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A B S T R A C T

The formation of stars and planets occurs during the collapse of gi-
gantic molecular clouds. A dense core appears at the center of the
collapsing cloud, surrounded by an enveloppe of infalling gas. Be-
cause of the conservation of angular momentum, the remnants of
the neighbouring matter shape themselves into a protoplanetary disc
(ppd). Considering the solar system, ppds disappear in a few million
years after most of their mass concentrated in the central star. This
last property makes ppds being part of a more general class of objects
known as accretion discs.

Protoplanetary discs are thought to be the birth cradle of planets and
are therefore extensively studied. They are cold and magnetised ob-
jects among which stand the transition discs (tds). These peculiar
ppds are characterised by a dust cavity in their inner regions and cen-
tred onto the host star, whose typical widths vary from a few au up
to a few hundreds au. Interestingly, not only are such cavities seen in
the dust profiles of tds, but they are also detected in their gas density
profiles. However, the formation of these objects remains yet unex-
plained.

A striking observation states that despite their diminished surface
density profile, tds accrete at a rate similar to the accretion rates of
full ppds, suggesting a fast inward motion of matter in their cavity.
This result deeply challenges the current evolutionary model of ppds.
Moreover, tds are observed with very large cavities together with
strong accretion rates. The combination of these properties questions
the viscous model of ppds.

A possible explanation for these high accretion rates is the presence of
magnetised winds launched with the Blandfold & Payne mechanism.
Such winds can efficiently remove angular momentum from the disc,
which allows matter to fall down onto the star at high radial velocity.
This paradigm shift from the viscous model to magnetic wind out-
flows in ppds is promising as the fast-accreting cavities of tds could
be sustained by a magnetic wind.

My thesis is devoted to the study of tds harbouring magnetic winds
with global non-ideal magnetohydrodynamics numerical simulations
with the pluto code.

The ionisation fraction of tds is similar to the one calculated in full
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discs, so that ambipolar diffusion is the main non-ideal effect at stake.
I simulated tds with an initial vertical magnetic field and a cavity in
the initial density profile.

With a set of 2.5d simulations, I showed that tds with magnetic
winds are long lived and stable discs. The magnetic torques in the
cavity trigger a fast radial motion of the gas, hence a strong accretion
rate. 2.5d simulations enable to catch the secular evolution of the disc
and especially the transport of magnetic field in the disc.

I also studied 3d simulations to check the stability of the cavity edge
under various instabilities. I detected the formation of spirals inside
the cavity rotating at a constant speed with respect to the radius. Ad-
ditionally, the structure of the cavity shares similarities with magnet-
ically arrested discs (mads).

Finally, I studied the secular evolution of a td on a very long pe-
riod of time (300000 orbits at the internal radius). I showed that the
magnetic field transport has a complex behaviour in the disc, encoun-
tering diffusion as well as advection phases. The flux of the magnetic
field eventually intensifies in the cavity sustaining the disc for long
period of time.

I performed the first simulations of transition discs sustained by mag-
netic winds. This model needs to be related to observations and kine-
matics predictions are good properties to test. In particular, my work
shows that the cavity is sub-keplerian and threaded by a transsonic
accretion flow. I could eventually compare my simulated discs to ob-
servations by building some synthetic images, which proved promis-
ing.
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R É S U M É

Les étoiles et les planètes se forment lors de l’effondrement gravita-
tionnel de gigantesques nuages moléculaires. Au cours d’un effon-
drement, un coeur dense entouré d’une enveloppe de matière appa-
raît. Du fait de la conservation du moment cinétique, le gaz environ-
nant s’organise sous la forme d’un disque protoplanétaire. Le système
solaire étant dépourvu d’un tel disque, on en conclut qu’il doit dis-
paraître (en quelques millions d’années), une fois que l’essentiel de
sa masse a été accrétée par son étoile hôte. En conséquence, les dis-
ques protoplanétaires font partie d’une classe d’objets plus large : les
disques d’accrétion.

Les disques protoplanétaires abritent la formation planétaire, ce qui
en fait des objets particulièrement étudiés et observés. Ces disques
sont essentiellement composés de gaz sous la forme d’un plasma
froid et magnétisé et d’environ 1% de poussière. Certains d’entre eux
se distinguent par la présence d’une cavité interne dans leur profil
de densité de poussière, il s’agit des disques de transition. La taille
de ces cavités est variable, s’étendant de quelques ua à la centaine
d’ua. Tout comme le profil de densité de poussière, la répartition du
gaz présente également une cavité. La formation de tels disques reste
encore assez méconnue.

La faible densité de matière dans la cavité suggère une accrétion
affaiblie dans cette région. Cependant, de nombreuses observations
rendent comptent de forts taux d’accrétion impliquant une vitesse
d’accrétion très élevée. Par ailleurs, certains disques de transition
présentent des cavités très étendues. Ces propriétés remettent en ques-
tion le modèle visqueux standard d’évolution des disques protoplané-
taires.

La présence de vents magnétiques, lancés via le mécanisme de Bland-
ford et Payne, pourrait rendre compte de ces observations. En effet,
de tels vents peuvent prélever le moment cinétique du disque et per-
mettre à la matière de tomber rapidement sur l’étoile. Ce changement
de paradigme est prometteur puisqu’il pourrait expliquer l’existence
de disques de transition accrétant fortement.

Le travail que j’ai conduit en thèse consiste à étudier un modèle de
disque de transition munis de vents magnétiques via des simulations
numériques globales en magnétohydrodynamiques non-idéale avec
le code pluto.

vii



La fraction d’ionisation des disques de transition a une structure sim-
ilaire à celle des disques pleins, ainsi la diffusion ambipolaire est
l’effet non-idéal prépondérant dans mes simulations. J’initialise ces
dernières avec un champ magnétique vertical continu et une cavité
imposée à la main.

Un premier jeu de simulations 2, 5d m’a permis de montrer la sta-
bilité du modèle. De plus, les couples magnétiques enclenchent une
accrétion rapide dans la cavité avec un taux d’accrétion considérable.
Ces simulations permettent d’étudier efficacement l’évolution sécu-
laire du disque, notamment vis-à-vis du transport de champ magné-
tique. J’ai également effectué des simulations 3d pour étudier la sta-
bilité de la cavité vis-à-vis d’instabilités magnétohydrodynamiques.
Il s’avère que des spirales se forment dans cette dernière, avec des
vitesses de rotation constante en fonction du rayon. La structure générale
de la cavité est de plus tout à fait similaire à celle des disques mad

dans le contexte des trous noirs.

Enfin j’ai étudié plus en détail l’évolution séculaire, sur 300000 or-
bites au bord interne. J’ai ainsi mis en évidence l’existence de plusieurs
régimes de transport de champ (diffusion et advection), le flux mag-
nétique de la cavité s’intensifiant au cours du temps.

J’ai réalisé les premières simulations de disques de transition soutenus
par des vents magnétiques, présentant une cavité en rotation sous-
képlérienne traversée par un flot de gaz supersonique. Ces prédic-
tions cinématiques m’ont permis de construire des observations syn-
thétiques, déterminantes dans le but de comparer simulations et ob-
servations.
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Part I

I N T R O D U C T I O N , C O N T E X T A N D N U M E R I C A L
T O O L S

The first part of my thesis aims at giving the physical con-
text of my work. I start by reviewing general results re-
garding protoplanetary discs, based on observations. The
second chapter gathers theoretical results of the non-ideal
mhd framework with the numerical setup I used.





1
O B S E RVAT I O N A L C O N T E X T A N D T R A N S I T I O N
D I S C S

"When you consider things like the stars, our affairs don’t seem to matter
very much, do they?".

— Virginia Woolf, Night and Day (1919)
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4 observational context and transition discs

introduction

Stars and planets are commonly observed and constitutive of any-
one’s daily life. There are countless examples of historic observa-
tions such as the epicycles of Hipparchus (second century b.c.) and
Ptolemy (second century a.d.) or the discovery of Uranus in 1781,
which act like as many landmarks in the philosophy of science. More
recently, the first detection of an exoplanet in 1995 was awarded the
Nobel prize in 2019. Astrophysics and planetary formation shape our
understanding of the world and it comes as no surprise that among
all of the missions of the recently launched James Webb Space Tele-
scope (jwst), one is designed to study stars and planets formation.
The study of protoplanetary discs is intimately linked to planet for-
mation and is definitively key to understand how the solar system
and the exoplanets were formed.
In this introductory chapter, I will start by giving some information
regarding the observational context of protoplanetary discs, with a
focus on some of their properties that I will talk about throughout
all this work (namely accretion, ejection, sub-structures and magnetic
fields).
The aim of my thesis is to work on a model of transitional proto-
planetary discs or transition disc (td) whose accretion is sustained by
magnetic winds. I will therefore devote the next two sections of this
chapter to this category of objects before ending with a description of
magnetic wind launching in protoplanetary discs. Since I do numer-
ical simulations of protoplanetary discs, I will also refer to previous
numerical results in this text.
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introduction

Les étoiles et les planètes accompagnent la vie quotidienne de
quiconque, de leur observation à l’œil nu la nuit aux références
littéraires, filmographiques et artistiques de manière générale.
On ne compte plus les observations déterminantes qui jalonnent
l’histoire des idées. Des épicycles d’Hipparque (deuxième siècle
avant j.c.) et Ptolémée (deuxième siècle après j.c.) à la découverte
d’Uranus en 1781, la conception du monde a été continûment
chamboulée et remodelée par l’astronomie et l’astrophysique.
Plus récemment, la première détection d’une exoplanète en 1995 a
été récompensée par un prix Nobel en 2019.

Considérant le rôle et la perception de l’astrophysique, il n’est
pas surprenant de voir l’engouement généré par le lancement du
James Webb Space Telescope (jwst), dont une des missions est
consacrée à la formation planétaire.

Concernant les observations de disques protoplanétaires, qui
sont les objets centraux de ma thèse, on ne peut que rappeler
l’avancée déterminante effectuée grâce aux observations d’alma. Cet
instrument donne à voir des détails fins dans ces disques, révélant
des structures diverses comme des anneaux, des sillons, des spirales.

Dans ce chapitre d’introduction, je commence par donner quelques
informations générales relatives à l’observation des disques pro-
toplanétaires, en me focalisant sur des propritétés clés, telles que
l’accrétion et l’éjection de matière.

L’objectif de ma thèse est de travailler sur un modèle de disque proto-
planétaire dit de transition, muni d’un vent magnétique permettant
à la matière de s’en échapper.
Je consacre ainsi une part significative de ce chapitre à ces notions
(disques de transition et vents magnétiques). En particulier, je
définirai le terme de disque de transition et je détaille le mécanisme
responsable de l’éjection par vent magnétique.
Dans la mesure où mon travail est basé sur des simulations
numériques, je ferai également référence à des travaux antérieurs de
simulations de disques protoplanétaires.
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1.1 observational context : from the molecular cloud

to protoplanetary discs

1.1.1 Clouds collapses and protoplanetary discs

1.1.1.1 Observations of molecular clouds

The interstellar medium is filled with many gigantic molecular clouds
made of cold matter, which is supposed to be turbulent and magnetic
(Chevance et al., 2022). These clouds experience many perturbations
whose most common origin is supernova (McKee and Ostriker, 1977).
When a perturbation is strong enough (a criteria regarding the cloud
mass is given by Jeans and Darwin, 1902), the cloud starts collaps-
ing which is the first step of stars and planets formation. Dense cores
emerge from this gravitational collapse, surrounded by an envelope
of infalling material. Because of the conservation of angular momen-
tum, the falling matter ends up forming a disc around the central
object. Detailed additional information regarding core collapses can
be found in Lequeux (2012). These discs are named protoplanetary
discs since it has been admitted that these structures are the birth cra-
dle of planets. The overall object is called a young stellar object (yso)
and several classes of these objects are to be distinguished, labelled
from class 0 to class 3. The definition of these classes was initially
based on the slope of the spectral energy distribution (sed) between 2
and 25 µm (Williams and Cieza, 2011). This ranking is due to the fact
that protoplanetary discs were first detected with the infrared excess
in the spectra of their harbouring yso.

Hydrodynamical simulations of cloud collapse (Bate, 2009) as well
as many observational surveys (Cazzoletti et al., 2019; Tazzari et al.,
2021; Otter et al., 2021) strongly suggest that the formation of proto-
planetary discs around young stars is a common process. In partic-
ular, star forming regions are often crowded with an overwhelming
population of yso as seen in fig. 1, taken from Otter et al. (2021).

The study of molecular clouds collapse is interesting in many ways,
because one can expect a protoplanetary disc to inherit some of the
properties of its host cloud, such as its chemical composition or its
magnetic field which is a key topic. It is well known that the atomic
cold neutral medium (cnm) which is the progenitor of the molecular
gas, is strongly magnetised (Crutcher and Kemball, 2019). However,
the scenario that tracks the behaviour of the magnetic field from the
interstellar medium down to the scale of the protoplanetary disc re-
mains unclear (Ching et al., 2022). The most direct method to measure
the magnetic field strength uses Zeeman effect, but the lack of suit-
able probes makes such measurements challenging for ppds. Reliable
direct observations remain sparse and if the molecular clouds and
discs are known to be magnetised, the topology of the field is hardly
known.
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Figure 1: Infra-red (ir) mosaic images of disc hosting stars from a survey in
the orion nebula. The Trapezium cluster is located at the bottom
left corner. Each circle is a source of the survey, image taken from
(Otter et al., 2021).

From the numerical simulations point of view, the magnetic field
has been demonstrated to play a major role related to stars and plan-
ets formation. In particular, purely hydrodynamical simulations ren-
der protoplanetary discs that are way too big compared to observa-
tions, while taking into account the effects of the magnetic field re-
duces their size due to magnetic braking (see Hennebelle et al., 2016

for an analytic justification of this result). Non-ideal mhd processes
such as ambipolar diffusion (see chapter 2 for more details on this
topic) tend to regulate the accumulation of flux in the disc up to
∼ 0.1 G (Masson et al., 2016). The work of Masson et al. (2016) in par-
ticular dwells on the necessity to take into account diffusing effects
in the treatment of magnetic fields.

Now that I have gathered a few properties of the environment in-
side which protoplanetary discs form, I will give some observational
results regarding protoplanetary discs themselves.

1.1.1.2 Discs observations

Because of the angular momentum conservation, protoplanetary are
now thought as inevitable remnants of the could collapse and star
formation process. They are cold objects whose temperature ranges
from 1000 K close to the star (at R ≲ 1 au) down to 10 K (at R ≳
100 au) and made of gas and dust, with a standard ratio of 1 % of
dust. These sources emit strongly in the infra-red (ir) domain so that
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instruments that cover milli- and micrometer range wavelengths are
convenient to study protoplanetary discs.

The infra-red Astronomical Satellite (iras) performed the first sta-
tistical studies of discs in the ir domain (Strom et al., 1989). Time
have now passed since the first historical detections of discs and new
instruments such as the Atacama Large Millimeter/Submillimeter Ar-
ray (alma) render breathtaking observations of protoplanetary discs
as well as numerous statistical studies (Long et al., 2018). The em-
blematic picture of the disc around hl Tau (Brogan et al., 2015) paved
the way to a new epoch in the observations of discs. The Disk Sub-
structures at High Angular Resolution Project (dsharp), introduced
in Andrews et al. (2018), is an example of such state-of-the-art obser-
vations of the field, the panel of discs being shown in fig. 2.

Protoplanetary discs are now undoubtedly understood as inherent
to star formation. The aims of studying these objects are no longer
to find evidences of their existence nor to check a possible link with
planetary formation. The quantity and precision of all the observa-
tions of discs call for refined theoretical models and predictions re-
garding their composition, evolution and the detailed origin of the
structures they harbour. Numerical simulations help to achieve these
objectives as they make predictions to be confirmed by observations
or give them a theoretical background to understand the physical
processes at play.

1.1.2 Protoplanetary discs

1.1.2.1 Accretion

The Sun contains more than 99.8 % of the total mass of the Solar Sys-
tem but only 1% of its total angular momentum. Based on the general
picture of star formation, the primordial discs are massive and orbit
with a Keplerian rotation profile around a protostar which has only
1 % of its final mass. Therefore, it stands clear that as long as a pro-
toplanetary disc nestles around a young star, the surrounding mass
should be accreted towards the central object while the angular mo-
mentum is removed outwards. In this general picture, protoplanetary
discs are considered as accretion discs and the rate at which matter
is moving inwards is called the accretion rate and denoted with the
generic notation Ṁ = dM/dt.

At the innermost radii of protoplanetary discs (R ≲ 0.1 au), the
disc is made of hot gas and subject to intense magnetic fields (I will
come back to this point in sec. 1.1.2.3). The matter coming from the
disc is supposed to follow the stellar magnetic field lines that form
loops from the stellar surface and eventually falling on it in a free
fall motion. In this accretion mechanism, the gas forms accretion
columns and produces an accretion shock at the star surface, that is
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Figure 2: Panel of the 20 protoplanetary discs in the dsharp sample
(1.25 mm continuum emission). Figure taken from Andrews et al.
(2018).



10 observational context and transition discs

observed in the ultraviolet (uv) bands of discs spectra. Such a mech-
anism is named magnetospheric accretion (Bouvier et al., 2006) and
the uv excess gives access to accretion rate estimates. Hartmann et
al. (1998), Dullemond et al. (2006) or Li and Xiao (2016) give orders
of magnitude regarding the accretion rate of protoplanetary discs
around T Tauri stars. The most common estimation given in Hart-
mann et al. (1998) is Ṁppd ∼ 10−8±1 M⊙ yr−1, for T Tauri stars of
mass M⋆ ∼ 0.5 M⊙, where 1 M⊙ is the mass of the Sun.
This order of magnitude implies that ppds disappear on a time scale
of a few million years. Detections of discs around young stars as a
function of their age corroborate this characteristic dispersion time
scale for the ppds.

1.1.2.2 From accretion to ejection

Accretion discs are ubiquitous objects and compose a wide class of
diverse astrophysical discs. Not only are they detected in yso, but
also around black holes and neutron stars (Lynden-Bell, 1969), white
dwarfs (see the review of Verbunt, 1982, for example) or late-stage
stars (Kluska et al., 2022). All these discs share the same fundamental
property: matter is accreted towards the central object and angular
momentum flows outwards. These conditions are fulfilled when an-
gular momentum is removed from the rotating fluid that composes
the disc. This can be achieved with a radial stress Wrφ or (and) a sur-
face one Wθφ. I will give more detailed definitions and properties of
these quantities that appear in the angular momentum conservation
equation in chap. 2. For now, it is enough to state that the radial stress
accounts for the radial removal of angular momentum (through its
radial derivative) and the surface stress for the vertical one. Figure 3

illustrates the role of the stresses with a schematic and local view of
an accretion disc.

An intuitive way of generating a radial stress is to take into account
the viscosity ν of the fluid due to its inter-molecular forces. How-
ever, doing so leads to ppds that live for more than the age of uni-
verse, which is in total contradiction with the orders of magnitude
presented in sec. 1.1.2.1. Another source of radial stress is therefore
needed.
A solution was proposed by Shakura and Sunyaev (1973) in the con-
text of accretion around black holes. Shakura and Sunyaev (1973)
showed that turbulence can be interpreted as an effective viscosity
capable of generating a radial stress. The resulting normalised radial· is a vertical

integration
procedure defined in

chapter 2.

stress is labelled with the letter α and defined as

α ≡ ρ vφ vr

P
, (1)
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Figure 3: Schematic view of a portion of an accretion disc. The blue arrows
represent the vertical loss of angular momentum via the surface
stressWθφ. The green arrows account for the radial flux of angular
momentum due to the radial stress Wrφ. The back image is the
disc hl Tau, taken from Brogan et al. (2015) as an illustration.

with ρ, P and vr,φ respectively the density, the pressure and the ve-
locity components of the fluid. The associated effective (or turbulent)
viscosity then reads

νt ≡ αc2s Ωk , (2)

where cs is the sound speed.
This way of proceeding laid the first stone to a general paradigm
regarding accretion discs, under the name of α−disc model or vis-
cous disc model. This model can be applied for the case of ppds for
which typical values of α are of the order of α ∼ 10−2 (Calvet et al.,
2000). The α parameter embodies a constitutive equation that links
the accretion rate to the local sound speed and surface density of
the discs and comes together with a characteristic time scale for the
viscous evolution that can be compared to the Keplerian frequency
Ωk =

√
GM⋆/R3 (M⋆ is the mass of the central star)

τviscous ∼
R2

νt
= (αΩk)

−1

(
h

R

)−2

≫ Ω−1
k

. (3)

This ordering suggests that any viscous evolution of an accretion
disc occurs on long time scales compared to the dynamical one. This
model is a convenient and useful framework to address the question
of accretion in long-lived accretion discs and many works use this
model as a starting point.
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A question still left unanswered at this point is the origin of the tur-
bulence needed to generate the effective viscosity. Hydro and mag-
netohydrodynamics instabilities are fruitful topics to find sources of
turbulence (the major ones being listed and detailed in Lesur et al.,
2022). In particular, the magnetorotational instability (mri, Velikhov,
1959; Chandrasekhar, 1961; Balbus and Hawley, 1991) has long been a
good candidate. This instability arises from the competition between
orbital inertia and magnetic tension in the ideal mhd picture and a
consensus was once reached regarding its key role to generate turbu-
lence in ppds. However, this paradigm is now challenged by various
observations in the context of ppds.
Firstly, the dominant processes accounting for the discs dynamics
strongly vary with the physical properties and therefore with the lo-
cation in the disc (see fig. 6 in Lesur et al., 2022). The mri is therefore
supposed to be triggered in the innermost region of discs (R ≲ 1 au)
only.
Moreover, ppds happen to be weakly magnetised objects so that non-
ideal mhd is at play with Ohmic, Hall and ambipolar diffusivities
and the mri is modified in these regimes where discs are weakly
ionised (Wardle, 1999). I detail some general properties of mri in the
non-ideal mhd regime in the upcoming paragraphs. I recall that addi-
tional information are to be found in chapter 2 regarding the driving
equations and origins of the non-ideal effects. I will only focus on or-
ders of magnitude in these paragraphs as I want to extract the main
physical arguments that are used to justify the way mriis described
in ppds.

ohmic diffusion and dead zones : I first consider the Ohmic
diffusivity only that I denote with ηo. One can build the magnetic
Reynolds number RM for a given characteristic velocity U and length
L as

RM ≡ UL

ηo

. (4)

In order to trigger mri, one must satisfyI recall that µ0 = 1

with cgs units.
RM > 1 instability. (5)

Following Armitage (2017), the magnetic Reynolds number can be
recast as

RM =
α1/2 c2s
ηoΩk

, (6)

≈ 1.4× 1012 ξ
( α

10−2

)1/2( R

1 au

)3/2(
T

300 K

)1/2(
M⋆

M⊙

)−1/2

,

(7)

with ξ the ionisation fraction and T the temperature of the disc. α =

10−2 corresponds to the standard order of magnitude in ppds previ-
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ously mentioned. This simple calculation implies that ξ ∼ 10−12 is the
minimal ionisation fraction demanded for mri to occur at R = 1 au

in ppds. Such a criterion is not fulfilled near the disc midplane for
R ≳ 1 au, so that a dead zone (i. e. a zone in which mriis inactive)
spans in the disc as shown by Gammie (1996).

ambipolar diffusion : There is a broad literature on the inter-
play between non-ideal processes and mri (see Balbus and Terquem,
2001 and Kunz and Lesur, 2013 for the Hall effect for example). I
want to focus on the impact of the ambipolar diffusion on mri (Blaes
and Balbus, 1994; Kunz and Balbus, 2004). A linear analysis of the
mhd equations with ambipolar diffusion allows to find a stabilising
criterion for mri (Kunz and Balbus, 2004) so that ambipolar diffusion
quenches the mri. Hawley and Stone (1998) and more recently Bai
and Stone (2011) showed that in the non-linear regime, the mri is in-
operative when the ambipolar Elsasser number Λa is below 100. The
analysis of Bai and Stone (2011) shows that in presence of a mean
vertical magnetic field, some modes of the mri survive and gener-
ate a momentum transport corresponding to at most α ∼ 10−4. This
value is still 2 orders of magnitude lower than the one deduced from
observations of ppds. In short, mri can hardly account for all of the
momentum transfer in protoplanetary discs and another mechanism
must be found.

The transfer of angular momentum through a radial stress with tur-
bulence (whatever its source) is itself challenged. Indeed, the level of
turbulence deduced from observations (Flaherty et al., 2018; Flaherty
et al., 2020) are pretty low and hardly renders sufficiently high values
of α (that would account for the accretion rates measured in ppds).
Therefore, an alternative to momentum transfer with a radial stress
must be found.

ejection and vertical stress : Keeping in mind fig. 3, it looks
natural that astrophysicists proposed to take into account the vertical
or surface stress (sometimes even called a laminar stress). A credi-
ble possibility is that discs have outflows so that matter leaves their
surface and extracts angular momentum. The Blandford & Payne (or
magneto-centrifugal) process (Blandford and Payne, 1982) allows the
launching of an mhd or magnetic wind as long as the disc is threaded
by a vertical magnetic field with sufficiently bent field lines. Observa-
tions of mhd winds are challenging (Stephens et al., 2014; Whelan
et al., 2021) and it is difficult to disentangle outflows in discs of vari-
ous natures (de Valon et al., 2020) and origins (from the star or from
the disc). Still, ouflows from yso are observed (see fig. 4) and remain



14 observational context and transition discs

Figure 4: Image of the Herbig-Haro object hh24. Credits: nasa and esa.

a good candidate to account for angular momentum transport. In
the world of numerical simulations of protoplanetary discs, magnetic
winds are now commonly studied (Béthune et al., 2017; Jacquemin-
Ide et al., 2021; Lesur, 2021b; Cui and Bai, 2021) so that this paradigm
shift seems promising.

1.1.2.3 Magnetic fields

Either regarding mri or magnetic wind launching, magnetic fields
play a major role. It is obviously mandatory to have information on
the magnetic field topology and intensity in protoplanetary discs. As
said in sec. 1.1.1.1, it is perfectly fine to assume that protoplanetary
discs are magnetised. However, direct detections of magnetic field re-
main sparse and challenging so that the topology and intensity of the
magnetic fields in ppds are both poorly constrained.
In the same spirit as for molecular clouds, Zeeman effect could be
used to get access to the intensity of the magnetic field in protoplan-
etary discs. However, such observations were tempted (Donati et al.,
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2005; Vlemmings et al., 2019; Harrison et al., 2021), but are very dif-
ficult so that we currently only have access to upper limits. As an
example, Vlemmings et al. (2019) found an upper limit of B < 30 mG
at 42 au.

Spinning dust grains are supposed to align in a way that their short
axes are perpendicular to the surrounding magnetic field (Lazarian,
2007). Hence, thermal dust polarisation is also expected to be detected
perpendicular to the magnetic field, as it is the case in molecular
clouds (Seo et al., 2021) or protostellar envelopes (Girart et al., 2006;
Rao et al., 2009). Such measurements were also tempted for protoplan-
etary discs. The first attempts to measure dust grains polarisation
ended up with non-detections (Hughes et al., 2009b; Hughes et al.,
2013), when more recent observations conclusively detected polarisa-
tion (see for example Harrison et al., 2019). However, two alternative
polarisation mechanisms could also account for observations in ppds.
A first possibility is that grains have their short axis aligned with
the direction of radiation anisotropy as suggested by Kataoka et al.
(2017). Eventually, polarisation could also be caused by self-scattering
of grains (Kataoka et al., 2015). Disentangling these mechanisms is
even challenging (Stephens et al., 2017) so that mapping the topology
of magnetic fields in ppds through dust polarisation remains a very
difficult and uncertain task.
In the end, one cannot be definitive on the subject of the magnetic
field strength and topology which are still questions open to debate.

1.1.2.4 Substructures

Studies of protoplanetary discs such as the one shown in fig. 2 reveal
that substructures in ppd are common. Substructures exhibit a wide
variety of shapes such as rings and gaps, spirals, non-axisymmetries,
vortices or central cavities. Spirals are recovered in numerical simu-
lations (Ogilvie and Lubow, 2002) and planets are often invoked to
explain these shapes, as it is the case for ab Aurigae (see fig. 5 and
Boccaletti et al., 2020). Substructures suggest the diversity of the phe-
nomena at play in protoplanetary discs and need to be recover in nu-
merical simulations which provide explanatory processes for them.

1.2 transition discs

Protoplanetary discs regroup very diverse objects from young discs
gravitationally unstable to debris discs. A subset of protoplanetary
discs named transition (or transitional) discs (td) stands out. This cat-
egory of discs is the central topic of my work. In this subsection, I will
give a definition of these objects based on their observational proper-
ties. I will then show how they are thought as a peculiar stage of
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Figure 5: Image of the disc around ab Aurigae, adapted from (Boccaletti et
al., 2020).
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discs regarding the usual stars and planets formation picture before
pointing out a few observational inconsistencies with this scenario.

1.2.1 Definition and observations

In this subsection, I aim to give a definition of transition discs as an
attempt to have a convenient conceptual frame to work with. Finding
a thing as definitive as a ‘definition of transition discs’ proved to be
difficult.
A first conceivable definition is based on the detection of transition
discs through yso spectra. The ir excess indicates the presence of a
disc and tracks the dust surface density. For some discs, this excess
exhibits a lack of near infra-red (nir) excess and a standard mid infra-
red (mir) excess, both being compared to the expected emission from
a full disc. Fig. 6 illustrates this statement while some corresponding
historical observations of tds are to be found in Strom et al. (1989)
and Kenyon and Hartmann (1995). A shortage of nir excess com-
pared to mir suggests a loss of the hottest parts of the (still cold) disc,
which implies a cavity (i. e.: a lack of dust) close the star. Therefore,
transition discs are thought as a particular class of disc that is char-
acterized by a peculiar nir-to-mir excess. This way of discriminating
tds amond ppds (Owen, 2016) is efficient but says nothing with re-
spect to any dispersal process (i. e. a process that enables the disc
disappearance in a time scale compatible with observation).

Another angle of attack can be adopted to define transition discs.
In particular, I emphasize that the notion of transition discs was first
thought as an outcome of discs dispersal that are supposed to disap-
pear in a few millions up to a few tens of millions years (Mamajek,
2009; Emsenhuber et al., 2021). It is then straightforward to postulate
the existence of discs in an intermediate state between a full proto-
planetary disc and a star left alone with no disc. Assuming that an
inside-out process disperses the disc, such transition discs would ex-
hibit an inner cavity, growing with time so that the disc would be
encountering its dispersion phase. Therefore, it is possible to define
transition discs as cavity hosting ppds. This definition is made pos-
sible thanks to the actual observations of cavity in the dust radial
surface density profiles (Brown et al., 2009). Still, it is not

obvious that every
detected tds are
indeed dispersing
ppds.

Not only are cavities detected in the dust radial density profile but
some are also observed in the gas profile of ppds (Carmona et al.,
2014; Bruderer et al., 2014; Dong et al., 2017). As an example, a drop
in the gas density of 2 to 4 orders of magnitude was measured in the
inner (< 3 au) regions of the transition disc around the hd 139614

by Carmona et al. (2017) with ro-vibrational co lines. Surveys of tds
such as van der Marel et al. (2016b) show that there exist multiple tds
with ‘clean’ cavities both in the dust and in the gas components.
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Figure 6: Spectrum of a star harboring: a full protoplanetary disc (in red full
line), a transition disc (in green dashed line) and a debris disc (in
blue dotted line), adapted from Ercolano and Pascucci (2020).
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In this work that is based on numerical simulations, I will drop the as-
pects of the previous definitions related to the sed and consider that
any protoplanetary disc that exhibits a cavity in its total matter (dust and
gas)) density profile is a transition disc. In principle, this definition makes
possible to have transition discs around other objects than young stars
(such as late stage stars Kluska et al., 2022) and erases any differences
with pre-transitional discs (Espaillat et al., 2010). However, this def-
inition has the advantage of being easy to manipulate and remains
agnostic regarding the dispersal process of protoplanetary discs.

To end this discussion on vocabulary issues, I add that I refer to proto-
planetary discs that do not exhibit a cavity as primordial ppds (when
I refer to an evolutionary picture) or as full or standard ppds to dwell
on the absence of cavity. In particular, the word ’standard’ do not re-
fer to a viscous evolution nor to the α-disc model whatsoever and I
will explicitly employ the word ’viscous’ whenever needed.
Indeed, my previous comment illustrates the difficulty to get a defi-
nition of tds, since the words ‘transition’ and ‘primordial’ are linked
to an evolutionary picture that I did not addressed at all (and that I
discuss in sec. 1.2.2).

Conclusively, transition discs are well known objects and many ob-
servational studies and analyses are devoted to them (van der Marel
et al., 2016b; Villenave et al., 2019; van der Marel et al., 2020; Francis
and van der Marel, 2020; van der Marel et al., 2022). Figure 7 displays
a sample of transition discs studied in Francis and van der Marel
(2020). It is worth noting that even in these discs, a wide range of
substructures are detected.

1.2.2 Evolutionary sequence

As just said, transition discs are considered as dispersing ppds. Disc
dispersal is thought to be a combination of several processes, the most
promising ones being photoevaporation (Shu et al., 1993) and planet-
disc interaction (Baruteau et al., 2014). I will hereafter describes pho-
toevaporation in short before summarising the evolutionary picture
of tds.

1.2.2.1 Photoevaporation winds

The central idea of photoevaporation is that the stellar radiation ionises
the disc matter and heats its upper layers. The radiation to consider
is highly energetic, such as far ultra-violet (fuv), extreme ultra-violet
(euv) and x-ray (Alexander et al., 2006; Alexander et al., 2014) pro-
viding as many photoevaporation regimes and covering the energetic
range from 6 eV up to 100 eV. Heated material therefore encounters
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Figure 7: Images of TDs from the sample used in Francis and van der Marel
(2020).
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enhanced thermal agitation and the local sound speed increases.
I now consider a single layer of a ppd, ionised by the central star
and characterised by a given sound speed cs. The escape velocity in
this layer decreases with the radius. At some point, the escape veloc-
ity gets lower than the thermal speed and a pressure-driven outflow
is generated. Such outflows are detected (Pascucci et al., 2011) and This transsonic

outflow is similar to
a Parker wind.

pushed forward as promising candidates to account for the disper-
sal of discs (Ercolano et al., 2021). The typical mass loss rates asso-
ciated with these outflows are at maximum of the order of a few
10−8 M⊙ yr−1 (Gorti and Hollenbach, 2008).

The models of photoevaporation (Shu et al., 1993) were initially char-
acterised by a gravitational radius Rg (the radius where the escape
velocity equals the thermal sound speed) given by

Rg ≡ GM⋆

c2s
. (8)

This radius marks a lower limit after which photoevaporation can be
effective. For a 1 M⊙ star with a ionisation temperature of 104 K,
Rg reaches 9 au (Rodenkirch et al., 2020). However the transition is
rather smooth and can occur down to a few 0.1 Rg (Font et al., 2004),
at a characteristic radius Rc ≈ Rg/5.
Photoevaporation is well studied by numerical simulations (Owen
et al., 2012; Rodenkirch et al., 2020). It is commonly accepted that
this process is capable of opening a gap in protoplanetary discs at
approximately Rg. I detail the dispersing process associated to photo-
evaporation in the next subsection.

1.2.2.2 A standard evolution scenario

Photoevaporation winds pave the way to an evolutionary sequence
of protoplanetary discs. Starting with a full disc, photoevaporation
carves a gap between 1 and 10 au. This being done, the falling mat-
ter reaching the gap from the outer disc leaves the disc in a thermal
wind with a given mass loss rate Ṁw. The mass flux Ṁacc. due to the
accretion in the outer disc reaches the gap location. If Ṁacc. ⩽ Ṁw,
the matter from the outer part of the disc leaves the disc in the pho-
toevaporation wind and without filling in the gap. The inner disc is
not fuelled by matter coming from the outer part anymore and even-
tually disappears because of its accretion. The disc ends up with a
cavity extending up to Rg and growing with time because of the now
direct enlightenment of the disc by the star. This scenario can com-
pletely come along with planet formation, that could migrate from
the outer disc down to the gap. tds undergoing photoevaporation
clearing have general properties such as an inner cavity of radius
≳ Rc, little or no accretion and an outer disc with a small mass. The
regions of ppds affected by photoevaporation are very different from
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one model of photoevaporation to another. As a example, euv models
of photoevaporation predict mass loss from a narrow range of radii
around Rg. In the context of ppds with external irradiation, Throop
and Bally (2005) found significant mass loss rates up to 50 au which
is an upper limit for photoevaporation models. Figure 8 illustrates
the dispersal scenario associated with photoevaporation winds.

Figure 8: Photoevaporation-based scenario of protoplanetary discs evolu-
tion, adapted from Ercolano and Pascucci (2020).

A major success of this model is to give a comprehensive and ap-
pealing framework to understand the evolution of protoplanetary
discs. Photoevaporation winds can be refined and completed with
other processes (and I will discuss them in sec. 1.3). However, this
picture encounters some observational discrepancies that I address in
the coming subsection.

Anyhow, I would like to mention that this model is supported by
strong evidences. Direct observations of winds compatible with pho-
toevaporation winds favour the evolutionary sequence I just described.
Still and as I am going to show in the next subsection, some discrep-
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Figure 9: Transition discs in a (Rcav., Ṁ) plane. Each dot is an observed tran-
sition discs and the color gives its mass. The grey bars represents
accessible values with an evolutionary model that includes photoe-
vaporation as well as a giant planet embedded in the disc, adapted
from Ercolano and Pascucci (2020).

ancies and limitations of this model persist. My aim is not to discard
this model but rather to suggest an alternative that can work along
with it (see for exemple Kunitomo et al., 2020) or at least account for
the remaining observational discrepancies.

1.2.3 A challenged paradigm

The evolutionary model is challenged by observations when consid-
ered through the prism of photoevaporation. As highlighted in the
previous subsection, photoevaporation models are effective until at
most 50 au. Moreover, in this framework, tds should end up with
weak accretion rates. Their accretion rates are of the order of the
mass loss rates of the photoevaporation wind in order to get the disc
clearing. Therefore their accretion rates are at most 10−8 M⊙ yr−1

with optimistic choices regarding the star radiation properties (Owen,
2016). Such limitations are in direct conflict with observations as seen
in fig. 9. Transition discs with wide cavities (Rcav. ≳ 40 au) and/or
encountering strong accretion (Ṁtd ≳ 10−9 M⊙ yr−1) are common
objects, an example of which being found in González-Ruilova et al.
(2020) (and see fig.10). In particular, fig. 9 shows that some strongly
accreting transition discs are still very massive, so that they seem un-
likely to be outcomes of an evolution sequence.
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Figure 10: Transition discs observed around iso-Oph 2 the widest one hav-
ing a dust cavity of 50 au and an accretion rate of 10−8.7M⊙ yr−1.
Taken from González-Ruilova et al. (2020).

From a more general point of view, Owen and Clarke (2012) per-
form a statistical analysis of a wide sample of 76 transition discs and
get a huge fraction of sources with large mm fluxes. With the evolu-
tionary scenario, the proportion of tds detected with high mm flux is
supposed to be lower than the ones with lower mm flux (because tds
are thought as transitioning objects from full hence massive discs to
completely dispersed hence ‘massless’ discs). Owen and Clarke (2012)
and Owen (2016) either suggest that at least 2 distinct families of tds
are at play to explain these results or that the evolutionary should be
dropped.

I highlighted in sec. 1.2.1 that many tds were characterised by a cavity
both in their dust and gas radial density profiles. Such observations
are in tension with the high accretion rates measured in tds. As an
example, this discrepancy suggests a supersonic replenishment of the
inner discs for the case of irs 48 (Bruderer et al., 2014). Such a sonic
infall of gas could have been observed in hd142157 (Rosenfeld et al.,
2014). Nevertheless a word of caution is to be added to the observa-
tion of this very peculiar object that is thought to possess a large warp
compared to an inner compact disc (Casassus et al., 2015).

The outstanding conclusion regarding the previous arguments is that
transition discs are rather unlikely to be fully described with an evolu-
tionary scenario based on photoevaporation winds (and indeed even
planet-disc interaction) and viscous discs. One is now left with two
options:
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• Keep the evolutionary model and add one or more mechanism(s)
to account for high accretion rates.

• Discard this model (at least for the problematic tds) and pro-
pose a new one to account for the stability of highly-accreting
cavity hosting discs.

In the next section, I will discuss the first point and show that no fully
convenient mechanism has yet been suggested. The final section will
shed light on the model of magnetic winds sustaining the cavity that
I propose and worked on.

1.3 theoretical models of transition discs

In this section, I review some alternatives that complete the evolu-
tionary model trying to account for high accretion rates. Two main
possibilities are considered, either one has an inner mass reservoir to
fuel accretion or one has a physical process that enhances accretion.
Most of the models I will present rely on the viscous disc model.

1.3.1 Photoevaporation with a dead zone

In order to obtain high accretion rates in transition discs, a possibility
is to fuel accretion with a mass reservoir located in the inner part
of the disc. Such a configuration is achieved by putting a dead zone
in the inner part of the disc, so that a gap opens right after. Such a
configuration was first studied by Morishima (2012) and extended by
Pinilla et al. (2016) and Gárate et al. (2021).

These works are both motivated by the lack of highly-accreting tds
predicted with photoevaporation winds only. With these two mod-
els, a dead zone (i. e. a poorly ionised layer characterised by a low
viscosity due to the weak development of the mri) is surrounded by
layered accretion (Zhu et al., 2010). The key idea is that matter in-
side the dead zone is not dispersed quickly by the photoevaporation
wind once a gap has been carved and maintains a strong accretion
rate (concomitant with the gap, i. e. a cavity).

A definitive success of this way of proceeding is that highly-accreting
tds are indeed obtained (see for example fig. 5 in Gárate et al., 2021).
However, this mechanism seems inconsistent with the observations
of massive accreting tds (see fig. 9) since discs with a small cavity
radius and a high accretion rates are not obtained. In particular, most
of the mass of the discs simulated in Morishima (2012) is located in-
side the dead zone, whereas massive tds are observed with most of
their mass located in the outer parts. More specifically, the dead zone
is eventually dispersed which leads to a drop in the accretion rate, so
that this model cannot generate systematic old, massive and highly-
accreting tds. Finally, it is worth noting that these works rely on the
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Ohmic dead zone model (Gammie, 1996), while dead zones are now
thought to be much more extended radially due to ambipolar diffu-
sion (Simon et al., 2013).

This model is capable of generating highly-accreting tds but fails
to achieve this in a systematic way. A dead zone can act as a mass
reservoir generating strong accretion, but cannot be included as a
systematic step in the evolutionary scenario. This model is completely
contradicted by the massive tds with large cavity and strong accre-
tion rates.

1.3.2 Perturbing bodies in the cavity

A plausible approach to cope with highly-accreting tds is to consider
that some perturbing bodies lie in the cavity. The 2 straightforward
candidates are planets and/or a star embedded in the cavity.

1.3.2.1 Planets

Fig. 9 already concludes that taking into account planets in the cavity
fails to recover the whole distribution of tds in the (Rcav.; Ṁ) plane.
However, it is still a formative exercise to understand the very under-
lying explanations. The work of Crida and Morbidelli (2007) already
cast doubts on the hypothesis of planet-induced cavities in tds and
this idea was confirmed by Zhu et al. (2011). The main two arguments
are the following.

To start with, many planets (at least 3 to 4 planets) are needed
inside the cavity to generate a gap with a sufficient density contrast
compared to what is observed. This high number is also recovered
by Dong and Dawson (2016) where the authors point out that such a
result would imply more multiple giant planet systems in resonance
as well as higher occurrence rate of giant planets at wide separation
than what is observed.

A second point inferred by Zhu et al. (2011) is that planets fail to
account for sufficient density contrast and high accretion rates. In-
deed, the embedded planets catch a portion of the accreted material
so that it is mandatory to lower the accretion on the planets to have
a strong overall accretion rate onto the star which in the end reduces
the density contrast in the cavity.

Therefore, planets in the cavity are unlikely to account for the ob-
servational discrepancy regarding tds.

1.3.2.2 Binaries

Another model I wish to investigate is the hypothesis that cavities
undergoing a fierce accretion are induced by central binary stars. A
wide proportion of stars are indeed binaries. Therefore, this assump-
tion could render systematic highly-accreting tds.
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On the one hand, discs initially labelled as transitional were even- In the work of
Ireland and Kraus
(2008), ‘tds’ around
binary stars are
named circumbinary
discs. With my
definition, I would
keep the name tds.
Such a discussion
illustrates the
difficulty to find a
universal definition
of tds.

tually demonstrated to be circumbinary. This was the case for CoKu
Tau/4 (Ireland and Kraus, 2008). On the other hand, some studies of
tds tend to rule out the possibility to have binary stars as central ob-
jects. The td around gm Aurigae and studied by Hughes et al. (2009a)
is an example of such discs. The binarity hypothesis was ruled out
mostly because of the strong accretion rates of the disc. Hence, it
seems unlikely that considering binary stars will account for highly
accreting tds.

sph simulations focusing on the disc mwc 758 (Calcino et al., 2020)
show that with the central binaries enable the formation of a cavity.
This work also shows that spirals are inherent to this model. However
not all observed tds harbour such structures.
More general numerical works (Thun et al., 2017; Chachan et al., 2019)
also study the impact of binaries on a disc. If binaries seem to carve a
cavity, the related accretion rates are too low (Chachan et al., 2019) so
that this model does not solve the previously discussed observational
discrepancy regarding tds.

Finally, the work of Ruíz-Rodríguez et al. (2016) is devoted to the
link between binaries stars and tds. 38±% of the tds in their sample
can correspond to a binary system. If some tds can be reproduced
with binaries, a large fraction of them have to be explained by other
mechanisms. As an example, the disc J16315473 − 2503238 (part of
their sample) has a strong accretion rate (Ṁacc = 10−7.2 M⊙ yr−1)
but is unlikely to have binary stars as central objects.

Lastly, I want to add that even a star among a multiple system can
host its own wide and strongly-accreting td. This is the case for the
largest td in the binary system described by González-Ruilova et al.
(2020) and shown in fig. 10.

Despite being useful to account for some tds, the binary hypoth-
esis does not address the observational discrepancy introduced in
sec. 1.2.3.

1.3.3 Grain growth

Leaving the viscous picture for one moment, one could think of grain
growth as a potential mechanism to carve wide cavities in tds. The
efficiency of this model relies on two arguments. First, massive dust
particles are known to decouple from the gas and spiral inwards (Wei-
denschilling, 1977). The loss of dust in the disc would reduce the dust
opacities. Second, the dust opacities are also reduced by the grain
growth itself since the emission of larger particles is less efficient.
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This idea is of course related to the dust component of ppds and can-
not address the cavities observed in the gas profiles. Moreover, the
edges of tds are quite sharp so that the environment for dust growth
should change abruptly.
Birnstiel et al. (2012) studied the hypothesis of forming cavities of
tds with grain growth (with grain growth alone and combined with
a dead zone). The authors completely ruled out this model. The sharp-
ness of the transition was not recovered, a dust-to-mass ratio lower
than 10−4 is needed to keep enough small dust at R ≳ 10 au and
most of the mass in their ‘cavity’ is indeed detectable by millimetre
observations.
To hammer the result home, the survey of Tazzari et al. (2021) of discs
including some tds suggests that large grains are indeed still present
in the inner regions of tds.
Despite being an interesting solution regarding the dust content of
tds cavities, dust growth is unlikely to solve the mystery of strongly-
accreting tds.

1.3.4 Conclusion regarding the viscous picture

All the plausible previously discussed alternatives rely exclusively
on viscous accretion. It is then extremely difficult to have a strong ac-
cretion arising together with a depleted density profile. These models
somehow make interesting contributions to reach an accurate descrip-
tion of tds, but fail to address in a systematic way the precise issue
regarding (in particular) highly-accreting tds with wide cavities (Er-
colano and Pascucci, 2020).
Let me give some orders of magnitude to illustrate this statement.
The general definition of the accretion velocity is

vacc. =
Ṁ

2πRΣ
. (9)

In the viscous model, the radial velocity of the flow is

vR = −
3

Σ
√
R

∂

∂R

(
Σνt

√
R
)

, (10)

where νt is defined in eq. 2. Assuming that the radial dependencies
of Σ and cs follow power laws and that the α parameter is constant,
one getsThe continuity

equation is needed to
get to this result. vR = −

3

2

νt

R
, (11)

which turns into
vR = −

3

2
cs α

h

R
. (12)

Protoplanetary discs are geometrically thin discs with h/R ∼ 0.1while
α can reach at most 10−2. With these orders of magnitude, vR ∼
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10−3 cs. Referring to the survey of van der Marel et al. (2016b), Wang
and Goodman (2017) point out that the inferred values of Σ and Ṁ for
the observed tds imply an almost-sonic accretion speed which trans-
lates into values of α greater than 8. These observations are deeply
challenging the viscous model of ppds in this peculiar context.

Interestingly, models of ppds harbouring magnetically launched out-
flows (or mhd winds) seems promising. Large scale magnetic fields
are known to spontaneously generate outflows Wardle and Koenigl
(1993) and Ferreira and Pelletier (1995). Such magnetic winds can ef-
ficiently remove angular momentum from the disc.
Therefore, magnetised disc winds (mdw) seem capable of sustaining
cavities of tds as well as a strong accretion. This idea is based on the
pioneer works of Combet and Ferreira (2008), Combet et al. (2010),
and Wang and Goodman (2017) and is the very root of the work I did
during my thesis.
The underlying switch of paradigm is to consider that fast accretion
is possible with a strong surface stress rather the usual viscous stress.

1.4 mhd wind launching as an alternative

A way to maintain a cavity with a strong accretion rate is to rely on
the surface stress rather than the radial stress. This can be achieved
with magnetic (or mhd) winds, removing angular momentum from
the gas in the disc cavity with magnetic braking. The first subsections
are devoted to depict the main theoretical tools behind magnetic wind
launching and the last one describes the model of magnetic winds in
transition discs.

1.4.1 Theory of mhd winds

This work relies on the so call Blandford & Payne mechanism regard-
ing magnetic wind launching that is found in Blandford and Payne
(1982). I will refer to such winds as magnetic or mhd winds. Never-
theless, I note that other magnetic wind launching mechanisms do
exist. As an example, a gradient of toroidal magnetic field pressure
could launch a magnetic wind (Lynden-Bell, 2003).

1.4.1.1 The magneto-centrifugal mechanism

the ‘bead on a wire’ analogy : A simple way to picture the
Blandford & Payne mechanism is to consider a well ionised disc,
threaded by a large-scale poloidal magnetic field and described by
ideal-mhd. Matter is then tied to the magnetic field lines and accel-
erated because of the rotation of the disc. Angular momentum is re-
moved by the wind as matter is expelled.
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This framework is based on a force free approach just above the disc,
where the magnetic field lines are in solid rotation with the disc. The
matter follows the magnetic field lines (this is the ‘bead-on-a-wire’
analogy) and gets accelerated by the centrifugal force if the field lines
are sufficiently bent. This is why this mechanism is referred to a cen-
trifugal mechanism in Blandford and Payne (1982).

To derive the needed inclination angle of the field line, I assume
that the magnetic field lines rotate rigidly at the Keplerian velocity
of their basis. For a given footpoint (where a magnetic field line is
anchored in the disc at radius r0) rotating with an angular speed

Ω0 =
√
GM⋆/r

3
0 , one can write the effective potential Φeff. applied

on a test particle located on the field line at a distance s of the foot-
point, in the co-rotating frame. It reads

Φeff. = −
GM⋆(

s2 + 2 s r0 sin θ+ r20
)1/2︸ ︷︷ ︸

gravity

−
1

2
Ω20 (r0 + s sin θ)2︸ ︷︷ ︸

centrifugal term

, (13)

with θ being the inclination angle of the field line. The critical inclina-This way of
proceeding hides the
role of the magnetic

field which is indeed
fully at play when I

assume that the
matter follows the

magnetic field lines.

tion angle θcrit. so that matter gets accelerated demands(
∂2Φeff.

∂s2

)
s=0

= 0 , (14)

which leads to
1− 4 sin2 θcrit. = 0 , (15)

and
θcrit. =

π

6
. (16)

magnetically-driven winds : The previous way of understand-
ing the wind is straightforward and gives an easy-to-read picture.
However, it does not catch all the wind physics. In particular, the role
and appearance of the toroidal component of the magnetic field is
lost, whereas it plays indeed a key role.
Because of the toroidal component, the magnetic field lines can not
behave as rigid poloidal wires as they do in the ‘bead on a wire’
analogy. This is why I want to detail the physics of the wind. I will
support my explanations with fig. 11 in which (R,φ, z) is the cylindri-
cal coordinates system.

