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Maîtriser la variabilité enfouie dans les systèmes orientés objet et les
systèmes de construction logicielle

Résumé

La demande sans cesse croissante de solutions logicielles nouvelles et récentes oblige les pro-
fessionnels du logiciel à développer et à maintenir des systèmes logiciels personnalisables tout
en garantissant un niveau élevé de qualité et de fiabilité. Si les lignes de produits logiciels
(LPLs) constituent une solution pour atteindre cet objectif, de nombreux systèmes logiciels
riches en variabilité ne sont pas organisés de cette manière. Ils augmentent progressivement
leurs parties variables, en s’appuyant sur les multiples mécanismes existants pour mettre en
œuvre leur variabilité dans le code et leur chaîne d’outils de construction. Dans leur mise en
œuvre, les systèmes orientés objet (OO) gèrent principalement leur variabilité dans une base de
code unique en utilisant des mécanismes OO tels que l’héritage et les patrons de conception.
En raison de leur nature, ces implémentations sont enfouies dans la base de code, ce qui nuit
à la compréhension du système par les développeurs et, par conséquent, à sa maintenance et
à son évolution, entraînant des problèmes de qualité. En outre, les grands systèmes logiciels
riches en variabilité s’appuient souvent sur des systèmes de construction complexes pour sélec-
tionner les éléments du code. Comme il s’agit de systèmes de construction ad hoc réutilisant
des outils standard, aucune représentation globale du mécanisme de résolution de la variabilité
n’est disponible, et des conflits peuvent survenir et causer des anomalies. Dans cette thèse,
nous proposons tout d’abord les bases et les techniques pour identifier et visualiser les implé-
mentations de la variabilité dans les grands systèmes logiciels OO riches en variabilité. Ces
implémentations sont abstraites en termes de points de variation et de variantes et identifiées
en s’appuyant sur la notion de densité de symétries dans les structures OO. En reprenant la
métaphore d’une ville, elles sont ensuite visualisées sous la forme d’un ensemble connecté de
bâtiments 3D combinés à des métriques sur leur qualité. Cela permet de distinguer les zones
concentrant les implémentations de variabilité et présentant potentiellement une dette tech-
nique. Ces propositions ont été validées par un prototype sur de grands systèmes logiciels OO
open-source et hautement variables, ainsi que par une étude d’utilisabilité avec deux groupes
distincts de développeurs débutants. La thèse introduit également un cadre de modélisation et
de raisonnement pour caractériser les anomalies dans les systèmes de construction gérant de
la variabilité, permettant de raisonner sur les relations entre les actifs du code, et d’identifier
toutes ces anomalies au grain le plus fin. Le framework a été instancié et partiellement im-
plémenté à la fois sur le système de construction du noyau Linux, démontrant sa généralité
sur les nombreuses détections distinctes sur ce sujet très étudié, et sur une chaîne d’outils de
construction récemment étudiée de la fondation Mozilla, démontrant son applicabilité.

Mots-clés : Génie logiciel, Lignes de produits logiciels, Variabilité logicielle, Modèle de variabil-
ité, Rétro-ingénierie, Visualisation.





Mastering Variability in the Wild: On Object-Oriented Variability
Implementations and Variability-Aware Build Systems

Abstract

The constantly increasing demand for new and up-to-date software solutions compels software
practitioners to develop and maintain customizable software systems while assuring a high
level of quality and reliability. While Software Product Lines (SPLs) are a solution towards
this goal, many variability-rich software systems are not organized as such. They progres-
sively grow their variable parts, relying on existing multiple mechanisms to implement their
variability in code and their building toolchain. In their implementation, object-oriented (OO)
systems mainly manage their variability in a single codebase using OO mechanisms such as
inheritance and patterns. Due to their nature, these implementations are buried in the codebase,
hampering the system’s comprehension for developers and thus its maintenance and evolu-
tion, causing quality issues. Additionally, large variability-rich software systems often rely on
complex build systems to select code assets. As they are widely ad hoc build systems reusing
off-the-shelf tools, no global representation of the overall variability resolution mechanism is
available, and conflicts may happen and cause anomalies. In this thesis, we first propose the
foundations and techniques to identify and visualize variability implementations in large OO
variability-rich software systems. These implementations are abstracted in terms of variation
points and variants and identified relying on the notion of density of symmetries in OO struc-
tures. Following a city metaphor, they are then visualized in the form of a connected set of
3D buildings together with metrics on their quality. This helps distinguish zones concentrat-
ing variability implementations and potentially exhibiting technical debt. These proposals have
been validated by a prototyped application on large open-source and highly-variable OO soft-
ware systems, as well as a usability study with two separate groups of newcomer developers.
The thesis also introduces a modeling and reasoning framework to characterize anomalies in
variability-aware build systems, allowing to reason on code assets relationships, and identify
all these anomalies at the finest grain. The framework was instantiated and partially tooled on
both the Linux kernel build system, demonstrating its generality over the many separate de-
tections on this heavily studied subject, and a newly studied build toolchain from the Mozilla
foundation, showing applicability.

Keywords: Software engineering, Software product lines, Software variability, Variability model-
ing, Reverse-engineering, Visualization.
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CHAPTER 1
Introduction

We build our computer systems the way we build our cities: over
time, without a plan, on top of ruins.

— Ellen Ullman, Life in Code: A Personal History of Technology.

1.1 Context

The constantly increasing demand for software solutions constrains software practitioners to
develop and maintain customizable software systems. Such systems, which can range from
small-scale embedded systems to large-scale systems of systems, are qualified as variability-
intensive [Hilliard, 2010; Galster et al., 2013; Galster, 2019]. Software variability is the capacity
of a software system to be tailored for a given need or context [Capilla et al., 2013]. In order to
limit the time and effort spent in the development and maintenance of such systems, organizations
rely on approaches based on software reuse [Krueger, 1992; Jacobson et al., 1997] to manage their
code assets such as Software Product Lines (SPLs).

An SPL is defined as “a set of software-intensive systems sharing a common, managed set
of features that satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way” [Clements and Northrop, 2002;
Northrop et al., 2007]. Its engineering process is illustrated on Figure 1.1. Features represent
“prominent or distinctive user-visible aspects, qualities, or characteristics of a software system
or systems” [Kang et al., 1990] and can be organized in a feature model (FM) [Batory, 2005]
during the domain analysis phase (cf. Figure 1.1). Features are typed as mandatory, alternative,
or optional, allowing to model commonalities and variations between the different products that
can be derived from the SPL (cf. Section 2.1). Then, a mapping between each feature and the
code assets implementing it is built relying on one or more variability implementation techniques
such as CPP directives (often called ifdefs) [Liebig et al., 2010; Hunsen et al., 2016], or other
forms of annotations [Couto et al., 2011]. While such techniques can be incorporated in existing
code assets, others isolate code assets implementing each feature by organizing them in feature
modules [Apel et al., 2006; Takeyama and Chiba, 2013] that can be implemented with the use
of aspects [Griss, 2000; Voelter and Groher, 2007; Figueiredo et al., 2008] (domain implemen-
tation). Therefore, code assets can be separated into three parts: core, commonalities, and varia-
tions [Turner et al., 1999; Coplien, 1999; Bachmann and Clements, 2005]. The core part represents
the code assets that are not mapped to any feature and are therefore included in every product of
the SPL [Turner et al., 1999]. A commonality is a common part between the related variations
of given code assets, while variations indicate how and when should code assets vary [Hilliard,

1
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Figure 1.1: Software Product Line engineering process (extracted from [Nadi, 2015])

2010]. Such commonalities and variations are usually abstracted in terms of variation points (vp-s)
with variants, respectively [Jacobson et al., 1997; Czarnecki et al., 2012; Rabiser, 2019], which
are related to concrete elements in code assets [John et al., 2007].

To derive a product variant of the SPL, customers define their own configuration by selecting
a set of features corresponding to their needs (requirements analysis) that is then used by a build
system that checks its validity before assembling the variant by selecting the code assets mapped
to the features (product derivation).

1.2 “Wild” variability in software systems

In a standard SPL approach, a variability implementation mechanism establishes the mapping
between each domain feature and the code assets implementing it. When deriving a variant, the
build system is then in charge of the resolution of this variability, conducting to the selection of
the code assets that will constitute the final product. Some systems, however, are not implemented
in such a way although they are variability-intensive.

1.2.1 Wild variability implementations in object-oriented systems

Due to the characteristics of their variability implementation mechanisms, object-oriented (OO)
systems often do not follow a fully-fledged software product line approach. [Pohl et al., 2005;
Apel et al., 2013]. They often implement these vp-s and variants relying on the mechanisms pro-
vided by these languages, namely inheritance, overloading of methods and constructors, and some
design patterns [Gacek and Anastasopoules, 2001; Svahnberg et al., 2005; Capilla et al., 2013;
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Tërnava and Collet, 2017a]. As opposed to other implementation techniques such as annotative ap-
proaches, mechanisms used to implement variability in OO systems do not allow making explicit
the domain variability in the code assets. Moreover, such systems hardly document the domain
variability [Krüger et al., 2019b]. Therefore, it results that although they are variability-rich, many
OO software systems do not follow a fully-fledged software product line approach [Pohl et al.,
2005; Apel et al., 2013] as the mapping between the domain variability and its implementation is
either lost or non-existent [Krüger et al., 2019b].

Problem Consequently, the comprehension of the implemented variability is hampered and
eventually leads to a decrease in the ability to maintain the system and make it evolve [Favre,
1996; Kröher et al., 2022], creating technical debt (i.e., expedient but costly on the long term im-
plementation constructs, primarily hampering maintainability and evolvability) [Avgeriou et al.,
2016; Li et al., 2015]. Monitoring quality being crucial for the maintenance and evolution of such
systems [Martini and Bosch, 2015], it is of prime importance for software developers and archi-
tects to comprehend the variability that is implemented in their system. In other words, there is a
need to comprehend the variability implemented in OO software systems.

1.2.2 Wild variability implementations in variability-aware build systems

Due to their important size, large variability-rich software systems commonly rely on multiple
mechanisms to implement their variability at multiple granularities in a single codebase. While
in a traditional SPL approach variability is implemented using tools explicitly designed for this
purpose that enable a global vision of the implemented variability and ensures a safe mapping
with domain features [Meinicke et al., 2017; Beuche, 2019; Krueger and Clements, 2013], these
build systems often rely on combinations of handcrafted tools and existing solutions adapted to
be used as variability resolution tools. When deriving a variant of the system, a variability-aware
build system is then in charge of invoking the different tools to resolve each type of variability
implementation based on a given configuration. For example, the Linux kernel’s build system1 is
divided in three steps [Nadi and Holt, 2014]:

• a configuration step, KCONFIG, that builds a configuration based on user input and con-
straints between features;

• two derivation steps, the KBUILD and CPP, that define conditions on features to select
code assets at two levels of granularity (source files and code blocks respectively). If the
configuration satisfies a condition, the asset is selected.

Problem In such build systems, the execution of a derivation step might influence the execution
of another one (e.g., for a given configuration, if a source file is not selected, neither of the code
blocks it contains can be). As different tools are used to implement variability in the different steps,
each derivation step is uncorrelated from the others. This prevents checking the consistency of the
whole build system and can lead to anomalies, such as parts of the code that can never be selected
due to features in conflict (e.g., no configuration selecting a code block selects the file containing
it) [Nadi et al., 2013; Nadi, 2014], potentially creating bugs in derived product variants. In other
words, there is a need to comprehend the variability managed by build systems.

1https://www.kernel.org/doc/html/latest/kbuild/index.html

https://www.kernel.org/doc/html/latest/kbuild/index.html
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1.3 Taming wild variability

In this thesis, we aim to improve the comprehension of variability in systems that are not fully-
fledged SPLs by focusing our attention on (i) variability implementations relying on OO mecha-
nisms and (ii) their management in complex ad-hoc build systems. Hereafter, we detail the chal-
lenges to be addressed in order to reach these goals.

A. Comprehending variability implemented in OO software systems

A1. Identifying variability implemented in OO software systems

OO variability implementations are of diverse natures [Lozano, 2011; Tërnava and Collet, 2017a]
and the used mechanisms (i.e., inheritance, overloading of methods and constructors, and design
patterns) do not allow for keeping trace of domain information. Therefore, with the evolution of
the system, information on the location of the variability is lost, hampering their capacity to evolve
and to be comprehended. Moreover, such mechanisms are also used to structure the code [Gamma
et al., 1993, 1995]. Variability implementations are thus buried in the implementation code, in-
creasing the difficulty of their identification.

State-of-the-art techniques to identify variability implementations in OO systems (detailed
in Section 3.1.1) mostly target clone-and-own systems [Roy and Cordy, 2007; Michelon et al.,
2019; Linsbauer et al., 2022]. However, in our case, OO mechanisms allow implementation of vari-
ability in a single codebase, thus preventing the application of these techniques. Other techniques
rely on traces obtained by executing the system [Walkinshaw et al., 2007] or the unit tests [Eisen-
berg and De Volder, 2005], which is not always possible for large systems. There is therefore a
need for a technique allowing static identification of variability implemented using OO mecha-
nisms in systems managed in a single codebase.

A2. Making the identified variability implementations comprehensible

When variability is implemented relying on OO mechanisms, vp-s and variants can be imple-
mented at multiple granularities [Tërnava et al., 2019]. At class level, vp-s are classes or inter-
faces having as variants their subclasses or implementations. At method level, vp-s are overloaded
methods and constructors having for variants their overloads. Additionally, these vp-s and variants
compose each other through the use of attributes or method parameters to build more advanced
structures as design patterns. This diversity of mechanisms involved causes the organization of
OO variability implementations to be highly complex. Consequently, their identification cannot
consist of a reverse-engineered list of features, imposing to rely on a semi-automatic approach
extracting information and metrics on the presence of mechanisms involved in variability imple-
mentations. These metrics are then used as a support to a software developer or architect having
the domain knowledge to identify the implemented variability. However, on large systems, such
an identification technique would output a too important volume of data to be understandable in
a textual format. As software metrics are often comprehended through the use of visualizations
[Domingue, 1998; Knight and Munro, 2000; Diehl, 2007; Wettel et al., 2010], we advocate that a
visualization support for metrics on OO variability implementation would help the comprehension
of the variability implemented in such large variability-rich systems.
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A3. Understanding the quality of the implemented variability

Variability implementations are known to bring additional complexity to the system [Galster et al.,
2017]. Consequently, its maintainability is threatened and its capacity to evolve hampered [Favre,
1996; Kröher et al., 2022], eventually leading to technical debt [Avgeriou et al., 2016; Li et al.,
2015]. Technical debt due to variability implementations has been largely studied [Mordahl et al.,
2019], leading to new definitions [Fenske and Schulze, 2015] and a recent characterization of
variability debt by Wolfart et al. [2021]. As OO systems reuse the traditional OO mechanisms to
implement their variability, there is no dedicated implementation mechanism, causing the variabil-
ity to be intertwined with the implementation (cf. Challenge A1). Consequently, these systems are
prone to variability debt in their implementation. As monitoring technical debt and, more globally,
the quality of the system is crucial for its maintenance and evolution [Martini and Bosch, 2015],
there is a need for a solution combining quality metrics and OO variability metrics (Challenge A2),
allow identifying the technical debt that can be induced by these variability implementations.

B. Comprehending the variability managed by build systems

B1. Making explicit the derivation mechanism of build systems

As detailed in Section 1.2.2, the selection of an asset in a step of the build system has an influence
on the selection of other assets, being in the same step or not. In order to master the variability
managed by build systems and prevent anomalies, it is important to understand, for a given asset,
which other assets manipulated by the build system can influence its selection. As opposed to sys-
tems for which the variability is designed using variability modeling approaches [Meinicke et al.,
2017], build systems often rely on adapted off-the-shelf solutions and do not allow characterizing
these dependencies between assets. While multiple works focus on checking the selection of an
asset in the different steps of the Linux kernel [Hengelein, 2015; Nadi and Holt, 2012; Sincero
et al., 2010], they do not provide a fine-grain representation of the whole build system mechanism
modeling precisely the conditions under which a code asset is present in a derived variant. Such a
representation is needed (i) to understand with precision the dependencies that exist between code
assets in the whole build system and (ii) to apply the contributions from the state-of-the-art, that
are focused on the Linux kernel’s build system, to other build systems.

B2. Characterizing and identifying anomalies in build systems

The interactions between dependent code assets can lead to unwanted side effects. For example,
code assets can become dead if they can never be selected (e.g., a code block whose selection
condition is incompatible with the one of its parent file). On the opposite, code assets can also be-
come core if they are always selected (e.g., a code block whose selection condition is always true
when the one of its parent file also is). Such consequences are called anomalies as they change
the nature of the implemented variability (e.g., a core anomaly leads to a code asset being part
of the core of the system while it is a variation according to the implemented variability). While
multiple software systems make use of build systems relying on common concepts (i.e., definition
and validation of a configuration followed by one or more variability resolution steps), the Linux
kernel is the one that received the most attention. Anomalies in and between each of the three
steps have been defined [Hengelein, 2015; Nadi and Holt, 2012; Sincero et al., 2010] together
with tooled support identifying the anomalies in the kernel’s code assets. While these tooled ap-
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proaches demonstrated successful identification of anomalies, they all focus on isolated steps of
the build system, and the formal definitions of the presented anomalies show little detail about the
constraints issuing from other steps. Among contributions, similar concepts have different denom-
inations, common anomalies have different definitions, and all rely on different formalisms. This
diversity prevents (i) a deep comprehension of the anomalies and how to identify them, and (ii) the
application of these contributions to other similar build systems that are prone to similar anoma-
lies, such as the Mozilla build system that also makes use of CPP directives to select code blocks
in its source files. There is therefore a need to synthesize these contributions and the anomalies
they present by uniformizing them under a single representation that can be instantiated on build
systems to identify the anomalies.

1.4 Methodology

This Ph.D. work has been conducted relying on an experimental approach. Each contribution pro-
vided new observations that allowed the definition of new challenges and incrementally improve
the approach. As a consequence, Chapters 5 to 7 have similar plans illustrating this methodology.
The proposed contribution is implemented on top of the previous ones and evaluated on a set of
subject systems. The observations arising from these conducted experiments exhibit the limitations
of the contribution, driving the motivations for the following one.

The work of this Ph.D. thesis started as a Master’s thesis directed by Philippe Collet in col-
laboration with Xhevahire Tërnava and consisted in designing a tool automating an identification
approach for OO variability implementations she designed. This joint work led to two contribu-
tions that we use as a starting point for this work.

• In [Tërnava et al., 2019], we define vp-s and variants in the context of OO variability imple-
mentations and propose a technique to identify these variability implementations relying on
the notion of symmetry in code assets [Zhao and Coplien, 2002, 2003].

• The symfinder toolchain [Mortara et al., 2019] automates this identification on systems in
Java and provides a visualization of the identified potential vp-s and variants in the shape of
a graph.

More details on these contributions are given in Section 3.1.2.
As a result, Chapters 5 to 7 successively increment this preliminary work, that we first assess

in Chapter 4 to evaluate to what extent it provides first elements of answers to Challenges A1
and A2.

1.5 Plan

This thesis is organized as follows:

• Chapter 2 presents elements of background on software product lines and how variability
is modeled and implemented in this context. We also present an overview of the different
techniques allowing to implement variability in software systems and introduce variability-
aware build systems, focusing on two examples: the Linux kernel build system and the
Mozilla build system.
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• Chapter 3 details the state of the art on techniques to identify and comprehend the variability
implemented in software systems and its quality. Then, we detail work studying the organi-
zation of variablity-aware build systems and finally focus on work characterizing anomalies
in these build systems.

• In Chapter 4, we assess the identification technique proposed by Tërnava et al. [2019] and
the associated tool support symfinder [Mortara et al., 2019] on three aspects: (i) we extend
the approach to C++ constructs to validate the use of symmetry to identify OO variability
implementations, (ii) we map the identified potential vp-s and variants to existing traces of
features in the implementation of two systems to validate the relevance of these vp-s and
variants, and (iii) we evaluate the interpretability of the graph visualization proposed by
symfinder by exchanging with a software architect on his experience using symfinder on his
software.

• In Chapter 5, we extend the identification approach by taking into account usage relation-
ships (i.e., composition/aggregation) between vp-s and variants and rely on them to charac-
terize a measure of density of variability implementations. Consequently, the visualization
has also been improved and shows these two additional information. We implement this new
approach in symfinder-2 and evaluate it by applying it on multiple open source software sys-
tems and reporting on the newly revealed dense zones of variability implementations.

• Chapter 6 presents VariCity, a new visualization approach adapting the metaphor of the city
to represent the variability implementations identified by symfinder-2 and assist the explo-
ration of a system by revealing dense zones of variability implementations. We evaluate the
capabilities of the visualization by relying on onboarding scenarios on multiple open source
software systems, and report on the results of a controlled experiment with 49 students aim-
ing to compare VariCity to standard tools used in code comprehension activities.

• Chapter 7 introduces VariMetrics, an extension of the VariCity visualization to support soft-
ware quality metrics and reveal critical zones concentrating variability implementations
prone to cause variability debt in a single OO codebase. We define quality metrics allowing
to identify variability debt in the context of OO variability implementations and evaluate our
approach by visually identifying indebted zones of variability implementations on multiple
open source software systems. We validate the relevance of identified zones in one system
by comparing its quality before and after applying maintenance actions to the indebted code
assets.

• Chapter 8 details existing work characterizing anomalies in the Linux kernel build system
and proposes a model unifying these contributions. This model provides a detailed repre-
sentation of the conditions determining the selection of a code asset in a variability-aware
build system. We demonstrate the completeness of our representation by instantiating the
definitions of anomalies from the studied contributions in the proposed representation and
exhibit incoherences between them.

• Chapter 9 presents a generalization of the Linux-centered model introduced in Chapter 8 by
taking into account the diversity of mechanisms exhibited by the Mozilla build system. A
framework implementing this model and allowing the identification of anomalies as well as
their detailed representation is proposed and evaluated on the code assets of both the Linux
kernel build system and the Mozilla build system.
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• Chapter 10 summarizes the contributions presented in this thesis and the answers they pro-
vide to the challenges presented in Section 1.3 before detailing perspectives on the short and
long terms.
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CHAPTER 2
Background

This chapter provides the reader with the fundamental concepts used throughout the thesis by
introducing the background knowledge needed for its understanding. We first detail how domain
and implementation variability are modeled in a software product line (SPL) context (Section 2.1).
We then provide an overview of the different techniques allowing to implement variability in
variability-rich systems (Section 2.2.1) before focusing on variability implementations in OO sys-
tems (Section 2.2.2). Finally, we present variability-aware build systems and detail how they reuse
existing tools to manage variability by relying on two examples: the Linux kernel build system
and the Mozilla build system (Section 2.3).

2.1 Modeling and implementing variability in Software Product
Lines

The domain and realization of SPLs rely on the notion of feature, being a user-visible aspect of
a software system [Kang et al., 1990]. After they have been determined, they are organized in a
variability model that, most often, has the shape of a feature model [Batory, 2005]. An example
of feature model describing the domain of a library manipulating graphs is given in Figure 2.1.
The abstract feature GraphLibrary represents conceptually the SPL domain, which has a sin-
gle compound mandatory feature EdgeType and three compound optional features Search,
Weighted and Algorithm, and all four have variant features. Features having variant fea-
tures represent subdomains of the system by factorizing the commonality between features of the
system. For example, while the different types of algorithms could have been directly linked to
GraphLibrary, they have been grouped under an Algorithm feature. While at least one fea-
ture in an Or group needs to be selected (e.g., if the Search variant is selected, at least one of BFS
and DFS also needs to be selected), exactly one feature can be selected in an Alternative group
(e.g., the EdgeType can be Directed or Undirected but not both). Additionally, cross-tree
constraints define conditions on features constraining their selection and are commonly expressed
using propositional logic. For example, the selection of the Cycle algorithm implies the selec-
tion of the Directed type of edges as this algorithm cannot be applied to graphs with undirected
edges.

The realization of the variability in the code assets is usually separated into three parts: core,
commonalities, and variabilities. The core corresponds to the implementation that remains when
no feature is selected [Turner et al., 1999]. The commonalities represent the common parts in the
implementation of each feature of a subdomain. When factorized, these commonalities become
part of the core, unless the implementation is related to an optional feature. Finally, the variabilities
represent the implementation specific to each variant. The implementation of the variability is

11
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Figure 2.1: Feature model of a library manipulating graphs

often abstracted in terms of variation points (vp-s) and variants. A vp is defined by “one or more
locations at which the variation will occur” [Jacobson et al., 1997], while the variants characterize
how this vp varies. Multiple techniques allow their implementation.

2.2 Variability implementation techniques in large software systems

2.2.1 Usual variability implementation techniques

The implementation of the variability can be done in numerous ways. In a clone-and-own ap-
proach [Rubin et al., 2013], variability is achieved by duplicating the code assets and adapting
them to create a new variant. In practice, this technique is often achieved by managing forks
of an original codebase repository [Li et al., 2016; Businge et al., 2018]. Each product variant
has a dedicated codebase containing the commonalities (i.e., the code common to all products)
and its variabilities (i.e., the code specific to this variant). This technique, however, impedes the
maintainability of the system as it evolves. As the core is duplicated for every product, every mod-
ification to those assets (being implementation, tests, specification. . . ) needs to be replicated in all
the variants, which can become cumbersome with an important number of variants. Additionally,
the difficulty increases with time as each variant has its own evolution pace [Pate et al., 2013].
Consequently, software practitioners now increasingly rely on other techniques allowing them to
manage variability in a single codebase.

On their side, annotative approaches allow incorporating features traces in a textual way in
the code assets to indicate the features they implement. Such techniques are used to delimit
code blocks to be selected when generating the variant, as with CPP annotations [Kernighan and
Ritchie, 1988], often called ifdefs. While ifdefs are heavily used in C based systems like
the Linux kernel [Hunsen et al., 2016; Le et al., 2013; Liebig et al., 2010; Tartler et al., 2012; Sin-
cero et al., 2010], annotations are also used to reengineer variable software implemented in other
languages, independently of their paradigm, in SPLs [Couto et al., 2011; Martinez et al., 2017a].
Although their widespread use is due to the easiness of their implementation, extensive use of such
techniques in a code is seen as a “pollution” [Liebig et al., 2010]. As they can be uniformly used
to manage variability at various levels, the overabundance of annotations in the code hampers the
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understanding and management of both the system and the implemented variability, eventually
becoming a “hell” [Le et al., 2011; Medeiros et al., 2017].

Other paradigms have therefore been designed with the main objective to prevent such en-
tanglement. The feature-oriented programming (FOP) [Prehofer, 1997; Apel et al., 2005, 2013]
paradigm aims to organize the implementation in feature modules [Apel et al., 2006; Takeyama
and Chiba, 2013] and obtain a strict alignment between the implementation vp-s with variants
and the domain commonalities and variabilities respectively. For example, aspect-oriented pro-
gramming [Kiczales et al., 1997; Morin et al., 2009; Parra et al., 2011] can be used in an FOP
context by implementing the variabilities in the aspects [Mezini and Ostermann, 2004; Kastner
et al., 2007; Figueiredo et al., 2008] that will then be merged with the core implementation in
a preprocessing step. While aspects contain actual implementation code, deltas in delta-oriented
programming [Schaefer et al., 2010; Clarke et al., 2010] define patches (additions, deletions or
modifications of assets at different granularities) that are applied to the core implementation when
compiling the code assets for the desired variant. Although such techniques present the advantage
of allowing a clear separation between the code assets implementing the different features, they
cannot be applied to codebases for which variability is undocumented, which is often the case of
OO systems [Krüger et al., 2019b].

2.2.2 Variability in code assets of an object-oriented system

Although the previously cited approaches are applicable OO systems, in practice, they of-
ten rely on OO mechanisms to achieve variability implementation [Coplien et al., 1998; Gacek
and Anastasopoules, 2001; Patzke and Muthig, 2002; Svahnberg et al., 2005], namely inheri-
tance, overloading of methods and constructors, and design patterns such as Strategy and Fac-
tory [Gamma et al., 1993]. Listing 2.1 shows an illustrative example of implementation in Java for
two different types of geometric shapes, Circle and Rectangle. The abstract class Shape
factorizes the behavior common to Rectangle and Circle, relying on inheritance as a variabil-
ity implementation technique [Jacobson et al., 1997; Coplien et al., 1998]. The Point origin
attribute and the newOrigin method are accessible by both subclasses, and the two abstract
methods area and perimeter are overridden in each subclass, defining their own way to com-
pute these values. Additionally, in the Rectangle class, the two draw methods lines 13–16
and 18–21 allow implementing two ways of drawing a rectangle, depending on how the point’s
coordinates are passed as a parameter (i.e., as two integers or encapsulated in a Point object).

Relying on the definitions of vp-s and variants given in Section 2.1, the behavior implemented
in the Shape class being commonly shared by its subclasses, it is characterized as a class level
vp with two variants being its subclasses Rectangle and Circle. Analogously, two meth-
ods named draw have a common name but different parameters and bodies. These methods are
therefore variants of a method level vp called draw [Tërnava et al., 2019].

In this thesis, we set our focus on large OO variability-rich systems that are not architected as
SPLs and progressively implement their variability in a single codebase using OO mechanisms.

2.3 Variability-aware build systems

Build systems are responsible for “scheduling and executing all build-related tasks, which may
include running generators, compiling source code, running tests, and creating and copying de-
liverable units” [Apel et al., 2013]. In its simplest version, a build system can be a simple script
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1 /* Class level variation point, vp_Shape

*/
2 public abstract class Shape {
3 // Point defined
4 private Point origin;
5 // Constructor omitted
6 public void newOrigin(Point o) {
7 origin.setPoint(o.getX(), o.getY());
8 }
9 public abstract double area();

10 public abstract double perimeter();
11 }

1 /* First variant, v_Circle, of vp_Shape

*/
2 public class Circle extends Shape {
3 private final double radius;
4 // Constructor omitted
5 public double area() {
6 return Math.PI * Math.pow(radius, 2);
7 }
8 public double perimeter() {
9 return 2 * Math.PI * radius;

10 }
11 }

1 /* Second variant, v_Rectangle, of vp_Shape */
2 public class Rectangle extends Shape {
3 private final double width, length;
4 // Constructor omitted
5 public double area() {
6 return width * length;
7 }
8 public double perimeter() {
9 return 2 * (width + length);

10 }
11 /* Method level variation point, vp_Draw */
12 /* Variant v_drawCoordinates of vp_Draw */
13 public void draw(int x, int y) {
14 // rectangle at (x, y, width, length)
15 System.out.println("Rectangle at (" + x + ", " + y + ")");
16 }
17 /* Variant v_drawPoint of vp_Draw */
18 public void draw(Point p) {
19 // rectangle at (p.x, p.y, width, length)
20 System.out.println("Rectangle at (" + p.getX() + ", " + p.getY() + ")");
21 }
22 }

Listing 2.1: Example of variability implementations. The vp_Shape and vp_draw represent
two vp-s at the class and method levels, respectively.

executing build tools. However, as they manage which assets are built and how, they are also often
in charge of managing compile-time variability [Apel et al., 2013]. When they manage variability,
they allow resolving it by relying on command-line parameters or by reading from a configuration.
While systems that are fully engineered as SPLs would rely on tools integrated by the modeling
frameworks [Meinicke et al., 2017; Beuche, 2019; Krueger and Clements, 2013], other variability-
intensive systems often design their build system by relying on existing tools. For example, Make1

is a tool designed to control the build of an executable. The build process is described in the form
of Makefiles that are then executed to build the system. In the features it proposes, Make allows to
conditionally select code assets to build variants of the executable. It is therefore a tool that allows
the implementation of variability at compile-time. In their simplest form, variability-aware build
systems consist of one such tool. However, when the size and complexity of a system increase,
they often rely on multiple of these tools. For example, the files selected by the Makefiles may
contain variability implemented using ifdef directives that are resolved at the compilation of
the sources invoked by the build system.

1https://www.gnu.org/software/make/

https://www.gnu.org/software/make/
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 1 menu “Menu prompt”
 2    depend on MENU_COND
 3
 4    config FOO
 5        bool "FOO prompt text"
 6        default y
 7        select F_SEL
 8        depends on DEPS_A || DEPS_B
 9
10    config BAR
11        tristate "BAR prompt text"
12        default n
13
14 endmenu

16 config F_SEL
17    bool
18    default n

Kconfig

Kconfig files lib/Kconfig

Kconfig space

Kbuild Makefiles

1  obj-$(CONFIG_FOO) += foo.o
2  foo-y := file_a.o file_b.o 
3  obj-y += file_c.o

Kbuild

lib/dir/Makefile

1  obj-$(CONFIG_BAR) += dir/

lib/Makefile

Kbuild space
CPP

Source files
 1  #if (defined CONFIG_FOO || defined CONFIG_BAR || defined CONFIG_BAZ)
 2      // B1
 3      #if defined CONFIG_FOO
 4     // B2
 5      #elif defined CONFIG_BAR
 6     // B3
 7      #else
 8     // B4
 9      #endif
10  #endif

lib/dir/foo.c

Code space

1  CONFIG_FOO=1
2  CONFIG_BAR=m
3  CONFIG_F_SEL=1

.config

#define CONFIG_FOO
#define CONFIG_BAR
#define CONFIG_F_SEL

autoconf.h

Figure 2.2: Linux build process. Violet dotted arrows represent constraints propagation between
spaces.

In this thesis, we set our focus on variability-aware build systems reusing off-the-shelf tools to
manage variability at multiple granularities in several steps. One example of such build systems is
the Linux kernel build system.

2.3.1 The Linux kernel build system

The widespread use of the Linux kernel in a variety of contexts and, consequently, platforms
(e.g., servers, personal computers, smartphones running the Android operating system2) leads to
numerous specific implementations to support this diversity of ecosystems. The Linux kernel build
system is responsible for the configuration of the kernel (i.e., selection of the desired features) and
the selection of the respective code assets that are then compiled to build the final bootable kernel.
This build system has three steps, illustrated in Figure 2.2.

KCONFIG KCONFIG files are present in multiple directories of the codebase and define config-
uration options (also called symbols) representing features. Each configuration option is defined
as a config entry and can be of six different types: bool, tristate, string, hex, or int.

2https://www.android.com/

https://www.android.com/
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A default value for the feature can be set with the default entry. Features can be selected di-
rectly by the user via a prompt (present in an individual prompt entry or attached to the type
of the feature), or by constraints on other features (defined in a depends on entry). Menus al-
low grouping features. If a feature is defined within a menu item that itself has a depends on
entry, this condition is appended by KCONFIG to the depends on condition of the feature3. A
feature can also force the selection of another feature with the select entry. For example, in the
lib/Kconfig file presented in Figure 2.2, feature FOO (line 4) is a feature of type bool whose
default value is y but which can be modified by the user via a prompt. To be selected, DEPS_A or
DEPS_B need to be selected, and MENU_COND needs to be satisfied. The selection of FOO, will
also force the selection of F_SEL. KCONFIG checks for the consistency of the constraints between
the selected features and outputs two files containing the list of selected features in two formats:
.configwill be read by the KBUILD Makefiles, and autoconf.h is a C header file that will be
appended to every source file during compilation. The KCONFIG is often considered by the scien-
tific community as a variability model [Sincero and Schröder-Preikschat, 2008; Oh et al., 2019] as
the depends on and select statements implement behavior analog to cross-tree constraints
between features (cf. Section 2.1).

KBUILD The KBUILD system is made of multiple Makefiles present in multiple directo-
ries throughout the project, which select objects for the compilation. Three types of objects
exist: object files, directories, and composite objects. Object files (such as file_c.o in
lib/dir/Makefile) represent objects generated during the compilation from existing .c files
in the codebase. Therefore, a file_c.c file should be present in the codebase. Added directo-
ries (such as dir/ in lib/Makefile) will have their KBUILD Makefile parsed to select files
from this subtree. Composite objects associate multiple files in one single object. For example,
foo.o in lib/dir/Makefile is a composite object defined at line 2 combining file_a.o
and file_b.o and used at line 1.

Selection is done by adding the object files generated at the precompilation to lists. For exam-
ple, in lib/dir/Makefile, the file_c.o object is added to the obj-y list. In this case, the
object will always be selected. The selection of an object can also be conditioned by the value of a
feature, as for the foo.o object. CONFIG_FOO refers to the FOO feature defined in the KCONFIG

file lib/Kconfig. FOO is a boolean feature, therefore if it has for value y, the object will be
added to the obj-y list. The same mechanism applies for the dir directory in lib/Makefile,
with the small difference that BAR is a tristate feature, allowing an extra m value. The object
added to the obj-m list will be compiled as a module. If a feature is not defined, the name of the
list becomes obj- and is ignored.

CPP Variability in the source files is implemented using CPP directives. Code in condi-
tional blocks declared with #if, #elif, #ifdef, or #ifndef directives (referred to as
ifdef directives) is selected only if the condition of the directive is satisfied. For example, in
lib/dir/foo.c, the selection of B1 implies that the condition line 1 is true. A nested block
can only be selected if its parent block is selected (the selection of B1 implies that the condition
line 3 is true and that B1 is also selected). Finally, code defined in a block declared with #elif
or #else can only be selected if the ifdef blocks preceding it are not selected (the selection
of B3 implies that the condition line 5 is true and that B2 is not selected, and the selection of B4

3https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html#menu-structure
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if cpu.endswith("86") or (cpu.startswith("i") and "86" in cpu):
    canonical_cpu = "x86"
    endianness = "little"
elif cpu in ("x86_64", "ia64"):
    canonical_cpu = cpu
    endianness = "little"
…
elif cpu.startswith("arm"):
    canonical_cpu = "arm"
    endianness = "big" if cpu.startswith(("armeb", "armbe")) else "little"

configure

Python scripts/build/moz.configure/init.configure

Configuration space

moz.build 
Python scripts

if not CONFIG["JS_STANDALONE"]:
SOURCES += ["foo.c", "subdir/bar.c"]

moz.build

/tools/fuzzing/moz.build

if CONFIG["FUZZING"] and CONFIG["JS_STANDALONE"]:
DIRS += ['fuzzing']

MozBuild space
CPP

Source files
 1  #if (defined FOO || defined BAR)
 2      // B1
 3      #if defined FOO
 4     // B2
 5      #elif defined BAR
 6     // B3
 7      #else
 8     // B4
 9      #endif
10  #endif

/tools/fuzzing/foo.c

Code space

include('/tools/fuzzing/moz.build')

'TARGET_CPU': 'x86_64',
'TARGET_ENDIANNESS': 'little',
…

config.status

/tools/moz.build

/dir/moz.build

Figure 2.3: Mozilla build process.

implies that neither B2 nor B3 is selected). Naturally, at the build system level, the selection of a
code block is also conditioned by the selection of the source file containing it, itself depending on
the selection of its parent directory by the KBUILD.

In the Linux kernel, the management of the variability is therefore done in three steps: a hand-
crafted configuration step, that has then been reused in other build systems [Fernandez-Amoros
et al., 2019; Oh et al., 2019], followed by two variability resolution steps reusing and adapting
off-the-shelf tools for that purpose. The Linux kernel is however not an isolated case, and similar
build systems reuse other approaches, such as the Mozilla build system.
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2.3.2 The Mozilla build system

The codebase for the Mozilla Gecko rendering engine is split in two repositories.
mozilla-central4 contains all the implementation for the Mozilla Firefox web browser5, the
Android Firefox application6 and the SpiderMonkey suite7, while comm-central8 contains
the code specific to the Thunderbird mail client9 and the SeaMonkey suite10. Analogously to the
Linux kernel, these products are used on a plethora of platforms and operating systems11, and a
build system is in charge of determining the configuration of the system that will run the product
and selecting the respective code assets. The Mozilla build system is composed of three distinct
steps, illustrated in Figure 2.3.

configure A configure.in file processed with Autoconf12 generates the configure
script. This script, together with a set of Python scripts, analyzes the host system to extract
information and create the config.status file containing the list of configuration options
used to configure Gecko and their values. The sample script shown in the Configuration space
box (Figure 2.3) is an excerpt of one of the Python scripts determining the features used in
the build system, build/moz.configure/init.configure13, and exhibits the defini-
tion of the TARGET_CPU and TARGET_ENDIANNESS options relying on the information
given by Autoconf. In the showcased example, the x86_64 value returned by Autoconf
leads to TARGET_CPU being set to x86_64 and TARGET_ENDIANNESS to little in the
config.status file.

MOZBUILD The MOZBUILD system consists of multiple moz.build files written in Python
disseminated in multiple directories of the project, whose goal is to select source files for compi-
lation (and determine other build parameters such as compilation flags or target libraries) based on
conditions on features from the configuration14. The codebase possesses multiple root MOZBUILD

files for each of the different software products that can be derived from the codebase.
Symbols represent lists or constants. Depending on their nature, the code assets are added for

compilation in different list symbols. C++ source files are added to the SOURCES list, as shown
in the /tools/fuzzing/moz.build file on Figure 2.3, while C compilation flags are added
to the HOST_CFLAGS list. If the JS_STANDALONE feature is not set, the foo.c file in this
directory and the bar.c in the subdir subdirectory relatively to the moz.build file will be
selected for compilation. Adding a directory path to the DIRS list indicates to the MOZBUILD to
parse and evaluate the moz.build file in this directory. For example, in /tools/moz.build,
if both FUZZING and JS_STANDALONE features are set, the /tools/fuzzing/moz.build
file will be evaluated. Another way to select directories is to use the include directive that

4https://hg.mozilla.org/mozilla-central/
5https://www.mozilla.org/en-US/firefox/
6https://www.mozilla.org/en-US/firefox/browsers/mobile/android/
7https://spidermonkey.dev/
8https://hg.mozilla.org/comm-central/
9https://www.thunderbird.net/en-US/

10https://www.seamonkey-project.org/
11https://data.firefox.com/dashboard/hardware
12https://www.gnu.org/software/autoconf/
13https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/

init.configure#l503
14https://firefox-source-docs.mozilla.org/build/buildsystem/mozbuild-symbols.html

https://hg.mozilla.org/mozilla-central/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/browsers/mobile/android/
https://spidermonkey.dev/
https://hg.mozilla.org/comm-central/
https://www.thunderbird.net/en-US/
https://www.seamonkey-project.org/
https://data.firefox.com/dashboard/hardware
https://www.gnu.org/software/autoconf/
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/init.configure#l503
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/init.configure#l503
https://firefox-source-docs.mozilla.org/build/buildsystem/mozbuild-symbols.html
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allows to include other moz.build files in unrelated directories. For example, evaluating
/dir/moz.build will also lead to the evaluation of /tools/fuzzing/moz.build.

Therefore, as opposed to the kernel’s KBUILD Makefiles, the MOZBUILD files do not only
manage files in their own directories, and multiple inclusions of a same source file of moz.build
file thus becomes possible. This is the case for /tools/fuzzing/moz.build that is al-
ways evaluated whenever /dir/moz.build is, but is included with a specific condition in
/tools/moz.build.

CPP The config.status file is also used as input to CPP to preprocess the source files and
select code blocks. The CPP stage is similar as in the Linux kernel build system and is already
described in Section 2.3.1.

The steps to build a product from the Mozilla codebase are therefore similar to the ones build-
ing a Linux variant. Moreover, although the tools used are different (apart from CPP), they are
in both cases solutions built by adapting existing tools that are originally not designed to man-
age variability. This causes each step to be completely independent and unaware of the variability
implemented by the others, and any modification regarding the variability in a step can have unex-
pected consequences in others. For example, in the KCONFIG file presented on Figure 2.2, adding
a depends on !FOO constraint to the BAR feature would prevent the selection of the foo.c
file in the lib/dir/Makefile (line 1) as entering the lib/dir directory implies that BAR
is selected. Such problems are called anomalies [Sincero et al., 2010; Nadi et al., 2013]. In this
case, the file (and consequently the code blocks it contains) are never selectable for any variant of
the system and are therefore called dead files/blocks. While a variability modeling tool having the
view of the overall variability would detect the problem, build systems made of ad hoc tools, such
as the Linux kernel build system and the Mozilla build system do not have this capacity.





CHAPTER 3
State of the Art

In Chapter 2, we introduced the main concepts related to software variability and its implemen-
tation in code assets, with a particular focus on OO systems. We also presented how variability-
aware build systems adapt tools to manage variability at compile-time. In this chapter, we provide
an overview of the state of the art on work providing approaches related to the challenges tack-
led in this thesis. Proposed techniques to identify variability implementations (Challenge A1) are
detailed in Section 3.1, while tools and visualizations for variability and software comprehension
(Challenge A2) are presented in Section 3.2. Work on the characterization and the comprehen-
sion of quality and its relationship with variability implementations (Challenge A3) is detailed
in Section 3.3. Finally, contributions studying the derivation mechanism of build systems (Chal-
lenge B1) and characterizing the anomalies they can suffer from (Challenge B2) are showcased
in Sections 3.4 and 3.5 respectively.

