l2 − d

2 + p+ λ

)
l1+l2−p

=

(
4−l1−l2−d

2 + λ
)
l1+l2(

4−l1−l2−d
2 + λ

)
p

, (4.1.64)

equation (4.1.59) does hold.
Let us define an operator Ol1,l2(u) : Vl1 ⊗Vl2 → Sl1+l2(Cd) that takes values in the space

of symmetric tensors of rank l1 + l2 in the following way:

[
Ol1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗(l1+l2) = x2

(
l1+l2+d−2

2 −iu
)
(ζ · ∇)l1(η · ∇)l2x2

(
l1+l2+2−d

2 +iu
)

2l1+l2
(

4−l1−l2−d
2 + iu

)
l1+l2

(4.1.65)

or, equivalently, using (4.1.63),

[
Ol1,l2(u)ζ⊗l1 ⊗ η⊗l2

]
· x⊗(l1+l2) =

min(l1,l2)∑
p=0

l1!l2!
p!(l1 − p)!(l2 − p)!

(x2ζ · η)p(ζ · x)l1−p(η · x)l2−p

2p
(

4−l1−l2−d
2 + iu

)
p

.

(4.1.66)
The property (4.1.59) we presented above is now written in a concise manner as

Ol1,l2(u) = Ol1,l2(−u)Rl1,l2(u) . (4.1.67)

We also point out that Ol1,l2 naturally arises in the generalisation of the chain relation:

� C1
(
w

|w|

)
C2
(
w−x

|w−x|

)
w2a(w − x)2b

ddw
π

d
2

= Al1(a)Al2(b)Al1+l2(d− a− b)

× [Ol1,l2(i(a+ b+ 1 − d))C1 ⊗ C2] · x⊗(l1+l2)

x2
(
a+b+ l1+l2−d

2

) . (4.1.68)

4.2 Diagonalisation of Graph-Building Operators

4.2.1 Construction of the Eigenvectors

From now on and until the end of this chapter, forgetting momentarily about the fishnet
theory, we consider δ ∈ iR. We will only perform analytic continuation in δ at the end. This
choice is only motivated by the fact that the inner product in the unitary principal series is
simpler than in the complementary series (cf. Subsection 3.1.1), and this slightly simplifies
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some of the formulae that follow. We also introduce some reference point x0 ∈ Rd (one could
set it to 0 for instance).

For N ∈ N∗ and u ∈ C, let QN (u) be the operator acting on functions Φ of N variables
as

[QN (u)Φ] (x1, . . . , xN ) =
� Φ(y1, . . . , yN )∏N

k=1 x
2δ
kk+1(yk − xk)2α(yk − xk−1)2β

N∏
k=1

ddyk
π

d
2

= [A0(δ)A0(α)A0(β)]N
� Φ(y1, . . . , yN )∏N

k=1(wk − yk)2δ̃(wk − xk)2β̃(wk − xk−1)2α̃

N∏
k=1

ddwkddyk
πd

(4.2.1)

where xkk+1 = xk − xk+1, and we have

α = δ̃

2 − iu , β = δ̃

2 + iu so that α+ β + δ = d

2 . (4.2.2)

Let us recall our convention: because we want to include π− d
2 in the integration measure

over space-time, we define |x⟩ such that ⟨x|y⟩ = π
d
2 δ(x − y). This way, if Φ and Ψ are two

functions of N variables, then the inner product is defined by

⟨Φ|Ψ⟩ =
�

⟨Φ|x1, . . . , xN ⟩ ⟨x1, . . . , xN |Ψ⟩
N∏
k=1

ddxk
π

d
2

=
�

Φ∗(x1, . . . , xN )Ψ(x1, . . . , xN )
N∏
k=1

ddxk
π

d
2
. (4.2.3)

As a consequence, one can write

⟨x1, . . . , xN | QN (u) |y1, . . . , yN ⟩ = 1∏N
k=1 x

2δ
k,k+1(yk − xk)2α(yk − xk−1)2β

(4.2.4)

for the kernel of the graph-building operator. It is graphically represented in Figure 4.2.
We point out that, when x0 = 0, the graph-building operator ΛN,δ̃ is part of the family

of operators just defined since

QN

(
i δ̃2

)
= ΛN,δ̃ . (4.2.5)

The operators moreover commute for different values of the spectral parameter,

[QN (u),QN (u′)] = 0 . (4.2.6)

The proof is exactly the same as the one in two dimensions that appeared in [206], for instance,
though similar computations were already present in [67]. But we show it in Figure 4.3
nevertheless, for completeness. Many computations in this section are way too lengthy to be
spelt out entirely, so we will mostly content ourselves with pictures presenting the main steps.
In particular, the various proportionality constants will never appear on these pictures, but
we have always made sure that they agree with the results stated in the thesis.
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Figure 4.2: Kernels of the graph-building operator Q4(u) (on the left) and of the operator
Π̂w0

4 (u) (on the right)

Figure 4.3: Proof of the commutation property of the family Q4(u) of operators. The first
drawing on the left is the kernel of Q4(u)Q4(u′). We first rewrite the kernel of Q4(u′) in
its second form (see Figure 4.2). The green arrow stands for repeated application of the
star-triangle identity (3.1.40), starting with the transformation of a triangle into a star. This
effectively exchanges u and u′ as we wanted.
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We shall construct recursively eigenvectors of QN . Since these operators commute with
global rotations and dilations, the eigenvectors of the first one are immediately found to be

⟨x|u1;C⟩ = C(x− x0)

(x− x0)2
(
β̃1+ l1

2

) , (4.2.7)

where
u1 = (u1, l1) ∈ C× N , C(y) = Cµ1...µl1yµ1 . . . yµl1

, (4.2.8)
and C belongs to the space Vl1 of symmetric traceless tensors of rank l1. One has

Q1(u) |u1;C⟩ = Ql1(u|u1) |u1;C⟩ , (4.2.9)

where the eigenvalue, which follows from (B.1.11), is

Ql(u|u′) = A0(α)Al(α̃′)Al(β + β̃′) . (4.2.10)

For N > 1, u ∈ C× N, and C ∈ Vl, we now define some operator C · Π̂N (u) acting on
functions of N − 1 variables and returning functions of N variables:

[
C · Π̂N (u)Φ

]
(x1, . . . , xN ) =

[
A0

(
1 − α− l

2

)
A0

(
β + l

2

)]N−1

×
� C

(
x1−x0

(x1−x0)2 − y1−x0
(y1−x0)2

)
(xN − wN−1)2(β̃− l

2 )∏N−1
k=1 (xk − wk)2(α̃+ l

2 )(xk − wk−1)2(β̃− l
2 )

× Φ(y1, . . . , yN−1)∏N−1
k=1 (yk − wk)2(α+ d+l

2 −1)(yk − wk−1)2(1−β̃− l
2 )

N−1∏
k=1

ddwk
π

d
2

ddyk
π

d
2
, (4.2.11)

with w0 = x0. The scalar prefactor is merely here for convenience, including it in the definition
of Π̂N (u) simplifies the form of the symmetry property and inner product of the eigenvectors
that we will later show. These integrals are ill-defined if l > 0, they should be understood
as analytic continuations. It would nonetheless seem that we can perform on them all the
usual manipulations (like those presented in Appendix B.1). The operator Π̂N (u) is of course
independent of the tensor C, but it is symmetric traceless in its l indices. It is important to
notice that, because of (B.1.4), the dependence on the tensor can be rewritten as a derivative
if we introduce another operator:

C · Π̂N (u) = C (∇x0)
2l
(
β̃ − l

2

)
l

Π̂x0
N (u) . (4.2.12)

The kernel of this last operator is represented in Figure 4.2.
It follows from the relation (see the different steps of a proof, in the case N = 3, in Figure

4.4)
QN (u)CN · Π̂N (uN ) = QlN (u|uN )CN · Π̂N (uN )QN−1(u) (4.2.13)

that eigenvectors of Λ̂N (u) are given by

|u1, . . . ,uN ;C1 ⊗ · · · ⊗ CN ⟩ = CN · Π̂N (uN ) · · ·C2 · Π̂2(u2) |u1;C1⟩ , (4.2.14)
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Figure 4.4: Sketch of a proof of relation (4.2.13) when N = 3. The first drawing is the kernel
of the left hand-side of (4.2.13), whereas the last one is the kernel of the right-hand side (for
clarity, we did not display the operator C(∇w0)|w0=x0 acting on each drawing even though it
does). We indicate with colours the manipulations needed to pass from one drawing to the
next. A red arrow means that we apply identity (B.1.5). The blue dot on the first drawing
signifies that we perform the integration. Keeping track of all the proportionality factors, one
eventually gets (4.2.13).
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with arbitrary Ci ∈ Vli . One has indeed

QN (u) |u1, . . . ,uN ;C⟩ =
N∏
k=1

Qlk(u|uk) |u1, . . . ,uN ;C⟩ (4.2.15)

for an arbitrary tensor C ∈ Vl1 ⊗ · · · ⊗ VlN .

4.2.2 Symmetry Property

Using the integral representation of the R-matrix, it is possible to show the following com-
mutation relation for N > 1:

C · Π̂N+1(u1) ⊗ Π̂N (u2) = [Sl1,l2(u1 − u2)C] · Π̂N+1(u2) ⊗ Π̂N (u1) , (4.2.16)

where C ∈ Vl1 ⊗Vl2 , the tensor product notation concerns only the finite-dimensional tensor
spaces Vl1 and Vl2 , and the scattering matrix is given by the fused R-matrix up to a scalar
phase:

Sl,l′(u) = (−1)l+l′
Γ(1 + l+l′

2 − iu)
Γ(1 + l+l′

2 + iu)
Γ(d2 − 1 + l+l′

2 − iu)
Γ(d2 − 1 + l+l′

2 + iu)
Rl,l′(u) . (4.2.17)

Let us define, for any permutation σ ∈ SN , the operator S(u1, . . . ,uN ;σ) acting on
Vl1 ⊗ · · · ⊗ VlN . We first set

S(u1, . . . ,uN ; id) = Idl1 ⊗ · · · ⊗ IdlN , (4.2.18)

then, if σ is a transposition of the form (kk + 1) for k ∈ {1, . . . , N − 1}, we define

S(u1, . . . ,uN ; (kk+1)) = Idl1 ⊗· · ·⊗Idlk−1 ⊗Slk,lk+1(uk+1 −uk)⊗Idlk+2 ⊗· · ·⊗IdlN . (4.2.19)

We then require that

S(u1, . . . ,uN ; (kk + 1)σ) = Slσ−1(k),lσ−1(k+1)
(uσ−1(k+1) − uσ−1(k))S(u1, . . . ,uN ;σ) (4.2.20)

for any k ∈ {1, . . . , N − 1} and any permutation σ. In the previous formula, we use the
(natural) convention that Sli,lj (u) can be seen to act on Vl1 ⊗ · · · ⊗VlN by being trivial on all
the Vlm for m /∈ {i, j} (when acting on Vl1 ⊗ · · · ⊗ VlN , there is no difference between Sli,lj
and Slj ,li). Since any permutation can be decomposed into a product of transpositions of the
form (kk + 1), this is enough to define S(u1, . . . ,uN;σ) for all σ ∈ SN . Furthermore, there
is no ambiguity in this definition because Rl,l′ satisfies the Yang–Baxter equation.

The eigenvectors satisfy the following symmetry property: for any permutation σ ∈ SN ,
one has

|u1, . . . ,uN ;C⟩ =
∣∣∣uσ−1(1), . . . ,uσ−1(N);PσS(u1, . . . ,uN ;σ)C

〉
, (4.2.21)

where Pσ : Vl1 ⊗ · · · ⊗VlN → Vlσ−1(1)
⊗ · · · ⊗Vlσ−1(N)

is the canonical isomorphism. We point
out that this symmetry property is exactly the same as Equation (1.3.15) for the compact
GL(N) spin chain studied previously. However, since we are now considering a model in
infinite volume, the tensor C and the rapidities can be chosen arbitrarily.
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4.2.3 Inner Product

The inner product for length one is trivially computed to be

〈
u;C

∣∣u′;C ′〉 =
�
C∗(x− x0)C ′(x− x0)

(x− x0)2
(
β̃∗+β̃′+ l+l′

2

) ddx
π

d
2

= δ(u − u′)
〈
C
∣∣C ′〉 , (4.2.22)

where δ(u − u′) = δll′δ(u− u′), and

〈
C
∣∣C ′〉 = π

�
Sd−1

C∗(n)C ′(n) dn
π

d
2

= l! 21−lπ

Γ
(
d
2 + l

)C∗
µ1...µl

C ′µ1...µl (4.2.23)

is the inner product we choose on Vl.
Using the integral representation (4.1.38) of the R-matrix and crossing symmetry (4.1.54)

(and assuming u′ ̸= u), it is possible to show the commutation relations

⟨x|C ′ · Π̂†
2(u′)C · Π̂2(u) |y⟩ = 1[

(u− u′)2 + (l−l′)2

4

] [
(u− u′)2 + (d−2+l+l′)2

4

]
×

[t2Sl,l′(u− u′)C ⊗ C ′] · (x− x0)⊗l ⊗ (y − x0)⊗l′

(x− x0)2(β̃+ l
2 )(y − x0)2

(
β′+ l′

2

) (4.2.24)

and, for N > 2,

C ′ · Π̂†
N (u′)C · Π̂N (u) =

[t2Sl,l′(u− u′)C ⊗ C ′] · Π̂N−1(u) ⊗ Π̂†
N−1(u′)[

(u− u′)2 + (l−l′)2

4

] [
(u− u′)2 + (d−2+l+l′)2

4

] . (4.2.25)

This last relation is exemplified in Figure 4.5.
From this and the symmetry property of the eigenvectors, we deduce

〈
u1, . . . ,uN ;C

∣∣u′
1, . . . ,u′

N ;C ′〉 =
∑
σ∈SN

∏N
k=1 δ(uσ(k) − u′

k) ⟨C|PσS(u′
1, . . . ,u′

N ;σ)C ′⟩
µ(u1, . . . ,uN ) ,

(4.2.26)
where

µ(u1, . . . ,uN ) =
∏

1⩽j<k⩽N

[
(uj − uk)2 + (lj − lk)2

4

] [
(uj − uk)2 + (d− 2 + lj + lk)2

4

]
.

(4.2.27)
Let us understand this formula in the case N = 3: we are computing〈
u1,u2,u3;C1 ⊗ C2 ⊗ C3

∣∣u′
1,u′

2,u′
3;C ′

1 ⊗ C ′
2 ⊗ C ′

3
〉

= ⟨u1;C1|C2 · Π̂†
2(u2)C3 · Π̂†

3(u3)C ′
3 · Π̂3(u′

3)C ′
2 · Π̂2(u′

2)
∣∣u′

1;C ′
1
〉

=
�

⟨x|C2 · Π̂†
2(u2)C3 · Π̂†

3(u3)C ′
3 · Π̂3(u′

3)C ′
2 · Π̂2(u′

2) |y⟩

× C∗
1 (x− x0)C ′

1(y − x0)

(x− x0)2
(
β̃∗

1 + l1
2

)
(y − x0)

2
(
β̃′

1+
l′1
2

) ddxddy
πd

. (4.2.28)
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Figure 4.5: Sketch of a proof of relation (4.2.25) when N = 4. The first
drawing gives the kernel of the left hand-side of (4.2.25) upon multiplication by
C
(

y1−x0
(y1−x0)2 − v−x0

(v−x0)2

)
C ′
(

x1−x0
(x1−x0)2 − v−x0

(v−x0)2

)
and integration over v (divided by π

d
2 ).

If we multiply by the same factor the kernel associated to the last drawing
and integrate over v we recognise the integral expression for [tRl,l′(u − u′)C ⊗
C ′]

(
x1−x0

(x1−x0)2 − w−x0
(w−x0)2 ; y1−x0

(y1−x0)2 − w−x0
(w−x0)2

)
. At each step, we first perform the integration

(blue dot) and then take the horizontal line down (green arrow). Keeping track of all the
proportionality factors one eventually gets (4.2.25).
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If we assume that u3 ̸= u′
3, u3 ̸= u′

2, and u2 ̸= u′
3, then, thanks to the above formulae, one

can write〈
u1,u2,u3;C1 ⊗ C2 ⊗ C3

∣∣u′
1,u′

2,u′
3;C ′

1 ⊗ C ′
2 ⊗ C ′

3
〉

∝
� [

t2Sl′3,l2(u′
3 − u2)t3Sl′2,l3(u′

2 − u3)t3Sl′3,l3(u′
3 − u3)C ′

2 ⊗ C ′
3 ⊗ C∗

2 ⊗ C∗
3

]
(z;x; z; y)

× C∗
1 (x− x0)C ′

1(y − x0)

x
2
(
β̃∗

1 +β̃′
3+

l1+l′3
2

)
y

2
(
β̃∗

3 +β̃′
1+

l3+l′1
2

)
z

2
(
β̃∗

2 +β̃′
2+

l2+l′2
2

) ddxddyddz
π

3d
2

. (4.2.29)

Then, since the integrals over x, y and z are of the form of (4.2.22), this simplifies into〈
u1,u2,u3;C1 ⊗ C2 ⊗ C3

∣∣u′
1,u′

2,u′
3;C ′

1 ⊗ C ′
2 ⊗ C ′

3
〉

∝ δ(u1 − u′
3)δ(u2 − u′

2)δ(u3 − u′
1)

×
〈
C3 ⊗ C2 ⊗ C1

∣∣∣Sl′2,l′3(u′
3 − u′

2)Sl′1,l′3(u′
3 − u′

1)Sl′1,l′2(u′
2 − u′

1)C ′
1 ⊗ C ′

2 ⊗ C ′
3

〉
. (4.2.30)

Thanks to the delta functions, the prefactor is actually exactly µ(u1,u2,u3)−1. It remains
to notice that

Sl′2,l′3(u′
3 − u′

2)Sl′1,l′3(u′
3 − u′

1)Sl′1,l′2(u′
2 − u′

1) = S(u′
1,u′

2,u′
3; (12)(23)(12)) = S(u′

1,u′
2,u′

3; (13))
(4.2.31)

because of (4.2.20). On the other hand, when u3 ̸= u′
3, u3 ̸= u′

2, and u2 ̸= u′
3, formula

(4.2.26) also reduces to〈
u1,u2,u3;C1 ⊗ C2 ⊗ C3

∣∣u′
1,u′

2,u′
3;C ′

1 ⊗ C ′
2 ⊗ C ′

3
〉

= µ(u1,u2,u3)−1

× δ(u1 − u′
3)δ(u2 − u′

2)δ(u3 − u′
1)
〈
C3 ⊗ C2 ⊗ C1

∣∣S(u′
1,u′

2,u′
3; (13))C ′

1 ⊗ C ′
2 ⊗ C ′

3
〉
.

(4.2.32)

The other terms of (4.2.26) appear when requiring, following (4.2.21), that the full result for
the inner product be invariant under

|u1,u2,u3;C1 ⊗ C2 ⊗ C3⟩ 7−→
∣∣∣uσ−1(1),uσ−1(2),uσ−1(3);PσS(u1,u2,u3;σ)C1 ⊗ C2 ⊗ C3

〉
(4.2.33)

for all the permutations σ ∈ S3. This whole procedure is easily generalised to arbitrary N .

4.2.4 Completeness

Let {Cm,l}1⩽m⩽dl
be an orthonormal basis of Vl for the inner product defined in (4.2.23) (dl

is the dimension of Vl). We postulate that, for any N , the following resolution of the identity
holds:

∑
0⩽l1⩽+∞
1⩽m1⩽dl1

· · ·
∑

0⩽lN⩽+∞
1⩽mN⩽dlN

�
. . .

�
µ(u1, . . . ,uN )

N ! ⟨x1, . . . , xN |u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN ⟩

× ⟨u1, . . . ,uN ;Cm1,l1 ⊗ · · · ⊗ CmN ,lN |y1, . . . , yN ⟩
N∏
k=1

duk =
N∏
k=1

π
d
2 δ(xk − yk) . (4.2.34)
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Figure 4.6: Feyman graphs investigated in Section 4.3 in the case (M,N) = (3, 4). We call
G

(d,δ)
M,N (x1, x2, x3, x4) and I

(d,δ)
M,N (x, y) the integrals represented by the graphs on the left and

on the right respectively. All the vertical (or ending on x2, x4, or 0) segments have weight δ,
whereas all the horizontal (or ending on x1, x3, x, or y) ones have weight δ̃.

The power of π in the right-hand side comes from the fact that we have defined |x⟩ such that
⟨x|y⟩ = π

d
2 δ(x−y) (see beginning of Section 4.2). This completeness relation is easily verified

in the case N = 1, but much less clear when N > 1.

4.3 Basso–Dixon Diagrams
In this section, we investigate the possible application of these operators to the computations
of some fishnet Feynman integrals presented in Figure 4.6. Up to a trivial normalisation
factor, the Feynman graph of the left panel has an interpretation as a four-point correlator
in the fishnet theory:

G
(d,δ)
M,N (x1, x2, x3, x4) ∝

〈
Tr
(
XN (x1)ZM (x2)X†N (x3)Z†M (x4)

)〉
. (4.3.1)

Because of the conformal invariance of the integral, it is equivalent to compute the integral
associated to the right panel of the figure. A simple change of variables indeed shows that

G
(d,δ)
M,N (x1, x2, x3, x4) = 1

(x2
24)Mδ

(
x2

14x
2
34
)Nδ̃ I(d,δ)

M,N

(
x14
x2

14
− x24
x2

24
,
x34
x2

34
− x24
x2

24

)
. (4.3.2)

In turn, the integral I(d,δ)
M,N is almost a matrix element of the M + 1-th power of the graph-

building operator ΛN,δ̃ = QN

(
i δ̃2
)
, one just has to be careful when sending all the external

points to the same value x:

I
(d,δ)
M,N (x, y) = π

Nd
2 ⟨x, . . . , x|

(
N∏
i=1

x̂2δ
i−1,i

)
ΛM+1
N,δ̃

|y, . . . , y⟩ , (4.3.3)
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where we have set x0 = 0. It thus seems natural to use the completeness relation to try to
express these integrals in a simpler form. This was successfully achieved in two dimensions
in [179] and in four dimensions in [176, 177]. We will now see that for other dimensions the
result is actually more complicated, and nice expressions are not as readily obtained.

As seen above, the eigenvalue of QN

(
i δ̃2
)

factorises into a product ∏N
k=1Qlk(uk) of

Ql(u) = Ql

(
i δ̃2

∣∣∣∣u
)

=
Γ(δ)Γ

(
d
4 − δ

2 + l
2 − iu

)
Γ
(
d
4 − δ

2 + l
2 + iu

)
Γ(δ̃)Γ

(
d
4 + δ

2 + l
2 + iu

)
Γ
(
d
4 + δ

2 + l
2 − iu

) . (4.3.4)

4.3.1 Ladder Diagrams

We first give the expressions for the so-called ladder diagrams [168,169,218,219] in arbitrary
dimension:

I
(d,δ)
M,1 =

Γ
(
d
2

)
(x2

3x
2
4) δ̃

2

+∞∑
l=0

2l + d− 2
d− 2 C

( d−2
2 )

l (cos θ)
� (

x2
3
x2

4

)iu

Ql(u)M+1 du
2π , (4.3.5)

where Ql is given in equation (4.3.4), C(µ)
l are Gegenbauer polynomials of degree l, and

cos θ = x3 · x4/|x3||x4|. We assume d ⩾ 3.
The integral is straightforwardly computed by residues, but the eigenvalue Ql generically

has infinitely many poles. However, when δ is a positive integer, Q−1
l is a polynomial of

degree 2δ and there is a finite number of poles. In the simplest case, i.e. δ = 1, one has
Ql(u)−1 = Γ

(
d−2

2

) (
u2 + (l + (d− 2)/2)2/4

)
and performing the integral yields

I
(d,1)
M,1 =

Γ
(
d−2

2

)−M

(x2
3x

2
4) d−2

4

2M∑
k=M

k!(−2 ln r)2M−k

M !(k −M)!(2M − k)!

+∞∑
l=0

C
( d−2

2 )
l (cos θ) rl+

d−2
2(

l + d−2
2

)k , (4.3.6)

with r =
√
x2

4/x
2
3.

When d is even we also have the following property of the Gegenbauer polynomials

Γ
(
d− 2

2

)
C

( d−2
2 )

l (x) = 2
4−d

2
d d−4

2

dx d−4
2

[
C

(1)
l+ d−4

2
(x)
]
. (4.3.7)

Consequently, for even d > 2, we can write (z = r eiθ)

I
(d,1)
M,1 =

2 4−d
2 Γ

(
d−2

2

)−M−1

(x2
3x

2
4) d−2

4

d d−4
2

d cos θ d−4
2

[
LM (z, z̄)
eiθ − e−iθ

]
, (4.3.8)

where we have introduced the ladder function LM defined for M > 0 by [168,220]

LM (z, z̄) =
2M∑
k=M

k![− ln(zz̄)]2M−k

M !(k −M)!(2M − k)! [Lik(z) − Lik(z̄)] , (4.3.9)

with Lik(z) = ∑+∞
n=1

zn

nk the polylogarithm of order k.
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4.3.2 Two-Layer Diagrams

Inserting the resolution of the identity in the expression of I(d,δ)
M,2 , it becomes

I
(d,δ)
M,2 =

∑
0⩽l1⩽+∞
1⩽m1⩽dl1

∑
0⩽l2⩽+∞
1⩽m2⩽dl2

�
[Ql1(u1)Ql2(u2)]M+1µ(u1,u2)

2

× ⟨x3, x3| x̂2δ
12x̂

2δ
1 |u1,u2;Cm1,l1 ⊗ Cm2,l2⟩ ⟨u1,u2;Cm1,l1 ⊗ Cm2,l2 |x4, x4⟩ du1du2 . (4.3.10)

One can show that

⟨x3, x3| x̂2δ
12x̂

2δ
1 |u1,u2;C⟩ = A0(δ̃)Al1(α̃1)Al2(α̃2)41− d

2 +iu21 il1+l2

x
2(2α1− d

2 +1)
3

�
C(p, p) eip·x3

p2
(

1+ l1+l2
2 +iu21

) ddp
π

d
2
,

(4.3.11)

⟨x4, x4|u1,u2;C⟩ = A0

(
d

2 + δ

)
Al1(β1)Al2(β2)41− d

2 +iu21 il1+l2

x
2(2β̃1− d

2 +1)
4

�
C(p, p) eip·x4

p2
(

1+ l1+l2
2 +iu21

) ddp
π

d
2
.

