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branchement et modélisation des structures à terme multiples

Introduction en Français

Summary. Ce chapitre constitue l'introduction de ce manuscrit et vise principalement à préparer le lecteur en vue des parties 1 et 2. Nous commençons par présenter un cadre de travail général pour la modélisation des structures à terme multiples, étendant notamment certaines idées initialement développées par [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF]. Nous tirons ensuite notre motivation des caractéristiques empiriques des deux marchés considérés, et formulons l'objectif principal que cette thèse cherche à atteindre. Enfin, nous exposons les grandes lignes de l'approche proposée basée sur les processus de branchement à état continu avec immigration (processus CBI), et présentons l'organisation globale de la thèse.

xii INTRODUCTION EN FRANC ¸AIS

Dans ce chapitre introductif, soit `Ω, F, F, Q ˘un espace de probabilité satisfaisant les conditions usuelles, où Q est une mesure de probabilité et F " pF t q tě0 est une filtration à laquelle tous les processus stochastiques considérés dans ce chapitre sont adaptés. Nous fixons F " F 8 et notons l'espérance sous Q par E. 0.1. Un cadre de travail pour la modélisation des structures à terme multiples Cette thèse a pour sujet la modélisation des structures à terme multiples dans les marchés financiers. D'abord, nous rappelons la définition classique d'une structure à terme. Definition 0.1. Soit t ě 0, on dit que la fonction T Þ Ñ P pt, T q définit une structure à terme si pour tout T ě t, P pt, T q représente le prix à l'instant t d'un payoff délivré à maturité T .

Une structure à terme est par définition un objet infini-dimensionnel. Nous indiquons aussi que pour tout T ą 0, P p¨, T q représente le processus de prix du contrat de maturité T . Un exemple canonique est la structure à terme des obligations à coupon zéro T Þ Ñ Bpt, T q, où Bpt, T q est le prix à l'instant t d'un payoff "unitaire" à maturité T (à savoir BpT, T q " 1). Les obligations à coupon zéro jouent un rôle fondamental dans la modélisation du marché des taux d'intérêts avant la crise (nous référons par exemple à [START_REF] Filipović | Term-structure models: A graduate course[END_REF]). Toutefois, comme nous le verrons par la suite, la situation s'avère plus complexe dans l'environnement d'après-crise.

Plusieurs structures à terme peuvent coexister dans le même marché. Pour clarifier les idées, notons N P N le nombre de structures à terme présentes dans le marché considéré. Pour chaque 1 ď i ď N , T Þ Ñ P i pt, T q représente la i ème structure à terme du marché à l'instant t. Nous introduisons alors notre définition formelle d'un marché à structures à terme multiples. Definition 0.2. Un marché à structures à terme multiples est un marché financier où N structures à terme sont échangées, c'est-à-dire pour chaque 1 ď i ď N et pour tout T ą 0, P i p¨, T q est un actif échangé sur le marché.

Au cours de leurs travaux présentés dans [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF], les auteurs ont postulé que tout marché à structures à terme multiples au sens de la définition 0.2 peut être expliqué par les processus stochastiques suivants :

' N structures à terme d'obligations à coupon zéro T Þ Ñ B i p¨, T q, pour 1 ď i ď N ; ' Une famille de processus "spot" S i " pS i t q tě0 , pour 1 ď i ď N . Plus précisément, [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] ont développé un cadre de travail au pouvoir unificateur pour les structures à terme multiples où, à l'aide d'une simple transformation sans hypothèses initiales requises 1 , ils en ont déduit la relation suivante : (0.1) P i pt, T q " B i pt, T q S i t , pour tout 0 ď t ď T et pour chaque 1 ď i ď N . Celle-ci donne lieu à une analogie avec le marché des taux de change, communément appelée foreign exchange analogy en Anglais, où 1 Hormis la positivité stricte des processus de prix considérés.

LE MARCH É FOREX

xiii ' B i p¨, T q représente une obligation à coupon zéro exprimée dans une devise étrangère i; ' S i " pS i t q tě0 est le taux de change entre la devise étrangère i et la monnaie domestique; ' P i p¨, T q correspond à l'obligation à coupon zéro B i p¨, T q convertie en monnaie domestique.

En appliquant la transformation (0.1) à d'autres marchés financiers, [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] ont montré que de nombreux marchés connus peuvent en réalité être considérés comme marchés à structures à terme multiples au sens de la définition 0.2, en particulier le marché des actions, le marché des taux d'intérêts d'avant-crise, ainsi que le marché des matières premières. Cette analogie avec le marché des taux de change a été ensuite exploitée par [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] en vue de réutiliser des techniques précédemment développées par [START_REF] Amin | Pricing foreign currency options under stochastic interest rates[END_REF] afin de concevoir un cadre de travail dédié au pricing de produits dérivés en présence de structures à terme multiples.

L'objet des deux prochaines sections est de revisiter ces idées en les appliquant au marché forex ainsi qu'au marché des taux d'après-crise, ces derniers représentant les marchés financiers sujets à modélisation dans cette thèse. En particulier, nous allons fournir au lecteur l'intuition qui se cache derrière les objets que nous allons modéliser au cours des parties 1 et 2. Nous avons l'intime conviction que les marchés de l'électricité et du gaz peuvent être traités d'une manière similaire, ce qui fera l'objet de futures recherches.

Le marché forex

Le marché forex est un marché financier où de multiples devises sont échangées. Différentes économies y sont impliquées, où chacune d'entre elles est associée à une devise spécifique. Les i ème et j ème devises sont reliées par le taux de change S i,j " pS i,j t q tě0 , où S i,j t représente la valeur à l'instant t d'une unité de la devise j exprimée dans la devise i.

Notons N ě 2 le nombre de devises échangées sur le marché, un marché à devises mutliples, dont la définition formelle sera énoncée au chapitre 5, est un marché financier où pour chaque 1 ď i ď N , les actifs suivants sont échangés au sein de la i ème économie : ' La structure à terme d'obligations à coupon zéro T Þ Ñ B i p¨, T q; ' Pour chaque 1 ď j ď N avec j ‰ i, la structure à terme des obligations à coupon zéro de la j ème économie exprimée dans la devise i, à savoir S i,j B j p¨, T q, pour tout T ą 0.

Lors de la conception d'un modèle financier pour les devises multiples, une attention particulière doit être attribuée aux symétries des taux de change : ' Si nous inversons le taux de change S i,j , alors nous devons retrouver S j,i " 1{S i,j , à savoir la valeur d'une unité de la devise i exprimée dans la devise j. Ceci constitue l'inversion;

' Considérons une devise k quelconque. Le taux de change S i,j doit alors pouvoir être retrouvé en multipliant S i,k et S k,j : S i,j " S i,k ˆSk,j . Ceci constitue la triangulation.

En vue de préserver ces symétries, une approche couramment adoptée est de supposer l'exsitence d'une devise artificielle indéxée par 0 et d'exprimer chacune des devises échangées sur le marché par le biais de cette devise artificielle, donnant lieu ainsi à N taux de change artificiels pS 0,i q 1ďiďN . Nous calculons alors les taux de change S i,j " pS i,j t q tě0 , pour chaque 1 ď i, j ď N , de la façon suivante : (0.2) S i,j t :" S 0,j t S 0,i t , @t ě 0.

Cette approche est communément appelée "l'approche de la devise artificielle", en Anglais artificial currency approach, qui fut d'abord présentée par [START_REF] Flesaker | International models for interest rates and foreign exchange[END_REF][START_REF] Doust | The intrinsic currency valuation framework[END_REF], et appliquée par la suite par [Dou12, DCGG13, GG14, BGP15].

Un marché à devises multiples généré par une telle approche est alors un exemple de marché à structures à terme multiples au sens de la définition 0.2. En effet, pour chaque 1 ď i ď N , la i ème structure à terme T Þ Ñ P i pt, T q est donnée par la structure à terme des taux de change "forward" entre la devise i et la devise artificielle (voir [MR06, Proposition 4.2.1]), comme suit : (0.3) P i pt, T q " B i pt, T q S 0,i t , pour tout 0 ď t ď T et pour chaque 1 ď i ď N , sous l'hypothèse que r 0 " 0, représentant le "taux court" de la devise artificielle (voir [START_REF] Filipović | Term-structure models: A graduate course[END_REF]). En résumé, le marché à devises multiples peut être expliqué par les N taux de change artificiels pS 0,i q 1ďiďN , ainsi que par les N taux courts pr i q 1ďiďN , où r i est le taux court de la i ème économie. Les processus spot pS 0,i q 1ďiďN représenteront alors les principales quantités sujettes à modélisation du chapitre 5, où l'on ne considérera que des taux d'intérêts constants et déterministes.

Le marché des taux d'intérêts d'après-crise

Le marché des taux d'intérêts d'après-crise fait l'objet d'une segmentation en courbes multiples de taux depuis la crise financière des années 2007-2009. Les courbes de taux les plus importantes sont d'abord la courbe générée par les taux "Overnight Indexed Swaps" (OIS) T Þ Ñ L OIS pT, T, δq, communément considérés comme les meilleurs représentants du taux "sans risque", où L OIS pT, T, δq est le taux OIS spot pour la période rT, T `δs avec δ ą 0, et ensuite les courbes de taux générées par les taux dits "Interbank offered" (Ibor) T Þ Ñ LpT, T, δq pour chaque durée δ d'un ensemble générique G :" δ 1 , . . . , δ m ( avec 0 ă δ 1 ă . . . ă δ m pour m P N, où LpT, T, δq est le taux Ibor spot pour la période rT, T `δs. Nous référons le lecteur au chapitre 3 pour plus de détails.

Parmis tous les produits dérivés construits sur les taux Ibor, les contrats couramment appelés "Forward Rate Agreements" (FRA) peuvent être considérés comme les plus basiques, un contrat FRA construit sur le taux Ibor spot LpT, T, δq avec strike K est un contrat qui délivre le payoff δ `LpT, T, δq ´K˘à maturité T `δ. Un marché à courbes de taux multiples, dont la définition formelle sera énoncée au chapitre 3, se compose des actif échangés suivants : 0.4.1. Les spreads multiplicatifs spot. Les processus spot pS δ q δPG définis par (0.6) peuvent être directement récupérés à partir des données du marché par construction. En conséquence, ils manisfestent plusieurs caractéristiques empiriques, pouvant aisément être visualisées sur le premier graphique de la figure 0.2 :

(i) Les spreads sont généralement plus grands que l'unité et croissants en fonction de la durée δ P G; (ii) La présence de mouvements simultanés prononcés (en particulier des sauts positifs) parmis les différents spreads; (iii) La présence de clusters de volatilité pendant les périodes de crise, où les spreads prennent des valeurs de plus en plus grandes; (iv) La persistance des valeurs de certains spreads à des niveaux relativement bas.

Nous référons le lecteur au chapitre 3 pour plus d'informations sur la source de ces caractéristiques empiriques. À notre connaissance, un modèle financier capable de capturer convenablement ces caractéristiques empiriques n'existe pas encore dans la littérature. 0.4.2. Les taux de change artificiels. Contrairement aux spreads multiplicatifs, les taux de change artificiels pS 0,i q 1ďiďN représentent des quantités qui ne peuvent être observées dans la réalité. Toutefois, à la vue de l'équation (0.2), ils jouent un rôle important dans la construction des vrais taux de changes, connus pour manisfester les caractéristiques empiriques suivantes :

(i) Volatilité stochastique ainsi que des sauts; (ii) Dépendance stochastique entre les différents taux de change; (iii) Asymétrie d'ordre stochastique du smile de volatilité; (iv) Potentiel comportement auto-excitant de la volatilité des taux de change.

Comme précédemment, nous référons le lecteur au chapitre 5 pour plus d'informations sur ces caractéristiques. Pour une visualisation du point (iv), le second graphique de la figure 0.2 représente la moyenne pondérée des volatilités implicites d'options call de maturité 1Y et strike ATM de trois paires de devises majeures (USDJPY, EURJPY, et EURUSD). Manisfestement, nous sommes en mesure d'observer des clusters de sauts successifs, ce qui indique la présence éventuelle d'un comportement auto-excitant de la volatilité des taux de change. 

Objectif

Formulation:

Développer une approche pour la modélisation des structures à terme multiples combinant au mieux maniabilité du point de vue analytique et cohérence avec les caractéristiques empiriques vues précédemment.

Solution proposée: Processus de branchement à état continu avec immigration (CBI).

L'approche proposée

Dans cette thèse, afin de répondre à l'objectif formulé ci-dessus, nous proposons une approche générale pour la modélisation des structures à terme multiples en se basant sur la classe des processus de branchement à état continu avec immigration (CBI). Comme mentionné précédemment, nous nous concentrons sur les courbes multiples de taux dans le marché des taux d'intérêts d'aprèscrise, et sur les devises multiples dans le marché forex. Nous développons alors deux modélisations, dont nous exposons maintenant les grandes lignes ci-dessous. 0.5.1. Partie 1. Les courbes multiples de taux. Dans cette partie, nous développons un modèle pour les courbes multiples de taux basé sur les processus CBI, capturant toutes les caractéristiques empiriques des spreads pS δ q δPG et, en même temps, permettant une évaluation efficace des produits dérivés de taux. En exploitant la propriété affine des processus CBI, nous concevons notre modèle dans le cadre des modèles affines multi-courbes récemment développés par [START_REF] Cuchiero | Affine multiple yield curve models[END_REF], c'est-à-dire en prenant les spreads multiplicatifs spot pS δ q δPG et le taux court OIS pr t q tě0 comme principales quantités de modélisation.

Par construction, le modèle est en parfaite adéquation avec les structures à terme observées, et garantit des spreads plus grand que l'unité ainsi que croissants en fonction de la durée δ P G. Le modèle génére aussi une structure exponentiellement affine pour les obligations à coupon zéro de type OIS et les spreads multiplicatifs forward, permettant ainsi une évaluation explicite de tous les dérivés de taux linéaires.

Cependant, la construction du modèle exige une étude précise des moments exponentiels des processus CBI. À cette fin, nous effectuons une analyse détaillée de leurs moments exponentiels et donnons une caractérisation explicite et générale de leur instant d'explosion. De plus, nous définissons une nouvelle spécification que l'on nomme processus CBI stable et tempéré, qui, plus particulièrement, garantit une condition nécessaire et suffisante simple pour la finitude de leurs moments exponentiels.

L'APPROCHE PROPOS ÉE xix

Contrairement à [START_REF] Cuchiero | Affine multiple yield curve models[END_REF], où l'accent a été mis sur les propriétés générales et théroriques du modèle, nous contribuons à travers la mise en place d'une nouvelle classe de modèles multi-courbes, dirigés par un flux de processus CBI stables et tempérés, dont l'introduction est particulièrement motivée par les caractéristiques empiriques vues précédemment. Ce flux, dont tous les aspects seront inspectés plus tard, génére des effets de contagion parmis les différents spreads ainsi que des périodes de clusters de volatilité, où le comportement auto-excitant typique des processus CBI s'avère être un ingrédient clé pour reproduire ces caractéristiques.

Nous établissons une formule de pricing de forme semi-close pour les caplets par le biais de techniques basées sur la transformée de Fourier. Plus précisément, nous implémentons deux méthodologies : la première repose sur une application directe de l'algorithme FFT (voir [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF]), tandis que la seconde utilise un algorithme basé sur la quantification (voir [START_REF] Callegaro | Quantization meets Fourier: a new technology for pricing options[END_REF]), qui est ici appliqué pour la première fois dans un contexte de taux d'intérêts. Lors d'une analyse numérique, ces deux méthodologies sont comparées et une spécification de la modélisation proposée avec deux durées est calibrée aux données du marché. 0.5.2. Partie 2. Les devises multiples. Dans cette partie, nous développons un modèle à volatilité stochastique pour les devises multiples produisant des processus de taux de change dont la volatilité peut s'exciter elle-même, tout en capturant les facteurs de risque typiques du marché de change (comme la dépendance stochastique entre les différentes devises et l'asymétrie stochastique du smile de volatilité), et préservant les symétries propres à ses taux (à savoir les symétries par inversion et triangulation).

Nous procédons en utilisant la technologie des CBI-Time-Changed Lévy processes (CBITCL), qui sont définis comme des processus à deux dimensions combinant le comportement auto-excitant typique des processus CBI et la généralité des processus de Lévy changés en temps. En exploitant leur structure affine, nous pouvons montrer que les processus CBITCL sont cohérents au sens de [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF]. Cela signifie que si un taux de change est modélisé par un processus CBITCL, alors le processus inversé appartient à la même classe de modèles.

Inspiré par [Gno17, Section 4] et en prenant en compte notre discussion précédente, nous construisons notre modèle en adoptant l'approche de la devise artificielle, c'est-à-dire en considérant les taux de change artificiels pS 0,i q 1ďiďN comme les quantités principales à modéliser. À cet égard, les taux de change sont symétriques par inversion et triangulation par construction puisque ils sont définis comme quotients via la relation (0.2).

En formulant un résultat de type Girsanov pour les processus CBITCL, nous sommes capables de caractériser une classe de probabilités neutres au risque préservant la structure du modèle, ce qui constitue un prérequis indispensable pour le pricing d'options sur devises. En particulier, en exploitant la préservation de la structure affine du modèle, nous établissons une formule de pricing de forme semi-close pour les options sur devises, découlant d'une application directe de la méthode COS développée par [START_REF] Fang | A novel pricing method for European options based on Fourier-cosine series expansions[END_REF].

Le modèle proposé peut aussi reproduire de nombreuses caractéristiques empiriques du marché forex. Plus particulièrement, il peut générer des relations de dépendance d'ordre stochastique entre les différentes devises, ainsi que entre les taux de change et leur volatilité. Nous insistons sur le fait que ce type de dépendance est connu pour jouer un rôle essentiel pour la création de smiles de volatilité manisfestant une asymétrie stochastique.

Nous évaluons la performance empirique du modèle à l'aide d'une calibration à un triangle de change se composant de trois paires de devises majeures (USDJPY, EURJPY, et EURUSD). Nous mettons en place deux calibrations : standard et deep, où cette dernière utilise des techniques provenant du deep learning et développées par [START_REF] Horvath | Deep learning volatility[END_REF]. Ensuite, à l'aide des paramètres calibrés obtenus, nous effectuons une analyse des sensitivités sur les smiles de volatilité générés par le modèle. L'objectif de cette étude empirique est de déterminer l'impact des différents paramètres du modèle sur la forme moyenne du smile de volatilité.

Structure de la thèse

La suite est organisée autour de quatre chapitres. La partie 1 comprend les chapitres 2 et 3. Dans le chapitre 2, nous établissons un cadre de travail autonome pour les processus CBI incluant, en particulier, une analyse des moments exponentiels des processus CBI ainsi que la définition formelle des processus CBI stables et tempérés. Ce cadre de travail est ensuite appliqué lors du chapitre 3 au développement d'un modèle pour les courbes multiples de taux basé sur les processus CBI, où la construction de modèles multi-courbes dirigés par un flux de processus CBI stables et tempérés est menée à bien.

La partie 2 se compose des chapitres 4 et 5. Dans le chapitre 4, nous définissons formellement la classe des CBI-Time-Changed Lévy processes (CBITCL), pour lequel nous mettons en place un cadre de travail analytique. Le chapitre 5 contient ensuite le développement d'un modèle à volatilité stochastique pour les devises multiples, utilisant la technologie des processus CBITCL.

Pour conclure ce chapitre introductif, une brève comparaison des modèles développés dans les parties 1 et 2 peut être consultée dans le tableau 0.1. 

Principales quantités de modélisation

Les spreads multiplicatifs spot pS δ q δPG et le taux court OIS prtqtě0

Les taux de change artificiels pS 0,i q1ďiďN 

Processus utilisés

Introduction

Summary. This chapter constitutes the introduction of this manuscript and aims to provide the reader with some motivation and preliminaries in view of Parts 1 and 2. We start by introducing the multiple term structure framework, extending some of the ideas first introduced by [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] to the two financial markets considered in this thesis. We then draw our motivation from the empirical features of the considered markets, and state the main objective that this thesis seeks to attain. Finally, we outline the proposed modeling approach based on Continuous-state Branching processes with Immigration (CBI), and present the global organization of the thesis. 

INTRODUCTION

In this introductory chapter, let `Ω, F, F, Q ˘be a stochastic basis satisfying the usual conditions, where Q is a probability measure and F " pF t q tě0 is a filtration to which all stochastic processes are assumed to be adapted. We set F " F 8 and denote the expectation under Q by E.

The multiple term structure framework

This thesis deals with the modeling of multiple term structures in financial markets. First, we recall the classical definition of a term structure as follows.

Definition 1.1. Let t ě 0, the function T Þ Ñ P pt, T q is said to represent a term structure if for all T ě t, P pt, T q denotes the price at time t of a payoff delivered at maturity T .

A term structure is by definition an infinite-dimensional object. We also point out that for all T ą 0, P p¨, T q stands for the price process of the contract with maturity T . A canonical example is the term structure of zero-coupon bonds T Þ Ñ Bpt, T q, where Bpt, T q is the price at time t of a unit payoff at maturity T (and therefore BpT, T q " 1). Zero-coupon bonds play a fundamental role in the modeling of the pre-crisis interest rate market (see e.g. [START_REF] Filipović | Term-structure models: A graduate course[END_REF]). However, as we shall see in the following, the situation reveals to be more complex in the post-crisis environment.

Multiple term structures may coexist in the same market. As an illustration, let N P N denote the number of term structures in the market considered. For every 1 ď i ď N , T Þ Ñ P i pt, T q represents the i th term structure of the market at time t. We then introduce our formal definition of a generic multiple term structure market. Definition 1.2. A multiple term structure market is a financial market where N term structures are traded, namely for every 1 ď i ď N and for all T ą 0, P i p¨, T q is a traded asset.

In the early work [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF], the authors postulated that any multiple term structure market in the sense of Definition 1.2 can be described by the following stochastic processes:

' N term structures of zero-coupon bonds T Þ Ñ B i p¨, T q, for 1 ď i ď N ; ' A family of spot processes S i " pS i t q tě0 , for 1 ď i ď N . More specifically, [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] developed a unifying modeling framework for multiple term structures where, by a means of a simple transformation with no preliminary assumption required 1 , they derived the following relation:

(1.1) P i pt, T q " B i pt, T q S i t ,
for all 0 ď t ď T and for every 1 ď i ď N . This gives rise to a foreign exchange analogy where ' B i p¨, T q represents a zero-coupon bond denominated in units of a foreign currency i; ' S i " pS i t q tě0 is the spot foreign exchange rate between currency i and the domestic one; ' P i p¨, T q corresponds to the domestic version of the zero-coupon bond B i p¨, T q, namely measured in units of the domestic currency.

1 Except for the strict positivity of the price processes considered.

THE FOREIGN-EXCHANGE (FX) MARKET

By adopting the modeling approach of equation (1.1), [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] showed that many different financial markets can be recovered as special cases of Definition 1.2, in particular the equity market, the (pre-crisis) interest rate market, and the commodity market. This foreign exchange analogy was then exploited by [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF] to utilize techniques previously developed by [START_REF] Amin | Pricing foreign currency options under stochastic interest rates[END_REF] in order to design a derivative pricing framework in the context of multiple term structures.

In the next two sections, we revisit these ideas by applying them to the Foreign-Exchange (FX) market and the post-crisis interest rate market, which represent the financial markets investigated in this thesis. In these sections, we aim at providing the reader with some intuition on the modeling quantities that will be considered in Parts 1 and 2. We believe that the electricity and gas markets can also be treated in a similar manner, leaving it for further research.