3.1 Variability identification techniques

Multiple techniques have been proposed to identify variability implementations in the code assets
of software systems that are not fully-fledged SPLs. We first present a panel of proposed feature
location and identification techniques (Section 3.1.1) before focusing on an approach specifically
designed for OO systems in a single codebase (Section 3.1.2).

3.1.1 Feature location and identification techniques

Multiple approaches have been proposed to reengineer legacy software systems in an SPL [As-
sunção et al., 2017] and are commonly divided into two categories. On one side, feature location
approaches aim to recover the traceability of some pre-existing features to the reusable code assets
in an SPL [Rubin and Chechik, 2013; Dit et al., 2013; Krüger et al., 2019a; Michelon et al., 2022].
However, as the domain variability is hardly documented in OO variability-rich systems [Krüger
et al., 2019b], such approaches are not applicable to our context. On the other side, feature iden-
tification approaches aim to identify the common and varying units, as potential features, among
some related software systems [Ziadi et al., 2012; Martinez et al., 2017b]. While they do not rely on
domain features, they often target clone-and-own systems [Roy and Cordy, 2007; Michelon et al.,
2019; Linsbauer et al., 2022], thus managing their variability in multiple codebases, or systems re-
lying on ifdefs [Sincero et al., 2010; Liebig et al., 2010] or other annotative approaches [Couto
et al., 2011]. When applicable to single OO codebases, they rely on dynamic analysis results such
as traces obtained from executing the system [Walkinshaw et al., 2007] or the unit tests [Eisenberg
and De Volder, 2005] that can be used to enhance static analysis results [Michelon et al., 2021a].

21
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Circle

+ radius: double

+ area():double
+ perimeter():double

Rectangle

+ width: double
+ length: double

+ area(): double
+ perimeter(): double
+ draw (int,int): void
+ draw (Point): void

Shape

+ origin: Point

+ newOrigin(Point): void
+ area(): double
+ perimeter(): double

Extends Extends

<< abstract >>

unchanged: behaviour

changes: computations 

unchanged: structure

changes: arity 

Figure 3.1: UML representation of Listing 2.1 exhibiting local symmetries

Table 3.1: Five object-oriented software constructs and their symmetries

Software construct Commonality / Unchange Variability / Change Symmetry transformation

Class subtyping Superclass / Type Subclasses Substitution
Method/constructor
overloading Structure Signatures / Arity Substitution

Strategy pattern Strategy interface Algorithms Substitution
Factory pattern Abstract Creator and product Concrete creators and products Factory

As we aim to tackle large systems that are possibly not executable locally and since unit tests are
not always available and executable, we restrain ourselves to a static analysis of the code assets.

3.1.2 Identifying OO variability implementations

Considering this lack of approach to tackle the problem of statically identifying variability imple-
mented using OO mechanisms, Tërnava et al. [2019] proposed an identification approach relying
on the notion of symmetry in OO code assets and proposed symfinder [Mortara et al., 2019], a
toolchain automating the identification on single Java codebases using this technique1. We detail
both the identification technique and the toolchain hereafter.

1During my Master’s thesis, I collaborated with Xhevahire Tërnava and designed the symfinder toolchain as an
automation of the symmetry-based identification approach she designed. Consequently, although I am the first author
of the paper on symfinder toolchain [Mortara et al., 2019], Xhevahire is the first author of the paper describing the
identification approach [Tërnava et al., 2019].
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Figure 3.2: The symfinder toolchain

Symmetry in OO software constructs Inspired by Alexander’s theory of centers [Alexander,
2002], several works show that OO techniques and software design patterns exhibit a form of
symmetry [Coplien and Zhao, 2000a; Coplien, 2001; Zhao and Coplien, 2003, 2002; Henney,
2003; Zhao, 2008]. From the natural sciences, the symmetry of an object is defined as the immunity
to a possible change [Rosen, 1995, 2008] and relies on (1) the possibility of change and (2) the
immunity to change. Considering a whole codebase, the OO techniques involved in variability
implementations can be seen as local symmetries [Tërnava et al., 2019; Tërnava et al., 2022],
which allow a part of the code to change while another part remains unchanged.

To illustrate these symmetries, let us consider the UML diagram given in Figure 3.1, rep-
resenting the example code given in Listing 2.1. The class Shape is a class level vp with two
variants, Circle and Rectangle. They can be abstracted as vp_Shape, v_Circle, and
v_Rectangle, respectively. Following the symmetry definition, inheritance defines a substitu-
tion symmetry for its subtypes. Here, the possibility of a change in the superclass Shape materi-
alizes in its potential different subtypes, such as Circle and Rectangle, which vary regarding
the type of geometric shape. Still, they also preserve and conform to the common behavior of their
superclass. Analogously at the method level, the two draw methods exhibit a substitution sym-
metry as their signatures and parameters vary, while their structure remains immune to the change.
Table 3.1 illustrates all five mechanisms allowing to implement variability detailed in Section 2.2.2
the common and variable parts of the symmetry they exhibit. Additionally, as the coherence of a
structure or object is related to a density of local symmetries [Alexander and Carey, 1968; Alexan-
der, 2002], the density of vp-s with variants has been proposed as a way to locate and describe the
most intense places concentrating variability implementations in a system.

symfinder The proposed identification technique relying on symmetries and their density has
been implemented in a tooled approach, symfinder, providing an automatic identification and
visualization of potential vp-s with variants in code assets of a Java-based variability-rich sys-
tem [Mortara et al., 2019]. The organization of the toolchain is depicted in Figure 3.2. After fetch-
ing the sources of the Java system to analyze, the code assets are parsed and the potential vp-s with
variants identified, relying on a graph representation of the assets and their identified symmetries
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– Class as type (vp or variant), – Class variant with inner vp-s, – Abstract class (vp), – Interface (vp),
– Constructor overloads (vp), – Method overloads (vp), – Inheritance relationship,

Node with ’F’, ’S’ symbol – Factory or Strategy pattern

Figure 3.3: Identified vp-s and variants using symfinder for the excerpt of JFreeChart given in Fig-
ure 3.1.

in a Neo4j database2. symfinder also provides a visual representation of the potential vp-s and
variants and their metrics (i.e., for each class level vp, the number of method level vp-s with the
number of variants). Figure 3.3 shows the visualization of identified potential vp-s with variants3

in JFreeChart4, a charting library written in Java. Each class level vp or variant is visualized as a
circle node that points out the used implementation technique while edges show their inheritance
relationship. The size and shades of the red color of nodes indicate the number of method level
vp-s with variants5. Consequently, the visualized variability forms a disconnected graph based on
inheritance links, while the visual representation of the metrics associated with each node (e.g.,
size, color intensity) creates zones that can be easily distinguished by their different density of
symmetries6. For example, the left part of Figure 3.3 is denser than the right part, indicating that
these classes concentrate more mechanisms involved in variability implementations.

Tërnava et al. [2019] evaluated this identification technique by applying it on eight Java open
source systems and visually assessing the relevance of the identified zones concentrating vp-s with
variants. As the authors were able to discern relevant variability implementations, symfinder and
its symmetry-based identification technique seem to be a first answer to Challenge A1. However,
this evaluation exhibits two limitations. First, the applicability of the symmetries in OO constructs
has been demonstrated in a single language, Java. Second, the relevance of the identified vp-s and

2https://neo4j.com/
3Blue names and arrows in Figure 3.3 have been manually added for illustration.
4https://www.jfree.org/jfreechart/
5PiePlot is a variant of Plot, however, it is also a vp as it has two variants, thus is described as vp_PiePlot

on the figure.
6It should be noted that the identification is based on symmetry in implementation techniques while the visualization

on their density. Hence, one should not confuse the two and expect any kind of symmetry in the visualization.

https://neo4j.com/
https://www.jfree.org/jfreechart/
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variants has been done visually, based on the authors’ knowledge of these systems. Therefore,
confirming the hypothesis according to which symfinder answers Challenge A1 requires assessing
the method on these aspects.

3.2 Helping the comprehension of the implemented variability

Multiple approaches have been proposed to help the comprehension of variability-intensive soft-
ware systems, heavily relying on visualizations.

Tool supports and visualizations for SPLs. When such systems are developed as SPLs,
multiple tools help the implementation and the management of the variability, such as Fea-
tureIDE [Meinicke et al., 2017], pure::variants [Beuche, 2019; pure-systems GmbH, 2020] or
BigLever Gears [Krueger and Clements, 2013]. These tools rely on visual representations to assist
the user. For example, pure::variants provides a visualization of the realized variability into a fam-
ily model, including code assets by using a hierarchical “file explorer style”, iconography for types
of elements and “feature” states, and a matrix view. Other visual approaches have been proposed
to help the comprehension of the variability of a variability-intensive systems but mainly focus on
SPLs and feature models. They aim to facilitate the configuration process over features [Lopez-
Herrejon et al., 2018], or assist the onboarding of developers on SPLs [Azanza et al., 2021], and
therefore do not concern the implementation.

Visualizations for variability implementations. Regarding variability at the code level, multi-
ple works rely on integrated development environments (IDEs) to visualize feature traces [Kästner
et al., 2008; Andam et al., 2017; Martinson et al., 2021] or ifdefs [Feigenspan et al., 2011a,
2013] in the code assets and help to understand the interactions between features and code [Greevy
et al., 2005; Bergel et al., 2021]. Other approaches target software clones [Hammad et al., 2020]
and provide visualization approaches to measure the similarity that exists between them, using
for example bar charts [Duszynski and Becker, 2012]. These techniques targeting clone-and-own
systems or requiring features traces or annotations, they are therefore not applicable to our case.

Although symfinder already proposes a graph visualization for the identified OO variability
implementations (cf. Section 3.1.2), the 2D nature of the visualization limits the information on
the variability that can be displayed. Additionally, the challenge of tackling large codebases re-
quires a scalable visualization, which is known to be a weak point of graph visualizations [Pienta
et al., 2015]. Hence, to the extent of our knowledge, no scalable visualization for OO variability
implementations has yet been proposed, leaving Challenge A2 open.

The city metaphor. While, it could be possible to make symfinder’s graph visualization evolve
and improve its scalability [Burch et al., 2011; Beck et al., 2017], multiple visualizations rely
on metaphors as they bring an understandable graphical representation to concepts [Knight and
Munro, 2000]. For example, the metaphor of the city [Knight and Munro, 1999] has been ap-
plied to multiple types of metrics on software systems: dynamic behavior (such as concurrency
between classes [Waller et al., 2013] or memory consumption of heaps [Weninger et al., 2020]),
and static properties such as dependency and communication links between components [Fittkau
et al., 2017].
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At a finer grain, software cities to understand OO software systems have been proposed, the
first of them being CodeCity [Wettel and Lanza, 2008a, 2007] which uses buildings to repre-
sent classes, grouping them in districts representing packages. These principles were enhanced by
adding a temporal dimension in the analysis to visualize the evolution of the metrics through mul-
tiple versions of the system, first in CodeCity [Wettel and Lanza, 2008b] and also in a more recent
approach called M3TRICITY [Pfahler et al., 2020]. The Evo-Streets [Steinbrückner and Lewerentz,
2013] approach also aims at visualizing the evolution of the software but uses streets to represent
the package decomposition (instead of nested boxes in CodeCity). Multiple approaches also reuse
the city metaphor by adding other visual dimensions such as arcs between buildings [Dashuber
et al., 2021; Dashuber and Philippsen, 2022a] or by adapting it to more immersive techniques,
such as virtual reality for CodeCity [Moreno-Lumbreras et al., 2023] and VRCity [Vincur et al.,
2017], or Minecraft for CodeMetropolis [Balogh and Beszedes, 2013].

The popularity of this metaphor and the fact that CodeCity showed to help complete pro-
gram comprehension tasks [Wettel et al., 2010, 2011] lead us to the hypothesis that such a visu-
alization adapted for OO variability implementations could help their comprehension, and there-
fore be a way to answer Challenge A2. However, while the graph representation provided by
symfinder allowed the authors to visually identify relevant zones concentrating variability imple-
mentations [Tërnava et al., 2019], no evaluation of the help that density brings to comprehend the
implemented variability has been conducted. This preliminary step is required before designing a
new visualization.

3.3 Identifying and comprehending indebted variability implemen-
tations

Multiple approaches have been proposed targeting the observation and characterization of techni-
cal debt in the context of variable systems.

Quality of variability implementations. Implementing variability in a system is known to bring
additional complexity [Galster et al., 2017]. For example, extensive use of annotative approaches
such as CPP directives is seen as a “pollution” [Liebig et al., 2010] as it hampers the understanding
and management of the implemented variability, eventually becoming a “hell” [Medeiros et al.,
2017; Le et al., 2011].

Consequently, the maintainability of the system is threatened and its capacity to evolve ham-
pered [Favre, 1996; Kröher et al., 2022], eventually leading to technical debt [Avgeriou et al.,
2016; Li et al., 2015]. Monitoring quality being crucial for the maintenance and evolution of such
systems [Martini and Bosch, 2015], technical debt due to variability implemented using annota-
tive approaches has been largely studied, leading to new definitions (as variability bugs, being
errors and warnings caused by ifdefs interactions [Abal et al., 2014; Mordahl et al., 2019]) and
adaptations of standard code smells definitions [Fenske and Schulze, 2015; Souza et al., 2019] to
consider variability mechanisms. By targeting annotative approaches, these definitions cannot be
used directly to measure the quality of OO variability implementations.

Variability debt and OO systems. Very recently, Wolfart et al. [2021] defined variability debt as
“Technical debt caused by defects and sub-optimal solutions in the implementation of variability
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management in software systems”. They studied 52 industrial case studies reporting technical debt
issues on variable software systems with the following main results:

1. the absence of known variability implementation mechanisms is prone to cause artifact du-
plication, an increase of code complexity, and a “disappearance of links between implemen-
tation artifacts to business values” [Ebert and Smouts, 2003];

2. the lack of knowledge of the implemented variability, as well as the absence of traceability,
causes variability debt;

3. variability debt mainly impacts source code artifacts;

4. variability debt causes an inability to systematically deal with customization and poor over-
all internal quality, complicating maintenance for the development team.

OO systems are directly reusing traditional mechanisms and variability code is then intertwined
with the rest of the implementation code [Tërnava and Collet, 2017b] (cf. Section 2.2.2), providing
no traceability with potential domain knowledge. They are therefore prone to variability debt in
the source code artifacts.

Defining OO variability debt. Wolfart et al. [2021] introduced a catalog of ten forms of vari-
ability debt, detailing for each of them its cause(s), consequence(s), and concerned type(s) of
artifacts. In the following analysis, these forms are written in italics.

As OO variability implementations rely solely on standard OO mechanisms, the availability
of the source code is the only requirement to identify them. Finding Code duplication is therefore
possible, as well as System-level structure quality issues in the implementation. Most often, tests
sources are provided along with the source code, enabling identification of Lack of tests.

However, other information is not always available, especially in the case of open-source sys-
tems, such as the documentation, leaving aside Out-of-date or incomplete documentation and Du-
plicate documentation. Identifying Architectural anti-patterns needs information on the domain
and the associated design choices (e.g., we cannot say if a Strategy pattern has the desired behav-
ior solely by analyzing its structure). Covering Poor test of feature interactions would require a
list of features and their mapping with their implementations, which are often not available in our
case, while covering Old technology in use and Multi-version support implies having information
about the versions of the supporting language and used libraries. Finally, identifying Expensive
tests implies determining whether test cases have been formally defined or not [Shah et al., 2013],
thus requiring test cases definitions.

It results that relying on the source code and its tests, OO software systems are prone to Code
duplication, Lack of tests, and System-level structure quality issues in the implementation. There
is therefore a need for a technique to identify and comprehend these types of variability debt in
the context of OO variability implementations.

Identifying and comprehending technical debt in OO software systems. In the domain of OO
systems, technical debt is often measured relying on metrics related to the OO implementations
such as the number of lines of code (LoCs) of a class or method, the quantity of duplicated code or
the unit tests coverage. Multiple works focus on determining software quality metrics [McCabe,
1976; Kafura and Henry, 1981; Rosenberg and Hyatt, 1997; Fowler, 2018; Campbell, 2018; Misra
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et al., 2018], measuring their evolution [Sato et al., 2007; Hecht et al., 2015], and validating the
relevance of these metrics [Khan et al., 2007; Pantiuchina et al., 2018]. Tools have been developed
to automatically analyze OO codebases and extract quality metrics [Lenarduzzi et al., 2018], such
as SonarQube7, one of the most frequently used open-source code analysis tools, adopted by more
than 200K developer teams, including more than 250K public open-source projects on its cloud
version SonarCloud8. Not only the metrics are extracted, but a set of customizable rules gives more
precise insights into the defects detected, and how to correct them [Pellegrini et al., 2018; Lenar-
duzzi et al., 2020]. Finally, a set of plugins complete the tool to provide improved exploitation of
the extracted metrics and improve their comprehension, such as advanced visualization solutions.
One of them is SoftVis3D9, which embeds the city-based CodeCity [Wettel and Lanza, 2008a]
and Evo-Streets [Steinbrückner and Lewerentz, 2010] visualizations. As such visualizations have
proven to help the comprehension of a system’s quality [Wettel et al., 2011], multiple other city-
based visualization approaches for quality have been proposed [Wettel and Lanza, 2008b; Fittkau
et al., 2017; Pfahler et al., 2020].

It results that in the context of OO systems, technical debt is identified relying on OO met-
rics, while their comprehension is achieved through visualizations. However, none of the existing
identification or visualization approaches consider the variability implemented in such systems,
leading to Challenge A3 (“Understanding the quality of the implemented variability”) to be open.
Variability debt being a particular type of technical debt, there is a need to (i) determine relevant
OO metrics to identify OO variability debt and (ii) design an adapted visualization to comprehend
it.

3.4 Studies conducted on build systems

As detailed in Section 2.3, multiple large software systems rely on build systems to manage their
build process, as the Mozilla products codebase and the Linux kernel, and have been studied on
multiple aspects.

3.4.1 Studies on the Mozilla build system

For example, the Mozilla build system has been used as a case study to evaluate the impact of hav-
ing a build system on the maintenance effort [McIntosh et al., 2011]. Lampel et al. [2021] explore
the causes of intermittent test failures in the system’s continuous integration and Maudoux and
Mens [2019] report on the application of a third-party build system, Tup10, as a replacement of
Make. Finally, de Jonge [2005] examined the structure of the build system step selecting directo-
ries and source files (managed at the time of this study with Autotools) and noticed that “Mozilla
uses a dedicated build system. [. . . ] It requires a special directory layout. [. . . ] As a consequence,
one cannot easily integrate Mozilla’s source directories or build process in other software sys-
tems.”, confirming the ad hoc and complex nature of Mozilla’s build system. However, to the
extent of our knowledge, no work studies this build system from the variability point of view.

7https://www.sonarqube.org/
8https://sonarcloud.io/explore/projects
9https://softvis3d.com/

10https://gittup.org/tup/

https://www.sonarqube.org/
https://sonarcloud.io/explore/projects
https://softvis3d.com/
https://gittup.org/tup/
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3.4.2 Studies on the Linux kernel build system

On the opposite, the impressive figures of over 15,000 configurable features, 28 million lines of
code in more than 60K files, 900,000 commits from more than 2K authors [Larabel, 2020], the
Linux kernel has been a constant subject of study for the software engineering community on a
plethora of aspects including software evolution [Antoniol et al., 2002; Padioleau et al., 2008;
Israeli and Feitelson, 2010] and maintenance [Jiang et al., 2013; Abal et al., 2014] issues. More
specifically, it has become emblematic over the years in the variability research community [Sin-
cero et al., 2007] as mastering its variability is still an open challenge [Thüm, 2020]. Consequently,
it naturally became a center of interest for build system variability studies.

As detailed in Section 2.3.1, the variability management architecture of the kernel relies on
a model-based configuration tool (KCONFIG), CPP preprocessor directives in the code, and a
configuration-aware build system (KBUILD).

Studies on the KCONFIG. Naturally, variability management in the KCONFIG part was deeply
investigated. While Sincero and Schröder-Preikschat [2008] established a first mapping between
the KCONFIG language and feature modeling concepts, She et al. [2010] investigated the inverse
mapping and built a model for the KCONFIG language constructs. She and Berger [2010] described
the semantics of the KCONFIG language, used as a basis for multiple tools [Tartler et al., 2011;
Kästner, 2016; She, 2013; El-Sharkawy et al., 2015]. Zengler and Küchlin [2010] achieved a
translation of KCONFIG’s constraints in a single logic formula, later reused with SAT-solving
by Walch et al. [2015] to analyze the consistency of KCONFIG files, while Fernandez-Amoros
et al. [2019] provide a translation to propositional logic. In his Master’s thesis, Hengelein [2015]
analyses defects in KCONFIG. As it can be seen as a feature model [She et al., 2010], it can
have its defects, i.e., dead features [Kang et al., 1990], or false optional features [Zhang et al.,
2004]. Based on these previous works, CONFIGFIX has been proposed as a variability-aware tool
to help the configuration of the kernel [Franz et al., 2021]. Besides, as the Linux kernel is a living
ecosystem, the evolution of its variability model has also been extensively studied [Lotufo et al.,
2010; Passos et al., 2013; Dintzner et al., 2017; Passos et al., 2018; Kröher et al., 2018c].

Studies on the variability implemented with CPP. Closer to the code, Sincero et al. [2010]
defined presence conditions to identify inconsistencies in the constraints defined by ifdef
directives in the kernel, and proposed an implementation with the UNDERTAKER toolchain.
While Tartler et al. [2009] introduced the problem of inconsistencies between KCONFIG files and
ifdef directives, they extended UNDERTAKER to add constraints from the KCONFIG files and
identify inconsistencies between the two spaces [Tartler et al., 2011, 2012]. Other tools relying on
presence conditions have been developed to reason on ifdef directives for type checking, such
as TypeChef [Kenner et al., 2010], and use the Linux code base as a robustness trial [Kästner et al.,
2011]. Santos and Santana de Almeida [2015] identified more than 36,000 inconsistencies in the
Linux code assets with their checking technique between FM concepts and their translation using
ifdef directives. El-Sharkawy et al. [2017] analyze the causes of configuration mismatches in
the kernel, being cases where the build system behaves differently from the constraints expressed
in the variability model.

Studies on the KBUILD. Multiple tooled approaches have also been proposed to parse, analyze,
and reason on KBUILD Makefiles, as KBUILDMINER [Berger et al., 2010], MAKEX [Nadi and
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Table 3.2: Terminologies used by a panel of work for each space of the Linux build system

Paper KCONFIG files KBUILD Makefiles CPP / Source files

Tartler [2013]
Feature Modeling

Build system
Generator

Configuration Preprocessor

Passos et al. [2013] Variability Model Mapping Implementation

El-Sharkawy et al. [2017] Problem space Solution space

Abal et al. [2014]
Problem space

/
Solution space

Model Code

Nadi [2014] Configuration space Build space Code space

Work characterizing anomalies

Sincero et al. [2010]
Problem space

/
Solution space

Model Implementation

Tartler et al. [2011] Configuration space / Implementation space

Hengelein [2015]
Feature Modeling

Build system
Generator

Configuration Preprocessor

Nadi and Holt [2011] Configuration space Compilation space Implementation space

Nadi and Holt [2012] Kconfig space Make space Code space

Tartler et al. [2009] Model level Generation level Source code level

Tartler et al. [2012] Configuration space Implementation variant Implementation space

Nadi and Holt [2014] Kconfig space Make space Code space

Holt, 2014], GOLEM [Dietrich et al., 2012] (and its extension MINIGOLEM [Ruprecht, 2015]), and
KMAX [Gazzillo, 2017]. Berger et al. [2010] analyzed the KBUILD Makefiles to extract a mapping
between features and code assets in the shape of presence conditions on the features. Other tools
for analyzing standard Makefiles have been applied to KBUILD files, such as MAKAO [Adams
et al., 2007], which builds a dependency graph from them. This tool is used in more recent
work on the identification of unspecified dependencies in Make-based systems, also applied to
KBUILD [Bezemer et al., 2017]. More recent approaches use symbolic execution to recover build
conditions in KBUILD files [Nguyen and Nguyen, 2020]. Finally, after studying the internal con-
sistency of the KBUILD Makefiles through three types of defects, Nadi and Holt [2011] built a third
extension of UNDERTAKER to add constraints from the KBUILD files and identify inconsistencies
in the three spaces [Nadi and Holt, 2012].

However, all the contributions previously detailed focus on isolated steps of the Linux build
system. While the KernelHaven [Kröher et al., 2018a,b] workbench aggregates multiple tools pre-
viously cited in a single framework and allows to analyze properties of the whole kernel build
system and extract metrics, there is no representation of the interactions between the different
steps of the build system, and each one of them is also characterized differently. Table 3.2 sum-
marizes for multiple of the previously cited work the different terminologies used to refer to the
different parts of the build system. Except for a journal extension [Nadi and Holt, 2014] and a
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Ph.D. thesis [Tartler, 2013], every paper has its own terminology, and some of them even use mul-
tiple terminologies [Tartler, 2013; Hengelein, 2015; Abal et al., 2014; Tartler et al., 2011]. One
paper [El-Sharkawy et al., 2017] groups the KBUILD and CPP in a single Solution space, denomi-
nation used by Abal et al. [2014] and Sincero et al. [2010] to refer only to the CPP constraints. This
heterogeneity prevents the application of these contributions to other build systems as the Mozilla
build system that, although they are equally complex, have been less studied, leaving Challenge B1
(“Making explicit the derivation mechanism of build systems”) open.

3.5 Anomalies in build systems

As for contributions related to variability management in build systems presented previously, ex-
isting work on the definition and identification of anomalies in build systems are focused on the
Linux kernel. Eight of the contributions studying the build system introduced in Section 2.3 and
presented in Table 3.2 characterize anomalies in the build system and provide definitions for them.
Appendix A lists the anomalies defined in five of these works. We discarded the last three publi-
cations being journal extensions [Tartler et al., 2012; Nadi and Holt, 2014] or publications by the
same authors [Tartler et al., 2009] that do not extend the characterizations of anomalies.

In the implementation, anomalies due to interfering CPP constraints have been character-
ized by Sincero et al. [2010] (Appendix A.1) and extended to consider the KCONFIG constraints
by Tartler et al. [2011] (Appendix A.4). Relying on this last work, Hengelein [2015] analyzes the
internal consistency of the KCONFIG and proposes definitions to describe these anomalies (Ap-
pendix A.2). Finally, Nadi and Holt [2011] (Appendix A.3) define anomalies happening inside the
KBUILD and extended their work to consider all three spaces of constraints [Nadi and Holt, 2012]
(Appendix A.5).

Although this panel of work allows covering anomalies in and between all spaces of constraints
in the build system, as shown on Figure 3.4, all concepts and denominations are different among
contributions, with the same properties being described with varied formalisms and sometimes
different definitions, at different levels, or with no easy relationship between them.

By analysing the definitions of anomalies from the selected papers, we can pinpoint mul-
tiple elements bringing confusion. First, multiple definitions are redundant between papers, but
their expression and their names differ. For example, Dead block defined by Sincero et al. [2010]
in Anomaly 1, Configurability defect defined by Tartler et al. [2011] in Anomaly 13 and Code–
KCONFIG anomalies defined by Nadi and Holt [2012] in Anomaly 19 express the same formula.
On the opposite, some anomalies with identical names may not express the same type of defect.
This is the case for the formulas to detect dead blocks in Anomalies 13 and 15, which are equiv-
alent, while the characterizations of undead blocks are inconsistent. Using the example shown

1 #if defined A
2 //block 1
3 # if defined A
4 //block 2
5 # endif
6 #endif

Listing 3.1: Two nested CPP code blocks
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Kconfig
Kconfig space

Kbuild
Kbuild space

CPP
Code space

[Hengelein, 2015]: Anomalies 4, 5,
6, 7, 8 and 9
[Tartler et al., 2011]: Anomaly 16

[Nadi and Holt, 2011]: Anomalies 10,
11 and 12

[Sincero et al., 2010]: Anomaly 2
[Nadi and Holt, 2012]: Anomaly 18
[Tartler et al., 2011]: Anomaly 14

[Nadi and Holt, 2012]:
Anomalies 24 and 25

[Nadi and Holt, 2012]:

Anomaly 21

[Sincero et al., 2010]:
Anomaly 3
[Nadi and Holt, 2012]:
Anomalies 19 and 20
[Tartler et al., 2011]:
Anomalies 13, 15 and 17

[Nadi and Holt, 2012]:

Anomalies 19 and 20

Figure 3.4: Synthetic map of inconsistencies analyses of the Linux Kernel

in Listing 3.1, Block 2 is undead according to Anomaly 13, as the selection of its parent (Block
1) implies its selection. However, if the A variable is not defined, then Block 2 is not undead
according to Anomaly 15 as it is not always included.

Another limitation issues from the fact that the formalisms given for anomalies are at coarse
grain. Sincero et al. [2010] presented a first implementation of UNDERTAKER for CPP imple-
menting their formalism on CPP. Tartler et al. [2011] then improved it by adding a second level
to UNDERTAKER for reasoning over the KCONFIG constraints, but the authors considered the
constraints from CPP in the tool as a black box, altering the previously defined formalism. Con-
sequently, the fine-grained comprehension of the feature–block link is then lost. The same issue
can be found in the work from Nadi and Holt [2012] on the KBUILD space and the third exten-
sion they provide for UNDERTAKER. Moreover, spaces can also be named differently, sometimes
with the same letter representing two different spaces in two definitions (C represents the CPP
constraints in [Sincero et al., 2010; Nadi and Holt, 2012] and the KCONFIG constraints in [Tartler
et al., 2011]). A summary of these differences is given in Table 3.3.

These issues and the lack of a uniform vision over the different analyses on the kernel vari-
ability hamper the understanding of both the issues and the proposed solutions, as well as their
transfer in the future evolution of the build system. Furthermore, a uniform and consistent model
could be applied to other highly configurable systems, such as the MOZBUILD. These limitations
cause Challenge B2 (“Characterizing and identifying anomalies in build systems”) to be open.
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Table 3.3: Notation mapping for constraints in the three spaces in three papers

Paper CPP KBUILD KCONFIG

Sincero et al. [2010] C / K
Tartler et al. [2011] I / C

Nadi and Holt [2012] C M K

3.6 Summary

Current state-of-the-art approaches do not allow deep comprehension of two aspects of variability
implementations in large software systems. First, in the implementation of OO software systems,
and second, in their management in ad hoc build systems. In this thesis, we tackle separately
challenges related to the identification and comprehension of OO variability implementations and
their quality (Part I) from the challenges related to the comprehension of the mechanisms resolving
variability in build systems and the induced anomalies (Part II).





PART I

Comprehending the implemented
variability in object-oriented code assets





CHAPTER 4
Assessing the symfinder

method
This chapter shares material with the VaMoS 2020 paper “Mapping Features to Automatically

Identified Object-Oriented Variability Implementations – The case of ArgoUML-SPL” [Mortara
et al., 2020b] and the SPLC 2020 paper “Identifying and Mapping Implemented Variabilities in
Java and C++ Systems using symfinder” [Mortara et al., 2020a]. Some elements are also ex-
tracted from the AUSE journal paper “Identification and visualization of variability implemen-
tations in object-oriented variability-rich systems: a symmetry-based approach” [Tërnava et al.,
2022] which extends the work presented in [Tërnava et al., 2019] and [Mortara et al., 2020b].

The approach proposed by Tërnava et al. [2019] to identify variability implemented in OO
software systems has been applied to multiple open source variability-rich systems written in
Java. While the proposed graph visualization allowed on these systems to visually distinguish
zones concentrating variability implementations, assessing the relevance of the approach requires
additional steps. First, the symfinder toolchain [Mortara et al., 2019] automating the identification
only supports Java codebases, therefore the use of symmetry in OO structures as a technique to
identify OO variability implementation has been validated on this language only. Then, as the
relevance of the identified vp-s and variants has been evaluated visually by the authors, evaluating
whether they actually represent domain features requires a comparison between identified vp-s
and variants with known domain features and their traces in the code assets. Finally, evaluating
whether these identified potential variability implementations and their representation actually
helps the comprehension of the implemented variability requires an evaluation by a third-party
user.

In this chapter, we evaluate those two aspects to determine to what extent symfinder approach
tackles Challenges A1 and A2 (“Identifying variability implemented in OO software systems” and
“Making the identified variability implementations comprehensible” respectively). We assess the
relevance of the symfinder approach by addressing the following questions:

1. Is the identification approach adapted to other OO languages? To address this question,
we apply the notion of symmetry in OO constructs to C++ structures and extend symfinder to
support C++ codebases. We then evaluate the approach on multiple C++ open source systems
(Section 4.1).

2. Do the identified vp-s and variants correspond to domain features? To address this
question, we apply symfinder on two systems for which domain features and their traces in
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the code assets are available and measure the accuracy of the symmetry-based identification
by adapting precision and recall metrics (Section 4.2).

3. To what extent does the symfinder approach and its visualization help comprehension
of the implemented variability? To address this question, we report on an evaluation by
Daniel Le Berre on his use of symfinder on the Sat4j project, of which he is the main architect
(Section 4.3).

4.1 Reproducibility of the symmetry-based identification technique
on C++ code assets

In order to assess the reproducibility of the symfinder approach, we apply on C++ systems the
same protocol introduced by Tërnava et al. [2019] to evaluate the approach on Java systems. We
first select a set of open source software systems implemented in C++ of various sizes and that can
implement variability (Section 4.1.1). We then apply an adapted version of the symfinder toolchain
to parse and identify symmetries in C++ codebases (Section 4.1.2) and report on the visually visible
zones concentrating variability implementations (Section 4.1.3).

4.1.1 Subject systems

Table 4.1 synthesizes the five selected subject systems. Zelda-Game is a text based game made as
a final project for an academic course. We selected it as its documentation states that it uses "con-
cepts of OOP like Inheritance, Composition, Association, Polymorphism", that is, mechanisms
used to implement OO variability. Decaf-Compiler is a compiler for the Decaf language. As it is
a small project designed as an academic project for a Compilers course, we can expect from it a
clear code structure exhibiting the different elements composing the Decaf language. PCSX2 is a
PlayStation 2 emulator, thus we await variability concerning the different configuration options it
can offer such as CPU tuning or video settings. MuseScore is a music notation and composition
software. As it provides an editor for musical score, we can presume variability related to elements
composing a sheet, such as the key, the tempo, or textual annotations. Finally, we applied symfinder
on the Mozilla Firefox codebase as it is a large and widely use project, giving us confidence in
the rigor of its implementation and allowing us to measure the scalability of our approach.

Table 4.1: The five studied variability-rich subject systems and their numbers of vp-s and variants
identified by symfinder.

Subject system Version C++ LoCs # vp-s # variants

Zelda-Game 54a8197 1,132 1 2
Decaf-Compiler 820448a 1,549 5 32
PCSX2 v1.6.0 798,479 130 234
MuseScore v3.4.2 482,152 388 930
Mozilla Firefox 53.0.3 5,550,504 5,928 11,681

Execution system: Ubuntu 18.04.2 LTS with Intel Xeon CPU
E5-2637v2 @ 3.5GHz and 128Go memory.

https://github.com/OSSpk/Zelda-Game/tree/54a819739ef2cb057ecdedf1c649c714e0becfd4
https://github.com/hkveeranki/Decaf-Compiler/tree/820448a95df5bb52bd92d7edc73bd21b252310bc
https://github.com/PCSX2/pcsx2/tree/v1.6.0
https://github.com/musescore/MuseScore/tree/v3.4.2
https://archive.mozilla.org/pub/firefox/releases/53.0.3/source/
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1 // Template declaration
2 template<typename T>
3 class Value {}; // <--- VP
4
5 // Instantiation
6 class Long : public Value<long> {}; // <--- variant
7 class Int : public Value<int> {}; // <--- variant
8
9 // Specialization

10 template<>
11 class Value<long> {}; // <--- variant
12
13 template<>
14 class Value<int> {}; // <--- variant

Listing 4.1: Example of use of template class in C++

Figure 4.1: The extended symfinder toolchain supporting both Java and C++ systems

4.1.2 Adapting symfinder to C++ codebases

Identification approach As the OO mechanisms implementing variability are similar between
Java and C++ systems, the identification of mechanisms common to both languages (listed in Ta-
ble 3.1) has not been altered apart from few adaptations such as between the interfaces in Java
and virtual pure methods in C++. Regarding mechanisms specific to C++, the identification has
been extended to the class template mechanism, illustrated in Listing 4.1. Once the template has
been declared, it can be instantiated in a concrete class or specialized in another template with
a concrete type. We observe symmetries in both these mechanisms. By considering the template
declaration as a center of symmetry, the classes instantiating the template and the specializations
of the template are the changeable parts of the symmetry. Therefore, we consider the mechanisms
as variability implementations, considering as a vp the template declaration and as variants both
their instantiations and specializations.
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(a) MuseScore visualization excerpt exhibiting the
different music sheet elements.

(b) Decaf-Compiler visualization excerpt exhibiting
the different concepts of the Decaf language.

(c) Zelda-Game visualization. (d) Firefox visualization excerpt.

Figure 4.2: Excerpts of visualizations generated by symfinder

Implementation Figure 4.1 illustrates the symfinder toolchain adapted to support both Java and
C++ codebases. We first developed a second parser using the ANTLR parser generator and a gram-
mar supporting C++14. Software written in C++ is known to make use of CPP macros, which are
likely to implement variability as well [Liebig et al., 2010; Hunsen et al., 2016]. As a first step,
we decided to handle these macros to be able to identify symmetries in all C++ code assets, but
without representing the variants potentially created by the preprocessor directives. While this
is obviously an interesting feature, we decided to focus first on the symmetry-based approach.
Specifically, After fetching the sources of a C++ project, an additional preprocessing step (③’) ex-
tracts macro definitions in a file and used to precompile the system using the C preprocessor and
to expand macros. Then, similar to the Java version, a second analysis in ③ generates an AST,
which is used to build a graph representation of the source code, stored in a graph database. It is
then queried to identify symmetries in OO variability implementation mechanisms.
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4.1.3 Results

Table 4.1 presents the numbers of vp-s and variants identified by symfinder in the 5 systems. We
can notice that on these projects, symfinder tends to find more vp-s and variants on larger projects,
although there is no direct correlation.

We can observe in the generated visualizations dense zones corresponding to expected variabil-
ity implementations. For example, Figure 4.2a exhibits a vp, MusicData, surrounded by multiple
class level variants linked to it with inheritance relationships (e.g., OVE::Tempo, OVE::Key,
OVE::Harmony) corresponding to the expected variability regarding the music sheet elements.
While very few vp-s and variants have been identified in Decaf-Compiler (Figure 4.2b), they
appear as relevant by exhibiting the awaited elements composing the Decaf language such as
Expression or functionCall as well as the different types of Literals (charLiteral,
stringLiteral, . . . ). Analogously to the identification in Java systems, a lowly-variable sys-
tem will lead to a light visualization, as it is the case for Zelda-Game whose complete visual-
ization is shown in Figure 4.2c and that makes use of inheritance solely to model two types of
Item. Finally, due to the nature of the OO variability implementations, some dense zones on
the visualization might correspond to the use of the mechanisms for implementation purpose, as
in the excerpt of the Firefox visualization shown on Figure 4.2d. The obtained visualizations are
accessible online1.

4.1.4 Threats to validity

As our experimentation protocol is analog to the one used by Tërnava et al. [2019], the threats to
the validity of this experiment are similar and mainly concern the choice of our subject systems.
Although restricted to five projects, the fact that our dataset is made of multiple projects of mul-
tiple dimensions (including the popular Mozilla Firefox web browser) gives us confidence in the
applicability of our approach.

Although the identified variability implementations observed on some systems correspond to
expected variability implementations (e.g., MuseScore), the remaining ones correspond to the use
of such mechanisms to organize the code (e.g., in Mozilla Firefox). As for systems written in C,
C++ systems may also rely on ifdef directives to implement their variability [Liebig et al., 2010;
Hunsen et al., 2016]. Therefore, when our approach does not find relevant variability, it can be that
it is implemented using these directives.

4.1.5 Summary

The adaptation and application of symfinder on C++ systems results in observations similar to
the ones obtained by Tërnava et al. [2019] on Java systems, thus confirming the relevance of
the identification using symmetries. While it appears that some zones appearing as dense on the
visualization actually represent variability implementations, others correspond to the use of such
mechanisms for implementation purpose. We now aim to evaluate to what extent identified vp-s
and variants represent actual variability implementations.

1https://deathstar3.github.io/symfinder-demo/cpp-projects.html

https://deathstar3.github.io/symfinder-demo/cpp-projects.html
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Table 4.2: The two subject systems with their respective LoC, total number of potential vp-s with
variants, and class or method level granularity identified by symfinder

Subject system LoC
Class (C) and Method (M) level Total

#vp-s #variants #nodes #vp-s #variants

ArgoUML 134,367
C 327 860 85

774 1,976
M 447 1,116 –

Sat4j 27,638
C 80 135 10

268 588
M 188 453 –

4.2 Automatic mapping of variability implementations

In order to evaluate the relevance of identified vp-s and variants, we apply symfinder on two Java
systems for which domain knowledge is available and compare the results of our identification to
the existing features traces in the code assets.

4.2.1 Subject systems

In the following are introduced the ground truths from the ArgoUML-SPL case study and Sat4j
that we use to conduct the feature mapping experiment.

4.2.1.1 ArgoUML-SPL

The first project we selected is ArgoUML2, an open source UML modeling tool implemented
in Java language. It is used in the software product line community as a realistic case study for
demonstrating the basic challenges for refactoring a single code base system with variability into
an SPL [Couto et al., 2011]. The extracted ArgoUML-SPL, with its ground truth, was also recently
proposed [Martinez et al., 2018] and used [Cruz et al., 2019; Müller and Eisenecker, 2019; Mich-
elon et al., 2019, 2021a,b] as a benchmark for evaluating the feature location techniques3. The
considered ArgoUML-SPL ground truth [Martinez et al., 2018] consists of a feature model (FM)
and annotations in the code asset providing traces with their implementations.

11 features compose ArgoUML-SPL’s feature model, given in Figure 4.4. The abstract fea-
ture ArgoUML-SPL represents conceptually the SPL domain, which has 2 mandatory fea-
tures (Diagrams and Class) and 8 optional features (State, Activity, Use Case,
Collaboration, Deployment, Sequence, Cognitive Support, and Logging). In
ArgoUML’s ground truth [Martinez et al., 2018], each of these 8 optional features has a set of
traces to the ArgoUML’s code assets, totalizing 714 features traces (without duplication).

Executing symfinder on ArgoUML leads to the identification of 2,750 potential vp-s with
variants at class and method levels. A subset of potential vp-s with variants at class level is given
in Figure 4.44.

2https://www.openhub.net/p/argouml
3https://variability-challenges.github.io/2018/ArgoUMLSPL/index.html
4The whole ArgoUML’s visualization is available at https://deathstar3.github.io/symfinder-

demo/JRN20/hotspots_version/argoUML-bcae37.html.

https://github.com/marcusvnac/argouml-spl/tree/master/src
https://gitlab.ow2.org/sat4j/sat4j/tree/master/org.sat4j.core
https://www.openhub.net/p/argouml
https://variability-challenges.github.io/2018/ArgoUMLSPL/index.html
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/argoUML-bcae37.html
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/argoUML-bcae37.html
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Figure 4.3: Feature model of ArgoUML, adapted from [Couto et al., 2011]

Figure 4.4: An excerpt of the visualization in ArgoUML generated by symfinder (from [Tërnava
et al., 2022])

4.2.1.2 Sat4j

The second project selected for this experiment is Sat4j. As opposed to ArgoUML-SPL, no ground
truth was previously available for this system. We therefore asked its architect, Daniel Le Berre5,
to prepare a ground truth for the purpose of this study. To avoid any possible bias and data ma-
nipulation, we first held a meeting with him where we discussed the purpose of the study and the
needed data. Then, only him prepared the ground truth by manually defining the domain features,
organizing them in a feature model (given in Figure 4.5) and annotating the code assets (classes,
interfaces, methods, or fields) in the org.sat4j.core module that belong to each domain fea-
ture6 using Java annotations. Extraction for the mapping is then done using an internal utility tool
that outputs the list of traces into a Markdown file7.

13 features compose Sat4j’s feature model. The abstract feature Sat4j-SPL represents con-
ceptually the Sat4j’s variability domain, which has 7 mandatory features (Reader, Solver,
Constraint, Deletion, Learning, Var Heuristics, and Phase Heuristics)
and 5 optional features (Solution Listener, Unit Clause Provider, Search
Listener, Simplifications, and Restarts). All 12 concrete features have a set of traces
to its code assets, totalizing 118 features traces.