(4.3.12)
Both of these equations can be rewritten using the operator Ol1,l2 introduced in (4.1.66), the
first one becomes for instance

⟨x3, x3| x̂2δ
12x̂

2δ
1 |u1,u2;C⟩ = A0(δ̃)Al1(α̃1)Al2(α̃2)

× (−1)l1+l2Al1+l2(1 + iu21) [Ol1,l2(u2 − u1)C] · x⊗(l1+l2)
3

x
2
(
α1+α2+ l1+l2

2

)
3

. (4.3.13)

If we want to proceed without using the operatorOl1,l2 we have to remark that, necessarily,
whatever orthonormal basis of symmetric traceless tensors we chose,

dl∑
m=1

Cm,l(p)C∗
m,l(q) =

Γ
(
d
2

)
(2l + d− 2)

2π(d− 2) |p|l|q|lC( d−2
2 )

l

(
p · q
|p||q|

)
. (4.3.14)

We can thus rewrite I(d,δ)
M,2 as

I
(d,δ)
M,2 =

Γ
(
d
2

)2

2
∑
l1,l2

� 42−d[Ql1(u1)Ql2(u2)]M+2

x
2(2α1− d

2 +1)
3 x

2(2β1− d
2 +1)

4

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
� C

( d−2
2 )

l1

(
p·q

|p||q|

)
C

( d−2
2 )

l2

(
p·q

|p||q|

)
p2(1+i(u2−u1))q2(1+i(u1−u2)) eip·x3−iq·x4 ddp ddq

πd
du1du2
(2π)2 . (4.3.15)

If we expect that the integral can be recast as a determinant and hope to generalise this
to an arbitrary number of layers, it is possible that this last formula is the most convenient
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one. If we however want to perform the integrals over p and q, we may proceed as follows:
one first expands the product of two Gegenbauer polynomials according to

C
( d−2

2 )
l1

(
p · q
|p||q|

)
C

( d−2
2 )

l2

(
p · q
|p||q|

)
=

min(l1,l2)∑
m=0

al1,l2,mC
( d−2

2 )
l1+l2−2m

(
p · q
|p||q|

)
, (4.3.16)

with

al1,l2,m =
(l1 + l2 − 2m+ d−2

2 )(l1 + l2 − 2m)!
(l1 + l2 −m+ d−2

2 )m!(l1 −m)!(l2 −m)!

(
d−2

2

)
m

(
d−2

2

)
l1−m

(
d−2

2

)
l2−m(

d−2
2

)
l1+l2−m

(d− 2)l1+l2−2m
(d−2)l1+l2−m .

(4.3.17)
Then, one uses the fact that C( d−2

2 )
l

(
p·q

|p||q|

)
is a spherical harmonic with respect to both p

and q (see equation (4.3.14)) to compute the integrals over these variables using (B.1.7):

� C
( d−2

2 )
l

(
p·q

|p||q|

)
p2(1−iu12)q2(1+iu12) eip·x3−iq·x4 ddp ddq

πd

= 4d−2
∣∣∣∣∣Γ
(
l+d−2

2 + iu12
)

Γ
(
l+2

2 + iu12
) ∣∣∣∣∣

2
C

( d−2
2 )

l

(
x3·x4

|x3||x4|

)
x

2( d
2 −1+iu12)

3 x
2( d

2 −1−iu12)
4

. (4.3.18)

Consequently, one can write

I
(d,δ)
M,2 =

Γ
(
d
2

)2

2(x2
3x

2
4)δ̃

∑
l1,l2

� (
x2

3
x2

4

)i(u1+u2)

[Ql1(u1)Ql2(u2)]L+2

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
min(l1,l2)∑
m=0

al1,l2,m

∣∣∣∣∣Γ
(
l1+l2−2m+d−2

2 + iu12
)

Γ
(
l1+l2−2m+2

2 + iu12
) ∣∣∣∣∣

2

C
( d−2

2 )
l1+l2−2m(cos θ)du1du2

(2π)2 , (4.3.19)

with x3 · x4 = |x3||x4| cos θ. Using the operator Ol1,l2 , this can actually be written in a more
concise way:

I
(d,δ)
M,2 =

Γ
(
d
2

)2

2(x2
3x

2
4)δ̃

∑
l1,l2

� (
x2

3
x2

4

)i(u1+u2)

[Ql1(u1)Ql2(u2)]M+2

×
[
u2

12 + l212
4

] [
u2

12 + (l1 + l2 + d− 2)2

4

]
(2l1 + d− 2)(2l2 + d− 2)

(d− 2)2

×
∣∣∣∣∣Γ
(
l1+l2+d−2

2 + iu12
)

Γ
(
l1+l2+2

2 + iu12
) ∣∣∣∣∣

2
[Ol1,l2(u21)tOl1,l2(u12)x⊗(l1+l2)

3 ] · x⊗(l1+l2)
4

(|x3||x4|)l1+l2
du1du2
(2π)2 . (4.3.20)
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Notice that since Ol1,l2 goes from Vl1 ⊗ Vl2 to Sl1+l2(Cd) we can only multiply it with its
transpose. This is what happens here where we need matrix elements ofOl1,l2(u21)tOl1,l2(u12) :
Sl1+l2(Cd) → Sl1+l2(Cd). Neither of the previous two expressions for I(d,δ)

M,2 seem to be very
convenient, but we do not know how to simplify them at the moment.

The limit d → 2 is seemingly singular but one should remember that the Gegenbauer
polynomials for l > 0 tend to 0 in this limit so that

∀l ∈ N, 2l + d− 2
d− 2 C

( d−2
2 )

l (cos θ) −→
d→2

2
1 + δl,0

cos lθ . (4.3.21)

Thus, for min(l1, l2) > 0, one has

(2l1 + d− 2)(2l2 + d− 2)
(d− 2)2 al1,l2,mC

( d−2
2 )

l1+l2−2m(cos θ)

−→
d→2

2
[
δm,0 cos(l1 + l2)θ + δm,min(l1,l2) cos(l1 − l2)θ

]
. (4.3.22)

In the end, I(2,δ)
M,2 is finite (as it should be) and, using the additional symmetry Ql = Q−l

valid for l ∈ Z when d = 2, one can extend the sum to (l1, l2) ∈ Z2 so that

I
(2,δ)
M,2 = 1

2(x2
3x

2
4)δ̃

∑
(l1,l2)∈Z2

ei(l1+l2)θ
� (

x2
3
x2

4

)i(u1+u2)

[Ql1(u1)Ql2(u2)]M+2
[
u2

12 + l212
4

]
du1du2
(2π)2 .

(4.3.23)
This coincides with the result of [179].

When d = 4, the dependence on u of the sum over m disappears and the sum is then
simply

C
(1)
l1

(cos θ)C(1)
l2

(cos θ) = (ei(l1+1)θ − e−i(l1+1)θ)(ei(l2+1)θ − e−i(l2+1)θ)
(eiθ − e−iθ)2 . (4.3.24)

Noticing that Ql = Q−l−2 when d = 4, we can keep only one of the four terms from the
equation above, if we extend the summation to (l1, l2) ∈ Z2. We thus obtain (we have also
replaced lj with aj = lj + 1):

I
(4,δ)
M,2 = 1

2(x2
3x

2
4)δ̃

1
(eiθ − e−iθ)2

∑
(a1,a2)∈Z2

a1a2 ei(a1+a2)θ

×
� (

x2
3
x2

4

)i(u1+u2)

[Qa1−1(u1)Qa2−1(u2)]M+2
[
u2

12 + a2
12
4

] [
u2

12 + (a1 + a2)2

4

]
du1du2
(2π)2 .

(4.3.25)

When δ = 1, this was found in [175], see also [176,177].
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The next case we could investigate is (d, δ) = (6, 1), the formula (4.3.19) then reads

I
(6,1)
M,2 = 1

2(x2
3x

2
4)2

∑
l1,l2

� (
x2

3
x2

4

)i(u1+u2)
[
u2

12 + l212
4

] [
u2

12 + (l1+l2+4)2

4

]
[(
u2

1 + (l1+2)2

4

) (
u2

2 + (l2+2)2

4

)]M+2 (l1 + 2)(l2 + 2)

×
min(l1,l2)∑
m=0

(m+ 1)(l1 −m+ 1)(l2 −m+ 1)(l1 + l2 −m+ 3)
(l1 + l2 − 2m+ 1)(l1 + l2 − 2m+ 3)

×
[
u2

12 + (l1 + l2 − 2m+ 2)2

4

]
C

(2)
l1+l2−2m(cos θ)du1du2

(2π)2 . (4.3.26)

The integrals are rather easy, at least when M is not too large, but the sums seem to be quite
tedious to perform.

We hope that the example of I(d,δ)
M,2 shows clearly the difficulties arising when trying to

compute Basso–Dixon integrals in arbitrary dimension.





Chapter 5

Thermodynamic Bethe Ansatz for
Fishnet Theories

Most of the content of this chapter is the same as that of [181] up to minor changes in pre-
sentation. The only two significant additions are the proof of the asymptotic behaviour of the
two-particle states in Subsection 5.1.2 and the computations of the two-magnon anomalous
dimension in Subsection 5.4.2 and Appendix B.2. This second work was done in collaboration
with De-liang Zhong.

We propose here thermodynamic Bethe ansatz (TBA) equations for the dimensions of
multi-magnon operators of the type

OJ,M (x) = Tr
(
XMZJ

)
+ . . . (5.0.1)

in the fishnet theory (2.3.2), in arbitrary dimension d and for an arbitrary anisotropy param-
eter δ. The mixing matrix of such operators is entirely defined by multi-wheel or multi-spiral
planar Feynman graphs [143,155], such as those in Figure 5.1. These integrals have attracted a
considerable interest in the literature as examples of explicitly calculable multi-loop Feynman
graphs [150,169,175,179,221].

In the case of the original fishnet theory, i.e. when (d, δ) = (4, 1), these TBA equations can
be obtained by taking the double-scaling limit of the full TBA system of twisted N = 4 super
Yang–Mills [150, 155, 222]. We no longer have this luxury when we deal with the theory in
arbitrary dimension, which does not have its SYM “parent”. In this case, to arrive at the TBA
equations we shall rely on the direct fishnet graph computations as well as a certain intuition
borrowed from the d = 4 case. We will then derive the asymptotic Bethe ansatz (ABA)
equations, valid in the limit J → ∞, and test them against explicit fishnet-type Feynman
integrals computations.

5.1 Graph-building Operators and Scattering Data
The TBA construction relies on the knowledge of the asymptotic data, dispersion relation
and factorised S-matrix, that characterise the integrable structure of the fishnet graphs. In
planar N = 4 SYM, these were determined using supersymmetry and crossing symmetry

91
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Figure 5.1: Specimens of planar fishnet graphs contributing to the anomalous dimensions of
multi-magnon operators (central points) with black and red lines representing propagators of
Z and X fields, respectively. Left panel: Multi-wheel graph renormalising the ground-state
operator with M = 0. The graph can be obtained by iterating the graph-building operator
ΛN=3,δ̃ shown here in bold face. Right panel: Multi-spiral graph contributing to the mixing
of excited-state operators with here M = 3 magnons inserted at the origin.

[117, 122–124]. We cannot follow these steps for the fishnet theory in arbitrary dimension d
for lack of symmetries, but we can read off the scattering data directly from the graphs. In
fact, the information can all be obtained from the wheel graphs shown in Figure 5.1 (left)
and corresponding to the local operator (5.0.1) with M = 0, referred to as the vacuum state.
General results for the excited states with M ̸= 0 will be given in a subsequent section.

The S-matrix that is required here is the one controlling the scattering of magnons in
the “open string channel” or mirror kinematics. The idea is to treat the X propagators
along the angular direction in Figure 5.1 as magnon excitations moving radially along the Z
propagators. Geometrically, this mirror 1-dimensional system emerges from the decomposition
Rd ∼= R+ × Sd−1, with r = eσ ∈ R+ being the distance to the origin, σ the mirror position,
and with the sphere Sd−1 giving rise to an internal O(d) symmetry.

Mirror magnons evolve in this picture through the action of the graph-building operator

[ΛN,δ̃Φ](x1, . . . , xN ) =
�

Φ(y1, . . . , yN )
N∏
i=1

π−d/2ddyi
(xi−1 − xi)2δ(xi − yi)2δ̃

, (5.1.1)

with x0 = 0. We recall that it acts on N -magnon wave function Φ ∈ V⊗N
d
2 +δ where V d

2 +δ
is a representation of the conformal group that is part of the scalar complementary series,
cf. Section 3.1. Clearly, any wheel graph can be obtained by iteration of a graph-building
operator, see Figure 5.1. The significance of these operators in the fishnet theory was unveiled
in [179] in the particular case d = 2. We show below how their diagonalisation, which was
explained in the previous chapter, provides the scattering data for the magnons for general d.
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5.1.1 Magnon Dispersion Relation

We saw in the previous chapter that the eigenvectors of ΛN,δ̃ are parametrised by N pairs
uk = (uk, lk) ∈ R×N and a tensor structure C ∈ Vl1 ⊗· · ·⊗VlN , where Vl is the vector space
of symmetric traceless tensors of rank l. The eigenvalue is then Ql1(u1) . . . QlN (uN ) with

Ql(u) =
Γ(δ̃)Γ

(
δ
2 + l

2 + iu
)

Γ
(
δ
2 + l

2 − iu
)

Γ(δ)Γ
(
d−δ

2 + l
2 + iu

)
Γ
(
d−δ

2 + l
2 − iu

) . (5.1.2)

The quantity Ql(u) is the weight of propagation of a magnon with rapidity u and spin l, it
naturally defines the magnon energy εl through

εl = − lnQl . (5.1.3)

This way, the energy of an N -particle eigenstate is the sum of the individual energies. The
momentum conjugate to the (radial) position σ is pl(u) = 2u, as can be read off directly from
the expression of the one-particle eigenstates

⟨x|u;C⟩ = C(x)
x2(β̃+ l

2 ) = C

(
x

|x|

)
e(− d

2 −δ+2iu)σ , (5.1.4)

where β is defined in (4.2.2) and C(x) = Cµ1...µlxµ1 . . . xµl
.

5.1.2 Magnon S-Matrix

In order to determine the magnon S-matrix, we need to examine eigenstates with more than
one particle. The simplest case is that of two-particle eigenstates whose expression we now
recall

⟨x1, x2|u1,u2;C⟩ =
A0
(
1 − α1 − l1

2

)
A0
(
β1 + l1

2

)
x

2
(
β̃1− l1

2

)
1

� 1

x
2
(
β̃1− l1

2

)
2b x

2
(
α̃1+ l1

2

)
1b

×
� C

(
x1
x2

1
− xa

x2
a
;xa

)
x

2
(
α1+ d+l1

2 −1
)

ab x
2
(

1+i(u1−u2)+ l2−l1
2

)
a

ddxaddxb
πd

, (5.1.5)

where xij = xi − xj , the parameters α and β are defined in (4.2.2), C ∈ Vl1 ⊗ Vl2 and

C(x; y) = Cµ1...µl1ν1...νl2xµ1 . . . xµl1
yν1 . . . yνl2

. (5.1.6)

We claim that the asymptotic behaviour of these eigenstates in the limit x2
2 → +∞, with x2

1
remaining finite, is given by the sum of two plane waves, one incoming and one outgoing:

⟨x1, x2|u1,u2;C⟩ ≃ Kl1,l2(u1, u2)(
x2

1x
2
2
) d

4 + δ
2

[
ei(p1σ1+p2σ2)C

(
x1
|x1|

; x2
|x2|

)

+ ei(p2σ1+p1σ2) [Sl1,l2(u1, u2)C]
(
x2
|x2|

; x1
|x1|

)]
, (5.1.7)
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where
Kl1,l2(u1, u2) = fl2(u2)Al2

(
d

2 + iu12 + l1
2

)
Al2

(
1 + iu12 − l1

2

)
(5.1.8)

is just an overall prefactor, whereas the S-matrix is of the form

Sl,l′(u, v) = fl(u)
fl′(v)Sl,l′(u− v)Rl,l′(u− v) . (5.1.9)

The dynamical factors are

Sl,l′(u) =
Γ
(
1 + l+l′

2 − iu
)

Γ
(
d
2 + l+l′

2 + iu
)

Γ
(

|l−l′|
2 + iu

)
Γ
(
1 + |l−l′|

2 + iu
)

Γ
(
1 + l+l′

2 + iu
)

Γ
(
d
2 + l+l′

2 − iu
)

Γ
(

|l−l′|
2 − iu

)
Γ
(
1 + |l−l′|

2 − iu
) (5.1.10)

and

fl(u) = Al(β)
Al(α) =

Γ
(
δ̃
2 + l

2 − iu
)

Γ
(
d
4 + δ

2 + l
2 − iu

)
Γ
(
δ̃
2 + l

2 + iu
)

Γ
(
d
4 + δ

2 + l
2 + iu

) , (5.1.11)

and Rl,l′ is the O(d)-invariant rational R-matrix investigated at length in Section 4.1.
The first thing to point out is that the S-matrix Sl,l′ appearing here is different from Sl,l′

that appeared in the previous chapter, see (4.2.17). This is completely natural, as the latter
depends on the normalisation of the eigenvectors whereas the former does not. Moreover, the
symmetry of the eigenvector

|u1,u2;C⟩ =
∣∣∣u2,u1;P(12)Sl1,l2(u1 − u2)C

〉
(5.1.12)

is consistent with the conjectured asymptotic behaviour, since it holds that

Sl1,l2(u1, u2) = Kl2,l1(u2, u1)
Kl1,l2(u1, u2)Sl1,l2(u1 − u2) . (5.1.13)

We are not able to prove the asymptotic behaviour (5.1.7) for arbitrary values of the spins
and tensor structure, but we have checked it in two particular cases: when both spins are
equal to one and the tensor is arbitrary, and when both spins are arbitrary and the tensor is
completely symmetric traceless. Let us explain the computation in the second situation. It is
done using the method of expansion by regions [223].

Symmetric Traceless Tensors If C ∈ Vl1+l2 ⊂ Vl1 ⊗ Vl2 , then the integral over xa can
be performed in the expression for the eigenvector using (B.1.11) so that

⟨x1, x2|u1,u2;C⟩ =
l1∑
p=0

(
l1
p

)
(−1)p

Al2+p
(
α̃2 − p

2
)
A0
(
β1 + l1

2

)
Al2+p

(
1 + iu12 + p−l1

2

)
x

2
(
β̃1+ l1

2 −p
)

1

×
� C(p)

(
x1; xb

|xb|

)
x

2
(
β̃1− l1

2

)
2b x

2
(
α̃1+ l1

2

)
1b x

2(α2+ p
2 )

b

ddxb
π

d
2
, (5.1.14)
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where C(p)(x; y) = Cµ1...µl1+l2xµ1 . . . xµl1−p
yµl1−p+1 . . . yµl1+l2

.
We now want to expand this function when x2

2
x2

1
→ +∞ up to and including the order

O(x−2β̃
2 ). In each integral, we have to consider contributions coming from two regions of

integration: xb close to x2, or xb close to 0 and x1. For the p-th term of the sum, the dom-
inant contribution from the first region is obtained by replacing x2

b1 with x2
b , it is of order

O(x−2(β̃+ p
2 )

2 ), so that in our order of approximation we only need to keep it for the p = 0
term:

⟨x1, x2|u1,u2;C⟩I ≃ fl2(u2)Al2
(
d

2 + iu12 + l1
2

)
Al2

(
1 + iu12 − l1

2

) C ( x1
|x1| ;

x2
|x2|

)
x2β̃1

1 x2β̃2
2

= Kl1,l2(u1, u2)
C
(
x1

|x1| ;
x2

|x2|

)
x2β̃1

1 x2β̃2
2

, (5.1.15)

where we have once again applied (B.1.11).
The contribution from the second region is more difficult to compute. The dominant

contribution for each term of the sum is indeed of order O(x
−2
(
β̃− l2

2

)
2 ), so that we actually

need the first l2 subleading contributions to each integral. This is done through the following
expansion involving Gegenbauer polynomials:

1

x
2
(
β̃1− l1

2

)
2b

= 1

x
2
(
β̃1− l1

2

)
2

+∞∑
n=0

( |xb|
|x2|

)n
C

(β̃1− l1
2 )

n

(
x2 · xb
|x2||xb|

)

= 1

x
2
(
β̃1− l1

2

)
2

+∞∑
n=0

( |xb|
|x2|

)n ⌊ n
2 ⌋∑

q=0
fn,q

(
β̃1 − l1

2

)
C

( d−2
2 )

n−2q

(
x2 · xb
|x2||xb|

)
, (5.1.16)

with

fn,q(a) =

(
d−2

2 + n− 2q
)

(a)n−q
(
a− d−2

2

)
q

d−2
2

(
d
2

)
n−q

q!
. (5.1.17)

We have expanded in terms of |xb|nC
( d−2

2 )
n

(
x2·xb

|x2||xb|

)
because those are harmonic in xb. We

can thus compute the integral over xb, it gives

1

x
2
(
β̃1+ l1

2 −p
)

1

� C(p)
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x1; xb

|xb|
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( d−2
2 )
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b
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β̃1+ l1−n
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1

min(l2+p,n−2q)∑
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l2 + p
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× 2−k
Γ
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2 + n− q − k
)

Γ
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α1 − l1

2 + k
)

Γ
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iu12 + l1+l2

2 + p− q − k
)

Γ
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α2 + l2

2 + p− q
)

Γ
(
α̃1 + l1
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d
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)

×
(
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C(k−l2)

(
x1
|x1|

; x2
|x2|

)
. (5.1.18)
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If we now plug equations (5.1.16) and (5.1.18) into the expression for the eigenvector, we
observe that we can perform the sum over p. It is of the form

l1∑
p=0

(
l1
p

)
(−1)pPl1,q,k(p) , (5.1.19)

with

Pl1,q,k(p) = (l2 + p) · · · (l2 + p+ 1 − k)
k!

Γ
(
α2 + l2

2 + p
)

Γ
(
iu12 + l1+l2

2 + p− q − k
)

Γ
(
α2 + l2

2 + p− q
)

Γ
(
iu12 + l2−l1

2 + p+ 1
)

(5.1.20)
a polynomial of degree l1 − 1, unless q + k ⩾ l1. On the one hand, if Pl1,q,k is of degree
l1 − 1, then the sum over p automatically vanishes. On the other hand, since we look for a
result valid at order O(x−2β̃

2 ), we can restrict ourselves to n ⩽ l1. As a consequence, we have
q + k ⩽ n − q ⩽ n ⩽ l1, and the only contributions that survive the summation over p are
those for q+k = l1, which is equivalent to q = 0 and k = n = l1. This miraculous cancellation
ensures that the leading contribution coming from the second region of integration is also of
order O(x−2β̃

2 ). The sum over p is thus equal to

l1∑
p=0

(
l1
p

)
(−1)pPl1,0,l1(p) =

(
1 − iu12 + l2−l1

2

)
l1(

iu12 + l2−l1
2

)
l1+1

. (5.1.21)

Finally, we notice that

fl1,0

(
β̃1 − l1

2

) (
C

( d−2
2 )

l1

)(l1) ( x2 · xb
|x2||xb|

)
= 2l1

(
β̃1 − l1

2

)
l1

. (5.1.22)

Putting all the pieces together, we obtain the following contribution from the second region
of integration

⟨x1, x2|u1,u2;C⟩II ≃ fl1(u1)

(
1 − iu12 + l2−l1

2

)
l1

Γ
(
d+l1+l2

2 + iu21 − 1
)

(
iu12 + l2−l1

2

)
l1+1

Γ
(
d+l1+l2

2 + iu21
) C(l1−l2)

(
x1

|x1| ;
x2

|x2|

)
x2β̃2

1 x2β̃1
2

= Kl1,l2(u1, u2)fl1(u1)
fl2(u2)Sl1,l2(u1 − u2)

C(l1−l2)
(
x1

|x1| ;
x2

|x2|

)
x2β̃2

1 x2β̃1
2

. (5.1.23)

This is in perfect agreement with our claim (5.1.7) since completely symmetric traceless
tensors are eigenvectors of the R-matrices with eigenvalue 1, as can be seen from the expression
(4.1.2) for instance.

As mentioned before, we have also been able to explicitly reproduce R1,1, the method
being the same as for the case we just presented, we do not show these computations. For
d = 2, the eigenvectors of ΛN,δ̃ were found in [206] (see also [179]) and we checked that their
asymptotic behaviour allows one to recover exactly the full S-matrix (5.1.9)-(5.1.11). As a



5.2. TBA FOR GROUND STATE 97

final remark, for d = 4 isotropic fishnets (δ̃ = δ), we verify agreement with the conjectured
S-matrix of the N = 4 SYM theory [124,125] at weak coupling in the mirror kinematics1. In
fact, our analysis is the first field theory derivation of this mirror S-matrix.