The Foreign-Exchange (FX) market

The FX market is a financial market where multiple currencies are traded. Such a market involves different economies, each one associated to a specific currency. The i th and j th currencies are related by the spot FX rate process S i,j " pS i,j t q tě0 , where S i,j t denotes the value at time t of one unit of currency j measured in units of currency i.

Letting N ě 2 be the number of currencies traded in the market, a multiple currency market, whose formal definition can be found in Chapter 5, is a financial market where for every 1 ď i ď N , the following assets are traded in the i th economy:

' The term structure of zero-coupon bonds T Þ Ñ B i p¨, T q; ' For every 1 ď j ď N with j ‰ i, the term structure of zero-coupon bonds of the j th economy denominated in units of the i th currency, namely S i,j B j p¨, T q, for all T ą 0.

When constructing a financial model for multiple currencies, special attention has to be paid to the symmetries that FX rates typically satisfy as follows:

' If we invert the FX rate S i,j , then we must obtain S j,i " 1{S i,j , which is the value of one unit of currency i measured in units of currency j. This is referred to as inversion;

' Take any additional currency k. The FX rate S i,j must be implied from S i,k and S k,j through multiplication: S i,j " S i,k ˆSk,j . This is called triangulation.

In view of satisfying these symmetries, a commonly adapted approach is to assume the existence of an artificial currency indexed by 0 and express each traded currency with respect to this artificial currency, giving rise to N artificial spot FX rates pS 0,i q 1ďiďN . We then compute the spot FX rate processes S i,j " pS i,j t q tě0 , for every 1 ď i, j ď N , as follows:

(1.2) S i,j t :"

S 0,j t S 0,i t , @t ě 0.
This is typically referred to as the artificial currency approach, which was first introduced by [FH97, Dou07], and pursued by [Dou12, DCGG13, GG14, BGP15] among others.

A multiple currency market generated by an artificial currency approach can be recovered as a special case of Definition 1.2. Indeed, for every 1 ď i ď N , the i th term structure T Þ Ñ P i pt, T q 1. INTRODUCTION is given by the term structure of forward exchange rates between currency i and the artificial one (see e.g. [MR06, Proposition 4.2.1]), as follows:

(1.3) P i pt, T q " B i pt, T q S 0,i t ,
for all 0 ď t ď T and for every 1 ď i ď N , under the assumption that r 0 " 0, denoting the short rate of the artificial currency. In summary, the multiple currency market can be described by the N artificial spot FX rates pS 0,i q 1ďiďN , together with the N short rates pr i q 1ďiďN , where r i is the short rate of the i th economy. The spot processes pS 0,i q 1ďiďN will constitute our main modeling quantities in Chapter 5, where we will consider constant and deterministic rates for simplicity.

The post-crisis interest rate market

The post-crisis interest rate market has been characterized by a segmentation into multiple yield curves since the 2007-2009 financial crisis. The most important curves are the Overnight Indexed Swaps (OIS) rates T Þ Ñ L OIS pT, T, δq, typically considered as the best proxies for riskfree rates, where L OIS pT, T, δq is the OIS spot rate for the period rT, T `δs with δ ą 0, and the interbank offered rates T Þ Ñ LpT, T, δq for every tenor δ of a generic set G :" δ 1 , . . . , δ m ( with 0 ă δ 1 ă . . . ă δ m for some m P N, where LpT, T, δq is the spot interbank offered rate for the period rT, T `δs. We refer the reader to Chapter 3 for more details.

Among all financial derivatives written on interbank offered rates, Forward Rate Agreements (FRAs) can be regarded as the basic building blocks, a FRA written on the interbank offered rate LpT, T, δq with strike K is a contract that delivers the payoff δ `LpT, T, δq ´K˘a t maturity T `δ. A multiple yield curve market, whose formal definition can be found in Chapter 3, consists of the following traded assets: ' OIS zero-coupon bonds for all maturities T ą 0; ' FRAs for all tenors δ P G, for all maturities T ą 0, and for an arbitrary fixed strike K. 2 Denoting now the OIS term structure by T Þ Ñ B OIS p¨, T q and the term structures of FRAs by T Þ Ñ P FRA p¨, T, δ, Kq for every tenor δ P G and fixed strike K, where P FRA p¨, T, δ, Kq stands for the price process of the FRA written on LpT, T, δq with fixed strike K, it can be checked that a multiple yield curve market can be recovered as a special case of Definition 1.2 with N " 1 `|G|.

In order to show that the foreign exchange analogy of equation (1.1) can be applied to the multiple yield curve market, let us introduce the forward interbank offered rate Lpt, T, δq at time t ď T , defined as the value of K that makes the time-t price of the FRA equal to zero, thus yielding (1.4) P FRA pt, T, δ, Kq " δ `Lpt, T, δq ´K˘B OIS pt, T `δq, @t ď T.

Proceeding as in [FGGS20, Section 2], under no additional assumption, we are able to rewrite equation (1.4) as follows:

(1.5) P FRA pt, T, δ, Kq " S δ t B δ pt, T q ´`1 `δ K ˘BOIS pt, T `δq, @t ď T,

2 By linearity of the pricing rule, all FRA prices for every strike can be derived from the FRA price with this arbitrary fixed strike and OIS bonds.

where S δ " pS δ t q tě0 is given by (1.6) S δ t :" 1 `δ Lpt, t, δq 1 `δ L OIS pt, t, δq , for all t ě 0 and δ P G, and where B δ pt, T q is given by

(1.7) B δ pt, T q :" 1 `δ Lpt, T, δq 1 `δ Lpt, t, δq B OIS pt, T `δq B OIS pt, t `δq ,
for all 0 ď t ď T and δ P G.

We observe that the foreign exchange analogy, as formulated in equation (1.1), remains satisfied by the floating leg of a FRA where for every tenor δ P G, B δ p¨, T q can be interpreted as a fictitious zero-coupon bond measured in units of a foreign currency δ (note that B δ pT, T q " 1, for all δ P G and T ą 0), and S δ " pS δ t q tě0 is the spot exchange rate between currency δ and the domestic one. Similar foreign exchange analogies have been discussed by [START_REF] Bianchetti | Two curves, one price[END_REF][START_REF] Nguyen | The multi-curve potential model[END_REF][START_REF] Cuchiero | A general HJM framework for multiple yield curve modeling[END_REF][START_REF] Macrina | Consistent valuation across curves using pricing kernels[END_REF].

Adopting the modeling paradigm of [START_REF] Jarrow | A unified approach for pricing contingent claims on multiple term structures[END_REF], the multiple yield curve market can be described by the following processes:

' The OIS term structure T Þ Ñ B OIS p¨, T q; ' The spot processes pS δ q δPG .
The spot processes pS δ q δPG as given by (1.6) correspond to the spot multiplicative spreads between (normalized) spot interbank offerd rates and (normalized) OIS spot rates. They will represent, together with the OIS short rate r " pr t q tě0 , our main modeling quantities in Chapter 3. The idea of modeling multiple yield curve markets via multiplicative spreads is initially due to [START_REF] Henrard | Interest Rate Modelling in the Multi-Curve Framework[END_REF], and has been pursued by [CFG16, CFG19b, EGG20, FGGS20] among others.

Motivation and objective

In this section, we first discuss the empirical features that motivate the development of the modeling frameworks in Parts 1 and 2.

1.4.1. The spot multiplicative spreads. The spot processes pS δ q δPG as given by (1.6) can be directly retrieved from market quotes by construction as spreads between different interbank rates. In this respect, they exhibit several empirical features, which can be easily visualized from the top panel of Figure 1.1 as follows:

(i) Spreads are typically greater than one and non-decreasing with respect to the tenor; (ii) There are strong co-movements (in particular, common upward jumps) among spreads associated to different tenors; (iii) Relatively large values of the spreads are associated to high volatility, showing volatility clustering zones during crisis periods; (iv) Low values of some spreads can persist for prolonged periods of time.

We refer the reader to Chapter 3 for further details on the source of these features. To the best of our knowledge, a financial model that can adequately reproduce all these empirical features does not yet exist in the related literature.

INTRODUCTION

1.4.2. The artificial spot FX rates. Unlike the spot multiplicative spreads, the artificial spot FX rates pS 0,i q 1ďiďN are modeling quantities that cannot be observed in reality. However, in view of equation (1.2), they play an important role in the construction of spot FX rates, which are known to exhibit the following empirical features: As before, we refer the reader to Chapter 5 for further details on these features. In view of a visualization of feature (iv), the bottom panel of Figure 1.1 illustrates the weighted average of the 1Y ATM call-implied volatilities of three major currency pairs (USDJPY, EURJPY, and EURUSD). Notably, we can observe successive jump clusters, which suggests the potential presence of self-excitation in the volatility of FX rates.

1.4.3. Statement of the objective. At this point, we are in a position to state the principal objective that the present thesis seeks to attain. We emphasize that the latter is directly motivated by the empirical features discussed above.

Objective

Formulation:

Elaborate a modeling approach for multiple term structures capable of combining analytical tractability and consistency with the empirical features previously mentioned.

Proposed solution: Continuous-state Branching processes with Immigration (CBI). 

The proposed approach

In this thesis, we propose a general modeling approach for multiple term structures driven by Continuous-state Branching processes with Immigration (CBI), which is specifically motivated by addressing the objective stated above. As mentioned previously, we focus on multiple yield curves in the post-crisis interest rate market, and multiple currencies in the FX market. We then develop two modeling frameworks in Parts 1 and 2, devoted to the modeling of these two financial markets. Let us now briefly outline the principal contributions of each part separately as follows.

1.5.1. Part 1. Multiple yield curves. In this part, we develop a modeling framework for multiple yield curves based on CBI processes, which captures all the relevant empirical features of the spreads pS δ q δPG and, at the same time, permits an efficient valuation of interest rate derivatives. By exploiting the affine property of CBI processes, we design our modeling framework in the context of the affine multi-curve models recently introduced by [START_REF] Cuchiero | Affine multiple yield curve models[END_REF], namely taking the spot multiplicative spreads pS δ q δPG and the OIS short rate pr t q tě0 as main modeling quantities.

By construction, the model achieves a perfect fit to the observed term structures, and ensures spreads greater than one and non-decreasing with respect to the tenor. The model also generates an exponentially-affine structure for OIS zero-coupon bonds and forward multiplicative spreads, allowing for the explicit valuation of all linear interest rate derivatives.

However, the construction of the model requires a precise investigation of the finiteness of exponential moments of CBI processes. To this effect, we provide a detailed analysis of exponential moments and derive an explicit and general characterization of their time of explosion. Moreover, we define a new specification that we name tempered-stable CBI process, which, in particular, ensures a simple necessary and sufficient condition for the finiteness of exponential moments.

While [START_REF] Cuchiero | Affine multiple yield curve models[END_REF] focused on the general theoretical properties of the model, we contribute by introducing a novel class of tractable and flexible multi-curve models driven by a flow of temperedstable CBI processes, which are specifically motivated by the empirical features discussed above. Such a flow of CBI processes, which we will clarify later, generates strong co-movements among spreads such as common upwards jumps and jump clustering, where the characteristic self-exciting behavior of CBI processes proves to be a key ingredient to reproduce these features.

We derive semi-closed-form pricing formulae for caplets via Fourier techniques. More precisely, we implement two pricing methodologies: the former relies on a direct application of the FFT algorithm (see [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF]), while the latter utilizes a quantization-based algorithm (see [START_REF] Callegaro | Quantization meets Fourier: a new technology for pricing options[END_REF]), which is here applied for the first time to an interest rate setting. In a numerical analysis, these two pricing methodologies are compared and a specification of the proposed model with two tenors is calibrated to market data, demonstrating an excellent fit to market data. 1.5.2. Part 2. Multiple currencies. In this part, we develop a general stochastic volatility modeling framework for multiple currencies that allows for self-excitation in the volatility of FX rates, while capturing the typical sources of risk in the FX market (such as stochastic dependence among FX rates and stochastic skewness of the FX volatility smile), and preserving the peculiar symmetries of FX rates (i.e. symmetries under inversion and triangulation).

We proceed by relying on the technology of CBI-Time-Changed Lévy processes (CBITCL), which are defined as two-dimensional processes combining the self-exciting behavior of CBI process with the generality of time-changed Lévy processes. By exploiting their affine structure, we can show that CBITCL processes are coherent in the sense of [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF]. This means that if an FX rate is modeled by a CBITCL process, then the inverse FX rate belongs to the same modeling class.

Inspired by [Gno17, Section 4] and taking into account our previous discussion, we design our modeling framework by adopting the artificial currency approach, namely taking the artificial spot FX rates pS 0,i q 1ďiďN as main modeling quantities. In this regard, FX rates satisfy the inversion and triangulation symmetries by construction since they are defined as ratios by relation (1.2).

By formulating a Girsanov-type result for CBITCL processes, we can characterize a class of risk-neutral measures that leave invariant the structure of the framework, which is an indispensable requirement for pricing options written on FX rates. In particular, by exploiting the preservation of the affine property of CBITCL processes, we provide a semi-closed-form pricing formula for currency options, deriving from a direct application of the COS method developed by [START_REF] Fang | A novel pricing method for European options based on Fourier-cosine series expansions[END_REF].

The proposed model can also reproduce several features of the FX market. More specifically, it allows for non-trivial stochastic dependence between the different currencies, and for non-trivial dependence between FX rates and their volatilities. We emphasize that this type of dependence is known to play a relevant role in generating FX volatility smiles that exhibit stochastic skewness.

We assess the empirical performance of our model via a calibration to an FX triangle consisting of three major currency pairs (USDJPY, EURJPY, and EURUSD). We perform two calibrations: standard and deep, where the latter uses deep-learning techniques developed by [START_REF] Horvath | Deep learning volatility[END_REF]. Then, by retaining the calibrated values of the model parameters, we carry out a sensitivity analysis on model-implied volatility smiles. The purpose of this empirical study is to determine the impact of the different model parameters on the shape of the FX volatility smile.

Structure of the thesis

The sequel is organized around four chapters. Part 1 comprises Chapters 2 and Chapter 3. In Chapter 2, we provide a self-contained framework for CBI processes including, in particular, an analysis of the exponential moments of CBI processes and the formal definition of temperedstable CBI processes. This framework is applied in Chapter 3 to the development of a modeling framework for multiple yield curves based on CBI processes, where the construction of multi-curve models driven by a flow of tempered-stable CBI processes is performed in full details.

Part 2 consists of Chapters 4 and 5. In Chapter 4, we formally define CBI-Time-Changed Lévy processes (CBITCL), for which we give an analytical framework. Chapter 5 contains the development of a general stochastic volatility modeling framework for multiple currencies, utilizing CBITCL processes as driving processes.

As a conclusion to this introductory chapter, a brief comparative overview of the modeling frameworks developed in Parts 1 and 2 is reported in Table 1.1. 

Main modeling quantities

Spot multiplicative spreads pS δ q δPG and OIS short rate prtqtě0 Artificial spot FX rates pS 0,i q1ďiďN Continuous-state branching processes with immigration

Driving processes

Summary. We present a self-contained framework for CBI processes, which will be applied to multiple yield curve modeling in Chapter 3. We first provide an analysis of exponential moments of CBI processes. We then study the relations between two representations of a CBI process: the stochastic integral equation of Dawson and Li [START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF], and the stochastic time change equation in the sense of Lamperti [START_REF] Caballero | A Lamperti-type representation of continuous-state branching processes with immigration[END_REF]. We also derive a correspondence between CBI processes and (marked) , where they were obtained by letting the population size of normalized Bienaymé-Galton-Watson branching processes with immigration tend to infinity (see [START_REF] Bienaymé | De la loi de multiplication et de la durée des families[END_REF][START_REF] Watson | On the probability of the extinction of families[END_REF]). CBI processes extend the class of Continuous-state Branching processes (CB), which were introduced by [START_REF] Feller | Diffusion processes in genetics[END_REF] under the name of Feller diffusions, and later revisited by [START_REF] Jirina | Stochastic branching processes with continuous state space[END_REF][START_REF] Lamperti | The limit of a sequence of branching processes[END_REF][START_REF] Silverstein | Continuous state branching semi-groups[END_REF][START_REF] Grimvall | On the convergence of sequences of branching processes[END_REF] among others.

After their original application to population dynamics (see [START_REF] Pardoux | Probabilistic models of population evolution: Scaling limits, genealogies and interactions[END_REF]), CBI processes have been adopted with success in finance. Especially for their non-negativity, branching structure, and Feller property, CBI processes have found an application in interest rate modeling. This began with the work of [START_REF] Filipović | A general characterization of one factor affine term structure models[END_REF], where CBI processes extended the class of Cox-Ingersoll-Ross processes (CIR, see [START_REF] Cox | A theory of the term structure of interest rates[END_REF]) by allowing for jumps in their dynamics. More generally, CBI processes belong to the class of affine processes that were studied by [START_REF] Duffie | Affine processes and applications in finance[END_REF].

CBI processes exhibit a characteristic self-exciting behavior: the occurrence of a large (upward) jump increases the likelihood of subsequent jumps. This has been exploited by several contributions in order to capture volatility clustering. In [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF], an alpha-stable extension of the CIR process was proposed as a single-curve interest rate model. The same stochastic process was then used by [START_REF] Jiao | The Alpha-Heston stochastic volatility model[END_REF] for stochastic volatility modeling, extending the Heston model [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. We also mention [START_REF] Jiao | A branching process approach to power markets[END_REF][START_REF] Callegaro | A self-exciting modelling framework for forward prices in power markets[END_REF], where CBI processes have been applied to energy markets.

In this chapter, we present a self-contained framework for CBI processes with the objective of modeling multiple yield curves (see Chapter 3). For general accounts on CB and CBI processes, we refer the reader to [Li11, Chapter 3], [Kyp14, Chapter 12], and [START_REF] Li | Continuous-state branching processes with immigration[END_REF]. First, we define CBI processes and show their link with affine processes (Section 2.2). Next, we provide an analysis of exponential moments of CBI processes. In particular, we extend the domain of their Laplace transform, refining some results of [KRM15] (Section 2.3), and prove a general characterization of the time of explosion of exponential moments of a CBI process, by specializing techniques of [START_REF] Keller-Ressel | Moment explosions and long-term behavior of affine stochastic volatility models[END_REF]. This analysis will play a fundamental role in Chapter 3, where the finiteness of exponential moments will represent an indispensable requirement.

In the literature on CBI processes, there exist two main representations of a CBI process: the stochastic integral equation of Dawson and Li (see [START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF]), and the stochastic time change equation in the sense of Lamperti (first introduced by [START_REF] Lamperti | Continuous state branching processes[END_REF] for CB processes, later revisited by [START_REF] Caballero | A Lamperti-type representation of continuous-state branching processes with immigration[END_REF] for CBI processes). The main result of Section 2.5 (see Theorem 2.12) shows the equivalence (in a weak sense) between these two different representations of a CBI process. In Section 2.6, we present several examples of CBI processes. We first discuss the CIR process and its alpha-stable extension. We then derive a correspondence between CBI processes and (marked) Hawkes processes (see [START_REF] Hawkes | Spectra of some self-exciting and mutually exciting point processes[END_REF][START_REF] Hawkes | A cluster process representation of a self-exciting process[END_REF]), extending [BS20, Proposition 7.2]. Moreover, we refine the time change Poisson representation of general point processes for the specific case of Hawkes processes. Finally, we introduce a novel specification that we name tempered-stable CBI process (Section 2.7), which is well suited to multiple yield curve modeling (see Chapter 3).

Definition and affine property

We fix a stochastic basis `Ω, F, F, Q ˘satisfying the usual conditions, where Q is a probability measure and F " pF t q tě0 a filtration to which all stochastic processes are assumed to be adapted. We set F " F 8 and denote the expectation under Q by E.

We start with the standard definition of a CBI process, which can be found for example in [Li11, Chapter 3] and [START_REF] Li | Continuous-state branching processes with immigration[END_REF]. From now on, any CBI process in the sense of Definition 2.1 will be denoted by CBI `X0 , Ψ, Φ ˘.

'
We emphasize that this definition corresponds to a conservative, stochastically continuous CBI process in the sense of [KW71, Theorems 1.1 and 1.2], where more general CBI processes were considered in their Definition 1.1. In the present setting, we refer to Definition 2.1 as the standard definition of CBI processes. This implies that CBI processes are non-negative, strongly Markov (Feller), with càdlàg trajectories, and conservative.

From the perspective of financial modeling, the analytical tractability of CBI processes is ensured by their fundamental and well-known link with affine processes (see [START_REF] Filipović | A general characterization of one factor affine term structure models[END_REF][START_REF] Duffie | Affine processes and applications in finance[END_REF]). This is the content of the next result, which provides the joint conditional Laplace transform of the CBI process X " pX t q tě0 and its time integral Y t :" ş t 0 X s ds, for all t ě 0.

Lemma 2.2. Let X " pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. Then, the joint process pX t , Y t q tě0 is affine with initial value pX 0 , 0q, state space R 2 `, and joint conditional Laplace transform

(2.5) E " e x 1 X T `x2 Y T ˇˇF t ‰ " exp `UpT ´t, x 1 , x 2 q `VpT ´t, x 1 , x 2 q X t `x2 Y t ˘,
for all px 1 , x 2 q P R 2 ´and 0 ď t ď T ă `8, where the functions Up¨, x 1 , x 2 q : R `Ñ R and Vp¨, x 1 , x 2 q : R `Ñ R ´solve the following CBI Riccati system:

Upt, x 1 , x 2 q " ż t 0 Ψ `Vps, x 1 , x 2 q ˘ds, (2.6) BV Bt pt, x 1 , x 2 q " Φ `Vpt, x 1 , x 2 q ˘`x 2 , Vp0, x 1 , x 2 q " x 1 , (2.7)
Proof. A direct application of [KR09, Theorem 4.10] yields the desired result, exploiting the affine property of the CBI process X " pX t q tě0 .

Laplace transform domain extension

In this section, we extend the domain of the conditional Laplace transform (2.5) of the affine process pX t , Y t q tě0 . To proceed, we rely on some techniques developed by [START_REF] Keller-Ressel | Exponential moments of affine processes[END_REF]. Let us first define the set D 1 :

(2.8) D 1 :"

" x P R : ż `8 1 e x z pν `πqpdzq ă `8* .
Observe that D 1 is the effective domain of the immigration and branching mechanism functions Ψ and Φ. By using standard results on exponential moments of Lévy measures (see e.g. [Sat99, Theorem 25.17] and [EK20, Theorem 2.20]), we can extend Ψ and Φ, as finite-valued convex functions, to the set D 1 . Before applying such an extension to the conditional Laplace transform (2.5), we need to define an extended version of the Riccati system (2.6)-(2.7), In a similar way to [KRM15, Definition 2.10].