5http://www.cril.univ-artois.fr/~leberre/
6Sat4j’s code: https://gitlab.ow2.org/sat4j/sat4j/-/tree/master/org.sat4j.core
7Sat4j’s ground truth: https://deathstar3.github.io/symfinder-demo/JRN20-files/Features.pdf.

http://www.cril.univ-artois.fr/~leberre/
https://gitlab.ow2.org/sat4j/sat4j/-/tree/master/org.sat4j.core
https://deathstar3.github.io/symfinder-demo/JRN20-files/Features.pdf
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Figure 4.5: Feature model of Sat4j (from [Tërnava et al., 2022])

Figure 4.6: An excerpt of the visualization in Sat4j generated by symfinder (from [Tërnava et al.,
2022])

Executing symfinder on Sat4j leads to the identification of 856 potential vp-s with variants at
class and method levels. A subset of potential vp-s with variants at class level is given in Fig-
ure 4.68.

4.2.2 Mapping process

Before the actual mapping, we normalized the granularity of traces for the domain fea-
tures with the granularity of the identified vp-s with variants, so they all become of a
common class level granularity. Specifically, whenever a feature in the ground truth had
one of its traces to a class refinement, complete method, or method refinement, we sim-
plified that trace to the whole class. For instance, the feature State in the ground
truth had one of the trace links to org.argouml.ui.cmd.GenericArgoMenuBar

8The whole Sat4j’s visualization is available at https://deathstar3.github.io/symfinder-
demo/JRN20/hotspots_version/sat4j-22374e5e.html.

https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/sat4j-22374e5e.html
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/sat4j-22374e5e.html
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Table 4.3: The mapping of an identified vp with its eight variants at class level to features, visual-
ized also in Figure 4.4.

A vp with variants Feature

vp: ui.FigNodeModelElement Cognitive, Logging

use_case.ui.FigActor Use Case
sequence.ui.FigClassifierRole Sequence
static_structure.ui.FigComment Logging
collaboration.ui.FigClassifierRole Collaboration
activity.ui.FigObjectFlowState Activity
ui.FigEdgePort -
deployment.ui.FigObject Deployment
activity.ui.FigPartition Activity

initMenuCreate() Refinement9, which is a trace at the statement level within the
method initMenuCreate(). In such a case, we truncated the trace to the whole class
org.argouml.ui.cmd.GenericArgoMenuBar. This means that we consider all features’
traces, but we only change their granularity to class level. Then, from the identified vp-s with vari-
ants, we considered only those at the class level but these include also all method level vp-s with
variants. This normalization is necessary for two reasons. First, symfinder records the names only
for class level vp-s and variants, whereas for those at method level it records only their total num-
ber (cf. Section 3.1.2). The second reason is that vp-s with variants are related only to the structural
elements in code, such as classes or methods for now, whereas features in the ground truth have
traces mostly to their refinements, where about 73% of them are at statement level.

Our goal is to evaluate for each class having at least a feature trace whether it has been identi-
fied as a variability implementation and vice versa. As after this normalization, both the identified
potential variability implementations and the features traces are aligned at the class level, we can
automatically map the classes identified as variability implementations to the classes having fea-
tures traces10. For instance, we would expect that given their name, potential vp-s and variants
in Figures 4.4 and 4.6 all have a mapping to domain features in Figures 4.3 and 4.5, respec-
tively. An example of such expected mapping is given in Table 4.3, illustrating the mapping of
the ui.FigNodeModelElement vp and eight from its eighteen class variants (visible on Fig-
ure 4.4) with domain features (Figure 4.3). The vp itself maps to two features, Cognitive and
Logging, and the eight shown variants map to six features. Seven of the shown variants are
mapped to one feature, two of which map to the same Activity feature, whereas one variant,
ui.FigEdgePort, is without a mapping, meaning that this variant does not appear as a trace
link in any of the features in the ArgoUML-SPL’s ground truth. The complete raw, normalized,
and analysed data are available online11.

9https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/
STATEDIAGRAM.txt

10While the term ’tracing’ / ’trace links’ is used in the ground truth, we will distinguish from this term in this
experiment by using ’mapping’ / ’mapping links’ for vp-s and variants mapped to features, although both of them have
the same meaning.

11https://deathstar3.github.io/symfinder-demo/mapping_process.html

https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/STATEDIAGRAM.txt
https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/STATEDIAGRAM.txt
https://deathstar3.github.io/symfinder-demo/mapping_process.html
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Table 4.4: Summarized data from the two ground truths and their results [Tërnava et al., 2022]

ArgoUML Sat4j

#domain features 11 13
#features traces (normalized) 672 113
#local symmetries (class level) 1 272 225

True Positives (TP) 561 113
False Positives (FP) 711 112
False Negatives (FN) 111 0

Precision 44.10% 50.22%
Recall 83.48% 100.00%

4.2.3 Mapping measures

Measuring the results of the mapping is done using two well-known measures, namely precision
and recall.

Precision Let be Tgt the set of traces for all features given in the ground truth and Ivp−v the
set of all identified vp-s and variants by symfinder. We use precision to measure the percentage
of the identified vp-s and variants that are relevant for the feature mapping. Thus, for the current
mapping, the vp-s and variants that are mapped to the features in the ground truth are true positives
(TP), referred as relevant vp-s and variants, whereas the vp-s and variants without a mapping are
false positives (FP), or irrelevant vp-s and variants. Therefore,

precision = TP

TP + FP
= |Tgt ∩ Ivp−v|

|Ivp−v|

Recall Through recall we measure the percentage of features’ traces in the ground truth that are
used for the mapping of vp-s and variants to features. Thus, the traces that are used for the mapping
are true positives (TP), whereas those that are not used are false negatives (FN). Therefore,

recall = TP

TP + FN
= |Tgt ∩ Ivp−v|

|Tgt|

4.2.4 Results and discussion

Table 4.4 summarizes the obtained results. In ArgoUML, according to our mapping tool, 561/1,272
identified potential vp-s and variants have a mapping to at least one feature, while the remaining
711 appear as unmapped, leading to a precision of 44.10%. Then, out of 672 traces in the code
assets, 111 are not mapped to any identified vp nor variant leading to a recall of 83.48%. Besides,
in Sat4j, 113/225 identified potential vp-s and variants have a mapping to at least one feature, while
the remaining 112 appear as unmapped, leading to a precision of 50.22%. Then, all traces in the
code assets are mapped to identified vp-s and variants leading to a recall of 100%.
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Although it is expected from such a non-trivial mapping that several local symmetries are
without a mapping to features in the ground truth of both systems (and conversely), a considerable
number of false positive local symmetries may impact the time spent distinguishing the actual vp-
s with variants from the irrelevant local symmetries in the visualization. We observed three main
reasons for such low precision.

Reason 1. The ArgoUML-SPL ground truth has been extracted by a group of researchers based
on their domain knowledge of ArgoUML, and some information regarding the completeness of
the features’ list is missing. The ground truth may therefore be incomplete and would explain the
important number of identified potential vp-s and variants without mapping. The slightly greater
precision obtained for Sat4j is explained by the fact that we asked its architect to provide a list of
features with traces as exhaustive as possible.

Reason 2. Since variable features correspond to configuration units when deriving a product
in an SPL, feature identification and location approaches mainly focus on mapping variable fea-
tures to code assets, often disregarding mandatory features [Krüger et al., 2018]. Similarly, as
ArgoUML-SPL’s ground truth has been designed as a benchmark to evaluate extractive SPL ap-
proaches, some mandatory features such as Class (cf. Figure 4.3) have no trace in code assets.
However, in our symmetry-based approach, some potential vp-s and variants could correspond to
mandatory features for which no trace exists (especially vp-s as they represent commonalities),
explaining further the low precision obtained for ArgoUML-SPL. Regarding Sat4j, although 7/13
features are mandatory (cf. Figure 4.5), all of them have traces in code assets, totalizing 69% of
the total number of traces, explaining the slightly higher precision.

Reason 3. We can presume that not all places where symmetries have been identified are related
to variability implementation, as it is the case for preprocessor directives in C/C++ systems. For
example, Zhang et al. [2013] mentioned in an industrial case study that "from our experience most
#ifdef blocks (e.g., 87.6% in the Danfoss SPL) are actually not variability related, but for other
purposes such as include guards or macro substitution". While, in the case of object-oriented sys-
tems, the used mechanisms are different, they are due to their nature likely to be mainly used as a
good practice to structure domain objects (cf. Challenge A1). Additionally, after we reported the
results to the architect, he pointed out that in order to avoid redundant annotations, he annotated
only the concrete classes and not the abstract classes they inherit from. Then, only the main vari-
ability sources have been annotated. For example, the code contains multiple interfaces having at
most two implementations that are not annotated. Further analysis of the false positives show that
they are mainly still variability related, but only at the level of internal implementation, and not at
the domain level (cf. Section 4.3.2.3). To avoid any data manipulation, we decided to present the
original genuine experiment with the annotations as decided by the architect.

After further manual investigation of the 17% of traces that could not be mapped to vp-s nor
variants, it results that they refer to the statements within the initialization classes, such as Main
classes, or use other external libraries. As symfinder does not categorize initialization classes as
part of local symmetries and filters out external libraries, they naturally could not be mapped.
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4.2.5 Threats to validity

The main threat of this experiment concerns the two subject systems, ArgoUML and Sat4j, as well
as their ground truths. As opposed to Sat4j’s ground truth that has been established by its software
architect and is now part of the codebase on its main branch, ArgoUML’s ground truth has been
established by a group of researchers. Therefore, another group of researchers or the ArgoUML’s
developers themselves may identify slightly different features and trace links, thus having a direct
impact on the obtained results for precision and recall of our tooled approach on this system.
Sat4j’s ground truth was established by the software architect after he reported the experience with
symfinder (Section 4.3). Although it can be seen as a maturation threat, some basic knowledge for
variability in his own system was essential to avoid adding meaningless annotations as features
traces.

Another threat concerns the normalization applied to the data prior to the mapping (cf. Sec-
tion 4.2.2). During this step, the method level features traces and the identified local symmetries
were normalized to class level. Considering method level feature traces and local symmetries may
have an impact on the obtained precision and recall and consequently on the quality of the mapping

4.2.6 Related Work

To manage variability in SPLs, most of the existing approaches propose to modularize features
into physically separate modules [Apel et al., 2013] or use conditional compilations, such as pre-
processors in C/C++ [Liebig et al., 2010; Le et al., 2013; Tartler et al., 2012; Hunsen et al., 2016],
or a form of annotations [Heymans et al., 2012; Couto et al., 2011]. In these cases, features have a
straightforward mapping in code assets using their naming conventions. However, extensive man-
ual effort is required to add annotations in code assets or refactor them into feature modules. With
symfinder we provide an automatic approach for identifying variability places in OO code assets.
The results of the manual feature mapping conducted in ArgoUML-SPL case study show that
these automatically identified places are highly relevant and indeed implement domain features.
Similarly to other approaches, this mapping is likely to be automated, although not completely, by
simply using the features and vp-s naming.

Since Couto et al. [2011] extracted the ArgoUML-SPL, it has been proposed [Martinez et al.,
2018] and extensively used [Martinez et al., 2017a; Michelon et al., 2019; Cruz et al., 2019] as a
benchmark for reverse engineering variability and evaluating feature location techniques [Rubin
and Chechik, 2013; Assunção et al., 2017]. In contrast, our variability identification and visu-
alization approach is more a tool support for understanding implemented variability in forward
engineering [Tërnava et al., 2019]. Thus, in addition to its usage in reverse engineering, we show
that ArgoUML-SPL can also be used as an interesting study in another context.

Besides a recent mapping study shows that there are several approaches for information vi-
sualization in SPL engineering [Lopez-Herrejon et al., 2018]. Only a few of them visualize the
variability at code level. From them, the approach for a virtual separation of concerns [Kästner
et al., 2008; Kästner, 2010; Feigenspan et al., 2011b] is mostly related to our visualization ap-
proach. Similarly, it is used for variability management and relies on a different color per feature
to manually map them to code assets. In contrast, we use a graphical visualization of variability
by using more visualization parameters, namely position, size, shape, value (lightness), color hue,
orientation, and texture. We also automatically visualize the variability and keep it separate from
code assets.
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4.2.7 Summary

On both studied subject systems, the symmetry-based identification method showed little precision
but high recall, meaning that although only around half of them correspond to features traces
(44% and 50% for ArgoUML and Sat4j respectively), they implement a high proportion of given
domain features (83% and 100% for ArgoUML and Sat4j respectively). Little precision can be
explained by the coarse-grain nature of the known features and by the fact that some of the vp-s and
variants are not variability related. Still, the high recall shows their relevance and demonstrates the
feasibility of the symfinder approach.

While it appears that the identification method needs to be improved to be more precise, un-
derstanding deeply the causes of these results requires information from an architect, who has the
knowledge of both the domain and the implementation. We thus deepen our analysis of the re-
sults obtained on Sat4j by asking its main architect, Daniel Le Berre, to evaluate symfinder both
regarding its identification method and the visualization it provides.

4.3 User evaluation of symfinder

4.3.1 Experimental setup

For this experiment we selected Sat4j [Le Berre and Parrain, 2010], a variability-rich system and
asked its software architect, Daniel Le Berre12, for his feedback on using the tool. We chose Sat4j
not only as it is a Java open source system in a single codebase, but also because it is a research
software implemented as an example in teaching software engineering. It therefore heavily relies
on object-oriented programming guidelines such as the use of inheritance and design pattern to
implement its variability. Its design evolved for about 15 years with regular feature improvements
and addition. Out of the four modules that compose Sat4j (core, pb, sat, and maxsat), we
applied symfinder only on core as it contains the main features of the system, and made the
generated visualization available to the software architect.

4.3.2 Observations

To further understand the obtained mapping results, we asked the software architect to detail the
actual variability implementations identified by symfinder (i.e., true positives, detailed in Sec-
tion 4.3.2.1), the variability implementations missed by symfinder (i.e., false negatives, detailed
in Section 4.3.2.2), and finally identified vp-s and variants that do not correspond to domain vari-
ability (i.e., false positives, detailed in Section 4.3.2.3). Then, to evaluate how symfinder can help
the comprehension of the implemented variability, the architect provided feedback on the general
interest of symfinder for a software architect (Section 4.3.2.4) and on his particular interest for
Sat4j (Section 4.3.2.5), and formulated requests for enhancements of the tooled approach (Sec-
tion 4.3.2.6).

4.3.2.1 Variability correctly identified by symfinder

The feature model given in Figure 4.5 details the different features provided by Sat4j. Their im-
plementation heavily relies on design patterns. Fully customizable Boolean solvers are proposed,

12http://www.cril.univ-artois.fr/~leberre/

http://www.cril.univ-artois.fr/~leberre/
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(a) Identified vp-s with variants for features
Heuristics with Constraints in Sat4j

(b) Identified vp-s with variants for features
Restarts with Constraints database
management in Sat4j

Figure 4.7: The identified vp-s with variants for four of the features in Sat4j

whose configuration is implemented using the Strategy design pattern. Decorator patterns allow
configuring an optimization problem instead of a decision problem. Finally, multiple Factories
expose prebuilt solver configurations. The implementation also considers two levels of abstrac-
tion: the user level for Java developers that are not familiar with the design of SAT solvers and
aim to use the library to solve regular problems, and the expert level for advanced users hav-
ing a deeper understanding of the algorithms (master students, researchers, . . . ) and that need to
customize the solver at fine-grain.

It results that symfinder identified most of the domain variability implemented using the strat-
egy design pattern. Figure 4.7a exhibits the IOrder and IConstr interfaces implementing the
heuristics and constraints features respectively. Figure 4.7b exhibits the RestartStrategy
and LearnedConstraintsDeletionStrategy interfaces implementing the restarts and
constraints database management features respectively. Additionally, some abstractions corre-
sponding to the user and expert levels can be seen with symfinder as the inheritance between
two interfaces, see e.g., IConstr and Constr in Figure 4.7a.

4.3.2.2 Variability missed by symfinder

Only two variability implementations could not be retrieved by symfinder:

• The ISimplifier interface and its implementations, providing various clauses simpli-
fications techniques, were not detected due to their implementation relying on anonymous
inner classes inside the solver class. Although unconventional, this design choice is moti-
vated by the fact that a direct access to the state of the solver is required.

• The PrimeImplicantStrategy interface, allowing to reduce the model found by the
solver to a set of literals required to satisfy all the constraints. This feature being experimen-
tal, it does not appear on the feature model. Moreover, the interface is present in a method
(and not as a field), while the variant choice is made based on the value of a system property.

It results that in both cases, the non-identification results from an unconvential implementation
motivated by efficiency or limited scope reasons.
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4.3.2.3 On the remaining identified variability

Some identified vp-s not being linked to domain variability actually represent implementation vari-
ability. As an example, IVec and IVecInt are two data structures automatically identified as
vp-s by being interfaces (cf. Figure 4.8a). The heavy use of interfaces to structure Sat4j’s imple-
mentation explains the important number of identified false positives (cf. Table 4.4). Still, many
false positive vp-s found in Sat4j correspond to variability implementations, but not related to the
domain variability envisioned by the architect.

4.3.2.4 General interest of symfinder for the software architect

As a first reported feedback, the visualization allowed the architect to quickly spot the main vp-
s in the code. An unexpected organization of classes on the visualization allows to visualize the
evolution of the design and potentially spot unforeseen consequences. The provided global view is
the most important feature of symfinder as it allows to detect unexpected relationships. Checking
the nodes’ details then allows to determine whether it is a design error or not. As for each tool, a
little adaptation time is needed to get used to the displayed information and to learn the common
patterns in the graphs.

4.3.2.5 Concrete interest of symfinder for Sat4j

In Sat4j’s case, checking the variability was as easy as to look for interfaces marked as strategy
and checking their name. Then, a similar observation was made for abstract classes and then the
remaining plain interfaces (appearing as black nodes on the visualization) with several implemen-
tations, to make sure none is missed.

Sat4j’s analysis allowed to identify improper variability management as illustrated on Fig-
ure 4.8b. RestartStrategy extending ConflictTimer does not correspond to the two
levels of abstraction mentioned earlier and is clearly a bad design choice from a variability point
of view. Despite being the vp for an identified strategy pattern, RestartStrategy is also a
variant of ConflictTimer, vp for an identified strategy pattern but being in reality a compos-
ite pattern, that we do not identify. Having RestartStrategy inherit from ConflictTimer
was therefore the simplest implementation choice from a developer perspective. On the other hand,
LearnedConstraintsDeletionStrategy is also part of the composite pattern but using
aggregation, that is not analyzed by symfinder. There is certainly some refactoring work to do to
uniformize the design of all vp-s.

4.3.2.6 Requests for enhancement

Following his experience using symfinder, the architect formulated multiple requests to improve
both the provided visualization and the identification approach:

1. In its current version, symfinder hides the variants that are not vp-s or do not have vp-s at
method level, preventing a quick identification of a strategy according to its number of
concrete classes. Since textual information is limited, seeing these variants is important for
the architect.

2. Materializing Java packages might also be useful. In the case of Sat4j, strategy interfaces are
most often in the same package as the solver, while their implementation is in a dedicated
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(a) Identified vp-s with variants not related to domain
features in Sat4j

(b) Identified unexpected vp-s with variants in Sat4j

Figure 4.8: The identified vp-s with variants not related to domain features and the unexpected
ones

package. Being able to visually distinguish different packages would allow to quickly spot
if all the variants of a strategy have been identified that way, or whether such practice is
consistently used in the codebase.

3. Similarly, having different colors for each strategy interface with its related classes would
enable to get a quick overview of the diversity of vp-s.

4. Finally, a textual enumeration of the identified design patterns would facilitate the validation
of their relevance. While the graph view is useful to highlights important zones, it is not
necessarily convenient for a fine-grain analysis.

Another proposal regards the identification approach. After further analysis, it resulted that an
important part of false positive vp-s are interfaces with very small number of implementations,
often one or two (cf. Section 4.3.2.3). Therefore, being able to customize the minimal number of
variants to consider for detecting a strategy (to 3 for instance instead of 2 in the current implemen-
tation) or vp-s in interfaces (automatically considered vp-s regardless of their number of variants)
would allow differentiating in this setting domain vp-s from implementation vp-s.

4.3.3 Threats to validity

The main threat to the validity of this experiment resides in the fact that Sat4j being the only
analysed system in this qualitative experiment, generalization of the results to other systems is
unfeasible. However, by being used in both the mapping (Section 4.2) and the qualitative analysis,
the ability to cross-check the obtained results between both experiments gives more validity to the
qualitative analysis.

4.3.4 Summary

It results from this experiment that symfinder could help Sat4j’s software architect in understanding
the variability implemented in his own system. The visualization provides a global picture of the
implemented variability’s organization and allows to spot inconsistencies in the design. Regarding



4.4 – 4.3.5 Addressed evolutions 53

the identification method, the evaluation confirmed that a majority of the false positive vp-s with
variants identified in the system correspond to isolated vp-s with a small number of variants.

4.3.5 Addressed evolutions

As a first step towards a better visualization of the identified vp-s and variants, two of the pre-
viously proposed evolutions of the symfinder visualization in Section 4.3.2.6 have been imple-
mented.

First, we added the option to visualize at once all class level variants, including those that are
without method level vp-s. The importance of displaying these classes, already noticed during the
measurement of symfinder’s precision and recall in Section 4.2 where we observed that a consid-
erable number of feature traces were mapped to class level variants hidden in the visualization,
has been confirmed by the architect when manipulating the visualization. Still, we left available
the option to also hide them, as on large systems visualizing all variants considerably overloads
the visualization. For example, ArgoUML’s visualization exhibits 539 nodes when visualizing po-
tential vp-s without variants and up to 1 233 nodes when all their variants are visualized. Taken
from ArgoUML’s visualization, Figure 4.9 illustrates the case when vp-s with class granularity are
visualized without variants (Figure 4.9a) and with variants (Figure 4.9b). For this reason, we pro-
vided a toggle button on the visualization from where all class level variants can be visualized or
not. By default, only potential vp-s with their variants that have method level vp-s are visualized.

Then, the visualization has been enhanced with an option allowing to color packages. A
Color packages button on the top bar of the visualization opens a menu where the user can
input a package name, namespace (in C++), or class name, whose potential vp-s with variants will
be colored. The user can color multiple packages and/or classes, and for each one symfinder will
automatically generate a new color. An example of visualization with colored packages is given
in Figure 4.10, showing a good separation of concerns between packages in that case.

Finally, this experimentation also allowed us to see that two other design patterns were often
used to implement variability, namely Decorator and Template. We therefore added the identifica-
tion of vp-s with variants implemented by these patterns.

(a) without variants (b) with variants

Figure 4.9: Example of visualized vp-s.

4.4 Conclusion

In this chapter, we tackled the following questions:
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Figure 4.10: Some colored packages from JFreeChart (org.jfree.chart.plot in yellow
and org.jfree.chart.renderer in green).

1. Is the identification approach adapted to other OO languages? We extended the iden-
tification method relying on symmetries to C++ code assets and evaluated it on a panel of
five projects of various dimensions. Similarly to the analyses on Java projects conducted
by Tërnava et al. [2019], some dense zones appear to represent variability implementations
be relevant, while some others are use of these mechanisms for implementation purpose.

2. Do the identified vp-s and variants correspond to domain features? We measured the
relevance of the identification on two systems, adapting precision and recall measures to
evaluate the accuracy of the approach compared to existing features traces. It results that
on these systems, although the identified vp-s and variants represent an important majority
of the actual variability, a large number of false positives are also identified, calling for an
improvement of the identification approach.

3. To what extent does the symfinder approach and its visualization help comprehension
of the implemented variability? It results from the evaluation conducted with Sat4j’s ar-
chitect that symfinder helped him in understanding the implemented variability in the system
thank to both the identification method and the visualization.

With this threefold evaluation, we can assess that on the studied Java and C++ systems, the
symmetry-based technique identifies a majority of the variability implemented using such mecha-
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nisms, providing an answer to Challenge A1. Additionally, the graph visualization allows to com-
prehend these variability implementations, providing an answer to Challenge A2. However, the
approach still exhibits multiple limitations. While being robust, there is a strong need to improve
the identification technique to increase its precision ((i.e., identify less but more relevant vp-s and
variants)). Additionally, by considering a single developer on a single system, the results of this
first user evaluation cannot be generalized as it would require setting up a controlled experiment
with multiple participants [Ko et al., 2015]. Nevertheless, this evaluation gave us insights on the
limitations of the symfinder approach, both regarding the visualization (that we already started im-
proving as detailed in Section 4.3.5) and the identification method. Therefore, prior to designing
a controlled experiment with users, we extend the identification method relying on the feedback
detailed in Section 4.3.2.6 by characterizing a measure of density of variability implementations
to improve its precision.





CHAPTER 5
Improvement of the

identification process
with usage relationships

This chapter shares material with the REVE 2021 paper “Extending the Identification of Object-
Oriented Variability Implementations using Usage Relationships” [Mortara et al., 2021c].

In the previous chapter, symfinder has been successfully applied to several C++ variability-
rich systems, showing the applicability of the symmetry-based technique on different languages.
Moreover, the application on ArgoUML-SPL has demonstrated that a large part of the identi-
fied vp-s and variants by symfinder actually implement ArgoUML’s reverse engineered domain
features, which can be mapped to each other. Finally, the identified vp-s with variants and their
visualization helped Sat4j’s architect to comprehend the implemented variability. However, exper-
imenting with the symfinder toolchain outlined two issues in the proposed approach.

Issue 1. Detecting inheritance relationships is not enough By construction, the identified vp-s
with variants with a heavy usage of inheritance are the most visible in the symfinder visualization,
that is, those implemented by classes that are represented as nodes. They are simply grouped to-
gether with this relationship and the other visualized indicators, such as the size and color intensity
of the nodes. While the experiments show that real vp-s and variants were successfully identified
by applying symfinder on the subject systems it also appeared that their visualized density based
only on the inheritance relationship is not always sufficient to comprehend the variability of a
system.

To exemplify this issue, we show in Figure 5.1 an excerpt of JFreeChart class diagram. Two
classes, MeterNeedle and Plot, possess subclasses and will be identified by symfinder as
two potential vp-s with their variants. In the symfinder visualization, they are shown as two sep-
arate trees of variability, as illustrated in Figure 5.2. However, looking in their source code, it
can be noticed that these classes are highly dependent on each other, as the CompassPlot,
a variant of the vp Plot, uses every variant of the vp MeterNeedle. Naturally, we can find
many of these additional dependencies at class level between potential vp-s and variants. For in-
stance, in Figure 4.8b, displaying only inheritance relationships does not allow visualizing that
LearnedConstraintsDeletionStrategy and ConflictTimer are part of a common
design (cf. Section 4.3.2.5). Therefore, by not considering usage relationships between classes, the
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Figure 5.1: Excerpt of JFreeChart’s class diagram. CompassPlot uses MeterNeedle and its
variants.

vp_Plot

vp_MeterNeedle

v_PointerNeedle

v_CompassPlot

Figure 5.2: symfinder view of JFreeChart. CompassPlot and MeterNeedle appear in two
distant trees.
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identification technique identifies as isolated variability implementations that are in reality related,
reopening Challenge A1.

Besides, according to the study of symmetry in software constructs by Zhao and Coplien
[2003], reusability in object-oriented systems is described as being about the instantiation of tem-
plates, composition of the instances, and substitution of the instances. In symfinder, most of the
seven considered traditional techniques provide an implementation of variability through the sub-
stitution of the instances, as they have a substitution symmetry [Tërnava et al., 2019]. However,
composition, or more generally, usage of other instance, is also applied for reuse of code assets.
For example, many software design patterns rely on inheritance and composition to characterize
complex reusable designs [Freeman et al., 2008].

Therefore, it seems necessary to extend symfinder to consider the composition relationship
of classes when visualizing the identified vp-s and variants. In the following, we will consider
this relationship in the broad sense of the term, as an usage relationship, encompassing cases
where a class uses another class in attributes and parameters of its methods. We expect that a
visualization with inheritance and composition relationships between classes that are identified as
potential vp-s or variants will improve their consistency and help users to better comprehend their
dependencies.

Issue 2. Large systems are hardly comprehensible With its zooming, filtering, and hovering
capabilities, the symfinder visualization naturally relies on the Shneiderman visual information
seeking mantra [Shneiderman, 2003]: overview first, zoom and filter, then details on demand. For
example, class level variants can be shown or hidden. Other options in the visualization, such
as the total number of potential vp-s, also provide information for the overall variability of the
targeted system. Nevertheless, in many systems and especially in large ones, users gave us the
feedback that they were missing some clear entry points to start browsing the visualization. For
instance, Figure 5.3 shows the complete symfinder view of all the vp-s and variants identified
in the NetBeans IDE codebase, exhibiting about 3498 nodes and an important number of trees,
making it hard to determine where to start the exploration. Consequently, the visualization needs
improvement to allow comprehension on large systems, reopening Challenge A2.

After analyzing this problem, we realized that the vast majority of studied systems exposed
facade classes, which were natural entry points expected by the users, or even a well-defined appli-
cation programming interface (API) [Robillard et al., 2012] where their reusable and customizable
functionalities are textually exposed. The second issue we thus identify is the need for entry points
to be specified and exploited in the visualization to facilitate the variability comprehension.

In this chapter, we describe the different extensions made on the identification and visualization
parts to build a new version of symfinder named symfinder-2 (Section 5.1). During the identifica-
tion of potential variation points with variants, we take into account their usage relationships so
to display them in the visualization. We also refine the visualization so that entry point classes
of a targeted system, such as API classes, can be used to find more easily the important zones of
variability. Finally, a parameterized density metric allows to automatically identify hotspots, being
classes that are part of dense zones of variability implementations, and that can also be used to
filter the visualization. We apply symfinder-2 to ten Java-based variability-rich systems and ob-
served the impact of our changes and done improvements (Section 5.2). We notably evaluate the
visualized graph, the remaining vp-s and variants, and the scalability of our extension. We finally
discuss related work (Section 5.3).
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Figure 5.3: symfinder visualization of NetBeans 12.1 with isolated nodes filtered out

5.1 symfinder-2

In order to better address Challenges A1 and A2, we extended the variability identification and
visualization by symfinder. In the following, we describe these extensions, which makes up
symfinder-2. Its sources and conducted experiments are publicly available on symfinder-2’s web-
site1 and in a reproduction package [Mortara et al., 2021d].

5.1.1 Handling the usage relationships

To address Issue 1, we first improved the identification step in symfinder by identifying the usage
relationships between the identified vp-s with variants. In symfinder, the target codebase is anal-
ysed and stored in a graph representation. Classes and methods represent nodes in the graph, linked
together through relationships of different types used when querying the database to identify the lo-
cal symmetries, leading to potential vp-s with variants (details about the technical implementation
of symfinder can be found in Section 3.1.2). In the extended identification process implemented in
symfinder-2, a class A is used by another class B if the class B is used as a field type or method
parameter type in the class A [Freeman et al., 2008]. Technically, at parsing time (cf. step 3 on
Figure 4.1), each usage relationship is identified and an USE relationship is created in the graph
database between the respective class level vp-s or variants that are identified. For instance, in the

1symfinder-2’s website: https://deathstar3.github.io/symfinder2-demo/

https://deathstar3.github.io/symfinder2-demo/
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v_JFreeChart

vp_PiePlot

vp_Plot

Figure 5.4: The identified vp-s and variants using symfinder-2 for the excerpt of JFreeChart given
in Figure 3.1

example of JFreeChart in Figure 3.1, class Plot is used by class JFreeChart as it is referenced
by a field inside the Plot class. Therefore, each of these classes will be identified by symfinder-2
and will be visualized with their usage relationship.

In general, all identified usage relationships between the potential vp-s, variants, and their ad-
ditional information (such as the number of variants at class and method level, and the classes to
which they are linked through usage relationships), are exported into a JSON format, which data
are further used for variability visualization by symfinder-2 (cf. Figure 5.5). Visually, we show
in symfinder-2 both inheritance and usage relationships, where inheritance relationships are grey
arrows and usage relationships are represented as dashed blue arrows. For example, the new visu-
alization for the JFreeChart example, given in Figure 3.1, is shown in Figure 5.4. In comparison
with its prior visualization by symfinder, given in Figure 3.3, both relationships are represented.
Therefore, for instance, the usage relationship between Plot and JFreeChart from Figure 3.1
is now explicit in Figure 5.4.

5.1.2 Handling entry points

To address Issue 2, we extended the symfinder visualization to take into account some entry points
during the variability comprehension of a targeted system. In the following, we present the two
kinds of entry points that we make available in the extended version of symfinder-2.

vp-s and variants under analysis As a first kind of entry points, we add the possibility to vi-
sualize only desired vp-s with variants. For this reason we added a textbox with a button in the
visualization, named Add an entry point class, as shown in Figure 5.4. In that case, starting
from the classes designated as entry points, symfinder-2 will also show the vp-s with variants
connected to them through inheritance or usage relationships. For example, from the shown data
in Figure 5.4, 926 potential vp-s at class and method levels are identified in JFreeChart. To show
the related variability only to the vp_Plot and v_JFreeChart given in Figure 5.4, one can add
their respective class paths in the dedicated textbox. In this example, shown classes are the entry
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Automatic identification 
of symmetries

Code base

Identified potential 
vp-s and variants

JFreeChart

types: CLASS, VP, FACTORY, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 3
methodVPs: 7
methodVariants: 17

attributes: Plot, Title, …

Plot

types: CLASS, ABSTRACT, VP, VARIANT, 
METHOD_LEVEL_VP, FACTORY, STRATEGY

constructorVPs: 0
constructorVariants: 0
methodVPs: 3
methodVariants: 6

attributes: AxisLocation, PlotRenderingInfo, 
PiePlot, MeterPlot, …

subclasses: PiePlot, XYPlot, MeterPlot, 
CategoryPlot, …

XYPlot

types: CLASS, STRATEGY, VP, VARIANT, 
METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 30
methodVariants: 77

attributes: Plot, Title, …

subclasses: CombinedDomainXYPlot, …

PiePlot

types: CLASS, VP, VARIANT, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 4
methodVariants: 9

attributes: Plot, Title, …

subclasses: RingPlot,…

VP

V V
VP

V

Figure 5.5: Symmetries in object-oriented code and metrics that can be extracted
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points (vp_Plot and v_JFreeChart) and all the vp-s with variants connected to them through
inheritance or usage relationships. The information about the potential vp-s or variants that are en-
try points will remain listed in the drop-down list named Entry point classes filtered in.
This filtering capability can help users to choose interesting entry points in the visualization and
to comprehend progressively the whole identified variability of a system under study.

API points Another kind of entry point that we implemented in symfinder-2 is the usage of
classes that are annotated by the API Guardian library2 as specific API entry points. Any potential
vp or variant that is realized by these API classes is automatically detected at parsing time and
put in the symfinder data model. The visualization then automatically adds all detected classes as
entry points so that they can be used to refine it as described in the previous paragraph.

5.1.3 Improving the readibility of the visualization

As stated in the introduction of this chapter, the Shneiderman information seeking mantra [Shnei-
derman, 2003] relies on three principles: overview first, zoom and filter, then details on demand.
However, with both inheritance and usage relationships being visualized, symfinder-2 displays all
the information altogether, eventually leading to too many edges displayed and hampering the
comprehension of variability. We thus propose three filtering techniques allowing to refine the
symfinder-2 visualization.

Filtering inheritance and usage relationships. In order to reduce the number of displayed
edges of usage relationships, symfinder-2 allows to filter the direction of usage, so that an edge is
displayed only if one class being a potential vp-s or variant is using another one (OUT), or used
by this other one (IN). A usage-type can thus be set to display only incoming (IN), outcoming
(OUT), or all (IN/OUT) usage relationships between potential vp-s and variants. For example, the
usage relationship between v_JFreeChart (here, the entrypoint) and vp_Plot (a class it uses)
is shown in Figure 5.4 as the usage-type is set to OUT. From there, all other displayed vp-s and
variants can be added to the entry points list and be used as a starting point to comprehend the
identified variability of JFreeChart.

Tuning the usage level Depending on how the object-oriented targeted system is designed, there
can be different layers of objects being composed to implement some variability. The visualiza-
tion is thus adaptable to how the potential vp-s with variants could be related at a different level
of usage. We added a usage-level drop-down list box with values corresponding up to the max-
imum number of usage relationships from one of the given potential vp-s or variants to the others
in a targeted system. For example, a usage level of 4 will display all potential vp-s or variants that
have a usage relationship to one of the potential vp-s or variants through at most 4 detected usages
transitively. This enables one to display more or less related variability implementation classes.
One can then start by a low level and expand progressively to tame the complexity of display-
ing too many relationships. In Figure 5.4, the usage-level is 2, meaning that the shown classes
are vp-s and variants used by the entrypoint v_JFreeChart, or by vp-s and variants used by
v_JFreeChart.

2https://github.com/apiguardian-team/apiguardian

https://github.com/apiguardian-team/apiguardian
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Introducing a density metric In order to tackle globally both issues, we propose to filter out
the less dense zones with potential vp-s and variants in the visualization. This idea has its roots
in the center’s theory [Alexander, 2002], which states that the density of local symmetries in a
structure is important and can be used to easily distinguish, memorize, and describe that structure.
We thus introduce in symfinder-2 a density metric used with thresholds to filter nodes in the vi-
sualization. Using it, we want to show whether the density of local symmetries (a.k.a., potential
vp-s and variants) under their two types of relationships in the visualization of a system can help
to comprehend its implemented variability. For instance, the visualization from JFreeChart given
in Figure 3.3 shows two places with different densities of potential vp-s and variants. The left one
seems denser than the right one with the inheritance-only symfinder, whereas when usage rela-
tionships are considered using symfinder-2, both of these places are interrelated and create a new
denser zone of potential vp-s and variants.

To better understand its realization, we introduce several definitions allowing to formally de-
scribe the density metric. This represents any variability-related class in a system under study, i.e.,
a class with some variability, at the class level, and/or at the method level, and/or being a variant
of another vp.

Definition 5.1 (Class and Variability Implementation). C represents the set of classes of the sys-
tem. A class c ∈ C is defined as a tuple

c = ⟨nbV arclass, nbV armethod⟩

where nbV arclass is the number of variants of v at class level, and nbV armethod is the number of
variants of v at method level.

We define the set of all identified variability implementations V ⊆ C the subset of classes
having at least 2 variants at class or method level.

V = {c ∈ C | (c.nbV arclass ≥ 2) ∨ (c.nbV armethod ≥ 2)}

Definition 5.2 (Usage graph). The usage graph of a system is a graph G = (C, R) where C is the
set of classes of the system (being the vertices of the graph), and R the set of usage relationships
between classes (being the edges of the graph).

Definition 5.3 (Individually dense class). A specific variability implementation v ∈ V is individ-
ually dense if, given a threshold minV ars, v has a minimum of minV ars variants at class or
method level.

IDminV ars(v) = (v.nbV arclass ≥ minV ars) ∨ (v.nbV armethod ≥ minV ars)

For example, in Figure 5.5, XYPlot has 77 method variants and 2 constructor vari-
ants, making it 79 method level variants (i.e., XYPlot.nbV armethod = 79). Therefore,
IDminV ars(XYPlot) is true for minV ars ≤ 79, regardless of its number of class level vari-
ants (i.e., its number of subclasses).

Definition 5.4 (Collectively dense class). Given a usage graph G = (C, R), and d(c1, c2) the
distance between two classes in the graph. A class c ∈ C is collectively dense if, given a threshold
maxDist, there is at least a variability implementation v distant of maximum maxDist from c.

EDmaxDist(c) ⇔ ∃v | (v ∈ V) ∧ (d(c, v) ≤ maxDist)
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Figure 5.6: Depiction of the collectively dense class identification technique in a sample usage
graph. Nodes represent classes, and edges usage relationships (i.e., presence of the type as a class
attribute or a method parameter).

For example, for maxDist = 1, a class c is collectively dense if at least one class using or
being used by c is a variability implementation. For maxDist = 2, a class c is collectively dense
if at least one class using or being used by c, or one class using or being used by these classes is a
variability implementation. An illustration of this mechanism is given in Figure 5.6.

Definition 5.5 (Density). We define a measure of density ∆ : C → {true, false} which, given a
class c ∈ C, determines if it is a hotspot (i.e., if it is part of a dense zone of variability implemen-
tations) by checking if c is either individually or collectively dense.

∆minV ar,maxDist(c) = IDminV ars(c) ∨ EDmaxDist(c)

The set of variability implementations in dense zones for a given couple of parameters
(minV ar, maxDist) is thus given by

S = {v ∈ V | ∆minV ar,maxDist(v)}

The density metric is directly dependent on its two input parameters. Consequently, defining
a threshold over each of these two parameters enables to automatically identify hotspots, being
zones exhibiting a density above the thresholds, hence a high concentration of variability imple-
mentation techniques. Relying on this metric, the potential vp-s and variants that are under the
set threshold are colored in a light gray on the visualization generated by symfinder-2. In a further
step, these potential vp-s and variants can also be excluded from the visualization by using the but-
ton Show only dense zones (cf. Figure 5.4). In this example, we set a threshold with the number
of variants in a potential vp ≥ 5 and the usage relationships between the potential vp-s or variants
≤ 2 (in other words, the set S of variability implementations being hotspots is characterized by
S = {v ∈ V | ∆5,2(v)}). Hence, in Figure 5.4 the v_DefaultDrawingSupplier variant is
highlighted in gray as its vp_DrawingSupplier vp has less than 5 variants.

Adapting these thresholds tailors the identification to the analyzed codebase which, depending
on its size and the object coupling induced by its architecture and used frameworks, might result
in too many/too few hotspot classes being identified. As a result, with information on symmetries,
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metrics on their occurrences, as well as relations of inheritance and usage between classes, zones
concentrating hotspots can be predetermined.

5.2 Evaluation

In this section, we first define the research questions to evaluate the extended approach of
symfinder-2 (Section 5.2.1). We then introduce the subject systems selected for evaluation (Sec-
tion 5.2.2) before tackling the research questions successively. The tool and the used data to obtain
the presented results are available online in a reproduction package [Mortara et al., 2021d].

5.2.1 Research questions

We define four research questions to evaluate our approach.

RQ1 : Does the identification of usage relationships improve the variability visualization of
a given system by symfinder-2? The visualization generated by symfinder represents class
level vp-s with variants as nodes, linked together through inheritance relationships. This
forms tree-like structures (cf. Figure 3.3). For example, two sets of vp-s both linked through
a few inheritance relationships would appear as two small trees on the visualization. If po-
tential vp-s from these two sets make use of each other, they form a more important con-
centration of variability implementations, which was not put together in the first version of
symfinder visualization. Similarly, a vp with only method-level variability would be isolated
on symfinder’s visualization, but might also be used by other class level vp-s or variants
and should be linked to them on symfinder-2’s visualization. In symfinder-2, we expect that
the two previous small zones would appear as a single but as a more important tree on the
visualization, being more visible for the user.

RQ2 : What is the starting density threshold to begin with the comprehension of the vi-
sualized variability by symfinder-2? In addition to the two basic user-defined variability
filtering capabilities that are added in the visualization and can be activated interactively, the
third filtering capability is based on the density of potential vp-s and variants. As explained
in Section 5.1.2, our filtering by density has for objective to reduce the number of poten-
tial vp-s and variants (a.k.a., nodes) visible on the visualization through identifying those
vp-s that have a minimum number of variants or those that are linked to another vp through
a maximum number of usage relationships. This threshold is set before their identification,
and setting it is not trivial as the user needs to know which is the right threshold to start
with.

RQ3 : Is the API information of a given system useful to simplify its identified variability
by symfinder-2? When studying large systems, the number of identified potential vp-s with
variants becomes extensive. Consequently, analysing and comprehending the implemented
variability from the provided visualization can be really difficult. With this research ques-
tion, we aim to evaluate whether classes annotated as APIs in the system are good candidates
for filtering the visualization and improve its comprehension. But, as a testing framework,
Cucumber has an API that exposes classes for defining the dependency steps and an object
factory for customizing the dependency injections.
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Table 5.1: The ten variability-rich subject systems.

Subject system Version LoC # vp-s # variants API Type

Java AWT jb8u202-b1532 69,974 795 1,706 Documented Library
Apache CXF 3.2.7 48,655 3,403 7,625 Documented Framework
JUnit r4.12 7,717 109 245 Documented Framework
Maven 3.6.0 105,342 612 1,147 Documented Application
JFreeChart v1.5.0 94,384 926 1,923 Documented Library
ArgoUML bcae373 134,367 776 1,959 Documented Application
Cucumber v6.8.0 42,662 238 282 Annotated Framework
Logbook 2.2.1 16,210 96 162 Annotated Library
Riptide 2.11.0 12,626 102 218 Annotated Library
NetBeans 12.1 5,058,448 3,621 6,736 Documented Application

RQ4 : Does the identification of usage relationships impact the scalability of symfinder-2?
This question aims at determining whether the additional functionalities in symfinder-2 harm
its scalability. The impact could be located in the identification phase, as the usage relation-
ship is identified in the source code representation, as well as in the visualization phase,
where new elements are computed to filter all displayed elements.