At first, let me apply a purely vertical magnetic field Bz to a ro-
tating disc (see the first panel of fig. 11). Because the magnetic field
lines are anchored in the rotating disc, a toroidal magnetic field ap-
pears. This fact can be understood with the second panel of fig. 11.
Because of rotation, an electric field Eind = uφ eφ × Bz ez (hence an
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Figure 11: Scheme depicting the Blandford & Payne mechanism. The first
panel describes a ppd seen edge-on (in orange) threaded by a
vertical magnetic field (full green lines). The second panel shows
the current loops that appear in the disc. The third panel high-
lights the accretion occurring in the disc as well as the role of
the thermal pressure. The last panel illustrates the forces that ac-
count for the vertical acceleration of matter in the wind. See the
paragraph 1.4.1.1 for detailed explanations.
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electric current J) appears. In the disc, the current is radial and di-
rected outwards, so that the associated Lorentz force J× Bz ez slows
down the disc, in agreement with Lenz’s law. The current must even-
tually close since ∇ · J = 0, so that a current loop appears above (anti
clockwise in fig. 11) and below (clockwise) the disc. The loops create
a toroidal magnetic field Bφ, whose polarity depends on the location
with respect to the disc midplane. Equivalently, taking the toroidal
component of the Maxwell-Farady’s law, with the electric field Eind

leads to
∂tBφ = RBR ∂RΩ , (17)

with Ω the rotation speed in the disc and where I applied ∇ ·B = 0.
The shear energy is converted into magnetic energy (that is stored in
Bφ).
Magnetic stresses ∝ Bφ act on the disc which are a consequence of
the Lorentz force associated to J, this is the magnetic braking of the
disc. Because of the magnetic diffusivity in the disc (i. e. the non-ideal
mhd framework), the matter can cross the magnetic field lines, hence
generating accretion (see the red arrow in the third panel of fig. 11)
and pinching the magnetic field lines at the midplane.
Matter must rise up in the disc to ensure the wind replenishment. The
Lorentz force associated to Bφ (see fig. 11, panel 3) is directed toward
the disc, while the gravity is of course directed toward the central
star. Therefore, the only force directed upwards is the thermal pres-
sure gradient, which enables the wind basis replenishment of matter.
The angular momentum previously stored in Bφ is transferred to the
gas in the wind which is azimuthally accelerated. This is the result of
the Lorentz force J× Bz ez evaluated where the current loop closes
(where J · eR < 0). As a consequence, the further up in the wind the
matter, the lower the toroidal magnetic field is.
Looking at the last panel of fig. 11, one can see that the magnetic
pressure term −∂zBφ

2/2 pushes the matter away from the disc. As
a result, the vertical acceleration in the wind is of magnetic origin.
Because of the collimation of the poloidal field lines (due to the hoop
stress), the radial component of the magnetic field also diminishes
further up in the wind, with a similar consequence regarding the ver-
tical motion of matter.

Consequently, exhibiting the precise role of the magnetic field reveals
that the wind is magnetically accelerated. This why such winds are
often referred to as magnetically driven winds (see for example Con-
topoulos and Lovelace, 1994; Ferreira, 1997). I will also use this vocab-
ulary to refer to the wind.

1.4.1.2 The stationary, ideal mhd picture and wind invariants

The next chapter describes in depth the theoretical tools needed for
this work regarding mhd. In this subsection, I will just give the wind
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invariants that I will use later on when analysing my numerical sim-
ulations. In particular, I point out that they are derived assuming a
stationary and ideal mhd framework. Moreover, I assume axisymme-
try, anticipating on the analysis of my numerical simulations. Com-
plete and fully detailed references derive full calculations regarding
mhd winds and I refer the reader to the following reviews Spruit
(1996) and Ferreira (2003) for more information.

It is however meaningful to give a few words on the becoming of
Maxwell-Ampère equation under the previous assumptions (steady
state, axisymmetry, ideal mhd). Indeed, one now has

∇× (v×B) = 0 , (18)

so that introducing a poloidal vc toroidal projection of the fields (with
a unit vector êφ alongside the rotation of the disc and a subscript Xp

to indicate that X is considered in the poloidal plane), one gets

vp ×Bp + vφ êφ ×Bp +Bφ vp × êφ = ∇ f , (19)

where f is a given potential function that I assume to be axisymmetric.
This last assumption (also done by Spruit, 1996) is valid for global
models but is more subtle for shearing box ones. In global models,
one can apply a regularity condition for the electromotive force at
R = 0 but it is of course impossible to do with shearing box models
because of the radial periodicity (see for example Lesur et al., 2013 for
a case where this question is of prime interest and Lesur, 2021a for
a deepest insight on this question). Taking the toroidal component of
the previous equation and assuming axisymmetry, I have that

vp ×Bp = 0 , (20)

where one is left with the fact that the poloidal velocitiy and magnetic
field are collinear. This result drove most of my previous analysis,
however, it is important to dwell on the fact that the result demands
ideal mhd. This does not obviously stand with non-ideal term, so that
it is rather expected to have poloidal velocity and magnetic field lines
parallel above the disc surface, in the outflow, where ideal mhd is
better verified than in the cold and diffusive disc.

In the following, I consider a selected poloidal magnetic field line
anchored in the disc midplane at R ≡ Rw. The corresponding Keple-
rian angular velocity is Ωw while Bw is the poloidal magnetic field. I
then consider the following invariants, namely:

• The mass loading parameter which accounts for the quantity of
matter that escapes the disc with the wind

κ ≡ 4π ρ vpΩw Rw

Bp Bw
. (21)
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• The rotation parameter

ω ≡ Ω

Ωw
−

κBw Bp

4π ρRRwΩw
2

. (22)

• The magnetic lever arm that accounts for the angular momen-
tum that is removed from the disc by the wind

λ ≡ ΩR2

Ωw Rw
2
−

RBφ

Rw Bw κ
. (23)

• The Bernoulli invariant which is energy of the wind, split into
kinetic, gravitational, magnetic and thermal contributions such
as

B ≡ v2

2Ωw
2 Rw

2︸ ︷︷ ︸
Kinetic

+
−Rw√
R2 + z2︸ ︷︷ ︸

Gravitational

+
−ωRBφ
κRw Bw︸ ︷︷ ︸
Magnetic

+
w

Ωw
2 Rw

2︸ ︷︷ ︸
Thermal

, (24)

where the thermal contribution at the curvilinear coordinate s
of the field line is given by

w(s) ≡
∫+∞
s

−
∇P
ρ

· dℓ . (25)

I will come back to these invariants when applying the wind theory to
my simulations. For now I just want to specify that these invariants
are of course closely linked to the usual conservation equations of
physics (mass, angular momentum, energy).

1.4.2 Surface stress and accretion

The essence of my work finds its roots in the work of Combet and
Ferreira (2008). The authors of this article develop the jed/sad model
that connects a ‘jet emitting disc’ to a ‘standard accretion disc’ (the
jed being the cavity of my tds and the sad the exterior of the cavity).
Such an idea was recently implemented in the work of Wang and
Goodman (2017), that studies the impact of a magnetic wind on the
ionisation fraction of the cavity of a td. A full section of the chapter
to come is devoted to comparing these works to mine.

For now, I want to dwell on the fact that magnetic winds can dis-
perse protoplanetary discs. This is suggested by past reviews I al-
ready cited such as Owen (2016) and Ercolano and Pascucci (2020).
Similar results are shown by Suzuki et al. (2010) and Tabone et al.
(2022b) who used the mri to launch the wind, which is demonstrated
to be capable of in Lesur et al. (2013). Thermal and magnetic winds
could very well unite their strength to disperse discs as suggested by
Kunitomo et al. (2020).
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conclusion

This chapter synthesizes a few observational results regarding proto-
planetary discs and especially magnetic winds as well as transition
discs. Magnetic outflows are now tracked by observers and pave the
way to future breakthrough regarding the magnetic structures of
discs and outflows.

The use of a new generation of instruments (ground based or
in space), and especially alma renders quantitative observations of
discs on which statistical tools can be applied. It now seems that the
evolutionary of protoplanetary discs is deeply challenged regarding
the transition disc step.

Despite previous alternatives having undeniable strengths, there
is still much the need for a new tentative to address the question
of highly-accreting tds. In this broad picture, mhd winds is an
appealing model of cavity hosting discs sustained by magnetic
winds. This choice of paradigm also implies to lower the influence
of the viscous disc model since most of the angular momentum
transport relies on the surface stress. In particular, no viscosity or
turbulence is considered in my work.
In the next chapter, the reader will find a detailed theoretical descrip-
tion of the physics at play.
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conclusion

Ce premier chapitre s’ouvre sur une synthèse de quelques résul-
tats observationnels couvrant la formation stellaire et planétaire,
du nuage moléculaire aux planètes. Naturellement, je m’attarde
particulièrement sur les observations de disques protoplanétaires
(avec alma notamment) et je décris les disques protoplanétaires de
transition (disques de transition).
Pour ma thèse, je définis ces disques comme étant des disques
protoplanétaires arborant une cavité interne dans leur profil radial
de densité.

Je reprends également quelques points clés de l’évolution des
disques protoplanétaires, objets voués à disparaître en quelques
millions d’années. Je donne des éléments concernant le modèle
standard des disques protoplanétaires, à savoir le modèle du
disque visqueux. Dans ce modèle, le transfert de moment cinétique
s’effectue radialement, vers l’extérieur, du fait d’un stress radial ayant
pour origine la turbulence du disque. Je souligne que les estimations
de turbulence dans les disques protoplanétaires fragilisent ce modèle.

Le modèle du disque visqueux permet de comprendre l’origine
du terme "transition" dans l’appellation des disques de transition. En
effet, ces derniers s’inscrivent dans le processus standard d’évolution
des disques protoplanétaires en tant qu’étape précédent la dispersion
totale du gaz initialement présent dans le disque.
Ce scénario d’évolution se base sur l’action conjointe de vents
photoévaporés et du transport visqueux. Si la présence de vents
photoévaporés est compatible avec les observations, il n’en reste
pas moins que les observations de disques de transition avec une
cavité très étendue (plus grande que 10 unités astronomiques) et/ou
accrétant à des taux similaires à ceux des disques protoplanétaires
pleins (soit sans cavité) ne semble pas s’intégrer dans ce modèle
d’évolution.
Le problème soulevé par de telles observations est le point de départ
de mon travail. En particulier, il semble que le modèle visqueux soit
en difficulté pour justifier de telles observations, à cause de la densité
de surface très faible au sein des cavités de disques de transition.

Pour tenter de résoudre ce problème, je passe en revue plusieurs
mécanismes ayant fait l’objet d’études. J’évoque notamment l’effet
de vents photoévaporés associés à une "dead zone" à l’intérieur
de la cavité (jouant le rôle d’un réservoir de matière et permettant
d’alimenter l’accrétion), l’influence de corps massifs dans la cavité
(planètes ou étoiles) et les effets dus à la croissance des grains de
poussière.
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Tous ces modèles proposent autant de pistes pertinentes pour
rendre compte des observations. Cependant, et malgré leurs succès
respectifs, il semble que les réponses qu’ils apportent ne soient
pas entièrement satisfaisantes. En particulier, la plupart d’entre eux
conserve l’hypothèse du disque visqueux.
Mon travail se base sur l’hypothèse d’un vent magnétique (lancé par
le mécanisme de Blandford & Payne) permettant de soutenir la cavité
(d’une taille donnée) tout en maintenant un fort taux d’accrétion,
grâce à une vitesse d’accrétion très élevée. Ce changement de
paradigme permet de baser la dynamique de l’accrétion sur un stress
de surface (et non radial comme avec le modèle du disque visqueux).

Ce chapitre s’achève avec une description du mécanisme de
Blandford & Payne. Le lecteur trouvera les descriptions théoriques
nécessaires dans le chapitre suivant.
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introduction

In this chapter, I wish to give a clear description of the physics and
numerical tools I need to properly describe transition discs.
I start with a general yet observation-based description of protoplan-
etary and transition discs. I introduce the relevant quantities needed
such as the surface density and give some usual orders of magnitude.
This leads me to say a word on the use of fluid mechanics in the con-
text of protoplanetary discs.
I then introduce the ideal mhd equations for a plasma in the second
section. However, the ‘ideal’ aspect of this set of equations is insuffi-
cient to capture the physics at stake in transition discs and calls for
additional terms embedded in the non-ideal theory of mhd. Among
the non-ideal processes, the ambipolar diffusion plays a major role in
the physics of ppds. The effects of ambipolar diffusion are caught by
the ambipolar Elsasser number.
I establish and detail the whole set a equations needed in the frame-
work of non-ideal mhd. I estimate the contribution of the main non-
ideal process in the discs physics.
In the third section, I focus on the ionisation processes in ppds and
tds. I develop a simple modelisation of a disc to estimate the charac-
teristic value of the ambipolar Elsasser number in tds.
The last section is devoted to the numerical aspect of my work. I
detail the initialisation process of my simulation and describe the
facilities that I used. Eventually, I give a short description of the nu-
merical code I used to solve the non ideal mhd set of equations: the
pluto code.
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introduction

Dans ce second chapitre, je propose une description de la physique
en jeu dans l’étude des disques protoplanétaires ainsi que des outils
numériques que j’ai utilisés.
Je commence par décrire quantitativement la physique des disques
protoplanétaires en me basant sur des observations. Je décris les
principales quantités utiles telles que la densité de surface et je donne
les ordres de grandeurs associés. Cette première étape m’amène à
considérer un certain nombre de quantités caractéristiques des plas-
mas et de la mécanique des fluides, que j’utilise pour modéliser les
disques protoplanétaires. Plus précisément, je détaille les hypothèses
permettant de travailler dans le cadre de la magnétohydrodynamique
idéale dans un premier temps.

Je poursuis en détaillant les calculs nécessaires à l’usage de la
magnétohydrodynamique non idéale, en introduisant les principaux
effets non idéaux (effet Ohm, Hall et diffusion ambipolaire). La
diffusion ambipolaire est particulièrement pertinente à considérer
dans le contexte des disques protoplanétaires.
Il s’agit par ailleurs du seul effet non idéal que j’ai considéré dans
mon travail. Ses effets sont quantifiés par le nombre d’Elsasser
ambipolaire.

Dans la troisième section de ce chapitre, je me focalise sur la
fraction d’ionisation dans les disques protoplanétaires ainsi que
sur les processus d’ionisation (rayons x, uv, rayons cosmiques et
radioactivité naturelle dans le disque). À l’aide de profils d’ionisation
pour chacun de ces processus, je modélise un disque de transition,
en vue de calculer le nombre d’Elsasser ambipolaire.
Ces premiers résultats me permettront de mettre au point le modèle
numérique de disques de transition que j’ai utilisé dans mes simula-
tions numériques.

La dernière section se penche sur les aspects numériques de
mon travail. J’y présente le code que j’ai utilisé (le code pluto) de
même que les infrastructures de calculs qui étaient à ma disposition
pendant ma thèse.
Je présente le modèle numérique que j’ai utilisé (pour mes simu-
lations 2, 5d et 3d), l’initialisation et la procédure de redémarrage
pour les simulations 3d.
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2.1 physical frame for protoplanetary discs

2.1.1 General properties of a protoplanetary disc

The aim of the subsections to come is to provide orders of magnitude
as well as generic dependencies of the main meaningful quantities
in the physics of protoplanetary discs (density, temperature, rotation
speed). Such profiles have an observational ground which implies a
few hypotheses that will be discussed further out. In this prospect, I
adopt a generic model of protoplanetary disc (called "standard pro-
toplanetary discs"), whose profiles will be defined hereafter and la-
belled with ppd.

2.1.1.1 Main radial profiles derived from observations

Protoplanetary discs are commonly modelled by a cold, dense, mag-
netised plasma made of gas and dust grains. I will later on address
each one of these properties and justify the use of plasma physics for
such objects. In this subsection, I aim to give generic radial profiles for
a protoplanetary disc based on observations. Referring to Andrews et
al. (2009), one gets the following profile for the surface density Σppd

and the temperature Tppd

Σppd = 300 R−1
au

g cm−2 , (26a)

Tppd = 280 R
−1/2
au K , (26b)

where Rau is equal to the radius R in units of 1 au. These profiles are
deduced from observations of the thermal continuum emission (at
870 µm) of 9 protoplanetary discs. The chosen samples is composed
of massive discs (the masses range from 0.005 to 0.14 M⊙) but is
still comparable to the minimum mass solar nebula model (Hayashi,
1981). It should be noted that the model used for the surface density
is Σ(R) = Σc (R/Rc)

−γ exp
[
−(R/Rc)

2−γ
]
, with Rc a characteristic

radius, γ = 1 and Σc is proportional to the total mass of the disc.
Therefore, using a power law for Σ (see eq. 26a) increases the surface
density in the outer disc. Assuming a Keplerian rotation for the disc
around a star of mass M⋆ = 1M⊙, I get

ΩK, ppd(R) =

√
GM⊙
R3

= 1.99× 10−7 R−3/2au s−1. (27)

2.1.1.2 Vertical structure

Σppd expresses the radial dependence of matter inside a disc. How-
ever, ppds are 3d objects with a vertical dependency on the height z.
Protoplanetary discs appear to be flared discs (e. g.: hh30, Guilloteau
et al., 2008 or hk tau c, Stapelfeldt et al., 1998). It is then meaningful
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to introduce the flaring index ψf to build the profile of the pressure
scale height h̃ (Andrews et al., 2009) defined as

h̃ = h̃c

(
R

Rc

)ψf

, (28)

with h̃c a corresponding normalisation at the characteristic radius Rc.
The physical scale height h is given by

h ≈ R h̃ = hc

(
R

Rc

)1+ψf

, (29)

where hc = h̃c Rc. Flaring controls how the stellar radiation hits the
disc surface and heats its content.
The dust settling can modify the flaring of discs (Dullemond and
Dominik, 2004), whose flatness can be drastically reduced (Wolff et
al., 2021). Observations suggest that ψf = 0.04− 0.26 (Andrews et al.,
2009) for the dust.

2.1.1.3 Hydrostatic equilibrium in the disc

The hydrostatic equilibrium applied to the disc content (Dullemond
and Dominik, 2004) enables to get the vertical profile of the density. I
suppose that the disc is filled with an ideal gas of density ρ and pres-
sure P. Any fluid particle is subject to the gravity potential of the host A justification of

this fluid
modelisation lies
within sec. 2.1.3.1.

star ϕ⋆ = −GM⋆/
√
R2 + z2, the pressure gradient and the centrifugal

force along the radial direction (parallel to the disc midplane). In the
frame of reference tied to a given fluid particle in Keplerian motion at
a given radius R and using the cylindrical coordinates system (R, z),
I get

−∇ϕ⋆ −
1

ρ
∇P+ΩK ReR = 0 , (30)

which gives once projected along ez

1

ρ
∂zP = −∂zϕ⋆ . (31)

I now assume the disc is locally isothermal, so that I can use the
isothermal sound speed cs that does not depend on z and such that An isothermal

process is equivalent
to a polytropic
process of index
n = 1 that leads to
cs =

√
nP/ρ,

which does not
depend on the ratio
of specific heats γ.

cs =

√
P

ρ
. (32)

I end up with the well known profile for ρ

ρ(R, z) = ρmid(R) exp
[
−
1

2

( z
h

)2]
, (33)

where h is chosen so that cs = hΩK. Since the disc is filled with an
ideal gas, I have

cs =

√
kB T

µ
, (34)
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with µ ≈ 2.34mH the mean molecular weight and mH the atomic
mass. Given eq. 26b and 34 combined with eq. 27 and 29 , I get

cs = 9.94× 104 R−1/4au cm s−1 , (35a)

h = 5.00× 1011 R5/4au cm , (35b)

h/R = 0.0333 R1/4au . (35c)

This gives a typical flaring angle ψf = 1/4. I define the surface density
for this section asAxisymmetry is

assumed here. One
could integrate over
φ and divide the

result by 2π to
account for

non-axisymmetries
as it will be done for

3d simulations.

Σppd(R) ≡
∫+∞
−∞ ρ(R, z)dz , (36)

so that I find with eq. 33

Σppd(R) =
√
2πhρmid(R) , (37)

and finally get, using eq. 26a and 35b

ρmid(R) = 2.39× 10−10 R−9/4au g cm−3 . (38)

I eventually end up with the number density profile defined as nmid(R) =

ρmid(R)/µ and the pressure one with eq. 35a which read

nmid(R) = 6.13× 1013 R−9/4au cm−3 , (39a)

Pmid(R) = 2.36 R
−11/4
au dyn cm−2 . (39b)

The total mass of a ppd is obtained through its h2 content or with esti-
mations of its content in co. Some methods can involve other species
such as n2h

+ (e. g. Trapman et al., 2022b). I now have all the basics
profiles needed to dive in more detailed aspect of discs physics.

2.1.2 Plasma parameter and magnetic fields in protoplanetary discs

Up until now, I focused on a hydrodynamical perspective, regardless
of the external forces acting on the gaseous disc and especially did
not mention the role of electromagnetism. It is obvious that the grav-
itational potential ϕ⋆ of the young star is central to the study of the
gas dynamics. This is the dominant process which enforces the Keple-
rian rotation that shears the disc and on which the pressure gradient
term acts as a perturbation.
Another perturbative effect emerges from the interplay between the
magnetic field and the gas that are tied to each other through the
Lorentz force directly acting on charged particles. It is therefore valu-
able to estimate the effects of the magnetic field with respect to the
ones of the pressure. The so called beta plasma parameter fulfils this
need by comparing the total thermal pressure P to the magnetic pres-
sure PB ≡ B2/2µ0 = B2/8π, where B2 ≡ B2 and I recall that µ0 = 4π
in cgs units. Its definition is as follows

β ≡ P

PB
=
8πP

B2
. (40)
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This definition is generic for plasma physics and commonly used.
However, for the specific case of protoplanetary discs, I will consider
that β is estimated at the disc midplane as a reference. Using eq. 39b,
I get the following dependency of the magnetic field on β:

Bmid(R) = 7.70 R
−11/8
au β−1/2 G . (41)

Based on the study of meteorites (Levy, 1978; Fu et al., 2014; Fu et
al., 2021; Borlina et al., 2022) for which Bmid(1 au) ∼ 0.1 − 1 G is
deduced, one gets a typical value of β ∼ 103−4 for protoplanetary
discs. Considering the effect of the magnetic field paves the way to
the use of magnetohydrodynamics (introduced in sec. 2.2).

2.1.3 Physical modelisation of a protoplanetary disc

2.1.3.1 Fluid mechanics

Based on the general properties of protoplanetary discs, I can now
draw a more detailed picture of these objects. To model a protoplan-
etary disc, I suppose that the disc is made of classical (the typical
length d between particles is way smaller than any of the Planck
lengths involved) and non-relativistic (the typical speed v of any par-
ticle in the disc is by far smaller than c) particles representing the
molecules. I can first assume that the properties of any kind of par-
ticles labelled by j that fill the disc are contained in a distribution
function for one particle fj (r, v, t) that depends on 7 variables. This
function is so that fj (r, v, t) drdv gives the most probable number of
particles that are to be found is the volume element drdv centred on
the point (r, v). The moments of various orders of fj recover macro-
scopic quantities, for example the zeroth order of fj is the number
density nj

nj (r, t) =
∫

R3
fj (r, v, t) dv , (42)

while the first order renders an average velocity uj

uj (r, t) =
1

nj (r, t)

∫
R3

v fj (r, v, t) dv . (43)

This averaging procedure can be generalised to any given quantity
Q (r, v, t) so that

⟨Q⟩j (r, t) ≡ 1

nj (r, t)

∫
R3

Q (r, v, t) fj (r, v, t) dv . (44)

The distribution function eventually follows the Boltzmann equation
which rules its temporal evolution

∂tfj + v · ∂rfj +
F

mj
· ∂vfj = C

[
fj
]

, (45)
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where F represents the external forces that act on each particle of
mass mj and C is the collisional operator. Given a characteristic re-
laxation time τ, I approximate the collisional operator with C

[
fj
]
=

−
(
fj − fj,0

)
/τ (Quataert and Chiang, 2000; Narayan et al., 1994; Cook

and Franklin, 1966), with fj,0 an equilibrium distribution for particles
j (such as the Maxwell-Boltzmann distribution). This peculiar expres-
sion of C is aims to highlight the role of τ which is the mean free time
so that −fj/τ is the rate of particles that are removed from a given
phase space location due to scattering. Assuming stationarity, I write

v∗ · ∂r∗fj + F∗ · ∂v∗fj = −
1

Kn

(
fj − f0

)
, (46)

where x∗ refers to the dimensionless quantity of x. Kn is the Knudsen
number and is defined as the ratio of the mean free path ℓ to the
chosen characteristic length scale L. One of its property is to embody
the role of the collision term for a given physical frame. In particular,
Kn ≪ 1 implies that the particles set is collisional so that one can
use the fluid mechanics equations to get a proper description of the
system. For particles of cross section σ and number density n, the
mean free path readsI assume a

Maxwell-Boltzmann
distribution of speed

to evaluate ℓ.

ℓ =
1√
2nσ

. (47)

I take σ ≈ π r 2h2 as an order of magnitude, with rh2 ≈ 3× 10−8 cm
the typical size of a dihydrogen molecule that is the predominant
component of a protoplanetary disc. I eventually find that

ℓ = 17 R
9/4

au cm . (48)

Taking L equal to the vertical sale height hau deduced from eq. 35b
gives at 1 au

Kn ≈ 3.40× 10−11 ≪ 1 , (49)

so that protoplanetary discs are very well described by fluid mechan-
ics.

2.1.3.2 Hydrodynamics

The fluid equations arise from the moments of the Boltzmann equa-
tion. I define the mass density ρj = mj nj, so that taking the firstFrom a

mathematical point
of view, the

procedure used is
referred to as the

Chapman-Enskog
method (Chapman

and Cowling, 1970).

moment (of order 0) of eq. 45 leads to

∂tρj +∇ ·
(
ρj uj

)
= 0 , (50)

which is the usual continuity equation or mass conservation equation.
The second moment of eq. 45 gives the momentum equation

∂t
(
ρj uj

)
+∇ ·

(
ρj ⟨v⊗ v⟩j

)
= fj +Rj , (51)
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where ⊗ is the outer product and Rj is a remnant from the collisional
operator. fj are the external forces per unit volume acting on the par-
ticles j. One can now repeat this procedure indefinitely, since any
integration of eq. 45 of order n would generate a term of order n+ 1,
so that external assumptions are needed to close the system. A first
step is to decompose the total velocity v into the average term (see
eq. 43) plus a random part ṽj so that

v = uj + ṽj , (52)

with ⟨ṽj⟩j = 0. Introducing the stress tensor P j defined as

P j (r, t) ≡ ρj ⟨ṽj ⊗ ṽj⟩j ≡ pj I+π j , (53)

where pj is the scalar pressure and π j is the deviatoric stress ten-
sor made of the off-diagonal components of the stress tensor. The
elasticity theory studies in depth this tensor (from which comes the
viscosity and the usual way of writing the so-called Navier-Stokes
equations). However, I will neglect this term because discs are mostly
pressure supported and are rather subject to an effective viscosity
(due to turbulence or magnetic forces) than to a classical viscosity
(Rafikov, 2017). The final equations for each set of particles j is given
by

∂tρj +∇ ·
(
ρj uj

)
= 0 , (54a)

∂t
(
ρj uj

)
+∇ ·

(
ρj uj ⊗uj

)
= −∇pj + fj +Rj . (54b)

This set of equations however remains to be closed, in particular the
expression of Rj is still unknown. I also did not mention the energy
conservation equation to keep a straightforward physical description.
I address these 3 points in sec. 2.2.

The main point to get from this section is that under a few assump-
tions, the matter in protoplanetary discs is accurately described by
eq. 54a and 54b. Of course, one should keep in mind that this ap-
proach stands as long as the plasma is collisional enough so that the
velocity distribution function remains close to the Maxwell-Boltzmann
one (thermal plasma). There exists various astrophysical environments
for which this modelisation is unable to render a proper physical
description all alone. As an example, one can think of solar flares
which are explosive events whose modelisation should include a va-
riety of multiscale spatio-temporal phenomena. A kinetic approach
(commonly used for non-thermal plasma) is then a useful alternative
(Gordovskyy et al., 2019).

2.2 magnetohydrodynamics in protoplanetary discs

From now on, I will use the generic notion of plasma to refer to
the matter content of the disc, with the hereafter broad definition.
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A plasma is a gas experiencing density and temperature conditions
such that it becomes partially or entirely ionised, with the presence
of free charge carriers. Electrons together with positively charged
ions are the predominant charges carriers in protoplanetary discs.
Neutrals particles (of diverse origins such as grains or molecules)
may be part of this mixture. Plasma physics is an absolutely huge
and fundamental gear of theoretical physics. It is way beyond the
scope of this work to try to address all the vastness of this topic
and I refer to Rax (2005) and Piel (2010) for comprehensive pictures
of this field. The aim of the sections to come is to provide a con-
cise yet precise depiction of the physics needed to describe proto-
planetary discs, namely the non-ideal magnetohydrodynamics which
arises from plasma physics. The presence of electric charges in the
plasma makes it particularly sensitive to the effects of electromagnetic
fields, suggesting a modelisation relying both on electromagnetism
and fluid mechanics, i. e.magnetohydrodynamics.

2.2.1 mhd driving equations

2.2.1.1 Electromagnetic fields dynamics

The impact of electromagnetic field on the matter is fully embodied
by the Lorentz force Fl. In a given frame of reference, a particle of
charge qj moving at velocity uj immersed in an electromagnetic field
is submitted to

Fl = qj
(
E+uj ×B

)
, (55)

where E and B are respectively the electric and magnetic fields. Be-
fore moving any further, one needs to get the equations that govern
the dynamics of these fields, which are the well known Maxwell equa-
tions

∇ · E = 4π ρc , Maxwell-Gauss (56a)

∇× E = −
1

c

∂B

∂t
, Maxwell-Faraday (56b)

∇ ·B = 0 , Maxwell-Thomson (56c)

∇×B =
4π

c
J+

1

c

∂E

∂t
≈ 4π

c
J , Maxwell-Ampère (56d)

where I neglected the displacement currents in eq. 56d under the non-
relativistic assumption. ρc is the total charge density and J the total
current density, that are constructed as follows

ρc ≡
∑
α

qα nα , (57)

J ≡
∑
α

qα nα uα , (58)

where I used notations and definitions from sec. 2.1.3.1. The use of
E demands a solution of eq. 56a due to the presence of charged
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species all over the plasma. This is done through the Ohm’s law, that
is detailed in sec. 2.2.1.4 and 2.2.2 respectively for ideal and non-ideal
mhd.
A plasma is subject to two opposite tendencies. A collective organisa-
tion of its constitutive particles emerges with the Coulomb interaction
while the thermal agitation tends to break down this order. The com-
petition between these antagonist processes enables to have a ionised
plasma remaining globally neutral. The next paragraphs propose to
obtain the spatio-temporal scales that characterizes this interplay.

plasma oscillations : As just highlighted, the plasma can be
considered as neutral. Nevertheless, the charge density may encounter
perturbations breaking this assumption. Such perturbations are char-
acterised by a plasma frequency, which is given for the electrons by

ωp e =

√
4πn0 e2

me
. (59)

This frequency provides a typical time-scale τp e ≡ ω−1
p e on which

the plasma is able to recover neutrality after a perturbation occurred.
The density of electrons n0 can be replaced by ξnn, where ξ is the
ionisation fraction and nn = nmid the neutrals density. A thorough
study of ξ will be found in sec. 2.3, but for now I just take a standard
value of ξ ∼ 10−13, so that the corresponding profile for τp e is

τp e(R) =

√
me

4π e2
ξ−1/2 n

−1/2
mid , (60)

= 7.16× 105 ×
(

ξ

10−13

)−1/2

R
9/8
au s . (61)

I also add the corresponding frequency for ions, since I will use this
order of magnitude later on, I give the profile of ωp, i for h

+ ions

ωp i = 5.44× 102
(

ξ

10−13

)1/2
R
−9/8
au s−1 . (62)

debye length and screening : A typical lengthscale character-
izes the screening of charges accumulations that would locally break
the neutrality of the plasma. This so called Debye length λd is valid
for a hot plasma in which the thermal motion of particles challenges
their screening organisation. The definition of λd reads T is supposed to be

the temperature Te
of the electrons that
I consider equal to
the temperature of
the plasma.

λd =

√
4π kb T

n0 e2
. (63)
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Introducing ξ, I get the following profile in the disc

λd =

√
4π kb

e2
ξ−1/2 n

−1/2
mid T1/2 , (64)

= 4.67×
(

ξ

10−13

)−1/2

R
7/8
au cm . (65)

This fundamental length embodies the capacity of the particles to
organise themselves around a given charge so that if the density is
high enough, many particles will screen the charge and the plasma
can be considered as electrically neutral for length greater than λd.
The Debye sphere is the underlying concept here, characterised by
the adimensional number Ξ−1 defined as

Ξ−1 = n0 λ
3
d

, (66)

= 6.22× 105 ×
(

ξ

10−13

)−1/2

× R3/8au ≪ 1 (67)

Ξ−1 ≪ 1 implies that the plasma characteristics enable the Debye
spheres to be widely populated, which ensures the neutrality of the
plasma at high scales.

cyclotron motion A well-known result concerning non-relativistic
charged particles in presence of a magnetic field B is the cyclotron
motion. For a particle of mass mj, electric charge qj and velocity vj
submitted to the Lorentz force, the gyro- or cyclotron frequency is

Ωqj ≡ |qj|B/mj , (68)

to which correspond characteristic time-scales that verify τi ≡ Ω−1
i ≫

Ω−1
e ≡ τe. To adopt a fluid description of the plasma, one must con-

sider dynamical timescale before which τi is negligible.

conclusive remarks on the electric field : As a conse-
quence of the previous assumption, the plasma can perfectly be con-
sidered neutral. Subsequently and despite the presence of electrical
charges, one can fairly drop the corresponding electrical field (which
is neglected), as long as any studied length is greater than λd. How-
ever, this procedure does not mean that there is no electrical field in
the plasma. Indeed, vrot. × B electrical fields appear because of the
rotation of the disc and non-ideal diffusivities may also translate into
electric contributions to the Lorentz force. The treatment of E calls for
a constitutive relation. The Ohm law plays this role with J = J (E, B).
To precise this relation, the interactions between the different species
in the plasma must be addressed and I refer to the sec. 2.2.2.

2.2.1.2 Multifluid and two fluid

At this point, one could try to solve the set of equations composed
of eq. 54a, 54b as well as eq. 56b to 56d. The fluid equations should
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then be resolved for each kind of particles (previously labelled with
j), which very demanding in terms of numerical calculations. Such a
treatment is mandatory to study plasmas in which different species
could have very different dynamics (for example in solar wind in
the solar magnetosphere Winglee, 1998). The use of this method has
then everything to do with the dynamical coupling of the different
species. This approach is called a multifluid approach and has also
been used in the context of protoplanetary discs such as in Rodgers-
Lee et al. (2016). Another similar method is to consider only two dif-
ferent species (the electrons and the ions) and to solve the equations
for these species only. I refer to Goedbloed and Poedts (2004) for de-
tailed explanations on this two fluids approach. However, as I will
show in the next subsection, the use of mutlifluid can be avoided in
the case of protoplanetary discs, as it is routinely done (e. g. Gressel
et al., 2020).

2.2.1.3 Single fluid approximation

The first step toward the single fluid approximation is to define a
density ρ as well as a corresponding velocity u in such a way that it
takes all the particles j into account. Hence

ρ ≡
∑
j

njmj , (69)

u ≡
∑
j njmj uj∑
j njmj

. (70)

I introduce a deviation velocity ũj so that

ũj ≡ u−uj . (71)

May this way of proceeding seem similar to what was achieved with
eq. 52, it is not the same idea behind it. Eq. 52 highlights the velocity
deviation between the hydrodynamic velocity of a given particle of
the j specie and the averaged velocity of all these type-j particles. It
shows to what extent the j-particles move in a similar fashion. In con-
trast, eq. 71 considers the deviation velocity between a given set of
j-particles and the total velocity. This deviation highlights how well
coupled the different kinds of species are. To estimate this coupling,
the effects that deviates a given type of particles from the mean trajec-
tory must be compared to the effects that impose their general trend
on the global movement. Therefore, neglecting ũj demands that

ρj ∥ũj∥ ≪ ρ vk , (72)

where vk is the local Keplerian speed. By saying so, I assume that
gravity is the main process dynamically involved in the physics of
protoplanetary discs. From now on, I will adopt a linearised depiction
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of the interaction term Rjk between species j and k, which takes the
form of a drag force term

Rjk ≡ −γjk ρj ρk
(
uj −uk

)
(73)

where the γjk are defined as

γjk ≡ ⟨σv⟩jk
mj +mk

, (74)

with ⟨σv⟩jk the momentum exchange rates between species j and k.
One has Rj =

∑
kRjk and since Rjk = −Rkj,

∑
jRj = 0. Remarking

that∑
j

njmj uj ⊗ ũj =
∑
j

njmju⊗u−
∑
j

njmju⊗ ũj

=

∑
j

njmj


︸ ︷︷ ︸

=ρ

u⊗u−

∑
j

njmjuj


︸ ︷︷ ︸

=ρu

⊗u = 0 ,

I sum the eq. 54a and 54b for all the species and get

∂tρ+∇ · (ρu) = 0 , (75a)

∂t (ρu) +∇ · (ρu⊗u) = ∇ ·

∑
j

njmj ũj ⊗ ũj


︸ ︷︷ ︸

neglected

−∇P+ f+
J×B

c
+ ρc E︸︷︷︸

≈0

.

(75b)

I neglect the terms with ∥ũj∥2 under the previously detailed assump-
tions, because of quasi-neutrality, the electric part of the Lorentz force
is dropped. I defined P the total pressure and f the total forces per
unit volume as the sum of all their j-counterparts. I am now left with
the equations of motion under the single fluid approximation, namely
eq. 56b, 56c, 56d, 75a and

∂t (ρu) +∇ · (ρu⊗u) = −∇P+ f+
J×B

c
. (76)

All the complexity of having a mixture of different species of various
electric charges is hidden by the use of single generic fluid of density
ρ and velocity u.

2.2.1.4 Ideal mhd

a review of the physical assumptions : Rather than simple
algebraic manipulations, the single-fluid approximation procedure
contains a fair amount of approximations. Indeed, to get the equa-
tions of the single fluid approximation, I adopted a fluid description
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carrying its own set of approximations regarding the collision time-
scales, before neglecting any non diagonal element of the stress tensor.
Regarding the dissipative phenomena (viscosity, heat conduction be-
tween the different species), characterised by a time-scale τdiss., one
needs the time-scale of interest to be way smaller than τdiss.. This
leads the pressure to be intrinsically scalar with higher order terms
(such as the heat flow) being neglected. That is why I adopt a poly-
tropic equation of state for an ideal gas to close the system of equa-
tion, with a relation between the order-0 density ρ and the order-2
pressure P, tied together with

P ρ−n = C , (77)

with n the polytropic index, chosen so that n = γideal (with γideal

the adiabatic index) to enable an adiabatic evolution of the plasma
and C is a constant. The addition of electromagnetism implies an-
other set of approximations to assume quasi neutrality and to neglect
the cyclotronic motion. Goedbloed and Poedts (2004) compiled these
approximations under the maximal ordering of mhd , whose typical
length and time-scales verify

λmhd ≫ Ri ≫ Re ≫ λd , (78)

τmhd ≫ τi ≫ τp e ∼ τe . (79)

In this paragraph, I want to reach the ideal mhd set of equations,
therefore I consider the following Ohm equation and leave further
comments to sec. 2.2.2. I am then left with

E = − u×B︸ ︷︷ ︸
ideal mhd term

+ Eni︸︷︷︸
non-ideal terms≈0

. (80)

I now have to give a word on the conservation of the total energy per
volume unit E defined with (I drop the external forces potentials)

E ≡ ρu2

2
+

B2

8π
+ ρuint. , (81)

with uint. the internal energy per mass and volume units, that is equal
to (under the polytropic assumption)

uint. =
P/ρ

n− 1
. (82)

In the absence of any dissipative process, one is left with

∂tE+∇ ·
[(
ρu2

2
+ P+ ρuint.

)
u+Π

]
= 0 , (83)

with Π the Poynting vector. Any sources or dissipation would make
this equation non zero, with supplementary terms on the right hand-
side. It must be noted, that the electromagnetic and purely mechanic
parts of this equation, once removed, leaves This can be shown

directly with eq. 82.
∂tP+u ·∇P+ γP∇ ·u = 0 . (84)
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ideal mhd set of equations : I am now fully equipped to ren-
der the usual set of ideal mhd equations:

∂tρ+∇ · (ρu) = 0 , (mass conservation)

(85a)

ρ ∂tu+ ρu ·∇u+∇P− J×B

c
+ f = 0 , (momentum equation)

(85b)

∂tP+u ·∇P+nP∇ ·u = 0 , (internal energy)
(85c)

∂tB+∇× E = 0 . (Maxwell-Faraday)
(85d)

∇ ·B = 0 (Maxwell-Thomson)
(85e)

The electric field taken so that quasi neutrality is recovered is given
by the Ohm law (eq. 80) so that combined with the Maxwell-Ampère
equation (eq. 56d), the Maxwell-Faraday equation gives the so called
induction equation

∂tB−∇× (u×B) = 0 , (86)

which drives the dynamics of the magnetic field in the ideal mhd regime.

other approaches : Interestingly, the equations of ideal mhd can
be recovered with a Lagrangian L [u, ρ,P,B] (Newcomb, 1961; Zhou,
2017; Webb and Anco, 2019) and the corresponding Euler-Lagrange
equations. This approach highlights the role of the energy and con-
centrates all the assumptions in the choice of the Lagrangian density
which is not straightforward.

2.2.2 Non ideal mhd

In the ideal picture of mhd, the different species are strongly coupled
to each other, sharing common dynamics. However and despite this
coupling, charged species and neutrals appear to have slightly differ-
ent speeds. In this case, the drag term is at play so that currents ap-
pear alongside with corresponding electric fields. Electro-neutrality is
still valid, so that one is subsequently left with an electric field to find
to fulfil this condition. This section focuses on this task which is a
tremendous milestone to reach a proper description of the non-ideal
mhd.
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2.2.2.1 Drag velocities and coupling

In the ideal framework, the electric field E ′ in the fluid comoving
frame is related to the electric field E in another inertial frame of
reference with the usual Ohm’s law

E ′ = E+u×B . (87)

Under the assumption that the disc is a perfect conductor, I had E ′ =
0. However, if disparate dynamics are at play for each specy, this
result does not stand anymore. Charged particles and neutrals, under
adequate assumptions, reach a given speed deviated from u so that
ũj → cst. An electric field thus appears and modifies the equations
of motion in the comoving frame. All the species are coupled to each
other through the Rjk forces while the electric field keeps the overall
charges neutrality. I assume that a protoplanetary disc is filled with 3
kinds of species: electrons (e), ions (i) and neutrals (n). The respective
drag velocities that lie behind the Rjk forces are given by

Rie = −γieρiρe (ui −ue) = −αie (ui −ue) ,

Ren − γenρeρn (ue −un) −αen (ue −un) ,

Rni = −γniρnρi (un −ui) −αni (un −ui) ,

where I define αjk ≡ γjk ρj ρk as shorthand notations to ease the
calculus to come. It is of prime interest to estimate the contribution of
the drag velocities to u to know which, if any, specie dominates over
the others. Protoplanetary discs are weakly ionised objects in their
outer parts (Rau ≳ 1). I previously estimated the ionisation fraction
to be of the order of ξ ∼ 10−13, where ξ = ne/nn = xni/nn, with
x = |qi/qe| (where I use the electric neutrality). Detailed calculations
of ξ lies within sec. 2.3, nevertheless, this order of magnitude leads
undoubtedly to the fact that

u =
nnmn un +nimi ui +neme ue

nnmn +nimi +neme
,

=
mn un + ξ xi ui + ξ x xe ue

1+ ξ xi + ξ xe
,

= un + (xi ui + x xe ue) ξ+ o0 (ξ) ,

where I define xx ≡ mx/mn, so that in the end

u ≈ un . (88)

With this result in mind, I can draw the following approximations.

1 The conclusion to get from calculation 88 is that the neutrals
are predominant regarding the total velocity. They then drive
the charged species which themselves experience the Lorentz
force. I will make this assumption for a weakly ionised plasma.
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2 Another consequence of eq. 88 and regarding the drag forces,
the collisions are mostly due to neutrals so that the Rei force is
dropped before the neutrals Rjn terms.

3 I further assume that the characteristic time for any specie j to
reach a terminal drift velocity, namely the stopping time τs, j, is
way shorter than the typical dynamical time Ω−1

k
, so that any

advection motion (w ·∇w ′ terms with w and w ′ being any
speeds uj or u) or external forces (gravity) shall be neglected.

4 In the same spirit, ∂tũj ≈ 0, meaning the particles reach their
terminal drift velocity. This equivalent to neglect dw/dt over
terms ∝ w in the drag force.

5 Furthermore, any ∇Pj or ∇P term is also negligible assuming
that the Mach number is small enough.

6 The inertia of the electrons is neglected, so that in particular
due/dt ≈ 0.

I hereby do not state that all these effects are negligible regarding the
disc overall dynamics, I rather explicitly assume that in comparison,
the dynamics at play in the deviation to ideal mhd occur on short
time-scales. Note that the first two assumptions are consequence of
the weak ionisation of the plasma, so that I first derive the generalised
Ohm’s law for a general plasma made of 3 species before adding this
hypothesis. I proceed this way in order to clearly emphasise the role
of neutrals particles in the disc and how the so call ambipolar process
emerges. The hereafter calculations follow Braginskii (1965) and sup-
plementary materials can be found in Elsasser (1950), Cowling (1957),
and Lesur (2021a).

2.2.2.2 Generalised Ohm’s law in a three-component mixture

Due to the presence of 3 species in the plasma, I must find the follow-
ing 2 relative velocities

γ ≡ ue −ui ,w ≡ ui −un . (89)

Writing down the equations of motion for each specie (and neglecting
the electron intertia under hyp. 6 ), I get

−∇pe − ene

(
E+

ue ×B

c

)
+αe

J

ene
−αen w = 0 , (90a)

−∇pi + qi ni

(
E+

ui ×B

c

)
−αei

J

ene
−αin w = nimi

dui

dt
, (90b)

−∇pn −αen
J

ene
+αn w = nimi

dun

dt
, (90c)
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where I used the relation γ = −J/ene and the notations αx = αxi +

αxe. Thanks to hyp. 5 , all the pressure gradients are neglected. In
eq. 90b and 90c, I use hyp. 3 and 4 to replace un and ui directly
by u, so that by summation I have

w =
ξn

cαn
J×B+

αen/αn

ene
J , (91)

with ξn = mn nspn/ρ. Now that I have w, I inject this velocity back
in eq. 90a to end up with the generalised Ohm’s law

E+
1

c
ui ×B =

J

σ
+
1−αen ξn/αn

ene c
J×B , (92)

where the conductivity σ is introduced as

σ = e2 n2e

(
αei +

αen αin

αen +αin

)−1

≈ e2 n2e
αe

. (93)

Note that the first two assumptions are not used for now, so that
each specie keeps its own dynamics on the time-scale of interest. As
a conclusion, I write down the electric field in the coordinate system
moving with the plasma at speed u

E ′ = E+
1

c
u×B =

J∥
σ∥

+
1

σ⊥
J⊥ +

1

σ∗

(
J× b̂

)
, (94)

with

σ∥ ≡ σ , (95)

1

σ⊥
≡ 1

σ
+
ξ2n B

2

αn c2
, (96)

1

σ∗
≡ 1− 2αen ξn/αn

ene c
≈ 1

ene c/B
, (97)

and b̂ ≡ B/B. I used a vector decomposition with respect to the
magnetic field, so that for a given vector x

x =
B · x
B2

B︸ ︷︷ ︸
=x∥

−
(x×B)×B

B2︸ ︷︷ ︸
=x⊥

. (98)

In this first example, the physics that lies behind the generalised
Ohm’s law is more straightforward to catch. σ only involves the elec-
tron properties and accounts for the usual Ohm’s law with electrons
interacting with neutrals and ions. The perpendicular contribution
depends on the magnetic field intensity and only on the neutrals
properties. This effect needs to be understood as a perturbation to the
ideal case for which the plasma follows the magnetic field. Therefore,
motion of plasma across the magnetic field implies motion across the
neutrals stream so that the stronger B and ξn, the more tremendous
the effect is. Lastly, the J× B term accounts for the Hall effect that
I will discuss in greater details as well as the other two effects in
sec. 2.2.2.4.
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2.2.2.3 Generalised Ohm’s law for a weakly ionised plasma

With this peculiar case, the first two assumptions 1 and 2 come to
play so that one can consider that the driving particles are the neutrals
so that u ≈ un and therefore ũn ≈ 0. The one and only drag force
is then given by Rj = −αjn uj and one is now left with ũj ≡ uj − u

to work with. The assumption 3 holds so that I drop the advection
terms, the temporal derivatives and the pressure gradients, so that
the equations of motion for particles j in the center of mass frame
where the electric field E ′ is to find are

qj nj

(
E ′ +

1

c
ũj ×B

)
−αjnũj = 0 . (99)

Since the neutrality condition is still valid, I have

J =
∑
j

qj nj ũj . (100)

One cannot obtain E ′ as a function of J as easily as in the previous
case because of the ũj terms make it difficult to express the drift
velocities, this is why I consider the parallel and perpendicular con-
tributions of the vectors with respect to B. B only appears in vectorial
product, so that obtaining the parallel contributions is the same thing
as having B = 0. This way, I immediately have

ũj,∥ =
qj nj

αjn
E ′
∥ , (101)

and with a summation on j,

E ′
∥ =

1

σo

J∥ , (102)

where I define

σo ≡
∑
j

q2j nj
nj

αjn
=
c

B

∑
j

qj nj µj , (103)

and
µj ≡

B

c

qj

γjnmj ρn
. (104)

For the crossed contribution, I will use the relation ũj⊥ = −
(
ũj ×B

)
×

B/B2 and the fact that (x×B)⊥ = x⊥ ×B. I first write from the equa-
tion of motion

αjn ũj,⊥ = qj nj

(
E ′
⊥ +

1

c
ũj,⊥ ×B

)
. (105)

I apply ×B and use the equation of motion to get rid of ũj,⊥ ×B so
that in the end I am left with

ũj,⊥ =
c

B

µj

1+ µ2j
E ′
⊥ +

c

B

µ2j

1+ µ2j

(
E ′ × b̂

)
. (106)
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I just have to sum over j to eventually get

J⊥ = σp E
′
⊥ + σh E ′ × b̂ , (107)

with

σp =
c

B

∑
j

qj nj µj

1+ µ2j
, (108)

σh =
c

B

∑
j

qj nj µ
2
j

1+ µ2j
, (109)

and the electric current is

J = σo E
′
∥ + σh E ′ × b̂+ σpE

′
⊥ . (110)

I now take the vector product of eq. 107 with B to resume the perpen-
dicular electric field so that the final form of the generalised Ohm’s
law is given by

E ′ =
4π

c2
ηo J+

4π

c2
ηh J× b̂+

4π

c2
ηa

(
J× b̂

)
× b̂ , (111)

with the following definition for the diffusivities

ηo =
c2

4π

1

σo

, (112a)

ηh = −
c2

4π

σh

σ2
h
+ σ2

p

, (112b)

ηa =
c2

4π

(
σp

σ2
h
+ σ2

p

−
1

σo

)
. (112c)

To achieve this picture of non-ideal mhd, I just have to mention that
J = 4π

c ∇×B, which once plugged into eq. 111, allows to recover the
induction equation which gives the dynamics of the magnetic field Because ηh and ηa

depend on B, the
induction equation
is non linear.

∂tB = ∇× (u×B)︸ ︷︷ ︸
ideal

−∇×

ηo∇×B︸ ︷︷ ︸
ohmic

+ηh (∇×B)× b̂︸ ︷︷ ︸
Hall

+ηa (∇×B)⊥︸ ︷︷ ︸
ambipolar

 .

(113)

2.2.2.4 Diffusivities

Compared to ideal case, the induction equation has three non-ideal
contributions. In this subsection, I give a few details regarding their
physical meaning and compute the appropriate dimensionless num-
ber that control the strength of each effect.
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ohmic diffusion : ηo is the most straightforward coefficient to
interpret since it is found in daily life physics. It represents the usual
Ohm’s law of electronics that we get with E = (4πη/c) J and that
emerges from the Drude model of electrons. With the equations of
Maxwell-Ampr̀e (with a non-relativistic assumption), Maxwell-Faraday
and Maxwell-Thomson, a few manipulations of vectors lead to

∂tB = D∆B , (114)

with D ≡ 1/η (I recall the use of cgs units). Such an equation is a
typical diffusion equation regarding the magnetic field in a non-ideal
conductor. This diffusion in particular allows matter to move across
the magnetic field lines.

hall drift : The perturbation embodied by ηh is the Hall effect.
In presence of a magnetic field, charges carriers moving along the
electric field (hence generating a electrical current) experience the
Lorentz force normal to the current vector and the magnetic field,
generating a perpendicular electrical field. This happens when the
ions and electrons have different motions, mainly due to the ions in-
ertia. In the most simple case with electrons of conductivity σ and
ηh = cB/4π ene I write

J = σ

(
E+u×B−

1

n e
J×B

)
, (115)

so that the induction equation is

∂tB = ∇× (u×B) + η∆B−
4π

ne
(∇×B)× b̂ (116)

Introducing the Hall frequency ωh as

ωh =
eBne

mnc
, (117)

one can define the parameter ℓh ≡ va/ωh, where va is the norm of
the Alfvén speed given by

va ≡ B√
4π ρ

. (118)

The Hall effect is important on length-scales smaller than ℓh. For ppds,
Kunz and Lesur (2013) find ℓh ≈ 0.4 au, so that this term can be
neglected at R ⩾ 10 au.
When this term is dominant, the ions are too heavy to follow the
electrons motion and limit their influence to a fixed background field
and the electrons all alone are responsible for the current. A last word
on this effect is the fact that it is not a diffusion, since its energy
dissipation is proportional to (J×B) ·B = 0.
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ambipolar diffusion : The diffusive term at play with ηa high-
lights the interplay between ions and neutral particles. The ambipolar
diffusion I will refer to in this work is not to be confused with another
so called ambipolar diffusion which involves thermal effect that I ne-
glect by cancelling the pressure gradient terms (see Braginskii, 1965

for more details on this). The effect I am describing is of magnetic
origin and due to the drift between ions and neutrals. The drift arises
from the competition between the Lorentz force and the drag force
between ions and neutrals. If I neglect Ohmic and Hall effects, I am
left with

∂tB = ∇× (ŭ×B) , (119)

with
ŭ ≡ un +

ηa

B2
[(∇×B)×B] . (120)

This induction equation can be interpreted as a flux-freezing condi-
tion at a different speed than the speed of the total fluid as in ideal
mhd (Masson et al., 2016). As a toy model, I consider a magnetic field
of the form

B0 = B0(x,y)êz , (121)

so that after a short calculation in cartesian coordinates,

∂tB0 = ηa∆B0 , (122)

a diffusive process is once again at play. The radial profile for ηa in a
protoplanetary disc is

ηa = 4.95× 1016
(

ξ

10−13

)−1(
B

1 G

)2
R
9/2
au cm2 s−1 , (123)

where I have used (Draine, 2011)

⟨ρ v⟩in = 2.4× 10−9
(
1

µ

)1/2
cm3 s−1 . (124)

2.2.3 Dimensionless numbers:

2.2.3.1 Back to the plasma parameter

I first wish to come back on the role β that I just briefly mentioned.
It is of course a fair interpretation to use this number to quantify the
effect of magnetic field in the plasma. Nevertheless, this number has
a much more fundamental aspect. In the ideal mhd framework, the
equations can be made dimensionless by the choice of 3 units (mass,
time t0 and length). Therefore, a quantity must tie the magnetic field
to this choice of units. The Alfvén speed that appears in the equation
is linked by the β parameter to the isothermal sound speed cs

β =
2 c2s
v2

a

, (125)
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so that the β parameter labels the plasma and is the relevant quantity
to control the effects of electromagnetism on the plasma. This is why
the use of mhd ranges from galactic plasma (B0 ∼ 10−8 T, t0 ∼ 1015 s)
up to tokamak plasma (B0 ∼ 3 T, t0 ∼ 3× 10−6 s) despite a broad
variation in the relevant physical quantities. The β plasma does not
account for the strength of the non-ideal processes whatsoever, so
that other dimensionless numbers are needed.