Definition 2.3. For px 1 , x 2 q P D 1 ˆR´, a solution `Up¨, x 1 , x 2 q, Vp¨, x 1 , x 2 q ˘to the extended CBI Riccati system is defined as a solution to the following system:

Upt, x 1 , x 2 q " ż t 0 Ψ `Vps, x 1 , x 2 q ˘ds, BV Bt pt, x 1 , x 2 q " Φ `Vpt, x 1 , x 2 q ˘`x 2 , Vp0, x 1 , x 2 q " x 1 , (2.9)
up to a time T px 1 ,x 2 q P r0, `8s, where T px 1 ,x 2 q denotes the maximum joint lifetime of the functions Up¨, x 1 , x 2 q : r0, T px 1 ,x 2 q q Ñ R and Vp¨, x 1 , x 2 q : r0, T px 1 ,x 2 q q Ñ D 1 . Definition 2.3 extends the CBI Riccati system (2.6)-(2.7) by taking into account the possibility of explosion in finite time. For this reason, for each initial value px 1 , x 2 q P D 1 ˆR´, the lifetime T px 1 ,x 2 q has to be introduced. In some cases, this lifetime can be infinite, which means that no explosion occurs (this holds true for example when px 1 , x 2 q P R 2

´).

It is well known that the branching mechanism function Φ is locally Lipschitz continuous on the interior of D 1 , but it may fail to be so at the boundary of D 1 , denoted by BD 1 . Hence, a solution Vp¨, x 1 , x 2 q : r0, T px 1 ,x 2 q q Ñ D 1 to equation (2.9) may not be unique when it starts at the boundary of D 1 (i.e. when x 1 P BD 1 ) or reaches it at a later time. In order to overcome this issue, the finiteness of the derivative of Φ, denoted by Φ 1 , at the boundary BD 1 does suffice to guarantee that Φ P C 1 pD 1 , Rq. To formalize this observation, let us introduce two quantities:

(2.10) ψ :" sup tx ě 0 : Ψpxq ă `8u P r0, `8s and φ :" sup tx ě 0 : Φpxq ă `8u P r0, `8s.

Since D 1 is a convex set containing R ´, it can be written as D 1 " p´8, ψ ^φq or p´8, ψ ^φs when ψ ^φ ă `8 and Ψpψ ^φq _ Φpψ ^φq ă `8 (or equivalently ş `8 1 e pψ^φqz pν `πqpdzq ă `8). By a differentiability result for convex functions (see e.g. [Roc70, Theorem 25.5]), the function Φ is differentiable almost everywhere on the interior of D 1 (i.e. D 1 ), with derivative given by (2.11) Φ 1 pxq " ´b `σ2 x `ż `8 0 z pe x z ´1q πpdzq, @x P D 1 .

When ψ ^φ " `8, we have D 1 " R and then Φ P C 1 pR, Rq. When ψ ^φ ă `8, Φ 1 may diverge at BD 1 " tψ ^φu. Under the following assumption, we have Φ 1 pψ ^φq ă `8 and then Φ P C 1 pD 1 , Rq.

Assumption 2.4. If ψ ^φ ă `8, then ş `8

1 z e pψ^φqz πpdzq ă `8.

Under Assumption 2.4, there exists a unique solution `Up¨, x 1 , x 2 q, Vp¨, x 1 , x 2 q ˘to the extended CBI Riccati system, for all px 1 , x 2 q P D 1 ˆR´. This enables us to refine the second assertion of [KRM15, Theorem 2.14] for the specific case of CBI processes. Proposition 2.5. Let pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. Suppose that Assumption 2.4 holds true. Then, the conditional Laplace transform (2.5) can be extended to D 1 ˆR´a s follows:

(2.12) E " e x 1 X T `x2 Y T ˇˇF t ‰ " exp `UpT ´t, x 1 , x 2 q `VpT ´t, x 1 , x 2 q X t `x2 Y t ˘,
for all px 1 , x 2 q P D 1 ˆR´a nd 0 ď t ď T ă T px 1 ,x 2 q , where `Up¨, x 1 , x 2 q, Vp¨, x 1 , x 2 q ˘is the unique solution to the extended CBI Riccati system starting from px 1 , x 2 q P D 1 ˆR´a nd up to T px 1 ,x 2 q .

Proof. Under Assumption 2.4, it holds that Φ P C 1 pD 1 , Rq. Hence, for all px 1 , x 2 q P D 1 ˆR´, the extended CBI Riccati system has a unique solution `Up¨, x 1 , x 2 q, Vp¨, x 1 , x 2 q ˘up to T px 1 ,x 2 q . The extension of (2.5) to D 1 ˆR´t hen follows from [KRM15, Theorem 2.14].

Remark 2.6. In the setting of Proposition 2.5, we can state another important property of the maximum lifetime T px 1 ,x 2 q of the unique solution `Up¨, x 1 , x 2 q, Vp¨, x 1 , x 2 q ˘to the extended CBI Riccati system. By [KRM15, Proposition 3.3], for all px 1 , x 2 q P D 1 ˆR´, the lifetime T px 1 ,x 2 q also characterizes the finiteness of real exponential moments:

(2.13) T px 1 ,x 2 q " sup ! t ě 0 : E " e x 1 Xt `x2 Yt ‰ ă `8) .
Remark 2.7. [KRM15] also provides a complex extension of the joint conditional Laplace transform (2.12), which will be needed later in Chapter 3 for the pricing of non-linear derivatives by means of Fourier techniques. To this effect, let O 1 :" u P C : Repuq P D 1 ( , with Repuq denoting the real part of u. For all pu 1 , u 2 q P O 1 ˆC´, Assumption 2.4 guarantees the existence of a unique solution to the extended CBI Riccati system, starting from pRepu 1 q, Repu 2 qq P D 1 ˆR´a nd defined up to the lifetime T pRepu 1 q,Repu 2 qq . By using [KRM15, Theorem 2.26], the joint conditional Laplace (-Fourier) transform (2.12) holds for all pu 1 , u 2 q P O 1 ˆC´, where we have to replace Ψ and Φ by their analytic extensions to the complex domain O 1 (see [START_REF] Keller-Ressel | Exponential moments of affine processes[END_REF]Proposition 2.21]). However, this extension is only valid up to a time T pu 1 ,u 2 q , which verifies T pu 1 ,u 2 q ě T pRepu 1 q,Repu 2 qq (see [START_REF] Keller-Ressel | Exponential moments of affine processes[END_REF]Proposition 5.1]). We refer the reader to Chapter 4 for further details.

Finiteness of exponential moments

In this section, we provide an explicit and general characterization of the lifetime T px 1 ,x 2 q , for all px 1 , x 2 q P D 1 ˆR´. In view of (2.13), this characterization is intimately related to the finiteness of exponential moments of CBI processes. Especially for pricing purposes, it is important to know whether exponential moment explosion happens in finite time or not. Our result specializes [KR11, Theorem 4.1], but does not require the CBI process X " pX t q tě0 to be subcritical (i.e. b ą 0). For x 2 P R ´, let us introduce the following notation: S :"

! x P D 1 : Φpxq `x2 ď 0
) and χ :" sup S.

We can then formulate the following theorem.

Theorem 2.8. Let pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. Suppose that Assumption 2.4 holds true. Then, for all px 1 , x 2 q P D 1 ˆR´, the lifetime T px 1 ,x 2 q is characterized as follows:

(i) If x 1 ď χ, then T px 1 ,x 2 q " `8; (ii) If x 1 ą χ, then (2.14) T px 1 ,x 2 q " ż ψ^φ x 1 dx Φpxq `x2 . 
Proof. In view of characterizing T px 1 ,x 2 q , we can decompose it as T px 1 ,x 2 q " T U ^TV , where (2.15) T U :" inf t ě 0 : Vpt, x 1 , x 2 q " ψ ( and T V :" inf t ě 0 : Vpt, x 1 , x 2 q " φ ( , where T U corresponds to the maximum lifetime of the function Up¨, x 1 , x 2 q and T V to that of the function Vp¨, x 1 , x 2 q. Let us first consider the trivial case Φ " 0 (φ " `8). The CBI process X " pX t q tě0 then degenerates into a non-decreasing Lévy process whose Lévy exponent is given by Ψ. Then, it is straightforward to see that, for all px 1 , x 2 q P D 1 ˆR´, the unique solution Vp¨, x 1 , x 2 q to equation (2.9) is given by Vpt, x 1 , x 2 q " x 1 `x2 t, for all t ě 0, thus leading to T V " `8. In addition, we have S " x P D 1 : x 2 ď 0 ( " D 1 , where D 1 " p´8, ψq (or p´8, ψs when ψ ă `8 and Ψpψq ă `8), and then χ " ψ. Therefore, for all x 1 ď χ, the function Vp¨, x 1 , x 2 q is nonincreasing and never reaches the explosion point of the function Ψ, which yields T U " `8 and therefore T px 1 ,x 2 q " `8 for all x 1 ď χ.

Frown now on, let us suppose that there exists at least one point x P D 1 such that Φpxq ‰ 0. Given that Φp0q " 0, the set S is non-empty since it always contains zero. Then, we can write χ " sup S P r0, ψ ^φs and Φpχq `x2 ď 0 due to the continuity of Φ. Figure 2.1 illustrates some possible shapes of the function Φ over D 1 , where the solid curves refer to the case ψ ^φ ă `8 and the dashed ones to the case ψ ^φ " `8. The determination of T px 1 ,x 2 q , for px 1 , x 2 q P D 1 ˆRŕ elies on the location of χ, which is illustrated graphically in Figure 2.1 as the intersection point of the function Φ with the horizontal line y " ´x2 , whenever this intersection is non-empty. Consider now the following cases:

0 ψ ^φ ´x2 D 1 Φ Figure 2.
1. Some possible shapes of the function Φ over D 1 , where the solid curves refer to ψ ^φ ă `8 and the dashed ones to ψ ^φ " `8.

(1) Φpχq `x2 " 0, corresponding to the green curve (χ " ψ ^φ when ψ ^φ ă `8), the red curve and the orange line (linear case Φpxq " ´b x with b ă 0). In this case, we have Vp¨, χ, x 2 q " χ as the unique solution to equation (2.9), which implies T pχ,x 2 q " `8.

Then, for all x 1 ď χ, in view of (2.13), we have T px 1 ,x 2 q " `8 since E " e x 1 Xt `x2 Yt ‰ ď E " e χ Xt `x2 Yt ‰ ă `8, for all t ě 0; (2) Consider again the case Φpχq `x2 " 0, but when x 1 ą χ. By convexity of Φ, we have that Φpx 1 q `x2 ą 0, implying by equation (2.9) that the unique solution Vp¨, x 1 , x 2 q starting from x 1 ą χ is strictly increasing with values in rx 1 , φs. At this point, following standard extension results (see e.g. [START_REF] Hartman | Ordinary Differential Equations[END_REF]Theorem II.3.1] whose main hypothesis can be reduced to the continuity of the function Φ), Vp¨, x 1 , x 2 q can be extended to a maximal interval of existence r0, T 1 q such that one of the following two situations occurs:

(2.16)

! T 1 " `8) or ! T 1 ă `8 and lim tÑT 1 Vpt, x 1 , x 2 q " φ
) .

Suppose that T 1 " `8. Since the function Vp¨, x 1 , x 2 q is strictly increasing, it must admit a limit lim tÑ`8

Vpt, x 1 , x 2 q " l with values in pχ, φs Y t`8u. Assume that l ă `8, i.e. the line y " l is an horizontal asymptote for Vp¨, x 1 , x 2 q as t Ñ `8. This implies that BV Bt pt, x 1 , x 2 q Ñ tÑ`8 0. Then, letting t go to infinity on both sides of equation (2.9) yields Φplq `x2 " 0, contradicting Φpx 1 q `x2 ą 0 for all x 1 ą χ. Therefore, the limit l must necessarily be infinite, in which case we have φ " `8. In particular, this can be reduced to lim tÑT 1 Vpt, x 1 , x 2 q " φ with T 1 " `8 and φ " `8. Therefore, T 1 is equivalent to the lifetime T V of the function Vp¨, x 1 , x 2 q given by (2.15). Let pT n q ně0 be an increasing sequence such that T n Ñ nÑ`8 T V . Due to the continuity of Vp¨, x 1 , x 2 q, we have lim nÑ`8

VpT n , x 1 , x 2 q " φ.

In view of equation (2.9), we can write (2.17)

T n "

ż VpTn,x 1 ,x 2 q x 1 dx Φpxq `x2
, for all n P N. Letting n go to infinity on both sides of equation (2.17) yields

T V " ż φ x 1 dx Φpxq `x2
.

So far, T V only represents the lifetime of Vp¨, x 1 , x 2 q. In order to recover the joint lifetime of both Up¨, x 1 , x 2 q and Vp¨, x 1 , x 2 q, for all x 1 ą χ, we have to distinguish two additional cases:

(i) The case φ ď ψ. This means that Up¨, x 1 , x 2 q never explodes in finite time before Vp¨, x 1 , x 2 q, thus yielding for all x 1 ą χ

(2.18) T px 1 ,x 2 q " T V " ż φ x 1 dx Φpxq `x2 ;
(ii) The case φ ą ψ, meaning that Up¨, x 1 , x 2 q explodes in finite time before Vp¨, x 1 , x 2 q at time T U . In this case, we can assume that there exists n P N such that T n " T U and VpT U , x 1 , x 2 q " ψ. By (2.17), we have for all x 1 ą χ

(2.19) T px 1 ,x 2 q " T U " ż ψ x 1 dx Φpxq `x2
.

Combining both cases, we obtain formula (2.14) for T px 1 ,x 2 q , for all x 1 ą χ; (3) Consider now the case Φpχq `x2 ă 0. This means that the function Φ never crosses the line y " ´x2 after zero, thus yielding χ " ψ ^φ. In Figure 2.1, this case corresponds to the blue curve (when ψ ^φ ă `8), the yellow line (when ψ ă `8) and the magenta line (χ " `8 when ψ " `8), both of which correspond to the linear case Φpxq " ´b x with b ‰ 0 and φ " `8. In this linear case, for all px 1 , x 2 q P D 1 ˆR´, the solution Vp¨, x 1 , x 2 q to equation (2.9) is given by Vpt, x 1 , x 2 q " `x1 ´x2 b ˘e´b t `x2 b , for all t ě 0, which then gives T V " `8 by (2.15). Concerning T U , its determination depends on the sign of the parameter b ‰ 0 as follows:

(i) If b ă 0, then the function Φ crosses the line y " ´x2 at x " x 2 b P R `. In this case (Φpχq `x2 ă 0), we necessarily have χ ă x 2 b , implying that for all x 1 ď χ, the function Vp¨, x 1 , x 2 q is strictly decreasing and never reaches the explosion point of the function Ψ, thus yielding T U " `8 and T px 1 ,x 2 q " `8 for all x 1 ď χ; (ii) If b ą 0, then the function Φ crosses the line y " ´x2 at x " x 2 b P R ´. In this case, for all x 2 b ă x 1 ď χ, the function Vp¨, x 1 , x 2 q is strictly decreasing and never reaches the explosion point of the function Ψ, thus yielding T U " `8 and T px 1 ,x 2 q " `8 for all x 2 b ă x 1 ď χ. Similarly, as in the case Φpχq `x2 " 0, we have T px 1 ,x 2 q " `8 for all x 1 ď x 2 b in view of (2.13).

Consider now a non-linear branching mechanism Φ. Similarly to the case Φpxq " ´b x with b ą 0, there exists a unique ξ P R ´such that Φpξq`x 2 " 0. Hence, for all ξ ă x 1 ď χ, we have Φpx 1 q `x2 ă 0. The function Vp¨, x 1 , x 2 q is then strictly decreasing and by integrating on both sides of equation (2.9), we obtain (2.20) t "

ż x 1 Vpt,x 1 ,x 2 q ´dx Φpxq `x2
.

Letting t go to infinity on both sides of this identity, given Φpξq `x2 " 0, we obtain lim tÑ`8

Vpt, x 1 , x 2 q " ξ and ξ ă Vp¨, x 1 , x 2 q ď x 1 , for all ξ ă x 1 ď χ, yielding T V " `8.

Since Ψ is non-decreasing on D 1 , we have t Ψpξq ď Upt, x 1 , x 2 q ď t Ψpx 1 q, for all t ě 0, then T U " `8. We obtain T px 1 ,x 2 q " `8 for all ξ ă x 1 ď χ and for all x 1 ď ξ by (2.13).

Under an additional assumption, the next result provides a simple necessary and sufficient condition for the finiteness of the exponential moment E " e x 1 X T `x2 Y T ‰ , for all px 1 , x 2 q P D 1 ˆRá nd T ą 0. This result will be useful for the construction of the modeling framework in Chapter 3.

Corollary 2.9. Let pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. Suppose that Assumption 2.4 holds true. Under ψ^φ `Ψpψ^φq ă `8, T px 1 ,x 2 q " `8 for all px 1 , x 2 q P D 1 ˆR´i f and only if Φpψ^φq ď 0.

Proof. Combining Assumption 2.4 with ψ ^φ ă `8 necessarily yields Φpψ ^φq ă `8. Suppose further that Ψpψ ^φq ă `8, we then have D 1 " p´8, ψ ^φs. We proceed as follows:

' If Φpψ ^φq ď 0, then we have χ " ψ ^φ automatically, therefore the first assertion of Theorem 2.8 implies that T px 1 ,x 2 q " `8, for all px 1 , x 2 q P D 1 ˆR´;

' Conversely, suppose that T px 1 ,x 2 q " `8 for all px 1 , x 2 q P D 1 ˆR´. This holds in particular for x 1 " ψ ^φ and x 2 " 0 since ψ ^φ P D 1 . We now prove that Φpψ ^φq ď 0 by contradiction. If Φpψ ^φq ą 0, then χ " 0 since x 2 " 0 and in view of the properties of the function Φ. The second assertion of Theorem 2.8 asserts that T pψ^φ,0q is given by formula (2.14), i.e. T pψ^φ,0q " 0, thus leading to a contradiction.

Stochastic representations

In the literature, there exist two representations of a CBI `X0 , Ψ, Φ ˘: the stochastic integral equation by Dawson and Li (see [DL06, Section 5]), and the stochastic time change equation in the sense of Lamperti (see [START_REF] Caballero | A Lamperti-type representation of continuous-state branching processes with immigration[END_REF]). The purpose of this section is to show that these two representations are equivalent in a weak sense. We begin with the Dawson-Li representation, where we suppose that the stochastic basis `Ω, F, F, Q ˘is equipped with the following objects: ' A standard Brownian motion B " pB t q tě0 ; ' A Poisson random measure N 0 pdt, dxq on R `ˆR `with compensator dt νpdxq and compensated measure r N 0 pdt, dxq :" N 0 pdt, dxq ´dt νpdxq;

' A Poisson random measure N 1 pdt, du, dxq on R `ˆR `ˆR `with compensator dt du πpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du πpdxq.

In addition, we assume that B, N 0 , and N 1 are mutually independent. We can then write, for any X 0 ě 0, the following stochastic integral equation:

X t " X 0 `ż t 0 `β ´b X s ˘ds `σ ż t 0 a X s dB s `ż t 0 ż `8 0 x N 0 pds, dxq `ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ě 0. (2.21)
As a result of [DL06, Theorems 5.1 and 5.2], for any X 0 ě 0, there exists a unique non-negative strong solution to equation (2.21), which is a CBI `X0 , Ψ, Φ ˘. The following statement represents our formal definition of a Dawson-Li representation.

Definition 2.10. A non-negative càdlàg stochastic process X " pX t q tě0 with initial value X 0 admits a Dawson-Li representation if it is a weak solution to equation (2.21).

Following the characterization of [Li11, Theorem 9.31] and [Li20, Theorem 8.1], a non-negative càdlàg stochastic process X " pX t q tě0 admits a Dawson-Li representation if and only if it is a CBI `X0 , Ψ, Φ ˘. In particular, we deduce that any CBI `X0 , Ψ, Φ ˘can only jump upward.

In view of the Lamperti-type representation, we first recall that Y t :" ş t 0 X s ds, for all t ě 0. Since X " pX t q tě0 is non-negative with càdlàg trajectories, Y " pY t q tě0 is non-decreasing and almost surely finite at all times. It can then be utilized as a finite, continuous time change in the sense of [KS02b, Definition 2]. We assume that the stochastic basis `Ω, F, F, Q ˘supports the following two independent processes: ' A non-decreasing Lévy process L Ψ " pL Ψ t q tě0 with L Ψ 0 " 0, whose Lévy exponent is given by Ψ and characterized by the Lévy triplet pβ, 0, νq; ' A spectrally positive Lévy process L Φ " pL Φ t q tě0 with L Φ 0 " 0 and finite first moment, whose Lévy exponent is given by Φ through the Lévy triplet p´b, σ, πq.

In this respect, we can define, for any X 0 ě 0, the following stochastic time change equation:

(2.22) X t " X 0 `LΨ t `LΦ Yt , @t ě 0.
Following [ECPGUB13, Proposition 2 and Theorem 2], for any X 0 ě 0, there is a unique nonnegative strong solution to equation (2.22), which is a CBI `X0 , Ψ, Φ ˘. We can then give our formal definition of a Lamperti-type representation.

Definition 2.11. A non-negative càdlàg stochastic process X " pX t q tě0 with initial value X 0 admits a Lamperti-type representation if it is a weak solution to equation (2.22).

We formulate the main result of this section, which relates the Dawson-Li stochastic integral representation to the Lamperti-type stochastic time change representation. We give a self-contained proof, whose techniques are also used for the characterization of CBITCL processes in Chapter 4. Theorem 2.12. A non-negative càdlàg stochastic process X " pX t q tě0 with initial value X 0 admits a Dawson-Li representation if and only if it admits a Lamperti-type representation.

Proof. Let X " pX t q tě0 admit a Lamperti-type representation, meaning that X " pX t q tě0 is a weak solution to (2.22). Since L Ψ " pL Ψ t q tě0 is a Lévy process with non-decreasing sample paths, its Lévy-Itô decomposition can be written as follows (see e.g. [CT04, Corollary 3.1]):

(2.23) L Ψ t " β t `ż t 0 ż `8 0 x N 0 pds, dxq, @t ě 0,
where N 0 pdt, dxq is a Poisson random measure with compensator dt νpdxq. We proceed similarly with the Lévy process L Φ " pL Φ t q tě0 where we take into account the time change Y " pY t q tě0 :

(2.24)

L Φ Yt " ´b Y t `σ W Yt `ż Yt 0 ż `8 0 x r N pds, dxq, @t ě 0,
where W " pW t q tě0 is a Brownian motion independent of the Poisson random measure N pdt, dxq on R `ˆR `with compensator dt πpdxq and compensated measure r N pdt, dxq :" N pdt, dxq ´dt πpdxq. By the change of-variable formula of [Jac79, Theorem 10.27], we rewrite the stochastic integral by means of the time-changed random measure N pX t dt, dxq with compensator X t´d t πpdxq:

ż Yt 0 ż `8 0 x r N pds, dxq " ż t 0 ż `8 0 x r N pX s ds, dxq, @t ě 0.
Following [IW89, Theorem II.7.4], possibly on an enlarged probability space, there exists a Poisson random measure N 1 pdt, du, dxq with compensator dt du πpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du πpdxq such that

ż t 0 ż `8 0 x r N pX s ds, dxq " ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ě 0.
Similarly, by [IW89, Theorem II.7.1'], there exists a Brownian motion B " pB t q tě0 (possibly on an enlarged probability space) such that W Yt " ş t 0 ? X s dB s , for all t ě 0. This directly implies that X " pX t q tě0 is a weak solution to (2.21), thus admitting a Dawson-Li representation.