5.2 TBA for Ground State
We turn to the scaling dimension ∆ of local operator OJ,0. It is encoded in the divergent sum

Z =
+∞∑
N=0

ξ2JN Tr
(
ΛN
J,δ̃

)
(5.2.1)

of the (divergent) wheel graphs with a given number J of spokes. The idea of the TBA is to
interpret this sum as a partition function for the mirror theory in the thermodynamic limit.
In the one-dimensional picture, the scaling dimension corresponds to the free energy of a
system of magnons at temperature 1/J and chemical potential ln ξ2, where J is the length
of the operator and ξ the coupling constant of the fishnet theory (2.3.2). The factorisation
of the S-matrix allows one to compute exactly the free energy at any J and ξ. Following the
well-known saddle-point procedure [129,130,224,225], it takes the form

∆ = Jδ −
∑
l⩾0

� +∞

−∞
p′
l(u) ln (1 + Y1,l(u))du

2π , (5.2.2)

where p′
l(u) = 2, and the Y-functions Y1,l describe the distribution of energy per magnon,

with l ∈ N labelling the different types of excitations/symmetric traceless representations of
O(d).

The latter Y-functions are part of a larger family of functions {Ya,l} needed to account
for the matrix degrees of freedom. For the sake of simplicity, we shall restrict ourselves to the
simply laced case, corresponding to even dimensions d > 2. Hence, a ∈ {1, . . . , r} labels the
nodes of the Dr Dynkin diagram, with r = d/2 + 1 and incidence matrix Iab.

The Y-functions themselves are determined by an infinite system of non-linear TBA equa-
tions. Denoting La,l = ln(1 + Ya,l), these equations take the form

lnY1,l = C − Jεl +
∑
l′⩾0

Kl,l′ ⋆ L1,l′ +
∑
l′⩾1

Kl,l′ ⋆ L2,l′ , (5.2.3)

for the massive nodes (a = 1, l ⩾ 0), where εl = − lnQl,

C = J ln ξ2 −
∞∑
l=0

� +∞

−∞
[i∂u ln fl(u)]L1,l(u)du

2π , (5.2.4)

and the ⋆ operation denotes the convolution on the real axis:

f ⋆ g(u) =
� +∞

−∞
f(u− v)g(v)dv

2π . (5.2.5)

1The comparison with the dressing factor of [124] is not immediate since the latter was written in the
physical kinematics. One should first perform an analytic continuation to the mirror kinematics, as was done
in [125], before taking the weak coupling limit. The computation of this limit is explained in Appendix B.1
of [222] for instance.
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For the remaining, auxiliary, nodes for spin excitations (a > 1, l ⩾ 1), the equations are

lnYa,l = −
∑
l′⩾1

Ǩl,l′ ⋆ La,l′ +
∑

b,Iab ̸=0

∑
l′⩾1

Kl,l′ ⋆ Lb,l′ , (5.2.6)

where we introduced Ǩl,l′ = Kl,l′+1 +Kl,l′−1, with symmetric kernels K and K defined by

Kl,l′(u) = −i ∂u ln Sl,l′(u) , (5.2.7)

and

Kl,l′(u) =
(l+l′−1)/2∑

j=(|l−l′|+1)/2

2j
u2 + j2 . (5.2.8)

Finally, let us stress that the kernels obey the universal asymptotics

Kl,l′(u) = 2 ln u2 +O

(1
u

)
(5.2.9)

at large rapidity. Consequently, the scaling dimension (5.2.2) controls the asymptotics of the
main Y-functions,

lnY1,l ∼ −∆ ln u2 , when |u| → +∞ . (5.2.10)

The auxiliary Y-functions are, on the other hand, asymptotically constant at u → ∞.

5.3 Dual TBA and Y-System
The TBA equations above give us a good handle on the scaling dimension at weak coupling,
which is when the massive Y-functions are small, and the equations are solvable iteratively.
They are also very useful for the study of fishnet graphs at large order, that is when the
coupling constant approaches its critical value [148, 167]. Close to this point, the lightest
(l = 0) mirror magnons condense, driving the system towards a new phase with gapless
excitations. This is analogous to the transition from ferro- to antiferromagnetic order for
compact spin chains in a magnetic field. It relates to the continuum limit of the fishnet graphs
and to their correspondence with two-dimensional σ-models with AdS target space. This
correspondence, which was first discussed in [167] for d = 4, also holds in higher dimensions.
Namely, there is a dual set of TBA equations looking like that of the familiar O(d+2) σ-model
in a finite volume J except that, instead of the standard relativistic dispersion relation, we
should use the one dual to (5.1.2).

The duality is established by means of the familiar particle/hole transformation. It in-
volves the operator 1 −KO(d+2), which solves the equation

(1 − K0,0) ⋆ (1 −KO(d+2)) = 1 , (5.3.1)

with 1 the identity operator and with K0,0 as in (5.2.7). Straightforward algebra gives

KO(d+2)(u) = −i∂u lnSO(d+2)

(2πu
d

)
, (5.3.2)
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with the well-known O(d+ 2) S matrix [120]

SO(d+2)(θ) = −
Γ
(
1 + iθ

2π

)
Γ
(

1
2 − iθ

2π

)
Γ
(

1
d − iθ

2π

)
Γ
(

1
2 + 1

d + iθ
2π

)
Γ
(
1 − iθ

2π

)
Γ
(

1
2 + iθ

2π

)
Γ
(

1
d + iθ

2π

)
Γ
(

1
2 + 1

d − iθ
2π

) , (5.3.3)

hinting at the dual σ-model interpretation.
Applying the operator 1 −KO(d+2) to (5.2.3) for l = 0, we get the dual equation for the

scalar node:
lnY1,0 = JE −KO(d+2) ⋆ L

′
1,0 −

∑
l⩾1
K1,l ⋆ L1,l , (5.3.4)

with L′
1,0 = ln (1 + Y −1

1,0 ), and the new driving term

E(u) = ln

cosh
(

2πu
d

)
+ cos

(
πδ
d

)
cosh

(
2πu
d

)
− cos

(
πδ
d

)
 (5.3.5)

is identified as the dual energy. As for the higher harmonics, equations (5.2.3) for l > 0, they
can be rewritten

lnY1,l = −Kl,1 ⋆ L′
1,0 −

∑
l′⩾1

Ǩl,l′ ⋆ L1,l′ +
∑
l′⩾1

Kl,l′ ⋆ L2,l′ . (5.3.6)

The absence of driving terms in these equations indicate that the full symmetry is linearly
realised in the dual picture. In fact, if not for the energy, the equations (5.3.4) and (5.3.6),
as well as the ones in (5.2.6) which stay untouched, are identical to those for the O(d + 2)
σ-model.

The non-compactness of the model is seen in the fact that the spectrum is gapless. This
is made clearer after introducing a dual momentum P , obtained via a Wick rotation and a
reflection2 δ → δ̃. It yields

P (u) = −iE
(
u+ id4

)∣∣δ→δ̃
, (5.3.7)

resulting in the following dispersion relation

sinh2 E

2 = tan2
(
πδ̃

d

)
× sin2 P

2 , (5.3.8)

as in the case of a massless particle on a square lattice. It becomes relativistic at low energy,
E ∼ cP , that is when the continuous σ-model description applies, with the anisotropy being
absorbed in the speed of light c.

In the dual TBA equations, the fishnet coupling ξ2 disappears. It is now captured by the
σ-model energy

E2d(∆, J) = −
� +∞

−∞
L′

1,0∂uP (u)du
2π , (5.3.9)

2The reflection is needed because the square lattice is not invariant under a π
2 rotation when there is

anisotropy.
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which, as it turns out, can be expressed as

E2d(∆, J) = J ln ξ
2

ξ2
c

, (5.3.10)

with

ln ξ2
c =

� ∞

0

[
d

2e
−t + e−δt − eδt + e−δ̃t − eδ̃t

(1 − e−t)(1 + e
dt
2 )

]
dt
t

(5.3.11)

the critical coupling, in agreement with Zamolodchikov’s formula [148], up to the normal-
isation of the coupling constant. This match for any δ and d is yet another check for our
expressions.

Lastly, let us note that the TBA equations (5.3.4), (5.3.6) and (5.2.6) can be brought, by
inverting the kernels, to the Y-system form:

Y +
a,lY

−
a,l

Ya,l+1Ya,l−1
=

∏r
b=1(1 + Yb,l)Iab

(1 + Ya,l+1)(1 + Ya,l−1) , (5.3.12)

for all nodes with 1 ⩽ a ⩽ r, l ⩾ 1 (with the convention that Ya,0 = ∞ for a > 1), while Y1,0
satisfies

1
Y

[r−1]
1,0 Y

[1−r]
1,0

=

r−2∏
k=1

1 + 1
Y

[k]
r−k−1,1

1 + 1
Y

[−k]
r−k−1,1

(1 + 1
Yr−1,1

)(
1 + 1

Yr,1

)
,

(5.3.13)
with the shorthand notation f [k](u) = f

(
u+ ik2

)
. This agrees with the Y-system equations

of the O(2r) sigma model [226].

5.4 Excited States and Asymptotic Bethe Ansatz

The TBA equations can be generalised to the states with an arbitrary number of magnons
by the usual trick of the contour deformation [227, 228]. The multi-magnon operators OJ,M ,
associated to spiral graphs shown in the right panel of Figure 5.1, are made out of scalar
magnons (l = 0) and obtained by exciting the corresponding Y-function. Most of the formulae
stay the same, if not for the energy (5.2.2) and the equations (5.2.3) that receive additional
driving terms. In particular, the anomalous dimensions

γM = ∆ − (Jδ +Mδ̃) (5.4.1)

of the multi-magnon states read

γM =
M∑
m=1

(2ium − δ̃) −
∑
l⩾0

� +∞

−∞
p′
l(u)L1,l(u)du

2π , (5.4.2)

with the first term in the right-hand side coming from the logarithmic poles at Y1,0(um) = −1.
The latter conditions are the exact Bethe ansatz equations, which reduce at large J and for
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sufficiently weak coupling to the ABA equations

1 = ξ2Je−ε0(uj)J
M∏
k=1
k ̸=j

S0,0(uj , uk) . (5.4.3)

In this case, since all spins l, l′ = 0, the R-matrix trivialises. It should be supplemented with
the trace cyclicity condition

M∏
j=1

ξ2e−ε0(uj) = 1 . (5.4.4)

This generalises the 4D ABA equations of [155] to any dimension d and any anisotropy.

5.4.1 One Magnon

As an example, in the simplest M = 1 case, the ABA equation predicts that the anomalous
dimension is given by (2iu − δ̃), where u is the solution to ξ2e−ε0(u) = 1. Expanding u
perturbatively in ξ2 around the classical value −i δ̃/2, we find the one-magnon anomalous
dimension

γM=1 = − 2ξ2

Γ
(
d
2

) + 2ξ4
ψ(δ) + ψ(δ̃) − ψ

(
d
2

)
− ψ(1)

Γ
(
d
2

)2 +O(ξ6) , (5.4.5)

which agrees with the direct field theory computation.

5.4.2 Two Magnons

Let us now test our ABA prediction against direct Feynman graphs computation for operators
with two magnons. Since we will only have results through third-order in ξ2, we can restrict
ourselves to J = 3. In this case, we only need to consider mixing among the following two
operators,

O1 = Tr
(
X2Z3

)
, O2 = Tr

(
XZXZ2

)
. (5.4.6)

Once we take interactions into account, these operators will receive quantum corrections.
We will keep the name Oα for the bare operators, while OR

α will refer to their renormalised
counterpart. For definiteness, we will use dimensional regularisation in d− 2ϵ dimensions and
the minimal subtraction scheme. We also replace ξ2 with µ−2ϵξ2, for some mass scale µ, in
order to keep the dimensionless ξ2.

The renormalisation procedure will absorb all the divergences. For our purpose, we focus
on a particular set of observables, namely, the form factors among those two operators. Recall
the definition of a form factor: it is the overlap between an operator Oα and an asymptotic
state β. In our case, we consider only two-point form factors

Gαβ(p1, p2) = ⟨vac| Oα(0) |β; p1, p2⟩ , (5.4.7)

where |β; p1, p2⟩ is the asymptotic state in momentum space with respect to the operator Oβ,
and p1, p2 are the momenta associated to the magnon lines. We can obtain the expression
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Figure 5.2: Form factor G21 at O(ξ6): we start from the two-point function ⟨O2(x0)O1(x1)⟩,
then send x1 → ∞ and amputate propagators (dashed lines) that are connected to infinity.
Finally, we attach eip1y+ip2z to the two magnon lines, for simplicity we drop the dashed lines.

from the two-point function by amputating it and associating momenta to the magnon lines,
see Figure 5.2.

When p1 = −p2 = p, the bare form factor takes the following form:

G(p,−p) = I2 + ξ2µ−2ϵ
(

0 I1
I1 I1

)
+ ξ4µ−4ϵ

(
I1,1 I2
I2 I2

1

)
+ ξ6µ−6ϵ

(
I3 I1,2
I2,1 I1I2

)
+O(ξ8) (5.4.8)

where I#’s are Feynman integrals computed in Appendix B.2. The total sum of subscripts
describes the order of these integrals, I3 and I1,2 are, for example, three-loop integrals.

The general procedure for renormalising composite operators is the following: we first
introduce renormalised operators

OR
α = ZαβOβ (5.4.9)

as linear combinations of the bare operators (there is a summation over β). Then, the renor-
malised form factor is related to the bare one via

Gαβ,R(p1, p2) = ⟨vac| OR
α (x) |β; p1, p2⟩ = ZαγGγβ(p1, p2) . (5.4.10)

In the minimal subtraction scheme, Zαβ is of the form

Zαβ = δαβ +
∞∑
k=1

ξ2kZ(k)
αβ , Z(k)

αβ =
k∑
j=1

Z(k,j)
αβ

ϵj
. (5.4.11)

Because G depends on the mass scale solely through µ−2ϵξ2, and Z does not depend on it,
but depends on ξ2, taking the derivative of (5.4.10) with respect to µ keeping µ−2ϵξ2 (as well
as p2 and ϵ) fixed reads

∂GR
∂µ

∣∣∣∣∣
ϵ,p2,ξ2

+ 2ϵξ
2

µ

∂GR
∂ξ2

∣∣∣∣∣
ϵ,p2,µ

= 2ϵξ
2

µ

∂Z
∂ξ2

∣∣∣∣∣
ϵ

G = 2ϵξ
2

µ

∂Z
∂ξ2

∣∣∣∣∣
ϵ

Z−1GR . (5.4.12)

Now, since GR has a finite limit when ϵ → 0, the limit of the previous equation is

lim
ϵ→0

∂GR
∂ lnµ

∣∣∣∣∣
ϵ,p2,ξ2

= −2γ lim
ϵ→0

GR , (5.4.13)
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with the matrix of anomalous dimension given by

γ = −ξ2 lim
ϵ→0

(
ϵ
∂Z
∂ξ2 Z−1

)
= −ξ2Z ′

1(ξ2) , (5.4.14)

where Z1 = ∑+∞
k=1 ξ

2kZ(k,1) is the residue at ϵ = 0. One should also notice that, because γ is
finite, all the coefficients for negative powers of ϵ in the Laurent expansion of ϵ ∂Z

∂ξ2 Z−1 vanish.
More precisely, this means that taking the limit was not necessary, as Z should satisfy

∂Z
∂ξ2 = Z ′

1Z
ϵ

. (5.4.15)

Because this is a differential equation on matrices, it cannot be integrated. However, it does
imply that the coefficients in front of ϵ−k for k ⩾ 2 are completely determined by Z1.

5.5 Discussion and Prospects
We presented TBA equations for the exact spectrum of arbitrary multimagnon operators in
the fishnet CFT in any spacetime dimension d. These operators form an important class of
local operators of the theory and contain all of the information about the mirror dynamics.
There are other types of operators worth being studied, including spinning operators (i.e. with
derivatives) and the conjugate scalars Z†, X†. While it should be possible to include the
former within the excited state TBA formalism, the latter are more elusive, and relate to the
logarithmic property of the fishnet CFTs [150,162].

The most efficient form of the TBA equations is expected to be given by Baxter’s equa-
tion. It would be good to derive them for generic d and for a general local operator. This
program is already quite advanced in d = 4 case [150, 166], but not for other dimensions.
Our TBA equations should help filling this gap by providing important information about
the analyticity conditions and so-called quantisation conditions specifying the solutions. The
Baxter equation formulation would also be instrumental for a thorough study of the corre-
spondence between fishnet graphs and non-compact sigma models, or to reveal relationships
with string-bit models in AdS [164–166]. Because integrable structures such as Baxter’s equa-
tion are expected to be universal, we will investigate in the next chapter a simpler model
based on the same symmetry.

Another interesting direction concerns the generalisation of our TBA equations to fishnet
theories supported on triangular and hexagonal lattices, or dynamical fishnet like the one
found in the context of the 3-coupling strongly twisted version of N = 4 SYM theory [143,151].





Chapter 6

T-System and Q-System for SO(2r)
Spin Chains

The results of [182] are presented in this chapter. Apart from Section 6.1, the content of the
chapter is the same as that of the article without the introduction and appendices, up to
minor changes in presentation. In Appendix C of this thesis, we have collected Appendices
D, F, and G of the article.

The goal of the article was to develop the Q-system formalism for integrable systems with
Dr symmetry. We thus considered a very simple spin chain with such a symmetry, and we
used the explicit construction of some of the Q-operators to formulate a proposal. We also
obtained different expressions for the T-functions in terms of the Q-functions. In the first
section, we shall first review the results for compact spin chains with Ar symmetry. This will
permit a clear comparison with the analogous results we found in the Dr case.

6.1 Ar Spin Chains

6.1.1 T-System

Let us consider, as in Subsection 1.3.2, a GL(r + 1) spin chain of length L with quantum
space H = Vλ(1) ⊗ · · · ⊗ Vλ(L) , where Vλ is the space of the finite-dimensional irreducible
representation with highest weight λ = ∑r+1

i=1 λiεi—see Appendix A.1 for an explicit de-
scription of the weights, roots, etc. We also introduce a (constant) diagonal twist matrix
D = Diag(τ1, . . . , τr+1) and some inhomogeneities x1, . . . , xL. The commuting transfer ma-
trices are defined for arbitrary auxiliary representation ρλ with highest weight λ as

Tλ(x) = Tr0
[
ρλ(D)Rλλ(L)

0L (x− xL) . . .Rλλ(1)
01 (x− x1)

]
, (6.1.1)

with Rλλ(i) the GL(r+ 1)-invariant R-matrix on Vλ ⊗Vλ(i) . The first thing to notice is that,
in contradistinction to what we have studied in the previous chapters, the presence of a twist
breaks the global GL(r + 1) symmetry down to the centraliser of the twist matrix D. For
twists in generic position, this is simply the Cartan subgroup of diagonal matrices and, in
this case, the spectrum of the transfer matrices is simple. We also point out that, up to a

105
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trivial rescaling of the transfer matrices, we can (and will) always assume that

detD =
r+1∏
k=1

τk = 1 . (6.1.2)

Let us clarify a little bit how to construct the various R-matrices involved in the definition
of the transfer matrices. We start from the defining representation in the auxiliary space, i.e.
λ = ε1, and, following (1.2.44), we set

Rε1,λ(i)(x) = x Id + ejk ⊗ Eλ
(i)

kj . (6.1.3)

The R-matrices for other auxiliary spaces are then constructed via fusion [184, 185], see
also [45], without extracting trivial zeros. We have for instance

R2ε1,λ(i)(x) = Rε1,λ(i)

0i

(
x− 1

2

)
Rε1,λ(i)

0′i

(
x+ 1

2

)( Id + P0,0′

2

)
(6.1.4)

and
Rε1+ε2,λ(i)(x) = Rε1,λ(i)

0i

(
x+ 1

2

)
Rε1,λ(i)

0′i

(
x− 1

2

)( Id − P0,0′

2

)
. (6.1.5)

We saw indeed in Subsection 1.2.2 that when λ(i) = ϵ1, the R-matrices with symmetric
auxiliary spaces contain trivial zeros that can be extracted. More generally, when λ(i) = ϵ1
all the R-matrices constructed using fusion will be given by Equation (6.1.3) above up to a
trivial polynomial prefactor. This is however generically not the case when the representation
at site i is different from the defining one. That is why, in order to treat all cases at once, we
choose not to discard these potential trivial zeros.

Because of the fusion procedure used to construct the R-matrices, the transfer matrices
are far from being independent: they satisfy numerous relations. Of particular interest are
the transfer matrices Ta,s = Tλa,s associated to rectangular representations

λa,s =
a∑
i=1

sεi = sωa for a ∈ {1, . . . , r} , s ∈ N∗ . (6.1.6)

It is well known that they satisfy the Ar T-system [43–45] (also called Hirota’s bilinear
equation [46])

T[+1]
a,s T[−1]

a,s = Ta,s+1Ta,s−1 + Ta+1,sTa−1,s for a ∈ {1, . . . , r} , s ∈ N∗ . (6.1.7)

The boundary conditions are

Ta,0 = T0,s = 1 , Tr+1,s =
Q

[r+1+s]
∅̄

Q
[r+1−s]
∅̄

, (6.1.8)

where we have introduced

Q∅̄ =
r+1∏
a=1

Ξa , Ξa(x) =
L∏
i=1

Γ
(
x− xi + λ(i)

a + 1 − a
)
, (6.1.9)
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and we write f [k] for the function f [k](x) = f
(
x+ k

2

)
. This bilinear equation clearly ensures

that any Ta,s can be expressed in terms of Ta,1, the resulting expressions date back to [229,230]
and read

Ta,s = det
1⩽i,j⩽s

(
T[i+j−s−1]
a+j−i,1

)
for any a ⩾ 0 and s ⩾ 0 . (6.1.10)

For s > 0, we have conventionally set Ta,s = 0 for a > r+ 1 or a < 0. This formula is proven
by induction. It holds trivially when s = 1. If we assume that it holds up to some s ∈ N∗, then
it suffices to use the Hirota relation (6.1.7) at (a, s) to express Ta,s+1 in terms of Ta±1,s,Ta,s,
and Ta,s−1. The result then reduces to the Jacobi identity on determinants: if M is a square
matrix of size N ⩾ 2, and if I and J are subsets of {1, . . . , N}, we write MI,J for the matrix
obtained by removing the rows i for i ∈ I and the columns j for j ∈ J , it then holds that

detM detM{1,N},{1,N} = detM{1},{1} detM{N},{N} − detM{1},{N} detM{N},{1} . (6.1.11)

In our case, N = s+ 1 and the coefficients of M are Mi,j = T[i+j−s−2]
a+j−i,1 .

The transfer matrix Tλ can be seen as the quantum analogue of the usual character χλ.
Since the leading coefficient of the transfer matrix is actually exactly the character, it is
customary to call the limit x → +∞ classical. In that limit, Equation (6.1.10) reduces to the
(second) Jacobi-Trudi formula for characters of GL(r + 1) (Schur polynomials):

χa,s = det
1⩽i,j⩽s

(χa+j−i,1) , (6.1.12)

where χa,s = χλa,s .

Solution in Terms of Q-Functions Let Q{1}, . . . , Q{r+1} be arbitrary functions. If, for
a ∈ {0, . . . , r + 1} and s ∈ Z, we define [44]

Ta,s = det
1⩽i,j⩽r+1

(
Q

[a−s−2j+2sθ(a−j)]
{i}

)
, (6.1.13)

where θ is the Heaviside step function (it is 0 for negative arguments and 1 for non-negative
ones), then we obtain a solution of the Hirota equation (6.1.7). This fact is a direct application
of a Plücker identity, also called Sylvester’s lemma: if M and N are two matrices of the same
size with columns M1, . . . ,Mr+1 and N1, . . . , Nr+1 respectively, then the following identity
holds1 for any k ∈ {1, . . . , r + 1},

detM detN =
r+1∑
l=1

|M1, . . . ,Mk−1, Nl,Mk+1, . . . ,Mr+1|

|N1, . . . , Nl−1,Mk, Nl+1, . . . , Nr+1| . (6.1.14)

In the case at hand, M = T [+1]
a,s = (Ca+s−1, . . . , Cs−a+1, C−a−s−1, . . . , Ca−s−2r−1), with Cj

the transpose of (Q[j]
{1}, . . . , Q

[j]
{r+1}), and N = (Ca+s−3, . . . , Cs−a−1, C−a−s−3, . . . , Ca−s−2r−3)

1We use here another notation for determinants: if M is a p × p matrix with columns M1, . . . , Mp, we write
det M = |M1, . . . , Mp|.
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have many columns in common, so that if we decide to exchange M1 = Ca+s−1, only two
terms survive in the sum (when l = a or l = r + 1), and they give exactly what we want.
This solution of Hirota’s equation also satisfies

Ta,s = 0 , for s ∈ {−r, . . . ,−1} , (6.1.15)

and
Ta,0 = ϕ[a] , T0,s = ϕ[−s] , Tr+1,s = ϕ[r+1+s] , (6.1.16)

where
ϕ = det

1⩽i,j⩽r+1

(
Q

[−2j]
{i}

)
. (6.1.17)

The previous form of a solution of the T-system is actually generic. Let us indeed imagine
that we have at our disposal Ta,s satisfying (6.1.7) with boundary conditions (6.1.16) for some
unspecified ϕ. Let {Q{1}, . . . , Q{r+1}} be a basis of solutions of the difference equation

r+1∑
a=0

(−1)aT [1−a]
a,1 Q[−2a] = 0 . (6.1.18)

Linear independence2 of the Q{i}’s implies that the Casoratian det1⩽i,j⩽r+1
(
Q

[−2j]
{i}

)
is non-

zero and equal to ϕ up to multiplication by a periodic function. Upon redefinition of one of
the functions, say Q{1}, we can always assume that this periodic function is a constant equal
to one, and thus

det
1⩽i,j⩽r+1

(
Q

[−2j]
{i}

)
= ϕ . (6.1.19)

We then rewrite the difference equations as a linear system of r + 1 equations:

ϕQ{b} =
r+1∑
a=1

Mba(−1)a−1T [1−a]
a,1 , with Mba = Q

[−2a]
{b} . (6.1.20)

Cramer’s inversion formula and the condition (6.1.19) immediately results in (6.1.13).