5.2.2 Subject systems

To evaluate symfinder-2, we chose ten popular variability-rich subject systems, being Java appli-
cations, frameworks, or libraries (cf. Table 5.1). For the time frame of up to twelve last years,
they have received between 150 and 8, 000 stars in GitHub, but we particularly considered them
because of the following criteria. The first six ones were already used to evaluate the first version
of symfinder in [Tërnava et al., 2019], namely Java AWT, Apache CXF, JUnit, Apache Maven,
JFreeChart, and ArgoUML. Then, we chose the other three as they use in their codebase a form
of API annotations, namely the API Guardian library, to annotate each code unit that constitutes
their API. These new chosen systems are Cucumber – a framework for BDD testing, Logbook
– a library to enable logging for different client- and server-side technologies, and Riptide – a
library based on Spring to implement client-side response routing. Finally, we selected the Net-
Beans IDE because of its size with about 5M lines of code (LoC), which helps in evaluating the
scalability issues of both the approach and the prototyped toolchain.

5.2.3 RQ1: Improved visualization

To answer RQ1, we applied symfinder and symfinder-2 to all ten subject systems and compared
their respective visualizations. Results are given in Table 5.2.

On all studied systems, we notice a smaller number of disconnected graphs and isolated nodes
by symfinder-2 for the same number of nodes displayed, meaning that the zones in the visualiza-
tion that seemed previously uncorrelated are now linked through usage relationships and appear
as such on the new visualization. Such an example is given on Figure 5.4, where the disconnected
graph having vp_MeterNeedle as vp and the disconnected graph of vp_CompassPlot pre-
sented on Figure 5.2 are now grouped as a single one. We observe that the difference between the
number of disconnected graphs is not proportional to the size of the studied system. For instance,

https://github.com/JetBrains/jdk8u_jdk/tree/jb8u202-b1532/src/share/classes/java/awt
https://github.com/apache/cxf/tree/cxf-3.2.7/core/src/main/java/
https://github.com/junit-team/junit4/tree/r4.12/src/main/java/org/junit
https://github.com/apache/maven/tree/maven-3.6.0
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree
https://github.com/marcusvnac/argouml-spl/tree/bcae37308b13b7ee62da0867a77d21a0141a0f18/src
https://github.com/cucumber/cucumber-jvm/tree/v6.8.0
https://github.com/zalando/logbook/tree/2.2.1
https://github.com/zalando/riptide/tree/2.11.0
https://github.com/apache/netbeans/tree/12.1
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Table 5.2: Comparison of the number of disconnected graphs and isolated nodes with symfinder
and symfinder-2

Subject Nodes symfinder symfinder-2
# graphs # isolated nodes # graphs # isolated nodes

Java AWT 431 55 142 2 20
Apache CXF 3085 473 1149 105 500
JUnit 118 23 36 6 18
Maven 616 177 172 21 79
JFreeChart 578 54 167 5 51
ArgoUML 1270 123 460 38 183
Cucumber 331 45 122 14 50
Logbook 117 19 40 4 16
Riptide 89 20 37 8 19
NetBeans 3498 504 1666 195 836

the number of NetBeans’ graphs are reduced by 61% whereas JFreeChart’s graphs are reduced
by 90%. However, their number could be related to the architecture of the project. A project of
an important size may have an architecture in layers, limiting the number of interactions between
classes, and therefore exhibit fewer usage relationships. Besides, we notice that some isolated
nodes still appear on symfinder-2’s visualization. This may suggest that other usage mechanisms
are present in the studied systems [Lau and Rana, 2010]. Taking into account these specific types
of usage relationships is part of our future work. Further, it is important to emphasize that although
the visualizations by symfinder and symfinder-2 have different numbers of disconnected graphs,
their overall number and kinds of identified vp-s with variants remain unchanged. This indicates
that symfinder-2 is an extension of symfinder with an intact variability identification. To conclude,
the reduced number of disconnected graphs by symfinder-2 shows an improved and denser visual-
ization of the identified vp-s and variants for a given system.

5.2.4 RQ2: Starting density threshold

To answer RQ2, we run symfinder-2 on each subject system with three different density settings
(cf. Definition 5.5):

∆5,3 (≥ 5 variants and ≤ 3 usage hops), ∆10,3 (≥ 10 variants and ≤ 3 usage hops), and
∆30,2 (≥ 30 variants and ≤ 2 usage hops). We have carefully chosen these parameters values,
based on a previous empirical evaluation with ArgoUML, JFreeChart, and Java AWT, and for
which we have the best knowledge to manually evaluate the impact of the density threshold. By
increasing the threshold on the number of variants, we aim to consider only highly-dense vp-s,
whereas by decreasing the threshold on the usage hops between such vp-s, we aim to consider
only highly-dense vp-s which are close in terms of usage relationships. The obtained results are
given in Table 5.3.

It can be observed that, in all subject systems, fewer nodes are displayed when using any of
the three density settings. For instance, JFreeChart has in total 578 identified vp-s with variants
at class level. After applying the three density settings, 34, 15, and 3 vp-s and variants (i.e., entry
points) remain, respectively. Moreover, the number of remaining vp-s decreases as we increase
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Table 5.3: Number of nodes identified as being part of dense zones compared to the total number
of nodes in all subject systems

Project symfinder symfinder-2
∆5,3 ∆10,3 ∆30,2

Java AWT 431 28 22 3
Apache CXF 3085 98 32 4
JUnit 118 5 0 0
Maven 616 8 1 0
JFreeChart 578 34 15 3
ArgoUML 1270 40 15 3
Cucumber 331 4 0 0
Logbook 117 0 0 0
Riptide 89 0 0 0
NetBeans 3498 58 22 2

the minimum number of variants for a vp and decrease the number of usage relationships between
both of them. However, these values are not adapted to such projects like Logbook or Riptide, for
which no vp-s remain with these three default thresholds.

These results suggest that determining a set of appropriate values for the parameters when
setting the density threshold is highly dependent on the studied project’s characteristics. That is,
even some large projects in terms of lines of code, such as Maven, can have a considerable number
of potential vp-s but with few variants. For such reason, setting a high density threshold may filter
out most or all potential vp-s with variants (i.e., there will be no entry points). Based on our
experiments with these ten subjects, we conclude that the first density setting (i.e., ∆5,3) can be
used as a good versatile starting point to begin the exploration and comprehension of the identified
variability by symfinder-2.

5.2.5 RQ3: Usefulness of API-based filtering

To answer RQ3, we ran symfinder-2 on three subject systems, namely Cucumber, Logbook, and
Riptide, while taking into account the code units annotated by developers using the API Guardian
library. We then compared the number of nodes that are displayed in their visualizations before
and after using their respective API to filter in the related classes. Results are given in Figure 5.7.

It can be observed that in all three subjects the visualization with the applied API has notably
fewer nodes than the original visualization by symfinder-2. We manually checked that, while re-
ducing the number of potential vp-s with variants, it always shows those that are considered as
the most relevant due to their nomenclatures. They can help to comprehend each system’s vari-
ability, that is, to give us an insight on the implemented domain variability. In the three cases,
these vp-s with variants can be used as entry points for users in order to begin with the variability
comprehension of the systems. We interpret this filtering by an API as facilitation in the overview
and zooming parts of the Shneiderman mantra [Shneiderman, 2003]: overview first, zoom and fil-
ter, then details on demand. In the longer term, we believe that this should be extended by the
integration of the symfinder-2 toolchain with other sources that contain variability information for
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Figure 5.7: Number of vp-s and variants (nodes) displayed on the visualization before and after
refinement by API

a given system, or simply to show how different variability information sources could be blended
together.

5.2.6 RQ4: Scalability

To answer RQ4, we measured the time taken to identify and visualize the variability in all ten sub-
ject systems. We conducted our experiments on a Linux environment running Arch Linux 5.11.12-
arch1-1 x64 with Intel i7-9850H (12 cores) @ 4.6GHz and 32Go memory. The visualizations are
tested using Mozilla Firefox 87.0 and Google Chrome 89.0.4389.114.

We noticed that the computation needed to render and display the visualization is not very time
consuming, with 700 ms on Chrome and 850 ms on Firefox for the NetBeans system. The iden-
tification step is clearly the most time-consuming activity. We hence measured and compared this
time on the ten subject systems with symfinder and symfinder-2. Figure 5.8 summarizes the ob-
tained execution times for both versions with a density threshold of ∆5,3. Although the execution
time with symfinder-2 is higher than with symfinder for every system, we observe that the differ-
ence increases with the size of a system and number of identified vp-s and variants, for instance,
20% of difference for Riptide (23 sec → 28 sec) and 85% of difference for NetBeans (01:02:10
→ 01:55:04). This can be explained by the fact that a higher number of relationships between
classes needs to be parsed and treated by symfinder-2 in its database. While there seems to have an
exponential evolution w.r.t. LoC with systems of the size of NetBeans (5M LoC), we believe the
analysis step is still adapted to large systems, as symfinder was also successfully applied to Firefox
and its 25M LoC (cf. Section 4.1.3). Then, waiting for around 1 or 2 hours to run symfinder-2 only
on the new releases of a project, for example, every 6 months, is affordable.

5.2.7 Discussion and threats to validity

Summary of RQ1 − RQ4 On our set of studied systems, symfinder-2 provides a more fo-
cused identification and visualization of relationships among the potential vp-s with variants than
symfinder. Depending on the system’s size, symfinder-2 can take between 30 seconds to 2 hours
to identify between 250 and 11K potential vp-s with variants. Besides, it supports users with up
to four ways to begin the variability comprehension of a given system from its visualization. In
particular, our experiments suggest using a density threshold of ∆5,3 (i.e., ≥ 5 variants and ≤ 3
usage hops) or, if available, the API-based filtering.
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Figure 5.8: Execution time in symfinder and symfinder-2

Internal threats to validity. A first internal threat concerns the distinction of real vp-s and vari-
ants from the potential ones proposed by the different versions of symfinder. For the considered
subject systems (except NetBeans that was too large), we manually determined whether the re-
mained vp-s and variants after applying the thresholds represent some variability implementations.
We thus did a sample verification by examining identified classes, checking for their documenta-
tion on the project website, and devising the kind of variability that was implemented. Although
we could be partially wrong in our interpretation, this manual verification allowed to obtain rel-
evant results. Then, determining whether an identified vp or variant actually implements some
domain variability was hard to conclude as none of the subject systems, except ArgoUML, had a
ground truth.

External threats to validity. To address the research questions, we used up to 10 subject sys-
tems, which vary across domains, size, type, and developers. While the dataset is still small, we
have good confidence that the obtained results also apply to other Java-based variability-rich sys-
tems of mid-size. Besides, our experiments over NetBeans show that while the toolchain is likely
to scale on very large systems, the proposed improvements in symfinder-2 are not sufficient to
comprehend all the implemented variabilities. Entry points and the usage links enable to provide
a better overview and better filtering over the system, but it is still difficult to browse effectively
towards a comprehension of the system variability.

5.3 Related Work

Outside the software variability domain, some other works rely on the identification of inheritance
and composition to define hotspots, being zones of an object-oriented design that are exposed to
client software and hence have to be comprehended to ensure reuse [Schauer et al., 1999; Flo-
res et al., 2005]. While this identification relies on design patterns detection used to implement
reusable interfaces, it was not related to variability implementations.
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Figure 5.9: symfinder-2 view of JFreeChart, having JFreeChart as an entrypoint, OUT as usage
orientation and a usage level of 4.

Previous studies on software API comprehension focus on the extraction of usage patterns
relying on unit tests analysis [Zhu et al., 2014], client code analysis [Zhong et al., 2009], or ap-
proaches combining client and library code analysis [Saied and Sahraoui, 2016], as well as their
evolution in time [Huppe et al., 2017; Saied et al., 2020] to help developers in library reuse. In the
variability domain, APIs have been studied for the variability of their evolution [Alrubaye et al.,
2019], but not to facilitate the comprehension of variability implementations through a visualiza-
tion approach as in our work.

5.4 Conclusion

The identification method provided by symfinder is incomplete by not taking into account usage
relationships between classes and thus cannot provide appropriate means to help users start the
comprehension activity. In symfinder-2, we extended this method with usage relationships and
provided filtering capabilities based on both automatically detected API-related entry points, and
a user-defined density metrics based on two thresholds. Application to ten systems has shown that
symfinder-2 provides a more focused identification and visualization of object-oriented variability
implementations. Although determining adequate parameters for the density is project-dependent
and thus cannot be done automatically, adapting the density thresholds allows to show a smaller
but still relevant set of classes. Therefore, the improvements brought by symfinder-2 compared to
symfinder allow to better answer Challenges A1 and A2 (“Identifying variability implemented in
OO software systems” and “Making the identified variability implementations comprehensible”
respectively).
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Although this improved visualization helps to understand the implemented variability at fine
grain, it does not solve the scalability issue of the view that we identified in Chapter 4. As an exam-
ple, Figure 5.9 shows an excerpt of the generated visualization for JFreeChart. The view exhibits
only outgoing usage relationships on 4 usage levels out of a maximum of 8 and is already hard to
interpret. There is therefore a need to change the shape of the visualization for another metaphor
that would better represent the variability-related metrics of each class and their relationships be-
tween each other to reveal dense zones of variability implementations.





CHAPTER 6
Comprehending the
organization of the

implemented variability
This chapter shares material with the VISSOFT 2021 paper “Visualization of Object-Oriented

Variability Implementations as Cities” [Mortara et al., 2021a].

As detailed in Section 3.1.1, the implemented variability in OO code assets is neither explicit
nor documented, which hinders its management, but more globally, hampers the simple compre-
hension of it. As features to be understood are not known in advance, and the code is not cloned
and modified per product, none of the feature location techniques [Dit et al., 2013; Michelon et al.,
2021a; Linsbauer et al., 2022] can be applied in this context. We thus advocate that our context
naturally calls for visualization-based solutions [Koschke, 2003; Storey et al., 2005; Teyseyre and
Campo, 2008]. While visual representations have already been proposed in the variability manage-
ment field, they most entirely focus on the domain variability and feature models [Lopez-Herrejon
et al., 2018; Kästner et al., 2008; Bergel et al., 2021; Andam et al., 2017; Greevy et al., 2005] and
are therefore not applicable to our context.

As inheritance relationships between classes (one of the mechanisms used to implement vari-
ability in OO systems) are often represented and manipulated as a graph [Snyder, 1986; Booch
et al., 2008] we used and adapted this representation to visualize the identified variability imple-
mentations in symfinder and symfinder-2. However, it results that due to the complex nature and the
diversity of OO variability implementation mechanisms, representing all the information required
to understand them in the form of a graph leads to a visualization that becomes quickly overloaded
and thus does not scale to large codebases. There is therefore a need for a more adapted visual-
ization capable of bringing an answer to the A2 challenge, that is, to represent these variability
implementations and make them understandable by developers and architects. Such visualizations
often rely on metaphors as they help to represent concepts in a comprehensible manner [Knight
and Munro, 2000]. For example, the city metaphor [Wettel and Lanza, 2007] has been shown to
scale on large projects for visualizing metrics related to software quality and received multiple
adaptations to various contexts (cf. Section 3.2).

In this chapter, we address the following questions:

1. What are the requirements for a visualization approach to comprehend OO variabil-
ity implementations? As program comprehension is seen as a process of both information

75
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seeking [Sillito et al., 2008] and feature location [Dit et al., 2013], it is obvious that even
if our problem is not related to domain features in a classic SPL terminology, identifying
vp-s with variants is indeed a comprehension problem. In Section 6.1, we identify the re-
quirements that such a visualization should meet and propose two validation scenarios.

2. Is the city metaphor adapted to visualize OO variability implementations? Based on the
previously obtained requirements, we adapt the city metaphor to our identification problem
and propose VariCity, a 3D visualization using the city metaphor to exhibit zones of interest,
being zones of high density of variability implementations (Section 6.2).

3. To what extent does the VariCity approach help the comprehension of the implemented
variability? To evaluate to what extent VariCity fulfills the identified requirements, we pro-
vide two evaluations. First, we unfold the two validation scenarios presented in Section 6.1
to validate whether VariCity’s capabilities help in understanding the implemented variabil-
ity (Section 6.3). Then, we report on a controlled experiment with 49 students aiming to
evaluate whether VariCity performs better than state-of-the-practice approaches to discover
a codebase (Section 6.4).

6.1 Requirements

As the essence of software visualization consists of creating an image of software by means of
visual objects that represent structure and/or behavior [Knight and Munro, 2000], we believe it is
well suited to enable perception of variability implementations with a closer fit to the user mental
model. Furthermore, the difficulty of discovering a codebase increases with its complexity, we
believe that such visualization should be able to meet the constraints of an onboarding process.
Onboarding is a case of program comprehension in which a new developer joins a project or a
company [Berlin, 1993; Sim and Holt, 1998]. Contrary to the usual information seeking in pro-
gram comprehension (i.e., information pull), onboarding is more based on information push [Yates
et al., 2020] and is harder when little is known about the system [Steinmacher et al., 2014]. In on-
boarding, it has also been shown that newcomers look for major patterns [Yates et al., 2020], such
as the ones used in variability implementations. Finally, to avoid frustration by newcomers being
onboarded [Begel and Simon, 2008], the capability to configure and make up adapted visualiza-
tion for an expert is also crucial.

In this context, we structure our requirement analysis around software comprehension scenar-
ios for visualization within an onboarding process. We are then supposed to target two types of
users:

• newcomers in the project, skilled but with no real knowledge about the code (this role can
be generalized to anyone attempting to comprehend some software with little or no prior
knowledge);

• experts in the project, with knowledge of the code and its architecture, but with no explicit
vision of the variability implementations. With experts, once they have gained knowledge
on the variability, they are likely to be more interested in its evolution [Wettel and Lanza,
2008b; Pfahler et al., 2020]. We consider that all evolution scenarios are out of the scope
of this work, as we first need to provide a visualization for a single snapshot of a project.
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Consequently, we focus on scenarios that engage the expert to comprehend the implemented
variability while building a preconfigured visualization for newcomers.

We then propose two scenarios:

• Scenario 1: The expert wants to facilitate the exploration of the codebase by giving
a pre-configured visualization to the newcomer. Through this scenario, the newcomer
onboards on a large codebase of which he needs to have a global comprehension of the
implemented variability (e.g., understand a library or API that is going to be reused).

• Scenario 2: The expert wants the newcomer to comprehend a subpart of the codebase
for the newcomer to be able to reuse it. Through this scenario, the newcomer onboards
on a codebase in which they will be asked to add a new feature. They, therefore, have to
understand in more detail the interactions between the classes implemented variability in
this subpart.

Finally, Yates et al. [2020] analyze the different types of information transmitted from an
expert to a newcomer during onboarding sessions. It results that newcomers find helpful when
experts give coarse-grained information about complex zones (ranging from a group of classes to
design patterns) of the codebase to them, so they can dig into them by themselves. According to
these findings, we can say that a visualization for a newcomer should: (i) display the main ele-
ments allowing them to understand the codebase (design patterns, zones with complex variability
implementations), (ii) be configurable by the expert to tailor it for newcomers, (iii) provide navi-
gation and interaction capabilities to be adapted by a newcomer (filtering, zooming), (iv) scale on
large codebases.

6.2 VariCity

As shown in Section 3.2, the city metaphor is a recognized way to visualize different properties
of software systems. We hence adapt this visualization to the data we want to visualize and the
defined scenarios.

6.2.1 Main principles

Buildings In CodeCity, classes are buildings and their size evolves according to metrics related
to code quality which are inherent to the represented class, such as the cyclomatic complexity or
the number of lines of code (LoC). For example, an important number of methods will lead to a tall
building, catching the attention of the user on it. In VariCity, we aim to focus the user on classes
making heavy use of variability implementations. Therefore, the dimensions of every building
represent the class-based metrics related to variability, i.e., the number of variants at method level
– a tall building shows an important number of method variants, whereas a wide building shows an
important number of constructor variants. For example, on Figure 6.1b, XYPlot appears as very
tall as it has 77 method variants, whereas Plot is small as it has 6 method variants (cf. Figure 5.5).
Moreover, buildings in color on the visualization (by default yellow for vp-s and blue for non vp-s)
represent classes defined as hotspots as being part of dense zones of variability (cf. Section 5.1.3).
The shape of the building is altered according to the design pattern(s) exhibited by the class1 (cf.

1A design pattern often involves multiple classes, however only the vp of the design pattern has a special crown on
it, not to overload the visualization.
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(a) Visualization of JFreeChart 1.5.0 (b) Example from Figure 5.5 in VariCity

Figure 6.1: Sample views of VariCity

Table 6.1). Displaying differently classes being hotspots and/or exhibiting design patterns brings
to the user insights on highly variable zones of the project, which they can then explore in more
detail by using the different interactions provided by the visualization (spanning, zooming).

Streets Analogously, since the representation proposed by CodeCity groups classes belonging
to the same package in a district to exhibit the packages containing the most complex classes,
our goal is to group in the same neighborhood classes concentrating a high density of variability
implementations.

However, although the nested districts allow to efficiently represent the decomposition hi-
erarchy of classes belonging to nested packages, it is not adapted to our notion of density of
variability implementations which derives from usage relationships between classes (as a class
can use and/or be used by multiple other classes). We thus rely on the visualization proposed by
Evo-Streets [Steinbrückner and Lewerentz, 2013], which uses streets to decompose a hierarchy
instead of boxes. In the original Evo-Streets layout, streets represent subsystems, with orthogonal
branching streets representing their subsystems. The buildings on a street represent the modules
belonging to this system. We adapt the visualization with buildings on streets being classes, and
streets departing from a building (instead of another street) to represent a usage relationship be-
tween this class and every other class whose building is on the street. As we consider inheritance
links as less important for variability, they are represented as aerial links between buildings, be-
ing only displayed when hovering over a building. This enables the user to see the inheritance
information if needed, while the hotspot coloring and streets for usage bring the most important
information first.

A summary of the visual properties is presented in Table 6.1 and illustrated in Figure 6.2. The
view reveals the three different types of density detailed in Chapter 5. Classes with an important
individual density, resulting from an important number of methods or constructors overloads (Def-
inition 5.3), are more noticeable due to the important height or width of their buildings. Groups of
classes exhibiting collective density, being close in terms of distance in usage relationships (Defi-
nition 5.4), have their buildings close to each other on the visualization, as if they were neighbors.
Finally, hotspot classes exhibiting both density types (Definition 5.5) are colored, emphasizing
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Table 6.1: Visual properties and their default color

Representation in VariCity Signification

Buildings

Yellow color Variation point that is part of a hotspot
Blue color Non-vp class that is part of a hotspot
Gray color Class that is not part of a hotspot
Pyramide crown Entry point class
Dome crown Strategy pattern
Chimneys crown Factory pattern
Inverted Pyramide crown Template pattern
Sphere crown Decorator pattern

Streets

Plan (red) Street aggregating entry point classes
Plan / Underground (green) Usage relationship
Aerial (blue) Inheritance relationship

classes that are parts of dense zones but initially less visible on the visualization by being less
individually dense or linked through underground streets.

Root street

Entry point 
classes

Usage link

Crown =
design pattern

Methods 
overloads

Constructors 
overloads

Hotspot

Hotspot and
VP / variant

(a) Elements displayed by default

Usage links

Inheritance links

(b) Inheritance links and underground usage links
appear when hovering a building

Figure 6.2: Visual properties of VariCity

Adaptable cities While the view should allow to quickly spot dense zones of variability imple-
mentations, a lot of information of different nature needs to be displayed: classes, links between
them, design patterns. However, on a large project, providing a first view with all classes (and
their usage / inheritance relationships) displayed would bring too much information. There is thus
a need to focus the visualization around known points of interest of the system. The idea is there-
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1
234

5

Usage density

Street
(usage relationship)

Root street
Entrypoint classes

Figure 6.3: Depiction of the layout algorithm

fore to allow the expert to create a city in line with the most important elements for them and to
give a first simplified vision of the city which does not show all the relationships between classes.
The visualization algorithm thus relies on a certain number of inputs that focus the view (cf. Sec-
tion 6.2.2). From this first visualization, it will also be possible to gradually adapt the city, among
other things, by adding or removing relationships and classes (cf. Section 6.2.3).

6.2.2 From buildings and streets to a city

The goal of VariCity is to display the main elements allowing one to understand the variabil-
ity implementations related to a given important class in the system (cf. Section 6.1). To do so,
analogously to the previously proposed symfinder-2, VariCity relies on three mandatory inputs
(Sections 5.1.2 and 5.1.3). The first one defines entry point classes, which represent important
classes for the comprehension of the system (e.g., endpoint of an API that could be automatically
inferred, or complex classes of the system given by the expert). The second input is the usage
orientation, which can be IN and/or OUT. An orientation IN means that the classes displayed will
be the classes using the defined entry points (i.e., having it as an attribute or method parameter).
On the opposite, an orientation OUT implies that the classes displayed will be the classes being
used by the defined entry points (i.e., being an attribute or method parameter of the entry point).
Depending on the objectives of the onboarding scenario envisaged by the expert, they might show
either how the entry point uses or is used by other classes. More detailed examples are given
in Section 6.2.3. Finally, setting the orientation to IN/OUT displays classes using or being used
by the entry points. The third input is the usage level, which is an integer value. With a usage
level of n, all classes distant from an entry point by n usage relationships will be displayed. For
example, a visualization set up with an entry point, usage orientation OUT and usage level of 2
will display the entry point, the classes being used by the entry point, and the classes used by these
classes. Being able to adapt this value is important as depending on the complexity or the layered
architecture of a system, a given level of usage might be adapted to it but shows too many classes
on another one.
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Figure 6.3 depicts how the city is built. The root (first) street, in red, aggregates all the entry
points. Then, starting from them, classes using (or being used by) them up to the usage level set
are displayed. A street, in green, is initiated from an entry point, and for each class related to it, a
building is placed on the border of the street. In order to exhibit density between classes, we need
to place as close as possible buildings linked by a usage relationship to the same class. Following
this principle, we place the buildings by descending order of width on both sides of the street,
minimizing the total length of the street to keep the buildings as close as possible.

Our placing algorithm can lead to long straight streets if a class uses many others. Work pre-
senting techniques to prevent this behavior and keep cities compact exist. A widely used technique
is the use of Treemaps [Shneiderman, 1992; Bruls et al., 2000; Scheibel et al., 2020; Faccin Vernier
et al., 2018; Tua et al., 2021; Kratt et al., 2011]. For example, Evo-Streets [Steinbrückner and Lew-
erentz, 2013] uses a packing-based layout to group neighboring buildings in rectangular districts
along the street. However, such strategies are inapplicable in the case of VariCity since streets is-
sue from buildings, therefore every building needs to be on its street to keep the shape of the city.
Another approach consists in folding streets by adding turns [Kratt et al., 2011]. Still, having long
streets is valuable in the case of VariCity as it allows to quickly visualize classes concentrating
many usage relationships.

It is also likely to happen that a class is linked through a usage relationship to multiple visual-
ized classes. In that case, these additional usage relationships are represented as green underground
streets and appear only when hovering the class, as well as the inheritance relationships not to over-
load the visualization2. An example of visualization after generation is presented in Figure 6.1a.

6.2.3 Configuring the view to adapt the city

The configuration of VariCity is done in two steps. The first step concerns the adaptation of
the mandatory inputs required to build the visualization (i.e., entry point classes, usage level, and
usage orientation), which are preconfigured by the expert. Based on their knowledge, the expert
determines which classes are relevant enough to be entry point classes. The orientation will be
set depending on what they expect the newcomer to understand from the system: if they want
the newcomer to reuse a part of the implementation, they will likely choose the IN orientation
as it will show which classes already use the entry point so that the newcomer can see how the
class is already used. On the opposite, if they want the newcomer to add a new feature, they will
more likely choose OUT so that the newcomer sees which classes are used by the entry points to
know which classes they may need to reuse. Finally, choosing IN/OUT gives an overview of both
aspects. Determining the usage level can only be done empirically. A level too low might hide
important information for the comprehension of the variability, and a level too high might display
too much information. Such characteristics are dependent on every codebase. For example, the
visualization of JFreeChart presented in Figure 6.1a has JFreeChart and Plot as entry points,
a usage level of 4, and a usage orientation OUT. The expert can also choose not to display classes
that they consider irrelevant by putting them in a blacklist.

The second step represents options allowing to adapt the visualization, such as visual settings
(colors of the visual elements, padding between the buildings) that may improve the readability
of the visualization. Metrics for the height and width of the buildings can also be adapted. This

2In both the standalone and integrated versions of VariCity, when hovering over, class names are also displayed in a
sidebar for the same reason.
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parameter may be useful for the expert that has a particularly deep understanding of the system.
For example, if the method level variability of classes is due to constructor overloads, it might be
useful to use this metric for the height instead of the width of the buildings.

Although all these parameters for both steps have default values set by the expert, they can
also be adapted by the newcomer while exploring the visualization in a sidebar to maximize their
autonomy. We will illustrate in Section 6.3 how different values for the inputs in the first step
impact the structure of the visualization by detailing the two scenarios presented in Section 6.1.

6.2.4 Implementation

VariCity is deployed as a standalone web-based visualization, and developed in TypeScript with the
Babylon.js3 3D library. It relies on symfinder-2 for the automatic identification of the symmetries
and, relying on them, of the potential vp-s and variants as depicted in Figure 5.5. Information is
structured by class and used by VariCity to build the visualization (cf. Section 6.2.2), relying on
the settings provided in a configuration file. The whole application is deployed with Webpack and
requires only a web browser to be viewed. As for symfinder-2, VariCity is deployed using Docker
to ease the reuse and reproducibility of the visualizations presented in this chapter. The source
code of VariCity is available online [Mortara et al., 2021b].

6.3 Scenario-based evaluation

In Chapter 5, the symfinder-2 toolchain, which detects potential vp-s with variants, was applied
on ten popular open-source and variability-rich Java systems, being applications, framework, or
libraries, with different characteristics (size, variation points, explicit API provided). We chose to
select the same systems to test the results of VariCity. In Table 6.2 are listed the systems and their
VariCity configuration to facilitate the exploration or deepening of a particular area, as shown by
our scenarios. The entry points have been determined by exploring the codebases and documen-
tations, and selecting important classes accordingly. The values for usage level and orientation
were determined empirically to provide a visualization showing interesting zones. By tailoring the
inputs for these systems, we show that our approach is applicable to systems of various sizes and
structures. The generated cities for all systems are available in the reproduction package [Mortara
et al., 2021b]. Entry point classes being preconfigured, the user just needs to adapt the values for
the usage level and orientation.

In this section, we evaluate whether VariCity answers to the needs expressed in Section 6.1, re-
lying on the scenarios presented in the same section. We chose the Apache NetBeans IDE with its
5 MLoC4 for Scenario 1 to illustrate the exploration of a large codebase. We chose the JFreeChart
charting library for Scenario 2 to illustrate comprehension for reuse, as this scenario requires a
finer-grained knowledge of the codebase, and we already detailed parts of its variability implemen-
tations in [Tërnava et al., 2019]. A video walkthrough of the scenarios is available on VariCity’s
website at https://deathstar3.github.io/varicity-demo/.

3https://www.babylonjs.com/
4https://netbeans.apache.org/

https://deathstar3.github.io/varicity-demo/
https://www.babylonjs.com/
https://netbeans.apache.org/
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Table 6.2: Subject systems

System Entry point(s) Usage level Usage orientation

Java AWT java.awt.Shape 3 IN/OUT

Apache CXF org.apache.cxf.endpoint.Endpoint 6 OUT

JUnit
org.junit.Assert

3 IN/OUT
org.junit.rules.TestRule

Maven
org.apache.maven.Maven

7 OUT
org.apache.maven.execution.MavenSession

JFreeChart
org.jfree.chart.JFreeChart

2 OUT
org.jfree.chart.plot.Plot

ArgoUML
org.argouml.cognitive.Designer

2 IN/OUTorg.argouml.uml.ui.UMLModelElementListModel2
org.argouml.uml.diagram.ui.FigNodeModelElement

Cucumber
io.cucumber.plugin.event.Event

11 IN/OUT
io.cucumber.java.StepDefinitionAnnotation

Logbook
org.zalando.logbook.Logbook

4 OUT
org.zalando.logbook.Sink

Riptide org.zalando.riptide.Http 6 IN/OUT

NetBeans org.netbeans.api.java.platform.JavaPlatform 5 IN/OUT

6.3.1 Scenario 1: exploration of the codebase

6.3.1.1 Objectives

With this scenario, we want to evaluate how VariCity and its configuration capabilities can help to
distinguish zones of high density of variability in a codebase, which are manifested by buildings
of particular height or width (i.e., important number of method level variability implementations),
in color (i.e., part of dense zones of variability implementations), or with a crown (i.e., presence
of a design pattern).

6.3.1.2 Unfolding the scenario

The newcomer onboards on the NetBeans IDE codebase and needs to use the JavaPlatform
API, which configures the version and location of Java to be used when building and running
a project5. To better understand the operation of the API, the newcomer thus needs to have a
global vision of the structure of the usage and inheritance relationships between the classes.
To this effect, the expert configures the visualization to use the endpoint of the API, namely
JavaPlatform6, as the entry point of the visualization. Both classes using and being used
by JavaPlatform on 5 levels (usage level 5, orientation IN and OUT) are shown to have a
first overview of the classes being closely related to the endpoint of the API. The obtained visual-
ization is shown in Figure 6.4a. A neighborhood of tall and colored buildings (circled in yellow)
detaches from the other buildings in the city, showing to the user zones with classes heavily us-
ing variability implementation techniques. By zooming and spanning the visualization, the user

5https://bits.netbeans.org/12.2/javadoc/org-netbeans-modules-java-platform/overview-summary.html
6org.netbeans.api.java.platform.JavaPlatform

https://bits.netbeans.org/12.2/javadoc/org-netbeans-modules-java-platform/overview-summary.html
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(a) NetBeans, usage level 5, orientation IN/OUT,
JavaPlatform as entry point.

(b) Zoom on a hotspot zone

Figure 6.4: Visualization of the package java of NetBeans 12.2

can focus on this precise part of the city (Figure 6.4b)7. The different implemented design pat-
terns are distinguishable due to the special shape of their buildings (e.g., JavaFix is a Strat-
egy, ngtest.AbstractTestGenerator and junit.AbstractTestGenerator are
Templates). The two last classes are not only design patterns but also hotspots, giving a strong
intuition about the relevance of the potential identified vp. In fact, these classes allow gener-
ating test code for two different unit test libraries, JUnit8 and TestNG9 and are variants of the
CancellableTask interface10.

6.3.2 Scenario 2: comprehension of a subpart of the codebase for reuse

6.3.2.1 Objectives

With this scenario, we want to evaluate how the customization of the view by the newcomer can
allow them to tailor the visualization to obtain fine-grained details about the codebase.

6.3.2.2 Unfolding the scenario

The newcomer onboards on JFreeChart, a Java library allowing to draw different types of charts,
and is asked to implement a new type of chart in the library. Contrary to the first scenario, the
newcomer aims at adding a new feature to the codebase, thus they need a more fine-grained un-
derstanding of it, as, for example, the classes used by the other charts that they might also need
to use. The expert thus configures the visualization to use as entry points JFreeChart11, be-
ing the endpoint of the library used by the users to create plots and Plot12, the superclass of all

7The names and arrows have been manually added on the figure. The name of the class corresponding to a building
appears in a sidebar of the visualization when hovering over the building. Packages, when unnecessary, have been
omitted for readability.

8https://junit.org/junit5/
9https://testng.org/doc/

10See here and here.
11org.jfree.chart.JFreeChart
12org.jfree.chart.plot.Plot

https://junit.org/junit5/
https://testng.org/doc/
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/junit/src/org/netbeans/modules/junit/AbstractTestGenerator.java#L93
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/testng/src/org/netbeans/modules/testng/AbstractTestGenerator.java#L89
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PolarPlot
JFreeChart

CategoryPlot

XYPlot

Plot

LegendItem

(a) JFreeChart, usage level 2, orientation OUT, JFreeChart and Plot as entry points. Displaying links
of Plot reveals that XYPlot and CategoryPlot are subclasses.

(b) Figure 6.5a after adding XYPlot and
CategoryPlot as entry points.

CategoryPlotXYPlot

JFreechart

Plot

XYItemRenderer

LegendItem

(c) Figure 6.5a after increasing the usage level to 4.

Figure 6.5: Scenario 2

classes implementing a different type of chart. As the goal is to display which classes are used by
these two entry points, the usage orientation is set to OUT and the usage level to 2. The obtained
visualization is shown in Figure 6.5a.

We notice that the colored buildings, which represent classes being part of dense zones of vari-
ability implementations, do not align with the most variable classes. For example, LegendItem
is a factory and, due to its large base, exhibits an important number of constructor variants. How-
ever, although this class is internally dense in variability, it is a utility object which not related to
any other vp, and for this reason, is not characterized as a hotspot.

By hovering over Plot, the newcomer can see the different displayed subclasses of the
class (i.e., the variants of the vp Plot). To add another type of chart in the library, they will
need to implement a new variant of this vp and needs thus to have an overview of the classes
used by these subclasses. To do so, the user adds the two most variable ones (XYPlot13 and
CategoryPlot14) as entry points (Figure 6.5b). The shape of the city changes to display the
usages related to each entry point in separated neighborhoods, allowing to better visualize if (i) a
particular entry point is the starting point of a dense zone of variability implementations, and (ii) a
class is related (to a certain degree) to two entry points with underground streets. On Figure 6.5b,
an important number of classes making heavy use of variability implementations is visible, and

13org.jfree.chart.plot.XYPlot
14org.jfree.chart.plot.CategoryPlot
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are directly used by XYItemRenderer15, itself related to both XYPlot and classes related to
CategoryPlot. Given these characteristics, the newcomer may need to reuse it to implement
his feature and thus can add it as another entry point to visualize its usage if needed.

To visualize the classes used by XYPlot and CategoryPlot, the newcomer could also
have chosen to increase the usage level on the visualization given by the expert, as shown on Fig-
ure 6.5c. However, an important number of classes and relationships not related to the newcomer’s
interest would appear, hampering the comprehension. The newcomer could also have chosen other
class variants of Plot to add as entry points. However, most likely the classes that will be added
to the visualization are not dense in variability, thus less interesting for the scenario.

6.3.3 Summary

Through these two scenarios, VariCity enables the newcomer to see variability implementations
in an unknown codebase from a high-level perspective, and also to dig into them to have a more
precise understanding.

6.4 Controlled experiment

While the two unfolded scenarios demonstrated VariCity’s capabilities, the relevance of the ap-
proach is conditioned by its capacity to perform better than state-of-the-practice approaches to
comprehend the implemented variability. In collaboration with Anne-Marie Dery-Pinna, we thus
design a controlled experiment with real users to observe how using VariCity impacts the time
needed to complete variability comprehension tasks and its difficulty.

6.4.1 Experimental design

Wettel et al. [2011, 2010] designed an empirical evaluation of CodeCity aiming to evaluate
whether the view helped the identification of quality-critical zones in an OO codebase and ex-
tracted from the literature a wish list of requirements for their experiment. As we conduct a sim-
ilar evaluation, we therefore rely on this list to design our experiment and detail its design in the
remainder of this section. Table 6.5 summarizes, for each of these requirements, how our design
fulfills them or not.

6.4.1.1 Research Questions

With this experiment, we aim to answer the following questions:

RQ1: Does the use of VariCity increase the correctness of the solutions to variability identification
tasks, compared to state-of-the-practice tools?

RQ2: Does the use of VariCity reduce the time needed to solve variability identification tasks,
compared to state-of-the-practice tools?

RQ3: Is VariCity regarded as easy to use to solve variability identification tasks compared to
state-of-the-practice tools?

15org.jfree.chart.renderer.xy.XYItemRenderer
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6.4.1.2 Subjects

This experiment was realized as part of a reverse-engineering graduate course at the Polytech Nice
Sophia engineering school. The population is made of 49 students in the last year of Master’s in
Computer Science, specialized in Software Architecture. While it is known that having students
as subjects for controlled experiments does not always give reliable results as they might not be
representative of the target population [Feitelson, 2015], we think it is appropriate in our case for
two reasons. First, being in the last year of Master’s in Computer Science, an important majority
of them will integrate an industrial company in the next few months and need to onboard on an
unknown codebase, thus exactly the usage scenario of VariCity. Second, they are advanced devel-
opers in Java, thus mastering object-oriented programming concepts. They also followed multiple
courses prior to the experiment related to the comprehension of complex code architectures, thus
preventing a bias on their knowledge of these aspects.

6.4.1.3 Purpose and variables

Through the three defined research questions, the goal of this experiment has been set towards
evaluating whether VariCity allows subjects to better identify patterns involved in complex zones
of variability implementations, i.e., the effectiveness of the approach. Additionally, we aim to as-
sess whether VariCity reduces the time needed for subjects to answer the tasks and their perceived
difficulty compared to state-of-the-practice tools, i.e., the efficiency of the approach. Such goals
being identical in the empirical evaluation of CodeCity by Wettel et al. [2010], we therefore share
identical dependent and independent variables. We detail them hereafter.

Dependent variables Our first dependent variable concerns the tool used to solve the task. In
order to mitigate the effect of this variable, we must compare our approach with a state-of-the-
practice approach used to achieve an identical goal, that is, understanding the variability imple-
mented in OO software systems. While comparing VariCity to symfinder-2 would allow evaluating
the potential gain brought by the city metaphor, we cannot consider it a state-of-the-art approach as
it is not used regularly by the subjects. Therefore, the comparison would be irrelevant as between
two approaches that subjects do not master. Since, to the extent of our knowledge, no similar and
commonly used approach exists, we build a baseline ourselves relying on tools that developers
would actually use to navigate and understand the code artifacts. IDEs are widely used tools for
program comprehension [Minelli et al., 2015]. While a majority of our subject students use the
IntelliJ IDEA IDE, we did not impose any particular IDE as (i) the given tasks (listed in Sec-
tion 6.4.1.6) can be answered using only basic features supported by a large majority of IDEs (as
finding usages, code navigation), thus we do not expect them to use advanced features that would
be specific to a specific IDE (e.g., tracing, dynamic analysis) and (ii) we limit the bias regarding
the mastering of the IDE as every subject can use the one they master the most.

VariCity however uses data and metrics that are previously computed by the identification
backend (cf. Figure 5.5). Since our goal is to compare the gain of VariCity compared to the use of
an IDE, we should provide the subjects with all information given by VariCity that cannot be de-
termined using the IDE’s features. The inheritance and usage relationships between classes being
standard navigation features, it is thus possible to infer the variants at class level, and to determine
hotspot classes and design patterns, whose definitions are given to the subjects. It results that the
only missing information is the number of overloads of methods and constructors. We collected
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Table 6.3: Structure of the given CSV containing data on the classes

Class name Method variants Constructor variants
org.jfree.chart.ChartPanel 6 5

org.jfree.chart.ChartRenderingInfo 0 2

org.jfree.chart.JFreeChart 17 3

org.jfree.chart.LegendItem 0 10

. . . . . . . . .

Table 6.4: Statistics on the object system used for the experiment, JFreeChart

# LoCs # classes
# vp-s # variants

class level method level total class level method level total

94,384 990 259 667 926 275 1,648 1,923

this information in a CSV file to complete the baseline. The structure of the file is given in Ta-
ble 6.3. As for the IDE, no restriction has been imposed on a particular spreadsheet to manipulate
the CSV file for similar reasons.

Our second dependent variable regards the studied object system and its architecture. While a
large system or with multiple layers of abstraction would require too much time to be understood
in such an experiment, a too small system would on the opposite not require an approach as
VariCity to help its understanding and therefore not allow evaluating its potential gain. For these
reasons, we selected JFreeChart 1.5.0 as an object system, whose characteristics are presented
in Table 6.4. Not only does its 95k LoC make it a system of medium size, being a charting library
that we studied to evaluate symfinder and symfinder-2, we know that both the domain and the
implementation are accessible to the subject students. For similar reasons, we selected ArgoUML
as a test project on which the subjects can familiarize themselves before the actual experiment on
JFreeChart (cf. Section 6.4.1.7). Given the size of the population, we decided not to experiment
on a second object system as the groups for each treatment would have been too small (around 12
subjects) to draw any conclusion (cf. Section 6.4.1.5).