Conversely, suppose that X " pX t q tě0 admits a Dawson-Li representation, meaning that X " pX t q tě0 is a weak solution to (2.21). We first observe that the process `β t`ş t 0 ş `8 0

x N 0 pds, dxq ˘tě0 is a non-decreasing Lévy process with Lévy triplet pβ, 0, νq, which we denote by L Ψ " pL Ψ t q tě0 . Let us then define the process V " pV t q tě0 as follows:

V t :" ´b Y t `σ ż t 0 a X s dB s `ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ě 0.
In order to show that V " pV t q tě0 is a time-changed Lévy process, we follow the scheme of the proof of [Kal06, Theorem 3.2]. Without loss of generality, we can suppose that the underlying stochastic basis already supports a spectrally positive Lévy process L " pL t q tě0 with L 0 " 0 and finite first moment, whose Lévy exponent is given by Φ and characterized by the Lévy triplet p´b, σ, πq.

Let Y 8 :" lim tÑ`8

Y t and define the inverse time change τ " pτ z q zě0 by τ z :" inf t ě 0 : Y t ą z ( , for all z ě 0. We recall that X " pX t q tě0 is a CBI `X0 , Ψ, Φ ˘by [Li11, Theorem 9.31] and [Li20, Theorem 8.1]. When Ψ " 0, X " pX t q tě0 becomes a CB process, for which zero is known to be an absorbing state (see [START_REF] Grey | Asymptotic behaviour of continuous time, continuous state-space branching processes[END_REF]). In this case, we may have Y 8 ă `8, which implies that τ " pτ z q zě0 is infinite from time Y 8 onward. Thus, the time-changed process W " pW z q zăY8 given by W z :" V τz , for all z ă Y 8 , is a well-defined semimartingale, but only on the stochastic interval 0, Y 8 (see [Jac79, Theorem 10.10]). Its characteristics, which we denote by `A, B, C ˘, can be computed as follows:

A z " ´b Y τz " ´b z, B z " σ 2 Y τz " σ 2 z, and C z pdxq " πpdxq Y τz " πpdxq z,
for all z ă Y 8 , where Y τz " z since τ " pτ z q zě0 is strictly increasing on 0, Y 8 . The differential characteristics of W " pW z q zăY8 are then both deterministic and time-independent. Therefore, by [Kal06, Proposition 1], W " pW z q zăY8 is a Lévy process on 0, Y 8 characterized by the Lévy triplet p´b, σ, πq.

In view of using [Jac79, Lemma 10.14], we show that V " pV t q tě0 is constant on every interval rr, ss Ď R `such that Y r " Y s . First, Y r " Y s means that ş s r X t dt " 0, which, due to the nonnegativity of X " pX t q tě0 , implies that X t " 0 almost everywhere on rr, ss. We deduce that rr, ss Ď t ě 0 : X t " 0 ( . We thus obtain V t " V r , for all t P rr, ss, proving that V " pV t q tě0 is constant on every interval of this type. Hence, we can write V t " W Yt , for all t ě 0. However, W " pW z q zăY8 is a Lévy process only on 0, Y 8 . In line with [RY99, Theorem V.1.7], we can construct the stochastic process L Φ " pL Φ z q zě0 where L Φ z :" W z 1 tzăY8u `Lz 1 tzěY8u , for all z ě 0. L Φ " pL Φ z q zě0 is a Lévy process characterized by the Lévy triplet p´b, σ, πq, which extends W " pW z q zăY8 to the entire R `. We then have V t " L Φ Yt , for all t ě 0, showing that V " pV t q tě0 is a time-changed Lévy process. By inserting L Ψ " pL Ψ t q tě0 and L Φ " pL Φ z q zě0 into equation (2.21), we finally obtain that X " pX t q tě0 admits a Lamperti-type representation.

Remark 2.13. [DL12] also introduced another representation of a CBI `X0 , Ψ, Φ ˘, which is equivalent to the Dawson-Li representation. We suppose the existence of an independent Gaussian white noise W pdt, duq as in [Wal86, Chapters 1 and 2], defined on R `ˆR `and with intensity dt du. Consider then the stochastic integral equation

X t " X 0 `ż t 0 `β ´b X s ˘ds `σ ż t 0 ż Xs 0 W pds, duq `ż t 0 ż `8 0 x N 0 pds, dxq `ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ě 0. (2.25)
By [DL12, Theorem 3.1], for any X 0 ě 0, there exists a unique non-negative strong solution to equation (2.25), which is a CBI `X0 , Ψ, Φ ˘. The peculiarity of representation (2.25) lies in its comparison property (see e.g. [Li20, Theorem 8.4]), which will be the starting point in the construction of multi-curve models driven by a flow of CBI processes (see Chapter 3).

Remark 2.14. Stochastic integral equation (2.25) makes evident the self-exciting behavior of a CBI `X0 , Ψ, Φ ˘. Indeed, the two martingale components (i.e. the stochastic integrals with respect to W and r N 1 ), depend on the current value of the process itself and, therefore, large values of the process give rise to episodes of high volatility. In particular, the jump intensity of N 1 increases whenever a jump occurs, thereby generating jump clustering effects. These features will have a particularly relevant role in Chapter 3.

Examples of CBI processes

We present several examples of CBI processes that can be found in the literature. We first mention the Cox-Ingersoll-Ross process (CIR), which is a continuous CBI processes. We also discuss its alpha-stable extension, which is a jump-type CBI process. We derive a correspondence between CBI processes and Hawkes processes, which we combine with Theorem 2.12 to refine the time change Poisson representation of general point processes for the specific case of Hawkes processes. Finally, we obtain similar results for marked Hawkes processes.

2.6.1. The CIR process. The diffusion (17) of [START_REF] Cox | A theory of the term structure of interest rates[END_REF] is widely known in the literature as the Cox-Ingersoll-Ross process (CIR). This process is mostly used in interest rate modeling (see [START_REF] Filipović | A general characterization of one factor affine term structure models[END_REF]), in stochastic volatility modeling (e.g. the Heston model by [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]), as well as for default intensity modeling.

This process can be recovered from a CBI `X0 , Ψ, Φ ˘by letting b ą 0, ν " 0, and π " 0, i.e. a continuous subcritical CBI process. The affine property of the joint process pX t , Y t q tě0 , where X " pX t q tě0 is a CIR process and where Y t :" ş t 0 X s ds for all t ě 0, is ensured by Lemma 2.2 where the immigration and branching mechanisms Ψ and Φ become Ψpxq " β x and Φpxq " ´b x `1 2 pσ xq 2 , for all x P D 1 , with D 1 " R.

For the CIR process, the Dawson-Li representation (2.21) reduces to the CIR diffusion:

(2.26)

X t " X 0 `b ż t 0 ˆβ b ´Xs ˙ds `σ ż t 0 a X s dB s , @t ě 0.
By using Theorem 2.12, which coincides here with the Dambis-Dubins-Schwarz theorem (see e.g. [RY99, Theorem V.1.6]), we can derive the following time change representation of the CIR process X " pX t q tě0 , which is equivalent to (2.26):

(2.27)

X t " X 0 `b ż t 0 ˆβ b ´Xs ˙ds `σ W Yt , @t ě 0,
where W " pW t q tě0 is a Brownian motion. Since b ą 0, the mean reversion of the CIR process X " pX t q tě0 holds with long-term value β{b and speed b. We also recall the Feller condition for the inaccessibility of 0, which takes the form 2 β ě σ 2 (see e.g. [Fil09, Section 5.4.2]).

2.6.2. The α-CIR process. A natural extension of (2.26), which can be found in the literature (see [LM15, JMS17, JMSZ21] among others), consists in adding jumps via a Lévy-driven stochastic integral as follows:

(2.28)

X t " X 0 `b ż t 0 ˆβ b ´Xs ˙ds `σ ż t 0 a X s dB s `η ż t 0 α a X s dZ s , @t ě 0,
where η ě 0 serves as a volatility parameter for the jump part and Z " pZ t q tě0 is an independent, spectrally positive compensated stable Lévy process with Lévy measure C α z ´1´α 1 tzą0u dz, where α P p1, 2q is called stability index and C α ě 0 is a normalization constant depending on α. By [FL10, Corollary 6.3], there exists a unique strong solution to (2.28), which is a stable Cox-Ingersoll-Ross process (or α-CIR process) and is a jump-type CBI process with b ą 0, ν " 0, and πpdzq " η α C α z ´1´α 1 tzą0u dz. Lemma 2.2 implies the affine property of the joint process pX t , Y t q tě0 with X " pX t q tě0 being an α-CIR process, where the immigration mechanism Ψ is given by Ψpxq " β x and the branching mechanism Φ by

(2.29) Φpxq " ´b x `1 2 pσ xq 2 `Cα Γp´αq p´η xq α , @x P D 1 ,
where Γ denotes the Gamma function extended to RzZ ´(see [START_REF] Lebedev | Special Functions and their Applications[END_REF]Section 1.1]). In this case, we have D 1 " R ´, implying that the process X " pX t q tě0 does not admit finite exponential moments of any order in the sense that Theorem 2.8 yields E " e x X T ‰ " `8, for all x ą 0 and T ą 0. By [Li11, Theorem 9.32] and [Li20, Theorem 8.6], if X " pX t q tě0 is a CBI `X0 , Ψ, Φ ˘with b ą 0, ν " 0, and πpdzq " η α C α z ´1´α 1 tzą0u dz, then X " pX t q tě0 is a weak solution to (2.28) and coincides, on an enlarged space, with the corresponding α-CIR process. By Theorem 2.12, we can obtain a time change representation of the α-CIR process, equivalent to (2.28):

(2.30)

X t " X 0 `b ż t 0 ˆβ b ´Xs ˙ds `σ W Yt `η L Yt , @t ě 0,
where W " pW t q tě0 is a Brownian motion and L " pL t q tě0 is a compensated, spectrally positive stable Lévy process with Lévy measure C α z ´1´α 1 tzą0u dz. These two processes are taken independent of each other (a similar representation was derived by [START_REF] Jiao | The Alpha-Heston stochastic volatility model[END_REF] by relying on [KS02b, Theorems 2 and 3]). Finally, it has been shown in [JMS17, Proposition 3.4], by relying on the results of [START_REF] Foucart | Local extinction in continuous-state branching processes with immigration[END_REF][START_REF] Duhalde | On the hitting times of continuous-state branching processes with immigration[END_REF] for general CBI processes, that the Feller condition for the α-CIR process is identical to that of the CIR process recalled above, i.e. 2 β ě σ 2 .

2.6.3. The Hawkes process. First introduced by [Haw71, HO74], and extensively used in finance (see e.g. [START_REF] Hawkes | Hawkes processes and their applications to finance: a review[END_REF]), a Hawkes process 1 is a counting process pN t q tě0 whose intensity X " pX t q tě0 satisfies the following stochastic integral equation:

(2.31) X t " X 0 `κ ż t 0 `λ ´Xs ˘ds `η N t , @t ě 0,
where we fix λ " X 0 for simplicity. By Itô's formula, this equation can be solved as follows:

(2.32) X t " X 0 `η ż t 0 e ´κ pt´sq dN s , @t ě 0.

We denote the couple pX, N q by Hawkes `X0 , κ, η ˘, where we suppose that κ ą η always holds. This is known in the literature on Hawkes processes as the stability condition, ensuring the finite activity of the process together with its long-run stability (see e.g. [START_REF] Brémaud | Stability of nonlinear Hawkes processes[END_REF][START_REF] Fonseca | Hawkes process: Fast calibration, application to trade clustering, and diffusive limit[END_REF]).

Equation (2.32) makes clear the self-exciting behavior of pN t q tě0 as follows: its intensity at time t, for all t ě 0, is an affine function of the events of the counting process that occurred before t, where η ě 0 serves as a volatility parameter measuring the contribution of the self-excitation, while κ ą 0 controls the dampening, over time, of the effect of the past events. Note that when η " 0, the process pN t q tě0 reduces to a Poisson process with constant intensity X " X 0 .

The next result, which extends [BS20, Proposition 7.2], provides a correspondence between (subcritical) CBI processes and Hawkes processes as defined above. 1 We restrict our attention to univariate Hawkes processes with single-factor exponentially-decaying intensity, i.e. setting gpvq " η e ´κ v , @v ě 0, with κ ą 0 and η ě 0 in the notation of [Haw71, Section 3].

Proposition 2.15. The following implications hold:

(i) Let X " pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. If b ą 0, σ " 0, ν " 0, π " δ η with η ą 0, and X 0 " β b`η , then there exists a counting process pN t q tě0 with intensity X " pX t q tě0 such that pX, N q is a Hawkes `β b`η , b `η, η ˘;

(ii) Let pX, N q be a Hawkes `X0 , κ, η ˘with η ą 0. Then, X " pX t q tě0 is a CBI `X0 , Ψ, Φ with β " κ X 0 , b " κ ´η, σ " 0, ν " 0, and π " δ η .

Proof. The first implication follows along the lines of [BS20, Proposition 7.2]. Starting from the Dawson-Li representation, we fix b ą 0, σ " 0, ν " 0, and π " δ η , where δ η is the Dirac measure at η ą 0. The stochastic integral with respect to r N 1 then becomes

ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq " η ż t 0 ż X s0 r N 1 pds, duq, @t ě 0,
where N 1 pdt, duq is a Poisson random measure on R `ˆR `with compensator dt du and compensated measure r N 1 pdt, duq :" N 1 pdt, duq ´dt du. In this case, we can separate the pure jump integral from its compensator, which gives

X t " X 0 ``b `η˘ż t 0 ˆβ b `η ´Xs ˙ds `η ż t 0 ż X s0 N 1 pds, duq, @t ě 0.
Fixing now X 0 " β b`η and defining the counting process pN t q tě0 as N t :"

ş t 0 ş X s0 N 1 pds, duq, for all
t ě 0, whose intensity clearly coincides with X " pX t q tě0 , we recover equations (2.31) and (2.32) by Itô's formula, which provides the couple pX, N q with the Hawkes property. We prove the second assertion. Let pX, N q be a HawkespX 0 , κ, ηq with η ą 0. We rewrite equation (2.31) by means of the measure N pdt, dxq with compensator X t´d t δ η pdxq, as follows:

X t " X 0 `ż t 0 ´κ X 0 ´`κ ´η˘X s ¯ds `ż t 0 ż `8 0
x ´N pds, dxq ´Xs´d s δ η pdxq ¯, @t ě 0.

By using [IW89, Theorem II.7.4], possibly on an extension of the probability space, there exists a Poisson random measure N 1 pdt, du, dxq with compensator dt du δ η pdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du δ η pdxq such that we have

X t " X 0 `ż t 0 ´κ X 0 ´`κ ´η˘X s ¯ds `ż t 0 ż X s0 ż `8 0 x r N 1 pdt, du, dxq, @t ě 0.
Therefore, X " pX t q tě0 has a Dawson-Li representation with β " κ X 0 , b " κ ´η, σ " 0, ν " 0, and π " δ η , and thus [Li11, Theorem 9.31] and [Li20, Theorem 8.1] yield the desired result.

It is well-known in point process theory that any counting process, under mild conditions on its compensator, can be represented by a time-changed Poisson process with unit intensity (see [START_REF] Daley | An introduction to the theory of point processes; 2nd ed. Probability and its Applications[END_REF]Theorem 7.4.I] for the general theorem and [START_REF] Giesecke | Dependent events and changes of time[END_REF] for the converse). We now refine this result for the specific case of Hawkes processes by relying on CBI processes. More precisely, we provide a self-contained proof that only makes use of Proposition 2.15 and Theorem 2.12.

Corollary 2.16. Let pX, N q be a HawkespX 0 , κ, ηq. Then, there exists a unit-intensity Poisson process N 1 " pN 1 t q tě0 such that N t " N 1 Yt where Y t :" ş t 0 X s ds, for all t ě 0.

Proof. Let pX, N q be a Hawkes `X0 , κ, η ˘. We now distinguish two cases. The first one is trivial and reduces to η " 0, when N " pN t q tě0 degenerates into a Poisson process with constant intensity X " X 0 . The desired result then follows from the time-rescaling theorem in its most basic form, i.e. relating inhomogeneous Poisson processes to (deterministic) time-changed homogeneous Poisson processes: N t " N 1 X 0 t " N 1 Yt , where N 1 " pN 1 t q tě0 is a Poisson process with unit intensity. Let η ą 0. By using the second assertion of Proposition 2.15, the process X " pX t q tě0 is a CBI `X0 , Ψ, Φ ˘with β " κ X 0 , b " κ ´η, σ " 0, ν " 0, and π " δ η . By [Li11, Theorem 9.31] and [Li20, Theorem 8.1], X " pX t q tě0 admits a Dawson-Li representation, which is weakly equivalent to the Lamperti-type representation by Theorem 2.12. Without loss of generality, we can suppose that the stochastic basis already supports two independent Lévy processes L Ψ " pL Ψ t q tě0 and L Φ " pL Φ t q tě0 such that X t " X 0 `LΨ t `LΦ Yt , for all t ě 0. By applying the Lévy-Itô decomposition, and then inserting the parameters specified above, we obtain

L Ψ t " κ X 0 t, @t ě 0, L Φ t " `η ´κ˘t `ż t 0 ż `8 0 x r N 1 pds, dxq, @t ě 0,
where N 1 pdt, dxq is a Poisson random measure defined on R `ˆR `with compensator dt δ η pdxq and compensated measure r N 1 pdt, dxq :" N 1 pdt, dxq ´dt δ η pdxq. Similarly to Proposition 2.15, the stochastic integral with respect to r N 1 reduces to

ż t 0 ż `8 0 x r N 1 pds, dxq " η r N 1 t , @t ě 0,
where N 1 " pN 1 t q tě0 is a unit-intensity Poisson process with compensated version r N 1 t :" N 1 t ´t, for all t ě 0. Hence, by inserting both Lévy processes L Ψ " pL Ψ t q tě0 and L Φ " pL Φ t q tě0 into the Lamperti-type representation of X " pX t q tě0 , we can rewrite it as follows:

X t " X 0 `κ ż t 0 `X0 ´Xs ˘ds `η N 1 Yt ,
where we finally identify N t " N 1 Yt by (2.31), for all t ě 0.

2.6.4. The marked Hawkes process. The previous results can be readily extended to the class of marked Hawkes processes, whose terminology is taken from [START_REF] Bernis | Sensitivity analysis for marked Hawkes processes: application to CLO pricing[END_REF] (see also [START_REF] Daley | An introduction to the theory of point processes; 2nd ed. Probability and its Applications[END_REF]Section 6.4] for general marked point processes), obtained by randomizing η as follows:

(2.33)

X t " X 0 `κ ż t 0 `X0 ´Xs ˘ds `ż t 0 ż `8 0 
x N pds, dxq, @t ě 0, which, through Itô's formula, can be solved by

(2.34) X t " X 0 `ż t 0 ż `8 0
x e ´κ pt´sq N pds, dxq, @t ě 0.

The counting measure N pdt, dxq, whose compensator is X t´d t µpdxq where µ is a probability distribution on R `with finite first moment, generates two different processes that share the same stochastic intensity X " pX t q tě0 : ' The marked Hawkes process denoted by the counting process N t :" ş t 0 ş `8 0 N pds, dxq, for all t ě 0; ' The compound Hawkes process defined by M t :" ş t 0 ş `8 0

x N pds, dxq, for all t ě 0.

We refer to [START_REF] Bernis | Sensitivity analysis for marked Hawkes processes: application to CLO pricing[END_REF] and [START_REF] Swishchuk | Modelling of limit order books by general compound Hawkes processes with implementations[END_REF][START_REF] Swishchuk | Hawkes processes in insurance: Risk model, application to empirical data and optimal investment[END_REF] for further details on marked Hawkes processes and compound Hawkes processes, respectively. In this case, the stability condition becomes κ ą m, where m :" ş `8 0

x µpdxq (see e.g. [DVJ08, Proposition 6.4.VII]). We now extend Proposition 2.15 and Corollary 2.16 to marked Hawkes processes. We first derive a correspondence between (subcritical) CBI processes and marked Hawkes process. Then, we refine the representation of compound Hawkes processes as time-changed compound Poisson processes by providing a self-contained proof that only relies on the theory of CBI processes.

Corollary 2.17. The following implications hold:

(i) Let X " pX t q tě0 be a CBI `X0 , Ψ, Φ ˘. If b ą 0, σ " 0, ν " 0, π a probability distribution on R `with finite first moment m, and X 0 " β b`m , then there exists a counting process pN t q tě0 with intensity X " pX t q tě0 such that pN t q tě0 is a marked Hawkes process with X 0 " β b`m , κ " b `m, and µ " π; (ii) Let pN t q tě0 be a marked Hawkes process and M " pM t q tě0 be a compound Hawkes process with intensity X " pX t q tě0 . Then, there exists a unit-intensity compound Poisson process M 1 " pM 1 t q tě0 with mark distribution µ such that M t " M 1 Yt where Y t :" ş t 0 X s ds, for all t ě 0, and where X " pX t q tě0 is a CBI `X0 , Ψ, Φ ˘with β " κ X 0 , b " κ ´m, σ " 0, ν " 0, and π " µ.

Proof. The proof of the first assertion follows along the lines of the first part of the proof of Proposition 2.15. We first rewrite the Dawson-Li representation of X " pX t q tě0 with b ą 0, σ " 0, ν " 0, and π is a probability distribution on R `with finite first moment m :" ş `8 0

x πpdxq ă `8. We then separate the pure jump integral from its compensator, which gives

X t " X 0 ``b `m˘ż t 0 ˆβ b `m ´Xs ˙ds `ż t 0 ż X s0 ż `8 0 x N 1 pds, du, dxq, @t ě 0,
We finally fix X 0 " β b`η and define the counting process N t :"

ş t 0 ş X s0 ş `8
0 N 1 pds, du, dxq, for all t ě 0, whose intensity is X " pX t q tě0 , thus showing that N " pN t q tě0 is a marked Hawkes process.

The proof of the converse is similar to the second part of the proof of Proposition 2.15. We start by inserting the first moment m of the distribution µ into (2.33) as follows:

X t " X 0 `ż t 0 ´κ X 0 ´`κ ´m˘X s ¯ds `ż t 0 ż `8 0
x ´N pds, dxq ´Xs´d s µpdxq ¯, @t ě 0.

We then use [IW89, Theorem II.7.4], which ensures, possibly on an enlarged probability space, the existence of a Poisson random measure N 1 pdt, du, dxq with compensator dt du µpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du µpdxq such that

X t " X 0 `ż t 0 ´κ X 0 ´`κ ´m˘X s ¯ds `ż t 0 ż X s0 ż `8 0 x r N 1 pdt, du, dxq, @t ě 0.
[Li11, Theorem 9.31] and [Li20, Theorem 8.1] therefore provide the CBI property of X " pX t q tě0 .

At this point, we can apply Theorem 2.12 as in the proof of Corollary 2.16, which yields the Lamperti-type representation of X " pX t q tě0 as follows:

X t " X 0 `κ ż t 0 `X0 ´Xs ˘ds `ż Yt 0 ż `8 0 x M 1 pds, dxq, @t ě 0,
where Y t :" ş t 0 X s ds, for all t ě 0, and M 1 pdt, dxq is a Poisson random measure defined on R `ˆR `with compensator dt µpdxq. Let us now define the stochastic process M 1 " pM 1 t q tě0 by M 1 t :"

ş t 0 ş `8 0
x M 1 pds, dxq, for all t ě 0. M 1 " pM 1 t q tě0 is then a unit-intensity compound Poisson process with mark law µ such that M t " M 1

Yt by (2.33), for all t ě 0.

