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Maîtriser la variabilité enfouie dans les systèmes orientés objet et les systèmes de construction logicielle Résumé La demande sans cesse croissante de solutions logicielles nouvelles et récentes oblige les professionnels du logiciel à développer et à maintenir des systèmes logiciels personnalisables tout en garantissant un niveau élevé de qualité et de fiabilité. Si les lignes de produits logiciels (LPLs) constituent une solution pour atteindre cet objectif, de nombreux systèmes logiciels riches en variabilité ne sont pas organisés de cette manière. Ils augmentent progressivement leurs parties variables, en s'appuyant sur les multiples mécanismes existants pour mettre en oeuvre leur variabilité dans le code et leur chaîne d'outils de construction. Dans leur mise en oeuvre, les systèmes orientés objet (OO) gèrent principalement leur variabilité dans une base de code unique en utilisant des mécanismes OO tels que l'héritage et les patrons de conception. En raison de leur nature, ces implémentations sont enfouies dans la base de code, ce qui nuit à la compréhension du système par les développeurs et, par conséquent, à sa maintenance et à son évolution, entraînant des problèmes de qualité. En outre, les grands systèmes logiciels riches en variabilité s'appuient souvent sur des systèmes de construction complexes pour sélectionner les éléments du code. Comme il s'agit de systèmes de construction ad hoc réutilisant des outils standard, aucune représentation globale du mécanisme de résolution de la variabilité n'est disponible, et des conflits peuvent survenir et causer des anomalies. Dans cette thèse, nous proposons tout d'abord les bases et les techniques pour identifier et visualiser les implémentations de la variabilité dans les grands systèmes logiciels OO riches en variabilité. Ces implémentations sont abstraites en termes de points de variation et de variantes et identifiées en s'appuyant sur la notion de densité de symétries dans les structures OO. En reprenant la métaphore d'une ville, elles sont ensuite visualisées sous la forme d'un ensemble connecté de bâtiments 3D combinés à des métriques sur leur qualité. Cela permet de distinguer les zones concentrant les implémentations de variabilité et présentant potentiellement une dette technique. Ces propositions ont été validées par un prototype sur de grands systèmes logiciels OO open-source et hautement variables, ainsi que par une étude d'utilisabilité avec deux groupes distincts de développeurs débutants. La thèse introduit également un cadre de modélisation et de raisonnement pour caractériser les anomalies dans les systèmes de construction gérant de la variabilité, permettant de raisonner sur les relations entre les actifs du code, et d'identifier toutes ces anomalies au grain le plus fin. Le framework a été instancié et partiellement implémenté à la fois sur le système de construction du noyau Linux, démontrant sa généralité sur les nombreuses détections distinctes sur ce sujet très étudié, et sur une chaîne d'outils de construction récemment étudiée de la fondation Mozilla, démontrant son applicabilité.

Introduction

We build our computer systems the way we build our cities: over time, without a plan, on top of ruins.

-Ellen Ullman, Life in Code: A Personal History of Technology.

Context

The constantly increasing demand for software solutions constrains software practitioners to develop and maintain customizable software systems. Such systems, which can range from small-scale embedded systems to large-scale systems of systems, are qualified as variabilityintensive [START_REF] Hilliard | On representing variation[END_REF][START_REF] Galster | Variability in software systems -a systematic literature review[END_REF][START_REF] Galster | Variability-intensive software systems: Product lines and beyond[END_REF]. Software variability is the capacity of a software system to be tailored for a given need or context [START_REF] Capilla | Systems and software variability management[END_REF]. In order to limit the time and effort spent in the development and maintenance of such systems, organizations rely on approaches based on software reuse [START_REF] Krueger | Software reuse[END_REF][START_REF] Jacobson | Software reuse: architecture process and organization for business success[END_REF] to manage their code assets such as Software Product Lines (SPLs). An SPL is defined as "a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way" [START_REF] Clements | Software product lines[END_REF][START_REF] Northrop | A framework for software product line practice, version 5.0[END_REF]. Its engineering process is illustrated on Figure 1.1. Features represent "prominent or distinctive user-visible aspects, qualities, or characteristics of a software system or systems" [START_REF] Kyo | Feature-oriented domain analysis (FODA) feasibility study[END_REF] and can be organized in a feature model (FM) [START_REF] Batory | Feature models, grammars, and propositional formulas[END_REF] during the domain analysis phase (cf. Figure 1.1). Features are typed as mandatory, alternative, or optional, allowing to model commonalities and variations between the different products that can be derived from the SPL (cf. Section 2.1). Then, a mapping between each feature and the code assets implementing it is built relying on one or more variability implementation techniques such as CPP directives (often called ifdefs) [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF][START_REF] Hunsen | Preprocessor-based variability in open-source and industrial software systems: An empirical study[END_REF], or other forms of annotations [START_REF] Vinicius Couto | Extracting software product lines: A case study using conditional compilation[END_REF]. While such techniques can be incorporated in existing code assets, others isolate code assets implementing each feature by organizing them in feature modules [START_REF] Apel | Generic feature modules: Two-staged program customization[END_REF][START_REF] Takeyama | Implementing feature interactions with generic feature modules[END_REF] that can be implemented with the use of aspects [START_REF] Martin | Implementing product-line features by composing aspects[END_REF][START_REF] Voelter | Product line implementation using aspect-oriented and modeldriven software development[END_REF][START_REF] Figueiredo | Evolving software product lines with aspects[END_REF] (domain implementation). Therefore, code assets can be separated into three parts: core, commonalities, and variations [START_REF] Turner | A conceptual basis for feature engineering[END_REF][START_REF] Coplien | Multi-Paradigm Design for C++[END_REF][START_REF] Bachmann | Variability in software product lines[END_REF]. The core part represents the code assets that are not mapped to any feature and are therefore included in every product of the SPL [START_REF] Turner | A conceptual basis for feature engineering[END_REF]. A commonality is a common part between the related variations of given code assets, while variations indicate how and when should code assets vary [Hilliard,2 CHAPTER 1 -Introduction Figure 1.1: Software Product Line engineering process (extracted from [START_REF] Nadi | Software product lines[END_REF]) 2010]. Such commonalities and variations are usually abstracted in terms of variation points (vp-s) with variants, respectively [START_REF] Jacobson | Software reuse: architecture process and organization for business success[END_REF][START_REF] Czarnecki | Proceedings of the sixth international workshop on variability modeling of software-intensive systems[END_REF][START_REF] Rabiser | Feature modeling vs. decision modeling: History, comparison and perspectives[END_REF], which are related to concrete elements in code assets [START_REF] John | Separation of variability dimension and development dimension[END_REF].

To derive a product variant of the SPL, customers define their own configuration by selecting a set of features corresponding to their needs (requirements analysis) that is then used by a build system that checks its validity before assembling the variant by selecting the code assets mapped to the features (product derivation).

"Wild" variability in software systems

In a standard SPL approach, a variability implementation mechanism establishes the mapping between each domain feature and the code assets implementing it. When deriving a variant, the build system is then in charge of the resolution of this variability, conducting to the selection of the code assets that will constitute the final product. Some systems, however, are not implemented in such a way although they are variability-intensive.

Wild variability implementations in object-oriented systems

Due to the characteristics of their variability implementation mechanisms, object-oriented (OO) systems often do not follow a fully-fledged software product line approach. [START_REF] Pohl | Software Product Line Engineering: Foundations, Principles and Techniques[END_REF][START_REF] Apel | Feature-Oriented Software Product Lines[END_REF]. They often implement these vp-s and variants relying on the mechanisms provided by these languages, namely inheritance, overloading of methods and constructors, and some design patterns [START_REF] Gacek | Implementing product line variabilities[END_REF][START_REF] Svahnberg | A taxonomy of variability realization techniques[END_REF][START_REF] Capilla | Systems and software variability management[END_REF]1.3 -1.2.2 Wild variability implementations in variability-aware build systems 3 Tërnava and Collet, 2017a]. As opposed to other implementation techniques such as annotative approaches, mechanisms used to implement variability in OO systems do not allow making explicit the domain variability in the code assets. Moreover, such systems hardly document the domain variability [Krüger et al., 2019b]. Therefore, it results that although they are variability-rich, many OO software systems do not follow a fully-fledged software product line approach [START_REF] Pohl | Software Product Line Engineering: Foundations, Principles and Techniques[END_REF][START_REF] Apel | Feature-Oriented Software Product Lines[END_REF] as the mapping between the domain variability and its implementation is either lost or non-existent [Krüger et al., 2019b].

Problem Consequently, the comprehension of the implemented variability is hampered and eventually leads to a decrease in the ability to maintain the system and make it evolve [START_REF] Favre | Preprocessors from an abstract point of view[END_REF][START_REF] Kröher | Incremental software product line verification-a performance analysis with dead variable code[END_REF], creating technical debt (i.e., expedient but costly on the long term implementation constructs, primarily hampering maintainability and evolvability) [START_REF] Avgeriou | Managing technical debt in software engineering (dagstuhl seminar 16162)[END_REF][START_REF] Li | A systematic mapping study on technical debt and its management[END_REF]. Monitoring quality being crucial for the maintenance and evolution of such systems [START_REF] Martini | The danger of architectural technical debt: Contagious debt and vicious circles[END_REF], it is of prime importance for software developers and architects to comprehend the variability that is implemented in their system. In other words, there is a need to comprehend the variability implemented in OO software systems.

Wild variability implementations in variability-aware build systems

Due to their important size, large variability-rich software systems commonly rely on multiple mechanisms to implement their variability at multiple granularities in a single codebase. While in a traditional SPL approach variability is implemented using tools explicitly designed for this purpose that enable a global vision of the implemented variability and ensures a safe mapping with domain features [START_REF] Meinicke | Mastering Software Variability with FeatureIDE[END_REF][START_REF] Beuche | Industrial variant management with pure::variants[END_REF][START_REF] Krueger | Systems and software product line engineering with biglever software gears[END_REF], these build systems often rely on combinations of handcrafted tools and existing solutions adapted to be used as variability resolution tools. When deriving a variant of the system, a variability-aware build system is then in charge of invoking the different tools to resolve each type of variability implementation based on a given configuration. For example, the Linux kernel's build system1 is divided in three steps [START_REF] Nadi | The Linux kernel: A case study of build system variability[END_REF]]:

• a configuration step, KCONFIG, that builds a configuration based on user input and constraints between features;

• two derivation steps, the KBUILD and CPP, that define conditions on features to select code assets at two levels of granularity (source files and code blocks respectively). If the configuration satisfies a condition, the asset is selected.

Problem In such build systems, the execution of a derivation step might influence the execution of another one (e.g., for a given configuration, if a source file is not selected, neither of the code blocks it contains can be). As different tools are used to implement variability in the different steps, each derivation step is uncorrelated from the others. This prevents checking the consistency of the whole build system and can lead to anomalies, such as parts of the code that can never be selected due to features in conflict (e.g., no configuration selecting a code block selects the file containing it) [START_REF] Nadi | Linux variability anomalies: What causes them and how do they get fixed?[END_REF][START_REF] Nadi | Variability Anomalies in Software Product Lines[END_REF], potentially creating bugs in derived product variants. In other words, there is a need to comprehend the variability managed by build systems.
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Taming wild variability

In this thesis, we aim to improve the comprehension of variability in systems that are not fullyfledged SPLs by focusing our attention on (i) variability implementations relying on OO mechanisms and (ii) their management in complex ad-hoc build systems. Hereafter, we detail the challenges to be addressed in order to reach these goals.

A. Comprehending variability implemented in OO software systems A1. Identifying variability implemented in OO software systems OO variability implementations are of diverse natures [START_REF] Lozano | An overview of techniques for detecting software variability concepts in source code[END_REF]Tërnava and Collet, 2017a] and the used mechanisms (i.e., inheritance, overloading of methods and constructors, and design patterns) do not allow for keeping trace of domain information. Therefore, with the evolution of the system, information on the location of the variability is lost, hampering their capacity to evolve and to be comprehended. Moreover, such mechanisms are also used to structure the code [START_REF] Gamma | Design patterns: Abstraction and reuse of object-oriented design[END_REF][START_REF] Gamma | Elements of reusable object-oriented software[END_REF]. Variability implementations are thus buried in the implementation code, increasing the difficulty of their identification.

State-of-the-art techniques to identify variability implementations in OO systems (detailed in Section 3.1.1) mostly target clone-and-own systems [START_REF] Kumar | A survey on software clone detection research[END_REF][START_REF] Karoline Michelon | Comparison-based feature location in argouml variants:[challenge solution[END_REF][START_REF] Linsbauer | Systematic software reuse with automated extraction and composition for clone-and-own. Handbook of Re-Engineering Software Intensive Systems into Software Product Lines[END_REF]. However, in our case, OO mechanisms allow implementation of variability in a single codebase, thus preventing the application of these techniques. Other techniques rely on traces obtained by executing the system [START_REF] Walkinshaw | Feature location and extraction using landmarks and barriers[END_REF] or the unit tests [START_REF] David | Dynamic feature traces: Finding features in unfamiliar code[END_REF], which is not always possible for large systems. There is therefore a need for a technique allowing static identification of variability implemented using OO mechanisms in systems managed in a single codebase.

A2. Making the identified variability implementations comprehensible

When variability is implemented relying on OO mechanisms, vp-s and variants can be implemented at multiple granularities [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF]. At class level, vp-s are classes or interfaces having as variants their subclasses or implementations. At method level, vp-s are overloaded methods and constructors having for variants their overloads. Additionally, these vp-s and variants compose each other through the use of attributes or method parameters to build more advanced structures as design patterns. This diversity of mechanisms involved causes the organization of OO variability implementations to be highly complex. Consequently, their identification cannot consist of a reverse-engineered list of features, imposing to rely on a semi-automatic approach extracting information and metrics on the presence of mechanisms involved in variability implementations. These metrics are then used as a support to a software developer or architect having the domain knowledge to identify the implemented variability. However, on large systems, such an identification technique would output a too important volume of data to be understandable in a textual format. As software metrics are often comprehended through the use of visualizations [START_REF] Autor | Software visualization: Programming as a multimedia experience[END_REF][START_REF] Knight | Virtual but visible software[END_REF][START_REF] Diehl | Software visualization: visualizing the structure, behaviour, and evolution of software[END_REF][START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF], we advocate that a visualization support for metrics on OO variability implementation would help the comprehension of the variability implemented in such large variability-rich systems.

1.3 -Taming wild variability 5 A3. Understanding the quality of the implemented variability Variability implementations are known to bring additional complexity to the system [START_REF] Galster | Variability and complexity in software design: Towards a research agenda[END_REF]. Consequently, its maintainability is threatened and its capacity to evolve hampered [START_REF] Favre | Preprocessors from an abstract point of view[END_REF][START_REF] Kröher | Incremental software product line verification-a performance analysis with dead variable code[END_REF], eventually leading to technical debt [START_REF] Avgeriou | Managing technical debt in software engineering (dagstuhl seminar 16162)[END_REF][START_REF] Li | A systematic mapping study on technical debt and its management[END_REF]. Technical debt due to variability implementations has been largely studied [START_REF] Mordahl | An empirical study of realworld variability bugs detected by variability-oblivious tools[END_REF], leading to new definitions [START_REF] Fenske | Code smells revisited: A variability perspective[END_REF] and a recent characterization of variability debt by [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF]. As OO systems reuse the traditional OO mechanisms to implement their variability, there is no dedicated implementation mechanism, causing the variability to be intertwined with the implementation (cf. Challenge A1). Consequently, these systems are prone to variability debt in their implementation. As monitoring technical debt and, more globally, the quality of the system is crucial for its maintenance and evolution [START_REF] Martini | The danger of architectural technical debt: Contagious debt and vicious circles[END_REF], there is a need for a solution combining quality metrics and OO variability metrics (Challenge A2), allow identifying the technical debt that can be induced by these variability implementations.

B. Comprehending the variability managed by build systems B1. Making explicit the derivation mechanism of build systems

As detailed in Section 1.2.2, the selection of an asset in a step of the build system has an influence on the selection of other assets, being in the same step or not. In order to master the variability managed by build systems and prevent anomalies, it is important to understand, for a given asset, which other assets manipulated by the build system can influence its selection. As opposed to systems for which the variability is designed using variability modeling approaches [START_REF] Meinicke | Mastering Software Variability with FeatureIDE[END_REF], build systems often rely on adapted off-the-shelf solutions and do not allow characterizing these dependencies between assets. While multiple works focus on checking the selection of an asset in the different steps of the Linux kernel [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF][START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF][START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF], they do not provide a fine-grain representation of the whole build system mechanism modeling precisely the conditions under which a code asset is present in a derived variant. Such a representation is needed (i) to understand with precision the dependencies that exist between code assets in the whole build system and (ii) to apply the contributions from the state-of-the-art, that are focused on the Linux kernel's build system, to other build systems.

B2. Characterizing and identifying anomalies in build systems

The interactions between dependent code assets can lead to unwanted side effects. For example, code assets can become dead if they can never be selected (e.g., a code block whose selection condition is incompatible with the one of its parent file). On the opposite, code assets can also become core if they are always selected (e.g., a code block whose selection condition is always true when the one of its parent file also is). Such consequences are called anomalies as they change the nature of the implemented variability (e.g., a core anomaly leads to a code asset being part of the core of the system while it is a variation according to the implemented variability). While multiple software systems make use of build systems relying on common concepts (i.e., definition and validation of a configuration followed by one or more variability resolution steps), the Linux kernel is the one that received the most attention. Anomalies in and between each of the three steps have been defined [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF][START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF][START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] together with tooled support identifying the anomalies in the kernel's code assets. While these tooled ap-CHAPTER 1 -Introduction proaches demonstrated successful identification of anomalies, they all focus on isolated steps of the build system, and the formal definitions of the presented anomalies show little detail about the constraints issuing from other steps. Among contributions, similar concepts have different denominations, common anomalies have different definitions, and all rely on different formalisms. This diversity prevents (i) a deep comprehension of the anomalies and how to identify them, and (ii) the application of these contributions to other similar build systems that are prone to similar anomalies, such as the Mozilla build system that also makes use of CPP directives to select code blocks in its source files. There is therefore a need to synthesize these contributions and the anomalies they present by uniformizing them under a single representation that can be instantiated on build systems to identify the anomalies.

Methodology

This Ph.D. work has been conducted relying on an experimental approach. Each contribution provided new observations that allowed the definition of new challenges and incrementally improve the approach. As a consequence, Chapters 5 to 7 have similar plans illustrating this methodology. The proposed contribution is implemented on top of the previous ones and evaluated on a set of subject systems. The observations arising from these conducted experiments exhibit the limitations of the contribution, driving the motivations for the following one.

The work of this Ph.D. thesis started as a Master's thesis directed by Philippe Collet in collaboration with Xhevahire Tërnava and consisted in designing a tool automating an identification approach for OO variability implementations she designed. This joint work led to two contributions that we use as a starting point for this work.

• In [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF], we define vp-s and variants in the context of OO variability implementations and propose a technique to identify these variability implementations relying on the notion of symmetry in code assets [START_REF] Zhao | Patterns, symmetry, and symmetry breaking[END_REF]Coplien, 2002, 2003].

• The symfinder toolchain [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF] automates this identification on systems in Java and provides a visualization of the identified potential vp-s and variants in the shape of a graph.

More details on these contributions are given in Section 3.1.2. As a result, Chapters 5 to 7 successively increment this preliminary work, that we first assess in Chapter 4 to evaluate to what extent it provides first elements of answers to Challenges A1 and A2.

Plan

This thesis is organized as follows:

• Chapter 2 presents elements of background on software product lines and how variability is modeled and implemented in this context. We also present an overview of the different techniques allowing to implement variability in software systems and introduce variabilityaware build systems, focusing on two examples: the Linux kernel build system and the Mozilla build system.

-Plan

• Chapter 3 details the state of the art on techniques to identify and comprehend the variability implemented in software systems and its quality. Then, we detail work studying the organization of variablity-aware build systems and finally focus on work characterizing anomalies in these build systems.

• In Chapter 4, we assess the identification technique proposed by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] and the associated tool support symfinder [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF] on three aspects: (i) we extend the approach to C ++ constructs to validate the use of symmetry to identify OO variability implementations, (ii) we map the identified potential vp-s and variants to existing traces of features in the implementation of two systems to validate the relevance of these vp-s and variants, and (iii) we evaluate the interpretability of the graph visualization proposed by symfinder by exchanging with a software architect on his experience using symfinder on his software.

• In Chapter 5, we extend the identification approach by taking into account usage relationships (i.e., composition/aggregation) between vp-s and variants and rely on them to characterize a measure of density of variability implementations. Consequently, the visualization has also been improved and shows these two additional information. We implement this new approach in symfinder-2 and evaluate it by applying it on multiple open source software systems and reporting on the newly revealed dense zones of variability implementations.

• Chapter 6 presents VariCity, a new visualization approach adapting the metaphor of the city to represent the variability implementations identified by symfinder-2 and assist the exploration of a system by revealing dense zones of variability implementations. We evaluate the capabilities of the visualization by relying on onboarding scenarios on multiple open source software systems, and report on the results of a controlled experiment with 49 students aiming to compare VariCity to standard tools used in code comprehension activities.

• Chapter 7 introduces VariMetrics, an extension of the VariCity visualization to support software quality metrics and reveal critical zones concentrating variability implementations prone to cause variability debt in a single OO codebase. We define quality metrics allowing to identify variability debt in the context of OO variability implementations and evaluate our approach by visually identifying indebted zones of variability implementations on multiple open source software systems. We validate the relevance of identified zones in one system by comparing its quality before and after applying maintenance actions to the indebted code assets.

• Chapter 8 details existing work characterizing anomalies in the Linux kernel build system and proposes a model unifying these contributions. This model provides a detailed representation of the conditions determining the selection of a code asset in a variability-aware build system. We demonstrate the completeness of our representation by instantiating the definitions of anomalies from the studied contributions in the proposed representation and exhibit incoherences between them.

• Chapter 9 presents a generalization of the Linux-centered model introduced in Chapter 8 by taking into account the diversity of mechanisms exhibited by the Mozilla build system. A framework implementing this model and allowing the identification of anomalies as well as their detailed representation is proposed and evaluated on the code assets of both the Linux kernel build system and the Mozilla build system.

Background

This chapter provides the reader with the fundamental concepts used throughout the thesis by introducing the background knowledge needed for its understanding. We first detail how domain and implementation variability are modeled in a software product line (SPL) context (Section 2.1).

We then provide an overview of the different techniques allowing to implement variability in variability-rich systems (Section 2.2.1) before focusing on variability implementations in OO systems (Section 2.2.2). Finally, we present variability-aware build systems and detail how they reuse existing tools to manage variability by relying on two examples: the Linux kernel build system and the Mozilla build system (Section 2.3).

Modeling and implementing variability in Software Product Lines

The domain and realization of SPLs rely on the notion of feature, being a user-visible aspect of a software system [START_REF] Kyo | Feature-oriented domain analysis (FODA) feasibility study[END_REF]]. After they have been determined, they are organized in a variability model that, most often, has the shape of a feature model [START_REF] Batory | Feature models, grammars, and propositional formulas[END_REF]. An example of feature model describing the domain of a library manipulating graphs is given in Figure 2.1. The abstract feature GraphLibrary represents conceptually the SPL domain, which has a single compound mandatory feature EdgeType and three compound optional features Search, Weighted and Algorithm, and all four have variant features. Features having variant features represent subdomains of the system by factorizing the commonality between features of the system. For example, while the different types of algorithms could have been directly linked to GraphLibrary, they have been grouped under an Algorithm feature. While at least one feature in an Or group needs to be selected (e.g., if the Search variant is selected, at least one of BFS and DFS also needs to be selected), exactly one feature can be selected in an Alternative group (e.g., the EdgeType can be Directed or Undirected but not both). Additionally, cross-tree constraints define conditions on features constraining their selection and are commonly expressed using propositional logic. For example, the selection of the Cycle algorithm implies the selection of the Directed type of edges as this algorithm cannot be applied to graphs with undirected edges.

The realization of the variability in the code assets is usually separated into three parts: core, commonalities, and variabilities. The core corresponds to the implementation that remains when no feature is selected [START_REF] Turner | A conceptual basis for feature engineering[END_REF]. The commonalities represent the common parts in the implementation of each feature of a subdomain. When factorized, these commonalities become part of the core, unless the implementation is related to an optional feature. Finally, the variabilities represent the implementation specific to each variant. The implementation of the variability is 12 CHAPTER 2 -Background Figure 2.1: Feature model of a library manipulating graphs often abstracted in terms of variation points (vp-s) and variants. A vp is defined by "one or more locations at which the variation will occur" [START_REF] Jacobson | Software reuse: architecture process and organization for business success[END_REF], while the variants characterize how this vp varies. Multiple techniques allow their implementation.

Variability implementation techniques in large software systems 2.2.1 Usual variability implementation techniques

The implementation of the variability can be done in numerous ways. In a clone-and-own approach [Rubin et al., 2013], variability is achieved by duplicating the code assets and adapting them to create a new variant. In practice, this technique is often achieved by managing forks of an original codebase repository [START_REF] Li | Mining families of android applications for extractive spl adoption[END_REF][START_REF] Businge | Clonebased variability management in the android ecosystem[END_REF]. Each product variant has a dedicated codebase containing the commonalities (i.e., the code common to all products) and its variabilities (i.e., the code specific to this variant). This technique, however, impedes the maintainability of the system as it evolves. As the core is duplicated for every product, every modification to those assets (being implementation, tests, specification. . . ) needs to be replicated in all the variants, which can become cumbersome with an important number of variants. Additionally, the difficulty increases with time as each variant has its own evolution pace [START_REF] Jeremy R Pate | Clone evolution: a systematic review[END_REF]. Consequently, software practitioners now increasingly rely on other techniques allowing them to manage variability in a single codebase.

On their side, annotative approaches allow incorporating features traces in a textual way in the code assets to indicate the features they implement. Such techniques are used to delimit code blocks to be selected when generating the variant, as with CPP annotations [START_REF] Kernighan | The C programming language[END_REF], often called ifdefs. While ifdefs are heavily used in C based systems like the Linux kernel [START_REF] Hunsen | Preprocessor-based variability in open-source and industrial software systems: An empirical study[END_REF][START_REF] Duc | Validating consistency between a feature model and its implementation[END_REF][START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF][START_REF] Tartler | Revealing and repairing configuration inconsistencies in large-scale system software[END_REF][START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF], annotations are also used to reengineer variable software implemented in other languages, independently of their paradigm, in SPLs [Couto et al., 2011;Martinez et al., 2017a]. Although their widespread use is due to the easiness of their implementation, extensive use of such techniques in a code is seen as a "pollution" [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF]. As they can be uniformly used to manage variability at various levels, the overabundance of annotations in the code hampers the 2.3 -2.2.2 Variability in code assets of an object-oriented system 13 understanding and management of both the system and the implemented variability, eventually becoming a "hell" [START_REF] Le | # ifdef confirmed harmful: Promoting understandable software variation[END_REF][START_REF] Medeiros | Discipline matters: Refactoring of preprocessor directives in the# ifdef hell[END_REF].

Other paradigms have therefore been designed with the main objective to prevent such entanglement. The feature-oriented programming (FOP) [START_REF] Prehofer | Feature-oriented programming: A fresh look at objects[END_REF][START_REF] Apel | Featurec++: On the symbiosis of feature-oriented and aspect-oriented programming[END_REF][START_REF] Apel | Feature-Oriented Software Product Lines[END_REF] paradigm aims to organize the implementation in feature modules [START_REF] Apel | Generic feature modules: Two-staged program customization[END_REF][START_REF] Takeyama | Implementing feature interactions with generic feature modules[END_REF] and obtain a strict alignment between the implementation vp-s with variants and the domain commonalities and variabilities respectively. For example, aspect-oriented programming [START_REF] Kiczales | Aspect-oriented programming[END_REF][START_REF] Morin | Taming dynamically adaptive systems using models and aspects[END_REF][START_REF] Parra | Unifying design and runtime software adaptation using aspect models[END_REF] can be used in an FOP context by implementing the variabilities in the aspects [START_REF] Mezini | Variability management with feature-oriented programming and aspects[END_REF][START_REF] Kastner | A case study implementing features using aspectj[END_REF][START_REF] Figueiredo | Evolving software product lines with aspects[END_REF]] that will then be merged with the core implementation in a preprocessing step. While aspects contain actual implementation code, deltas in delta-oriented programming [START_REF] Schaefer | Deltaoriented programming of software product lines[END_REF][START_REF] Clarke | Abstract delta modeling[END_REF] define patches (additions, deletions or modifications of assets at different granularities) that are applied to the core implementation when compiling the code assets for the desired variant. Although such techniques present the advantage of allowing a clear separation between the code assets implementing the different features, they cannot be applied to codebases for which variability is undocumented, which is often the case of OO systems [Krüger et al., 2019b].

Variability in code assets of an object-oriented system

Although the previously cited approaches are applicable OO systems, in practice, they often rely on OO mechanisms to achieve variability implementation [START_REF] Coplien | Commonality and variability in software engineering[END_REF][START_REF] Gacek | Implementing product line variabilities[END_REF][START_REF] Patzke | Product line implementation technologies. programming language view[END_REF][START_REF] Svahnberg | A taxonomy of variability realization techniques[END_REF], namely inheritance, overloading of methods and constructors, and design patterns such as Strategy and Factory [START_REF] Gamma | Design patterns: Abstraction and reuse of object-oriented design[END_REF]. Listing 2.1 shows an illustrative example of implementation in Java for two different types of geometric shapes, Circle and Rectangle. The abstract class Shape factorizes the behavior common to Rectangle and Circle, relying on inheritance as a variability implementation technique [START_REF] Jacobson | Software reuse: architecture process and organization for business success[END_REF][START_REF] Coplien | Commonality and variability in software engineering[END_REF]]. The Point origin attribute and the newOrigin method are accessible by both subclasses, and the two abstract methods area and perimeter are overridden in each subclass, defining their own way to compute these values. Additionally, in the Rectangle class, the two draw methods lines 13-16 and 18-21 allow implementing two ways of drawing a rectangle, depending on how the point's coordinates are passed as a parameter (i.e., as two integers or encapsulated in a Point object).

Relying on the definitions of vp-s and variants given in Section 2.1, the behavior implemented in the Shape class being commonly shared by its subclasses, it is characterized as a class level vp with two variants being its subclasses Rectangle and Circle. Analogously, two methods named draw have a common name but different parameters and bodies. These methods are therefore variants of a method level vp called draw [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF].

In this thesis, we set our focus on large OO variability-rich systems that are not architected as SPLs and progressively implement their variability in a single codebase using OO mechanisms.

Variability-aware build systems

Build systems are responsible for "scheduling and executing all build-related tasks, which may include running generators, compiling source code, running tests, and creating and copying deliverable units" [START_REF] Apel | Feature-Oriented Software Product Lines[END_REF]. In its simplest version, a build system can be a simple script System.out.println("Rectangle at (" + x + ", " + y + ")"); } / * Variant v_drawPoint of vp_Draw * / public void draw(Point p) { // rectangle at (p.x, p.y, width, length) System.out.println("Rectangle at (" + p.getX() + ", " + p.getY() + ")"); } } Listing 2.1: Example of variability implementations. The vp_Shape and vp_draw represent two vp-s at the class and method levels, respectively. executing build tools. However, as they manage which assets are built and how, they are also often in charge of managing compile-time variability [START_REF] Apel | Feature-Oriented Software Product Lines[END_REF]. When they manage variability, they allow resolving it by relying on command-line parameters or by reading from a configuration. While systems that are fully engineered as SPLs would rely on tools integrated by the modeling frameworks [START_REF] Meinicke | Mastering Software Variability with FeatureIDE[END_REF][START_REF] Beuche | Industrial variant management with pure::variants[END_REF][START_REF] Krueger | Systems and software product line engineering with biglever software gears[END_REF], other variabilityintensive systems often design their build system by relying on existing tools. For example, Make1 is a tool designed to control the build of an executable. The build process is described in the form of Makefiles that are then executed to build the system. In the features it proposes, Make allows to conditionally select code assets to build variants of the executable. It is therefore a tool that allows the implementation of variability at compile-time. In their simplest form, variability-aware build systems consist of one such tool. However, when the size and complexity of a system increase, they often rely on multiple of these tools. For example, the files selected by the Makefiles may contain variability implemented using ifdef directives that are resolved at the compilation of the sources invoked by the build system. In this thesis, we set our focus on variability-aware build systems reusing off-the-shelf tools to manage variability at multiple granularities in several steps. One example of such build systems is the Linux kernel build system.

The Linux kernel build system

The widespread use of the Linux kernel in a variety of contexts and, consequently, platforms (e.g., servers, personal computers, smartphones running the Android operating system2 ) leads to numerous specific implementations to support this diversity of ecosystems. The Linux kernel build system is responsible for the configuration of the kernel (i.e., selection of the desired features) and the selection of the respective code assets that are then compiled to build the final bootable kernel. This build system has three steps, illustrated in Figure 2.2.

KCONFIG KCONFIG files are present in multiple directories of the codebase and define configuration options (also called symbols) representing features. Each configuration option is defined as a config entry and can be of six different types: bool, tristate, string, hex, or int.

A default value for the feature can be set with the default entry. Features can be selected directly by the user via a prompt (present in an individual prompt entry or attached to the type of the feature), or by constraints on other features (defined in a depends on entry). Menus allow grouping features. If a feature is defined within a menu item that itself has a depends on entry, this condition is appended by KCONFIG to the depends on condition of the feature3 . A feature can also force the selection of another feature with the select entry. For example, in the lib/Kconfig file presented in Figure 2.2, feature FOO (line 4) is a feature of type bool whose default value is y but which can be modified by the user via a prompt. To be selected, DEPS_A or DEPS_B need to be selected, and MENU_COND needs to be satisfied. The selection of FOO, will also force the selection of F_SEL. KCONFIG checks for the consistency of the constraints between the selected features and outputs two files containing the list of selected features in two formats: .config will be read by the KBUILD Makefiles, and autoconf.h is a C header file that will be appended to every source file during compilation. The KCONFIG is often considered by the scientific community as a variability model [START_REF] Sincero | The Linux Kernel Configurator as a Feature Modeling Tool[END_REF][START_REF] Oh | Uniform sampling from kconfig feature models[END_REF] as the depends on and select statements implement behavior analog to cross-tree constraints between features (cf. Section 2.1). KBUILD The KBUILD system is made of multiple Makefiles present in multiple directories throughout the project, which select objects for the compilation. Three types of objects exist: object files, directories, and composite objects. Object files (such as file_c.o in lib/dir/Makefile) represent objects generated during the compilation from existing .c files in the codebase. Therefore, a file_c.c file should be present in the codebase. Added directories (such as dir/ in lib/Makefile) will have their KBUILD Makefile parsed to select files from this subtree. Composite objects associate multiple files in one single object. For example, foo.o in lib/dir/Makefile is a composite object defined at line 2 combining file_a.o and file_b.o and used at line 1.

Selection is done by adding the object files generated at the precompilation to lists. For example, in lib/dir/Makefile, the file_c.o object is added to the obj-y list. In this case, the object will always be selected. The selection of an object can also be conditioned by the value of a feature, as for the foo.o object. CONFIG_FOO refers to the FOO feature defined in the KCONFIG file lib/Kconfig. FOO is a boolean feature, therefore if it has for value y, the object will be added to the obj-y list. The same mechanism applies for the dir directory in lib/Makefile, with the small difference that BAR is a tristate feature, allowing an extra m value. The object added to the obj-m list will be compiled as a module. If a feature is not defined, the name of the list becomes obj-and is ignored.

CPP Variability in the source files is implemented using CPP directives. Code in conditional blocks declared with #if, #elif, #ifdef, or #ifndef directives (referred to as ifdef directives) is selected only if the condition of the directive is satisfied. For example, in lib/dir/foo.c, the selection of B1 implies that the condition line 1 is true. A nested block can only be selected if its parent block is selected (the selection of B1 implies that the condition line 3 is true and that B1 is also selected). Finally, code defined in a block declared with #elif or #else can only be selected if the ifdef blocks preceding it are not selected (the selection of B3 implies that the condition line 5 is true and that B2 is not selected, and the selection of B4 if cpu.endswith("86") or (cpu.startswith("i") and "86" in cpu): canonical_cpu = "x86" endianness = "little" elif cpu in ("x86_64", "ia64"): canonical_cpu = cpu endianness = "little" … elif cpu.startswith("arm"): canonical_cpu = "arm" endianness = "big" if cpu.startswith(("armeb", "armbe")) else "little" implies that neither B2 nor B3 is selected). Naturally, at the build system level, the selection of a code block is also conditioned by the selection of the source file containing it, itself depending on the selection of its parent directory by the KBUILD.

In the Linux kernel, the management of the variability is therefore done in three steps: a handcrafted configuration step, that has then been reused in other build systems [START_REF] Fernandez-Amoros | A Kconfig translation to logic with one-way validation system[END_REF][START_REF] Oh | Uniform sampling from kconfig feature models[END_REF], followed by two variability resolution steps reusing and adapting off-the-shelf tools for that purpose. The Linux kernel is however not an isolated case, and similar build systems reuse other approaches, such as the Mozilla build system.

The Mozilla build system

The codebase for the Mozilla Gecko rendering engine is split in two repositories. mozilla-central 4 contains all the implementation for the Mozilla Firefox web browser 5 , the Android Firefox application 6 and the SpiderMonkey suite 7 , while comm-central 8 contains the code specific to the Thunderbird mail client 9 and the SeaMonkey suite 10 . Analogously to the Linux kernel, these products are used on a plethora of platforms and operating systems 11 , and a build system is in charge of determining the configuration of the system that will run the product and selecting the respective code assets. The Mozilla build system is composed of three distinct steps, illustrated in Figure 2.3. configure A configure.in file processed with Autoconf 12 generates the configure script. This script, together with a set of Python scripts, analyzes the host system to extract information and create the config.status file containing the list of configuration options used to configure Gecko and their values. The sample script shown in the Configuration space box (Figure 2.3) is an excerpt of one of the Python scripts determining the features used in the build system, build/moz.configure/init.configure 13 , and exhibits the definition of the TARGET_CPU and TARGET_ENDIANNESS options relying on the information given by Autoconf. In the showcased example, the x86_64 value returned by Autoconf leads to TARGET_CPU being set to x86_64 and TARGET_ENDIANNESS to little in the config.status file. MOZBUILD The MOZBUILD system consists of multiple moz.build files written in Python disseminated in multiple directories of the project, whose goal is to select source files for compilation (and determine other build parameters such as compilation flags or target libraries) based on conditions on features from the configuration 14 . The codebase possesses multiple root MOZBUILD files for each of the different software products that can be derived from the codebase.

Symbols represent lists or constants. Depending on their nature, the code assets are added for compilation in different list symbols. C ++ source files are added to the SOURCES list, as shown in the /tools/fuzzing/moz.build file on Figure 2.3, while C compilation flags are added to the HOST_CFLAGS list. If the JS_STANDALONE feature is not set, the foo.c file in this directory and the bar.c in the subdir subdirectory relatively to the moz.build file will be selected for compilation. Adding a directory path to the DIRS list indicates to the MOZBUILD to parse and evaluate the moz.build file in this directory. For example, in /tools/moz.build, if both FUZZING and JS_STANDALONE features are set, the /tools/fuzzing/moz.build file will be evaluated. Another way to select directories is to use the include directive that allows to include other moz.build files in unrelated directories. For example, evaluating /dir/moz.build will also lead to the evaluation of /tools/fuzzing/moz.build.

Therefore, as opposed to the kernel's KBUILD Makefiles, the MOZBUILD files do not only manage files in their own directories, and multiple inclusions of a same source file of moz.build file thus becomes possible. This is the case for /tools/fuzzing/moz.build that is always evaluated whenever /dir/moz.build is, but is included with a specific condition in /tools/moz.build.

CPP The config.status file is also used as input to CPP to preprocess the source files and select code blocks. The CPP stage is similar as in the Linux kernel build system and is already described in Section 2.3.1.

The steps to build a product from the Mozilla codebase are therefore similar to the ones building a Linux variant. Moreover, although the tools used are different (apart from CPP), they are in both cases solutions built by adapting existing tools that are originally not designed to manage variability. This causes each step to be completely independent and unaware of the variability implemented by the others, and any modification regarding the variability in a step can have unexpected consequences in others. For example, in the KCONFIG file presented on Figure 2.2, adding a depends on !FOO constraint to the BAR feature would prevent the selection of the foo.c file in the lib/dir/Makefile (line 1) as entering the lib/dir directory implies that BAR is selected. Such problems are called anomalies [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF][START_REF] Nadi | Linux variability anomalies: What causes them and how do they get fixed?[END_REF]. In this case, the file (and consequently the code blocks it contains) are never selectable for any variant of the system and are therefore called dead files/blocks. While a variability modeling tool having the view of the overall variability would detect the problem, build systems made of ad hoc tools, such as the Linux kernel build system and the Mozilla build system do not have this capacity.

CHAPTER 3

State of the Art

In Chapter 2, we introduced the main concepts related to software variability and its implementation in code assets, with a particular focus on OO systems. We also presented how variabilityaware build systems adapt tools to manage variability at compile-time. In this chapter, we provide an overview of the state of the art on work providing approaches related to the challenges tackled in this thesis. Proposed techniques to identify variability implementations (Challenge A1) are detailed in Section 3.1, while tools and visualizations for variability and software comprehension (Challenge A2) are presented in Section 3.2. Work on the characterization and the comprehension of quality and its relationship with variability implementations (Challenge A3) is detailed in Section 3.3. Finally, contributions studying the derivation mechanism of build systems (Challenge B1) and characterizing the anomalies they can suffer from (Challenge B2) are showcased in Sections 3.4 and 3.5 respectively.

Variability identification techniques

Multiple techniques have been proposed to identify variability implementations in the code assets of software systems that are not fully-fledged SPLs. We first present a panel of proposed feature location and identification techniques (Section 3.1.1) before focusing on an approach specifically designed for OO systems in a single codebase (Section 3.1.2).