2.2.3.2 Non-ideal effects

The effects of Ohmic diffusion are quantified by the magnetic Reynolds
number

RM ≡ Ωk h
2

ηo

. (126)

Back to eq. 114, RM is so that it quantifies the magnetic field advection
versus its diffusion. The strength of the Hall effect is embedded in the
Hall Lundquist number

Lh ≡ va h

ηh

, (127)

and the ambipolar Elsasser number accounts for ambipolar diffusionNote that
Λa = 1/Ωk τs does

not depend on the
magnetic field

strength.

Λa ≡ v2
a

Ωk ηa

. (128)

I now have a ready-to-use theoretical description of the physics at
play in protoplanetary discs as well as in transition discs.

2.3 ionisation fraction and ambipolar diffusion in td

2.3.1 Radial density profile in transition discs

To achieve this preliminary work, I need to address the specific ques-
tion of transition discs to render a proper description of their inner
cavity. I consider that transition discs are essentially similar to stan-
dard protoplanetary discs, so that I just need to choose a density
profile for the cavity.
Several studies describe the gas and dust radial density profiles of
numerous transition discs (van der Marel et al., 2016b; Francis and
van der Marel, 2020; van der Marel et al., 2020) assuming inner holes
(i. e. the density reaches 0) in the radial profiles. However, the obser-
vations show that the inner regions are not empty (Carmona et al.,
2014) but rather depleted cavities. I will model the surface density
of tds such that Σppd is reached in the outer part of the disc, while
implementing a cavity at small radii. I do so with a ‘cavity function’
f defined so that

Σtd = f(R)× Σppd . (129)
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Figure 12: Radial profile of the surface density normalised by the surface
density at R = 1 au for a full protoplanetary disc. Σppd ∝ R−1

is a standard profile for a full disc. The grey zone highlights the
transition zone centred on R0.

The explicit expression of f is

f(R) = a

(
1− c tanh

[
b

(
1−

R

R0

)])
, (130)

where R0 is the outer edge of the cavity (where it connects to the full
disc) and a, b and c are 3 coefficients that control the gap in density
defined as Σtd(+∞)/Σtd(0) = 1/Γg = βout/βin and the width δR of
the transition. The coefficients a and c are given by

a =
Γg + b̃

1+ b̃

c =
1− Γg

Γg + b̃

,

where b̃ ≡ tanhb. The last coefficient b much satisfy

b =

(
R0
δR

)
×
(
1+ b̃

)
. (131)

Assuming a sharp transition on δR ⩽ 1 au while R0 = 10 au, I get
b̃ ≈ 1 and This means that

lim
R→0+

f(R) ≈
lim

R→−∞ f(R).
b ≈ 2

(
R0
δR

)
. (132)

The overall radial profile for Σtd is given in fig. 12 and will be used
to initialise numerical simulations and as a reference for analytic cal-
culations.
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2.3.2 Ionisation fraction

I have already mentioned the role of the ionisation fraction which
is fundamental for protoplanetary discs that are made of a poorly
ionised plasma (Wardle, 2007). Hereafter is recalled the definition of
the ionisation fraction ξ

ξ ≡ ne

nn
, (133)

which represents the amount of free negative charge carriers ne com-
pared to the neutrals nn one. This quantity is not well constrained at
all and depends on the radius and altitude in the disc. Öberg et al.
(2011) investigate on the vertical structure of the ionisation fraction
based on observations of DM tau with the detections of a few chemi-
cal species. They give an uper averaged value of ξ < 3× 10−10 for the
disc midplane that corresponds to the layer where the temperature is
below 16 K.
In this subsection, I estimate the ionisation fraction in a standard pro-
toplanetary disc and check the influence of a cavity in gas radial den-
sity profile before moving to an estimation of the ambipolar Elsasser
number. This procedure follows and adapt the main steps that can be
found in Combet et al. (2010) or Lesur (2021a).

2.3.3 Ionisation sources

A first step towards the computation of ξ is to gather and describe the
ionisation fraction at play in the physics of protoplanetary discs. Such
discs are subject to their host star irradiation as well as the influence
of the external environment (mainly with cosmic rays). Lastly, a nat-
ural ionisation source lies within the thermal ionisation. Due to the
presence of "dead zones" (Gammie, 1996) in the outer parts of the disc
(i. e. R > 1 au), protoplanetary discs appear to be too cold to enable
such process. As an order of magnitude, a temperature of ∼ 104 K is
required to trigger hydrogene thermal ionisation. Umebayashi (1983)
gives a quantitative estimation of the ionisation fraction based on the
thermal ionisation of potassium (see his fig. 7) and finds typical val-
ues of ξthermal < 10

−14 for temperatures below 800 K as it is the case
in protoplanetary discs outer parts. I therefore neglect the thermal ef-
fects and focus on 4main sources of non-thermal ionisation following
Willacy (2007) that are listed below and detailled hereafter:

• Ionisation due to the stellar irradiation (x-ray and fuv photons).

• Cosmic ray (cr) due to the interstellar cosmic ray flux.

• Ionisation due to radioactive decay in the disc.
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2.3.3.1 x-ray ionisation from the star:

Classical T Tauri stars can be very energetic sources characterized
by a strong though variable x-ray emission, typically ranging from
Lx ≈ 1028 up to 1031 erg s−1 (Casanova et al., 1995) and peaking
around 1 keV (Feigelson et al., 2007). I model this emission following
previous work (Bai and Goodman, 2009; Krolik and Kallman, 1983) by
two bremsstrahlung-emitting coronal rings located at R = 10 R⊙. The
x-ray photons are affected by photoionisation and Compton scatter-
ing involving secondary electrons which changes the associated ion-
isation rate per hydrogen molecule ζx. Based on Monte Carlo radia-
tive transfer calculations displayed in Igea and Glassgold (1999) and
which account for the previous processes, Bai and Goodman (2009)
obtained a fitted profile for the ionisation rate due to x-ray. Therefore,
I adopt the such a profile which depends in particular on the vertical
column density of hydrogene

ζx = Lx,29

(
R

1au

)−2.2 [
ζ1

(
e−(NH1/N1)

α

+ e−(NH2/N1)
α
)

+ ζ2

(
e−(NH1/N2)

β

+ e−(NH2/N2)
β
)]

, (134)

with LX,29 ≡ Lx/10
29 erg s−1 and Lx = 5× 1029erg s−1 the x lumi-

nosity at TX = 3 keV. ζ1 = 4.0× 10−12 s−1, ζ2 = 2.0× 10−15 s−1,
N1 = 3.0× 1021 cm−2, N2 = 1.0× 1024 cm−2, α = 0.5 and β = 0.7 are
fitting parameters listed in Bai and Goodman (2009). NH1 and NH2

are the columns density of hydrogen vertically computed above and
below the point of interest. It should be noted that the first exponen-
tial terms embody the x-ray attenuation due to the absorption while
the seconde exponential terms account for scattering.

2.3.3.2 uv photons ionisation from the star:

Concerning the uv stellar irradiation, one could consider Extreme-
Ultraviolet (euv, energy ray between 13.6 and 100 eV) and Far-Ultraviolet
(fuv, with 6 eV < E < 13.6 eV). Despite their influence on photoevapo-
ration winds (Alexander et al., 2006; Owen et al., 2010), EUV photons
are completely absorbed out for column densities of neutral hydrogen
greater than 1020 cm−2 (Hollenbach and Gorti, 2009). Their typical
penetration depth are neglectible so that they do not penetrate in the
disc. As a consequence, I neglect euv photons accordingly with Wang
and Goodman (2017) and only consider fuv photons whose penetra-
tion depth is larger and of the order of 10−2 g cm−2 (Perez-Becker
and Chiang, 2011). fuv photons mainly affect species like carbon and
sulfur inside a short layer (Bai and Stone, 2013b) whose ionisation
fraction is directly of the order of 10−5. Following Lesur et al. (2014),
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I use an exponential model to account for the ionisation fraction ξfuv

due to the fuv photons

ξfuv = ξfuv,0 exp

[
−

(
Σ⋆

0.03 g cm−2

)4]
, (135)

with ξfuv,0 = 2× 10−5 and Σ⋆ being the matter column density com-
puted from star up to the point of interest.

2.3.3.3 cr from the interstellar environment of the disc

A protoplanetary disc is embeded in the interstellar medium and sub-
ject to cosmic ray ionisation. A canonical way to model this source
follows Umebayashi and Nakano (1980) in which crs are supposed
to reach the disc surface with an unattenuated flux that generates
a ionisation rate ζcr ∼ 10−16 − 10−17 s−1 with a stopping length of
96 g cm−2. The profile that I take to compute the cr influence is givenWith those values,

X-rays are dominant
in the upper part of

the disc
(∼ 50 g cm−2) until

crs become the
primary ionising

source due to their
greater penetration

depth.

by

ζcr = ζcr,0 exp
(
−

Σcol.

96 g cm−2

)
s−1, (136)

where ζcr,0 = 10
−17 s−1 and Σcol. is the matter column density above

and below the calculation point. Observations of the cr flux in ζ Per-
sei highlights ζcr,0 ∼ 10−16 s−1 as an order of magnitude (McCall
et al., 2003).

2.3.3.4 Ionisation due to radioactivity in the disc

The last ionising source taken into account is the effects of radionu-
clides in the disc. Such elements can ionise the surrounding gas in
a homogeneous manner (i. e.a spatially constant ionising rate). The
greatest contributor to this ionising rate is the aluminium 26Al whose
half-life time is ∼ 7× 105 yrs. The expected ionisation rate estimated
from Umebayashi and Nakano (2008) is

ζrad. = 10
−19 s−1. (137)

With all the previous ionising sources, one can now get the total ion-
ising rate defined as

ζ ≡ ζx + ζcr + ζrad.. (138)

In order to compute the ionisation fraction, one needs to study the
chemical equilibrium of a chosen chemical network and therefore to
develop a model for recombination processes in the disc.

2.3.4 Recombination processes

Contrary to the ionising processes, recombination is greatly affected
by the presence of grains. Because of the previously discussed "dead
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zones" (Gammie, 1996) and dust settling at the disc midplane, the
dominant recombination process is expected to be the dissociative
recombination with molecular ions. An example of such process is
given by the reaction HCO+ + e− → CO+H. The dissociative recom-
bination rate δ associated to this process is (Armitage, 2017; Fromang
et al., 2002)

δ = 3× 10−6 T−1/2 cm3 s−1. (139)

Such a model favours simplicity as well as a direct understanding
rather than a high accuracy and may very well overestimate the elec-
tron density (Fromang et al., 2002). In the prospect of picturing a
simple model for recombination, I mention but not include two other
recombination processes, namely the radiative recombination with
heavy-metal ions and the charge transfer from molecular ions to metal
atoms (details can be found in Fromang et al. (2002), Armitage (2017),
and Lesur (2021a). I hereby anticipate on the upcoming simplification
of neglecting the direct influence of grains and metals.

2.3.5 Chemical network

Now that I have introduced how electrons appear and disappear in
the disc, I can build a chemical network to solve the corresponding
equation that will render the profile of the ionisation fraction. Astro-
chemistry in protoplanetary discs is a vast and thoroughly studied
area of research. As illustrations, astrochemistry is combined to ob-
servations and simulations to study peculiar chemical species (e. g.:
Gal et al., 2021 for sulfur molecules in discs) or used to build com-
plex chemical networks (e. g.: Marchand et al., 2016 for core-collapse
simulations with non-ideal mhd processes). It is completely beyond
the scope of this work to render a detailed description of the chem-
istry at play. With this in mind, I precise that the aim of this section is
to get orders of magnitude regarding the Elsasser ambipolar number
in protoplanetary discs. In this prospect, I will assume that the chem-
ical network is stationary and neglect both metals and grains. This
is a strong assumptions which is valid as long as the chemistry time
scales are shorter than the dynamical ones and seems valid according
to (Woitke et al., 2009). This being said, here is the chemical network
I consider

m + ionising radiation −→ m+ + e− ζi , (140)

m+ + e− −→ m δ , (141)

with m referring to an ion. I eventually get the ionisation fraction
(Lesur et al., 2014)

ξ =

√
ζ

δ ρ
+ ξfuv . (142)
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Looking at eq. 124, I have all the profiles needed to compute ηa hence
Λa. I can use eq. 129 to mimic a transition disc or keep eq. 38 to
compute Λa for a full protoplanetary disc.

2.3.6 Ambipolar Elsasser number computation

2.3.6.1 Ambipolar diffusion and magnetically driven accretion

I aim to perform numerical simulations of transition discs in the
physical frame of non ideal mhd. Protoplanetary discs are expected
to be far from the ideal regime (Lesur, 2021a), however, the relative
strengths of each non-ideal process are not well known because of var-
ious uncertainties regarding the discs physics (ionisation rate, shape
and structure of the disc, chemistry and composition). However, a
common hypothesis is to consider that the ambipolar diffusion is the
prominent process in the outermost parts of discs, where Rau > 10

(Simon et al., 2015). This is why the ambipolar effect is commonly
used in numerical simulations of protoplanetary discs with magnetic
winds (Riols et al., 2020; Lesur, 2021b; Cui and Bai, 2021). Keeping up
the pace with these works, I assume that the outer parts of the tds I
will study in my numerical simulations share this property with stan-
dard PPDs, at Rau ≳ 10 at least. Consequently, I have to find a way of
dealing with non-ideal processes inside the cavity of a td Rau ≲ 10.
The role of ambipolar diffusion for transition discs with mhd winds
was tackled by Wang and Goodman (2017) who obtained the profile
of Λa inside the cavity of a td with a detailed chemical network. The
accreted matter falling through the cavity needs to cross the mag-
netic field lines that create the magnetic wind. Following the wind
solutions of Königl (1989) and Wardle and Koenigl (1993), Wang and
Goodman (2017) invoke ambipolar diffusion as a good candidate to
achieve this goal. Surely does this non-ideal process render an appeal-
ing solution for this problem, but it may not be the only one. Accord-
ing to Wang and Goodman (2017), one must have 1 ≲ Λa ≲ 20 to
recover a sonic accretion (as demanded by the presence of the cavity),
but because of the drop in density in the cavity and the proximity
with the stars which enhances ionisation, Λa might very well be off
the grid regarding the upper boundary. An alternative solution that
would allow matter be accreted while launching a wind is the pres-
ence of a small turbulent diffusivity (Blandford and Payne, 1982; Fer-
reira and Pelletier, 1995; Zanni et al., 2007) which could be due to the
mri (Lesur et al., 2013) despite the fact that it tends to be quenched by
the large poloidal fields generated along with wind launching mod-
els (Gressel et al., 2015). Despite these limits, the ambipolar process is
still a plausible option providing that Λa remains roughly below ∼ 20

and above ∼ 1. An interesting point is the fact that Λa being below
Λa,crit. also inhibits mri (Bai, 2011), so that this process is expected
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Figure 13: . Ambipolar Elsasser number Λa in a standard protoplanetary
disc (top panel) and in a transition disc (bottom panel). In spite
of these 2 profiles being slightly different, no major changes occur
from one kind of disc to another around the midplane.

to control most of the physics of the cavity. I conclusively adopt this
salient choice of relying on ambipolar diffusion to account for the
microphysics of the tds I study.

2.3.6.2 Profile of Λa in a transition disc

Since I will not use a chemical solver nor refined thermodynamics
models, I need a toy profile of ΛA that can mimics the non ideal
process at play with ambipolar diffusion inside the cavity of a td.
Based on all the profiles I have presented up until now, I estimate the
spatial profile of Λa in a generic transition disc to check its differences
with a full protoplanetary disc.

The profile ofΛa is given in fig. 13 both for a transition disc (bottom
panel) and a standard protoplanetary disc (top panel). Though these
2 profiles look different at first glance, a deeper investigation reveals
that the values taken by Λa in the discs remain pretty much close
to unity in both cases, while the general trend of Λa in a standard
protoplanetary disc is recovered even in the case of a transition disc
(Thi et al., 2019).
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Moreover, Λa remains fairly below the critical value Λa,crit. = 102

with or without a cavity so that the MRI effects are negligible (Blaes
and Balbus, 1994; Bai, 2011). Regarding the bounds suggested by
Wang and Goodman (2017), it seems that in a td modelled this way,
Λa ∼ 1− 10 is a good approximation everywhere at the midplane and
up to a few scale height. Since I do not call for a high order precision
regarding Λa, assuming a characteristic value of Λa,0 = 1 should cap-
ture within a reasonable accuracy the physics of ambipolar diffusion.

The results I get from my simple toy model are to be compared to
the more detailed work of Wang and Goodman (2017) where many
chemical species are taken into account to compute the ambipolar El-
sasser number inside the cavity of a wind-driven transition disc. This
work highlights in particular the influence of the X-ray luminosity of
the star LX (see their fig. 2, panels 2 and 3) as well as the role of the
temperature T0 at 16 a.u. (fig. 2, panels 6 and 7). My work renders
profiles similar to their models 2 (with LX = 1029 erg s−1), 6 and 7

(where T0 = 30 and 300 K). The decisive conclusion to draw from
all this theoretical development, is the fact that a characteristic value
of Λa ∼ 1− 10 is genuinely adequate to address the microphysics in
magnetic winds emitting tds. This choice is meaningful regarding the
physical context.

2.4 numerical tools : simulations with the pluto code

Protoplanetary discs are definitely out of reach regarding experiments.
Observations unveil the behaviour of this object but need a theoreti-
cal background to rely on. Numerical simulations address this point
and work along with observations. In this prospect, I did numerical
simulations of transition discs with magnetic wind launching using
the pluto code that I present in this section. I will also describe the
setup of my simulations as well as the facilities I used.

2.4.1 The pluto code

All of the simulations I did are performed using the pluto code
(Mignone et al., 2007) that solves the mhd equations with a conser-
vative Godunov type scheme and a second order Runge-Kutta time
stepping. This code comes with several modules and I exclusively
used the mhd one for the numerical integration of the mhd set of
equations. I will describe the code, starting with the finite volume
method.
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2.4.1.1 Finite volume, time-stepping and Riemann problem

The pluto code (Mignone et al., 2007; Mignone et al., 2011) with the
mhd module is designed to integrate the mhd set of equations written
in the following way

∂tU = −∇ · T (U) +S (U) . (143)

In this context, U is a state vector whose components are conserved
quantities, T (U) is a rank 2 tensor and its rows accounts for the fluxes

of the corresponding component of U. Finally, S (U) represents the
source terms. Of course, a given choice of geometry (e. g. spherical
geometry) could lead to implicit additional source terms because of
the curvature terms. With the mhd, one has

U ≡


ρ

ρu

B

E+ ρϕ

 , (144)

where ρ and u are respectively the density and the velocity of the
fluid, while B is the magnetic field and E the total energy. In ideal
mhd, one is left with eq. 113 where the curl of E is taken. I enforce
the general form of eq. 143 using

∇× (u×B) = ∇ · (u⊗B−B⊗u) , (145)

so that I have

T (U) =


ρu

ρu⊗u+
(
P+ 1

2B
2
)
I−B⊗B

u⊗B−B⊗u(
E+ P+ 1

2B ·B+ ρϕ
)
u− (B ·u) B

 , (146)

and

S (U) =


0

−ρ∇ϕ
0

0

 , (147)

where ϕ is for example the gravitational potential of a central star.
This calculation shows that the formulation of eq. 143 is definitely
not hazardous and that the use of the divergence operator ∇· is key
to get a conservative form of the equations. This way of proceeding
leads for any volume V of surface ∂V to the following equation

∂tUV +

∫
∂V

ϕf · dS = SV , (148)
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where I used the theorem of Green-Ostrogradski and the subscript
XV denotes the integral over the volume V. The ϕf term account for
the fluxes intercepted by the surface of V, so that a discretised version
of eq. 143 could capture the advection of U by computing the fluxes
passing through the surfaces of cells. This is the idea behind the finite
volume methods that numerically solves partial differential equations
on a grid of cells.

The pluto code functions in the following way to solve the equa-
tions. At each time step, the code starts with a reconstruction phase
to build polynomial approximations of quantities based on UV inside
each cells.

The Riemann problem is then addressed with a Riemann solver
that estimates the fluxes for each cells. See Toro (2009) for details
on Riemann solvers in hydrodynamics. The Godunov scheme (Go-
dunov and Bohachevsky, 1959) then consists of using these fluxes in
eq. 148. The Riemann problem is inherent when piecewise reconstruc-
tion is used, since it creates discontinuities at each cell interface with
its neighbours. I used the hlld solver (Mignone, 2007) in all of my
simulations.

Regarding the temporal evolution of my simulations, the code evolves
U with a Runge-Kunta method of order 2 (RK2). One must note
that the time step δt is limited by the Courant-Friedrichs-Lewy (cfl

Courant et al., 1928) condition that imposes

δt = Ccfl min

[∑
d

(
δℓdmin
|λdmax|

)]
, (149)

with δℓdmin and λdmax respectively the smallest cell length and largest
signal velocity in direction d and Ccfl is the Courant number. I refer
the reader to Mignone et al. (2007) for greater details regarding the
code.

2.4.1.2 Constrained transport and non-ideal mhd terms

In addition to the bundle of equations contained in eq. 143, one needs
to satisfy the divergence-free condition for B or so call solenoidal
constraint

∇ ·B = 0 . (150)

The fact that eq. 150 is not an evolution equation prevents from treat-
ing it like the others. Satisfying this condition is a demanding is-
sue and many solutions were proposed (eigh-wave formalism Powell,
1997, hyperbolic divergence cleaning Dedner et al., 2002). In the finite
volume framework, a way of satisfying eq. 150 at machine accuracy
is to use constrained transport (Kane Yee, 1966; Evans and Hawley,
1988). The main idea of this method is to get the electromotive forces
emf (the −∇× E term in the induction equation) by computing −E
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on the edges of cells with the magnetic field being taken at the cen-
tre of their faces to evaluate its flux (the magnetic field is said to be
staggered). The induction equation in the ideal regime is written once
integrated and with the use of the Stokes theorem as

∂t

∫
S

B · dS = −

∫
∂S

E · dℓ , (151)

so that the total magnetic flux is conserved in each cell. Note that with
pluto, one can initialise B with a vector potential A, with B = ∇×A,
so that the solenoidal condition is maintained.

Eq. 151 contains E which can be modified when ambipolar diffu-
sion is taken into account. One needs to add ηa J⊥ in this equation
to get the total modified emf, so that it is present both in the evolu-
tion equation and in the solenoidal constraint. This diffusion gives a
maximum value for the time step used to evolve the code which is
τlim ∼ δℓ2min/ηa, so that the more diffusive the simulated disc is, the
more time it will take to reach a given final state. This way of proceed-
ing regarding ambipolar diffusion is described in Lesur et al. (2014)
and has been used many times since (Béthune et al., 2017; Riols et al.,
2020).

2.4.1.3 Alternative numerical procedures

Grid-based codes are not the only possibility to simulate mhd physics
problem and I wish to mention a few alternatives (in a non-exhaustive
way).

I would like to start by mentioning the possibility to solve the Boltz-
mann equation (see eq. 45) in the peculiar collisionless case. Explicitly
adding the Lorentz force leads to the Vlasov equation, that evolves in
a 7 dimensions space (3 for position, 3 for impulsion or velocity and
1 for time). This method uses a kinetic approach and is relevant to
capture reconnection events for example. Rieke et al. (2015) renders
a great example of a numerical scheme based on the Vlasov equation.

The previous example paves the way to say a word about particle
in cell (pic) simulations. This is also a kinetic approach with electro-
magnetic fields being evolve on a grid. Zeltron (Cerutti et al., 2013) is
an example of code that is based on pic method, which is a good tool
to catch particles acceleration around black holes for example (Crin-
quand et al., 2019).

Another method that is widely used in astrophysics is the sph one
for Smoothed-Particles Hydrodynamics. This method is based on a
Lagrangian approach of the fluid (while grid-based codes adopt an
Eulerian one). It is particularly accurate to catch the physics when the
thermal effect (such as pressure terms) are negligible. Phantom (Price
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et al., 2018/ed) is a major sph code used in astrophysics. Because of
their Lagrangian nature, these codes can in particular easily capture
the influence of other gravitational sources. Cavity-hosting discs with
binaries and/or planets can be described using sph, see for example
Calcino et al. (2020) or Heath and Nixon (2020). The impact of the
dust on the evolution of ppds is also caught in sph simulations (Laibe
et al., 2008).

2.4.2 Numerical set-up

I ran both 2.5 d and 3 d simulations of cavity-hosting protoplanetary
discs. In this subsection, I will give the numerical set-up I used for
all the 2.5 d simulations as well as a few 3 d ones, and the procedure
applied to (re)start most of the 3 d simulations from corresponding
2.5 d ones. I will explain the restart procedure in the last subsections
so that all the previous ones have to do with the general set-up of the
discs I simulated.

2.4.2.1 Equation of state and cooling function

As used throughout sec. 2.2, I assume that the plasma is well de-
scribed by an ideal equation of state and approximately locally isother-
mal, i. e. T ≈ Teff.(R) where Teff. is a prescribed radial temperature
profile. This is achieved solving the total energy conservation equa-
tion contained in eq. 148 to which I add a heating/cooling function
Λ defined by

Λ =
P

T

T − Teff.

τ
, (152)

where τ is the cooling time that equals 0.1 time code unit (see below)
and Γ = 1.0001 is the polytropic index of the gas (that I previously
named n as a general quantity). The role of Λ can be seen when
calculating ∂tP which gives

∂tP+u ·∇P+ Γ P∇ ·u = Λ . (153)

The target temperature profile is

Teff.(R) = T0

(
R

Rint

)−1

, (154)

where T0 is the midplane temperature at the inner radius Rint. This
choice of cooling function allows to enforce a chosen temperature
profile which mimics the real radiative equilibrium, and avoid the
development of the vertical shear instability (VSI, Nelson et al., 2013),
which would appear in a strictly locally isothermal approximation.

Since the gas is ideal, I define an isothermal sound speed c2s ≡ P/ρ.
As I showed using the vertical hydrostatic equilibrium, cs and Ωk are
related to the vertical disc thickness h(R) through

h(R) = cs(R)/ΩK(R) . (155)
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Assuming the disc is at thermal equilibrium (T = Teff.(R)), I have
cs ∝ R−1/2 and hence the disc aspect ratio ε ≡ h/R is constant. I
choose T0 in eq. 154 so that ε = 0.1 .

2.4.2.2 Computational domain

I use spherical coordinates (r, θ,φ) for all the simulations. The radial
direction is divided into 320 cells that expand from the inner radius
r ≡ Rint to the external one r ≡ Rext that are uniformly meshed on
a logarithmically spaced grid. The colatitude domain is mapped on
a stretched grid near the poles (from θ = 0 to θ = 1.279 and from
θ = 1.862 to θ = π, with 72 cells in each zone) while the grid is chosen
to be uniform around the midplane (from θ = 1.279 to θ = 1.862
with 96 cells) for a total of 240 that increases the precision in the
region of interest. The disc scale height h is then covered by 16 points
in the case where ε is fixed constant and equal to 0.1.

In 3 D simulations, the discs covers the azimuthal direction from
φ = 0 up to 2π (full 2π simulations) with 120 cells equally spaced.

2.4.2.3 Code units and notations

The internal radius is Rint = 1, which sets the length code unit, and
is chosen to be 1 au while Rext = 50. The time code unit is Ω−1

0 ≡
ΩK(Rint)

−1 = 1which is set to 1/2π years so thatGM∗ = 1withM∗ =

1 M⊙, M⊙ being 1 solar mass. Therefore ΩK(R) = Ω0 (R/Rint)
−3/2 =

R−3/2. I choose as a unit for the surface density 300 g cm−2 and ex-
press the accretion rate in units of M⊙ yr−1. I denote by "c.u." the use
of code units and use the subscript X0 to indicate that the quantity
X is considered at the disc midplane (θ = π/2) and the subscript Xp

when X is a poloidal quantity.

2.4.2.4 Dimensionless numbers and definitions

I use the plasma parameter β (see sec. 2.2.3.1) to quantify the disc
magnetisation, defined from the midplane properties of the disc as

β =
8πP0

B2p,0
. (156)

When considering the initial state of a given simulation, I refer to the
initial magnetisation inside the cavity as βin and to the initial mag-
netisation in the external part of the disc as βout. For the fiducial 2.5d

simulation, I choose βout = 104 which leads to a realistic magnetic
field in the disc. βin is set equal to 1, as discussed in the introduction
chapter and based on Wang and Goodman (2017). The second key
parameter of this study is the strength of ambipolar diffusion, quan-
tified with the Elsasser number, that is widely discussed in sec. 2.3.6.
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Following Lesur, 2021a and Thi et al., 2019, I implement the profile
of ΛA so that

ΛA(z,R) = ΛA,0 exp
( z
λh

)4
, (157)

where λ is a parameter that controls the height where a transition be-
tween non-ideal and ideal mhd occurs (the non-ideal mhd part being
the inside of the disc) and is chosen constant and equal to 3h. ΛA,0

remains a free parameter which is equal to 1 in most of my simula-
tions and to 10 in a few of them. Additionally, a cutoff is used for
the ηA profile so that if ηA > ηA, max, the value of ηA is replaced by
ηA, max ≡ 10 ε2 in code units, such a choice being reflected on the ΛA

profile with eq. 128. This diffusivity cap prevents from getting a time
step τ ∼ δℓ2/ηa too small.
I choose Λa = 10 in my 2.5d fiducial simulation based on my calcu-
lations detailed in sec. 2.3.6.

The disc refers to the whole part of the simulation that covers r ∈
[1; 50] and z/R ∈ [−0.3; 0.3]. The cavity is the region where the surface
density is reduced by a given factor in the innermost part of the disc
(i. e. from r = 1 to r = 10 in most of the models). The external part of
the disc or so called "outer disc" refers to the region where the disc is
full and described by a standard protoplanetary disc (without a drop
in the density profile) and which extends from r ≈ 10 to r = 50. Fi-
nally, I call ‘seed’ the region defined by r ⩽ 1 of my disc, which is at
play in my simulations through the inner radial boundary condition.

2.4.2.5 Boundary conditions

Outflow boundary conditions are used in the radial direction so that
no matter can come from the inner radius. In addition, I add a wave
absorbing zone for radii r < 1.5 which damps poloidal motions on an
orbital timescale.

In the 2.5D simulations, axisymmetric conditions with respect to
the polar axis are enough to handle the boundaries for the colatitude
direction. With the aim of reducing the impact of the outer boundary
conditions, I will focus on radii lower than 30 for most of the figure.

2.4.2.6 Initial condition, wind and cavity

The initial temperature profile is the effective temperature profile
given in (154). The initial states for the density and the azimuthal
velocity vφ = RΩK mimic Nelson et al., 2013 to account for the hy-
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drostatic equilibrium, while vr = vθ = 0 initially. These profiles read,
without taking into account the cavity yet

ρ(R, z) = ρ0

(
R

Rint

)p
exp

[(
ΩK(R)R

3

cs(R)

)2(
1√

R2 + z2
−
1

R

)]
, (158)

v(R, z) = vK(R)

[
(p+ q)

(
cs(R)

ΩK(R)R2

)2
+ (1+ q) −

qR√
R2 + z2

]1/2
,

(159)

with ρ0 being the density at the internal radius. I choose q = −1 and
p = −3/2 for eq. 158 and 159 which is consistent with self-similar
stationary disc solutions (Jacquemin-Ide et al., 2021).

The initial vertical magnetic field follows a power law Bz ∝ R (p+q)/2

so that the plasma β parameter in the unperturbed disc is constant.
To ensure that ∇ ·B = 0, I initialise the magnetic field using its vector
potential A defined so that B = ∇×A. Following Zhu and Stone,
2018, I choose

Aφ =


1

2
B0 R if R ⩽ Rint

B0
R 2int
R

(
1

2
−

1

m+ 2

)
+ R

(
R

Rint

)m
1

(m+ 2)
if R > Rint

,

(160)
wherem = (p+q)/2 = −5/4. This results in a poloidal magnetic field
which depends on the radius only

B = B0

(
R

Rint

)m
ez . (161)

The initial strength of the magnetic field is controlled by βout, so that
B0 ∝ β−1/2

out .
To add a cavity and mimic a transition disc, I multiply the density

profile by the function f that is given in eq. 130 with R0 = 10 in
most of my simulations. Note that while the density profile exhibit
an inner "hole", the magnetic field distribution is kept as a power law
(with eq. 161). As a consequence, the initial magnetisation β(R) also
exhibits a jump in the cavity since P ∝ Σ(R) and therefore βout/βin is
equal to the contrast in the gas surface density. In short, the function
f creates a cavity in Σ but does not affect Bp. As a result, I simulate a
transition disc with a strongly magnetised cavity (βin = 1) as shown
in fig. 14.
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Figure 14: Initial β plasma parameter for my simulations with the initial
profile of the vertical magnetic field. The magnetisation exhibits
a cavity similar to the one of the density profile.
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Figure 15: Schematic view of the disc which is represented in orange. θ±
define the vertical integration surface and hint is the integration
scale height at a given radius R.
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2.4.3 Integration and averages

Several integrations and averages are used throughout this work. In
this manuscript, I use the following proxy for the vertical integration
along θ

X(r, t) = r
∫ θ−
θ+

X(r, t) sin θdθ . (162)

θ± quantify the integration height as shown in fig. 15 so that

θ− − θ+
2

= arctan
(
hint

R

)
= arctan εint , (163)

with hint the integration height at radius R given by an integration
effective aspect ratio εint ≡ hint/R. Note that this integration "height"
is not necessarily the disc thickness h. For 3 d simulations, I add an
azimuthal average defined as

⟨X(r, θ, t)⟩φ =
1

2π

∫2π
0

X(r, t)dφ , (164)

and I will assume that this azimuthal average is contained in the
definition of · for 3d simulations only. I introduce β as Because of the

axisymmetry of the
2.5 d simulations,
the · procedure is
indeed the same for
all the simulations.

β ≡
8πΣ c2s,0√

2πR ε
(
Br
2
+Bθ

2
) , (165)

which corresponds to a theta-averaged "effective" midplane β plasma
parameter. It is defined so that it matches the midplane β parame-
ter in a hydrostatic isothermal disc. This more general definition is
needed when the disc midplane is displaced vertically such as inside
the cavity.

Finally, I add the time-average defined by

⟨X(r)⟩ = 1

T

∫ t0+T
t0

X(r, t)dt. (166)

I run the 2.5d simulations so that they reach 1000 orbits at R = 10

which means ≈ 31000 orbits at Rint. The 3d simulations are run for
1000 orbits at Rint in order to check the stability of the cavity. If not
specified, time-averages are calculated taking into account the whole
simulation without the first 4000 orbits at Rint to suppress the tran-
sient state. Otherwise, I indicate our choice of notation when needed
⟨X⟩1000 being the time-averaged value of X during the last 1000 orbits
at Rint for example.

2.4.4 Restarted 3 d simulations

The 3d simulations are built on the 2.5d ones, once a steady state
has been reached. All the fields from the 2.5d (r, θ) files are interpo-
lated on a 3d (r, θ, φ) grid (with respect to centred and staggered
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Figure 16: Logo of the mesocentre gri-
cad.

Figure 17: Logo of genci.

variables) so that each field (scalars or components of vectors) are
axially symmetrical. A random perturbation is then added to the 3

velocity components with a white noise proportional to 10% of the
local sound speed.

2.4.5 Table of 2.5d and 3d simulations

All the simulations performed are listed in tab. 1. The characteristic
parameters are the external initial plasma parameter βout, the internal
initial plasma parameter βin and the initial ambipolar Elsasser num-
ber ΛA,0. I do not list here the ‘control’ runs that I did to check some
numerical (e. g. spatial resolution) or physical (e. g. size of the cavity)
effects. I leave them to the app. B and C.

2.4.6 Facilities

During my thesis, I used different facilities regarding the kind of sim-
ulations I wanted to work on (2.5d or 3d).

With the mesocenter gricad, I had access to the machine Dahu on
which I run the equivalent of ∼ 3− 4× 106 cpu hours for my 2.5d

simulations. For each simulation, I used from 1 to 4 nodes, each node
having 32 cores.

The 3d simulations cost much more cpu time so that I needed the
hpc resources of a national centre to run them. I ran my 3d simu-
lations on the amd Rome machine of tgcc, part of genci. Each 3d

simulation used either 2304 or 4608 cores. I had to write annual re-
port to get access to this machine on which I consumed ∼ 25× 106
cpu hours.
While using this machines, I had the opportunity to give a talk about
my work at the jcad day in december 2021.

https://jcad2021.sciencesconf.org/resource/page/id/8
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Name βout βin ΛA,0

S2DB4Bin0Am0 104 1 1

Initial external magnetisation

S2DB3Bin0Am0 103 1 1

S2DB5Bin0Am0 105 1 1

Initial ambipolar Elsasser number

S2DB4Bin0Am1 104 1 10

Initial inner magnetisation for each tested value of βout

S2DB4Bin1Am0 104 10 1

S2DB4Bin2Am0 104 102 1

S2DB4Bin3Am0 104 103 1

S2DB5Bin1Am0 105 10 1

S2DB5Bin2Am0 105 102 1

S2DB5Bin3Am0 105 103 1

S2DB5Bin4Am0 105 104 1

S2DB3Bin1Am0 103 101 1

S2DB3Bin2Am0 103 102 1

S3DB4Bin0Am0 104 1 1

Initial external magnetisation

S3DB3Bin0Am0 103 1 1

S3DB5Bin0Am0 105 1 1

Initial ambipolar Elsasser number

S3DB4Bin0Am1 104 1 10

Initial inner magnetisation

S3DB4Bin1Am0 104 10 1

S3DB4Bin2Am0 104 102 1

S3DB4Bin3Am0 104 103 1

Table 1: Simulations information. ‘S2D’ refers to a 2.5d simulation while
‘S3D’ indicates a 3d one. The fiducial simulations (S2DB4Bin0Am0

and S3DB4Bin0Am0) are shown in bold font. S2DB4Bin0Am1

quantifies the influence of ΛA,0 while S2DB5Bin0Am0 and
S2DB3Bin0Am0 are the reference runs for βout = 105 and βout =

103. All the runs with Bin ̸= 0 in their label explore the role of the
initial value of β at Rint.
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conclusion

In this chapter, I showed that given the observational information
available on protoplanetary discs, the most relevant physics frame-
work is magnetohydrodynamics. In particular and because they are
cold and poorly ionised, protoplanetary discs are well described by
non-ideal mhd.
I stressed that the ambipolar process is the dominant non-ideal
process in the outer parts of ppds, both for full and transition
protoplanetary discs.

I calculated the ambipolar Elsasser number in tds, given some
radial profiles to account for a few ionising processes in ppds. I
estimated this number inside the cavity of tds and showed that the
influence of the cavity on the effect of ambipolar diffusion is modest.
Therefore, I can model this non-ideal process for tds the same way it
is implemented for simulations of full ppds.

Given this theoretical frame, I described the numerical code I
used to simulate discs (the pluto code) and the facilities I had access
to.
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conclusion

Dans ce chapitre, j’ai décrit le cadre de travail usuel pour étudier les
disque protoplanétaires. Considérant les observations disponibles
pour de tels objets astrophysiques, la magnétohydrodynamique
s’avère être le modèle le plus adéquat pour capturer toute la
physique en jeu dans leur évolution.
Plus particulièrement, les disques protoplanétaires sont froid et peu
ionisés si bien que la magnétohydrodynamique non idéale doit être
utilisée. J’ai rappelé les différentes équations régissant la dynamique
d’un disque dans ce cadre de travail. J’ai également mis en lumière
l’influence de la diffusion ambipolaire, dont les effets sont contrôlés
par le nombre d’Elsasser ambipolaire.
Je souligne par ailleurs le rôle dominant que joue la diffusion am-
bipolaire par rapport aux effets non idéaux dans les parties externes
des disques protoplanétaires.

À ce stade, il était alors nécessaire d’estimer l’impact de cet ef-
fet non idéal à l’intérieur de la cavtié d’un disque de transition. J’ai
réalisé un tel travail en me basant sur des profils radiaux simples des
principaux processus d’ionisation dans les disques protoplanétaires.
J’ai ainsi montré que l’influence de la cavité est faible, et qu’il est de
fait possible de modéliser le nombre d’Elsasser ambipolaire dans un
disque de transition de la même façon qu’on le ferait pour un disque
protoplanétaire plein.
Fort de ce premier résultat, j’ai pu ensuite détailler le modèle
numérique que j’ai utilisé pour effectuer mes simulations numériques
en présentant notamment leur initialisation.

Finalement, j’ai présenté le code que j’ai utilisé (le code pluto),
ainsi que les infrastructures de calculs auxquelles j’ai eu accès
pendant ma thèse.





Part II

N U M E R I C A L S I M U L AT I O N S A N D R E S U LT S

The second part of this manuscript focuses on my numer-
ical results. I present the results I get from my 2.5d simu-
lations before moving to my 3d ones.





3
2 . 5 d S I M U L AT I O N S : T H E S T R U C T U R E O F
T R A N S I T I O N D I S C S

"C’est par un mécanisme de désastres,
Un engrenage au volant faussé,

Que je traverse, entre des visions de potences,
Un jardin où flottent des fleurs sans tiges."

— Fernando Pessoa, Opium à bord (1914)
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introduction

The work I did during my thesis is based on numerical simulations
of transition discs with magnetic winds. This chapter is devoted to
the study of 2.5d numerical simulations whose the main objective is
to characterise the cavity of such tds.
In particular such simulations make feasible the study of the long-
term evolution of these discs especially regarding the stability of the
underlying model.

I will start by presenting the results of my fiducial simulation
so that I can give the most salient results before exploring the
parameter space.
I focus on the time-averaged disc structure to describe the cavity. The
secular evolution of the disc relies on the accretion theory. I detail
this theory and define the accretion rate accordingly.
I also describe the magnetic wind through its invariants.

The temporal evolution of the disc occurs on short and long
time-scales.
I link the slow evolution of the disc to the magnetic field transport in
the disc and to the evolution of the transport coefficients. I focus on
the fast variability of the cavity and check the possibility to have an
instability triggered in the disc.

Eventually, I describe a few additional simulations with differ-
ent ambipolar Elsasser numbers and different magnetisations.

The results presented in this chapter are published in Martel
and Lesur (2022) that can be found in App. D.
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introduction

Mon travail de thèse se base sur des simulations de disques de
transition munis de vents magnétiques. Ce chapitre est consacré aux
simulations 2, 5d que j’ai réalisées et dont l’objectif premier est de
caractériser la cavité interne et d’étudier sa persistence au cours du
temps.

J’initialise les simulations correspondantes avec la procédure
décrite dans le chapitre précédent, dans lequel je détaille les dif-
férents nombres adimensionnés contrôlant la physique de mon
problème. Les simulations 2, 5d sont particulièrement adaptées à un
travail portant sur la persistence d’une structure telle que la cavité.
Pour un coût réduit, elles permettent de simuler les disques sur
de longues périodes de temps, ce qui permet d’atteindre un état
(quasi-) stationnaire et d’émettre des diagnostics robustes concernant
le disque.

Je décrirai en détails la simulation fiduciaire avant de laisser la
place à une exploration de l’espace des paramètres. La simulation
de référence permettra d’avoir une comparaison pour le reste de
mon travail (simulations 3d et perspectives), tout en établissant des
résultats importants.

Pour la simulation de référence, je débute avec une étude générale
de la structure du disque. Je m’attarde sur l’évolution de la densité
de surface avant de présenter tout un jeu de profils moyennés
temporellement. J’établis ainsi la structure du disque (lignes de
champ magnétiques, flux de moment cinétique), ce qui me permets
de caractériser plusieurs sous-suctrures pertinentes, notamment une
boucle de champ magnétique poloidal située au niveau de la jonction
entre la cavité et le disque plein.
En ce qui concerne l’évolution séculaire du disque, je me base sur la
théorie de l’accrétion. Je définis en particulier le taux d’accrétion et
plusieurs coefficients de transport.
Je propose également une description du vent magnétique, en
calculant les invariants mhd associés au vent pour différentes lignes
de champ (émises depuis la cavité ou depuis le disque plein).

Je constate deux formes d’évolution du disque, une rapide (sur
quelques orbites au bord interne) et une lente (sur plusieurs milliers
d’orbites au bord interne). L’évolution lente est liée au transport du
champ magnétique dans le disque ainsi qu’aux différents coefficients
de transport calculés dans le cadre de la théorie de l’accrétion.
C’est dans le cadre de cette évolution lente que j’interprète le lent
élargissement de la cavité au cours du temps.
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Pour ce qui est de l’évolution rapide, je me focalise sur la cavité et
sur la possibilité que cette dernière soit sujette à des instabilités. En
particulier, je décris l’apparition de bulles de gaz qui traversent la
cavité de manière erratique.

Enfin, je présenterai une rapide exploration des paramètres, no-
tamment en étudiant l’influence du nombre d’Elsasser ambipolaire
et de la magnétisation imposés initialement. Cette section permet
d’établir certains résultats et de dégager une structure générale pour
les disque de transition que je simule.

J’enchaînerai ensuite avec quelques remarques de conclusion,
en me focalisant notamment sur l’élargissement de la cavité.
Je lierai par ailleurs le modèle de disques de transition que j’utilise
et à un modèle de disques d’accrétion employé dans le contexte de
l’accrétion autour des trous noirs. Il s’agit du modèle des "magneti-
cally arrested discs" (mad). Ce modèle prédit des disques d’accrétion
avec une zone interne rencontrant un fort support magnétique,
s’opposant à la gravité.
Si ce modèle concerne la plupart du temps des disques étudiés dans
le cadre de la magnétohydrodynamique relativiste, je montre qu’il
est pertinent d’y faire référence dans mon cadre de travail.

Les résultats présentés dans ce chapitre font partie de Martel
and Lesur (2022) que le lecteur pourra retrouver dans l’appendice
App. D.
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3.1 fiducial simulation

This section is devoted to the general description of my model with
the fiducial simulations, characterised by βout = 10

4, βin = 1, ΛA = 1

and R0 = 10. The justification for these values is given in the previous
chapter, together with the description of the initial state. I wish to give
the main achievements reached by this model.

3.1.1 General overview of the disc evolution

I start by describing the general evolution of the disc, with the spatio-
temporal diagrams of both the surface density and the plasma pa-
rameter given in fig. 18. There is an initial transient state that lasts up
until ∼ 4000 orbits at Rint, after which Σ and β reach a quasi-stationary
state.
The cavity is stable in the sense that on long time scales (of the order of
103−4 orbits at Rint) the disc is in a quasi-stationary state. This state is
characterised by a persistent cavity that widens slowly with time. For
a more quantitative insight, I define the cavity location as the radius
where the surface density equals half of its maximum value. This lo-
cation is subject to a variation of ∆R/R = 10.3% over the duration of
the simulation. For now, I want to stress that this very first result is
a compelling one, because it demonstrates that a cavity can survive
with time. I will come back to this result later in sec. 3.1.5.1.
Two regions are observed in the disc, the cavity and the external disc.
The latter exhibits a relatively smooth structure with respect to time
while the cavity is striped by fast temporal variability (see the profile
of Σ in the top panel of fig. 18) suggesting a fast accretion on the
central star. I study in depth these stripes in sec. 3.1.5.3.

A small amount of material seems to accumulate close to the star
(at R ⩽ 1.5). Due to its proximity with the inner boundary condition,
I come back to this observation in the appendix chap. C.

The plasma parameter depicted in the bottom panel of fig. 18 over-
all shares the same spatio-temporal structure as Σ. In particular, the Note that I use a

different definition
of β here, as detailed
in chapter 2.

striped pattern in the cavity as well as the accumulation close to
the inner boundary condition are also detected. The cavity is char-
acterised by β ∼ 1 with some excursions down to 10−2. The external
disc has a typical value of β ∼ 104 that matches the initial one. The
outer edge of the cavity varies around its initial value of 10 au in the
profile of β.

3.1.2 Disc structure

In this subsection, I describe the disc structure with time-averaged
profiles in the poloidal plane of the disc. The profiles are time-averaged
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Figure 18: spatio-temporal diagrams of the surface density Σ (top panel) and
of the plasma beta parameter β (bottom panel) for the fiducial
simulation. The cavity remains during the entire simulation and
keeps a relatively strong magnetisation with β ∼ 1.
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on the whole simulation minus the transient state (I drop the first
4000 orbits of my simulations).

3.1.2.1 Magnetic structure

I start with the magnetic field structure of the disc that is shown
in fig. 19. The back field is the toroidal magnetic field whose general
trend is as follows. ⟨Bφ⟩ is negative above the disc and positive below.
Such a structure echoes the magnetic wind launching mechanism de-
scribed in chapter 1. The poloidal magnetic field lines are pinched at
the midplane inside the cavity but remain vertical in the external part
of the disc. These two behaviours define two distinct regions in the
disc, separated by a transition zone located at the cavity edge.

This peculiar transition zone exhibits a poloidal magnetic loop in-
side which the polarity of the azimuthal component is reversed (with
⟨Bφ⟩ > 0 in the upper hemisphere and close to the disc). The poloidal
field lines surrounding the loop are characterised by an elbow-shaped
structure, with significant changes of direction at hint/R ≈ ±0.3, ±0.6
and ±0, 9 (see the straight lines in fig. 19).

3.1.2.2 Velocity stream lines

Fig. 20 shows the time-averaged density ⟨ρ⟩ over which are plotted
the poloidal streamlines. This figures focuses on the cavity region
and only extends up to R = 15 au. The full part of the disc is clearly
visible around the midplane for R ≳ 10 au and the drop in density
characterises the cavity for R ≲ 10 au.

The poloidal streamlines leaving the cavity are indicative of a wind
emitted from this region. In particular, fig. 19 and 20 show that ⟨Bp⟩
and ⟨vp⟩ are approximately collinear one with each other, as expected
from ideal mhd. The previous elbow-like pattern is also observed
and a closer inspection of the streamlines reveals that close to the
transition zone at R ≳ 8 au, matter is indeed falling into the cavity.

This falling material flow is fuelled by matter coming from the
outer disc that follows the elbow pattern. Such matter is originally
ejected from this disc, before being deflected and accreted into the
cavity, hence generating the elbow-like structure. The resulting accre-
tion stream then stays localised close to the cavity midplane down to
the inner radius of the simulation. On the contrary, the motion of the
gas in the outer disc is not as well organised, though it is approxi-
mately symmetric with respect to the midplane.

3.1.2.3 Angular momentum flux stream lines

In order to deeper the analysis of the structure of the disc, I study
time-averaged angular momentum flux, defined by

Lp = r sin θ ⟨ρup uφ⟩− r sin θ ⟨Bp Bφ⟩ . (167)
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Figure 19: Time-averaged poloidal magnetic field lines and toroidal mag-
netic field ⟨Bφ⟩ for the fiducial simulation. Note the peculiar field
topology close to the truncation radius.
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Figure 20: Time-averaged stream lines and density for the fiducial simula-
tion with a focus on the cavity area. Note the peculiar shape of
the streamlines around the transition radius.
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The corresponding flux lines are shown in fig. 21. They reveal that
angular momentum is extracted from the disc midplane and carried
away both radially and vertically in a relatively homogeneous fashion,
symmetric with respect to the midplane. In particular, no elbow-like
structure is detected for the angular momentum flux. This indicates
that the cavity+ outer disc system has adapted its magnetic topology
to transport angular momentum homogeneously, and that the mag-
netic loop is part of this adaptation.