6.1.2 Q-System

We have seen that it is always possible to express all the T-functions in terms of r+1 auxiliary
functions Q{1}, . . . , Q{r+1}. In the spin chain model we introduced earlier, it turns out that
this even holds at the operatorial level.

It is actually possible [77, 79] to construct 2r+1 operators QI , labelled by subsets I of
{1, . . . , r + 1}, commuting among themselves and with the transfer matrices and satisfying
the following so-called QQ-relations, or Q-system: if |I| ⩽ r − 1, and if i and j are not in I,
then

Q[+1]
I∪{i}Q[−1]

I∪{j} − Q[−1]
I∪{i}Q[+1]

I∪{j} = τi − τj√
τiτj

QIQI∪{i,j} . (6.1.21)

2For solutions of a difference equation, linear independence means that there is no vanishing linear combi-
nation with 1-periodic coefficients.
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The construction of these operators involve new singular solutions of the Yang-Baxter rela-
tion, the operators themselves being analogues of transfer matrices built from these singular
R-matrices. It is conventional to represent the various QQ-relations on a Hasse diagram, see
Figure 6.1 for the r = 2 case: each Q-operator is attached to a vertex of a hypercube and each
face represents one of the relations. We define the level of the Q-operator QI as the order |I|
of the set I.

Q{1,2}

Q{1}

Q{1,3}

Q{2}

Q{2,3}

Q{3}

Q∅

Q{1,2,3}

Figure 6.1: Hasse diagram for the A2 Lie algebra, taken from [182].

The first thing to notice is that, if we have such operators (or functions if we consider
their eigenvalues on a particular eigenstate), then they can all be expressed in terms of Q∅
and Q{i} through Casoratians:

Q{i1,...,ik} =
(√τi1 · · · τik) k−1∏
1⩽a<b⩽k (τia − τib)

det1⩽a,b⩽k
(
Q[k+1−2b]

{ia}

)
∏k−1
l=1 Q[k−2l]

∅

, (6.1.22)

where ia ̸= ib if a ̸= b. This is once again a trivial application of the Jacobi identity (6.1.11).

Regularity Properties For the spin chain we are considering, the regularity properties of
the Q-operators are known [79]. The two operators Q∅,Q{1,...,r+1} are trivial and given by

Q∅ = Id and Q{1,...,r+1} = Q∅̄ Id , (6.1.23)

where Q∅̄ is given in Equation (6.1.9). All the other Q-operators are non-trivial, but they
are polynomial up to a fixed scalar prefactor. More precisely, for any eigenstate of the chain,
there exist r + 1 integers ma such that

m1 + · · · +mr+1 =
L∑
i=1

r∑
a=1

(λ(i)
a − λ

(i)
r+1) (6.1.24)
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and

mI =
∑
i∈I

mi −
L∑
i=1

r∑
a=r+2−|I|

(λ(i)
a − λ

(i)
r+1) ⩾ 0 , (6.1.25)

and the eigenvalue of QI is of the form

QI(x) =
(∏
i∈I

τxi

) r+1∏
a=r+2−|I|

Ξ[r+1−|I|]
a (x)

 qI(x) , (6.1.26)

where qI = ∏mI
j=1(x− zIj ) is of degree mI .

The Bethe ansatz equations can be recovered from the Q-system and the regularity prop-
erties of the Q-functions. Let σ ∈ Sr+1 be a permutation, we define I0 = ∅ and Ia =
{σ(1), . . . , σ(a)} for 1 ⩽ a ⩽ r+1. We also let, for 1 ⩽ a ⩽ r, Ĩa = {σ(1), . . . , σ(a−1), σ(a+1)}
be the only subset of order a such that Ia ̸= Ĩa and Ia−1 ⊊ Ĩa ⊊ Ia+1. The QQ-relation for
Ia−1, Ia, Ĩa, and Ia+1, shifted by ±1

2 and evaluated at a root zIa
j of qIa (and thus of QIa) then

yields

±QIa(zIa
j ± 1)QĨa

(zIa
j ) =

τσ(a) − τσ(a+1)
√
τσ(a)τσ(a+1)

QIa−1

(
zIa
j ± 1

2

)
QIa+1

(
zIa
j ± 1

2

)
. (6.1.27)

Using the form (6.1.26) of the eigenvalues, the ratio of the two previous equations can be
rewritten

−
τσ(a+1)
τσ(a)

L∏
i=1

zIa
j − xi + λ

(i)
r+1−a + a−r−1

2

zIa
j − xi + λ

(i)
r+2−a + a−r−1

2

=
qIa−1

(
zIa
j − 1

2

)
qIa(zIa

j + 1)qIa+1

(
zIa
j − 1

2

)
qIa−1

(
zIa
j + 1

2

)
qIa(zIa

j − 1)qIa+1

(
zIa
j + 1

2

) .
(6.1.28)

For σ(a) = r + 2 − a, these are exactly the Bethe equations (1.3.23). It is now clear that
there are actually |Sr+1| = (r + 1)! different formulations of them, one for every choice of
the permutation σ. There is, however, a better formulation of these equations, which we shall
refer to as the Wronskian form of the Bethe equations. It consists simply in writing (6.1.22)
for Q{1,...,r+1} = Q∅̄ using the explicit form of the Q-functions:

det
1⩽a,b⩽r+1

(
τ−b
a q

[r+2−2b]
{a}

)
=

∏
1⩽a<b⩽r+1

(τa − τb)
L∏
i=1

r∏
a=1

Γ
(
x− xi + λ

(i)
a + 1 − a

)
Γ
(
x− xi + λ

(i)
r+1 + 1 − a

) , (6.1.29)

where the right-hand side is now an explicit polynomial. Alternatively, we could have solved
the Q-system in terms of the Q-functions Q{a} at level r, the corresponding Wronskian
condition is

det
1⩽a,b⩽r+1

(
τ baq

[r+2−2b]
{a}

)
=

∏
1⩽a<b⩽r+1

(τb − τa)
L∏
i=1

r+1∏
a=2

Γ
(
x− xi + λ

(i)
1 + r+3

2 − a
)

Γ
(
x− xi + λ

(i)
a + r+3

2 − a
) . (6.1.30)

The degrees of the polynomials on the right-hand sides are not the same so it seems reasonable,
when solving them, to choose the equation of lowest degree. In any case, neither of these two
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reformulations exhibits any of the drawbacks of the usual (nested) Bethe equations: all the
solutions are physical. It was even shown that, when all sites are in the defining representation
(in which case (6.1.29) is the most convenient one since it is only of degree L), these equations
are actually complete [88,89]: the number of solutions is the dimension of the quantum space.
This alternative method of finding Bethe roots was proposed in [231] and further extended
in [39,86,140].

The transfer matrices in rectangular representations are given in terms of the Q-operators
by

Ta,s =
det1⩽i,j⩽r+1

(
Q[r+2+a−s−2j+2sθ(a−j)]

{i}

)
∏

1⩽c<b⩽r+1 (τc − τb)Q[a−s]
∅̄

=
det1⩽i,j⩽r+1

(
Q[r+2+a−s−2j+2sθ(a−j)]

{i}

)
det1⩽i,j⩽r+1

(
Q[r+2+a−s−2j]

{i}

) .

(6.1.31)

6.2 A Dr Spin Chain

6.2.1 Transfer Matrices for Symmetric Representations

We consider a spin chain of length L in which each site carries the defining representation
of the complex orthogonal group in 2r dimensions. The quantum space is thus (C2r)⊗L. For
convenience, we take the complex orthogonal group to be defined by

O(2r) =
{
M ∈ GL(2r) | tMJM = J

}
, (6.2.1)

where J is the matrix with 1 on the antidiagonal and 0 everywhere else: Jij = δi+j,2r+1. This
choice corresponds to a simple similarity transformation with respect to the usual one. We
will also make extensive use of the following notation:

i′ = 2r + 1 − i . (6.2.2)

With this convention for the orthogonal group, the R-matrix (1.2.37) becomes

R(x) = x(x+ κ) Id +(x+ κ)P− x K̃ (6.2.3)

with K̃ = eij ⊗ ei′j′ .
The R-matrix (6.2.3) allows to construct the fundamental transfer matrix T = T1,1, i.e.

with the defining representation in auxiliary space, containing the Hamiltonian of the spin
chain. It is also convenient to introduce the symmetric generalisations T1,s at this point. The
required R-matrices are the ones given in (4.1.5)-(4.1.6). Up to a constant shift, they can be
written

L(x) = x2 Id +xfij ⊗ eji +Gij ⊗ eji , (6.2.4)
with

Gij = 1
2fkjfik + κ

2 fij − 1
4
(
(κ− 1)2 + 2κs+ s2

)
δij . (6.2.5)

We also remind the reader that κ = r − 1. We have introduced here the generators fij of
so(2r) obeying the commutation relations

[fij , fkl] = δjkfil − δi′kfj′l − δjl′fik′ + δilfj′k′ , (6.2.6)
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with fij = −fj′i′ . We stress that the formula for the Lax matrix only holds for symmetric
representations ρs, with generators acting on the highest weight state |hws⟩ as follows:

ρs(fij) |hws⟩ = 0 , for i < j , ρs(fii) |hws⟩ = sδ1i |hws⟩ , (6.2.7)

and where s ∈ N for finite dimensional representations. In such a representation, the genera-
tors satisfy the characteristic identity

2r∑
j,k=1

(ρs(fij) − δij) (ρs(fjk) + sδjk)(ρs(fkl) − (s+ 2κ)δkl) = 0 , (6.2.8)

see also [232] for a recent discussion of such constraints. A realisation of the generators fij
for general s in terms of oscillators can be found in [183]. The defining representation s = 1
can be realised via

fij = eij − ej′i′ . (6.2.9)

We then recover the R-matrix (6.2.3) up to a shift, L(x) = R(x− κ
2 ).

As usual, the first space in (6.2.4), with generators fij , serves as our auxiliary space, and
the quantum space is built from L copies of the second one. The transfer matrix constructed
from this monodromy is defined by

T1,s(x) = Trs [ρs(D)L1(x)L2(x) · · · LL(x)] , (6.2.10)

where Li(x) denotes the Lax matrix acting non-trivially on the i-th spin chain site, and the
trace is taken over the representation with generators fij . We further introduced a diagonal
twist matrix D = Diag(τ1, . . . , τr, τ

−1
r , . . . , τ−1

1 ) ∈ O(2r), i.e. the τk’s are arbitrary complex
parameters. In an arbitrary representation, the twist matrix becomes

ρ(D) =
r∏

k=1
τ
ρ(fkk)
k . (6.2.11)

The Hamiltonian of the spin chain is obtained from the fundamental transfer matrix T
by taking the logarithmic derivative at the permutation point

H = (ln T)′
(
κ

2

)
=

L∑
i=1

Hii+1 . (6.2.12)

The Hamiltonian density is obtained from the logarithmic derivative of the R-matrix at the
permutation point. It reads

Hii+1 = κ−1
(
Id −K̃+ κP

)
i,i+1

, (6.2.13)

and HL,L+1 = DLHL1D
−1
L , where DL stands for the twist matrix acting only on the L-th

site.
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Dr :

1 2 r − 2 +

−

Figure 6.2: Dynkin diagram for Dr Lie algebra.

6.2.2 Diagonalisation of T1,1

As discussed above, the fundamental transfer matrix T = T1,1 contains the nearest-neighbour
Hamiltonian and higher local charges. It has been diagonalised in [233] using the functional
Bethe ansatz and in [234] using the algebraic Bethe ansatz, see also [235] for a different
nesting procedure and [236] for the trigonometric case. One of the key observations is that
the transfer matrix can be written as

T(x) = T+(x) + T−(x) , (6.2.14)

where the two terms are related via
tT±(−x)|τi→τ−1

i
= T∓(x) . (6.2.15)

We note that the twist only slightly modifies the derivations of the spectrum of the transfer
matrix in [234]. Following the same logic as in this reference, we find the contributions of T±
to the eigenvalues of the transfer matrix:

T± = q
[1−r]
0 q

[r−1]
0

r∑
k=1

τ∓1
k

q
[±(k−r+2)]
k−1

q
[±(k−r)]
k−1

q
[±(k−r−1)]
k

q
[±(k−r+1)]
k

, (6.2.16)

with, as before, the notation q[k](x) = q(x + k
2 ). The first Q-functions along the tail of the

Dynkin diagram are then given by

q0(x) = xL , qa(x) =
mi∏
j=1

(x− z
(a)
j ) , 1 ⩽ a ⩽ r − 2 . (6.2.17)

Here, q0 does not depend on any Bethe roots and plays a role similar to that of the Q-function
for the full set in A-type, cf. (6.1.23). The last two Q-functions factorise:

qr−1 = s+s− , qr = s
[+1]
+ s

[−1]
+ , (6.2.18)

where s± are the Q-functions that correspond to the spinorial nodes (see Appendix A.2.2 for
the definition of the fundamental spinorial representations). They are polynomials of degree
m± in the spectral parameter

s±(x) =
m±∏
j=1

(x− z
(±)
j ) . (6.2.19)
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It immediately follows that the last term in (6.2.16) reduces to the more familiar form

q
[±2]
r−1

q
[0]
r−1

q
[∓1]
r

q
[±1]
r

= s
[±2]
− s

[∓2]
+

s−s+
. (6.2.20)

Each of the Q-functions qj for j ∈ {1, 2, . . . , r−2} and s± is attached to a different node of the
Dynkin diagram, see Figure 6.2. Examining the asymptotic behaviour of the transfer matrix
and its eigenvalue, as in Subsection 1.3.2, one sees that the magnon numbers are determined,
for a state with given weight λ, through

λa = ma−ma−1 for 1 ⩽ a ⩽ r−2 , λr−1 = m++m−−mr−2 , λr = m+−m− , (6.2.21)

where m0 = L is the length of the spin chain.
From the definition of the Hamiltonian (6.2.12) and the eigenvalue equation (6.2.14) of

the transfer matrix, we obtain the energy formula. The eigenvalues of the Hamiltonian are
parametrised by the Bethe roots and read

E = rL

r − 1 +
q′

1

(
−1

2

)
q1
(
−1

2

) −
q′

1

(
1
2

)
q1
(

1
2

) = rL

r − 1 +
m1∑
k=1

 1
z

(1)
k − 1

2

− 1
z

(1)
k + 1

2

 . (6.2.22)

As for the first fundamental representation of A-type, the energy eigenvalues only depend on
the Bethe roots at the first nesting level.

6.2.3 QQ-Relations from Bethe Ansatz Equations

The Bethe equations can be read off from the eigenvalue equation of the transfer matrix

T = q
[1−r]
0 q

[r−1]
0

r∑
k=1

τ−1
k

q
[k−r+2]
k−1

q
[k−r]
k−1

q
[k−r−1]
k

q
[k−r+1]
k

+ τk
q

[r−k−2]
k−1

q
[r−k]
k−1

q
[r−k+1]
k

q
[r−k−1]
k

 , (6.2.23)

which is obtained by combining (6.2.14) and (6.2.16). Demanding that the transfer matrix
be polynomial and the Bethe roots be distinct imply the Bethe equations: they correspond
to the vanishing of the residues. They are conveniently written in terms of Q-functions as

−τk+1
τk

=

q[−1]
k−1q

[+2]
k q

[−1]
k+1

q
[+1]
k−1q

[−2]
k q

[+1]
k+1


x=z(k)

j

, 1 ⩽ k ⩽ r − 3 , (6.2.24)

−τr−1
τr−2

=

q[−1]
r−3 q

[+2]
r−2 s

[−1]
+ s

[−1]
−

q
[+1]
r−3 q

[−2]
r−2 s

[+1]
+ s

[+1]
−


x=z(r−2)

j

, (6.2.25)

− 1
τr−1τr

=

q[−1]
r−2 s

[+2]
+

q
[+1]
r−2 s

[−2]
+


x=z(+)

j

, (6.2.26)

− τr
τr−1

=

q[−1]
r−2 s

[+2]
−

q
[+1]
r−2 s

[−2]
−


x=z(−)

j

. (6.2.27)
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Along the tail of the Dynkin diagram, cf. Figure 6.2, we infer the same QQ-relations as
in the Ar case,

τk − τk+1√
τkτk+1

qk−1qk+1 =
√

τk
τk+1

q+
k q̃

−
k −

√
τk+1
τk

q−
k q̃

+
k , (6.2.28)

where qk and q̃k are two different Q-functions at the same level of the Hasse diagram. The
form of the eigenvalue equation (6.2.23) is unchanged by such transformation. The apparent
difference with (6.1.21) is due to the fact that we have only written here the equation for the
polynomial part of the Q-functions (i.e. without including the scalar factor common to all
eigenvalues). As before, the Bethe ansatz equations can be restored by shifting the argument of
the QQ-relation by ±1

2 , evaluating at a root of qk, and dividing one of the resulting equations
by the other. At the fork of the Dynkin diagram, the (r − 2)-th node, the QQ-relation takes
the form

τr−2 − τr−1√
τr−2τr−1

qr−3 s+ s− =
√
τr−2
τr−1

q+
r−2q̃

−
r−2 −

√
τr−1
τr−2

q−
r−2q̃

+
r−2 . (6.2.29)

At the spinorial nodes ±, the QQ-relations are

τr−1τr − 1
√
τr−1τr

qr−2 = √
τr−1τrs

+
+ s̃

−
+ − 1

√
τr−1τr

s−
+ s̃

+
+ , (6.2.30)

τr−1 − τr√
τr−1τr

qr−2 =
√
τr−1
τr

s+
− s̃

−
− −

√
τr
τr−1

s−
− s̃

+
− . (6.2.31)

These QQ-relations for spinorial nodes have appeared in [237] in relation to the ODE/IM
correspondence [51] and recently in [238].

6.2.4 Basic (Extremal) Q-Functions

A construction of the Q-operators corresponding to the ends of the Dynkin diagram was
recently proposed in [183], we shall briefly review it here. It was inspired by the isomorphism
A3 ≃ D3, admits the asymptotic behaviour expected from (6.2.21) and has been checked by
showing some functional relations for r = 4 in some examples of finite length. All functional
relations in the next section will be consistent with the proposed Q-operators and will have
been verified explicitly for several examples of finite length.

First Node We construct 2r operators Qi with 1 ⩽ i ⩽ 2r corresponding to the first node
of the Dynkin diagram. The Lax matrix needed is of the size 2r×2r with oscillators as entries
and of degree two in the spectral parameter. It reads

L(z) =



z2 + z(2 − r − w̄w) + 1
4w̄Jtw̄twJw zw̄ − 1

2w̄Jtw̄twJ −1
2w̄Jtw̄

−zw + 1
2Jtw̄twJw zI2r−2 − Jtw̄twJ −Jtw̄

−1
2
twJw twJ 1


. (6.2.32)
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The Lax matrix above contains 2r−2 oscillators arranged into the vectors w̄ and w as follows

w̄ = (ā2, . . . , ār, ār′ , . . . , ā2′) , w = t(a2, . . . ,ar,ar′ , . . . ,a2′) . (6.2.33)

They obey the standard commutation relations

[ai, āj ] = δij . (6.2.34)

The matrix J is the same as in (6.2.1) except it is here of size 2r − 2. The Q-operator Q1 is
defined as the regularised trace over the monodromy of the Lax matrices (6.2.32) which is, as
usual, constructed by taking the L-fold tensor product in the matrix space and multiplying
in the auxiliary oscillator space:

Q1(x) = τx1 T̂r
[
DL[−1] ⊗ L[−1] ⊗ . . .⊗ L[−1]

]
. (6.2.35)

The twist matrix D in the auxiliary space depends on the parameters τi, cf. (6.2.11) for the
transfer matrix. In the case of the Q-operator Q1 it reads

D =
r∏
i=2

(
τiτ

−1
1

)Ni
(
τ−1
i τ−1

1

)Ni′
, (6.2.36)

with the number operator Ni = āiai. The regularised trace is defined by

T̂r(DX) = Tr(DX)
Tr(D) . (6.2.37)

Because of the Yang–Baxter relation, Q1 belongs to the family of commuting operators. For
L = 1 for instance, all the conserved charges are diagonal and the diagonal elements of Q1(x)
are

(Q1(x))11 = τx1

[
x2 − x

r∑
k=2

(
1 + τk

τ1 − τk
+ τ−1

k

τ1 − τ−1
k

)

+
r∑

k=2

(
1

(τ1 − τk)(τ1 − τ−1
k )

+ τk
2(τ1 − τk)

+ τ−1
k

2(τ1 − τ−1
k )

)
+ 2r − 3

4

]
,

(6.2.38)

(Q1(x))ii = τx1

[
x− 1

2 + τ−1
1

τ−1
1 − τi

]
, 1 < i ⩽ r , (6.2.39)

(Q1(x))ii = τx1

[
x+ 1

2 − τi′

τ1 − τi′

]
, r < i ⩽ 2r − 1 , (6.2.40)

(Q1(x))2r2r = τx1 . (6.2.41)
In general, one can use Q1 to define the remaining 2r − 1 Q-operators at the first funda-

mental node. For that purpose, we introduce the orthogonal matrix

B̃ij =
r∑

k=1
k ̸=i,j

(ek′k′ + ekk) + ei′j′ + ej′i′ + eij + eji , (6.2.42)
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with 1 ⩽ i ̸= j ⩽ r. It is the matrix of the permutation (ij)(i′j′). It follows from the O(2r)
invariance of the R-matrix that the Q-operators defined via

Qi(x) = (B̃1i ⊗ . . .⊗ B̃1i) Q1(x)(B̃1i ⊗ . . .⊗ B̃1i)
∣∣∣
τ1↔τi

, i = 2, . . . , r (6.2.43)

and

Qi(x) = (J ⊗ . . .⊗ J) Qi′(x) (J ⊗ . . .⊗ J)|τi→τ−1
i

, i = r + 1, . . . , 2r (6.2.44)

also belong to the family of commuting operators. Up to the exponential prefactor, we shall
identify the q-function q1 with the eigenvalues of the Q-operator Q1, but we could have chosen
any other single-index Q.

Spinorial Nodes Let us now present the Q-operators corresponding to the spinorial nodes
± of the Dynkin diagram in Figure 6.2. The Lax matrix of interest is

Ľ(x) =

 x Ir + ĀA Ā

A Ir

 , (6.2.45)

where each block is of size r×r. This Lax matrix involves r(r−1)
2 pairs of oscillators [aij , ākl] =

δilδjk: the submatrices Ā and A are of the form

Ā =


ā1r′ · · · ā12′ 0
... . .

. 0 −ā12′

ār−1r′ 0 . .
. ...

0 −ār−1r′ · · · −ā1r′

 , A =


−ar′1 · · · −ar′r−1 0
... . .

. 0 ar′r−1

−a2′1 0 . .
. ...

0 a2′1 · · · ar′1

 .
(6.2.46)

As before, we define one Q-operator as the trace of the monodromy built out of the Lax
matrix L above as

S(x) = (τ1 · · · τr)
x
2 T̂r

[
Ď Ľ[1−r] ⊗ Ľ[1−r] ⊗ . . .⊗ Ľ[1−r]

]
. (6.2.47)

Here we introduced the twist in the auxiliary space via

Ď =
∏

1⩽i<j⩽r
(τiτj)āij′ aj′i . (6.2.48)

The remaining Q-operators at the spinorial nodes are obtained through a similarity transfor-
mation involving

B(α⃗) = 1
2

r∑
i=1

((1 + αi)(Ei′i′ + Eii) + (1 − αi)(Ei′i + Eii′)) , (6.2.49)

with αi = ±1, combined with an inversion of some of the twist parameters: we define

Sα⃗(x) = (B(α⃗) ⊗ . . .⊗B(α⃗))S(x)(B(α⃗) ⊗ . . .⊗B(α⃗))|τi→τ
αi
i
, (6.2.50)

labelled by α⃗ = (α1, . . . , αr) with αi = ±1.B(α⃗) is the matrix of the permutation∏j;αj=−1(jj′).
By construction the 2r operators Sα⃗ commute with one another and with all the transfer ma-
trices. We choose to identify s± with S(+1,...,+1,±1) up to the exponential prefactor.
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6.3 The Dr Q-System

We introduce in this section the Q-system. It has been verified at small finite length using the
construction that we just reviewed. In total we have 3r−2r−1r+2 Q-functions, see Figure 6.3
and Figure 6.4 for r = 3, 4 examples.