Feature location and identification techniques

Multiple approaches have been proposed to reengineer legacy software systems in an SPL [Assunção et al., 2017] and are commonly divided into two categories. On one side, feature location approaches aim to recover the traceability of some pre-existing features to the reusable code assets in an SPL [Rubin and Chechik, 2013;[START_REF] Dit | Feature location in source code: A taxonomy and survey[END_REF]Krüger et al., 2019a;[START_REF] Michelon | Spectrum-based feature localization for families of systems[END_REF]. However, as the domain variability is hardly documented in OO variability-rich systems [Krüger et al., 2019b], such approaches are not applicable to our context. On the other side, feature identification approaches aim to identify the common and varying units, as potential features, among some related software systems [START_REF] Ziadi | Feature identification from the source code of product variants[END_REF]Martinez et al., 2017b]. While they do not rely on domain features, they often target clone-and-own systems [START_REF] Kumar | A survey on software clone detection research[END_REF][START_REF] Karoline Michelon | Comparison-based feature location in argouml variants:[challenge solution[END_REF][START_REF] Linsbauer | Systematic software reuse with automated extraction and composition for clone-and-own. Handbook of Re-Engineering Software Intensive Systems into Software Product Lines[END_REF], thus managing their variability in multiple codebases, or systems relying on ifdefs [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF][START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF] or other annotative approaches [START_REF] Vinicius Couto | Extracting software product lines: A case study using conditional compilation[END_REF]. When applicable to single OO codebases, they rely on dynamic analysis results such as traces obtained from executing the system [START_REF] Walkinshaw | Feature location and extraction using landmarks and barriers[END_REF] or the unit tests [START_REF] David | Dynamic feature traces: Finding features in unfamiliar code[END_REF] that can be used to enhance static analysis results [Michelon et al., 2021a As we aim to tackle large systems that are possibly not executable locally and since unit tests are not always available and executable, we restrain ourselves to a static analysis of the code assets.

Identifying OO variability implementations

Considering this lack of approach to tackle the problem of statically identifying variability implemented using OO mechanisms, [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] proposed an identification approach relying on the notion of symmetry in OO code assets and proposed symfinder [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF], a toolchain automating the identification on single Java codebases using this technique1 . We detail both the identification technique and the toolchain hereafter. Symmetry in OO software constructs Inspired by Alexander's theory of centers [START_REF] Alexander | The nature of order: an essay on the art of building and the nature of the universe. Book 1, The phenomenon of life[END_REF], several works show that OO techniques and software design patterns exhibit a form of symmetry [Coplien and Zhao, 2000a;[START_REF] Coplien | The future of language: Symmetry or broken symmetry? In Proceedings of VS Live 2001[END_REF][START_REF] Zhao | Patterns, symmetry, and symmetry breaking[END_REF]Coplien, 2003, 2002;[START_REF] Henney | The good, the bad, and the koyaanisqatsi[END_REF][START_REF] Zhao | Patterns, symmetry, and symmetry breaking[END_REF]. From the natural sciences, the symmetry of an object is defined as the immunity to a possible change [START_REF] Rosen | Symmetry in Science[END_REF][START_REF] Rosen | Symmetry Rules: How Science and Nature are Founded on Symmetry[END_REF] and relies on (1) the possibility of change and ( 2) the immunity to change. Considering a whole codebase, the OO techniques involved in variability implementations can be seen as local symmetries [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF][START_REF] Tërnava | Identification and visualization of variability implementations in object-oriented variability-rich systems: a symmetry-based approach[END_REF], which allow a part of the code to change while another part remains unchanged.

To illustrate these symmetries, let us consider the UML diagram given in Figure 3.1, representing the example code given in Listing 2.1. The class Shape is a class level vp with two variants, Circle and Rectangle. They can be abstracted as vp_Shape, v_Circle, and v_Rectangle, respectively. Following the symmetry definition, inheritance defines a substitution symmetry for its subtypes. Here, the possibility of a change in the superclass Shape materializes in its potential different subtypes, such as Circle and Rectangle, which vary regarding the type of geometric shape. Still, they also preserve and conform to the common behavior of their superclass. Analogously at the method level, the two draw methods exhibit a substitution symmetry as their signatures and parameters vary, while their structure remains immune to the change. Table 3.1 illustrates all five mechanisms allowing to implement variability detailed in Section 2.2.2 the common and variable parts of the symmetry they exhibit. Additionally, as the coherence of a structure or object is related to a density of local symmetries [START_REF] Alexander | Subsymmetries[END_REF][START_REF] Alexander | The nature of order: an essay on the art of building and the nature of the universe. Book 1, The phenomenon of life[END_REF], the density of vp-s with variants has been proposed as a way to locate and describe the most intense places concentrating variability implementations in a system.

symfinder The proposed identification technique relying on symmetries and their density has been implemented in a tooled approach, symfinder, providing an automatic identification and visualization of potential vp-s with variants in code assets of a Java-based variability-rich system [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF]. The organization of the toolchain is depicted in Figure 3.2. After fetching the sources of the Java system to analyze, the code assets are parsed and the potential vp-s with variants identified, relying on a graph representation of the assets and their identified symmetries in a Neo4j database 2 . symfinder also provides a visual representation of the potential vp-s and variants and their metrics (i.e., for each class level vp, the number of method level vp-s with the number of variants). Figure 3.3 shows the visualization of identified potential vp-s with variants3 in JFreeChart4 , a charting library written in Java. Each class level vp or variant is visualized as a circle node that points out the used implementation technique while edges show their inheritance relationship. The size and shades of the red color of nodes indicate the number of method level vp-s with variants5 . Consequently, the visualized variability forms a disconnected graph based on inheritance links, while the visual representation of the metrics associated with each node (e.g., size, color intensity) creates zones that can be easily distinguished by their different density of symmetries 6 . For example, the left part of Figure 3.3 is denser than the right part, indicating that these classes concentrate more mechanisms involved in variability implementations. [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] evaluated this identification technique by applying it on eight Java open source systems and visually assessing the relevance of the identified zones concentrating vp-s with variants. As the authors were able to discern relevant variability implementations, symfinder and its symmetry-based identification technique seem to be a first answer to Challenge A1. However, this evaluation exhibits two limitations. First, the applicability of the symmetries in OO constructs has been demonstrated in a single language, Java. Second, the relevance of the identified vp-s and variants has been done visually, based on the authors' knowledge of these systems. Therefore, confirming the hypothesis according to which symfinder answers Challenge A1 requires assessing the method on these aspects.

Helping the comprehension of the implemented variability

Multiple approaches have been proposed to help the comprehension of variability-intensive software systems, heavily relying on visualizations.

Tool supports and visualizations for SPLs. When such systems are developed as SPLs, multiple tools help the implementation and the management of the variability, such as Fea-tureIDE [START_REF] Meinicke | Mastering Software Variability with FeatureIDE[END_REF], pure::variants [START_REF] Beuche | Industrial variant management with pure::variants[END_REF]pure-systems GmbH, 2020] or BigLever Gears [START_REF] Krueger | Systems and software product line engineering with biglever software gears[END_REF]. These tools rely on visual representations to assist the user. For example, pure::variants provides a visualization of the realized variability into a family model, including code assets by using a hierarchical "file explorer style", iconography for types of elements and "feature" states, and a matrix view. Other visual approaches have been proposed to help the comprehension of the variability of a variability-intensive systems but mainly focus on SPLs and feature models. They aim to facilitate the configuration process over features [START_REF] Roberto | A systematic mapping study of information visualization for software product line engineering[END_REF], or assist the onboarding of developers on SPLs [START_REF] Azanza | Onboarding in Software Product Lines: Concept Maps as Welcome Guides[END_REF], and therefore do not concern the implementation.

Visualizations for variability implementations. Regarding variability at the code level, multiple works rely on integrated development environments (IDEs) to visualize feature traces [START_REF] Kästner | Visualizing Software Product Line Variabilities in Source Code[END_REF][START_REF] Andam | Florida: Feature location dashboard for extracting and visualizing feature traces[END_REF][START_REF] Martinson | HAnS: IDE-based editing support for embedded feature annotations[END_REF] or ifdefs [Feigenspan et al., 2011a[START_REF] Feigenspan | Do background colors improve program comprehension in the# ifdef hell?[END_REF] in the code assets and help to understand the interactions between features and code [START_REF] Greevy | Visualizing feature interaction in 3-d[END_REF][START_REF] Bergel | FeatureVista: Interactive Feature Visualization[END_REF]. Other approaches target software clones [START_REF] Hammad | A systematic mapping study of clone visualization[END_REF] and provide visualization approaches to measure the similarity that exists between them, using for example bar charts [START_REF] Duszynski | Recovering variability information from the source code of similar software products[END_REF]. These techniques targeting clone-and-own systems or requiring features traces or annotations, they are therefore not applicable to our case.

Although symfinder already proposes a graph visualization for the identified OO variability implementations (cf. Section 3.1.2), the 2D nature of the visualization limits the information on the variability that can be displayed. Additionally, the challenge of tackling large codebases requires a scalable visualization, which is known to be a weak point of graph visualizations [START_REF] Pienta | Scalable graph exploration and visualization: Sensemaking challenges and opportunities[END_REF]. Hence, to the extent of our knowledge, no scalable visualization for OO variability implementations has yet been proposed, leaving Challenge A2 open.

The city metaphor. While, it could be possible to make symfinder's graph visualization evolve and improve its scalability [START_REF] Burch | Parallel edge splatting for scalable dynamic graph visualization[END_REF][START_REF] Beck | A taxonomy and survey of dynamic graph visualization[END_REF], multiple visualizations rely on metaphors as they bring an understandable graphical representation to concepts [START_REF] Knight | Virtual but visible software[END_REF]. For example, the metaphor of the city [START_REF] Knight | Comprehension with [in] virtual environment visualisations[END_REF] has been applied to multiple types of metrics on software systems: dynamic behavior (such as concurrency between classes [START_REF] Waller | Synchrovis: 3d visualization of monitoring traces in the city metaphor for analyzing concurrency[END_REF] or memory consumption of heaps [START_REF] Weninger | Memory Cities: Visualizing Heap Memory Evolution Using the Software City Metaphor[END_REF]), and static properties such as dependency and communication links between components [START_REF] Fittkau | Software landscape and application visualization for system comprehension with ExplorViz[END_REF].

At a finer grain, software cities to understand OO software systems have been proposed, the first of them being CodeCity [Wettel andLanza, 2008a, 2007] which uses buildings to represent classes, grouping them in districts representing packages. These principles were enhanced by adding a temporal dimension in the analysis to visualize the evolution of the metrics through multiple versions of the system, first in CodeCity [Wettel and Lanza, 2008b] and also in a more recent approach called M3TRICITY [START_REF] Pfahler | Visualizing Evolving Software Cities[END_REF]. The Evo-Streets [START_REF] Steinbrückner | Understanding software evolution with software cities[END_REF] approach also aims at visualizing the evolution of the software but uses streets to represent the package decomposition (instead of nested boxes in CodeCity). Multiple approaches also reuse the city metaphor by adding other visual dimensions such as arcs between buildings [START_REF] Dashuber | A layered software city for dependency visualization[END_REF]Dashuber and Philippsen, 2022a] or by adapting it to more immersive techniques, such as virtual reality for CodeCity [START_REF] Moreno-Lumbreras | Codecity: A comparison of on-screen and virtual reality[END_REF] and VRCity [START_REF] Vincur | VR City: Software Analysis in Virtual Reality Environment[END_REF], or Minecraft for CodeMetropolis [START_REF] Balogh | CodeMetropolis-code visualisation in MineCraft[END_REF].

The popularity of this metaphor and the fact that CodeCity showed to help complete program comprehension tasks [START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF][START_REF] Wettel | Software systems as cities: A controlled experiment[END_REF] lead us to the hypothesis that such a visualization adapted for OO variability implementations could help their comprehension, and therefore be a way to answer Challenge A2. However, while the graph representation provided by symfinder allowed the authors to visually identify relevant zones concentrating variability implementations [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF], no evaluation of the help that density brings to comprehend the implemented variability has been conducted. This preliminary step is required before designing a new visualization.

Identifying and comprehending indebted variability implementations

Multiple approaches have been proposed targeting the observation and characterization of technical debt in the context of variable systems.

Quality of variability implementations. Implementing variability in a system is known to bring additional complexity [START_REF] Galster | Variability and complexity in software design: Towards a research agenda[END_REF]. For example, extensive use of annotative approaches such as CPP directives is seen as a "pollution" [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF] as it hampers the understanding and management of the implemented variability, eventually becoming a "hell" [START_REF] Medeiros | Discipline matters: Refactoring of preprocessor directives in the# ifdef hell[END_REF][START_REF] Le | # ifdef confirmed harmful: Promoting understandable software variation[END_REF]. Consequently, the maintainability of the system is threatened and its capacity to evolve hampered [START_REF] Favre | Preprocessors from an abstract point of view[END_REF][START_REF] Kröher | Incremental software product line verification-a performance analysis with dead variable code[END_REF], eventually leading to technical debt [START_REF] Avgeriou | Managing technical debt in software engineering (dagstuhl seminar 16162)[END_REF][START_REF] Li | A systematic mapping study on technical debt and its management[END_REF]. Monitoring quality being crucial for the maintenance and evolution of such systems [START_REF] Martini | The danger of architectural technical debt: Contagious debt and vicious circles[END_REF], technical debt due to variability implemented using annotative approaches has been largely studied, leading to new definitions (as variability bugs, being errors and warnings caused by ifdefs interactions [START_REF] Abal | 42 variability bugs in the linux kernel: a qualitative analysis[END_REF][START_REF] Mordahl | An empirical study of realworld variability bugs detected by variability-oblivious tools[END_REF]) and adaptations of standard code smells definitions [START_REF] Fenske | Code smells revisited: A variability perspective[END_REF][START_REF] Iuri | Investigating variability-aware smells in spls: An exploratory study[END_REF] to consider variability mechanisms. By targeting annotative approaches, these definitions cannot be used directly to measure the quality of OO variability implementations.

Variability debt and OO systems. Very recently, [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF] defined variability debt as "Technical debt caused by defects and sub-optimal solutions in the implementation of variability 3.3 -Identifying and comprehending indebted variability implementations management in software systems". They studied 52 industrial case studies reporting technical debt issues on variable software systems with the following main results:

1. the absence of known variability implementation mechanisms is prone to cause artifact duplication, an increase of code complexity, and a "disappearance of links between implementation artifacts to business values" [START_REF] Ebert | Tricks and traps of initiating a product line concept in existing products[END_REF];

2. the lack of knowledge of the implemented variability, as well as the absence of traceability, causes variability debt;

3. variability debt mainly impacts source code artifacts;

4. variability debt causes an inability to systematically deal with customization and poor overall internal quality, complicating maintenance for the development team.

OO systems are directly reusing traditional mechanisms and variability code is then intertwined with the rest of the implementation code [Tërnava and Collet, 2017b] (cf. Section 2.2.2), providing no traceability with potential domain knowledge. They are therefore prone to variability debt in the source code artifacts.

Defining OO variability debt. [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF] introduced a catalog of ten forms of variability debt, detailing for each of them its cause(s), consequence(s), and concerned type(s) of artifacts. In the following analysis, these forms are written in italics.

As OO variability implementations rely solely on standard OO mechanisms, the availability of the source code is the only requirement to identify them. Finding Code duplication is therefore possible, as well as System-level structure quality issues in the implementation. Most often, tests sources are provided along with the source code, enabling identification of Lack of tests.

However, other information is not always available, especially in the case of open-source systems, such as the documentation, leaving aside Out-of-date or incomplete documentation and Duplicate documentation. Identifying Architectural anti-patterns needs information on the domain and the associated design choices (e.g., we cannot say if a Strategy pattern has the desired behavior solely by analyzing its structure). Covering Poor test of feature interactions would require a list of features and their mapping with their implementations, which are often not available in our case, while covering Old technology in use and Multi-version support implies having information about the versions of the supporting language and used libraries. Finally, identifying Expensive tests implies determining whether test cases have been formally defined or not [START_REF] Muhammad | Exploratory testing as a source of testing technical debt[END_REF], thus requiring test cases definitions.

It results that relying on the source code and its tests, OO software systems are prone to Code duplication, Lack of tests, and System-level structure quality issues in the implementation. There is therefore a need for a technique to identify and comprehend these types of variability debt in the context of OO variability implementations.

Identifying and comprehending technical debt in OO software systems. In the domain of OO systems, technical debt is often measured relying on metrics related to the OO implementations such as the number of lines of code (LoCs) of a class or method, the quantity of duplicated code or the unit tests coverage. Multiple works focus on determining software quality metrics [START_REF] Thomas | A complexity measure[END_REF][START_REF] Kafura | Software quality metrics based on interconnectivity[END_REF][START_REF] Linda | Software quality metrics for object-oriented environments[END_REF][START_REF] Fowler | Refactoring: improving the design of existing code[END_REF][START_REF] Campbell | Cognitive complexity: An overview and evaluation[END_REF]Misra CHAPTER 3 -State of the Art et al., 2018], measuring their evolution [START_REF] Sato | Tracking the evolution of object-oriented quality metrics on agile projects[END_REF][START_REF] Hecht | Tracking the software quality of android applications along their evolution (t)[END_REF], and validating the relevance of these metrics [START_REF] Ahmad Khan | An empirical validation of object oriented design quality metrics[END_REF][START_REF] Pantiuchina | Improving code: The (mis) perception of quality metrics[END_REF]. Tools have been developed to automatically analyze OO codebases and extract quality metrics [START_REF] Lenarduzzi | A survey on code analysis tools for software maintenance prediction[END_REF], such as SonarQube7 , one of the most frequently used open-source code analysis tools, adopted by more than 200K developer teams, including more than 250K public open-source projects on its cloud version SonarCloud8 . Not only the metrics are extracted, but a set of customizable rules gives more precise insights into the defects detected, and how to correct them [START_REF] Pellegrini | On the fault proneness of sonarqube technical debt violations. an empirical study[END_REF][START_REF] Lenarduzzi | Are sonarqube rules inducing bugs?[END_REF]. Finally, a set of plugins complete the tool to provide improved exploitation of the extracted metrics and improve their comprehension, such as advanced visualization solutions. One of them is SoftVis3D9 , which embeds the city-based CodeCity [Wettel and Lanza, 2008a] and Evo-Streets [START_REF] Steinbrückner | Representing development history in software cities[END_REF] visualizations. As such visualizations have proven to help the comprehension of a system's quality [START_REF] Wettel | Software systems as cities: A controlled experiment[END_REF], multiple other citybased visualization approaches for quality have been proposed [Wettel and Lanza, 2008b;[START_REF] Fittkau | Software landscape and application visualization for system comprehension with ExplorViz[END_REF][START_REF] Pfahler | Visualizing Evolving Software Cities[END_REF].

It results that in the context of OO systems, technical debt is identified relying on OO metrics, while their comprehension is achieved through visualizations. However, none of the existing identification or visualization approaches consider the variability implemented in such systems, leading to Challenge A3 ("Understanding the quality of the implemented variability") to be open. Variability debt being a particular type of technical debt, there is a need to (i) determine relevant OO metrics to identify OO variability debt and (ii) design an adapted visualization to comprehend it.

Studies conducted on build systems

As detailed in Section 2.3, multiple large software systems rely on build systems to manage their build process, as the Mozilla products codebase and the Linux kernel, and have been studied on multiple aspects.

Studies on the Mozilla build system

For example, the Mozilla build system has been used as a case study to evaluate the impact of having a build system on the maintenance effort [START_REF] Mcintosh | An empirical study of build maintenance effort[END_REF]. [START_REF] Lampel | When life gives you oranges: detecting and diagnosing intermittent job failures at mozilla[END_REF] explore the causes of intermittent test failures in the system's continuous integration and [START_REF] Maudoux | Lessons and pitfalls in building firefox with tup[END_REF] report on the application of a third-party build system, Tup10 , as a replacement of Make. Finally, de Jonge [2005] examined the structure of the build system step selecting directories and source files (managed at the time of this study with Autotools) and noticed that "Mozilla uses a dedicated build system. [. . . ] It requires a special directory layout. [. . . ] As a consequence, one cannot easily integrate Mozilla's source directories or build process in other software systems.", confirming the ad hoc and complex nature of Mozilla's build system. However, to the extent of our knowledge, no work studies this build system from the variability point of view. 3.4 -3.4.2 Studies on the Linux kernel build system 29

Studies on the Linux kernel build system

On the opposite, the impressive figures of over 15,000 configurable features, 28 million lines of code in more than 60K files, 900,000 commits from more than 2K authors [START_REF] Larabel | The linux kernel enters 2020 at 27.8 million lines in git but with less developers for 2019[END_REF], the Linux kernel has been a constant subject of study for the software engineering community on a plethora of aspects including software evolution [START_REF] Antoniol | Analyzing cloning evolution in the linux kernel[END_REF][START_REF] Padioleau | Documenting and automating collateral evolutions in linux device drivers[END_REF][START_REF] Israeli | The linux kernel as a case study in software evolution[END_REF] and maintenance [START_REF] Jiang | Will my patch make it? and how fast? case study on the linux kernel[END_REF][START_REF] Abal | 42 variability bugs in the linux kernel: a qualitative analysis[END_REF] issues. More specifically, it has become emblematic over the years in the variability research community [START_REF] Sincero | Is the Linux Kernel a Software Product Line?[END_REF] as mastering its variability is still an open challenge [START_REF] Thüm | A BDD for Linux? the knowledge compilation challenge for variability[END_REF]. Consequently, it naturally became a center of interest for build system variability studies.

As detailed in Section 2.3.1, the variability management architecture of the kernel relies on a model-based configuration tool (KCONFIG), CPP preprocessor directives in the code, and a configuration-aware build system (KBUILD).

Studies on the KCONFIG. Naturally, variability management in the KCONFIG part was deeply investigated. While [START_REF] Sincero | The Linux Kernel Configurator as a Feature Modeling Tool[END_REF] established a first mapping between the KCONFIG language and feature modeling concepts, [START_REF] She | Formal semantics of the Kconfig language[END_REF] investigated the inverse mapping and built a model for the KCONFIG language constructs. [START_REF] She | Formal semantics of the Kconfig language[END_REF] described the semantics of the KCONFIG language, used as a basis for multiple tools [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF][START_REF] Kästner | Virtual separation of concerns-toward preprocessors 2.0/von christian kästner[END_REF][START_REF] She | Linux variability analysis tools[END_REF][START_REF] El-Sharkawy | Analysing the Kconfig Semantics and Its Analysis Tools[END_REF]. [START_REF] Zengler | Encoding the Linux kernel configuration in propositional logic[END_REF] achieved a translation of KCONFIG's constraints in a single logic formula, later reused with SAT-solving by [START_REF] Walch | Formal analysis of the Linux kernel configuration with SAT solving[END_REF] to analyze the consistency of KCONFIG files, while Fernandez-Amoros et al. [2019] provide a translation to propositional logic. In his Master's thesis, [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF] analyses defects in KCONFIG. As it can be seen as a feature model [START_REF] She | Formal semantics of the Kconfig language[END_REF], it can have its defects, i.e., dead features [START_REF] Kyo | Feature-oriented domain analysis (FODA) feasibility study[END_REF], or false optional features [START_REF] Zhang | A propositional logic-based method for verification of feature models[END_REF]. Based on these previous works, CONFIGFIX has been proposed as a variability-aware tool to help the configuration of the kernel [START_REF] Franz | ConfigFix: Interactive configuration conflict resolution for the Linux kernel[END_REF]. Besides, as the Linux kernel is a living ecosystem, the evolution of its variability model has also been extensively studied [START_REF] Lotufo | Evolution of the Linux kernel variability model[END_REF][START_REF] Passos | Coevolution of variability models and related artifacts: A case study from the Linux kernel[END_REF][START_REF] Dintzner | Analysing the Linux kernel feature model changes using FMDiff[END_REF][START_REF] Passos | A study of feature scattering in the linux kernel[END_REF]Kröher et al., 2018c].

Studies on the variability implemented with CPP. Closer to the code, [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] defined presence conditions to identify inconsistencies in the constraints defined by ifdef directives in the kernel, and proposed an implementation with the UNDERTAKER toolchain. While [START_REF] Tartler | Dead or alive: Finding zombie features in the Linux kernel[END_REF] introduced the problem of inconsistencies between KCONFIG files and ifdef directives, they extended UNDERTAKER to add constraints from the KCONFIG files and identify inconsistencies between the two spaces [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF][START_REF] Tartler | Revealing and repairing configuration inconsistencies in large-scale system software[END_REF]. Other tools relying on presence conditions have been developed to reason on ifdef directives for type checking, such as TypeChef [START_REF] Kenner | Typechef: Toward type checking# ifdef variability in c[END_REF], and use the Linux code base as a robustness trial [START_REF] Kästner | Variability-aware parsing in the presence of lexical macros and conditional compilation[END_REF]. Santos and Santana de Almeida [2015] identified more than 36,000 inconsistencies in the Linux code assets with their checking technique between FM concepts and their translation using ifdef directives. [START_REF] El-Sharkawy | An Empirical Study of Configuration Mismatches in Linux[END_REF] analyze the causes of configuration mismatches in the kernel, being cases where the build system behaves differently from the constraints expressed in the variability model.

Studies on the KBUILD. Multiple tooled approaches have also been proposed to parse, analyze, and reason on KBUILD Makefiles, as KBUILDMINER [START_REF] Berger | Feature-to-Code Mapping in Two Large Product Lines[END_REF], MAKEX Holt, 2014], GOLEM [START_REF] Dietrich | A robust approach for variability extraction from the Linux build system[END_REF] (and its extension MINIGOLEM [START_REF] Ruprecht | Lightweight Extraction of Variability Information from Linux Makefiles[END_REF]), and KMAX [START_REF] Gazzillo | Finding all configurations of kbuild makefiles statically[END_REF]. [START_REF] Berger | Feature-to-Code Mapping in Two Large Product Lines[END_REF] analyzed the KBUILD Makefiles to extract a mapping between features and code assets in the shape of presence conditions on the features. Other tools for analyzing standard Makefiles have been applied to KBUILD files, such as MAKAO [START_REF] Adams | Design recovery and maintenance of build systems[END_REF], which builds a dependency graph from them. This tool is used in more recent work on the identification of unspecified dependencies in Make-based systems, also applied to KBUILD [START_REF] Bezemer | An empirical study of unspecified dependencies in make-based build systems[END_REF]. More recent approaches use symbolic execution to recover build conditions in KBUILD files [START_REF] Nguyen | Using Symbolic Execution to Analyze Linux KBuild Makefiles[END_REF]. Finally, after studying the internal consistency of the KBUILD Makefiles through three types of defects, [START_REF] Nadi | Make it or break it: Mining anomalies from Linux Kbuild[END_REF] built a third extension of UNDERTAKER to add constraints from the KBUILD files and identify inconsistencies in the three spaces [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF].

However, all the contributions previously detailed focus on isolated steps of the Linux build system. While the KernelHaven [Kröher et al., 2018a,b] workbench aggregates multiple tools previously cited in a single framework and allows to analyze properties of the whole kernel build system and extract metrics, there is no representation of the interactions between the different steps of the build system, and each one of them is also characterized differently. Table 3.2 summarizes for multiple of the previously cited work the different terminologies used to refer to the different parts of the build system. Except for a journal extension [START_REF] Nadi | The Linux kernel: A case study of build system variability[END_REF]] and a 3.5 -Anomalies in build systems Ph.D. thesis [START_REF] Tartler | Mastering variability challenges in Linux and related highly-configurable system software[END_REF], every paper has its own terminology, and some of them even use multiple terminologies [START_REF] Tartler | Mastering variability challenges in Linux and related highly-configurable system software[END_REF][START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF][START_REF] Abal | 42 variability bugs in the linux kernel: a qualitative analysis[END_REF][START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]. One paper [START_REF] El-Sharkawy | An Empirical Study of Configuration Mismatches in Linux[END_REF] groups the KBUILD and CPP in a single Solution space, denomination used by [START_REF] Abal | 42 variability bugs in the linux kernel: a qualitative analysis[END_REF] and [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] to refer only to the CPP constraints. This heterogeneity prevents the application of these contributions to other build systems as the Mozilla build system that, although they are equally complex, have been less studied, leaving Challenge B1 ("Making explicit the derivation mechanism of build systems") open.

Anomalies in build systems

As for contributions related to variability management in build systems presented previously, existing work on the definition and identification of anomalies in build systems are focused on the Linux kernel. Eight of the contributions studying the build system introduced in Section 2.3 and presented in Table 3.2 characterize anomalies in the build system and provide definitions for them. Appendix A lists the anomalies defined in five of these works. We discarded the last three publications being journal extensions [START_REF] Tartler | Revealing and repairing configuration inconsistencies in large-scale system software[END_REF][START_REF] Nadi | The Linux kernel: A case study of build system variability[END_REF] or publications by the same authors [START_REF] Tartler | Dead or alive: Finding zombie features in the Linux kernel[END_REF] that do not extend the characterizations of anomalies.

In the implementation, anomalies due to interfering CPP constraints have been characterized by [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] (Appendix A.1) and extended to consider the KCONFIG constraints by [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] (Appendix A.4). Relying on this last work, [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF] analyzes the internal consistency of the KCONFIG and proposes definitions to describe these anomalies (Appendix A.2). Finally, [START_REF] Nadi | Make it or break it: Mining anomalies from Linux Kbuild[END_REF] (Appendix A.3) define anomalies happening inside the KBUILD and extended their work to consider all three spaces of constraints [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] (Appendix A.5).

Although this panel of work allows covering anomalies in and between all spaces of constraints in the build system, as shown on Figure 3.4, all concepts and denominations are different among contributions, with the same properties being described with varied formalisms and sometimes different definitions, at different levels, or with no easy relationship between them.

By analysing the definitions of anomalies from the selected papers, we can pinpoint multiple elements bringing confusion. First, multiple definitions are redundant between papers, but their expression and their names differ. For example, Dead block defined by [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] in Anomaly 1, Configurability defect defined by [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] in Anomaly 13 and Code-KCONFIG anomalies defined by [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] in Anomaly 19 express the same formula. On the opposite, some anomalies with identical names may not express the same type of defect. This is the case for the formulas to detect dead blocks in Anomalies 13 and 15, which are equivalent, while the characterizations of undead blocks are inconsistent. Using the example shown 
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Code space [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]: Anomalies 4, 5, 6, 7, 8 and 9 [Tartler et al., 2011]: Anomaly 16 [START_REF] Nadi | Make it or break it: Mining anomalies from Linux Kbuild[END_REF]: Anomalies 10, 11 and 12 [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]: Anomaly 2 [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]: Anomaly 18 [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]: Anomaly 14 [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]: Anomalies 24 and 25 [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]:

Anomaly 21 [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]: Anomaly 3 [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]: Anomalies 19 and 20 [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]: Anomalies 13, 15 and 17 [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]:

Anomalies 19 and 20 Figure 3.4: Synthetic map of inconsistencies analyses of the Linux Kernel in Listing 3.1, Block 2 is undead according to Anomaly 13, as the selection of its parent (Block 1) implies its selection. However, if the A variable is not defined, then Block 2 is not undead according to Anomaly 15 as it is not always included.

Another limitation issues from the fact that the formalisms given for anomalies are at coarse grain. [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] presented a first implementation of UNDERTAKER for CPP implementing their formalism on CPP. [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] then improved it by adding a second level to UNDERTAKER for reasoning over the KCONFIG constraints, but the authors considered the constraints from CPP in the tool as a black box, altering the previously defined formalism. Consequently, the fine-grained comprehension of the feature-block link is then lost. The same issue can be found in the work from [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] on the KBUILD space and the third extension they provide for UNDERTAKER. Moreover, spaces can also be named differently, sometimes with the same letter representing two different spaces in two definitions (C represents the CPP constraints in [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF][START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] and the KCONFIG constraints in [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]). A summary of these differences is given in Table 3.3.

These issues and the lack of a uniform vision over the different analyses on the kernel variability hamper the understanding of both the issues and the proposed solutions, as well as their transfer in the future evolution of the build system. Furthermore, a uniform and consistent model could be applied to other highly configurable systems, such as the MOZBUILD. These limitations cause Challenge B2 ("Characterizing and identifying anomalies in build systems") to be open. 

Summary

Current state-of-the-art approaches do not allow deep comprehension of two aspects of variability implementations in large software systems. First, in the implementation of OO software systems, and second, in their management in ad hoc build systems. In this thesis, we tackle separately challenges related to the identification and comprehension of OO variability implementations and their quality (Part I) from the challenges related to the comprehension of the mechanisms resolving variability in build systems and the induced anomalies (Part II).

PART I

Comprehending the implemented variability in object-oriented code assets CHAPTER 4

Assessing the symfinder method

This chapter shares material with the VaMoS 2020 paper "Mapping Features to Automatically Identified Object-Oriented Variability Implementations -The case of ArgoUML-SPL" [Mortara et al., 2020b] and the SPLC 2020 paper "Identifying and Mapping Implemented Variabilities in Java and C++ Systems using symfinder" [Mortara et al., 2020a]. Some elements are also extracted from the AUSE journal paper "Identification and visualization of variability implementations in object-oriented variability-rich systems: a symmetry-based approach" [START_REF] Tërnava | Identification and visualization of variability implementations in object-oriented variability-rich systems: a symmetry-based approach[END_REF] which extends the work presented in [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] and [Mortara et al., 2020b].

The approach proposed by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] to identify variability implemented in OO software systems has been applied to multiple open source variability-rich systems written in Java. While the proposed graph visualization allowed on these systems to visually distinguish zones concentrating variability implementations, assessing the relevance of the approach requires additional steps. First, the symfinder toolchain [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF] automating the identification only supports Java codebases, therefore the use of symmetry in OO structures as a technique to identify OO variability implementation has been validated on this language only. Then, as the relevance of the identified vp-s and variants has been evaluated visually by the authors, evaluating whether they actually represent domain features requires a comparison between identified vp-s and variants with known domain features and their traces in the code assets. Finally, evaluating whether these identified potential variability implementations and their representation actually helps the comprehension of the implemented variability requires an evaluation by a third-party user.

In this chapter, we evaluate those two aspects to determine to what extent symfinder approach tackles Challenges A1 and A2 ("Identifying variability implemented in OO software systems" and "Making the identified variability implementations comprehensible" respectively). We assess the relevance of the symfinder approach by addressing the following questions:

1. Is the identification approach adapted to other OO languages? To address this question, we apply the notion of symmetry in OO constructs to C ++ structures and extend symfinder to support C ++ codebases. We then evaluate the approach on multiple C ++ open source systems (Section 4.1).

2. Do the identified vp-s and variants correspond to domain features? To address this question, we apply symfinder on two systems for which domain features and their traces in 38 CHAPTER 4 -Assessing the symfinder method the code assets are available and measure the accuracy of the symmetry-based identification by adapting precision and recall metrics (Section 4.2).

3.

To what extent does the symfinder approach and its visualization help comprehension of the implemented variability? To address this question, we report on an evaluation by Daniel Le Berre on his use of symfinder on the Sat4j project, of which he is the main architect (Section 4.3).

Reproducibility of the symmetry-based identification technique on C ++ code assets

In order to assess the reproducibility of the symfinder approach, we apply on C ++ systems the same protocol introduced by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] to evaluate the approach on Java systems. We first select a set of open source software systems implemented in C ++ of various sizes and that can implement variability (Section 4.1.1). We then apply an adapted version of the symfinder toolchain to parse and identify symmetries in C ++ codebases (Section 4.1.2) and report on the visually visible zones concentrating variability implementations (Section 4.1.3).

Subject systems

Table 4.1 synthesizes the five selected subject systems. Zelda-Game is a text based game made as a final project for an academic course. We selected it as its documentation states that it uses "concepts of OOP like Inheritance, Composition, Association, Polymorphism", that is, mechanisms used to implement OO variability. Decaf-Compiler is a compiler for the Decaf language. As it is a small project designed as an academic project for a Compilers course, we can expect from it a clear code structure exhibiting the different elements composing the Decaf language. PCSX2 is a PlayStation 2 emulator, thus we await variability concerning the different configuration options it can offer such as CPU tuning or video settings. MuseScore is a music notation and composition software. As it provides an editor for musical score, we can presume variability related to elements composing a sheet, such as the key, the tempo, or textual annotations. Finally, we applied symfinder on the Mozilla Firefox codebase as it is a large and widely use project, giving us confidence in the rigor of its implementation and allowing us to measure the scalability of our approach. Identification approach As the OO mechanisms implementing variability are similar between Java and C ++ systems, the identification of mechanisms common to both languages (listed in Table 3.1) has not been altered apart from few adaptations such as between the interfaces in Java and virtual pure methods in C ++ . Regarding mechanisms specific to C ++ , the identification has been extended to the class template mechanism, illustrated in Listing 4.1. Once the template has been declared, it can be instantiated in a concrete class or specialized in another template with a concrete type. We observe symmetries in both these mechanisms. By considering the template declaration as a center of symmetry, the classes instantiating the template and the specializations of the template are the changeable parts of the symmetry. Therefore, we consider the mechanisms as variability implementations, considering as a vp the template declaration and as variants both their instantiations and specializations. We first developed a second parser using the ANTLR parser generator and a grammar supporting C ++ 14. Software written in C ++ is known to make use of CPP macros, which are likely to implement variability as well [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF][START_REF] Hunsen | Preprocessor-based variability in open-source and industrial software systems: An empirical study[END_REF]. As a first step, we decided to handle these macros to be able to identify symmetries in all C ++ code assets, but without representing the variants potentially created by the preprocessor directives. While this is obviously an interesting feature, we decided to focus first on the symmetry-based approach. Specifically, After fetching the sources of a C ++ project, an additional preprocessing step (③') extracts macro definitions in a file and used to precompile the system using the C preprocessor and to expand macros. Then, similar to the Java version, a second analysis in ③ generates an AST, which is used to build a graph representation of the source code, stored in a graph database. It is then queried to identify symmetries in OO variability implementation mechanisms.

4.2 -4.1.3 Results

Results

Table 4.1 presents the numbers of vp-s and variants identified by symfinder in the 5 systems. We can notice that on these projects, symfinder tends to find more vp-s and variants on larger projects, although there is no direct correlation. We can observe in the generated visualizations dense zones corresponding to expected variability implementations. For example, Figure 4.2a exhibits a vp, MusicData, surrounded by multiple class level variants linked to it with inheritance relationships (e.g., OVE::Tempo, OVE::Key, OVE::Harmony) corresponding to the expected variability regarding the music sheet elements. While very few vp-s and variants have been identified in Decaf-Compiler (Figure 4.2b), they appear as relevant by exhibiting the awaited elements composing the Decaf language such as Expression or functionCall as well as the different types of Literals (charLiteral, stringLiteral, . . . ). Analogously to the identification in Java systems, a lowly-variable system will lead to a light visualization, as it is the case for Zelda-Game whose complete visualization is shown in Figure 4.2c and that makes use of inheritance solely to model two types of Item. Finally, due to the nature of the OO variability implementations, some dense zones on the visualization might correspond to the use of the mechanisms for implementation purpose, as in the excerpt of the Firefox visualization shown on Figure 4.2d. The obtained visualizations are accessible online1 .

Threats to validity

As our experimentation protocol is analog to the one used by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF], the threats to the validity of this experiment are similar and mainly concern the choice of our subject systems. Although restricted to five projects, the fact that our dataset is made of multiple projects of multiple dimensions (including the popular Mozilla Firefox web browser) gives us confidence in the applicability of our approach.

Although the identified variability implementations observed on some systems correspond to expected variability implementations (e.g., MuseScore), the remaining ones correspond to the use of such mechanisms to organize the code (e.g., in Mozilla Firefox). As for systems written in C, C ++ systems may also rely on ifdef directives to implement their variability [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF][START_REF] Hunsen | Preprocessor-based variability in open-source and industrial software systems: An empirical study[END_REF]. Therefore, when our approach does not find relevant variability, it can be that it is implemented using these directives.

Summary

The adaptation and application of symfinder on C ++ systems results in observations similar to the ones obtained by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] on Java systems, thus confirming the relevance of the identification using symmetries. While it appears that some zones appearing as dense on the visualization actually represent variability implementations, others correspond to the use of such mechanisms for implementation purpose. We now aim to evaluate to what extent identified vp-s and variants represent actual variability implementations. 

Automatic mapping of variability implementations

In order to evaluate the relevance of identified vp-s and variants, we apply symfinder on two Java systems for which domain knowledge is available and compare the results of our identification to the existing features traces in the code assets.

Subject systems

In the following are introduced the ground truths from the ArgoUML-SPL case study and Sat4j that we use to conduct the feature mapping experiment.

ArgoUML-SPL

The first project we selected is ArgoUML2 , an open source UML modeling tool implemented in Java language. It is used in the software product line community as a realistic case study for demonstrating the basic challenges for refactoring a single code base system with variability into an SPL [START_REF] Vinicius Couto | Extracting software product lines: A case study using conditional compilation[END_REF]. The extracted ArgoUML-SPL, with its ground truth, was also recently proposed [START_REF] Martinez | Feature location benchmark with argouml spl[END_REF] and used [START_REF] Cruz | A literature review and comparison of three feature location techniques using argouml-spl[END_REF][START_REF] Müller | A graph-based feature location approach using set theory[END_REF][START_REF] Karoline Michelon | Comparison-based feature location in argouml variants:[challenge solution[END_REF]Michelon et al., , 2021a,b] ,b] as a benchmark for evaluating the feature location techniques3 . The considered ArgoUML-SPL ground truth [START_REF] Martinez | Feature location benchmark with argouml spl[END_REF] consists of a feature model (FM) and annotations in the code asset providing traces with their implementations. 11 features compose ArgoUML-SPL's feature model, given in Figure 4.4. The abstract feature ArgoUML-SPL represents conceptually the SPL domain, which has 2 mandatory features (Diagrams and Class) and 8 optional features (State, Activity, Use Case, Collaboration, Deployment, Sequence, Cognitive Support, and Logging). In ArgoUML's ground truth [START_REF] Martinez | Feature location benchmark with argouml spl[END_REF], each of these 8 optional features has a set of traces to the ArgoUML's code assets, totalizing 714 features traces (without duplication).