3.1.2.4 Gaps in the profile of Σ and β

Gaps are detected in the external disc, both in the spatio temporal
diagrams of Σ and β (see fig. 18). Such structures are detected in all
of my simulations (see sec. 3.2.1.1). Back to the fiducial simulation,
two gaps are seen after the cavity edge and before R = 30. I show the
time-averaged profiles of Σ and Bz at the midplane in fig. 22. These
profiles are averaged over the last 1000 orbits of the simulation for
better visibility and to avoid any long-term variation of the gaps. I
find that the local surface density drops by ∼ 5% at the gaps location.
In addition, their location is characterised by a sharp increase of the
vertical magnetic field intensity. In short, the gaps surface density is
anti-correlated with the vertical magnetic field, which matches the
secular wind instability described by Riols et al. (2020).

3.1.3 Accretion theory

The study of the general poloidal structure of the disc states in par-
ticular that accretion is occurring inside the cavity. To address this
key point quantitatively, I focus in this subsection on the theory of
accretion in protoplanetary discs, in order to extract information on
the accretion rate and speed. I start with the definition of the accre-
tion rate before focusing on the conservation equations (of mass and
angular momentum).

3.1.3.1 Accretion rate and speed

I define the accretion rate Ṁ as

Ṁ(R, t) ≡ −2πRρvr . (168)

The use of the average procedure · implies that I have to choose a
specific height over which ρvr is integrated, as explained in chap-
ter 2 and controlled by the parameter εint ≡ tan [(θ+ − θ−) /2]. Due to
the elbow-shaped pattern in the streamlines profile, the integration
height has a direct influence on Ṁ. Figure 23 gives the radial and
time-averaged profile of Ṁ for 3 different integration thickness. As
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Figure 21: Time-averaged angular momentum flux stream lines over time-
averaged density for the fiducial simulation. Angular momentum
leaves the disc midplane because of the wind.
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Figure 22: Time-averaged profiles of Σ and Bz on the last 1000 orbits at Rint.
The horizontal axis is the radius and I focus on the area between
R = 12—18 au. Both profiles are given in code units.

expected, ⟨Ṁ⟩ reaches negative values at R ≈ 10 for low integration
height. This is due to the matter leaving the disc at the foot of the
elbow pattern. Such an effect is cancelled out for higher integration
heights. Moving to εint = 0.6 and 0.9, the accretion rate reaches con-
stant values inside the cavity and in the outer disc. The two regions
match by less than 50% despite a jump of four orders of magnitude
in Σ. A striking conclusion is that the accreted material effectively
‘jumps’ above the transition radius, and that a steady state is reached
with the whole system (cavity+ outer disc) accreting at a constant
rate. In particular, the accretion rate inside the cavity (Ṁtd) readsI give the accretion

rate in M⊙ yr−1.
To do so I use the set

of units detailed in
the previous chapter.

Ṁtd = 1.4± 0.2× 10−7 M⊙ yr−1 , (169)

so that this model of transition disc creates strongly accreting transi-
tion discs.

The accretion rate being almost constant while the surface den-
sity decreases by two orders of magnitude implies that the accretion
speed should increase dramatically. This characteristic speed is de-
fined by

⟨vacc.⟩ ≡
⟨Ṁ⟩

2πR ⟨Σ⟩ , (170)

and shown in fig. 24 for εint = 0.9. Fig. 24 confirms the previous state-
ment as ⟨vacc.⟩ exhibits a well-defined transition between subsonic
accretion outside the cavity with ⟨vacc.⟩ ∼ 10−3 ⟨cs⟩ and transsonic
accretion inside with ⟨vacc.⟩ ∼ ⟨cs⟩.

3.1.3.2 Governing equations for accretion

Now that I have introduced the accretion rate as a characteristic quan-
tity of a protoplanetary disc, I aim to bring a more general picture of
the accretion theory, understood as the secular evolution of Ṁ and
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Figure 23: Accretion rate for different integration heights with respect to the
radius. The higher ρvr is integrated the closer to a constant value
Ṁ is in the cavity. The average value inside the cavity (from R = 1

to R = 10) is Ṁ = 1.4± 0.2× 10−7 M⊙ yrs−1.
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Figure 24: Accretion speed for εint = 0.9 in units of local sound speed cs. The
profile exhibits a clear transition between subsonic and transsonic
accretion that occurs at the cavity edge.
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Σ. When dealing with mhd processes, one needs an additional equa-
tion related to the vertical magnetic field threading the disc Bz and
accounting for the magnetic field transport in the disc. Under the · in-
tegration procedures, the mass and angular momentum conservation
equations respectively read

∂tΣ−
1

2π r
∂rṀ = − [sin θ ρvθ]

θ−
θ+

, (171)

∂t
(
r sin θ ρvφ

)
−

1

2π r
Ṁ ∂r

(
r2 sin2 θ Ω̃(r)

)
= −

1

r
∂r
(
r2Wrφ

)
−Wθφ ,

(172)

where Wrφ and Wθφ are respectively the radial and surface stresses
whose definitions are provided by

Wrφ ≡ ρ sin θ vr vφ − sin θ
Br Bφ

4π

Wθφ ≡
[
r sin2 θ

(
ρ vθ vφ −

Bθ Bφ

4π

)]θ−
θ+

. (173)

The vertical magnetic flux conservation equation is given byThe peculiar
expression of the

velocity deviation v

is at play here and
rules out any

additional surface
terms in eq. 172.

∂tBθ,0 =
1

r
∂r (rEφ,0) , (174)

and takes into account the effects the magnetic wind.

3.1.3.3 Mass conservation and mass loss rate parameter

This subsection focuses on the conservation of mass given by eq. 171

whose contributions are plotted in fig. 25 (time-averaged and with
εint = 0.9). First of all, the cavity reaches a steady state up until
R ≲ 8 au since the time derivative of the surface density is constant
and equal to zero. The edge of the cavity (R ∼ 10) is however charac-
terized by ∂tΣ < 0 which is to be linked to the slow expansion of the
cavity with time, as discussed later in sec. 3.1.5.1. More specifically,
fig. 25 shows that the negative values of ⟨∂tΣ⟩ at R = 10 au are com-
pensated by the divergence of Ṁ. Therefore, the widening of cavity
is like an erosion process due to the radial variation of the accretion
rate.In the prospect of

comparing the
results of my

simulations to the
previous one of

Lesur (2021a), I use
εint = 0.6 for any

calculation related to
ζ. However, I will go
back to εint = 0.9 for

the other transport
coefficients.

The magnetic wind mostly acts on the disc for radii R ≲ 5 au. Such
contribution is fully compensated by the radial derivative of the accre-
tion rate (since the cavity reaches a steady state). The change of sign
of the "wind" mass flux (which is negative at the cavity edge location)
is reminiscent of the elbow-shaped pattern of the flow in the poloidal
streamlines profile as previously discussed.

I construct the mass loss rate parameter ζ that accounts for the
effects of the wind. This choice of parametrisation is analogous to the
one in Lesur (2021a). ζ is defined as ζ = ζ+ + ζ− with

⟨ζ±⟩ ≡ ±⟨ρvz⟩(θ±)
⟨Σ⟩ΩK

= ±⟨ρvr cos θ⟩− ⟨ρvθ sin θ⟩
⟨Σ⟩ΩK

, (175)
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Figure 25: Mass conservation for εint = 0.9. The three lines do not add up
exactly to zero because I use a moving average for better visibility
(on 10 cells) and the quantities are time-averaged on a sample
selection of output files that do not contain all the time steps
computed by the code.

where the corresponding quantities are time-averaged. The ± sign
is chosen accordingly so that ζ± being positive implies that matter
leaves the disc at the surface defined by θ±. ζ+ and ζ− share a similar
behaviour, so that I focus on ζ only that catches all the flux of mat-
ter leaving the disc at its surface. The corresponding time-averaged
profile can be found in fig. 26. I evaluate ⟨ζ±⟩ with εint = 0.6 which
corresponds to an integration height z0 = 6h so that I compare my
results with predictions from self-similar models.

I find that the mass loss rate parameter is roughly constant and
equal to 6.2× 10−5 in the outer disc around and peaks at 2.9× 10−2
inside the cavity. ⟨ζ⟩ < 0 close to the inner boundary (which is likely
to be a boundary condition artefact) as well as from R ≈ 5 to R ≈
17 au. In the second case, ⟨ζ⟩ < 0 is due to the material falling down
on the disc. Such a contribution being notably stronger for εint = 0.6.

I plot in fig. 26 a solution built from self-similar simulations of
ambipolar dominated disc with a magnetic winds and derived by
Lesur (2021b) (dark blue dotted line). The corresponding power law
scaling reads ⟨ζ⟩ = ζ0, ext ⟨β⟩aext , with aext = −0.69 and ζ0, ext = 0.24.
It comes as no surprise that this scaling law cannot account for the
negative values reached by ⟨ζ⟩ that are not self-similar by essence
and due to the presence of transition radius. ⟨ζ⟩ is also significantly
weaker than what is predicted from a direct extrapolation of the self-
similar models in the cavity. It suggests that ⟨ζ⟩ saturates when β ≲ 1,
a range of values that has not been explored by Lesur, 2021b.
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Figure 26: ⟨ζ⟩ parameter for εint = 0.6 in the fiducial simulations. The red
semi-dashed (resp. light blue dashed) line represents the posi-
tive (resp. negative) values of ⟨ζ⟩. The dark blue dotted line is a
self-similar fit shown for comparison. The dark blue full line is a
modified fit that recovers proper values of ⟨ζ⟩ in the cavity.

In the outer disc, the self-similar predictions are also off by a factor
of a few . This discrepancy is likely to arise from the influence of the
cavity magnetosphere. This later compresses the disk magnetosphere
and implies a deviation of ⟨ζ⟩ from the self-similar predictions. It
seems that this discrepancy is reduced far from the transition radius
(where the influence of the cavity is low) so that ⟨ζ⟩ better matches
with the self-similar values.

In order to catch the right value of ⟨ζ⟩ inside the cavity, I propose
an alternative model to the self similar one. To do so, I keep the self
similar scaling law in the outer disc, ⟨ζext⟩ = ζ0, ext ⟨β⟩aext and calcu-
late another one in the cavity of the form ⟨ζint⟩ = ζ0, int ⟨β⟩aint , with
aint < 0. The final model combines the 2 profiles so that

⟨ζ⟩fit =
ζ0, ext ⟨β⟩aext

1+
ζ0, ext
ζ0, int

⟨β⟩aext−aint
. (176)

I find aint = −0.20 and ζ0 int = 0.018. Having aext − aint < 0 allows
to recover the correct values both in the cavity and in the outer disc
with a reasonable accuracy. Because the negative values of ⟨ζ⟩ at the
cavity edge are due to the elbow pattern, I do not try to get a model
that is able to catch such changes of sign. I rather expect a model
that can render correct values regarding the quantity of matter that is
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Figure 27: Angular momentum conservation multiplied by r−3/2 and time-
averaged. Full blue line is ⟨∂t(r sin θ ρvφ)⟩ r−3/2, red dot-dashed
line is ⟨∂r(r2Wrφ)⟩ r−3/2, green dashed line is ⟨Wθφ⟩ r−3/2 and
purple dotted line is −⟨ 1

2πrṀ ∂r(r
2 Ω̃)⟩ r−3/2.

indeed ejected from the disc. The final fit has a transition that occurs
at βt ≈ 5 (by construction) which is close to the lowest value of the
ones used to build the self similar fit in Lesur (2021b).

3.1.3.4 Angular momentum conservation

I perform the same analysis steps for the angular momentum con-
servation equation as for the mass conservation equation. I consider
the terms involved in the angular momentum conservation equa-
tion (172), time-averaged and multiplied by r−3/2. The correspond-
ing profiles are shown in fig. 27. The chosen integration height is now
εint = 0.9. This choice lowers the influence of the transition radius.

Contrary to the mass conservation equation (eq. 171), the time
derivative in the angular momentum conservation equation is negligi-
ble (see eq. 172). The surface stress (or ‘wind’ stress) removes angular
momentum from the whole disc and peaks at the cavity edge location,
at R ≈ 13 au. The derivative of the radial stress is also mostly positive
with the exception of the cavity location where it is slightly negative,
suggesting the existence of 2 accretion regimes in the disc. Having 2
different accretion regimes in the disc recalls the radial profiles of the
accretion rate and speed shown in fig. 23 and 24.

I introduce the dimensionless Shakura and Sunyaev (1973) α pa-
rameter to quantify the radial stress. I strongly shed light on the
fact that the origin of this stress is in no way solely linked to turbu-
lence but rather due to the laminar structure of the magnetised wind,
which possesses both radial and vertical components. However, I can
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still use the α parameter with my wind model whose definition once
time-averaged becomes

⟨α⟩ ≡ ⟨Wrφ⟩
⟨P⟩ . (177)

I show the associated time-averaged profile in fig. 28 (light blue full
line), where the integration height is still εint = 0.9. ⟨α⟩ peaks at ⟨α⟩ =
13± 5 in the cavity and exhibits a plateau in the external part of the
disc characterised by ⟨α⟩ = 49± 5× 10−4.

I adopt the same procedure to quantify the surface stress by intro-
ducing a dimensionless parameter υw and following Lesur (2021a),
whose radial dependence is given in fig. 28 (red doted curve). As for
ζ, I define one coefficient for each surface of the disc, namely υw,±,
which are chosen to be positive for angular momentum leaving the
disc on both sides, so that

⟨υw⟩ ≡ ⟨υw,+⟩+ ⟨υw,−⟩ ≡
⟨Wθφ⟩
r ⟨P0⟩

. (178)

This coefficient slowly decreases in the outer part of the disc with a
characteristic value of ⟨υw⟩ = 2.3± 1.1× 10−4 and reaches its maxi-
mum value of ⟨υw⟩ = 1.0± 0.1 inside the cavity.

The radial profile of ⟨ζ⟩ and those of ⟨α⟩ and ⟨υW⟩ share similarities.
Indeed, all of these profiles look alike a step function that reaches its
maximum inside the cavity, hence separating the two regimes at play
in the disc. In particular, the outer disc regime is typical of wind-
emitting protoplanetary discs and the transport coefficients in this
region have values that are coherent with self-similar models with
β ∼ 104. This strongly suggests that the dynamical properties of the
outer disc are not affected by the cavity.

On the contrary, the cavity regime is characterised by a fast accre-
tion and high values of ζ, α and υW, of the order of unity. The corre-
sponding values of the transport coefficients are gathered in table 2

for all the simulations.

3.1.4 mhd wind

Steady-state mhd winds in ideal mhd are known to be characterised
by a set of invariants (Blandford and Payne, 1982). I gave the cor-
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Figure 28: Time-averaged transport coefficients ⟨α⟩ and ⟨υw⟩ for εint = 0.9.

responding definitions of these invariants in the first chapter, still I
recall their respective definitions hereafter:

κ ≡ 4π ρ vpΩw Rw

Bp Bw
, (179)

ω ≡ Ω

Ωw
−

κBw Bp

4π ρRRwΩw
2

, (180)

λ ≡ ΩR2

Ωw Rw
2
−

RBφ

Rw Bw κ
, (181)

B ≡ v2

2Ωw
2 Rw

2︸ ︷︷ ︸
Kinetic

+
−Rw√
R2 + z2︸ ︷︷ ︸

Gravitational

+
−ωRBφ
κRw Bw︸ ︷︷ ︸

Magnetic≡Bmag.

+
w

Ωw
2 Rw

2︸ ︷︷ ︸
Thermal

. (182)

My 2.5d simulations are axisymmetric and a steady-state is approxi-
mately achieved above the disc, within the ideal mhd region. There-
fore, I compute these invariants along selected poloidal magnetic
fields lines, one attached in the cavity and another one in the outer
disc. The corresponding field lines are shown in fig. 29. The first line
is anchored in the cavity (referred to as "in") and leaves the midplane
at Rin = 3.5 au while the second one is in the external disc (referred
to as "ext") and leaves the midplane at Rext = 15 au. Both lines are
built on quantities that are time-averaged on the last 1000 orbits at
Rint of the simulation.

It should be noted that the disc thickness affects the calculation
of mhd invariants. The physical footpoints of the field lines are not
precisely located at the midplane but slightly above. This effect is
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Figure 29: Selected magnetic poloidal field lines to compute the mhd invari-
ants for the 2.5d fiducial simulation. The disc is shown in orange
with the cavity edge located at R = 10 au. I add a few lines de-
limiting surfaces at εint = 0.3, 0.6 and 0.9.

notably stronger for the field lines leaving the external part of disc.
Therefore, the values of mhd invariants are subject to caution so that
I only draw general conclusions regarding the nature of the wind.

I show the corresponding invariants computed along each chosen
field lines in fig. 30 while their asymptotic values are gathered in
tab. 3. First of all, the invariants remain reasonably constant once
high enough above the disc. The wind launched from the cavity has
different properties from the one launched from the disc. In particular,
the wind emitted from the cavity has a much weaker mass loading
parameter and a much larger lever arm (by almost a factor 10). More-
over, its rotation parameter is significantly lower than 1. Indeed, the
corresponding field lines are rotating at 80% of the local Keplerian
angular speed. This result is likely due to the disc being significantly
sub-Keplerian in the cavity.

Regarding the Bernoulli invariant, it appears that the greatest con-
tribution to the invariant arises from the magnetic energy term, which
is in particular way higher than the thermal one. This is consistent
with the magnetic origin of the wind which is confirmed. However,
the wind should end up being dominated by the kinetic term. The
kinetic component rises up all along the field line, but without being
the dominant term.
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Ṁin > Ṁout

R0Cavity Outer disc

Figure 31: Schematic view of the cavity connected to the outer disc. Though
of the same order of magnitude, the accretion rates are slightly
mismatched.

Quantitatively, I have for the 2.5d fiducial simulation κin = 2.2×
10−2, κext = 2.5, λin = 23 and λext = 3.2. These values are coher-
ent with the transport coefficients previously computed. One expects
κ ≈ βζ/(4 ε) and λ ≈ 1+ ε υw/ζ (Lesur, 2021a).
I also remark that the values of κ and λ found in the cavity match
some of the historical solutions of Blandford and Payne (1982) (see
their figure 2) and correspond to super-Alfvénic and collimated out-
flows. They are also consistent with the magnetic outflow solutions
of Ferreira (1997) (see figure 3). Therefore, the cavity quantitatively
matches the inner ‘jet-emitting disc’ (jed) proposed by Combet and
Ferreira (2008).

3.1.5 Temporal evolution of the disc

Based on the spatio-temporal diagram of Σ (see fig. 18), I observe two
kinds of time variability in the fiducial simulation. One is secular and
responsible for the slow expansion of the cavity. The other occurs on
much shorter timescales and accounts for the striped patterns seen in
the spatio-temporal diagram of Σ. The current section aims at describ-
ing these time variability regimes, starting with the secular evolution.

3.1.5.1 Slow cavity edge expansion

The spatio-temporal diagram of Σ suggests that the cavity edge moves
slowly outwards during the simulation. I hereafter neglect the impact
of the wind regarding the mass loss rate at the cavity edge location
and assume piecewise constant accretion rates and surface densities
across the cavity edge (see fig. 31). Therefore, Σ and Ṁ are modelled
with step functions so that X = Xin in the cavity and X = Xext in the



3.1 fiducial simulation 109

outer disc, with X being the accretion rate or the surface density. I
define δX ≡ Xext −Xin and get, based on the conservation of mass, I recall that R0 is the

location of the cavity
edge (see fig. 31).

Ṙ0 = −
1

2πR0

δṀ

δΣ
, (183)

where Ṙ0 is the cavity edge effective “expansion velocity”. Around
the cavity edge, I have Ṙ0 = 1.8× 10−5 while evaluating directly the
cavity edge motion Ṙ0 yields Ṙ0 = 1.4× 10−5 (both in code units).
I therefore conclude that the cavity expands because of the slight
mismatch in accretion rate observed in figs. 23 and 25.

3.1.5.2 Magnetic field transport

The magnetic field transport is a key notion to understand the secular
evolution of magnetised discs. I build a flux function ψ that embodies
the magnetic field transport such that

ψ(r, t) = R 2int

∫ π/2
0

Br(Rint, θ, t) sin θdθ−
∫ r
r=Rint

r Bθ(r,π/2, t)dr .

(184)
The first term accounts for the seed magnetisation and the second
represents the amount of vertical magnetic field threading the disc
up to a radius R. I recall that the

‘seed’ refers to the
inner radial
boundary condition.

The isocontours of ψ depict the motion of the magnetic field foot-
points in the disc plane. The corresponding spatio-temporal profile of
ψ is shown in fig. 32. It appears that the magnetic flux is slowly ad-
vected towards the star in the external disc and diffused outwards in
the cavity. The poloidal magnetic structure of the disc (fig. 19) shows
that there is a change of sign regarding ⟨Bz,0⟩ at the transition region
with ⟨Bz,0⟩ < 0 between R ≈ 8 and R ≈ 12 and ⟨Bz,0⟩ > 0 elsewhere.
This transition region is recovered in fig. 32 as a region where ∂rψ < 0.

Overall, the negative field at the transition region is diffusing out-
wards, when the positive field of the outer disc is advected inwards.
Both field reconnects around R ≈ 12 au, so that the large scale field
progressively ‘eats’ the negative field of the transition region. The
negative field corresponds to the poloidal magnetic loop (see fig. 19).
This loop is expected to disappear on a time-scale greater than the
total duration of my 2.5d simulations. Moreover, the poloidal field
lines deep in the cavity also diffuse outwards.

Calculating the partial derivatives of ψ leads to{
∂tψ(R, t) = −REφ,0(R, t)

∂Rψ(R, t) = −RBθ,0(R, t)
. (185)

Following Guilet and Ogilvie, 2014, I postulate an advection equation
for ψ that reads

∂tψ+ vψ ∂Rψ = 0 , (186)
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Figure 32: Flux function ψ(R, t) for the 2.5d fiducial simulation, taking into
account the flux at the surface of the seed and the radial flux
threading the disc.

where I define the “field advection velocity“ vψ which satisfies

vψ = −
Eφ,0(R, t)
Bθ,0(R, t)

. (187)

I eventually define a supplementary dimensionless parameter

νb ≡ vψ/vk , (188)

which quantifies the advection speed (Bai and Stone, 2017). With the
previous definitions, positive values of νb account for an outward
motion of the magnetic field while negative values trace inward field
transport. The time-averaged radial profile of νb is shown in fig. 33.

The external disc is characterised by an advection velocity vψ =

−2.6× 10−3 vk. ⟨νb⟩ encounters changes of signs multiple times in the
cavity, and finally remains negative close to the cavity edge, between
R ≈ 8 and R ≈ 12 au which is the transition region. The advection
speed is then vψ = +3.2× 10−3 vk.

Such a result is coherent with fig. 32 so that the field lines converges
at the transition radius with opposite vertical polarity, which recovers
my previous conclusion. In the external parts, ⟨νb⟩ is negative, vψ =

−2.6 × 10−3 vk and the vertical magnetic field pointing upwards is
advected. I stress that the inward motion of the magnetic field lines in
the external disc is in sharp contrast to other work which focused on
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Figure 33: Time-averaged radial profile of νb for the 2.5d fiducial simula-
tion.

“full" protoplanetary discs (Bai and Stone, 2017; Gressel et al., 2020;
Lesur, 2021b). This magnetic advection of flux in the outer disc of my
truncated protoplanetary disc suggests a non-local influence of the
cavity.

3.1.5.3 Fast variability of the cavity

Up until now, I focused on time-averaged quantities and yet ignored
any fast variability. Despite my numerical simulations reaching quasi-
steady states, they also exhibit a fast time variability, especially on a
few orbits at Rint (see in particular the stripes in the spatio-temporal
diagrams of fig. 18) and whose origin remains to be clarified.

I give the temporal evolution of a few quantities (Σ, Ṁ, Bz and ζ,
obtained at R = 3 au) in fig. 34. All of these profiles are subject to
sharp fluctuations over time that are chaotically distributed. Indeed,
bursts (or ‘bubbles’) of matter cross the cavity from time to time and
fall rapidly onto the central star. These bursts are characterized by
strong sharp increases of Σ and Ṁ in fig. 34 with peaks whose typical
width is ∼ 5 orbits at Rint (I recall that the temporal resolution of my
outputs is 1 orbit at Rint). This variability fully accounts for the stripes
detected in the spatio-temporal diagrams (fig. 18).

I give a special focus to a few of these burst events in the bottom
panels of fig. 34. The (b) panel also corresponds to the instantaneous
pictures of the density given in fig. 35. The local maximum of Bz,



112 2 .5 d simulations : the structure of transition discs

Σ and Ṁ are clearly correlated. The scenario for one stripe (i. e. one
burst event) is the following. Once an inflow (a burst) of matter falls
at the external edge of the cavity and is about to cross it, Σ obviously
peaks as well as Ṁ so that ζ increases. Bz seems to increase a bit
before Σ and Ṁ, which suggest that Bz is the driver of these bursts.
However, I cannot be definitive on this because of my limited tem-
poral resolution. In the end, the rise of ζ (computed at εint = 0.3) is
always clearly delayed compared to the other quantities. Therefore,
the wind in the cavity is more efficient once a bubble has passed.

Figure 35 describes a burst event with greater details by showing
the instantaneous density as well as poloidal magnetic field lines on
6 panels (1 panel every 4 orbits at Rint). The first panel exhibit a thin
filament of matter located above the disc which extends from (R =

10, Z = 5) to (R = 15, Z = 10). This latter is cut in two parts on the
second panel, creating two bubbles of matter. One bubble is about
to fall (and will further generate the burst event) while the other is
about to be ejected. The ejected bubble leaves the disc in the wind
and does not interact with the cavity whatsoever.

Figure 36 shows the spatial structure of the currents in the disc.
A current sheet lies under the filament location, where |jφ| is high
and the poloidal current is parallel to the radial direction and points
outwards. The sheet corresponds to the area where the filaments are
detected. This location is further characterised by the fact that the total
magnetic field cancels (Bφ = 0 at the edge of the magnetic loop and
Bp = 0 because two antiparallel poloidal field lines meet). It is then
likely that the bubbles form after the filament has encountered a mag-
netic reconnection event, which is studied in the context of ambipolar
diffusion in Tsap et al. (2012). Magnetic reconnection is also a candi-
date to allow matter to enter a star magnetosphere (Bouvier et al.,
2006; Zanni and Ferreira, 2013). Though there is no magnetosphere
in my simulations, the characteristic elbow shape of the poloidal mag-
netic field lines and the current sheet still suggest magnetic reconnec-
tion and it would be interesting to do numerical simulations with a
more physically accurate star/disc connection.

I now shed light on the becoming of the falling bubble which
reaches the edge of the cavity on the third panel of fig. 35 before
crossing it on the following one. While the gas crosses the cavity, the
disc oscillates locally and is highly dynamical. After a short delayThese oscillations

are the main reason
why I adopted the

modified definition
of β which allows to
catch the value of β

inside the oscillating
thin layer of matter

in the cavity.

(and on the last three panels), an outflow emerges from the cavity
while the wind density increases (see the values of ζ on the (b) panel
of fig. 34). The ejection of gas from the cavity is not constant with time
and occurs with burst events for which ζ peaks at 0.1. This may very
well explain why the effective values of ⟨ζ⟩ in the cavity are lower
than the ones predicted by self-similar models for which the ejection
is continuous and with a higher mass loss rate parameter.
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Figure 34: Temporal evolution of Σ in dotted green, Ṁ in dashed blue
and Bz (vertically averaged) in black full line, all calculated at
R = 3 au for the 2.5d fiducial simulation. The mass loss rate pa-
rameter ζ is calculated at εint = 0.3 and shown in semi-dashed
red line with a logarithmic scale on the right of the panels. Apart
from ζ, all the profiles are given in arbitrary units and divided
by their maximum value reached during the timescale of the top
panel. The bottom panels focus on 3 particular events. Note that
the horizontal scales are not exactly the same for all the bottom
panels.
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Figure 35: Instantaneous density over which poloidal magnetic field lines
are plotted at different times, for the 2.5d fiducial simulation. The
arrow tracks the position of a falling bubble of matter generating
a burst event (coresponding to the (b) panel of fig. 34).
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Figure 36: Time-averaged azimuthal coordinate of the current density for
2.5d fiducial simulation.
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To be more specific on the mass loss rate parameter, I give the
profile of δζ defined as δζ ≡ |ζ+ − ζ−| in fig. 37. This quantity is
designed to catch the top/down asymmetries of the ejection efficiency.
Fig. 37 indeed reveals that the ejection after the bubble has crossed
the cavity is not vertically symmetric, which explains why the disc
oscillates so strongly. Theses observations highlight the link between
wind and accretion (see fig. 25).

Combining fig. 20 and 35 eventually unveils a characteristic tempo-
ral sequence for feeding the cavity. First of all, the gas located inside
the outer disc elevates from the midplane up to approximately 2 local
disc height and organises itself in a filamentary way. This elevation
must be linked to the complex structure of the azimuthal magnetic
field (see fig. 19), whose changes of sign at the cavity edge accounts
for the vertical displacement of matter up until the characteristic el-
bow shape structure. Once the filament has formed, a bubble of mat-
ter falls and crosses the cavity, generating the stripes in the spatio-
temporal diagrams.

3.1.5.4 Magnetic Rayleigh Taylor instability

To account for the formation and stability of the falling bubble of
matter, I study the possibility of having a magnetic Rayleigh Taylor
instability (rti, or interchange instability) triggered at the cavity edge
location. This instability is in particular frequently invoked as a possi-rti will exclusively

refer to the magnetic
Rayleigh Taylor

instability
throughout this

manuscript.

ble mechanism allowing matter to enter a magnetosphere (Elsner and
Lamb, 1984).

I assume that the disc is geometrically thin inside the cavity and
that the density is continuous radially. Under these conditions, I re-
fer to the analysis of the rti in Spruit and Taam (1990), Spruit et al.
(1995), and Stehle and Spruit (2001), which assume an infinitely thin
disc. I reformulate the instability criterion of Spruit et al., 1995 (see
their equation 59) in terms of the plasma parameter in appendix A.
The resulting criterion 223 gives a necessary condition for the occur-
rence of the rti which is

β < βcrit. ≃ 0.0355 unstable . (189)

Figure 18 shows the time-averaged radial profile of β. It appears that
β is of the order of 0.1 in the cavity and rarely go below this value,
apart from very short periods of time such as during the accretion
bursts. It therefore seems unlikely that the criterion is verified in the
cavity.

I finally conclude that the cavity β plasma parameter is too large
to sustain the rti on average. However I cannot exclude that it could
be triggered in the rare excursions where the cavity reach β < 0.1, as
during some of the bursts.

In must be noted that Li and Narayan (2004) give another criterion
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for the triggering of the rti in the case of an infinitely thick disc (see
their equation 37) with a non-axisymmetric development.
Therefore, though I cannot fully rule out the rti, it seems likely that
once the bubble has formed, it starts to rotate slower because of the
braking induced by the wind so that it becomes rotationally unstable.
The bubble then falls down onto the cavity, triggering the temporal
sequence I discussed previously.

3.2 parameters space exploration

In this section, I move to the parameter space exploration to study
the impact of Λa,0, βin and βout, starting with Λa,0.

3.2.1 Ambipolar Elsasser parameter

I start by checking the influence of Λa,0 in the simulation labelled by
S2DB4Bin0Am1. This one is the same as the 2.5d fiducial one except
for the initial value of Λa which is set to 10.

3.2.1.1 General structure of the disc and gaps

Just like for the fiducial simulation, I give the spatio-temporal dia-
grams of Σ and β in fig. 38 for Λa = 10. Contrary to the fiducial sim-
ulation, the cavity edge does not remain still. It rather shrink to less
than 2 au before widening back up to R ≳ 4 au in a few thousands
of orbits at Rint. The transient state is shorter than in the fiducial run
and leads to reorganisation of the cavity which is eventually smaller.

Gaps are also detected both in the diagrams of Σ and β (see fig. 38).
They are located in the outer disc and broaden with time. Such struc-
tures are characteristic of discs simulated with mhd and have been
observed in numerous occasions both with ideal (Jacquemin-Ide et
al., 2021) or non-ideal mhd (Béthune et al., 2017; Suriano et al., 2019;
Riols et al., 2020; Cui and Bai, 2021). As in the fiducial simulation, the
gaps are associated with low β regions. Moreover, some gaps merge
with one another while some split into 2 gaps, so that only 3 of them
remain after 15000 orbits at Rint. This result is in particular similar to
what is found in Cui and Bai (2021). Focusing on the gaps is beyond
the scope of this work. However, I sill wish to show that the gaps
move differently in the disc, depending on their location, as shown
with fig. 39. It is clear that the gap located close to R ≈ 15 au is mov-
ing inwards (compare the profiles at the instants 15000 and 25000

between which no merging occur) while the furthest one is moving
outwards. Since the gaps are associated with a magnetic concentra-
tion, this result could indicate that some poloidal magnetic field is
dragged outwards in the outermost parts of the disc and inwards
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Figure 38: Spatio-temporal diagrams of Σ (top panel) and β (bottom panel)
for the simulation S2DB4Bin0Am1.
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Figure 39: Profiles of β at different times, all for S2DB4Bin0Am1. Each pro-
file ⟨β⟩x is averaged between x and x + 1000 orbits at Rint. The
profiles focus on the outer disc where β ≈ β.

closer to the cavity. Focusing after the merging of the inner gaps (af-
ter 15000 orbits at Rint), the flux function ψ shown in fig. 40 seems to
strengthen this statement, as magnetic field seems to concentrate in
the gaps. This highlights the complex behaviour of the magnetic field
transport in the disc.

I now move on to the disc general time-averaged structure for this
simulation. Figure 41 gathers the flow and magnetic field topology of
the disc. The main characteristic of the 2.5d fiducial simulation are
recovered such as the elbow-shaped structure (in the poloidal mag-
netic structure and in the flow topology) and the associated magnetic
loop. All of them lie closer to the star, since the cavity is smaller.

In contrast to the fiducial simulation, the outer disc is top/down
asymmetric. This asymmetry has an impact on the shape and size of
the elbow structure above and below the disc plane. In particular, the
elbow is well developed above the disc but barely below it, except for
a small set of stream lines close to the cavity.

At the gap location, the poloidal magnetic field lines exhibit a local
slanted symmetry in the external disc. This peculiar topology is ob-
served in ambipolar dominated discs such as Riols and Lesur (2019)
and Riols et al. (2020). Small vortices in the (r, θ) plane appear at
the disc surface, at the radius of each gap, suggesting a meridional
circulation of matter.
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Figure 40: Magnetic field transport for the simulation S2DB4BinAm1. The
white dashed lines indicate the gaps location at 20000 orbits at
Rint after the merging of the inner gaps (see fig. 38). The black
contours show highlight the contours of ψ in the outer disc only
(for better readability, the inner cavity is dropped). The transient
state is not shown here.
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Figure 41: Time-averaged structure of the disc for S2DB4Bin0Am1. Left
panel: poloidal stream lines and density. Right panel: magnetic
structure of the disc with magnetic poloidal field lines and ⟨Bφ⟩.
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Name Ṁ ζin ζext αin αext υw, in υw, ext

Units M⊙ yr−1 10−2 10−5 − 10−3 − 10−4

S2DB4Bin0Am0 1.4 2.9 6.2 13 4.9 1.0 2.3

S2DB3Bin0Am0 5.1 3.8 14 19 23 1.4 31

S2DB5Bin0Am0 0.27 2.1 4.5 6.6 1.0 0.18 0.19

S2DB4Bin0Am1 1.2 −1.8 10 2.8 16 0.16 2.7

Table 2: Transport coefficients for a subset of simulations. The accretion rate
is calculated inside the cavity.

Name λin λext κin κext ωin ωext

S2DB4Bin0Am0 23 3.2 2.2× 10−2 2.5 0.67 1.2

S2DB3Bin0Am0 185 1.3 3.1× 10−3 9.9 0.64 0.93

S2DB5Bin0Am0 4.4 1.2 1.3 18 0.69 1.1

S2DB4Bin0Am1 4.9 1.5 0.24 5.0 0.23 3.6

Table 3: mhd invariants for a subset of simulations, computed with time-
averaged quantities on the last 1000 orbits at Rint.

3.2.1.2 Transport coefficients and wind invariants

The accretion in the disc does not change much from the 2.5d fiducial
simulation. The accretion rate is still constant in the whole disc, close
to 1.2× 10−7M⊙ yr−1 while the accretion velocity remains subsonic
in the outer disc and transsonic (up to 2 cs) in the cavity. Eventu-
ally, the previously discussed accretion scenario holds for this sim-
ulation, with an internal transsonic regime, connecting through the
cavity edge to a weakly magnetised wind.

Regarding the magnetic wind, this disc also exhibits a highly mass
loaded field line in the external disc removing little angular momen-
tum (λext = 1.5 and κext = 5.0), and a lighter one in the internal
disc carrying a massive load of angular momentum (λin = 4.9 and
κin = 0.24). Overall, the disc wind is less magnetised and more mas-
sive. Interestingly, the rotational invariant contrast is higher than in
the fiducial simulation, its internal value being 3 times lower and the
external 3 times higher.

3.2.2 Influence of the initial plasma parameter

I go on with the role of the initial plasma parameter in the disc. I
start by highlighting the impact of its initial external value βout be-
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fore presenting the one of its initial internal value βin. I change the
external initial magnetisation βout by adjusting the intensity of the
magnetic field throughout the whole disc. I vary the internal initial
magnetisation βin by modifying the coefficients which control the cav-
ity function.

3.2.2.1 Role of the external initial plasma parameter

I begin by studying the impact of the initial external magnetisation.
In this prospect, I ran additional simulations, one with βout = 103

(run S2DB3Bin0Am0) and one with βout = 10
5 (run S2DB5Bin0Am0).

general observations for s2db5bin0am0 (lower magneti-
sation case): As usual, I start with the spatio-temporal diagrams
of Σ and β, given in the left panels of fig. 42. At the beginning of the

Figure 42: Spatio-temporal diagrams for Σ and β for S2DB5Bin0Am0 (left
panels) and S2DB3Bin0Am0 (right panels).

simulation, an accumulation of matter is seen in the cavity which is
subsequently refilled. This accumulation looks like a ‘burst’ of mat-
ter in the diagram. The radius of the cavity then remains fixed at
∼ 4 au until some other accumulations of matter occur at ∼ 17400 and
∼ 27000 orbits at Rint. These events do not affect the general properties
of the disc in a significant manner.
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The so-called ‘bursts’ of matter (at ∼ 17400 and ∼ 27000 orbits at
Rint where I assume the first one to be due to the initial transient
state) give the illusion that mass conservation is challenged. How-
ever, this is of course not the case, these accumulations are actually
a consequence of gas accumulating at the boundary of an accretion
‘barrier’. I investigate this point with greater details in chap. B. For
now, I stress that these burst events are a limitation of my model re-
garding the implementation of the inner radial boundary condition.
It is also worth saying that they only occur in the weakly magnetised
(βout = 10

5) simulations.
Finally, the expansion velocity of the cavity Ṙ0 is too difficult to

obtain since the cavity edge barely move during the entire simulation
(which implies that this velocity is at least slower than the one of the
2.5d fiducial simulation).

general observations for s2db3bin0am0 (higher magneti-
sation case): The corresponding spatio-temporal diagrams are
given in the right panels of fig. 42. In contrast to the less magne-
tised simulations, the cavity expands fast, up until its edge reaches
R ≈ 15 au. This growth remains uninterrupted during the whole sim-
ulation so that this difference with the 2.5d fiducial run cannot be at-
tributed to the transient state. I estimate the corresponding expansion
velocity as Ṙ0 ≈ 3.0× 10−5 c.u. This is about 3 times faster than the
fiducial run. Eq. 183 gives, with δṀ ≈ 2.3×10−4 and δΣ ≈ 4.2×10−2
(both in code units) that Ṙ0 ≈ 4.2× 10−5 c.u., where I choose R0 ≈ 20.
Therefore, my simple model seems to overestimate the expansion ve-
locity of the cavity but gives a fine order of magnitude.

To deeper the previous analysis, let me recast the eq. 183 in the
following way

Ṙ0 = vacc., in

(
Σin

Σout
−
vacc., out

vacc., in

)
, (190)

where I introduce the accretion velocities vacc. ≡ Ṁ/2πR0 Σ, and as-
sume that Σout ≫ Σin. This new form highlights the fact that the
expansion velocity is controlled by the term in parenthesis. The accre-
tion velocity in the cavity is sonic for any simulations. Furthermore, it
is well known that the accretion velocity in the outer ‘standard’ disc I recall that I call

‘standard’ a
protoplanetary disc
that has no cavity,
i. e. a full disc.

decreases with β. With this in mind, I can write that

vacc. ∝ β−σ , (191)

with σ > 0. Lesur (2021b) proposes σ = 0.78 and Bai and Stone (2013b)
σ = 0.66, so that previous works point towards 0 < σ < 1. Assuming
that there exists a value β̃ for which Ṙ0 = 0, I get the scaling

Ṙ0 = vacc., in
1

βout

[
1−

(
βout

β̃

)1−σ]
, (192)
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where I use that Σin/Σout ≈ βin/βout = β
−1
out in my setup (see sec. 3.2.2.2

for more information on the role of βin) and assumed a continuous
magnetic field at the cavity edge. Equation 192 shows that when
βout ≪ β̃, Ṙ0 ≈ vacc., in β

−1
out , indicating that the cavity expansion ve-

locity should increase as βout gets lower, which is indeed the case for
S2DB3Bin0Am0.
On the contrary, for βout ≫ β̃, I get Ṙ0 ≈ −vacc., in β̃

σ−1 β−σ
out , ex-

hibiting a change of sign (and the cavity then shrinks), albeit with a
reduced speed. S2DB5Bin0Am0 might lie within this regime, indicat-
ing that β̃ ≃ 104.

Coming back to the global structure of the discs, the time-averaged
profiles of the surface density and β of the fiducial run, S2DB3Bin0Am0

and S2DB5Bin0Am0 are given in fig. 43. It appears that the size of the
cavity is ruled by the initial external plasma parameter. The lower
βout is, the wider the cavity gets once a steady state is reached. There-
fore, the global aspect of the disc is fixed by the magnetisation in its
outer parts but does not seem to depend on the initial one inside the
cavity, as I discuss in the next subsection.
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Figure 43: Time-averaged profiles of Σ (panel (a)) and β (panel (b)) for
S2DB5Bin0Am0 (red dashed line), the 2.5d fiducial run (blue full
line) and S2DB3Bin0Am0 (semi-dashed green line). I average on
the whole simulations minus the corresponding transient states.
The peaks in the profiles of β are indicative of a sign flip of Bp.

3.2.2.2 Role of the internal initial plasma parameter

I study the impact of βin by running a set of simulations covering
all the possible initial ratios βin/βout where logβout ∈ {3, 4, 5} and
logβin ∈ J0; logβoutJ. I compare the result of each of these simula-
tions to the one obtained with βin = 1 and the corresponding value
of βout. The major result associated with this subsection states that the
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Figure 44: Impact of the internal initial value of β on the plasma parameter
for βout = 104. The figure shows the radial profiles of β, time-
averaged on the last 1000 orbits at Rint to cancel the effects of the
transient state.

disc inner structure does not depend on βin. Whichever βin is initially
set, a relaxation occurs during the initial transient so that the cavity
reaches an imposed value of βin ≈ 1. Interestingly, this threshold
value is the one required to have transsonic accretion, as mentioned
in Wang and Goodman (2017). This statement is illustrated in fig. 44

in the case of βout = 10
4, where all the simulations have converged to

a same steady-state.

Of course, taking βin = βout would create a full disc without any
cavity. Therefore, a threshold value of βin above which no cavity is
able to form should exist. Looking at fig. 44 suggests that this thresh-
old is at least greater than 103. Nevertheless, I ran an supplementary
simulation with βin = 8000 and βout = 104. It appears that a cavity
(that is fully similar to the cavity I have presented up until now) is
also carved in this simulation, but on a much longer timescale, since
the cavity radius equals 3 au after 7000 orbits at Rint. Indeed, rather
than a threshold value of βin, the key notion at play may be a typical
timescale τcav. (βin) to open a cavity. This a result indicate that transi-
tion disc could naturally arise from an almost full (if not full) inner
disc.

I now give a special focus on the simulation S2DB4Bin3Am0 in
order to investigate the relaxation that occurs in the cavity during
the initial transient. In this prospect, I show a few handy profiles in
fig. 45, that show the state of the cavity during the first 2000 orbits at
Rint. The first panel of fig. 45 is the surface density and the relaxation
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appears clearly while the cavity carves through time. This relaxation
is due to matter leaving the cavity because of the fast accretion at play
after a sharp increase of the magnetic field (and therefore a decrease
of β). This increase of Bz is highlighted in the middle panel of fig. 45.
The magnetic reorganisation of the cavity originates from the fast
advection of the initial magnetic flux of the cavity down onto the
seed (at R = Rint) which is initially poorly magnetised (compared to
its asymptotic magnetisation), according to my initial setup.

Because the total magnetic flux is conserved, a shortage of magnetic
flux occurs inside the cavity since its magnetic field is caught by the
seed. At some point, the seed reaches a state where its magnetisation
is almost constant (i. e. a magnetically saturated state). This saturation
is shown with fig. 46. It appears that the saturation value is the same
for all the simulations and therefore characteristic of the disc.

Once the seed saturates, the magnetic field accumulates at the inner
boundary so that β decreases accordingly and accretion is enhanced.
At this point, matter is strongly accreted. The cavity is drained of gas
and finally converges towards the same state as in the 2.5d fiducial
run.

Figure 45: Spatio-temporal diagrams of Σ (top left panel), β (top right
panel), Bz,0 (bottom left panel) the vertical magnetic field at the
midplane and ψ (bottom right panel) the flux function defined
in eq. 184. These profiles focus on the first orbits of the run
S2DB4Bin3Am0.
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Figure 46: Magnetic saturation of the seed for S2DB4Bin3Am0. The profile
shown in full blue line is the flux function ψ during the first
2000 orbits at Rint of the simulation, calculated at Rin. The red
dotted line is same quantity, time-averaged on 6000 orbits at Rint
after the saturation is reached.

From these observations, I deduce that the cavity is regulated so
that the plasma parameter must reach a characteristic value of β ∼ 1.
The physical process underlying this transition is not entirely clear
and I add a word of caution regarding the role of the inner radial
boundary condition, especially with respect to the magnetic field
transport at Rint. One could naturally invoke the rti as responsible
for the regulation of the cavity, however and referring sec. 3.1.5.4, it
seems that it is hardly the case.

3.3 conclusive remarks on the 2 .5 d simulations

I end this chapter with the current section devoted to a few conclusive
remarks on my 2.5d simulations. I will not detail any caveat of my
model here and rather refer the reader to chap. 6 that contains discus-
sions regarding the caveats of all my work (2.5d and 3d simulations).
The description of a few ‘safety’ runs (e. g. studying the impact of
the spatial resolution) is given app. B. For now, I start with a general
scheme describing transition discs in the picture of mhd winds before
moving to a brief discussion regarding these simulations.

3.3.1 Unveiling a conclusive general scheme for transition discs

Figure 47 pictures a model for transition discs (the cavity and the ex-
ternal disc are shown in light and darker orange) under the scenario
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Figure 47: Schematic view of the cavity connected to the outer disc. Though
of the same order of magnitude, the accretion rates are slightly
mismatched.

of mhd winds (shown with red arrows). My simulations tend to show
that the inner transport coefficients (labelled by “in”) are regulated
and do no vary on βin (namely the gap in density).

On the contrary, the external transport coefficients (labelled by “out”)
directly depend on βout and control the size of the cavity R0, suggest-
ing that some global magnetic flux regulation occurs in the disc as a
whole. This trends seems confirmed by the non-local influence of the
cavity on the magnetic field transport as discussed in sec. 3.1.5.2.

Conclusively, the cavity and the external discs see their magnetic
configuration adapting to each other, in such a way that the transport
of angular momentum happens smoothly through the disc. The re-
maining transport coefficient νb is affected to a regulator role through
its complex behaviour in the whole disc, regarding the transport of
magnetic flux.

Coming back to eq. 192, I can express the accretion rate in terms
of the 2 sets of transport coefficients (the internal and external ones)
and take into account the effect of the wind on the mass loss rate (by
considering ζ or not) for a complete calculation. I model any transport
coefficient X (among ζ, υw and α) with a step function so that X = Xin

inside the cavity and X = Xout in the external disc. Under this simple
assumption, I find that

Ṙ0
vk

=
1

G− 1

[
2 ε2 αin

(
1−G

αout

αin

)
+ ε

√
2

π
νb,in

(
1−G

νb,out

νb,in

)
− ζin

(
1+G

ζout

ζin

)]
,

(193)
where G ≡ βout/1 is the gap, since the cavity regulates itself un-

til the inner β is 1. The square bracket plays the role of the one
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Figure 48: Widening velocity (calculated from eq. 193) of the cavity with
respect to the initial external plasma parameter.

in eq. 192 and is of the order of a few, since GXout/Xin ∼ 1 and
ε2 αin ∼ ε νb,in ∼ ζin. A change of sign (i. e. having an expanding or a
shrinking cavity) could very well occur in the parenthesis. The corre-
sponding estimated values for Ṙ0 are shown in fig.48 and are coherent
with the measured ones. In particular, the influence of ζ seems neg-
ligible (see the crosses, that represent Ṙ0/vk calculated with ζ → 0).

3.3.2 Final remarks on the 2.5d simulations

I modelled transition discs sustained by mhd winds by performing
2.5d global simulations. This model is promising as the simulated
cavities are persistent with time.

On long time-scales, the magnetic field strength is self-regulated with
0.1 ≲ β ≲ 1 in the cavity, for any initial configuration. The cavity is
strongly magnetised and rotates at sub-Keplerian velocities. The mag-
netic support is intense enough to counter gravity. The saturation of
the inner seed also favours this idea. The cavity is comparable to the
magnetically arrested disc (mad) proposed by Narayan et al. (2003)
in the context of black hole accretion discs, despite the use of Newto-
nian dynamics in my simulations (mads are usually obtained in the
context of grmhd simulations) and despite the presence of a strong
ambipolar diffusivity. This idea is developed in the next chapters.

A last point worth mentioning is the fact that the time variability
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of the cavity may be related to the axisymmetric approximation used
in my 2.5d simulations. In particular, non-axisymmetric instabilities
such as the Rossby Wave Instability (rwi) (Lovelace et al., 1999; Li
et al., 2000) could challenge the stability of the cavity. This is why a
part of my work focuses on 3d simulations and on the stability of the
cavity. I will present the results of this work in the next chapter.
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conclusion

My 2.5d simulations prove that it is physically meaningful to
address the question of highly-accreting tds with magnetic winds.
The resulting cavities are long-lived and characterised by strong
accretion rates.
Regarding the overall structure of the discs, I find two accreting
regimes. The inner one is the cavity, the second one is the full disc.
Their respective transport coefficients are not continuous at the
transition between the two regimes which is located at the external
edge of the cavity. These discontinuities enable a smooth transition
of the accretion rate.
The disc organises itself in a way that makes possible a smooth trans-
port of angular momentum throughout the whole disc, sustained by
the magnetic wind. In particular, an elbow-shaped structure together
with a poloidal magnetic loop are detected at the transition between
the cavity and the full disc.

However, I detect a slight mismatch between the inner and ex-
ternal accretion rates that is linked to the slow evolution of the disc
and to the widening of the cavity.
The magnetic field transport exhibits a complex behaviour in the disc
that is linked to the long-term evolution of the disc.
Regarding the fast variability of the cavity, I detect bubbles of gas
that are created at the elbow structure location and probably due to
magnetic reconnection events.

The parameter exploration shows that the external disc is con-
trolled by βout while the structure of the cavity does not depend
on the initial value of βin. Any simulated disc ends up with a well-
defined seed magnetisation, that controls the innermost accretion
rate.
Conclusively, the inner saturation of the magnetisation and the
strong magnetic support in the cavity recall the mad picture.
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conclusion

Mes simulations 2, 5d montrent qu’il est physiquement pertinent
d’envisager que les disques de transition accrétant fortement soient
soutenus par des vents magnétiques. Les cavités ainsi obtenues
persistent dans le temps avec des forts taux d’accrétion. Ce résultat
déterminant souligne tout l’intérêt de ce modèle qui permet de
reproduire des disques de transition avec une cavité suffisamment
large (de taille supérieure à 1− 5 ua) et une accrétion vigoureuse.

En ce qui concerne la structure générale de tels disques, je trouve
que ceux-ci présentent deux régimes dynamiques différents, qui se
reconnectent l’un l’autre au niveau de la frontière externe de la cavité.
Cette dernière constitue le régime interne, le second étant incarné
par le disque externe standard.

Les coefficients de transport de ces deux zones ne sont pas continus
et présentent une différence de plusieurs ordres de grandeur au
niveau de la cavité. Cependant, ces écarts majeurs permettent
d’obtenir un taux d’accrétion quasiment continu dans tout le disque.
En particulier, le disque adopte une structure générale qui permet
un transport continu de moment cinétique dans la totalité du disque
en accolant ces deux régimes dynamiques différents, tous deux
soutenus par un vent magnétique.

Toutefois, je constate un léger écart entre le taux d’accrétion de
la cavité et celui du disque externe. Cet écart rend possible une
évolution séculaire de la cavité, se traduisant par un élargissement
de cette dernière. Du fait d’une l’accrétion dans la cavité légèrement
plus intense, la cavité s’errode petit à petit.