6.3.1 Description

The QQ-relations along the tail of the Dynkin diagram have a structure similar to those for
Ar, but the labelling of single-index functions is different. We shall say that a subset I of
{1, . . . , 2r} is acceptable if for all 1 ⩽ k ⩽ r, the integers k and k′ = 2r − k + 1 do not both
belong to I. In particular, an acceptable set cannot have more than r elements: |I| ⩽ r. A
Q-function QI is associated to each acceptable I, and these functions satisfy the relations

Q
[+1]
J∪{i}Q

[−1]
J∪{j} −Q

[−1]
J∪{i}Q

[+1]
J∪{j} = τi − τj√

τiτj
QJQJ∪{i,j} , (6.3.1)

where τi = τ−1
i′ , {i, i′}∩{j, j′} = ∅, J is acceptable of order at most r−2 and does not contain

i, i′, j or j′. We have excluded here the case where k and k′ are contained in the same set,
as the Q-functions defined this way would not have the expected asymptotic behaviour. For
the Dr spin chains under consideration, the Q-operator of the empty set can be conveniently
fixed as

Q∅(x) = xL , (6.3.2)

though such a choice for a generic Dr Q-system can be changed via a gauge transformation,
see below in this section.

As discussed in Subsection 6.2.2, the Q-functions QI with |I| = r − 1 or |I| = r factorise
into spinorial Q-functions. More precisely,

Q{i1,...,ir−1} = S{i1,...,ir−1,ir}S{i1,...,ir−1,i′r} , (6.3.3)

and
Q{i1,...,ir} = S

[+1]
{i1,...,ir}S

[−1]
{i1,...,ir} . (6.3.4)

The set notation for the Q-operators SI can be mapped to the notation Sα⃗ of the previous
section as follows: to an acceptable set I of order r we associate α⃗ such that, for 1 ⩽ i ⩽ r,

αi =
{

+1 if i ∈ I
−1 if i′ ∈ I

. (6.3.5)

We thus obtain a one-to-one correspondence between S{i1,...,ir} and Sα⃗ as defined in (6.2.50).
We further remark that the polynomial structure of the spinorial Q-functions allows to de-
termine them from the quadratic relations (6.3.3) and (6.3.4).

In total, there are

2k
(
r

k

)
(6.3.6)
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S+,+,+ S+,−,− S−,+,− S−,−,+ S+,+,− S+,−,+ S−,+,+ S−,−,−

Q1 Q2 Q3 Q3′ Q2′ Q1′

S+,∅ S−,∅

Q∅

Figure 6.3: Hasse diagram for D3. In a particular gauge, the functions at the first and last
level nodes can be chosen as in (6.3.17).

Q-functions QI at level k. At the last two levels, the Q-functions split according to (6.3.3) and
(6.3.4) such that (6.3.6) remains valid for 1 ⩽ k ⩽ r − 2, while 2 · 2r−1 spinorial Q-functions
Sα⃗ distinguished by ∏r

i=1 αi = ±1 are assigned to the (r − 1)-th and r-th spinor node,
respectively.

Let SI and SJ denote two Q-functions labelled by some acceptable sets I and J verifying
|I ∩ J | = r − 2, i.e.

I = {i1, . . . , ir−2, ir−1, ir} and J = {i1, . . . , ir−2, i
′
r−1, i

′
r} . (6.3.7)

It follows that they must belong to the same node of the Dynkin diagram. Among them, we
have the QQ-relations

S
[+1]
I S

[−1]
J − S

[−1]
I S

[+1]
J = τir−1τir − 1

√
τir−1τir

QI∩J , (6.3.8)

which relate the spinorial Q-functions to the last Q-functions on the tail of the Dynkin
diagram, i.e. at the (r − 2)-th node. Notice that for each Q-function of level r − 2 there are
two ways to obtain it from spinorial Q-functions, e.g.: when r = 4, I ∩ J = {1, 3} can come
from {I, J} = {{1, 3, 2, 4}, {1, 3, 7, 5}} or from {I, J} = {{1, 3, 2, 5}, {1, 3, 7, 4}}. This relation
allows us to resolve the last two levels and to represent the Q-functions on a diagram similar
to the Ar Hasse diagram, see Figure 6.3 and Figure 6.4 for the cases D3 and D4 respectively.
Let us note that the D3 Hasse diagram of Figure 6.3 is (up to a gauge transformation setting
Q∅ to 1) the same as the A3 one, this is not surprising since the two algebras are isomorphic.
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12 13 14 23 24 34 14′ 13′ 12′ 24′ 23′ 21′ 34′ 32′ 31′ 43′ 42′ 41′ 4′3′ 4′2′ 4′1′ 3′2′ 3′1′ 2′1′

1 2 3 4 4′ 3′ 2′ 1′

+ + ++ + + −− + − +− + − −+ − + +− − + −+ − − ++ − − −− + + +− + + −+ + − ++ + − −− − + ++ − + −− − − +− − − −+

∅+ ∅−

∅

Figure 6.4: Hasse diagram for D4. Here, the level 1 and level 2 Q-operators QI are abbre-
viated by their index set I. The third level contains the spinorial Q-operators Sα⃗ which are
abbreviated by α⃗. Finally, we have Q∅ (denoted by ∅) at the lowest level and S±,∅ (denoted by
∅±) at the highest level. These are proportional to the identity and can be fixed via (6.3.17).

The D4 Hasse diagram, on the other hand, is new and gives a clear idea of the higher-rank
picture.

Using the QQ-relations in (6.3.1) we can express all Q-functions QI in terms of Casoratian
determinants of single-index ones. We find

Q{i1,...,ik} =
(√τi1 · · · τik) k−1∏
1⩽a<b⩽k (τia − τib)

∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k∏k−1

l=1 Q
[k−2l]
∅

, (6.3.9)

where ia ̸= ib, ia ̸= i′b, and τi = τ−1
i′ for i > r. Similar formulae exist in terms of spinorial

functions: if I is an acceptable set of order k ⩽ r − 2 and the indices ik+1, . . . , ir are such
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that Ir = I ∪ {ik+1, . . . , ir} is acceptable of order r, then one has

QI =
(√τik+1 · · · τir ) r−k−1∏
k+1⩽a<b⩽r (τib − τia)

∣∣∣∣∣∣∣∣∣∣∣∣∣

S
[r−k−1]
I∪{i′

k+1,ik+2,...,ir} S
[r−k−3]
I∪{i′

k+1,ik+2,...,ir} · · · S
[1+k−r]
I∪{i′

k+1,ik+2,...,ir}

S
[r−k−1]
I∪{ik+1,i

′
k+2,...,ir} S

[r−k−3]
I∪{ik+1,i

′
k+2,...,ir} · · · S

[1+k−r]
I∪{ik+1,i

′
k+2,...,ir}

...
...

. . .
...

S
[r−k−1]
I∪{ik+1,...,ir−1,i′r} S

[r−k−3]
I∪{ik+1,...,ir−1,i′r} · · · S

[1+k−r]
I∪{ik+1,...,ir−1,i′r}

∣∣∣∣∣∣∣∣∣∣∣∣∣∏r−k−2
l=1 S

[r−k−1−2l]
Ir

.

(6.3.10)

Gauge Transformation The Q-system as written above corresponds to a particular choice
of gauge. In order to describe this gauge freedom, we draw inspiration from the r = 3 case,
see Appendix C.1. One needs to introduce two new Q-functions S±,∅. Equations (6.3.1) and
(6.3.3) remain unchanged while (6.3.4) and (6.3.8) become

QI = S
[+1]
I S

[−1]
I S−ϵ(I),∅ (6.3.11)

and
S

[+1]
I S

[−1]
J − S

[−1]
I S

[+1]
J = τir−1τir − 1

√
τir−1τir

QI∩J Sϵ(I),∅ , (6.3.12)

where I = {i1, . . . , ir} and J = {i1, . . . , ir−2, i
′
r−1, i

′
r} are acceptable sets of order r and we

define ϵ(I) = ∏r
i=1 αi = ϵ(α⃗), with α⃗ associated to I according to (6.3.5). These QQ-relations

remain unchanged if one applies the gauge transformation, depending on three arbitrary
functions g, g+ and g−, given by

S+,∅ 7→
g

[+3]
+ g

[−1]
−

g
[+1]
+ g

[−3]
−

S+,∅ , S−,∅ 7→
g

[+3]
− g

[−1]
+

g
[+1]
− g

[−3]
+

S−,∅ , (6.3.13)

Sα⃗ 7→
g

[+2]
+ g−

g+g
[−2]
−

gSα⃗ if ϵ(α⃗) = + , (6.3.14)

Sα⃗ 7→
g

[+2]
− g+

g−g
[−2]
+

gSα⃗ if ϵ(α⃗) = − , (6.3.15)

QI 7→
g

[|I|+3−r]
+ g

[|I|+3−r]
−

g
[r−3−|I|]
+ g

[r−3−|I|]
−

g[r−1−|I|]g[|I|+1−r]QI (6.3.16)

for I acceptable. In this chapter, we work in the spin-chain gauge

Q∅(x) = xL , S±,∅(x) = 1 , (6.3.17)

and the Q-functions are polynomials in the spectral parameter up to twist-dependent expo-
nential prefactors.
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6.3.2 Wronskian Form of the Bethe Ansatz Equations

We investigate here a possible Wronskian relation on r+ 1 Q-functions which could serve for
finding the Bethe roots and, eventually, the energy of the state. We call it the Wronskian
BAE, in analogy to the very useful Wronskian BAE (6.1.29) for the Ar spin chains.

We propose to use for this purpose the equation (6.3.10) when I = ∅:∣∣∣∣∣∣∣∣∣∣∣∣

S
[r−1]
{i′1,i2,...,ir} S

[r−3]
{i′1,i2,...,ir} · · · S

[1−r]
{i′1,i2,...,ir}

S
[r−1]
{i1,i′2,...,ir} S

[r−3]
{i1,i′2,...,ir} · · · S

[1−r]
{i1,i′2,...,ir}

...
...

. . .
...

S
[r−1]
{i1,...,ir−1,i′r} S

[r−3]
{i1,...,ir−1,i′r} · · · S

[1−r]
{i1,...,ir−1,i′r}

∣∣∣∣∣∣∣∣∣∣∣∣
=
∏

1⩽a<b⩽r (τib − τia)
(√τi1 · · · τir ) r−1 Q∅

r−2∏
l=1

S
[r−1−2l]
Ir

,

(6.3.18)
where we recall that Ir = {i1, . . . , ir} ⊂ {1, . . . , 2r} is such that {ia, i′a} ∩ {ib, i′b} = ∅ for
all a ̸= b. The spinorial Q-functions are polynomials up to a twist-dependent exponential
prefactor, their leading asymptotic behaviour is completely determined by the global charges
Ji = −Ji′ = ∑L

k=1 f
(k)
ii , it is given by

S{i1,...,ir}(x) ∼
x→∞

(
r∏

a=1
τia

)x
2

x
1
2 (∑r

k=1 Jia +L) . (6.3.19)

The hope would be that, once the global charges are fixed, it suffices to solve equation (6.3.18)
for the unknowns that are the coefficients of the polynomial parts of the spinorial Q-functions.
In the Ar case, we thus get exactly all the eigenstates with such a weight. However, this does
not seem to be the case here. First of all, one should notice that there are 2r equations of the
type (6.3.18) (as many as there are spinorial Q-functions SIr ). For a given choice of Ir, the
number of unknown coefficients can be easily computed to be L+ r−1

2 (∑r
a=1 Jia + L), it thus

seems natural to chose Ir such that ∑r
a=1 Jia is minimal. Nonetheless, since the degree of the

polynomials on each side of the equation is L+ r−2
2 (∑r

a=1 Jia + L), as soon as∑r
a=1 Jia > −L,

there does not seem to be enough equations to fix all the coefficients. This is understandable,
if one looks at the case r = 3: the proposed equation does not coincide with (6.1.29), it is
instead the expression of Q-functions with three indices in terms of single-index Q-functions.
A possible way to resolve this issue would be to solve (6.3.18) for different choices of Ir and
to look for common sets of solutions.

Once the Wronskian BAE has been solved, we have enough spinorial Q-functions to
recover r single-index Q-functions using (6.3.10). Any of them can be used to compute the
energy of the state through (6.2.22).

A Wronskian BAE for single-index Q-functions would be (see (6.4.13))

Q
[r−2]
∅ Q

[2−r]
∅

∣∣∣Q[r+1−2b]
{ia}

∣∣∣
r−1

∣∣∣Q[r−1−2b]
{ia}

∣∣∣
r−1

=
r−1∏
a=1

τia
(τia − τir )

(
τia − τi′r

) ∣∣∣Q[r+1−2b]
{ia}

∣∣∣
r

∣∣∣Q[r+1−2b]
{ja}

∣∣∣
r
,

(6.3.20)
where ja = ia for 1 ⩽ a ⩽ r − 1 and jr = i′r and the asymptotic behaviour of the relevant
functions is given by

Q{i}(x) ∼
x→∞

τxi x
L+Ji . (6.3.21)



6.4. WEYL-TYPE FORMULAE FROM TABLEAUX REPRESENTATIONS 123

Once again there are 2r equations of this type but they are of higher order than (6.3.18).

6.4 Weyl-Type Formulae from Tableaux Representations
The tableaux sum formulae of [239] give expressions for the transfer matrices of any rectan-
gular representation Ta,s through the single terms in the sum of the transfer matrix (6.2.14),
as given in (6.2.16). In total, there are 2r different terms (boxes), r for T+ and r for T−.
Instead of using the summands in the form (6.2.16) involving Q’s of different levels, we shall
express them either in terms of Q∅ and r single-index Q-functions as in (6.4.2), or in terms
of r+ 1 spinorial Q-functions. This will yield new expressions for T-functions associated with
totally symmetric (T1,s) or antisymmetric (Ta,1) representations.

6.4.1 The Simplest Case

In Section 6.2.2, we gave the transfer matrix T = T1,1 in terms of one single Q-function for
each nesting level. We can use the Casoratian formula (6.3.9) to express the transfer matrix
only in terms of Q∅ and r fundamental Q-functions Q{i}. We will show in this subsection that

T = Q
[r−1]
∅ Q

[3−r]
∅

∣∣∣Q[r+2−2b−2δb,r]
{ia}

∣∣∣
r∣∣∣Q[r+2−2b]

{ia}

∣∣∣
r

+Q
[1−r]
∅ Q

[r−3]
∅

∣∣∣Q[2b−r−2+2δb,r]
{ia}

∣∣∣
r∣∣∣Q[2b−r−2]

{ia}

∣∣∣
r

, (6.4.1)

with ia ̸= ib and ia ̸= i′b for all a ̸= b, and the notation |Mab|r = det1⩽a,b⩽rMab.
This formula represents, at least for T1,1, the Weyl-type expressions for the transfer

matrices of spin chains based on Dr algebra, “quantising” in this way the classical Weyl
character formula (A.2.11). The latter can be restored in the classical limit x → ∞. In that
limit Q{j}(x) ∼

x→∞
τxj x

L+Jj , while T behaves as x2N ∑r
j=1(τj + 1

τj
).

Induction We can prove the formula (6.4.1) by expressing the Q-functions qk in terms of
the first r fundamental Q-functions, as in (6.3.9), and inserting it into (6.2.16). We obtain

T± = Q
[±(r−1)]
∅ Q

[±(3−r)]
∅

r∑
k=1

∣∣∣Q[±(2k−r−2j+2)]
{i}

∣∣∣
k−1∣∣∣Q[±(2k−r−2j)]

{i}

∣∣∣
k−1

∣∣∣Q[±(2k−r−2j)]
{i}

∣∣∣
k∣∣∣Q[±(2k−r−2j+2)]

{i}

∣∣∣
k

. (6.4.2)

The desired expression (6.4.1) for the transfer matrix (in the case ia = a) follows from (6.4.2)
using the identity

r∑
k=1

∣∣∣Q[±(2k−r−2j+2)]
{i}

∣∣∣
k−1∣∣∣Q[±(2k−r−2j)]

{i}

∣∣∣
k−1

∣∣∣Q[±(2k−r−2j)]
{i}

∣∣∣
k∣∣∣Q[±(2k−r−2j+2)]

{i}

∣∣∣
k

=

∣∣∣Q[±(r+2−2j−2δj,r)]
{i}

∣∣∣
r∣∣∣Q[±(r+2−2j)]

{i}

∣∣∣
r

, (6.4.3)

which can be shown by induction on r. It obviously holds true for r = 1. It remains to show
that∣∣∣Q[±(r+3−2j−2δj,r)]

{i}

∣∣∣
r+1∣∣∣Q[±(r+3−2j)]

{i}

∣∣∣
r+1

=

∣∣∣Q[±(r+1−2j−2δj,r)]
{i}

∣∣∣
r∣∣∣Q[±(r+1−2j)]

{i}

∣∣∣
r

+

∣∣∣Q[±(r−2j+3)]
{i}

∣∣∣
r∣∣∣Q[±(r−2j+1)]

{i}

∣∣∣
r

∣∣∣Q[±(r−2j+1)]
{i}

∣∣∣
r+1∣∣∣Q[±(r−2j+3)]

{i}

∣∣∣
r+1

, (6.4.4)
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or equivalently (assuming the determinants are non-vanishing)∣∣∣Q[∓(2j−1+2δj,r+1)]
{i}

∣∣∣
r+1

∣∣∣Q[∓(2j+1)]
{i}

∣∣∣
r

=
∣∣∣Q[∓(2j−1)]

{i}

∣∣∣
r+1

∣∣∣Q[∓(2j+1+2δj,r)]
{i}

∣∣∣
r

+
∣∣∣Q[∓(2j−1)]

{i}

∣∣∣
r

∣∣∣Q[∓(2j+1)]
{i}

∣∣∣
r+1

.
(6.4.5)

The latter identity can be proven as follows: one first expands each of the (r + 1) × (r + 1)
determinants with respect to the row involving Q{r+1}. Both sides become linear combination
of Q[∓(2j−1)]

{r+1} for 1 ⩽ j ⩽ r + 2, and one just has to check that the coefficients on each side
are the same. For j ∈ {1, r + 1, r + 2}, this is completely trivial, whereas for j ∈ {2, . . . , r},
this becomes

|C1, . . . , Cj−1, Cj+1, . . . , Cr, Cr+2||C2, . . . , Cr+1|
= |C1, . . . , Cj−1, Cj+1, . . . , Cr, Cr+1||C2, . . . , Cr, Cr+2|

− |C1, . . . , Cr||C2, . . . , Cj−1, Cj+1, . . . , Cr+2| , (6.4.6)

where Cj is the transpose of the row vector
(
Q

[∓(2j−1)]
{1} , . . . , Q

[∓(2j−1)]
{r}

)
. This last equality is

a particular case of the Plücker identity (6.1.14).

Reshuffling Q-Functions We show here that the expression for the transfer matrix (6.4.1)
in terms of r fundamental Q-functions is invariant under the replacement Qia 7→ Qi′a for any a.
By obvious symmetry with respect to permutations of the functions Qi, i ∈ {1, 2, . . . , r}, it
suffices to show that the transfer matrix is invariant under Qir 7→ Qi′r . This is the case if

Q
[r−1]
∅ Q

[3−r]
∅

Q
[r−3]
∅ Q

[1−r]
∅

= −
Ť

{i1,...,ir}
− − Ť

{i1,...,i′r}
−

Ť
{i1,...,ir}
+ − Ť

{i1,...,i′r}
+

, (6.4.7)

where we defined

Ť
{a1,...,ar}
± =

∣∣∣Q[∓(2j−r−2+2δj,r)]
{ai}

∣∣∣
r∣∣∣Q[∓(2j−r−2)]

{ai}

∣∣∣
r

. (6.4.8)

Using the Jacobi identity on determinants, one can rewrite the numerator and the denomi-
nator in the previous condition as

Ť
{i1,...,ir}
− − Ť

{i1,...,i′r}
− = (−1)1+⌊ r

2 ⌋W
[−2]
i1,...,ir−1

Wi′r,i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,i′r

(6.4.9)

and

Ť
{i1,...,ir}
+ − Ť

{i1,...,i′r}
+ = (−1)1+⌊ r−1

2 ⌋+rW
[−2]
i1,...,ir−1

Wi′r,i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,i′r

, (6.4.10)

with
Wi1,...,ik :=

∣∣∣Q[k+1−2b]
{ia}

∣∣∣
k
. (6.4.11)
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The condition (6.4.7) then reads

Q
[r−1]
∅ Q

[3−r]
∅

Q
[r−3]
∅ Q

[1−r]
∅

=
W

[−2]
i1,...,ir−1

W
[+1]
i1,...,ir−1,ir

W
[+1]
i1,...,ir−1,i′r

W
[+2]
i1,...,ir−1

W
[−1]
i1,...,ir−1,ir

W
[−1]
i1,...,ir−1,i′r

, (6.4.12)

which is indeed satisfied due to the trivial relation

Q{i1,...,ir−1,ir}Q{i1,...,ir−1,i′r}

Q
[+1]
{i1,...,ir−1}Q

[−1]
{i1,...,ir−1}

= 1 , (6.4.13)

following immediately from the factorisation properties of the Q-functions (6.3.3) and (6.3.4).

6.4.2 Symmetric Representations

We start from the expressions (6.4.2) for T± such that

T1,1 = T+ + T− =
2r∑
k=1

bk,r , (6.4.14)

where bk,r denotes a box as given in [239] for Dr with index k. The expression above, in the
character limit x → ∞, allows to identify bk,r in terms of the single-index Q-functions. We
get

bk,r = Q
[r−1]
∅ Q

[3−r]
∅

∣∣∣Q[2k−r−2j+2]
{i}

∣∣∣
k−1∣∣∣Q[2k−r−2j]

{i}

∣∣∣
k−1

∣∣∣Q[2k−r−2j]
{i}

∣∣∣
k∣∣∣Q[2k−r−2j+2]

{i}

∣∣∣
k

(6.4.15)

for 1 ⩽ k ⩽ r, and

bk,r = Q
[1−r]
∅ Q

[r−3]
∅

∣∣∣Q[r−2j−2]
{i}

∣∣∣
k′−1∣∣∣Q[r−2j]

{i}

∣∣∣
k′−1

∣∣∣Q[r+2−2j]
{i}

∣∣∣
k′∣∣∣Q[r−2j]

{i}

∣∣∣
k′

(6.4.16)

for r + 1 ⩽ k ⩽ 2r, and we recall that k′ = 2r − k + 1.
The transfer matrices for generic symmetric representations are given by [239]

T1,s = 1∏s−1
k=1Q

[r−s−2+2k]
∅ Q

[−(r−s−2+2k)]
∅

∑ ′

1⩽i1⩽···⩽is⩽2r
b

[1−s]
i1,r

· · · b[s−1]
is,r

, (6.4.17)

where the symbol ∑′ stands for a sum in which we do not allow for r and r + 1 to appear
at the same time. The denominator appears as a consequence of our boundary conditions for
the T-system.

General Symmetric Sum Let us define

b̃k =

∣∣∣Q[2k−2j+2]
{i}

∣∣∣
k−1∣∣∣Q[2k−2j]

{i}

∣∣∣
k−1

∣∣∣Q[2k−2j]
{i}

∣∣∣
k∣∣∣Q[2k−2j+2]

{i}

∣∣∣
k

(6.4.18)
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for 1 ⩽ k ⩽ r, and

b̃k =

∣∣∣Q[−(2k′−2j+2)]
{i}

∣∣∣
k′−1∣∣∣Q[−(2k′−2j)]

{i}

∣∣∣
k′−1

∣∣∣Q[−(2k′−2j)]
{i}

∣∣∣
k′∣∣∣Q[−(2k′−2j+2)]

{i}

∣∣∣
k′

(6.4.19)

for r + 1 ⩽ k ⩽ 2r. This means that

bk,r = Q
[r−1]
∅ Q

[3−r]
∅ b̃

[−r]
k if k ⩽ r , and bk,r = Q

[1−r]
∅ Q

[r−3]
∅ b̃

[r]
k if r + 1 ⩽ k . (6.4.20)

For l ⩾ 1, one has

∑
1⩽i1⩽...⩽il⩽r

b̃
[−2l+1]
i1

· · · b̃[−1]
il

=

∣∣∣Q[2r+1−2j−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2r+1−2j]

{i}

∣∣∣
r

(6.4.21)

and ∑
r+1⩽i1⩽...⩽il⩽2r

b̃
[1]
i1

· · · b̃[2l−1]
il

=

∣∣∣Q[−(2r+1−2j−2lδj,r)]
{i}

∣∣∣
r∣∣∣Q[−(2r+1−2j)]

{i}

∣∣∣
r

. (6.4.22)

The two identities are equivalent, hence it is enough to prove the first one. We do it
by induction on r. It is trivial when r = 1. If it is true for some r0 ⩾ 1, then let us show
by induction on l that it is also true for r0 + 1: the case l = 1 has been proven earlier in
Subsection 6.4.1, so we assume that the identity holds for some l0 ⩾ 1. We then write∑

1⩽i1⩽...⩽il0+1⩽r0+1
b̃

[−2l0−1]
i1

· · · b̃[−1]
il0+1

=
∑

1⩽i1⩽...⩽il0+1⩽r0

b̃
[−2l0−1]
i1

· · · b̃[−1]
il0+1

+ b̃
[−1]
r0+1

∑
1⩽i1⩽...⩽il0⩽r0+1

b̃
[−2l0−1]
i1

· · · b̃[−3]
il0

. (6.4.23)

Since we have assumed that the identity holds for r0 and any l, for (r0 + 1, l0) we can write

∑
1⩽i1⩽...⩽il0+1⩽r0+1

b̃
[−2l0−1]
i1

· · · b̃[−1]
il+1

=

∣∣∣∣Q[2r0+1−2j−2(l0+1)δj,r0 ]
{i}

∣∣∣∣
r0∣∣∣Q[2r0+1−2j]

{i}

∣∣∣
r0

+

∣∣∣Q[2r0−2j+3]
{i}

∣∣∣
r0∣∣∣Q[2r0−2j+1]

{i}

∣∣∣
r0

∣∣∣∣Q[2r0+1−2j−2l0δj,r0+1]
{i}

∣∣∣∣
r0+1∣∣∣Q[2r0−2j+3]

{i}

∣∣∣
r0+1

. (6.4.24)

Consequently, for (6.4.21) to hold for (r0 + 1, l0 + 1), one only has to show that∣∣∣Q[−2j]
{i}

∣∣∣
r0

∣∣∣∣Q[2−2j−2(l0+1)δj,r0+1]
{i}

∣∣∣∣
r0+1

=
∣∣∣Q[2−2j]

{i}

∣∣∣
r0+1

∣∣∣∣Q[−2j−2(l0+1)δj,r0 ]
{i}

∣∣∣∣
r0

+
∣∣∣Q[2−2j]

{i}

∣∣∣
r0

∣∣∣∣Q[−2j−2l0δj,r0+1]
{i}

∣∣∣∣
r0+1

. (6.4.25)

This last relation can be proven in much the same way as (6.4.5), which itself corresponds to
the case l0 = 0.
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Application to the Computation of Transfer Matrices In order to apply the sum-
mation formulae (6.4.21) and (6.4.22), we first rewrite equation (6.4.17) as

T1,s =
s∑
l=0

Q
[2j+r−s−2]
∅ Q

[2+2j−r−s]
∅

∑
1⩽i1⩽...⩽il⩽r

r+1⩽il+1⩽...⩽is⩽2r

(
b̃

[1−s−r]
i1

· · · b̃[2l−s−r−1]
il

)

×
(
b̃

[2l−s+r+1]
il+1

· · · b̃[s+r−1]
is

)
−
s−1∑
l=1

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅ b̃[2l−s−r−1]

r b̃
[2l−s+r+1]
r+1

×
∑

1⩽i1⩽...⩽il−1⩽r
r+1⩽il+2⩽...⩽is⩽2r

(
b̃

[1−s−r]
i1

· · · b̃[2l−s−r−3]
il−1

) (
b̃

[2l−s+r+3]
il+2

· · · b̃[s+r−1]
is

)
. (6.4.26)

By virtue of (6.4.21) and (6.4.22), this becomes

T1,s =
s∑
l=0

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s+1−2j−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

∣∣∣Q[−(r+s+1−2l−2j−2(s−l)δj,r)]
{i}

∣∣∣
r∣∣∣Q[−(r+s+1−2l−2j)]

{i}

∣∣∣
r

−
s−1∑
l=1

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s−1−2j−2(l−1)δj,r]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

∣∣∣Q[−(r+s−1−2l−2j−2(s−1−l)δj,r)]
{i}

∣∣∣
r∣∣∣Q[−(r+s+1−2l−2j)]

{i}

∣∣∣
r

.