Executing symfinder on ArgoUML leads to the identification of 2,750 potential vp-s with variants at class and method levels. A subset of potential vp-s with variants at class level is given in 

Sat4j

The second project selected for this experiment is Sat4j. As opposed to ArgoUML-SPL, no ground truth was previously available for this system. We therefore asked its architect, Daniel Le Berre5 , to prepare a ground truth for the purpose of this study. To avoid any possible bias and data manipulation, we first held a meeting with him where we discussed the purpose of the study and the needed data. Then, only him prepared the ground truth by manually defining the domain features, organizing them in a feature model (given in Figure 4.5) and annotating the code assets (classes, interfaces, methods, or fields) in the org.sat4j.core module that belong to each domain feature6 using Java annotations. Extraction for the mapping is then done using an internal utility tool that outputs the list of traces into a Markdown file 7 .

13 features compose Sat4j's feature model. The abstract feature Sat4j-SPL represents conceptually the Sat4j's variability domain, which has 7 mandatory features (Reader, Solver, Constraint, Deletion, Learning, Var Heuristics, and Phase Heuristics) 

Mapping process

Before the actual mapping, we normalized the granularity of traces for the domain features with the granularity of the identified vp-s with variants, so they all become of a common class level granularity. Specifically, whenever a feature in the ground truth had one of its traces to a class refinement, complete method, or method refinement, we simplified that trace to the whole class. For instance, the feature State in the ground truth had one of the trace links to org.argouml.ui.cmd.GenericArgoMenuBar , which is a trace at the statement level within the method initMenuCreate(). In such a case, we truncated the trace to the whole class org.argouml.ui.cmd.GenericArgoMenuBar. This means that we consider all features' traces, but we only change their granularity to class level. Then, from the identified vp-s with variants, we considered only those at the class level but these include also all method level vp-s with variants. This normalization is necessary for two reasons. First, symfinder records the names only for class level vp-s and variants, whereas for those at method level it records only their total number (cf. Section 3.1.2). The second reason is that vp-s with variants are related only to the structural elements in code, such as classes or methods for now, whereas features in the ground truth have traces mostly to their refinements, where about 73% of them are at statement level.

Our goal is to evaluate for each class having at least a feature trace whether it has been identified as a variability implementation and vice versa. As after this normalization, both the identified potential variability implementations and the features traces are aligned at the class level, we can automatically map the classes identified as variability implementations to the classes having features traces10 . For instance, we would expect that given their name, potential vp-s and variants in Figures 4.4 and 4.6 all have a mapping to domain features in Figures 4.3 and 4.5,respectively. An example of such expected mapping is given in Table 4.3 Seven of the shown variants are mapped to one feature, two of which map to the same Activity feature, whereas one variant, ui.FigEdgePort, is without a mapping, meaning that this variant does not appear as a trace link in any of the features in the ArgoUML-SPL's ground truth. The complete raw, normalized, and analysed data are available online 11 . Table 4.4: Summarized data from the two ground truths and their results [Tërnava et al., 

Mapping measures

Measuring the results of the mapping is done using two well-known measures, namely precision and recall.

Precision Let be T gt the set of traces for all features given in the ground truth and I vp-v the set of all identified vp-s and variants by symfinder. We use precision to measure the percentage of the identified vp-s and variants that are relevant for the feature mapping. Thus, for the current mapping, the vp-s and variants that are mapped to the features in the ground truth are true positives (TP), referred as relevant vp-s and variants, whereas the vp-s and variants without a mapping are false positives (FP), or irrelevant vp-s and variants. Therefore,

precision = T P T P + F P = |T gt ∩ I vp-v | |I vp-v |
Recall Through recall we measure the percentage of features' traces in the ground truth that are used for the mapping of vp-s and variants to features. Thus, the traces that are used for the mapping are true positives (TP), whereas those that are not used are false negatives (FN). Therefore,

recall = T P T P + F N = |T gt ∩ I vp-v | |T gt |

Results and discussion

Table 4.4 summarizes the obtained results. In ArgoUML, according to our mapping tool, 561/1,272 identified potential vp-s and variants have a mapping to at least one feature, while the remaining 711 appear as unmapped, leading to a precision of 44.10%. Then, out of 672 traces in the code assets, 111 are not mapped to any identified vp nor variant leading to a recall of 83.48%. Besides, in Sat4j, 113/225 identified potential vp-s and variants have a mapping to at least one feature, while the remaining 112 appear as unmapped, leading to a precision of 50.22%. Then, all traces in the code assets are mapped to identified vp-s and variants leading to a recall of 100%.

Although it is expected from such a non-trivial mapping that several local symmetries are without a mapping to features in the ground truth of both systems (and conversely), a considerable number of false positive local symmetries may impact the time spent distinguishing the actual vps with variants from the irrelevant local symmetries in the visualization. We observed three main reasons for such low precision.

Reason 1. The ArgoUML-SPL ground truth has been extracted by a group of researchers based on their domain knowledge of ArgoUML, and some information regarding the completeness of the features' list is missing. The ground truth may therefore be incomplete and would explain the important number of identified potential vp-s and variants without mapping. The slightly greater precision obtained for Sat4j is explained by the fact that we asked its architect to provide a list of features with traces as exhaustive as possible.

Reason 2. Since variable features correspond to configuration units when deriving a product in an SPL, feature identification and location approaches mainly focus on mapping variable features to code assets, often disregarding mandatory features [START_REF] Krüger | Towards a better understanding of software features and their characteristics: A case study of marlin[END_REF]. Similarly, as ArgoUML-SPL's ground truth has been designed as a benchmark to evaluate extractive SPL approaches, some mandatory features such as Class (cf. Figure 4.3) have no trace in code assets. However, in our symmetry-based approach, some potential vp-s and variants could correspond to mandatory features for which no trace exists (especially vp-s as they represent commonalities), explaining further the low precision obtained for ArgoUML-SPL. Regarding Sat4j, although 7/13 features are mandatory (cf. Figure 4.5), all of them have traces in code assets, totalizing 69% of the total number of traces, explaining the slightly higher precision.

Reason 3. We can presume that not all places where symmetries have been identified are related to variability implementation, as it is the case for preprocessor directives in C/C ++ systems. For example, [START_REF] Zhang | Variability evolution and erosion in industrial product lines: a case study[END_REF] mentioned in an industrial case study that "from our experience most #ifdef blocks (e.g., 87.6% in the Danfoss SPL) are actually not variability related, but for other purposes such as include guards or macro substitution". While, in the case of object-oriented systems, the used mechanisms are different, they are due to their nature likely to be mainly used as a good practice to structure domain objects (cf. Challenge A1). Additionally, after we reported the results to the architect, he pointed out that in order to avoid redundant annotations, he annotated only the concrete classes and not the abstract classes they inherit from. Then, only the main variability sources have been annotated. For example, the code contains multiple interfaces having at most two implementations that are not annotated. Further analysis of the false positives show that they are mainly still variability related, but only at the level of internal implementation, and not at the domain level (cf. Section 4.3.2.3). To avoid any data manipulation, we decided to present the original genuine experiment with the annotations as decided by the architect.

After further manual investigation of the 17% of traces that could not be mapped to vp-s nor variants, it results that they refer to the statements within the initialization classes, such as Main classes, or use other external libraries. As symfinder does not categorize initialization classes as part of local symmetries and filters out external libraries, they naturally could not be mapped.

Threats to validity

The main threat of this experiment concerns the two subject systems, ArgoUML and Sat4j, as well as their ground truths. As opposed to Sat4j's ground truth that has been established by its software architect and is now part of the codebase on its main branch, ArgoUML's ground truth has been established by a group of researchers. Therefore, another group of researchers or the ArgoUML's developers themselves may identify slightly different features and trace links, thus having a direct impact on the obtained results for precision and recall of our tooled approach on this system. Sat4j's ground truth was established by the software architect after he reported the experience with symfinder (Section 4.3). Although it can be seen as a maturation threat, some basic knowledge for variability in his own system was essential to avoid adding meaningless annotations as features traces.

Another threat concerns the normalization applied to the data prior to the mapping (cf. Section 4.2.2). During this step, the method level features traces and the identified local symmetries were normalized to class level. Considering method level feature traces and local symmetries may have an impact on the obtained precision and recall and consequently on the quality of the mapping

Related Work

To manage variability in SPLs, most of the existing approaches propose to modularize features into physically separate modules [START_REF] Apel | Feature-Oriented Software Product Lines[END_REF] or use conditional compilations, such as preprocessors in C/C ++ [START_REF] Liebig | An analysis of the variability in forty preprocessor-based software product lines[END_REF][START_REF] Duc | Validating consistency between a feature model and its implementation[END_REF][START_REF] Tartler | Revealing and repairing configuration inconsistencies in large-scale system software[END_REF][START_REF] Hunsen | Preprocessor-based variability in open-source and industrial software systems: An empirical study[END_REF], or a form of annotations [START_REF] Heymans | A code tagging approach to software product line development[END_REF][START_REF] Vinicius Couto | Extracting software product lines: A case study using conditional compilation[END_REF]. In these cases, features have a straightforward mapping in code assets using their naming conventions. However, extensive manual effort is required to add annotations in code assets or refactor them into feature modules. With symfinder we provide an automatic approach for identifying variability places in OO code assets. The results of the manual feature mapping conducted in ArgoUML-SPL case study show that these automatically identified places are highly relevant and indeed implement domain features. Similarly to other approaches, this mapping is likely to be automated, although not completely, by simply using the features and vp-s naming.

Since [START_REF] Vinicius Couto | Extracting software product lines: A case study using conditional compilation[END_REF] extracted the ArgoUML-SPL, it has been proposed [START_REF] Martinez | Feature location benchmark with argouml spl[END_REF] and extensively used [Martinez et al., 2017a;[START_REF] Karoline Michelon | Comparison-based feature location in argouml variants:[challenge solution[END_REF][START_REF] Cruz | A literature review and comparison of three feature location techniques using argouml-spl[END_REF] as a benchmark for reverse engineering variability and evaluating feature location techniques [Rubin and Chechik, 2013;Assunção et al., 2017]. In contrast, our variability identification and visualization approach is more a tool support for understanding implemented variability in forward engineering [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF]. Thus, in addition to its usage in reverse engineering, we show that ArgoUML-SPL can also be used as an interesting study in another context.

Besides a recent mapping study shows that there are several approaches for information visualization in SPL engineering [START_REF] Roberto | A systematic mapping study of information visualization for software product line engineering[END_REF]. Only a few of them visualize the variability at code level. From them, the approach for a virtual separation of concerns [START_REF] Kästner | Visualizing Software Product Line Variabilities in Source Code[END_REF][START_REF] Kästner | Virtual separation of concerns-toward preprocessors 2.0/von christian kästner[END_REF]Feigenspan et al., 2011b] is mostly related to our visualization approach. Similarly, it is used for variability management and relies on a different color per feature to manually map them to code assets. In contrast, we use a graphical visualization of variability by using more visualization parameters, namely position, size, shape, value (lightness), color hue, orientation, and texture. We also automatically visualize the variability and keep it separate from code assets.

Summary

On both studied subject systems, the symmetry-based identification method showed little precision but high recall, meaning that although only around half of them correspond to features traces (44% and 50% for ArgoUML and Sat4j respectively), they implement a high proportion of given domain features (83% and 100% for ArgoUML and Sat4j respectively). Little precision can be explained by the coarse-grain nature of the known features and by the fact that some of the vp-s and variants are not variability related. Still, the high recall shows their relevance and demonstrates the feasibility of the symfinder approach.

While it appears that the identification method needs to be improved to be more precise, understanding deeply the causes of these results requires information from an architect, who has the knowledge of both the domain and the implementation. We thus deepen our analysis of the results obtained on Sat4j by asking its main architect, Daniel Le Berre, to evaluate symfinder both regarding its identification method and the visualization it provides.

User evaluation of symfinder

Experimental setup

For this experiment we selected Sat4j [START_REF] Le | The sat4j library, release 2.2[END_REF], a variability-rich system and asked its software architect, Daniel Le Berre12 , for his feedback on using the tool. We chose Sat4j not only as it is a Java open source system in a single codebase, but also because it is a research software implemented as an example in teaching software engineering. It therefore heavily relies on object-oriented programming guidelines such as the use of inheritance and design pattern to implement its variability. Its design evolved for about 15 years with regular feature improvements and addition. Out of the four modules that compose Sat4j (core, pb, sat, and maxsat), we applied symfinder only on core as it contains the main features of the system, and made the generated visualization available to the software architect.

Observations

To further understand the obtained mapping results, we asked the software architect to detail the actual variability implementations identified by symfinder (i.e., true positives, detailed in Section 4.3.2.1), the variability implementations missed by symfinder (i.e., false negatives, detailed in Section 4.3.2.2), and finally identified vp-s and variants that do not correspond to domain variability (i.e., false positives, detailed in Section 4. 3.2.3). Then, to evaluate how symfinder can help the comprehension of the implemented variability, the architect provided feedback on the general interest of symfinder for a software architect (Section 4.3.2.4) and on his particular interest for Sat4j (Section 4.3.2.5), and formulated requests for enhancements of the tooled approach (Section 4.3.2.6).

Variability correctly identified by symfinder

The feature model given in whose configuration is implemented using the Strategy design pattern. Decorator patterns allow configuring an optimization problem instead of a decision problem. Finally, multiple Factories expose prebuilt solver configurations. The implementation also considers two levels of abstraction: the user level for Java developers that are not familiar with the design of SAT solvers and aim to use the library to solve regular problems, and the expert level for advanced users having a deeper understanding of the algorithms (master students, researchers, . . . ) and that need to customize the solver at fine-grain.

It results that symfinder identified most of the domain variability implemented using the strategy design pattern. Figure 4.7a exhibits the IOrder and IConstr interfaces implementing the heuristics and constraints features respectively. Figure 4.7b exhibits the RestartStrategy and LearnedConstraintsDeletionStrategy interfaces implementing the restarts and constraints database management features respectively. Additionally, some abstractions corresponding to the user and expert levels can be seen with symfinder as the inheritance between two interfaces, see e.g., IConstr and Constr in Figure 4.7a.

Variability missed by symfinder

Only two variability implementations could not be retrieved by symfinder:

• The ISimplifier interface and its implementations, providing various clauses simplifications techniques, were not detected due to their implementation relying on anonymous inner classes inside the solver class. Although unconventional, this design choice is motivated by the fact that a direct access to the state of the solver is required.

• The PrimeImplicantStrategy interface, allowing to reduce the model found by the solver to a set of literals required to satisfy all the constraints. This feature being experimental, it does not appear on the feature model. Moreover, the interface is present in a method (and not as a field), while the variant choice is made based on the value of a system property.

It results that in both cases, the non-identification results from an unconvential implementation motivated by efficiency or limited scope reasons.

On the remaining identified variability

Some identified vp-s not being linked to domain variability actually represent implementation variability. As an example, IVec and IVecInt are two data structures automatically identified as vp-s by being interfaces (cf. Figure 4.8a). The heavy use of interfaces to structure Sat4j's implementation explains the important number of identified false positives (cf. Table 4.4). Still, many false positive vp-s found in Sat4j correspond to variability implementations, but not related to the domain variability envisioned by the architect.

General interest of symfinder for the software architect

As a first reported feedback, the visualization allowed the architect to quickly spot the main vps in the code. An unexpected organization of classes on the visualization allows to visualize the evolution of the design and potentially spot unforeseen consequences. The provided global view is the most important feature of symfinder as it allows to detect unexpected relationships. Checking the nodes' details then allows to determine whether it is a design error or not. As for each tool, a little adaptation time is needed to get used to the displayed information and to learn the common patterns in the graphs.

Concrete interest of symfinder for Sat4j

In Sat4j's case, checking the variability was as easy as to look for interfaces marked as strategy and checking their name. Then, a similar observation was made for abstract classes and then the remaining plain interfaces (appearing as black nodes on the visualization) with several implementations, to make sure none is missed.

Sat4j's analysis allowed to identify improper variability management as illustrated on Figure 4.8b. RestartStrategy extending ConflictTimer does not correspond to the two levels of abstraction mentioned earlier and is clearly a bad design choice from a variability point of view. Despite being the vp for an identified strategy pattern, RestartStrategy is also a variant of ConflictTimer, vp for an identified strategy pattern but being in reality a composite pattern, that we do not identify. Having RestartStrategy inherit from ConflictTimer was therefore the simplest implementation choice from a developer perspective. On the other hand, LearnedConstraintsDeletionStrategy is also part of the composite pattern but using aggregation, that is not analyzed by symfinder. There is certainly some refactoring work to do to uniformize the design of all vp-s.

Requests for enhancement

Following his experience using symfinder, the architect formulated multiple requests to improve both the provided visualization and the identification approach:

1. In its current version, symfinder hides the variants that are not vp-s or do not have vp-s at method level, preventing a quick identification of a strategy according to its number of concrete classes. Since textual information is limited, seeing these variants is important for the architect.

2. Materializing Java packages might also be useful. In the case of Sat4j, strategy interfaces are most often in the same package as the solver, while their implementation is in a dedicated package. Being able to visually distinguish different packages would allow to quickly spot if all the variants of a strategy have been identified that way, or whether such practice is consistently used in the codebase.

3. Similarly, having different colors for each strategy interface with its related classes would enable to get a quick overview of the diversity of vp-s.

4. Finally, a textual enumeration of the identified design patterns would facilitate the validation of their relevance. While the graph view is useful to highlights important zones, it is not necessarily convenient for a fine-grain analysis.

Another proposal regards the identification approach. After further analysis, it resulted that an important part of false positive vp-s are interfaces with very small number of implementations, often one or two (cf. Section 4.3.2.3). Therefore, being able to customize the minimal number of variants to consider for detecting a strategy (to 3 for instance instead of 2 in the current implementation) or vp-s in interfaces (automatically considered vp-s regardless of their number of variants) would allow differentiating in this setting domain vp-s from implementation vp-s.

Threats to validity

The main threat to the validity of this experiment resides in the fact that Sat4j being the only analysed system in this qualitative experiment, generalization of the results to other systems is unfeasible. However, by being used in both the mapping (Section 4.2) and the qualitative analysis, the ability to cross-check the obtained results between both experiments gives more validity to the qualitative analysis.

Summary

It results from this experiment that symfinder could help Sat4j's software architect in understanding the variability implemented in his own system. The visualization provides a global picture of the implemented variability's organization and allows to spot inconsistencies in the design. Regarding the identification method, the evaluation confirmed that a majority of the false positive vp-s with variants identified in the system correspond to isolated vp-s with a small number of variants.

Addressed evolutions

As a first step towards a better visualization of the identified vp-s and variants, two of the previously proposed evolutions of the symfinder visualization in Section 4.3.2.6 have been implemented.

First, we added the option to visualize at once all class level variants, including those that are without method level vp-s. The importance of displaying these classes, already noticed during the measurement of symfinder's precision and recall in Section 4.2 where we observed that a considerable number of feature traces were mapped to class level variants hidden in the visualization, has been confirmed by the architect when manipulating the visualization. Still, we left available the option to also hide them, as on large systems visualizing all variants considerably overloads the visualization. For example, ArgoUML's visualization exhibits 539 nodes when visualizing potential vp-s without variants and up to 1 233 nodes when all their variants are visualized. Taken from ArgoUML's visualization, Figure 4.9 illustrates the case when vp-s with class granularity are visualized without variants (Figure 4.9a) and with variants (Figure 4.9b). For this reason, we provided a toggle button on the visualization from where all class level variants can be visualized or not. By default, only potential vp-s with their variants that have method level vp-s are visualized.

Then, the visualization has been enhanced with an option allowing to color packages. A Color packages button on the top bar of the visualization opens a menu where the user can input a package name, namespace (in C ++ ), or class name, whose potential vp-s with variants will be colored. The user can color multiple packages and/or classes, and for each one symfinder will automatically generate a new color. An example of visualization with colored packages is given in Figure 4.10, showing a good separation of concerns between packages in that case.

Finally, this experimentation also allowed us to see that two other design patterns were often used to implement variability, namely Decorator and Template. We therefore added the identification of vp-s with variants implemented by these patterns. 

Conclusion

In this chapter, we tackled the following questions: 1. Is the identification approach adapted to other OO languages? We extended the identification method relying on symmetries to C ++ code assets and evaluated it on a panel of five projects of various dimensions. Similarly to the analyses on Java projects conducted by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF], some dense zones appear to represent variability implementations be relevant, while some others are use of these mechanisms for implementation purpose.

2. Do the identified vp-s and variants correspond to domain features? We measured the relevance of the identification on two systems, adapting precision and recall measures to evaluate the accuracy of the approach compared to existing features traces. It results that on these systems, although the identified vp-s and variants represent an important majority of the actual variability, a large number of false positives are also identified, calling for an improvement of the identification approach.

3.

To what extent does the symfinder approach and its visualization help comprehension of the implemented variability? It results from the evaluation conducted with Sat4j's architect that symfinder helped him in understanding the implemented variability in the system thank to both the identification method and the visualization.

With this threefold evaluation, we can assess that on the studied Java and C ++ systems, the symmetry-based technique identifies a majority of the variability implemented using such mecha-nisms, providing an answer to Challenge A1. Additionally, the graph visualization allows to comprehend these variability implementations, providing an answer to Challenge A2. However, the approach still exhibits multiple limitations. While being robust, there is a strong need to improve the identification technique to increase its precision ((i.e., identify less but more relevant vp-s and variants)). Additionally, by considering a single developer on a single system, the results of this first user evaluation cannot be generalized as it would require setting up a controlled experiment with multiple participants [START_REF] Ko | A practical guide to controlled experiments of software engineering tools with human participants[END_REF]. Nevertheless, this evaluation gave us insights on the limitations of the symfinder approach, both regarding the visualization (that we already started improving as detailed in Section 4.3.5) and the identification method. Therefore, prior to designing a controlled experiment with users, we extend the identification method relying on the feedback detailed in Section 4.3.2.6 by characterizing a measure of density of variability implementations to improve its precision.

CHAPTER 5

Improvement of the identification process with usage relationships

This chapter shares material with the REVE 2021 paper "Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships" [START_REF] Mortara | Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships[END_REF].

In the previous chapter, symfinder has been successfully applied to several C ++ variabilityrich systems, showing the applicability of the symmetry-based technique on different languages. Moreover, the application on ArgoUML-SPL has demonstrated that a large part of the identified vp-s and variants by symfinder actually implement ArgoUML's reverse engineered domain features, which can be mapped to each other. Finally, the identified vp-s with variants and their visualization helped Sat4j's architect to comprehend the implemented variability. However, experimenting with the symfinder toolchain outlined two issues in the proposed approach.

Issue 1. Detecting inheritance relationships is not enough By construction, the identified vp-s with variants with a heavy usage of inheritance are the most visible in the symfinder visualization, that is, those implemented by classes that are represented as nodes. They are simply grouped together with this relationship and the other visualized indicators, such as the size and color intensity of the nodes. While the experiments show that real vp-s and variants were successfully identified by applying symfinder on the subject systems it also appeared that their visualized density based only on the inheritance relationship is not always sufficient to comprehend the variability of a system.

To exemplify this issue, we show in Figure 5.1 an excerpt of JFreeChart class diagram. Two classes, MeterNeedle and Plot, possess subclasses and will be identified by symfinder as two potential vp-s with their variants. In the symfinder visualization, they are shown as two separate trees of variability, as illustrated in Figure 5.2. However, looking in their source code, it can be noticed that these classes are highly dependent on each other, as the CompassPlot, a variant of the vp Plot, uses every variant of the vp MeterNeedle. Naturally, we can find many of these additional dependencies at class level between potential vp-s and variants. For instance, in Figure 4.8b, displaying only inheritance relationships does not allow visualizing that LearnedConstraintsDeletionStrategy and ConflictTimer are part of a common design (cf. Section 4.3.2.5). Therefore, by not considering usage relationships between classes, the 58 CHAPTER 5 -Improvement of the identification process with usage relationships Besides, according to the study of symmetry in software constructs by [START_REF] Bibliography | Understanding symmetry in object-oriented languages[END_REF], reusability in object-oriented systems is described as being about the instantiation of templates, composition of the instances, and substitution of the instances. In symfinder, most of the seven considered traditional techniques provide an implementation of variability through the substitution of the instances, as they have a substitution symmetry [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF]. However, composition, or more generally, usage of other instance, is also applied for reuse of code assets. For example, many software design patterns rely on inheritance and composition to characterize complex reusable designs [START_REF] Freeman | Head First Design Patterns[END_REF].

Therefore, it seems necessary to extend symfinder to consider the composition relationship of classes when visualizing the identified vp-s and variants. In the following, we will consider this relationship in the broad sense of the term, as an usage relationship, encompassing cases where a class uses another class in attributes and parameters of its methods. We expect that a visualization with inheritance and composition relationships between classes that are identified as potential vp-s or variants will improve their consistency and help users to better comprehend their dependencies.

Issue 2. Large systems are hardly comprehensible With its zooming, filtering, and hovering capabilities, the symfinder visualization naturally relies on the Shneiderman visual information seeking mantra [START_REF] Shneiderman | The eyes have it: A task by data type taxonomy for information visualizations[END_REF]: overview first, zoom and filter, then details on demand. For example, class level variants can be shown or hidden. Other options in the visualization, such as the total number of potential vp-s, also provide information for the overall variability of the targeted system. Nevertheless, in many systems and especially in large ones, users gave us the feedback that they were missing some clear entry points to start browsing the visualization. For instance, Figure 5.3 shows the complete symfinder view of all the vp-s and variants identified in the NetBeans IDE codebase, exhibiting about 3498 nodes and an important number of trees, making it hard to determine where to start the exploration. Consequently, the visualization needs improvement to allow comprehension on large systems, reopening Challenge A2.

After analyzing this problem, we realized that the vast majority of studied systems exposed facade classes, which were natural entry points expected by the users, or even a well-defined application programming interface (API) [START_REF] Martin P Robillard | Automated api property inference techniques[END_REF] where their reusable and customizable functionalities are textually exposed. The second issue we thus identify is the need for entry points to be specified and exploited in the visualization to facilitate the variability comprehension.

In this chapter, we describe the different extensions made on the identification and visualization parts to build a new version of symfinder named symfinder-2 (Section 5.1). During the identification of potential variation points with variants, we take into account their usage relationships so to display them in the visualization. We also refine the visualization so that entry point classes of a targeted system, such as API classes, can be used to find more easily the important zones of variability. Finally, a parameterized density metric allows to automatically identify hotspots, being classes that are part of dense zones of variability implementations, and that can also be used to filter the visualization. We apply symfinder-2 to ten Java-based variability-rich systems and observed the impact of our changes and done improvements (Section 5.2). We notably evaluate the visualized graph, the remaining vp-s and variants, and the scalability of our extension. We finally discuss related work (Section 5.3). In order to better address Challenges A1 and A2, we extended the variability identification and visualization by symfinder. In the following, we describe these extensions, which makes up symfinder-2. Its sources and conducted experiments are publicly available on symfinder-2's website1 and in a reproduction package [Mortara et al., 2021d].

Handling the usage relationships

To address Issue 1, we first improved the identification step in symfinder by identifying the usage relationships between the identified vp-s with variants. In symfinder, the target codebase is analysed and stored in a graph representation. Classes and methods represent nodes in the graph, linked together through relationships of different types used when querying the database to identify the local symmetries, leading to potential vp-s with variants (details about the technical implementation of symfinder can be found in Section 3.1.2). In the extended identification process implemented in symfinder-2, a class A is used by another class B if the class B is used as a field type or method parameter type in the class A [START_REF] Freeman | Head First Design Patterns[END_REF]. Technically, at parsing time (cf. step 3 on Figure 4.1), each usage relationship is identified and an USE relationship is created in the graph database between the respective class level vp-s or variants that are identified. For instance, in the In general, all identified usage relationships between the potential vp-s, variants, and their additional information (such as the number of variants at class and method level, and the classes to which they are linked through usage relationships), are exported into a JSON format, which data are further used for variability visualization by symfinder-2 (cf. Figure 5.5). Visually, we show in symfinder-2 both inheritance and usage relationships, where inheritance relationships are grey arrows and usage relationships are represented as dashed blue arrows. For example, the new visualization for the JFreeChart example, given in Figure 3.1, is shown in Figure 5.4. In comparison with its prior visualization by symfinder, given in Figure 3.3, both relationships are represented. Therefore, for instance, the usage relationship between Plot and JFreeChart from Figure 3.1 is now explicit in Figure 5.4.

Handling entry points

To address Issue 2, we extended the symfinder visualization to take into account some entry points during the variability comprehension of a targeted system. In the following, we present the two kinds of entry points that we make available in the extended version of symfinder-2.

vp-s and variants under analysis As a first kind of entry points, we add the possibility to visualize only desired vp-s with variants. For this reason we added a textbox with a button in the visualization, named Add an entry point class, as shown in Figure 5.4. In that case, starting from the classes designated as entry points, symfinder-2 will also show the vp-s with variants connected to them through inheritance or usage relationships. For example, from the shown data in This filtering capability can help users to choose interesting entry points in the visualization and to comprehend progressively the whole identified variability of a system under study.

API points Another kind of entry point that we implemented in symfinder-2 is the usage of classes that are annotated by the API Guardian library2 as specific API entry points. Any potential vp or variant that is realized by these API classes is automatically detected at parsing time and put in the symfinder data model. The visualization then automatically adds all detected classes as entry points so that they can be used to refine it as described in the previous paragraph.

Improving the readibility of the visualization

As stated in the introduction of this chapter, the Shneiderman information seeking mantra [START_REF] Shneiderman | The eyes have it: A task by data type taxonomy for information visualizations[END_REF]] relies on three principles: overview first, zoom and filter, then details on demand. However, with both inheritance and usage relationships being visualized, symfinder-2 displays all the information altogether, eventually leading to too many edges displayed and hampering the comprehension of variability. We thus propose three filtering techniques allowing to refine the symfinder-2 visualization.

Filtering inheritance and usage relationships. In order to reduce the number of displayed edges of usage relationships, symfinder-2 allows to filter the direction of usage, so that an edge is displayed only if one class being a potential vp-s or variant is using another one (OUT), or used by this other one (IN). A usage-type can thus be set to display only incoming (IN), outcoming (OUT), or all (IN/OUT) usage relationships between potential vp-s and variants. For example, the usage relationship between v_JFreeChart (here, the entrypoint) and vp_Plot (a class it uses) is shown in Figure 5.4 as the usage-type is set to OUT. From there, all other displayed vp-s and variants can be added to the entry points list and be used as a starting point to comprehend the identified variability of JFreeChart.

Tuning the usage level Depending on how the object-oriented targeted system is designed, there can be different layers of objects being composed to implement some variability. The visualization is thus adaptable to how the potential vp-s with variants could be related at a different level of usage. We added a usage-level drop-down list box with values corresponding up to the maximum number of usage relationships from one of the given potential vp-s or variants to the others in a targeted system. For example, a usage level of 4 will display all potential vp-s or variants that have a usage relationship to one of the potential vp-s or variants through at most 4 detected usages transitively. This enables one to display more or less related variability implementation classes. One can then start by a low level and expand progressively to tame the complexity of displaying too many relationships. In Figure 5.4, the usage-level is 2, meaning that the shown classes are vp-s and variants used by the entrypoint v_JFreeChart, or by vp-s and variants used by v_JFreeChart.

Introducing a density metric In order to tackle globally both issues, we propose to filter out the less dense zones with potential vp-s and variants in the visualization. This idea has its roots in the center's theory [START_REF] Alexander | The nature of order: an essay on the art of building and the nature of the universe. Book 1, The phenomenon of life[END_REF], which states that the density of local symmetries in a structure is important and can be used to easily distinguish, memorize, and describe that structure. We thus introduce in symfinder-2 a density metric used with thresholds to filter nodes in the visualization. Using it, we want to show whether the density of local symmetries (a.k.a., potential vp-s and variants) under their two types of relationships in the visualization of a system can help to comprehend its implemented variability. For instance, the visualization from JFreeChart given in Figure 3.3 shows two places with different densities of potential vp-s and variants. The left one seems denser than the right one with the inheritance-only symfinder, whereas when usage relationships are considered using symfinder-2, both of these places are interrelated and create a new denser zone of potential vp-s and variants.

To better understand its realization, we introduce several definitions allowing to formally describe the density metric. This represents any variability-related class in a system under study, i.e., a class with some variability, at the class level, and/or at the method level, and/or being a variant of another vp. where nbV ar class is the number of variants of v at class level, and nbV ar method is the number of variants of v at method level.

We define the set of all identified variability implementations V ⊆ C the subset of classes having at least 2 variants at class or method level.

V = {c ∈ C | (c.nbV ar class ≥ 2) ∨ (c.nbV ar method ≥ 2)}
Definition 5.2 (Usage graph). The usage graph of a system is a graph G = (C, R) where C is the set of classes of the system (being the vertices of the graph), and R the set of usage relationships between classes (being the edges of the graph). For example, in Figure 5.5, XYPlot has 77 method variants and 2 constructor variants, making it 79 method level variants (i.e., XYPlot.nbV ar method = 79). Therefore, ID minV ars (XYPlot) is true for minV ars ≤ 79, regardless of its number of class level variants (i.e., its number of subclasses). 

ED maxDist (c) ⇔ ∃v | (v ∈ V) ∧ (d(c, v) ≤ maxDist) v v
Variability implementations leading to c being identified as collectively dense for: starting class For example, for maxDist = 1, a class c is collectively dense if at least one class using or being used by c is a variability implementation. For maxDist = 2, a class c is collectively dense if at least one class using or being used by c, or one class using or being used by these classes is a variability implementation. An illustration of this mechanism is given in Figure 5.6. Definition 5.5 (Density). We define a measure of density ∆ : C → {true, f alse} which, given a class c ∈ C, determines if it is a hotspot (i.e., if it is part of a dense zone of variability implementations) by checking if c is either individually or collectively dense.

variability implementation v v v v v v c c v v maxDist = 1 maxDist = 2 maxDist = 3 v v v
∆ minV ar,maxDist (c) = ID minV ars (c) ∨ ED maxDist (c)
The set of variability implementations in dense zones for a given couple of parameters (minV ar, maxDist) is thus given by

S = {v ∈ V | ∆ minV ar,maxDist (v)}
The density metric is directly dependent on its two input parameters. Consequently, defining a threshold over each of these two parameters enables to automatically identify hotspots, being zones exhibiting a density above the thresholds, hence a high concentration of variability implementation techniques. Relying on this metric, the potential vp-s and variants that are under the set threshold are colored in a light gray on the visualization generated by symfinder-2. In a further step, these potential vp-s and variants can also be excluded from the visualization by using the button Show only dense zones (cf. Figure 5.4). In this example, we set a threshold with the number of variants in a potential vp ≥ 5 and the usage relationships between the potential vp-s or variants ≤ 2 (in other words, the set S of variability implementations being hotspots is characterized by S = {v ∈ V | ∆ 5,2 (v)}). Hence, in Figure 5.4 the v_DefaultDrawingSupplier variant is highlighted in gray as its vp_DrawingSupplier vp has less than 5 variants.

Adapting these thresholds tailors the identification to the analyzed codebase which, depending on its size and the object coupling induced by its architecture and used frameworks, might result in too many/too few hotspot classes being identified. As a result, with information on symmetries, metrics on their occurrences, as well as relations of inheritance and usage between classes, zones concentrating hotspots can be predetermined.

Evaluation

In this section, we first define the research questions to evaluate the extended approach of symfinder-2 (Section 5.2.1). We then introduce the subject systems selected for evaluation (Section 5.2.2) before tackling the research questions successively. The tool and the used data to obtain the presented results are available online in a reproduction package [Mortara et al., 2021d].

Research questions

We define four research questions to evaluate our approach.

RQ 1 : Does the identification of usage relationships improve the variability visualization of a given system by symfinder-2? The visualization generated by symfinder represents class level vp-s with variants as nodes, linked together through inheritance relationships. This forms tree-like structures (cf. Figure 3.3). For example, two sets of vp-s both linked through a few inheritance relationships would appear as two small trees on the visualization. If potential vp-s from these two sets make use of each other, they form a more important concentration of variability implementations, which was not put together in the first version of symfinder visualization. Similarly, a vp with only method-level variability would be isolated on symfinder's visualization, but might also be used by other class level vp-s or variants and should be linked to them on symfinder-2's visualization. In symfinder-2, we expect that the two previous small zones would appear as a single but as a more important tree on the visualization, being more visible for the user.

RQ 2 : What is the starting density threshold to begin with the comprehension of the visualized variability by symfinder-2? In addition to the two basic user-defined variability filtering capabilities that are added in the visualization and can be activated interactively, the third filtering capability is based on the density of potential vp-s and variants. As explained in Section 5.1.2, our filtering by density has for objective to reduce the number of potential vp-s and variants (a.k.a., nodes) visible on the visualization through identifying those vp-s that have a minimum number of variants or those that are linked to another vp through a maximum number of usage relationships. This threshold is set before their identification, and setting it is not trivial as the user needs to know which is the right threshold to start with.

RQ 3 : Is the API information of a given system useful to simplify its identified variability by symfinder-2? When studying large systems, the number of identified potential vp-s with variants becomes extensive. Consequently, analysing and comprehending the implemented variability from the provided visualization can be really difficult. With this research question, we aim to evaluate whether classes annotated as APIs in the system are good candidates for filtering the visualization and improve its comprehension. But, as a testing framework, Cucumber has an API that exposes classes for defining the dependency steps and an object factory for customizing the dependency injections. This question aims at determining whether the additional functionalities in symfinder-2 harm its scalability. The impact could be located in the identification phase, as the usage relationship is identified in the source code representation, as well as in the visualization phase, where new elements are computed to filter all displayed elements.

Subject systems

To evaluate symfinder-2, we chose ten popular variability-rich subject systems, being Java applications, frameworks, or libraries (cf. Table 5.1). For the time frame of up to twelve last years, they have received between 150 and 8, 000 stars in GitHub, but we particularly considered them because of the following criteria. The first six ones were already used to evaluate the first version of symfinder in [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF], namely Java AWT, Apache CXF, JUnit, Apache Maven, JFreeChart, and ArgoUML. Then, we chose the other three as they use in their codebase a form of API annotations, namely the API Guardian library, to annotate each code unit that constitutes their API. These new chosen systems are Cucumber -a framework for BDD testing, Logbook -a library to enable logging for different client-and server-side technologies, and Riptide -a library based on Spring to implement client-side response routing. Finally, we selected the Net-Beans IDE because of its size with about 5M lines of code (LoC), which helps in evaluating the scalability issues of both the approach and the prototyped toolchain.

RQ 1 : Improved visualization

To answer RQ 1 , we applied symfinder and symfinder-2 to all ten subject systems and compared their respective visualizations. Results are given in Table 5.2. On all studied systems, we notice a smaller number of disconnected graphs and isolated nodes by symfinder-2 for the same number of nodes displayed, meaning that the zones in the visualization that seemed previously uncorrelated are now linked through usage relationships and appear as such on the new visualization. Such an example is given on Figure 5.4, where the disconnected graph having vp_MeterNeedle as vp and the disconnected graph of vp_CompassPlot presented on Figure 5.2 are now grouped as a single one. We observe that the difference between the number of disconnected graphs is not proportional to the size of the studied system. For instance, the number of NetBeans' graphs are reduced by 61% whereas JFreeChart's graphs are reduced by 90%. However, their number could be related to the architecture of the project. A project of an important size may have an architecture in layers, limiting the number of interactions between classes, and therefore exhibit fewer usage relationships. Besides, we notice that some isolated nodes still appear on symfinder-2's visualization. This may suggest that other usage mechanisms are present in the studied systems [START_REF] Lau | A taxonomy of software composition mechanisms[END_REF]. Taking into account these specific types of usage relationships is part of our future work. Further, it is important to emphasize that although the visualizations by symfinder and symfinder-2 have different numbers of disconnected graphs, their overall number and kinds of identified vp-s with variants remain unchanged. This indicates that symfinder-2 is an extension of symfinder with an intact variability identification. To conclude, the reduced number of disconnected graphs by symfinder-2 shows an improved and denser visualization of the identified vp-s and variants for a given system.

RQ 2 : Starting density threshold

To answer RQ 2 , we run symfinder-2 on each subject system with three different density settings (cf. Definition 5.5): ∆ 5,3 (≥ 5 variants and ≤ 3 usage hops), ∆ 10,3 (≥ 10 variants and ≤ 3 usage hops), and ∆ 30,2 (≥ 30 variants and ≤ 2 usage hops). We have carefully chosen these parameters values, based on a previous empirical evaluation with ArgoUML, JFreeChart, and Java AWT, and for which we have the best knowledge to manually evaluate the impact of the density threshold. By increasing the threshold on the number of variants, we aim to consider only highly-dense vp-s, whereas by decreasing the threshold on the usage hops between such vp-s, we aim to consider only highly-dense vp-s which are close in terms of usage relationships. The obtained results are given in Table 5.3. It can be observed that, in all subject systems, fewer nodes are displayed when using any of the three density settings. For instance, JFreeChart has in total 578 identified vp-s with variants at class level. After applying the three density settings, 34, 15, and 3 vp-s and variants (i.e., entry points) remain, respectively. Moreover, the number of remaining vp-s decreases as we increase the minimum number of variants for a vp and decrease the number of usage relationships between both of them. However, these values are not adapted to such projects like Logbook or Riptide, for which no vp-s remain with these three default thresholds. These results suggest that determining a set of appropriate values for the parameters when setting the density threshold is highly dependent on the studied project's characteristics. That is, even some large projects in terms of lines of code, such as Maven, can have a considerable number of potential vp-s but with few variants. For such reason, setting a high density threshold may filter out most or all potential vp-s with variants (i.e., there will be no entry points). Based on our experiments with these ten subjects, we conclude that the first density setting (i.e., ∆ 5,3 ) can be used as a good versatile starting point to begin the exploration and comprehension of the identified variability by symfinder-2.