Le transport du champ magnétique présente lui aussi un com-
portement complexe avec une évolution sur de longues échelles de
temps. Contrairement à divers travaux sur des disques magnétisés
dans lesquels le champ magnétique est diffusé vers l’extérieur,
j’observe un phénomène d’advection du champ magnétique dans
mes disques.

La cavité est également soumise à une variabilité sur de cour-
tes échelles de temps. Des bulles de gaz se forment au dessus de
la boucle de champ magnétique poloidal lorsque des filaments de
matière se scindent en deux, possiblement après un événement de
reconnexion magnétique. Ces bulles de gaz tombent ensuite sur le
bord externe de la cavité avant de la traverser en générant un pic
d’accrétion.
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L’exploration des paramètres révèle que la magnétisation externe ini-
tiale contrôle le disque externe, tandis que la cavité est indépendante
de la magnétisation interne initiale. Plus précisément, la cavité se
réorganise de manière à atteindre un même état, indépendamment
de sa magnétisation initiale. Ce point rejoint le fait que la magnéti-
sation de la graine centrale (la "seed") sature à une valeur donnée,
contrôlant de fait l’accrétion au bord interne.

Finalement, la saturation de la magnétisation interne et le fort
support magnétique dans la cavité rappelle le modèle mad des
disques d’accrétion autour des trous noirs.
Je développerai ce point notamment à l’issue du chapitre suivant
qui traite de la stabilité de la cavité vis-à-vis d’instabilités hydro- et
magnétohydrodynamiques.

Je poursuivrai également l’étude du modèle 2, 5d dans le chapitre 5,
notamment en implémentant une troncation externe exponentielle à
mon modèle et en simulant le disque sur une plage de temps dix fois
plus longue.
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"The Sky is low - the Clouds are mean.
A Travelling Flake of Snow

Across a Barn or through a Rut
Debates if it will go -

A Narrow Wind complains all Day
How some one treated him

Nature, like Us is sometimes caught
Without her Diadem -"

— Emily Dickinson, Je cherche l’obscurité (1866)
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introduction

The previous chapter gave a general overview for transition discs
sustained by magnetic winds. In particular, the secular evolution of
the discs was deeply investigated (through the study of the accretion
rate, the transport coefficients and the magnetic field transport in
particular). The edge of the cavity appears to play a key role in the
physics of transition discs sustained by mhd winds. However, 2.5d

simulations cannot characterise the stability of the frontier between
the cavity and the full disc. In particular, hydro- and magnetohydro-
instabilities could be triggered and affect the gas inside the cavity,
which is why 3d simulations are needed.

This chapter is devoted to a set of 3d simulations (a fiducial
one and a parameter space exploration). Its aim is to get a descrip-
tion of magnetic winds emitting transition discs in 3d as well as to
get an insight on physics at play in the cavity. In particular, I will
study a few instabilities.

I will start with the fiducial 3d simulation, describing its gen-
eral properties before moving to salient results regarding the
cavity, inside which spirals are detected. Eventually, I will describe
additional 3d simulations in a parameter space exploration.
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introduction

Le chapitre précédent m’a permis de donner une vue générale
des disques de transition supportés par des vents magnétiques.
Plus précisément, ces simulations m’ont donné accès à l’évolution
séculaire de tels disques, notamment via l’étude du taux d’accrétion,
des coefficients de transport et du transport du champ magnétique.
Comme on pouvait s’y attendre, la frontière entre la cavité et le
disque plein joue un rôle crucial de zone de transition dans ce
modèle de disques. Malgré leurs avantages, en particulier en termes
de coûts numériques, les simulations 2, 5d ne permettent pas
d’étudier la stabilité de cette frontière au regard d’instabilités hydro
et magnétohydro dynamiques, qui se manifesteraient de manière
non axisymétriques. Une telle tâche doit donc être attribuée à des
simulations à 3 dimensions, permettant de capture la physique en
jeu dans la direction toroïdale.

Le présent chapitre s’attache à l’étude d’un jeu de simulations
3d constitué d’une simulation fiduciaire et d’une rapide exploration
de l’espace des paramètres, similaire à celle effectuée à 2, 5 dimen-
sions. Les objectifs premiers sont d’aboutir à une description globale
de ces disques de transition à 3 dimensions et de fournir des pistes
quant à la stabilité de la cavité (de sa frontière et du gaz qu’elle
contient) vis-à-vis d’instabilités.

Je débuterai par une étude détaillée de la simulation de référence en
me focalisant sur la structure du disque, avant d’établir les résultats
les plus pertinents concernant la stabilité de la cavité. Enfin, ce
chapitre s’achèvera sur une exploration de l’espace des paramètres.
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Short reminder

For this chapter, I keep on using the notation X which does
include a vertical integration as well as an azimuthal average.
If not defined otherwise, one should assume that X× Y ̸= X×Y.
When needed alone, the azimuthal average is denoted ⟨X⟩φ. As
an example, the surface density is defined as

Σ(R, t) ≡ ρ(r, t) ,

=
1

2π

∫2π
0

∫θ+
θ−

r ρ(r, t) sin θdθdφ .

In some cases (for example to check the influence of non-
axisymmetries), I may use Σ2 d(R,φ, t) defined as

Σ2 d(R,φ, t) ≡ 1

N

∫θ+
θ−

r ρ(r, t) sin θdθ ≡ ⟨ρ(r, t)⟩θ ,

where N ≡ 2 ε/
√
1+ ε2 is a normalisation factor so that ⟨·⟩θ

can be thought as an average procedure.
Moreover, I recall that most of my 3d simulations are restarted
from a corresponding 2.5d one. Shall it be done otherwise for
a few simulations, I will precise it clearly.
Finally, because of the considerable computational time needed
for 3d simulations, these ones are only run for at most
∼ 1000 orbits at Rint or so. This represents 3% of the 2.5d

fiducial simulations, so that these simulations are not designed
to address the same questions as the 2.5d simulations. They
aim at investigating the stability of the cavity.
For any supplementary information, I refer to chap. 2.

4.1 recovering the properties of tds with 3 d simula-
tions

Before portraying the salient and specific results of my 3d simula-
tions, I aim to recover some of the main properties of tds harbouring
magnetic winds that I obtained with my 2.5d simulations. I also want
to stress the differences regarding the structure of such discs when
the assumption of axisymmetry is dropped. In this prospect, I willI recall that my 3d

simulations are all
restarted from 2.5d

simulations after
≈ 7000 orbits at

Rint. See the second
chapter (chap. 2) for

more precise
explanations on this

procedure.

start with the general structure and evolution of the discs and focus
on its properties such as the accretion rate and the wind characteris-
tics.
The only simulation used in this section is the 3d fiducial one that is
labelled by S3DB4Bin0Am0, and which was restarted from the corre-
sponding 2.5d fiducial simulation after 7558 orbits at Rint.
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Figure 49: Spatio-temporal diagrams of Σ (upper panel) and β (lower panel)
for the 3d fiducial simulation. The dark blue semi-dashed line
in the upper panel shows a sonic shock wave characteristic (see
sec. 4.1.2).

4.1.1 General evolution of the disc

As for any previous simulation, I start with the spatio-temporal dia-
grams of the surface density and of the plasma parameter. The cor-
responding profiles are given in fig. 49, where I keep the very same
definition of β that I used previously (and which includes the az-
imuthal average). At first glance, these profiles are fairly comparable
to the 2.5d corresponding ones (see fig. 18). The external discs exhibit
similar surface density, but it is worth noting that the profile of the
plasma parameter is much smoother in 3d. The most striking differ-
ence lies within the profiles in the cavity where a clear bead forms, at
R ≈ 2.6 au. Considering the full midplane of the disc reveals that this
bead is indeed a full ring. From now on, I will refer to this structure
as ‘the inner ring’ or just ‘the ring’.
Moreover, the stripes that were seen in the 2.5d simulations are now
located between the ring and the inner boundary condition, but are
hardly detected between the ring and the cavity edge. The region
where most of the cavity spans is therefore smoother, suggesting a
continuous flow of matter through it.

A closer inspection of the profiles is given with fig. 50, which gives
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Figure 50: Time-averaged profiles of Σ (upper panel) and β (lower panel),
with a comparison between 2.5d and 3d fiducial simulations.
The values taken into account for the 2.5d simulation are kept
between 7558 orbits at Rint and up to 7558+ 1000 orbits at Rint.
This way, both simulation are compared meaningfully. The verti-
cal grey dashed line at R = 2.6 au in the profile of ⟨Σ⟩ indicates
the location of the inner ring.

the time-averaged profiles of Σ and β. The external parts of the discsThe time-averages of
the 3d profiles are
performed without

considering the
transient state

(which is inferred to
span until

∼ 300 orbits at Rint
from fig. 49).

appear to be similar between the 2.5d and 3d simulations, while the
simulated cavities are slightly different. This graph clearly empha-
sizes the presence of an additional inner ring in the 3d simulation,
especially in the surface density profile (upper panel of fig. 50, see
the vertical grey dashed line). The plasma parameter β directly time-
averaged is smoother than in the corresponding 2.5d simulation as
previously suggested. Its profile also reveals a much ‘cleaner’ cavity
in the sense that β is roughly constant and equal to 1 in the cavity,
between the ring and its outer edge. This has to be related to the ab-
sence of bursts of matter in this region.
The radial profile of ⟨β⟩ is also characterised by local minima (one at
15 Rint and the other between 20 and 25 Rint), which seems to corre-
spond to two faint local minima of ⟨Σ⟩.
Finally, I want to stress a basic yet major result. The cavity remains sta-
ble with time and the disc reaches a steady state. Such key results are
then confirmed by 3d simulations and despite being obvious when
looking at fig. 49, they must not be overlooked.
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4.1.2 Reorganisation of the disc

Figure 49 exhibits a sonic shock wave propagating through the disc
whose characteristic curve is plotted over the profile of Σ and defined
by I assume that the

sonic shock wave
starts at R1 = 1 Rint
at t1 = 0 orbits at
Rint.

t− t1 =
1

3 π ε

(
R3/2 − R

3/2
1

)
, (194)

where t is the time given in orbits at Rint and R the radius in units of
Rint. This shock wave is part of a reorganisation of the disc as a whole
and changes its general structure (I detail this point in the upcoming
sec. 4.1.3).

This reorganisation points out that the 2d structure of my simulated
tds somehow relies on the axisymmetry assumption. Moreover, this
suggests a release of the magnetic stresses due to non-axisymmetries.

4.1.3 Structure of the disc

4.1.3.1 Magnetic structure of the disc

The temporal evolution of the disc and its initial reorganisation are as
many clues that there may be a shift occurring in the magnetic struc-
ture of the disc. With this idea in mind, I give the azimuthally and
time-averaged toroidal magnetic in fig. 51, on which the azimuthally
and time-averaged poloidal magnetic field lines are plotted. From now one, any

time-averaged
calculation does not
take into account the
transient state of the
simulation.

Inside the cavity, the magnetic structure is similar to the one in 2.5d

and the poloidal magnetic field lines are pinched at the midplane.
The toroidal magnetic field above the disc midplane is negative and
positive below it. Such a general structure is expected and recovered
from 2.5d simulations.
The outer disc is still separated from the cavity by a magnetic loop,
however this one is much less prominent in 3d simulations. The loop
spans between h/R = ±0.3 where it used to go up and down to
h/R = ±0.6 so that it is overall twice smaller in 3d. The characteris-
tic elbow-shape pattern has disappeared above and below the loop,
along with the reorganisation of the disc. Nevertheless, the poloidal
magnetic field lines still bent at the disc surface and this bending is a
remnant of the elbow pattern.
The most striking magnetic structure lies inside the external disc
where the magnetic poloidal field lines are roughly vertical. The verti-
cal profile of the toroidal magnetic field undergoes at least 3 changes
of sign. Starting from below the surface defined by h/R = −0.3 (black
full line on fig. 51), ⟨⟨Bφ⟩φ⟩ is positive. A first change of sign occurs
at h/R = −0.3, before a second one is detected between h/R = 0.3 and
h/R = −0.3. The location of the second sign flip is not well located
and varies radially, conferring a non-symmetric pattern to the vertical
magnetic structure with respect to the disc midplane. However, the
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Figure 51: Azimuthally and time-averaged poloidal profile of the toroidal
magnetic field, over which the poloidal magnetic field lines are
plotted (and averaged under the same procedures).



4.1 recovering the properties of tds with 3 d simulations 145

last change of sign occurs at h/R = 0.3 in a symmetric way with the
first one.

Therefore, some top/down asymmetries are to be expected regard-
ing the disc vertical structure while the peculiar features inherent to
the previous elbow-shape pattern are likely to be gone. I define SB as
the surface where ⟨⟨Bφ⟩φ⟩ = 0 between h/R = ±0.3. This surface is
highly dynamical. The toroidal magnetic field is a key quantity in par-
ticular because its sign and topology are linked to the wind, through
the bending of the poloidal field lines. Another example of structures
regarding the sign flips of ⟨Bφ⟩ are the patterns characteristic of mri

dynamos (Flock et al., 2011, see for example) that appear in turbulent
discs with a net initial toroidal field. Such an effect is known to be
shut down by non-ideal mhd effects (Bai and Stone, 2013a; Simon et
al., 2013) and is not expected in my simulations.

The figure 52 shows the spatio-temporal diagram of the toroidal mag-
netic field, azimuthally-averaged and computed at a Rshell = 15 au,
and along a spherical shell (the diagram focuses on the region close
to the midplane). Far above (resp. below) the disc plane, ⟨Bφ⟩φ is neg-
ative (resp. positive), accordingly with fig. 51. Between z/Rshell = ±0.3,
multiple sign flips are detected (up to 5 before 700 orbits at Rint, which
account for SB being far from horizontal). This toroidal configuration
is linked to the wind topology (Cui and Bai, 2021) and to the fact that
the poloidal field lines are not perfectly vertical in the disc.
Eventually, SB converges toward a steady configuration with 3 sign
flips (the central one being located close to the midplane). This struc-
ture is reminiscent of the 2.5d simulations, so that I expect the global
magnetic configuration to recover its 2.5d topology with a smaller
loop and no more elbow pattern.

4.1.3.2 Velocity and angular momentum flux stream lines

I show the azimuthally and time-averaged streamlines over the pro-
file of ⟨⟨ρ⟩φ⟩ in fig. 53. In the cavity, and similarly to the profile of
the toroidal magnetic field component, the structure of the disc looks
alike the 2.5d corresponding simulation, with matter leaving the de-
pleted disc in the wind above and below its midplane. The inner ring
is clearly visible, close to the inner boundary condition.
As expected from the analysis of the magnetic structure, the elbow-
structure faded away. The disc is now left with 2 surface flows right
above and below the surfaces z/R = ±0.3 (which I recall correspond
to the disc surface), pointing towards the star. The falling matter gen-
erates surface accretion, up until it reaches the cavity and crosses it
in a horizontal motion. The falling material partially leaves the disc
surface in the wind, a fraction of which then falls back onto the disc
further out. This motion results in thin clockwise loops located at the
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Figure 52: Spatio-temporal diagram of ⟨Bφ⟩φ, computed vertically along a
spherical shell of radius Rshell = 15 au, between z/Rshell = ±0.4.
The transient state is left and the disc reorganisation is once again
clearly seen. The black dashed lines represent the surfaces de-
fined by z/Rshell = ±0.3.

disc surface. This behaviour highlights the surface accretion occur-
ring in the external disc.

I detect meridional circulation close to the midplane of the outer disc.
This kind of circulation was also observed in previous simulations
of turbulent ppds (Fromang et al., 2011) and of ppds with magnetic
winds (Béthune et al., 2017). The figure 53 shows some complex ver-
tical motions forming vortices, which are similar to the one observed
by Riols et al. (2020) (see their fig. 7). Figure 54 emphasizes 2 vor-
tices located from either side of R = 15 au whose resulting shapes
are asymmetric with respect to the midplane. They are separated by
the surface SB and turns in opposite direction (clockwise on the right
and anti-clockwise on the left). The location of these vortices matches
with the local minima of ⟨β⟩ and ⟨Σ⟩ (see fig.50). The motion of mat-
ter at the frontier between 2 vortices indicates that matter can reach
the disc surface from the midplane.

To end up with the disc time-averaged structure, I show the corre-
sponding profile for the angular momentum flux field lines in fig. 55.
It appears clearly that angular momentum is removed from the disc
surface and from the cavity by the wind. Contrary to the 2.5d fiducial
simulation, the angular momentum loss is very well localised at the
disc surface in the outer disc, once again indicating surface accretion.
All the previous complex structures overlap to allow angular momen-
tum to be lost in the wind and dragged outwards in a homogeneous
fashion. At the disc midplane, the angular momentum seems to accu-
mulate which would lead to decretion.
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Figure 53: Azimuthally and time-averaged poloidal profile of the density,
over which the stream lines are plotted (and averaged under the
same procedures).
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Figure 54: Zoom on 2 vortices seen in fig. 53. The background field is the
toroidal magnetic field over which are plotted the stream lines.
Both are azimuthally and time averaged. The arrows indicates
the rotation of each vortex.

4.1.4 Accretion theory

My 3d simulations were not designed to retrieve the secular evolu-
tion of tds subject to mhd winds. This assertion is mostly due to the
computational cost of a single 3d simulation compared to its corre-
sponding axisymmetric one. Nevertheless, I can still very well study
the accretion rate as well as the transport coefficients in order to check
their orders of magnitude and compared their corresponding profiles
to the 2.5d structure. Let me start with the accretion rate first.

The radial time-averaged profiles of Ṁ are given in fig. 56. I com-
puted the accretion rates for εint = 0.9 and compare the fiducial 3d

simulation with the 2.5d one.
The accretion rate between the inner boundary condition and the in-
ner ring is ⟨Ṁ1⟩ = 3.5 × 10−8 M⊙ yr−1. This value is very close to 4
times lower than the accretion rate in the cavity in the fiducial 2.5d

simulation. Between the ring and the cavity edge, the accretion rate
is ⟨Ṁ2⟩ = 8.2× 10−8 M⊙ yr−1. In this area, the accretion rate profile
is constant with the radius. Finally, the ⟨Ṁ3⟩ = 1.4× 10−7 M⊙ yr−1

between R = 12 and 15 au. At greater radius (R > 15 au), the accre-
tion exhibits a radial oscillation that could account for the vortices
detected in the structure of the flow (see fig. 53).
These different areas unveil the following radial structure. The inner
ring arises from a drop in the accretion rate, since ⟨Ṁ1⟩ ≈ 2− 3 ⟨Ṁ2⟩
and recalls the accumulations of matter seen in the cavity for weakly
magnetised 2.5d simulations. I therefore expect this ring to be a tran-
sitory structure that could dissipate on long enough time-scales. In-
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Figure 55: Azimuthally and time-averaged poloidal profile of the density,
over which the angular momentum flux stream lines are plotted
(and averaged under the same procedures).
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Figure 56: Azimuthally and time-averaged accretion rates for εint = 0.9. The
blue full line corresponds to the 3d fiducial simulation and the
red dashed one to the 2.5d one for comparison.

side the cavity, the flatness of the accretion rate suggests a continuous
and steady accretion flow, close to ∼ 10−7M⊙ yr−1. The third value of
Ṁ that I highlighted suggests a stronger accretion rate in the external
disc than in the cavity. This result contrasts with the 2.5d simulations
and especially affects the temporal evolution of the cavity edge. How-
ever, the 3d simulation does not last long enough to draw definitive
conclusions on the secular evolution of the cavity. Because of lower
magnetic torques, it takes much more time to dissipate the ring and
reach a configuration with a stronger inner accretion rate (like in 2.5d

simulations).
For the sake of completeness, I give the profiles of the transport

coefficients in fig. 57. I find the same ordering than the one found in
2.5d simulations, which reads

⟨α⟩ ≫ ⟨υw⟩ ≫ ⟨ζ⟩ . (195)

Regardless of the inner ring influence, the profile of ⟨α⟩ is fairly iden-
tical to its 2.5d counterpart. The effect of the ring translates into a
drop of ⟨α⟩ at the ring location. The mass-loading parameter is now
positive in the whole disc. This confirms that the negative parts of ζ
in 2.5d are due to the elbow-shaped pattern. The most striking dif-
ference is the maximum value of ⟨υw⟩ reached in the cavity, which is
∼ 10 times lower than in 2.5d. It is worth noting that the peak value
of ⟨α⟩ is also ∼ 3 times lower in 3d. As a conclusion, the decrease
of the magnetic torques inside the cavity leads to lower transport
coefficients, especially regarding the vertical transport of angular mo-
mentum.
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Figure 57: Azimuthally and time-averaged transport coefficients for εint =

0.9.

4.1.5 mhd wind

Let me now describe the structure of the magnetic winds through the
analysis of the mhd invariants. Because of the inner ring, I do not
select the same field lines as I did for the 2.5d simulation. The inner
poloidal magnetic field line is taken at Rin = 6 au the external one at
Rout = 15 au. One can see the selected field lines in fig. 58.

The corresponding mhd invariants computed along the selected
field lines are shown in fig. 59. Two main results are definite eye- Because of the

duration of the 3d

simulation, I
average the wind
invariants on the
whole simulation
(minus the transient
state), which is
similar to averaging
on the last
1000 orbits at Rint.

catchers. Firstly, the magnetic lever arm in the cavity reaches 8 − 9.
This value is still far greater than the critical value of 3/2 but remains
smaller by a few than its 2.5d counterpart. This result comes as a nat-
ural reformulation of the decrease of the transport coefficient.
Moreover, lowering the magnetic torque should partly release the
magnetic braking of the disc in the cavity. This effect is observed in
the panel (c) of fig. 59, that shows the rotational invariant being equal
to 0.8− 0.9 in the cavity, where it was close to 0.6 in 2.5d.

The study of the magnetic wind in 3d confirms the decrease of the
magnetic effects in the cavity. Nevertheless, the cavity remains sub-
Keplerian and characterised by a strong lever arm.
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Figure 58: Azimuthally and time-averaged selected field lines along which I
will compute the mhd invariants.

4.1.6 Temporal evolution and magnetic field transport

The secular evolution of the cavity edge is out of reach with 3d simu-
lations. However, it is still valuable to check the magnetic field trans-
port in the disc. In this prospect, I show the magnetic flux function
ψ spatio-temporal profile in fig. 60. The definition of ψ is the same
as in 2d with azimuthally-averaged quantities. From fig. 60, it seems
that the same general trend holds. In the outer part of the disc, the
magnetic field is advected towards the cavity edge while it is diffused
out in the cavity. For a better insight on the magnetic field transport, I
give the time-averaged profile of νb in fig. 61. The magnetic transport
coefficient confirms that the magnetic field is diffused out between
R ≈ 4 and R ≈ 10 au and advected between R ≈ 10 and R ≈ 15 au.
Further in the disc (R ≳ 15 au), νb exhibits multiple sign flips sug-
gesting magnetic field accumulations that would coincide with the
vortices seen in fig.53. Conclusively, it seems that I recovered the ac-
cumulation process of magnetic flux (that is associated to gaps and
vortices) that was proposed by Riols et al. (2020). This conclusion is
to be considered with caution, since the fiducial 3d simulation is way
less converged than the 2.5d corresponding one.

Nevertheless, there is still an interesting result regarding the flux
function ψ and its inner saturation value in 3d ⟨ψ⟩3d, whose tempo-
ral profile is shown in fig.62. The initial value of ψ associated to the
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seed in 3d is logically close to the averaged value of ψ from the cor-
responding 2.5d simulation. The seed magnetisation exhibits a sharp
decrease during the initial transient, accordingly with the previous di-
agnosis done before (drop of υw, higher ω in the cavity). Eventually,
ψ(Rint, t) reaches a saturation value ⟨ψ⟩3 d = 2× 10−3 which is to be
compared to its 2.5d counterpart ⟨ψ⟩2.5d that reads ⟨ψ⟩2.5d = 2 ⟨ψ⟩3d.
Together with the decrease of the accretion rate at the inner boundary
condition, one gets

⟨ψ⟩2.5d√
Ṁ2.5d

=
⟨ψ⟩3d√
Ṁ3d

. (196)

Interestingly, the quantity Φ = ψ/
√
Ṁ in the innermost region of

discs is tracked in simulations of magnetically arrested discs (mads)
in the context of accretion discs around black holes (Tchekhovskoy
et al., 2011; Begelman et al., 2022).

As an illustration, Begelman et al. (2022) report values of Φ contained
between 20 and 150. In such works, the hereby defined Φ is supposedNote that the work

of Begelman et al.
(2022) is based on

grmhd so that the
metric they use

affects the values of
Φ.

to be constant with time and indicative of a magnetically supported
disc whose inner accretion is ruled by its inner magnetic flux. Fig-
ure 63 reveals the temporal evolution of Φ, confirming that Φ ≈ ⟨Φ⟩
is constant with time, with the exception of accretion burst events.
In particular, the value of Φ at the beginning of the simulation also
remains constant, so that the decrease of ψ(Rint, t) completely com-
pensates for the drop in the accretion rate and vice versa.

4.2 instability of the cavity

Before moving to the parameter space exploration, I want to analyse
a major aspect of the 3d simulations that is the stability of the cav-
ity, especially under hydro- and mhd instabilities. This investigation
relies on the azimuthal analysis of the 3d fiducial simulation and fo-
cuses on the cavity. I start by showing a map of the surface density
inside the cavity at a given time t = 445 orbits at Rint in fig. 64. I
enhance the contrast inside the cavity, and some spirals appear.
In the current section, I want to describe these spirals in detail, based
on this first qualitative observation.

4.2.1 Spirals

Once the transient state is over, spirals appear in the cavity. More
specifically, two sets of spirals are seen. One is located between the
inner boundary and the ring and the other between the ring and the
cavity frontier with the full disc. The innermost spirals rotate faster
than the other. I will refer to the first set as the inner spirals and to
the second one as the cavity spirals for convenience.
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Figure 60: Magnetic field transport illustrated with the flux function ψ for
the 3d fiducial simulation.
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Figure 61: Time-averaged profile of νb for the 3d fiducial simulation.
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Figure 62: Inner saturation of the flux function ψ(Rint, t) for the 3d fiducial
simulation. The red-dotted line is the time-averaged saturated
value for the 3d fiducial simulation while the green-dashed line
represents the same quantity for the 2.5d fiducial simulation.
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Figure 63: Temporal evolution of Φ = ψ(Rint, t)/
√
Ṁ(Rint, t) for the fiducial

3d simulation. The red dotted line shows the time-averaged value
of Φ on the last 100 orbits at Rint.
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Figure 64: Surface density inside the cavity at t = 445 orbits at Rint. The
black ring marks the cavity edge. The colorbar is chosen so that
the outer disc is saturated and one can focus on the cavity.

4.2.1.1 Azimuthal analysis

Let me start by investigating the azimuthal organisation of the disc
around the midplane from a temporal point of view. To do so, I study
the disc at a given time t = 445 orbits at Rint past the transient state
and in particular, the ring is formed. I introduce the surface density
deviation δΣ defined as Check the box at the

beginning for the
definition of Σ2d

.δΣ ≡ Σ2D − ⟨Σ2D⟩φ
⟨Σ2D⟩φ

. (197)

This definition of δ can be applied to other quantities and enables to
catch non axisymetries in the disc.

I show δΣ in fig. 65. I complete the description of the disc midplane
with fig. 66 for δṀ and fig. 67 for δβ (which is vertically averaged
with ⟨·⟩θ). The profile of Σ exhibits strong asymetries. The top panel
of fig. 65 shows the disc as a whole and sheds the light on some outer
spirals localised at radii greater than the cavity edge which is shown
in black full line. However, a closest inspection of the figure reveals
that the density fluctuations are of the order of a few % and over-
lap one with each other so that the overall pattern may very well be
noise. This conclusion is supported by the top panels of figs. 66 and
67. I will come back to this point at the end of this subsection.
A clear asymetry is seen by the cavity edge. On the first panel, the



158 3 d simulations : stability of the cavity

Figure 65: Deviation of the surface density in the disc midplane (X, Y) at
t = 445 orbits at Rint for the fiducial 3d simulation. The top panel
covers most of the disc, the middle one the cavity and the bottom
one the innermost part of the disc.
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Figure 66: Deviation of the accretion rate in the disc midplane (X, Y) at t =
445 orbits at Rint. The general organisation of the figure is the
same as for fig. 65.
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Figure 67: Deviation of the plasma parameter in the disc midplane (X, Y) at
t = 445 orbits at Rint. The general organisation of the figure is the
same as for fig. 65.
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right part of the cavity edge is covered by an overdensity while an
underdensity spans on its left part. I mark the location of a crescent
structure at the overdensity location with a dotted black contour (in-
dicating a +10% variation) and a purple cross. This peculiar shape is
also plotted over figs. 66 and 67.

The crescent pattern is also shown in the second panel which shows
several features. First, four spiral arms (that I will call spirals) connect
the cavity edge and the inner ring (localised with a yellow dashed
line). These spirals seem to be associated with localised overdensities
at the cavity edge. I highlight one of these accumulations with a semi-
dashed black contour and a pink cross that marks its center on all the
figures studied here. The corresponding spiral arm is anti-clockwise
like all the others. The spirals are seen in the profiles of δΣ, δṀ and
δβ. Two spirals overlap in the profile of δṀ but fig. 67 finds 4 spirals
across the cavity. The crescent is well defined for δβ but undetectable
in the profile of δṀ.

The bottom panels of all the figures zoom in the area close to the
inner boundary, including the inner ring. For fig. 65, I show the 0.1
(10%) contour of δΣ with black dotted lines. The ring is characterised
by a strong non axisymetry, the left half of it being denser than its
right part. A clear crescent shape is found aside the bottom left part
of the disc and a second set of spirals is detected between the ring
and the inner boundary. This echoes the organisation of the disc by
the cavity edge, as previously described.

4.2.1.2 Spirals properties

Now that I have shown the spirals, I will give some of their proper-
ties, such as their phase velocity and their corotation radius.
I get the phase of the spirals by computing the modes m of the Four-
rier transform of the surface density in the azimuthal direction, de-
noted by Σ̂2D,m. Then, I unwrap the array that I obtain and get the
phase ∆φ by taking its argument, so that

∆φ = arg
(
Σ̂2D,m

)
. (198)

I give the temporal evolution of the phase I calculated with this
method at r1 = 2, r2 = 5 and r3 = 10 au in fig. 68. Further than
the ring location (r2 and r3), nothing changes when the ring appears
and the phase follows ∆φ = a t+bwith a and b 2 constants. The con-
stant a carries the information on ˙∆φ and I can estimate the phase
velocity as

ωm =
d
dt

(∆φ)× m

R
, (199)

at a given radius R. It is worth saying that the appearance of the ring
does affect the inner radii (r1 for example). Their time variation gets
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Figure 68: Phase of the spirals form = 1. The grey bar indicates the moment
when the ring appears.

steeper, so that the phase velocity increases sharply. This indicates
that the innermost spirals are due to the ring. Now that I can trace
the phase velocity with respect to time, I can plot it at any radius in
the disc and time-average it to get the phase velocity profile. I show
this profile in fig. 69.

A striking result lies with the two flat and well defined plateau
of ω1. This shows that the two sets of spirals are indeed patterns
rotating at fixed angular velocities. The innermost set rotates faster
than the other one. The phase velocity of any set does not depend
on the radius, so that for the inner set of spirals, ωin = 0.38 and for
the other one ωext = 0.060 (both in code units). The corresponding
corotation radii are rint = 1.89 and rext = 6.50 au. The spirals between
the ring and the cavity edge rotates with a fairly sub-Keplerian speed.
On the contrary, the innermost spirals are super-Keplerian close to
the ring, so that the gas could go outwards, hence enhancing the
ring formation. This claim is supported by fig. 66. Lastly, nothing but
noise is detected further in the disc, which echoes my initial claim
regarding the possibility to detect spirals further than the cavity edge.

4.2.2 Instabilities

To explain the formation of these spiral patterns, several instabilities
can be proposed.
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Figure 69: Phase velocity of the spirals, time-averaged and with respect to
the radius, for m = 1 and for the 3d fiducial simulation. The
red dashed line is the angular velocity of the disc and the semi-
dashed pink one is the keplerian angular velocity. The yellow
dotted lines represent the maximum of the characteristic function
L for the analysis of the rwi.

4.2.2.1 Rotational instability

The rotational instability is a hydrostatic instability that can occur in
ppds with a steep surface density profile and a large radial pressure
gradient force, such as in Ono et al. (2014). The Rayleigh’s criterion for
the instability to occur (Chandrasekhar, 1961) states that the specific
angular momentum ℓ must decrease with the radius R, so that

∂Rℓ < 0 , unstable (200)

Figure 70 shows the radial profile of ∂Rℓ, time-averaged and com-
puted at the disc midplane. ∂Rℓ is not even close to being negative,
which rules out the rotational instability as a plausible mechanism to
generate the spirals. For completeness, I add that I also computed ∂Rℓ
with an average along θ, which was still positive.

4.2.2.2 Rossby Wave Instability (rwi)

The Rossby Wave Instability (rwi, Lovelace et al., 1999; Li et al., 2000;
Li et al., 2001) is a promising hydrodynamical instability that could
account for the observed spirals. Because of the contrast in density
at the edge of the cavity, the rwi is likely to occur, as a peculiar re-
alisation of the Kelvin-Helmholtz instability. This instability in also
known to be still enabled and slightly enhanced in the presence of
large-scale poloidal magnetic fields, as shown by Yu and Lai (2013).
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Figure 70: Analysis of the rotational instability in my simulated disc for the
3d fiducial simulation.

Many previous works focus on the occurrence of rwi in 2d simu-
lations such as Robert et al. (2020). However, global 3d simulations
studying rwi were carried by Meheut et al. (2010) and Meheut et al.
(2012). 3d resistive mhd simulations were also performed by Lyra
and Low (2012), regarding this very same instability.

Following Lovelace et al. (1999), I introduce the characteristic func-
tion L (which is the inverse of the potential vorticity) in spherical
coordinates that reads

L = −
1

2

Σ

⟨(∇× v) · eθ⟩φ
, (201)

which can be recast using ℓ as

L =
1

2

r Σ

⟨∂rℓ⟩φ
. (202)

A necessary criterion for rwi stability states that L needs to have
a maximum so that the instability can occur (Lovelace et al., 1999).
Though it is still possible to have a maximum for L without rwi to
happen.

The characteristic function L is shown in fig. 71. Two maxima of L

are detected, at r1 = 2.99 au and r2 = 13.2 au. One is located at the
inner ring position and the other is right after the cavity edge. Al-
though these maxima are observed, this is not sufficient to conclude
that rwi is indeed occurring.

Figure 69 shows the phase velocity for the mode m = 1 with re-
spect to R. I analysed the case m = 2, 3 and 4 with the same pro-
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Figure 71: Characteristic function L, theta and time-averaged in full blue
line and taken at midplane and time-averaged in semi-dashed
red line. The yellow dotted vertical lines mark the maxima of L,
at r1 = 2.99 au and r2 = 13.2 au.

cedure. I found the same phase velocity by taking m = 2, but for
higher modes, the curves are noisier and the plateau are harder to
detect. This results in an impossibility to have access to the phase ve-
locity with a great precision. Since the ordering of the phase velocities
and their corresponding order of magnitude (ωm,int ∼ 0.05− 0.1 and
ωm,ext ∼ 0.3− 0.4) are preserved for any m, I will assume that fig. 69

is a good indication of the phase velocity of any spiral, regardless of
its mode.

According to Li et al., 2000, and defining ∆ωm = ωm −mΩ, where
Ω is the angular velocity calculated at the radius that corresponds to
the maximum of L, one gets

∆ωm = −
kφ,m c

2
s /Ω

1+ k2 h2

[
(lnL) ′ ±

√
(lnL)2 −

1+ k2 h2

Ls Lp

]
(203)

where k is the norm of the wave vector, h = cs/Ω, the prime denotes
the derivative with respect to R and Ls and Lp are defined as

Ls = 1

/[
d
dt

ln
(
P

Σ

)]
, (204)

Lp = 1

/[
d
dt

ln (P)

]
. (205)

Considering that k2 h2 ≪ 1, one can consider that rwi modes are in
corotation with a maximum of L. In the following, I test whether the
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phase velocity of the spirals corresponds to the azimuthal velocity at
a radius corresponding to a maximum of L.

None of the corotation radii previously calculated corresponds to a
local maximum of L. I conclude that the criterion for rwi is not satis-
fied so that rwi is unlikely to be triggered.
However, the phase velocity is not well defined around the external
maximum of L in fig. 69 which is itself not very sharp. This is why I
try to push the analysis a step further regarding this maximum.
If the rwi were to be triggered, one would see a vortex in the disc
midplane. Since I detected a faint crescent in fig. 65, I tried to check if
it could be associated to a vortex triggering the rwi at the second max-
imum of L location. Figure 72 shows the disc midplane at the same
moment as for fig. 65. Over the surface density fluctuations are plot-
ted the streamlines that are theta-averaged and defined by ⟨ρ vV⟩θ,
with vV being the velocity in the frame corotating with the centre of
the crescent shape. Figure 72 shows that the crescent is located close
to a vortex, but this latter does not overlap completely with the cres-
cent and their centres do not match.
These statements lower drastically the likelihood to have the rwi trig-
gered in the disc, because the current physical mechanisms that en-
able the rwi remain unobserved. Indeed, because the rwi is promis-
ing and often detected in simulations, I pushed this hypothesis the
furthest I could do. Nevertheless, the conclusion reached is the fact
that it seems unlikely that the rwi is occurring.

I am now left with no clear hint regarding the definitive nature of
the instability at play in the cavity. One could think of instabilities
invoking reflected waves between the cavity edge and the inner ring
such as Tagger and Pellat (1999) with the accretion-ejection instability
(aei). However, such a work would still rely on an initial instability
and the possibilities displayed in Tagger and Pellat (1999) that could
be applied to my simulation still imply the rwi.

4.2.2.3 rti or interchange instability

I previously referred to the rti (Kruskal and Schwarzschild, 1954) in
chapter 3, which had already been discarded at that time, with the use
of a criterion from Spruit and Taam (1990), Spruit et al. (1995), and
Stehle and Spruit (2001). The plasma parameter β ≲ 1 in the cavity
was not low enough to trigger the instability criteria that I recall here

β ⩽ 0.0355 . unstable (206)

Figure 73 shows the plasma parameter, azimuthally and time-averaged
in the cavity. The conclusion is straightforward, since ⟨β⟩ is equal to
1 and far from βcrit, so that the rti is not occurring in the cavity.
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Figure 72: Deviation of the surface density at the midplane for the 3d fidu-
cial simulation. The red full lines mark the maxima of L, the black
full line is the cavity edge, the orange dashed one is the location
of the inner ring and the blue contour is the crescent shape seen
in fig. 65. Over the image are plotted the streamline on a carte-
sian grid, in the frame corotating with the centre of the crescent
shape.
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Figure 73: Azimuthally and time-averaged plasma parameter for the 3d

fiducial simulation, compared to the critical value βcrit = 0.0355.

4.2.3 rti again

Leaving the discussion on the spirals behind, I want to focus on the
innermost radii of the simulation. I observe that the seed expels mag-
netic flux randomly and in a non-axisymmetric manner, as illustrated
on fig. 74. This figure shows the plasma parameter β at t = 461 orbits
at Rint. The light contour highlights the value β = βcrit, so that it is
clear that the rti is triggered occasionally at the innermost radius of
the simulation, as the criterion is fulfilled by far. The occurrence of
this instability at that location as well as its qualitative shape recalls
mads simulations in grmhd, such as in McKinney et al. (2012) and
Ripperda et al. (2022) and of simulations of discs around magnetised
stars (Romanova et al., 2008).

4.3 parameter space exploration

Now that I have given the most relevant results regarding the 3d

simulations, I will move on a brief parameter space exploration. This
exploration is similar to the 2.5d one.

4.3.1 Influence of the initial Elsasser number

I start with the simulation labelled S3DAm1B4Bin0, based on its 2.5d

corresponding simulation and launched after 7557 orbits at Rint. In
particular, the gaps had already formed. I recall that the difference
with the fiducial simulation is that Λa = 10.
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Figure 74: β at the midplane for the fiducial 3d simulation, at t = 461 orbits
at Rint.

4.3.1.1 Structure of the disc

The figure 75 shows the spatio-temporal evolution of Σ and β. The
beginning of the simulation is characterized by the same disc reor-
ganisation as in the fiducial 3d run. The cavity and the gaps stand
until the end of the simulation. Though, the cavity is refilled and its
radius moves towards the internal radius until it reaches a steady
state after ∼ 700 orbits at Rint. The gaps widths are less sharp than in
the 2.5d analogous run. One is clearly identified around R ∼ 16 au

and is spotted by white dotted line in both the Σ and β profiles of
fig. 75. It clearly correspond to one of the gaps described in the cor-
responding 2.5d run. The other gap previously discussed is not seen
but was not fully formed when the 3d simulations was launched. The
Σ profile exhibits a stripe shaped structure inside the cavity, suggest-
ing that accretion is still occurring. Despite this accretion, no inner
ring of matter forms close to the inner boundary. This may favour the
hypothesis that the inner ring observed in the fiducial run is not due
to the inner boundary condition.

The global structure of the disc remains similar to the 2.5d run
and is pictured in fig. 76. No elbow shaped structures are seen, nei-
ther above nor below the disc, therefore, no matter is falling down
onto the disc surface which suggest a ζ transport coefficient positive
at any radius, contrary to what is observed in the 2.5d analogous sim-
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Figure 75: Spatio-temporal diagram of Σ (top panel) and β (bottom panel)
for the simulation S3DB4Bin0Am1.

ulation. The vertical structure of the disc is still not symmetric. Such
an asymmetry is also observed in the wind shape, this latter being
wider above the disc.
The structure of the angular momentum stream lines is similar to the
one observed in the 3d fiducial simulation and shown in fig. 78. They
exhibit a vertical structure inside the disc with angular momentum
removed downwards and towards the external part of the disc. The
asymmetry that is observed in the stream lines structure is recovered
among the angular momentum stream lines one. There is a surface
above the midplane between h/R = 0.9 and h/R = 0.3 where the
vertical motion of the angular momentum flow changes. Above this
surface, it is removed upwards while it moves downwards below.
The main difference with the 2.5d corresponding simulation occurs
in the magnetic structure of the disc shown in figure 77. Contrary to
the 2.5d run, the loop structure that is observed at the cavity radius
is considerably reduced in size. The Bφ polarity change is located in
a small zone at R ≈ 6 au. The poloidal field lines in the cavity are sim-
ilar to the ones in the 2.5d simulation. Right after the gap location,
the poloidal magnetic flux is concentrated.

4.3.1.2 Cavity stability

A similar instability is observed inside the cavity with 3 spirals clearly
identified. Their phase velocity is constant from R ∼ 1 au to R ∼ 3 au



4.3 parameter space exploration 171

Figure 76: Azimuthally and time-averaged poloidal profile of the density,
over which the stream lines are plotted (and averaged under the
same procedures), for S3DB4Bin0Am1.
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Figure 77: Time-averaged magnetic structure for S3DB4Bin0Am1.
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Figure 78: Azimuthally and time-averaged poloidal profile of the density,
over which the angular momentum flux stream lines are plotted
(and averaged under the same procedures), for S3DB4Bin0Am1.
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and equals 0.27 code units. This coincide with a sub-keplerian profile
for Ω inside the cavity. I get a single set of spirals but no ring is ob-
served in this run. ∂rℓ is positive everywhere in the disc, discarding
the rotational instability. The characteristic function L reaches a maxi-
mum at R ∼ 6.5 au so that no new conclusion can be drawn regarding
rwi. Lastly, the cavity is also stable with respect to the interchange in-
stability criteria.

4.3.2 Influence of the external magnetisation

4.3.2.1 Lower plasma parameter

The spatio-temporal evolution of Σ and β for the 3d simulation restarted
from the one with β = 103 is given in fig 79. The disc reorganisa-
tion is observed and comes along with the formation of a ring of
matter wider than the one in the 3d fiducial run. This ring is fu-
elled by two bursts of accretion from the external disc that occur at
t ∼ 150 and t ∼ 500 orbits at Rint. The edge of the cavity stands still at
Rcav ∼ 15 au after the sonic shock wave crossed the disc and a steady
state is reached. Both the profile of Σ and β exhibit a gap located at
R = 27 au and spotted by a white line in fig. 79. The global structure
of the disc exhibit minor differences with the corresponding 2.5d sim-
ulations and no peculiar properties have not been yet discussed with
the 3d fiducial simulation.

Regarding the cavity stability, two sets of spirals are observed. One
is seen from R = 1.65 to 3.45 au and the other from R = 4.15 to 9.1 au.
The angular velocity of the spirals closest to the star is ωφ,1 = 0.30
while the other set is characterized by ωφ,2 = 0.03. In particular,
ωφ,1 ≈ 10ωφ,2. After the transient state, the cavity is fully stable
with respect to the rti. Once again, the rotational and Rossby wave
instabilities are dismissed and cannot account for the observed spi-
rals.

4.3.2.2 Higher plasma parameter

The simulation restarted from the one with β = 105 follows the same
pattern as the others restarted runs. An inner ring of matter devel-
ops close to the star while the global structure of the disc remains
pretty much the same up to the same differences that are seen from
S2DB3Bin0Am0 to S3DB3Bin0Am0. The general conclusions regard-
ing accretion, the mhd wind and the stability of the cavity remain the
same.
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Figure 79: Spatio-temporal diagram of Σ (top panel) and β (bottom panel)
for the simulation S3DB3Bin0Am0.

4.3.3 Influence of the internal magnetisation

Two simulations were conducted in 3d with different internal mag-
netisation, βin = 101 and 102. Since the 2.5d simulations showed that
the impact of this parameter is negligible, I just checked if it was still
the case for 3d simulations. The restart procedure force the simula-
tions to be launched with an initial state very close to the 3d fiducial
run, so that no big changes were expected. Very same results were
obtained also in 3d simulations. The only interesting fact to notice is
that the internal ring is not located at the same radius for the two sim-
ulations. Rring ≈ 1.5 au for the run with βin = 102 and Rring ≈ 2 au

for the one with βin = 101.
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4.4 conclusion

The 3d fiducial simulation was rich and I got detailed results from it.
The most striking result is the detection of spirals inside the cavity,
which I characterised.
I also studied the simulated discs and give some of their properties.

A first interesting point is the initial reorganisation of the disc
that happens together with the disappearance of the elbow-shaped
structures. Once the disc reaches a stationary state, an inner ring is
observed. Most of the properties of the disc (transport coefficients
values, accretion rate, rotation of the cavity) are coherent with the
decrease of the inner magnetisation, leading to lower magnetic
torques.
I still try to investigate the temporal evolution of the disc and showed
that the accretion rate was of the same order of magnitude as in the
2.5d corresponding simulation.

Regarding the stability of the cavity, spirals were detected in-
side it, while its frontier remains at the same location throughout
the simulation. These spirals were characterised with their rotation
speeds and their corotation radii. Despite having studied several
instabilities such as the rwi, I could not fully confirm which one was
triggered and generating the spirals.

Finally, I went through a parameter space exploration that gave
results that were either similar to the corresponding 2.5d simulations
or changes that were the same as the differences between the 2.5d

and 3d fiducial simulations. Nevertheless, the case with a higher
ambipolar Elsasser number (S3DB4Bin0Am1) suggests that the inner
ring detected in the 3d fiducial simulation may have a physical
origin.

The accretion rate and the magnetic flux at the innermost ra-
dius of the disc, as well as the occurrence of the rti at the very
same location are analogous of grmhd simulations of mads. This
description is mostly and commonly used to describe accretion
disc around black holes. Nevertheless, it seems perfectly relevant to
interpret the innermost part of the cavity that is highly magnetised.
This result is not straightforward and ties an interesting bound
between accretion disc of completely different origins. This calls for
deepest investigations, in particular regarding the secular evolution
of cavity-hosting magnetised discs.
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conclusion

Les simulations 3d réalisées sont riches d’enseignements et de
résultats.
Le résultat principal et majeur est la détection de spirales à l’intérieur
de la cavité ainsi que leur caractérisation. En plus de ce résultat, j’ai
également décrit la structure 3d des disques simulés et mis à jour
plusieurs propriétés intéressantes.

Un premier point à souligner concerne la réorganisation initiale
du disque qui se déroule concomitamment à la disparition des
structures caractéristiques des simulations 2, 5d en forme de coude.
Une fois un état stationnaire atteint, l’apparition d’un anneau interne
est constatée. Par ailleurs, la plupart des propriétés du disque,
comme son taux d’accrétion, ses coefficients de transport ou encore
la vitesse de rotation du gaz dans la cavité, sont cohérentes avec
une diminution du flux magnétique dans la cavité, donnant lieu
notamment à des couples magnétiques moins intenses.

Par la suite, j’ai essayé de donner quelques résultats concernant
l’évolution du disque et ses propriétés en termes d’accrétion. En
particulier, les disques en 3d accrètent toujours à des taux forts, sim-
ilaires aux taux des simulations 2, 5d quoique légèrement inférieurs.

L’étude de la stabilité de la cavité a produit des résultats partic-
ulièrement pertinents, notamment grâce à la détection de spirales en
son sein, tout en maintenant une frontière stable entre la cavité et le
disque plein.

J’ai caractérisé les spirales en étudiant leurs vitesses de phase
ainsi que leurs rayons de corotation. Cependant et malgré plusieurs
tentatives, je n’ai pas pu déterminer de manière définitive l’instabilité
à l’œvre dans la cavité et formatn les spirales. La Rossby Wave
Instability (rwi) semble être un candidat envisageable, mais les
analyses de la simulation fiduciaire n’ont pas pu confirmer cela.

En dernière partie de ce chapitre, j’ai étudié quelques simulations
me permettant d’accéder à une partie de l’espace des paramètres.
La plupart des résultats associés montraient soit des similarités avec
la simulation 2, 5d correspondante, soit des différences similaires
à celles observées entre les simulations de référence à 2, 5 et 3
dimensions.
Cependant, l’analyse de la simulation moins résistive ne présentant
pas de formation d’anneau interne suggère une origine physique à
ce dernier dans la simulation de référence à 3 dimensions.
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Le taux d’accrétion, le flux magnétique de la graine et le déclenche-
ment de la rti au niveau du bord interne sont autant d’éléments
rappelant la physique des disques de type mad dans le cadre de la
magnétohydrodynamique en relativité générale.

Ce paradigme est couramment et essentiellement utilisé dans la
physique des disques d’accrétion autour des trous noirs, mais appa-
raît tout à fait pertinent pour produire une description des parties les
plus internes de la cavité, caractérisées par une forte magnétisation.

Ce résultat non trivial crée un pont entre des disques d’accrétion
d’origines absolument différentes. Par ailleurs, ce point demande de
plus amples travaux, notamment concernant l’évolution séculaire du
flux magnétique dans la cavité.



Part III

P E R S P E C T I V E S A N D C O N C L U S I O N

I end up with this last part focused on some perspectives
for future works. Its first chapter is devoted to some obser-
vational links with my simulations and to a future numer-
ical setup. I eventually conclude on my work in the last
chapter.
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O B S E RVAT I O N S A N D O U T E R T R U N C AT I O N O F T D S

"Dès l’enfance, je percevais l’écoulement des heures,
indépendantes de toute référence, de tout acte et de tout

événement, la disjonction du temps de ce qui n’était pas lui,
son existence autonome, son statut particulier, son empire, sa tyrannie.

Je me rappelle on ne peut plus clairement cet après-midi où,
pour la première fois, en face de l’univers vacant, je n’étais plus que fuite

d’instants rebelles à remplir encore leur fonction propre.
Le temps se décollait de l’être à mes dépens."

— Emil Cioran, De l’inconvénient d’être né (1973)
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introduction

This chapter aims at including the model of tds sustained by
magnetic winds in a broader picture. In particular, I want to link
my simulations to observations. I will also present an upgraded
implementation of my simulated discs that takes into account the
outer truncation of the disc.

I focus on four kinds of results that are promising to test my
model in the first section. The first one relies on the detection
and characterisation of magnetic winds, involving in particular the
magnetic lever arm.
Kinematic predictions then lead to useful prediction regarding the
dynamics of the cavity of tds. The transsonic accretion speed and
the sub-keplerian rotation of the gas in the cavity are specifically
promising.
I also check the possibility to use the detection of various structures
(gaps, spirals, inner rings) as efficient probes to discriminate my
model from others.
Finally, synthetic images will be a determinant tool to further link
the simulations to the observations. I show a few images built from
the 2.5d simulations as a first step towards detailed comparison with
observations.
The results are as many direct ways to test this model of wind
emitting tds. Still, it is possible to disentangle this model with other
diagnostics involving statistical data on tds and outer edge of discs
observations. It is therefore needed to push further the model I used
by implementing a realistic description of the outer truncation of
tds.
I ran such a simulation with my 2.5d framework that I modified
accordingly. I describe this work in the second section. Moreover, I
let this simulation run for a very long time to study the dispersal
processes of tds and the role of the magnetic field transport. In
particular, the magnetic field plays a prominent role in driving
wind, so that it is essential to address the question of its transport
throughout the disc.
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introduction

Ce chapitre a pour but d’inclure le modèle de disques de transition
que j’ai utilisé dans le cadre plus général de la formation stellaire et
planétaire. Le lien avec les observations est particulièrement essentiel
afin de tester les hypothèses que j’ai utilisées ainsi que la pertinence
du modèle. Ce travail est détaillé dans la première section du présent
chapitre.
Par ailleurs, je présente également dans ce chapitre les résultats d’un
travail préliminaire se focalisant sur la troncation externe de disques
de transition. Un tel travail permet d’étendre mon modèle à des
disques de transition dans leur globalité. Les résultats associés à cette
étude sont compilés dans la seconde section du chapitre.