(6.4.27)

The terms for 1 ⩽ l ⩽ s−1 of each sum can be combined, thanks to a Plücker identity, to give
an explicit and concise Weyl-type representation of symmetric T-functions for Dr algebra

T1,s =
s∑
l=0

Q
[2l+r−s−2]
∅ Q

[2+2l−r−s]
∅

∣∣∣Q[2l+r−s+1−2j+2(s−l)δj,1−2lδj,r]
{i}

∣∣∣
r∣∣∣Q[2l+r−s+1−2j]

{i}

∣∣∣
r

. (6.4.28)

There are once again 2r formulae of this type, depending on which set of r single-index
Q-functions we use in the right-hand side.

6.4.3 Antisymmetric Representations

The transfer matrices for generic antisymmetric representations are given by [239]

Ta,1 = 1∏a−1
k=1Q

[r−a+2k]
∅ Q

[−(r−a+2k)]
∅

∑
1⩽i1<···<ik⩽r

r+1⩽j1<···<jl⩽2r
a−k−l∈2N

b
[a−1]
i1,r

· · · b[a+1−2k]
ik,r

× b
[a−1−2k]
r+1,r b[a−3−2k]

r,r · · · b[2l+3−a]
r+1,r b[2l+1−a]

r,r b
[2l−a−1]
j1,r

· · · b[1−a]
jl,r

. (6.4.29)

As it happens, in order to obtain nice expressions for these transfer matrices involving a
reduced number of Q-functions, it is more convenient to turn to spinorial Q-functions. If, in
order to shorten the notations, we write

SIr = S{1,...,r} , Si = S{1,...,r−i,r+i,r−i+2,...,r} for i ∈ {1, . . . , r} , (6.4.30)
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then, according to (6.3.10), the boxes are also given by

bk,r = Q
[r−1]
∅ Q

[1−r]
∅

S
[−2]
Ir

SIr

∣∣∣S[−2j]
i

∣∣∣
r−k∣∣∣S[2−2j]

i

∣∣∣
r−k

∣∣∣S[4−2j]
i

∣∣∣
r+1−k∣∣∣S[2−2j]

i

∣∣∣
r+1−k

(6.4.31)

for 1 ⩽ k ⩽ r, and

bk,r = Q
[r−1]
∅ Q

[1−r]
∅

S
[+2]
Ir

SIr

∣∣∣S[2j]
i

∣∣∣
k−r−1∣∣∣S[2j−2]

i

∣∣∣
k−r−1

∣∣∣S[2j−4]
i

∣∣∣
k−r∣∣∣S[2j−2]

i

∣∣∣
k−r

(6.4.32)

for r + 1 ⩽ k ⩽ 2r. The relevant summation formulae read

∑
1⩽i1<...<il⩽r

b
[−1]
i1,r

· · · b[1−2l]
il,r

=
S

[−1−2l]
Ir

S
[−1]
Ir

(
l∏

a=1
Q

[r−2l−2+2a]
∅ Q

[−r−2l+2a]
∅

) ∣∣∣S[1−2j+2θ(l−j))]
i

∣∣∣
r∣∣∣S[1−2j]

i

∣∣∣
r
(6.4.33)

and

∑
r+1⩽i1<...<il⩽2r

b
[2l−1]
i1,r

· · · b[1]
il,r

=
S

[2l+1]
Ir

S
[+1]
Ir

(
l∏

a=1
Q

[r−2+2a]
∅ Q

[−r+2a]
∅

) ∣∣∣S[2r−1−2j+2θ(r−l−j)]
i

∣∣∣
r∣∣∣S[2r+1−2j]

i

∣∣∣
r

,

(6.4.34)
where we used the Heaviside function θ (it is 0 for negative arguments and 1 for non-negative
ones). These formulae can be proven in much the same way as (6.4.21) and (6.4.22).

This permits us to write

Ta,1 =
Q

[r−a]
∅ Q

[a−r]
∅

S
[a−1]
Ir

S
[1−a]
Ir

∑
0⩽k,l⩽a
a−k−l∈2N

S
[a+1−2k]
Ir

S
[2l−1−a]
Ir

∣∣∣S[a+1−2j+2θ(k−j)]
i

∣∣∣
r∣∣∣S[a+1−2j]

i

∣∣∣
r

×

∣∣∣S[2r−a−1−2j+2θ(r−l−j)]
i

∣∣∣
r∣∣∣S[2r−a+1−2j]

i

∣∣∣
r

. (6.4.35)

This equation should be compared with the much more complicated expression given in
Appendix C.3.2 for the same quantity but in terms of single-index Q-functions. Similarly, the
expression for T1,s in terms of spinorial Q-functions is not as simple as (6.4.28).

In the particular case a = 1, the previous expression reads

T1,1 =
Q

[r−1]
∅ Q

[1−r]
∅

SIr

S[−2]
Ir

∣∣∣S[2−2j+2δ1,j ]
i

∣∣∣
r∣∣∣S[2−2j]

i

∣∣∣
r

+ S
[+2]
Ir

∣∣∣S[2r−2j−2δj,r]
i

∣∣∣
r∣∣∣S[2r−2j]

i

∣∣∣
r

 . (6.4.36)
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It should be compared with (6.4.1). When a = r − 1, there is a factorisation:

Tr−1,1 = 1
S

[r−2]
Ir

S
[2−r]
Ir

Q
[+1]
∅ Q

[−1]
∅∣∣∣S[r+2−2j]

i

∣∣∣
r

∣∣∣S[r−2j]
i

∣∣∣
r

 r∑
k=0
k even

S
[r−2k]
Ir

∣∣∣S[r−2j+2θ(k−j)]
i

∣∣∣
r



×

 r∑
k=0
k odd

S
[r−2k]
Ir

∣∣∣S[r−2j+2θ(k−j)]
i

∣∣∣
r

 . (6.4.37)

6.4.4 Spinorial Representations

Following [58], we express the spinorial T-functions T±,1 in terms of the Q-functions along a
nesting path. One finds

T±,1 =
∑

|α|=±1
Q

[−α1]
∅

S[ρ+(α⃗)+1]
(+,...,+)

S
[ρ+(α⃗)−1]
(+,...,+)


αr−1+αr

2
S[ρ−(α⃗)+1]

(+,...,+,−)

S
[ρ−(α⃗)−1]
(+,...,+,−)


αr−1−αr

2 r−2∏
k=1

Q[ρk(α⃗)+1]
{1,...,k}

Q
[ρk(α⃗)−1]
{1,...,k}


αk−αk+1

2

,

(6.4.38)
where Q∅ = xN and the shifts are determined via

ρk(α⃗) = α1 + . . .+ αk−1 + αk − αk+1
2 for 1 ≤ k ≤ r − 2 ,

ρ±(α⃗) = α1 + . . .+ αr−2 + αr−1 ± αr
2 .

(6.4.39)

Expressing all Q-functions in terms of spinorial ones using (6.3.10), we obtain determinant
formulae for T±,1. We find

T+,1 =
(√τi1 · · · τir ) r−1∏
1⩽a<b⩽r (τib − τia)

1∏r−1
l=1 S

[r−2l]
Ir

r∑
k=0
k even

S
[r−2k]
Ir

∣∣∣S[2j−r−2θ(r−k−j)]
i

∣∣∣
r

(6.4.40)

and

T−,1 =
(√τi1 · · · τir ) r−1∏
1⩽a<b⩽r (τib − τia)

1∏r−1
l=1 S

[r−2l]
Ir

r∑
k=0
k odd

S
[r−2k]
Ir

∣∣∣S[2j−r−2θ(r−k−j))]
i

∣∣∣
r
. (6.4.41)

These expressions have been verified for r = 3, 4, 5 for a particular choice of Ir and we
are missing a generic proof. However, the formulae are consistent with the factorisation
Tr−1,1 = T+,1T−,1 in (6.4.37) expected from the Hirota relations (see Subsection 6.5.4 below).
In principle, one can now generate, from (6.4.35), (6.4.40) and (6.4.41) above, all transfer ma-
trices of rectangular representations using Cherednik–Bazhanov–Reshetikhin type formulae
written for Dr symmetry in [58].
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6.5 QQ′-Type Formulae
In this section, we present what we call QQ′-type formulae for the symmetric and spinorial
T-operators. The reasoning behind our heuristic derivation is based upon [77], where the
Bernstein–Gelfand–Gelfand (BGG) resolution [75] was used for a compact spin chain with
Ar symmetry, see also [74] for a non-compact spin chain based on the same symmetry algebra.
Here we give arguments at the level of characters only, see also [83], which we take as hints
to obtain the actual BGG-type relations for the fundamental and spinorial transfer matrices.
The final formulae have been checked in several examples for small finite lengths. We also
provide a consistency check. Namely, starting from the QQ′-type formulae, we recover the
Weyl-type expression for the fundamental transfer matrix (6.4.1). We introduce in the final
subsection the T-system [43], and we solve it using the QQ′-type formulae for symmetric
T-operators. This yields similar formulae for any rectangular transfer matrix Ta,s.

6.5.1 Symmetric Transfer Matrices

It was argued in [183] that the product of Lax matrices can be brought to the form

L
(1)
i (x+ xi)L(2)

i′ (x− xi) = SiL
+,(1)
i (x)G(2)

i S−1
i , (6.5.1)

where the Lax operator Li is defined by Li(x) = B̃1i L(x) B̃1i for i ⩽ r, and Li(x) = JLi′(x)J
for i ⩾ r + 1, see Subsection 6.2.4. The superscripts (1, 2) indicate two different families of
oscillators. The letter Si denotes a similarity transformation in the oscillators space. Gi is
a dummy matrix which does not depend on the spectral parameter, and commutes with
the Lax matrix L+

i (x). Their precise form is given in [183]. We identify the Lax matrix
L+
i (x) as a realisation of (6.2.4). The parameter xi then plays the role of the representation

label. We stress that the term linear in the spectral parameter is given by the generators
fij , cf. (6.2.4). In the case (6.5.1), the representation of so(2r) is infinite-dimensional in the
oscillators space and becomes reducible for certain values of the parameter xi. The infinite-
dimensional representation of so(2r) is characterised by its character. For example, for i = 1,
the Cartan elements are of the form

f11 = 1 − r + 2x1 −
2r−1∑
k=2

ākak , (6.5.2)

fii = āiai − āi′ai′ , 2 ⩽ i ⩽ r . (6.5.3)

The character can then be computed:

χ+
1 (x1) = tr

r∏
i=1

τJii
i = τ2x1

1

r∏
k=2

τ1
(τ1 − τk)(τ1 − τk′) . (6.5.4)

We find similar formulae for the product of Lax matrices Li(x+xi)Li′(x−xi), by exchanging
τ1 ↔ τi and x1 → xi for 1 ⩽ i ⩽ r for instance. More precisely, one has

χ+
i (xi) = τ2xi

i

∏
1⩽k⩽r
k ̸=i,i′

τi
(τi − τk)(τi − τk′) , 1 ⩽ i ⩽ 2r . (6.5.5)
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The product over k is invariant under the simultaneous inversion of all the twists. The finite
dimensional characters are related to the ones above by the sum formula

χs =
2r∑
i=1

χ+
i

(
s+ r − 1

2

)
=

r∑
i=1

∏
j ̸=i

τi(
τi − τj′

)
(τi − τj)

(τ s+r−1
i + τ s+r−1

i′

)
. (6.5.6)

From our results for finite length and the discussion above, we find that the formula can be
lifted to transfer matrices and Q-operators. It reads

T1,s(x) =
r∑
i=1

∏
j ̸=i

τi(
τi − τj′

)
(τi − τj)

(Q[s+r−1]
{i} Q[1−r−s]

{i′} + Q[1−r−s]
{i} Q[s+r−1]

{i′}

)
. (6.5.7)

Notice that, in the limit x → ∞, (6.5.7) becomes (6.5.6), as it should be.

6.5.2 Spinorial Transfer Matrices

A factorisation formula similar to (6.5.1) exists for the spinorial Lax matrices (6.2.45). It
reads

Ľ
(1)
α⃗ (x+ xα⃗)Ľ(2)

−α⃗(x− xα⃗ − κ) = Šα⃗Ľ
+,(1)
α⃗ (x)Ǧ(2)

α⃗ Š−1
α⃗ . (6.5.8)

We define here Ľα⃗(x) = B(α⃗)Ľ(x)B(α⃗) and use notations similar to those in (6.5.1). The
similarity transformation Šα⃗ only depends on the oscillators, and Ǧα⃗ is a matrix that is
independent of the spectral parameter and commutes with the Lax matrix Ľ+

α⃗ . The latter
denotes an infinite-dimensional realisation of the spinorial Lax matrix

Ľ(x) = z Id +fij ⊗ eji , (6.5.9)

where fij denote the generators of a spinorial representation. Again the parameter xα⃗ in
(6.5.8) has the role of the representation label. As before, we compute the character of the
oscillator representation. In the case α⃗ = (+, . . . ,+), we find

χ(+,...,+) = tr
r∏
i=1

τJii
i =

r∏
i=1

τ
x(+,...,+)
i

∏
1⩽j<k⩽r

τjτk
τjτk − 1 , (6.5.10)

where

fii = x(+,...,+) −
r∑

j=i+1
āij′aj′i −

i−1∑
j=1

āji′ai′j , 1 ⩽ i ⩽ r . (6.5.11)

The general formula can be obtained using the relations among the spinorial Lax matrices
presented in Subsection 6.2.4. We get

χ+
α⃗ (xα⃗) =

r∏
i=1

ταixα⃗
i

∏
1⩽j<k⩽r

τ
αj

j ταk
k

τ
αj

j ταk
k − 1

. (6.5.12)

The characters of the finite-dimensional spinor representations ± with respective highest
weights sωr and sωr−1 can then be written as

χ±,s =
∑

{αi}±

χ+
α⃗

(
s

2

)
=

∑
{αi}±

r∏
i=1

τ
s
2αi

i

∏
1⩽j<k⩽r

τ
αj

j ταk
k

τ
αj

j ταk
k − 1

. (6.5.13)
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Here, the sum is taken over all configurations {α⃗}± such that ∏i α = ±1.
At the level of transfer matrices, we propose the formula

T±,s =
∑

{αi}±

∏
1⩽j<k⩽r

τ
αj

j ταk
k

τ
αj

j ταk
k − 1

r∏
i=1

τ
− κ

2αi

i S
[r+s−1]
α⃗ S

[1−s−r]
−α⃗ . (6.5.14)

This formula has been verified for small finite lengths by comparing to the transfer matrices
directly constructed within the quantum inverse scattering method, using the Lax matrices
in (6.5.9) for finite-dimensional spinor representations.

6.5.3 Weyl-Type Formula for T1,1 from QQ′-Relations

Let us write (6.5.7) as

T1,s =
2r∑
i=1

hiQ
[s+r−1]
{i} Q

[1−r−s]
{i′} , (6.5.15)

where hi = ∏r
j(̸=i,i′)(ui − uj)−1 and uj = τj + 1/τj . We further assume that, when s is in

{1 − r, . . . , 0}, the identity is still verified if one sets

T1,0 = Q
[r−2]
∅ Q

[2−r]
∅ and T1,s = 0 for 1 − r ⩽ s ⩽ −1 . (6.5.16)

We show here that the conditions (6.5.15) and (6.5.16) are enough to recover the expression
(6.4.1) giving T1,1 in terms of only r of the single-index Q-functions, and so are consistent
with it. We also show in Appendix C.2.1 how to retrieve the Wronskian equation (6.3.20)
from these conditions.

One simply has to notice that (6.5.15) implies that there exist some Q-dependent coeffi-
cients Cj,k′,k (defined for 0 ⩽ k′ ⩽ k ⩽ r and 0 ⩽ j ⩽ k − k′) such that

k∑
k′=0

k−k′∑
j=0

Cj,k′,kT
[2j+k′−k]
1,k′+1−r

=
r∑
i=1

hi

∣∣∣∣∣∣∣∣∣∣∣

Q
[−k]
1 Q

[−k+2]
1 · · · Q

[k]
1

...
...

...

Q
[−k]
k Q

[−k+2]
k · · · Q

[k]
k

Q
[−k]
i Q

[−k+2]
i · · · Q

[k]
i

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

Q
[−k]
1 Q

[−k+2]
1 · · · Q

[k]
1

...
...

...

Q
[−k]
k Q

[−k+2]
k · · · Q

[k]
k

Q
[−k]
i′ Q

[−k+2]
i′ · · · Q

[k]
i′

∣∣∣∣∣∣∣∣∣∣∣
. (6.5.17)

It suffices indeed to expand the determinants with respect to their last row and perform the
sum over i. One has for instance

C0,k,k = (−1)k

∣∣∣∣∣∣∣∣
Q

[−k]
1 · · · Q

[k−2]
1

...
...

Q
[−k]
k · · · Q

[k−2]
k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Q

[−k+2]
1 · · · Q

[k]
1

...
...

Q
[−k+2]
k · · · Q

[k]
k

∣∣∣∣∣∣∣∣ . (6.5.18)

In particular, plugging the constraints (6.5.16) in the previous relation when k = r gives us

C0,r−1,rQ
[r−3]
∅ Q

[1−r]
∅ + C1,r−1,rQ

[r−1]
∅ Q

[3−r]
∅ + C0,r,rT1,1 = 0 . (6.5.19)
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Since

C0,r−1,r = (−1)r+1
∣∣∣Q[−r+2j]

i

∣∣∣
r

×
∣∣∣Q[−r+2j−2+2δj,r]

i

∣∣∣
r

and C1,r−1,r = (−1)r+1
∣∣∣Q[−r+2j−2]

i

∣∣∣
r

×
∣∣∣Q[−r+2j−2δj,1]

i

∣∣∣
r
, (6.5.20)

we recover (6.4.1) in the case ia = a. Notice that, with this derivation, the symmetry under
Q{i} ↔ Q{i′} is immediate because the equations we started from were already symmetric.

Finally, let us mention that we also checked that one can actually recover formula (6.4.28)
for T1,s starting from the conditions (6.5.15) and (6.5.16) using a method similar to the one
just shown (or more directly for low ranks, see Appendix C.3.1 for the case r = 2).

6.5.4 Arbitrary Rectangular Representations

In this section, we propose relatively simple formulae for T-functions in rectangular repre-
sentations in terms of bilinear expressions involving Wronskians of both types of single-index
Q-functions, Qi and Qi′ , where i = 1, 2, . . . , r. These formulae follow from (6.5.7) when solving
the T-system [43] satisfied by the T-functions, which reads as follows (s ∈ N∗):

T [+1]
a,s T [−1]

a,s = Ta,s+1 Ta,s−1 + Ta−1,s Ta+1,s (6.5.21)

for 1 ⩽ a ⩽ r − 3,

T
[+1]
r−2,s T

[−1]
r−2,s = Tr−2,s+1 Tr−2,s−1 + Tr−3,s T+,s T−,s , (6.5.22)

which can be written in the same form as the previous equation if one sets Tr−1,s = T+,sT−,s,
and

T
[+1]
±,s T

[−1]
±,s = T±,s+1 T±,s−1 + Tr−2,s . (6.5.23)

The boundary conditions are (0 ⩽ a ⩽ r − 2, s ∈ N)

Ta,0 = Q
[r−a−1]
∅ Q

[a+1−r]
∅ , T0,s = Q

[r+s−1]
∅ Q

[1−r−s]
∅ , and T±,0(x) = Q∅(x) . (6.5.24)

We shall determine here the QQ′-type relations for Ta,s for 1 ⩽ a ⩽ r − 1, but not for
T±,s. For these spinorial transfer matrices, the spinorial Q-functions seem more suitable, see
equation (6.5.14). We start from

T
[+1]
1,s T

[−1]
1,s − T1,s−1T1,s+1 =

∑
1⩽i1<i2⩽2r

hi1hi2

∣∣∣∣∣∣ Q
[s+r]
{i1} Q

[s+r−2]
{i1}

Q
[s+r]
{i2} Q

[s+r−2]
{i2}

∣∣∣∣∣∣
∣∣∣∣∣∣ Q

[2−s−r]
{i′1} Q

[−s−r]
{i′1}

Q
[2−s−r]
{i′2} Q

[−s−r]
{i′2}

∣∣∣∣∣∣ ,
(6.5.25)

which can also be written, if the transfer matrices satisfy the Hirota equation (6.5.21) with
boundary conditions (6.5.24),

T
[+1]
1,s T

[−1]
1,s − T1,s−1 T1,s+1 = T0,s T2,s = Q

[r+s−1]
∅ Q

[1−r−s]
∅ T2,s . (6.5.26)
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Putting the two expressions together yields the following expression for the second row of
transfer matrices:

T2,s = 1
Q

[r+s−1]
∅ Q

[1−r−s]
∅

∑
1⩽i1<i2⩽2r

hi1hi2

∣∣∣∣∣∣ Q
[s+r]
{i1} Q

[s+r−2]
{i1}

Q
[s+r]
{i2} Q

[s+r−2]
{i2}

∣∣∣∣∣∣
∣∣∣∣∣∣ Q

[2−s−r]
{i′1} Q

[−s−r]
{i′1}

Q
[2−s−r]
{i′2} Q

[−s−r]
{i′2}

∣∣∣∣∣∣ .
(6.5.27)

This procedure can be continued for 1 ⩽ a ⩽ r − 1, it yields

Ta,s = 1∏a−1
k=1Q

[r+s+2k−a−1]
∅ Q

[1+a−r−s−2k]
∅

∑
1⩽i1<...<ia⩽2r

hi1 · · ·hiaW
[s+r−1]
i1,...,ia

W
[1−s−r]
i′1,...,i

′
a
, (6.5.28)

where we recall that Wi1,...,ik =
∣∣∣Q[k+1−2b]

{ia}

∣∣∣
k
. The proof of this formula, which we present in

Appendix C.2.2, boils down to verifying the relation

1
2

∑
1⩽i1<···<ia⩽2r
1⩽j1<···<ja⩽2r

∣∣∣∣∣ W
[s+r]
i1,...,ia

W
[s+r−2]
i1,...,ia

W
[s+r]
j1,...,ja

W
[s+r−2]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W

[2−s−r]
i′1,...,i

′
a

W
[−s−r]
i′1,...,i

′
a

W
[2−s−r]
j′

1,...,j
′
a

W
[−s−r]
j′

1,...,j
′
a

∣∣∣∣∣
=

 ∑
1⩽i1<···<ia−1⩽2r

W
[s+r−1]
i1,...,ia−1

W
[1−s−r]
i′1,...,i

′
a−1

 ∑
1⩽i1<···<ia+1⩽2r

W
[s+r−1]
i1,...,ia+1

W
[1−s−r]
i′1,...,i

′
a+1

 . (6.5.29)

6.6 Discussion
In this chapter, we proposed the full system of Baxter Q-functions—the Q-system—for the
spin chains with SO(2r) symmetry, exemplified for r = 4 in Figure 6.4. We found Weyl-type
formulae for transfer matrices (T-functions) of symmetric and antisymmetric representa-
tions in terms of sums of ratios of determinants of a reduced number of basic Q-functions.
We proposed QQ′-type formulae expressing the T-functions through 2r basic single-index
Q-functions. These could be a powerful tool for the study of spin chains and sigma models
with Dr symmetry. We also reformulated the Bethe ansatz equations in the form of a single
Wronskian relation on r + 1 basic Q-functions. It is the analogue of a similar Wronskian re-
lation for spin chains with Ar symmetry. However, apart from the Bethe roots, our equation
contains extra solutions whose role has yet to be clarified.