RQ 3 : Usefulness of API-based filtering

To answer RQ 3 , we ran symfinder-2 on three subject systems, namely Cucumber, Logbook, and Riptide, while taking into account the code units annotated by developers using the API Guardian library. We then compared the number of nodes that are displayed in their visualizations before and after using their respective API to filter in the related classes. Results are given in Figure 5.7.

It can be observed that in all three subjects the visualization with the applied API has notably fewer nodes than the original visualization by symfinder-2. We manually checked that, while reducing the number of potential vp-s with variants, it always shows those that are considered as the most relevant due to their nomenclatures. They can help to comprehend each system's variability, that is, to give us an insight on the implemented domain variability. In the three cases, these vp-s with variants can be used as entry points for users in order to begin with the variability comprehension of the systems. We interpret this filtering by an API as facilitation in the overview and zooming parts of the Shneiderman mantra [START_REF] Shneiderman | The eyes have it: A task by data type taxonomy for information visualizations[END_REF]: overview first, zoom and filter, then details on demand. In the longer term, we believe that this should be extended by the integration of the symfinder-2 toolchain with other sources that contain variability information for 

RQ 4 : Scalability

To answer RQ 4 , we measured the time taken to identify and visualize the variability in all ten subject systems. We conducted our experiments on a Linux environment running Arch Linux 5.11.12-arch1-1 x64 with Intel i7-9850H (12 cores) @ 4.6GHz and 32Go memory. The visualizations are tested using Mozilla Firefox 87.0 and Google Chrome 89.0.4389.114. We noticed that the computation needed to render and display the visualization is not very time consuming, with 700 ms on Chrome and 850 ms on Firefox for the NetBeans system. The identification step is clearly the most time-consuming activity. We hence measured and compared this time on the ten subject systems with symfinder and symfinder-2. Figure 5.8 summarizes the obtained execution times for both versions with a density threshold of ∆ 5,3 . Although the execution time with symfinder-2 is higher than with symfinder for every system, we observe that the difference increases with the size of a system and number of identified vp-s and variants, for instance, 20% of difference for Riptide (23 sec → 28 sec) and 85% of difference for NetBeans (01:02:10 → 01:55:04). This can be explained by the fact that a higher number of relationships between classes needs to be parsed and treated by symfinder-2 in its database. While there seems to have an exponential evolution w.r.t. LoC with systems of the size of NetBeans (5M LoC), we believe the analysis step is still adapted to large systems, as symfinder was also successfully applied to Firefox and its 25M LoC (cf. Section 4.1.3). Then, waiting for around 1 or 2 hours to run symfinder-2 only on the new releases of a project, for example, every 6 months, is affordable.

Discussion and threats to validity

Summary of RQ 1 -RQ 4 On our set of studied systems, symfinder-2 provides a more focused identification and visualization of relationships among the potential vp-s with variants than symfinder. Depending on the system's size, symfinder-2 can take between 30 seconds to 2 hours to identify between 250 and 11K potential vp-s with variants. Besides, it supports users with up to four ways to begin the variability comprehension of a given system from its visualization. In particular, our experiments suggest using a density threshold of ∆ 5,3 (i.e., ≥ 5 variants and ≤ 3 usage hops) or, if available, the API-based filtering. Internal threats to validity. A first internal threat concerns the distinction of real vp-s and variants from the potential ones proposed by the different versions of symfinder. For the considered subject systems (except NetBeans that was too large), we manually determined whether the remained vp-s and variants after applying the thresholds represent some variability implementations.

We thus did a sample verification by examining identified classes, checking for their documentation on the project website, and devising the kind of variability that was implemented. Although we could be partially wrong in our interpretation, this manual verification allowed to obtain relevant results. Then, determining whether an identified vp or variant actually implements some domain variability was hard to conclude as none of the subject systems, except ArgoUML, had a ground truth.

External threats to validity. To address the research questions, we used up to 10 subject systems, which vary across domains, size, type, and developers. While the dataset is still small, we have good confidence that the obtained results also apply to other Java-based variability-rich systems of mid-size. Besides, our experiments over NetBeans show that while the toolchain is likely to scale on very large systems, the proposed improvements in symfinder-2 are not sufficient to comprehend all the implemented variabilities. Entry points and the usage links enable to provide a better overview and better filtering over the system, but it is still difficult to browse effectively towards a comprehension of the system variability.

Related Work

Outside the software variability domain, some other works rely on the identification of inheritance and composition to define hotspots, being zones of an object-oriented design that are exposed to client software and hence have to be comprehended to ensure reuse [START_REF] Schauer | Hot spot recovery in object-oriented software with inheritance and composition template methods[END_REF][START_REF] Flores | Hotspotter: a javaml-based approach to discover framework's hotspots[END_REF]. While this identification relies on design patterns detection used to implement reusable interfaces, it was not related to variability implementations. Previous studies on software API comprehension focus on the extraction of usage patterns relying on unit tests analysis [START_REF] Zhu | Mining api usage examples from test code[END_REF], client code analysis [START_REF] Zhong | Mapo: Mining and recommending api usage patterns[END_REF], or approaches combining client and library code analysis [START_REF] Aymen | A cooperative approach for combining clientbased and library-based api usage pattern mining[END_REF], as well as their evolution in time [START_REF] Huppe | Mining complex temporal api usage patterns: an evolutionary approach[END_REF][START_REF] Aymen Saied | Towards assisting developers in api usage by automated recovery of complex temporal patterns[END_REF] to help developers in library reuse. In the variability domain, APIs have been studied for the variability of their evolution [Alrubaye et al., 2019], but not to facilitate the comprehension of variability implementations through a visualization approach as in our work.

Conclusion

The identification method provided by symfinder is incomplete by not taking into account usage relationships between classes and thus cannot provide appropriate means to help users start the comprehension activity. In symfinder-2, we extended this method with usage relationships and provided filtering capabilities based on both automatically detected API-related entry points, and a user-defined density metrics based on two thresholds. Application to ten systems has shown that symfinder-2 provides a more focused identification and visualization of object-oriented variability implementations. Although determining adequate parameters for the density is project-dependent and thus cannot be done automatically, adapting the density thresholds allows to show a smaller but still relevant set of classes. Therefore, the improvements brought by symfinder-2 compared to symfinder allow to better answer Challenges A1 and A2 ("Identifying variability implemented in OO software systems" and "Making the identified variability implementations comprehensible" respectively).
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Although this improved visualization helps to understand the implemented variability at fine grain, it does not solve the scalability issue of the view that we identified in Chapter 4. As an example, Figure 5.9 shows an excerpt of the generated visualization for JFreeChart. The view exhibits only outgoing usage relationships on 4 usage levels out of a maximum of 8 and is already hard to interpret. There is therefore a need to change the shape of the visualization for another metaphor that would better represent the variability-related metrics of each class and their relationships between each other to reveal dense zones of variability implementations.

CHAPTER 6

Comprehending the organization of the implemented variability

This chapter shares material with the VISSOFT 2021 paper "Visualization of Object-Oriented Variability Implementations as Cities" [START_REF] Mortara | Visualization of Object-Oriented Variability Implementations as Cities[END_REF].

As detailed in Section 3.1.1, the implemented variability in OO code assets is neither explicit nor documented, which hinders its management, but more globally, hampers the simple comprehension of it. As features to be understood are not known in advance, and the code is not cloned and modified per product, none of the feature location techniques [START_REF] Dit | Feature location in source code: A taxonomy and survey[END_REF]Michelon et al., 2021a;[START_REF] Linsbauer | Systematic software reuse with automated extraction and composition for clone-and-own. Handbook of Re-Engineering Software Intensive Systems into Software Product Lines[END_REF] can be applied in this context. We thus advocate that our context naturally calls for visualization-based solutions [START_REF] Koschke | Software visualization in software maintenance, reverse engineering, and reengineering: a research survey[END_REF][START_REF] Storey | On the use of visualization to support awareness of human activities in software development: a survey and a framework[END_REF][START_REF] Alfredo | An overview of 3D software visualization[END_REF]. While visual representations have already been proposed in the variability management field, they most entirely focus on the domain variability and feature models [START_REF] Roberto | A systematic mapping study of information visualization for software product line engineering[END_REF][START_REF] Kästner | Visualizing Software Product Line Variabilities in Source Code[END_REF][START_REF] Bergel | FeatureVista: Interactive Feature Visualization[END_REF][START_REF] Andam | Florida: Feature location dashboard for extracting and visualizing feature traces[END_REF][START_REF] Greevy | Visualizing feature interaction in 3-d[END_REF] and are therefore not applicable to our context.

As inheritance relationships between classes (one of the mechanisms used to implement variability in OO systems) are often represented and manipulated as a graph [START_REF] Snyder | Encapsulation and inheritance in object-oriented programming languages[END_REF][START_REF] Booch | Object-oriented analysis and design with applications[END_REF] we used and adapted this representation to visualize the identified variability implementations in symfinder and symfinder-2. However, it results that due to the complex nature and the diversity of OO variability implementation mechanisms, representing all the information required to understand them in the form of a graph leads to a visualization that becomes quickly overloaded and thus does not scale to large codebases. There is therefore a need for a more adapted visualization capable of bringing an answer to the A2 challenge, that is, to represent these variability implementations and make them understandable by developers and architects. Such visualizations often rely on metaphors as they help to represent concepts in a comprehensible manner [START_REF] Knight | Virtual but visible software[END_REF]. For example, the city metaphor [START_REF] Wettel | Visualizing software systems as cities[END_REF] has been shown to scale on large projects for visualizing metrics related to software quality and received multiple adaptations to various contexts (cf. Section 3.2).

In this chapter, we address the following questions:

1. What are the requirements for a visualization approach to comprehend OO variability implementations? As program comprehension is seen as a process of both information 76 CHAPTER 6 -Comprehending the organization of the implemented variability seeking [START_REF] Sillito | Asking and answering questions during a programming change task[END_REF] and feature location [START_REF] Dit | Feature location in source code: A taxonomy and survey[END_REF], it is obvious that even if our problem is not related to domain features in a classic SPL terminology, identifying vp-s with variants is indeed a comprehension problem. In Section 6.1, we identify the requirements that such a visualization should meet and propose two validation scenarios.

2. Is the city metaphor adapted to visualize OO variability implementations? Based on the previously obtained requirements, we adapt the city metaphor to our identification problem and propose VariCity, a 3D visualization using the city metaphor to exhibit zones of interest, being zones of high density of variability implementations (Section 6.2).

3.

To what extent does the VariCity approach help the comprehension of the implemented variability? To evaluate to what extent VariCity fulfills the identified requirements, we provide two evaluations. First, we unfold the two validation scenarios presented in Section 6.1 to validate whether VariCity's capabilities help in understanding the implemented variability (Section 6.3). Then, we report on a controlled experiment with 49 students aiming to evaluate whether VariCity performs better than state-of-the-practice approaches to discover a codebase (Section 6.4).

Requirements

As the essence of software visualization consists of creating an image of software by means of visual objects that represent structure and/or behavior [START_REF] Knight | Virtual but visible software[END_REF], we believe it is well suited to enable perception of variability implementations with a closer fit to the user mental model. Furthermore, the difficulty of discovering a codebase increases with its complexity, we believe that such visualization should be able to meet the constraints of an onboarding process.

Onboarding is a case of program comprehension in which a new developer joins a project or a company [START_REF] Berlin | Beyond program understanding: A look at programming expertise in industry[END_REF][START_REF] Elliott | The ramp-up problem in software projects: A case study of how software immigrants naturalize[END_REF]. Contrary to the usual information seeking in program comprehension (i.e., information pull), onboarding is more based on information push [START_REF] Yates | Characterizing the transfer of program comprehension in onboarding: an information-push perspective[END_REF] and is harder when little is known about the system [START_REF] Steinmacher | Barriers faced by newcomers to open source projects: a systematic review[END_REF]. In onboarding, it has also been shown that newcomers look for major patterns [START_REF] Yates | Characterizing the transfer of program comprehension in onboarding: an information-push perspective[END_REF], such as the ones used in variability implementations. Finally, to avoid frustration by newcomers being onboarded [START_REF] Begel | Struggles of new college graduates in their first software development job[END_REF], the capability to configure and make up adapted visualization for an expert is also crucial.

In this context, we structure our requirement analysis around software comprehension scenarios for visualization within an onboarding process. We are then supposed to target two types of users:

• newcomers in the project, skilled but with no real knowledge about the code (this role can be generalized to anyone attempting to comprehend some software with little or no prior knowledge);

• experts in the project, with knowledge of the code and its architecture, but with no explicit vision of the variability implementations. With experts, once they have gained knowledge on the variability, they are likely to be more interested in its evolution [Wettel and Lanza, 2008b;[START_REF] Pfahler | Visualizing Evolving Software Cities[END_REF]. We consider that all evolution scenarios are out of the scope of this work, as we first need to provide a visualization for a single snapshot of a project.

Consequently, we focus on scenarios that engage the expert to comprehend the implemented variability while building a preconfigured visualization for newcomers.

We then propose two scenarios:

• Scenario 1: The expert wants to facilitate the exploration of the codebase by giving a pre-configured visualization to the newcomer. Through this scenario, the newcomer onboards on a large codebase of which he needs to have a global comprehension of the implemented variability (e.g., understand a library or API that is going to be reused).

• Scenario 2: The expert wants the newcomer to comprehend a subpart of the codebase for the newcomer to be able to reuse it. Through this scenario, the newcomer onboards on a codebase in which they will be asked to add a new feature. They, therefore, have to understand in more detail the interactions between the classes implemented variability in this subpart.

Finally, [START_REF] Yates | Characterizing the transfer of program comprehension in onboarding: an information-push perspective[END_REF] analyze the different types of information transmitted from an expert to a newcomer during onboarding sessions. It results that newcomers find helpful when experts give coarse-grained information about complex zones (ranging from a group of classes to design patterns) of the codebase to them, so they can dig into them by themselves. According to these findings, we can say that a visualization for a newcomer should: (i) display the main elements allowing them to understand the codebase (design patterns, zones with complex variability implementations), (ii) be configurable by the expert to tailor it for newcomers, (iii) provide navigation and interaction capabilities to be adapted by a newcomer (filtering, zooming), (iv) scale on large codebases.

VariCity

As shown in Section 3.2, the city metaphor is a recognized way to visualize different properties of software systems. We hence adapt this visualization to the data we want to visualize and the defined scenarios.

Main principles

Buildings In CodeCity, classes are buildings and their size evolves according to metrics related to code quality which are inherent to the represented class, such as the cyclomatic complexity or the number of lines of code (LoC). For example, an important number of methods will lead to a tall building, catching the attention of the user on it. In VariCity, we aim to focus the user on classes making heavy use of variability implementations. Therefore, the dimensions of every building represent the class-based metrics related to variability, i.e., the number of variants at method level -a tall building shows an important number of method variants, whereas a wide building shows an important number of constructor variants. For example, on Figure 6.1b, XYPlot appears as very tall as it has 77 method variants, whereas Plot is small as it has 6 method variants (cf. Figure 5.5). Moreover, buildings in color on the visualization (by default yellow for vp-s and blue for non vp-s) represent classes defined as hotspots as being part of dense zones of variability (cf. Section 5.1.3). The shape of the building is altered according to the design pattern(s) exhibited by the class1 (cf. 6.1). Displaying differently classes being hotspots and/or exhibiting design patterns brings to the user insights on highly variable zones of the project, which they can then explore in more detail by using the different interactions provided by the visualization (spanning, zooming).

Streets Analogously, since the representation proposed by CodeCity groups classes belonging to the same package in a district to exhibit the packages containing the most complex classes, our goal is to group in the same neighborhood classes concentrating a high density of variability implementations. However, although the nested districts allow to efficiently represent the decomposition hierarchy of classes belonging to nested packages, it is not adapted to our notion of density of variability implementations which derives from usage relationships between classes (as a class can use and/or be used by multiple other classes). We thus rely on the visualization proposed by Evo-Streets [START_REF] Steinbrückner | Understanding software evolution with software cities[END_REF], which uses streets to decompose a hierarchy instead of boxes. In the original Evo-Streets layout, streets represent subsystems, with orthogonal branching streets representing their subsystems. The buildings on a street represent the modules belonging to this system. We adapt the visualization with buildings on streets being classes, and streets departing from a building (instead of another street) to represent a usage relationship between this class and every other class whose building is on the street. As we consider inheritance links as less important for variability, they are represented as aerial links between buildings, being only displayed when hovering over a building. This enables the user to see the inheritance information if needed, while the hotspot coloring and streets for usage bring the most important information first.

A summary of the visual properties is presented in Table 6.1 and illustrated in Figure 6.2. The view reveals the three different types of density detailed in Chapter 5. Classes with an important individual density, resulting from an important number of methods or constructors overloads (Definition 5.3), are more noticeable due to the important height or width of their buildings. Groups of classes exhibiting collective density, being close in terms of distance in usage relationships (Definition 5.4), have their buildings close to each other on the visualization, as if they were neighbors. Finally, hotspot classes exhibiting both density types (Definition 5.5) are colored, emphasizing The visualization algorithm thus relies on a certain number of inputs that focus the view (cf. Section 6.2.2). From this first visualization, it will also be possible to gradually adapt the city, among other things, by adding or removing relationships and classes (cf. Section 6.2.3).

From buildings and streets to a city

The goal of VariCity is to display the main elements allowing one to understand the variability implementations related to a given important class in the system (cf. Section 6.1). To do so, analogously to the previously proposed symfinder-2, VariCity relies on three mandatory inputs (Sections 5.1.2 and 5.1.3). The first one defines entry point classes, which represent important classes for the comprehension of the system (e.g., endpoint of an API that could be automatically inferred, or complex classes of the system given by the expert). The second input is the usage orientation, which can be IN and/or OUT. An orientation IN means that the classes displayed will be the classes using the defined entry points (i.e., having it as an attribute or method parameter). On the opposite, an orientation OUT implies that the classes displayed will be the classes being used by the defined entry points (i.e., being an attribute or method parameter of the entry point). Depending on the objectives of the onboarding scenario envisaged by the expert, they might show either how the entry point uses or is used by other classes. More detailed examples are given in Section 6.2.3. Finally, setting the orientation to IN/OUT displays classes using or being used by the entry points. The third input is the usage level, which is an integer value. With a usage level of n, all classes distant from an entry point by n usage relationships will be displayed. For example, a visualization set up with an entry point, usage orientation OUT and usage level of 2 will display the entry point, the classes being used by the entry point, and the classes used by these classes. Being able to adapt this value is important as depending on the complexity or the layered architecture of a system, a given level of usage might be adapted to it but shows too many classes on another one. 6.2 -6.2.3 Configuring the view to adapt the city 81 Figure 6.3 depicts how the city is built. The root (first) street, in red, aggregates all the entry points. Then, starting from them, classes using (or being used by) them up to the usage level set are displayed. A street, in green, is initiated from an entry point, and for each class related to it, a building is placed on the border of the street. In order to exhibit density between classes, we need to place as close as possible buildings linked by a usage relationship to the same class. Following this principle, we place the buildings by descending order of width on both sides of the street, minimizing the total length of the street to keep the buildings as close as possible.

Our placing algorithm can lead to long straight streets if a class uses many others. Work presenting techniques to prevent this behavior and keep cities compact exist. A widely used technique is the use of Treemaps [START_REF] Shneiderman | Tree visualization with tree-maps: 2-d space-filling approach[END_REF][START_REF] Bruls | Squarified treemaps[END_REF][START_REF] Scheibel | Survey of treemap layout algorithms[END_REF][START_REF] Vernier | Quantitative comparison of dynamic treemaps for software evolution visualization[END_REF][START_REF] Paolo Tua | Voronoi evolving treemaps[END_REF][START_REF] Kratt | Improving Stability and Compactness in Street Layout Visualizations[END_REF]. For example, Evo-Streets [START_REF] Steinbrückner | Understanding software evolution with software cities[END_REF]] uses a packing-based layout to group neighboring buildings in rectangular districts along the street. However, such strategies are inapplicable in the case of VariCity since streets issue from buildings, therefore every building needs to be on its street to keep the shape of the city. Another approach consists in folding streets by adding turns [START_REF] Kratt | Improving Stability and Compactness in Street Layout Visualizations[END_REF]. Still, having long streets is valuable in the case of VariCity as it allows to quickly visualize classes concentrating many usage relationships.

It is also likely to happen that a class is linked through a usage relationship to multiple visualized classes. In that case, these additional usage relationships are represented as green underground streets and appear only when hovering the class, as well as the inheritance relationships not to overload the visualization2 . An example of visualization after generation is presented in Figure 6.1a.

Configuring the view to adapt the city

The configuration of VariCity is done in two steps. The first step concerns the adaptation of the mandatory inputs required to build the visualization (i.e., entry point classes, usage level, and usage orientation), which are preconfigured by the expert. Based on their knowledge, the expert determines which classes are relevant enough to be entry point classes. The orientation will be set depending on what they expect the newcomer to understand from the system: if they want the newcomer to reuse a part of the implementation, they will likely choose the IN orientation as it will show which classes already use the entry point so that the newcomer can see how the class is already used. On the opposite, if they want the newcomer to add a new feature, they will more likely choose OUT so that the newcomer sees which classes are used by the entry points to know which classes they may need to reuse. Finally, choosing IN/OUT gives an overview of both aspects. Determining the usage level can only be done empirically. A level too low might hide important information for the comprehension of the variability, and a level too high might display too much information. Such characteristics are dependent on every codebase. For example, the visualization of JFreeChart presented in Figure 6.1a has JFreeChart and Plot as entry points, a usage level of 4, and a usage orientation OUT. The expert can also choose not to display classes that they consider irrelevant by putting them in a blacklist.

The second step represents options allowing to adapt the visualization, such as visual settings (colors of the visual elements, padding between the buildings) that may improve the readability of the visualization. Metrics for the height and width of the buildings can also be adapted. This parameter may be useful for the expert that has a particularly deep understanding of the system. For example, if the method level variability of classes is due to constructor overloads, it might be useful to use this metric for the height instead of the width of the buildings.

Although all these parameters for both steps have default values set by the expert, they can also be adapted by the newcomer while exploring the visualization in a sidebar to maximize their autonomy. We will illustrate in Section 6.3 how different values for the inputs in the first step impact the structure of the visualization by detailing the two scenarios presented in Section 6.1.

Implementation

VariCity is deployed as a standalone web-based visualization, and developed in TypeScript with the Babylon.js3 3D library. It relies on symfinder-2 for the automatic identification of the symmetries and, relying on them, of the potential vp-s and variants as depicted in Figure 5.5. Information is structured by class and used by VariCity to build the visualization (cf. Section 6.2.2), relying on the settings provided in a configuration file. The whole application is deployed with Webpack and requires only a web browser to be viewed. As for symfinder-2, VariCity is deployed using Docker to ease the reuse and reproducibility of the visualizations presented in this chapter. The source code of VariCity is available online [Mortara et al., 2021b].

Scenario-based evaluation

In Chapter 5, the symfinder-2 toolchain, which detects potential vp-s with variants, was applied on ten popular open-source and variability-rich Java systems, being applications, framework, or libraries, with different characteristics (size, variation points, explicit API provided). We chose to select the same systems to test the results of VariCity. In Table 6.2 are listed the systems and their VariCity configuration to facilitate the exploration or deepening of a particular area, as shown by our scenarios. The entry points have been determined by exploring the codebases and documentations, and selecting important classes accordingly. The values for usage level and orientation were determined empirically to provide a visualization showing interesting zones. By tailoring the inputs for these systems, we show that our approach is applicable to systems of various sizes and structures. The generated cities for all systems are available in the reproduction package [Mortara et al., 2021b]. Entry point classes being preconfigured, the user just needs to adapt the values for the usage level and orientation.

In this section, we evaluate whether VariCity answers to the needs expressed in Section 6.1, relying on the scenarios presented in the same section. We chose the Apache NetBeans IDE with its 5 MLoC4 for Scenario 1 to illustrate the exploration of a large codebase. We chose the JFreeChart charting library for Scenario 2 to illustrate comprehension for reuse, as this scenario requires a finer-grained knowledge of the codebase, and we already detailed parts of its variability implementations in [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF]. A video walkthrough of the scenarios is available on VariCity's website at https://deathstar3.github.io/varicity-demo/. can focus on this precise part of the city (Figure 6.4b) 7 . The different implemented design patterns are distinguishable due to the special shape of their buildings (e.g., JavaFix is a Strategy, ngtest.AbstractTestGenerator and junit.AbstractTestGenerator are Templates). The two last classes are not only design patterns but also hotspots, giving a strong intuition about the relevance of the potential identified vp. In fact, these classes allow generating test code for two different unit test libraries, JUnit 8 and TestNG 9 and are variants of the CancellableTask interface 10 .

Scenario 2: comprehension of a subpart of the codebase for reuse 6.3.2.1 Objectives

With this scenario, we want to evaluate how the customization of the view by the newcomer can allow them to tailor the visualization to obtain fine-grained details about the codebase.

Unfolding the scenario

The newcomer onboards on JFreeChart, a Java library allowing to draw different types of charts, and is asked to implement a new type of chart in the library. Contrary to the first scenario, the newcomer aims at adding a new feature to the codebase, thus they need a more fine-grained understanding of it, as, for example, the classes used by the other charts that they might also need to use. The expert thus configures the visualization to use as entry points JFreeChart 11 , being the endpoint of the library used by the users to create plots and Plot 12 , the superclass of all 7 The names and arrows have been manually added on the figure. The name of the class corresponding to a building appears in a sidebar of the visualization when hovering over the building. Packages, when unnecessary, have been omitted for readability.

8 https://junit.org/junit5/ 9 https://testng.org/doc/ 10 See here and here. 11 org.jfree.chart.JFreeChart 12 org.jfree.chart.plot.Plot We notice that the colored buildings, which represent classes being part of dense zones of variability implementations, do not align with the most variable classes. For example, LegendItem is a factory and, due to its large base, exhibits an important number of constructor variants. However, although this class is internally dense in variability, it is a utility object which not related to any other vp, and for this reason, is not characterized as a hotspot.

By hovering over Plot, the newcomer can see the different displayed subclasses of the class (i.e., the variants of the vp Plot). To add another type of chart in the library, they will need to implement a new variant of this vp and needs thus to have an overview of the classes used by these subclasses. To do so, the user adds the two most variable ones (XYPlot13 and CategoryPlot 14 ) as entry points (Figure 6.5b). The shape of the city changes to display the usages related to each entry point in separated neighborhoods, allowing to better visualize if (i) a particular entry point is the starting point of a dense zone of variability implementations, and (ii) a class is related (to a certain degree) to two entry points with underground streets. On Figure 6.5b, an important number of classes making heavy use of variability implementations is visible, and 86 CHAPTER 6 -Comprehending the organization of the implemented variability are directly used by XYItemRenderer15 , itself related to both XYPlot and classes related to CategoryPlot. Given these characteristics, the newcomer may need to reuse it to implement his feature and thus can add it as another entry point to visualize its usage if needed.

To visualize the classes used by XYPlot and CategoryPlot, the newcomer could also have chosen to increase the usage level on the visualization given by the expert, as shown on Figure 6.5c. However, an important number of classes and relationships not related to the newcomer's interest would appear, hampering the comprehension. The newcomer could also have chosen other class variants of Plot to add as entry points. However, most likely the classes that will be added to the visualization are not dense in variability, thus less interesting for the scenario.

Summary

Through these two scenarios, VariCity enables the newcomer to see variability implementations in an unknown codebase from a high-level perspective, and also to dig into them to have a more precise understanding.

Controlled experiment

While the two unfolded scenarios demonstrated VariCity's capabilities, the relevance of the approach is conditioned by its capacity to perform better than state-of-the-practice approaches to comprehend the implemented variability. In collaboration with Anne-Marie Dery-Pinna, we thus design a controlled experiment with real users to observe how using VariCity impacts the time needed to complete variability comprehension tasks and its difficulty. [START_REF] Wettel | Software systems as cities: A controlled experiment[END_REF][START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF] designed an empirical evaluation of CodeCity aiming to evaluate whether the view helped the identification of quality-critical zones in an OO codebase and extracted from the literature a wish list of requirements for their experiment. As we conduct a similar evaluation, we therefore rely on this list to design our experiment and detail its design in the remainder of this section. Table 6.5 summarizes, for each of these requirements, how our design fulfills them or not.

Experimental design

Research Questions

With this experiment, we aim to answer the following questions:

RQ 1 : Does the use of VariCity increase the correctness of the solutions to variability identification tasks, compared to state-of-the-practice tools?

RQ 2 : Does the use of VariCity reduce the time needed to solve variability identification tasks, compared to state-of-the-practice tools?

RQ 3 : Is VariCity regarded as easy to use to solve variability identification tasks compared to state-of-the-practice tools?

Subjects

This experiment was realized as part of a reverse-engineering graduate course at the Polytech Nice Sophia engineering school. The population is made of 49 students in the last year of Master's in Computer Science, specialized in Software Architecture. While it is known that having students as subjects for controlled experiments does not always give reliable results as they might not be representative of the target population [START_REF] Dror G Feitelson | Using students as experimental subjects in software engineering research-a review and discussion of the evidence[END_REF], we think it is appropriate in our case for two reasons. First, being in the last year of Master's in Computer Science, an important majority of them will integrate an industrial company in the next few months and need to onboard on an unknown codebase, thus exactly the usage scenario of VariCity. Second, they are advanced developers in Java, thus mastering object-oriented programming concepts. They also followed multiple courses prior to the experiment related to the comprehension of complex code architectures, thus preventing a bias on their knowledge of these aspects.

Purpose and variables

Through the three defined research questions, the goal of this experiment has been set towards evaluating whether VariCity allows subjects to better identify patterns involved in complex zones of variability implementations, i.e., the effectiveness of the approach. Additionally, we aim to assess whether VariCity reduces the time needed for subjects to answer the tasks and their perceived difficulty compared to state-of-the-practice tools, i.e., the efficiency of the approach. Such goals being identical in the empirical evaluation of CodeCity by [START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF], we therefore share identical dependent and independent variables. We detail them hereafter.

Dependent variables Our first dependent variable concerns the tool used to solve the task. In order to mitigate the effect of this variable, we must compare our approach with a state-of-thepractice approach used to achieve an identical goal, that is, understanding the variability implemented in OO software systems. While comparing VariCity to symfinder-2 would allow evaluating the potential gain brought by the city metaphor, we cannot consider it a state-of-the-art approach as it is not used regularly by the subjects. Therefore, the comparison would be irrelevant as between two approaches that subjects do not master. Since, to the extent of our knowledge, no similar and commonly used approach exists, we build a baseline ourselves relying on tools that developers would actually use to navigate and understand the code artifacts. IDEs are widely used tools for program comprehension [START_REF] Minelli | I Know What You Did Last Summer -An Investigation of How Developers Spend Their Time[END_REF]. While a majority of our subject students use the IntelliJ IDEA IDE, we did not impose any particular IDE as (i) the given tasks (listed in Section 6.4.1.6) can be answered using only basic features supported by a large majority of IDEs (as finding usages, code navigation), thus we do not expect them to use advanced features that would be specific to a specific IDE (e.g., tracing, dynamic analysis) and (ii) we limit the bias regarding the mastering of the IDE as every subject can use the one they master the most.

VariCity however uses data and metrics that are previously computed by the identification backend (cf. Figure 5.5). Since our goal is to compare the gain of VariCity compared to the use of an IDE, we should provide the subjects with all information given by VariCity that cannot be determined using the IDE's features. The inheritance and usage relationships between classes being standard navigation features, it is thus possible to infer the variants at class level, and to determine hotspot classes and design patterns, whose definitions are given to the subjects. It results that the only missing information is the number of overloads of methods and constructors. We collected this information in a CSV file to complete the baseline. The structure of the file is given in Table 6.3. As for the IDE, no restriction has been imposed on a particular spreadsheet to manipulate the CSV file for similar reasons.

Our second dependent variable regards the studied object system and its architecture. While a large system or with multiple layers of abstraction would require too much time to be understood in such an experiment, a too small system would on the opposite not require an approach as VariCity to help its understanding and therefore not allow evaluating its potential gain. For these reasons, we selected JFreeChart 1.5.0 as an object system, whose characteristics are presented in Table 6.4. Not only does its 95k LoC make it a system of medium size, being a charting library that we studied to evaluate symfinder and symfinder-2, we know that both the domain and the implementation are accessible to the subject students. For similar reasons, we selected ArgoUML as a test project on which the subjects can familiarize themselves before the actual experiment on JFreeChart (cf. Section 6.4.1.7). Given the size of the population, we decided not to experiment on a second object system as the groups for each treatment would have been too small (around 12 subjects) to draw any conclusion (cf. Section 6.4.1.5). Independent variables Our independent variables regard the correctness of the solution given for a task and the time to complete the task, which respectively allow measuring the effectiveness and the efficiency of our approach.

Controlled variables

In their experiment, [START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF] benefited from a large panel of subjects from academia (ranging from bachelor students to professors) and industry. Therefore, subjects in this panel exhibited large differences in terms of background of experience, potentially having an influence on their capacity to complete the tasks. In our case, all our subjects are all students having studied similar topics. While 37 out of the 49 students are apprentices and thus have between 6 and 24 months of professional experience, we consider the impact that this difference may have on the student's capacity to solve the tasks as negligible. We therefore do not consider these variables for our experiment.

Treatments

We split the overall population randomly into two groups:

VariCity (24 subjects) The first group is given a link to a GitHub repository containing:

• the result of JFreeChart's and ArgoUML's analysis by symfinder-2, used as input by VariCity;

• a VariCity configuration file to display the views.

The VariCity image is distributed as a Docker image hosted on the Docker Hub, thus requiring no installation on the students' computers.

IDE + CSV (25 subjects)

The second group is given a link to a ZIP file containing:

• the source code of JFreeChart and ArgoUML;

• the CSV file containing the metrics for the classes16 .

Tasks

The tasks derive from the onboarding scenarios presented above (Section 6.1). The subjects have 1h10 to complete all the tasks.

Part 1 (estimated duration: 35 mins)

1. Task. Identify 2 variants at class level for each of the following variation points:

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

Goal. Inheritance is a heavily-used mechanism to implement OO variability (Section 2.2.2), therefore their identification and exploration is crucial to identify variability in this context. With this task, we want to evaluate whether the used tools allow the exploration of such mechanisms.

2. Task. How many classes are linked with a usage relationship to the each of the following classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

Goal. The collective density of variability implementations is characterized by a cluster of vp-s linked through usage relationships (Definition 5.4). With this task, we want to evaluate whether the used tools allow an overview of these mechanisms by distinguishing the classes linked by usage relationships to a given one.
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CHAPTER 6 -Comprehending the organization of the implemented variability 3. Task. Complete the following sentences:

• Classes (1) and ( 2) have an important number (≥ 5) of subclasses (i.e., are variation points with an important number of variants at class level).

• Classes ( 3) and ( 4) have an important number (≥ 10) of overloaded methods and constructors (i.e., are variation points with an important number of variants at method level).

Goal. While usage relationships induce collective density, the individual density of variability implementations is characterized by the presence of a vp with an important number of variants at class or method level (Definition 5.3). With this task, we want to evaluate whether the used tools allow an overview of where such mechanisms are concentrated in the codebase.

4.

Task. Identify the 3 classes with highest individual density higher to the threshold v = 20.

Goal. For a given density threshold, the number of classes characterized as dense can remain important depending on the dimensions and architecture of the studied system. It is therefore important to be able to focus on the most dense classes. With this task, we want to evaluate whether the used tools allow this.

Part 2 (estimated duration: 35 mins)

Task. Give 2 examples of each of the following design patterns:

• Strategy pattern;

• Factory pattern.

Goal. Those two design patterns being used to implement OO variability (Section 2.2.2), we want to evaluate with this task whether the used tools allow their identification.

6.

Task. What is the distance between the org.jfree.chart.JFreeChart and org.jfree.chart.title.DateTitle classes? Goal. As the density of OO variability implementations relies on usage relationships between classes, we aim to evaluate whether state-of-the-practice tools allow a user to compute the distance between two given classes. Goal. The most dense zones concentrating variability implementations are characterized as vp-s being simultaneously individually and collectively dense (cf. Definition 5.5) and it is therefore important to identify them. With this task, we want to evaluate whether the used tools allow identifying them.

8. Task. Identify the classes that according to you implement each of the following features, and specify if they are hotspots for v = 20 and d = 5:

• "draw a chart" feature;

• "title of the chart" feature.

6.4 -6.4.2 Results
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Goal. Variability identification activities being often conducted to help the comprehension of this variability [Krüger et al., 2019b], we aim with this task to evaluate whether the exploration of the system with the given tools allowed the subjects to determine the classes involved in the implementation of a feature.

For each task, the subjects are also asked:

• to input the start and end time of the task. With this information, we aim to evaluate whether the time spent completing a task differs when using VariCity or the IDE.

• to rate the difficulty of the task on a scale from 1 to 4. With this information, we aim to evaluate whether the perceived difficulty for a task differs when using VariCity or the IDE.

• to list the actions they accomplished (e.g., navigating the inheritance in the IDE or zooming on the visualization). We plan to use this data to better understand how the tools were used to solve the task and better understand the causes of the results obtained with the two previous pieces of information.

Operation protocol

Before the experiment A lecture of one hour and a half introducing the main concepts related to variability, symfinder-2 and VariCity was given to the students on January 12, 2022.

The day of the experiment (February 23, 2022) On the day of the experiment, a short lecture was given to all the students, presenting definitions and examples of the various terminologies used in the tasks (about 45 mins). Then, after splitting, each group benefited from a short session to fill a preliminary questionnaire aiming to gather personal information, setup their environment and familiarize with the tools they will manipulate (about 40 mins):

• subjects in the VariCity group were introduced to the visualization's features, had to open the visualization for the test project (ArgoUML), and had to answer a few questions ensuring that they can interpret the visualization accurately;

• subjects in the IDE + CSV group were introduced to the data they are given, had to open the test project's codebase in their IDE, and had to answer a few questions ensuring that they can interpret the data accurately.

After this session, the subjects had 1h10 to answer the tasks, having for only help a cheat sheet of the definitions detailed in the lecture. Finally, the students filled out a questionnaire aiming to gather their feedback on the experiment.

Results

We detail hereafter the results obtained from our experiment. Due to the limited time allocated for the experiment, not all subjects could finish all the tasks. 17/24 subjects in the VariCity group and 14/25 subjects in the IDE group gave at least a partial answer (i.e., filled at least one of the answer fields of the task) to all the tasks. Figure 6.6 presents, for each task, the percentage of subjects having given at least a partial answer. We observe a drop in the percentage of answers at tasks 6 and 7 for the IDE and VariCity groups respectively for two reasons. First, we ordered Figure 6.6: Percentage of subjects having given at least a partial answer for each task the tasks in increasing order of difficulty as we perceived it. Then, we made the choice not to impose a time limit for each task as we were unsure about the average time that the subjects would take depending on the tool(s) they use and feared a too low answers rate. Therefore some subjects took more time than they should have on the first tasks and happened to be late at the end of the experiment. In the following results, we considered answers that are at least partial.

Answer to RQ 1

Figure 6.7 presents the correctness of the answers given by the two groups on each task. We calculate the correctness of an answer to a task by calculating the percentage of correct answer elements. For example, when 2 names of classes are expected, the correctness is 0% if no class is in the expected set of classes, 50% for 1 class, and 100% for both classes in the set.

We notice that subjects using VariCity globally gave more accurate answers to the tasks than subjects using the IDE + CSV combination. For a number of tasks, we believe this is due to the layout of the visualization and the choice of visual axes. For example, using the dimensions of the buildings to represent their methods and constructors overloads, and aerial links for subclasses exhibits individual density helped subjects to complete task 3 (finding vp-s with an important number of class or method level variants). Similarly, choosing to use streets to represent usage relationships helps their understanding, exhibiting collective density, and helped subjects to complete tasks 2 (finding classes linked through usage relationships to a given one) and 6 (finding the distance between two given classes). Answering tasks 5 (finding design patterns) and 7 (identi- 94 CHAPTER 6 -Comprehending the organization of the implemented variability fying hotspots) was facilitated by the automatic computation of dense zones and design patterns provided by the symfinder-2 approach used by VariCity and their visualization using crowns on buildings and colors respectively.

We notice however that using VariCity does not improve the correctness of the answers to all the tasks compared to the IDE + CSV combination. Although the ranges of obtained correctness values are similar between both groups, subjects with VariCity gave more correct answers on average on task 8. This task was divided in two parts, (i) the identification of classes implementing a given feature, and (ii) indicating whether they were hotspots or not. To answer the first part, subjects from both groups mainly relied on the names of the classes that are given by both VariCity and the IDE, leading to similarly accurate answers. However, as it has been previously detailed for task 7, identifying hotspots has to be done manually when using the IDE and the CSV files, leading to less accurate answers for this part of the question in this subgroup.

Comparable correctness results are obtained on task 1 where the goal was to give two variants at class level (i.e., two subclasses) for two vp-s. Both VariCity and the IDE allow searching a class by its name and easy access to the subclasses of a given class (by hovering its building in VariCity, and a button in the sidebar of the IDE to navigate the inheritance hierarchy). Analyzing the actions achieved by the subjects in both groups confirms that they heavily relied on these features, and a majority of the subjects in the IDE + CSV group did not use the CSV file.

Finally, subjects from the IDE + CSV group perform better on task 4, which consisted of the three most individually dense classes. For the IDE + CSV group, obtaining the answer to this task consisted in finding the classes maximizing the sum of their method and constructor overloads, and was achieved by most students. On the opposite, VariCity displays those two pieces of information using the height and width of the buildings, making it less intuitive to identify the buildings maximizing both aspects. As a result, some subjects from this group not only indicated tall but also wide buildings that were maximizing their constructors' overloads but not the total method variants.