Tempered-stable CBI processes

We recall that when X " pX t q tě0 is an α-CIR process with α P p1, 2q, Theorem 2.8 yields E " e x X T ‰ " `8, for all x ą 0 and T ą 0. This represents a drawback of the class of α-CIR processes in view of the modeling of Chapter 3, where the finiteness of exponential moments will represent an indispensable requirement. In order to overcome this issue, we develop a new specification of the CBI process that we name tempered-stable CBI process. This process can be constructed either from an α-CIR process by means of an equivalent change of probability (see e.g. [JMS17, Proposition 4.1]), or as a solution to a certain stochastic time change equation. Let us proceed with the latter approach.

To this purpose, the stochastic basis `Ω, F, F, Q ˘is supposed to be equipped with the following two independent stochastic processes: ' A standard Brownian motion W " pW t q tě0 ; ' A compensated, spectrally positive tempered-stable Lévy process L " pL t q tě0 with Lévy measure C α z ´1´α e ´θ z 1 tzą0u dz, where C α ě 0, θ ą 0 and α ă 2 (or θ " 0 and α P p1, 2q).

Definition 2.18. A non-negative càdlàg stochastic process X " pX t q tě0 with initial value X 0 is said to be a tempered-stable CBI process if it satisfies the stochastic time change equation

(2.35) X t " X 0 `ż t 0 `β ´b X s ˘ds `σ W Yt `η L Yt , @t ě 0,
where Y t :" ş t 0 X s ds, for all t ě 0, b P R, β ě 0, σ ě 0, and η ě 0.

The stochastic time change equation (2.35) is obtained by extending equation (2.30) as follows:

(i) The positivity constraint of the parameter b is relaxed: (ii) The jumps of the stable process are tempered exponentially via the parameter θ;

(iii) The stable-type behavior of the jumps is preserved and still controlled by α.

A tempered-stable CBI process in the sense of Definition 2.18 cannot be represented by a Lévydriven stochastic integral equation in the form of (2.28), which contrasts with an α-CIR process. This is due to the fact that the symmetry/self-similarity property of the stable process is not preserved by the exponential tempering. The exponential tempering enables the Lévy process L " pL t q tě0 to have finite moments of any order (see e.g. [CT04, Section 4.5]), regardless of the value of α. Moreover, it also allows α to be extended to the whole R ´, where the interval in which the value of α lies determines the path properties of the process L " pL t q tě0 as follows:

(i) If α ă 0, then L " pL t q tě0 is a compensated compound Poisson process; (ii) If α P r0, 1q, then L " pL t q tě0 has infinite activity and finite variation; (iii) If α P r1, 2q, then L " pL t q tě0 has infinite activity and infinite variation.

We rely on the findings of [START_REF] Carr | What type of process underlies options? A simple robust test[END_REF] and [START_REF] Ornthanalai | Lévy jump risk: Evidence from options and returns[END_REF] and set α P r0, 2q. However, in view of not limiting ourselves to Lévy processes with finite variation, we shall focus on α P p1, 2q (while excluding α " 1 for simplicity).

We fix η ą 0, where we recall that η serves as a volatility parameter for the jump part (see Section 2.6.2). By [ECPGUB13, Proposition 2 and Theorem 2], there exists a unique non-negative strong solution to equation (2.35) for any X 0 ě 0, which is a CBI `X0 , Ψ, Φ ˘with Lévy measures ν " 0 and πpdzq " η α C α z ´1´α e ´θ η z 1 tzą0u dz. In this regard, for a tempered-stable CBI process in the sense of Definition 2.18, we have D 1 " p´8, θ{ηs. Indeed, for all x P R, x P D 1 if and only if ş `8

1
z ´1´α e px´θ{ηq z dz ă `8, which holds true if and only if x ď θ{η. Since ν " 0, the immigration mechanism Ψ of a tempered-stable CBI process reduces to Ψpxq " β x. The branching mechanism Φ is explicitly described in the following lemma.

Lemma 2.19. For η ą 0, C α ě 0, θ ě 0, and α P p1, 2q, the branching mechanism Φ of a tempered-stable CBI process is explicitly given by

(2.36) Φpxq " ´b x `1 2 pσ xq 2 `Cα Γp´αq ´`θ ´η x ˘α ´θα `α θ α´1 η x ¯,
for all x ď θ{η. Moreover, the branching mechanism Φ is non-increasing with respect to the tempering parameter θ, and Assumption 2.4 is satisfied.

Proof. Let us first consider the case θ " 0, which amounts to πpdzq " η α C α z ´1´α 1 tzą0u dz. This corresponds to a non-tempered stable CBI process in the sense of Section 2.6.2, whose branching mechanism Φ is given by Φpxq " ´b x `1 2 pσ xq 2 `Cα Γp´αq p´η xq α , @x ď 0.

Henceforth, consider θ ą 0. Our starting point is the integral appearing in (2.2), where we replace the exponential e x z with its Maclaurin series:

ż `8 0 `e x z ´1 ´x z ˘πpdzq " η α C α ż `8 0 `8 ÿ n"2 pxzq n n! z ´1´α e ´θ η z dz,
for all x ď θ{η. By restricting x such that |x| ă θ{η, we can apply Fubini's theorem to interchange summation and integration:

η α C α ż `8 0 `8 ÿ n"2 pxzq n n! z ´1´α e ´θ η z dz " θ α C α `8 ÿ n"2 pη x{θq n n! ż `8 0 z n´α´1 e ´z dz.
By using the Gamma function, we can write

θ α C α `8 ÿ n"2 pη x{θq n n! ż `8 0 z n´α´1 e ´z dz " θ α C α `8 ÿ n"2 pη x{θq n n! Γpn ´αq,
which is well defined for every n ě 2 since α P p1, 2q. At this point, by inserting, for every n ě 2, Γpn ´αq " p´1q n n! `α n ˘Γp´αq into the expression above, where `α n ˘denotes the generalized binomial coefficient, we obtain

θ α C α `8 ÿ n"2 pη x{θq n n! Γpn ´αq " θ α C α Γp´αq `8 ÿ n"2 ˆα n ˙´´η x θ ¯n .
We can identify the binomial series associated to the Maclaurin series expansion of the function x Þ Ñ p1 `xq α , whose convergence is ensured when |x| ă 1. Therefore:

θ α C α Γp´αq `8 ÿ n"2 ˆα n ˙´´η x θ ¯n " C α Γp´αq ´`θ ´η x ˘α ´θα `α θ α´1 η x ¯.
The branching mechanism Φ is then given by

Φpxq " ´b x `1 2 pσ xq 2 `Cα Γp´αq ´`θ ´η x ˘α ´θα `α θ α´1 η x ¯,
for all x such that |x| ă θ{η. We can then continuously extend the function Φ to the whole interval D 1 " p´8, θ{ηs. Now, by computing the derivative of Φpxq with respect to the tempering parameter θ, we have

BΦpxq Bθ " α θ α´1 C α Γp´αq ˆ´1 ´η θ x ¯α´1 ´1 ``α ´1˘η θ x ˙.
By recalling that Γp´αq ą 0 when α P p1, 2q, and using Bernoulli's inequality, which here takes the form `1 ´η x{θ ˘α´1 ď 1 ´pα ´1q η x{θ, it then holds that BΦpxq Bθ ď 0, implying that Φ is nonincreasing with respect to the tempering parameter θ. Finally, we can differentiate the function Φ on the open interval p´8, θ{ηq as follows:

Φ 1 pxq " ´b `σ2 x `α η C α Γp´αq ´θα´1 ´`θ ´η x ˘α´1 ¯,
for all x ă θ{η, which proves to be finite when x " θ{η, thus verifying Assumption 2.4.

We show that the well-known Feller condition for CIR processes (see Sections 2.6.1 and 2.6.2), applies with the same form to tempered-stable CBI process. We rely on [JMS17, Proposition 3.4], where an analogous result was obtained for the α-CIR process. In particular, we exploit the non-increasing behavior of the branching mechanism Φ with respect to θ. Proposition 2.20. Let X " pX t q tě0 be a tempered-stable CBI process with η ě 0, C α ě 0, θ ě 0, and α P p1, 2q. Then, 0 is inaccessible by the process X " pX t q tě0 if and only if 2 β ě σ 2 .

Proof. Throughout this proof, we use the techniques of [FUB14, Corollary 6] and [DFM14, Theorem 2] for general CBI processes. First, there exist two trivial cases: η " 0, which corresponds to a CIR process and where the Feller condition is given by 2 β ě σ 2 . The second case is θ " 0, which is a non-tempered stable CBI process (weakly equivalent to an α-CIR process), and for which [JMS17, Proposition 3.4] shows that the Feller condition takes the form 2 β ě σ 2 .

Let us now set η ą 0 and θ ą 0. We start by exploiting the non-increasing behavior of the branching mechanism Φ with respect to θ by writing Φ α´CIR ě Φ, where Φ α´CIR corresponds to the non-tempered case θ " 0 given by (2.29). Next, by Bernoulli's inequality, we have Φ ě Φ CIR , where Φ CIR denotes the branching mechanism of a CIR process given by Φpxq " ´b x `1 2 pσ xq 2 . Define, for some ρ ă 0 such that Φpxq ą 0 for all x ď ρ by convexity of Φ, the quantity Ξ `Φ˘: "

ż ρ ´8 exp ˆż ρ x ´Ψpyq Φpyq dy ˙dx Φpxq .
where we recall that Ψpxq " β x, for all x ď θ{η, which is non-decreasing on D 1 . By [FUB14, Corollary 6] and [DFM14, Theorem 2], ΞpΦq " 8 if and only if 0 is inaccessible by the CBI process X " pX t q tě0 associated to the branching mechanism Φ. Therefore, in view of inequality Φ α´CIR ě Φ ě Φ CIR , we can write

Ξ `Φα´CIR ˘ď Ξ pΦq ď Ξ `ΦCIR ˘.
First, if 2 β ě σ 2 , then by [JMS17, Proposition 3.4], 0 is inaccessible by the α-CIR process of branching mechanism Φ α´CIR , which gives Ξ `Φα´CIR ˘" 8 and Ξ `Φ˘" 8 as well. Hence, 0 is also inaccessible for the tempered-stable CBI process X " pX t q tě0 . Conversely, if 0 is inaccessible for X " pX t q tě0 , then Ξ `Φ˘" 8, yielding Ξ `ΦCIR ˘" 8. In this case, given that Φ CIR is the branching mechanism of a CIR process, we have 2 β ě σ 2 , which finally concludes the proof.

The next proposition provides a simple necessary and sufficient condition on the parameter b for the finiteness of the exponential moment E " e x 1 X T `x2 Y T ‰ , for all x 1 ď θ{η, x 2 ď 0, and T ą 0, where X " pX t q tě0 is a tempered-stable CBI process and Y t :" ş t 0 X s ds, for all t ě 0.

Proposition 2.21. Let X " pX t q tě0 be a tempered-stable CBI process with η ą 0, C α ą 0, θ ą 0, and α P p1, 2q. Then, we have E " e x 1 X T `x2 Y T ‰ ă `8, for all x 1 ď θ{η, x 2 ď 0, and T ą 0, if and only if b ě 1 2 σ 2 θ η `η C α Γp´αq θ α´1 pα ´1q.

Proof. It suffices to apply Corollary 2.9 to the tempered-stable CBI process X " pX t q tě0 , knowing that Assumption 2.4 is satisfied by Lemma 2.19. It then yields E " e x 1 X T `x2 Y T ‰ ă `8, for all x 1 ď θ{η, x 2 ď 0, and T ą 0, if and only if Φpθ{ηq ď 0, where Φ is given by (2.36). By computing Φpθ{ηq, we can recover the equivalence: Φpθ{ηq ď 0 ðñ b ě 1 2 σ 2 θ η `η C α Γp´αq θ α´1 pα ´1q.

Remark 2.22. By combining Remark 2.7 with Proposition 2.21, for a tempered-stable CBI process X " pX t q tě0 where b ě 1 2 σ 2 θ η `η C α Γp´αq θ α´1 pα ´1q, we also obtain the finiteness of the complex exponential moment E " e u 1 X T `u2 Y T ‰ , for all u 1 P C such that Repu 1 q ă θ{η, u 2 P C ´, and T ą 0. Indeed, the extension of the joint conditional Laplace transform (2.12) to all the couples pu 1 , u 2 q of this kind holds only up to a time T pu 1 ,u 2 q such that T pu 1 ,u 2 q ě T pRepu 1 q,Repu 2 qq (see Remark 2.7). However, under Proposition 2.21, we have T px 1 ,x 2 q " `8, for all x 1 ď θ{η and x 2 ď 0, if and only if b ě 1 2 σ 2 θ η `η C α Γp´αq θ α´1 pα ´1q. As a result, we obtain T pu 1 ,u 2 q " `8, for all u 1 such that Repu 1 q ă θ{η and u 2 P C ´, by the previous inequality. This will play an important role for the application of Fourier-based pricing methods (see Chapter 3).

In conclusion to this chapter, a brief overview of all the examples of CBI processes that have been considered in Sections 2.6 and 2.7 is reported in Table 2.1. For each example in the table:

' The first column lists the parameters to specify from a general CBI process; ' The second column highlights the principal features of the example considered. Tempered-stable CBI process (see Section 2.7)

ν " 0, and for all z ą 0:

πpdzq " η α Cα z ´1´α e ´θ η z dz,

η ą 0, Cα ě 0, θ ě 0, α P p1, 2q Stochastic time change equation E " e x X T ‰ ă `8, @x ď θ{η, @T ą 0
Feller condition applies This phenomenon is reflected by the presence of tenor-dependent spreads between different yield curves. In the midst of the financial crisis, such spreads reached their peak beyond 200 basis points and since then, and still nowadays, they have continued to remain at non-negligible levels (see Figure 3.1). The credit, liquidity, and funding risks existing in the interbank market, which were deemed negligible prior to the financial crisis, reveal to be at the origin of this phenomenon (see for instance [MU08, GKP11, CD13, GSS17]). In all major jurisdictions, transaction-based backward-looking risk-free rates are currently being introduced as a replacement for Ibor rates (e.g. SOFR in the US market, eSTR in the Eurozone, SONIA in the UK market), also as a response to the 2012 Libor manipulation scandal (see e.g. [START_REF] Klingler | Life after LIBOR[END_REF] for a brief examination of the alternative rate benchmarks). We can mention several works where the new reference rates intended to replace Ibor rates have been modeled. We start with [START_REF] Mercurio | A simple multi-curve model for pricing SOFR futures and other derivatives[END_REF], where a simple multi-curve short-rate model was extended to take SOFR rates into account. [START_REF] Lyashenko | Looking forward to backward-looking rates: A modeling framework for term rates replacing LIBOR[END_REF] presented an extension of the standard Libor market model to backward-looking rates. [START_REF] Macrina | Rational savings account models for backward-looking interest rate benchmarks[END_REF] introduced a class of rational savings account models for backward-looking rates, and [AB20] developed a modeling framework for interest rate spikes in view of SOFR derivative pricing. More recently, [START_REF] Gellert | Short rate dynamics: A Fed Funds and SOFR perspective[END_REF] have designed a SOFR short-rate model taking stochastic discontinuities explicitly into account, and [START_REF] Skov | Dynamic term structure models for SOFR futures[END_REF] have constructed a novel class of dynamic term-structure models for SOFR futures by relying on historical data.

At the time of writing, definitive conclusions on the evolution of Ibor rates cannot be drawn. However, there seems to be a consensus on the fact that the multiple yield curve framework will remain relevant (and, possibly, even more relevant) in the future. Indeed, several authors have argued that a complete disappearence of Ibor rates, which are known to reflect the fluctuations in the unsecured term funding costs of banks, does not seem like a realistic scenario. Among others, we can in particular mention [START_REF] Schrimpf | Beyond LIBOR: a primer on the new benchmark rates[END_REF], who documented that multiple benchmark rates will coexist in the future. For instance, in some jurisdictions, Ibor benchmarks have been reformed and the "two-benchmark approach" of [START_REF] Duffie | Reforming LIBOR and other financial market benchmarks[END_REF] has been adopted (e.g. in the Eurozone, the Euribor rate will not be abandoned, but only replaced by a reformed version that will coexist with the eSTR rate as of 2022).

In this chapter, we propose a novel modeling approach to multiple yield curves, which is specifically motivated by the relevant empirical features of spreads between interbank rates. An inspection of Figure 3.1 provides an overview of these features (previously listed in Chapter 1):

(i) Spreads are typically greater than one and non-decreasing with respect to the tenor; (ii) There are strong co-movements (in particular, common upward jumps) among spreads associated to different tenors; (iii) Relatively large values of the spreads are associated to high volatility, showing volatility clustering zones during crisis periods; (iv) Low values of some spreads can persist for prolonged periods of time.

As already postulated in Chapter 1, as far as we know, a multi-curve model that can adequately reproduce all these features does not yet exist in the related literature.

Prior to presenting our contribution, let us briefly discuss the literature on multi-curve models. We emphasize that we do not attempt a general overview of multi-curve modeling, referring instead to the volumes [BM13, Hen14, GR15] for detailed accounts on the topic. Multi-curve models, as extensions of standard single-curve interest rate models, can be categorized into four principal classes: short-rate models We can also add the following more recent contributions: [START_REF] Cuchiero | Affine multiple yield curve models[END_REF], where the authors have developed the affine framework unifying all existing multi-curve models based on affine processes; [BMSS19, AGS20] have adopted a new short-rate approach modeling "roll-over risk" explicitly; [START_REF] Eberlein | Multiple curve Lévy forward price model allowing for negative interest rates[END_REF] have extended the Libor market model to allow for negative interest rates; [START_REF] Fontana | Term structure modeling for multiple curves with stochastic discontinuities[END_REF] have constructed an HJM model taking stochastic discontinuities into account; [START_REF] Leunga | Interbank credit risk modeling with self-exciting jump processes[END_REF] have introduced self-exciting features into the multiple yield curve framework through a reduced-form model of interbank credit risk by relying on self-exciting jump processes.

3.1.2. Contribution. By relying on the theory of Continuous-state Branching processes with Immigration (CBI), we develop a modeling framework that captures the relevant empirical features of spreads and, at the same time, guarantees an efficient valuation of interest rate derivatives written on Ibor rates. Exploiting the affine property of CBI processes, we design our modeling framework in the context of the affine multi-curve models recently introduced by [START_REF] Cuchiero | Affine multiple yield curve models[END_REF], taking spot multiplicative spreads and the OIS short rate as fundamental modeling objects (see Chapter 1).

By construction, the model achieves a perfect fit to the observed term structures, and ensures spreads greater than one and non-decreasing with respect to the tenor. The model generates an exponentially-affine structure for OIS zero-coupon bonds and forward multiplicative spreads, allowing for the explicit valuation of all linear interest rate derivatives.

While [START_REF] Cuchiero | Affine multiple yield curve models[END_REF] focused on the general theoretical properties of the framework, we contribute by introducing a novel class of tractable and flexible multi-curve models driven by a flow of tempered-stable CBI processes, which are specifically motivated by the empirical features discussed above. The adoption of a flow of CBI processes (see [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF]) enables us to capture strong comovements among spreads such as common upwards jumps and jump clustering. In particular, the self-exciting behavior of CBI processes proves to be a key ingredient to reproduce these features.

The choice of tempered-stable CBI processes, as presented in Section 2.7, offers a remarkable trade-off between flexibility and analytical tractability, and allows for an explicit characterization of several important properties of the model. More specifically, tempered-stable CBI processes provide a simple necessary and sufficient condition for the finiteness of exponential moments, which will represent an indispensable requirement.

We derive semi-closed-form pricing formulae for caplets via Fourier techniques. More precisely, we implement two pricing methodologies based on FFT and quantization, where the latter is here applied for the first time to an interest rate setting. Finally, in a numerical analysis (Section 3.5), our two pricing methodologies are compared and a specification of the proposed model with two tenors is calibrated to market data, demonstrating an excellent fit to market data. We believe that the introduction of such models driven by a flow of CBI processes, can lead to further successful applications in other contexts where different term structures coexist.

3.1.3. Structure. Section 3.2 introduces the general modeling approach, which is then specialized in Section 3.3 to multi-curve models driven by a flow of tempered-stable CBI processes. Section 3.4 presents our pricing formulae for caplets. Section 3.5 contains numerical results, while Section 3.6 concludes. We finally simulate tempered-stable CBI processes in Appendix 3.A.

General modeling with CBI processes

As in Chapter 2, we fix a stochastic basis `Ω, F, F, Q ˘satisfying the usual conditions, where Q is a probability measure whose role will be specified later, and where F " pF t q tě0 is a filtration to which all stochastic processes are assumed to be adapted. By convention, we set F " F 8 and denote the expectation under Q by E.

3.2.1. Preliminaries on the post-crisis interest rate market. The reference rates for overnight transactions are the EONIA (Euro Overnight Index Average) rate in the Eurozone and the Federal Funds rate in the US market. These rates are determined on the basis of actual overnight transactions of the interbank market, and represent the underlying of Overnight Indexed Swaps (OIS). These swaps are then quoted by their market swap rates, simply referred to as OIS rates, which are typically considered as the best proxies for risk-free rates.

By using bootstrapping techniques (see e.g. [START_REF] Ametrano | Everything you always wanted to know about multiple interest rate curve bootstrapping but were afraid to ask[END_REF]), the OIS term structure T Þ Ñ Bpt, T q can be recovered from OIS rates, where Bpt, T q denotes the price at time t of an OIS zero-coupon bond with maturity T . We then represent the OIS short rate by the stochastic process r " pr t q tě0 , defined as the short end of the term structure of instantaneous forward rates implied by OIS zero-coupon bond prices. In market practice, the OIS short rate is usually approximated by the overnight rate associated to the shortest tenor and is often adopted as a collateral rate.

For δ ě 0 and T ě 0, let us now introduce the simply-compounded (risk-free) OIS spot rate for the period rT, T `δs, which we denote by L OIS pT, T, δq. The latter is given by (3.1)

L OIS pT, T, δq :" 1 δ ˆ1 BpT, T `δq ´1˙.

We point out that equation (3.1) is valid for all δ ě 0 and T ě 0 as far as OIS rates are concerned. We also observe that the right-hand side of (3.1) used to be the pre-crisis textbook definition of the Interbank offered rate (Ibor) prevailing at time T for the period rT, T `δs.

Ibor rates represent the underlying of interest rate derivatives and are determined by a panel of primary financial institutions for unsecured lending (refer to [GR15, Chapter 1] for further details). We denote by LpT, T, δq the spot Ibor rate for the period rT, T `δs, where the tenor δ is typically one day (1D), one week (1W), or several months (1M, 2M, 3M, 6M, 12M). We consider Ibor rates for a generic set G :" δ 1 , . . . , δ m ( of tenors, with 0 ă δ 1 ă . . . ă δ m , for some m P N. We emphasize that in the post-crisis environment, Ibor rates of different tenors exhibit a distinct behavior and are no longer determined by simple no-arbitrage relations. As in Section 3.1, this leads to non-negligible basis spreads and to the emergence of multiple yield curves.

Among all financial derivatives written on Ibor rates, Forward Rate Agreements (FRAs) can be regarded as the basic building blocks, owing to the fact that all linear interest rate products, such as interest rate swaps and basis swaps, can be represented as portfolios of FRAs (see e.g. [CFG16, Section 5.2]). We recall that a FRA written on the Ibor rate LpT, T, δq with fixed strike K is a contract that delivers the payoff δ `LpT, T, δq ´K˘a t maturity T `δ. The forward Ibor rate Lpt, T, δq at time t ď T is defined as the value of K that makes the price at time t of the FRA equal to zero. We then formulate the definition of a multiple yield curve market as follows.