Independent variables Our independent variables regard the correctness of the solution given
for a task and the time to complete the task, which respectively allow measuring the effectiveness
and the efficiency of our approach.

6.4.1.4 Controlled variables

In their experiment, Wettel et al. [2010] benefited from a large panel of subjects from academia
(ranging from bachelor students to professors) and industry. Therefore, subjects in this panel ex-
hibited large differences in terms of background of experience, potentially having an influence on
their capacity to complete the tasks. In our case, all our subjects are all students having studied
similar topics. While 37 out of the 49 students are apprentices and thus have between 6 and 24
months of professional experience, we consider the impact that this difference may have on the
student’s capacity to solve the tasks as negligible. We therefore do not consider these variables for
our experiment.
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6.4.1.5 Treatments

We split the overall population randomly into two groups:

VariCity (24 subjects) The first group is given a link to a GitHub repository containing:

• the result of JFreeChart’s and ArgoUML’s analysis by symfinder-2, used as input by VariC-
ity;

• a VariCity configuration file to display the views.

The VariCity image is distributed as a Docker image hosted on the Docker Hub, thus requiring no
installation on the students’ computers.

IDE + CSV (25 subjects) The second group is given a link to a ZIP file containing:

• the source code of JFreeChart and ArgoUML;

• the CSV file containing the metrics for the classes16.

6.4.1.6 Tasks

The tasks derive from the onboarding scenarios presented above (Section 6.1). The subjects have
1h10 to complete all the tasks.

Part 1 (estimated duration: 35 mins)

1. Task. Identify 2 variants at class level for each of the following variation points:

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

Goal. Inheritance is a heavily-used mechanism to implement OO variability (Section 2.2.2),
therefore their identification and exploration is crucial to identify variability in this context.
With this task, we want to evaluate whether the used tools allow the exploration of such
mechanisms.

2. Task. How many classes are linked with a usage relationship to the each of the following
classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

Goal. The collective density of variability implementations is characterized by a cluster of
vp-s linked through usage relationships (Definition 5.4). With this task, we want to evaluate
whether the used tools allow an overview of these mechanisms by distinguishing the classes
linked by usage relationships to a given one.

16Although configuring the view might add or remove classes on the visualization, the given tasks do not require this
action. Therefore, the given data is strictly identical between both groups.
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3. Task. Complete the following sentences:

• Classes (1) and (2) have an important number (≥ 5) of subclasses (i.e., are variation
points with an important number of variants at class level).

• Classes (3) and (4) have an important number (≥ 10) of overloaded methods and con-
structors (i.e., are variation points with an important number of variants at method
level).

Goal. While usage relationships induce collective density, the individual density of vari-
ability implementations is characterized by the presence of a vp with an important number
of variants at class or method level (Definition 5.3). With this task, we want to evaluate
whether the used tools allow an overview of where such mechanisms are concentrated in
the codebase.

4. Task. Identify the 3 classes with highest individual density higher to the threshold v = 20.
Goal. For a given density threshold, the number of classes characterized as dense can remain
important depending on the dimensions and architecture of the studied system. It is therefore
important to be able to focus on the most dense classes. With this task, we want to evaluate
whether the used tools allow this.

Part 2 (estimated duration: 35 mins)

5. Task. Give 2 examples of each of the following design patterns:

• Strategy pattern;

• Factory pattern.

Goal. Those two design patterns being used to implement OO variability (Section 2.2.2),
we want to evaluate with this task whether the used tools allow their identification.

6. Task. What is the distance between the org.jfree.chart.JFreeChart and
org.jfree.chart.title.DateTitle classes?
Goal. As the density of OO variability implementations relies on usage relationships be-
tween classes, we aim to evaluate whether state-of-the-practice tools allow a user to compute
the distance between two given classes.

7. Task. Identify 3 hotspots for an individual density threshold of v = 20 and a collective
density threshold of d = 5.
Goal. The most dense zones concentrating variability implementations are characterized as
vp-s being simultaneously individually and collectively dense (cf. Definition 5.5) and it is
therefore important to identify them. With this task, we want to evaluate whether the used
tools allow identifying them.

8. Task. Identify the classes that according to you implement each of the following features,
and specify if they are hotspots for v = 20 and d = 5:

• “draw a chart” feature;

• “title of the chart” feature.
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Goal. Variability identification activities being often conducted to help the comprehension
of this variability [Krüger et al., 2019b], we aim with this task to evaluate whether the
exploration of the system with the given tools allowed the subjects to determine the classes
involved in the implementation of a feature.

For each task, the subjects are also asked:

• to input the start and end time of the task. With this information, we aim to evaluate
whether the time spent completing a task differs when using VariCity or the IDE.

• to rate the difficulty of the task on a scale from 1 to 4. With this information, we aim to
evaluate whether the perceived difficulty for a task differs when using VariCity or the IDE.

• to list the actions they accomplished (e.g., navigating the inheritance in the IDE or zoom-
ing on the visualization). We plan to use this data to better understand how the tools were
used to solve the task and better understand the causes of the results obtained with the two
previous pieces of information.

6.4.1.7 Operation protocol

Before the experiment A lecture of one hour and a half introducing the main concepts related
to variability, symfinder-2 and VariCity was given to the students on January 12, 2022.

The day of the experiment (February 23, 2022) On the day of the experiment, a short lecture
was given to all the students, presenting definitions and examples of the various terminologies
used in the tasks (about 45 mins). Then, after splitting, each group benefited from a short session
to fill a preliminary questionnaire aiming to gather personal information, setup their environment
and familiarize with the tools they will manipulate (about 40 mins):

• subjects in the VariCity group were introduced to the visualization’s features, had to open the
visualization for the test project (ArgoUML), and had to answer a few questions ensuring
that they can interpret the visualization accurately;

• subjects in the IDE + CSV group were introduced to the data they are given, had to open the
test project’s codebase in their IDE, and had to answer a few questions ensuring that they
can interpret the data accurately.

After this session, the subjects had 1h10 to answer the tasks, having for only help a cheat sheet
of the definitions detailed in the lecture. Finally, the students filled out a questionnaire aiming to
gather their feedback on the experiment.

6.4.2 Results

We detail hereafter the results obtained from our experiment. Due to the limited time allocated
for the experiment, not all subjects could finish all the tasks. 17/24 subjects in the VariCity group
and 14/25 subjects in the IDE group gave at least a partial answer (i.e., filled at least one of the
answer fields of the task) to all the tasks. Figure 6.6 presents, for each task, the percentage of
subjects having given at least a partial answer. We observe a drop in the percentage of answers
at tasks 6 and 7 for the IDE and VariCity groups respectively for two reasons. First, we ordered
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Figure 6.6: Percentage of subjects having given at least a partial answer for each task

the tasks in increasing order of difficulty as we perceived it. Then, we made the choice not to
impose a time limit for each task as we were unsure about the average time that the subjects would
take depending on the tool(s) they use and feared a too low answers rate. Therefore some subjects
took more time than they should have on the first tasks and happened to be late at the end of the
experiment. In the following results, we considered answers that are at least partial.

6.4.2.1 Answer to RQ1

Figure 6.7 presents the correctness of the answers given by the two groups on each task. We
calculate the correctness of an answer to a task by calculating the percentage of correct answer
elements. For example, when 2 names of classes are expected, the correctness is 0% if no class is
in the expected set of classes, 50% for 1 class, and 100% for both classes in the set.

We notice that subjects using VariCity globally gave more accurate answers to the tasks than
subjects using the IDE + CSV combination. For a number of tasks, we believe this is due to the
layout of the visualization and the choice of visual axes. For example, using the dimensions of
the buildings to represent their methods and constructors overloads, and aerial links for subclasses
exhibits individual density helped subjects to complete task 3 (finding vp-s with an important
number of class or method level variants). Similarly, choosing to use streets to represent usage
relationships helps their understanding, exhibiting collective density, and helped subjects to com-
plete tasks 2 (finding classes linked through usage relationships to a given one) and 6 (finding the
distance between two given classes). Answering tasks 5 (finding design patterns) and 7 (identi-
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(a) IDE + CSV group

(b) VariCity group

Figure 6.7: Correctness of the answers given by the two groups.
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fying hotspots) was facilitated by the automatic computation of dense zones and design patterns
provided by the symfinder-2 approach used by VariCity and their visualization using crowns on
buildings and colors respectively.

We notice however that using VariCity does not improve the correctness of the answers to all
the tasks compared to the IDE + CSV combination. Although the ranges of obtained correctness
values are similar between both groups, subjects with VariCity gave more correct answers on
average on task 8. This task was divided in two parts, (i) the identification of classes implementing
a given feature, and (ii) indicating whether they were hotspots or not. To answer the first part,
subjects from both groups mainly relied on the names of the classes that are given by both VariCity
and the IDE, leading to similarly accurate answers. However, as it has been previously detailed
for task 7, identifying hotspots has to be done manually when using the IDE and the CSV files,
leading to less accurate answers for this part of the question in this subgroup.

Comparable correctness results are obtained on task 1 where the goal was to give two variants
at class level (i.e., two subclasses) for two vp-s. Both VariCity and the IDE allow searching a class
by its name and easy access to the subclasses of a given class (by hovering its building in VariCity,
and a button in the sidebar of the IDE to navigate the inheritance hierarchy). Analyzing the actions
achieved by the subjects in both groups confirms that they heavily relied on these features, and a
majority of the subjects in the IDE + CSV group did not use the CSV file.

Finally, subjects from the IDE + CSV group perform better on task 4, which consisted of
the three most individually dense classes. For the IDE + CSV group, obtaining the answer to
this task consisted in finding the classes maximizing the sum of their method and constructor
overloads, and was achieved by most students. On the opposite, VariCity displays those two pieces
of information using the height and width of the buildings, making it less intuitive to identify the
buildings maximizing both aspects. As a result, some subjects from this group not only indicated
tall but also wide buildings that were maximizing their constructors’ overloads but not the total
method variants.

It results that subjects using VariCity globally answer the tasks more correctly than subjects
using the IDE + CSV combination, due to the organization of the information provided by the city
metaphor as well as its computation of other information such as the presence of a design pattern
or a hotspot. Given these encouraging results and the little rate of wrong answers given, we choose
not to exclude them from the analyses answering RQ2 and RQ3.

6.4.2.2 Answer to RQ2

Figure 6.8 presents the average time spent on each task for both groups. It results that no tool
performs better on all the tasks.

VariCity performs better on tasks 2, 4, 5, 6 and 7 as it directly exhibits on the visualization
the presence of hotspots and design patterns, while IDE users need to identify them manually. The
structure of the city based on usage relationships also helped the subjects to identify the distance
and usage relationships between two classes while IDE users needed to explore the code.

Concerning task 1, subjects with the IDE performed better. Completing this task is equiva-
lent to finding the subclasses of a given class, an action that the subjects are used to accomplish
regularly with their IDE. This is confirmed by the fact that 23/25 subjects in the IDE group used
the IDE only to complete the task. Therefore, subjects in this group were on average faster than
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Figure 6.8: Average completion time (in minutes) for each task when using VariCity or the IDE

subjects in the VariCity group that had to find the information in a visualization they were less
familiar with.

Finally, on tasks 3 and 8, the performances of both approaches appear equivalent. To com-
plete task 3, finding the classes with an important number of variants at method level consisted in
looking at the corresponding column in the CSV for the IDE group, and in looking at high and/or
wide buildings in the visualization, suggesting that all subjects had a clear idea of where to find
this information. Regarding the number of variants at class level, while subjects in the IDE group
heavily relied on class diagrams reverse-engineered with the IDE, subjects in the VariCity group
mainly hovered over random classes until finding the information, suggesting that finding class
level variants in VariCity is not intuitive. We would expect task 8 to take less time using VariCity.
In practice, it results that the average time spent is equivalent as multiple subjects from the IDE
group did not give the hotspot information. However, correlating this result with the fact that 50%
of subjects indicated the maximum perceived difficulty (cf. Figure 6.9) is a strong indication that
this part of the task was too difficult for the IDE group.

It results that the subjects in the IDE group performed better on single tasks they are familiar
with (e.g., finding a class, navigating inheritance). On the opposite, identifying complex zones con-
centrating variability implementations is more efficient in VariCity (e.g., design patterns, hotspots).
While determining the individual density of variability appears to be equally time consuming thank
to the CSV file, determining the collective density of variability and hotspots is more efficient by
the organization of the VariCity view.
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Figure 6.9: Average difficulty (on a scale from 0 to 4) for each task when using VariCity or the
IDE

6.4.2.3 Answer to RQ3

Figure 6.9 presents the average difficulty as perceived by the subjects on each task for both groups.
While a correlation can be seen for both groups between the perceived difficulty and the time
spent for each task (Figure 6.8), we can observe that on average, subjects in the VariCity group
find it easier (or at least as difficult) to complete all tasks except for the second. This finding
coincides with the observation concerning the time spent on this task in the two groups in the
previous section and can be explained by the fact that subjects are used to navigating inheritance
relationships in the IDE. We notice that the difference in perceived difficulty between both groups
is more considerable on tasks 5 to 8 which are focused on identifying design patterns, hotspots,
and distance between classes. This is also coherent with the results obtained regarding the time
spent completing these tasks. Tasks 5, 6 and 7 took considerably more time for subjects using the
IDE compared to subjects using VariCity. This is not the case for task 8 as, as explained in the
previous section, an important number of subjects did not give information about the presence of
a hotspot and only partially completed the task.

It results that subjects in the VariCity group find it easier to complete the tasks compared to
subjects in the IDE group, especially for tasks related to the identification of zones concentrating
variability implementations using complex structures, such as design patterns or hotspots that
implement variability at both class and method levels.
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6.4.2.4 Summary

By providing a visual representation of the system’s classes and exhibiting metrics on their vari-
ability, VariCity helped in globally reducing both the completion time and the perceived difficulty
of the tasks. A deeper analysis of the actions performed by subjects from both groups suggests
some improvements for VariCity. Some information is more easily accessible with the visualiza-
tion, such as the distance in usage between classes or the density of variability implementations.
Other actions were facilitated with the IDE, such as obtaining a reverse-engineered class diagram
to navigate the inheritance relationships. Feedback from some subjects in the VariCity group re-
veals that although the view allowed to quickly spot important zones of the system ("The visualiza-
tion allows us to easily notice the features present in the system. Classes that are less important can
be ignored to focus on the ones that have more variability."), their comprehension was limited by
not having the actual source code ("We stay really abstract by visualizing the code with VariCity, a
Java IDE would allow us for example to have access to comments that can help comprehension.",
"It is hard to understand how the system works only with the buildings."). This feedback suggests
that although VariCity helps in guiding the exploration of a system, having access to the source
code remains of prime importance to have a deep understanding of it.

6.5 Threats to validity and Limitations

Without an empirical assessment, the main threat of our scenario-based evaluation concerns the
scenarios that we designed by ourselves. Nevertheless, we relied on both empirical work on on-
boarding with real experts and newcomers [Yates et al., 2020] and challenges related to the com-
prehension of variability concepts [Acher et al., 2017], giving us good confidence in the relevance
of the scenarios.

Another threat related to this evaluation arises by the fact that both authors and developers
of VariCity determined empirically the inputs (entry points, usage level and orientation) for each
scenario, based on their knowledge of the systems and of VariCity’s capabilities. Still, even by
having a coarse-grain understanding compared to a real expert, the obtained visualizations already
exhibit satisfying results. We expect real experts to be able to determine appropriate inputs in
real settings, as it has been the case with Daniel Le Berre during the controlled experiment on
symfinder applied to Sat4j (Chapter 4).

Concerning the structure of the visualization, the placement of the buildings on a street only
relies on the width of the buildings to compact them in the street. This implies that the variability
represented by the height of the buildings is not taken into account. Even if this dimension is
largely visible on the visualization, this calls for an adaptation of the placement algorithm to take
into account both dimensions while placing the buildings.

Finally, due to organizational constraints, our controlled experiment could only be conducted
on a single object system and with a panel of subjects of similar experiences, preventing mitigation
of biases related to the specificities of the object system and the background and experience of
the subjects. Nevertheless, our panel of subjects correspond to the target population of VariCity,
and we estimate that the dimensions and characteristics of the chosen library (JFreeChart) were
reasonable to allow an evaluation in a reasonable time.
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6.6 Related Work

Works on the city metaphor in software visualizations were studied in Section 6.2.1. In this sec-
tion, we discuss work related to visualization for variability management and to assist onboarding
activities.

6.6.1 Metaphors to visualize software properties

Numerous visualizations for software rely on diverse metaphors [Chotisarn et al., 2020], in partic-
ular to display static properties about software [Caserta and Zendra, 2010], from 2D visualizations
relying on treemaps [Balzer et al., 2005] to 3D representations of object-oriented elements. For
example, Software Landscapes [Balzer et al., 2004] uses geometric shapes in a 3D space to rep-
resent classes, methods, and attributes, as well as the relationships between them (inheritance,
method calls, attribute used by methods). Package nesting is represented with spheres, classes are
circular discs, and methods and attributes are cuboids on these discs. These elements are con-
nected between each other to represent a relationship. A recent approach by [Hoff et al., 2022]
represents a software system as a solar system, picturing the different granularities of layers in the
system’s architecture with concepts ranging from planets to floors of buildings in cities grouped
by continents.

6.6.2 Visualization in the Software Product Line field

A recent mapping study has shown that visualizations in the SPL domain mainly target feature
models, using tree or graph representations [Lopez-Herrejon et al., 2018]. These visualizations
are mainly used to facilitate the configuration process over features. To visualize variability at
the code level, some approaches use colors [Kästner et al., 2008] or bar diagrams [Duszynski
and Becker, 2012], while some others focus on feature traces [Andam et al., 2017] or feature
interactions between features and code [Greevy et al., 2005; Bergel et al., 2021]. None of them
focus on object-oriented techniques as variability implementations.

In VariCity, we reused the symmetry-based detection part of symfinder [Tërnava et al., 2019;
Mortara et al., 2021c], but this tool also provides a graph-based visualization in which each class
level vp and variant is represented as a circle node that points out the used implementation tech-
nique, with size and shades of nodes indicating some occurrences of symmetries. These nodes are
linked with both inheritance and usage relationships being different kinds of edges, forming a set
of disconnected graphs. While this visualization allows showing some dense zones of variability
and has filtering capabilities, it has only been used for the validation of the capabilities of symfinder
in identifying potential vp-s and variant. It is not adapted for comprehending variability as in our
considered scenarios, especially in large-scale systems in which the resulting visualization is not
usable (approx. 4k nodes for NetBeans).

6.6.3 Visual tools to assist onboarding

Some visualizations have been especially proposed for onboarding activities. Isopleth [Hibschman
et al., 2019] represents call relationships in front-end JavaScript implementations in the form of a
call graph, which is interactive and can be edited to see the impact in real-time on the page. Other
tools integrate information from the organization to help information seeking during development
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activities, such as Tesseract [Sarma et al., 2009] which visualizes the relationships between tech-
nical information from a codebase and related social data (e.g., developers, communication, code,
and bugs). Finally, recent studies on onboarding in SPLs [Azanza et al., 2021] explore concept
maps [Novak and Cañas, 2006] to structure information about the SPL. However, this approach,
as many others evoked in Section 6.6.2 relies on a feature model and documentation, which does
not apply in our case.

6.6.4 Controlled experiments

Controlled experiments in software engineering context have been conducted to assess the gain
brought by tooled approaches [Ko et al., 2015]. Naturally, being especially designed for software
comprehension, visualization approaches are often evaluated this way [Müller et al., 2014; Fittkau
et al., 2015]. Additionally to the empirical evaluation conducted on CodeCity [Wettel et al., 2010,
2011], other city-based approaches mentioned in this chapter benefited from such an evaluation,
such as ExplorViz [Fittkau et al., 2015] or DYNACITY [Dashuber and Philippsen, 2022b]. Con-
trolled experiments are also conducted to evaluate the relevance of evolutions of these metaphors,
for example by adapting them to more immersive environments such as virtual reality [Rüdel et al.,
2018] for which variants of Evo-Streets [Steinbeck et al., 2019] and CodeCity [Moreno-Lumbreras
et al., 2022] have been designed.

In the context of variable systems, multiple approaches assisting the maintenance of feature
models [Bagheri and Gasevic, 2011] and the understanding of the implemented variability have
been evaluated with controlled experiments. For example, VarXplorer [Soares et al., 2018] identi-
fies feature interactions and displays them as a graph, and has been compared to the state-of-the-
art closest approach, the Varviz Eclipse plugin [Meinicke et al., 2018]. Focusing on recovering
information on the implemented variability, Pérez et al. [2020] conduct a controlled experiment
comparing manual and automated feature location approaches on their performance, productivity
and satisfaction.

6.7 Conclusion

In this chapter, we tackled the following questions:

1. What are the requirements for a visualization approach to comprehend OO variabil-
ity implementations? Relying on onboarding scenarios where a newcomer has to compre-
hend the implemented variability, we identified that such a visualization should (i) display
the main elements allowing them to understand the codebase (design patterns, zones with
complex variability implementations), (ii) be configurable by the expert to tailor it for new-
comers, (iii) provide navigation and interaction capabilities to be adapted by a newcomer
(filtering, zooming), and (iv) scale on large codebases.

2. Is the city metaphor adapted to visualize OO variability implementations? We could
implement these requirements by adapting the city metaphor in the VariCity approach, a 3D
visualization proposing adapted and configurable views that exhibit zones of high density
of variability implementations. The density relies on previous work on automated detection
of symmetries in the variability implementation mechanisms. Metrics on their occurrences
together with information on inheritance and usage relationships are exploited to build a city
with, notably, classes as buildings and streets as usage relationships.



100 CHAPTER 6 — Comprehending the organization of the implemented variability

3. To what extent does the VariCity approach help the comprehension of the implemented
variability? We detailed two onboarding scenarios showing how the different capabilities of
the visualization can help to spot critical variability-related zones of a codebase and obtain
fine-grained information about them. A controlled experiment with real users showed that
VariCity participated in reducing the completion time of the given variability comprehension
tasks and eased their completion.

By providing a 3D view and adapting the city metaphor, the interactions provided by VariC-
ity show considerable improvements to comprehend the implemented variability compared to the
graph view proposed by symfinder-2, consequently answering Challenge A2 (“Making the identi-
fied variability implementations comprehensible”). However, the conducted evaluations exhibited
limitations that restrain the practical use of the approach. First, multiple subjects that were using
VariCity during the controlled experiment pointed out that not having the source code was limiting
their comprehension of the variability, and that they could have performed better with if they had
the source code side by side with the visualization. Therefore, it results that in order to bring a
real gain, VariCity should be used together with the IDE, and not as an alternative. Second, under-
standing the implemented variability is often a step to reach another goal. For example, it is known
that variability implementations add complexity to the codebase [Galster et al., 2017] and conse-
quently hamper the quality of the system [Wolfart et al., 2021]. Ensuring the stability of a variable
system thus does not only require identifying the implemented variability, but more particularly
the quality-critical implementations. As a consequence, we extend VariCity to incorporate quality
metrics and allow a user to observe simultaneously dense zones of variability implementations and
metrics on their quality.
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Table 6.5: Elements from the experimental design responding to requirements extracted from Wet-
tel et al. [2010]’s wish list.

Requirement Experimental design element

Fulfilled requirements

Avoid comparing using a technique against not using it.
Provide the same data to all participants.

As we validate the visualization approach, we give a CSV
document opened with a spreadsheet containing
structured information on the classes of the system
visualized with the given settings using VariCity by the
other group (Sections 6.4.1.3 and 6.4.1.5).

Provide a not-so-short tutorial of the experimental tool to
the participants.
Use the tutorial to cover both the research behind the ap-
proach and the implementation.

To complement the 1h30 lecture given two weeks prior to
the experiment, a short tutorial introducing definitions
and demonstrating the tool has been given before the
experiment (Section 6.4.1.7).

Find a set of relevant tasks.
Include tasks on which the expected result is not always to
the advantage of the tool being evaluated.

The tasks are inspired by the onboarding scenarios in the
first evaluation of VariCity, and some of them are
expected to be more easily completed using the IDE and
the CSV document (Section 6.4.1.6)

Choose real object systems that are relevant for the tasks.
JFreeChart has been chosen for its medium size and
because the domain and the implementation are
accessible to the subject students (Section 6.4.1.3)

Provide all the details needed to make the experiment
replicable.

The questionnaires, slides and answers given by the
students are available online at
https://deathstar3.github.io/varicity-demo/

Report results on individual tasks.

Additionally to the answers given, subjects were asked for
each task to provide the start and end time, an estimation
of their perceived difficulty and the list of the actions they
accomplished to solve the task (Section 6.4.1.6).

Non-fulfilled requirements

Include more than one subject system in the experimental
design.

Having a second subject system would have led to four
treatments of 12 people each and would have prevented
drawing any relevant conclusion.

Involve participants from industry.
Take into account the possible wide range of experience
level of the participants.

This requirement could not fulfilled due to organizational
constraints. Although apprentice students have more
professional experience, the difference of professional
experience with the other students is not important
enough to conclude on whether the performance of
subjects differs w.r.t. this parameter (Section 6.4.1.2).

Avoid, whenever possible, to give the tutorial right before
the test.

Although we gave a long lecture introducing VariCity and
the associated concepts about one month before the
experiment, we could not give the more detailed tutorial
before the day of the experiment for organizational
constraints (Section 6.4.1.7)

Limit the amount of time allowed for solving each task.
While the overall set of tasks should be completed in
1h10, we did not limit the time for each task to prevent
fast but less qualitative answers (Section 6.4.1.6).

https://deathstar3.github.io/varicity-demo/




CHAPTER 7
Comprehending the

quality of the
implemented variability

This chapter shares material with the SPLC 2022 papers “Customizable Visualization of Qual-
ity Metrics for Object-Oriented Variability Implementations” [Mortara et al., 2022a] and “IDE-
assisted visualization of indebted OO variability implementations” [Mortara et al., 2022b].

In the previous chapter, the VariCity approach has been proposed to visualize dense zones of
variability implementations. It completes the symfinder-2 identification method and allows better
understanding of which zones of the codebase concentrate variability implementations and using
which mechanisms, thus providing an answer to Challenge A2.

As discussed in Section 3.3, variability implementations add complexity in a system [Galster
et al., 2017] and hamper its capacity to evolve [Favre, 1996; Kröher et al., 2022], eventually lead-
ing to technical debt [Avgeriou et al., 2016; Li et al., 2015]. By relying on the traditional OO
mechanisms, OO variability implementations are intertwined in the implementation and hard to
comprehend (Section 2.2.2), thus leading potentially to technical debt. Monitoring quality being
crucial for the maintenance and evolution of such systems [Martini and Bosch, 2015], there is a
need for a solution allowing to better identify and understand it (Challenge A3).

In this chapter, we tackle Challenge A3 with the following questions:

1. How to identify indebted zones of variability implementations? Identifying indebted
zones of variability implementations implies first establishing relevant quality metrics for
its identification, then determining how to reveal such zones to a user.

(a) How to measure technical debt related to OO variability implementations? Rely-
ing on previous work on variability debt by Wolfart et al. [2021], we defined variability
debt in the context of OO codebases in Section 3.3. As quality metrics have been rec-
ognized as useful for determining technical debt at the code level, we thus determine
appropriate ones to measure this particular type of technical debt (Section 7.1).

(b) How to reveal technical debt related to OO variability implementations? Ap-
proaches to identify either OO variability implementations or technical debt already
exist and rely on visualization. However, simultaneous use of both techniques is cum-
bersome (Section 7.2). We therefore propose VariMetrics, an extension of VariCity
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to support software quality metrics and reveal critical zones concentrating variability
implementations (Section 7.3).

2. Does VariMetrics allow visualizing indebted zones of variability implementations? To
validate the visualization approach, we proceed to a quantitative evaluation on 7 subject
systems and report on views we designed for each system (Section 7.4.1).

3. Are the revealed indebted zones of variability implementations relevant? To validate
whether the visible quality-critical zones of variability implementations are relevant, we
proceed to a qualitative evaluation on one of the studied systems, JFreeChart, and apply
maintenance actions aiming to correct the identified debt in identified classes, and report on
the evolution of the visualization and the quality metrics (Section 7.4.2).

7.1 Determining relevant quality metrics for OO variability debt

In Section 3.3, we studied the work of Wolfart et al. [2021] and the catalog of ten types of vari-
ability debt they introduced. After deep analysis of the contribution, it resulted that three types of
variability debt are applicable to the systems we target, namely Code duplication, Lack of tests,
and System-level structure quality issues in the implementation. There is need now to determine
a technique to measure them. While technical debt covers diverse aspects of the software and its
development ecosystem [Kruchten et al., 2012], its identification at the implementation level is
mainly done through code analysis (e.g., by computing metrics [Li et al., 2015; Rasool and Ar-
shad, 2015]). More particularly, in OO systems, this technical debt is often measured using OO
software metrics [Kafura and Henry, 1981; Rosenberg and Hyatt, 1997; Fowler, 2018; McCabe,
1976; Campbell, 2018; Misra et al., 2018]. We therefore advocate that such OO quality metrics
are suited to identify OO variability debt, and detail hereafter which ones can be used to identify
these types of variability debt in our context.

A common metric to identify a lack of tests is the code coverage, which can be measured at
different granularities (line, condition, . . . ). For our evaluation, we opted for a coverage metric
that aggregates measures for different granularities. Similarly, code duplications are commonly
identified at two levels of granularity: line or block. We advocate that blocks are more likely to
represent duplicated code related to variability than a single line of code. Finally, structure quality
issues in the codebase impact maintainability and evolution of the system. Even though code
duplication and lack of tests impact maintainability and evolution of the system, the understanding
of the implementation by the maintainers of the project is also an important aspect, and cognitive
complexity [Campbell, 2018] appears to be relevant for this purpose [Peitek et al., 2021]. We
thus choose as relevant metrics for our evaluations duplicated blocks, test coverage, and cognitive
complexity.

Most often, standard tools for measuring software quality metrics also determine technical debt
measures giving an estimation of the effort, as a duration, to fix the identified code smells [Avge-
riou et al., 2020]. We did not use such measures in our evaluation for multiple reasons. First, by
providing an aggregated duration, this measure is more helpful in estimating effort at the manage-
ment level, but it does not describe the real causes of the debt. Then, some first empirical results
seem to indicate a possible inaccuracy in the given values [Baldassarre et al., 2020], and exploiting
such metrics may therefore require some knowledge of the system and its implementation, which
we do not have for our subject systems.
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(a) CodeCity view (b) Evo-Streets view

Figure 7.1: Views of GeoTools, using cyclomatic complexity as footprint, # LoC as height, and
complexity as color. The two most visible classes are gml311.DocumentRootImpl and
gml311.Gml311PackageImpl.

Now that we identified measures for the three types of variability debt that can be identified in
our targeted OO systems, we need to find an approach allowing us to identify this variability debt
in actual systems.

7.2 Possible approaches

7.2.1 Tools for OO technical debt identification

On one side, tooled approaches have been proposed to measure the quality of OO systems and
automatically compute values for quality metrics, including the ones we identified as relevant to
measure OO variability debt [Lenarduzzi et al., 2018]. Understanding these metrics is then often
enabled through the use of visualization. For example, one of the most popular tools used to
monitor the quality of software projects, SonarQube1, proposes the SoftVis3D2 plugin embeding
the CodeCity [Wettel and Lanza, 2008a] and Evo-Streets [Steinbrückner and Lewerentz, 2010]
visualizations, both relying on the city metaphor. Figure 7.1 illustrates the two visualizations on
the GeoTools project3, an open-source Java library for geospatial data management. Classes are
represented as buildings and their width, height, and color are used to display the quality metrics,
making discernible classes maximizing these metrics. Districts in CodeCity (Figure 7.1a) and
streets in Evo-Streets (Figure 7.1b) represent the decomposition in packages. However, none of
them allows displaying information on the system’s variability.

7.2.2 The VariCity approach

On the other side, the VariCity approach proposed in Chapter 6 has been designed to reveal dense
zones of variability implementations (cf. Section 6.2). An example of a generated VariCity visu-

1https://www.sonarqube.org/
2https://softvis3d.com/
3https://www.geotools.org

https://www.sonarqube.org/
https://softvis3d.com/
https://www.geotools.org
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org.geotools.filter.
FilterFactoryImpl

org.geotools.data.
Query

org.opengis.filter.
FilterVisitor

org.geotools.util.
NumberRange

org.geotools.data.jdbc.FilterToSQL

Figure 7.2: VariCity visualization of GeoTools.

alization is shown in Figure 7.2 and presents a visualization generated from GeoTools. Compared
to the visualizations exhibited on Figure 7.1, the noticeable classes are different as discernible
classes on a VariCity view are the ones concentrating variability implementations. For example,
FilterFactoryImpl is shaped as a skyscraper due to an important number of method over-
loads (141). Its goal is to create filters allowing to select zones from a map4. The large strategy is
Query (10 constructors), which uses filters to query information from a data source. On the oppo-
site, FilterVisitor is not very variable in itself but uses all the implemented filters, in the blue
dotted box, noticeable by being a long street. Coloring the hotspot classes not only emphasizes the
filters having more variants, but also exhibits some isolated classes, for example NumberRange,
which implements a numerical range of values. On the opposite, the two red classes exhibited
in Figure 7.1 because of their too high cyclomatic complexity (gml311.DocumentRootImpl
and gml311.Gml311PackageImpl) are not visible in Figure 7.2 as they are not part of zones
concentrating variability implementations. VariCity, however, does not display information related
to the software quality of the displayed classes.

While solutions exist to visualize either OO metrics (CodeCity, Evo-Streets) or OO implementa-
tions (VariCity), we could think about using both approaches simultaneously. However, navigating
between VariCity and a metric-specific tool would be cumbersome as it would require manually
finding and mapping information having heterogeneous representations, even between two views
reusing the city metaphor (e.g., VariCity and Evo-Streets) as they are shaped differently. Conse-
quently, to the extent of our knowledge, no solution exists to visualize at the same time, for an OO
system, its variability implementations, and quality metrics over them. This thus calls for a unified
but customizable visualization and we propose to extend VariCity to incorporate quality metrics
over a variability-centric visualization.

4https://docs.geotools.org/latest/userguide/library/main/filter.html

https://docs.geotools.org/latest/userguide/library/main/filter.html
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7.3 VariMetrics: exploring the quality of variability implementations

As shown in Section 7.2, although state-of-the-art approaches allow visualizing either the density
of variability implementations (e.g., with VariCity) or quality metrics (e.g., with CodeCity [Wettel
and Lanza, 2008a] or Evo-Streets [Steinbrückner and Lewerentz, 2013]), no existing approach
allows the simultaneous representation of both aspects of OO software systems. Therefore we
adapt VariCity to display information about quality in the city.

7.3.1 Choice of metrics

State-of-the-art proposes a plethora of quality metrics to measure several properties of a software
system [Colakoglu et al., 2021], ranging from the architecture [Nuñez-Varela et al., 2017] to the
source code level [McCabe, 1976; Stevanetic and Zdun, 2015]. Since no metric is relevant for all
software systems due to the elusive definition of quality [Kitchenham and Pfleeger, 1996], software
practitioners need to pick and combine different metrics to obtain a quality measure relevant for
their use case. VariMetrics extends the configuration of VariCity so that experts can choose the
quality metrics they want to display, and how to combine them, to tailor the visualization according
to their needs. Consequently, although we chose for our evaluation three quality metrics being the
number of duplicated blocks, the test coverage, and the cognitive complexity (cf. Section 7.1),
VariMetrics’s configuration capabilities allow visualizing other metrics if the expert finds them
relevant.

7.3.2 Coloring strategies

By default, VariCity displays in yellow vp-s being hotspots, in blue variants being hotspots, and
in grey classes not being hotspots (Figure 7.3a). On their side CodeCity and Evo-Streets color
the buildings to expose properties inherent to the classes [Wettel and Lanza, 2008c; Steinbrückner
and Lewerentz, 2010]. We thus propose two coloring strategies for quality metrics: a coloration
following a red-to-green sequence (Figure 7.3b), and a saturation keeping the original colors of
the buildings and lightening or darkening them (Figure 7.3c). While VariMetrics should enable
some combination of metrics, combining both coloring strategies leads to bivariate chromatic
maps, which are known to be difficult to read [Wainer and Francolini, 1980]. On the opposite,
applying textures on colors has shown to be an efficient way to display multiple software quality
metrics [Holten et al., 2005]. We hence provide a crackled texture (Figure 7.3d) variably covering
the building, thus enabling views simultaneously exhibiting two quality metrics.

7.3.3 Configuration

These three visual properties are configurable to be adapted to the metric they represent, as some
quality metrics are symptoms of lower quality if they have a high value (e.g., complexity) but
other metrics with such values may instead indicate good quality (e.g., test coverage). Analo-
gously, not all projects have similar ranges of values for the same metric, and proposing a fixed
range of values may not allow revealing a difference of quality in some projects, thus VariMet-
rics allows to specify these ranges. Figure 7.4 shows the VariCity view of Figure 7.2 in Vari-
Metrics showing the cognitive complexity using the red-to-green color scale. Where the classes
concentrating variability implementations revealed by VariCity (cf Section 7.2.2) remain visible
independently of their quality (e.g., FilterFactoryImpl or NumberRange), VariMetrics
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(a) VariCity (b) Red-green (c) Saturation (d) Cracks

Figure 7.3: Visual properties used to display quality metrics compared to the original VariCity
visualization.

org.geotools.filter.
FilterFactoryImpl

org.geotools.data.Query

org.geotools.util.factory.Hints

org.geotools.util.NumberRange

org.geotools.data.jdbc.FilterToSQL

org.geotools.filter.visitor.
SimplifyingFilterVisitor

org.opengis.filter.FilterVisitor

Figure 7.4: Figure 7.2 in VariMetrics. The view is configured to display the cognitive complexity
using the red-to-green color scale.

also exposes quality-critical classes, being variable (e.g., Query or FilterToSQL) or not (e.g.,
Hints or SimplifyingFilterVisitor).

7.3.4 Implementation

The symfinder toolchain, used by VariCity to identify the variability implementations and compute
the related variability-related metrics, has been extended to support fetching of the quality metrics
and their mapping with the identified variability information. If a SonarCloud account exists for the
system, metrics are fetched by using the SonarCloud Web API5. Otherwise, a SonarQube server
is executed locally to extract the metrics while running the symfinder analysis. The symfinder
configuration has been extended to specify wherever running a SonarQube instance is needed or
not.

5https://sonarcloud.io/web_api

https://sonarcloud.io/web_api
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Table 7.1: Subject systems and their available metrics.

Project Version Java LoCs # vp-s / variants Available metrics
DB COMP COV

Azureus 5.7.6.0 633,248 10,105 A S ✗

GeoTools 23.5 1,312,727 22,534 A S ✗

JDK 17-10 2,434,983 71,489 S S ✗

JFreeChart 1.5.0 94,203 2,849 S S S
JKube 1.7.0 40,952 795 A S S
OpenAPI Generator 5.4.0 88,172 768 S S S
Spring framework 5.2.13 662,579 12,622 A S ✗

DB – duplicated blocks, COMP – cognitive complexity, COV – coverage
✗ – unavailable metric, A – available metric, S – significant metric (available and showing dif-
ferences between classes)

7.4 Evaluation

The evaluation of VariCity presented in Section 6.3 validates its capacity to exhibit zones in the
code concentrating mechanisms used in OO variability implementations. VariMetrics should there-
fore be able to reveal the subset of these classes having quality issues. To evaluate whether Vari-
Metrics identifies variability implementations for which quality metrics are problematic, we apply
our approach to multiple open-source systems. We select views with metrics combinations reveal-
ing the variability implementations that are shown by VariCity while being the most quality-critical
(Section 7.4.1). We then validate the relevance of such classes by applying maintenance actions
on these classes within one project, JFreeChart (Section 7.4.2), and show the impact on the view
of the project.

7.4.1 Quantitative evaluation

Subject systems We used for this evaluation 7 variability-rich open-source Java systems of var-
ious sizes, depicted in Table 7.1. Five of them were chosen as their documentation clearly states
they implement variability: Azureus (Vuze) is a BitTorrent client which supports multiple network
communication protocols, GeoTools a library for geospatial data management providing multiple
tools and filtering capabilities to manipulate maps, JKube, a Maven plugin to generate differ-
ent types of container images, OpenAPI Generator, a library to create APIs for a plethora of
programming languages, and the Spring framework, providing a Java-based support for compo-
nents and services with many different plugins, on persistence management, validation, security,
etc. We also picked the Java Development Kit (JDK) for its large size of ~2.5M LoC to evaluate
the scalability of our approach. Finally, we also used JFreeChart, a charting library used as a
subject system in the evaluation of VariCity (Section 6.3), as its size enables us to master the im-
plemented variability at a fine granularity. Five projects are forks from their original repositories in
the Corpus-2021 GitHub organization6, designed by Irrazábal et al. [2021] to serve as a catalog of
software projects to analyze their metrics. They provide a SonarCloud instance for these projects7,

6https://github.com/Corpus-2021
7https://sonarcloud.io/organizations/corpus-2021/projects

https://github.com/Corpus-2021/Azureus/tree/5.7.6.0
https://github.com/Corpus-2021/geotools/tree/23.5-AnalysisReady
https://github.com/Corpus-2021/jdk/tree/17-10-AnalysisReady
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree
https://github.com/eclipse/jkube
https://github.com/OpenAPITools/openapi-generator
https://github.com/Corpus-2021/spring-framework/tree/5.2.13-AnalysisReady
https://github.com/Corpus-2021
https://sonarcloud.io/organizations/corpus-2021/projects
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Table 7.2: Number of noticeable classes due to their variability concentration, criticality, and both
aspects for the given views on all subject systems.

View configuration Noticeable classes w.r.t.

Entry point classes
Usage Usage Metrics

variability criticality both
orientation level (visual property)

Azureus

com.aelitis.azureus.core.AzureusCoreComponent OUT 4 COMP (red-green) 74 32 12

GeoTools

org.geotools.data.simple.SimpleFeatureSource
OUT 4 COMP (red-green) 104 27 18

org.geotools.map.MapContent

JDK

java.net.URI
IN 1

COMP (red-green)
84 17 13

java.net.URL DB (cracks)

JFreeChart

org.jfree.chart.JFreeChart
OUT 4

COV (red-green)
35 31 10

org.jfree.chart.plot.Plot DB (cracks)

JKube*

api.support.BaseGenerator

IN/OUT 7
COV (red-green)
COMP (cracks) 28 115 14javaexec.JavaExecGenerator

api.Generator

OpenAPI Generator

org.openapitools.codegen.languages.OpenAPIGenerator IN/OUT 6
COV (red-green)

77 51 21
COMP (cracks)

Spring framework**

parsing.BeanComponentDefinition
IN 8 COMP (red-green) 57 13 6

support.AbstractBeanFactory

* classes base package: org.eclipse.jkube.generator
** classes base package: org.springframework.beans.factory

allowing us to reuse these metrics for our study. Two others have also a SonarCloud instance and
JFreeChart is the only one for which we had to use our prototyped setup with Sonarqube to obtain
the quality metrics. Besides, the JFreeChart’s build configuration was also adapted to be analyzed
by a local SonarQube instance [Mortara et al., 2022].

Evaluation process We first generated for each project a visualization with VariCity following
the same stages as in the VariCity’s evaluation (Section 6.3). After determining entry points by
selecting important classes after exploring codebases and documentations, we experimented em-
pirically with different combinations of usage level and usage orientation to obtain a visualization
we consider relevant (i.e., exhibiting classes detaching from others because they concentrate vari-
ability implementations). We finally identified manually on each view the classes that are the most
visible for us (by being a hotspot or a design pattern, or due to their dimensions) to obtain a set
of "noticeable classes w.r.t. variability". For example, for GeoTools (Figure 7.2), classes such as
FilterFactoryImpl, FilterToSQL, Query, and NumberRange draw attention due to
their size and/or the fact that they are hotspots, as opposed to FilterVisitor.

To determine a relevant VariMetrics view, we systematically applied all available metrics on
each project and selected the ones being relevant to identifying OO variability debt (cf. Sec-
tion 7.1). During this step, it happened that no building stood out for a metric (i.e., no class exhibits
variability debt), suggesting that the overall quality is decent w.r.t. this metric. On the opposite, if
all classes appear as quality-critical, it may indicate that this metric has been neglected in quality
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requirements for the project as a whole. We thus restrained in this evaluation the set of signifi-
cant metrics relevant to identify OO variability debt to those showing some differences in quality
between classes. Table 7.1 summarizes for each system the relevant metrics being available and
significant. We then manually identified on the views the classes appearing to be quality-critical,
regardless of their variability, by enumerating the classes that appeared to be the most cracked
and/or red to obtain a set of "noticeable classes w.r.t. criticality". For example, for GeoTools (Fig-
ure 7.4), Hints, Query, SimplifyingFilterVisitor, and FilterToSQL are easily
discernible. The quality-critical and variability intense classes of the project thus correspond to the
intersection between the two sets of classes (i.e., in this example, FilterToSQL and Query).