It results that subjects using VariCity globally answer the tasks more correctly than subjects using the IDE + CSV combination, due to the organization of the information provided by the city metaphor as well as its computation of other information such as the presence of a design pattern or a hotspot. Given these encouraging results and the little rate of wrong answers given, we choose not to exclude them from the analyses answering RQ 2 and RQ 3 .

Answer to RQ 2

Figure 6.8 presents the average time spent on each task for both groups. It results that no tool performs better on all the tasks.

VariCity performs better on tasks 2, 4, 5, 6 and 7 as it directly exhibits on the visualization the presence of hotspots and design patterns, while IDE users need to identify them manually. The structure of the city based on usage relationships also helped the subjects to identify the distance and usage relationships between two classes while IDE users needed to explore the code.

Concerning task 1, subjects with the IDE performed better. Completing this task is equivalent to finding the subclasses of a given class, an action that the subjects are used to accomplish regularly with their IDE. This is confirmed by the fact that 23/25 subjects in the IDE group used the IDE only to complete the task. Therefore, subjects in this group were on average faster than Finally, on tasks 3 and 8, the performances of both approaches appear equivalent. To complete task 3, finding the classes with an important number of variants at method level consisted in looking at the corresponding column in the CSV for the IDE group, and in looking at high and/or wide buildings in the visualization, suggesting that all subjects had a clear idea of where to find this information. Regarding the number of variants at class level, while subjects in the IDE group heavily relied on class diagrams reverse-engineered with the IDE, subjects in the VariCity group mainly hovered over random classes until finding the information, suggesting that finding class level variants in VariCity is not intuitive. We would expect task 8 to take less time using VariCity. In practice, it results that the average time spent is equivalent as multiple subjects from the IDE group did not give the hotspot information. However, correlating this result with the fact that 50% of subjects indicated the maximum perceived difficulty (cf. Figure 6.9) is a strong indication that this part of the task was too difficult for the IDE group.

It results that the subjects in the IDE group performed better on single tasks they are familiar with (e.g., finding a class, navigating inheritance). On the opposite, identifying complex zones concentrating variability implementations is more efficient in VariCity (e.g., design patterns, hotspots). While determining the individual density of variability appears to be equally time consuming thank to the CSV file, determining the collective density of variability and hotspots is more efficient by the organization of the VariCity view. Figure 6.9: Average difficulty (on a scale from 0 to 4) for each task when using VariCity or the IDE 6.4.2.3 Answer to RQ 3 Figure 6.9 presents the average difficulty as perceived by the subjects on each task for both groups. While a correlation can be seen for both groups between the perceived difficulty and the time spent for each task (Figure 6.8), we can observe that on average, subjects in the VariCity group find it easier (or at least as difficult) to complete all tasks except for the second. This finding coincides with the observation concerning the time spent on this task in the two groups in the previous section and can be explained by the fact that subjects are used to navigating inheritance relationships in the IDE. We notice that the difference in perceived difficulty between both groups is more considerable on tasks 5 to 8 which are focused on identifying design patterns, hotspots, and distance between classes. This is also coherent with the results obtained regarding the time spent completing these tasks. Tasks 5, 6 and 7 took considerably more time for subjects using the IDE compared to subjects using VariCity. This is not the case for task 8 as, as explained in the previous section, an important number of subjects did not give information about the presence of a hotspot and only partially completed the task.

It results that subjects in the VariCity group find it easier to complete the tasks compared to subjects in the IDE group, especially for tasks related to the identification of zones concentrating variability implementations using complex structures, such as design patterns or hotspots that implement variability at both class and method levels.

Summary

By providing a visual representation of the system's classes and exhibiting metrics on their variability, VariCity helped in globally reducing both the completion time and the perceived difficulty of the tasks. A deeper analysis of the actions performed by subjects from both groups suggests some improvements for VariCity. Some information is more easily accessible with the visualization, such as the distance in usage between classes or the density of variability implementations. Other actions were facilitated with the IDE, such as obtaining a reverse-engineered class diagram to navigate the inheritance relationships. Feedback from some subjects in the VariCity group reveals that although the view allowed to quickly spot important zones of the system ("The visualization allows us to easily notice the features present in the system. Classes that are less important can be ignored to focus on the ones that have more variability."), their comprehension was limited by not having the actual source code ("We stay really abstract by visualizing the code with VariCity, a Java IDE would allow us for example to have access to comments that can help comprehension.", "It is hard to understand how the system works only with the buildings."). This feedback suggests that although VariCity helps in guiding the exploration of a system, having access to the source code remains of prime importance to have a deep understanding of it.

Threats to validity and Limitations

Without an empirical assessment, the main threat of our scenario-based evaluation concerns the scenarios that we designed by ourselves. Nevertheless, we relied on both empirical work on onboarding with real experts and newcomers [START_REF] Yates | Characterizing the transfer of program comprehension in onboarding: an information-push perspective[END_REF] and challenges related to the comprehension of variability concepts [START_REF] Acher | Teaching software product lines: A snapshot of current practices and challenges[END_REF], giving us good confidence in the relevance of the scenarios.

Another threat related to this evaluation arises by the fact that both authors and developers of VariCity determined empirically the inputs (entry points, usage level and orientation) for each scenario, based on their knowledge of the systems and of VariCity's capabilities. Still, even by having a coarse-grain understanding compared to a real expert, the obtained visualizations already exhibit satisfying results. We expect real experts to be able to determine appropriate inputs in real settings, as it has been the case with Daniel Le Berre during the controlled experiment on symfinder applied to Sat4j (Chapter 4).

Concerning the structure of the visualization, the placement of the buildings on a street only relies on the width of the buildings to compact them in the street. This implies that the variability represented by the height of the buildings is not taken into account. Even if this dimension is largely visible on the visualization, this calls for an adaptation of the placement algorithm to take into account both dimensions while placing the buildings.

Finally, due to organizational constraints, our controlled experiment could only be conducted on a single object system and with a panel of subjects of similar experiences, preventing mitigation of biases related to the specificities of the object system and the background and experience of the subjects. Nevertheless, our panel of subjects correspond to the target population of VariCity, and we estimate that the dimensions and characteristics of the chosen library (JFreeChart) were reasonable to allow an evaluation in a reasonable time.

Related Work

Works on the city metaphor in software visualizations were studied in Section 6.2.1. In this section, we discuss work related to visualization for variability management and to assist onboarding activities.

Metaphors to visualize software properties

Numerous visualizations for software rely on diverse metaphors [START_REF] Chotisarn | A systematic literature review of modern software visualization[END_REF], in particular to display static properties about software [START_REF] Caserta | Visualization of the static aspects of software: A survey[END_REF], from 2D visualizations relying on treemaps [START_REF] Balzer | Voronoi treemaps for the visualization of software metrics[END_REF] to 3D representations of object-oriented elements. For example, Software Landscapes [START_REF] Balzer | Software landscapes: Visualizing the structure of large software systems[END_REF] uses geometric shapes in a 3D space to represent classes, methods, and attributes, as well as the relationships between them (inheritance, method calls, attribute used by methods). Package nesting is represented with spheres, classes are circular discs, and methods and attributes are cuboids on these discs. These elements are connected between each other to represent a relationship. A recent approach by [START_REF] Hoff | Utilizing Software Architecture Recovery to Explore Large-Scale Software Systems in Virtual Reality[END_REF]] represents a software system as a solar system, picturing the different granularities of layers in the system's architecture with concepts ranging from planets to floors of buildings in cities grouped by continents.

Visualization in the Software Product Line field

A recent mapping study has shown that visualizations in the SPL domain mainly target feature models, using tree or graph representations [START_REF] Roberto | A systematic mapping study of information visualization for software product line engineering[END_REF]. These visualizations are mainly used to facilitate the configuration process over features. To visualize variability at the code level, some approaches use colors [START_REF] Kästner | Visualizing Software Product Line Variabilities in Source Code[END_REF] or bar diagrams [START_REF] Duszynski | Recovering variability information from the source code of similar software products[END_REF], while some others focus on feature traces [START_REF] Andam | Florida: Feature location dashboard for extracting and visualizing feature traces[END_REF] or feature interactions between features and code [START_REF] Greevy | Visualizing feature interaction in 3-d[END_REF][START_REF] Bergel | FeatureVista: Interactive Feature Visualization[END_REF]. None of them focus on object-oriented techniques as variability implementations.

In VariCity, we reused the symmetry-based detection part of symfinder [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF][START_REF] Mortara | Extending the Identification of Object-Oriented Variability Implementations using Usage Relationships[END_REF], but this tool also provides a graph-based visualization in which each class level vp and variant is represented as a circle node that points out the used implementation technique, with size and shades of nodes indicating some occurrences of symmetries. These nodes are linked with both inheritance and usage relationships being different kinds of edges, forming a set of disconnected graphs. While this visualization allows showing some dense zones of variability and has filtering capabilities, it has only been used for the validation of the capabilities of symfinder in identifying potential vp-s and variant. It is not adapted for comprehending variability as in our considered scenarios, especially in large-scale systems in which the resulting visualization is not usable (approx. 4k nodes for NetBeans).

Visual tools to assist onboarding

Some visualizations have been especially proposed for onboarding activities. Isopleth [START_REF] Hibschman | Isopleth: Supporting Sensemaking of Professional Web Applications to Create Readily Available Learning Experiences[END_REF] represents call relationships in front-end JavaScript implementations in the form of a call graph, which is interactive and can be edited to see the impact in real-time on the page. Other tools integrate information from the organization to help information seeking during development activities, such as Tesseract [START_REF] Sarma | Tesseract: Interactive visual exploration of socio-technical relationships in software development[END_REF] which visualizes the relationships between technical information from a codebase and related social data (e.g., developers, communication, code, and bugs). Finally, recent studies on onboarding in SPLs [START_REF] Azanza | Onboarding in Software Product Lines: Concept Maps as Welcome Guides[END_REF] explore concept maps [START_REF] Joseph | The theory underlying concept maps and how to construct them[END_REF] to structure information about the SPL. However, this approach, as many others evoked in Section 6.6.2 relies on a feature model and documentation, which does not apply in our case.

Controlled experiments

Controlled experiments in software engineering context have been conducted to assess the gain brought by tooled approaches [START_REF] Ko | A practical guide to controlled experiments of software engineering tools with human participants[END_REF]. Naturally, being especially designed for software comprehension, visualization approaches are often evaluated this way [START_REF] Müller | A structured approach for conducting a series of controlled experiments in software visualization[END_REF][START_REF] Fittkau | Hierarchical software landscape visualization for system comprehension: A controlled experiment[END_REF]. Additionally to the empirical evaluation conducted on CodeCity [START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF][START_REF] Wettel | Software systems as cities: A controlled experiment[END_REF], other city-based approaches mentioned in this chapter benefited from such an evaluation, such as ExplorViz [START_REF] Fittkau | Hierarchical software landscape visualization for system comprehension: A controlled experiment[END_REF] or DYNACITY [Dashuber and Philippsen, 2022b]. Controlled experiments are also conducted to evaluate the relevance of evolutions of these metaphors, for example by adapting them to more immersive environments such as virtual reality [START_REF] Rüdel | A Controlled Experiment on Spatial Orientation in VR-based Software Cities[END_REF] for which variants of Evo-Streets [START_REF] Steinbeck | Comparing the evostreets visualization technique in two-and three-dimensional environments a controlled experiment[END_REF] and CodeCity [START_REF] Moreno-Lumbreras | CodeCity: A comparison of on-screen and virtual reality[END_REF] have been designed.

In the context of variable systems, multiple approaches assisting the maintenance of feature models [START_REF] Bagheri | Assessing the maintainability of software product line feature models using structural metrics[END_REF] and the understanding of the implemented variability have been evaluated with controlled experiments. For example, VarXplorer [START_REF] Soares | Exploring feature interactions without specifications: A controlled experiment[END_REF] identifies feature interactions and displays them as a graph, and has been compared to the state-of-theart closest approach, the Varviz Eclipse plugin [START_REF] Meinicke | Understanding differences among executions with variational traces[END_REF]. Focusing on recovering information on the implemented variability, [START_REF] Pérez | Comparing manual and automated feature location in conceptual models: A controlled experiment[END_REF] conduct a controlled experiment comparing manual and automated feature location approaches on their performance, productivity and satisfaction.

Conclusion

In this chapter, we tackled the following questions:

1. What are the requirements for a visualization approach to comprehend OO variability implementations? Relying on onboarding scenarios where a newcomer has to comprehend the implemented variability, we identified that such a visualization should (i) display the main elements allowing them to understand the codebase (design patterns, zones with complex variability implementations), (ii) be configurable by the expert to tailor it for newcomers, (iii) provide navigation and interaction capabilities to be adapted by a newcomer (filtering, zooming), and (iv) scale on large codebases.

2. Is the city metaphor adapted to visualize OO variability implementations? We could implement these requirements by adapting the city metaphor in the VariCity approach, a 3D visualization proposing adapted and configurable views that exhibit zones of high density of variability implementations. The density relies on previous work on automated detection of symmetries in the variability implementation mechanisms. Metrics on their occurrences together with information on inheritance and usage relationships are exploited to build a city with, notably, classes as buildings and streets as usage relationships.

3.

To what extent does the VariCity approach help the comprehension of the implemented variability? We detailed two onboarding scenarios showing how the different capabilities of the visualization can help to spot critical variability-related zones of a codebase and obtain fine-grained information about them. A controlled experiment with real users showed that VariCity participated in reducing the completion time of the given variability comprehension tasks and eased their completion.

By providing a 3D view and adapting the city metaphor, the interactions provided by VariCity show considerable improvements to comprehend the implemented variability compared to the graph view proposed by symfinder-2, consequently answering Challenge A2 ("Making the identified variability implementations comprehensible"). However, the conducted evaluations exhibited limitations that restrain the practical use of the approach. First, multiple subjects that were using VariCity during the controlled experiment pointed out that not having the source code was limiting their comprehension of the variability, and that they could have performed better with if they had the source code side by side with the visualization. Therefore, it results that in order to bring a real gain, VariCity should be used together with the IDE, and not as an alternative. Second, understanding the implemented variability is often a step to reach another goal. For example, it is known that variability implementations add complexity to the codebase [START_REF] Galster | Variability and complexity in software design: Towards a research agenda[END_REF] and consequently hamper the quality of the system [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF]. Ensuring the stability of a variable system thus does not only require identifying the implemented variability, but more particularly the quality-critical implementations. As a consequence, we extend VariCity to incorporate quality metrics and allow a user to observe simultaneously dense zones of variability implementations and metrics on their quality. Table 6.5: Elements from the experimental design responding to requirements extracted from [START_REF] Wettel | Empirical validation of codecity: A controlled experiment[END_REF]'s wish list.

Requirement

Experimental design element

Fulfilled requirements

Avoid comparing using a technique against not using it.

Provide the same data to all participants.

As we validate the visualization approach, we give a CSV document opened with a spreadsheet containing structured information on the classes of the system visualized with the given settings using VariCity by the other group (Sections 6.4.1.3 and 6.4.1.5).

Provide a not-so-short tutorial of the experimental tool to the participants. Use the tutorial to cover both the research behind the approach and the implementation.

To complement the 1h30 lecture given two weeks prior to the experiment, a short tutorial introducing definitions and demonstrating the tool has been given before the experiment (Section 6.4.1.7).

Find a set of relevant tasks. Include tasks on which the expected result is not always to the advantage of the tool being evaluated.

The tasks are inspired by the onboarding scenarios in the first evaluation of VariCity, and some of them are expected to be more easily completed using the IDE and the CSV document (Section 6.4.1.6)

Choose real object systems that are relevant for the tasks.

JFreeChart has been chosen for its medium size and because the domain and the implementation are accessible to the subject students (Section 6.4.1.3) Provide all the details needed to make the experiment replicable.

The questionnaires, slides and answers given by the students are available online at https://deathstar3.github.io/varicity-demo/ Report results on individual tasks.

Additionally to the answers given, subjects were asked for each task to provide the start and end time, an estimation of their perceived difficulty and the list of the actions they accomplished to solve the task (Section 6.4.1.6).

Non-fulfilled requirements

Include more than one subject system in the experimental design.

Having a second subject system would have led to four treatments of 12 people each and would have prevented drawing any relevant conclusion.

Involve participants from industry. Take into account the possible wide range of experience level of the participants.

This requirement could not fulfilled due to organizational constraints. Although apprentice students have more professional experience, the difference of professional experience with the other students is not important enough to conclude on whether the performance of subjects differs w.r.t. this parameter (Section 6.4.1.2).

Avoid, whenever possible, to give the tutorial right before the test.

Although we gave a long lecture introducing VariCity and the associated concepts about one month before the experiment, we could not give the more detailed tutorial before the day of the experiment for organizational constraints (Section 6.4.1.7)

Limit the amount of time allowed for solving each task.

While the overall set of tasks should be completed in 1h10, we did not limit the time for each task to prevent fast but less qualitative answers (Section 6. 4.1.6).
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CHAPTER 7 -Comprehending the quality of the implemented variability to support software quality metrics and reveal critical zones concentrating variability implementations (Section 7.3).

Does VariMetrics allow visualizing indebted zones of variability implementations?

To validate the visualization approach, we proceed to a quantitative evaluation on 7 subject systems and report on views we designed for each system (Section 7.4.1).

3. Are the revealed indebted zones of variability implementations relevant? To validate whether the visible quality-critical zones of variability implementations are relevant, we proceed to a qualitative evaluation on one of the studied systems, JFreeChart, and apply maintenance actions aiming to correct the identified debt in identified classes, and report on the evolution of the visualization and the quality metrics (Section 7.4.2).

Determining relevant quality metrics for OO variability debt

In Section 3.3, we studied the work of [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF] and the catalog of ten types of variability debt they introduced. After deep analysis of the contribution, it resulted that three types of variability debt are applicable to the systems we target, namely Code duplication, Lack of tests, and System-level structure quality issues in the implementation. There is need now to determine a technique to measure them. While technical debt covers diverse aspects of the software and its development ecosystem [START_REF] Kruchten | Technical debt: From metaphor to theory and practice[END_REF], its identification at the implementation level is mainly done through code analysis (e.g., by computing metrics [START_REF] Li | A systematic mapping study on technical debt and its management[END_REF][START_REF] Rasool | A review of code smell mining techniques[END_REF]). More particularly, in OO systems, this technical debt is often measured using OO software metrics [START_REF] Kafura | Software quality metrics based on interconnectivity[END_REF][START_REF] Linda | Software quality metrics for object-oriented environments[END_REF][START_REF] Fowler | Refactoring: improving the design of existing code[END_REF][START_REF] Thomas | A complexity measure[END_REF][START_REF] Campbell | Cognitive complexity: An overview and evaluation[END_REF][START_REF] Misra | A suite of object oriented cognitive complexity metrics[END_REF]. We therefore advocate that such OO quality metrics are suited to identify OO variability debt, and detail hereafter which ones can be used to identify these types of variability debt in our context. A common metric to identify a lack of tests is the code coverage, which can be measured at different granularities (line, condition, . . . ). For our evaluation, we opted for a coverage metric that aggregates measures for different granularities. Similarly, code duplications are commonly identified at two levels of granularity: line or block. We advocate that blocks are more likely to represent duplicated code related to variability than a single line of code. Finally, structure quality issues in the codebase impact maintainability and evolution of the system. Even though code duplication and lack of tests impact maintainability and evolution of the system, the understanding of the implementation by the maintainers of the project is also an important aspect, and cognitive complexity [START_REF] Campbell | Cognitive complexity: An overview and evaluation[END_REF] appears to be relevant for this purpose [START_REF] Peitek | Program Comprehension and Code Complexity Metrics: An fMRI Study[END_REF]. We thus choose as relevant metrics for our evaluations duplicated blocks, test coverage, and cognitive complexity.

Most often, standard tools for measuring software quality metrics also determine technical debt measures giving an estimation of the effort, as a duration, to fix the identified code smells [START_REF] Paris C Avgeriou | An overview and comparison of technical debt measurement tools[END_REF]. We did not use such measures in our evaluation for multiple reasons. First, by providing an aggregated duration, this measure is more helpful in estimating effort at the management level, but it does not describe the real causes of the debt. Then, some first empirical results seem to indicate a possible inaccuracy in the given values [START_REF] Teresa Baldassarre | On the diffuseness of technical debt items and accuracy of remediation time when using SonarQube[END_REF], and exploiting such metrics may therefore require some knowledge of the system and its implementation, which we do not have for our subject systems. Now that we identified measures for the three types of variability debt that can be identified in our targeted OO systems, we need to find an approach allowing us to identify this variability debt in actual systems.

Possible approaches 7.2.1 Tools for OO technical debt identification

On one side, tooled approaches have been proposed to measure the quality of OO systems and automatically compute values for quality metrics, including the ones we identified as relevant to measure OO variability debt [START_REF] Lenarduzzi | A survey on code analysis tools for software maintenance prediction[END_REF]. Understanding these metrics is then often enabled through the use of visualization. For example, one of the most popular tools used to monitor the quality of software projects, SonarQube1 , proposes the SoftVis3D2 plugin embeding the CodeCity [Wettel and Lanza, 2008a] and Evo-Streets [START_REF] Steinbrückner | Representing development history in software cities[END_REF] visualizations, both relying on the city metaphor. Figure 7.1 illustrates the two visualizations on the GeoTools project 3 , an open-source Java library for geospatial data management. Classes are represented as buildings and their width, height, and color are used to display the quality metrics, making discernible classes maximizing these metrics. Districts in CodeCity (Figure 7.1a) and streets in Evo-Streets (Figure 7.1b) represent the decomposition in packages. However, none of them allows displaying information on the system's variability.

The VariCity approach

On the other side, the VariCity approach proposed in Chapter 6 has been designed to reveal dense zones of variability implementations (cf. Section 6.2). An example of a generated VariCity visu- alization is shown in Figure 7.2 and presents a visualization generated from GeoTools. Compared to the visualizations exhibited on Figure 7.1, the noticeable classes are different as discernible classes on a VariCity view are the ones concentrating variability implementations. For example, FilterFactoryImpl is shaped as a skyscraper due to an important number of method overloads ( 141). Its goal is to create filters allowing to select zones from a map4 . The large strategy is Query (10 constructors), which uses filters to query information from a data source. On the opposite, FilterVisitor is not very variable in itself but uses all the implemented filters, in the blue dotted box, noticeable by being a long street. Coloring the hotspot classes not only emphasizes the filters having more variants, but also exhibits some isolated classes, for example NumberRange, which implements a numerical range of values. On the opposite, the two red classes exhibited in Figure 7.1 because of their too high cyclomatic complexity (gml311.DocumentRootImpl and gml311.Gml311PackageImpl) are not visible in Figure 7.2 as they are not part of zones concentrating variability implementations. VariCity, however, does not display information related to the software quality of the displayed classes.

While solutions exist to visualize either OO metrics (CodeCity, Evo-Streets) or OO implementations (VariCity), we could think about using both approaches simultaneously. However, navigating between VariCity and a metric-specific tool would be cumbersome as it would require manually finding and mapping information having heterogeneous representations, even between two views reusing the city metaphor (e.g., VariCity and Evo-Streets) as they are shaped differently. Consequently, to the extent of our knowledge, no solution exists to visualize at the same time, for an OO system, its variability implementations, and quality metrics over them. This thus calls for a unified but customizable visualization and we propose to extend VariCity to incorporate quality metrics over a variability-centric visualization.
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VariMetrics: exploring the quality of variability implementations

As shown in Section 7.2, although state-of-the-art approaches allow visualizing either the density of variability implementations (e.g., with VariCity) or quality metrics (e.g., with CodeCity [Wettel and Lanza, 2008a] or Evo-Streets [START_REF] Steinbrückner | Understanding software evolution with software cities[END_REF]), no existing approach allows the simultaneous representation of both aspects of OO software systems. Therefore we adapt VariCity to display information about quality in the city.

Choice of metrics

State-of-the-art proposes a plethora of quality metrics to measure several properties of a software system [START_REF] Nur | Software product quality metrics: A systematic mapping study[END_REF], ranging from the architecture [START_REF] Varela | Source code metrics: A systematic mapping study[END_REF] to the source code level [START_REF] Thomas | A complexity measure[END_REF][START_REF] Stevanetic | Software metrics for measuring the understandability of architectural structures: a systematic mapping study[END_REF]. Since no metric is relevant for all software systems due to the elusive definition of quality [START_REF] Kitchenham | Software quality: the elusive target [special issues section[END_REF], software practitioners need to pick and combine different metrics to obtain a quality measure relevant for their use case. VariMetrics extends the configuration of VariCity so that experts can choose the quality metrics they want to display, and how to combine them, to tailor the visualization according to their needs. Consequently, although we chose for our evaluation three quality metrics being the number of duplicated blocks, the test coverage, and the cognitive complexity (cf. Section 7.1), VariMetrics's configuration capabilities allow visualizing other metrics if the expert finds them relevant.

Coloring strategies

By default, VariCity displays in yellow vp-s being hotspots, in blue variants being hotspots, and in grey classes not being hotspots (Figure 7.3a). On their side CodeCity and Evo-Streets color the buildings to expose properties inherent to the classes [Wettel and Lanza, 2008c;[START_REF] Steinbrückner | Representing development history in software cities[END_REF]. We thus propose two coloring strategies for quality metrics: a coloration following a red-to-green sequence (Figure 7.3b), and a saturation keeping the original colors of the buildings and lightening or darkening them (Figure 7.3c). While VariMetrics should enable some combination of metrics, combining both coloring strategies leads to bivariate chromatic maps, which are known to be difficult to read [START_REF] Wainer | An empirical inquiry concerning human understanding of two-variable color maps[END_REF]. On the opposite, applying textures on colors has shown to be an efficient way to display multiple software quality metrics [START_REF] Holten | Visual realism for the visualization of software metrics[END_REF]. We hence provide a crackled texture (Figure 7.3d) variably covering the building, thus enabling views simultaneously exhibiting two quality metrics.

Configuration

These three visual properties are configurable to be adapted to the metric they represent, as some quality metrics are symptoms of lower quality if they have a high value (e.g., complexity) but other metrics with such values may instead indicate good quality (e.g., test coverage). Analogously, not all projects have similar ranges of values for the same metric, and proposing a fixed range of values may not allow revealing a difference of quality in some projects, thus VariMetrics allows to specify these ranges. 

Implementation

The symfinder toolchain, used by VariCity to identify the variability implementations and compute the related variability-related metrics, has been extended to support fetching of the quality metrics and their mapping with the identified variability information. If a SonarCloud account exists for the system, metrics are fetched by using the SonarCloud Web API5 . Otherwise, a SonarQube server is executed locally to extract the metrics while running the symfinder analysis. The symfinder configuration has been extended to specify wherever running a SonarQube instance is needed or not. 

Evaluation

The evaluation of VariCity presented in Section 6.3 validates its capacity to exhibit zones in the code concentrating mechanisms used in OO variability implementations. VariMetrics should therefore be able to reveal the subset of these classes having quality issues. To evaluate whether Vari-Metrics identifies variability implementations for which quality metrics are problematic, we apply our approach to multiple open-source systems. We select views with metrics combinations revealing the variability implementations that are shown by VariCity while being the most quality-critical (Section 7.4.1). We then validate the relevance of such classes by applying maintenance actions on these classes within one project, JFreeChart (Section 7.4.2), and show the impact on the view of the project.

Quantitative evaluation

Subject systems We used for this evaluation 7 variability-rich open-source Java systems of various sizes, depicted in Table 7.1. Five of them were chosen as their documentation clearly states they implement variability: Azureus (Vuze) is a BitTorrent client which supports multiple network communication protocols, GeoTools a library for geospatial data management providing multiple tools and filtering capabilities to manipulate maps, JKube, a Maven plugin to generate different types of container images, OpenAPI Generator, a library to create APIs for a plethora of programming languages, and the Spring framework, providing a Java-based support for components and services with many different plugins, on persistence management, validation, security, etc. We also picked the Java Development Kit (JDK) for its large size of ~2.5M LoC to evaluate the scalability of our approach. Finally, we also used JFreeChart, a charting library used as a subject system in the evaluation of VariCity (Section 6.3), as its size enables us to master the implemented variability at a fine granularity. Five projects are forks from their original repositories in the Corpus-2021 GitHub organization6 , designed by [START_REF] Irrazábal | Modelo para curaduría de proyectos software de fuente abierta para estudios empíricos en ingeniería de software[END_REF] to serve as a catalog of software projects to analyze their metrics. They provide a SonarCloud instance for these projects allowing us to reuse these metrics for our study. Two others have also a SonarCloud instance and JFreeChart is the only one for which we had to use our prototyped setup with Sonarqube to obtain the quality metrics. Besides, the JFreeChart's build configuration was also adapted to be analyzed by a local SonarQube instance [START_REF] Mortara | Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations -Artifact[END_REF].

Evaluation process We first generated for each project a visualization with VariCity following the same stages as in the VariCity's evaluation (Section 6.3). After determining entry points by selecting important classes after exploring codebases and documentations, we experimented empirically with different combinations of usage level and usage orientation to obtain a visualization we consider relevant (i.e., exhibiting classes detaching from others because they concentrate variability implementations). We finally identified manually on each view the classes that are the most visible for us (by being a hotspot or a design pattern, or due to their dimensions) to obtain a set of "noticeable classes w.r.t. variability". For example, for GeoTools (Figure 7.2), classes such as FilterFactoryImpl, FilterToSQL, Query, and NumberRange draw attention due to their size and/or the fact that they are hotspots, as opposed to FilterVisitor.

To determine a relevant VariMetrics view, we systematically applied all available metrics on each project and selected the ones being relevant to identifying OO variability debt (cf. Section 7.1). During this step, it happened that no building stood out for a metric (i.e., no class exhibits variability debt), suggesting that the overall quality is decent w.r.t. this metric. On the opposite, if all classes appear as quality-critical, it may indicate that this metric has been neglected in quality requirements for the project as a whole. We thus restrained in this evaluation the set of significant metrics relevant to identify OO variability debt to those showing some differences in quality between classes. Table 7.1 summarizes for each system the relevant metrics being available and significant. We then manually identified on the views the classes appearing to be quality-critical, regardless of their variability, by enumerating the classes that appeared to be the most cracked and/or red to obtain a set of "noticeable classes w.r.t. criticality". For example, for GeoTools (Figure 7.4), Hints, Query, SimplifyingFilterVisitor, and FilterToSQL are easily discernible. The quality-critical and variability intense classes of the project thus correspond to the intersection between the two sets of classes (i.e., in this example, FilterToSQL and Query).

Observations In all observed systems, it appears that although fewer classes are noticeable w.r.t. criticality than w.r.t. variability, there is no direct relation between variability and quality, as it can already be seen in Figure 7.4. Whereas some vp-shave an important number of variants, they can be reliable, such as FilterFactoryImpl in GeoTools, and thus do not need particular attention. On the opposite, some critical classes may not concentrate variability implementations, such as Hints in GeoTools, and they are therefore less important for maintaining the functional code. This shows that, in the studied systems, visualizing both variability and quality is useful to determine quality-critical variability implementations. To evaluate to which extent, we calculated for each project the number of noticeable classes w.r.t. variability, w.r.t. criticality, and w.r.t. both aspects. The results with the configuration for each view are reported in Table 7.2. This shows that representing on a single view variability and quality information allows reducing the number of classes appearing as relevant on the visualization between 50% (JKube) and 91% (Spring framework) compared to the VariCity visualization. We believe the mildly encouraging results obtained on JKube come from its size, so that less variability intense zones have been identified by VariCity compared to larger projects. An important number of classes are also noticeable in this project as it has globally a low code coverage. Besides, by adapting the thresholds on which the hotspot detection relies, we could obtain fewer zones and better results, but we consider these experiments as out of the scope of this chapter. The definition of a hotspot is elusive (Section 5.1.3) and determining whether a class is a hotspot or not depends on user-defined thresholds, a limitation already evoked in the work on VariCity (Chapter 6). Nevertheless, we consider these results as satisfying, because without VariMetrics, finding OO variability debt would have needed to manually map relevant classes on the VariCity view to their metrics, which, already on the smallest project being JKube, represents 28 classes.

Summary By representing OO variability implementations and quality metrics in a unified representation, VariMetrics not only allows to visualize both classes concentrating variability implementations and critical classes, but also to focus on specific zones of OO variability debt.

Qualitative evaluation

Identifying technical debt helps to understand where to apply maintenance actions aiming to improve software quality. Therefore, if zones of variability debt identified by VariMetrics are relevant, correcting identified weaknesses should improve the project quality, and the effects should be visible in the visualization. To validate the relevance of these zones, we conduct an experiment in which we apply modifications to the identified classes in one project, JFreeChart. Subject system We chose JFreeChart as a subject system not only for its intermediate size allowing an easy discovery of the codebase, but also because this system has been extensively studied in previous work [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF][START_REF] Tërnava | Identification and visualization of variability implementations in object-oriented variability-rich systems: a symmetry-based approach[END_REF][START_REF] Mortara | Visualization of Object-Oriented Variability Implementations as Cities[END_REF], thus for which we have details on the implemented variability.

Evaluation process We first selected in the set of 10 critical variability intense classes determined in the quantitative evaluation (cf. Table 7.2) the ones maximizing their number of duplicated blocks or minimizing their test coverage. Six classes remained, of which four suffer from code duplication (CategoryPlot, XYPlot, DateAxis, and NumberAxis, visible due to their extensively cracked texture on Figure 7.5a for the first two and on Figure 7.6a for the last two) and two others from a lack of tests (ChartPanel and ChartEntity, visible due to their orange and yellow colors on Figure 7.7a).

We then defined and applied maintenance actions for these classes. Regarding classes suffering from code duplication, duplicated blocks were factorized in new methods. It happened that block duplications were present in different classes (e.g., behavior from CategoryPlot is duplicated in XYPlot). In this case, the factorization was placed in another class, created for that purpose (here, CategoryXYCommon). Regarding classes lacking tests, new test cases for several methods that were little to not tested have been added to the existing test classes. To ensure as much as possible that our modifications did not hamper the system stability, we did not change the logic of existing tests and made sure that the project could build with all tests passing.

Observations A first observation we made concerns the nature of the duplicated blocks. Whereas some duplications are pure technical debt in classes concentrating variability implementations, others clearly correspond to improperly managed variability implementations. For 114 CHAPTER 7 -Comprehending the quality of the implemented variability values from Table 7.3: duplications in NumberAxis and DateAxis have been reduced by 75% and 100%, leaving respectively 4 and 0 duplications. Although the number of duplications in CategoryPlot diminished by 29%, 16 duplicated blocks remain, representing a non-negligible amount. Finally, 3 duplications have been removed in XYPlot, representing 13% of reduction, that is not significative enough to be shown on the visualization. Similarly, improvements can also be seen in the classes that were lacking tests (Figure 7.7b). The transition from 31% to 91% of coverage for ChartEntity is translated on the visualization by a bright green color for its building, where the more contained improvement on ChartPanel's coverage leads to its building color changing from orange to yellow.

Another effect induced by these maintenance actions can be seen in the visualization. The crack on ChartPanel's building visible in Figure 7.7a disappeared in Figure 7.7b, although removing duplications was not a maintenance action for this class. This is because testing some methods required splitting them, leading to smaller blocks that could be reorganized. In this case, three duplicated blocks were extracted in a single testable method. Finally, it appears that the maintenance actions on these classes improved their quality w.r.t. the considered metrics (i.e., coverage and duplicated blocks). These changes however did not only impact the six considered classes, but also three other existing classes having duplications and led to the creation of three new classes to host some duplications. It is therefore important to consider these classes and ensure that they do not express the variability debt that has been treated. Modifications applied to the already existing classes solely concern the removal of duplications, therefore their quality has also been improved. Regarding the newly created classes, they are now visible (cf. Figures 7.5b and 7.6b). DatePeriodCommon's yellow color presents a relatively low test coverage of 46%, which can be explained by the low initial test coverage of PeriodAxis of 29.3%. Adding tests would help to solve the issue. The other two classes have high coverages above 70%, and none of the three classes has a cracked texture, showing that no variability debt related to these metrics has been created.

By presenting the coverage and the number of duplicated blocks, the visualizations exhibited in Figures 7.5 to 7.7 can only demonstrate variability debt related to those two metrics. However, as explained in Section 7.1, cognitive complexity is also a factor of variability debt. As this metric is significant for JFreeChart (cf. Table 7.1), it is thus important to evaluate its evolution. It appears in Table 7.3 that the cognitive complexity globally decreased for all relevant classes and the other already present ones. This can be explained by the fact that removing code duplications and adding tests often implies splitting methods into smaller ones, thus reducing cognitive complexity. This decrease can also be observed using VariMetrics, as its configuration capabilities easily allow adapting the view to display this metric (cf. Figure 7.8 with an intensity decrease on DateAxis and NumberAxis). Concerning the newly created classes, CategoryXYCommon's important cognitive complexity of 97 is because CategoryPlot and XYPlot have major cognitive complexities of 503 and 666 respectively. Therefore, the factorized blocks are themselves complex, and would need further refactoring (e.g., splitting into separate methods) to reduce this complexity and remove its 6 duplicated blocks.
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Summary By implementing maintenance actions on the identified quality-critical variability intense classes, we improved their quality regarding the considered metrics without introducing new debt factors, leading to a positive impact at the project level. These changes are also clearly observable in the visualization. Moreover, part of the identified variability debt directly concerning roughly managed variability that could be refactored.

Improving VariMetrics' usability 7.5.1 Requirements

In practice, developers use Integrated Development Environments (IDEs) as tools support to assist development and program comprehension activities [START_REF] Minelli | I Know What You Did Last Summer -An Investigation of How Developers Spend Their Time[END_REF]. [START_REF] Xia | Measuring program comprehension: A large-scale field study with professionals[END_REF] measured not only that program comprehension activities represent on average more than half of the developers' time (58%), but also that, on average, around 30% of the time spent in program comprehension activities consisted in switching between the IDE (to comprehend the source code) and the web browser (to obtain additional information and help the comprehension, such as "bug fixing solutions, feature implementation suggestions, or tool installation guides"). The IDE, therefore, represents an important tool for program comprehension, especially for developers with less experience.

We could observe this behaviour during the controlled experiment conducted on VariCity (Section 6.4). Subject students were split in two groups and had to complete similar variability comprehension tasks using either the VariCity visualization or the source code open in an IDE. It resulted that not only subjects having access to the IDE heavily relied on it to explore the codebase, but also that subjects using VariCity felt that not having access to the source code was limiting their comprehension of the system and its implemented variability, suggesting that both approaches should be used simultaneously.

While it would be possible to use VariMetrics and an IDE together, this would imply important context switching as a user would need to manually input information from their IDE in VariCity and then go back to it to explore the classes exhibited by the visualization, implying important context switching that is known to hamper the concentration of developers [START_REF] Xia | Measuring program comprehension: A large-scale field study with professionals[END_REF]. According to these limitations, we advocate that VariMetrics' usability would be improved by being embedded into an IDE. We therefore provide an integration for the popular IDE JetBrains IntelliJ IDEA10 .

IDE integration

As the goal of this integration is to minimize the interactions out of the development environment, the integration embeds all the interactions needed to configure and use VariMetrics. As shown on Figure 7.9, the visualization is embedded in a panel in the IDE window and provides controls over symfinder and VariMetrics (see violet boxes in Figure 7.9), allowing the execution of the whole toolchain from the editor's window. A dedicated entry in the IDE's settings allows to configure the view and the execution of the toolchain (cf. Figure 7.10).

Additionally, bidirectional navigation between the visualization and the code is provided to ease transitioning between the code and its visual representation. On one side, it is possible to select multiple buildings in the visualization and to open their sources as tabs in the IDE. On the other side, IntelliJ's context menu has been enriched, and right-clicking on a class in the Project sidebar or on the name of the class in the editor panel proposes a Focus on This Class button, zooming the visualization on the desired class, and another entry to add or remove a class from the entry points list. Finally, the plugin settings window allows to configure the usage level and usage orientation, and to browse the classes of the project to add them as entry points. It also embeds all the configuration capabilities of VariMetrics. The IDE integration is developed using the IntelliJ Platform SDK11 and is installed as any other plugin for the IDE.

① ② ③ ④ ⑤

Threats to validity and Limitations

Threats to validity

As we did not conduct an empirical evaluation on the evolution of the view and its integration in the IDE, the major threat of our work is related to the design and realization of the evaluations done by ourselves, including the configuration of the views and choice of the metrics. Nevertheless, the scenarios demonstrating VariCity and the results of the empirical evaluation conducted on this approach gave us insights into the criteria to design views exhibiting relevant variability implementations. The metrics choice was driven by recent work on the factors causing variability debt [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF], giving us confidence in their relevance in our context. Moreover, as the views we obtained allowed us to obtain positive results, we expect real experts to obtain good outcomes on their systems by applying their settings. The interactions provided by the IDE Figure 7.10: The view can be configured from a dedicated menu in the IDE settings.

integration have been designed following the IntelliJ Platform UI Guidelines12 to ensure visual homogeneity in the editor, thus giving us confidence in its usability. In our own experience with the IDE integration, all exploration tasks conducted in the validation of the metrics part described in Section 7.4 were heavily facilitated.

We evaluated our approach on 7 systems. Although this dataset is small, the studied systems have various sizes (40k → 2.5M LoC) and architectures (API, standalone library. . . ), and represent different domains (charting, programming language, geospatial data management. . . ). We are thus confident in the applicability of our results to other Java-based systems.

Limitations

Regarding the visualization, we chose to offer as many configuration capabilities as possible to the expert so that they can tailor it freely and reach the view that helps them most. Combining multiple metrics on different axes can yet induce cognitive load and hamper the view's understanding. While measuring this load is of prime importance when designing visualizations [START_REF] Huang | Measuring effectiveness of graph visualizations: A cognitive load perspective[END_REF] including city-based ones [START_REF] Caserta | 3d hierarchical edge bundles to visualize relations in a software city metaphor[END_REF][START_REF] Dashuber | A layered software city for dependency visualization[END_REF] to ensure readability and usability, it would require in our case to empirically validate our approach with real experts to exchange on their needs13 .