Our main assumptions in this chapter are the Plücker QQ-relations (6.3.1) and (6.3.8),
as well as the QQ′-relations (6.5.7) and (6.5.14). The QQ-relations (6.3.1) allow to express
the fundamental transfer matrix, for which an expression in terms of one Q-function at
each level is known from the algebraic Bethe ansatz, in terms of r single-index Q-functions
and Q∅, cf. (6.4.1). This Weyl-type expression has been independently obtained from the
QQ′-type relations (6.5.7). We take this as a consistency check. The new formulae for Ta,s
are obtained either from the T-system or from the tableaux formulae of [239]. Both QQ- and
QQ′-relations remain to be proven, but we have tested them explicitly for several examples
of small finite length of the chain. A solid proof of these may be possible using the Bernstein–
Gelfand–Gelfand resolution (or an analogue of it), or the analogue of the coderivative method
proposed in [82], and used for this purpose in [83], see also [240] for a review.
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Unlike the well-understood Q-system of A-type, in the case of the D-type Q-system, there
are still several questions left and issues to be clarified. Questions exist already at the operator
level: the R-matrix—the main building block for Q- and T-functions—is known only for the
symmetric and spinorial representations [183,198,215] (see also Section 4.1) in the auxiliary
space. A full classification of Lax matrices including the ones for the Q-operators was recently
given in [241] for A-type. This may shed some light upon the transfer matrices for general
rectangular representations and beyond.

Unfortunately, we do not know yet a suitable analogue of Baxter’s TQ-equation (quantum
spectral determinant) which appeared to be so useful for the spin chains with Ar symme-
try [19, 63], see [140] for the modern description in terms of forms as well as [242] in terms
of the quantum determinant. It is possible that the QQ′-type formulae for transfer matrices
proposed here can replace the Baxter equations for Dr algebra.

Finally, we hope that our methods can be generalised to B, C and exceptional types
of algebras and their deformations, as well as to superalgebras such as osp(m|2n) where
the Q-system and T-functions are yet to be constructed. This includes the case relevant
for AdS4/CFT3 for which the QSC has recently been studied in [243–245]. A first step
could be the evaluation of the oscillators type Lax matrices for Q-operators using the results
of [246,247] as done in [248] for type A.

Shortly after the results presented in this chapter were put on the arXiv, a preprint
with partially overlapping results appeared [249]. The authors of this work approached the
Q-system from the ODE/IM correspondence viewpoint. They define an extended Q-system
which, in our language, corresponds to imposing no restriction on the sets labelling the
Q-functions, Q{1,1′} is for instance included in their Q-system. They also treated the excep-
tional Lie algebras E6, E7, and E8. Two of the authors pursued their investigation of the
D-type Q- and T-systems in [250]. They recovered there our Weyl-type formulae for T1,s,
derived similar formulae for T±,s, and advocated for an interpretation of them in terms of
the representation theory of gl(r) ⊂ so(2r).





Conclusion and Outlook

We presented, in this thesis, some advances in the solution of the fishnet theory in arbitrary
dimension and of the non-compact spin chain associated to it.

For the isotropic, δ = d
4 , fishnet theory in four dimensions one can use the well-established

quantum spectral curve (QSC) for N = 4 super Yang–Mills (SYM), and take the double-
scaling limit [150] to obtain a solution to the spectral problem. In the same spirit, one can
adapt the hexagon factorisation technique for the computation of correlation functions and
scattering amplitudes to this simpler theory [251]. As soon as one considers anisotropic fishnet
or dimensions different than four, no such tools are available anymore. The relative simplicity
of the theory nevertheless incites one to look for similar results in this more general setting.
It also gives hope to obtain a first-principle derivation of results that, although they have
often been extensively tested, would otherwise remain mainly conjectural.

In order to derive an analogue of the QSC for the fishnet theory in arbitrary dimension
d, we started with an investigation of the thermodynamic Bethe ansatz (TBA) equations
for the conformal dimensions of multi-magnon operators. The usual prescription of the TBA
for integrable quantum field theories [120] requires to solve an auxiliary mirror model. The
examination of the Feynman graphs in the case at hand revealed the form of the Hamiltonian
in this mirror model as a graph-building operator. The eigenvectors were then constructed
explicitly, and they had a clear interpretation as multi-particle states: the mirror system
consists of particles living on an infinite one-dimensional space and having internal degrees of
freedom with O(d) symmetry. The proof that the eigenvectors indeed provide a realisation of
a Zamolodchikov–Faddeev algebra required integral representations for the finite-dimensional
O(d)-invariant R-matrices that were not known before.

Under the assumption that the eigenvectors we found form a complete basis of the Hilbert
space of the mirror theory, we went on to write the TBA equations. The scattering data was
indeed easy to extract once the multi-particle states were found: the dispersion relation is
given by the eigenvalue of the Hamiltonian, whereas the scattering matrix, and in particular
the dressing phase, could be extracted from the asymptotic behaviour of the states. Gen-
eralising the results of [167] in four dimensions, we also showed that our TBA equations
admit a dual formulation identical to the TBA for the O(d + 2) sigma model, if not for a
non-relativistic dispersion relation.

Even though solving the TBA would yield exact results for the conformal dimensions of
the multi-magnon operators, this remains a very difficult task. However, from what has been
done for N = 4 SYM, we expect that the problem can be further simplified if we reformulate
it in terms of Q-functions. Since the symmetry algebra associated to our TBA turned out to
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be so(d+ 2), we set out to investigate the associated Q-system. Based on the intuition that
the Q-system should be universal, we studied a much simpler model: a compact spin chain
with the defining representation of O(2r) at each site. Thanks to the explicit construction
of some of the Q-operators [183], and looking at examples for small length and small rank,
we were able to propose the full Dr Q-system. We also obtained various expressions for the
T-functions—solution to the T-system—in terms of the Q-functions.

We now would like to apply our conjectured Q-system to the fishnet theory. In order to
do so, the regularity properties of the Q-functions for the associated non-compact spin chain
should be worked out. The Q-system and the regularity properties of the Q-functions should
characterise them completely, and allow for a derivation of the quantisation conditions satis-
fied by the conserved charges of the model. These would in turn relate the coupling constant
ξ2 and the conformal dimension of the operator under consideration. Such an approach has
already proven successful for the non-compact SL(2) spin chain [85, 252] (independently of
the fishnet theory), and for the fishnet theory in dimension four [150,166], when the symme-
try algebra is so(6) ≃ sl(4). However, in these two examples, the solution relies heavily on
Baxter’s TQ-equation—the quantum spectral curve—for which we know no analogue in the
case of so(2r) for r ⩾ 4.

Regarding the fishnet theory in arbitrary dimension, another interesting aspect to explore
would be the generalisation of the hexagon formalism for the computation of higher-point
correlators. The results of Chapter 4 on the diagonalisation of the graph-building operators
are an important step in that direction. As we have demonstrated on the example of Basso–
Dixon diagrams, the case of general dimension nonetheless appears to be more involved than
dimension four and some work remains to be done. It is for instance not clear that nice
determinant expressions can be obtained for these diagrams. In any case, our results should
prove useful for a better analytical understanding of these multi-loop integrals.

Since the integrability structure underlying the fishnet theory is being better and bet-
ter understood, one could try to consider a more general theory in the hope of eventually
reaching N = 4 SYM. The natural candidate is the theory of three scalars and three fermions
introduced in [143]. In this theory, the structure of the Feynman graphs, though richer than in
the fishnet theory, remains under control: it exhibits a dynamical fishnet behaviour [151]. We
thus hope that the methods presented here could be adapted to this more general situation.

The separation of variables approach to the conformal non-compact spin chains studied
in this thesis is still far from being established in dimension d > 2. In two dimensions, the
global conformal group is SL(2,C), and the non-compact spin chain is well understood. In
particular, the graph-building operators of Chapter 4 can be shown to commute with an
element of the fundamental monodromy matrix [206]. Their common eigenvectors turn out
to be very similar to those of the separated variables. Our results in higher dimensions could
thus also prove useful to the development of the separation of variables technique.

Even though we have presented the Q-system for algebras of the Dr series, and the other
simply laced algebras were recently treated in [249], the Q-system still remains to be devel-
oped for non-simply laced algebras. It would also be useful to investigate the superalgebras
osp(m|2n) since they include the case relevant to AdS4/CFT3.

More formal questions related to the results presented in this thesis are also worth inves-
tigating. One of them concerns the integral representation obtained for the finite-dimensional
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O(d)-invariant R-matrices. Since they are reminiscent of the integral kernels of the R-matrices
for principal series representations of the conformal group, one could try to derive them from
these more general R-matrices. This would require considering the particular principal series
representations containing the finite-dimensional representations as subspaces and restricting
the R-matrix to this subspace.

We also believe that the QQ′-type relations of Chapter 6 should be a consequence of an
analogue of the Bernstein–Gelfand–Gelfand (BGG) resolution. The BGG resolution relates
an irreducible finite-dimensional module to several Verma modules. The number of Verma
modules involved is the order of the Weyl group of the Lie algebra. For the Ar series of Lie
algebras, the BGG resolution allows to express the transfer matrices with finite-dimensional
auxiliary space as a determinant of size r + 1 of shifted Q-functions. Each of the (r + 1)!
terms of the determinants corresponds to a transfer matrix with some Verma module in
the auxiliary space, and the number of terms indeed coincide with the order of the Weyl
group. In the Dr case, however, the QQ′-type relations only involve 2r terms and we do
not completely understand how to interpret them. It is possible that this is because, for Lie
algebras not belonging to the Ar series, not all representations of the Lie algebra can be lifted
to representations of the Yangian.





Appendix A

Conventions for Lie Algebras

Let g be a complex semi-simple Lie algebra and h be a Cartan subalgebra. Let ∆+ be the set
of the positive roots and W be the Weyl group. We also define ρ = 1

2
∑
α∈∆+ α.

If π is an irreducible finite-dimensional representation of g with highest weight λ, then
we can define the character χλ : h → C of the representation as the function given by

∀h ∈ h , χλ(h) = Tr
(
eπ(h)

)
. (A.0.1)

The Weyl character formula states that

χλ(h) =
∑
w∈W ϵ(w) ew(λ+ρ)(h)∑
w∈W ϵ(w) ew(ρ)(h) , (A.0.2)

and it is accompanied by the Weyl denominator formula∑
w∈W

ϵ(w) ew(ρ)(h) =
∏

α∈∆+

(e
α(h)

2 − e− α(h)
2 ) . (A.0.3)

A.1 Special Linear Algebra
We let the general Lie algebra gl(n,C) be that of n×n matrices and sl(n,C) is the subalgebra
containing traceless matrices. A basis of the first one is given by the matrices eij for 1 ⩽ i, j ⩽
n. We choose

h =
{

Diag(h11, . . . , hnn) ∈ gl(n,C)|
n∑
i=1

hii = 0
}

(A.1.1)

as a Cartan subalgebra of sl(n,C) and, for any 1 ⩽ i ⩽ n, we define the linear form εi on h
in the following way:

∀h ∈ h , εi(h) = hii . (A.1.2)

These forms clearly generate h∗ but are not linearly independent since ∑n
i=1 εi = 0 on h. We

also introduce a basis {hi = eii − enn}1⩽i⩽n−1 of h. It is clear that {hi} ∪ {eij}i ̸=j is a basis
of sl(n,C) in which the adjoint action of the Cartan subalgebra is diagonal:

∀h ∈ h , [h, eij ] = (εi(h) − εj(h))eij . (A.1.3)
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This means that the roots of sl(n,C) are the n(n− 1) elements of {εi − εj}i ̸=j . We make the
following choice of simple roots:

αi = εi − εi+1 (A.1.4)
for i ⩽ n− 1, and the fundamental weights are then given by

ωi = ε1 + · · · + εi . (A.1.5)

If λ = ∑n
i=1 λiεi = ∑n−1

i=1 niωi, then

λi =
n−1∑
j=i

nj , λn = 0 , and ni = λi − λi+1 . (A.1.6)

In particular, half the sum of the positive roots is ρ = ∑n−1
i=1 (n − i)εi. The reflections with

respect to the simple roots act as elementary transpositions,

sαi(λ) = λ1ε1 + · · · + λi+1εi + λiεi+1 + · · · + λnεn , (A.1.7)

meaning that the Weyl group is nothing but the group Sn of permutations of n elements.
The highest weights of irreducible finite-dimensional representations of sl(n,C) (and of

SL(n)) are thus parametrised by integral λi’s such that λ1 ⩾ · · · ⩾ λn−1 ⩾ λn = 0, and the
Weyl character formula, for h = ∑n

i=1 ln xieii, with ∏n
k=1 xk = 1, reads in that case

χλ(x1, . . . , xn) =
det1⩽i,j⩽r+1

(
x
λj+r−j
i

)
∏
i<j(xi − xj)

. (A.1.8)

The characters coincide with Schur polynomials: χλ = sλ.
Finite-dimensional irreducible representations of GL(n) are parametrised by λi ∈ Z such

that λ1 ⩾ · · · ⩾ λn−1 ⩾ λn. They correspond to the representation of SL(n) with labels
λi − λn tensored with the determinant to the power λn. The characters are also given by
Equation (A.1.8), but without the restriction ∏n

k=1 xk = 1.

A.2 Even Orthogonal Algebra

A.2.1 Roots, Weights and Characters

Let J be the matrix with 1 on the antidiagonal and 0 everywhere else: Jij = δi+j,n+1. Then
the orthogonal Lie algebra is given by

so(n,C) =
{
M ∈ gl(n,C) | tMJ + JM = 0

}
. (A.2.1)

If n = 2r is even, then the subalgebra

h = {M = Diag(τ1, . . . , τr,−τr, . . . ,−τ1) ∈ gl(n,C)} (A.2.2)

of diagonal matrices is a Cartan subalgebra. A natural basis of h is given by {fii = eii −
en+1−i,n+1−i}1⩽i⩽r and the dual basis is {εi} with

∀h ∈ h , εi(h) = τi . (A.2.3)
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We extend the notations τi and εi to any 1 ⩽ i ⩽ n by setting τi = −τn+1−i and εi = −εn+1−i.
The matrices fij = eij − en+1−j,n+1−i for 1 ⩽ i+ j ⩽ n form a basis of so(n,C). In that basis,
the adjoint action of h is diagonal: [h, fij ] = (εi(h) − εj(h))fij . As a consequence, the roots
of so(n,C) are the 2r(r− 1) elements of {±εi ±′ εj}1⩽i ̸=j⩽r. We make the following choice of
simple roots:

αi = εi − εi+1 for 1 ⩽ i ⩽ r − 1 , and αr = εr−1 + εr . (A.2.4)

Therefore, the fundamental weights are

ωi = ε1 + · · · + εi for 1 ⩽ i ⩽ r − 2 , (A.2.5)

and
ωr−1 = ε1 + · · · + εr−1 − εr

2 , ωr = ε1 + · · · + εr−1 + εr
2 . (A.2.6)

If λ = ∑r
i=1 λiεi = ∑r

i=1 niωi, then

λi =
r−2∑
j=i

nj + nr−1 + nr
2 for 1 ⩽ i ⩽ r − 1 , λr = nr − nr−1

2 , (A.2.7)

and
ni = λi − λi+1 for 1 ⩽ i ⩽ r − 1 , nr = λr−1 + λr . (A.2.8)

In particular, half the sum of the positive roots is ρ = ∑r
i=1(r − i)εi. The reflections with

respect to the first r − 1 simple roots act as elementary transpositions,

sαi(λ) = λ1ε1 + · · · + λi+1εi + λiεi+1 + · · · + λrεr , (A.2.9)

while the last one acts as

sαr (λ) = λ1ε1 + · · · + λr−2εr−2 − λrεr−1 − λr−1εr . (A.2.10)

The Weyl group is thus of order 2r−1r!.
The highest weights of irreducible finite-dimensional representations of so(2r,C) are parametrised

by those λ1 ⩾ · · · ⩾ λn−1 ⩾ |λr| that are either all integral or all in Z + 1
2 , and the Weyl

character formula, for h = ∑r
i=1 ln xifii, reads

χλ(x1, . . . , xn) =
det
(
x
λj+r−j
i + x

−λj−r+j
i

)
+ det

(
x
λj+r−j
i − x

−λj−r+j
i

)
2∏1⩽i<j⩽r

(
xi + 1

xi
− xj − 1

xj

) . (A.2.11)

A.2.2 Clifford Algebra

We recall in this appendix some basic facts about the fundamental spinorial representations
of the orthogonal Lie algebras. For convenience we now choose this algebra to be that of
antisymmetric matrices, its generators are

Lij = eij − eji , for i < j . (A.2.12)
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The Clifford algebra Cln(C) is a complex algebra generated by n elements γi satisfying
the canonical anticommutation relations

γiγj + γjγi = 2δij . (A.2.13)

From that we deduce that, as a vector space, the Clifford algebra is of dimension 2n and a
basis of the algebra is given by

{γi1...ik = γi1 . . . γik | 1 ⩽ i1 < · · · < ik ⩽ n} . (A.2.14)

It is straightforward to verify that Lij 7→ [γi,γj ]
4 = γij−δij

2 maps the orthogonal algebra into
the Clifford algebra so that any representation of the latter will provide a representation of
the former.

When n = 2r is even, the Clifford algebra is a central simple algebra and thus isomorphic
to the algebra of 2r × 2r matrices over C. Moreover, all these representations (isomorphisms)
are conjugate to one another.

Let us recursively define a particular representation πn of Cln(C). For n = 2 and n = 3,
we set π2(γ1) = π3(γ1) = σx, π2(γ2) = π3(γ2) = σy, and π3(γ3) = σz. And then, starting
from representations π2r and π2r+1, both of dimension 2r, we define representations π2r+2
and π2r+3, of dimension 2r+1, in the following way:

π2r+2(γi) = π2r+3(γi) = σx ⊗ π2r+1(γi) (A.2.15)

for 1 ⩽ i ⩽ 2r + 1, and

π2r+2(γ2r+2) = π2r+3(γ2r+2) = σy ⊗ I2r , π2r+3(γ2r+3) = σz ⊗ I2r . (A.2.16)

The representation π2r is faithful whereas the representation π2r+1 is not since it is clear,
from our construction, that π2r+1(γ2r+1) ∝ π2r+1(γ1 · · · γ2r).

We remark that, in the representation we have just defined, the gamma matrices (images
of the generators of the Clifford algebra) are of the form

π2r(γi) =
(

0 σi
σ̄i 0

)
, (A.2.17)

where the matrices σi = σ̄†
i are of size 2r−1 and satisfy

σ̄iσj + σ̄jσi = σiσ̄j + σj σ̄i = 2δijI2r−1 . (A.2.18)

This means that the representation of so(2r,C) provided by π2r is given by

Lij 7→ 1
4

(
σiσ̄j − σj σ̄i 0

0 σ̄iσj − σ̄jσi

)
. (A.2.19)

It is the sum of two representations of dimension 2r−1. These two representations are irre-
ducible and inequivalent, they are the two fundamental spinorial representations of so(2r,C).



Appendix B

Feynman Graphs Computations

B.1 Basic Integral Relations
We prove, in this appendix, the various integral relations used in this thesis. These relations
are obviously not new, they date back to [200–205].

We recall that, for a complex number a and an integer l ⩾ 0, we define

ã = d

2 − a , Al(a) =
Γ
(
ã+ l

2

)
Γ
(
a+ l

2

) = 1
Al(ã) , (a)l = Γ(a+ l)

Γ(a) =
l−1∏
k=0

(a+ k) . (B.1.1)

If C is a symmetric traceless tensor of rank l, i.e. C ∈ Vl, and x ∈ Rd, we will also write

C(x) = Cµ1···µlxµ1 . . . xµl
. (B.1.2)

Because C is traceless, the following two elementary but very useful properties hold for an
arbitrary complex number a:

C
(
x−y

|x−y|

)
(x− y)2a = C(∇x)

(−2)l
(
a− l

2

)
l

1
(x− y)2(a− l

2 ) , (B.1.3)

and

C
(
x−x0

|x−x0| − y−x0
|y−x0|

)
(x− x0)2(a− l

2 )(y − x0)2(1−a− l
2 ) = C (∇x0)

2l
(
a− l

2

)
l

1
(x− x0)2(a− l

2 )(y − x0)2(1−a− l
2 ) . (B.1.4)

In particular, the second property implies that, for arbitrary complex numbers a and b, one
has

C (∇w0)
[

1
(x− x0)2b(x− w0)2(a− l

2 )(y − w0)2(1−a− l
2 )

] ∣∣∣∣∣
w0=x0

=

(
a− l

2

)
l(

a+ b− l
2

)
l

C (∇w0)
[

1
(x− w0)2(a+b− l

2 )(y − w0)2(1−a−b− l
2 )(y − x0)2b

] ∣∣∣∣∣
w0=x0

. (B.1.5)
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We also recall that, if Re(a) > 0, one can write

1
x2a = 1

Γ(a)

� +∞

0
e−ux2

ua−1du . (B.1.6)

Fourier Transform of a Propagator For C a rank-l symmetric traceless tensor,

� C
(
p

|p|

)
p2a eip·x ddp

π
d
2

= Al(a)il4ã
C
(
x

|x|

)
x2ã . (B.1.7)

The proof reads as follows:

� C
(
p

|p|

)
p2a eip·x ddp

π
d
2

= (−i)lC(∇)
� eip·x

p2(a+ l
2 )

ddp
π

d
2

= (−i)lC(∇)
Γ
(
a+ l

2

) � � +∞

0
eip·x−up2

ua+ l
2 −1duddp

π
d
2

= (−i)lC(∇)
Γ
(
a+ l

2

) � +∞

0

�
e−u(p− ix

2u
)2− x2

4u
ddp
π

d
2
ua+ l

2 −1du

= (−i)lC(∇)
Γ
(
a+ l

2

) � +∞

0
e− x2

4u ua+ l−d
2 −1du

=
(−i)lΓ

(
ã− l

2

)
Γ
(
a+ l

2

) C(∇)
( 4
x2

)ã− l
2

= Al(a)il4ã
C
(
x

|x|

)
x2ã .

Chain Relation
�

π− d
2 ddz

(x− z)2a(z − y)2b = A0(a)A0(b)A0(d− a− b)
(x− y)2(a+b− d

2 ) . (B.1.8)

For 0 < Re(a) < d
2 , 0 < Re(b) < d

2 , and Re(a + b) > d
2 the integral in the left-hand side

is well defined and one can write:
�

π− d
2 ddz

(x− z)2a(z − y)2b = 1
Γ(a)Γ(b)

� �
R2

+

e−u(x−z)2−v(z−y)2
ua−1vb−1dudvddz

π
d
2

= 1
Γ(a)Γ(b)

�
R2

+

�
e−(u+v)(z− ux+vy

u+v )2− uv
u+v

(x−y)2 ddz
π

d
2
ua−1vb−1dudv

= 1
Γ(a)Γ(b)

�
R2

+

e− uv
u+v

(x−y)2 ua−1vb−1

(u+ v) d
2

dudv

= 1
Γ(a)Γ(b)

�
R2

+

e− vw
w+1 (x−y)2 wa−1va+b− d

2 −1

(w + 1) d
2

dwdv
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=
Γ
(
a+ b− d

2

)
Γ(a)Γ(b)

1
(x− y)2(a+b− d

2 )

�
R+

w
d
2 −b−1

(w + 1)d−a−bdw

=
Γ
(
d
2 − a

)
Γ
(
d
2 − b

)
Γ
(
a+ b− d

2

)
Γ(a)Γ(b)Γ(d− a− b)

1
(x− y)2(a+b− d

2 ) .

Star-Triangle Relation For a+ b+ c = d, one has

�
π− d

2 ddw
(w − x)2a(w − y)2b(w − z)2c = A0(a)A0(b)A0(c)

(x− y)2c̃(y − z)2ã(z − x)2b̃
. (B.1.9)

In order to prove it, one just needs to perform a change of variables in the integral and
recover the chain relation. Namely, one first translates w by one of the external points, say x,
and then perform an inversion with respect to the origin: w 7→ x+ W

W 2 . Introducing Y = y−x
(y−x)2

and Z = z−x
(z−x)2 , we have

(w − x)2 7→ 1
W 2 , (w − y)2 7→ (W − Y )2

W 2Y 2 . (B.1.10)

Taking into account the conformality condition a+ b+ c = d, one can thus write

�
π− d

2 ddw
(w − x)2a(w − y)2b(w − z)2c = Y 2bZ2c

�
π− d

2 ddW
(W − Y )2b(W − Z)2c

= A0(a)A0(b)A0(c) Y 2bZ2c

(Y − Z)2ã

= A0(a)A0(b)A0(c)
(x− y)2c̃(y − z)2ã(z − x)2b̃

.