Observations In all observed systems, it appears that although fewer classes are noticeable w.r.t.
criticality than w.r.t. variability, there is no direct relation between variability and quality, as it can
already be seen in Figure 7.4. Whereas some vp-shave an important number of variants, they can
be reliable, such as FilterFactoryImpl in GeoTools, and thus do not need particular at-
tention. On the opposite, some critical classes may not concentrate variability implementations,
such as Hints in GeoTools, and they are therefore less important for maintaining the functional
code. This shows that, in the studied systems, visualizing both variability and quality is useful to
determine quality-critical variability implementations. To evaluate to which extent, we calculated
for each project the number of noticeable classes w.r.t. variability, w.r.t. criticality, and w.r.t. both
aspects. The results with the configuration for each view are reported in Table 7.2. This shows that
representing on a single view variability and quality information allows reducing the number of
classes appearing as relevant on the visualization between 50% (JKube) and 91% (Spring frame-
work) compared to the VariCity visualization. We believe the mildly encouraging results obtained
on JKube come from its size, so that less variability intense zones have been identified by VariCity
compared to larger projects. An important number of classes are also noticeable in this project
as it has globally a low code coverage. Besides, by adapting the thresholds on which the hotspot
detection relies, we could obtain fewer zones and better results, but we consider these experiments
as out of the scope of this chapter. The definition of a hotspot is elusive (Section 5.1.3) and deter-
mining whether a class is a hotspot or not depends on user-defined thresholds, a limitation already
evoked in the work on VariCity (Chapter 6). Nevertheless, we consider these results as satisfying,
because without VariMetrics, finding OO variability debt would have needed to manually map
relevant classes on the VariCity view to their metrics, which, already on the smallest project being
JKube, represents 28 classes.

Summary By representing OO variability implementations and quality metrics in a unified rep-
resentation, VariMetrics not only allows to visualize both classes concentrating variability imple-
mentations and critical classes, but also to focus on specific zones of OO variability debt.

7.4.2 Qualitative evaluation

Identifying technical debt helps to understand where to apply maintenance actions aiming to im-
prove software quality. Therefore, if zones of variability debt identified by VariMetrics are rele-
vant, correcting identified weaknesses should improve the project quality, and the effects should
be visible in the visualization. To validate the relevance of these zones, we conduct an experiment
in which we apply modifications to the identified classes in one project, JFreeChart.
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XYPlot
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DB = 24)

CategoryPlot
(COV = 74.9%,
DB = 23)

(a) Before refactor

XYPlot
(COV = 69.9%,

DB = 21)

CategoryPlot
(COV = 75.4%,
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CategoryXYCommon
(COV = 77.4%,

DB = 97)

(b) After refactor

Figure 7.5: View of XYPlot and CategoryPlot before and after the refactor. Block dupli-
cations are displayed on the red-green scale (range: 0 → 50 blocks) and test coverage using the
crackled texture (range: 0% → 100%).

Subject system We chose JFreeChart as a subject system not only for its intermediate size allow-
ing an easy discovery of the codebase, but also because this system has been extensively studied
in previous work [Tërnava et al., 2019; Tërnava et al., 2022; Mortara et al., 2021a], thus for which
we have details on the implemented variability.

Evaluation process We first selected in the set of 10 critical variability intense classes deter-
mined in the quantitative evaluation (cf. Table 7.2) the ones maximizing their number of dupli-
cated blocks or minimizing their test coverage. Six classes remained, of which four suffer from
code duplication (CategoryPlot, XYPlot, DateAxis, and NumberAxis, visible due to
their extensively cracked texture on Figure 7.5a for the first two and on Figure 7.6a for the last
two) and two others from a lack of tests (ChartPanel and ChartEntity, visible due to their
orange and yellow colors on Figure 7.7a).

We then defined and applied maintenance actions for these classes. Regarding classes suffering
from code duplication, duplicated blocks were factorized in new methods. It happened that block
duplications were present in different classes (e.g., behavior from CategoryPlot is duplicated
in XYPlot). In this case, the factorization was placed in another class, created for that purpose
(here, CategoryXYCommon). Regarding classes lacking tests, new test cases for several methods
that were little to not tested have been added to the existing test classes. To ensure as much as
possible that our modifications did not hamper the system stability, we did not change the logic of
existing tests and made sure that the project could build with all tests passing.

Observations A first observation we made concerns the nature of the duplicated blocks.
Whereas some duplications are pure technical debt in classes concentrating variability imple-
mentations, others clearly correspond to improperly managed variability implementations. For
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Figure 7.6: View of DateAxis and NumberAxis before and after the refactor. Visualization
settings are identical to Figure 7.5.
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Figure 7.7: Classes lacking tests before and after the refactor. Visualization settings are identical
to Figure 7.5.

example, in DateAxis, multiple lines of the refreshTicksHorizontal8 method are du-
plicated in refreshTicksVertical9. They correspond to the common part creating the time
tick, whereas the variable part concerns the orientation of the text on the plot. Therefore, such
zones exhibited by VariMetrics actually spot improper variability management. We reapplied Vari-
Metrics on the new codebase [Mortara et al., 2022] and observed the differences shown in Fig-
ures 7.5b, 7.6b and 7.7b. We also computed the test coverage, cognitive complexity, and number
of duplicated blocks for all the classes impacted by our maintenance actions before and after their
modification, and summarized these results in Table 7.3.

Regarding the classes suffering from code duplications, evolutions can be observed in Fig-
ures 7.5 and 7.6. The disappearance of the cracks on NumberAxis and DateAxis suggests that
very little to no duplication remains, while the reduced amount of cracks on CategoryPlot
denotes a decrease of duplications while some are still present. Finally, XYPlot appears equally
cracked, propounding that duplications are still present. These observations are confirmed by the

8https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1558-L1609
9https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1676-L1726

https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1558-L1609
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1676-L1726
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Table 7.3: Measures of the refactored and added classes, before and after the refactor.

Class name
Coverage

# duplicated Cognitive
(in the org.jfree.chart package) blocks complexity

Identified relevant classes

plot.CategoryPlot
before 74.9% 23 503
after 75.4% 16 392

plot.XYPlot
before 70.0% 24 666
after 69.9% 21 603

axis.DateAxis
before 71.8% 10 201
after 77.2% 0 139

axis.NumberAxis
before 78.7% 12 163
after 77.8% 4 127

entity.ChartEntity
before 30.7% 0 26
after 90.5% 0 26

ChartPanel
before 25.7% 7 322
after 52.2% 2 295

Other already present classes

axis.LogarithmicAxis
before 16.0% 4 315
after 17.1% 0 281

axis.LogAxis
before 45.3% 10 92
after 47.0% 7 87

axis.PeriodAxis
before 29.3% 2 112
after 30.6% 1 104

Added classes

plot.CategoryXYCommon
before – – –
after 77.4% 6 97

axis.DatePeriodCommon
before – – –
after 46.2% 0 8

axis.NumberLogCommon
before – – –
after 81.6% 0 5

Overall project
before 54.5% 604 15,858
after 55.3% 565 15,622

values from Table 7.3: duplications in NumberAxis and DateAxis have been reduced by 75%
and 100%, leaving respectively 4 and 0 duplications. Although the number of duplications in
CategoryPlot diminished by 29%, 16 duplicated blocks remain, representing a non-negligible
amount. Finally, 3 duplications have been removed in XYPlot, representing 13% of reduction,
that is not significative enough to be shown on the visualization.

Similarly, improvements can also be seen in the classes that were lacking tests (Figure 7.7b).
The transition from 31% to 91% of coverage for ChartEntity is translated on the visu-
alization by a bright green color for its building, where the more contained improvement on
ChartPanel’s coverage leads to its building color changing from orange to yellow.

Another effect induced by these maintenance actions can be seen in the visualization. The
crack on ChartPanel’s building visible in Figure 7.7a disappeared in Figure 7.7b, although
removing duplications was not a maintenance action for this class. This is because testing some
methods required splitting them, leading to smaller blocks that could be reorganized. In this case,
three duplicated blocks were extracted in a single testable method.
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Figure 7.8: Figure 7.6 displaying cognitive complexity on the red-green scale instead of the cov-
erage (range: 0 → 150).

Finally, it appears that the maintenance actions on these classes improved their quality w.r.t.
the considered metrics (i.e., coverage and duplicated blocks). These changes however did not
only impact the six considered classes, but also three other existing classes having duplications
and led to the creation of three new classes to host some duplications. It is therefore important to
consider these classes and ensure that they do not express the variability debt that has been treated.
Modifications applied to the already existing classes solely concern the removal of duplications,
therefore their quality has also been improved. Regarding the newly created classes, they are now
visible (cf. Figures 7.5b and 7.6b). DatePeriodCommon’s yellow color presents a relatively low
test coverage of 46%, which can be explained by the low initial test coverage of PeriodAxis
of 29.3%. Adding tests would help to solve the issue. The other two classes have high coverages
above 70%, and none of the three classes has a cracked texture, showing that no variability debt
related to these metrics has been created.

By presenting the coverage and the number of duplicated blocks, the visualizations exhibited
in Figures 7.5 to 7.7 can only demonstrate variability debt related to those two metrics. However,
as explained in Section 7.1, cognitive complexity is also a factor of variability debt. As this metric
is significant for JFreeChart (cf. Table 7.1), it is thus important to evaluate its evolution. It ap-
pears in Table 7.3 that the cognitive complexity globally decreased for all relevant classes and the
other already present ones. This can be explained by the fact that removing code duplications and
adding tests often implies splitting methods into smaller ones, thus reducing cognitive complexity.
This decrease can also be observed using VariMetrics, as its configuration capabilities easily allow
adapting the view to display this metric (cf. Figure 7.8 with an intensity decrease on DateAxis
and NumberAxis). Concerning the newly created classes, CategoryXYCommon’s important
cognitive complexity of 97 is because CategoryPlot and XYPlot have major cognitive com-
plexities of 503 and 666 respectively. Therefore, the factorized blocks are themselves complex, and
would need further refactoring (e.g., splitting into separate methods) to reduce this complexity and
remove its 6 duplicated blocks.
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Summary By implementing maintenance actions on the identified quality-critical variability
intense classes, we improved their quality regarding the considered metrics without introducing
new debt factors, leading to a positive impact at the project level. These changes are also clearly
observable in the visualization. Moreover, part of the identified variability debt directly concerning
roughly managed variability that could be refactored.

7.5 Improving VariMetrics’ usability

7.5.1 Requirements

In practice, developers use Integrated Development Environments (IDEs) as tools support to as-
sist development and program comprehension activities [Minelli et al., 2015]. Xia et al. [2017]
measured not only that program comprehension activities represent on average more than half of
the developers’ time (58%), but also that, on average, around 30% of the time spent in program
comprehension activities consisted in switching between the IDE (to comprehend the source code)
and the web browser (to obtain additional information and help the comprehension, such as "bug
fixing solutions, feature implementation suggestions, or tool installation guides"). The IDE, there-
fore, represents an important tool for program comprehension, especially for developers with less
experience.

We could observe this behaviour during the controlled experiment conducted on VariCity (Sec-
tion 6.4). Subject students were split in two groups and had to complete similar variability compre-
hension tasks using either the VariCity visualization or the source code open in an IDE. It resulted
that not only subjects having access to the IDE heavily relied on it to explore the codebase, but also
that subjects using VariCity felt that not having access to the source code was limiting their com-
prehension of the system and its implemented variability, suggesting that both approaches should
be used simultaneously.

While it would be possible to use VariMetrics and an IDE together, this would imply important
context switching as a user would need to manually input information from their IDE in VariCity
and then go back to it to explore the classes exhibited by the visualization, implying important
context switching that is known to hamper the concentration of developers [Xia et al., 2017].
According to these limitations, we advocate that VariMetrics’ usability would be improved by
being embedded into an IDE. We therefore provide an integration for the popular IDE JetBrains
IntelliJ IDEA10.

7.5.2 IDE integration

As the goal of this integration is to minimize the interactions out of the development environment,
the integration embeds all the interactions needed to configure and use VariMetrics. As shown
on Figure 7.9, the visualization is embedded in a panel in the IDE window and provides con-
trols over symfinder and VariMetrics (see violet boxes in Figure 7.9), allowing the execution of
the whole toolchain from the editor’s window. A dedicated entry in the IDE’s settings allows to
configure the view and the execution of the toolchain (cf. Figure 7.10).

Additionally, bidirectional navigation between the visualization and the code is provided to
ease transitioning between the code and its visual representation. On one side, it is possible to
select multiple buildings in the visualization and to open their sources as tabs in the IDE. On the

10https://www.jetbrains.com/idea/

https://www.jetbrains.com/idea/
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①②③④⑤

Figure 7.9: VariMetrics visualization of JFreeChart embedded in the IDE. The white and violet
boxes have been manually added on the figure. In the visualization panel, buttons allow to ① run
symfinder on the codebase, ② start the VariCity visualization server, ③ stop it, ④ reload it, and ⑤

open the classes corresponding to selected buildings in the IDE’s editor.

other side, IntelliJ’s context menu has been enriched, and right-clicking on a class in the Project
sidebar or on the name of the class in the editor panel proposes a Focus on This Class button,
zooming the visualization on the desired class, and another entry to add or remove a class from the
entry points list. Finally, the plugin settings window allows to configure the usage level and usage
orientation, and to browse the classes of the project to add them as entry points. It also embeds all
the configuration capabilities of VariMetrics. The IDE integration is developed using the IntelliJ
Platform SDK11 and is installed as any other plugin for the IDE.

7.6 Threats to validity and Limitations

7.6.1 Threats to validity

As we did not conduct an empirical evaluation on the evolution of the view and its integration in
the IDE, the major threat of our work is related to the design and realization of the evaluations
done by ourselves, including the configuration of the views and choice of the metrics. Neverthe-
less, the scenarios demonstrating VariCity and the results of the empirical evaluation conducted
on this approach gave us insights into the criteria to design views exhibiting relevant variability
implementations. The metrics choice was driven by recent work on the factors causing variabil-
ity debt [Wolfart et al., 2021], giving us confidence in their relevance in our context. Moreover,
as the views we obtained allowed us to obtain positive results, we expect real experts to obtain
good outcomes on their systems by applying their settings. The interactions provided by the IDE

11https://plugins.jetbrains.com/docs/intellij/welcome.html

https://plugins.jetbrains.com/docs/intellij/welcome.html
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Figure 7.10: The view can be configured from a dedicated menu in the IDE settings.

integration have been designed following the IntelliJ Platform UI Guidelines12 to ensure visual
homogeneity in the editor, thus giving us confidence in its usability. In our own experience with
the IDE integration, all exploration tasks conducted in the validation of the metrics part described
in Section 7.4 were heavily facilitated.

We evaluated our approach on 7 systems. Although this dataset is small, the studied systems
have various sizes (40k → 2.5M LoC) and architectures (API, standalone library. . . ), and represent
different domains (charting, programming language, geospatial data management. . . ). We are thus
confident in the applicability of our results to other Java-based systems.

7.6.2 Limitations

Regarding the visualization, we chose to offer as many configuration capabilities as possible to the
expert so that they can tailor it freely and reach the view that helps them most. Combining multiple
metrics on different axes can yet induce cognitive load and hamper the view’s understanding.
While measuring this load is of prime importance when designing visualizations [Huang et al.,
2009] including city-based ones [Caserta et al., 2011; Dashuber et al., 2021] to ensure readability
and usability, it would require in our case to empirically validate our approach with real experts to
exchange on their needs13.

As for scalability, the analysis part is directly related to symfinder capabilities, which can
handle projects with several millions of LoC but takes hours to do so (more than 120h for the
JDK as shown in Table 7.4). As the analysis can be synchronized with main releases, this is still
reasonable for such very large projects. On the rendering side, this extension of VariCity only
configures coloring and adds some textures, which are negligible for the rendering time. We are
thus dependent on the main bottleneck of VariCity rendering, which lies in the computation of
the city shape and streets (more than 5 five minutes for the JDK). For very large projects, this is

12https://jetbrains.github.io/ui/
13Such a validation would also exhibit potential accessibility issues (for example, regarding the choice of colors) that

can be tackled by extending the existing configuration capabilities.

https://jetbrains.github.io/ui/
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Table 7.4: Subject systems and their execution times.

System symfinder execution VariMetrics city rendering

Azureus 1 h 25 min 4 s
GeoTools 24 h 1 min 10 s
JDK 123 h 22 min 5 min 40 s
JFreeChart 5 min 13s 1 s
JKube 2 min 8 s < 1 s
OpenAPI Generator 3 min 45 s < 1 s
Spring framework 1 h 5 min 6 s

System for symfinder: Ubuntu 18.04.2 LTS with Intel Xeon CPU E5-2637v2
@ 3.5GHz and 128Go memory.
System for VariMetrics: Google Chrome 99.0.4844.84 on Arch Linux
5.16.16-arch1-1 with Intel i7-9850H (12 cores) @ 4.6GHz and 32Go memory.

hampering the configuration of the view as recomputation must be done when usage orientation
and levels are changed. Nevertheless, from our analysis of the algorithm used in VariCity, we
believe that some significant improvements could be made to make (re-)rendering practicable.

7.7 Accessibility of the artifacts

A reproducible artifact is available online as an archive [Mortara et al., 2022] containing the source
code of VariMetrics, the Excel file used to obtain the data presented in Table 7.2, additional views
for all projects presented in Table 7.2, the codebases of JFreeChart before and after the refactor
presented in Section 7.4.2 (with the corresponding diff file, excerpts of the SonarQube analysis
of both codebases showing the information presented in Table 7.3. These information can also be
found on a companion webpage14.

7.8 Conclusion

In this chapter, we tackled the following questions:

1. How to identify indebted zones of variability implementations?

(a) How to measure technical debt related to OO variability implementations? Out
of the 10 types of variability debt identified by Wolfart et al. [2021], three types are
applicable to our studied codebases: Code duplication, System-level structure quality
issues in the implementation and Lack of tests. They can be identified using standard
OO quality metrics, namely the number of duplicated blocks, the cognitive complexity
and the test coverage, respectively.

(b) How to reveal technical debt related to OO variability implementations? We pro-
pose VariMetrics, an extension of the city-based VariCity visualization to support the
organized display of OO quality metrics as additional visual properties in a city in

14https://deathstar3.github.io/varimetrics-demo/

https://deathstar3.github.io/varimetrics-demo/
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which dense zones of highly visible buildings already show zones of potential vari-
ability implementations.

2. Does VariMetrics allow visualizing indebted zones of variability implementations? Rep-
resenting OO variability implementations and quality metrics in a unified representation
allowed on the studied subject systems to visualize both classes concentrating variability
implementations and critical classes, enabling to focus on specific zones of OO variability
debt.

3. Are the revealed indebted zones of variability implementations relevant? Implementing
maintenance action on JFreeChart’s classes being identified as both variability intense and
quality-critical allowed to improve their quality regarding the considered metrics without in-
troducing new debt factors, therefore leading to a positive impact at the project level clearly
observable in the visualization. Additionally, it could be notice that part of the identified
variability debt directly concerned roughly managed variability, and could be refactored.

By superposing code quality metrics on the original VariCity view, the VariMetrics view al-
lows a user to focus on quality-critical zones concentrating variability implementations, answer-
ing Challenge A3. Moreover, with the IDE integration, the configuration and execution of both
the identification of variability implementations and the view are available in the development en-
vironment. The integration also enables bidirectional navigation between the classes in the code
editor and their building representation in the city, further helping the comprehension of the vari-
ability implementations and improving the answer to Challenge A2 given by VariCity. Further
assessing the completion of these challenges would require a user evaluation of both VariMetrics
and its integration in the IDE.
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CHAPTER 8
A unified representation

for anomalies in the
Linux build system

This chapter shares material with the SPLC 2021 paper “Capturing the diversity of analyses on
the Linux kernel variability” [Mortara and Collet, 2021a] and its companion technical report [Mor-
tara and Collet, 2021b].

As detailed in Sections 3.4 and 3.5, existing work on the derivation mechanism of build sys-
tems and their anomalies is focused on the Linux kernel. While these contributions cover anoma-
lies in and between all spaces of constraints, their expressions are not aligned, exhibiting inco-
herences. Additionally, their differences in granularity prevent a fine grain understanding of the
interactions between assets in different spaces. There is therefore a need to bring together these
definitions under a unified formalism detailing with precision how an asset selection impacts the
selection in another one throughout the build system.

In this chapter, we tackle both Challenges B1 and B2 (“Making explicit the derivation mech-
anism of build systems” and “Characterizing and identifying anomalies in build systems” respec-
tively) by bringing together existing formalizations in a single formalism that captures all relevant
elements of the Linux kernel variability. Instead of extracting a partial representation to reason
about it, our formalism first considers selectable entities of the entire build workflow, i.e., features,
files and code blocks, to express properties. These properties are determined over two concepts:
a configurator, which can represent the KCONFIG, and a derivator, which can be instantiated dif-
ferently to represent the KBUILD (to select files) and CPP (to select code blocks) (Section 8.1).
We then show the instantiated models and express the already identified defects from the main
previous contributions, establishing their coverage on the defined properties (Section 8.2).

8.1 Proposed Models

The Linux kernel build system is made of three steps (Section 2.3.1). The KCONFIG configures
the system by defining constraints on features. Then, the KBUILD defines conditions to select
source files, and CPP defines conditions to select code blocks. In order to cover all three stages
of the Linux kernel build system and to represent its variability mechanisms independently of

123
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their implementation, we capture the mechanisms implemented by all three steps of the kernel and
abstract them in a single representation. The stages are represented as follows:

• a configurator defines presence conditions on features (i.e., the condition allowing an indi-
vidual feature to be selected). Presence conditions on features are propositional formulas on
other features;

• a derivator defines presence conditions on assets, (i.e., the condition allowing an individ-
ual asset to be selected). Presence conditions on assets are propositional formulas on both
features and assets, which can be either of the same type or of another type.

Consequently, the Linux kernel build system has one configurator, KCONFIG, and two deriva-
tors. The first one, KBUILD, defines presence conditions on source files. The second one, CPP,
defines presence conditions on code blocks.

Some properties will also be defined on the internal and external consistency of the elements
as to cover the different anomalies devised in the previous section. We could also have built our
models on a more expressive theoretical background, such as the refinement theory [Borba et al.,
2012], to potentially obtain for free some properties, but we decided to rely on a more simple but
very explicit basis to clarify first all concepts and inconsistencies.

In the following, we will also use these utility definitions:

terms(ϕ) a helper function which, given a propositional formula, returns the terms in it
(e.g., terms ((A ∧ B) ∨ C) = {A, B, C}).

expand(ϕ) a helper function which, given a propositional formula ϕ, replaces every as-
set a in ϕ by its presence condition, noted PCInt(a) and defined in Definition 8.2
(e.g., expand (b1 ∧ ¬b2) = PCInt(b1) ∧ ¬PCInt(b2)).

slice(C, T ) an operator which, given a set of boolean conditions on terms C and a set of
terms T , returns the conjunction of all propositional formulas from C containing terms
from T . The operator is recursively applied to the terms that appear in these formulas1

(e.g., slice ({A ∧ B, A ∧ C, C ∨ D, H ∧ I} , {A}) = {A ∧ B, A ∧ C, C ∨ D}).

8.1.1 Derivator Model

In this section, we introduce the concepts to form the derivator model and illustrate them with its
application to CPP.

Definition 8.1 (Asset). An asset a = ⟨ϕselect, ϕpreds, ϕdepInt, ϕdepExt⟩ from a set of assets AX is
defined as follows:

• ϕselect is a propositional formula for the asset’s selection ;

• ϕpreds is a propositional formula on other assets that are evaluated before a. We call these
assets predecessors ;

• ϕdepInt is a propositional formula on assets on which a is dependent ;

• ϕdepExt is a propositional formula on assets from another context on which a is dependent.
1The principle of slicing has already been applied to feature models [Acher et al., 2011; Krieter et al., 2016] and its

goal is to extract a subset of formulas equivalent to the whole space by keeping only formulas relevant to terms from T .
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Application to CPP An asset b is a code block, with:

• ϕselect the condition of the #if surrounding the block ;

• ϕpreds = ¬(
∨
i

bi) if b is an #elsif or #else block, bi represents the corresponding #if

block and the potential #elsif blocks before b ;

• ϕdepInt = p with p the parent block of b if b is a nested block.

• ϕdepExt = file the file containing b.

Example. In Figure 2.2, the lib/dir/foo.c file and the B1, B2, B3, and B4 blocks it contains
are represented by the following assets:

• file = ⟨true, true, true, true⟩

• b1 = ⟨FOO ∨ BAR ∨ BAZ, true, true, file⟩

• b2 = ⟨FOO, true, b1, file⟩

• b3 = ⟨BAR, ¬b2, b1, file⟩

• b4 = ⟨true, ¬(b2 ∨ b3), b1, file⟩

Application to KBUILD At the KBUILD level, an asset s = ⟨ϕselect, ϕpreds, ϕdepInt, ϕdepExt⟩
can represent a C object file. We then express presence conditions and related anomalies with our
model. As seen in Section 2.3.1, an object is selected for compilation by being added to defined
lists, with possible constraints on one or more features in case of multiple definitions. Before,
objects can also be added to composite variables.

• ϕselect =
∨

fi with fi being features which at least one needs to be set for the source file to
be selected. If the asset is always selected, ϕselect = true. If the asset is defined but never
added to a list, ϕselect = false ;

• ϕpreds = comp with comp the name of the composite variable if s is part of a composite
definition. comp must be selected ;

• ϕdepInt = dir with dir the directory containing the source file represented by s which also
needs to be selected ;

• ϕdepExt = true as the selection of a source file only relies on its feature.

Example. In Figure 2.2, the dir directory and the foo.c, file_a.c, file_b.c, and
file_c.c files it contains are represented by the following assets:

• dir = ⟨BAR, true, true, true⟩

• foo.c = ⟨FOO, true, dir, true⟩

• file_a.c = ⟨true, foo.c, dir, true⟩

• file_b.c = ⟨true, foo.c, dir, true⟩
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• file_c.c = ⟨true, true, dir, true⟩

Definition 8.2 (Internal presence condition). The internal presence condition of an asset is the
boolean formula that needs to be satisfiable for the asset to be selectable. It is defined as

PCInt(a) = ϕselecta ∧ expand (ϕpredsa) ∧ expand (ϕdepInta)

Note. An asset is selected if and only if its presence condition is satisfied: PCInt(a) ⇔ a.

Application to CPP Let us take again the previous example.

PCInt(b1) = ϕselectb1
∧ expand

(
ϕpredsb1

)
∧ expand

(
ϕdepIntb1

)
= (FOO ∨ BAR ∨ BAZ) ∧ expand(true) ∧ expand(true)
= (FOO ∨ BAR ∨ BAZ)

PCInt(b2) = ϕselectb2
∧ expand

(
ϕpredsb2

)
∧ expand

(
ϕdepIntb2

)
= (FOO) ∧ true ∧ expand (b1)
= (FOO) ∧ (FOO ∨ BAR ∨ BAZ)

PCInt(b3) = ϕselectb3
∧ expand

(
ϕpredsb3

)
∧ expand

(
ϕdepIntb3

)
= (BAR) ∧ (¬PCInt(b2)) ∧ PCInt(b1)
= (BAR) ∧ (¬ (FOO ∧ (FOO ∨ BAR ∨ BAZ))) ∧ (FOO ∨ BAR ∨ BAZ)
= (BAR) ∧ ¬ (FOO) ∧ (FOO ∨ BAR ∨ BAZ)

PCInt(b4) = ϕselectb4
∧ expand

(
ϕpredsb4

)
∧ expand

(
ϕdepIntb4

)
= ¬ (PCInt(b2) ∨ PCInt(b3)) ∧ PCInt(b1)
= ¬ (FOO ∨ BAR) ∧ (FOO ∨ BAR ∨ BAZ)

Note. Extracted presence conditions can be complex and may contain redundant terms (e.g.,
PCInt(b2) is equivalent to FOO). Approaches to simplify presence conditions have been pro-
posed [Von Rhein et al., 2015] and are out of the scope of our work.

Application to KBUILD

PCInt(dir) = ϕselectdir ∧ expand (ϕpredsdir) ∧ expand (ϕdepIntdir)
= BAR ∧ true ∧ true

= BAR

PCInt(foo.c) = FOO ∧ true ∧ expand(PCInt(dir))
= FOO ∧ BAR

PCInt(file_a.c) = true ∧ expand(PCInt(foo.c)) ∧ expand(PCInt(dir))
= (FOO ∧ BAR) ∧ BAR

PCInt(file_b.c) = PCInt(file_a.c)
PCInt(file_c.c) = true ∧ true ∧ expand(PCInt(dir))

= BAR
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Definition 8.3 (External presence condition). By evaluating PCInt, we check that the asset can
be selected given the constraints of its space. However, other external constraints may prevent the
selection the asset. We call context the set of these constraints. The external presence condition of
an asset in a given context C is defined as

PCExt(a) = PCInt(a) ∧ slice(C, terms(PCInt(a)) ∪ terms(ϕdepExta))

Application to CPP In the Linux build system, the selection of a CPP block is conditioned
by constraints on both the features used in the #if instructions (which are determined at the
KCONFIG level) and the file containing the block (which are determined at the KBUILD level).
Thus, the context C to express the external presence condition of a block is the union of the
KCONFIG and KBUILD contexts C = CKCONFIG ∪ CKBUILD. Let us take an example with

CKCONFIG = {FOO → BAR, BAZ → (¬F1), F1 → (¬FOO), F3 → F4}
CKBUILD = {file ↔ FOO}

then

PCExt(b1) = PCInt(b1) ∧ slice(C, terms(PCInt(b1)) ∪ terms(ϕdepExtb1
))

= PCInt(b1) ∧ slice(C, {FOO, BAR, BAZ} ∪ {file})
= PCInt(b1) ∧ ((FOO → BAR) ∧ (BAZ → (¬F1))

∧ (F1 → (¬FOO)) ∧ (file ↔ FOO))

8.1.1.1 Internal consistency

To express defects, we define dead, core, and full-mandatory assets, relying on definitions of dead
and false-optional features introduced by Benavides et al. [2010], and full-mandatory features
from Trinidad et al. [2008].

Definition 8.4 (Dead asset). An asset a of A is dead if it can never be selected. The set of dead
assets of A is noted deads(A).

a ∈ deads(A) ⇔ ¬sat(PCInt(a))

Note. This consistency check includes the more specific case where an asset is dead because of
an inconsistency with the condition to select its internal dependencies (i.e., expand(ϕdepInts) →
¬ϕselects) as in this case PCInt(a) is inconsistent.

Definition 8.5 (Core asset). An asset a of A is a core asset if it is always selected. The set of core
assets of A is noted core(A).

a ∈ core(A) ⇔ ¬sat(¬(PCInt(a)))

8.1.1.2 External consistency

Definition 8.6 (Externally dead asset). An asset a is an externally dead asset if it is never se-
lected due to inconsistencies with its context. The set of externally dead assets of A is noted
deadsExt(A).

a ∈ deadsExt(A) ⇔ ¬sat(PCExt(a))
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Definition 8.7 (Externally core asset). An asset a of A is an externally core asset if it is always
selected independently of the constraints of the context. The set of core assets of A is noted
coreExt(A).

a ∈ coreExt(A) ⇔ ¬sat(¬(PCExt(a)))

Definition 8.8 (Externally full-mandatory asset). An asset a is an externally full-mandatory asset
if the selection of its parent dependencies implies its selection due to the formulas in its context.
The set of externally full-mandatory assets of A is noted mandExt(A).

a ∈ mandExt(A) ⇔ expand(ϕdepInta) → PCExt(a)
⇔ ¬sat(¬PCExt(a) ∧ expand(ϕdepInta))

Definition 8.9 (Missing dead asset). An asset a is missing dead if a feature in its presence con-
dition is not defined in the context C. The set of assets of A with missing features is noted
missing(A).

a ∈ missing(A) ⇔ ∃m ∈ terms(PCExt(a)) | (m /∈ terms(C))

8.1.2 Configurator Model

The configurator represents the model element that checks the selection of features. It is repre-
sented by a set of features F . We will illustrate the formalization here with its application to the
KCONFIG.

Definition 8.10 (Feature). A feature F = ⟨ϕenable, ϕdeps, Fselect⟩ from a set of features F is
defined as follows:

• ϕenable is a propositional formula representing the ability to select the feature ;

• ϕdeps is a propositional formula on features on which F is dependent ;

• Fselect is a set of features automatically selecting F . If a feature from Fselect is selected, F
is also selected, regardless of the precedent conditions.

Application to KCONFIG A feature F is a configuration option defined in a KCONFIG file, with:

• ϕenable represents the ability to select the feature by user selection (prompt), or default
value, as defined in Table 8.1. We represent the selection of a feature F by a user with a
boolean value σF ;

• ϕdeps represents the boolean formula on features defined in the depends on statement ;

• Fselect is a set of features selecting F with a select statement ;

In the KCONFIG file presented in Figure 2.2, three features are defined: FOO, BAR and F_SEL.
Existing work on the semantics of the KCONFIG files [She and Berger, 2010] inline the conditions
from the menu items surrounding the definition of a feature in the depends on condition. These
features can be represented by the following assets:

• FOO = ⟨σF OO, (DEPS_A ∨ DEPS_B) ∧ MENU_COND, {}⟩
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Table 8.1: ϕenable truth table for a KCONFIG feature F

Presence of prompt Presence of default ϕenable

yes
activated

σF (user selection)
not activated

no
activated true

not activated false

• BAR = ⟨σBAR, MENU_COND, {}⟩

• F _SEL = ⟨false, true, {FOO}⟩

Definition 8.11 (Presence condition). The presence condition of a feature F ∈ F represents the
boolean formula which needs to be satisfied for the feature to be selected.

PC(F ) = (ϕenable ∧ expand(ϕdeps)) ∨ directSelect(F )

with directSelect(F ) =
∨

Fs∈Fselect

PC(Fs).

Note. The selection of a feature implies that its presence condition is satisfied: F → PC(F ). There
is no biimplication as we consider that a user can manually interfere in the selection. Therefore,
the information extracted from the model can only express if a feature can be selected, and not its
effective selection.

Application to KCONFIG

PC(FOO) = (ϕenableF OO
∧ expand(ϕdepsF OO

)) ∨ directSelect(FOO)
= σF OO ∧ ((PC(DEPS_A) ∨ PC(DEPS_B)) ∧ PC(MENU_COND))

PC(BAR) = (ϕenableBAR
∧ expand(ϕdepsBAR

)) ∨ directSelect(BAR)
= σBAR ∧ PC(MENU_COND)

PC(F _SEL) =
(
ϕenableF _SEL

∧ expand(ϕdepsF _SEL
)
)

∨ directSelect(F _SEL)
= (false ∧ true) ∨ PC(FOO)
= PC(FOO)

Note. Due to the size and complexity of the KCONFIG model, obtaining a sound and complete
abstraction of its semantics is still a challenge. The latest studies on boolean translation are not
able to represent the whole complexity of the language [Fernandez-Amoros et al., 2019]. Because
of these limitations, the accuracy of variability reasoning approaches is also limited and acknowl-
edged by researchers [Franz et al., 2021]. Therefore, we aim here to provide a model allowing us
to synthesize the current work, and do not pretend to present a complete model of KCONFIG2.

2For example, although KCONFIG’s syntax allows adding conditions to select statements, no defect described in
our model requires to express this behaviour.
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8.1.2.1 Consistency

Definition 8.12 (Dead feature). A feature F of F is dead if it can never be selected. The set of
dead features is noted deadFeatures().

F ∈ deadFeatures() ⇔ ¬sat(PC(F ))

Definition 8.13 (Core feature). A feature F of F is a core feature if it is always selected. The set
of core features is noted coreFeatures().

F ∈ coreFeatures() ⇔ ¬sat(¬PC(F ))

Note. If FS ∈ FselectF
is a core feature, then F is also a core feature, as PC(FS) → PC(F ).

Definition 8.14 (Missing dead feature). A feature F is missing dead if a feature in its presence
condition is not defined. The set of missing dead features is noted missingDeadFeatures().

F ∈ missingDeadFeatures() ⇔ (m ∈ terms(PC(F )) ∧ (m /∈ F)

8.2 Instantiation on the Linux kernel

We now instantiate our model on the kernel build system. The configurator is used to model the
KCONFIG, while the derivator concept is used to model source files selected by the KBUILD Make-
files, with a form of positive variability [Voelter and Groher, 2007]: the core is represented by the
obj-y entries, where the additional parts are added in composite objects and feature dependent
entries. The same derivator concept also represents the selection of code blocks from the source
files by CPP, implementing this time negative variability [Voelter and Groher, 2007].

8.2.1 Model on CPP

The constraints that can influence the selection of a block can be of two natures. First, constraints
can issue from the CPP space. For example, on Figure 2.2, the selection of the B3 block is condi-
tioned by the selection of the B1 block and the non selection of the B2 block. Second, constraints
can come from other spaces of the build system. Similarly, on Figure 2.2, all blocks from the
lib/dir/foo.c file can only be selected if the file is selected in the KBUILD step, and if the
constraints on the involved features are satisfied. We describe them hereafter.

8.2.1.1 Compliance with presence conditions from Sincero et al. [2010]

For conciseness and to prevent confusion, we name this definition PCSin and use the more com-
pact expression given in [Tartler et al., 2011]:

PCSin(bi) = expr(bi) ∧ noPredecessors(bi) ∧ parent(bi)

We can express PCSin using our definition of asset from Definition 8.1. Let us apply PCSin

on an asset b as defined in Section 8.1.1.

PCSin(b) = expr(b) ∧ noPredecessors(b) ∧ parent(b)
= ϕselectb

∧ ¬ (pred1 ∨ pred2 ∨ · · · ∨ predn) ∧ ϕdepIntb

= ϕselectb
∧ ϕpredsb

∧ ϕdepIntb
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ϕpredsb
and ϕdepIntb

are propositions on assets corresponding to the blocks themselves. How-
ever, to evaluate the presence condition, these assets have to be expanded to their logical expres-
sion.

PCSin(b) = ϕselectb
∧ expand (ϕpredsb

) ∧ expand(ϕdepIntb
)

The definition of PCSin is therefore compliant with our definition of PCInt given in Defini-
tion 8.2.

8.2.1.2 Expressing cross-space formulas

Nadi and Holt [2012] defined multiple anomalies (Anomalies 19, 21, 22 and 24) using different
terms, i.e., BN , C, M , and K, which we now describe with our model.

BN ∧ C BN represents a block, and C the constraints in the code space. This expression is true
if and only if the block BN is selected, thus it corresponds to BN ↔ PCSin(BN ) using Tartler
et al. [2011]’s notation and PCInt(BN ) in our model.

parent(BN ) parent(BN ) represents the selection of the parent of a block, i.e., its enclosing
block. This expression corresponds to expand(ϕdepIntBN

) in our model.

The KCONFIG space (K) K represents the set of constraints in the KCONFIG space, i.e., the
constraints on features that allow them to be selected. Tartler et al. [2011] do not use the whole
feature model expression as the solving would not scale. They instead identify the features impact-
ing the selection of a given code block using a slicing algorithm to build a minimal but sufficient
subset of the configuration space through a recursive application on each new feature found in the
presence condition expression. While this mechanism is not made explicit in the formalisms they
provide in the paper, these relationships are detailed in the formulas of the presence conditions by
their construction.

The make space (M ) M represents the set of constraints in the make space, i.e., the constraints
on features that allow the selection of source files in the Makefiles. In her Ph.D. thesis [Nadi,
2014], Nadi states: “since the conflicts in Anomaly 21 arise from looking at the block presence
condition as well as the file’s presence condition, we call this category of anomalies code-build
anomalies”. Thus, to detect defects involving the make space, it is only necessary to have the
presence condition of the file containing the analyzed block.

In Section 8.1.1, we instantiate on CPP the definition of external presence condition given
in Definition 8.3, using for context C = CKCONFIG ∪ CKBUILD. Thus, CKCONFIG = K and CKBUILD =
M , and:

slice(CKCONFIG, terms(PCInt(a)) ∪ terms(ϕdepExta)) |= K

slice(CKBUILD, terms(PCInt(a)) ∪ terms(ϕdepExta)) |= M

We can then express the different formulas in our model.
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Instantiation 1 (Expressing code–Make–KCONFIG anomalies – Anomaly 22).

¬sat(BN ∧ C ∧ M ∧ K)
⇔ ¬sat (PCInt(BN ) ∧ C)
⇔ ¬sat (PCExt(BN )) (Definition 8.3)

¬sat(¬BN ∧ parent(BN ) ∧ C ∧ M ∧ K)
⇔ ¬sat(C ∧ ¬PCInt(BN ) ∧ expand(ϕdepIntBN

))

⇔ ¬sat
(
¬PCExt(BN ) ∧ expand(ϕdepIntBN

)
)

Anomaly 22 thus expresses dead (Definition 8.6) and full-mandatory defects (Definition 8.8).

Instantiation 2 (Expressing code–Make defects – Anomaly 21). Same as Instantiation 1 with
C = CKBUILD.

Instantiation 3 (Expressing configurability defects – Anomaly 13). Same as Instantiation 1 with
C = CKCONFIG.

Instantiation 4 (Dead block – Anomaly 1). Same as Instantiation 3.

Instantiation 5 (Expressing code–KCONFIG defects – Anomaly 19). Same as Instantiation 3.

Instantiation 6 (Expressing configuration-implementation defects – Anomaly 15). V corresponds
to the minimum but sufficient set of constraints from the configuration space. Thus:

sat ((bi ↔ PC(bi)) ∧ V) ⇔ sat (PCInt(bi) ∧ CKCONFIG)

We can then express dead and undead configuration-implementation defects. Given B the set
of blocks and C = CKCONFIG:

¬sat ((bi ↔ PC(bi)) ∧ V) ⇔ ¬sat (PCInt(bi) ∧ C)
⇔ ¬sat (PCExt(bi)) (Definition 8.3)

¬sat (¬ (bi ↔ PC(bi)) ∧ V) ⇔ ¬sat (¬PCInt(bi) ∧ C)
⇔ ¬sat (¬PCExt(bi)) (Definition 8.3)

Anomaly 15 thus expresses dead (Definition 8.6) and core defects (Definition 8.7).

From Anomaly 15 we can derive Anomaly 14.

Instantiation 7 (Expressing Implementation-only defects – Anomaly 14). Given B the set of
blocks:

¬sat (bi ↔ PCSin(bi)) ⇔ ¬sat (PCInt(bi))
⇔ bi ∈ deads(B) (Definition 8.4)

¬sat (¬ (bi ↔ PCSin(bi))) ⇔ ¬sat (¬ (PCInt(bi)))
⇔ bi ∈ core(B) (Definition 8.5)

Additionally, Anomalies 14 and 15 are equivalent to Anomalies 2 and 3, respectively.
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Instantiation 8 (Expressing Internal consistency – Anomaly 2).
∧

i=1..m
bi ↔ PC(bi) corresponds

to the set of constraints of the code space, and bi the selection of the bi block. Therefore,( ∧
i=1..m

bi ↔ PC(bi)
)

∧ bi can be simplified to bi ↔ PC(bi), as done by Tartler et al. [2011]

in Anomaly 14. Thus, Anomaly 2 ⇔ Anomaly 14.

Instantiation 9 (Expressing External consistency – Anomaly 3). In Instantiation 8, we showed:( ∧
i=1..m

bi ↔ PC(bi)
)

∧ bi ⇔ (bi ↔ PC(bi))

FM in Anomaly 3 and V in Anomaly 15 both represent the KCONFIG space constraints.
Therefore:

satisfiable

(( ∧
i=1..m

bi ↔ PC(bi)
)

∧ bi ∧ FM

)
⇔ sat ((bi ↔ PC(bi)) ∧ V)

i.e., Anomaly 3 ⇔ Anomaly 15.

Instantiation 10 (Expressing code anomalies – Anomaly 18). Same as Instantiation 8.

Instantiation 11 (Expressing code–Make–KCONFIG missing defects – Anomaly 23). We showed
in Instantiation 1 that BN ∧ C ∧ M ∧ K |= PCExt(BN ). If a feature m from the for-
mula is not defined in the KCONFIG files, it means that m /∈ terms(K) ∪ terms(M), i.e.,
m /∈ terms(CKCONFIG ∪ CKBUILD). Therefore:

∃m ∈ terms(PCExt(BN )) | (m /∈ terms(C))

thus BN is dead by missing feature.