Le lien avec les observations est présenté sous 4 approches,
basées sur les résultats de mes simulations numériques 2, 5d et
3d. Je commence par évoquer la détection de vents magnétiques et
les caractéristiques générales des vents magnétiques, en particulier
via le bras de levier magnétique λ. Le vent magnétique est en
effet l’ingrédient clé pour mettre au point le modèle de disques de
transition que j’ai étudié.
Un aspect prometteur issu de mes simulations vient des diagnos-
tiques cinématiques dans la cavité. L’accrétion transsonique et la
cavité sous-keplerienne sont deux points particulièrement pertinents.
Ces résultats peuvent être liés aux observations, notamment à partir
d’images synthétiques construites sur la base de mes simulations. Je
présente certains de ces résultats, comme un premier pas vers un lien
plus concret avec les observations de disques de transition.
Enfin, les différentes sous-structures que je détecte dans mes simu-
lations (sillons, anneau interne, spirales) sont autant de prédictions
observationnelles qui permettront de discriminer mon modèle parmi
les autres modèles de disques de transition.
Toutes ses approches forment un ensemble de pistes rendant per-
tinent le modèle que j’ai utilisé dans le cadre d’observations de
disques. Cependant, il serait également envisageable de proposer
d’autres diagnostiques pertinents, notamment avec une approche
statistique des disques de transition (âge, taille de la cavité) ou
encore via un travail sur la troncation externe de ces disques. Par
conséquent, il est nécessaire d’améliorer le modèle numérique, ce
que j’ai fait en implémentant une description simple et réaliste de
la bordure extérieure du disque. Les résultats de ce travail sont
présentés dans la seconde section du chapitre.
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Dans le cadre de mes simulations 2, 5d, j’ai étudié l’influence d’une
troncation exponentielle à partir d’un rayon caractéristique. Par
ailleurs, j’ai laissé tourné la simulation en question 10 fois plus
longtemps que celle de référence en 2, 5d. Ce choix est nécessaire
pour assurer une convergence dans les parties les plus externes du
disques et m’a permis d’étudier plus en détail la dispersion du disque
ainsi que le transport du champ magnétique à l’intérieur de ce dernier.
Cette dernière thématique est par ailleurs tout à fait critique dans le
cadre des disques émettant des vents magnétiques, puisque le champ
magnétique joue alors un rôle prépondérant, en contrôlant de nom-
breuses propriétés du disques (couple magnétique et accrétion no-
tamment).
Poursuivre et approfondir un tel travail permettra une meilleure com-
préhension des disques magnétisés et en particulier des processus en
lien avec la dispersion des disques protoplanétaires.
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5.1 observational evidences

Important note

This section contains some radiative transfer computations.
This work was performed based on my 2.5d simulations and
deeper investigations will be done in a near future for my 3d

simulations. This upcoming work shall be included in the ar-
ticle related to my 3d simulations. Still, I want to show some
of these results here, since they build a bridge with observa-
tions. They also nicely tie up all my results together and draw
a satisfying conclusion from the epistemological point of view.

A compelling way to rule out or favour the model I studied dur-
ing my thesis would be a direct comparison with observations. In
particular, radiative transfer is a perfect tool to get synthetic images
from my simulations and a first step towards linking them to obser-
vations. However, this work is beyond the scope of my thesis and
should be my next preoccupation as a researcher. Still, I want to give
some insights on the relevant properties of my simulations regarding
comparison to observations. This is the aim of the first section.

5.1.1 mhd winds: the first building block

When considering a model of transition discs sustained by mhd winds,
the very first question anyone would ask is: ‘Do we detect such winds?’.
mhd disc winds have been detected in ppds, and I refer to the intro-
duction chapter (chap. 1) as well as to Whelan et al. (2021). Recent
observations of outflows from planet-forming systems succeeded in
disentangling the star and discs components, with the detection of a
nested outflow in dg Tau b in de Valon et al. (2020) or the detection of
a wind in hh 120 in Lee et al. (2021). When assuming a magnetic wind
model for dg Tau b, de Valon et al. (2020) finds in particular a mag-
netic lever arm of λ = 1.6. Diverse estimations of λ for hh 212 lead
to λ = 5.5 (Tabone et al., 2020) or λ = 3.5 (Lee et al., 2021). Of course,
λ is not directly measured in discs observations but estimated based
on models, such as Ferreira et al. (2006) or Anderson et al. (2003) for
dg Tau b.

However and when it comes to the detection of mhd winds in tds, the
literature remains sparse. tw Hydrae is a well-known transition discs
(see for example Menu et al., 2014) and previous work devoted to
photoevaporation were performed (Pascucci and Sterzik, 2009). This
disc was studied in Ricci et al. (2021) in which the authors tested pho-
toevaporation and mhd disc winds, based on observations and simu-
lations. They used previous simulations of magnetic winds (Milliner
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et al., 2019; Weber et al., 2020) to estimate the free-free emission from
an mhd wind as it was done for a photoevaporation wind (Pascucci
et al., 2012). The possibility to have an mhd wind remains open and it
is worth noting that it could be launched from the innermost regions
of the disc, contrary to the photoevaporation wind.

A state of the art compilation of disc winds in ppds and tds can be
found in Pascucci et al. (2022). Despite the detection of gas in the cav-
ity of tds with the help of numerous tracers such as h2 fluorescent
(Hoadley et al., 2015), [oiλ6300] (Fang et al., 2018) or co fundamental
emission (Pontoppidan et al., 2011), the presence of inner mhd winds
is hard to confirm.
The [oiλ6300] profile is used as a good indicator of the presence of
inner winds in full accreting discs. However, Fang et al. (2018) report
that a small proportion of tds exhibit a high velocity component and
their observations of [oiλ6300] in tds are consistent with bound gas
in the dust cavity (see for example Simon et al., 2016; Pascucci et al.,
2020).
Nevertheless, observations are encouraging and gain significant pre-
cision with time, so that mhd winds detections in tds are anything
but a vain dream and a worthwhile endeavour.

Considering this observational picture, my simulations give useful
predictions, especially regarding the magnetic lever arm. This param-
eter is directly linked to the wind emission and the accretion rate
at the magnetic field line footpoint radius R0 following Pelletier and
Pudritz (1992)

λ−1 ≈ Ṁwind(R0)

Ṁ(R0)
, (207)

where Ṁwind is the wind mass loss rate. Defining the ejection effi-
ciency ξ ≡ d log Ṁ/d logR, the magnetic lever arm parameter reads
(Ferreira, 1997)

ξ ≈ 1

2 (λ− 1)
. (208)

This short formulae are indicative of the key role of λ in the mhd winds
models, which is why observational works try to evaluate this num-
ber. My simulations suggest strong values of λ for the magnetic wind
emitted from the cavity, with λ2d ∼ 10 and a slightly lower value in
3d λ3d ∼ 7 − 8. I give in fig.80 the solutions of my simulations in
the (κ, λ) plane (which should be compared to Blandford and Payne,
1982 fig. 2 and Lesur, 2021b fig. 9). It appears that in the full external
disc, my solutions are similar to what is found in the literature. In
particular, I compare my values to the ones found by Lesur (2021b)
who used self-similar model of wind-emitting disc dominated by am-
bipolar diffusion. My simulations renders values that are compara-
ble to the self-similar ones obtained for high-magnetisation such as
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Figure 80: (κ, λ) plane for my 2d and 3d simulations. The values labelled by
‘in’ refer to an inner poloidal magnetic field line (at 3.5 au for the
2d simulation and at 6 au for the 3d one) while ‘ext’ indicates
field lines in the external disc (at 15 au for both simulations). To
account for the variability of κ and λ close to the midplane, I
only kept the values calculated along the field lines high enough
in the disc (Z > 10 au). The black-dotted line are values in the
plane (κ, λ) taken from Lesur (2021b), for various values of β (or
βout using my notation), the purple cross indicates the self similar
values for β = 104.

βout ∼ 10
2. On the contrary, the cavity is characterised by high values

of λ (and therefore small ones for κ).

Considering the physical units I chose, I show in fig. 81 the norm
of the time-averaged poloidal velocity computed from the fiducial
2.5d simulation. This gives an order of magnitude of the velocity
associated to the wind emitted from the cavity. I find that ⟨∥vp∥⟩ ∼

1− 10 km s−1.

5.1.2 Kinematics prediction

Rather than testing directly the presence of a magnetic wind, one
could look for its consequences on the disc. In this subsection, I will
show preliminary results of radiative transfer calculations based on
my 2.5d fiducial simulation.
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Figure 81: Time-averaged norm of the poloidal velocity ⟨vp⟩ for the 2.5d

fiducial simulation, given in physical units.
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Figure 82: Temperature in a simulated disc from my 2.5d fiducial simula-
tion.

5.1.2.1 Modelisation

In this subsection, I present the code that I used to generate the syn-
thetic images that I will show in the next subsections. I used the
radmc-3d Monte Carlo radiative transfer code (Dullemond et al.,
2012). I consider a solar mass star, with a luminosity of 1 L⊙ and a
temperature of 4000 K. My simulated ppd is supposed to be at 140 pc
with a 20 degrees inclination. I keep the same physical units (mass,
time, length) as I have in my simulations.
My simulations being dust free, I start by computing the h2 column
density based on the density profile of my simulation. The gas repar-
tition is converted into a dust repartition with a reference file that
mimics a constant dust to gas ratio. The temperature of the gas is then
taken to be the temperature of the dust which is shown in fig. 82.
I show the brightness temperature of the disc in fig. 83 in which the
cavity is clearly seen in the middle.

5.1.2.2 Accretion speed in the cavity

The model of tds I studied implies a transsonic accretion speed. This
property is suggested in particular in Wang and Goodman (2017). I
highlight this result in particular with my 2.5d simulations.
Interestingly, a fast radial inflow could be detected with the combi-
nation of rotated isovelocity contours (with respect to the disc axis)
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Figure 83: Brightness temperature synthetic image of a simulated disc from
my 2.5d fiducial simulation.

in channel maps of optically thick lines and twisted isophotes. This
method is detailed in Rosenfeld et al. (2014), and I give some explana-
tions in the next lines. To explain this potential observation, one can
start by giving the projected velocity (vx, vy) for a Keplerian flow to
which an accretion flow is added whose radial velocity in units of the
local Keplerian speed is χ. One can write

vx = −vk sin θ −χ vk cos θ ,

vy = vk cos θ︸ ︷︷ ︸
Keplerian rotation

−χ vk sin θ︸ ︷︷ ︸
accretion

.

The velocity along the line of sight is then given by

vlos ≡ −vy sin i = −vk sin i cos θ+ χ vk sin i sin θ , (209)

with i the inclination angle. In the end, the region of the projected
plane where vlos cancels is a straight line inclined with respect to the
horizontal axis, by the angle θsys defined by

θsys = arctan (1/χ) . (210)

If the accretion speed is given in units of cs as vacc. = a cs, then χ = ε a,
with ε = 0.1 in my simulations. Considering a purely Keplerian flow
(without accretion), this angle should be 90 degrees. For an imagi-
nary purely radial flow (no Keplerian rotation), this angle should be
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0 degrees if the disc is inclined with a rotation around the horizontal
axis. The combination of the two leads to the angle defined by eq. 210

(see the fig. 2 in Rosenfeld et al., 2014).
Despite how promising this may sound, it has been suggested that
these very observational properties could be the result of a warped
inner disc (e. g. Casassus et al., 2015, for hd 142527). Still, this method
is definitively something to try with observations of tds, as recalled
by Pascucci et al. (2022).

I show in fig. 84 the computed zeroth and first orders with radmc-3d.
The images are calculated from the final file of my 2.5d fiducial sim-
ulation. The zeroth order is partially masked by a dark spot due to
an outflow leaving the cavity. The first order moment could present
the influence of a radial transsonic accretion flow.
Looking at the last file of my simulation, I have an accretion speed
vacc = 1− 5 cs which depends on the radius. The corresponding θsys is
between 63 and 84 degrees with respect to the horizontal axis, which
means between 6 and 27 degrees with respect to the vertical axis.
Back to the bottom panel of fig. 84, one can see that the outflow makes
it difficult to measure precise angles. However, it still seems that the
cavity is ‘rotated’ by some angle which corresponds to the previous
values. This observation is preliminary and I leave it as an illustration.
More work is to be done, but applying this method to my simulated
discs surely is promising.

5.1.2.3 Azimuthal velocity in the cavity

Keeping up with velocity profiles in the disc, the rotation speed in the
cavity is an interesting property to investigate. I found that the cavity
was strongly sub-Keplerian. The effective rotation profile is ∼ 60% of
the Keplerian velocity in the 2.5d simulations and ∼ 80− 90% of Ωk

in the 3d ones.
This implies that the inner regions of my simulated discs are slowly
rotating (in the sense that they rotate slower than they do for a full
disc), while the remaining disc is Keplerian. In channel maps, this
property should be detected by the presence of a ‘kink’ correspond-
ing to the shift of velocity profile (e. g. from ∼ 0.8 vk to vk). Some kinks
are observed in channel maps of ppds and indicative of a planet such
as in Harsono et al. (2018), Pinte et al. (2019), and Calcino et al. (2022).
tds surveys render channel maps of these discs (e. g. van der Marel
et al., 2016b). However such observations can be challenging and un-
workable for tds with small cavities as can be seen with van der
Marel et al. (2022). Since the kink should operate at the cavity loca-
tion, the observations would be even harder to achieve. To cope with
this difficulty, a possibility could be to work with tds harbouring very
wide cavities, one td of the system iso-Oph 2 (González-Ruilova et
al., 2020) being a good candidate.
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Figure 84: The top panel is the zeroth order moment and the bottom one
the first order moment. Both were computed for my 2.5d fiducial
simulation, based on the final file of the simulation.
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Back to my simulations, I computed channel maps for my 2.5d fidu-
cial simulations. However, the results are now far from being conclu-
sive.

5.1.3 Substructures in the disc

Substructures in ppds are now thought to be common features of discs
(Andrews et al., 2018; Long et al., 2018). It is then of prime interest
for me to check the plausible links with observations based on the
substructures I detected in my simulations.

5.1.3.1 Spirals

As exposed in the introduction (chap. 1), spirals are routinely de-
tected in observations of ppds (Pérez et al., 2016). tds also exhibit
spirals, some in their outer parts (i. e. not in the cavity) such as van
der Marel et al. (2016a), while some others see their cavity filled with
whirlpool-like structures (see e. g. Cuello et al., 2019).

Though the instability at play has not yet been clearly characterised,
my 3d simulations consistently render spirals inside the cavity of sim-
ulated tds. The phase velocity of the spirals between the inner ring
and the cavity is somewhat close to the keplerian speed at the cavity
edge location. This result may be a good indirect way to test the this
model of tds. However, the short duration of my 3d calls for deeper
studies of these spirals.

5.1.3.2 Inner ring

Despite being initially not wanted, an inner ring forms in some of
my 3d simulations. This ring may have numerical origins such as the
restart procedure or the inner boundary condition (see chap. 2). In
the end, the fiducial 3d simulation of the cavity still share the stage
with this ring. Inner rings in tds have been observed in several discs
(see e. g. Francis and van der Marel, 2020; Uyama et al., 2022).
I get simulations with or without inner ring, so that detecting or not
a ring in any tds cannot help to discriminate or favour the model
I work with. However, if the presence of a ring could be linked to
the one of two sets of spirals, maybe this could be of interest. Never-
theless, the somehow ‘accidental’ appearance of the inner ring calls
for more converged 3d simulations (which is computational-time de-
manding) or for a numerical setup devoted to the study of inner rings
(by restarting a 2.5d simulations harbouring such a disc for example).
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5.1.3.3 Outer gaps

I discussed the presence of gaps already (see chap. 3 and 4). Still,
I want to recall that these common structures naturally arise in the
non-ideal mhd framework. Simulations conducted on much longer
time-scales could enable the study of rings, how they merge, sepa-
rate and more specifically, how they interact with the cavity edge.
Lastly, adding planets in the outer disc or inside the cavity would be
of prime interest, to include mhd wind launching tds in the bigger
picture of planetary formation. The interaction between planets and
gaps can be complex (Wafflard-Fernandez and Baruteau, 2020) while
their interplay with tds cavities is a broad topic. Previous works stud-
ied the effects of having planets in a cavity of td (Baruteau et al., 2021;
Debras et al., 2021; Chen et al., 2021), so that doing so with this new
model of tds sounds promising.

5.1.4 Cavity expansion

The long term evolution of ppds is key to get access to their age and
put constraints on planetary formation. The effects of mhd winds on
the secular evolution of ppds were studied for full ppds with the help
of 1d simulations with the work of Tabone et al. (2022b), Tabone et al.
(2022a), Trapman et al. (2022a), and Zagaria et al. (2022). These simu-
lations give access to the disc sizes as well as to their ages.
A similar work could be done for tds. I dwell on the peculiar be-
haviour of the cavity edge in my simulations (especially the 2.5d

ones). In particular, the sizes of the cavities could be used to estimate
the age of tds based on the model I used. This idea is developed in
sec. 5.2.

5.2 mdw launching discs with inner and outer trunca-
tions : towards a global description of the disper-
sion of ppds

Important note

The work that I present in this section is preliminary and based
on a single 2.5d supplementary simulation. This is not directly
related to disc observations, but rather a refinement of my 2.5d

simulations, as an attempt to get a broader view of tds. This
work should be understood as a side project on its own, that
aims to show the possibility of the model I used regarding the
dispersal processes of ppds.
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5.2.1 Introduction and presentation of the model

5.2.1.1 Motivation

The peculiar behaviour of the magnetic field transport in my 2.5d sim-
ulations is hard to understand, mainly because of its non-local nature.
In mhd models of ppds, the magnetic plays a major role as it controls
a considerable part of (if not most of) the magnetic torques that brake
the disc, the accretion and any transport coefficients. Therefore, it is
of prime interest to unveil the dynamics of the magnetic field on long
time-scales. Nonetheless, three results of my 2.5d simulations make
it very challenging to get access to this dynamic.

First, the non local influence of the cavity calls for a global approach
of such tds. Global simulations must be used (as I did in 2d and 3d)
and the disc should be entirely simulated. At least the outer must
span on greater radii, in order to lower the influence of the cavity
and possibly recover usual behaviours of magnetic field transport.

Second, localised structures were detected in my 2.5d simulations
(the elbow structure, the magnetic loop), which rule out the use of self
similar solutions. This structures also make the use of 1d models such
as in Suzuki et al. (2016) and Tabone et al. (2022b) complicated at first.
The profiles of ζ, α and υw that I obtained in my 2.5d simulations
could be implemented in similar 1d models. A precise parametrisa-
tion could then capture the effects of these structures. However, 2.5d

simulations would still be needed to give such a parametrisation. This
last point calls for a long-lasted 2.5d simulations to catch the evolu-
tion of a td on a very long time scale (longer than just a few 104 orbits
at Rint.)

Third and finally, the characteristic transport velocity of the magnetic
field is about ∼ 10−4 vk. This small velocity (compared to the local
keplerian speed) imposes to run simulations that can catch the very
long-term evolution of the discs. 104 orbits at Rint are not enough to
handle these slow processes with good accuracy and a factor at least
×10 is needed.
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Remark on computational time

I only consider doing 2.5d simulations, assuming that target-
ing any ‘secular’ or ‘long term’ evolution rules out any pos-
sibility to do 3d simulations, because of their computational,
financial and ecological costs. As an example, since 1000 or-
bits at Rint cost ∼ 3 × 106 h cpu, 105 orbits would require
∼ 300 × 106 h cpu

−1 which means ∼ 17 yrs on 2000 cpus. I
do not think I need to further out comment on why this is out
of reach!

To address the second and third points, I run a new 2.5d global
simulation of a td with mdw on 3× 105 orbits at Rint (which is 10
times longer than my fiducial 2.5d simulation). I solve the first point
by adding an outer truncation to my newly simulated td, which now
exhibits inner and outer truncations. Previous 2.5d simulations of
ppds (without cavity), with an outer truncation, ambipolar diffusion
and magnetised winds were performed by Yang and Bai (2021). The
authors showed that the magnetic field was transported outwards in
their work. Therefore, I expect that the magnetic field in my new sim-
ulation will be dragged inwards because of the cavity up to some ra-
dius where the global influence of the outer truncation will take over
the cavity influence. Such a model of td is an opportunity to study a
somehow realistic model of global td and to explore the mechanism
responsible for the dispersion of discs.

The outer edges of ppds are interesting to study because they provide
a way to disentangle viscous and magnetically-driven evolutionary
models of discs. In particular, the viscous spreading of the outermost
parts of ppds is expected with the viscous approach of discs, based
on the pioneer works of Shakura and Sunyaev (1973) and Lynden-
Bell and Pringle (1974). Moreover, several observational have already
gathered data on the outer truncation of ppds, such as Barenfeld et al.
(2017), Tazzari et al. (2017), Ansdell et al. (2018), and Sanchis et al.
(2021), some specifically focusing on the gas spreading of discs (Na-
jita and Bergin, 2018). These works studied both the gas and dust
sizes of ppds. Some 1d simulations aim to get the gas (Tabone et al.,
2022a) and dust (Zagaria et al., 2022) sizes of discs to use it with
a statistical approach. Such works also are sustained by simulations
with higher dimensions, such as Yang and Bai (2021). Eventually, my
project to compute the first simulations of outer-truncated tds sus-
tained by mhd winds in the context of ambipolar-dominated discs is
a good starting point to get access to the dispersal mechanisms of
tds.
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5.2.1.2 Presentation of the model

The description of the numerical model I used is simple. I start with
the a numerical setup identical to the one that I used for my 2.5d

simulations. In particular, I keep the same values βout = 10
4, βin = 1,

Λa = 1 and Rcav = 10 Rint as in my 2.5d fiducial simulation. Only
the gas component of the discs is simulated. Hence any dust-related
phenomena such as grain growth or migration of solids (Birnstiel and
Andrews, 2013) is neglected.
I ensure that no mass can come from the outer boundary condition
and choose an outer truncation radius Rtrunc. ≡ Rc = 50 Rint = 5 Rcav.
I implement the outer truncation following Yang and Bai (2021), with
an exponential cutoff so that the initial density profile is given by I recall here that the

function f carves the
cavity and ρhd

accounts for the
initial hydrostatic
equilibrium.

ρ(R,Z) = f(R)× ρhd(R,Z)× exp
[
−(R/Rc)

2
]

. (211)

I keep the same resolution for θ (240 points on a stretched grid cov-
ering the full domain including the poles) and I increase the radial
one so that I have 448 points logarithmically spaced between Rint = 1

and Rout = 150 Rint = 3 Rc. I let the simulation run for 300000 orbits
at Rint, which means 9487 orbits at the initial cavity edge location or
849 orbits at the initial outer truncation radius. In particular, more
than 150 orbits are done at any radius in the disc. As a comparison,
this is approximately 10 the length of the fiducial simulation of Yang
and Bai (2021).
I want to shed light on the radial profile of Λa which does not take
into account the outer truncation. However, this is not a problem be-
cause this far from the star (for R ⩾ 50 au), one can expect the disc
and its upper layers to be poorly ionised with ambipolar diffusion
dominating even a bit higher from the disc surface. Finally, I add that
I lowered by a factor 10 the maximum value of ηa because of some
issues I had regarding the resistive time-step. Apart from these differ-
ences, everything else is kept the same.

Eventually, this simulation was run on 128 cores of the machine Dahu
from the mesocentre Gricad for more or less ∼ 8 months, which cor-
responds to ∼ 737280 h cpu. I label this simulation with S2Dext.

5.2.2 General overview of the disc

I start by giving the spatio-temporal diagram of Σ in fig. 85. Contrary Note that the lower
range of the colorbar
of the figure 85
differs from the
similar
spatio-temporal
diagrams shown in
the previous chapter.

to the previous simulations, I give up the logarithmic scale for the ra-
dius, to get a picture more reading-friendly. In particular, this enable
to catch a global picture of the disc and to better evaluate its size. On
the contrary, the figure 86 shows the spatio-temporal diagram of Σ
with a logarithmic scale for the radius, supplemented by the spatio-
temporal diagram of β. This representation focuses on the inner cav-



198 observations and outer truncation of tds

ity of the disc. I also give the temporal evolution of the θ−averaged
vertical magnetic field squared in the left panel of fig. 87. This panel
is complemented by the profile of the magnetic flux function ψ (right
panel of fig. 87)
Figure 85 shows that the disc encounters various dynamical regimes
with time. I indicate the 3 regimes with the numbers (1), (2) and (3)

on fig. 85. I describe each of them in the following paragraphs.The beginning and
the end of the

regimes are
arbitrary, since the

evolution of the disc
is continuous and
occurring on long

time-scales (longer
than 103 orbits at
Rint). It is difficult
to select a definite

instant where to end
and start these

dynamical regimes. I
rather indicate

period of time and
focus on their

physical
characteristics,
which is what

matters the most in
the end.

first regime (1) : The first regime spans between the start of the
simulation and t ∼ 50000 orbits at Rint. The configuration of the disc
corresponds to the common one found with other 2.5d simulations.
This is confirmed by fig. 86 with the striped-cavity that distinguishes
this regime. I will not describe in depth the structure of the disc be-
tween 1 and 50 au as all the results from the 2.5d simulations stand
(the magnetic loop and the elbow-shaped structures are present in
particular).
The outer truncation encounters a transient state, bringing the whole
disc to a state characterised by a dynamically active cavity, the devel-
opment of gaps in the whole outer part of the disc, a widening cavity
and a slowly shrinking outer truncation. This last result is in contrast
with the viscous-disc picture and confirms the observation of Yang
and Bai (2021). Looking at the profile of β, I note that a magnetic
reorganisation of the disc occurs in the outer part of the disc, with β
varying from 104 up to 108−10 after 5000 orbits at Rint. This is to be
linked with the advection of magnetic field that was detected in the
2.5d simulations. Fig. 87 recovers this result. The vertical magnetic
field decreases in the outer part of the disc (left panel) and the ad-
vection of magnetic field is easily tracked by the contours of ψ in the
right panel. At the end of this first regime, the outer parts of the disc
are less magnetised. On the contrary, the cavity is larger and threaded
by a considerable amount of magnetic field.

second regime (2) : Between ∼ 50000 and 150000 orbits at Rint,
the disc is characterised by a moderate activity on short time-scales
in the cavity (t ∼ 1− 10 orbits at Rint) and a stable configuration on
longer time-scales (t ∼ 100− 1000 orbits at Rint).
An important property is the fact that the magnetic loop is not present
anymore in the disc. The supplementary ⟨Bφ⟩ sign flip also disap-
peared. The disappearance of the loop removed the elbow-shaped
structure, disabling the formation of the filaments of matter that were
previously seen with 2.5d simulations. The magnetic structure of the
disc is shown time-averaged between 50001 and 60000 orbits at Rint in
the right panel of fig. 88. I do not detect any bursts of accretion in the
cavity. Consequently, the cavity looses its temporal stripes and takes



5.2 mdw launching discs with inner and outer truncations 199

Figure 85: Spatio-temporal diagram of Σ alone (computed with εint = 0.3),
for the simulation S2Dext. The radius is not shown with a loga-
rithmic scale in this figure. The numbers indicate the 3 dynamical
regimes that are separated with yellow dashed lines.
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Figure 86: Spatio-temporal diagrams of Σ and β (computed with εint = 0.3),
for the simulation S2Dext. The radius is shown with a logarithmic
scale in this figure.



5.2 mdw launching discs with inner and outer truncations 201

Figure 87: Spatio-temporal diagrams of ⟨B2z ⟩θ (left panel) and ψ (right
panel), for the simulation S2Dext. On the right panel, I highlight a
few contours in black full lines to clarify the magnetic field trans-
port in the outer disc. The radius is shown with a logarithmic
scale in this figure. The arrow indicates the location of peculiar
stripes in the cavity (see sec. 5.2.3).
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the shape of a continuous and thin accretion flow located at the disc
midplane. This is shown in the left panel of fig. 88, inside the cavity.
The plasma parameter also reaches β = 1 in the cavity with little to
no temporal variation.

Figure 88: Density (left panel) and toroidal magnetic field (right panel)
for the simulation S2Dext. The quantities are averaged on
10000 orbits at Rint between 50001 and 60000 orbits at Rint. I plot
the stream lines in the right panel and the poloidal magnetic field
lines on the left one. This figure highlights disc between R = 1

and 50 au.

The cavity (resp. the outer truncation) keeps widening (resp. shrink-
ing) (see fig. 85). Multiple gaps appear with time in the outer disc. All
of them migrate outwards and eventually disappear, making them
transitory structures that are very dynamical on long time-scales (∼
103 − 104 orbits ar Rint). The displacement of the gaps comes along
with the transport of the magnetic field. The contours of ψ indicate
that the magnetic field is transported outwards in the cavity and in
the outer part of the disc up to R ≈ 40 au. For better visibility, I high-
light some contours of ψ in fig. 87 with black full lines over the image.
In particular, the contours for radii greater than R ≈ 40 au show that
some magnetic field is advected inwards from the outermost parts of
the disc.
In this regime, the outermost part of the disc gets less and less mag-
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Figure 89: Vertical magnetic flux in the cavity (ϕb, cav., full blue line), in the
external part of the disc (ϕb, ext, full red line) and in the whole
disc (ϕb, tot, full green line) for the simulation S2Dext.

netised. Therefore, the magnetic field accumulates at the cavity edge
location which keeps moving outwards. The total magnetic flux of
the cavity remains constant and hence gets ‘diluted’ as the cavity ex-
pands. I define the radially integrated magnetic field ϕb as

ϕb(t,R1,R2) ≡
∫R=R2
R=R1

−Bθ(R, t)RdR . (212)

I also introduce the magnetic flux in the cavity ϕb, cav. = ϕb(t, 1, 10),
in the external part of the disc ϕb, ext = ϕb(t, 10, 150) and in the whole
disc ϕb, tot = ϕb(t, 1, 150). The corresponding profiles are given in
fig. 89. Figure 89 shows that the total magnetic flux is roughly con-
stant once the seed has reached its saturation value. The flux in the
cavity then represents most of the total magnetic flux threading the
disc during the whole simulation. The fact that the flux in the cav-
ity decreases after t ≈ 200000 orbits at Rint illustrates that the mag-
netic field in the cavity is diluted because I only compute ϕb until
R = 10 au which is not the cavity edge anymore (since the cavity
expands).

last regime (3) : After 150000 orbits at Rint (and up to the end of
the simulation), the disc finally converges to a last regime. The disc
ends up with a wide gap in its outer part (see fid. 85) which is slightly
migrating inwards past 250000 orbits at Rint, towards the cavity edge
location. The cavity has a sharp density contrast with the full disc
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Figure 90: Total mass of the disc (Mdisc, full blue line) and mass of the disc
between R = 20 and 75 au (M20−75, dotted red line).

and is once again characterised by temporal stripes. These stripes are
however not of the same nature as the previous ones and will be de-
scribed in sec. 5.2.3.
The cavity is still widening and the outer truncation is shrinking. Af-
ter a few hundreds of thousands orbits at Rint, the disc size is divided
by a factor ∼ 2. I define the disc total mass by

Mdisc(t) ≡
∫R=Rout

R=Rint

Σ(R, t)RdR , (213)

and the mass of the disc calculated between R = 20 and 75 au by

M20−75(t) ≡
∫R=75Rint

R=20Rint

Σ(R, t)RdR . (214)

I show the corresponding evolution of Mdisc and M20−75 in fig. 90.
After 150000 orbits at Rint (which marks the beginning of the third
regime), M20−75 represents 95 % of the disc total mass. 98.1% of
the disc total mass at t = 200000 orbits at Rint concentrates between
R = 20 au and R = 75 au. In the end, half of the initial mass is lost
(mostly due to the accretion on the central star).
As a conclusion, the magnetic wind enables a fast evolution of the
disc size together with a strong accretion.

The outer truncation is characterised by a temporal evolution which
once again looks like temporal stripes. This evolution is also seen in
the profile of β (fig. 86) and corresponds to the advection of mag-
netic flux from the outermost part of the disc (see fig. 87). To under-
stand this temporal evolution, I show the global structure of the disc
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in fig. 91. A first observation is the huge clockwise loop seen with
the time-averaged poloidal field lines. This result echoes a conclusion
of Yang and Bai (2021) and is now demonstrated to be a long-lived
structure. This loop comes together with a peculiar flow structure.
Between the surfaces defined by εint = ±0.6, the matter that leaves
the disc surface falls back on the disc. This is seen with a symmetric
loop in the stream-lines profile (left panel of fig. 91). Once this falling
matter has reached the midplane, it is transported inwards and fuels
the wind and the accretion in the inner part of the disc.

Figure 91: Density (left panel) and toroidal magnetic field (right panel)
for the simulation S2Dext. The quantities are averaged on
10006 orbits at Rint between 290001 and 300006 orbits at Rint. I
plot the stream lines in the right panel and the poloidal magnetic
field lines on the left one. This figure shows the whole disc, from
R = 1 to 150 au.

However, the figure 91 is time-averaged so that the temporal vari-
ability inherent to the outer stripes is not caught. To explain the
stripes, I show a snapshot of the S2Dext at t = 199600 orbits at Rint

in fig. 92 showing the density profile in the whole disc. Focusing on
the outermost part of the disc, one can see volutes of gas falling from
above and below the disc midplane. When the 2 volutes collide, they
form a stream of matter whose location oscillates with time since the
volutes are not perfectly symmetric with respect to the disc midplane.
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Figure 92: Snapshot of the simulation S2Dext at t = 199600 orbits at Rint.
The background field is the density.

The temporal variation of the disc outer truncation (the temporal
stripes) are explained by these volutes. Interestingly, this configura-
tion implies that angular momentum is transported inwards from the
outermost part of the disc (R = 150 au) down to R ∼ 130 au. I show
the structure of the angular momentum flux stream lines in fig. 93.
The convergence point of the angular moment flux at R ≈ 130 au

suggests that these volutes are characterised by decretion flows.

5.2.3 Cavity-hosting discs as transition discs: secular evolution

Now that I have described the three regimes occurring throughout
the evolution of the disc, I want to describe a few additional results
regarding the second regime.
In particular, I want to start with the temporal stripes that can be seen
inside the cavity in the left panel of fig. 87 for example. If one looks
cautiously around t ∼ 75000 orbits at Rint, one can see some of these
stripes (indicated by a black arrow). Looking at the right panel of the
figure, the stripes appear right after a rapid advection of magnetic
flux and a locally fast expansion of the cavity (with a chunk of disc
being accreted). Once the third regime is established, these stripes are
continuously occurring in the cavity, whereas they are only detected
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Figure 93: Time-averaged density over which the momentum flux stream
lines are plotted for S2Dext, between 290001 and 300006 orbits at
Rint. This image focuses on the outermost part of the disc.
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from time to time during the second regime. Therefore, the second
regime can be understood as a transitory configuration regarding the
secular evolution of the disc.

During the second regime, the cavity is characterised by 2 states. The
first one is the steady and thin accretion flow located at the mid-
plane that I already described. The second one is characterised by the
stripes. The corresponding flow of accretion is torn around the mid-
plane, thinner (the flow is sometimes 1 cell thick) and even arrested
from time to time. Moreover, the associated wind escaping the cav-
ity becomes highly turbulent once the stripes has appeared. As an
illustration of this statement, I give two snapshots of the density in
figs. 94 and 95 around the appearance of the stripes. The stability of
magnetic winds was discussed by Lubow et al. (1994), Königl and
Wardle (1996), Cao and Spruit (2002), Königl (2004), and Lesur et al.
(2013). In particular, Moll (2012) performed 2d shearing box simu-
lations with high magnetisations (to suppress the mri) that exhibit
unstable outflows. It is then likely that the magnetic wind launched
from the cavity is subject to an instability.

Figure 94: Snapshot of the density
right before the appear-
ance of stripes, focus-
ing on the cavity.

Figure 95: Same profile but af-
ter the stripes have ap-
peared.

In the end, the cavity converges toward a configuration where it has
accumulated most of the magnetic flux of the total disc. Its accretion
gets more and more regularly arrested while the cavity grows with
time due to the accumulation of magnetic field at the cavity edge
location.
With the mad picture in mind (discussed in the previous chapters), it
seems that this model is a relevant analogy to address the physics of
cavity.
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conclusion

I started this chapter by gathering a few observational predictions.
In particular, the kinematics prediction in the cavity are the most
promising ones. Together with the observations of specific substruc-
tures, the study of the accretion and rotation speeds in the cavity are
encouraging and based on specific predictions.
These predictions could prove being compelling and call for a
deeper work on synthetic observations that will be done with my 3d

simulations in a near future.

My work devoted to the outer truncation of tds appears to be
fruitful. The results are different from the viscous framework as no
viscous spreading is detected but rather a shrinking truncation.
Regarding the secular evolution of the discs, I isolated three dynami-
cal regimes. The magnetic field transport also behaves in a complex
manner. In the end, tds encounter various transitory states and
structures and much will be learn by improving the model I used
regarding the outer truncation of discs. Specifically, an exploration of
the parameter space should be considered.
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conclusion

Ce chapitre s’ouvre avec une discussion concernant le lien entre mes
simulations et de possibles observations. J’ai produit un panorama de
quelques observations envisageables qui permettraient de favoriser
ou au contraire écarter le modèle que j’ai utilisé. Les observations
concernant la cinématique dans la cavité paraissent tout partic-
ulièrement pertinentes. Couplées à la détection de sous-structures
spécifiques (sillons, spirales, anneau interne), de telles observations
seront possiblement à même de renseigner sur la structure des
disques de transition abritant des vents magnétiques.
Ces prédictions incitent à élargir leur usage à mes simulations 3d, ce
qui sera réalisé dans un futur proche.

En sus de la discussion sur le lien aux observations, j’ai présenté un
travail supplémentaire focalisé sur l’étude de la troncation externe
de disques de transition et permettant également de mettre à jour
certains résultats concernant l’évolution séculaire du disque. Ce
travail s’est avéré riche en enseignements en dévoilant une évolution
séculaire complexe caractérisée par plusieurs régimes rencontrés par
le disque. Je confirme des résultats déjà remarqués (comme l’absence
d’étalement visqueux) que j’ai pu approfondir, notamment en ce qui
concerne la structure du vent au niveau de la troncation externe.
En ce qui concerne le transport de champ magnétique, celui-ci est
naturellement fortement couplé à l’évolution du disque (dynamique
des sillons, déplacement de la frontière entre la cavité et le disque
plein).

Les disques de transition soutenus par des vents magnétiques
sont caractérisés par plusieurs structures et configurations transi-
toires et il ne fait nul doute qu’améliorer ce modèle de troncation
externe pourra renseigner sur la dispersion des disques protoplané-
taires. En particulier, explorer l’espace des paramètres est une étape
à envisager avec ce modèle.
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"So that it seemed in the end as though all the sciences
I studied at the university existed only to prove and

make evident to me as I went more deeply into them that
I was ridiculous."

— Fedor Dostoïevsky, The Dream of a Ridiculous Man (1877)
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introduction

In the previous chapters, I have detailed the work I did during my
thesis. I studied a model of tds harbouring magnetic winds with 2.5d

and 3d numerical simulations. In this last short chapter, I want to
discuss some aspects of this work, give perspectives and share some
thoughts about it. Eventually, I will draw a conclusion.

introduction

Dans les chapitres précédents, j’ai détaillé le travail que j’ai effectué
pendant ma thèse. J’ai mis au point un modèle numérique de disques
de transition munis de vents magnétiques, en travaillant avec des sim-
ulations 2, 5d et 3d. Ce dernier chapitre me permet de conclure et de
développer quelques limites de ce travail.
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6.1 discussion on the results of my simulations

6.1.1 2.5d simulations

I modelled transition discs sustained by mhd winds by performing
a first set of 2.5d global simulations. This model acts as a proof of
concept, showing that steady-state discs with both a cavity and a
magnetic wind can be obtained. The resulting simulated discs are
characterised by two different zones with contrasted dynamics.

Firstly, the outer disc behaves like standard simulations of weakly-
magnetised and ambipolar-dominated ppds (Lesur, 2021b; Cui and
Bai, 2021). In particular I find mass and angular momentum transport
coefficients, wind properties and accretion rates comparable to those
found in the literature for ‘full’ discs. I also find weak gaps which
are characteristic of non-ideal mhd discs (Riols and Lesur, 2019; Ri-
ols et al., 2020). However, the magnetic field transport in the outer
disc differs from previous studies: I find that the magnetic field lines
are advected inwards in the outer disc, in contrast to measurements
in full discs which always show opposite transport (Bai and Stone,
2017; Gressel et al., 2020; Lesur, 2021b). This discrepancy is likely
due to the fact that the field lines in the cavity are more collimated
(i. e. less opened), which results in a lower pressure on the magnetic
surfaces in the outer disc, but possibly also connected to the pecu-
liar elbow shaped magnetic surfaces at the transition radius. In any
case, it points to the fact that magnetic field transport is a non-local
phenomenon: it depends on the global disc structure. The model of
tds with an outer truncation (which is integrated on a much longer
time scale) tends to confirm this hypothesis. The magnetic loop dis-
appears at some point which directly affects the magnetic field trans-
port. However, additional simulations are required to reach a defini-
tive conclusion on this topic.

In contrast to the outer disc, the cavity (or inner disc) is strongly mag-
netised (β ≈ 1) because of its low surface density. I emphasise here
that the absolute magnetic field strength in the cavity is not stronger
than standard protoplanetary disc models. In practice, and given my
set of units, I have B0 ≈ 0.13 G (with βout = 104) so that initially,
Bz ≈ 1.25 mG at R = 42 au in my simulations, which is of the same
order of magnitude as the upper limit of Bz(R = 42 au) = 0.8 mG
found in Vlemmings et al. (2019) for example. Hence, while the cavity
is strongly magnetised, its field strength is compatible with observa-
tional constraints.

Compared to the outer disc, the mass and angular momentum trans-
port coefficients in the cavity are all of the order of unity, resulting in



214 conclusions and perspectives

transsonic accretion velocities and faster wind with large lever arms
(λ ≳ 10). Overall, this picture matches quantitatively the inner jet
emitting disc proposed by Combet and Ferreira, 2008. Interestingly,
in all of my models, the cavity manages to reach an accretion rate
close to the outer disc one by self-regulating the magnetic stresses. I
find that most of the angular momentum transport is due to the lami-
nar stress indicating that turbulent transport (possibly mri-driven) is
unimportant in the cavity. This is not surprising since my discs are
dominated by ambipolar diffusion which mostly suppresses mri tur-
bulence (Bai and Stone, 2011).

I get a significant deviation of the rotation profile in the cavity as a re-
sult of the strong magnetic stress due to the wind and typical rotation
velocities of the order of 70− 80% of the Keplerian velocity. This fact,
combined with the transsonic accretion, implies that the kinematics
of these cavities have singular observational signatures. Fast accretion
kinematics have been observed in some transition discs (Rosenfeld et
al., 2014) though I am aware that these signatures might also be due
to a warped circumbinary disc as reported by Casassus et al. (2015).

As a result of the stress balance mentioned above, I obtain accreting
cavities that survive thousands of orbits and which are slowly ex-
panding or contracting, depending on the outer disc magnetisation.
This result suggests that a cavity could be carved spontaneously if
the magnetisation of the outer disc is high enough. There are already
hints of such a process in global simulations: for instance Cui and Bai
(2021) show a gas-depleted cavity forming in the inner profile of Σ
(see their figure 5, first row and first column panel). While this is by
no mean a proof since the boundary conditions are probably unreal-
istic, it shows that the secular evolution of wind-driven discs should
be investigated systematically to check whether or not cavities could
spontaneously form in these models.

The temporal analysis of the disc reveals the appearance of dynami-
cal structures. In particular, I highlight the formation of gas filaments
above the disc surface that end up forming 2 bubbles of gas each, one
being ejected while the other one falls down onto the cavity before
crossing it. At some point, the falling matter has to cross the poloidal
magnetic field lines at the magnetic field loop location, recalling to
some extent the magnetospheric accretion observed in young stars
(Bouvier et al., 2006; Pouilly et al., 2020; Bouvier et al., 2020a; Bouvier
et al., 2020b) and magnetospheric ejection events (Zanni and Ferreira,
2013; Čemeljić et al., 2013). However, there is no magnetosphere in
my simulations so the magnetic topology is different from that of
magnetospheric interaction.
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By analogy with magnetospheric accretion, I have checked whether
the time variability seen in our simulations could be due to a mag-
netic rti. I have studied a criterion for the rti, in the form of a radial
interchange of poloidal field lines. I found however that the rti re-
quires magnetisations stronger than the ones found in my simula-
tions, ruling out the rti in the form I have assumed. It is however
still possible that another branch of this instability is present.

On longer time scales, averaging out the fast variability, the magnetic
field strength appears to be self-regulated with 0.1 ≲ β ≲ 1 in the cav-
ity, independently on the initial field strength. As a result, the cavity
is strongly magnetised and rotates at sub-Keplerian velocities, indi-
cating a substantial magnetic support against gravity in this region.
In essence, the regime of my cavity is similar to the magnetically ar-
rested disc (mad) proposed by Narayan et al. (2003) in the context of
black hole accretion discs. McKinney et al. (2012) shown that mads
could be regulated by magnetic rti leading to magnetically chocked
accretion flows (mcaf). The mad model is also associated to the for-
mation of plasmoids by reconnection events (Ripperda et al., 2022).
These features are recovered in my models of transition discs, despite
the fact that I have used Newtonian dynamics (mads being usually
found in grmhd simulations) and the presence of a strong ambipolar
diffusivity in my models. Hence, my models could be interpreted as
non-ideal non-relativistic models of mads.

The time variability of the cavity is likely to be related to the ax-
isymmetric approximation used in my work since it suppresses non-
axisymmetric instabilities which seem to play a key role in mads sim-
ulations (e. g. McKinney et al., 2012; Liska et al., 2022). Additionally, I
note that the question of non-axisymmetric hydrodynamical instabili-
ties such as the rwi (Lovelace et al., 1999; Li et al., 2000) at the cavity
edge is still open to debate in a magnetised environment (Bajer and
Mizerski, 2013). I addressed these points using full 3d simulations.

6.1.2 3d simulations

My 3d simulations recovered most of the results of the 2.5d ones. In
particular, the simulated td remains stable. Nevertheless, a reorgani-
sation of the disc occurs when a 2.5d is restarted in 3d. As a matter
of fact, the magnetic stress is lowered inside the cavity in the 3d

simulations. Consequently, the transport coefficient that accounts for
the wind efficiency is also reduced and so is the inner magnetisation.
However, the accretion rate remains of the same order of magnitude
(it is a bit lowered) and the cavity still rotates at a sub-Keplerian speed
(80 to 90% of the Keplerian speed). Indeed, the structure of the inner-
most part of the cavity is once again similar to the mad picture.
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The most striking observation in my 3d simulations is the develop-
ment of spirals inside the cavity. Though I was unable to conclude on
the instability at play (the rwi seems discarded and so does the mag-
netic rti), I could describe their structure. I detected 2 sets of spirals,
each characterised by rotation speeds that are constant with respect
to the radius.

These spirals appear together with an inner ring whose origin re-
mains unclear in some (but not all) of my 3d simulations. Inner rings
are observed in tds (Pinilla et al., 2021), so that studying the inner
ring itself is still interesting. It is likely that this inner ring would
disappear if the simulation lasted long enough. Moreover, the restart
procedure may play a significant role on the appearance of the ring.
Therefore, just like for the 2.5d simulations, a work on the implemen-
tation of a realistic inner boundary condition is necessary.

6.2 caveats and perspectives

Regarding the caveats of my simulations, I remark that the inner ra-
dial boundary is probably the most stringent caveat of my numer-
ical model. In particular, I found that this inner boundary condi-
tion is sometime expelling some poloidal magnetic flux. However,
the weakly magnetised simulations are the only ones exhibiting these
events, and once the transient state is over, all the simulations reach
comparable steady states. So the inner boundary condition is likely
not affecting the long term evolution of my models. Future models
should nevertheless try to either include an inner turbulent disc, or
possibly the magnetospheric interaction with the central star. Con-
necting a cavity of td sustained by magnetic winds to a magneto-
sphere would enable to describe the accretion process with greater
accuracy.

Another possible limitation of my model one could raise concerns
the role of the mri. My simulated discs are dominated by ambipolar
diffusion, and as such, subject to mri quenching by the non-linearity
embedded in the ambipolar diffusivity (η ∝ B2). This saturation
is different from the saturation by 3d turbulence observed in the
ideal mhd regime. It is suggested that the mri saturates in very sim-
ilar ways in 2d and 3d under strong ambipolar diffusion (see e. g.
Béthune et al., 2017; Cui and Bai, 2021). This is also confirmed by my
own 3d simulations. Hence, the fact that my first set of simulations
is 2.5d has a very limited impact on the turbulent transport one may
observe.

Note that my simulations used a simplified treatment of thermody-
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namics and ionisation chemistry. More numerically involved models,
such as Wang and Goodman (2017), use a refined computation of the
ionisation fraction and Λa inside the cavity of a td, including several
chemical species. This work highlights in particular the influence of
the x-ray luminosity of the star Lx (see their fig. 2, panels 2 and 3) as
well as the role of the temperature T0 at 16 au (fig. 2, panels 6 and 7).
Regarding my profile of Λa ≈ 1− 10, my work is similar to their mod-
els 2 (with Lx = 1029 erg s−1) and 6 (where T0 = 30 K). Therefore, I
anticipate that an increase of 2 orders of magnitude for Lx would lead
to Λa > 10

2 in most of the cavity. Such a change would greatly alter
the dynamical regime of the cavity since mri would then play a sig-
nificant role (Blaes and Balbus, 1994; Bai and Stone, 2011). However,
the role of the temperature is less straightforward and seems to have
a little impact on Λa.

Additionally, dust plays a significant role in Wang and Goodman
(2017) regarding the ionisation of the disc. As a matter of fact, only
their models with dust reach low values of Λa. The effect of dust in
transition discs is a major subject that is not addressed in my work.
Dust can modify the ionisation fraction but also create peculiar struc-
tures at the interface between the disc and cavity. In particular, I men-
tion the interplay between dust and the radiation pressure, that is
known to create non-axisymmetric structures at the cavity edge (Bi
and Fung, 2022) or an inner rim with an accumulation of matter due
to photophoresis (Cuello et al., 2016).

In the end, studying tds as well as ppds in general serves the greater
goal of understanding how planets formation works. The interplay
between cavities and planets is investigated (Rometsch et al., 2020;
Baruteau et al., 2021). It would then be of prime interest to check the
influence of my solutions of cavities with magnetic winds on plane-
tary migration.

6.3 final remarks and conclusion

I performed 2.5d and 3d global numerical simulations of transition
discs in the context of non-ideal mhd with magnetic wind launching.
My simulation design is initialised with a cavity in the gas surface
density profile, and a power law distribution for the vertical magnetic
field strength, resulting in a strongly magnetised cavity surrounded
by a standard weakly magnetised disc. The main results are sum-
marised in the following points.

1 I have modelled strongly accreting transition discs that reach a
quasi steady state that last for at least tens of kyrs. The accretion
rate inside the cavity connects smoothly to the accretion rate in
the external part of the disc.
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2 The cavity itself is characterised by a strong sub-Keplerian rota-
tion and a transsonic accretion velocity. These kinematic signa-
tures could potentially be verified observationally.

3 The magnetic field is advected inwards in the outer disc, in con-
trast to full disc simulations. This points to the possible non-
locality of large-scale field transport.

4 A much longer simulation confirms the complex spatio-temporal
organisation of the magnetic field transport. In particular, its
global structure is closely linked to the local magnetic structure
(the magnetic loop).

5 The cavity structure (density and field strength) is self-regulated
and insensitive to a change in the initial internal magnetisation.
Its characteristic internal magnetisation is 0.1 ≲ βint ≲ 1.

6 The temporal analysis of the cavity dynamics highlights the for-
mation and accretion of bubbles of gas (in 2.5d above the disc
which cross the cavity at sonic speeds. These structures are not
seen in the 3d simulations.

7 The 3d simulations show the formation of spirals inside the
cavity, with rotation speeds that are constant with respect to the
radius.

8 The overall stability of the simulated discs is also ensured in 3d

simulations, despite an initial reorganisation of the disc.

9 The physics of the cavity (accretion speed, wind lever arm and
mass loading) match previously published jet emitting disc so-
lutions (Ferreira, 1997; Combet and Ferreira, 2008), both in the
2.5d and 3d simulations. The presence of a strong radial mag-
netic support is also reminiscent of mads in black hole physics
(Narayan et al., 2003; McKinney et al., 2012). These resemblances
suggest that transition discs could be an instance of mads ap-
plied to protoplanetary discs.

In the end, my work prove that numerical simulations of tds with
magnetic winds are physically meaningful and provide a new model.
These solutions are a new tool that can possibly help to interpret the
observations of strongly-accreting tds.



Part IV

A P P E N D I X

This supplementary part has 3 chapters. The first one is
about some theoretical calculations needed to establish the
criterion for the rti. The other two chapters show some
additional minor results regarding respectively the 2.5d

and the 3d simulations.

"It is myself I have never met,
whose face is pasted on the underside of my mind."

— Sarah Kane, 4.48 Psychosis (2000)
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I express the instability criterion for the interchange instability (or rti)
calculated in Spruit et al., 1995 (equation 59) in terms of the plasma
parameter. This criterion reads

gm ∂R ln
Σ

Bz
> 2

(
r

dΩ
dr

)2
≡ 2 S2 , (215)

where S is the shear that I approximate with S2 = 9/4Ω2 and gm is

gm ≡ B+
R Bz

2πΣ
. (216)

B+
R is the radial component of the magnetic field at the disc surface.