Generalisation of the Chain Relation For C ∈ Vl, one has

� C
(
x−z

|x−z|

)
(x− z)2a(z − y)2b

ddz
π

d
2

= Al(a)A0(b)Al(d− a− b)
C
(
x−y

|x−y|

)
(x− y)2(a+b− d

2 ) . (B.1.11)

Using (B.1.3) and the basic chain relation itself, the proof is simply

� C
(
x−z

|x−z|

)
(x− z)2a(z − y)2b

ddz
π

d
2

= C(∇x)
(−2)l

(
a− l

2

)
l

�
π− d

2 ddz
(x− z)2(a− l

2 )(z − y)2b

= Al(a)A0(b)A0

(
d− a− b+ l

2

)
C(∇x)
(−2)l

1
(x− y)2(a+b− l+d

2 )

= Al(a)A0(b)Al(d− a− b)
C
(
x−y

|x−y|

)
(x− y)2(a+b− d

2 ) .
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B.2 Feynman Integrals for Subsection 5.4.2
One-Loop Integral At one loop we encounter the following integral, which can be com-
puted by the Fourier transform lemma presented above,

I1(p) = x
p

=
� eip·x

(x2) d
2

dd−2ϵx

π
d
2

=
(
p2

4π

)ϵ Γ(−ϵ)
Γ(d2)

. (B.2.1)

Two-Loop Integrals At two loops we encounter the following two Feynman integrals:

I2(p) = x
y
p

=
� eip·y

(x2) d
2 (x− y)2δ̃(y2)δ

dd−2ϵx

π
d
2

dd−2ϵy

π
d
2

(B.2.2)

and

I1,1(p1, p2) = x y

p1 p2

=
�

eip1·x+ip2·y

(x2)δ̃(x− y)2δ(y2) d
2

dd−2ϵx

π
d
2

dd−2ϵy

π
d
2

. (B.2.3)

The integral I2(p) can be computed for any p, however we can only compute I1,1(p1, p2)
for p2 = −p1, and the results are given by

I2(p) = I1,1(p,−p) =
(
p2

4π

)2ϵ Γ(−ϵ)Γ(−2ϵ)Γ
(
δ̃ + ϵ

)
Γ (δ − ϵ)

Γ
(
d
2

)
Γ
(
d
2 + ϵ

)
Γ
(
δ̃
)

Γ (δ − 2ϵ)
. (B.2.4)

Three-Loop Integrals At three loops we encounter three more Feynman integrals, we
present them here only as Feynman diagrams for brevity.

The first one I3(p) is of single magnon type,

I3(p) =

p

(B.2.5)

=
(
p2

4π

)3ϵ Γ(−ϵ)Γ(−2ϵ)Γ(−3ϵ)Γ (δ − ϵ)2 Γ
(
δ̃ + ϵ

)
Γ
(
δ̃ + 2ϵ

)
Γ
(
d
2

)
Γ
(
d
2 + ϵ

)
Γ
(
d
2 + 2ϵ

)
Γ
(
δ̃
)2

Γ (δ − 2ϵ) Γ (δ − 3ϵ)
. (B.2.6)

The second one I2,1(p1, p2) is new, with two magnons,

I2,1(p1, p2) =

p1 p2

(B.2.7)

(B.2.8)
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We can compute this integral for p2 = −p1, and the result is given by

I2,1(p,−p) =
(
p2

4π

)3ϵ Γ(−ϵ)2Γ(−3ϵ)Γ (δ − ϵ) Γ
(
δ̃ + 2ϵ

)
Γ
(
d
2

)2
Γ
(
d
2 + 2ϵ

)
Γ
(
δ̃
)

Γ (δ − 3ϵ)
. (B.2.9)

The last one,

I1,2(p1, p2) =

p1 p2

(B.2.10)

(B.2.11)

is the most complicated of the integrals we have to deal with, because even if we take p2 = −p1
we cannot compute it analytically. However, since we only require its divergent part, we can
use its Mellin–Barnes representation [253],

I1,2(p,−p) = Γ(−3ϵ)
Γ
(
d
2 + 2ϵ

)
Γ (δ) Γ

(
δ̃
)

Γ
(
d
2

)
Γ(−2ϵ)

(
p2

4π

)3ϵ

×
� i∞

−i∞

� i∞

−i∞
Γ (−s1) Γ (−s2) Γ

(
d

2 + ϵ+ s1 + s2

)
Γ
(
−δ̃ − ϵ− s2

)
Γ (−δ − ϵ− s1)

× Γ
(
d

2 + s1 + s2

) Γ (δ − ϵ+ s1) Γ
(
δ̃ − ϵ+ s2

)
Γ (ϵ− s1 − s2)

Γ
(
δ̃ − s1

)
Γ (δ − s2) Γ

(
d
2 − 2ϵ+ s1 + s2

) ds1
2πi

ds2
2πi . (B.2.12)

The contours of integration must be such that the poles coming from Gamma functions of
the form Γ(−s+ . . . ) lie to the right, while those coming from Γ(s+ . . . ) lie to the left. When
ϵ → 0, there is no such contour anymore because some left and right poles coalesce. This
explains why the integral is divergent. In order to extract this divergent part, one should
deform the contours to pick the residues at these poles, the remaining integrals then have
a regular limit when ϵ → 0. In our case, the divergences in epsilon start at order ϵ−3 (as
expected) and come from the residues of the poles around −δ for s1 and around −δ̃ for s2.
Computing their contribution yields

I1,2(p,−p) =
(
p2

4π

)3ϵ [Γ(−ϵ)Γ(−2ϵ)2Γ(−3ϵ)Γ
(
d
2 + 3ϵ

)
Γ (δ + ϵ) Γ

(
δ̃ + ϵ

)
Γ
(
d
2

)
Γ
(
d
2 + ϵ

)2
Γ
(
d
2 + 2ϵ

)
Γ(−4ϵ)Γ (δ) Γ

(
δ̃
)

+
ψ′ (δ) + ψ′

(
δ̃
)

3ϵΓ
(
d
2

)3 +O(1)
]
, (B.2.13)

where ψ = Γ′

Γ .





Appendix C

Details on Dr Q-System

C.1 Q-System of A3 ≃ D3

We show in this appendix that, as is expected from the isomorphism A3 ≃ D3, the known
Q-system for A3 can be interpreted as the Q-system for D3, albeit in a particular gauge. We
start with a reminder of the Q-system for A3: in order to avoid confusion, we shall denote
QI for I ⊂ {1, 2, 3, 4} the Q-functions for A3, and the SL(4) twists will be z1, z2, z3 and z4
such that z1z2z3z4 = 1. The following relations hold (neither i nor j belongs to I):

Q[+1]
I∪{i}Q[−1]

I∪{j} − Q[−1]
I∪{i}Q[+1]

I∪{j} = zi − zj√
zizj

QIQI∪{i,j} . (C.1.1)

From these relations, one can easily show that∣∣∣∣∣∣∣∣
Q[−2]

{i,j} Q{i,j} Q[+2]
{i,j}

Q[−2]
{i,k} Q{i,k} Q[+2]

{i,k}

Q[−2]
{i,l} Q{i,l} Q[+2]

{i,l}

∣∣∣∣∣∣∣∣ = (zj − zk)(zj − zl)(zk − zl)
zjzkzl

Q[−1]
{i} Q[+1]

{i} Q{1,2,3,4} (C.1.2)

and ∣∣∣∣∣∣∣∣
Q[−2]

{i,j} Q{i,j} Q[+2]
{i,j}

Q[−2]
{j,k} Q{j,k} Q[+2]

{j,k}

Q[−2]
{i,k} Q{i,k} Q[+2]

{i,k}

∣∣∣∣∣∣∣∣ = (zj − zi)(zj − zk)(zi − zk)
zizjzk

Q[−1]
{i,j,k}Q[+1]

{i,j,k}Q∅ . (C.1.3)

Both of these equations are identified with equation (6.3.11). More generally, both Q-systems
are the same if one makes the following identification between the two sets of Q-functions:

Q{1} = Q{1,2} , Q{2} = Q{1,3} , Q{3} = Q{1,4} , (C.1.4)

Q{1′} = Q{1,2} = Q{3,4} , Q{2′} = Q{2,4} , Q{3′} = Q{2,3} , (C.1.5)

S(+,+,+) = Q{1} , S(+,−,−) = Q{2} , S(−,+,−) = Q{3} , S(−,−,+) = Q{4} , (C.1.6)
S(−,−,−) = Q{2,3,4} , S(+,+,−) = Q{1,2,3} , S(+,−,+) = Q{1,2,4} , S(−,+,+) = Q{1,3,4} .

(C.1.7)
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The twists are related via

τ1 = z1z2 = 1
z3z4

, τ2 = z1z3 = 1
z2z4

, τ3 = z1z4 = 1
z2z3

, (C.1.8)

while the remaining Q-functions are

Q∅ = 1 , S+,∅ = Q∅ , and S−,∅ = Q{1,2,3,4} . (C.1.9)

The previous equation shows that in identifying the two Q-systems we had to partly fix the
gauge for D3. This explains why there are only two gauge degrees of freedom in the A3
Q-system [140], whereas there are three of them for the D3 one.

C.2 Details for the Computations of Section 6.5

C.2.1 Wronskian Condition from QQ′-Type Constraints

Plugging the constraints (6.5.16) into equation (6.5.17) for k = r − 1, we get

C0,r−1,r−1Q
[r−2]
∅ Q

[2−r]
∅ = hr

∣∣∣∣∣∣∣∣∣∣∣

Q
[−r+1]
1 Q

[−r+3]
1 · · · Q

[r−1]
1

...
...

...

Q
[−r+1]
r−1 Q

[−r+3]
r−1 · · · Q

[r−1]
r−1

Q
[−r+1]
r Q

[−r+3]
r · · · Q

[r−1]
r

∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣

Q
[−r+1]
1 Q

[−r+3]
1 · · · Q

[r−1]
1

...
...

...

Q
[−r+1]
r−1 Q

[−r+3]
r−1 · · · Q

[r−1]
r−1

Q
[−r+1]
r′ Q

[−r+3]
r′ · · · Q

[r−1]
r′

∣∣∣∣∣∣∣∣∣∣∣
. (C.2.1)

Using the explicit expression of C0,r−1,r−1 gives

W
[−]
1,...,r−1W

[+]
1,...,r−1Q

[r−2]
∅ Q

[2−r]
∅ = 1∏r−1

j=1(uj − ur)
W1,...,r−1,rW1,...,r−1,r′ , (C.2.2)

where we used the notation Wi1,...,ik =
∣∣∣Q[k+1−2b]

{ia}

∣∣∣
k

= det1⩽a,b⩽k
(
Q

[k+1−2b]
{ia}

)
. The derivation

makes it clear that the previous identity still holds if one exchanges some Q{i} with Q{i′}, so
that one may actually write

W
[−]
i1,...,ir−1

W
[+]
i1,...,ir−1

Q
[r−2]
∅ Q

[2−r]
∅ = 1∏r

j ̸=ir,i′r (uj − ur)
Wi1,...,ir−1,irWi1,...,ir−1,i′r , (C.2.3)

where we only assume that for all 1 ⩽ a ̸= b ⩽ r, one has {ia, i′a}∩{ib, i′b} = ∅. This is exactly
equation (6.3.20).
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C.2.2 Proof of Equation (6.5.28)

We prove here the following claim: if Ta,s satisfy the Hirota equations and T1,s is given by
equation (6.5.15), then Ta,s for a ⩽ r − 1 is given by equation (6.5.28).

The proof is made by induction: the claim is true for a = 1 by assumption, and we have
also shown, in the main text, that it is true for a = 2. For higher a, the claim is clearly
equivalent to equation (6.5.29), which is itself a particular case of the identity

1
2

∑
1⩽i1<···<ia⩽2r
1⩽j1<···<ja⩽2r

∣∣∣∣∣ W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
=

 ∑
1⩽i1<···<ia−1⩽2r

Wi1,...,ia−1W̃i1,...,ia−1

 ∑
1⩽i1<···<ia+1⩽2r

Wi1,...,ia+1W̃i1,...,ia+1

 , (C.2.4)

where Wi1,...,ia =
∣∣∣Q[a+1−2k]

ij

∣∣∣
a

and W̃i1,...,ia =
∣∣∣P [a+1−2k]
ij

∣∣∣
a

for {Qi}1⩽i⩽2r and {Pi}1⩽i⩽2r two
sets of arbitrary functions. In this appendix, most of the summation indices run from 1 to 2r
so we will not write these bounds under each summation symbols in the following. The only
indices for which it will be different will be called m, n, m̃ or ñ, the values they may take
will be indicated each time.

We shall now prove (C.2.4). Let us start from the left-hand side, we expand each of the
determinants W and W̃ with respect to the columns with shifts ±a, for instance: W [+1]

i1,...,ia
=∑a

m=1(−1)m+1Q
[a]
im
W
i1,...,îm,...ia

and W [−1]
j1,...,ja

= ∑a
n=1(−1)n+aQ

[−a]
jn

W
j1,...,ĵn,...ja

, where the hat
over an index means that we omit it. We thus obtain

∑
i1<...<ia
j1<...<ja

∣∣∣∣∣ W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
= 1

(a!)2

∑
i1,...,ia
j1,...,ja

∣∣∣∣∣ W
[+1]
i1,...,ia

W
[−1]
i1,...,ia

W
[+1]
j1,...,ja

W
[−1]
j1,...,ja

∣∣∣∣∣
∣∣∣∣∣ W̃

[+1]
i1,...,ia

W̃
[−1]
i1,...,ia

W̃
[+1]
j1,...,ja

W̃
[−1]
j1,...,ja

∣∣∣∣∣
= 1

(a!)2

∑
i1,...,ia
j1,...,ja

1⩽m,n,m̃,ñ⩽a

(−1)m+n+m̃+ñ
∣∣∣∣∣ Q

[a]
im

Q
[−a]
im

Q
[a]
jn

Q
[−a]
jn

∣∣∣∣∣
∣∣∣∣∣ P

[a]
im̃

P
[−a]
im̃

P
[a]
jñ

P
[−a]
jñ

∣∣∣∣∣
×W

i1,...,îm,...ia
W
j1,...,ĵn,...ja

W̃
i1,...,îm̃,...ia

W̃
j1,...,ĵñ,...ja

= L1 + L2 + L3 (C.2.5)

where we have split the sums over m, n, m̃ and ñ into three contributions: L1, L2 and L3.
L1 contains all the terms with m = m̃ and n = ñ, L2 all the terms with m = m̃ and n ̸= ñ
or m ̸= m̃ and n = ñ, while L3 contains all the terms with m ̸= m̃ and n ̸= ñ. In each of the
three cases, the remaining sums (over i’s and j’s) do not depend on the actual values of m,
n, m̃ and ñ anymore so that we can perform the sums over these latter indices. We thus get

L1 =

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1

2∑
i,j

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
i P

[−a]
i

P
[a]
j P

[−a]
j

∣∣∣∣∣ , (C.2.6)
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L2 = 2
(a− 2)!

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

−
∑

i,j,k,i1,...,ia−2

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
i P

[−a]
i

P
[a]
k P

[−a]
k

∣∣∣∣∣Wk,i1,...,ia−2W̃j,i1,...,ia−2

 , (C.2.7)

L3 = 1
((a− 2)!)2

∑
i1,...,ia−2
j1,...,ja−2
i,j,k,l

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,i1,...,ia−2Wl,j1,...,ja−2W̃i,i1,...,ia−2W̃j,j1,...,ja−2 . (C.2.8)

One can rewrite L3 using the Plücker identity (6.1.14). We first use it to write

Wk,i1,...,ia−2Wl,j1,...,ja−1 = Wl,i1,...,ia−2Wk,j1,...,ja−2 +
a−2∑
p=1

(−1)p−1W
k,l,i1,...,îp,...,ia−2

Wip,j1,...,ja−2 ,

(C.2.9)
which we then plug in the expression for L3. After some renaming of the indices, this yields

L3 = −L3 + 1
(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1 . (C.2.10)

This means that

L3 = 1
2(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1 . (C.2.11)

We now apply again the Plücker identity:

W̃i,j1,i1,...,ia−3W̃j,j2,...,ja−1 = W̃i,j,i1,...,ia−3W̃j1,j2,...,ja−1

+
a−1∑
p=2

(−1)pW̃i,jp,i1,...,ia−3W̃j,j1,j2,...,ĵp,...,ja−1
(C.2.12)

so that

L3 = 1
2(a− 3)!(a− 2)!

∑
i1,...,ia−3
j1,...,ja−1
i,j,k,l

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣
×Wk,l,i1,...,ia−3Wj1,...,ja−1W̃i,j,i1,...,ia−3W̃j1,...,ja−1 − (a− 2)L3 . (C.2.13)
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Finally, we arrive at the following expression:

L3 = 1
2(a− 3)!

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

 ∑
i,j,k,l,i1,...,ia−3

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣Wk,l,i1,...,ia−3W̃i,j,i1,...,ia−3

 . (C.2.14)

In order to prove (C.2.4), we need to show that

L1 + L2 + L3
2 =

 1
(a− 1)!

∑
i1,...,ia−1

Wi1,...,ia−1W̃i1,...,ia−1


×

 1
(a+ 1)!

∑
i1,...,ia+1

Wi1,...,ia+1W̃i1,...,ia+1

 . (C.2.15)

From expressions (C.2.6), (C.2.7), and (C.2.14), this is equivalent to showing that

(a+ 1)a
2

∑
i,j,i1,...,ia−1

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q
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∣∣∣∣∣ P

[a]
i P

[−a]
i

P
[a]
j P

[−a]
j

∣∣∣∣∣Wi1,...,ia−1W̃i1,...,ia−1

− (a+ 1)a(a− 1)
∑

i,j,k,i1,...,ia−2

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q
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j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
i P

[−a]
i

P
[a]
k P

[−a]
k

∣∣∣∣∣Wk,i1,...,ia−2W̃j,i1,...,ia−2

+ (a+ 1)a(a− 1)(a− 2)
4

∑
i,j,k,l,i1,...,ia−3

∣∣∣∣∣ Q
[a]
i Q

[−a]
i

Q
[a]
j Q

[−a]
j

∣∣∣∣∣
∣∣∣∣∣ P

[a]
k P

[−a]
k

P
[a]
l P

[−a]
l

∣∣∣∣∣Wk,l,i1,...,ia−3W̃i,j,i1,...,ia−3

=
∑

i1,...,ia+1

Wi1,...,ia+1W̃i1,...,ia+1 . (C.2.16)

This last identity is proven by expanding the determinants in the right-hand side with
respect to their first and last columns:

Wi1,...,ia+1 =
∑

1⩽m<n⩽a+1
(−1)m+n+a

∣∣∣∣∣ Q
[a]
im

Q
[−a]
im

Q
[a]
in

Q
[−a]
in

∣∣∣∣∣Wi1,...,îm,...,în,...,ia+1
(C.2.17)

and

W̃i1,...,ia+1 =
∑

1⩽m̃<ñ⩽a+1
(−1)m̃+ñ+a

∣∣∣∣∣ P
[a]
im̃

P
[−a]
im̃

P
[a]
iñ

P
[−a]
iñ

∣∣∣∣∣W̃i1,...,îm̃,...,îñ,...,ia+1
. (C.2.18)

We then once again group the terms depending on the values of m, n, m̃ and ñ and recover
exactly the identity (C.2.16). There are indeed (a+1)a

2 terms with (m,n) = (m̃, ñ), (a+1)a(a−
1) terms with m = m̃ and n ̸= ñ or m ̸= m̃ and n = ñ, and (a+1)a(a−1)(a−2)

4 terms with m ̸= m̃
and n ̸= ñ.



156 APPENDIX C. DETAILS ON Dr Q-SYSTEM

xL = Q∅ I = S∅,−I = S∅,+

Q1 = S+,+

Q2 = S−,−Q2′ = S+,−

Q1′ = S−,+

Figure C.1: Hasse diagram for D2 ≃ A1 ⊕A1

C.3 More on Weyl-Type Formulae

C.3.1 From QQ′-Relations to Weyl-Type Formulae for D2 ≃ A1 ⊕ A1

We demonstrate here, for the very simple example of D2 spin chains, how to use the QQ′-
relations to recover the Weyl-type formulae for T-functions. The Hasse diagram is depicted
in Figure C.1.

From the two constraints
Q1Q1′ +Q2Q2′ = 0 , (C.3.1)

and
Q

[1]
1 Q

[−1]
1′ +Q

[−1]
1 Q

[1]
1′ +Q

[1]
2 Q

[−1]
2′ +Q

[−1]
2 Q

[1]
2′ = Q2

∅ , (C.3.2)

cf. (6.5.16), we obtain (
Q

[1]
1′

Q
[1]
2

−
Q

[−1]
1′

Q
[−1]
2

)
=
Q2

∅
W1

, (C.3.3)

where Wn = Q
[n]
1 Q

[−n]
2 −Q

[−n]
1 Q

[n]
2 .

Moreover, excluding Q2′ from

T1,s = Q
[s+1]
1 Q

[−s−1]
1′ +Q

[−s−1]
1 Q

[s+1]
1′ +Q

[s+1]
2 Q

[−s−1]
2′ +Q

[−s−1]
2 Q

[s+1]
2′ , (C.3.4)

we get

T1,s =
(
Q

[s+1]
1′

Q
[s+1]
2

−
Q

[−s−1]
1′

Q
[−s−1]
2

)
Ws+1 . (C.3.5)

Excluding the difference in the first bracket in the right-hand side using (C.3.3), we arrive at

T1,s = Ws+1

s∑
l=0

(Q[2l−s]
∅ )2

W
[2l−s]
1

. (C.3.6)

This coincides with the r = 2 case of the determinant formula (6.4.28).
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C.3.2 Additional Formulae in the General Case

For the sake of completeness, we give here the Weyl-type formulae complementary to those
given in Section 6.4, i.e. for T1,s in terms of spinorial Q-functions:

T1,s = Q
[r+s−2]
∅ Q

[2−r−s]
∅

(
s∑
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i
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)
, (C.3.7)

and for Ta,1 in terms of single-index Q-functions:

Ta,1 = 1∏a−1
k=1Q
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∅ Q
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. (C.3.8)

Notice that the first formula, expressing T1,s in terms of spinorial Q functions, is much
more complicated than the expression (6.4.28) in terms of fundamental Q functions, whereas
the second formula, expressing Ta,1 in terms of fundamental Q functions, is more complicated
than (6.4.35) expressing it in terms of spinorial Q functions.
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MOTS CLÉS

Intégrabilité, Théorie conforme des champs, Chaînes de spins

RÉSUMÉ

Avant d’être étendue à toute dimension, la théorie fishnet a d’abord été obtenue en quatre dimensions comme une
limite de fort twist et de faible couplage de la théorie N = 4 super Yang–Mills. C’est une théorie non-unitaire de deux
champs scalaires matriciels complexes interagissant d’une manière si restrictive que, dans la limite planaire, très peu
de graphes de Feynman survivent. Il est alors possible de montrer que la théorie est conforme. En outre, l’intégrabilité
apparaît naturellement à travers une relation avec une chaîne non-compacte de spins dans une représentation de la série
principale du groupe conforme. Certaines classes de graphes de Feynman peuvent en effet être obtenues par l’application
répétée d’opérateurs coïncidant avec des charges conservées de la chaîne de spins. La théorie fishnet constitue ainsi
un exemple simple et rare d’une théorie conforme des champs intégrable sans supersymétrie en dimension arbitraire.
Nous présentons, dans cette thèse, la diagonalisation exacte d’opérateurs associés à la chaîne de spins ouverte. Les
vecteurs propres ont une interprétation en tant que fonctions d’onde d’états à plusieurs particules dans une théorie
unidimensionnelle miroir. La détermination de la relation de dispersion et de la matrice de diffusion de ces particules
miroir nous permet de formuler les équations de l’ansatz de Bethe thermodynamique pour les dimensions conformes
d’une famille d’opérateurs dans la théorie fishnet. Dans l’intention de simplifier davantage ce problème spectral nous
développons le système Q pour des modèles intégrables avec une symétrie SO(2r). Nous obtenons aussi, pour de tels
modèles, de nouvelles expressions pour les matrices de transfert en termes des fonctions Q, quantifiant ainsi les formules
classiques de Weyl pour les caractères.

ABSTRACT

The fishnet theory was first obtained in four dimensions as a strongly twisted, weakly coupled limit of N = 4 super Yang–
Mills before being extended to arbitrary dimension. It is a non-unitary theory of two complex matrix scalar fields interacting
in such a manner that, in the planar limit, only very few Feynman graphs are allowed and, moreover, the bulk of these
graphs must be a piece of a square lattice. As a consequence, the theory can be shown to be conformal and integrability
naturally appears through a relation with a non-compact chain of spins in principal series representations of the conformal
group. Certain classes of Feynman graphs can indeed be built from the repeated application of operators coinciding with
conserved charges of the chain. The fishnet theory thus constitutes a rare and simple example of an integrable non-
supersymmetric conformal field theory in arbitrary dimension. We present, in this thesis, the exact diagonalisation of the
graph-building operators associated with the open spin chain. The eigenvectors have an interpretation as wave functions
of multi-particle states in a mirror one-dimensional theory. Extracting the dispersion relation and the scattering matrix of
these mirror particles allow us to formulate the thermodynamic Bethe ansatz equations for the conformal dimensions of a
whole class of operators in the fishnet theory. As a first step towards a further simplification of this spectral problem, we
develop the Q-system for integrable models with SO(2r) symmetry. We also obtain, for such models, new expressions for
the transfer matrices, or T-functions, in terms of the Q-functions, thus quantising the classical Weyl formulae for characters.

KEYWORDS

Integrability, Conformal Field Theory, Spin Chains
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