As for scalability, the analysis part is directly related to symfinder capabilities, which can handle projects with several millions of LoC but takes hours to do so (more than 120h for the JDK as shown in Table 7.4). As the analysis can be synchronized with main releases, this is still reasonable for such very large projects. On the rendering side, this extension of VariCity only configures coloring and adds some textures, which are negligible for the rendering time. We are thus dependent on the main bottleneck of VariCity rendering, which lies in the computation of the city shape and streets (more than 5 five minutes for the JDK). For very large projects, this is 120 CHAPTER 7 -Comprehending the quality of the implemented variability which dense zones of highly visible buildings already show zones of potential variability implementations.

2. Does VariMetrics allow visualizing indebted zones of variability implementations? Representing OO variability implementations and quality metrics in a unified representation allowed on the studied subject systems to visualize both classes concentrating variability implementations and critical classes, enabling to focus on specific zones of OO variability debt.

3. Are the revealed indebted zones of variability implementations relevant? Implementing maintenance action on JFreeChart's classes being identified as both variability intense and quality-critical allowed to improve their quality regarding the considered metrics without introducing new debt factors, therefore leading to a positive impact at the project level clearly observable in the visualization. Additionally, it could be notice that part of the identified variability debt directly concerned roughly managed variability, and could be refactored.

By superposing code quality metrics on the original VariCity view, the VariMetrics view allows a user to focus on quality-critical zones concentrating variability implementations, answering Challenge A3. Moreover, with the IDE integration, the configuration and execution of both the identification of variability implementations and the view are available in the development environment. The integration also enables bidirectional navigation between the classes in the code editor and their building representation in the city, further helping the comprehension of the variability implementations and improving the answer to Challenge A2 given by VariCity. Further assessing the completion of these challenges would require a user evaluation of both VariMetrics and its integration in the IDE.

PART II

Comprehending the variability managed by build systems

A unified representation for anomalies in the Linux build system

This chapter shares material with the SPLC 2021 paper "Capturing the diversity of analyses on the Linux kernel variability" [START_REF] Mortara | Visualization of Object-Oriented Variability Implementations as Cities[END_REF] and its companion technical report [Mortara and Collet, 2021b].

As detailed in Sections 3.4 and 3.5, existing work on the derivation mechanism of build systems and their anomalies is focused on the Linux kernel. While these contributions cover anomalies in and between all spaces of constraints, their expressions are not aligned, exhibiting incoherences. Additionally, their differences in granularity prevent a fine grain understanding of the interactions between assets in different spaces. There is therefore a need to bring together these definitions under a unified formalism detailing with precision how an asset selection impacts the selection in another one throughout the build system.

In this chapter, we tackle both Challenges B1 and B2 ("Making explicit the derivation mechanism of build systems" and "Characterizing and identifying anomalies in build systems" respectively) by bringing together existing formalizations in a single formalism that captures all relevant elements of the Linux kernel variability. Instead of extracting a partial representation to reason about it, our formalism first considers selectable entities of the entire build workflow, i.e., features, files and code blocks, to express properties. These properties are determined over two concepts: a configurator, which can represent the KCONFIG, and a derivator, which can be instantiated differently to represent the KBUILD (to select files) and CPP (to select code blocks) (Section 8.1). We then show the instantiated models and express the already identified defects from the main previous contributions, establishing their coverage on the defined properties (Section 8.2).

Proposed Models

The Linux kernel build system is made of three steps (Section 2.3.1). The KCONFIG configures the system by defining constraints on features. Then, the KBUILD defines conditions to select source files, and CPP defines conditions to select code blocks. In order to cover all three stages of the Linux kernel build system and to represent its variability mechanisms independently of 123 124 CHAPTER 8 -A unified representation for anomalies in the Linux build system their implementation, we capture the mechanisms implemented by all three steps of the kernel and abstract them in a single representation. The stages are represented as follows:

• a configurator defines presence conditions on features (i.e., the condition allowing an individual feature to be selected). Presence conditions on features are propositional formulas on other features;

• a derivator defines presence conditions on assets, (i.e., the condition allowing an individual asset to be selected). Presence conditions on assets are propositional formulas on both features and assets, which can be either of the same type or of another type.

Consequently, the Linux kernel build system has one configurator, KCONFIG, and two derivators. The first one, KBUILD, defines presence conditions on source files. The second one, CPP, defines presence conditions on code blocks. Some properties will also be defined on the internal and external consistency of the elements as to cover the different anomalies devised in the previous section. We could also have built our models on a more expressive theoretical background, such as the refinement theory [START_REF] Borba | A theory of software product line refinement[END_REF], to potentially obtain for free some properties, but we decided to rely on a more simple but very explicit basis to clarify first all concepts and inconsistencies.

In the following, we will also use these utility definitions:

terms(ϕ) a helper function which, given a propositional formula, returns the terms in it (e.g., terms

((A ∧ B) ∨ C) = {A, B, C}).
expand(ϕ) a helper function which, given a propositional formula ϕ, replaces every asset a in ϕ by its presence condition, noted PC Int (a) and defined in Definition 8.2 (e.g., expand

(b 1 ∧ ¬b 2 ) = PC Int (b 1 ) ∧ ¬PC Int (b 2 )).
slice(C, T ) an operator which, given a set of boolean conditions on terms C and a set of terms T , returns the conjunction of all propositional formulas from C containing terms from T . The operator is recursively applied to the terms that appear in these formulas 1 (e.g., slice

({A ∧ B, A ∧ C, C ∨ D, H ∧ I} , {A}) = {A ∧ B, A ∧ C, C ∨ D}).

Derivator Model

In this section, we introduce the concepts to form the derivator model and illustrate them with its application to CPP.

Definition 8.1 (Asset). An asset a = ⟨ϕ select , ϕ preds , ϕ depInt , ϕ depExt ⟩ from a set of assets A X is defined as follows:

• ϕ select is a propositional formula for the asset's selection ;

• ϕ preds is a propositional formula on other assets that are evaluated before a. We call these assets predecessors ;

• ϕ depInt is a propositional formula on assets on which a is dependent ;

• ϕ depExt is a propositional formula on assets from another context on which a is dependent.

1 The principle of slicing has already been applied to feature models [START_REF] Mathieu Acher | Slicing feature models[END_REF][START_REF] Krieter | Comparing algorithms for efficient feature-model slicing[END_REF] and its goal is to extract a subset of formulas equivalent to the whole space by keeping only formulas relevant to terms from T .
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Application to CPP An asset b is a code block, with:

• ϕ select the condition of the #if surrounding the block ;

• ϕ preds = ¬( i b i ) if b is an #elsif or #else block, b i represents the corresponding #if
block and the potential #elsif blocks before b ;

• ϕ depInt = p with p the parent block of b if b is a nested block.

• ϕ depExt = f ile the file containing b.

Example. In Figure 2.2, the lib/dir/foo.c file and the B1, B2, B3, and B4 blocks it contains are represented by the following assets:

• f ile = ⟨true, true, true, true⟩

• b 1 = ⟨F OO ∨ BAR ∨ BAZ, true, true, f ile⟩ • b 2 = ⟨F OO, true, b 1 , f ile⟩ • b 3 = ⟨BAR, ¬b 2 , b 1 , f ile⟩ • b 4 = ⟨true, ¬(b 2 ∨ b 3 ), b 1 , f ile⟩
Application to KBUILD At the KBUILD level, an asset s = ⟨ϕ select , ϕ preds , ϕ depInt , ϕ depExt ⟩ can represent a C object file. We then express presence conditions and related anomalies with our model. As seen in Section 2.3.1, an object is selected for compilation by being added to defined lists, with possible constraints on one or more features in case of multiple definitions. Before, objects can also be added to composite variables.

• ϕ select = f i with f i being features which at least one needs to be set for the source file to be selected. If the asset is always selected, ϕ select = true. If the asset is defined but never added to a list, ϕ select = f alse ;

• ϕ preds = comp with comp the name of the composite variable if s is part of a composite definition. comp must be selected ;

• ϕ depInt = dir with dir the directory containing the source file represented by s which also needs to be selected ;

• ϕ depExt = true as the selection of a source file only relies on its feature.

Example. In The internal presence condition of an asset is the boolean formula that needs to be satisfiable for the asset to be selectable. It is defined as

PC Int (a) = ϕ selecta ∧ expand (ϕ predsa ) ∧ expand (ϕ depInta )
Note. An asset is selected if and only if its presence condition is satisfied: PC Int (a) ⇔ a.

Application to CPP Let us take again the previous example.

PC Int (b 1 ) = ϕ select b 1 ∧ expand ϕ preds b 1 ∧ expand ϕ depInt b 1 = (F OO ∨ BAR ∨ BAZ) ∧ expand(true) ∧ expand(true) = (F OO ∨ BAR ∨ BAZ) PC Int (b 2 ) = ϕ select b 2 ∧ expand ϕ preds b 2 ∧ expand ϕ depInt b 2 = (F OO) ∧ true ∧ expand (b 1 ) = (F OO) ∧ (F OO ∨ BAR ∨ BAZ) PC Int (b 3 ) = ϕ select b 3 ∧ expand ϕ preds b 3 ∧ expand ϕ depInt b 3 = (BAR) ∧ (¬PC Int (b 2 )) ∧ PC Int (b 1 ) = (BAR) ∧ (¬ (F OO ∧ (F OO ∨ BAR ∨ BAZ))) ∧ (F OO ∨ BAR ∨ BAZ) = (BAR) ∧ ¬ (F OO) ∧ (F OO ∨ BAR ∨ BAZ) PC Int (b 4 ) = ϕ select b 4 ∧ expand ϕ preds b 4 ∧ expand ϕ depInt b 4 = ¬ (PC Int (b 2 ) ∨ PC Int (b 3 )) ∧ PC Int (b 1 ) = ¬ (F OO ∨ BAR) ∧ (F OO ∨ BAR ∨ BAZ)
Note. Extracted presence conditions can be complex and may contain redundant terms (e.g., PC Int (b 2 ) is equivalent to F OO). Approaches to simplify presence conditions have been proposed [START_REF] Von Rhein | Presence-condition simplification in highly configurable systems[END_REF] and are out of the scope of our work. . By evaluating PC Int , we check that the asset can be selected given the constraints of its space. However, other external constraints may prevent the selection the asset. We call context the set of these constraints. The external presence condition of an asset in a given context C is defined as

PC Ext (a) = PC Int (a) ∧ slice(C, terms(PC Int (a)) ∪ terms(ϕ depExta ))
Application to CPP In the Linux build system, the selection of a CPP block is conditioned by constraints on both the features used in the #if instructions (which are determined at the KCONFIG level) and the file containing the block (which are determined at the KBUILD level). Thus, the context C to express the external presence condition of a block is the union of the KCONFIG and KBUILD contexts C = C KCONFIG ∪ C KBUILD . Let us take an example with

C KCONFIG = {F OO → BAR, BAZ → (¬F 1), F 1 → (¬F OO), F 3 → F 4} C KBUILD = {f ile ↔ F OO} then PC Ext (b 1 ) = PC Int (b 1 ) ∧ slice(C, terms(PC Int (b 1 )) ∪ terms(ϕ depExt b 1 )) = PC Int (b 1 ) ∧ slice(C, {F OO, BAR, BAZ} ∪ {f ile}) = PC Int (b 1 ) ∧ ((F OO → BAR) ∧ (BAZ → (¬F 1)) ∧ (F 1 → (¬F OO)) ∧ (f ile ↔ F OO))

Internal consistency

To express defects, we define dead, core, and full-mandatory assets, relying on definitions of dead and false-optional features introduced by [START_REF] Benavides | Automated analysis of feature models 20 years later: A literature review[END_REF], and full-mandatory features from [START_REF] Trinidad | Automated error analysis for the agilization of feature modeling[END_REF].

Definition 8.4 (Dead asset). An asset a of A is dead if it can never be selected. The set of dead assets of A is noted deads(A).

a ∈ deads(A) ⇔ ¬sat(PC Int (a))

Note. This consistency check includes the more specific case where an asset is dead because of an inconsistency with the condition to select its internal dependencies (i.e., expand(ϕ depInts ) → ¬ϕ selects ) as in this case PC Int (a) is inconsistent.

Definition 8.5 (Core asset). An asset a of A is a core asset if it is always selected. The set of core assets of A is noted core(A).

a ∈ core(A) ⇔ ¬sat(¬(PC Int (a))) 

Configurator Model

The configurator represents the model element that checks the selection of features. It is represented by a set of features F. We will illustrate the formalization here with its application to the KCONFIG.

Definition 8.10 (Feature). A feature F = ⟨ϕ enable , ϕ deps , F select ⟩ from a set of features F is defined as follows:

• ϕ enable is a propositional formula representing the ability to select the feature ;

• ϕ deps is a propositional formula on features on which F is dependent ;

• F select is a set of features automatically selecting F . If a feature from F select is selected, F is also selected, regardless of the precedent conditions.

Application to KCONFIG A feature F is a configuration option defined in a KCONFIG file, with:

• ϕ enable represents the ability to select the feature by user selection (prompt), or default value, as defined in Table 8.1. We represent the selection of a feature F by a user with a boolean value σ F ;

• ϕ deps represents the boolean formula on features defined in the depends on statement ;

• F select is a set of features selecting F with a select statement ;

In the KCONFIG file presented in Figure 2.2, three features are defined: FOO, BAR and F_SEL. Existing work on the semantics of the KCONFIG files [START_REF] She | Formal semantics of the Kconfig language[END_REF] inline the conditions from the menu items surrounding the definition of a feature in the depends on condition. These features can be represented by the following assets: 

• F OO = ⟨σ F OO , (DEP S_A ∨ DEP S_B) ∧ M EN U _CON D, {}⟩
• BAR = ⟨σ BAR , M EN U _CON D, {}⟩
• F _SEL = ⟨f alse, true, {F OO}⟩ Definition 8.11 (Presence condition). The presence condition of a feature F ∈ F represents the boolean formula which needs to be satisfied for the feature to be selected.

PC(F ) = (ϕ enable ∧ expand(ϕ deps )) ∨ directSelect(F ) with directSelect(F ) = Fs∈F select PC(F s ).
Note. The selection of a feature implies that its presence condition is satisfied: F → PC(F ). There is no biimplication as we consider that a user can manually interfere in the selection. Therefore, the information extracted from the model can only express if a feature can be selected, and not its effective selection.

Application to KCONFIG

PC(F OO) = (ϕ enable F OO ∧ expand(ϕ deps F OO )) ∨ directSelect(F OO) = σ F OO ∧ ((PC(DEP S_A) ∨ PC(DEP S_B)) ∧ PC(M EN U _CON D)) PC(BAR) = (ϕ enable BAR ∧ expand(ϕ deps BAR )) ∨ directSelect(BAR) = σ BAR ∧ PC(M EN U _CON D) PC(F _SEL) = ϕ enable F _SEL ∧ expand(ϕ deps F _SEL ) ∨ directSelect(F _SEL) = (f alse ∧ true) ∨ PC(F OO) = PC(F OO)
Note. Due to the size and complexity of the KCONFIG model, obtaining a sound and complete abstraction of its semantics is still a challenge. The latest studies on boolean translation are not able to represent the whole complexity of the language [START_REF] Fernandez-Amoros | A Kconfig translation to logic with one-way validation system[END_REF]. Because of these limitations, the accuracy of variability reasoning approaches is also limited and acknowledged by researchers [START_REF] Franz | ConfigFix: Interactive configuration conflict resolution for the Linux kernel[END_REF]. Therefore, we aim here to provide a model allowing us to synthesize the current work, and do not pretend to present a complete model of KCONFIG 

Instantiation on the Linux kernel

We now instantiate our model on the kernel build system. The configurator is used to model the KCONFIG, while the derivator concept is used to model source files selected by the KBUILD Makefiles, with a form of positive variability [START_REF] Voelter | Product line implementation using aspect-oriented and modeldriven software development[END_REF]: the core is represented by the obj-y entries, where the additional parts are added in composite objects and feature dependent entries. The same derivator concept also represents the selection of code blocks from the source files by CPP, implementing this time negative variability [START_REF] Voelter | Product line implementation using aspect-oriented and modeldriven software development[END_REF].

Model on CPP

The constraints that can influence the selection of a block can be of two natures. First, constraints can issue from the CPP space. For example, on Figure 2.2, the selection of the B3 block is conditioned by the selection of the B1 block and the non selection of the B2 block. Second, constraints can come from other spaces of the build system. Similarly, on Figure 2.2, all blocks from the lib/dir/foo.c file can only be selected if the file is selected in the KBUILD step, and if the constraints on the involved features are satisfied. We describe them hereafter.

8.2.1.1 Compliance with presence conditions from [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] For conciseness and to prevent confusion, we name this definition PC Sin and use the more compact expression given in [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]:

PC Sin (b i ) = expr(b i ) ∧ noP redecessors(b i ) ∧ parent(b i )
We can express PC Sin using our definition of asset from Definition 8.1. Let us apply PC Sin on an asset b as defined in Section 8.1.1.

PC Sin (b) = expr(b) ∧ noP redecessors(b) ∧ parent(b) = ϕ select b ∧ ¬ (pred 1 ∨ pred 2 ∨ • • • ∨ pred n ) ∧ ϕ depInt b = ϕ select b ∧ ϕ preds b ∧ ϕ depInt b 8.2 -8.2.1 Model on CPP 131
ϕ preds b and ϕ depInt b are propositions on assets corresponding to the blocks themselves. However, to evaluate the presence condition, these assets have to be expanded to their logical expression.

PC

Sin (b) = ϕ select b ∧ expand (ϕ preds b ) ∧ expand(ϕ depInt b )
The definition of PC Sin is therefore compliant with our definition of PC Int given in Definition 8.2.

Expressing cross-space formulas

Nadi and Holt [2012] defined multiple anomalies (Anomalies 19, 21, 22 and 24) using different terms, i.e., B N , C, M , and K, which we now describe with our model.

B N ∧ C B N represents a block, and C the constraints in the code space. This expression is true if and only if the block B N is selected, thus it corresponds to B N ↔ PC Sin (B N ) using [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]'s notation and PC Int (B N ) in our model. parent(B N ) parent(B N ) represents the selection of the parent of a block, i.e., its enclosing block. This expression corresponds to expand(ϕ depInt B N ) in our model.

The KCONFIG space (K) K represents the set of constraints in the KCONFIG space, i.e., the constraints on features that allow them to be selected. [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] do not use the whole feature model expression as the solving would not scale. They instead identify the features impacting the selection of a given code block using a slicing algorithm to build a minimal but sufficient subset of the configuration space through a recursive application on each new feature found in the presence condition expression. While this mechanism is not made explicit in the formalisms they provide in the paper, these relationships are detailed in the formulas of the presence conditions by their construction.

The make space (M ) M represents the set of constraints in the make space, i.e., the constraints on features that allow the selection of source files in the Makefiles. In her Ph.D. thesis [START_REF] Nadi | Variability Anomalies in Software Product Lines[END_REF], Nadi states: "since the conflicts in Anomaly 21 arise from looking at the block presence condition as well as the file's presence condition, we call this category of anomalies code-build anomalies". Thus, to detect defects involving the make space, it is only necessary to have the presence condition of the file containing the analyzed block.

In Section 8.1.1, we instantiate on CPP the definition of external presence condition given in Definition 8. 

¬sat(B N ∧ C ∧ M ∧ K) ⇔ ¬sat (PC Int (B N ) ∧ C) ⇔ ¬sat (PC Ext (B N )) (Definition 8.3) ¬sat(¬B N ∧ parent(B N ) ∧ C ∧ M ∧ K) ⇔ ¬sat(C ∧ ¬PC Int (B N ) ∧ expand(ϕ depInt B N )) ⇔ ¬sat ¬PC Ext (B N ) ∧ expand(ϕ depInt B N )
Anomaly 22 thus expresses dead (Definition 8.6) and full-mandatory defects (Definition 8.8). Instantiation 6 (Expressing configuration-implementation defects -Anomaly 15). V corresponds to the minimum but sufficient set of constraints from the configuration space. Thus:

sat ((b i ↔ PC(b i )) ∧ V) ⇔ sat (PC Int (b i ) ∧ C KCONFIG )
We can then express dead and undead configuration-implementation defects. Given B the set of blocks and C = C KCONFIG :

¬sat ((b i ↔ PC(b i )) ∧ V) ⇔ ¬sat (PC Int (b i ) ∧ C) ⇔ ¬sat (PC Ext (b i )) (Definition 8.3) ¬sat (¬ (b i ↔ PC(b i )) ∧ V) ⇔ ¬sat (¬PC Int (b i ) ∧ C) ⇔ ¬sat (¬PC Ext (b i )) (Definition 8.3)
Anomaly 15 thus expresses dead (Definition 8.6) and core defects (Definition 8.7).

From Anomaly 15 we can derive Anomaly 14.

Instantiation 7 (Expressing Implementation-only defects -Anomaly 14). Given B the set of blocks:

¬sat (b i ↔ PC Sin (b i )) ⇔ ¬sat (PC Int (b i )) ⇔ b i ∈ deads(B) (Definition 8.4) ¬sat (¬ (b i ↔ PC Sin (b i ))) ⇔ ¬sat (¬ (PC Int (b i ))) ⇔ b i ∈ core(B) (Definition 8.5)
Additionally, Anomalies 14 and 15 are equivalent to Anomalies 2 and 3, respectively. [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] in Anomaly 14. Thus, Anomaly 2 ⇔ Anomaly 14.

Instantiation 9 (Expressing External consistency -Anomaly 3). In Instantiation 8, we showed:

i=1..m b i ↔ PC(b i ) ∧ b i ⇔ (b i ↔ PC(b i ))
F M in Anomaly 3 and V in Anomaly 15 both represent the KCONFIG space constraints. Therefore:

satisf iable i=1..m b i ↔ PC(b i ) ∧ b i ∧ F M ⇔ sat ((b i ↔ PC(b i )) ∧ V)
i.e., Anomaly 3 ⇔ Anomaly 15.

Instantiation 10 (Expressing code anomalies -Anomaly 18). Same as Instantiation 8.

Instantiation 11 (Expressing code-Make-KCONFIG missing defects -Anomaly 23). We showed in Instantiation 1 that

B N ∧ C ∧ M ∧ K |= PC Ext (B N ).
If a feature m from the formula is not defined in the KCONFIG files, it means that m / ∈ terms(K) ∪ terms(M ), i.e., m / ∈ terms(C KCONFIG ∪ C KBUILD ). Therefore:

∃m ∈ terms(PC Ext (B N )) | (m / ∈ terms(C))
thus B N is dead by missing feature.

Instantiation 12 (Expressing code-KCONFIG missing defects -Anomaly 20). Same as Instantiation 11 with C = C KCONFIG .

Instantiation 13 (Expressing referential defects -Anomaly 17). If the feature is missing in the configuration space, then the definition corresponds Definition 8.9 with C = C KCONFIG as context. A feature missing in the implementation space can mean that the feature is used in the Make space only. It is characterized as a defect as [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] do not consider this space, but it is not a defect for us.

Model on KBUILD

Instantiation 14 (Expressing Feature Not Defined -Anomaly 11). Given m a feature not being defined in any KCONFIG files, and a a file referenced a KBUILD Makefile whose presence is conditioned by m. Thus, m is present in ϕ selecta , however is not present in the features defined in the KCONFIG files, obtained with terms(C KCONFIG ).

(m ∈ terms(ϕ selecta )) ∧ (m / ∈ terms(C KCONFIG ))

As terms(ϕ selecta i ) ⊆ terms(PC Ext (a i )), Anomaly 11 is a special case of Definition 8.9, therefore a is a missing dead file.

Instantiation 15 (Expressing Variable Not Used -Anomaly 12). Given a an asset and ϕ predsa = comp.

PC Int (a) = ϕ selecta ∧ expand (ϕ predsa ) ∧ expand (ϕ depInta ) (Definition 8.2)

= ϕ selecta ∧ PC Int (comp) ∧ expand (ϕ depInta )
However, comp is never used, therefore ϕ selectcomp is f alse, implying ¬PC(comp). Consequently:

PC Int (a) = ϕ selecta ∧ f alse ∧ expand (ϕ depInta ) = f alse
Thus, a is a dead asset.

Instantiation 16 (Expressing Make-KCONFIG anomalies -Anomaly 24). Let us consider s the asset that represents the file F N , and C = C KCONFIG .

PC Int (s) = ϕ selects ∧ expand (ϕ predss ) ∧ expand (ϕ depInts ) = ϕ selects ∧ PC Int (comp) ∧ PC Int (dir)
To build M as it appears in Anomaly 24, [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] extract for every file a presence condition consisting of a conjunction of the features conditioning the selection of the file ( f i = ϕ selects ), the composite object if present (PC Int (comp)) and its parent directory (PC Int (dir)) in the corresponding Makefiles. Therefore, PC Int (s) |= (F N ∧ M ).

PC Ext (s) = PC Int (s) ∧ slice (C, terms(PC Int (s)) ∪ terms(ϕ depExts ))

|= (F N ∧ M ) ∧ K (cf. Section 8.2.1.2)
We can then express Anomaly 24 in our model:

¬sat(F N ∧ M ∧ K) ⇔ ¬sat (PC Ext (s)) ¬sat(¬F N ∧ M ∧ K) ⇔ ¬sat (¬PC Ext (s))
Anomaly 24 thus expresses dead (Definition 8.6) and core defects (Definition 8.7).

Instantiation 17 (Expressing Make-KCONFIG missing defects -Anomaly 25). Same as Instantiation 11 with C = C KCONFIG , and relying on formulas from Instantiation 16.

Instantiation 18 (Expressing File Not Used -Anomaly 10). This definition may not be valid anymore, since the syntax of KBUILD Makefiles allows them to explore subdirectories too 3 . However, we can generalise this definition with:

A .c file exists in the codebase but is not used in any Makefile.

Given S the set of source files of the Linux kernel code base, and A KBUILD the set of assets representing source files in the KBUILD Makefiles. A file s ∈ S is a file not used if no asset in A KBUILD corresponds to s: Instantiation 20 (Expressing false optional -Anomaly 5). This definition corresponds to the note in Definition 8.13, thus F is a core feature.

̸ ∃a i ∈ A KBUILD | s ≡ a i
Instantiation 21 (Expressing missing dead feature -Anomaly 6). The definition limits the presence of an undefined feature in the dependencies:

(m ∈ terms(ϕ deps F )) ∧ (m / ∈ F)
As terms(ϕ deps F ) ⊆ terms(PC(F )), every missing dead feature according to Anomaly 6 is also missing dead in our model.

Instantiation 22 (Expressing selects on symbols with dependencies -Anomaly 7). The dependencies of the symbol are represented by terms(ϕ deps F ). Its selection by another symbol is represented by directSelect(F ). Therefore:

(terms(ϕ deps F ) ̸ = ∅) ∧ directSelect(F )
Instantiation 23 (Expressing unreachable symbol -Anomaly 8). Given F a symbol. If the symbol does not have a prompt neither a default value allowing its selection, then ¬sat(ϕ enable F ). Selection by another feature is modeled with directSelect(F ). Thus:

¬sat(ϕ enable F ) ∧ ¬directSelect(F )
Consequently:

PC(F ) = (ϕ enable ∧ expand(ϕ deps )) ∨ directSelect(F ) (Definition 8.11) = (f alse ∧ expand(ϕ deps )) ∨ f alse = f alse Thus, F is dead.
Instantiation 24 (Expressing unnecessary selects on choice values -Anomaly 9). To express this defect, we need to add an extra type attribute to the feature. type ∈ {conf ig, choice} represents the way F is defined in the KCONFIG model, either as a simple conf ig element or in a choice statement.

(type

F = choice) ∧ directSelect(F )
Instantiation 25 (Expressing configuration-only defects -Anomaly 16). The function presenceCondition(f eature) returns the presence implication of the feature and is defined by the authors as "the selection of the feature itself and the expression of the depends on option." This definition, expressed by our model, corresponds to

ϕ enable f ∧ expand(ϕ deps f ) = PC(f ). Thus ¬sat(f → presenceCondition(f )) ⇔ ¬sat(PC(f ))
Therefore, f is dead. 

Resulting coverage

From the instantiations of the configurator model on KCONFIG and the derivator on both KBUILD and CPP, we obtain a complete expression of the different formulas and anomalies taken as input. A summary of the different anomalies for each paper and how they are expressed is presented in Table 8.2. As expected, no existing proposal expresses defects in every space of the Linux build system. The table confirms the inconsistencies that we manually observed in Section 3.5 between Anomalies 13 and 15 from [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF], with the first anomaly being characterized as a full-mandatory defect and the other as a core defect. Moreover, similar inconsistencies are exhibited in defects from [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF], as well as two anomalies that are described as dead defects but are not called as such (Anomalies 12 and 16). Additionally, the obtained presence conditions allow a better understanding at fine grain of the interactions between the assets. Table 8.3 details, for an asset of each space taken from Figure 2.2, the expressions obtained when considering different spaces of constraints using formalisms from the state of the art and our representation. The expressions of the PCs detail with precision the different assets involved, demonstrating the capacity of our model to represent at fine-grain the interactions between assets in the build system.

Threats to validity

Internal threats to validity A first internal threat could be caused by the selection of papers made to devise the properties and the model. However, given the narrow focus of the subject and the fact that we sought additional work in the references of the obtained papers, we believe that the most important studies are included.

Another internal threat concerns the accuracy of the formalisms from the chosen studies, but their application to the kernel was demonstrated. Besides, while we provide a formalization, there CPP -KBUILD -KCONFIG * for readibility, the conjunction with (PC(FOO) ∨ PC(BAR) ∨ PC(BAZ)) has been omitted as it is redundant in the condition is no proof of correctness of the formalism nor associated syntax and semantics given in a theorem prover.

Block N ∧ C ∧ M ∧ K [Nadi
External threats to validity While we show here the application of the proposed models to the Linux build system, there is no demonstration of the applicability of the configurator and derivator concepts to other build systems. A first demonstration of the derivator concept is nevertheless done through its double instantiation as the KCONFIG and CPP preprocessor.

Conclusion

Studies on the kernel variability propose a set of definitions for the analyzed properties. However, they suffer from differences in terminology and some inconsistencies in the interpretation of similar definitions in them (cf. Sections 3.4 and 3.5). In this chapter, we described a formalism based on the generic concepts of configurator and derivator to express the whole set of consistency properties. We showed that the configurator can be instantiated to represent the KCONFIG, while the instantiated derivators can represent the KBUILD, selecting files, or CPP, selecting code blocks. The obtained model enables one to categorize the previous studies and to establish their coverage and divergences on the analyses. Relying on generic concepts, the model is designed to be applicable to other build systems relying on the concepts of configurator and derivator. This unified representation at fine grain of the interactions between assets throughout the build system provides elements of answers to Challenge B1. Additionally, anomalies are characterized in this formalism, covering and aligning state-of-the-art-definitions, answering Challenge B2 on the characterization and identification of anomalies in build systems. However, this work exhibits two limitations. First, as the existing work on build systems and their anomalies are focused on the Linux build system, we can only assess relevance of our representation on this system, and it may therefore not represent the diversity of mechanisms present in other build systems such as Busy-Box [START_REF] Kästner | A variability-aware module system[END_REF][START_REF] Mordahl | An empirical study of realworld variability bugs detected by variability-oblivious tools[END_REF], JHipster [START_REF] Halin | Yo variability! jhipster: a playground for web-apps analyses[END_REF], or the Mozilla build system [START_REF] Maudoux | Lessons and pitfalls in building firefox with tup[END_REF]. Then, the proposed models have not been implemented in a model-driven framework and applied on real code assets, limiting their validity. Fully answering challenges B1 and B2 requires achieving those two steps, that we tackle in the following chapter.

CHAPTER 9

A generalization of the anomalies model

When build systems combine ad hoc tools adapted to manage variability, the multiplicity and entanglement of these mechanisms do not provide a global view of the whole derivation process of the build system, preventing precise determination of the constraints that condition the selection of each code asset (Challenge B1). Additionally, such tools not being designed for variability management, they do not allow checking for the consistency of the implemented constraints, potentially leading to conflicts and causing anomalies (Challenge B2).

In the previous chapter, we started tackling both challenges by providing a homogeneous representation of the Linux kernel build system derivation mechanism and the anomalies that can occur, showing coverage of existing contributions on both topics. While the proposed model shows coverage of existing work characterizing the derivation process of build systems and their anomalies, they are all focused on the Linux kernel build system. Consequently, to assess whether the model is applicable to other build systems and brings a definitive answer to Challenges B1 and B2, we propose to extend it to another build system, the Mozilla build system. We believe this build system is a good candidate for generalizing our representation as it reuses off-the-shelf tools (namely, Python and CPP) to implement a derivation process similar to the one of the Linux kernel build system (cf. Section 2.3.2). Moreover, the Mozilla build system is used to manage the variability implemented in the Mozilla Gecko codebase, of which more than 25%1 is written in an OO language, C ++ , consequently exhibiting OO variability implementations (Section 4.1). Therefore, being able to model the Mozilla build system's derivation process is a first step towards understanding how the coexistence of those two types of variability is managed in such systems.

In Section 9.1, we detail the current limitations of the proposed model that need to be tackled to enable its application on the Mozilla build system. We then generalize the model by taking into account the diversity of mechanisms brought by the Mozilla build system and consequently refine the definitions of PCs and anomalies (Section 9.2). Finally, we design a framework implementing our model and report on its application on the Mozilla build system and two systems using the Linux kernel build system, the Linux kernel and BusyBox2 , for which we compare our approach with a state-of-the-art workbench for analyzing the Linux kernel build system, KernelHaven (Section 9.3). 

Limitations of the anomalies model related to the Mozilla build system

While the model previously introduced covers existing work on characterizing anomalies in the Linux kernel build system, it exhibits some limitations preventing its direct application to the Mozilla build system.

Arity of parent assets Each asset from a derivator possesses a single internal PC (PC Int ) and a single external PC (PC Ext ), implying that each asset has a single inclusion chain allowing its selection. This is indeed the case for both derivators in the Linux kernel build system:

• in CPP, the selection of a code block is dependent on the selection of its direct parent block.

Each block naturally has only one direct parent block.

• in KBUILD, each Makefile "is only responsible for building objects in its own directory"3 . Therefore, each file can only be included by the Makefile in its own directory.

The Mozilla build system's MOZBUILD, however, allows more freedom in the selection of its source files as, as detailed in Section 2.3.2, a moz.build file can be included by multiple other ones. It is hence possible to have multiple inclusion chains leading to a single source file's selection (i.e., multiple PCs), each one of them potentially exhibiting an anomaly. For example, on Figure 9.1, /tools/fuzzing/foo.c has two inclusion chains, of which one is defectuous. Using conjunctions or disjunctions to assemble them as a single PC would lead to major clarity issues. In this same example, PC 1 ∨ PC 2 would be satisfiable and not exhibit any defect, hiding the defectuous inclusion chain. On the opposite, although PC 1 ∧ PC 2 would not be satisfiable and exhibit a dead defect, the information on which inclusion is defectuous would be lost. In order to maximize the expressiveness of our representation of the build system, there is a need to update the representation of how assets include each other. Consequently, as the expressions of anomalies depend on this representation, they may also need to be updated.

Particularities of the configuration space

In this model, the expression of an asset's PC Ext depends on the external spaces of constraints that we choose to include, indifferently being derivators or configurators. Although this mechanism allows an easy combination of external sets of constraints, it can potentially hamper the comprehension of an identified anomaly. For example, when analyzing the consistency of a code block considering constraints from all spaces, the PC Ext checks the consistency of the block's condition with the condition to select its containing file in the KBUILD and the conditions to select the features of the conditions in the KCONFIG. However, if PC Ext is not satisfiable, understanding the real cause is not straightforward as it could be due to:

• an incompatibility between the condition to select the block and the condition to select the file;

• an incompatibility between the condition to select the block and the conditions to select the features from this condition;

• an incompatibility between the file's condition and the conditions to select the features from this condition.

This limitation calls for a need to consider differently external derivation spaces and configuration spaces.

9.2 Generalizing the model Formally, a context c = ⟨a child , a parent , I⟩ can be defined as follows:

• a child is the selected code asset ;

• a parent is the selecting code asset ;

• I a set of inclusions.

An inclusion i ∈ I is defined as i = ⟨ϕ select , ϕ preds , ϕ depInt ⟩, whose definitions are identical as in the definition of asset in the previously presented model Chapter 8, Definition 8.1. Therefore, the PC Int is now linked to an inclusion instead of an asset. Since an asset is selected by another when at least one of its inclusions is satisfiable, a context's PC Int is the disjunction of its inclusions' conditions cond.

PC Int (c) = i∈I cond(i) with cond(i) = ϕ select i ∧ expand (ϕ preds i ) ∧ expand (ϕ depInt i ).
For each context, we can also define the PC Exts issuing from inclusions in a context. Finally, an asset having now a list of contexts C, they possess several PC Ints and PC Exts .

PC Ints (a) = c∈C PC Int (c) PC Exts (a) = c∈C PC Exts (c)
This additional decomposition leads to a refinement of dead, core and full-mandatory assets definitions shown in Figure 9.3:

• partially dead assets, for which some but not all PCs are satisfiable: ∃pc ∈ PC Ints/Exts (a) ¬sat(pc)

• totally dead assets, for which no PC is satisfiable: ∀pc ∈ PC Ints/Exts (a) ¬sat(pc)

• partially core assets, for which some but not all PCs are always satisfiable: ∃pc ∈ PC Ints/Exts (a) ¬sat(¬pc)

• totally core assets, for which all PCs are always satisfiable: ∀pc ∈ PC Ints/Exts (a) ¬sat(¬pc)

• partially full-mandatory assets, for which the constraints from the external space imply its selection for some inclusion chains:

∃pc Int ∈ PC Ints (a), pc Ext ∈ PC Exts (a) sat(pc Ext ) ∧ ¬sat(¬pc Int ∧ pc Ext )
• totally full-mandatory assets, for which the constraints from the external space imply its selection for all inclusion chains:

∀pc Int ∈ PC Ints (a), pc Ext ∈ PC Exts (a) sat(pc Ext ) ∧ ¬sat(¬pc Int ∧ pc Ext )
Previously defined dead, core and full-mandatory anomalies can still be identified as they are special cases of totally dead, totally core and totally full-mandatory anomalies when there is a single inclusion chain. Note. For dead and core anomalies, PC Ints are used to check for internal anomalies (Section 8.1.1.1) and PC Exts to check the for external anomalies (Section 8.1.1.2). Missing dead anomaly the feature depends on another feature that is not defined of partial anomalies, and that the previously dead, core and full-mandatory anomalies for the KBUILD and CPP are now totally dead, totally core and totally full-mandatory without changing their definitions.

Evaluation

To evaluate the relevance of our anomalies identification framework, we provide a twofold evaluation. First, we evaluate the accuracy of our representation by identifying dead anomalies in systems built using the Linux kernel build system, and compare our findings to the results of a similar analysis with the actual reference tool to identify anomalies in the Linux kernel build system, KernelHaven. Then, we evaluate the generalization capabilities by instantiating our model on the Mozilla build system to identify anomalies in the Gecko codebase (cf. Section 2.3.2).

9.3.1

Instantiation on open source systems using the Linux kernel build system 9.3.1.1 Subject systems Table 9.4 depicts the studied subject systems. As our approach has been initially designed as a synthesis of studies on anomalies in the Linux kernel, we apply our tooled approach on this system to evaluate in practice the accuracy of our representation that, in a first step, has been done only formally (cf. Section 8.2.4). We selected BusyBox to evaluate the applicability of our approach on another system as its build system also uses KCONFIG, KBUILD and CPP, making it a reference case study that has been widely used by work studying anomalies in the Linux kernel build system [START_REF] Dietrich | A robust approach for variability extraction from the Linux build system[END_REF][START_REF] Gazzillo | Finding all configurations of kbuild makefiles statically[END_REF][START_REF] Oh | Uniform sampling from kconfig feature models[END_REF][START_REF] Nguyen | Using Symbolic Execution to Analyze Linux KBuild Makefiles[END_REF].

Evaluation process

For each project, we first run KernelHaven's UnDead analyzer 

KBUILD InternalTotalDead

File PC alone is not satisfiable has been chosen as KernelHaven is preconfigured for this version, thus reducing the risks of potential inaccuracy in the results due to a configuration issue. Then, we extract the presence conditions for each code block and source file and use them as input for our anomalies identification framework. To obtain them, we run two extractors bundled with KernelHaven: the UndertakerExtractor5 and the KbuildMinerExtractor6 . These two extractors are based on the original implementations of UNDERTAKER [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] and KbuildMiner [START_REF] Berger | Kbuildminer[END_REF]. Not only do they implement the approaches we base our model on and allow us to extract information compliant with it, but they also allow us to reuse the same data as KernelHaven's UnDeadAnalyzer phase, ensuring maximum relevance of our comparison.

We then build a mapping adapting precision and recall measures, using the anomalies identified by KernelHaven as the ground truth, to evaluate the accuracy of our representation.

Precision is used to measure the percentage of anomalies identified by the proposed framework also being identified by KernelHaven;

Recall is used to measure the percentage of anomalies identified by KernelHaven also being identified by the proposed framework.

148 CHAPTER 9 -A generalization of the anomalies model As KernelHaven's UnDead analyzer identifies dead blocks but not core ones, we consider only the dead anomalies identified by the proposed framework for the mapping, and normalize the anomalies denominations as summarized in Table 9.5. Additionally, although the proposed framework allows taking into account constraints from the configuration space, KernelHaven's only variability-model extractor KConfigReaderExtractor 7 extracts constraints in the form of a feature model represented by a single CNF formula. Consequently, the coarse grain expressiveness of provided by KernelHaven regarding the KCONFIG does not allow us to consider it in our fine-grain representation.