Let me rewrite the previous expression in terms of β, q (defined with
B+
R = qBz) and δ (defined as δ = −d lnΣ/d lnR):
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where X ′ denotes the derivative of X with respect to R. With P =

c2s ρ = (hΩk)
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2πh), I get
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Therefore, the instability criterion becomes
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ε being constant in the disc as well as β inside the cavity. Ωk varies
as R−3/2 and Σ as R−δ so that

S2 <
4εΩ 2

k√
2πβ

q (−δ+ 1+ δ/2) . (221)

By taking S2/Ω 2
k
= 9/4, the rti can be triggered when
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9
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. (222)

If I now assume that δ = q = 1 for simplicity, I finally get

β <
8 ε

9
√
2π

≈ 0.355 ε = 0.0355 ≡ βcrit. , (223)

221
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Figure 96: Interchange instability criteria for the fiducial 2.5d simulation. In
red dotted line is shown the critical value of βcrit. while the solid
green line is obtained with eq. 222.

where ε = 0.1.
Figure 96 compares the time-averaged values of β with the crite-

rion given in eq. 223. The value of βcrit. is anyhow below the time-
averaged values of β. Though this simple analysis makes it difficult
to be definitive on this subject, it seems that the interchange instability
is not triggered inside the cavity.
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2 . 5 d A D D I T I O N A L S I M U L AT I O N S

I ran a set of additional 2.5d ‘control’ simulations to address a few
interesting topic. One will find in the following order a discussion on
numerical aspects of my work such as the impact of the resolution of
the 2.5d simulations and the role of the inner boundary condition.
This discussion is followed by numerical simulations devoted to phys-
ical specific points. I will describe a purely hd run, an mhd run with
no cavity, check the influence of the initial size of the cavity and have
a look at the impact of the thermodynamics (in the disc and in the
corona).
Eventually, I will then discuss about some more physical aspects of
my simulations with a short discussion on the role of the mri.

b.1 numerical aspects

b.1.1 Spatial resolution

I start by a short discussion on the impact of the spatial resolution
of my 2.5d simulations on my results. Figure 97 shows the surface
density for 3 different resolutions. fid refers to the 2.5d fiducial sim-
ulation, low to a 2.5d simulation with a resolution divided by 2 in
every directions (160× 120), and high to a 2.5d simulation with a
resolution multiplied by 2 in every direction (640× 480).
The upper panel shows the mean value of Σ inside the cavity (Σcav. is
the surface density averaged between R = 1 and 10 au). The bubbles
of matter that cross the cavity proved to be chaotically distributed
with time and their occurrence strongly vary from one resolution to
another. Therefore, the occurrence of a bubble is somehow related to
the numerical spatial resolution. This result may favour the magnetic
reconnection to be the formation mechanism of these temporal struc-
tures, through the numerical resistivity (e. g.: Rembiasz et al., 2017).
The lower panel shows the surface density at R = 25 au.

The first panel shows that the transient states are similar between
the fiducial simulation and the one with a higher resolution. After
500 orbits at Rint, the 3 resolutions render similar values of Σ. How-
ever, the simulation with the lowest resolution encounters bursts of
matter in the cavity.
Regarding the value of Σ at R = 25 au, the fiducial simulation and
the one with the highest spatial resolution are similar while the simu-
lation with the lowest resolution diverges rapidly (with respect to the

223
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Figure 97: Influence of the spatial resolution on the 2.5d simulations. The
upper panel is the average value of the surface density (between
R = 1 and 10 au) and the lower panel is the surface density at
R = 25 au. The blue line is the simulation with the poorest spatial
resolution, the green line is the one with the highest, and the red
line is the fiducial run.

simulation with the highest spatial resolution).

Conclusively, the spatial resolution of the fiducial simulation is well
chosen, as the external structure of the disc is properly recovered
while the cavity does not experience bursts of matter. Eventually, I
add that the surface density differs by less than 8 % in the cavity and
by less than 1 % when considering the entire domain, between the
fiducial run and the high resolution one.
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b.2 poloidal velocity relaxation and inner boundary

condition

b.2.1 Poloidal velocity relaxation

I want to address the influence of the poloidal velocity relaxation on
my results to test my control on the inner boundary condition. Two
additional simulations were conducted respectively with the same
setup as S2DB4Bin0Am0 (fiducial run) and S2DB5Bin0Am0 (weakly
magnetised run), but without the relaxation procedure. The results
are given in fig. 98, where I show the surface density ⟨Σ⟩4000 time-
averaged on the first 4000 orbits at the internal radius (when the dif-
ferences are enhanced), with a focus on the innermost radii. I high-
light that these differences do not rise up for t > 4000 orbits at Rint.
For S2DB5Bin0Am0, the right panel of fig. 98 suggests that the relax-
ation procedure influences how the initial burst is evacuated since
we detect differences between the surface density profiles at R > 1.5.
However, releasing this inner constrain reduces the inner peak of the
profile of Σ, but does not prevent the initial accumulation of matter
from appearing. In particular, the bursts of matter seen with the less
magnetised simulation are not due to this condition. For the fiducial
simulation, I estimate differences of 15% until R = 2, 7% until R = 10

and less than 2% until R = 50. I conclude that the slight accumulation
of matter inside the cavity is due to this procedure contrary to the
occurrence of bursts in the simulation with a weakly magnetisation.

b.2.2 Inner boundary condition

I implemented several inner radial boundary conditions, trying to
check its influence on the magnetic field transport at Rint. I compare
the spatio-temporal profiles of ψ on the first 700 orbits at Rint on
fig. 99.
The first panel labelled by ‘fid’ is the 2.5d fiducial simulations, shown
for comparison. The second panel, ‘old fid’, refers to a first set of sim-
ulations in which the magnetic field was prevented from crossing the
inner radial boundary condition. The third one is the same simulation
as the fiducial one, to which I added an initial supplementary vertical
magnetic field in the inner region R ⩽ 1.5 au. The idea was to check
if it was possible to lower the effects of the initial transient state by
imposing a higher magnetisation around the seed. The last panel, is
the same simulation as the one in the third panel, but the added mag-
netic field is more intense and I used a vertical exponential cutoff to
generate a magnetic poloidal loop (anti clockwise, like the magnetic
poloidal field, which is why negative values are detected at the begin-
ning of the simulation).
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Figure 98: Surface density time-averaged on the first 4000 orbits at Rint. The
blue lines are the reference runs (left panel: fiducial run, right
panel: S2DB5Bin0Am0) and the red-dashed mines are the corre-
sponding runs without the relaxation.
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Figure 99: Spatio-temporal diagrams for ψ for 4 simulations.

Looking at fig. 99, I conclude that no change of boundary conditions
ended up with a significant impact on the inner magnetisation or on
the magnetic structure of the cavity. The only thing that changes is
the duration of the initial transient state.
Therefore, I expect the inner magnetic structures of my cavities to be
rather robust.

b.3 physical aspects

b.3.1 Hydrodynamical simulation

I ran one hydrodynamical simulation (without magnetic field) of a
cavity-hosting disc. I show the corresponding spatio-temporal dia-
gram of Σ in fig. 100 where the cavity is clearly visible. I detect no bub-
ble of gas crossing the cavity. The elbow-shaped structure, the wind
from the cavity and of course any magnetic structure are not seen in
this simulation. The accretion rate in the cavity is ∼ 10−8 M⊙ yr−1 at
the inner boundary condition and decreases with radius until 5 au

where it reaches zero and flips its sign.
As expected, the relevant physical processes in my 2.5d mhd sim-
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Figure 100: Spatio-temporal diagram of the surface density for the hydrody-
namical 2.5d simulation.

ulations are driven by the magnetic field. In particular, the strong
accretion is due to the magnetic stresses.

b.3.2 Run without a cavity

For comparison, I performed a 2.5d simulation with no initial cavity
(the cavity function f is 1 everywhere). I show the associated spatio-
temporal diagram of Σ in fig. 101. A major result is the spontaneous
carving of a cavity. This result suggests that magnetic tds may appear
naturally with time. Another possibility is that my setup favours the
appearance of cavities.

b.3.3 Size of the cavity

I performed a simulation with a double-sized cavity (R0 = 20 au)
in order to check the impact of the cavity size. The simulation was
integrated for 1000 orbits at R = 10 au so that it reaches 355 orbits
at R = 20 au. The general observations are confirmed such as the
elbow-shaped structure, the magnetic loop, the magnetic field ad-
vection in the outer disc as well as the conclusions regarding the
accretion. While the cavity size is identical to S2DB3Bin0Am0 (the
one with a higher magnetisation), the behaviour of the disc is exactly
the same as the fiducial one (see fig. 102), indicating that βout is the
main parameter regulating the cavity expansion. This means that the
global picture where two types of discs are connected is robust and
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Figure 101: Spatio-temporal diagram of the surface density for the 2.5d sim-
ulation without cavity.

not linked to limitations in the cavity size or artefacts due to the inner
boundary condition.

b.3.4 Thermodynamics

b.3.4.1 Disc

I show the profile of the density time-averaged over the 8000 first
orbits at Rint in fig. 104. The disc is twice thinner as expected. An in-
teresting difference with the fiducial simulation is the size of cavity,
which is twice smaller. This is likely due to the elbow-shaped struc-
ture that is smaller than in the fiducial simulation, so that it is easier
for the matter to end up falling inside the cavity.

b.3.4.2 Corona

I ran a 2.5d simulation with a twice hotter corona. The most rele-
vant difference with the fiducial simulation is the fact that the elbow-
shaped structure and the magnetic loop are significantly bigger (ap-
proximately twice higher). I show the density profile time-averaged
over the 15000 first orbits at Rint in fig. 104.

b.4 laminar transport coefficients

In order to discuss the role of the mri„ I must highlight the impact
of the laminar stress and its contribution to the transport coefficients.
To compare the turbulent effects, I decompose the stresses with a tur-
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Figure 102: Spatio-temporal diagrams for ⟨Σ⟩ and ⟨β⟩ for the simulation
with a twice larger cavity.
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Figure 103: Time-averaged profile of the density over which are plotted the
stream lines (for the simulation with a colder disc).
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Figure 104: Time-averaged profile of the density over which are plotted the
stream lines (for the simulation with a hotter corona).
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bulent and a laminar part. In this prospect, I introduce the deviation
to the temporal mean such that

δX ≡ X− ⟨X⟩ . (224)

Focusing on Wrφ, I expand the magnetic term as

⟨Br Bφ⟩ = ⟨Br⟩ ⟨Bφ⟩︸ ︷︷ ︸
laminar

+ ⟨δBr δBφ⟩︸ ︷︷ ︸
turbulent

. (225)

Concerning the turbulent stresses, I refer to Jacquemin-Ide et al. (2021)
(see their appendix A) as I only compute the laminar ones and com-
pare the laminar transport coefficients calculated in chap. 3. There-
fore, I adopt the following definition for the laminar radial stress

⟨W lam.
rφ ⟩ ≡ −

1

4π
sin θ ⟨Br⟩ ⟨Bφ⟩ , (226)

and for the laminar surface stress

⟨W lam.
θφ ⟩ ≡ −r

[
sin2 θ

⟨Bθ⟩ ⟨Bφ⟩
4π

]θ−
θ+

. (227)

These definitions are coherent with previous works (Béthune et al.,
2017; Mishra et al., 2020; Jacquemin-Ide et al., 2021). Hence, the lami-
nar transport coefficients are given by

⟨αlam.⟩ ≡ ⟨W lam.
rφ ⟩
⟨P⟩

⟨υlam.
w

⟩ ≡ ⟨W lam.
θφ ⟩

r ⟨P0⟩

, (228)

while we define their turbulent counterparts as{
⟨αturb.⟩ ≡ ⟨α⟩− ⟨αlam.⟩
⟨υ turb.

w
⟩ ≡ ⟨υw⟩− ⟨υ lam.

w
⟩

. (229)

The results are shown in fig. 105. The laminar contribution is the ma-
jor one for ⟨υw⟩ in the whole disc so that I only show its laminar
contribution with respect to the full coefficient, as they take essen-
tially the same values. Nevertheless, despite the laminar term being
high for ⟨α⟩, a strong turbulent term is at play, especially in the ex-
ternal part of the disc where it is dominant. Inside the cavity, ⟨α⟩
is fairly distributed between the laminar and turbulent contributions.
However, I recall that the wind may act on the turbulent component
of ⟨α⟩ too since the magnetic field also appears in eq. 225.
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Figure 105: Time-averaged transport coefficients and their laminar and tur-
bulent contributions. I give the laminar and turbulent contribu-
tions for ⟨α⟩ and the total profile with its laminar contribution
for ⟨υW⟩.
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3 d A D D I T I O N A L S I M U L AT I O N S

Alike for my 2.5d simulations, I ran some control simulations for
my 3d simulations. Of course and because of the computational time
needed, I did not test as many parameters as with my 2.5d simula-
tions. I start by checking the impact of my restart procedure before
showing some results for a cavity twice bigger.

c.1 numerical aspect : restart procedure

I start by checking the impact of my restart procedure. To do so,
started a 3d simulation restarted from the initial state of the fidu-
cial 2.5d one. I show an extract of the spatio-temporal diagram of
Σ in fig. 106. The relevant observation is the appearance of a bead
whose location is not the same as in the 3d fiducial simulation. How-
ever, this inner ring corresponds the accumulation of matter that is
observed in any of my 2.5d simulation. This ring should disappear
with time long enough, which is out of reach considering the fact that
the magnetic torques are lower in 3d.
It is difficult to conclude whether the inner ring observed in my 3d

fiducial simulation is due to the restart procedure or not. Still, it is a
possibility that the appearance of such ring is due to the choice of a
peculiar 2.5d restart file.

c.2 physical aspect : size of the cavity

Lastly, I ran a 3d simulation restarted from the 2.5d simulation with
a twice bigger cavity. I show the spatio-temporal diagrams of Σ and
β in fig. 107. An inner ring also appears in the cavity. However, its
location is note even close to being twice further than the ring in
the 3d fiducial simulation. Therefore, it suggests that these rings are
either linked to the inner radial boundary condition or to the choice
of a specific 2.5d restart file.

235
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Figure 106: Spatio-temporal diagram of Σ for my 3d simulation without
the use of my restart procedure.
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Figure 107: Spatio-temporal diagram of Σ and β for my 3d simulation
restarted from the 2.5d simulation with a twice bigger cavity.
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This appendix is made of the article that I wrote on the results of my
2.5d simulations and which is published in A&A (Martel and Lesur,
2022).
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ABSTRACT

Context. Protoplanetary discs are cold, dense, and weakly ionised environments that witness planetary formation. Among these discs,
transition discs (TDs) are characterised by a wide cavity (up to tens of au) in the dust and gas distribution. Despite this lack of material,
a considerable fraction of TDs are still strongly accreting onto their central star, possibly indicating that a mechanism is driving fast
accretion in TD cavities.
Aims. The presence of radially extended ‘dead zones’ in protoplanetary discs has recently revived interest in magnetised disc winds
(MDWs), where accretion is driven by a large magnetic field extracting angular momentum from the disc. We propose that TDs could
be subject to similar disc winds, and that these could naturally explain the fast-accreting and long-lived cavities inferred in TDs.
Methods. We present the results of the first 2.5D global numerical simulations of TDs harbouring MDWs using the PLUTO code.
We imposed a cavity in the gas distribution with various density contrasts, and considered a power-law distribution for the large-scale
magnetic field strength. We assume the disc is weakly ionised and is therefore subject to ambipolar diffusion, as expected in this range
of densities and temperatures.
Results. We find that our simulated TDs always reach a steady state with an inner cavity and an outer ‘standard’ disc. These models
also maintain an approximately constant accretion rate through the entire structure, reaching 10−7 M⊙ yr−1 for typical surface density
values. The MDW launched from the cavity is more magnetised and has a significantly larger lever arm (up to 10) than the MDW
launched from the outer disc. The material in the cavity is accreted at sonic velocities, and the cavity itself is rotating at 70% of the
Keplerian velocity due to the efficient magnetic braking imposed by the MDW. Overall, our cavity matches the dynamical properties
of an inner jet emitting disc (JED) and of magnetically arrested discs (MADs) in black-hole physics. Finally, we observe that the cavity
is subject to recurring accretion bursts that may be driven by a magnetic Rayleigh-Taylor instability of the cavity edge.
Conclusions. Some strongly accreting TDs could be the result of magnetised wind sculpting protoplanetary discs. Kinematic diag-
nostics of the disc or the wind (orbital velocity, wind speeds, accretion velocities) could disentangle classic photo-evaporation from
MDW models.

Key words. accretion, accretion disks – protoplanetary disks – magnetohydrodynamics (MHD) – methods: numerical

1. Introduction

Transition discs (TDs) are protoplanetary discs exhibiting a
deficit of near-infrared emission, indicating a significant drop in
the abundance of small dust grains in the regions inside a few
tens of au (Espaillat et al. 2014). These objects are believed to be
the intermediate stage between ‘full’ primordial T Tauri discs
and disc-less young stellar objects, hence their name. In this
framework, TDs are the result of an inside-out dispersal process,
which is usually believed to be a combination of viscous accre-
tion, dust growth (Dullemond & Dominik 2005), giant planets
(Marsh & Mahoney 1992), and photo-evaporation (Clarke et al.
2001; Alexander et al. 2014).

Despite their cavities, a large fraction of TDs are accret-
ing onto their protostars. While Najita et al. (2007) quoted a
median accretion rate reduced by one order of magnitude in
Taurus compared to ‘primordial’ discs, more recent studies find
even stronger accretion rates. Fang et al. (2013) showed that
accreting TDs have a median accretion rate similar to normal
optically thick discs. Manara et al. (2014) finds that TDs accrete

⋆ The data underlying this article will be shared on reasonable request
to the corresponding author.

similarly to classic T Tauri stars and that there is no correla-
tion between the accretion rate and the cavity size. The fact that
TDs are accreting systems should not give the impression that
their cavity is depleted only in dust grains: TDs also exhibit
cavities in the gas distribution (Zhang et al. 2014), with gas
surface density increasing with radius (Carmona et al. 2014).
Probing rotational emission of CO, van der Marel et al. (2015,
2016) find a drop in gas surface density by two to four orders
of magnitude, while the drop in dust surface density goes up to
six orders of magnitude. Similar results hold in ro-vibrational
CO lines, probing the cavity further in, leading to a gas drop
of two to four orders of magnitude in the inner (<3 au) regions
(Carmona et al. 2017).

The picture that emerges is that of discs with a drop in gas
surface density by several orders of magnitude, which are accret-
ing similarly to (or slightly less than) primordial discs. There can
be only two explanations for this phenomenon: either accretion
is due to a ‘hidden’ mass reservoir localised close to the star,
and what we observe is the transient accretion of this reservoir,
or gas somehow manages to penetrate the cavity with a much
larger velocity than the usual viscous accretion velocity. In that
case, one typically needs an accretion velocity of the order of
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the sound speed to reconcile the accretion rate with the drop in
surface density (Wang & Goodman 2017).

In the first category of models, we find scenarios involving
photoevaporation combined with an inner dead zone (Morishima
2012; Gárate et al. 2021). This inner dead zone, typically extend-
ing between 1 and 10 au, sets the radius of the mass reservoir
and therefore the cavity inner edge. While it predicts a frac-
tion of TDs with accretion rates of Ṁ ∼ 10−9 M⊙ yr−1, it also
predicts a large fraction of non-accreting TDs, which is not
observed (Gárate et al. 2021). In addition, these models rely
on the Ohmic dead zone model of Gammie (1996), while it
is now understood that dead zones are much more extended
radially because of ambipolar diffusion (Simon et al. 2013), cast-
ing doubts on the applicability of inner dead zone models. The
second type of model requires a mechanism to boost angular-
momentum transport in the cavity. The most studied candidate
for this is planet-disc interaction with planets (typically more
than 3) embedded in the inner cavity. This scenario, however,
finds gaps that are not necessarily sufficiently ‘clean’ (Zhu et al.
2011) and predicts that multiple giant planet systems in reso-
nance are much more common than observed (Dong & Dawson
2016).

It should be noted that all of these scenarios make the explicit
assumption of viscous accretion, the viscosity being due to some
kind of small-scale turbulence, which could be of hydrodynamic
(vertical shear instability or VSI, Nelson et al. 2013) or mag-
netic (magneto-rotational instability or MRI, Balbus & Hawley
1991) origin. It is, however, becoming clear that accretion in the
regions outside of 1 au is probably partially driven by magnetic
winds (Bai & Stone 2013; Lesur et al. 2014; Béthune et al. 2017).
While the accretion rate of viscous models is proportional to the
gas surface density, the accretion rate of magnetohydrodynamic
(MHD) wind-driven models is mostly controlled by the strength
of the large-scale magnetic field, and much less by the sur-
face density (for instance, Lesur 2021b proposes Ṁ ∝ Σ0.2 B1.6).
Hence, if one carves a cavity in a disc without significantly modi-
fying its magnetic field distribution, one could in principle create
a population of accreting TDs not so different from classical
T Tauri discs in terms of accretion rates. This kind of scenario is
found in secular evolution models that include a realistic depen-
dence of the wind stress on the surface density (e.g. Suzuki et al.
2016, see their Σ-dependent wind torque models). Hence, MHD
winds could, in principle, generate and sustain a fast-accreting
TD cavity.

The idea of having a magnetic wind-driven cavity was first
proposed by Combet & Ferreira (2008). In this work, the cav-
ity (named the jet emitting disc, or JED) is diluted, accreting at
sonic velocities, and it sustains an accretion rate similar to that of
the outer disc. The same angle of attack was more recently tack-
led by Wang & Goodman (2017), who showed that the magnetic
diffusion properties of TD cavities were reminiscent of the mag-
netic wind solutions of Wardle & Koenigl (1993), indicating that
all of the conditions required for efficient magnetic wind launch-
ing were met in TD cavities. While this picture is promising to
explain accreting TDs, no dynamical model exists connecting
an outer ‘standard’ disc to an inner cavity accreting thanks to
magnetised winds.

In this work, we present the first self-consistent (under the
standard MHD assumptions) numerical models of accreting TDs
based on the MHD wind scenario. The model we propose does
not enforce accretion (e.g., with an α parameter that would be
added by hand). Accretion and the disc equilibrium are natu-
ral consequences of the first principles of MHD, in the sense
that their origins lie within the magnetic stresses arising from

the initial vertical magnetic field. Our aim is to demonstrate that
a fast accreting cavity can connect to a standard wind-emitting
outer disc, subject to realistic magnetic diffusion, and that the
resulting configuration can be long-lived. Given the richness of
the dynamics, we first concentrated on 2.5D models in this work,
and we will discuss 3D models in a follow-up paper. The paper
is divided as follows. We first introduce the model equations,
physical quantities, and numerical setup. We then discuss an in-
depth investigation of a fiducial model, which possesses a cavity
with a drop of four orders of magnitude in gas surface density.
We finally explore alternative models, varying the cavity depth
and size, and the diffusion coefficients before concluding. We
stress that we focus here on a proof of concept that such a TD
configuration is sufficiently stable to be observable, but we do
not discuss ‘how’ a primordial disc could have ended in such a
configuration. This will be the subject of future work.

2. Physical and numerical setups

2.1. Physical model

2.1.1. Governing non-ideal MHD equations

In the following, we place ourselves in the non-relativistic, non-
ideal MHD regime and consider a thin, locally isothermal disc
to follow the evolution of the gas. The mass and momentum con-
servation equations and the induction equation respectively read

∂t ρ + ∇ · (ρu) = 0, (1)

∂t (ρu) + ∇ · (ρu ⊗ u) = −∇P − ρ∇Φ∗ + J × B
c

, (2)

∂t B = −∇ × E, (3)

where ρ, P, u, and B are, respectively, the density, the thermal
pressure, the plasma velocity, and magnetic field. Φ∗ = −GM∗/r
is the gravitational potential due to the central star of mass M∗,
G being the gravitational constant. To close this system of equa-
tions, we assume the plasma follows a non-ideal Ohm’s law
including ambipolar diffusion:

E = −u × B − 4π
c
ηA J × b̂ × b̂, (4)

where b̂ is a unit vector parallel to B, J is the electric current,
c is the speed of light, and ηA is the ambipolar diffusivity. No
turbulence was added in this model whatsoever. In addition to
these equations, the plasma follows the Maxwell equations:

∇ · B = 0 (5)

and

J =
c

4π
∇ × B. (6)

We place ourselves in a spherical coordinate system (r, θ, ϕ)
centred on the star. For convenience, we also introduce the
cylindrical coordinates R = r sin θ, ϑ = φ and z = r cos θ.

Since we work in a thin disc, the azimuthal angular veloc-
ity Ω is expected to be close to the Keplerian angular velocity
ΩK(r) = (G M⋆/r3)1/2. It is therefore useful to introduce a
deviation from the Keplerian velocity u, defined as

u = u − r sin θ Ω̃(r) eφ, (7)
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with Ω̃(r) ≡ ΩK(r)/ sin2 θ. We note that the latitudinal depen-
dence of Ω̃ is somewhat arbitrary and need not be a particular
equilibrium state. Here, our choice of Ω̃(r) ensures that our refer-
ence Keplerian velocity has constant specific angular momentum
on spherical shells and eliminates surface terms that are other-
wise present in angular-momentum conservation equations (e.g.
the last term of Eq. (16) in Zhu & Stone 2018). This will simplify
the interpretation of angular-momentum budgets later.

2.1.2. Equation of state and cooling function

As a simplification, we assume the flow follows an ideal equa-
tion of state and is approximately locally isothermal, that is
T ≈ Teff.(R) where Teff. is a prescribed radial temperature profile.
This is achieved by solving the energy equation

∂t P + u · ∇P + Γ P∇ · u = Λ, (8)

where we defined a heating and cooling function

Λ =
P
T

T − Teff.

τ
, (9)

where τ is the cooling time that is set to 0.1 time code unit (see
below) and Γ = 1.0001 is the polytropic index of the gas. The
target temperature profile is

Teff.(R) = T0

(
R

Rint

)−1

, (10)

where T0 is the midplane temperature at the inner radius Rint.
This choice of cooling function allows us to enforce a chosen
temperature profile that mimics the real radiative equilibrium
and avoid the development of the vertical shear instability (VSI,
Nelson et al. 2013), which would appear in a strictly locally
isothermal approximation.

Since the gas is ideal, we can define an isothermal sound
speed c2

s ≡ P/ρ. It can be shown that as a result of the vertical
hydrostatic equilibrium, cs and ΩK are related to the vertical disc
thickness h(R) through

h(R) = cs(R)/ΩK(R). (11)

Assuming the disc is at thermal equilibrium (T = Teff.(R)), we
have cs ∝ R−1/2, and hence the disc aspect ratio ε ≡ h/R is
constant. For the following, we chose T0 in (10) so that ε = 0.1.

2.2. Numerical method and parameters

2.2.1. Integration scheme

The simulations were performed using the PLUTO code
(Mignone et al. 2007) that solves the MHD equations with a
conservative Godunov-type scheme and a second-order Runge–
Kutta time stepping. We used a HLLD type Riemann solver to
compute the intercell fluxes. In order to ensure the solenoidal
constraint (6), we used the constrained transport approach (Kane
1966; Evans & Hawley 1988). The implementation of ambipolar
diffusion in the PLUTO code follows that of Lesur et al. (2014)
and Béthune et al. (2017).

2.2.2. Code units and notations

The internal radius is Rint = 1, which sets the length code unit
and is chosen to be 1 au while Rext = 50. The time code unit is
Ω−1

0 ≡ ΩK(Rint)−1 = 1, which is set to 1/2π years so that G M∗ =
1, with M∗ = 1 M⊙, M⊙ being 1 solar mass. Therefore, ΩK(R) =
Ω0 (R/Rint)−3/2 = R−3/2. We chose 300 g cm−2 as a unit for the
surface density and express the accretion rate in M⊙ yr−1. We
denote code units as c.u. hereafter. We use the subscript X0 to
indicate that the quantity X is considered on the midplane (θ =
π/2) and the subscript Xp when X is a poloidal quantity.

2.2.3. Dimensionless numbers and definitions

We used the plasma parameter β to quantify the disc magnetisa-
tion, which is defined from the midplane properties of the disc
as

β =
8π P0

B2
p, 0

. (12)

When considering the initial state of a given simulation, we refer
to the initial magnetisation inside the cavity as βin and to the
initial magnetisation in the external part of the disc as βout. The
second key parameter of this study is the strength of ambipolar
diffusion, quantified with the Elsasser number

ΛA ≡
v2

A

ΩK ηA
, (13)

where vA = B/(4π ρ)1/2 is the Alfvén speed. We refer the reader
to Appendix A for detailed information on the justifications of
the model we adopted for ΛA and how we modelled its spa-
tial dependencies in our simulations. These two dimensionless
numbers are the main control parameters of our study.

The disc refers to the whole part of the simulation that covers
r ∈ [1; 50] and z/R ∈ [−0.3; 0.3]. The cavity is the region where
the surface density is reduced by a given factor in the innermost
part of the disc (i.e. from r = 1 to r = 10 in most of the models).
The external part of the disc or so-called outer disc refers to the
region where the disc is full and described by a standard proto-
planetary disc (without a drop in the density profile) and which
extends from r ≈ 10 to r = 50. Finally, we refer to the region
defined by r ≤ 1 of our disc as ‘seed’, which is at play in our
simulations through the inner radial boundary condition.

2.2.4. Computational domain

The radial direction is divided into 320 cells that expand from
the inner radius r ≡ Rint to the external one r ≡ Rext and are uni-
formly meshed on a logarithmically shaped grid. The colatitude
domain is mapped on a stretched grid near the poles (from θ = 0
to θ = 1.279 and from θ = 1.862 to θ = π, with 72 cells in each
zone), while the grid is chosen to be uniform around the mid-
plane (from θ = 1.279 to θ = 1.862 with 96 cells) for a total
of 240, which increases the precision in the region of interest.
The disc scale height h is then covered by 16 points in the case
where ε is fixed as constant and equal to 0.1.

2.2.5. Boundary conditions

Outflow boundary conditions are used in the radial direction so
that no matter can come from the inner radius. In addition, we
added a wave-absorbing zone for radii r < 1.5, which dampens
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poloidal motions on an orbital timescale. We detail the impact of
this procedure in Appendix B.

In these 2.5D simulations, axisymmetric conditions with
respect to the polar axis are enough to handle the boundaries
for the colatitude direction. With the aim of reducing the impact
of the outer boundary conditions, we focused on radii lower
than 30.

2.2.6. Initial condition, wind, and cavity

The initial temperature profile is the effective temperature pro-
file given in (10). The initial states for the density and the
azimuthal velocity vφ = RΩK mimic those of Nelson et al. (2013)
to account for the hydrostatic equilibrium, while vr = vθ = 0
initially. These profiles read, without taking into account the
cavity,

ρ(R, z) = ρ0

(
R

Rint

)p

exp


(
ΩK(R) R3

cs(R)

)2 (
1√

R2 + z2
− 1

R

), (14)

v(R, z) = vK(R)

(p + q)
(

cs(R)
ΩK(R) R2

)2

+ (1 + q) − q R√
R2 + z2


1/2

,

(15)

with ρ0 being the density at the internal radius. We chose q = −1
and p = −3/2 for the Eqs. (14) and (15), which is consistent with
self-similar stationary disc solutions (Jacquemin-Ide et al. 2021).

The initial vertical magnetic field follows a power law Bz ∝
R (p+q)/2 so that the plasma β parameter in the unperturbed disc
is constant. To ensure that ∇ · B = 0, we initialised the magnetic
field using its vector potential A, defined so that B = ∇ × A.
Following Zhu & Stone (2018), we chose

Aφ =



1
2

B0 R if R ≤ Rint

B0
R2

int

R

(
1
2
− 1

m + 2

)
+ R

(
R

Rint

)m 1
(m + 2)

if R > Rint

,

(16)

where m = (p+ q)/2 = −5/4. This results in a poloidal magnetic
field that depends on the radius only:

B = B0

(
R

Rint

)m

ez. (17)

The initial strength of the magnetic field is controlled by βout, so
that B0 ∝ β−1/2

out .
To add a cavity and mimic a TD, we multiplied the density

profile by a function f that depends on the radius only, so that

Σ(R) = f (R) × Σ0(R), (18)

with

f (R) = a
(
1 − c tanh

[
b

(
1 − R

R0

)])
, (19)

where Σ0(R) ∝ Rp+1 is a standard surface density profile
for a protoplanetary disc. The a, b, and c coefficients are

defined as



b =
2
n

(
δR
R0

)−1

a =
βin/βout + tanh(b)

1 + tanh(b)

c =
1 − βin/βout

βin/βout + tanh(b)

,

where R0 is the radius of the cavity (in code units), n the number
of cells on which the transition spans, and n δR the correspond-
ing length in code units. We note that while the density profile
exhibits an inner ‘hole’, the magnetic field distribution is kept
as a power law (17). As a consequence, the initial magnetisation
β(R) also exhibits a jump in the cavity since P ∝ Σ(R).

Therefore, βout/βin is equal to the contrast in the gas surface
density. In short, the function f creates a cavity in Σ but does
not affect Bp. As a result, we simulate a TD with a strongly mag-
netised cavity (βin = 1). A typical radial profile of the quantities
discussed above is shown in Fig. 1.

2.3. Integration and averages

Several integrations and averages are used throughout the text.
In this manuscript, we use the following proxy for the vertical
integration along θ:

X(r, t) = r
∫ θ−

θ+

X(r, t) sin θ dθ. (20)

θ± quantify the integration height as shown in Fig. 2 so that

θ− − θ+
2

= arctan
(

hint

R

)
= arctan εint, (21)

with hint being the integration height at radius R given by an
integration effective aspect ratio εint ≡ hint/R. We note that this
integration ‘height’ is not necessarily the disc thickness h. We
introduce β as

β ≡ 8πΣ c2
s,0

√
2πR ε

(
Br

2
+ Bθ

2
) , (22)

which corresponds to a theta-averaged ‘effective’ midplane β
plasma parameter. It is defined so that it matches the midplane
β parameter in a hydrostatic isothermal disc. This more general
definition is needed when the disc midplane is displaced verti-
cally such as inside the cavity (see Sect. 3.5.3). Finally, we added
the time average defined by

⟨X(r)⟩ = 1
T

∫ t0+T

t0
X(r, t) dt. (23)

We ran the 2.5D simulations so that we reach 1000 orbits at
R = 10, which means ≈31 000 orbits at Rint. If not specified,
time averages were calculated taking into account the whole
simulation without the first 4000 orbits at Rint to suppress the
transient state. Otherwise, we indicate our choice of notation
when needed, ⟨X⟩1000 being the time-averaged value of X during
the last 1000 orbits at Rint, for example.
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É. Martel and G. Lesur: Magnetised winds in transition discs. I.

Fig. 1. Initial and time-averaged profile of Σ (top left panel), β (top right), Bz, 0 (bottom left), and vφ, 0 (bottom right), with respect to R.

disc

θ+

θ−

hint

R

Fig. 2. Schematic view of the disc represented in orange. θ± define the
vertical integration surface and hint is the integration scale height at a
given radius R.

2.4. Simulation table

All the simulations performed are listed in Table 1. The charac-
teristic parameters are the external initial plasma parameter βout,
the internal initial plasma parameter βin, and the initial ambipolar
Elsasser number ΛA, 0. Additionally, we performed a conver-
gence test by running a high-resolution (640 × 480) simulation
similar to the fiducial one that exhibits profiles that differ by less
than 8% in the cavity and by less than 1 % when considering the
entire domain.

3. Fiducial simulation

We start this section by describing our fiducial simulation in
detail (βout = 104, βin = 1, ΛA = 1 and R0 = 10), before turning
to an exploration of the parameter space.

3.1. Evolution of surface density and plasma magnetisation

We first look at the temporal evolution of the surface density
(Fig. 3). We find that the cavity stands during the whole simula-
tion as its radius remains close to its initial value. As we show
in Sect. 3.5.1, the cavity tends to expand slightly. The cavity

Table 1. Simulation information. B4Bin0Am0 is the fiducial simula-
tion.

Name βout βin ΛA, 0 R0 (au)

B4Bin0Am0 104 1 1 10
B3Bin0Am0 103 1 1 10
B5Bin0Am0 105 1 1 10
B4Bin0Am1 104 1 10 10
B4Bin1Am0 104 10 1 10
B4Bin2Am0 104 102 1 10
B4Bin3Am0 104 103 1 10
B5Bin1Am0 105 10 1 10
B5Bin2Am0 105 102 1 10
B5Bin3Am0 105 103 1 10
B5Bin4Am0 105 104 1 10
B3Bin1Am0 103 101 1 10
B3Bin2Am0 103 102 1 10
R20FID 104 1 1 20

Notes. B4Bin0Am1 quantifies the influence ofΛA, 0, while B5Bin0Am0
and B3Bin0Am0 are the reference runs for βout = 105 and βout = 103. All
the runs with Bin , 0 in their label explore the role of the initial value
of β at Rint. R20FID is the same simulation as the fiducial one, with a
cavity that is twice as big. The bold font indicates the fiducial simulation
values.

location, defined as the radius where the surface density equals
half of its maximum value, is subject to a small variation of
∆R/R = 10.3% over the duration of the simulation. While the
external disc is relatively smooth with respect to time, the cavity
is striped by temporal variations of Σ, which may suggest that
matter is moving inside the cavity at relatively fast speeds. We
study these stripes in depth in Sect. 3.5.3. A small accumulation
of material is seen close to the inner radius at R ≤ 1.5. We refer
the reader to Appendix B for a quantitative discussion on this
accumulation.
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Fig. 3. Surface density (left panel) and plasma beta parameter β (right panel) as a function of R at midplane and time for the fiducial simulation.
The cavity remains during the entire simulation and keeps a relatively strong magnetisation with β ∼ 1.

Fig. 4. Radial profiles of the surface density and of the vertical magnetic
field in the midplane, time-averaged on the last 1000 orbits at Rint. The
vertical magnetic field is vertically averaged, and both profiles are given
in arbitrary units.

Figure 3 also pictures the evolution of β, whose results are
similar to the ones for Σ. Inside the cavity, β exhibits a striped-
like pattern with an accumulation close to the internal radius.
The edge of the cavity is not smooth at all but varies around
its initial value of 10. Though β stays on average around 1 in
the cavity, some low values around 10−2 are reached from time
to time. After approximately 4000 orbits at the internal radius,
both Σ and β reach a quasi-stationary state.

Gaps and rings are detected in the outer part of the disc,
in the spatio-temporal diagram of both Σ and β (Fig. 3). We
also emphasise that these structures are observed in all of our
simulations (see Figs. 19, 21, and 25). Regarding the fiducial
simulation, we detect two main gaps after the cavity edge and
before R = 30. For better visibility, we show the surface den-
sity and the vertical magnetic field, time averaged on the last
1000 inner orbits and a focus in the region R = 12–18 au (where
the gaps are detected) in Fig. 4. Gaps are characterised by a drop
of ∼5% of the local surface density and their location is corre-
lated with a sharp increase of the vertical magnetic field, which
matches the secular wind instability described by Riols et al.
(2020). These structures are enhanced in the simulation with a
higher ambipolar Elsasser number, as can be seen in Fig. 20. In
addition, we observe the merging of gaps on longer timescales
(Fig. 19) similarly to Cui & Bai (2021). While of interest for

the dynamics of the outer disc, we did not address the evolution
of these rings and gaps any further and instead focused on the
dynamics of the cavity.

3.2. Disc structure

3.2.1. Magnetic structure

We show the time-averaged magnetic field in Fig. 5. In the cav-
ity, the poloidal magnetic field lines are pinched at the midplane,
but they remain vertical in the outer disc. These two regions
are separated by a transition zone located at the cavity edge
that exhibits a magnetic loop. Inside this loop, the polarity of
the azimuthal component is reversed, with Bφ > 0 in the upper
hemisphere close to the disc. The poloidal field lines present
an elbow-shaped structure above and below the transition with
significant changes of direction at hint/R ≈ ±0.3, ±0.6, and ±0, 9.

3.2.2. Velocity streamlines

We show the time-averaged density and streamlines in Fig. 6.
The disc clearly appears around the midplane for R ≳ 10, while
the depleted profile in ρ indicates the cavity for R < 10. We find
that a wind is emitted from the cavity, with poloidal streamlines
approximately parallel to magnetic field lines, as expected from
ideal MHD. A closer inspection of the streamlines, however,
shows that in the regions close to the transition radius R ≳ 8,
matter is falling into the cavity. Figure 6 shows that this material
is actually coming from the outer disc. It is originally ejected
from this disc, before being deflected and accreted into the cav-
ity, generating an elbow-like shape similar to the one found for
magnetic field lines (Fig. 5). This accretion stream then stays
localised close to the cavity midplane down to the inner radius
of the simulation. In the outer disc, the motion of the gas is not
as well organised, though it is approximately symmetric with
respect to the midplane.

3.2.3. Angular-momentum-flux streamlines

In order to deepen the analysis of the role of the magnetic struc-
ture, we concentrated on the time-averaged angular-momentum
flux, defined by

Lp = r sin θ ⟨ρup uφ⟩ − r sin θ ⟨Bp Bφ⟩. (24)
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Fig. 5. Time-averaged poloidal magnetic field lines and toroidal field
component ⟨Bφ⟩ for the fiducial simulation. We note the peculiar field
topology close to the truncation radius.

The poloidal flux lines associated with this angular-momentum
flux are shown in Fig. 7. It appears that angular momentum is
extracted from the disc midplane and carried both radially and
vertically in a relatively homogeneous manner. In particular, we
note that there is no elbow-like shape for the angular-momentum
flux, in contrast to the magnetic and velocity streamlines, indicat-
ing that the cavity+ outer disc system has adapted its magnetic
topology to transport angular momentum homogeneously.

3.3. Accretion theory

3.3.1. Accretion rate

The first step to study the accretion in the disc is to investigate
the accretion rate Ṁ defined as

Ṁ(R, t) = −2πR ρvr. (25)

The height over which ρvr is integrated has a direct influence on
Ṁ, mostly because of the elbow-shaped streamlines. It is then
useful to change the thickness of the integration domain, which
is controlled by the parameter εint ≡ tan [(θ+ − θ−) /2]. Results
are presented in Fig. 8 for three values of εint. For εint = 0.3 and
around R = 10, the accretion rate is close to zero, indicating that
the gas does not plunge directly in the cavity from the disc mid-
plane. This radius corresponds to the location of the basis of the
elbow-shaped loop along which the gas is moving. Averaging

Fig. 6. Time-averaged streamlines and density for the fiducial simula-
tion. We note the peculiar shape of the streamlines around the transition
radius.

higher above the disc allows us to cancel out this effect. Mov-
ing to εint = 0.6 and 0.9, the accretion rates in the disc and in
the cavity eventually match by less than 50%, despite a jump of
more than two orders of magnitude in Σ. This clearly indicates
that the accreted material effectively ‘jumps’ above the transition
radius, and that a steady state is reached with the whole system
(cavity+ outer disc) accreting at a constant rate.

The fact that the accretion rate is approximately constant
while the surface density decreases by two orders of magnitude
implies that the accretion speed should increase dramatically.
This is clearly visible in Fig. 9, which shows the radial profile
of the accretion speed vacc. for εint = 0.9, defined by

⟨vacc.⟩ ≡ ⟨Ṁ⟩
2πR ⟨Σ⟩ . (26)

This velocity profile exhibits a well-defined transition between
subsonic accretion outside the cavity with ⟨vacc.⟩ ∼ 10−3 ⟨cs⟩ and
transsonic accretion inside with ⟨vacc.⟩ ∼ ⟨cs⟩.

3.3.2. Governing equations for accretion

Accretion theory can be understood as the secular evolution of Ṁ
and Σ. In systems driven by MHD processes, these two quantities
are usually supplemented by the magnetic field Bz threading the
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Fig. 7. Time-averaged angular-momentum-flux streamlines over time-
averaged density for the fiducial simulation. Angular momentum leaves
the disc midplane because of the wind.
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Fig. 8. Accretion rates for different integration height scales with
respect to the radius inside the disc. The higher ρvr is integrated the
closer to a constant value Ṁ is in the cavity. The average value inside
the cavity (from R = 1 to R = 10) is Ṁ = 1.4 ± 0.2 × 10−7 M⊙ yr−1.

disc. We apply the vertical integration procedure to the mass and
angular-momentum conservation equations, which become

∂tΣ− 1
2π r

∂r Ṁ = − [
sin θ ρvθ

]θ−
θ+

(27)
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R (a.u.)

10−3
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s〉

Fig. 9. Accretion speed for εint = 0.9 in units of local sound speed cs.
The profile exhibits a clear transition between subsonic and transsonic
accretion that occurs where the edge of the cavity is located.

∂t

(
r sin θ ρvφ

)
− 1

2π r
Ṁ ∂r

(
r2 sin2 θ Ω̃(r)

)
= −1

r
∂r

(
r2 Wrφ

)
−Wθφ.

(28)

We defined Wrφ and Wθφ, respectively, as the radial and surface
stresses by



Wrφ ≡ ρ sin θ vr vφ − sin θ
Br Bφ

4π

Wθφ ≡
[
r sin2 θ

(
ρ vθ vφ −

Bθ Bφ
4π

)]θ−

θ+

. (29)

We remind the reader that we use a peculiar definition of the
velocity deviation u so that no additional surface terms appear
in Eq. (28). In order to take into consideration the role of the
magnetic wind, we complete this set of equations by the vertical
magnetic flux conservation

∂tBθ, 0 =
1
r
∂r

(
r Eφ, 0

)
. (30)

3.3.3. Mass conservation and mass-loss-rate parameter

The mass conservation equation is given by Eq. (27). Figure 10
shows the mass conservation for εint = 0.9 with time-averaged
quantities. The first information is that inside the cavity, the time
derivative of Σ is close to zero, meaning the simulation reaches
a steady state up to R ≈ 8. Closer to the cavity edge, we note that
this same term is negative, which is linked to the slow expansion
of the cavity; this is discussed later in Sect. 3.5.1.

The main contribution of the wind mass loss is located in
the cavity at R < 5 and is completely compensated by the radial
derivative of the accretion rate. Additionally, the ‘wind’ mass
flux turns negative around the cavity edge, which is due to matter
being accreted from the outer disc atmosphere (see the ‘elbow-
shaped structure’ in the poloidal streamlines).

In order to quantitatively account for the role of the wind,
we constructed the mass-loss-rate parameter ζ = ζ+ + ζ− (Lesur
2021b), where ζ+ and ζ− are defined by

⟨ζ±⟩ ≡ ±⟨ρvz⟩(θ±)
⟨Σ⟩ΩK

= ±⟨ρvr cos θ⟩ − ⟨ρvθ sin θ⟩
⟨Σ⟩ΩK

(31)
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Fig. 10. Mass conservation for εint = 0.9. The time derivative of Σ
remains perfectly constant and equal to zero inside the cavity and only
becomes moderately negative at the cavity edge R = 10. This suggests
that the simulation indeed reaches a steady state for radii up to ≈8. The
mass conservation is also correctly recovered. The three lines do not add
up to zero because we used a moving average for better visibility, and
the quantities are time-averaged on a sample selection of output files
that do not contain all the time steps computed by the code.

and the corresponding quantities are time averaged. The signs
of ζ± are chosen accordingly so that a positive value of ζ± cor-
responds to matter leaving the surface at θ±. Since ζ+ and ζ−
are pretty much symmetric with respect to the midplane, we
focus on ζ only. The results are illustrated in Fig. 11 where both
⟨ζ⟩ and −⟨ζ⟩ are shown. In order to compare with self-similar
models (Lesur 2021b), we studied the values of ⟨ζ⟩ at z0 = 6 h,
which corresponds to εint = 0.6. The mass-loss-rate parameter
is approximately constant in the external part of the disc around
6.2 × 10−5, while it peaks at 2.9 × 10−2 in the inner part. We find
two zones where ⟨ζ⟩ < 0. One is close to the inner boundary and
probably a boundary condition artefact, while the other extends
from R ≈ 5 to R ≈ 17 au and is related to the material falling
down on the disc around the transition zone, such a contribution
being notably stronger for εint = 0.6.

To compare to self-similar solutions, we show the self-
similar scaling of the mass-loss-rate parameter with respect to
⟨β⟩ derived by Lesur (2021b), which reads ⟨ζself⟩ = 0.24 ⟨β⟩−0.69.
It comes as no surprise that this fit does not account for negative
values of ⟨ζ⟩ since these are due to the transition radius, which
is not self-similar.

The wind mass-loss-rate parameter is smaller than the self-
similar scaling in the outer disc by a factor of a few. This
discrepancy is probably due to the influence of the cavity mag-
netosphere that compresses the disc magnetosphere, resulting in
a deviation of ζ from the self-similar result. Moreover, it seems
that the further we move outward, the closer we are to the self-
similar values, indicating that we recover self-similar scalings far
‘enough’ from the cavity, as expected.

In the cavity, ζ is significantly weaker than expected from
a naive extrapolation of self-similar scaling laws. This indicates
that the mass-loss rate saturates at β ∼ 1, a regime which was not
explored by Lesur (2021b).

An alternative model to the self-similar one is used to
describe ⟨ζ⟩ with greater accuracy. The self-similar fit is kept for
the external parts of the disc ζext = ζ0, ext ⟨β⟩aext , with aext = −0.69
and ζ0, ext = 0.24. Another one is then calculated for the inner
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Fig. 11. ⟨ζ⟩ parameter for εint = 0.6. The self-similar fit shown here
is for comparison only and was also obtained for εint = 0.6. It appears
that it is coherent for the external disc, while it predicts a wind way too
intense in the internal part, therefore, another model is used to describe
⟨ζ⟩ in the whole disc.

part only, ζint = ζ0, int ⟨β⟩aint , with aint < 0, so that the final profile
is given by

⟨ζ⟩fit =
ζ0, ext ⟨β⟩aext

1 + ζ0, ext

ζ0, int
⟨β⟩aext−aint

. (32)

We obtain aint = −0.20 and ζ0 int = 0.018. Such a model, with
aext − aint < 0, allows us to recover both of the previous regimes
with a reasonably accurate depiction of the disc. The final profile
exhibits a transition occurring at βt ≈ 5, which is close to the
lowest value of the ones used to build the self-similar fit in Lesur
(2021b). The final curves are rendered in Fig. 11. The fit does not
account for the negative values, but it properly catches both the
inner and external parts of the disc.

3.3.4. Angular-momentum conservation

In Fig. 12, we show the terms involved in the angular-momentum
conservation Eq. (28). These are time averaged and multiplied by
r−3/2 for better readability.

The integration height is εint = 0.9 and chosen so that the
influence of the cavity edge is diminished. In contrast to the
mass-conservation equation, the time derivative is negligible.
The surface stress (‘wind’) removes angular momentum from
the whole disc with a major contribution right after the cavity at
R ≈ 13. We also observe that the radial stress is always positive,
except at the cavity edge.

Such a cancellation suggests that two accretion regimes are
observed in the disc, which echoes the radial profile of both the
accretion rate and speed. To characterise the radial stress term,
we introduced the α parameter of Shakura & Sunyaev (1973). It
must be noted that the origin of this stress is in no way solely
linked to turbulence and is considerably driven by the laminar
structure of the magnetic wind. Appendix D details the origin of
the stress and sheds light on the turbulent versus laminar origin
of α. Nevertheless, the α parameter can still be used in this wind
model, whose definition when time averaged is

⟨α⟩ ≡ ⟨Wrφ⟩
⟨P⟩

. (33)

A17, page 9 of 25



A&A 667, A17 (2022)

Table 2. Transport coefficients for a subset of simulations.

Name Ṁ (10−7 M⊙ yr−1) ζin (10−2) ζext (10−5) αin αext (10−3) υW, in υW, ext (10−4)

B4Bin0Am0 1.4 2.9 6.2 13 4.9 1.0 2.3
B3Bin0Am0 5.1 3.8 14 19 23 1.4 31
B5Bin0Am0 0.27 2.1 4.5 6.6 1.0 0.18 0.19
B4Bin0Am1 1.2 –1.8 10 2.8 16 0.16 2.7
R20FID 1.1 4.5 5.8 15 2.4 1.2 10

Notes. The accretion rate is calculated inside the cavity. The bold font indicates the fiducial simulation values.
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Fig. 12. Angular momentum conservation multiplied by r−3/2 and time
averaged. Full blue line is ⟨∂t(r sin θ ρvφ)⟩ r−3/2, red dot-dashed line is
⟨∂r(r2 Wrφ)⟩ r−3/2, green dashed line is ⟨Wθφ⟩ r−3/2, and purple dotted
line is −⟨ 1

2π r Ṁ ∂r(r2 Ω̃)⟩ r−3/2.

The corresponding profile is given in Fig. 13, where εint = 0.9. In
the external part of the disc, ⟨α⟩ = 49± 5× 10−4, while it reaches
a maximum value inside the cavity ⟨α⟩ = 13 ± 5.