Definition 3.1. A multiple yield curve market is a financial market where the following basic assets are traded: ' OIS zero-coupon bonds for all maturities T ą 0; ' FRAs for all tenors δ P G, for all maturities T ą 0, and fixed strike K.

The natural question arising from Definition 3.1 concerns absence of arbitrage in this market. Recently, [START_REF] Fontana | Term structure modeling for multiple curves with stochastic discontinuities[END_REF] have provided a formulation of the fundamental theorem of asset pricing for multiple yield curve markets. Indeed, by [FGGS20, Theorem 6.3], absence of arbitrage in the sense of No Asymptotic Free Lunch with Vanishing Risk (NAFLVR) is equivalent to the existence of an equivalent separating measure, thus extending the main result of [START_REF] Cuchiero | A new perspective on the fundamental theorem of asset pricing for large financial markets[END_REF] to multiple curves and an infinite time horizon. In general, an equivalent separating measure cannot be replaced with Equivalent Local martingale Measure (ELMM), see [START_REF] Fontana | Term structure modeling for multiple curves with stochastic discontinuities[END_REF]Remark 6.4]. However, by using Fatou's lemma, the existence of an ELMM always suffices to guarantee NAFLVR.

The general modeling framework.

From now on, we adopt a martingale approach and directly define our modeling framework on the stochastic basis `Ω, F, F, Q ˘, where Q is assumed to be a risk-neutral measure for the multiple yield curve market. By definition, this means that all traded assets considered above are martingales under Q when discounted by the OIS bank account B t :" e ş t 0 rs ds , for all t ě 0, which therefore ensures NAFLVR for the multiple yield curve market by [START_REF] Fontana | Term structure modeling for multiple curves with stochastic discontinuities[END_REF]Theorem 6.3].

OIS zero-coupon bond prices can be represented by

(3.2) Bpt, T q " E " e ´şT t rs ds ˇˇF t ı ,
for all 0 ď t ď T ă `8, and forward Ibor rates are given by

(3.3) Lpt, T, δq " E T `δ " LpT, T, δq ˇˇF t ‰ ,
for all δ P G and 0 ď t ď T ă `8, where E T `δ denotes the expectation under the pT `δq-forward probability measure Q T `δ with the OIS zero-coupon bond Bp¨, T `δq as a numéraire (see e.g. [START_REF] Geman | Changes of numraire, changes of probability measure and option pricing[END_REF]). We also point out that equation (3.3) was first introduced by [Mer10, Section 4] as a definition of the FRA rate. As mentioned in Section 3.1, we design our modeling framework in the context of the affine multi-curve models recently studied by [START_REF] Cuchiero | Affine multiple yield curve models[END_REF]. Our main modeling quantities are the OIS short rate r " pr t q tě0 and the spot multiplicative spreads between (normalized) spot Ibor rates and (normalized) simply-compounded OIS spot rates (refer also to Chapter 1), defined as follows:

(3.4) S δ pt, tq :" 1 `δ Lpt, t, δq 1 `δ L OIS pt, t, δq , @pδ, tq P G ˆR`.

In the post-crisis environment, multiplicative spreads are typically greater than one and nondecreasing with respect to the tenor. By abstracting from liquidity and funding issues, this can be ascribed to the fact that Ibor rates incorporate the risk that the average credit quality of an initial panel of creditworthy banks deteriorates over the term of the loan, while OIS rates, in turn, reflect the average credit quality of a periodically refreshed panel of banks (see e.g. [START_REF] Solnik | On the term structure of default premia in the swap and LIBOR markets[END_REF][START_REF] Filipović | The term structure of interbank risk[END_REF]).

The idea of modeling multiple yield curve markets via multiplicative spreads is due to [START_REF] Henrard | Interest Rate Modelling in the Multi-Curve Framework[END_REF], and pursued by [CFG16, CFG19b, EGG20, FGGS20]. They can be directly inferred from quoted Ibor and OIS rates and, in comparison to additive spreads (see [START_REF] Mercurio | The basis goes stochastic[END_REF][START_REF] Mercurio | A Libor market model with a stochastic basis[END_REF]), admit a natural economic interpretation. Indeed, S δ pt, tq can be considered as a market expectation (at time t) of the riskiness of the Ibor panel for the period rt, t `δs. In particular, this interpretation reveals to be related to the foreign exchange analogy that we derived in Chapter 1 (see also [START_REF] Bianchetti | Two curves, one price[END_REF][START_REF] Nguyen | The multi-curve potential model[END_REF][START_REF] Cuchiero | A general HJM framework for multiple yield curve modeling[END_REF][START_REF] Macrina | Consistent valuation across curves using pricing kernels[END_REF]).

Let us now suppose that the stochastic basis `Ω, F, F, Q ˘supports a d-dimensional process X " pX t q tě0 such that each component X k is a CBI `Xk 0 , Ψ k , Φ k ˘in the sense of Chapter 2, whose branching mechanism Φ k satisfies Assumption 2.4. We also assume that X 1 , . . . , X d are mutually independent. Besides the driving process X, let us then introduce the following ingredients:

' A function : R `Ñ R such that ş T 0 ˇˇ puq ˇˇdu ă `8, for all T ą 0; ' A vector λ P R d `;
' A family of functions c " pc 1 , . . . , c m q with c i : R `Ñ R, for every 1 ď i ď m; ' A family of vectors γ " pγ 1 , . . . , γ m q with γ i P R d , for every 1 ď i ď m. Definition 3.2. The tuple `X, , λ, c, γ ˘is said to generate a CBI-driven multi-curve model if

r t " ptq `λJ X t , (3.5) log S δ i pt, tq " c i ptq `γJ i X t , (3.6) 
for all t ě 0 and for every 1 ď i ď m, and if the following conditions hold true:

(3.7) γ i,k P D k 1 and T pγ i,k ,´λ k q k " `8,
for every 1 ď i ď m and for every 1 ď k ď d, where the set D k 1 is given by (2.8) and T pγ i,k ,´λ k q k denotes the lifetime as in Theorem 2.8 applied to x 1 " γ i,k and x 2 " ´λk , both with respect to the CBI process X k " pX k t q tě0 , for every 1 ď k ď d.

Condition (3.7) guarantees that E " e ´şT 0 rs ds S δ pT, T q ‰ ă `8, for all δ P G and T ą 0, thus ensuring that the model can be applied to arbitrarily large maturities (i.e. the expected value in (3.3) is always well-defined). The role of the time-dependent functions and c consists in allowing the model to perfectly fit the observed term structures (we refer the reader to [CFG19b, Proposition 3.18] for a precise characterization of this property).

A multi-curve model constructed as in Definition 3.2 inherits the properties of the CBI process, in particular its self-exciting behavior (see Remark 2.14). Moreover, it can easily generate common upward jumps in different spreads. In view of equations (3.6), this can be achieved by letting γ J i γ j ‰ 0, for every 1 ď i, j ď m with i ‰ j, meaning that the spreads associated to the tenors δ i and δ j are affected by common risk factors. As mentioned in Section 3.1, common upward jumps represent a particularly important empirical fact. We refer to Section 3.3 for a more specific discussion on the adequacy of this approach in reproducing the empirical features of Ibor-OIS spreads as exhibited by Figure 3.1.

Remark 3.3. In general, there are no constraints on the choice of the dimension d of the driving process X. On the one hand, d ě m is needed to ensure non-trivial correlation structures among the m spreads. On the other hand, the case d ă m is in line with market practice, which often assumes for simplicity the existence of linear (possibly time-varying) dependence among different spreads. Let us also mention that models driven by a vector of independent CBI processes have been recently applied to spot and forward energy prices in [START_REF] Jiao | A branching process approach to power markets[END_REF] and [START_REF] Callegaro | A self-exciting modelling framework for forward prices in power markets[END_REF], respectively.

Features of the model.

As shown in [START_REF] Cuchiero | A general HJM framework for multiple yield curve modeling[END_REF][START_REF] Cuchiero | Affine multiple yield curve models[END_REF], the basic building blocks for the valuation of interest rate derivatives in a multi-curve setting are represented by OIS zerocoupon bond prices and forward multiplicative spreads S δ pt, T q, defined as follows:

(3.8) S δ pt, T q :" 1 `δ Lpt, T, δq 1 `δ L OIS pt, T, δq , for all δ P G and 0 ď t ď T ă `8, where Lpt, T, δq is the forward Ibor rate and L OIS pt, T, δq is the simply-compounded (risk-free) OIS forward rate given by (3.9) L OIS pt, T, δq :" 1 δ ˆBpt, T q Bpt, T `δq ´1˙.

We mention that by equation (3.3), the forward multiplicative spread process pS δ pt, T qq tďT is a martingale under the T -forward measure Q T , for all δ P G and T ą 0 (see [START_REF] Cuchiero | A general HJM framework for multiple yield curve modeling[END_REF]Lemma 3.11]).

In the next result, we show that in a CBI-driven multi-curve model, OIS zero-coupon bonds and forward multiplicative spreads admit an exponentially-affine structure. As a consequence, all linear interest rate derivatives such as FRAs, interest rate swaps, and basis swaps, can be priced in closed form by relying on the general valuation formulae stated in [CFG16, Section 5.2]. Lemma 3.4. Let `X, , λ, c, γ ˘generate a CBI-driven multi-curve model. Then:

(i) For all 0 ď t ď T ă `8, the OIS zero-coupon bond price Bpt, T q is given by (3.10) Bpt, T q " exp `A0 pt, T q `B0 pT ´tq J X t ˘,

where A 0 pt, T q and B 0 pT ´tq " `B1 0 pT ´tq, . . . , B d 0 pT ´tq ˘J are given by

A 0 pt, T q :" ´ż T ´t 0 ˆ ps `tq `d ÿ k"1
Ψ k ´Vk ps, 0, ´λk q ¯˙ds, B k 0 pT ´tq :" V k pT ´t, 0, ´λk q, for every 1 ď k ď d;

(ii) For every 1 ď i ď m and for all 0 ď t ď T ă `8, the forward multiplicative spread S δ i pt, T q is given by

(3.11) S δ i pt, T q " exp `Ai pt, T q `Bi pT ´tq J X t ˘,
where A i pt, T q and B i pT ´tq " `B1 i pT ´tq, . . . , B d i pT ´tq ˘J are given by

A i pt, T q :" c i pT q `d ÿ k"1
ż T ´t 0 ˆΨk ´Vk ps, γ i,k , ´λk q ¯´Ψ k ´Vk ps, 0, ´λk q ¯˙ds, B k i pT ´tq :" V k pT ´t, γ i,k , ´λk q ´Vk pT ´t, 0, ´λk q, for every 1 ď k ď d.

Proof. Due to condition (3.7) and the independence of the processes X 1 , . . . , X d , equations (3.10) and (3.11) can be easily obtained by relying on the affine property of the CBI process. First, equation (3.10) for the OIS zero-coupon bond price Bpt, T q, for all 0 ď t ď T ă `8, follows from (3.2) and a direct application of Lemma 2.2 for each CBI process X k " pX k t q tě0 . Then, equation (3.11) for the forward multiplicative spread S δ i pt, T q, for every 1 ď i ď m and for all 0 ď t ď T ă `8, follows from the martingale property of pS δ i pt, T qq tďT under the T -forward measure Q T , and an application of Proposition 2.5 for each CBI process X k " pX k t q tě0 .

As mentioned previously, in typical post-crisis market scenarios, multiplicative spreads are greater than one and non-decreasing with respect to the tenor. The next lemma shows that these features can be easily reproduced by a CBI-driven multi-curve model. While this result can be recovered as a special case of the general statement in [CFG19b, Proposition 3.7], here we provide a short self-contained proof that relies on the specific properties of CBI processes. Lemma 3.5. Let `X, , λ, c, γ ˘generate a CBI-driven multi-curve model. Then:

(i) For every 1 ď i ď m, if γ i P R d `and c i ptq ě 0, for all t ě 0, then S δ i pt, T q ě 1 a.s. for all

0 ď t ď T ă `8; (ii) For every 1 ď i ď m ´1, if γ i`1 ´γi P R d
`and c i ptq ď c i`1 ptq, for all t ě 0, then S δ i pt, T q ď S δ i`1 pt, T q a.s. for all 0 ď t ď T ă `8.

Proof. Arguing as in [Li11, Proposition 3.1] and [Li20, Proposition 2.11], it can be shown that the function V k is increasing in its second coordinate on D k 1 , for every 1 ď k ď d. In addition, we know from Chapter 2 that each immigration mechanism Ψ k is non-decreasing. Hence, since X takes values in R d `, the result is a direct consequence of part (ii) of Lemma 3.4.

Remark 3.6. Recently, negative short rates have been observed to coexist with non-negative spreads (see e.g. [START_REF] Eberlein | Multiple curve Lévy forward price model allowing for negative interest rates[END_REF]). Since the function in equation (3.5) is allowed to take negative values, our framework does not exclude this possibility. A slight extension of Definition 3.2 permits to generate OIS short rates not bounded from below by the function . It suffices to replace the process X with a pd `1q-dimensional process X 1 " pX, Y q such that X 1 is an affine process with QpY t ă 0q ą 0, for all t ě 0, where Y is not restricted to be independent of X. Equation (3.5) is then replaced by r t " ptq `λJ X t `Yt , while multiplicative spreads remain given by (3.6).

A new class of multi-curve models

In this section, we introduce a class of multi-curve models driven by a flow of tempered-stable CBI processes. The proposed specification is motivated by the most relevant features of the spreads (see Figure 3.1), and reveals to be particularly parsimonious and tractable for our purposes.

Flow of tempered-stable CBI processes.

Let us first suppose that the stochastic basis `Ω, F, F, Q ˘is equipped with the following two independent objects: ' A Gaussian white noise W pdt, duq as in [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] on R `ˆR `and with intensity dt du; ' A Poisson random measure N 1 pdt, du, dxq on R `ˆR `ˆR `with compensator dt du πpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du πpdxq.

As in Section 3.2, we fix a generic set G :" δ 1 , . . . , δ m ( of tenors, with 0 ă δ 1 ă . . . ă δ m , for some m P N. In this sense, for all δ P G, consider the following stochastic integral equation:

Y t pδq " Y 0 pδq `ż t 0 `βpδq ´b Y s pδq ˘ds `σ ż t 0 ż Yspδq 0 W pds, duq `ż t 0 ż Y s´p δq 0 ż `8 0
x r N 1 pds, du, dxq, @t ě 0, (3.12) for b P R, σ ě 0, and where the following hold: ' Y 0 : G Ñ R `and β : G Ñ R `are both deterministic and non-decreasing on G; ' πpdzq " η α C α z ´1´α e ´θ η z 1 tzą0u dz, with η ą 0, C α ą 0, θ ą 0, and α P p1, 2q.

By [DL12, Theorem 3.1], for all δ P G, there exists a unique non-negative strong solution to equation (3.12), which is a CBI `Y0 pδq, Ψ δ , Φ ˘(see also Remark 2.13). More precisely, for all δ P G, Y pδq " pY t pδqq tě0 is a tempered-stable CBI process as in Section 2.7 with immigration mechanism Ψ δ pxq " βpδq x and branching mechanism Φ given in Lemma 2.19, where we recall that the function Φ automatically satisfies Assumption 2.4.

The two-parameter process Y t pδq : t ě 0, δ P G ( defines an instance of a flow of tempered-stable CBI processes (we refer the reader to [DL12, Section 3] for further details). All the components of the flow have a common branching mechanism Φ, given by (2.36), while the immigration mechanism of Y pδq is equal to Ψ δ pxq " βpδq x, for all δ P G. Observe also that the processes Y pδq : δ P G ( share the same volatility coefficients σ and η, where we recall that η serves as a volatility parameter for the jump part (see Definition 2.18). They also share the same jump measure π and the same speed of mean reversion b. Only the long-run value βpδq{b (when b ą 0) is specific for each process Y pδq " pY t pδqq tě0 , for all δ P G. Furthermore, we highlight the fact that the martingale terms in equation (3.12) are generated by common sources of randomness W and r N 1 , while depending on the current value of each process Y pδq " pY t pδqq tě0 , which therefore implies a non-trivial dependence structure among the processes Y pδq : δ P G ( . This observation will be made more precise below.

Construction of the multi-curve models.

Let us now formalize the notion of multicurve models driven by a flow of tempered-stable CBI process. To this end, we define the factor process Y " pY t q tě0 by Y t :" `Yt pδ 1 q, . . . , Y t pδ m q ˘J, @t ě 0, and introduce the following ingredients:

' A function : R `Ñ R such that ş T 0 ˇˇ puq ˇˇdu ă `8, for all T ą 0; ' A vector µ P R m `;
' A family of functions c " pc 1 , . . . , c m q with c i : R `Ñ R `, for every 1 ď i ď m. Definition 3.7. The tuple `Y, , µ, c ˘is said to generate a multi-curve model driven by a flow of tempered-stable CBI processes if r t " ptq `µJ Y t , (3.13) log S δ i pt, tq " c i ptq `Yt pδ i q, (3.14) for all t ě 0 and for every 1 ď i ď m, and if the following conditions hold true:

(3.15) θ ą η and b ě 1 2 σ 2 θ η `η C α Γp´αq θ α´1 pα ´1q .
The second part of (3.15) corresponds to the condition provided by Proposition 2.21 for tempered-stable CBI processes, which is common to all the processes Y pδq : δ P G ( . In this regard, θ ą η suffices to guarantee that E " e Ytpδq ‰ ă `8, for all δ P G and t ą 0. Under Definition 3.7, multiplicative spreads are by construction greater than one. Moreover, thanks to the properties of a flow of CBI processes, monotonicity of multiplicative spreads can be easily achieved, provided that the initially-observed spreads are non-decreasing in the tenor. Proposition 3.8. Let `Y, , µ, c ˘generate a multi-curve model driven by a flow of temperedstable CBI processes. Suppose that c i ptq ď c i`1 ptq, for every 1 ď i ď m ´1 and all t ě 0. Then, it holds that S δ i pt, T q ď S δ i`1 pt, T q a.s., for every 1 ď i ď m ´1 and all 0 ď t ď T ă `8.

Proof. Since both functions Y 0 : G Ñ R `and β : G Ñ R `are non-decreasing on G, [DL12, Theorem 3.2] implies that for every 1 ď i ď m ´1, Q `Yt pδ i q ď Y t pδ i`1 q, @t ě 0 ˘" 1. Hence, if in addition we have c i ptq ď c i`1 ptq, for every 1 ď i ď m ´1 and all t ě 0, it follows that S δ i pt, tq ď S δ i`1 pt, tq a.s. for every 1 ď i ď m ´1 and all t ě 0. The claim follows from the fact that the process pS δ i pt, T qq tďT is a martingale under the T -forward probability measure Q T .

The processes Y pδq : δ P G ( possess the characteristic self-exciting behavior of CBI processes. This translates directly into a self-exciting property of spreads: for every 1 ď i ď m, a large value of S δ i pt, tq increases the likelihood of further upward jumps of the spread itself. As discussed in Remark 2.14, a large value of S δ i pt, tq increases the volatility of the spread process itself, thereby generating volatility clustering zones in correspondence of large values of the spreads.

Under the conditions of Proposition 3.8, there is a further self-exciting effect among different spreads: a large value of S δ i pt, tq increases the likelihood of upward jumps of all other spreads with tenor δ j , for every j ą i, which reflects the higher risk implicit in Ibor rates with longer tenors. As pointed out in Section 3.1 (see in particular Figure 3.1), these contagion effects among spreads represent empirically relevant features of the post-crisis multi-curve interest rate market.

Figure 3.2 shows a sample trajectory of a multi-curve model in the sense of Definition 3.7 with G " 3M, 6M ( , providing a clear evidence of jump clustering phenomena. The sample paths have been generated by exploiting the simulation scheme for tempered-stable CBI processes described in Appendix 3.A, using the calibrated parameters reported in Table 3.3.

In Definition 3.7, each process Y pδq " pY t pδqq tě0 drives the multiplicative spread with tenor δ, while all the processes Y pδq : δ P G ( can affect the OIS short rate given by (3.13). This generates a non-trivial dependence between the OIS short rate and the multiplicative spreads, and among the spreads themselves, in line with the dynamics observed on market data. The quadratic co-variation of log-spreads of tenors δ i and δ j , such that i ă j, can be computed as follows: for all t ě 0. This representation of the quadratic co-variation between log-spreads shows that common jumps arise due to the presence of the common random measure N 1 . The presence of common upward jumps is consistent with the contagion effects reported in Section 3.1 (see also Figure 3.1), and is clearly visible in the simulated paths of Figure 3.2. Figure 3.2 exhibits prolonged periods of time during which spreads remain at relatively low levels. This behavior is also observed in Figure 3.1, and can be achieved by small values of α in p1, 2q, common to all the processes Y pδq : δ P G ( . Indeed, for all δ P G, a smaller value of α implies a stronger compensation effect in r N 1 , corresponding to a stronger negative drift after a large jump of the process Y pδq " pY t pδqq tě0 . This leads to a sharp reduction of the jump intensity, which then increases the likelihood of a persistence of low values for the spread S δ pt, tq. Remark 3.9. By adapting [BBSS21, Proposition 5] to our setting, we can show that the flow of processes Y pδq : δ P G ( as defined above, is closed under a wide class of equivalent changes of probability. Indeed, we can construct an equivalent probability measure P as follows:

(3.16) " log S δ i p¨, ¨q, log S δ j p¨, ¨qı t " σ 2 ż t 0 Y s pδ i q ds `ż t 0 ż Y s´p δ i q 0 ż `8 0 x 2 N 1 pds, du, dxq,
(3.17 for all t ě 0, for some ξ P R and ζ ď θ{η, where the stochastic exponential is a true martingale under Q as a direct consequence of [KMK10, Corollary 3.9]. The stochastic exponential has been expressed with respect to the process Y pδ m q " pY t pδ m qq tě0 of longest tenor δ m in the set G, so as to preserve the structural properties of the flow Y pδq : δ P G ( under P. Additionally, as a direct consequence of Girsanov's theorem (see e.g. [EK20, Section 3.12]), the processes Y pδq : δ P G ( , for all δ P G, remain tempered-stable CBI processes under P up to parameter rescaling.

3.3.3.

Embedding of the multi-curve models. The components of the flow of temperedstable CBI processes Y pδq : δ P G ( are highly dependent. Hence, the multi-curve models of Definition 3.7, in their present form, do not seem to belong to the general class of CBI-driven multi-curve models as introduced by Definition 3.2. However, an easy transformation allows to consider the present specification as an instance of the general modeling framework of Section 3.2.

Theorem 3.10. Let `Y, , µ, c ˘generate a multi-curve model driven by a flow of tempered-stable CBI processes. Consider the following objects:

' The m-dimensional process X " pX t q tě0 defined by (3.18) X i t :" Y t pδ i q ´Yt pδ i´1 q, @t ě 0, for every 1 ď i ď m, with Y pδ 0 q " 0 and βpδ 0 q :" 0;

' The vector λ P R m `given by

(3.19) λ i :" m ÿ k"i µ k , for every 1 ď i ď m;
' The family of vector γ " pγ 1 , . . . , γ m q P R mˆm `given by (3.20) γ i,j :" 1 tjďiu , for every 1 ď i, j ď m.