Observations

Table 9.6 summarizes the obtained results on both systems.

Results on the Linux kernel 49.73% of CPP anomalies identified by the proposed framework are also identified by KernelHaven. After manual analysis of the results, out of the 1.227 additional dead blocks identified only by our model, 396 blocks are present in header files that are not analyzed individually by KernelHaven. 2 are dead blocks in dead files considering the KBUILD space of constraints, and 166 are located in dead files considering both KBUILD and KCONFIG spaces, and are automatically ignored by KernelHaven. Similarly, 307 dead blocks are located in files for which KernelHaven could not determine the presence condition. This is due either to a KBUILD file that is not parseable by KernelHaven, or because the file is not included in the KBUILD file of their directory, or is in a directory not included by their parent KBUILD. This pattern actually characterizes a file not used anomaly [START_REF] Nadi | Make it or break it: Mining anomalies from Linux Kbuild[END_REF]] (Anomaly 10). Blocks in such files are ignored by KernelHaven. An important majority of the remaining 388 blocks correspond to #if 0 blocks or #else branches of #if 1 blocks, while the others are likely to be anomalies revealed by the expansion of macros by KernelHaven. We do not cover this operation in our framework as we designed it to be independent of the implementation language. Consequently, we solely rely on the conditions extracted by the tool we use, PILZTAKER (Section 9.3.3). Regarding the CPP -KBUILD anomalies, all 28 anomalies identified only by the proposed framework are code blocks in dead files, and thus are ignored by KernelHaven. Regarding the KBUILD anomalies, the proposed framework and KernelHaven identify exactly the same anomalies.

Results on BusyBox Regarding the CPP anomalies, the proposed framework identifies all 121 anomalies identified by KernelHaven. 33 additional anomalies are identified and are located in dead files ignored by KernelHaven. As for the Linux kernel, the identified KBUILD anomalies are identical between both approaches, and the 11 CPP -KBUILD anomalies not identified by KernelHaven are in dead files ignored by KernelHaven. It results that our representation covers all the anomalies identified by KernelHaven, as well as additional ones that have been ignored.

Summary It results that for both subject systems, the proposed framework identifies all anomalies identified by KernelHaven. Additionally identified anomalies correspond to actual anomalies ignored by KernelHaven due to their nature, for example, dead blocks in already dead files or #if 0 blocks that are very likely to be intentional. Our framework therefore provides good coverage for these categories of anomalies. However, we could not consider the constraints from the configuration space, therefore we cannot conclude on the capacity of our representation to identify anomalies involving it. In a further step, we aim to explore the use of slicing techniques to obtain the constraints for each feature [START_REF] Mathieu Acher | Slicing feature models[END_REF][START_REF] Krieter | Comparing algorithms for efficient feature-model slicing[END_REF] and represent them in our model.

Application to Mozilla Gecko

Subject system

For this evaluation, we consider the whole Mozilla Gecko codebase, namely the mozilla-central8 repository containing code for the Firefox web browser, the Android Firefox application and the SpiderMonkey suite and comm-central9 being the code specific to the Thunderbird mail client and the SeaMonkey suite. We analyze the BETA_103_BASE release, being the first release of the 103 version of the codebase, the most recent at the time of this study.

Evaluation process

After assembling corresponding versions of both codebases (tag FIREFOX_BETA_103_BASE for mozilla-central and BETA_103_BASE for comm-central), we automatically extract presence conditions from the CPP and MOZBUILD spaces. For each of the products that can be built from the codebase (cf. Section 2.3.2), the corresponding MOZBUILD files are parsed and their constraints extracted. As features constraints are challenging to parse due to their implementation and their scattering over files (cf. Section 2.3.2), we manually extracted a subset of features from build/moz.configure/init.configure10 . In this section, we present the results obtained with MOZBUILD constraints from build files parsed when building the Firefox web browser. 9.7 summarizes the obtained results. Full-mandatory anomalies are not identified for the CPP and MOZBUILD anomalies as the expression of the full-mandatory anomaly relies on both internal and external PCs, thus identifying them is possible only for anomalies between at least two spaces. Partially dead anomalies are not identified for the CPP anomalies as a block always has a single including asset being its source file, thus it cannot be partially dead. Although our model allows representing missing dead features, these were not computed as we know our set of features to be incomplete making the potential outcome not representative. Finally, while we analyzed the manually extracted features from the configuration to find anomalies in this space, none were identified. We therefore omitted it in the table. In the following paragraphs, when boolean formulas are given to detail anomalies, we use underlining to exhibit conflicting terms.

CPP anomalies 533 code blocks have been identified as totally dead, of which 499 have for condition #if 0 for which we can assume that they have been implemented on purpose by developers to deactivate parts of the code, making 34 relevant identified anomalies. An example is given in Listing 9.2, where the dead block has for condition ¬ ABSL_USES_STD_OPTIONAL ∧ (ABSL_USES_STD_OPTIONAL ∧ __GLIBCXX__). 15 totally core files have been identified, of which 4 are false-positives resulting from limitations of our parsing capabilities. The MOZBUILD system being implemented in Python, some conditions are implemented in a non-standard way (e.g., conditions on variables, use of built-in functions, string formatting) and are therefore not parsed by our parser. Considering these statements would require evaluating them. The remaining 11 are actually files added in different lists depending on some condition and that are considered as always being added (cf. Listing 9.4). Although this behavior is clearly intentional and therefore cannot be considered as an anomaly, we believe that identifying this pattern is relevant as it corresponds to usage of the file selection system to handle the source files differently. Identifying such a pattern could therefore be useful to issue a warning to the developer and ensure that the behavior is really motivated.

Out of the 2 identified partially core files. One is a moz.build file being included without any condition, while the other one is a compilation partially core compilation flag depicted in Listing 9.5. The CC_TYPE__clang__ ∨ CC_TYPE__clang-cl__ condition is redundant as it is first added without condition.

CPP -MOZBUILD anomalies 16 totally dead code blocks have been identified due to conflicts between constraints in both the CPP and MOZBUILD spaces. They mainly represent conflicts created on purpose to throw errors specifying that this combination is indeed not valid and prevent conflicts to happen throughout the codebase evolution. For example, such a block identified in js/src/jit/x86-shared/Assembler-x86-shared.cpp13 throws a "Wrong architecture. Only x86 and x64 should build this file!" error. This way, the build is stopped in case the file is selected by the MOZBUILD when building for an architecture other that x86 or x64. On the opposite, other identified anomalies appear to be unintentional as the example given in Listing 9.6. Therefore, B2 can never be selected whenever ref_counted.cc is, making it a dead block. On the opposite, B1's selection condition is redundant as the file is selected if MOZ_SANDBOX is satisfied. B1 is therefore one of the 18 identified full-mandatory blocks.

Regarding partially dead blocks, they mainly represent #ifndef statements on a variable that, if entered, define this variable with a #define, ensuring that it is always set (e.g., in /accessible/other/XULListboxAccessibleWrap.h14 ).

Anomalies involving the configuration space We did not identify any anomaly between the configuration and one of the CPP or MOZBUILD spaces. However, we identified 22 partially dead and 12 totally dead code blocks due to conflicting constraints between the three spaces. Listing 9.7 illustrates 6 of the 12 identified totally dead blocks.

Constraints from the configuration space From the code excerpt of listing 9.7a, we can extract the following constraints: for solving the boolean formulas. The information characterizing the identified anomalies are then output in a JSON format. Finally, the model presented in Section 9.2 is implemented in EMF 18 and the identified anomalies are instantiated using the classes generated from the model. Every part of the framework is independent and Dockerized to ease the reproduction of the results and independent reuse on other codebases. As for scalability, the overall analysis of a product that can be derived from the Mozilla build system (extraction of constraints and identification of anomalies) takes less than two hours (Table 9.8).

• CANONICAL_KERNEL_LINUX → (¬ OS_ANDROID ∧ OS_LINUX) ∨ OS_ANDROID • CANONICAL_OS_GNU → (¬ OS_ANDROID ∧ OS_LINUX)

Threats to validity

As we do not provide a validation by actual developers or architects of any system, the main threat to the validity of our work regards the relevance of the identified anomalies. For example, some patterns identified as anomalies in Mozilla Gecko correspond to usages of the build system for other purposes than variability management (cf. Section 9.3.2.3). Similarly, #if 0 blocks can be used intentionally as a way to comment parts of the implementation. We can also imagine that 

Conclusion

In order to evaluate whether the Linux-centered model introduced in Chapter 8 is applicable to other build systems and answers Challenges B1 and B2, we evaluated its applicability on the Mozilla build system as another example of ad hoc variability-aware build system. Consequently, the model has been generalized to support the diversity of mechanisms it exhibits compared to the Linux kernel build system, leading to the definition of new anomalies. The model has then been implemented in a framework enabling automatic identification of anomalies in both the Linux kernel build system and the Mozilla build system. The evaluation conducted on the Linux kernel build system, showed that all dead anomalies in and between the CPP and the KBUILD identified by state-of-the-art approaches are also identified by our framework, validating the coverage of existing work regarding these anomalies. The application of the complete model on the Mozilla build system led to the identification of anomalies that, after manual analysis, appear to be either (i) relevant anomalies, (ii) intentional conflicts caused for safety checks or (iii) uses of the build system's capacities for other purposes. As a result, the updated representation of assets in the build system keeps a fine-grain view of the relationships that exist between them, and the differentiation between spaces involved in presence conditions increases the understanding of anomalies, improving the answer to Challenge B1 brought by our first version in Chapter 8. Additionally, the conducted evaluation demonstrates the capacity of our framework to identify anomalies and, consequently, the relevance of their representation, improving the answer to Challenge B2 given by our previous model.

Although bringing additional elements of answers for both challenges, this chapter does not yet allow answering them completely. The analysis of the Mozilla build system's mechanisms and their incorporation in our model enabled a first generalization of our model to represent the selection of assets in a build system. However, it is likely that other build systems as the one of the Chromium platform 20 or JHipster [START_REF] Halin | Yo variability! jhipster: a playground for web-apps analyses[END_REF]] use yet other mechanisms. Fully answering Challenge B1 therefore requires a study of additional build systems to gain a better overview of the diversity of mechanisms they rely on. Regarding Challenge B2, our answer is limited by the extent of our validation, which would be improved by taking into account the Linux kernel build system's configuration space and a validation of the identified anomalies in the Mozilla build system.

20 https://chromium.googlesource.com/chromium/src/tools/gn/+/ 48062805e19b4697c5fbd926dc649c78b6aaa138/README.md CHAPTER 10

Conclusion and perspectives

When large-scale variability-intensive software systems are not organized as SPLs, managing their implemented variability is challenging.

In the case of OO systems, their variability is often implemented by relying on OO mechanisms. As they are not especially designed for variability implementation, they do not allow a clear mapping with the domain variability that is, most often, missing. Consequently, information on the implemented variability and its location in such codebases is lost, hampering its comprehension and, thereby, the maintenance and evolution capabilities of the system, eventually threatening its overall quality. There is therefore a need to identify and comprehend these variability implementations to master them and their quality.

In addition, large scale highly-variable systems often rely on build systems to manage the different build steps of the system. Instead of relying on model-driven approaches to shape their variability, they often reuse off-the-shelf solutions and adapt them to implement variability to select code assets at multiple granularities. However, their variability management capacities are limited as (i) they do not incorporate mechanisms allowing to ensure the consistency of the variability they implement and (ii) they are not aware of the variability that is implemented in other steps of the build system. As a result, conflicts can happen between conditions to select assets, leading to anomalies prone to bugs in the derived variants of the system. It is therefore essential to obtain a global view of the implemented variability in such build systems to prevent these anomalies.

Summary of the contributions

This section details the challenges that we tackled in this thesis towards these goals, summarizing for each of them the proposed solutions and their limitations.

A. Comprehending variability implemented in OO software systems A1. Identifying variability implemented in OO software systems

In Chapter 4, we assessed the relevance of the identification technique relying on the density of symmetries in OO constructs proposed by [START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF] on two aspects. This method has been implemented in the symfinder toolchain, allowing automatic identification of variability implementations in Java systems implemented in a single codebase. They are then visualized in the shape of a graph, exhibiting concentrations of nodes corresponding to dense zones of variability 160 CHAPTER 10 -Conclusion and perspectives implementations. First, we extended the identification technique to another OO language, C ++ . The application of the toolchain on systems in both Java and C ++ systems led to the identification of dense zones of symmetries that could be visually correlated to information from the domain variability. This relevance was then confirmed by an automatic mapping of these identified variability implementations with reverse-engineered feature traces from two systems, ArgoUML-SPL and Sat4j, validating that an important part of the implemented variability is identified by symfinder. However, a non-negligible amount of false positives were also identified. Consequently, in Chapter 5, we refined the identification technique by taking into account usage relationships between classes and, relying on them, formally characterized the notion of density of OO variability implementations. This density is parameterized, and adapting these parameters allows identifying hotspot classes maximizing the density and filtering out less dense zones of variability implementations.

While the density of symmetries appears as an answer to Challenge A1, this definition exhibits limitations. As for the number of identified vp-s and variants, we could observe that for given parameters, the number of the classes identified as hotspots can importantly differ between two projects, even of similar sizes. It is therefore likely that other mechanisms are involved in OO variability implementations and lead to their density, and need to be explored as they could be used to help determine adequate parameters for the density measure, that are actually to be determined manually. Additionally, we did not conduct an evaluation of the relevance of the identified hotspots. [START_REF] Tërnava | Identification and visualization of variability implementations in object-oriented variability-rich systems: a symmetry-based approach[END_REF] introduced a preliminary definition of density considering only the inheritance relationships. This measure has for only parameter a threshold on the minimum number of variants at class or method level (i.e., the individual density) for a vp to be identified as a hotspot. They then identified hotspots in ArgoUML-SPL and Sat4j, defining multiple values of threshold and mapping for each threshold the identified hotspots to the features traces. It results that the number of false positives diminishes when increasing the threshold, showing that using this parameter to filter variability implementations allows outputting a subset of more relevant variability implementations. We, therefore, have good confidence about the relevance of vp-s filtered with a density measure enriched with usage relationships.

A2. Making the identified variability implementations comprehensible

The symfinder toolchain [START_REF] Mortara | symfinder: A Toolchain for the Identification and Visualization of Object-Oriented Variability Implementations[END_REF] proposes a graph visualization of the identified vp-s and variants that allowed the authors to distinguish relevant zones concentrating variability implementations. However, no evaluation of the understandability of the visualization has been performed. In Chapter 4, we conducted an empirical evaluation with Daniel Le Berre, software architect of Sat4j, and gathered his feedback on using the tool and the provided visualization to comprehend the variability implemented in his system. It results that the visualization allowed him to distinguish relevant variability implementations. Henceforth, this representation has been kept and extended to visualize the additional usage relationships in symfinder-2 (Chapter 5). However, although filtering options were added to enable focusing on particular zones of the visualization, the diversity of information that needed to be displayed showed the limits of this solution. In Chapter 6, VariCity was designed as a 3D visualization relying on the metaphor of the city, adapted to OO variability implementations. Two evaluations were conducted. A first evaluation based on onboarding scenarios demonstrated that the interactions provided by the view allow to gradually explore the system and gather information about the implemented variability. Then, a controlled experiment measuring the gain brought by VariCity compared to the use of an IDE to solve vari-10.1 -Summary of the contributions 161 ability identification tasks showed that subjects using VariCity could answer more correctly to the given tasks, and were completing them faster and more easily. Finally, the visualization has been embedded (Section 7.5 in Chapter 7), enabling bidirectional between the implementation and the visualization in an integrated environment preventing context switching.

These results give us confidence in the fact that VariCity is a relevant answer to Challenge A2. Further validating this claim would however require an extended user experiment. Due to organizational reasons, the conducted experiment only considers subjects students with similar levels of experience. Additionally, the size of the panel constrained us to evaluate VariCity on a single subject system. Conducting an experiment with a larger panel of subjects of different levels of experience would allow us to consider multiple object systems and mitigate biases related to the experience of the subjects and the chosen object system.

A3. Understanding the quality of the implemented variability

Relying on the definition of variability debt and its causes given by [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF], we defined variability debt in the context of OO variability implementations (Section 3.3). In Chapter 7, we defined OO quality metrics allowing their identification and proposed VariMetrics. This solution extends the VariCity approach introduced in Chapter 6 and allows to visualize altogether the variability implementations and OO quality metrics on the system to reveal indebted zones dense in variability implementations. The view is configurable and allows the combination of quality metrics on multiple visual axes. The conducted quantitative and qualitative evaluations showed the capacity of VariMetrics to reveal indebted zones dense in variability implementations which, when refactored, allow for increasing the quality of the system.

By revealing simultaneously the zones of the system being dense in variability implementations and/or critical regarding their quality, VariMetrics meets Challenge A3. Although the qualitative evaluation consisting of the refactor of code identified as both variability dense and qualitycritical showed, it also enlightened a limitation of our approach. Where some of the identified debt actually corresponded to improperly implemented variability, other parts were plain technical debt located in variability intense classes, but not linked to variability implementations. There is therefore a need to refine the definition of OO variability debt to isolate indebted variability implementations from technical debt present in variable code assets implementing variability.

B. Comprehending the variability managed by build systems B1. Making explicit the derivation mechanism of build systems

State-of-the-art contributions describing the selection of code assets in build systems (i) all target the Linux kernel build system and (ii) all focus on isolated steps of the build systems, preventing a global view of the interactions that exist between assets in these steps. In Chapter 8, we synthesize these works in a formalism based on the generic concepts of configurator and derivator with assets. Presence conditions allow modeling with precision the relationships that exist between assets throughout the steps. In Chapter 9, we study the Mozilla build system and exhibit similarities between its derivation mechanism and the one of the Linux kernel build system. The model has then been generalized to support the Mozilla build system as another build system. Its relevance has been validated by being implemented in a framework and instantiated on the code assets of both build systems.
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This representation enables a fine-grain understanding of the derivation mechanisms of these build systems, providing an answer to Challenge B1. Although it supports two build systems managing large codebases, it is very likely that other build systems of popular systems such as Chromium or JHipster [START_REF] Halin | Yo variability! jhipster: a playground for web-apps analyses[END_REF] rely on other mechanisms.

B2. Characterizing and identifying anomalies in a build system

As each contribution from the state of the art characterizing anomalies in build systems focuses on isolated steps of the Linux kernel build system, the definitions and formalisms they rely on are not aligned. Although their definitions have been implemented in multiple tools designed explicitly for the Linux kernel build system [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF][START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF][START_REF] Kästner | Virtual separation of concerns-toward preprocessors 2.0/von christian kästner[END_REF], these inconsistencies hamper the understanding of the causes of these anomalies and, consequently, their application to other build systems. In Chapter 8, we enumerate and analyze 25 definitions from work characterizing anomalies in the Linux kernel build system and rely on these definitions to define anomalies on assets, expressing the satisfiability formulas allowing their identification using the model's presence conditions. We then formally instantiate all these definitions in our representation, demonstrating coverage of these works. In Chapter 9, we extend these definitions to support anomalies induced by the diversity of mechanisms used in the Mozilla build system. The detection of these anomalies has been implemented in the model's framework and has been applied to both the Linux kernel build system and the Mozilla build system. Evaluation on the Linux kernel build system has been conducted by comparing the dead anomalies identified using our representation to anomalies identified using KernelHaven [Kröher et al., 2018a,b], a state-of-the-art approach to identify dead anomalies in the Linux kernel build system. It results that the proposed framework covers all the anomalies found by KernelHaven on the considered subset of the Linux kernel build system. Regarding the Mozilla build system, the application of the framework on its code assets led to the identification of multiple anomalies that appear to be relevant.

By being able, through its implementation as a framework, to identify anomalies the Linux kernel build system and the Mozilla build system, our model meets Challenge B2. The relevance of the approach is however limited by the extent of the conducted evaluation. On the Linux kernel build system, only the dead anomalies between the KBUILD and CPP were considered to be able to design a mapping with KernelHaven. We hence cannot conclude on the relevance of other anomalies. As to the extent of our knowledge, no approach identifying anomalies in the Mozilla build system could enable a comparison of the obtained results, we assessed the relevance of the identified anomalies by manually inspecting the codebase. Additionally, as some identified anomalies seemed to be intentional behaviors, a validation from maintainers of the Mozilla build system would be required to assess whether it is actually the case or not.

Perspectives

In this section, we detail perspectives on the continuation of this work both in the short and long terms.

Short-term perspectives

Bridging the gap between variability-aware build systems and OO variability implementations. While in this thesis we studied separately wild implementations of variability in OO 10.2 -10.2.1 Short-term perspectives 163 systems and wild management of variability in build systems, those two aspects can coexist in software systems. An example is the Mozilla Gecko codebase, for which an important part of the implementation is in C ++ (analyzed in Chapter 4) while the selection of these code assets is managed by its build system (studied in Chapter 9). Therefore, in addition to the variability implemented in the build system that is resolved at pre-compile time, the OO architecture of the system exhibits by its nature variability that is resolved at runtime. First concerns about the interactions between compile-time and runtime variability had been enlightened by a recent line of work on deep software variability, mainly focusing on the interactions between configuration options at both level [Lesoil et al., 2021a,b,c]. We aim therefore to study how such systems manage this diversity of variability implementation mechanisms, and whether new types of anomalies can issue from these interactions between build system variability and OO variability implementations, requiring a model allowing their representation in a homogeneous way and allowing to reason on these interactions.

Improving the OO variability implementations identification technique. Due to their complex nature, identifying OO variability implementations is not trivial. Successive improvements to the technique proposed by symfinder, taking into account usage relationships and characterizing a parameterized density measure, allowed to improve its precision. While vp-s and variants are identified by their structure, their understanding is made possible through the use of visualizations, that are then interpreted by the architect or developer based on their knowledge of the system. For example, nomenclatures of the code assets were extensively used by the subjects of our controlled experiment in Chapter 6 to understand the implemented variability. There is therefore a need to explore whether other information from the domain can be extracted from the code asset or, when available, in other sources such as documentation or commits [START_REF] Dintzner | Fever: Extracting feature-oriented changes from commits[END_REF] and issues in the control version system to be then used to refine the results of the vp-s and variants identification.

Monitoring the evolution of the variability in the implementation and in build systems. Software systems are living ecosystems evolving in time on all their aspects, being their implementation [START_REF] Mens | Challenges in software evolution[END_REF], their quality [START_REF] Sato | Tracking the evolution of object-oriented quality metrics on agile projects[END_REF][START_REF] Hecht | Tracking the software quality of android applications along their evolution (t)[END_REF], or their variability at both domain and implementation level [START_REF] Lotufo | Evolution of the Linux kernel variability model[END_REF][START_REF] Passos | Coevolution of variability models and related artifacts: A case study from the Linux kernel[END_REF]Kröher et al., 2018c]. Understanding in what measure they evolve is important for their maintenance and multiple approaches have been designed to understand and master it, mainly relying on visualizations [START_REF] Harald | Software evolution: analysis and visualization[END_REF][START_REF] Diehl | Software visualization: visualizing the structure, behaviour, and evolution of software[END_REF]Wettel and Lanza, 2008b;[START_REF] Steinbrückner | Understanding software evolution with software cities[END_REF]. Regarding OO variability implementations, being able to track their evolution is of utmost importance as they are hidden in the codebase. Comprehending them is already achieved through a visualization and as visually comparing snapshot views can be confusing since the exhibited representations can importantly change between two versions of a system, there is a need to extend it to support several versions of a system. Regarding build systems, while recent work proposes a technique to easily monitor the evolution of dead anomalies in the Linux kernel build system [START_REF] Kröher | Incremental software product line verification-a performance analysis with dead variable code[END_REF], such methods need to be extended to monitor the presence of anomalies throughout the evolution of the system.

Long-term perspectives

Studying the other symmetry patterns in OO structures. The proposed technique used by symfinder to identify OO variability implementations relies on the notion of symmetry in OO software constructs proposed by Coplien and Zhao [2000b]. This work is based on the original definition of local symmetry that [START_REF] Alexander | The nature of order: an essay on the art of building and the nature of the universe. Book 1, The phenomenon of life[END_REF] previously defined in the Theory of Centers together with 14 other definitions of structural properties. Therefore, the symmetries present in these other structural properties might be a way to identify variability implementations that do not respect the common implementation techniques, such as code duplication for example. Achieving this goal requires instantiating these properties on the software structures and providing a technique to identify them.

Studying wild variability in other paradigms. Multiple large scale software systems are implemented using different programming languages. For example, the Mozilla Gecko codebase relies on 48 different programming languages1 , with C ++ and JavaScript representing around 27% of the total LoCs each one. The adoption of JavaScript as a support language for large scale applications is increasing and some work from the SPL community is oriented towards using it as a support language for variable systems [START_REF] Do | Low-level variability support for web-based software product lines[END_REF][START_REF] Halin | Yo variability! jhipster: a playground for web-apps analyses[END_REF][START_REF] Cortiñas | spl-js-engine: a javascript tool to implement software product lines[END_REF]. Studying how variability is implemented in such a language would complement the study of the previously introduced perspective on the interactions between variability mechanisms in the build system and the implementation code by enabling the study of the interactions between different variability implementations in the implementation code. This study requires first, in the case of JavaScript, a characterization of how variability is implemented in systems using this language and a method to identify it. Only then a language-independent unified view of the implemented variability with a characterization of their interactions can be built.

Exploring the impact of OO variability implementations on other software properties. Variability implementations are known to have an effect on the comprehension [START_REF] Galster | Variability and complexity in software design: Towards a research agenda[END_REF][START_REF] Medeiros | Discipline matters: Refactoring of preprocessor directives in the# ifdef hell[END_REF] and the management of the evolution of a system [START_REF] Metzger | Software product line engineering and variability management: achievements and challenges[END_REF], consequently hampering the quality of the system [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF]. To tackle this issue, in Chapter 7, we proposed VariMetrics as a first approach unifying in a single representation OO variability implementations and software metrics. Additionally to their impact on software maintenance, software quality defects such as code smells are known to cause an increase in the energy consumption of an application [START_REF] Carette | Investigating the energy impact of android smells[END_REF]. Software energy consumption recently gained a lot of interest for the scientific community [START_REF] Pinto | Refactoring for energy efficiency: A reflection on the state of the art[END_REF] and configuring software systems taking into account energetical constraints is challenging [START_REF] Götz | Architecture and mechanisms of energy auto-tuning[END_REF][START_REF] Götz | Owl 2 reasoning to detect energy-efficient software variants from context[END_REF]. Moreover, recent work shows that refactoring functional code impacts the energy consumption of a system [START_REF] Ournani | Tales from the code# 1: The effective impact of code refactorings on software energy consumption[END_REF]. We aim therefore to extend our analysis of the effects of OO variability implementations on other properties of a system, such as its energy consumption. Achieving this goal requires being able to characterize and measure the energy consumption of variability implementations.

• The symbol is selected by another symbol Anomaly 8 (Unreachable symbol [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). A symbol is unreachable if:

• The symbol is invisible (does not have a prompt)

• The symbol is not selected by another symbol • The symbol does not have a default value (or just default values with the value n)

Anomaly 9 (Unnecessary Selects on Choice Values [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). select statements are unnecessary on symbols matching the following conditions:

• The symbol is a choice value • The symbol is selected by another symbol A.3 KBUILD consistency by [START_REF] Nadi | Make it or break it: Mining anomalies from Linux Kbuild[END_REF] Nadi and Holt [2011] investigate both the internal and external consistencies of the KBUILD Makefiles by studying the (non-)use of composite objects, and the non-selection of a file because of a missing feature. The absence of files from the code base in the Makefiles is also studied (Anomaly 10), but does not result from a conflict between constraints in the build system.

Anomaly 10 (File Not Used (implementation-compilation consistency) [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). A .c file exists in the directory but is not used in the Makefile of that directory.

Anomaly 11 (Feature Not Defined (compilation-configuration consistency) [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). A .c file is referenced in the Makefile, and its presence is conditioned on a KCONFIG feature being defined. However, this feature is not defined in any of the KCONFIG files.

Anomaly 12 (Variable Not Used (compilation self-consistency) [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). A .c file is referenced in the Makefile as part of a composite variable definition, but this variable is never used.

A.4 KCONFIG-CPP consistency by [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] Tartler et al. [2011] characterize defects issuing from conflicts between the KCONFIG and the CPP space. They first give the following definition of dead and undead blocks.

Anomaly 13 (Configurability defect ⋆ [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]). A configurability defect (short: defect) is a configuration-conditional item that is either dead (never included) or undead (always included) under the precondition that its parent (enclosing item) is included: with C and I the formulas representing the configuration (i.e., KCONFIG) and implementation (i.e., Make) spaces respectively.

Anomaly 19 (Code-KCONFIG defects ⋆ [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Code-KCONFIG anomalies are defined as "Code constraints are not consistent with constraints in Kconfig" and detected using the following formulas:

Dead B N = ¬sat(Block N ∧ C ∧ K) U ndead B N = ¬sat(¬Block N ∧ parent(Block N ) ∧ C ∧ K)
These formulas are strictly identical to Anomaly 15, thus their expressiveness in our model will be checked together.

Anomaly 20 (Code-KCONFIG missing [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Such defects happen when Code constraints are not consistent with Kconfig constraints because certain features used in the code are not defined in the Kconfig files and are, therefore, always false.

Anomaly 21 (Code-Make [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Code-Make anomalies are defined as "Code constraints are not consistent with constraints in Makefiles". Although their formulas are not given in the paper, we can deduce them from Anomaly 19:

Dead B N = ¬sat(Block N ∧ C ∧ M ) U ndead B N = ¬sat(¬Block N ∧ parent(Block N ) ∧ C ∧ M )
Anomaly 22 (Code-Make-KCONFIG ⋆ [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Code-Make-KCONFIG anomalies are defined as "The combination of constraints in the three spaces are conflicting" and detected using the following formulas:

Dead B N = ¬sat(Block N ∧ C ∧ M ∧ K) U ndead B N = ¬sat(¬Block N ∧ parent(Block N ) ∧ C ∧ M ∧ K)
Anomaly 23 (Code-Make-KCONFIG missing [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Such defects happen when "The combination of constraints in the three spaces are conflicting because certain features used in the compilation constraints are not defined in the Kconfig files, and are therefore always false".

Anomaly 24 (Make-KCONFIG ⋆ [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). A file is dead "if it can never be present (i.e., will never get compiled) while satisfying the combination of constraints in the Make space and the KCONFIG space". These anomalies are checked by checking these formulas.

Dead F N = ¬sat(F ile N ∧ M ∧ K) U ndead F N = ¬sat(¬F ile N ∧ M ∧ K)
Anomaly 25 (Make-KCONFIG missing [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). The definition of this type of defects is not written literally in the paper but we can derive the definition from Anomalies 20 and 23. Such defects happen when the combination of constraints in the make and KCONFIG spaces are conflicting because certain features used in the Makefiles are not defined in the KCONFIG files, and are therefore always false. Mots-clés : Génie logiciel, Lignes de produits logiciels, Variabilité logicielle, Modèle de variabilité, Rétro-ingénierie, Visualisation.
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Figure 2 . 2 :

 22 Figure 2.2: Linux build process. Violet dotted arrows represent constraints propagation between spaces.

Figure 3 .

 3 Figure 3.1: UML representation of Listing 2.1 exhibiting local symmetries

Figure 3 . 2 :

 32 Figure 3.2: The symfinder toolchain

-Figure 3 . 3 :

 33 Figure 3.3: Identified vp-s and variants using symfinder for the excerpt of JFreeChart given in Figure 3.1.

Figure 4 . 1 :

 41 Figure 4.1: The extended symfinder toolchain supporting both Java and C ++ systems

  (a) MuseScore visualization excerpt exhibiting the different music sheet elements. (b) Decaf-Compiler visualization excerpt exhibiting the different concepts of the Decaf language. (c) Zelda-Game visualization. (d) Firefox visualization excerpt.

Figure 4 . 2 :

 42 Figure 4.2: Excerpts of visualizations generated by symfinder

Figure 4 .

 4 4 4 .

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Feature model of ArgoUML, adapted from [Couto et al., 2011]

Figure 4 . 5 :Figure 4 . 6 :

 4546 Figure 4.5: Feature model of Sat4j (from [Tërnava et al., 2022])

  , illustrating the mapping of the ui.FigNodeModelElement vp and eight from its eighteen class variants (visible on Figure 4.4) with domain features (Figure 4.3). The vp itself maps to two features, Cognitive and Logging, and the eight shown variants map to six features.

Figure 4 .

 4 5 details the different features provided by Sat4j. Their implementation heavily relies on design patterns. Fully customizable Boolean solvers are proposed, 50 CHAPTER 4 -Assessing the symfinder method (a) Identified vp-s with variants for features Heuristics with Constraints in Sat4j (b) Identified vp-s with variants for features Restarts with Constraints database management in Sat4j

Figure 4 . 7 :

 47 Figure 4.7: The identified vp-s with variants for four of the features in Sat4j

  (a) Identified vp-s with variants not related to domain features in Sat4j (b) Identified unexpected vp-s with variants in Sat4j

Figure 4 . 8 :

 48 Figure 4.8: The identified vp-s with variants not related to domain features and the unexpected ones

Figure 4 . 9 :

 49 Figure 4.9: Example of visualized vp-s.

54CHAPTER 4 -

 4 Figure 4.10: Some colored packages from JFreeChart (org.jfree.chart.plot in yellow and org.jfree.chart.renderer in green).

Figure 5 .

 5 Figure 5.1: Excerpt of JFreeChart's class diagram. CompassPlot uses MeterNeedle and its variants.

Figure 5 . 2 :

 52 Figure 5.2: symfinder view of JFreeChart. CompassPlot and MeterNeedle appear in two distant trees.

CHAPTER 5 -

 5 Figure 5.3: symfinder visualization of NetBeans 12.1 with isolated nodes filtered out

Figure 5 . 4 :

 54 Figure 5.4: The identified vp-s and variants using symfinder-2 for the excerpt of JFreeChart given in Figure 3.1

  Figure 5.4, 926 potential vp-s at class and method levels are identified in JFreeChart. To show the related variability only to the vp_Plot and v_JFreeChart given in Figure5.4, one can add their respective class paths in the dedicated textbox. In this example, shown classes are the entry

Figure 5 . 5 :

 55 Figure 5.5: Symmetries in object-oriented code and metrics that can be extracted

  Definition 5.1 (Class and Variability Implementation). C represents the set of classes of the system. A class c ∈ C is defined as a tuple c = ⟨nbV ar class , nbV ar method ⟩

Definition 5 . 3 (

 53 Individually dense class). A specific variability implementation v ∈ V is individually dense if, given a threshold minV ars, v has a minimum of minV ars variants at class or method level.ID minV ars (v) = (v.nbV ar class ≥ minV ars) ∨ (v.nbV ar method ≥ minV ars)

Definition 5 . 4 (

 54 Collectively dense class). Given a usage graph G = (C, R), and d(c 1 , c 2 ) the distance between two classes in the graph. A class c ∈ C is collectively dense if, given a threshold maxDist, there is at least a variability implementation v distant of maximum maxDist from c.

Figure 5 . 6 :

 56 Figure 5.6: Depiction of the collectively dense class identification technique in a sample usage graph. Nodes represent classes, and edges usage relationships (i.e., presence of the type as a class attribute or a method parameter).

Figure 5 . 7 :

 57 Figure 5.7: Number of vp-s and variants (nodes) displayed on the visualization before and after refinement by API

Figure 5 . 8 :

 58 Figure 5.8: Execution time in symfinder and symfinder-2

Figure 5 . 9 :

 59 Figure 5.9: symfinder-2 view of JFreeChart, having JFreeChart as an entrypoint, OUT as usage orientation and a usage level of 4.

  Figure 6.1: Sample views of VariCity

Figure 6 . 2 :Figure 6 . 3 :

 6263 Figure 6.2: Visual properties of VariCity

84CHAPTER 6 -

 6 Figure 6.4: Visualization of the package java of NetBeans 12.2

  JFreeChart, usage level 2, orientation OUT, JFreeChart and Plot as entry points. Displaying links of Plot reveals that XYPlot and CategoryPlot are subclasses. (b)Figure6.5a after adding XYPlot and CategoryPlot as entry points. Figure6.5a after increasing the usage level to 4.

Figure 6 . 5 :

 65 Figure 6.5: Scenario 2

7 .

 7 Task. Identify 3 hotspots for an individual density threshold of v = 20 and a collective density threshold of d = 5.

Figure 6 . 7 :

 67 Figure 6.7: Correctness of the answers given by the two groups.

Figure 6 . 8 :

 68 Figure 6.8: Average completion time (in minutes) for each task when using VariCity or the IDE

  Figure 7.1: Views of GeoTools, using cyclomatic complexity as footprint, # LoC as height, and complexity as color. The two most visible classes are gml311.DocumentRootImpl and gml311.Gml311PackageImpl.

Figure 7 . 2 :

 72 Figure 7.2: VariCity visualization of GeoTools.

Figure 7 .

 7 4 shows the VariCity view of Figure 7.2 in Vari-Metrics showing the cognitive complexity using the red-to-green color scale. Where the classes concentrating variability implementations revealed by VariCity (cf Section 7.2.2) remain visible independently of their quality (e.g., FilterFactoryImpl or NumberRange), VariMetrics

Figure 7 . 3 :Figure 7 . 4 :

 7374 Figure 7.3: Visual properties used to display quality metrics compared to the original VariCity visualization.

Figure 7 . 5 :

 75 Figure 7.5: View of XYPlot and CategoryPlot before and after the refactor. Block duplications are displayed on the red-green scale (range: 0 → 50 blocks) and test coverage using the crackled texture (range: 0% → 100%).

Figure 7 . 8 :

 78 Figure 7.8: Figure 7.6 displaying cognitive complexity on the red-green scale instead of the coverage (range: 0 → 150).

Figure 7 . 9 :

 79 Figure 7.9: VariMetrics visualization of JFreeChart embedded in the IDE. The white and violet boxes have been manually added on the figure. In the visualization panel, buttons allow to ① run symfinder on the codebase, ② start the VariCity visualization server, ③ stop it, ④ reload it, and ⑤ open the classes corresponding to selected buildings in the IDE's editor.

Figure 2 . 2 ,

 22 the dir directory and the foo.c, file_a.c, file_b.c, and file_c.c files it contains are represented by the following assets: • dir = ⟨BAR, true, true, true⟩ • foo.c = ⟨F OO, true, dir, true⟩ • file_a.c = ⟨true, foo.c, dir, true⟩ • file_b.c = ⟨true, foo.c, dir, true⟩ 126 CHAPTER 8 -A unified representation for anomalies in the Linux build system • file_c.c = ⟨true, true, dir, true⟩ Definition 8.2 (Internal presence condition).

3 (

 3 Application to KBUILDPC Int (dir) = ϕ selectdir ∧ expand (ϕ predsdir ) ∧ expand (ϕ depIntdir ) = BAR ∧ true ∧ true = BAR PC Int (foo.c) = F OO ∧ true ∧ expand(PC Int (dir)) = F OO ∧ BAR PC Int (file_a.c) = true ∧ expand(PC Int (foo.c)) ∧ expand(PC Int (dir)) = (F OO ∧ BAR) ∧ BAR PC Int (file_b.c) = PC Int (file_a.c) PC Int (file_c.c) = true ∧ true ∧ expand(PC Int (dir)) External presence condition)

  3, using for context C = C KCONFIG ∪ C KBUILD . Thus, C KCONFIG = K and C KBUILD = M , and: slice(C KCONFIG , terms(PC Int (a)) ∪ terms(ϕ depExta )) |= K slice(C KBUILD , terms(PC Int (a)) ∪ terms(ϕ depExta )) |= M We can then express the different formulas in our model. Instantiation 1 (Expressing code-Make-KCONFIG anomalies -Anomaly 22).

Instantiation 2 (

 2 Expressing code-Make defects -Anomaly 21). Same as Instantiation 1 with C = C KBUILD . Instantiation 3 (Expressing configurability defects -Anomaly 13). Same as Instantiation 1 with C = C KCONFIG . Instantiation 4 (Dead block -Anomaly 1). Same as Instantiation 3. Instantiation 5 (Expressing code-KCONFIG defects -Anomaly 19). Same as Instantiation 3.

Instantiation 8 (

 8 Expressing Internal consistency -Anomaly 2).

  i=1..m b i ↔ PC(b i ) corresponds to the set of constraints of the code space, and b i the selection of the b i block. Therefore, i=1..m b i ↔ PC(b i ) ∧ b i can be simplified to b i ↔ PC(b i ), as done by

  and Holt, 2012] PC Ext (B3) = PC Int (B3) ∧ PC Ext (foo.c) ∧ PC(BAR) ∧ ¬PC(FOO)* KBUILD F ile N ∧ M [Nadi and Holt, 2012] PC Int (foo.c) = FOO ∧ PC Int (dir) KBUILD -KCONFIG F ile N ∧ M ∧ K [Nadi and Holt, 2012] PC Ext (foo.c) = PC Int (foo.c) ∧ PC(FOO) ∧ PC(BAR) KCONFIG presenceCondition(f eature) = f eature → φ [Tartler et al., 2011] PC(FOO) = σ F OO ∧ (PC(DEPS_A) ∨ PC(DEPS_B)) ∧ PC(MENU_COND)

Figure 9 . 1 :

 91 Figure 9.1: Visual representation of the inclusions shown in the MOZBUILD space on Figure 2.3.

  Figure 9.2: Assets model

9. 2 . 1 Figure 9 . 3 :

 2193 Figure 9.3: Anomalies model

  dead: ¬sat(C ∧ I ∧ Block N ) undead: ¬sat(C ∧ I ∧ ¬Block N ∧ parent(Block N ))
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Table 3

 3 

	Software construct	Commonality / Unchange	Variability / Change	Symmetry transformation
	Class subtyping	Superclass / Type	Subclasses	Substitution
	Method/constructor overloading	Structure	Signatures / Arity	Substitution
	Strategy pattern	Strategy interface	Algorithms	Substitution
	Factory pattern	Abstract Creator and product	Concrete creators and products Factory

.1: Five object-oriented software constructs and their symmetries

Table 3 .