Instantiation 12 (Expressing code–KCONFIG missing defects – Anomaly 20). Same as Instanti-
ation 11 with C = CKCONFIG.

Instantiation 13 (Expressing referential defects – Anomaly 17). If the feature is missing in the
configuration space, then the definition corresponds Definition 8.9 with C = CKCONFIG as context.
A feature missing in the implementation space can mean that the feature is used in the Make space
only. It is characterized as a defect as Tartler et al. [2011] do not consider this space, but it is not a
defect for us.

8.2.2 Model on KBUILD

Instantiation 14 (Expressing Feature Not Defined – Anomaly 11). Given m a feature not being
defined in any KCONFIG files, and a a file referenced a KBUILD Makefile whose presence is
conditioned by m. Thus, m is present in ϕselecta , however is not present in the features defined in
the KCONFIG files, obtained with terms(CKCONFIG).

(m ∈ terms(ϕselecta)) ∧ (m /∈ terms(CKCONFIG))

As terms(ϕselectai
) ⊆ terms(PCExt(ai)), Anomaly 11 is a special case of Definition 8.9, there-

fore a is a missing dead file.



134 CHAPTER 8 — A unified representation for anomalies in the Linux build system

Instantiation 15 (Expressing Variable Not Used – Anomaly 12). Given a an asset and ϕpredsa =
comp.

PCInt(a) = ϕselecta ∧ expand (ϕpredsa) ∧ expand (ϕdepInta) (Definition 8.2)

= ϕselecta ∧ PCInt(comp) ∧ expand (ϕdepInta)

However, comp is never used, therefore ϕselectcomp is false, implying ¬PC(comp). Conse-
quently:

PCInt(a) = ϕselecta ∧ false ∧ expand (ϕdepInta)
= false

Thus, a is a dead asset.

Instantiation 16 (Expressing Make–KCONFIG anomalies – Anomaly 24). Let us consider s the
asset that represents the file FN , and C = CKCONFIG.

PCInt(s) = ϕselects ∧ expand (ϕpredss) ∧ expand (ϕdepInts)
= ϕselects ∧ PCInt(comp) ∧ PCInt(dir)

To build M as it appears in Anomaly 24, Nadi and Holt [2012] extract for every file a pres-
ence condition consisting of a conjunction of the features conditioning the selection of the
file (

∨
fi = ϕselects), the composite object if present (PCInt(comp)) and its parent directory

(PCInt(dir)) in the corresponding Makefiles. Therefore, PCInt(s) |= (FN ∧ M).

PCExt(s) = PCInt(s) ∧ slice (C, terms(PCInt(s)) ∪ terms(ϕdepExts))
|= (FN ∧ M) ∧ K (cf. Section 8.2.1.2)

We can then express Anomaly 24 in our model:

¬sat(FN ∧ M ∧ K) ⇔ ¬sat (PCExt(s))
¬sat(¬FN ∧ M ∧ K) ⇔ ¬sat (¬PCExt(s))

Anomaly 24 thus expresses dead (Definition 8.6) and core defects (Definition 8.7).

Instantiation 17 (Expressing Make–KCONFIG missing defects – Anomaly 25). Same as Instanti-
ation 11 with C = CKCONFIG, and relying on formulas from Instantiation 16.

Instantiation 18 (Expressing File Not Used – Anomaly 10). This definition may not be valid any-
more, since the syntax of KBUILD Makefiles allows them to explore subdirectories too3. However,
we can generalise this definition with:

A .c file exists in the codebase but is not used in any Makefile.

Given S the set of source files of the Linux kernel code base, and AKBUILD the set of assets
representing source files in the KBUILD Makefiles. A file s ∈ S is a file not used if no asset in
AKBUILD corresponds to s:

̸ ∃ai ∈ AKBUILD | s ≡ ai

3https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#descending-down-in-directories

https://www.kernel.org/doc/html/latest/kbuild/makefiles.html#descending-down-in-directories
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8.2.3 Model on KCONFIG

Given the configurator model and the application example already given in Section 8.1.2, we just
have to instantiate the anomalies.

Instantiation 19 (Expressing dead feature – Anomaly 4). Given F a dead feature. The definition
can be expressed in our model as ¬sat(ϕdepsF

), which itself implies ¬sat(PC(F )), hence F is
dead.

Instantiation 20 (Expressing false optional – Anomaly 5). This definition corresponds to the note
in Definition 8.13, thus F is a core feature.

Instantiation 21 (Expressing missing dead feature – Anomaly 6). The definition limits the pres-
ence of an undefined feature in the dependencies:

(m ∈ terms(ϕdepsF
)) ∧ (m /∈ F)

As terms(ϕdepsF
) ⊆ terms(PC(F )), every missing dead feature according to Anomaly 6 is

also missing dead in our model.

Instantiation 22 (Expressing selects on symbols with dependencies – Anomaly 7). The depen-
dencies of the symbol are represented by terms(ϕdepsF

). Its selection by another symbol is rep-
resented by directSelect(F ). Therefore:

(terms(ϕdepsF
) ̸= ∅) ∧ directSelect(F )

Instantiation 23 (Expressing unreachable symbol – Anomaly 8). Given F a symbol. If the sym-
bol does not have a prompt neither a default value allowing its selection, then ¬sat(ϕenableF

).
Selection by another feature is modeled with directSelect(F ). Thus:

¬sat(ϕenableF
) ∧ ¬directSelect(F )

Consequently:

PC(F ) = (ϕenable ∧ expand(ϕdeps)) ∨ directSelect(F ) (Definition 8.11)

= (false ∧ expand(ϕdeps)) ∨ false

= false

Thus, F is dead.

Instantiation 24 (Expressing unnecessary selects on choice values – Anomaly 9). To express this
defect, we need to add an extra type attribute to the feature. type ∈ {config, choice} represents
the way F is defined in the KCONFIG model, either as a simple config element or in a choice
statement.

(typeF = choice) ∧ directSelect(F )

Instantiation 25 (Expressing configuration-only defects – Anomaly 16). The function
presenceCondition(feature) returns the presence implication of the feature and is defined by
the authors as “the selection of the feature itself and the expression of the depends on option.” This
definition, expressed by our model, corresponds to ϕenablef

∧ expand(ϕdepsf
) = PC(f). Thus

¬sat(f → presenceCondition(f)) ⇔ ¬sat(PC(f))

Therefore, f is dead.
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Table 8.2: Anomalies covered by the model (defects defined as dead and undead according to
the authors)

Paper
Sincero

et al.
[2010]

Tartler et al.
[2011]

Nadi and
Holt

[2011]

Nadi and Holt
[2012]

Hengelein
[2015]

Derivator

Internal Dead Anomaly 2 Anomaly 14 Anomaly 12 Anomaly 18
consistency Core Anomaly 2 Anomaly 14 Anomaly 18

External
consistency

Dead Anomalies 1
and 3

Anomalies 13
and 15

Anomalies 19,
21, 22 and 24

Core Anomaly 3 Anomaly 15 Anomaly 24
Full-

mandatory Anomaly 13 Anomalies 19,
21 and 22

Missing feature Anomaly 17 Anomaly 11 Anomalies 20,
23 and 25

Configurator
Dead Anomaly 16 Anomaly 4
Core Anomaly 5

Missing dead Anomaly 6

Other properties
Anomaly 10 Anomalies 7 to 9

(e.g., unreachable symbol, file not used)

8.2.4 Resulting coverage

From the instantiations of the configurator model on KCONFIG and the derivator on both KBUILD

and CPP, we obtain a complete expression of the different formulas and anomalies taken as input.
A summary of the different anomalies for each paper and how they are expressed is presented
in Table 8.2. As expected, no existing proposal expresses defects in every space of the Linux
build system. The table confirms the inconsistencies that we manually observed in Section 3.5
between Anomalies 13 and 15 from [Tartler et al., 2011], with the first anomaly being characterized
as a full-mandatory defect and the other as a core defect. Moreover, similar inconsistencies are
exhibited in defects from [Nadi and Holt, 2012], as well as two anomalies that are described
as dead defects but are not called as such (Anomalies 12 and 16). Additionally, the obtained
presence conditions allow a better understanding at fine grain of the interactions between the
assets. Table 8.3 details, for an asset of each space taken from Figure 2.2, the expressions obtained
when considering different spaces of constraints using formalisms from the state of the art and
our representation. The expressions of the PCs detail with precision the different assets involved,
demonstrating the capacity of our model to represent at fine-grain the interactions between assets
in the build system.

8.3 Threats to validity

Internal threats to validity A first internal threat could be caused by the selection of papers
made to devise the properties and the model. However, given the narrow focus of the subject and
the fact that we sought additional work in the references of the obtained papers, we believe that
the most important studies are included.

Another internal threat concerns the accuracy of the formalisms from the chosen studies, but
their application to the kernel was demonstrated. Besides, while we provide a formalization, there
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Table 8.3: Expressions of PCs for the B3 block, the foo.c file and the FOO feature from Fig-
ure 2.2.

Involved space(s)
SOTA expressions
Proposed models expressions

CPP
BlockN ∧ C [Sincero et al., 2010]
PCInt(B3) = BAR ∧ ¬PCInt(B2) ∧ PCInt(B1)

CPP – KBUILD
BlockN ∧ C ∧ M [Nadi and Holt, 2012]
PCExt(B3) = PCInt(B3) ∧ PCExt(foo.c)

CPP – KCONFIG
BlockN ∧ C ∧ K [Sincero et al., 2010], V ∧ BlockN [Tartler et al., 2011]
PCExt(B3) = PCInt(B3) ∧ PC(BAR) ∧ ¬PC(FOO) ∧ (PC(FOO) ∨ PC(BAR) ∨ PC(BAZ))

CPP – KBUILD –
KCONFIG

BlockN ∧ C ∧ M ∧ K [Nadi and Holt, 2012]
PCExt(B3) = PCInt(B3) ∧ PCExt(foo.c) ∧ PC(BAR) ∧ ¬PC(FOO)*

KBUILD
FileN ∧ M [Nadi and Holt, 2012]
PCInt(foo.c) = FOO ∧ PCInt(dir)

KBUILD – KCONFIG
FileN ∧ M ∧ K [Nadi and Holt, 2012]
PCExt(foo.c) = PCInt(foo.c) ∧ PC(FOO) ∧ PC(BAR)

KCONFIG
presenceCondition(feature) = feature → φ [Tartler et al., 2011]
PC(FOO) = σF OO ∧ (PC(DEPS_A) ∨ PC(DEPS_B)) ∧ PC(MENU_COND)

* for readibility, the conjunction with (PC(FOO) ∨ PC(BAR) ∨ PC(BAZ)) has been omitted as it is redundant in the condition

is no proof of correctness of the formalism nor associated syntax and semantics given in a theorem
prover.

External threats to validity While we show here the application of the proposed models to the
Linux build system, there is no demonstration of the applicability of the configurator and derivator
concepts to other build systems. A first demonstration of the derivator concept is nevertheless done
through its double instantiation as the KCONFIG and CPP preprocessor.

8.4 Conclusion

Studies on the kernel variability propose a set of definitions for the analyzed properties. How-
ever, they suffer from differences in terminology and some inconsistencies in the interpretation of
similar definitions in them (cf. Sections 3.4 and 3.5). In this chapter, we described a formalism
based on the generic concepts of configurator and derivator to express the whole set of consis-
tency properties. We showed that the configurator can be instantiated to represent the KCONFIG,
while the instantiated derivators can represent the KBUILD, selecting files, or CPP, selecting code
blocks. The obtained model enables one to categorize the previous studies and to establish their
coverage and divergences on the analyses. Relying on generic concepts, the model is designed to
be applicable to other build systems relying on the concepts of configurator and derivator.

This unified representation at fine grain of the interactions between assets throughout the build
system provides elements of answers to Challenge B1. Additionally, anomalies are characterized
in this formalism, covering and aligning state-of-the-art-definitions, answering Challenge B2 on
the characterization and identification of anomalies in build systems. However, this work exhibits
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two limitations. First, as the existing work on build systems and their anomalies are focused on the
Linux build system, we can only assess relevance of our representation on this system, and it may
therefore not represent the diversity of mechanisms present in other build systems such as Busy-
Box [Kästner et al., 2012; Mordahl et al., 2019], JHipster [Halin et al., 2017], or the Mozilla build
system [Maudoux and Mens, 2019]. Then, the proposed models have not been implemented in a
model-driven framework and applied on real code assets, limiting their validity. Fully answering
challenges B1 and B2 requires achieving those two steps, that we tackle in the following chapter.



CHAPTER 9
A generalization of the

anomalies model
When build systems combine ad hoc tools adapted to manage variability, the multiplicity and en-
tanglement of these mechanisms do not provide a global view of the whole derivation process
of the build system, preventing precise determination of the constraints that condition the selec-
tion of each code asset (Challenge B1). Additionally, such tools not being designed for variability
management, they do not allow checking for the consistency of the implemented constraints, po-
tentially leading to conflicts and causing anomalies (Challenge B2).

In the previous chapter, we started tackling both challenges by providing a homogeneous repre-
sentation of the Linux kernel build system derivation mechanism and the anomalies that can occur,
showing coverage of existing contributions on both topics. While the proposed model shows cov-
erage of existing work characterizing the derivation process of build systems and their anomalies,
they are all focused on the Linux kernel build system. Consequently, to assess whether the model
is applicable to other build systems and brings a definitive answer to Challenges B1 and B2, we
propose to extend it to another build system, the Mozilla build system. We believe this build sys-
tem is a good candidate for generalizing our representation as it reuses off-the-shelf tools (namely,
Python and CPP) to implement a derivation process similar to the one of the Linux kernel build
system (cf. Section 2.3.2). Moreover, the Mozilla build system is used to manage the variability im-
plemented in the Mozilla Gecko codebase, of which more than 25%1 is written in an OO language,
C++, consequently exhibiting OO variability implementations (Section 4.1). Therefore, being able
to model the Mozilla build system’s derivation process is a first step towards understanding how
the coexistence of those two types of variability is managed in such systems.

In Section 9.1, we detail the current limitations of the proposed model that need to be tackled
to enable its application on the Mozilla build system. We then generalize the model by taking into
account the diversity of mechanisms brought by the Mozilla build system and consequently refine
the definitions of PCs and anomalies (Section 9.2). Finally, we design a framework implementing
our model and report on its application on the Mozilla build system and two systems using the
Linux kernel build system, the Linux kernel and BusyBox2, for which we compare our approach
with a state-of-the-art workbench for analyzing the Linux kernel build system, KernelHaven (Sec-
tion 9.3).

1https://www.openhub.net/p/firefox/analyses/latest/languages_summary
2https://busybox.net

139

https://www.openhub.net/p/firefox/analyses/latest/languages_summary
https://busybox.net
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/tools/
moz.build

/dir/
moz.build

/tools/fuzzing/
moz.build

/tools/fuzzing/foo.c
/tools/fuzzing/subdir/bar.c

true

FUZZING ∧ JS_STANDALONE

¬ JS_STANDALONE

1st  selection condition = true ∧ ¬ JS_STANDALONE

2nd selection condition = (FUZZING ∧ JS_STANDALONE)  ∧ ¬ JS_STANDALONE

Figure 9.1: Visual representation of the inclusions shown in the MOZBUILD space on Figure 2.3.

9.1 Limitations of the anomalies model related to the Mozilla build
system

While the model previously introduced covers existing work on characterizing anomalies in the
Linux kernel build system, it exhibits some limitations preventing its direct application to the
Mozilla build system.

Arity of parent assets Each asset from a derivator possesses a single internal PC (PCInt) and
a single external PC (PCExt), implying that each asset has a single inclusion chain allowing its
selection. This is indeed the case for both derivators in the Linux kernel build system:

• in CPP, the selection of a code block is dependent on the selection of its direct parent block.
Each block naturally has only one direct parent block.

• in KBUILD, each Makefile “is only responsible for building objects in its own directory”3.
Therefore, each file can only be included by the Makefile in its own directory.

The Mozilla build system’s MOZBUILD, however, allows more freedom in the selection of
its source files as, as detailed in Section 2.3.2, a moz.build file can be included by multiple
other ones. It is hence possible to have multiple inclusion chains leading to a single source file’s
selection (i.e., multiple PCs), each one of them potentially exhibiting an anomaly. For example,
on Figure 9.1, /tools/fuzzing/foo.c has two inclusion chains, of which one is defectuous.
Using conjunctions or disjunctions to assemble them as a single PC would lead to major clarity
issues. In this same example, PC1 ∨ PC2 would be satisfiable and not exhibit any defect, hiding
the defectuous inclusion chain. On the opposite, although PC1 ∧ PC2 would not be satisfiable and
exhibit a dead defect, the information on which inclusion is defectuous would be lost. In order to
maximize the expressiveness of our representation of the build system, there is a need to update
the representation of how assets include each other. Consequently, as the expressions of anomalies
depend on this representation, they may also need to be updated.

Particularities of the configuration space In this model, the expression of an asset’s PCExt

depends on the external spaces of constraints that we choose to include, indifferently being deriva-
tors or configurators. Although this mechanism allows an easy combination of external sets of

3https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt

https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt
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Inclusion
selectCondition: BooleanFormula
predecessorsCondition: BooleanFormula
internalDependenciesCondition: BooleanFormula

cond() : BooleanFormula

Derivator

assets : Feature[]

Configurator

assets : CodeAsset[]

BuildSystem
Space

name: String

1..*

1..*

Asset
name: String

1..*

1

Feature
dependencies : BooleanFormula

CodeAsset
pcInts: PresenceCondition[]
pcExts: PresenceCondition[]

getPCInts() : PresenceCondition[]

getPCExts() : PresenceCondition[]

getPCInts(Context) : PresenceCondition[]

getPCExts(Context) : PresenceCondition[]

1..*

1..*

includingAsset

PresenceCondition
condition: BooleanFormula

getExpressionWithFeaturesConditions : BooleanFormula

Context
pcInt() : PresenceCondition

pcExts() : PresenceCondition[]

includedAsset

pcInt1

pcExts1..*

usedFeatures

1

presenceCondition
1..*

1..*

1

Anomaly

1

1..*

1

Figure 9.2: Assets model

constraints, it can potentially hamper the comprehension of an identified anomaly. For example,
when analyzing the consistency of a code block considering constraints from all spaces, the PCExt

checks the consistency of the block’s condition with the condition to select its containing file in
the KBUILD and the conditions to select the features of the conditions in the KCONFIG. However,
if PCExt is not satisfiable, understanding the real cause is not straightforward as it could be due
to:

• an incompatibility between the condition to select the block and the condition to select the
file;

• an incompatibility between the condition to select the block and the conditions to select the
features from this condition;

• an incompatibility between the file’s condition and the conditions to select the features from
this condition.

This limitation calls for a need to consider differently external derivation spaces and configuration
spaces.

9.2 Generalizing the model

9.2.1 Dealing with arity of parent assets

Source files being derivator assets in our model, representing the selection of a source file by
multiple moz.build files means that we need to consider in our model the selection of an
asset by multiple others. Additionally, an asset can be included more than once by another one
under different conditions, as shown on Listing 9.1. android_support is included twice by
the same moz.build file, under both the CPU_ARCH__arm__ ∧ OS_TARGET__Android__ and
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Asset

Anomaly

1

1..*

InteractionAnomaly

MissingDeadAnomaly MissingDeadExplanationexplanation Feature1..*

Context1..*

DeadAnomaly CoreAnomaly FullMandatoryAnomaly

DeadCoreExplanation FullMandatoryExplanation

explanation explanation explanation

ExternalTotalDead

InternalTotalDead

ExternalPartialDead

InternalPartialDead

ExternalTotalCoreInternalTotalCore ExternalPartialCoreInternalPartialCore

TotallyFullMandatory

PartiallyFullMandatory

PresenceCondition

defectuousPCs

1..*

assetInternalPC

1

assetParentExternalPC

1

1 1

1

1

Figure 9.3: Anomalies model

CPU_ARCH__x86__ ∧ OS_TARGET__Android__ conditions. Considering these new specificities
leads to an updated representation of assets in the build system presented in Figure 9.2. A Context
represents the inclusion of an asset by another, having one Inclusion for each condition that
allows the asset’s selection by this other asset. While having multiple inclusions in a context
allows representing the different conditions allowing an asset to select another, the different
contexts of an asset allow modeling its selection by multiple different assets.

Formally, a context c = ⟨achild, aparent, I⟩ can be defined as follows:

• achild is the selected code asset ;

• aparent is the selecting code asset ;

• I a set of inclusions.

An inclusion i ∈ I is defined as i = ⟨ϕselect, ϕpreds, ϕdepInt⟩, whose definitions are identical as in
the definition of asset in the previously presented model Chapter 8, Definition 8.1. Therefore, the
PCInt is now linked to an inclusion instead of an asset. Since an asset is selected by another when
at least one of its inclusions is satisfiable, a context’s PCInt is the disjunction of its inclusions’
conditions cond.

PCInt(c) =
∨
i∈I

cond(i)

with cond(i) = ϕselecti
∧ expand (ϕpredsi

) ∧ expand (ϕdepInti
).

For each context, we can also define the PCExts issuing from inclusions in a context.

PCExts(c) =
⋃

pc∈PCExts(aparent)
PCInt(c) ∧ pc
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Listing 9.1: Excerpt of resource_adaptation_api_gn/moz.build
168 if CONFIG["CPU_ARCH"] == "arm" and CONFIG["OS_TARGET"] == "Android":
169
170 OS_LIBS += [
171 "android_support",
172 "unwind"
173 ]
174
175 if CONFIG["CPU_ARCH"] == "x86" and CONFIG["OS_TARGET"] == "Android":
176
177 OS_LIBS += [
178 "android_support"
179 ]

Finally, an asset having now a list of contexts C, they possess several PCInts and PCExts.

PCInts(a) =
⋃

c∈C
PCInt(c) PCExts(a) =

⋃
c∈C

PCExts(c)

This additional decomposition leads to a refinement of dead, core and full-mandatory assets
definitions shown in Figure 9.3:

• partially dead assets, for which some but not all PCs are satisfiable:

∃pc ∈ PCInts/Exts(a) ¬sat(pc)

• totally dead assets, for which no PC is satisfiable:

∀pc ∈ PCInts/Exts(a) ¬sat(pc)

• partially core assets, for which some but not all PCs are always satisfiable:

∃pc ∈ PCInts/Exts(a) ¬sat(¬pc)

• totally core assets, for which all PCs are always satisfiable:

∀pc ∈ PCInts/Exts(a) ¬sat(¬pc)

• partially full-mandatory assets, for which the constraints from the external space imply
its selection for some inclusion chains:

∃pcInt ∈ PCInts(a), pcExt ∈ PCExts(a) sat(pcExt) ∧ ¬sat(¬pcInt ∧ pcExt)

• totally full-mandatory assets, for which the constraints from the external space imply its
selection for all inclusion chains:

∀pcInt ∈ PCInts(a), pcExt ∈ PCExts(a) sat(pcExt) ∧ ¬sat(¬pcInt ∧ pcExt)

Previously defined dead, core and full-mandatory anomalies can still be identified as they are
special cases of totally dead, totally core and totally full-mandatory anomalies when there is a
single inclusion chain.

Note. For dead and core anomalies, PCInts are used to check for internal anomalies (Sec-
tion 8.1.1.1) and PCExts to check the for external anomalies (Section 8.1.1.2).

https://github.com/mozilla/gecko-dev/blob/master/third_party/libwebrtc/api/adaptation/resource_adaptation_api_gn/moz.build
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Table 9.1: New expressions of PCs for the B3 block and the foo.c file involving the configuration
space from Figure 2.2.

Asset Expressions

B3 block

PCInt(B3) = BAR ∧ ¬PCInt(B2) ∧ PCInt(B1)
PCExt(B3) = PCInt(B3) ∧ PCExt(foo.c)
PCInt+config(B3) = PCInt(B3) ∧ PC(BAR) ∧ ¬PC(FOO) ∧ (PC(FOO) ∨ PC(BAR) ∨ PC(BAZ))
PCExt+config(B3) = PCInt+config(B3) ∧ PCInt+config(foo.c)*

foo.c file
PCInt(foo.c) = FOO ∧ PCInt(dir) = FOO ∧ BAR

PCInt+config(foo.c) = PCInt(foo.c) ∧ (PC(FOO) ∧ PC(BAR))

* in this case, while PCExt+config(foo.c) should be used, it is equivalent to PCInt+config(foo.c) as assets in the
KBUILD space do not depend on any asset from another derivator.

9.2.2 Defining PCs with feature constraints

In order to consider differently external derivation spaces and the configuration space when check-
ing for anomalies in a derivation space, we refine the already existing PCInts and PCExts and de-
fine variants including the constraints for the features in the PC, PCInt+config and PCExt+config.
PCInts and PCExts now consider only the desired derivation spaces, while PCInt+config and
PCExt+config add constraints from the configuration space. This allows a finer granularity in the
identification of anomalies:

• an incompatibility between the condition to select the block and the condition to select the
file is identified using the PCExt;

• an incompatibility between the condition to select the block and the conditions to select the
features from this condition is identified using the PCInt+config;

• an incompatibility between the file’s condition and the conditions to select the features from
this condition is identified using the PCExt+config.

To better understand how these PCs are used in practice, we detail in Table 9.1 their expressions
for the B3 block and the foo.c file from Figure 2.2. This new decomposition of PCs allows a
better understanding of the considered spaces. For example, PCExt(B3) is defined two times in Ta-
ble 8.3, first for CPP – KBUILD constraints, and then for CPP – KBUILD – KCONFIG constraints.
This double use of the same denomination is confusing as it takes into account constraints for B3
and foo.c in the first case, and in the second case constraints for B3, foo.c and the features
selecting B3. Our new representation (Figure 2.2) allows representing this second case formally
under the denomination of PCInt+config(B3). It also enables the definition of PCExt+config(B3),
considering constraints for B3, foo.c and the features selecting both B3 and foo.c. We instan-
tiate on both the Linux kernel build system and the Mozilla build system the proposed models
of configurator and derivator in Tables 9.2 and 9.3, respectively. Mozilla’s Autoconf differs from
the KCONFIG by not allowing a user to select a set of features to configure the system. Being a
set of web-based applications, the configuration of the Mozilla products is mostly related to the
operating system and hardware specifications of the system running them, which are therefore
determined automatically. Consequently, ϕenable is considered as being always true. Regarding
the instantiation of the derivator, we observe that integrating the MOZBUILD led to the creation
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Table 9.2: Configurator instantiated on the Linux kernel build system and the Mozilla build system.

Configurator KCONFIG Mozilla Autoconf

Asset Feature

ϕenable
the ability to select the feature by user
selection (prompt), or default value

true

ϕdeps
boolean formula on features defined in
the depends on statement

boolean formula on features

Fselect
set of features selecting F with a
select statement

selection by Autoconf system analysis

Core anomaly the feature is always selected despite having constraints on its selection

Dead anomaly the feature can never be selected

Missing dead anomaly the feature depends on another feature that is not defined

of partial anomalies, and that the previously dead, core and full-mandatory anomalies for the
KBUILD and CPP are now totally dead, totally core and totally full-mandatory without changing
their definitions.

9.3 Evaluation

To evaluate the relevance of our anomalies identification framework, we provide a twofold eval-
uation. First, we evaluate the accuracy of our representation by identifying dead anomalies in
systems built using the Linux kernel build system, and compare our findings to the results of a
similar analysis with the actual reference tool to identify anomalies in the Linux kernel build sys-
tem, KernelHaven. Then, we evaluate the generalization capabilities by instantiating our model on
the Mozilla build system to identify anomalies in the Gecko codebase (cf. Section 2.3.2).

9.3.1 Instantiation on open source systems using the Linux kernel build system

9.3.1.1 Subject systems

Table 9.4 depicts the studied subject systems. As our approach has been initially designed as a
synthesis of studies on anomalies in the Linux kernel, we apply our tooled approach on this
system to evaluate in practice the accuracy of our representation that, in a first step, has been
done only formally (cf. Section 8.2.4). We selected BusyBox to evaluate the applicability of our
approach on another system as its build system also uses KCONFIG, KBUILD and CPP, making it
a reference case study that has been widely used by work studying anomalies in the Linux kernel
build system [Dietrich et al., 2012; Gazzillo, 2017; Oh et al., 2019; Nguyen and Nguyen, 2020].

9.3.1.2 Evaluation process

For each project, we first run KernelHaven’s UnDead analyzer4 on the codebase and obtain the list
of all dead code blocks and source files, together with the cause of the anomaly. The 4.4 version

4https://github.com/KernelHaven/UnDeadAnalyzer

https://github.com/KernelHaven/UnDeadAnalyzer
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Table 9.3: Derivator instantiated on the KBUILD, MOZBUILD and CPP.

Derivator KBUILD MOZBUILD CPP

Asset Source file Source file Code block

ϕselecta

∨
fi with fi being features

which at least one needs to be
set for the source file to be se-
lected. If the file is always se-
lected, ϕselect = true. If the as-
set is defined but never added to
a list, ϕselect = false.

The condition of the if sur-
rounding the block. If the file is
always selected, ϕselect = true.

The condition of the #if sur-
rounding the block.

ϕpredsa
comp, the composite variable if
s is part of a composite defini-
tion. comp must be selected.

¬(
∨
i

bi) with bi the correspond-

ing if block and the potential
elif blocks before b if b is an
elif or else block, otherwise
true.

¬(
∨
i

bi) with bi the correspond-

ing #if block and the poten-
tial #elsif blocks before b if b
is an #elsif or #else block,
otherwise true.

ϕdepInta
dir, the directory containing the
source file which also needs to
be selected.

p ∧ dir with p the parent block
of b if b is a nested block and
dir the condition to enter this
MOZBUILD file.

p, the parent block of b if b is a
nested block.

ϕdepExta
– – The condition to select the file

containing b.

Totally
dead
anomaly

the KBUILD inclusion chain can
never select the file

no MOZBUILD inclusion chain
allows to select the file

the code block can never be se-
lected

Partially
dead
anomaly

– some but not all MOZBUILD in-
clusion chains never allow se-
lection of the file

–

Totally
core
anomaly

the KBUILD inclusion chain al-
ways selects the file

all MOZBUILD inclusion chains
always select the file

the code block is always se-
lected

Partially
core
anomaly

– some but not all MOZBUILD in-
clusion chains always select the
file

–

Totally
full-
mandatory
anomaly

the file can be selected re-
garding constraints from the
KBUILD file he’s declared in,
but cannot be when adding con-
straints from the parent KBUILD
files

for all inclusion chains, the file
can be selected regarding con-
straints from the MOZBUILD
file he’s declared in, but can-
not be when adding constraints
from the parent MOZBUILD
files

the code block can be selected
regarding CPP constraints, but
cannot be when adding con-
straints from the MOZBUILD
space

Partially
full-
mandatory
anomaly

– for some but not all inclu-
sion chains, the file can be
selected regarding constraints
from the MOZBUILD file he’s
declared in, but cannot be when
adding constraints from the par-
ent MOZBUILD files

–
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Table 9.4: Studied subject systems

System Linux Kernel BusyBox Mozilla Gecko

Version 4.4 1.35.0 BETA_103_BASE

# LoC 14,336,580 200,802
27,470,299

including comm: 1,545,331

Configurator KCONFIG KCONFIG Custom Autoconf
# features 19,031 1,257 134*

Derivator on source files KBUILD KBUILD MOZBUILD

# source files 15,865 544 20,169

Derivator on code blocks CPP CPP CPP
# code blocks (ifdefs) 134,008 2,935 105,689

* manually extracted

Table 9.5: Identified anomalies correspondence table

Space Proposed framework KernelHaven

CPP
InternalTotalDead C-preprocessor condition alone is not satisfiable
ExternalTotalDead C-preprocessor condition combined with file PC is not satisfiable

KBUILD InternalTotalDead File PC alone is not satisfiable

has been chosen as KernelHaven is preconfigured for this version, thus reducing the risks of poten-
tial inaccuracy in the results due to a configuration issue. Then, we extract the presence conditions
for each code block and source file and use them as input for our anomalies identification frame-
work. To obtain them, we run two extractors bundled with KernelHaven: the UndertakerExtractor5

and the KbuildMinerExtractor6. These two extractors are based on the original implementations
of UNDERTAKER [Sincero et al., 2010] and KbuildMiner [Berger and Kästner, 2016]. Not only do
they implement the approaches we base our model on and allow us to extract information com-
pliant with it, but they also allow us to reuse the same data as KernelHaven’s UnDeadAnalyzer
phase, ensuring maximum relevance of our comparison.

We then build a mapping adapting precision and recall measures, using the anomalies identi-
fied by KernelHaven as the ground truth, to evaluate the accuracy of our representation.

Precision is used to measure the percentage of anomalies identified by the proposed framework
also being identified by KernelHaven;

Recall is used to measure the percentage of anomalies identified by KernelHaven also being iden-
tified by the proposed framework.

5https://github.com/KernelHaven/UndertakerExtractor
6https://github.com/KernelHaven/KbuildMinerExtractor

https://github.com/KernelHaven/UndertakerExtractor
https://github.com/KernelHaven/KbuildMinerExtractor
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Table 9.6: Results of the mapping between anomalies identified by KernelHaven and our frame-
work.

Tool
Linux anomalies BusyBox anomalies

CPP CPP – KBUILD KBUILD CPP CPP – KBUILD KBUILD

Proposed framework 2,441 40 8 154 11 15
KernelHaven 1,214 12 8 121 0 15
Both 1,214 12 8 121 0 15

Precision 49.73% 30% 100% 78.57% – * 100%
Recall 100% 100% 100% 100% – * 100%

* precision and recall values are not calculated for CPP – KBUILD anomalies in BusyBox as they are all
false positives according to the mapping.

As KernelHaven’s UnDead analyzer identifies dead blocks but not core ones, we consider only
the dead anomalies identified by the proposed framework for the mapping, and normalize the
anomalies denominations as summarized in Table 9.5. Additionally, although the proposed frame-
work allows taking into account constraints from the configuration space, KernelHaven’s only
variability-model extractor KConfigReaderExtractor7 extracts constraints in the form of a feature
model represented by a single CNF formula. Consequently, the coarse grain expressiveness of pro-
vided by KernelHaven regarding the KCONFIG does not allow us to consider it in our fine-grain
representation.

9.3.1.3 Observations

Table 9.6 summarizes the obtained results on both systems.

Results on the Linux kernel 49.73% of CPP anomalies identified by the proposed framework
are also identified by KernelHaven. After manual analysis of the results, out of the 1.227 additional
dead blocks identified only by our model, 396 blocks are present in header files that are not ana-
lyzed individually by KernelHaven. 2 are dead blocks in dead files considering the KBUILD space
of constraints, and 166 are located in dead files considering both KBUILD and KCONFIG spaces,
and are automatically ignored by KernelHaven. Similarly, 307 dead blocks are located in files for
which KernelHaven could not determine the presence condition. This is due either to a KBUILD

file that is not parseable by KernelHaven, or because the file is not included in the KBUILD file
of their directory, or is in a directory not included by their parent KBUILD. This pattern actually
characterizes a file not used anomaly [Nadi and Holt, 2011] (Anomaly 10). Blocks in such files
are ignored by KernelHaven. An important majority of the remaining 388 blocks correspond to
#if 0 blocks or #else branches of #if 1 blocks, while the others are likely to be anoma-
lies revealed by the expansion of macros by KernelHaven. We do not cover this operation in our
framework as we designed it to be independent of the implementation language. Consequently, we
solely rely on the conditions extracted by the tool we use, PILZTAKER (Section 9.3.3). Regarding
the CPP – KBUILD anomalies, all 28 anomalies identified only by the proposed framework are

7https://github.com/KernelHaven/KconfigReaderExtractor

https://github.com/KernelHaven/KconfigReaderExtractor
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code blocks in dead files, and thus are ignored by KernelHaven. Regarding the KBUILD anomalies,
the proposed framework and KernelHaven identify exactly the same anomalies.

Results on BusyBox Regarding the CPP anomalies, the proposed framework identifies all 121
anomalies identified by KernelHaven. 33 additional anomalies are identified and are located in
dead files ignored by KernelHaven. As for the Linux kernel, the identified KBUILD anomalies
are identical between both approaches, and the 11 CPP – KBUILD anomalies not identified by
KernelHaven are in dead files ignored by KernelHaven. It results that our representation covers all
the anomalies identified by KernelHaven, as well as additional ones that have been ignored.

Summary It results that for both subject systems, the proposed framework identifies all anoma-
lies identified by KernelHaven. Additionally identified anomalies correspond to actual anomalies
ignored by KernelHaven due to their nature, for example, dead blocks in already dead files or #if
0 blocks that are very likely to be intentional. Our framework therefore provides good coverage
for these categories of anomalies. However, we could not consider the constraints from the con-
figuration space, therefore we cannot conclude on the capacity of our representation to identify
anomalies involving it. In a further step, we aim to explore the use of slicing techniques to obtain
the constraints for each feature [Acher et al., 2011; Krieter et al., 2016] and represent them in our
model.

9.3.2 Application to Mozilla Gecko

9.3.2.1 Subject system

For this evaluation, we consider the whole Mozilla Gecko codebase, namely the
mozilla-central8 repository containing code for the Firefox web browser, the Android Fire-
fox application and the SpiderMonkey suite and comm-central9 being the code specific to the
Thunderbird mail client and the SeaMonkey suite. We analyze the BETA_103_BASE release,
being the first release of the 103 version of the codebase, the most recent at the time of this study.

9.3.2.2 Evaluation process

After assembling corresponding versions of both codebases (tag FIREFOX_BETA_103_BASE
for mozilla-central and BETA_103_BASE for comm-central), we automatically ex-
tract presence conditions from the CPP and MOZBUILD spaces. For each of the products that
can be built from the codebase (cf. Section 2.3.2), the corresponding MOZBUILD files are parsed
and their constraints extracted. As features constraints are challenging to parse due to their im-
plementation and their scattering over files (cf. Section 2.3.2), we manually extracted a subset
of features from build/moz.configure/init.configure10. In this section, we present
the results obtained with MOZBUILD constraints from build files parsed when building the Firefox
web browser.

8https://hg.mozilla.org/mozilla-central/
9https://hg.mozilla.org/comm-central/

10https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/
init.configure#l503

https://hg.mozilla.org/mozilla-central/
https://hg.mozilla.org/comm-central/
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/init.configure#l503
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/build/moz.configure/init.configure#l503
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Table 9.7: Dead, core and full-mandatory anomalies identified in the Gecko codebase when build-
ing the Firefox browser

Spaces Dead Core Full-mandatory
Totally Partially Totally Partially Totally Partially

Without features from configuration

CPP 533 – 2 – – –
MOZBUILD 0 59 15 2 – –
CPP – MOZBUILD 16 308 0 0 14 4

With features from configuration

CPP 0 0 0 0 0 0
MOZBUILD 0 0 0 0 0 0
CPP – MOZBUILD 12 22 0 0 0 0

9.3.2.3 Observations

Table 9.7 summarizes the obtained results. Full-mandatory anomalies are not identified for the
CPP and MOZBUILD anomalies as the expression of the full-mandatory anomaly relies on both
internal and external PCs, thus identifying them is possible only for anomalies between at least two
spaces. Partially dead anomalies are not identified for the CPP anomalies as a block always has
a single including asset being its source file, thus it cannot be partially dead. Although our model
allows representing missing dead features, these were not computed as we know our set of features
to be incomplete making the potential outcome not representative. Finally, while we analyzed
the manually extracted features from the configuration to find anomalies in this space, none were
identified. We therefore omitted it in the table. In the following paragraphs, when boolean formulas
are given to detail anomalies, we use underlining to exhibit conflicting terms.

CPP anomalies 533 code blocks have been identified as totally dead, of which 499 have for
condition #if 0 for which we can assume that they have been implemented on purpose by devel-
opers to deactivate parts of the code, making 34 relevant identified anomalies. An example is given
in Listing 9.2, where the dead block has for condition ¬ ABSL_USES_STD_OPTIONAL ∧
(ABSL_USES_STD_OPTIONAL ∧ __GLIBCXX__).

2 code blocks have been identified as totally core. One block11 is the else branch of a
#if 0 and thus has as PC ¬false, and the other one12 has for condition # if YYDEBUG
|| YYERROR_VERBOSE || 1 that is translated in YYDEBUG ∨ YYERROR_VERBOSE ∨
true and is always true.

MOZBUILD anomalies 59 source files have been identified as partially dead, of
which an example is given in Listing 9.3. /js/app.mozbuild (listing 9.3a) in-
cludes /tools/fuzzing/moz.build (listing 9.3b) under the JS_STANDALONE ∧

11https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/gfx/cairo/cairo/src/cairo-
qt-surface.cpp#l1412 (l.1412-1447)

12https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/third_party/rust/glslopt/glsl-
optimizer/src/compiler/glsl/glsl_parser.cpp#l828 (l.828-902)

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/gfx/cairo/cairo/src/cairo-qt-surface.cpp#l1412
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/gfx/cairo/cairo/src/cairo-qt-surface.cpp#l1412
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/glsl_parser.cpp#l828
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/third_party/rust/glslopt/glsl-optimizer/src/compiler/glsl/glsl_parser.cpp#l828
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1 #if !defined(ABSL_USES_STD_OPTIONAL)
2 ...
3 #if defined(ABSL_USES_STD_OPTIONAL) && defined(__GLIBCXX__) <-- dead
4 // libstdc++ std::optional implementation (as of 7.2) has a bug: when T is
5 // trivially copyable, optional<T> is not trivially copyable (due to one of
6 // its base class is unconditionally nontrivial).
7 #define ABSL_GLIBCXX_OPTIONAL_TRIVIALITY_BUG 1
8 #endif
9 #endif

Listing 9.2: Anomaly internal to the CPP space (third_party/libwebrtc
/third_party/abseil-cpp/absl/types/optional_test.cc)

FUZZING condition. All source files added in /tools/fuzzing/moz.build with
the ¬ JS_STANDALONE condition thus have for PC (JS_STANDALONE ∧ FUZZING)
∧ ¬ JS_STANDALONE, making them dead.

15 totally core files have been identified, of which 4 are false-positives resulting from limi-
tations of our parsing capabilities. The MOZBUILD system being implemented in Python, some
conditions are implemented in a non-standard way (e.g., conditions on variables, use of built-in
functions, string formatting) and are therefore not parsed by our parser. Considering these state-
ments would require evaluating them. The remaining 11 are actually files added in different lists
depending on some condition and that are considered as always being added (cf. Listing 9.4). Al-
though this behavior is clearly intentional and therefore cannot be considered as an anomaly, we
believe that identifying this pattern is relevant as it corresponds to usage of the file selection sys-
tem to handle the source files differently. Identifying such a pattern could therefore be useful to
issue a warning to the developer and ensure that the behavior is really motivated.

Out of the 2 identified partially core files. One is a moz.build file being included without
any condition, while the other one is a compilation partially core compilation flag depicted in List-
ing 9.5. The CC_TYPE__clang__ ∨ CC_TYPE__clang-cl__ condition is redundant as it
is first added without condition.

CPP – MOZBUILD anomalies 16 totally dead code blocks have been identified due to con-
flicts between constraints in both the CPP and MOZBUILD spaces. They mainly represent con-
flicts created on purpose to throw errors specifying that this combination is indeed not valid
and prevent conflicts to happen throughout the codebase evolution. For example, such a block
identified in js/src/jit/x86-shared/Assembler-x86-shared.cpp13 throws a
"Wrong architecture. Only x86 and x64 should build this file!" er-
ror. This way, the build is stopped in case the file is selected by the MOZBUILD when building
for an architecture other that x86 or x64. On the opposite, other identified anomalies appear to be
unintentional as the example given in Listing 9.6.

• B2’s PCInt: ¬ MOZ_SANDBOX

• ref_counted.cc’s PCExt: MOZ_SANDBOX ∧ ¬ (OS_ARCH__Linux__ ∨
OS_ARCH__Darwin__) ∧ OS_ARCH__WINNT__

13https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/js/src/jit/x86-
shared/Assembler-x86-shared.cpp#l16

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/js/src/jit/x86-shared/Assembler-x86-shared.cpp#l16
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/js/src/jit/x86-shared/Assembler-x86-shared.cpp#l16
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40 if CONFIG[’JS_STANDALONE’] and CONFIG[’FUZZING’]:
41 DIRS += [
42 ’/tools/fuzzing/’,
43 ]

(a) /js/app.mozbuild

12 if not CONFIG["JS_STANDALONE"]: <-- dead
13 DIRS += [
14 "common",
15 "faulty",
16 "messagemanager",
17 "shmem",
18 "ipc",
19 ]
20
21 if CONFIG["FUZZING_SNAPSHOT"]:
22 DIRS += [
23 "nyx",
24 ]
25
26 if CONFIG["LIBFUZZER"]:
27 DIRS += [
28 "rust",
29 ]

(b) /tools/fuzzing/moz.build

Listing 9.3: Partially dead anomaly internal to the MOZBUILD space

Therefore, B2 can never be selected whenever ref_counted.cc is, making it a dead block.
On the opposite, B1’s selection condition is redundant as the file is selected if MOZ_SANDBOX is
satisfied. B1 is therefore one of the 18 identified full-mandatory blocks.