Then, the tuple `X, , λ, c, γ ˘generates a CBI-driven multi-curve model such that (i) for every 1 ď i ď m, the process X i " pX i t q tě0 is a tempered-stable CBI process with branching mechanism Φ and immigration mechanism Ψ i pxq " `βpδ i q ´βpδ i´1 q ˘x; (ii) the processes X 1 , . . . , X m are mutually independent; (iii) the OIS short rate and multiplicative spreads are given by (3.13) and (3.14), respectively.

Proof. Parts (i) and (ii) are direct consequences of the properties of the flow of processes tY pδq : δ P Gu (see [DL12, Theorems 3.2 and 3.3]). To prove part (iii), it suffices to observe that, due to the definitions of λ and γ in (3.19) and (3.20), respectively, it holds that

λ J X t " µ J Y t and γ J i X t " Y t pδ i q,
for all t ě 0 and for every 1 ď i ď m. Note that condition (3.7) is implied by condition (3.15), since D i 1 " p´8, θ{ηs, for every 1 ď i ď m, where we have Φpθ{ηq ď 0 with θ ą η.

In view of Theorem 3.10, the multi-curve models of Definition 3.7 driven by the flow of tempered-stable CBI processes Y pδq : δ P G ( can be equivalently described in terms of a family of mutually-independent risk factors X 1 , . . . , X m where each factor X i is affecting all spreads with tenor δ j ě δ i (and, possibly, the OIS short rate). In particular, the presence of common risk factors among different spreads accounts for the possibility of common upward jumps, as mentioned above, in line with the contagion effects reported in Section 3.1 (see also Figure 3.1).

Another consequence of Theorem 3.10 is that multi-curve models as in Definition 3.7 can generate OIS zero-coupon bonds and forward multiplicative spreads that admit an exponentiallyaffine structure (see Lemma 3.4). As a result, in the context of a multi-curve model driven by a flow of tempered-stable CBI processes, all linear interest rate derivatives can be explicitly priced.

Corollary 3.11. Let `Y, , µ, c ˘generate a multi-curve model driven by a flow of temperedstable CBI processes. Consider the m-dimensional process X " pX t q tě0 defined by (3.18). Then:

(i) For all 0 ď t ď T ă `8, the OIS zero-coupon bond price Bpt, T q is given by

(3.21)
Bpt, T q " exp `A0 pt, T q `B0 pT ´tq J X t ˘,

where A 0 pt, T q and B 0 pT ´tq " `B1 0 pT ´tq, . . . , B m 0 pT ´tq ˘J are given by A 0 pt, T q :" ´ż T ´t 0 ps `tq ds `m ÿ i"1

`βpδ i q ´βpδ i´1 q ˘ż T ´t 0 V ˆs, 0, ´m ÿ k"i µ k ˙ds, B i 0 pT ´tq :" V ˆT ´t, 0, ´m ÿ k"i µ k ˙,
for every 1 ď i ď m;

(ii) For every 1 ď i ď m and for all 0 ď t ď T ă `8, the forward multiplicative spread S δ i pt, T q is given by (3.22) S δ i pt, T q " exp `Ai pt, T q `Bi pT ´tq J X t ˘,

where A i pt, T q and B i pT ´tq " `B1 i pT ´tq, . . . , B m i pT ´tq ˘J are given by A i pt, T q " c i pT q `i ÿ j"1 `βpδ j q ´βpδ j´1 q ˘ż T ´t

0 ˜Vˆs , 1, ´m ÿ k"j µ k ˙´V ˆs, 0, ´m ÿ k"j µ k ˙¸ds, B j i pT ´tq " ˜VˆT ´t, 1, ´m ÿ k"j µ k ˙´V ˆT ´t, 0, ´m ÿ k"j µ k ˙¸1 tjďiu ,
for every 1 ď j ď m.

Proof. It suffices to apply Theorem 3.10 and Lemma 3.4, and then insert the definitions of λ and γ given by (3.19) and (3.20), respectively, into (3.10) and (3.11).

Finally, observe that, unlike the general modeling framework of Section 3.2, the function V appearing in the above formulae is the same for every 1 ď i, j ď m, due to the fact that the components of a flow of CBI processes Y pδq : δ P G ( share a common branching mechanism Φ. This results in additional analytical tractability of the proposed specification in comparison with the more general modeling framework of Section 3.2.

Valuation of non-linear products

In this section, we provide semi-closed-form formulae for non-linear interest rate derivatives via Fourier techniques. We place ourselves in the modeling framework of Section 3.3 and restrict our attention to caplets, referring the reader to [CFG19b, Section 4.2] where swaptions and basis swaptions were priced in the context of affine multi-curve models by relying on a suitable approximation of the exercise region (see [START_REF] Gambaro | Approximate pricing of swaptions in affine and quadratic models[END_REF]).

Let us first consider a caplet in the multiple yield curve market of Definition 3.1, written on the Ibor rate of tenor δ i for some 1 ď i ď m, with strike K, maturity T , and settled in arrears at time T `δi . For simplicity of presentation, we fix a unitary notional amount and consider the pricing of the product at time t " 0. By using the general valuation formulae stated in [CFG16, Section 5.2], the arbitrage-free price of the caplet can be written as

P CPLT p0, T, δ i , Kq " P CPLT pT, δ i , Kq " δ i E " e ´şT `δi 0 rs ds ´LpT, T, δ i q ´K¯`ı " B `0, T `δi ˘ET `δi
"´e

X i T ´`1 `δi K ˘¯`ı , (3.23)
where the process X i " pX i t q tě0 is defined by

X i t :" log ˆSδ i pt, tq Bpt, t `δi q ˙, @t ě 0.
As a direct consequence of Theorem 3.10 and Corollary 3.11, the process X i admits the explicit representation

X i t " c i ptq ´A0 pt, t `δi q ``γ i ´B0 pδ i q ˘JX t , @t ě 0,
where we recall that the vector γ i is given by (3.20), the m-dimensional process pX t q tě0 is defined by equation (3.18), and the functions A 0 and B 0 are given by (3.21). We now present two pricing methodologies: the former relies on a direct application of the FFT algorithm (see [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF]) and specializes [CFG19b, Section 4.1] to our setting, while the latter utilizes a quantization-based algorithm (see [START_REF] Callegaro | Quantization meets Fourier: a new technology for pricing options[END_REF]), which is here applied for the first time to an interest rate setting.

Caplet pricing by FFT. Let us introduce the set

Θ i pT q :" ! u P R : E T `δi " e u X i T ‰ ă `8) ˝,
and the strip Λ i pT q :" ζ P C : ´Impζq P Θ i pT q ( . By using the independence of the processes X 1 , . . . , X m , together with condition (3.15), we can show that for u P R, u P Θ i pT q if and only if

$ & % V `δi , 0, ´λj ˘`u `1
´V`δ i , 0, ´λj ˘˘ă θ{η, for every 1 ď j ď i, V `δi , 0, ´λj ˘´u V `δi , 0, ´λj ˘ă θ{η, for every i `1 ď j ď m, where the vector λ is given by (3.19). Given that Vpδ i , 0, ´λj q ď 0, for every 1 ď j ď m, and the function V is increasing in its third coordinate on R ´, it can checked that the condition

(3.24) u ă θ{η ´V`δ i , 0, ´λ1 1 
´V`δ i , 0, ´λ1 ˘,
is sufficient to ensure that V `δi , 0, ´λj ˘`u `1 ´V`δ i , 0, ´λj ˘˘ă θ{η, for every 1 ď j ď i, while u ď 1 suffices to guarantee that V `δi , 0, ´λj ˘´u V `δi , 0, ´λj ˘ă θ{η, for every i `1 ď j ď m. Furthermore, since θ ą η, it always holds that p´8, `1s Ď Θ i pT q. Consequently, for all ζ P Λ i pT q, the modified characteristic function of X i T can be defined and explicitly computed as follows:

Ξ i T pζq :" B `0, T `δi ˘ET `δi " e i ζ X i T ı " E " e ´şT 0 rs ds B `T, T `δi ˘e i ζ X i T ı " exp ˆ´ż T 0 psq ds `A0 `T, T `δi ˘`i ζ ´ci pT q ´A0 `T, T `δi ˘¯ė xp ˜m ÿ j"1 `βpδ j q ´βpδ j´1 q ˘ż T 0 V ´s, B j 0 pδ i q `i ζ `γi,j ´Bj 0 pδ i q ˘, ´λj ¯ds ȩxp ˜m ÿ j"1 V ´T, B j 0 pδ i q `i ζ `γi,j ´Bj 0 pδ i q ˘, ´λj ¯Xj 0 ¸,
where the application of Proposition 2.5 in the complex domain is justified by Remark 2.7 since that ζ P Λ i pT q ensures that Re `Bj 0 pδ i q `i ζ `γi,j ´Bj 0 pδ i q ˘˘ă θ{η, for every 1 ď j ď m. We state the caplet valuation formula, which is a consequence of [Lee04, Theorem 5.1] and allows for a straightforward application of the FFT algorithm by [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF]. Note that, according to the notation used by [START_REF] Lee | Option pricing by transform methods: Extensions, unification and error control[END_REF], we have that G " G 1 and b 0 " b 1 " 1 P Θ i pT q (since condition (3.15) holds). Let Ki :" 1 `δi K and ξ P R such that 1 `ξ P Θ i pT q. The arbitrage-free price of the caplet written on the Ibor rate of tenor δ i for some 1 ď i ď m, of strike K, maturity T , and settled in arrears at time T `δi , is given by (3.25)

P CPLT pT, δ i , Kq " R i T `K i , ξ ˘`1 π ż 8 ´i ξ 0 ´i ξ Re ˆe´i ζ logp Ki q Ξ i T pζ ´iq ´ζ pζ ´iq ˙dζ,
where Ξ i T has been explicitly computed above, and where R i T p Ki , ξq is given by

R i T `K i , ξ ˘" $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % Ξ i T p´iq ´K i Ξ i T p0q, if ξ ă ´1, Ξ i T p´iq ´K i 2 Ξ i T p0q, if ξ " ´1, Ξ i T p´iq, if ´1 ă ξ ă 0, 1 2 Ξ i T p´iq, if ξ " 0, 0, if ξ ą 0.
3.4.2. Caplet pricing via quantization. The analytical tractability of CBI processes allows for the development of a quantization-based pricing methodology, which is here proposed for the first time in an interest rate setting. In this section, we show that the Fourier-based quantization technique recently introduced by [CFG19a] can be easily applied for the pricing of caplets.

The key ingredient of this approach is represented by the quantization grid denoted by Γ N " x 1 , . . . , x N ( , with x 1 ă . . . ă x N , for some chosen N P N (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF][START_REF] Pagès | Introduction to vector quantization and its applications for numerics[END_REF] for details). Once the quantization grid Γ N has been determined, the random variable e X i T appearing in the general caplet valuation formula (3.23) can be approximated by its Voronoi Γ N -quantization, i.e. the nearest neighbor projection y e X i T of e X i T onto Γ N , given by the discrete random variable y e X i T " N ÿ j"1

x j 1

x j ď e X i T ď x j ( , where x j " px j´1 `xj q{2 and x j " px j`1 `xj q{2, for every 1 ď j ď N , with x 1 " 0 and x Ǹ " `8. Formula (3.23) can then be approximated as follows:

P CPLT pT, δ i , Kq « B `0, T `δi ˘N ÿ j"1 `xj ´p1 `K δ i q ˘`Q T `δi ´y e X i T " x j ¯,
where the companion weights Q T `δi `y e X i T " x j ˘, for every 1 ď j ď N , are computed by

(3.26) Q T `δi ´y e X i T " x j ¯" Q T `δi ´eX i T ď x j ¯´Q T `δi ´eX i T ď x j ¯.
The core of quantization consists in optimally determining the quantization grid Γ N in such a way that the discrete distribution of y e X i T over Γ N is a good approximation of the continuous distribution of e X i T . This is achieved by choosing a grid Γ that minimizes the following L p -distance:

(3.27) D p `Γ˘" D p ´ x 1 , . . . , x N ( ¯:" › › ›e X i T ´y e X i T › › › L p `QT`δ i ˘" E T `δi " min j"1,...,N ˇˇe X i T ´xj ˇˇp  1{p .
In the present setting, it can be shown that this minimization problem admits a unique solution of full size N (see [Pag15, Proposition 1.1]). In practice, Γ N is typically determined by searching for the critical points of the map Γ Þ Ñ D p `Γ˘( called sub-optimal quantization grids). In view of [CFG19a, Theorem 1], a sub-optimal quantization grid Γ N " x 1 , . . . , x N ( is given by the solution to the following equation:

(3.28) ż `8 0 Re « ∆ i
T puq e ´i u logpx j q ˜β ˜xj x j , ´i u, p ¸´β ˜xj x j , 1 ´p `i u, p ¸¸ff du " 0, for every 1 ď j ď N , where β is defined as βpx, a, bq " ż 1

x t a´1 p1 ´tq b´1 dt, for a P C, Repbq ą 0, and x P p0, 1q, and ∆ i T stands for the pT `δi q-forward characteristic function of X i T :

∆ i T puq :" E T `δi " e i u X i T ı " Ξ i T puq B `0, T `δi ˘.
Equation (3.28) can be efficiently solved by using algorithms of Newton-Raphson type. Indeed, in the present framework, the gradient ∇D p of the function D p can be analytically computed and the associated Hessian matrix H " D p ‰ turns out to be tridiagonal. In order to initialize the algorithm, the starting grid Γ N p0q can be constructed by using a regular spacing around the expectation of the state variable e X i T , which is directly determined by market observables:

E T `δi " e X i T ı " E T `δi « S δ i pT, T q B `T, T `δi ˘ff " 1 `δi L `0, T, δ i ˘.
Starting from Γ N p0q , a basic formulation of the Newton-Raphson algorithm for the determination of a sub-optimal quantization grid Γ N is then based on the following iterations:

Γ N pn`1q " Γ N pnq ´´H " D p ‰`Γ N pnq ˘¯´1 ∇D p `ΓN pnq ˘,
which is performed at each iteration n P N.

Remark 3.12. We stress the fact that the companion weights Q T `δi `y e X i T " x j ˘, for every 1 ď j ď N , as well as the density function of the random variable e X i T , needed for the computation of the function D p `Γ˘i n equation (3.27), can be recovered from the pT `δi q-forward characteristic function ∆ i T . More specifically, it holds that

Q T `δi `eX i T P dx ˘" ˆ1 xπ ż `8 0 Re ´e´i u logpxq ∆ i T puq ¯du ˙dx, Q T `δi `eX i T ď x ˘" 1 2 ´1 π ż `8 0 Re ˜e´i u logpxq ∆ i T puq i u ¸du.
Similarly to Ξ i T as explicitly computed in Section 3.4.1, ∆ i T can also be analytically expressed by relying on the affine property of the CBI-driven multi-curve model.

Numerical results

This section contains some numerical results. We proceed as follows: first, we compare the two pricing methodologies proposed in Sections 3.4.1 and 3.4.2. Then, we calibrate the specification introduced in Section 3.3 to market data relative to the 3M and 6M tenors.

Numerical comparison of pricing methodologies.

In this section, we implement the FFT and quantization-based pricing methodologies as previously developed. In order to assess the reliability of both approaches, we compare them under different combinations of moneyness, maturities, and model parameters. We preliminarily validate the FFT methodology by means of Monte Carlo simulations and, by relying on the simulation method described in Appendix 3.A, we verify that caplet prices computed by FFT correspond to Monte Carlo prices. This validation procedure enables us to take FFT prices as benchmark in the sequel.

We then compare the FFT and quantization-based pricing methods. Table 3.1 shows the results of this comparison, reporting the percentage differences between FFT and quantization prices for caplets with strikes 1% and 2%, and maturities ranging from 1 up to 2 years. This comparison over different strikes and maturities allows us to evaluate the reliability of the quantization approach against the FFT methodology. In Table 3.1, we use an FFT with 4096 points and a quantization grid of 10 points. The two proposed methodologies have different computation times. For the parameter set considered in Table 3.3, FFT prices are obtained in 2 seconds for each maturity. Concerning the quantization-based pricing method, the computation time is initially lower (0.5 seconds) but then, as the maturity increases, quantization becomes computationally more expensive, with an average computation time of 3 seconds for larger maturities.

As a further example, we report in Table 3.2 a comparison between the two methodologies for a different parameter set, corresponding to increased volatility. More specifically, we increase the parameters σ and η by 50% with respect to the calibrated values reported in Table 3.3, and set α " 1.8. The first run of the comparison was not totally satisfactory since we observed that the prices produced by quantization (using a grid with 10 points) were diverging from those obtained via FFT. This issue has been solved by increasing the number of points for the quantization from 10 to 20, leading to an accuracy comparable to Table 3.1. This analysis highlights the fact that some care should be taken when utilizing the quantization-based pricing methodology: for some parameter set, one needs to re-adjust the meta-parameters of the numerical scheme, which is a delicate task to carry out during the execution of a calibration. In summary, we consider the FFT approach more robust and more computationally efficient in view of the calibration of the model. 3.3, we increased σ and η by 50% and set α " 1.8.

Model calibration.

To illustrate the calibration of our model specification presented in Section 3.3, we start by describing the market data and the reconstruction of the term structures.

3.5.2.1. Market data. We consider market data for the EUR market as of 25 June 2018, which consists of both linear and non-linear interest rate derivatives. The set of tenors is G " 3M, 6M ( . Market data on linear products consist of OIS and interest rate swaps, from which the discount curve T Þ Ñ Bp0, T q along with the forward curves T Þ Ñ L `0, T, δ i ˘, for δ 1 " 3M and δ 2 " 6M, are constructed by relying on the bootstrapping procedure from the Finmath Java library (see [START_REF] Fries | Finmath lib v5.1.3: Algorithms and methodologies related to mathematical finance[END_REF]). The OIS discount curve is bootstrapped from OIS swaps, by using cubic spline interpolation on logarithmic discount factors with constant extrapolation. Similarly, the 3M and 6M forward curves are bootstrapped from market quotes of FRAs (for short maturities) and swaps (for maturities beyond two years), by using cubic spline interpolation on forwards with constant extrapolation. Figure 3.3 reports the resulting discount and forward curves. We notice that, for short maturities, discount factors are larger than one and forward rates are negative. As far as non-linear interest rate products are concerned, we focus on caplet market data, suitably bootstrapped from market cap volatilities. Consistently with the presence of negative interest rates, we also have market quotes for caps having a negative strike rate. Therefore, the boostrapped caplet volatility surface refers to strike prices ranging between ´0.13% and 2%, and maturities between 6 months and 6 years. Caplets with maturity larger than two years are indexed to the 6-month rate, while those with shorter expiry are linked to the 3-month curve. Market data is given in terms of normal implied volatilities. More specifically, for a caplet written on the Ibor rate of tenor δ, of strike K, and maturity T , the normal implied volatility is obtained by searching for the value of σ imp mkt pK, T `δq such that the Bachelier pricing formula provides the best fit to the market price of the caplet under consideration. 3.5.2.2. Implementation. For a certain vector p of model parameters belonging to the set P of admissible values (see Section 3.3), we compute model-implied caplet prices by means of the FFT pricing method presented in Section 3.4.1, where the numerical integration is performed along the lines of [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF] with 32768 points and integration mesh size 0.05. For a fixed maturity, a single execution of the FFT routine yields a vector of model prices for several moneyness levels. Prices are then converted into normal implied volatilities by using formula (3.29).

(
Repeating this procedure for different maturities, we are able to generate a model-implied volatility σ imp mod pK k , T j , pq for each strike K k and each maturity T j of the sample of market data under consideration. The purpose of the calibration is then to find the vector of parameters that solves the following minimization problem:

(3.30) min pPP ÿ j,k
´σimp mkt pK k , T j q ´σimp mod pK k , T j , pq ¯2 .

Calibration results.

We calibrate a two-tenor version of the model specification of Section 3.3. In view of the resolution of problem (3.30), we use the multi-threaded Levenberg-Marquardt optimizer of the Finmath Java library with 8 threads, while imposing the necessary parameter restrictions presented in Sections 3.3.1 and 3.3.2. We also fix the normalization constant C α appearing in the measure π of the flow of tempered-stable CBI processes as follows:

C α :" ´1 Γp´αq cospα π{2q .
The calibrated values of the model parameters are then reported in Table 3.3. In particular, we can observe that the results demonstrate an important role of the jump component, apparently more important than the diffusive component. The calibrated value of α is rather close to 1, thus showing evidence of persistence of low values (compare with the discussion before Remark 3.9 in Section 3.3.2). Together with the rather small value of θ, this also indicates a significant likelihood of large jumps, giving rise to potential jump clustering.

As illustrated by Figures 3.4, the model achieves a good fit to market data, across different strikes and maturities. Furthermore, we remark that, in terms of number of parameters, the specification under consideration, i.e. driven by a flow of tempered-stable CBI processes, is even more parsimonious than the simple specifications calibrated in [START_REF] Cuchiero | Affine multiple yield curve models[END_REF].

Motivated by the presence of negative forward rates, we also calibrated a version of the model where the OIS short rate is affected by an auxiliary Ornstein-Uhlenbeck process, in line with Remark 3.6. However, this alternative specification did not yield a significant improvement of the quality of the fit. This seems to indicate that the deterministic-shift function , accounting for the initially-observed term structure of OIS zero-coupon bonds, does suffice to capture the negativity of the short rate. This is also in line with the widespread use of deterministic-shift extensions in the financial industry (see e.g. [START_REF] Mercurio | The present of futures[END_REF]). b 0.05353 α 1.31753 σ 0.00582 Y 0 p0.00495, 0.00507q J η 0.04070 β p9.99999E ´4, 0.00340q J θ 0.05070 µ p1.49999, 1.00000q J 

Conclusion

In the present paper, we have proposed a modeling framework for multiple yield curves based on CBI processes. The self-exciting behavior of jump-type CBI processes is consistent with most of the empirical features of spreads. At the same time, exploiting the fundamental link with affine processes, the proposed approach allows for an efficient valuation of interest rate derivatives.

Specifically motivated by capturing the relevant empirical features of the spreads between different interbank rates (see Figure 3.1), we have constructed a novel class of multi-curve models driven by a flow of tempered alpha-stable CBI processes.

In particular, we have shown that such multi-curve models represent a parsimonious way of modeling spreads in a realistic way, with a natural interpretation of the stochastic drivers in terms of risk factors. In our view, flows of CBI processes can lead to further interesting applications to financial markets where multiple term structures coexist.

3.A. Appendix: A simulation scheme

In this appendix, we describe a simulation scheme for tempered-stable CBI processes as presented in Section 2.7. We emphasize that this scheme has been used to generate the sample paths exhibited by Figure 3.2. Note that, by Theorem 3.10, and in view of simulating a multi-curve model driven by a flow of tempered-stable processes in the sense of Definition 3.7, it suffices to simulate m mutually-independent tempered-stable CBI processes. Consequently, we shall restrict our attention to the simulation of a one-dimensional tempered-stable CBI process X " pX t q tďT , for some fixed time horizon T ą 0.