 3 State of the Art 2: Terminologies used by a panel of work for each space of the Linux build system

	Paper	KCONFIG files	KBUILD Makefiles	CPP / Source files
	Tartler [2013]	Feature Modeling Configuration	Build system	Generator Preprocessor
	Passos et al. [2013]	Variability Model	Mapping	Implementation
	El-Sharkawy et al. [2017]	Problem space	Solution space
	Abal et al. [2014]	Problem space Model	/	Solution space Code
	Nadi [2014]	Configuration space	Build space	Code space
		Work characterizing anomalies	
	Sincero et al. [2010]	Problem space Model	/	Solution space Implementation
	Tartler et al. [2011]	Configuration space	/	Implementation space
	Hengelein [2015]	Feature Modeling Configuration	Build system	Generator Preprocessor
	Nadi and Holt [2011]	Configuration space	Compilation space	Implementation space
	Nadi and Holt [2012]	Kconfig space	Make space	Code space
	Tartler et al. [2009]	Model level	Generation level	Source code level
	Tartler et al. [2012]	Configuration space Implementation variant Implementation space
	Nadi and Holt [2014]	Kconfig space	Make space	Code space

Table 3 .

 3 3: Notation mapping for constraints in the three spaces in three papers

	3.6 -Summary

Table 4 .

 4 1: The five studied variability-rich subject systems and their numbers of vp-s and variants identified by symfinder.

	Subject system	Version	C ++ LoCs # vp-s # variants
	Zelda-Game	54a8197	1,132	1	2
	Decaf-Compiler 820448a	1,549	5	32
	PCSX2	v1.6.0	798,479	130	234
	MuseScore	v3.4.2	482,152	388	930
	Mozilla Firefox 53.0.3	5,550,504 5,928	11,681
	Execution system: Ubuntu 18.04.2 LTS with Intel Xeon CPU
	E5-2637v2 @ 3.5GHz and 128Go memory.		

Table 4 .

 4 2:The two subject systems with their respective LoC, total number of potential vp-s with variants, and class or method level granularity identified by symfinder

	Subject system	LoC	Class (C) and Method (M) level #vp-s #variants #nodes #vp-s #variants Total
	ArgoUML	134,367	C M	327 447	860 1,116	85 -	774	1,976
	Sat4j	27,638	C M	80 188	135 453	10 -	268	588

Table 4 .

 4 3: The mapping of an identified vp with its eight variants at class level to features, visualized also inFigure 4.4. 

	A vp with variants	Feature
	vp: ui.FigNodeModelElement	Cognitive, Logging
	use_case.ui.FigActor	Use Case
	sequence.ui.FigClassifierRole	Sequence
	static_structure.ui.FigComment	Logging
	collaboration.ui.FigClassifierRole Collaboration
	activity.ui.FigObjectFlowState	Activity
	ui.FigEdgePort	-
	deployment.ui.FigObject	Deployment
	activity.ui.FigPartition	Activity
	initMenuCreate() Refinement 9	

  2022]

		ArgoUML	Sat4j
	#domain features	11	13
	#features traces (normalized)	672	113
	#local symmetries (class level)	1 272	225
	True Positives (TP)	561	113
	False Positives (FP)	711	112
	False Negatives (FN)	111	0
	Precision	44.10%	50.22%
	Recall	83.48% 100.00%

Table 5 .

 5 1: The ten variability-rich subject systems.

	Subject system Version	LoC # vp-s # variants	API	Type
	Java AWT	jb8u202-b1532	69,974	795	1,706 Documented	Library
	Apache CXF	3.2.7	48,655 3,403	7,625 Documented Framework
	JUnit	r4.12	7,717	109	245 Documented Framework
	Maven	3.6.0	105,342	612	1,147 Documented Application
	JFreeChart	v1.5.0	94,384	926	1,923 Documented	Library
	ArgoUML	bcae373	134,367	776	1,959 Documented Application
	Cucumber	v6.8.0	42,662	238	282	Annotated	Framework
	Logbook	2.2.1	16,210	96	162	Annotated	Library
	Riptide	2.11.0	12,626	102	218	Annotated	Library
	NetBeans	12.1	5,058,448 3,621	6,736 Documented Application
	RQ						

4 : Does the identification of usage relationships impact the scalability of symfinder-2?

Table 5 . 2 :

 52 Comparison of the number of disconnected graphs and isolated nodes with symfinder and symfinder-2

	Subject	Nodes	symfinder # graphs # isolated nodes # graphs # isolated nodes symfinder-2
	Java AWT	431	55	142	2	20
	Apache CXF	3085	473	1149	105	500
	JUnit	118	23	36	6	18
	Maven	616	177	172	21	79
	JFreeChart	578	54	167	5	51
	ArgoUML	1270	123	460	38	183
	Cucumber	331	45	122	14	50
	Logbook	117	19	40	4	16
	Riptide	89	20	37	8	19
	NetBeans	3498	504	1666	195	836

Table 5 .

 5 5.2 -5.2.5 RQ 3 : Usefulness of API-based filtering 69 3: Number of nodes identified as being part of dense zones compared to the total number of nodes in all subject systems

	Project	symfinder	symfinder-2 ∆ 5,3 ∆ 10,3 ∆ 30,2
	Java AWT	431	28	22	3
	Apache CXF	3085	98	32	4
	JUnit	118	5	0	0
	Maven	616	8	1	0
	JFreeChart	578	34	15	3
	ArgoUML	1270	40	15	3
	Cucumber	331	4	0	0
	Logbook	117	0	0	0
	Riptide	89	0	0	0
	NetBeans	3498	58	22	2

Table 6 .

 6 1: Visual properties and their default color

	6.2 -6.2.1 Main principles

Streets

Plan (red)

Street aggregating entry point classes Plan / Underground (green) Usage relationship Aerial (blue)

Inheritance relationship classes that are parts of dense zones but initially less visible on the visualization by being less individually dense or linked through underground streets.

Table 6 . 3 :

 63 Structure of the given CSV containing data on the classes

	Class name			Method variants Constructor variants
	org.jfree.chart.ChartPanel		6		5
	org.jfree.chart.ChartRenderingInfo	0		2
	org.jfree.chart.JFreeChart		17		3
	org.jfree.chart.LegendItem		0		10
	. . .				. . .		. . .
	Table 6.4: Statistics on the object system used for the experiment, JFreeChart
	# LoCs # classes	# vp-s class level method level total class level method level # variants	total
	94,384	990	259	667 926	275	1,648 1,923

Table 7 .

 7 1: Subject systems and their available metrics.

	7.4 -Evaluation

Table 7 .

 7 2: Number of noticeable classes due to their variability concentration, criticality, and both aspects for the given views on all subject systems.

	7 ,

Table 7 .

 7 3: Measures of the refactored and added classes, before and after the refactor.

	Class name (in the org.jfree.chart package)	Coverage	# duplicated blocks complexity Cognitive
	Identified relevant classes		
	plot.CategoryPlot	before after	74.9% 75.4%	23 16	503 392
	plot.XYPlot	before after	70.0% 69.9%	24 21	666 603
	axis.DateAxis	before after	71.8% 77.2%	10 0	201 139
	axis.NumberAxis	before after	78.7% 77.8%	12 4	163 127
	entity.ChartEntity	before after	30.7% 90.5%	0 0	26 26
	ChartPanel	before after	25.7% 52.2%	7 2	322 295
	Other already present classes		
	axis.LogarithmicAxis	before after	16.0% 17.1%	4 0	315 281
	axis.LogAxis	before after	45.3% 47.0%	10 7	92 87
	axis.PeriodAxis	before after	29.3% 30.6%	2 1	112 104
	Added classes			
	plot.CategoryXYCommon	before after	-77.4%	-6	-97
	axis.DatePeriodCommon	before after	-46.2%	-0	-8
	axis.NumberLogCommon	before after	-81.6%	-0	-5
	Overall project	before after	54.5% 55.3%	604 565	15,858 15,622

  Definition 8.7 (Externally core asset). An asset a of A is an externally core asset if it is always selected independently of the constraints of the context. The set of core assets of A is noted Definition 8.8 (Externally full-mandatory asset). An asset a is an externally full-mandatory asset if the selection of its parent dependencies implies its selection due to the formulas in its context. The set of externally full-mandatory assets of A is noted mandExt(A). Definition 8.9 (Missing dead asset). An asset a is missing dead if a feature in its presence condition is not defined in the context C. The set of assets of A with missing features is noted missing(A).

	coreExt(A).
	a ∈ coreExt(A) ⇔ ¬sat(¬(PC Ext (a)))
	a ∈ mandExt(A) ⇔ expand(ϕ depInta ) → PC Ext (a)
	⇔ ¬sat(¬PC Ext (a) ∧ expand(ϕ depInta ))
	a ∈ missing(A) ⇔ ∃m ∈ terms(PC Ext (a)) | (m / ∈ terms(C))
	8.1.1.2 External consistency
	Definition 8.6 (Externally dead asset). An asset a is an externally dead asset if it is never se-
	lected due to inconsistencies with its context. The set of externally dead assets of A is noted
	deadsExt(A).
	a ∈ deadsExt(A) ⇔ ¬sat(PC Ext (a))

Table 8 .

 8 1: ϕ enable truth table for a KCONFIG feature F

	8.1 -8.1.2 Configurator Model

  Note. If F S ∈ F select F is a core feature, then F is also a core feature, as PC(F S ) → PC(F ). Definition 8.14 (Missing dead feature). A feature F is missing dead if a feature in its presence condition is not defined. The set of missing dead features is noted missingDeadF eatures().

	130	CHAPTER 8 -A unified representation for anomalies in the Linux build system
	8.1.2.1 Consistency
	Definition 8.12 (Dead feature). A feature F of F is dead if it can never be selected. The set of
	dead features is noted deadF eatures().
		F ∈ deadF eatures() ⇔ ¬sat(PC(F ))
	Definition 8.13 (Core feature). A feature F of F is a core feature if it is always selected. The set
	of core features is noted coreF eatures().
		F ∈ coreF eatures() ⇔ ¬sat(¬PC(F ))
		F ∈ missingDeadF eatures() ⇔ (m ∈ terms(PC(F )) ∧ (m / ∈ F)
		2 .

  Instantiation 19 (Expressing dead feature -Anomaly 4). Given F a dead feature. The definition can be expressed in our model as ¬sat(ϕ deps F ), which itself implies ¬sat(PC(F )), hence F is dead.

	8.2 -8.2.3 Model on KCONFIG	135
	8.2.3 Model on KCONFIG	
	Given the configurator model and the application example already given in Section 8.1.2, we just
	have to instantiate the anomalies.	
	3 https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#descending-down-in-directories	

Table 8 .

 8 2: Anomalies covered by the model (defects defined as dead and undead according to the authors)

		Paper		Sincero et al. [2010]	Tartler et al. [2011]	Nadi and Holt [2011]	Nadi and Holt [2012]	Hengelein [2015]
		Internal	Dead	Anomaly 2	Anomaly 14	Anomaly 12	Anomaly 18
		consistency	Core	Anomaly 2	Anomaly 14		Anomaly 18
			Dead	Anomalies 1 and 3	Anomalies 13 and 15		Anomalies 19, 21, 22 and 24
	Derivator	External consistency	Core Full-mandatory	Anomaly 3	Anomaly 15 Anomaly 13		Anomaly 24 Anomalies 19, 21 and 22
		Missing feature		Anomaly 17	Anomaly 11	Anomalies 20, 23 and 25
		Dead		Anomaly 16		Anomaly 4
	Configurator	Core				Anomaly 5
		Missing dead				Anomaly 6
	Other properties (e.g., unreachable symbol, file not used)			Anomaly 10	Anomalies 7 to 9

Table 8 .

 8 3: Expressions of PCs for the B3 block, the foo.c file and the FOO feature from Figure 2.2.

	Involved space(s)	SOTA expressions Proposed models expressions
	CPP	Block N ∧ C [Sincero et al., 2010] PC Int (B3) = BAR ∧ ¬PC Int (B2) ∧ PC Int (B1)
	CPP -KBUILD	Block N ∧ C ∧ M [Nadi and Holt, 2012] PC Ext (B3) = PC Int (B3) ∧ PC Ext (foo.c)
	CPP -KCONFIG	Block N ∧ C ∧ K [Sincero et al., 2010], V ∧ Block N [Tartler et al., 2011] PC Ext (B3) = PC Int (B3) ∧ PC(BAR) ∧ ¬PC(FOO) ∧ (PC(FOO) ∨ PC(BAR) ∨ PC(BAZ))

Table 9 .

 9 2: Configurator instantiated on the Linux kernel build system and the Mozilla build system.

	Configurator	KCONFIG	Mozilla Autoconf
	Asset	Feature
	ϕ enable	the ability to select the feature by user selection (prompt), or default value	true
	ϕ deps	boolean formula on features defined in the depends on statement	boolean formula on features
	F select	set of features selecting F with a select statement	selection by Autoconf system analysis
	Core anomaly	the feature is always selected despite having constraints on its selection
	Dead anomaly	the feature can never be selected

Table 9 .

 9 4 on the codebase and obtain the list of all dead code blocks and source files, together with the cause of the anomaly. The 4.4 version 3: Derivator instantiated on the KBUILD, MOZBUILD and CPP. with f i being features which at least one needs to be set for the source file to be selected. If the file is always selected, ϕ select = true. If the asset is defined but never added to a list, ϕ select = f alse.The condition of the if surrounding the block. If the file is always selected, ϕ select = true.
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	Derivator KBUILD	MOZBUILD	CPP
	Asset	Source file	Source file	Code block
	ϕ selecta	f i The condition of the #if sur-
				rounding the block.
	ϕ predsa	comp, the composite variable if	¬(	
		s is part of a composite defini-		
		tion. comp must be selected.		
	ϕ depInta	dir, the directory containing the		
		source file which also needs to		
		be selected.		
	ϕ depExta	-	-	The condition to select the file
				containing b.
	Totally	the KBUILD inclusion chain can	no MOZBUILD inclusion chain	the code block can never be se-
	dead	never select the file	allows to select the file	lected
	anomaly			
	Partially	-	some but not all MOZBUILD in-	-
	dead		clusion chains never allow se-	
	anomaly		lection of the file	
	Totally	the KBUILD inclusion chain al-	all MOZBUILD inclusion chains	the code block is always se-
	core	ways selects the file	always select the file	lected
	anomaly			
	Partially	-	some but not all MOZBUILD in-	-
	core		clusion chains always select the	
	anomaly		file	
	Totally	the file can be selected re-	for all inclusion chains, the file	the code block can be selected
	full-	garding constraints from the	can be selected regarding con-	regarding CPP constraints, but
	mandatory	KBUILD file he's declared in,	straints from the MOZBUILD	cannot be when adding con-
	anomaly	but cannot be when adding con-	file he's declared in, but can-	straints from the MOZBUILD
		straints from the parent KBUILD	not be when adding constraints	space
		files	from the parent MOZBUILD	
			files	
	Partially	-	for some but not all inclu-	-
	full-		sion chains, the file can be	
	mandatory		selected regarding constraints	
	anomaly		from the MOZBUILD file he's	
			declared in, but cannot be when	
			adding constraints from the par-	
			ent MOZBUILD files	

i b i ) with b i the corresponding if block and the potential elif blocks before b if b is an elif or else block, otherwise true. ¬( i b i ) with b i the corresponding #if block and the potential #elsif blocks before b if b is an #elsif or #else block, otherwise true. p ∧ dir with p the parent block of b if b is a nested block and dir the condition to enter this MOZBUILD file. p, the parent block of b if b is a nested block.

Table 9 .

 9 5: Identified anomalies correspondence table

	Space	Proposed framework KernelHaven
	CPP	InternalTotalDead ExternalTotalDead	C-preprocessor condition alone is not satisfiable C-preprocessor condition combined with file PC is not satisfiable

Table 9 .

 9 6: Results of the mapping between anomalies identified by KernelHaven and our framework.

	Tool	Linux anomalies CPP CPP -KBUILD KBUILD	BusyBox anomalies CPP CPP -KBUILD KBUILD
	Proposed framework	2,441	40	8	154	11	15
	KernelHaven	1,214	12	8	121	0	15
	Both	1,214	12	8	121	0	15
	Precision	49.73%	30%	100% 78.57%	-*	100%
	Recall	100%	100%	100%	100%	-*	100%
	* precision and recall values are not calculated for CPP -KBUILD anomalies in BusyBox as they are all
	false positives according to the mapping.					

Table 9 .

 9 7: Dead, core and full-mandatory anomalies identified in the Gecko codebase when building the Firefox browser

	Spaces	Dead Totally Partially Totally Partially Totally Partially Core Full-mandatory
		Without features from configuration			
	CPP	533	-	2	-	-	-
	MOZBUILD	0	59	15	2	-	-
	CPP -MOZBUILD	16	308	0	0	14	4
		With features from configuration			
	CPP	0	0	0	0	0	0
	MOZBUILD	0	0	0	0	0	0
	CPP -MOZBUILD	12	22	0	0	0	0
	9.3.2.3 Observations						
	Table						

  2 code blocks have been identified as totally core. One block 11 is the else branch of a #if 0 and thus has as PC ¬f alse, and the other one 12 has for condition # if YYDEBUG || YYERROR_VERBOSE || 1 that is translated in YYDEBUG ∨ YYERROR_VERBOSE ∨ true and is always true. Anomaly internal to the CPP space (third_party/libwebrtc /third_party/abseil-cpp/absl/types/optional_test.cc) FUZZING condition. All source files added in /tools/fuzzing/moz.build with the ¬ JS_STANDALONE condition thus have for PC (JS_STANDALONE ∧ FUZZING) ∧ ¬ JS_STANDALONE, making them dead.

	#if !defined(ABSL_USES_STD_OPTIONAL)	
	...	
	#if defined(ABSL_USES_STD_OPTIONAL) && defined(__GLIBCXX__)	<--dead
	// libstdc++ std::optional implementation (as of 7.2) has a bug: when T is
	// trivially copyable, optional<T> is not trivially copyable (due to one of
	// its base class is unconditionally nontrivial).	
	#define ABSL_GLIBCXX_OPTIONAL_TRIVIALITY_BUG 1	
	#endif	
	#endif	
	Listing 9.2:	
	MOZBUILD anomalies 59 source files have been identified as partially dead, of
	which an example is given in Listing 9.3. /js/app.mozbuild (listing 9.3a) in-
	cludes /tools/fuzzing/moz.build (listing 9.3b) under the JS_STANDALONE ∧
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Table 9 .

 9 8: Execution time for each analysis step on Mozilla Gecko for the Firefox web browser, Thunderbird mail client, the SeaMonkey suite and the Android Firefox application.System configuration: Ubuntu 18.04.2 LTS with Intel Xeon CPU E5-2637v2 @ 3.5GHz and 128Go memory.

	Step

  Maîtriser la variabilité enfouie dans les systèmes orientés objet et les systèmes de construction logicielle Johann MORTARA Résumé La demande sans cesse croissante de solutions logicielles nouvelles et récentes oblige les professionnels du logiciel à développer et à maintenir des systèmes logiciels personnalisables tout en garantissant un niveau élevé de qualité et de fiabilité. Si les lignes de produits logiciels (LPLs) constituent une solution pour atteindre cet objectif, de nombreux systèmes logiciels riches en variabilité ne sont pas organisés de cette manière. Ils augmentent progressivement leurs parties variables, en s'appuyant sur les multiples mécanismes existants pour mettre en oeuvre leur variabilité dans le code et leur chaîne d'outils de construction. Dans leur mise en oeuvre, les systèmes orientés objet (OO) gèrent principalement leur variabilité dans une base de code unique en utilisant des mécanismes OO tels que l'héritage et les patrons de conception. En raison de leur nature, ces implémentations sont enfouies dans la base de code, ce qui nuit à la compréhension du système par les développeurs et, par conséquent, à sa maintenance et à son évolution, entraînant des problèmes de qualité. En outre, les grands systèmes logiciels riches en variabilité s'appuient souvent sur des systèmes de construction complexes pour sélectionner les éléments du code. Comme il s'agit de systèmes de construction ad hoc réutilisant des outils standard, aucune représentation globale du mécanisme de résolution de la variabilité n'est disponible, et des conflits peuvent survenir et causer des anomalies. Dans cette thèse, nous proposons tout d'abord les bases et les techniques pour identifier et visualiser les implémentations de la variabilité dans les grands systèmes logiciels OO riches en variabilité. Ces implémentations sont abstraites en termes de points de variation et de variantes et identifiées en s'appuyant sur la notion de densité de symétries dans les structures OO. En reprenant la métaphore d'une ville, elles sont ensuite visualisées sous la forme d'un ensemble connecté de bâtiments 3D combinés à des métriques sur leur qualité. Cela permet de distinguer les zones concentrant les implémentations de variabilité et présentant potentiellement une dette technique. Ces propositions ont été validées par un prototype sur de grands systèmes logiciels OO open-source et hautement variables, ainsi que par une étude d'utilisabilité avec deux groupes distincts de développeurs débutants. La thèse introduit également un cadre de modélisation et de raisonnement pour caractériser les anomalies dans les systèmes de construction gérant de la variabilité, permettant de raisonner sur les relations entre les actifs du code, et d'identifier toutes ces anomalies au grain le plus fin. Le framework a été instancié et partiellement implémenté à la fois sur le système de construction du noyau Linux, démontrant sa généralité sur les nombreuses détections distinctes sur ce sujet très étudié, et sur une chaîne d'outils de construction récemment étudiée de la fondation Mozilla, démontrant son applicabilité.

https://www.kernel.org/doc/html/latest/kbuild/index.html

https://www.gnu.org/software/make/

https://www.android.com/

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure

During my Master's thesis, I collaborated with Xhevahire Tërnava and designed the symfinder toolchain as an automation of the symmetry-based identification approach she designed. Consequently, although I am the first author of the paper on symfinder toolchain[Mortara et al., 

2019], Xhevahire is the first author of the paper describing the identification approach[START_REF] Tërnava | Identifying and visualizing variability in object-oriented variability-rich systems[END_REF].

https://neo4j.com/

Blue names and arrows in Figure3.3 have been manually added for illustration.

https://www.jfree.org/jfreechart/

PiePlot is a variant of Plot, however, it is also a vp as it has two variants, thus is described as vp_PiePlot on the figure.

It should be noted that the identification is based on symmetry in implementation techniques while the visualization on their density. Hence, one should not confuse the two and expect any kind of symmetry in the visualization.

https://www.sonarqube.org/

https://sonarcloud.io/explore/projects

https://softvis3d.com/

https://gittup.org/tup/

https://deathstar3.github.io/symfinder-demo/cpp-projects.html

https://www.openhub.net/p/argouml

https://variability-challenges.github.io/2018/ArgoUMLSPL/index.html

The wholeArgoUML's visualization is available at https://deathstar3.github.io/symfinderdemo/JRN20/hotspots_version/argoUML-bcae37.html.

http://www.cril.univ-artois.fr/~leberre/

Sat4j's code: https://gitlab.ow2.org/sat4j/sat4j/-/tree/master/org.sat4j.core

Sat4j's ground truth: https://deathstar3.github.io/symfinder-demo/JRN20-files/Features.pdf.

The whole Sat4j's visualization is available at https://deathstar3.github.io/symfinderdemo/JRN20/hotspots_version/sat4j-22374e5e.html.

https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/ STATEDIAGRAM.txt

While the term 'tracing' / 'trace links' is used in the ground truth, we will distinguish from this term in this experiment by using 'mapping' / 'mapping links' for vp-s and variants mapped to features, although both of them have the same meaning.

https://deathstar3.github.io/symfinder-demo/mapping_process.html

http://www.cril.univ-artois.fr/~leberre/

symfinder-2's website: https://deathstar3.github.io/symfinder2-demo/

https://github.com/apiguardian-team/apiguardian

A design pattern often involves multiple classes, however only the vp of the design pattern has a special crown on it, not to overload the visualization.

In both the standalone and integrated versions of VariCity, when hovering over, class names are also displayed in a sidebar for the same reason.

https://www.babylonjs.com/

https://netbeans.apache.org/

org.jfree.chart.plot.XYPlot

org.jfree.chart.renderer.xy.XYItemRenderer 

Although configuring the view might add or remove classes on the visualization, the given tasks do not require this action. Therefore, the given data is strictly identical between both groups.

https://www.sonarqube.org/

https://softvis3d.com/

https://www.geotools.org

https://docs.geotools.org/latest/userguide/library/main/filter.html

https://sonarcloud.io/web_api

https://github.com/Corpus-2021

https://sonarcloud.io/organizations/corpus-2021/projects

https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1558-L1609

https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1676-L1726

https://www.jetbrains.com/idea/

https://plugins.jetbrains.com/docs/intellij/welcome.html

https://jetbrains.github.io/ui/

Such a validation would also exhibit potential accessibility issues (for example, regarding the choice of colors) that can be tackled by extending the existing configuration capabilities.

https://deathstar3.github.io/varimetrics-demo/

For example, although KCONFIG's syntax allows adding conditions to select statements, no defect described in our model requires to express this behaviour.

https://www.openhub.net/p/firefox/analyses/latest/languages_summary

https://busybox.net

https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

https://github.com/KernelHaven/UnDeadAnalyzer

https://github.com/KernelHaven/UndertakerExtractor

https://github.com/KernelHaven/KbuildMinerExtractor

https://hg.mozilla.org/mozilla-central/

https://hg.mozilla.org/comm-central/

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/ init.configure#l503

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/gfx/cairo/cairo/src/cairoqt-surface.cpp#l1412(l.1412-1447)

12 https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/third_party/rust/glslopt/glsloptimizer/src/compiler/glsl/glsl_parser.cpp#l828(l.828-902) 

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/js/src/jit/x86shared/Assembler-x86-shared.cpp#l16

if CONFIG['JS_STANDALONE'] and CONFIG['FUZZING']:

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/accessible/other/ XULListboxAccessibleWrap.h#l6

https://github.com/SSE-LinuxAnalysis/pilztaker

https://docs.python.org/3/library/ast.html

https://www.sat4j.org/index.php

https://www.openhub.net/p/firefox/analyses/latest/languages_summary
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With this scenario, we want to evaluate how VariCity and its configuration capabilities can help to distinguish zones of high density of variability in a codebase, which are manifested by buildings of particular height or width (i.e., important number of method level variability implementations), in color (i.e., part of dense zones of variability implementations), or with a crown (i.e., presence of a design pattern).

Unfolding the scenario

The newcomer onboards on the NetBeans IDE codebase and needs to use the JavaPlatform API, which configures the version and location of Java to be used when building and running a project 5 . To better understand the operation of the API, the newcomer thus needs to have a global vision of the structure of the usage and inheritance relationships between the classes. To this effect, the expert configures the visualization to use the endpoint of the API, namely JavaPlatform 6 , as the entry point of the visualization. Both classes using and being used by JavaPlatform on 5 levels (usage level 5, orientation IN and OUT) are shown to have a first overview of the classes being closely related to the endpoint of the API. The obtained visualization is shown in Figure 6.4a. A neighborhood of tall and colored buildings (circled in yellow) detaches from the other buildings in the city, showing to the user zones with classes heavily using variability implementation techniques. By zooming and spanning the visualization, the user CHAPTER 7

Comprehending the quality of the implemented variability

This chapter shares material with the SPLC 2022 papers "Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations" [Mortara et al., 2022a] and "IDEassisted visualization of indebted OO variability implementations" [Mortara et al., 2022b].

In the previous chapter, the VariCity approach has been proposed to visualize dense zones of variability implementations. It completes the symfinder-2 identification method and allows better understanding of which zones of the codebase concentrate variability implementations and using which mechanisms, thus providing an answer to Challenge A2.

As discussed in Section 3.3, variability implementations add complexity in a system [START_REF] Galster | Variability and complexity in software design: Towards a research agenda[END_REF] and hamper its capacity to evolve [START_REF] Favre | Preprocessors from an abstract point of view[END_REF][START_REF] Kröher | Incremental software product line verification-a performance analysis with dead variable code[END_REF], eventually leading to technical debt [START_REF] Avgeriou | Managing technical debt in software engineering (dagstuhl seminar 16162)[END_REF][START_REF] Li | A systematic mapping study on technical debt and its management[END_REF]. By relying on the traditional OO mechanisms, OO variability implementations are intertwined in the implementation and hard to comprehend (Section 2.2.2), thus leading potentially to technical debt. Monitoring quality being crucial for the maintenance and evolution of such systems [START_REF] Martini | The danger of architectural technical debt: Contagious debt and vicious circles[END_REF], there is a need for a solution allowing to better identify and understand it (Challenge A3).

In this chapter, we tackle Challenge A3 with the following questions:

1. How to identify indebted zones of variability implementations? Identifying indebted zones of variability implementations implies first establishing relevant quality metrics for its identification, then determining how to reveal such zones to a user.

(a) How to measure technical debt related to OO variability implementations? Relying on previous work on variability debt by [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF], we defined variability debt in the context of OO codebases in Section 3.3. As quality metrics have been recognized as useful for determining technical debt at the code level, we thus determine appropriate ones to measure this particular type of technical debt (Section 7.1).

(b) How to reveal technical debt related to OO variability implementations? Approaches to identify either OO variability implementations or technical debt already exist and rely on visualization. However, simultaneous use of both techniques is cumbersome (Section 7.2). We therefore propose VariMetrics, an extension of VariCity example, in DateAxis, multiple lines of the refreshTicksHorizontal 8 method are duplicated in refreshTicksVertical 9 . They correspond to the common part creating the time tick, whereas the variable part concerns the orientation of the text on the plot. Therefore, such zones exhibited by VariMetrics actually spot improper variability management. We reapplied Vari-Metrics on the new codebase [START_REF] Mortara | Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations -Artifact[END_REF] and observed the differences shown in Figures 7.5b,7.6b and 7.7b. We also computed the test coverage, cognitive complexity, and number of duplicated blocks for all the classes impacted by our maintenance actions before and after their modification, and summarized these results in Table 7.3.

Regarding the classes suffering from code duplications, evolutions can be observed in Figures 7.5 and 7.6. The disappearance of the cracks on NumberAxis and DateAxis suggests that very little to no duplication remains, while the reduced amount of cracks on CategoryPlot denotes a decrease of duplications while some are still present. Finally, XYPlot appears equally cracked, propounding that duplications are still present. These observations are confirmed by the hampering the configuration of the view as recomputation must be done when usage orientation and levels are changed. Nevertheless, from our analysis of the algorithm used in VariCity, we believe that some significant improvements could be made to make (re-)rendering practicable.

Accessibility of the artifacts

A reproducible artifact is available online as an archive [START_REF] Mortara | Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations -Artifact[END_REF] containing the source code of VariMetrics, the Excel file used to obtain the data presented in Table 7.2, additional views for all projects presented in Table 7.2, the codebases of JFreeChart before and after the refactor presented in Section 7.4.2 (with the corresponding diff file, excerpts of the SonarQube analysis of both codebases showing the information presented in Table 7.3. These information can also be found on a companion webpage 14 .

Conclusion

In this chapter, we tackled the following questions:

1. How to identify indebted zones of variability implementations?

(a) How to measure technical debt related to OO variability implementations? Out of the 10 types of variability debt identified by [START_REF] Wolfart | Variability Debt: Characterization, Causes and Consequences[END_REF], three types are applicable to our studied codebases: Code duplication, System-level structure quality issues in the implementation and Lack of tests. They can be identified using standard OO quality metrics, namely the number of duplicated blocks, the cognitive complexity and the test coverage, respectively. 

* in this case, while PC Ext+conf ig (foo.c) should be used, it is equivalent to PC Int+conf ig (foo.c) as assets in the KBUILD space do not depend on any asset from another derivator.

Defining PCs with feature constraints

In order to consider differently external derivation spaces and the configuration space when checking for anomalies in a derivation space, we refine the already existing PC Ints and PC Exts and define variants including the constraints for the features in the PC, PC Int+conf ig and PC Ext+conf ig . PC Ints and PC Exts now consider only the desired derivation spaces, while PC Int+conf ig and PC Ext+conf ig add constraints from the configuration space. This allows a finer granularity in the identification of anomalies:

• an incompatibility between the condition to select the block and the condition to select the file is identified using the PC Ext ;

• an incompatibility between the condition to select the block and the conditions to select the features from this condition is identified using the PC Int+conf ig ;

• an incompatibility between the file's condition and the conditions to select the features from this condition is identified using the PC Ext+conf ig .

To better understand how these PCs are used in practice, we detail in Table 9.1 their expressions for the B3 block and the foo.c file from Figure 2.2. This new decomposition of PCs allows a better understanding of the considered spaces. For example, PC Ext (B3) is defined two times in Table 8.3, first for CPP -KBUILD constraints, and then for CPP -KBUILD -KCONFIG constraints. This double use of the same denomination is confusing as it takes into account constraints for B3 and foo.c in the first case, and in the second case constraints for B3, foo.c and the features selecting B3. Our new representation (Figure 2.2) allows representing this second case formally under the denomination of PC Int+conf ig (B3). It also enables the definition of PC Ext+conf ig (B3), considering constraints for B3, foo.c and the features selecting both B3 and foo.c. We instantiate on both the Linux kernel build system and the Mozilla build system the proposed models of configurator and derivator in Tables 9.2 and 9.3, respectively. Mozilla's Autoconf differs from the KCONFIG by not allowing a user to select a set of features to configure the system. Being a set of web-based applications, the configuration of the Mozilla products is mostly related to the operating system and hardware specifications of the system running them, which are therefore determined automatically. Consequently, ϕ enable is considered as being always true. Regarding the instantiation of the derivator, we observe that integrating the MOZBUILD led to the creation Constraints from the MOZBUILD space The only condition to select the platform_thread_posix.cc file is OS_ARCH__Linux__ (listing 9.7b) that, given the constraints from the configuration space, is equivalent to ¬ OS_ANDROID ∧ OS_LINUX.

Constraints from the CPP space The condition to select the code block at line 191 of listing 9.7d is OS_FUCHSIA ∧ ¬ OS_MACOSX ∧ ¬ OS_LINUX ∧ ¬ OS_ANDROID, Finally, the condition to select this block by taking into account constraints from all spaces is (OS_FUCHSIA ∧ ¬ OS_MACOSX ∧ ¬ OS_LINUX ∧ ¬ OS_ANDROID) ∧ (¬ OS_ANDROID ∧ OS_LINUX), that is unsatisfiable. Consequently, the successive #elif and #else blocks are also dead as their PCs also inherit from the ¬ OS_LINUX condition.

Implementation

The proposed framework is decomposed into several independent entities, illustrated on Figure 9.4. Extracting CPP constraints in the Mozilla Gecko codebase is done using PILZTAKER 15 (itself relying on UNDERTAKER). MOZBUILD files being written in Python, we designed a MOZBUILD parser in Python relying on the Python AST library 16 to extract a JSON representation of the MOZBUILD files. As [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] did for CPP when analyzing the Linux kernel, conditions are translated in boolean statements in a similar way.

The main part of the framework identifying the anomalies is the pc-identificator that uses as input the previously extracted constraints from all spaces. It is written in Java and relies on partial dead MOZBUILD anomalies throwing exceptions are not anomalies and act as a safeguard to prevent errors. Nevertheless, we believe that knowing the location of such implementations is important for the evolution of the system, and our framework is capable of detecting them. Having feedback from the developers would help us confirm whether these behaviors are common practice and intended, or correspond to actual anomalies. Another threat regards the evaluation of our approach on the Linux kernel build system and BusyBox, as the mapping achieved between KernelHaven and our approach was limited to dead anomalies in the implementation and did not take into account the configuration space. This limitation to dead anomalies is due to KernelHaven's UndeadAnalyzer only outputting dead blocks, while the configuration space could not be taken into account as state-of-the-art approaches represent the whole KCONFIG as a single CNF formula [START_REF] She | Formal semantics of the Kconfig language[END_REF][START_REF] El-Sharkawy | Analysing the Kconfig Semantics and Its Analysis Tools[END_REF][START_REF] Kästner | Virtual separation of concerns-toward preprocessors 2.0/von christian kästner[END_REF]] (Section 9.3.1.2). However, anomalies involving the configuration space were identified in Mozilla Gecko, giving us confidence in the soundness of our representation.

Regarding the results obtained on the Mozilla Gecko, although our study considers all three spaces of constraints, we did not possess a complete variability model and we manually extracted some features. It is therefore likely that some anomalies involving other configuration constraints were missed, or on the opposite that the ones we identified are false positives as we did not understand them correctly. Feedback from developers of the Mozilla build system would help us assess the relevance of both the features and constraints we extracted, and the identified anomalies.

Finally, the MOZBUILD being designed as a sandbox on top of the Python language, the conditions present in the moz.build scripts make use of Python statements such as startsWith (e.g., CONFIG["OS_ARCH"].startswith("GNU_") 19 ) that cannot be directly transformed in boolean. Consequently, some conditions cannot be parsed and may be related to some anomalies that we therefore cannot identify. Completing our static analysis with a dynamic approach executing the MOZBUILD sandbox with known configurations could help this identification.
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APPENDIX A

State-of-the-Art anomalies in the Linux kernel build system

In this appendix, we enumerate the 25 definitions of anomalies in the Linux kernel build system presented in the five selected state-of-the-art papers characterizing them (cf. Section 3.5). The definitions presented here are directly extracted from the papers, although some sentences may be added to reproduce their context. We mark with a ⋆ anomalies that are naturally inconsistent as they are directly extracted from papers. Characterizing these inconsistencies is done by instantiating the anomalies in our models (cf. Section 8.2).

A.1 CPP internal consistency by [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] Sincero et al. [2010] formalize CPP directives using propositional logic and propose a framework, UNDERTAKER, to automate the derivation of presence conditions from ifdef directives. They define lines of code in ifdef blocks as blocks and define for a block b i the Presence Condition [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]: The authors then give a definition of dead defect:

Anomaly 1 (Dead block [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]). A block is dead if:

with K and C the propositional formulas representing the problem space constraints (i.e., KCON-FIG space) and solution space constraints (i.e., Make space) respectively. satisf iable() represents the boolean satisfiability problem 1 .

Relying on the expression of the presence condition, the authors finally define two levels of consistency to express this definition of dead defect.

Anomaly 2 (Internal consistency [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]). Internal consistency is defined as checking for each block of a compilation unit if it is selectable by at least one valid configuration. This property is checked with satisf iable(C u ∧ b i ) which, expanded using the definition of C u , gives: [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF]). External consistency is defined as checking for each block of a compilation unit if it is selectable by at least one valid configuration. This property is checked with satisf iable(C u ∧ b i ∧ F M ) (with F M the representation of the feature model in a boolean formula) which, expanded using the definition of C u , gives:

A.2 KCONFIG internal consistency by [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF] In his Master's thesis, [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF] analyses the internal consistency of KCONFIG and characterises six different types of anomalies. While Anomalies 4, 5 and 6 are common anomalies resulting from conflicts between constraints on the features, Anomalies 7, 8 and 9 are related to the syntax of the KCONFIG files.

Anomaly 4 (Dead feature [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). A feature is dead if there are contradictions in its dependencies.

Anomaly 5 (False optional (undead) feature ⋆ [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). A false optional feature in KCONFIG is a feature that is selected by another feature that is always on or selected by a feature that is false optional itself.

Anomaly 6 (Missing dead feature [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). A feature is missing dead if features in the dependencies are not defined in KCONFIG.

Anomaly 7 (Selects on Symbols with Dependencies [START_REF] Hengelein | Analyzing the Internal Consistency of the Linux KConfig Model[END_REF]). select statements should not be used to select symbols matching the following conditions:

• The symbol has dependencies 1 In the remainder of this chapter, we will refer to it as sat().
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The authors then reuse the formalism proposed by [START_REF] Sincero | Efficient extraction and analysis of preprocessor-based variability[END_REF] to simplify the defects with the two following definitions.

Anomaly 14 (Implementation-only defects [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF], simplification of Anomaly 2). Implementation-only defects [. . . ] represent code blocks that cannot be selected regardless of the systems' selected features; the structure of the source file itself contains contradictions that impede the selection of a block. This can be determined by checking the satisfiability of the formula sat (b i ↔ PC(b i )). We can infer the expressions for dead and undead implementation-only defects. Anomaly 15 (Configuration-implementation defects ⋆ [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF], simplification of Anomaly 3). Configuration-implementation defects occur when the rules from the configuration space contradict rules from the implementation space. We check for such defects by solving sat ((b i ↔ PC(b i )) ∧ V). We can infer the expressions for dead and undead configurationimplementation defects. with V the propositional formula representing the configuration space (i.e., the feature model of KCONFIG).

The authors then define two defects internal to the KCONFIG.

Anomaly 16 (Configuration-only defects [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]). Features are present in the configuration-space model but do not appear in any valid configuration of the model, which means that the presence condition of the feature is not satisfiable. We can check for such defects by solving: sat(f eature → presenceCondition(f eature)). However, no formal definition of presenceCondition was given.

Anomaly 17 (Referential defects [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]). Referential defects are caused by a missing feature (m) that appears in either the configuration or the implementation space only. That is:

is unsatisfiable.

A.5 KCONFIG-KBUILD-CPP consistency by [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF] Nadi and Holt [2012] improve UNDERTAKER [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF] to add constraints from the Make space and identify dead and undead artifacts at both source file and code block levels, relying on constraints from the three spaces.

Anomaly 18 (Code anomalies [START_REF] Nadi | Mining Kbuild to detect variability anomalies in Linux[END_REF]). Code anomalies are defined as "Conflicting code constraints" and are not expressed in the paper as they are already determined by the UNDERTAKER tool designed in [START_REF] Tartler | Feature consistency in compile-time-configurable system software: Facing the Linux 10,000 feature problem[END_REF]. Thus, formulas to detect these anomalies are the ones from Anomalies 2 and 14.