Regarding partially dead blocks, they mainly represent #ifndef statements on a variable
that, if entered, define this variable with a #define, ensuring that it is always set (e.g., in
/accessible/other/XULListboxAccessibleWrap.h14).

Anomalies involving the configuration space We did not identify any anomaly between the
configuration and one of the CPP or MOZBUILD spaces. However, we identified 22 partially dead
and 12 totally dead code blocks due to conflicting constraints between the three spaces. Listing 9.7
illustrates 6 of the 12 identified totally dead blocks.

Constraints from the configuration space From the code excerpt of listing 9.7a, we can
extract the following constraints:

• CANONICAL_KERNEL_LINUX → (¬ OS_ANDROID ∧ OS_LINUX) ∨ OS_ANDROID

• CANONICAL_OS_GNU → (¬ OS_ANDROID ∧ OS_LINUX)

14https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/accessible/other/
XULListboxAccessibleWrap.h#l6

https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/accessible/other/XULListboxAccessibleWrap.h#l6
https://hg.mozilla.org/mozilla-central/file/a66dcaea419641c5483a43aa7f577b70908d147f/accessible/other/XULListboxAccessibleWrap.h#l6
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111 if CONFIG["MOZ_WIDGET_TOOLKIT"] == "windows":
112 SOURCES += ["DecodePool.cpp"]
113 else:
114 UNIFIED_SOURCES += ["DecodePool.cpp"]

Listing 9.4: False-positive core anomaly internal to the MOZBUILD space
(/image/moz.build)

245 CFLAGS += [
246 ...
247 ’-Wno-incompatible-pointer-types’,
248 ...
249 ]
250 if CONFIG[’CC_TYPE’] in (’clang’, ’clang-cl’):
251 CFLAGS += [
252 ...
253 ’-Wno-incompatible-pointer-types’, <-- core
254 ...
255 ]

Listing 9.5: Partially core anomaly internal to the MOZBUILD space
(/gfx/cairo/cairo/src/moz.build)

• OS_ARCH__Linux__ → CANONICAL_KERNEL_LINUX ∧ CANONICAL_OS_GNU

Constraints from the MOZBUILD space The only condition to select the
platform_thread_posix.cc file is OS_ARCH__Linux__ (listing 9.7b) that, given
the constraints from the configuration space, is equivalent to ¬ OS_ANDROID ∧ OS_LINUX.

Constraints from the CPP space The condition to select the code block at line 191
of listing 9.7d is OS_FUCHSIA ∧ ¬ OS_MACOSX ∧ ¬ OS_LINUX ∧ ¬ OS_ANDROID,
Finally, the condition to select this block by taking into account constraints from
all spaces is (OS_FUCHSIA ∧ ¬ OS_MACOSX ∧ ¬ OS_LINUX ∧ ¬ OS_ANDROID) ∧
(¬ OS_ANDROID ∧ OS_LINUX), that is unsatisfiable. Consequently, the successive #elif
and #else blocks are also dead as their PCs also inherit from the ¬ OS_LINUX condition.

9.3.3 Implementation

The proposed framework is decomposed into several independent entities, illustrated on Fig-
ure 9.4. Extracting CPP constraints in the Mozilla Gecko codebase is done using PILZTAKER15

(itself relying on UNDERTAKER). MOZBUILD files being written in Python, we designed a
MOZBUILD parser in Python relying on the Python AST library16 to extract a JSON represen-
tation of the MOZBUILD files. As Sincero et al. [2010] did for CPP when analyzing the Linux
kernel, conditions are translated in boolean statements in a similar way.

The main part of the framework identifying the anomalies is the pc-identificator that uses
as input the previously extracted constraints from all spaces. It is written in Java and relies on

15https://github.com/SSE-LinuxAnalysis/pilztaker
16https://docs.python.org/3/library/ast.html

https://github.com/SSE-LinuxAnalysis/pilztaker
https://docs.python.org/3/library/ast.html
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39 if CONFIG[’MOZ_SANDBOX’]:
40 DIRS += [’/security/sandbox’]

(a) /toolkit/toolkit.mozbuild

20 if CONFIG["OS_ARCH"] == "Linux":
21 DIRS += ["linux"]
22 elif CONFIG["OS_ARCH"] == "Darwin":
23 DIRS += ["mac"]
24 elif CONFIG["OS_ARCH"] == "WINNT":
25 ...
26 SOURCES += [
27 ...
28 "chromium/base/memory/ref_counted.cc",
29 ...
30 ]

(b) /security/sandbox/moz.build

84 #if defined(MOZ_SANDBOX) <-- B1 is full-mandatory
85 return true;
86 #else <-- B2 is dead
87 return sequence_checker_.CalledOnValidSequence() ||
88 g_cross_thread_ref_count_access_allow_count.

load() != 0;
89 #endif

(c) /security/sandbox/chromium/base/memory/ref_counted.cc

Listing 9.6: Example of total dead anomaly between the CPP and MOZBUILD spaces

Sat4j17 for solving the boolean formulas. The information characterizing the identified anomalies
are then output in a JSON format. Finally, the model presented in Section 9.2 is implemented in
EMF18 and the identified anomalies are instantiated using the classes generated from the model.
Every part of the framework is independent and Dockerized to ease the reproduction of the results
and independent reuse on other codebases. As for scalability, the overall analysis of a product
that can be derived from the Mozilla build system (extraction of constraints and identification of
anomalies) takes less than two hours (Table 9.8).

9.4 Threats to validity

As we do not provide a validation by actual developers or architects of any system, the main threat
to the validity of our work regards the relevance of the identified anomalies. For example, some
patterns identified as anomalies in Mozilla Gecko correspond to usages of the build system for
other purposes than variability management (cf. Section 9.3.2.3). Similarly, #if 0 blocks can be
used intentionally as a way to comment parts of the implementation. We can also imagine that

17https://www.sat4j.org/index.php
18https://www.eclipse.org/modeling/emf/

https://www.sat4j.org/index.php
https://www.eclipse.org/modeling/emf/


9.4 – Threats to validity 155

468 if "android" in os:
469 canonical_os = "Android"
470 canonical_kernel = "Linux"
471 elif os.startswith("linux"):
472 canonical_os = "GNU"
473 canonical_kernel = "Linux"

757 elif target.kernel == "Darwin" or (target.kernel == "Linux" and target.os == "
GNU"):

758 os_target = target.kernel
759 os_arch = target.kernel

(a) /build/moz.configure/init.configure

20 if CONFIG["OS_ARCH"] == "Linux":
21 DIRS += ["linux"]

(b) /security/sandbox/moz.build

26 UNIFIED_SOURCES += [
27 ...
28 "../chromium/base/threading/platform_thread_posix.cc",
29 ...
30 ]

(c) /security/sandbox/linux/moz.build

176 #if defined(OS_MACOSX)
177 return pthread_mach_thread_np(pthread_self());
178 #elif defined(OS_LINUX)
179 ...
180 #elif defined(OS_ANDROID)
181 return gettid();
182 #elif defined(OS_FUCHSIA) <-- dead
183 return zx_thread_self();
184 #elif defined(OS_SOLARIS) || defined(OS_QNX) <-- dead
185 return pthread_self();
186 #elif defined(OS_NACL) && defined(__GLIBC__) <-- dead
187 return pthread_self();
188 #elif defined(OS_NACL) && !defined(__GLIBC__) <-- dead
189 // Pointers are 32-bits in NaCl.
190 return reinterpret_cast<int32_t>(pthread_self());
191 #elif defined(OS_POSIX) && defined(OS_AIX) <-- dead
192 return pthread_self();
193 #elif defined(OS_POSIX) && !defined(OS_AIX) <-- dead
194 return reinterpret_cast<int64_t>(pthread_self());
195 #endif

(d) /security/sandbox/chromium/base/threading/platform_thread_posix.cc

Listing 9.7: Example of total dead anomaly between the CPP, MOZBUILD and Configuration
spaces
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System codebase
CPP constraints extraction

MozBuild constraints extraction
Assembling and solving 

PCs, identifying anomalies

Features constraints extraction

#if (defined FOO || defined BAR)
    // B1
    #if defined BAZ
        // B2
    #endif
#endif

if CONFIG["FUZZING"] 
and CONFIG["JS_STANDALONE"]:
DIRS += ['fuzzing']

if cpu.endswith("86"):
    canonical_cpu = "x86"
    endianness = "little"
elif cpu in ("x86_64", "ia64"):
    canonical_cpu = cpu
    endianness = "little"

Configuration

moz.build files

C / C++ files

Pilztaker

Custom MozBuild parser

Manual extraction

pc-identificator

B1: FOO ∨ BAR
B2: BAZ ∧ B1

fuzzing: FUZZING 
∧ JS_STANDALONE

endian_little: 
CPU_x86 ∨ CPU_x86_64 
∨ CPU_ia64 

EMF model

Representing the assets 
and their anomalies

[{“asset”: B1, 
“anomaly”:DEAD, 
“context”: …}]

Figure 9.4: Identification process

partial dead MOZBUILD anomalies throwing exceptions are not anomalies and act as a safeguard
to prevent errors. Nevertheless, we believe that knowing the location of such implementations is
important for the evolution of the system, and our framework is capable of detecting them. Having
feedback from the developers would help us confirm whether these behaviors are common practice
and intended, or correspond to actual anomalies.

Another threat regards the evaluation of our approach on the Linux kernel build system and
BusyBox, as the mapping achieved between KernelHaven and our approach was limited to dead
anomalies in the implementation and did not take into account the configuration space. This lim-
itation to dead anomalies is due to KernelHaven’s UndeadAnalyzer only outputting dead blocks,
while the configuration space could not be taken into account as state-of-the-art approaches rep-
resent the whole KCONFIG as a single CNF formula [She et al., 2010; El-Sharkawy et al., 2015;
Kästner, 2016] (Section 9.3.1.2). However, anomalies involving the configuration space were iden-
tified in Mozilla Gecko, giving us confidence in the soundness of our representation.

Regarding the results obtained on the Mozilla Gecko, although our study considers all three
spaces of constraints, we did not possess a complete variability model and we manually extracted
some features. It is therefore likely that some anomalies involving other configuration constraints
were missed, or on the opposite that the ones we identified are false positives as we did not under-
stand them correctly. Feedback from developers of the Mozilla build system would help us assess
the relevance of both the features and constraints we extracted, and the identified anomalies.

Finally, the MOZBUILD being designed as a sandbox on top of the Python language, the con-
ditions present in the moz.build scripts make use of Python statements such as startsWith
(e.g., CONFIG["OS_ARCH"].startswith("GNU_")19) that cannot be directly transformed
in boolean. Consequently, some conditions cannot be parsed and may be related to some anoma-
lies that we therefore cannot identify. Completing our static analysis with a dynamic approach
executing the MOZBUILD sandbox with known configurations could help this identification.

19https://github.com/mozilla/gecko-dev/blob/6a850a50bbe7b97e1a3ac8b659ec15a5fc0b623a/xpcom/reflect/xptcall/md/unix/moz.build#L42

https://github.com/mozilla/gecko-dev/blob/6a850a50bbe7b97e1a3ac8b659ec15a5fc0b623a/xpcom/reflect/xptcall/md/unix/moz.build#L42
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Table 9.8: Execution time for each analysis step on Mozilla Gecko for the Firefox web browser,
Thunderbird mail client, the SeaMonkey suite and the Android Firefox application.

Step
Execution time

Firefox browser Thunderbird SeaMonkey Android app

Extracting constraints

CPP space 5 min 26 s
MOZBUILD space 1 min 26 s
Total 6 min 52 s

Identifying anomalies

CPP + CPP – MOZBUILD 9 min 24 s 9 min 10 s 9 min 01 s 9 min 07 s
MOZBUILD 12 s 12 s 14 s 11 s
Configuration 300 ms 400 ms 250 ms 170 ms
CPP – Configuration 25 s 24 s 24 s 27 s
MOZBUILD – Configuration 14 s 13 s 12 s 12 s
CPP – MOZBUILD – Configuration 1 h 37 min 12 s 1 h 29 min 24 s 1 h 28 min 50 s 1 h 21 min 38 s
Total 1 h 47 min 36 s 1 h 39 min 31 s 1 h 28 min 50 s 1 h 31 min 45 s

System configuration: Ubuntu 18.04.2 LTS with Intel Xeon CPU E5-2637v2 @ 3.5GHz and 128Go memory.

9.5 Conclusion

In order to evaluate whether the Linux-centered model introduced in Chapter 8 is applicable to
other build systems and answers Challenges B1 and B2, we evaluated its applicability on the
Mozilla build system as another example of ad hoc variability-aware build system. Consequently,
the model has been generalized to support the diversity of mechanisms it exhibits compared to the
Linux kernel build system, leading to the definition of new anomalies. The model has then been
implemented in a framework enabling automatic identification of anomalies in both the Linux
kernel build system and the Mozilla build system. The evaluation conducted on the Linux kernel
build system, showed that all dead anomalies in and between the CPP and the KBUILD identified
by state-of-the-art approaches are also identified by our framework, validating the coverage of
existing work regarding these anomalies. The application of the complete model on the Mozilla
build system led to the identification of anomalies that, after manual analysis, appear to be either
(i) relevant anomalies, (ii) intentional conflicts caused for safety checks or (iii) uses of the build
system’s capacities for other purposes.

As a result, the updated representation of assets in the build system keeps a fine-grain view
of the relationships that exist between them, and the differentiation between spaces involved in
presence conditions increases the understanding of anomalies, improving the answer to Chal-
lenge B1 brought by our first version in Chapter 8. Additionally, the conducted evaluation
demonstrates the capacity of our framework to identify anomalies and, consequently, the rel-
evance of their representation, improving the answer to Challenge B2 given by our previous model.

Although bringing additional elements of answers for both challenges, this chapter does not
yet allow answering them completely. The analysis of the Mozilla build system’s mechanisms and
their incorporation in our model enabled a first generalization of our model to represent the se-
lection of assets in a build system. However, it is likely that other build systems as the one of the
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Chromium platform20 or JHipster [Halin et al., 2017] use yet other mechanisms. Fully answer-
ing Challenge B1 therefore requires a study of additional build systems to gain a better overview
of the diversity of mechanisms they rely on. Regarding Challenge B2, our answer is limited by the
extent of our validation, which would be improved by taking into account the Linux kernel build
system’s configuration space and a validation of the identified anomalies in the Mozilla build sys-
tem.

20https://chromium.googlesource.com/chromium/src/tools/gn/+/
48062805e19b4697c5fbd926dc649c78b6aaa138/README.md

https://chromium.googlesource.com/chromium/src/tools/gn/+/48062805e19b4697c5fbd926dc649c78b6aaa138/README.md
https://chromium.googlesource.com/chromium/src/tools/gn/+/48062805e19b4697c5fbd926dc649c78b6aaa138/README.md


CHAPTER 10
Conclusion and

perspectives
When large-scale variability-intensive software systems are not organized as SPLs, managing their
implemented variability is challenging.

In the case of OO systems, their variability is often implemented by relying on OO mecha-
nisms. As they are not especially designed for variability implementation, they do not allow a clear
mapping with the domain variability that is, most often, missing. Consequently, information on the
implemented variability and its location in such codebases is lost, hampering its comprehension
and, thereby, the maintenance and evolution capabilities of the system, eventually threatening its
overall quality. There is therefore a need to identify and comprehend these variability implemen-
tations to master them and their quality.

In addition, large scale highly-variable systems often rely on build systems to manage the dif-
ferent build steps of the system. Instead of relying on model-driven approaches to shape their vari-
ability, they often reuse off-the-shelf solutions and adapt them to implement variability to select
code assets at multiple granularities. However, their variability management capacities are limited
as (i) they do not incorporate mechanisms allowing to ensure the consistency of the variability
they implement and (ii) they are not aware of the variability that is implemented in other steps of
the build system. As a result, conflicts can happen between conditions to select assets, leading to
anomalies prone to bugs in the derived variants of the system. It is therefore essential to obtain a
global view of the implemented variability in such build systems to prevent these anomalies.

10.1 Summary of the contributions

This section details the challenges that we tackled in this thesis towards these goals, summarizing
for each of them the proposed solutions and their limitations.

A. Comprehending variability implemented in OO software systems

A1. Identifying variability implemented in OO software systems

In Chapter 4, we assessed the relevance of the identification technique relying on the density of
symmetries in OO constructs proposed by Tërnava et al. [2019] on two aspects. This method has
been implemented in the symfinder toolchain, allowing automatic identification of variability im-
plementations in Java systems implemented in a single codebase. They are then visualized in the
shape of a graph, exhibiting concentrations of nodes corresponding to dense zones of variability

159



160 CHAPTER 10 — Conclusion and perspectives

implementations. First, we extended the identification technique to another OO language, C++. The
application of the toolchain on systems in both Java and C++ systems led to the identification of
dense zones of symmetries that could be visually correlated to information from the domain vari-
ability. This relevance was then confirmed by an automatic mapping of these identified variability
implementations with reverse-engineered feature traces from two systems, ArgoUML-SPL and
Sat4j, validating that an important part of the implemented variability is identified by symfinder.
However, a non-negligible amount of false positives were also identified. Consequently, in Chap-
ter 5, we refined the identification technique by taking into account usage relationships between
classes and, relying on them, formally characterized the notion of density of OO variability im-
plementations. This density is parameterized, and adapting these parameters allows identifying
hotspot classes maximizing the density and filtering out less dense zones of variability implemen-
tations.

While the density of symmetries appears as an answer to Challenge A1, this definition ex-
hibits limitations. As for the number of identified vp-s and variants, we could observe that for
given parameters, the number of the classes identified as hotspots can importantly differ between
two projects, even of similar sizes. It is therefore likely that other mechanisms are involved in OO
variability implementations and lead to their density, and need to be explored as they could be
used to help determine adequate parameters for the density measure, that are actually to be deter-
mined manually. Additionally, we did not conduct an evaluation of the relevance of the identified
hotspots. Tërnava et al. [2022] introduced a preliminary definition of density considering only the
inheritance relationships. This measure has for only parameter a threshold on the minimum num-
ber of variants at class or method level (i.e., the individual density) for a vp to be identified as
a hotspot. They then identified hotspots in ArgoUML-SPL and Sat4j, defining multiple values of
threshold and mapping for each threshold the identified hotspots to the features traces. It results
that the number of false positives diminishes when increasing the threshold, showing that using
this parameter to filter variability implementations allows outputting a subset of more relevant vari-
ability implementations. We, therefore, have good confidence about the relevance of vp-s filtered
with a density measure enriched with usage relationships.

A2. Making the identified variability implementations comprehensible

The symfinder toolchain [Mortara et al., 2019] proposes a graph visualization of the identified
vp-s and variants that allowed the authors to distinguish relevant zones concentrating variability
implementations. However, no evaluation of the understandability of the visualization has been
performed. In Chapter 4, we conducted an empirical evaluation with Daniel Le Berre, software
architect of Sat4j, and gathered his feedback on using the tool and the provided visualization to
comprehend the variability implemented in his system. It results that the visualization allowed him
to distinguish relevant variability implementations. Henceforth, this representation has been kept
and extended to visualize the additional usage relationships in symfinder-2 (Chapter 5). However,
although filtering options were added to enable focusing on particular zones of the visualization,
the diversity of information that needed to be displayed showed the limits of this solution. In Chap-
ter 6, VariCity was designed as a 3D visualization relying on the metaphor of the city, adapted to
OO variability implementations. Two evaluations were conducted. A first evaluation based on on-
boarding scenarios demonstrated that the interactions provided by the view allow to gradually
explore the system and gather information about the implemented variability. Then, a controlled
experiment measuring the gain brought by VariCity compared to the use of an IDE to solve vari-
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ability identification tasks showed that subjects using VariCity could answer more correctly to the
given tasks, and were completing them faster and more easily. Finally, the visualization has been
embedded (Section 7.5 in Chapter 7), enabling bidirectional between the implementation and the
visualization in an integrated environment preventing context switching.

These results give us confidence in the fact that VariCity is a relevant answer to Challenge A2.
Further validating this claim would however require an extended user experiment. Due to orga-
nizational reasons, the conducted experiment only considers subjects students with similar levels
of experience. Additionally, the size of the panel constrained us to evaluate VariCity on a single
subject system. Conducting an experiment with a larger panel of subjects of different levels of
experience would allow us to consider multiple object systems and mitigate biases related to the
experience of the subjects and the chosen object system.

A3. Understanding the quality of the implemented variability

Relying on the definition of variability debt and its causes given by Wolfart et al. [2021], we de-
fined variability debt in the context of OO variability implementations (Section 3.3). In Chapter 7,
we defined OO quality metrics allowing their identification and proposed VariMetrics. This solu-
tion extends the VariCity approach introduced in Chapter 6 and allows to visualize altogether the
variability implementations and OO quality metrics on the system to reveal indebted zones dense
in variability implementations. The view is configurable and allows the combination of quality
metrics on multiple visual axes. The conducted quantitative and qualitative evaluations showed
the capacity of VariMetrics to reveal indebted zones dense in variability implementations which,
when refactored, allow for increasing the quality of the system.

By revealing simultaneously the zones of the system being dense in variability implementa-
tions and/or critical regarding their quality, VariMetrics meets Challenge A3. Although the quali-
tative evaluation consisting of the refactor of code identified as both variability dense and quality-
critical showed, it also enlightened a limitation of our approach. Where some of the identified
debt actually corresponded to improperly implemented variability, other parts were plain techni-
cal debt located in variability intense classes, but not linked to variability implementations. There
is therefore a need to refine the definition of OO variability debt to isolate indebted variability
implementations from technical debt present in variable code assets implementing variability.

B. Comprehending the variability managed by build systems

B1. Making explicit the derivation mechanism of build systems

State-of-the-art contributions describing the selection of code assets in build systems (i) all target
the Linux kernel build system and (ii) all focus on isolated steps of the build systems, preventing
a global view of the interactions that exist between assets in these steps. In Chapter 8, we synthe-
size these works in a formalism based on the generic concepts of configurator and derivator with
assets. Presence conditions allow modeling with precision the relationships that exist between as-
sets throughout the steps. In Chapter 9, we study the Mozilla build system and exhibit similarities
between its derivation mechanism and the one of the Linux kernel build system. The model has
then been generalized to support the Mozilla build system as another build system. Its relevance
has been validated by being implemented in a framework and instantiated on the code assets of
both build systems.
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This representation enables a fine-grain understanding of the derivation mechanisms of these
build systems, providing an answer to Challenge B1. Although it supports two build systems
managing large codebases, it is very likely that other build systems of popular systems such as
Chromium or JHipster [Halin et al., 2017] rely on other mechanisms.

B2. Characterizing and identifying anomalies in a build system

As each contribution from the state of the art characterizing anomalies in build systems focuses on
isolated steps of the Linux kernel build system, the definitions and formalisms they rely on are not
aligned. Although their definitions have been implemented in multiple tools designed explicitly
for the Linux kernel build system [Sincero et al., 2010; Nadi and Holt, 2012; Kästner, 2016], these
inconsistencies hamper the understanding of the causes of these anomalies and, consequently, their
application to other build systems. In Chapter 8, we enumerate and analyze 25 definitions from
work characterizing anomalies in the Linux kernel build system and rely on these definitions to de-
fine anomalies on assets, expressing the satisfiability formulas allowing their identification using
the model’s presence conditions. We then formally instantiate all these definitions in our represen-
tation, demonstrating coverage of these works. In Chapter 9, we extend these definitions to support
anomalies induced by the diversity of mechanisms used in the Mozilla build system. The detection
of these anomalies has been implemented in the model’s framework and has been applied to both
the Linux kernel build system and the Mozilla build system. Evaluation on the Linux kernel build
system has been conducted by comparing the dead anomalies identified using our representation
to anomalies identified using KernelHaven [Kröher et al., 2018a,b], a state-of-the-art approach to
identify dead anomalies in the Linux kernel build system. It results that the proposed framework
covers all the anomalies found by KernelHaven on the considered subset of the Linux kernel build
system. Regarding the Mozilla build system, the application of the framework on its code assets
led to the identification of multiple anomalies that appear to be relevant.

By being able, through its implementation as a framework, to identify anomalies the Linux
kernel build system and the Mozilla build system, our model meets Challenge B2. The relevance
of the approach is however limited by the extent of the conducted evaluation. On the Linux kernel
build system, only the dead anomalies between the KBUILD and CPP were considered to be able
to design a mapping with KernelHaven. We hence cannot conclude on the relevance of other
anomalies. As to the extent of our knowledge, no approach identifying anomalies in the Mozilla
build system could enable a comparison of the obtained results, we assessed the relevance of
the identified anomalies by manually inspecting the codebase. Additionally, as some identified
anomalies seemed to be intentional behaviors, a validation from maintainers of the Mozilla build
system would be required to assess whether it is actually the case or not.

10.2 Perspectives

In this section, we detail perspectives on the continuation of this work both in the short and long
terms.

10.2.1 Short-term perspectives

Bridging the gap between variability-aware build systems and OO variability implemen-
tations. While in this thesis we studied separately wild implementations of variability in OO
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systems and wild management of variability in build systems, those two aspects can coexist in
software systems. An example is the Mozilla Gecko codebase, for which an important part of
the implementation is in C++ (analyzed in Chapter 4) while the selection of these code assets is
managed by its build system (studied in Chapter 9). Therefore, in addition to the variability imple-
mented in the build system that is resolved at pre-compile time, the OO architecture of the system
exhibits by its nature variability that is resolved at runtime. First concerns about the interactions
between compile-time and runtime variability had been enlightened by a recent line of work on
deep software variability, mainly focusing on the interactions between configuration options at
both level [Lesoil et al., 2021a,b,c]. We aim therefore to study how such systems manage this
diversity of variability implementation mechanisms, and whether new types of anomalies can is-
sue from these interactions between build system variability and OO variability implementations,
requiring a model allowing their representation in a homogeneous way and allowing to reason on
these interactions.

Improving the OO variability implementations identification technique. Due to their com-
plex nature, identifying OO variability implementations is not trivial. Successive improvements
to the technique proposed by symfinder, taking into account usage relationships and characteriz-
ing a parameterized density measure, allowed to improve its precision. While vp-s and variants
are identified by their structure, their understanding is made possible through the use of visual-
izations, that are then interpreted by the architect or developer based on their knowledge of the
system. For example, nomenclatures of the code assets were extensively used by the subjects of
our controlled experiment in Chapter 6 to understand the implemented variability. There is there-
fore a need to explore whether other information from the domain can be extracted from the code
asset or, when available, in other sources such as documentation or commits [Dintzner et al., 2016]
and issues in the control version system to be then used to refine the results of the vp-s and variants
identification.

Monitoring the evolution of the variability in the implementation and in build systems.
Software systems are living ecosystems evolving in time on all their aspects, being their imple-
mentation [Mens et al., 2005], their quality [Sato et al., 2007; Hecht et al., 2015], or their vari-
ability at both domain and implementation level [Lotufo et al., 2010; Passos et al., 2013; Kröher
et al., 2018c]. Understanding in what measure they evolve is important for their maintenance and
multiple approaches have been designed to understand and master it, mainly relying on visualiza-
tions [Gall and Lanza, 2006; Diehl, 2007; Wettel and Lanza, 2008b; Steinbrückner and Lewerentz,
2013]. Regarding OO variability implementations, being able to track their evolution is of utmost
importance as they are hidden in the codebase. Comprehending them is already achieved through a
visualization and as visually comparing snapshot views can be confusing since the exhibited repre-
sentations can importantly change between two versions of a system, there is a need to extend it to
support several versions of a system. Regarding build systems, while recent work proposes a tech-
nique to easily monitor the evolution of dead anomalies in the Linux kernel build system [Kröher
et al., 2022], such methods need to be extended to monitor the presence of anomalies throughout
the evolution of the system.
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10.2.2 Long-term perspectives

Studying the other symmetry patterns in OO structures. The proposed technique used by
symfinder to identify OO variability implementations relies on the notion of symmetry in OO
software constructs proposed by Coplien and Zhao [2000b]. This work is based on the original
definition of local symmetry that Alexander [2002] previously defined in the Theory of Centers
together with 14 other definitions of structural properties. Therefore, the symmetries present in
these other structural properties might be a way to identify variability implementations that do not
respect the common implementation techniques, such as code duplication for example. Achieving
this goal requires instantiating these properties on the software structures and providing a tech-
nique to identify them.

Studying wild variability in other paradigms. Multiple large scale software systems are imple-
mented using different programming languages. For example, the Mozilla Gecko codebase relies
on 48 different programming languages1, with C++ and JavaScript representing around 27% of the
total LoCs each one. The adoption of JavaScript as a support language for large scale applications
is increasing and some work from the SPL community is oriented towards using it as a support
language for variable systems [Machado et al., 2014; Halin et al., 2017; Cortiñas et al., 2022].
Studying how variability is implemented in such a language would complement the study of the
previously introduced perspective on the interactions between variability mechanisms in the build
system and the implementation code by enabling the study of the interactions between different
variability implementations in the implementation code. This study requires first, in the case of
JavaScript, a characterization of how variability is implemented in systems using this language
and a method to identify it. Only then a language-independent unified view of the implemented
variability with a characterization of their interactions can be built.

Exploring the impact of OO variability implementations on other software properties.
Variability implementations are known to have an effect on the comprehension [Galster et al.,
2017; Medeiros et al., 2017] and the management of the evolution of a system [Metzger and
Pohl, 2014], consequently hampering the quality of the system [Wolfart et al., 2021]. To tackle
this issue, in Chapter 7, we proposed VariMetrics as a first approach unifying in a single rep-
resentation OO variability implementations and software metrics. Additionally to their impact on
software maintenance, software quality defects such as code smells are known to cause an increase
in the energy consumption of an application [Carette et al., 2017]. Software energy consumption
recently gained a lot of interest for the scientific community [Pinto et al., 2015] and configur-
ing software systems taking into account energetical constraints is challenging [Götz et al., 2012,
2013]. Moreover, recent work shows that refactoring functional code impacts the energy consump-
tion of a system [Ournani et al., 2021]. We aim therefore to extend our analysis of the effects of
OO variability implementations on other properties of a system, such as its energy consumption.
Achieving this goal requires being able to characterize and measure the energy consumption of
variability implementations.

1https://www.openhub.net/p/firefox/analyses/latest/languages_summary

https://www.openhub.net/p/firefox/analyses/latest/languages_summary
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APPENDIX A
State-of-the-Art

anomalies in the Linux
kernel build system

In this appendix, we enumerate the 25 definitions of anomalies in the Linux kernel build system
presented in the five selected state-of-the-art papers characterizing them (cf. Section 3.5). The
definitions presented here are directly extracted from the papers, although some sentences may be
added to reproduce their context. We mark with a ⋆ anomalies that are naturally inconsistent as they
are directly extracted from papers. Characterizing these inconsistencies is done by instantiating the
anomalies in our models (cf. Section 8.2).

A.1 CPP internal consistency by Sincero et al. [2010]

Sincero et al. [2010] formalize CPP directives using propositional logic and propose a framework,
UNDERTAKER, to automate the derivation of presence conditions from ifdef directives. They
define lines of code in ifdef blocks as blocks and define for a block bi the

Presence Condition [Sincero et al., 2010]:

PC(bi) = expression(bi) ∧ noPredecessors(bi) ∧ parent(bi)

with

expression(bi) Given a block bi, the function expression(bi) returns the logical expression as
specified in the block declaration.
Example. For the block B1 in Figure 2.2, expression(b1) returns: A ∨ B ∨ C.

parent(bi) Given bi, parent(bi) returns the logical variable that represents the selection of its
parent. If the block is not nested in any other block, then the result is always true.
Example. For the block B3 in Figure 2.2, parent(b3) returns: b1.

noPredecessors(bi) Given bi, noPredecessors(bi) returns the negation of the disjunction of all
its predecessors (logical variables representing blocks) in an if-group.
Example. For the block B4 of Figure 2.2, noPredecessors(b4) returns: ¬(b2 ∨ b3).

The authors then give a definition of dead defect:
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Anomaly 1 (Dead block [Sincero et al., 2010]). A block is dead if:

¬satisfiable(K ∧ C ∧ BlockN )

with K and C the propositional formulas representing the problem space constraints (i.e., KCON-
FIG space) and solution space constraints (i.e., Make space) respectively. satisfiable() represents
the boolean satisfiability problem1.

Relying on the expression of the presence condition, the authors finally define two levels of
consistency to express this definition of dead defect.

Anomaly 2 (Internal consistency [Sincero et al., 2010]). Internal consistency is defined as check-
ing for each block of a compilation unit if it is selectable by at least one valid configuration. This
property is checked with satisfiable(Cu ∧ bi) which, expanded using the definition of Cu, gives:

satisfiable

(( ∧
i=1..m

bi ↔ PC(bi)
)

∧ bi

)

Anomaly 3 (External consistency [Sincero et al., 2010]). External consistency is defined as check-
ing for each block of a compilation unit if it is selectable by at least one valid configuration. This
property is checked with satisfiable(Cu ∧ bi ∧ FM) (with FM the representation of the feature
model in a boolean formula) which, expanded using the definition of Cu, gives:

satisfiable

(( ∧
i=1..m

bi ↔ PC(bi)
)

∧ bi ∧ FM

)

A.2 KCONFIG internal consistency by Hengelein [2015]

In his Master’s thesis, Hengelein [2015] analyses the internal consistency of KCONFIG and char-
acterises six different types of anomalies. While Anomalies 4, 5 and 6 are common anomalies
resulting from conflicts between constraints on the features, Anomalies 7, 8 and 9 are related to
the syntax of the KCONFIG files.

Anomaly 4 (Dead feature [Hengelein, 2015]). A feature is dead if there are contradictions in its
dependencies.

Anomaly 5 (False optional (undead) feature ⋆ [Hengelein, 2015]). A false optional feature in
KCONFIG is a feature that is selected by another feature that is always on or selected by a feature
that is false optional itself.

Anomaly 6 (Missing dead feature [Hengelein, 2015]). A feature is missing dead if features in the
dependencies are not defined in KCONFIG.

Anomaly 7 (Selects on Symbols with Dependencies [Hengelein, 2015]). select statements
should not be used to select symbols matching the following conditions:

• The symbol has dependencies
1In the remainder of this chapter, we will refer to it as sat().
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• The symbol is selected by another symbol

Anomaly 8 (Unreachable symbol [Hengelein, 2015]). A symbol is unreachable if:

• The symbol is invisible (does not have a prompt)

• The symbol is not selected by another symbol

• The symbol does not have a default value (or just default values with the value n)

Anomaly 9 (Unnecessary Selects on Choice Values [Hengelein, 2015]). select statements are
unnecessary on symbols matching the following conditions:

• The symbol is a choice value

• The symbol is selected by another symbol

A.3 KBUILD consistency by Nadi and Holt [2011]

Nadi and Holt [2011] investigate both the internal and external consistencies of the KBUILD

Makefiles by studying the (non-)use of composite objects, and the non-selection of a file because
of a missing feature. The absence of files from the code base in the Makefiles is also studied
(Anomaly 10), but does not result from a conflict between constraints in the build system.

Anomaly 10 (File Not Used (implementation-compilation consistency) [Nadi and Holt, 2012]).
A .c file exists in the directory but is not used in the Makefile of that directory.

Anomaly 11 (Feature Not Defined (compilation-configuration consistency) [Nadi and Holt,
2012]). A .c file is referenced in the Makefile, and its presence is conditioned on a KCONFIG

feature being defined. However, this feature is not defined in any of the KCONFIG files.

Anomaly 12 (Variable Not Used (compilation self-consistency) [Nadi and Holt, 2012]). A .c file
is referenced in the Makefile as part of a composite variable definition, but this variable is never
used.

A.4 KCONFIG–CPP consistency by Tartler et al. [2011]

Tartler et al. [2011] characterize defects issuing from conflicts between the KCONFIG and the CPP
space. They first give the following definition of dead and undead blocks.

Anomaly 13 (Configurability defect ⋆ [Tartler et al., 2011]). A configurability defect (short: de-
fect) is a configuration-conditional item that is either dead (never included) or undead (always
included) under the precondition that its parent (enclosing item) is included:

dead: ¬sat(C ∧ I ∧ BlockN )
undead: ¬sat(C ∧ I ∧ ¬BlockN ∧ parent(BlockN ))

with C and I the formulas representing the configuration (i.e., KCONFIG) and implementation (i.e.,
Make) spaces respectively.
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The authors then reuse the formalism proposed by Sincero et al. [2010] to simplify the defects
with the two following definitions.

Anomaly 14 (Implementation-only defects [Tartler et al., 2011], simplification of Anomaly 2).
Implementation-only defects [. . . ] represent code blocks that cannot be selected regardless of the
systems’ selected features; the structure of the source file itself contains contradictions that im-
pede the selection of a block. This can be determined by checking the satisfiability of the formula
sat (bi ↔ PC(bi)). We can infer the expressions for dead and undead implementation-only de-
fects.

dead: ¬sat (bi ↔ PC(bi))
undead: ¬sat (¬ (bi ↔ PC(bi)))

Anomaly 15 (Configuration-implementation defects ⋆ [Tartler et al., 2011], simplification
of Anomaly 3). Configuration-implementation defects occur when the rules from the configu-
ration space contradict rules from the implementation space. We check for such defects by solv-
ing sat ((bi ↔ PC(bi)) ∧ V). We can infer the expressions for dead and undead configuration-
implementation defects.

dead: ¬sat ((bi ↔ PC(bi)) ∧ V)
undead: ¬sat (¬ (bi ↔ PC(bi)) ∧ V)

with V the propositional formula representing the configuration space (i.e., the feature model of
KCONFIG).

The authors then define two defects internal to the KCONFIG.

Anomaly 16 (Configuration-only defects [Tartler et al., 2011]). Features are present in the
configuration-space model but do not appear in any valid configuration of the model, which
means that the presence condition of the feature is not satisfiable. We can check for such defects
by solving: sat(feature → presenceCondition(feature)). However, no formal definition of
presenceCondition was given.

Anomaly 17 (Referential defects [Tartler et al., 2011]). Referential defects are caused by a missing
feature (m) that appears in either the configuration or the implementation space only. That is:

sat ((bi ↔ PC(bi)) ∧ V ∧ ¬ (m1 ∨ · · · ∨ mn))

is unsatisfiable.

A.5 KCONFIG–KBUILD–CPP consistency by Nadi and Holt [2012]

Nadi and Holt [2012] improve UNDERTAKER [Tartler et al., 2011] to add constraints from the
Make space and identify dead and undead artifacts at both source file and code block levels,
relying on constraints from the three spaces.

Anomaly 18 (Code anomalies [Nadi and Holt, 2012]). Code anomalies are defined as "Conflict-
ing code constraints" and are not expressed in the paper as they are already determined by the
UNDERTAKER tool designed in [Tartler et al., 2011]. Thus, formulas to detect these anomalies are
the ones from Anomalies 2 and 14.
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Anomaly 19 (Code–KCONFIG defects ⋆ [Nadi and Holt, 2012]). Code–KCONFIG anomalies are
defined as "Code constraints are not consistent with constraints in Kconfig" and detected using
the following formulas:

DeadBN
= ¬sat(BlockN ∧ C ∧ K)

UndeadBN
= ¬sat(¬BlockN ∧ parent(BlockN ) ∧ C ∧ K)

These formulas are strictly identical to Anomaly 15, thus their expressiveness in our model
will be checked together.

Anomaly 20 (Code–KCONFIG missing [Nadi and Holt, 2012]). Such defects happen when Code
constraints are not consistent with Kconfig constraints because certain features used in the code
are not defined in the Kconfig files and are, therefore, always false.

Anomaly 21 (Code–Make [Nadi and Holt, 2012]). Code–Make anomalies are defined as "Code
constraints are not consistent with constraints in Makefiles". Although their formulas are not given
in the paper, we can deduce them from Anomaly 19:

DeadBN
= ¬sat(BlockN ∧ C ∧ M)

UndeadBN
= ¬sat(¬BlockN ∧ parent(BlockN ) ∧ C ∧ M)

Anomaly 22 (Code–Make–KCONFIG ⋆ [Nadi and Holt, 2012]). Code–Make–KCONFIG anoma-
lies are defined as "The combination of constraints in the three spaces are conflicting" and detected
using the following formulas:

DeadBN
= ¬sat(BlockN ∧ C ∧ M ∧ K)

UndeadBN
= ¬sat(¬BlockN ∧ parent(BlockN ) ∧ C ∧ M ∧ K)

Anomaly 23 (Code–Make–KCONFIG missing [Nadi and Holt, 2012]). Such defects happen when
"The combination of constraints in the three spaces are conflicting because certain features used
in the compilation constraints are not defined in the Kconfig files, and are therefore always false".

Anomaly 24 (Make–KCONFIG ⋆ [Nadi and Holt, 2012]). A file is dead "if it can never be present
(i.e., will never get compiled) while satisfying the combination of constraints in the Make space
and the KCONFIG space". These anomalies are checked by checking these formulas.

DeadFN
= ¬sat(FileN ∧ M ∧ K)

UndeadFN
= ¬sat(¬FileN ∧ M ∧ K)

Anomaly 25 (Make–KCONFIG missing [Nadi and Holt, 2012]). The definition of this type of de-
fects is not written literally in the paper but we can derive the definition from Anomalies 20 and 23.
Such defects happen when the combination of constraints in the make and KCONFIG spaces are
conflicting because certain features used in the Makefiles are not defined in the KCONFIG files,
and are therefore always false.







Maîtriser la variabilité enfouie dans les systèmes orientés objet
et les systèmes de construction logicielle

Johann MORTARA

Résumé

La demande sans cesse croissante de solutions logicielles nouvelles et récentes oblige les pro-
fessionnels du logiciel à développer et à maintenir des systèmes logiciels personnalisables tout
en garantissant un niveau élevé de qualité et de fiabilité. Si les lignes de produits logiciels
(LPLs) constituent une solution pour atteindre cet objectif, de nombreux systèmes logiciels
riches en variabilité ne sont pas organisés de cette manière. Ils augmentent progressivement
leurs parties variables, en s’appuyant sur les multiples mécanismes existants pour mettre en
œuvre leur variabilité dans le code et leur chaîne d’outils de construction. Dans leur mise en
œuvre, les systèmes orientés objet (OO) gèrent principalement leur variabilité dans une base de
code unique en utilisant des mécanismes OO tels que l’héritage et les patrons de conception.
En raison de leur nature, ces implémentations sont enfouies dans la base de code, ce qui nuit
à la compréhension du système par les développeurs et, par conséquent, à sa maintenance et
à son évolution, entraînant des problèmes de qualité. En outre, les grands systèmes logiciels
riches en variabilité s’appuient souvent sur des systèmes de construction complexes pour sélec-
tionner les éléments du code. Comme il s’agit de systèmes de construction ad hoc réutilisant
des outils standard, aucune représentation globale du mécanisme de résolution de la variabilité
n’est disponible, et des conflits peuvent survenir et causer des anomalies. Dans cette thèse,
nous proposons tout d’abord les bases et les techniques pour identifier et visualiser les implé-
mentations de la variabilité dans les grands systèmes logiciels OO riches en variabilité. Ces
implémentations sont abstraites en termes de points de variation et de variantes et identifiées
en s’appuyant sur la notion de densité de symétries dans les structures OO. En reprenant la
métaphore d’une ville, elles sont ensuite visualisées sous la forme d’un ensemble connecté de
bâtiments 3D combinés à des métriques sur leur qualité. Cela permet de distinguer les zones
concentrant les implémentations de variabilité et présentant potentiellement une dette tech-
nique. Ces propositions ont été validées par un prototype sur de grands systèmes logiciels OO
open-source et hautement variables, ainsi que par une étude d’utilisabilité avec deux groupes
distincts de développeurs débutants. La thèse introduit également un cadre de modélisation et
de raisonnement pour caractériser les anomalies dans les systèmes de construction gérant de
la variabilité, permettant de raisonner sur les relations entre les actifs du code, et d’identifier
toutes ces anomalies au grain le plus fin. Le framework a été instancié et partiellement im-
plémenté à la fois sur le système de construction du noyau Linux, démontrant sa généralité
sur les nombreuses détections distinctes sur ce sujet très étudié, et sur une chaîne d’outils de
construction récemment étudiée de la fondation Mozilla, démontrant son applicabilité.

Mots-clés : Génie logiciel, Lignes de produits logiciels, Variabilité logicielle, Modèle de variabilité,
Rétro-ingénierie, Visualisation.
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