Following a similar procedure as the one for α, we define a
dimensionless number associated with the surface stress com-
ponent, υW. As for ζ, we define υW,±, which were chosen to be
positive for angular momentum leaving the disc on both sides:

⟨υW⟩ = ⟨υW,+⟩ + ⟨υW,−⟩ =
⟨Wθφ⟩
r ⟨P0⟩ . (34)

We show the dependence of υW on R in Fig. 13. In the external
disc, ⟨υW⟩ = 2.3±1.1×10−4, while it rises up to ⟨υW⟩ = 1.0±0.1
inside the cavity. The same observations are drawn for both ⟨α⟩
and ⟨υW⟩ as for ⟨ζ⟩. Therefore, two separate regimes are at stake
in the disc. The outer disc regime is typical of wind-emitting
protoplanetary discs, with transport coefficients close to the ones
found in self-similar wind models for β ∼ 104, indicating that
the dynamical properties of the outer disc are not perturbed by
the presence of the cavity. On the contrary, the second regime
describes the inner part of the disc with fast accretion and high
values for α and υW, which are both of the order of unity. Table 2
displays the transport coefficient values for all the simulations.

3.4. MHD wind

It is well known that steady-state MHD winds in ideal MHD can
be characterised by a set of MHD invariants (Blandford & Payne
1982), which are conserved quantities along each poloidal field
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Fig. 13. Time-averaged transport coefficients ⟨α⟩ and ⟨υW⟩ for εint =
0.9.

Table 3. MHD invariants for a subset of simulations, computed with
time-averaged quantities on the last 1000 orbits at Rint.

Name λin λext κin κext ωin ωext

B4Bin0Am0 23 3.2 2.2 × 10−2 2.5 0.67 1.2
B3Bin0Am0 185 1.3 3.1 × 10−3 9.9 0.64 0.93
B5Bin0Am0 4.4 1.2 1.3 18 0.69 1.1
B4Bin0Am1 4.9 1.5 0.24 5.0 0.23 3.6
R20FID 26 2.1 1.8 × 10−2 2.8 0.52 1.4

Notes. The bold font indicates the fiducial simulation values.

line (Fig. 5). In our axisymmetric simulations, a steady state is
approximately achieved above the disc, in the ideal MHD region.
Hence, we can measure these invariants on field lines attached in
the cavity and in the outer disc.

In the following, we select a field line anchored in the
disc midplane at R ≡ Rw. The corresponding Keplerian angu-
lar velocity is Ωw, while Bw is the poloidal magnetic field at the
midplane. We then consider the following invariants, built on
time-averaged quantities and listed in Table 3.

The mass-loading parameter accounts for the quantity of
matter that escapes the disc with the wind and is defined as

κ ≡ 4π
ρ vpΩw Rw

Bp Bw
. (35)

The rotation parameter is given by

ω ≡ Ω
Ωw
− κ Bw Bp

4π ρR RwΩw
2 . (36)
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Fig. 14. General structure of the wind and MHD invariants. First panel shows the field lines in the internal and external disc. The grey dashed lines
represent the surfaces at h/R = 0.3; 0.6 and 0.9. The three other plots display the MHD invariants for the internal field line (full, light blue) and
the external one (semi-dashed, dark blue). The invariants are time averaged on the last 1000 orbits.

The magnetic lever arm accounts for the angular momentum that
is removed from the disc by the wind is defined as

λ ≡ ΩR2

Ωw Rw
2 −

R Bφ
Rw Bw κ

. (37)

Of course, these invariants echo the transport coefficient def-
initions previously used to describe the disc, and one expects
κ ≈ β ζ/4 ε and λ ≈ 1 + ε υW/ζ (Lesur 2021a).

To compute these invariants, we arbitrarily chose one field
line in the cavity (referred to as ‘in’) leaving the midplane at
Rin = 3.5 au and one in the external disc (referred to as ‘ext’)
leaving the midplane at Rext = 15 au (see the first panel of
Fig. 14). We note that the disc thickness affects the MHD invari-
ants since the physical foot points of the field lines are not located
at the midplane but slightly above. Such a limitation especially
concerns the field lines in the external disc, which are subject to
a large-scale oscillation close to the transition radius. Therefore,
the calculated MHD invariants are subject to caution and we only
draw general conclusions regarding the nature of the wind.

We show the invariants along the chosen field lines in
Fig. 14. We find that all of the invariants remain reasonably
constant once high enough above the disc, as expected from a
steady-state ideal MHD flow. The wind launched from the cav-
ity is different from the disc one. The cavity wind has a much
weaker mass loading parameter and a much larger lever arm
(by almost a factor 10). We also find that its rotation param-
eter differs significantly from 1, indicating that field lines are
rotating at 80% of ΩK in the cavity. This point is probably
related to the fact that the disc itself is sub-Keplerian in this
region (Fig. 1). Quantitatively, we find κin = 2.2 × 10−2, κext =
2.5, λin = 23 and λext = 3.2. These values are coherent with
the transport coefficients computed in previous sections. We
also note that the values of κ and λ in the cavity match some
of the historical solutions of Blandford & Payne (1982) (see
their Fig. 2), which correspond to super-Alfvénic and collimated
outflows. These values are also consistent with the magnetic
outflow solutions of Ferreira (1997) (see Fig. 3). Hence, the cav-
ity we find quantitatively matches the inner JED proposed by
Combet & Ferreira (2008).
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3.5. Temporal evolution

We observe two kinds of time variability in the fiducial simu-
lation: a secular variability responsible for the slow expansion
of the cavity, and a short timescale variability responsible for
the striped patterns observed in space-time diagrams (Fig. 3). At
this point, we started our exploration of time variability by focus-
ing on the secular evolution, beginning with a discussion of the
cavity expansion.

3.5.1. Slow cavity-edge expansion

As previously mentioned, the cavity edge moves slowly out-
wards during the simulation. Neglecting the impact of the wind
in terms of mass-loss rate at the cavity edge location, which is
coherent with Fig. 10, and assuming piecewise constant accre-
tion rates and surface densities across the cavity edge, one
obtains

Ṙ0 = − 1
2πR0

δṀ
δΣ

, (38)

where Ṙ0 is the cavity edge ‘velocity’ and δṀ and δΣ are the
jump in accretion rate and surface density at the cavity edge. By
calculating Ṁ and Σ around R0, we find Ṙ0 = 1.8 × 10−5 while
directly evaluating the cavity edge motion Ṙ0 yields Ṙ0 = 1.4 ×
10−5 (both in c.u.). Therefore, the cavity is expanding because of
the slight mismatch in accretion rate observed in Fig. 8.

3.5.2. Magnetic field transport

To interpret the time evolution of the magnetic field, we studied
the transport of magnetic flux inside the disc and defined a flux
function ψ such that

ψ(r, t) = R 2
int

∫ π/2

0
Br(Rint, θ, t) sin θ dθ −

∫ r

r=Rint

r Bθ(r, π/2, t) dr.

(39)

Assuming the total flux is constant with respect to time, the
iso-contours of ψ describe the motion of the magnetic field lines
in the disc plane. The spatio-temporal diagram for ψ is shown
in Fig. 15. The magnetic flux is advected slowly towards the star
in the external disc, while it tends to diffuse outwards from the
inner part of the disc to the cavity edge. The poloidal magnetic
field lines in Fig. 5 show that ⟨Bz,0⟩ < 0 in the transition region
(8 ≲ R ≲ 12) and ⟨Bz,0⟩ > 0 otherwise. This transition region is
recovered in Fig. 15 as a region where ∂rψ < 0.

Overall, we observe that the negative field of the transition
region is diffusing outwards, while the positive field of the outer
disc is advected inwards. We therefore observe a reconnection of
the large-scale field around R ≈ 12, which progressively ‘eats’
the negative field of the transition region. In addition to this, we
observe that field lines deep in the cavity also diffuse outwards.

To achieve a quantitative estimate of the field line advection
speed, we first note that the evolution equations for ψ read
{
∂tψ(R, t) = −REφ,0(R, t)
∂Rψ(R, t) = −R Bθ,0(R, t)

. (40)

Following Guilet & Ogilvie (2014), we rewrote these evolution
equations as an advection equation for ψ :

∂tψ + vψ ∂Rψ = 0, (41)

Fig. 15. Flux function ψ(R, t) for the magnetic field, taking into account
the flux at the surface of the seed and the radial flux. For radii larger than
the one of the cavity, the field lines are advected toward the centre during
the whole simulation. At R ≈ 13, the flux accumulates and exhibits a
striped structure for smaller radii.
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Fig. 16. Magnetic-field transport parameter νB as a function of radius.
We note that the outer disc is transporting magnetic field lines inwards
(νB < 0).

where we defined the ‘field advection velocity’:

vψ = −
Eφ,0(R, t)
Bθ,0(R, t)

. (42)

Eventually, we define a dimensionless advection parameter νB =
vψ/vK, which quantifies the advection speed (Bai & Stone 2017).
In this framework, positive values of νB imply an outward
transport field, while negative values trace inward field transport.

We show the radial dependence of ⟨νB⟩ in Fig. 16. In the
external disc, we find that the magnetic field is advected inwards
with a velocity of vψ = −2.6× 10−3 vK. νB changes its sign multi-
ple times in the cavity, but it remains negative close to the cavity
edge, between R ≈ 7 and R ≈ 11 au, where vψ = +3.2 × 10−3 vK.
Such a result is in accordance with Fig. 15 and indicates that
field lines are converging at the transition radius with opposite
vertical polarity. In the external parts, νB is negative and vψ =

−2.6 × 10−3 vK so that vertical magnetic field pointing upwards
is advected. We note that this inwards advection of the outer
disc field lines is in sharp contrast to other work that focused
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Fig. 17. Temporal evolution of Σ in dotted green, Ṁ in dashed blue, and Bz (vertically averaged) in black (full line) at R = 3 au for the fiducial
simulation. ζ is calculated at εint = 0.3 and shown by a semi-dashed red line with a logarithmic scale on the right of the panels. Apart from ζ, all
the profiles are given in arbitrary units and divided by their maximum value reached during the timescale of the top panel.

on ‘full’ discs (Bai & Stone 2017; Lesur 2021b). We revisit this
discrepancy in the discussion.

3.5.3. Fast variability of the cavity

Up to this point, we mostly considered time-averaged quantities
and ignored fast variability. While our numerical solutions are
quasi-steady if one looks at averages on 100s of orbits, they also
exhibit a fast time variability (see the temporal stripes in Fig. 3),
the origin of which requires clarification.

Figure 17 shows such a temporal evolution of Σ, Ṁ, and Bz
at R = 3. These profiles encounter sharp fluctuations chaotically
distributed over time. Therefore, the cavity is subject to bursts
of matter that quickly falls onto the star (the typical width of a
peak is ∼5 orbits at Rint, which is still far larger than our tem-
poral resolution). This variability explains the stripes seen in the
spatio-temporal diagram (Fig. 3).

We focus on a few of these bursts in the bottom panels of
Fig. 17, while instantaneous pictures of the density correspond-
ing to the (b) panel are given in Fig. 18. For these bursts, we see
that the local maximum values of Bz, Σ, and Ṁ are correlated.
When an inflow of matter crosses the cavity, Σ peaks as well as
Ṁ, which in turn increases ζ. In terms of temporal sequence, it
seems that Bz increases slightly before Σ and Ṁ, which would
indicate that Bz is the driver of these bursts, but we cannot
be definitive on this sequence because of the lack of temporal
resolution. Finally, we observe that ζ is always clearly delayed
compared to the other quantities, indicating that the wind inside
the cavity ejects more material once the bubble of material has
passed.

For a more precise insight on accretion and temporal vari-
ability, we refer the reader to Fig. 18, which shows the density
and poloidal magnetic field lines at different times. In the first
panel, we see a filament of matter located above the disc that

extends from (R = 10, Z = 5) to (R = 15, Z = 10). This struc-
ture is cut in two on the second panel, revealing two bubbles of
matter, one being about to fall, while the other is about to be
ejected and leave the disc in the wind. Concerning the filament
and the bubble formation, we detect a current sheet at the loca-
tion of the filaments, where the total magnetic field cancels out
(Bφ = 0 at the edge of the magnetic loop and Bp = 0, because
two anti-parallel poloidal field lines meet at the elbow-shaped
structure location). It is therefore a possibility that these struc-
tures form due to magnetic reconnection. Focusing on the falling
material, we see it reaching the edge of the cavity on the third
panel before crossing it on the next one. When the gas crosses
the cavity, the disc oscillates locally above and below the mid-
plane and is therefore highly dynamical. With a slight delay (last
three panels), we see an outflow emerging from the cavity, and
the wind density increases. Such an observation exhibits the link
between wind and accretion (see Fig. 10). The ejection of gas
from the cavity is not constant with respect to time and occurs
occasionally with burst events for which ζ eventually peaks at
0.1. This explains why the effective value of ⟨ζ⟩ is lower than
the one predicted by self-similar models for which the ejection
is continuous with a higher mass-loss rate parameter.

Combining 6 and 18, we unveil a general scheme for feeding
the cavity. First, the gas located inside the outer disc elevates
from the midplane up to approximately two local disc heights
and organises itself in a filamentary way. Then, bubbles of matter
fall and cross the cavity, forming the elbow-shaped structure on
the time-averaged profile.

3.5.4. Magnetic Rayleigh Taylor instability

To account for the formation and stability of the bubbles of mat-
ter at the cavity edge, we explored the possibility of having a
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Fig. 18. Density and magnetic field lines at different times showing the advection of a bubble of material (arrow) from the outer disc through the
cavity.

magnetic Rayleigh Taylor instability (RTI; or interchange insta-
bility) in the cavity. The disc is geometrically thin inside the
cavity and the density is relatively continuous radially. Under
these conditions, we referred to the analyses of Spruit & Taam
(1990), Spruit et al. (1995) and Stehle & Spruit (2001), which
assume an infinitely thin disc. We reformulated the instability
criterion of Spruit et al. (1995) (see their Eq. (59)) in terms of
the plasma parameter in Appendix C. The resulting criterion C.9

states that a necessary condition for the occurrence of the RTI is
β < βcrit. ≃ 0.0355. Figure 3 shows that β is of the order of 0.1
in the cavity and rarely goes beyond this value, except for very
short periods of time, for instance during the accretion ‘bursts’.
We conclude that the cavity β plasma parameter is too large to
sustain the RTI on average, but we cannot exclude that it could be
triggered in the rare excursions where the cavity reaches β < 0.1,
as it does during some of the bursts.
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Fig. 19. Σ(R, t) and β(R, t) of B4Bin0Am1. The cavity stands throughout the simulation, though its edge falls down to R ≈ 2 au during the
transient, before broadening up to R ≈ 4 au in a few thousands of orbits at Rint. The profile of β is characterised by the presence of gaps in the
external disc.

4. Parameter space exploration

4.1. Ambipolar Diffusion

We checked the influence ofΛA, 0 in the simulation B4Bin0Am1.
This simulation is the same as the fiducial one, except for the
initial value of ΛA, which is set to 10.

4.1.1. General structure of the disc and gaps

The spatio-temporal evolution of Σ and β are shown in Fig. 19
for ΛA = 10. During the transient state, the cavity edge falls
down to R ≲ 2 au before expanding back up to R ≳ 4 au in a
few thousands of orbits at Rint. Overall, the transient state lasts
for a shorter period of time than in the fiducial run, and the cavity
extension is smaller.

We observe the apparition of gaps in both the profiles of
Σ and β (Fig. 19) located in the external disc and broadening
with time. Such structures are observed in numerous occasions
in protoplanetary discs simulations either with ideal (Jacquemin-
Ide et al. 2021) or non-ideal MHD (Béthune et al. 2017; Suriano
et al. 2019; Riols et al. 2020; Cui & Bai 2021). We observe that
gaps are associated with low β regions and are localised rela-
tively far from the disc’s inner boundary. Some gaps merge with
one another, meaning that only three of them remain after 15 000
orbits at Rint, similarly to what was found by Cui & Bai (2021).
We reserve the study of the interaction between these gaps and
the cavity for a future paper.

Figure 20 shows the flow and field topology for ΛA = 10
as well as the time-averaged magnetic structure of the disc. The
main features of the fiducial simulation are recovered, namely the
elbow-shaped structure and the associated magnetic loop. These
are, however, located closer to the star, the cavity radius being
smaller in this simulation.

In contrast to the fiducial simulation, the outer disc is this
time top down asymmetric, which has an impact on the shape of
the elbow above and below the disc plane. The elbow is promi-
nent above the disc but almost disappears below it, except for a
small set of streamlines close to the cavity. The magnetic field
lines exhibit a local slanted symmetry in the external disc at
the gaps location. This is similar to the topology observed in
ambipolar-dominated discs (Riols & Lesur 2018, 2019). The gaps
seem to be characterised by small vortices in the (r, θ) plane,

located at the disc surface at the corresponding radii, indicating
a meridional circulation.

4.1.2. Transport coefficients and wind invariants

The accretion rate remains constant in the whole disc with a
value close to 1.2 × 10−7 M⊙ yr−1 and an accretion velocity that
is still subsonic in the outer disc and peaks up to 2 cs at the inter-
nal radius. Therefore, the accretion picture is identical to the one
for the fiducial run with an internal transsonic regime connecting
through the cavity edge to a weakly magnetised wind.

Regarding the wind, we obtain a highly mass-loaded field
line in the external disc that removes little angular momentum
(λext = 1.5 and κext = 5.0) and a lighter one in the internal disc
that carries a massive load of angular momentum (λin = 4.9 and
κin = 0.24). We note that the disc wind is overall less magnetised
and more massive, while the general picture of the fiducial run
remains. The rotational invariant contrast is higher than in the
fiducial simulation, its internal value being three times lower and
the external one three times higher.

4.2. Influence of the initial plasma parameter

We studied the impact of the plasma parameter by varying both
its internal βin and external βout initial value.

4.2.1. Role of the external initial plasma parameter

We explored how the outer disc magnetisation impacts the gen-
eral properties of the system. We varied the initial value of
β between βout = 103 (run B3Bin0Am0) and βout = 105 (run
B5Bin0Am0).

With regard to B5Bin0Am0, the spatio-temporal evolutions
of Σ and β are shown in the left panels of Fig. 21. Right at the
beginning of the simulation, a burst of matter appears in the cav-
ity, which is subsequently refilled. Its radius then remains fixed
at ∼4 au until other bursts happen at ∼17 400 and ∼27 000 orbits
at Rint. Such local events do not dramatically change the gen-
eral properties of the disc, which is similar to the fiducial one
overall.

The bursts of matter (at ∼17 400 and ∼27 000 orbits at Rint,
assuming the first one is due to the initial transient) give the illu-
sion that some gas might be created inside the cavity, challenging
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Fig. 20. Time-averaged structure of the disc for B4Bin0Am1. Left panel: poloidal streamlines and density. Right panel: magnetic structure of the
disc with magnetic poloidal field lines and ⟨Bφ⟩.

mass conservation. These bursts are actually due to gas accu-
mulating at the boundary of an accretion ‘barrier’. We refer the
reader to Appendix B for a more detailed description of these
bursts. For now, we point out that these bursts highlight a lim-
itation of our model regarding the implementation of the inner
boundary conditions, but they only occur in the weakly magne-
tised (βout = 105) simulations. Lastly, we add that estimating Ṙ0
for this simulation is too difficult, since the cavity edge barely
moves during the entire simulation.

In contrast to the run B5Bin0Am0, the cavity in the simula-
tion B3Bin0Am0 quickly expands up to R ≈ 15 au and keeps
growing throughout the simulation, faster than in the fiducial
run (see the right panels of Fig. 21). We estimate its velocity
as Ṙ0 ≈ 3.0× 10−5 c.u., which is about three times faster than the
fiducial run. We obtain δṀ ≈ 2.3 × 10−4 and δΣ ≈ 4.2 × 10−2

(both in code units), so Eq. (38) gives Ṙ0 ≈ 4.2×10−5 c.u., where
we chose R0 ≈ 20. The simple model we used seems to overesti-
mate the widening velocity of the cavity but still gives the correct
order of magnitude.

The time-averaged surface density from the fiducial run,
B3Bin0Am0, and B5Bin0Am0 are shown in Fig. 22, which
demonstrates that the size of the cavity is ruled by the initial
external plasma parameter. The lower βout is, the wider the cavity

gets when the disc reaches a steady state. On the contrary, the
plasma parameter inside the cavity does not depend on its exter-
nal structure and converges to βin ≲ 1 in all of these simulations
(Sect. 4.2.2 tackles this observation in depth). Once the transient
state is gone, we note that the cavity expands faster for lower βout.
This can be understood using Eq. (38), which can be recast as

Ṙ0 = vacc., in

(
Σin

Σout
− vacc., out

vacc., in

)
, (43)

where we defined the accretion velocities vacc. ≡ Ṁ/2πR0 Σ, and
assumed Σout ≫ Σin. The expansion speed is then controlled by
the term in parenthesis, since the accretion velocity in the cavity
is always sonic (see 4.2.2). It is well known that the accretion
velocity in the outer ‘standard’ disc is a decreasing function of β.
Writing vacc. ∝ β−σ withσ > 0, Lesur (2021b) proposesσ = 0.78
and Bai & Stone (2013) σ = 0.66, which indicates that 0 < σ <
1. Assuming that a value β̃ exists for which Ṙ0 = 0, we obtain
the following scaling:

Ṙ0 = vacc., in
1
βout

1 −
(
βout

β̃

)1−σ , (44)
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Fig. 21. Spatio-temporal diagrams for Σ and β for B5Bin0Am0 and B3Bin0Am0. The cavity expands more in B3Bin0Am0 but shrinks in
B5Bin0Am0. Bursts of matter occur in B5Bin0Am0 (see main text for more explanations).

Fig. 22. Impact of initial external magnetisation on the surface density.
We average the profile on the last 1000 orbits at Rint. For B5Bin0Am0,
we average on 1000 orbits at Rint occurring between the 2 burst events
seen in Fig. 21.

where we used the fact that Σin/Σout = βin/βout = β−1
out in our

setup. The relation (44) shows that for βout � β̃, we have
approximately Ṙ0 ≈ vacc., in β

−1
out, indicating that the cavity expan-

sion speed should increase as βout decreases, which is precisely
what we observe for B3Bin0Am0. For βout � β̃, we obtain, on
the contrary, Ṙ0 ≈ −vacc., in β̃

σ−1 β−σout , showing a change of sign
(hence a contraction of the cavity), albeit with a reduced speed.
This regime might correspond to B5Bin0Am0, indicating that
β̃ ' 104.

Fig. 23. Impact of internal initial magnetisation on the plasma parame-
ter for βout = 104.

4.2.2. Role of the internal initial plasma parameter

To study the impact of βin, we ran a set of simulations that cover
all the possible initial gaps βin/βout where log βout ∈ {3, 4, 5}
and log βin ∈ ~0; log βout~. We compared each result to the one
obtained with βin = 1 and the corresponding value of βout. A
striking result is the fact that the disc’s inner structure does not
depend on βin. No matter which βin we initially choose, a transi-
tion occurs in the cavity in order to impose βin ≈ 1. Interestingly,
this threshold value is the one required to achieve transsonic
accretion, which is mentioned in Wang & Goodman (2017). We
illustrate this statement with Fig. 23 for the particular case of
βout = 104. We focus on the transient state of B4Bin3Am0 in
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Fig. 22. Impact of initial external magnetisation on the surface density.
We average the profile on the last 1000 orbits at Rint. For B5Bin0Am0,
we average on 1000 orbits at Rint occurring between the 2 burst events
seen in Fig. 21.

where we used the fact that Σin/Σout = βin/βout = β−1
out in our

setup. The relation (44) shows that for βout ≪ β̃, we have
approximately Ṙ0 ≈ vacc., in β

−1
out, indicating that the cavity expan-

sion speed should increase as βout decreases, which is precisely
what we observe for B3Bin0Am0. For βout ≫ β̃, we obtain, on
the contrary, Ṙ0 ≈ −vacc., in β̃

σ−1 β−σout , showing a change of sign
(hence a contraction of the cavity), albeit with a reduced speed.
This regime might correspond to B5Bin0Am0, indicating that
β̃ ≃ 104.

Fig. 23. Impact of internal initial magnetisation on the plasma parame-
ter for βout = 104.

4.2.2. Role of the internal initial plasma parameter

To study the impact of βin, we ran a set of simulations that cover
all the possible initial gaps βin/βout where log βout ∈ {3, 4, 5}
and log βin ∈ ⟦0; log βout⟦. We compared each result to the one
obtained with βin = 1 and the corresponding value of βout. A
striking result is the fact that the disc’s inner structure does not
depend on βin. No matter which βin we initially choose, a transi-
tion occurs in the cavity in order to impose βin ≈ 1. Interestingly,
this threshold value is the one required to achieve transsonic
accretion, which is mentioned in Wang & Goodman (2017). We
illustrate this statement with Fig. 23 for the particular case of
βout = 104. We focus on the transient state of B4Bin3Am0 in
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Fig. 24. Spatio-temporal diagrams of Σ (first panel), Bz, 0, the vertical magnetic field at the midplane, and ψ, the flux function defined in Eq. (39).
These profiles focus on the first orbits of the run B4Bin3Am0.

Fig. 24. The transition is due to matter leaving the cavity because
of the fast accretion at stake after a sharp increase of the mag-
netic field (and therefore a decrease of β). This reorganisation
of the cavity is a consequence of a rapid advection of magnetic
flux from the cavity onto the seed, which initially has low mag-
netisation because of our initial setup. Due to the total magnetic
flux conservation, there is a shortage of magnetic flux inside the
cavity, up until the inner seed reaches a state where its magneti-
sation is almost constant. The magnetic field then accumulates
at the inner boundary and β decreases accordingly so that accre-
tion is enhanced. At this point, matter leaves the cavity as it is
accreted onto the star. It is then clear that the cavity converges
towards the same overall structure as the fiducial simulation one.

We note that taking βin equal to βout would simulate a full
disc with no cavity. Hence, a threshold should exist regarding the
value of βin, above which no cavity is able to form. Considering
Fig. 23, it seems that this threshold is ≳103.

From these observations, we deduce that the cavity is regu-
lated by the value of the plasma parameter, which must take a
value close to 1. The reason for this regulation is not entirely
clear, and we add a word of caution regarding the role of the
inner radial boundary condition, especially with respect to the
magnetic field transport at Rint. We discuss this influence in
Appendix B. Referring to Sects. 3.5.3 and 3.5.4, we suggest that
the RTI may be responsible for this regulation, but a dedicated
study would be required to ascertain this claim.

4.3. Zoom with a larger cavity radius

We performed a simulation with a double-sized cavity (R0 =
20 au) in order to check the impact of the cavity size. The simula-
tion was integrated for 1000 orbits at R = 10 au so that it reaches
355 orbits at R = 20 au The general observations are confirmed,
such as the elbow-shaped structure, the magnetic loop, the mag-
netic field advection in the outer disc, as well as the conclusions
regarding the accretion. While the cavity size is identical to
B3Bin0Am0, the behaviour of the disc is exactly the same as
the fiducial one (see Fig. 25), indicating that βout is the main
parameter regulating the cavity expansion. This means that the
global picture where two types of discs are connected is robust
and not linked to limitations in the cavity size or artefacts due to
the inner boundary condition.

5. Discussion and comparison with previous work

We modelled TDs sustained by MHD winds by performing 2.5D
global simulations. This model acts as a proof of concept, show-
ing that steady-state discs with both a cavity and a wind can be

obtained. The resulting simulated discs are characterised by two
different zones with contrasted dynamics.

First, our ‘outer disc’ behaves like a standard, weakly mag-
netised, ambipolar-dominated protoplanetary disc (Lesur 2021b;
Cui & Bai 2021). In particular, we find mass and angular-
momentum transport coefficients, wind properties, and accretion
rates comparable to those found in the literature for ‘full’ discs.
We also find weak gaps, which are characteristic of non-ideal
MHD discs (Riols & Lesur 2019; Riols et al. 2020). However, the
magnetic field transport in the outer disc differs from previous
studies: we find that magnetic field lines are advected inwards
in the outer disc, in contrast to measurements in full discs which
always show outwards transport (Bai & Stone 2017; Gressel et al.
2020; Lesur 2021b). This discrepancy is likely due to the fact
that the field lines in the cavity are more collimated (i.e. less
opened), which results in a lower pressure on the magnetic sur-
faces in the outer disc, but it is possibly also connected to the
peculiar elbow-shaped magnetic surfaces at the transition radius.
In any case, it points to the fact that magnetic field transport is a
non-local phenomenon: it depends on the global disc structure.

In contrast to the outer disc, the cavity (or inner disc) is
strongly magnetised (β ≈ 1) because of its low surface density.
We emphasise here that the absolute magnetic field strength in
the cavity is not stronger than standard protoplanetary disc mod-
els. In practice, and given our set of units, we have B0 ≈ 0.13 G
(see Eq. (17), with βout = 104), so, initially, Bz ≈ 1.25 mG at
R = 42 au in our simulations, which is of the same order of
magnitude as the upper limit of Bz(R = 42 au) = 0.8 mG found
in Vlemmings et al. (2019), for example. Hence, while the cav-
ity is strongly magnetised, its field strength is compatible with
observational constraints.

Compared to the outer disc, the mass and angular-
momentum transport coefficients in the cavity are all of the order
of unity, resulting in transsonic accretion velocities and faster
wind with large lever arms (λ ≳ 10). Overall, this picture quanti-
tatively matches the inner jet-emitting disc proposed by Combet
& Ferreira (2008). Interestingly, in all of our models, the cav-
ity manages to reach an accretion rate close to the outer disc
one by self-regulating the magnetic stresses. We find that most
of the angular-momentum transport is due to the laminar stress
(Appendix D) indicating that turbulent transport (possibly MRI-
driven) is unimportant in the cavity. This is not surprising since
our discs are dominated by ambipolar diffusion, which mostly
suppresses MRI turbulence (Bai 2011).

We find a significant deviation of the rotation profile in
the cavity as a result of the strong magnetic stress due to the
wind and typical rotation velocities of the order of 70–80% of
the Keplerian velocity. This fact, combined with the transsonic
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Fig. 25. Spatio-temporal diagrams for ⟨Σ⟩ and ⟨β⟩ for R20FID.

accretion, implies that the kinematics of these cavities have sin-
gular observational signatures. Fast accretion kinematics have
been observed in some TDs (Rosenfeld et al. 2014), but we note
that these signatures might also be due to a warped circumbinary
disc (Casassus et al. 2015).

As a result of the stress balance mentioned above, we obtain
accreting cavities that survive thousands of orbits and that are
slowly expanding or contracting, depending on the outer-disc
magnetisation. This result suggests that a cavity could be carved
spontaneously if the magnetisation of the outer disc is high
enough. There are already hints of such a process in global sim-
ulations; for instance, Cui & Bai (2021) show a gas-depleted
cavity forming in the inner profile of Σ (see their Fig. 5, first
row and first column panel). While this is by no means proof,
since the boundary conditions are probably unrealistic, it shows
that the secular evolution of wind-driven discs should be inves-
tigated systematically to check whether or not cavities could
spontaneously form in these models.

The temporal analysis of the disc reveals the appearance of
dynamical structures. In particular, we highlight the formation
of gas filaments above the disc surface that end up forming two
bubbles of gas each, one being ejected, while the other one
falls down onto the cavity before crossing it. At some point,
the falling matter has to cross the poloidal magnetic field lines
at the magnetic field loop location, resembling, to some extent,
the magnetospheric accretion observed in young stars (Bouvier
et al. 2007, 2020b,a; Pouilly et al. 2020) and magnetospheric
ejection events (Zanni & Ferreira 2013; Čemeljić et al. 2013).
However, there is no magnetosphere in our simulations, so the
magnetic topology is quite different from that of magnetospheric
interaction.

By analogy with magnetospheric accretion, we checked
whether the time variability seen in our simulations could be
due to a magnetic RTI. We have studied two criteria for the RTI,
in the form of a radial interchange of poloidal field lines (see
Sect. 3.5.4 and Appendix C). We found, however, that the RTI
requires magnetisations stronger than the ones found in our sim-
ulations, ruling out the RTI in the form we have assumed. It is,
however, still possible that another branch of this instability is
present. It is also possible that the non-axisymmetric version of
the RTI could be triggered in 3D simulations. We therefore defer
this study to a future publication.

On longer timescales, averaging out the fast variability, the
magnetic field strength appears to be self-regulated with 0.1 ≲
β ≲ 1 in the cavity, independently of the initial field strength.

As a result, the cavity is strongly magnetised and rotates at
sub-Keplerian velocities, indicating a substantial magnetic sup-
port against gravity in this region. In essence, the regime of
our cavity is similar to the magnetically arrested disc (MAD)
proposed by Narayan et al. (2003) in the context of black hole
accretion discs. McKinney et al. (2012) showed that MADs
could be regulated by magnetic RTI, leading to magnetically
chocked accretion flows (MCAF). The MAD model is also asso-
ciated with the formation of plasmoids by reconnection events
(Ripperda et al. 2022). These features are recovered in our mod-
els of TDs, despite the fact that we used Newtonian dynamics
(MADs are usually found in GRMHD simulations) and the pres-
ence of a strong ambipolar diffusivity in our models. Hence, our
models could be interpreted as non-ideal, non-relativistic models
of MADs.

The time variability of the cavity is likely to be related to
the axisymmetric approximation used in this work since it sup-
presses non-axisymmetric instabilities, which seem to play a key
role in MADs simulations (e.g. McKinney et al. 2012; Liska
et al. 2022). Additionally, we note that the question of non-
axisymmetric hydrodynamical instabilities such as the Rossby
wave instability (RWI) (Lovelace et al. 1999; Li et al. 2000) at the
cavity edge is still open to debate in a magnetised environment
(Bajer & Mizerski 2013). We will address these points using full
3D simulations in a follow-up paper.

Regarding the caveats of our simulations, we remark that
the inner radial boundary is probably the most stringent caveat
of our numerical model. In particular, we found that this inner
boundary condition sometimes expels some poloidal magnetic
flux, resulting in the bursts seen in Fig. 21. However, the weakly
magnetised simulations (such as B5Bin0Am0) are the only ones
exhibiting these events, and once the transient state is over, all the
simulations reach comparable steady states. So, the inner bound-
ary condition is likely not affecting the long-term evolution of
our models. Future models should nevertheless try to include
either an inner turbulent disc, or possibly the magnetospheric
interaction with the central star.

A possible limitation of our model concerns the role of the
MRI. Our simulated discs are dominated by ambipolar diffu-
sion, and as such, subject to MRI quenching by the non-linearity
embedded in the ambipolar diffusivity (η ∝ B2). This saturation
is different from the saturation by 3D turbulence observed in the
ideal MHD regime. It is suggested that the MRI saturates in very
similar ways in 3D and 2D under strong ambipolar diffusion (see
e.g. Béthune et al. 2017; Cui & Bai 2021). This is also confirmed
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by our own 3D simulations, which will be published in a forth-
coming paper. Hence, the fact that our simulations are 2.5D has a
very limited impact on the turbulent transport one may observe.

We note that our simulations used a simplified treatment
of thermodynamics and ionisation chemistry. More numerically
involved models, such as that of Wang & Goodman (2017), use a
refined computation of the ionisation fraction and ΛA inside the
cavity of a TD, including several chemical species. This work
highlights, in particular, the influence of the X-ray luminosity of
the star LX (see their Fig. 2, panels 2 and 3) as well as the role of
the temperature T0 at 16 au (Fig. 2, panels 6 and 7). Regarding
our profile of ΛA ≈ 1–10, our work is similar to their models 2
(with LX = 1029 erg s−1) and 6 (where T0 = 30 K). Therefore,
we anticipate that an increase of two orders of magnitude for
LX would lead to ΛA > 102 in most of our cavity. Such a change
would greatly alter the dynamical regime of the cavity since MRI
would then play a significant role see Appendix A and Blaes
& Balbus (1994) and Bai (2011). However, the role of the tem-
perature is less straightforward and seems to have little impact
on ΛA.

Additionally, dust plays a significant role in the work of
Wang & Goodman (2017) regarding the ionisation of the disc.
As a matter of fact, only their models with dust reach low
values of ΛA. The effect of dust in TDs is a major subject
that is not addressed in our work. Dust can modify the ionisa-
tion fraction but also create peculiar structures at the interface
between the disc and cavity. We mention in particular the inter-
play between dust and the radiation pressure, which is known
to create non-axisymmetric structures at the cavity edge (Bi &
Fung 2022) or an inner rim with an accumulation of matter due
to photophoresis (Cuello et al. 2016).

6. Conclusions

We performed 2.5D global numerical simulations of TDs in
the context of non-ideal MHD with MHD wind launching. Our
simulation design is initialised with a cavity in the gas surface
density profile, and a power-law distribution for the vertical mag-
netic field strength, resulting in a strongly magnetised cavity
surrounded by a standard weakly magnetised disc.

The main results are summarised in the following points:
1. We modelled strongly accreting TDs that reach a quasi-

steady state that lasts for at least thousands of years. The
accretion rate inside the cavity connects smoothly to the
accretion rate in the external part of the disc;

2. The cavity itself is characterised by a strong sub-Keplerian
rotation and a transsonic accretion velocity. These kinematic
signatures could potentially be verified observationally;

3. The magnetic field is advected inwards in the outer disc, in
contrast to full disc simulations. This points to the possible
non-locality of large-scale field transport;

4. The cavity structure (density and field strength) is self-
regulated. In particular, it is insensitive to a change in the
initial internal magnetisation and is characterised by 0.1 ≲
βint ≲ 1;

5. The temporal analysis of the cavity dynamics highlights
the formation and accretion of bubbles of gas above the
disc which cross the cavity at sonic speeds. The magnetic
Rayleigh–Taylor instability might be responsible for this
unsteadiness;

6. The physics of the cavity (accretion speed, wind lever arm,
and mass loading) match previously published jet-emitting
disc solutions (Ferreira 1997; Combet & Ferreira 2008). The

presence of a strong radial magnetic support and possible
regulation by the RTI is also reminiscent of MADs in black
hole physics (Narayan et al. 2003; McKinney et al. 2012).
These resemblances suggest that TDs could be an instance
of MADs applied to protoplanetary discs.

Transition discs with strong accretion rates and arbitrarily large
cavities can be achieved by magnetic winds emitted from the
cavity. This model is promising and should be tested with
observations.
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Appendix A: Ambipolar diffusivity for a transition
disc - a simple model

The aim of this appendix is to model the ambipolar diffusivity
spatial dependence in both a TD and a standard protoplane-
tary disc (i.e. without cavity). The general procedure to reach
such a result follows and adapts the main calculation steps that
are presented in Combet et al. (2010). As assumed in Eq. 4,
only the ambipolar diffusivity does appear in the MHD equa-
tions, which we assume is the dominant non-ideal effect in the
regime of discs we used at R ≥ 10 (Riols et al. 2020; Simon
et al. 2015). Therefore, the only momentum exchange that occurs
between particles happens exclusively between ions and neutrals.
In a plasma made of molecular ions, electrons and neutrals, the
ambipolar diffusivity is given by

ηA =
B2

4π γin ρn ρi
(A.1)

(Wardle 2007), where ρn and ρi are, respectively, the density
of the neutrals (the gas so ρn = ρ) and of the ions and γin =
⟨σv⟩in/(mn + mi) with ⟨σv⟩in is the ion-neutral collision rate
whose value is

⟨σv⟩in = 2,0 × 10−9
(

mH

µ

)1/2

cm3s−1 (A.2)

(Bai 2011), with mH being the atomic mass and µ = 2,34 mH the
mean molecular weight. Introducing the ionisation fraction ξ =
ρi/ρn, one obtains

ηA = 1,6×1016
(

ξ

1 × 10−13

)−1 (
B

1 G

)2 (
ρ

1 × 1014 cm−1

)−2
cm2s−1.

(A.3)

Ambipolar diffusion is usually evaluated with the dimension-
less ambipolar Elsasser number ΛA defined in Eq. 13. To obtain
this number, we have to evaluate the ionisation fraction. Let us
consider a simple chemical lattice with no metals nor grains:

m + ionising radiation −→ m+ + e− ζi, (A.4)
m+ + e− −→ m δ, (A.5)

with ζi being the ionisation rate and δ the dissociative recombi-
nation rate. Following Fromang et al. (2002), we take

δ = 3 × 10−6 T−1/2 cm3s−1. (A.6)

In this toy model, we then have

ξ =

√
ζi

δ ρ
+ ξFUV (A.7)

(Lesur et al. 2014), where ξFUV accounts for the far-UV photon
contribution that we modelled following Perez-Becker & Chiang
(2011) as

ξFUV = 2 × 10−5 exp
[
−

(
Σ⋆/0,03 g cm−2

)4
]
, (A.8)

with Σ⋆ the column density computed from the star to the point
of interest.
To calculate ζi, we considered several ionisation sources. We
modelled the X-ray ionisation from the protostar by two

Fig. A.1. Ambipolar Elsasser number ΛA in a standard protoplanetary
disc (top panel) and in a TD (bottom panel). In spite of these 2 profiles
being slightly different, no major changes occur from one kind of disc
to another around the midplane.

bremsstrahlung-emitting corona (following Bai & Goodman
2009 and Igea & Glassgold 1999):

ζX = LX, 29

( R
1 au

)−2,2 [
ζ1

(
e−(NH1/N1)α + e−(NH2/N1)α

)
+

ζ2

(
e−(NH1/N2)β + e−(NH2/N2)β

)]
, (A.9)

with LX,29 ≡ LX/1029erg s−1 and LX, ζ1, ζ2, α, β, N1, N2 being
the numerical values defined in Bai & Goodman (2009), while
NH1 and NH2 are the column densities of hydrogen vertically
computed above and below the calculation point.

We modelled the cosmic-ray ionisation rate following Ume-
bayashi & Nakano (1980) so that:

ζCR = ζCR,0 e−Σcol./96 g cm−2
s−1, (A.10)

where ζCR,0 = 10−17 s−1 and Σcol. is the matter column density
above and below the point of interest.

Lastly, we added the radioactive decay that is assumed con-
stant (Umebayashi & Nakano 2008) with a ionisation rate given
by

ζrad. = 10−19 s−1. (A.11)

Combining the Eqs. A.9, A.10, and A.11, we obtain ζi = ζX +
ζCR + ζrad., paving the way to finally reachΛA using Eqs. 13, A.6,
and A.7. We note that due to the dependency of ηA and vA on the
norm of the magnetic field, this latter is cancelled out and does
not need to be computed to obtain ΛA. The previous calculations
can be performed either for a standard protoplanetary disc or for
a TD. The only thing that needs to be changed to account for
such discs is the surface density profile, where Eq. 18 allows us
to consider (or not) the effects of the cavity.

The results of such calculations are displayed in Fig. A.1,
which represents the spatial dependency of ΛA in both a stan-
dard protoplanetary disc and a TD. Though these two profiles
look different at first glance, a deeper investigation reveals that
the values taken by ΛA in the discs remain quite close to unity in
both cases, while the general trend ofΛA in a standard protoplan-
etary disc is recovered even in the case of a TD (Thi et al. 2019).
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Moreover, ΛA remains fairly below the critical value ΛA, crit. =
102 with or without a cavity. ΛA must stay below ΛA, crit. so that
the MRI effects are negligible (Blaes & Balbus 1994; Bai 2011).
Therefore, assuming a characteristic value of ΛA, 0 = 1 captures,
with a reasonable level of accuracy, the physics of ambipolar
diffusion, and the cavity does not alter the ambipolar Elsasser
number profile. The results we achieve from this simple toy
model are to be compared to the more detailed work of Wang
& Goodman (2017), in which many chemical species were taken
into account to compute the ambipolar Elsasser number inside
the cavity of a wind-driven TD.

Following Lesur (2021b) and Thi et al. (2019), we imple-
mented the profile of ΛA so that

ΛA(z,R) = ΛA, 0 exp
( z
λ h

)4
, (A.12)

where λ is a parameter that controls the height where a transition
between non-ideal and ideal MHD occurs (the non-ideal MHD
part being the inside of the disc) and is chosen as constant and
equal to 3 h. ΛA, 0 remains a free parameter (see Section 1 for
more details). Additionally, a cut-off is used for the ηA profile so
that if ηA > ηA,max, the value of ηA is replaced by ηA,max ≡ 10 ε2

in code units, such a choice being reflected in theΛA profile with
Eq. 13.

Appendix B: Poloidal velocity relaxation and inner
boundary condition

We aim to address the influence of the poloidal velocity relax-
ation on our results to test our control on the inner boundary
condition. Two additional simulations were conducted with the
same setup as B4Bin0Am0 (fiducial run) and B5Bin0Am0,
respectively, but without the relaxation procedure. The results
are given in Fig. B.1, where we show the surface density ⟨Σ⟩4000
time averaged on the first 4000 orbits at the internal radius (when
the differences are enhanced), with a focus on the innermost
radii. We highlight that these differences do not increase for
t > 4000 orbits at Rint. For B5Bin0Am0, the right panel of
Fig.B.1 suggests that the relaxation procedure influences how
the initial burst is evacuated since we detect differences between
the surface-density profiles at R > 1.5. However, releasing this
inner constraint reduces the inner peak of the profile of Σ,
but it does not prevent the initial accumulation of matter from
appearing. In particular, the bursts of matter seen in Fig. 21
are not due to this condition (and are probably due to the
inner boundary condition; see next paragraph). For the fiducial
simulation, we estimate differences of 15% until R = 2, 7% until
R = 10, and less than 2% until R = 50, and we conclude that
the slight accumulation described in Section 3.1 is due to this
procedure, contrary to the occurrence of bursts as seen in Fig. 21.

Regarding the bursts of B5Bin0Am0 (see Fig. 21), we focus
on one of them in Fig. B.2. The first panel displays the spatio-
temporal diagram of the surface density on which the burst is
clearly detected at 17435 orbits at Rint and localised by the red
dashed line. The accumulation of matter is correlated with a
decrease of the vertical magnetic field at the midplane (second
panel of Fig. B.2). This magnetic field is not lost but is expelled
outwards, as is evident from the magnetic flux function (third
panels of Fig. B.2). Such a shortage of magnetic field leads to an
increase of β and blocks accretion (we recall that the accretion
speed is vacc. ∝ β−σ with σ > 0). As a result, Ṁ falls from 0,25

down to 0,1×10−7 M⊙ yr−1 in the region between the inner radial
boundary and the burst, and matter piles up in the cavity. This
episode ends when the magnetic flux is eventually re-accreted,
leading to an increase of the mass-accretion rate and the disap-
pearance of the density excess in the cavity. At some point, the
magnetic flux is advected back onto the seed until it saturates so
that Bz can accumulate again close to the inner boundary con-
dition before accretion is enhanced back to normal. The reason
why such magnetic flux evacuates from the seed from time to
time remains unclear, and these occurrences close to the inner
boundary suggest that these might be a boundary condition arte-
fact. However, we mention that the total magnetisation of the
seed eventually saturates with a roughly constant value, so a
sharp increase of magnetic field (as is the case for this burst; see
the middle panel of Fig. B.2, a few orbits before the location of
the red dashed line) could force the seed to lose magnetic flux to
ensure its conservation. We finish by adding that these bursts are
only detected for the weakly magnetised simulations (the ones
with βout = 105).

Regarding the inner radial boundary condition for the mag-
netic field, we tried several configurations (an outflow condition,
which is the one we eventually chose, and a perfect conductor).
Both of these conditions lead to the same steady states.

We also ran a simulation with a stronger magnetic field close
to the inner boundary condition, but no significant changes were
noticed. The additional magnetic field was chosen so that the
magnetisation of the seed is set close to its saturation value in the
fiducial run. However, in any case, the same transient state occurs
and leaves the stage to a similar steady state (the magnetisation of
the seed reaches the same saturation value and the same stripes
are observed in the spatio-temporal diagram of ψ).

We therefore conclude that our setup is robust regarding
the initial state and the boundary conditions. The inner bound-
ary still plays a role because of its magnetisation and the fact
that only a given amount of magnetic field can be advected.
This probably leads to the burst events seen in simulation
B5Bin0Am0.

Appendix C: Interchange instability criterion
calculations

We express the instability criterion for the interchange instability
(or RTI) calculated in Spruit et al. (1995) (Eq. 59) in terms of the
plasma parameter. This criterion reads

gm ∂R ln
Σ

Bz
> 2

(
r

dΩ
dr

)2

≡ 2 S 2, (C.1)

where S is the shear that we approximate with S 2 = 9/4Ω2, and
gm is

gm ≡
B+R Bz

2πΣ
. (C.2)

B+R is the radial component of the magnetic field at the disc sur-
face. Let us rewrite the previous expression in terms of β, q
(defined with B+R = q Bz) and δ (defined as δ = −d lnΣ/d ln R):

B+R Bz

2πΣ
∂R ln

Σ

Bz
=

B+R Bz

2πΣ
Σ′

Σ
− B+R Bz

2πΣ
B′z
Bz
, (C.3)

=
q B 2

z

2πΣ
−δ
R
− q

4πΣ

(
B 2

z

)′
, (C.4)
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Fig. B.1. Surface density time-averaged on the first 4000 orbits at Rint. The blue lines are the reference runs (left panel: fiducial run, right panel:
B5Bin0Am0), and the red-dashed mines are the corresponding runs without the relaxation.

Fig. B.2. Spatio-temporal diagrams of Σ (first panel), Bz, 0 the vertical magnetic field at the midplane and ψ the flux function defined in Eq. 39, for
simulation B5Bin0Am0. These profiles focus on the second burst detected in the left panels of Fig. 21. The red dashed line marks the beginning of
the burst when detected using Σ.

where X′ denotes the derivative of X with respect to R. With
P = c2

s ρ = (hΩK)2 Σ/(
√

2π h), we obtain

β =
4
√

2πR εΩ 2
K Σ

Bz
2 . (C.5)

Therefore, the instability criterion becomes

S 2 < −4 εΩ 2
K q δ√

2π β
− q

4πΣ
∂R


4
√

2πR εΩ 2
K Σ

β

 , (C.6)

ε being constant in the disc as well as β inside the cavity. ΩK
varies as R−3/2 and Σ as R−δ so that

S 2 <
4 εΩ 2

K√
2π β

q (−δ + 1 + δ/2). (C.7)

By taking S 2/Ω 2
K = 9/4, the RTI can be triggered when

β <
16 ε

9
√

2π
q

(
1 − δ

2

)
. (C.8)

If we now assume that δ = q = 1 for simplicity, we finally obtain

β <
8 ε

9
√

2π
≈ 0.355 ε = 0.0355 ≡ βcrit., (C.9)

where ε = 0.1.

Fig. C.1. Interchange instability criteria. The red dotted line shows the
critical value of βcrit., while the green solid line is obtained with Eq. C.8.

Figure C.1 compares the time-averaged values of β with
the criterion given in Eq. C.9. The value of βcrit. is below the
time-averaged values of β. Though this simple analysis makes it
difficult to make definitive conclusions on this subject, it seems
that the interchange instability is not triggered inside the cavity.
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Appendix D: Laminar transport coefficients

In order to discuss the role of the MRI, we must highlight the
impact of the laminar stress and its contribution to the transport
coefficients. In this article, we focus on the total stresses, defined
in Eq. 29. To compare the turbulent effects, we decompose the
stresses with a turbulent and a laminar part. In this prospect, we
introduce the deviation to the temporal mean such that

δX ≡ X − ⟨X⟩. (D.1)

Focusing on Wrφ, we expand the magnetic term as

⟨Br Bφ⟩ = ⟨Br⟩ ⟨Bφ⟩︸    ︷︷    ︸
laminar

+ ⟨δBr δBφ⟩︸     ︷︷     ︸
turbulent

. (D.2)

Concerning the turbulent stresses, we referred to Jacquemin-Ide
et al. (2021) (see their Appendix A) as we only computed the
laminar ones and compared the laminar transport coefficients
to the ones studied in the article. Therefore, we adopted the
following definition for the laminar radial stress:

⟨W lam.
rφ ⟩ ≡ −

1
4π

sin θ ⟨Br⟩ ⟨Bφ⟩, (D.3)

and for the laminar surface stress

⟨W lam.
θφ ⟩ ≡ −r

[
sin2 θ

⟨Bθ⟩ ⟨Bφ⟩
4π

]θ−

θ+

. (D.4)

These definitions are coherent with previous works (Béthune
et al. 2017; Mishra et al. 2020; Jacquemin-Ide et al. 2021). Hence,
the laminar transport coefficients are given by


⟨αlam.⟩ ≡ ⟨W
lam.
rφ ⟩
⟨P⟩

⟨υlam.
W ⟩ ≡

⟨W lam.
θφ ⟩

r ⟨P0⟩

,

while we define their turbulent counterparts as

⟨αturb.⟩ ≡ ⟨α⟩ − ⟨αlam.⟩
⟨υturb.

W ⟩ ≡ ⟨υW⟩ − ⟨υlam.
W ⟩

.

The results are shown in Fig. D.1. The laminar contribution is
the major one for ⟨υW⟩ in the whole disc, so we only show its
laminar contribution with respect to the full coefficient, as they
take essentially the same values. Nevertheless, despite the lam-
inar term being high for ⟨α⟩, a strong turbulent term is at stake,
especially in the external part of the disc where it is dominant.
Inside the cavity, ⟨α⟩ is fairly distributed between the laminar
and turbulent contributions. However, we recall that the wind
may act also on the turbulent component of ⟨α⟩ since the mag-
netic field also appears in Eq. D.2. We finally conclude that the
MRI is probably acting on the disc outer parts in the ⟨α⟩ coef-
ficient, while the surface stress embodied by ⟨υW⟩ is definitely
dominated by the laminar part and due to the wind.

5 10 15 20 25 30
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10−4

10−3

10−2

10−1

100

101

〈αturb.〉
〈αlam.〉
〈υW〉
〈υ lam.

W 〉

Article number, page 24 of ??

Fig. D.1. Time-averaged transport coefficients and their laminar and
turbulent contributions. We give the laminar and turbulent contributions
for ⟨α⟩ and the total profile with its laminar contribution for ⟨υW⟩.
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