We can suppose, without loss of generality, that the underlying stochastic basis supports the following two independent objects: ' A standard Brownian motion B " pB t q tďT ; ' A Poisson random measure N 1 pdt, du, dxq on r0, T sˆR `ˆR `with compensator dt du πpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du πpdxq,

where we set πpdzq " η α C α z ´1´α e ´θ η z 1 tzą0u dz, with η ą 0, C α ą 0, θ ą 0, and α P p1, 2q. For X 0 ě 0, consider the stochastic integral equation

(3.31) X t " X 0 `ż t 0 `β ´b X s ˘ds `σ ż t 0 a X s dB s `ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ď T .
We recall from Section 2.5 that there exists a unique non-negative strong solution to equation (3.31), which is a tempered-stable CBI process (see Theorem 2.12 and Definition 2.18).

In order to simulate a sample path of the process X " pX t q tďT , we resort to the regular Euler method for stochastic differential equations with jumps as described by [START_REF] Platen | Numerical Solution of Stochastic Differential Equations with Jumps in Finance[END_REF]Chapter 6]. We consider an equidistant partition of the time interval r0, T s with N steps (e.g. N " 1000). We let ∆ :" T {N and t n :" n ∆, for every 0 ď n ď N , and denote by X " p Xtn q 0ďnďN , the approximation of the tempered-stable CBI process X " pX t q tďT . We start by approximating the Lévy measure π by its truncated version π pdzq :" πpdzq 1 tzě u , for a sufficiently small ą 0 (e.g. " 0.001)2 . The total mass of π is given by

C :" π pR `q " η α C α ż `8 z ´1´α e ´θ η z dz " θ α C α Γ `´α, θ{η ˘,
where Γ `´α, θ{η ˘:" ş `8 θ{η u ´α´1 e ´u du denotes the incomplete Gamma function (see e.g. [Leb72, Problem 1.10]). For every 1 ď n ď N , we approximate the number of jumps generated by the Poisson random measure N 1 in the time interval rt n´1 , t n s by a random variable J n following a Poisson distribution with intensity (3.32)

ż tn t n´1 ż Xt n´1 0 ż `8 0 ds du π pdzq " C Xt n´1 ∆.
The random variables representing the sizes of the jumps generated by the Poisson random measure N 1 are drawn from a distribution with density f , where

(3.33) f pzq " 1 C π pdzq dz " η α θ α Γ `´α, θ{η ˘z´1´α e ´θ η z 1 tzě u .
In particular, observe that In order to construct the approximation X " p Xtn q 1ďnďN , we set X0 :" X 0 and by means of successive iterations, for every 1 ď n ď N , we write

(3.34) f pzq ď η α e ´ θ{η α p θq α Γ `´α, θ{η ˘α α z ´1´α 1 tzě u " η α e ´ θ{η α p θq α Γ `´α, θ{η ˘f 
Xtn :" Xt n´1 `ˆβ ´´b `η θ α´1 C α Γ `1 ´α, θ{η ˘¯X t n´1 ˙∆ `σ c ∆ ´X t n´1 ¯`Z n `Jn ÿ k"0 ξ n,k ,
where pZ n q 1ďnďN is a sequence of i.i.d. standard Normal random variables, pJ n q 1ďnďN is a sequence of independent random variables such that each J n follows a Poisson distribution with intensity given by (3.32), and pξ n,k q 1ďnďN, kě0 is a family of i.i.d. random variables with common density f as computed in (3.33).

Introduction

Time-changed processes were first introduced in finance by [START_REF] Clark | A subordinated stochastic process model with finite variance for speculative prices[END_REF] as subordinated processes, where the base process was a Brownian motion and the stochastic clock a subordinator (i.e. a nondecreasing Lévy process). In order to relax the restrictions imposed by subordinators, [AG00, GMY01] introduced more general stochastic time changes. Moreover, [START_REF] Ané | Order flow, transaction clock, and normality of asset returns[END_REF] showed that the accumulated number of trades represents a better stochastic clock as a proxy for the market activity than the trading volume, as initially postulated by [START_REF] Clark | A subordinated stochastic process model with finite variance for speculative prices[END_REF].

In general, a stochastic time change is defined by a time integral of a non-negative càdlàg stochastic process. This integral denotes the accumulated number of trades, while the process to be integrated, also called instantaneous activity rate, represents the number of trades per unit of time (i.e. the speed at which the trading activity runs). As an illustration, if the speed of trading is high/low, then the stochastic clock elapses faster/slower, giving rise to stochastic volatility.

In this regard, [START_REF] Carr | Stochastic volatility for Lévy processes[END_REF] developed a class of stochastic volatility models based on more general time-changed processes, where the base process was allowed to be a Lévy process. Then, [START_REF] Carr | Time-changed Lévy processes and option pricing[END_REF] presented an analytical framework for time-changed Lévy processes unifying almost all existing stochastic volatility approaches, also pointing out the possible use of CBI processes for modeling the activity rate. An empirical analysis of specifications of this general framework was performed by [START_REF] Huang | Specification analysis of option pricing models based on time-changed Lévy processes[END_REF], restricting however the analysis to CIR-type activity rates. The authors concluded that a modern approach for modeling the activity rate should contain a high-frequency jump structure that can potentially excite itself.

In this chapter, we introduce a class of two-dimensional processes combining the self-exciting behavior of CBI process with the generality of time-changed Lévy processes, which we name CBItime-changed Lévy processes. This class of processes will be applied to multiple currency modeling in Chapter 5. In Section 4.2, we start by defining CBITCL processes as solutions to a system of stochastic time change equations, where we extend the Lamperti-type stochastic time change representation of a CBI process. We then characterize CBITCL processes as weak solutions to a system of stochastic integral equations of Dawson-Li type.

We show in Section 4.3 that CBITCL processes are affine in the sense of [START_REF] Duffie | Affine processes and applications in finance[END_REF]. We exploit this result by deriving a complete analysis of exponential moments of CBITCL processes, which mostly generalizes the results previously obtained for CBI processes. Finally, by relying on the techniques of [START_REF] Kallsen | The cumulant process and Esscher's change of measure[END_REF] in Section 4.5, and by fixing a finite time horizon, we characterize a class of equivalent changes of probability of Esscher type that leave invariant the class of CBITCL processes. We formulate this result as a Girsanov-type theorem, which will find relevant applications in multiple currency modeling (see Chapter 5).

Construction and characterization

We fix a stochastic basis `Ω, F, F, Q ˘satisfying the usual conditions, where Q is a probability measure and F " pF t q tě0 a filtration to which all stochastic processes are assumed to be adapted. We set F " F 8 and denote the expectation under Q by E.

We begin with the construction of CBITCL processes, extending the Lamperti-type stochastic time change representation of Definition 2.11. Recall from Chapter 2 that when X " pX t q tě0 is a non-negative càdlàg stochastic process, its time integral Y t :" ş t 0 X s ds, for all t ě 0, can be utilized as a finite, continuous time change. We then suppose that the stochastic basis `Ω, F, F, Q supports the following Lévy processes, assumed to be mutually independent:

' A non-decreasing Lévy process L Ψ " pL Ψ t q tě0 with L Ψ 0 " 0, whose Lévy exponent is denoted by Ψ, given by (2.1), and characterized by the Lévy triplet pβ, 0, νq, where β ě 0 and ν is a Lévy measure on R `such that ş 1 0 z νpdzq ă `8; ' A spectrally positive Lévy process L Φ " pL Φ t q tě0 with L Φ 0 " 0 and finite first moment, whose Lévy exponent is denoted by Φ, given by (2.2), and characterized by the Lévy triplet p´b, σ, πq, where b P R, σ ě 0, and π is a Lévy measure on R `such that ş `8 1 z πpdzq ă `8;

' A Lévy process L Z " pL Z t q tě0 with L Z 0 " 0, whose Lévy exponent Ξ Z : i R Ñ C is determined by the Lévy triplet pb Z , σ Z , γ Z q, where b Z P R, σ Z ě 0, and γ Z is a Lévy measure on R. We recall that Ξ Z is given by the Lévy-Khintchine representation (4.1) Ξ Z puq :" b Z u `1 2 pσ Z uq 2 `żR `e z u ´1 ´z u 1 t|z|ă1u ˘γZ pdzq, @u P i R.

Definition 4.1. A joint process pX t , Z t q tě0 , where ' X " pX t q tě0 is a non-negative càdlàg stochastic process with initial value X 0 ; ' Z " pZ t q tě0 is a càdlàg stochastic process with initial value Z 0 " 0, is said to be a CBI-time-changed Lévy process (CBITCL) if it satisfies the following stochastic time change equations:

X t " X 0 `LΨ t `LΦ Yt , (4.2) Z t " L Z Yt , (4.3)
for all t ě 0, where Y t :" ş t 0 X s ds.

For any X 0 ě 0, there exists a unique strong solution to system (4.2)-(4.3). Indeed, equation (4.2) corresponds to the Lamperti-type representation of a CBI process, for which there exists a unique non-negative strong solution X " pX t q tě0 , which is a CBI `X0 , Ψ, Φ ˘of Definition 2.1 (see Section 2.5). Observe that the right-hand side of equation (4.3) does not depend on the process Z " pZ t q tě0 , but on the CBI process X " pX t q tě0 . Any CBITCL process in the sense of Definition 4.1 will be denoted by CBITCL `X0 , Ψ, Φ, Ξ Z ˘.

Inspired by [START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF], we can also extend the Dawson-Li stochastic integral representation in the sense of Definition 2.10 to CBITCL processes. To this purpose, let us assume the existence of the following objects:

' Two standard Brownian motions B 1 " pB 1 t q tě0 and B 2 " pB 2 t q tě0 ; ' A Poisson random measure N 0 pdt, dxq on R `ˆR `with compensator dt νpdxq and compensated measure r N 0 pdt, dxq :" N 0 pdt, dxq ´dt νpdxq;

' A Poisson random measure N 1 pdt, du, dxq on R `ˆR `ˆR `with compensator dt du πpdxq and compensated measure r N 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du πpdxq;

' A Poisson random measure N 2 pdt, du, dxq on R `ˆR `ˆR with compensator dt du γ Z pdxq and compensated measure r N 2 pdt, du, dxq :" N 2 pdt, du, dxq ´dt du γ Z pdxq.

We suppose that B 1 , B 2 , N 0 , N 1 , and N 2 are mutually independent. Let us then define, for any X 0 P R `, the following system of stochastic integral equations:

X t " X 0 `ż t 0 `β ´b X s ˘ds `σ ż t 0 a X s dB 1 s `ż t 0 ż `8 0 x N 0 pds, dxq `ż t 0 ż X s0 ż `8 0 x r N 1 pds, du, dxq, @t ě 0, (4.4) Z t " b Z ż t 0 X s ds `σZ ż t 0 a X s dB 2 s `ż t 0 ż X s0 ż |x|ě1 x N 2 pds, du, dxq `ż t 0 ż X s0 ż |x|ă1
x r N 2 pds, du, dxq, @t ě 0, (4.5) Since we do not assume finiteness of the first moment of the Lévy measure γ Z , we cannot directly apply [DL06, Theorem 6.2] to system (4.4)-(4.5). However, it can be easily checked that for any X 0 ě 0, there exists a unique strong solution to system (4.4)-(4.5). Indeed, equation (4.4) corresponds to the Dawson-Li representation of a CBI process, for which there is a unique nonnegative strong solution X " pX t q tě0 , which is a CBI `X0 , Ψ, Φ ˘(see Section 2.5). The existence of a unique strong solution follows from the fact that the right-hand side of (4.5) does not depend on the process Z " pZ t q tě0 , but only on the process X " pX t q tě0 . The next result, which extends Theorem 2.12 and relies on similar techniques, characterizes the class of CBITCL processes as weak solutions to system (4.4)-(4.5). In particular, it provides an alternative way of defining a CBITCL process, which will be used in multiple currency modeling in Chapter 5.

Lemma 4.2. A joint process pX t , Z t q tě0 with initial value pX 0 , 0q is a CBITCL `X0 , Ψ, Φ, Ξ Z ȋf and only if it is a weak solution to system (4.4)-(4.5).

Proof. We follow the lines of the proof of Theorem 2.12, providing full details for the sake of completeness. Since X " pX t q tě0 is a CBI `X0 , Ψ, Φ ˘, the weak equivalence between equations (4.2) and (4.4) follows directly from Theorem 2.12. We henceforth restrict our attention to the process Z " pZ t q tě0 . We then proceed as follows.

Let Z " pZ t q tě0 be given by equation (4.3). By using the Lévy-Itô decomposition of the Lévy process L Z " pL Z t q tě0 , we obtain

(4.6) Z t " L Z Yt " b Z Y t `σZ W Yt `ż Yt 0 ż |x|ě1 x N pds, dxq `ż Yt 0 ż |x|ă1
x r N pds, dxq, @t ě 0, where W " pW t q tě0 is a Brownian motion independent of the Poisson random measure N pdt, dxq with compensator dt γ Z pdxq and compensated measure r N pdt, dxq :" N pdt, dxq ´dt γ Z pdxq. By using the change-of-variable formula of [Jac79, Theorem 10.27], we can rewrite both stochastic integrals appearing in (4.6) by means of the time-changed random measure N pX t dt, dxq with compensator X t´d t γ Z pdxq, yielding 

ż t 0 ż X s0 ż |x|ě1 x N 2 pds, du, dxq ż t 0 ż |x|ă1 x r N pX s ds, dxq " ż t 0 ż X s0 ż |x|ă1
x r N 2 pds, du, dxq for all t ě 0. Similarly, there exists a Brownian motion B 2 " pB 2 t q tě0 such that W Yt "

ş t 0 ? X s dB 2 s
for all t ě 0, thus showing that Z " pZ t q tě0 is a weak solution to equation (4.5). Conversely, suppose that Z " pZ t q tě0 is a weak solution to (4.5). As we did in Section 2.5, in order to show that Z " pZ t q tě0 is a time-changed Lévy process, we follow the scheme of the proof of [START_REF] Kallsen | A didactic note on affine stochastic volatility models[END_REF]Theorem 3.2]. Without loss of generality, we can suppose that the underlying stochastic basis already supports a Lévy process L " pL t q tě0 with L 0 " 0, whose Lévy exponent is given by Ξ Z and characterized by the Lévy triplet pb Z , σ Z , γ Z q. Let Y 8 :" lim tÑ`8 Y t and denote the inverse time change by τ " pτ z q zě0 , where τ z :" inf t ě 0 : Y t ą z ( , for all z ě 0. We recall that we may have Y 8 ă `8 when Ψ " 0, which implies that τ " pτ z q zě0 is infinite from time Y 8 onward. As a result, the time-changed process W " pW z q zăY8 given by W z :" Z τz , for all z ă Y 8 , is a well-defined semimartingale, but on the stochastic interval 0, Y 8 . Its characteristics, which we denote by `A, B, C ˘, are given by

A z " b Z Y τz " b Z z, B z " σ 2 Z Y τz " σ 2 Z z, and C z pdxq " γ Z pdxq Y τz " γ Z pdxq z,
for all z ă Y 8 , where we recall that Y τz " z on 0, Y 8 . We can observe that W " pW z q zăY8 is a Lévy process on 0, Y 8 , and characterized by the Lévy triplet pb Z , σ Z , γ Z q. As in the proof of Theorem 2.12, we need to show that Z " pZ t q tě0 is constant on every interval rr, ss Ď R `such that Y r " Y s . We recall from this proof that an interval of this type must verify rr, ss Ď t ě 0 : X t " 0 ( , which yields Z t " Z r , for all t P rr, ss. Then, we can write Z t " W Yt , for all t ě 0. However, W " pW z q zăY8 is a Lévy process only on 0, Y 8 . In order to overcome this issue, we construct the process L Z " pL Z z q zě0 where L Z z :" W z 1 tzăY8u `Lz 1 tzěY8u , for all z ě 0. L Z " pL Z z q zě0 defines a Lévy process characterized by the Lévy triplet pb Z , σ Z , γ Z q, which extends W " pW z q zăY8 to the entire R `. We then obtain Z t " L Z Yt , for all t ě 0, thus satisfying equation (4.3).

We conclude this section by discussing the self-exciting behavior of CBITCL processes, which can be seen from system (4.4)-(4.5) as follows:

' First, the CBI process X " pX t q tě0 is self-exciting due to the presence of the stochastic integral with respect to r N 1 . When a jump occurs, it increases the domain of integration. This in turn increases the jump intensity of N 1 and, therefore, the likelihood of subsequent jumps, thus generating jump clusters (see Remark 2.14); ' Second, the persistence of high values for the CBI process X " pX t q tě0 has an impact on the stochastic integrals with respect to N 2 and r N 2 . As before, when X " pX t q tě0 increases, both domains of integration increase, which in turn increases the likelihood of volatility clusters in the dynamics of the process Z " pZ t q tě0 .

Affine property of CBITCL processes

In this section, we show that CBITCL processes are affine in the sense of [START_REF] Duffie | Affine processes and applications in finance[END_REF]. We mostly rely on a key result provided by [KR09, Theorem 4.16].

Proposition 4.3. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Consider the joint process `Xt , Y t , Z t ˘tě0 , where Y t :" ş t 0 X s ds, for all t ě 0. Then, it is an affine process with initial value pX 0 , 0, 0q, state space R 2 `ˆR, and joint conditional Laplace-Fourier transform

(4.7) E " e u 1 X T `u2 Y T `u3 Z T ˇˇF t ı " exp ´UpT ´t, u 1 , u 2 , u 3 q`VpT ´t, u 1 , u 2 , u 3 q X t `u2 Y t `u3 Z t ¯,
for all pu 1 , u 2 , u 3 q P C 2 ´ˆi R and 0 ď t ď T ă `8, where the functions Up¨, u 1 , u 2 , u 3 q : R `Ñ C and Vp¨, u 1 , u 2 , u 3 q : R `Ñ C ´solve the following CBITCL Riccati system:

Upt, u 1 , u 2 , u 3 q " ż t 0 Ψ `Vps, u 1 , u 2 , u 3 q ˘ds, (4.8) BV Bt pt, u 1 , u 2 , u 3 q " Φ `Vpt, u 1 , u 2 , u 3 q ˘`u 2 `ΞZ pu 3 q, Vp0, u 1 , u 2 , u 3 q " u 1 , (4.9)
where the functions Ψ : C ´Ñ C and Φ : C ´Ñ C correspond to their analytic extensions to the complex domain C ´.

Proof. Lemma 2.2 yields the affine property of the joint process pX t , Y t q tě0 , whose affine characteristics are given by Ψpu 1 , u 2 q :" Ψpu 1 q and Φpu 1 , u 2 q :" Φpu 1 q `u2 , @pu 1 , u 2 q P C 2

´.

Consider now the Lévy process L Z " pL Z t q tě0 , appearing in the definition of the process Z " pZ t q tě0 (see Definition 4.1). We emphasize that the latter is by construction independent of the CBI process X " pX t q tě0 . Following [KR09, Theorem 4.16], the joint process `Xt , Y t , Z t ˘tě0 , where Z t " L Z Yt for all t ě 0 by equation (4.3), is affine with initial value pX 0 , 0, 0q, state space R 2 `ˆR, and affine characteristics are given by Ψpu 1 , u 2 , u 3 q :" Ψ `u1 , u 2 `ΞZ pu 3 q ˘" Ψpu 1 q, Φpu 1 , u 2 , u 3 q :" Φ `u1 , u 2 `ΞZ pu 3 q ˘" Φpu 1 q `u2 `ΞZ pu 3 q, for all pu 1 , u 2 , u 3 q P C 2 ´ˆi R. The claim then follows from [DFS03, Theorem 2.7], which enables us to derive the joint conditional Laplace-Fourier transform of the joint process `Xt , Y t , Z t ˘tě0 , given by (4.7), and associated to the CBITCL Riccati system (4.8)-(4.9). Remark 4.4. In view of Proposition 4.3, CBITCL processes can be regarded as affine stochastic volatility models in the sense of [KR11, Definition 2.8], which were proved to be coherent by [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF]. This means that if an asset price process is modeled by a CBITCL process pX t , Z t q tě0 , where Z " pZ t q tě0 represents the discounted log-price process and X " pX t q tě0 its stochastic volatility process, then the inverse asset price process, under a suitable equivalent change of probability, belongs to the same modeling class. This feature is fundamental for the construction of a modeling framework for multiple currencies, where foreign exchange rates and their inverse must be considered simultaneously (see Chapter 5).

Finiteness of exponential moments

This section generalizes the results of Sections 2.3 and 2.4 to CBITCL processes. In doing so, we mostly use techniques analogous to those employed in Sections 2.3 and 2.4, and rely on the results of [START_REF] Keller-Ressel | Moment explosions and long-term behavior of affine stochastic volatility models[END_REF][START_REF] Keller-Ressel | Exponential moments of affine processes[END_REF]. Let us first introduce, on top of D 1 given by (2.8), the set D 2 that we define as follows:

(4.10) D 2 :"

# x P R : ż |z|ě1 e x z γ Z pdzq ă `8+ .
While D 1 represents the effective domain of the immigration and branching mechanisms Ψ and Φ, D 2 denotes the effective domain of the Lévy exponent Ξ Z , when restricted to real arguments. As in Section 2.3, by using standard results on exponential moments of Lévy measures (see e.g. [Sat99, Theorem 25.17]), we can extend Ξ Z , as a finite-valued convex function, to D 2 . Let us now extend the CBITCL Riccati system (4.8)-(4.9), similarly to Definition 2.3.

Definition 4.5. For px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 , a solution `Up¨, x 1 , x 2 , x 3 q, Vp¨, x 1 , x 2 , x 3 q ˘to the extended CBITCL Riccati system is defined as a solution to the following system:

Upt, x 1 , x 2 , x 3 q " ż t 0 Ψ `Vps, x 1 , x 2 , x 3 q ˘ds, BV Bt pt, x 1 , x 2 , x 3 q " Φ `Vpt, x 1 , x 2 , x 3 q ˘`x 2 `ΞZ px 3 q, Vp0, x 1 , x 2 , x 3 q " x 1 , (4.11)
up to a time T px 1 ,x 2 ,x 3 q P r0, `8s, where T px 1 ,x 2 ,x 3 q denotes the maximum joint lifetime of the functions Up¨, x 1 , x 2 , x 3 q : r0, T px 1 ,x 2 ,x 3 q q Ñ R and Vp¨, x 1 , x 2 , x 3 q : r0, T px 1 ,x 2 ,x 3 q q Ñ D 1 .

By referring to Section 2.3, under Assumption 2.4, we know that there exists a unique solution `Up¨, x 1 , x 2 , x 3 q, Vp¨, x 1 , x 2 , x 3 q ˘to the extended CBITCL Riccati system of Definition 4.5, for all px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 . We are then allowed, similarly to Proposition 2.5, to refine the result of [KRM15, Theorem 2.14] for the specific case of CBITCL processes. Proposition 4.8. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Suppose that Assumption 2.4 holds. Consider the joint process `Xt , Y t , Z t ˘tě0 , where Y t :" ş t 0 X s ds, for all t ě 0. Then, the joint conditional Laplace transform (4.12) can be analytically extended to O 1 ˆC ˆO2 as follows:

(4.14) E " e u 1 X T `u2 Y T `u3 Z T ˇˇF t ı " exp ´UpT ´t, u 1 , u 2 , u 3 q`VpT ´t, u 1 , u 2 , u 3 q X t `u2 Y t `u3 Z t ¯,
for all pu 1 , u 2 , u 3 q P O 1 ˆCˆO 2 and 0 ď t ď T ă T pu 1 ,u 2 ,u 3 q , where `Up¨, u 1 , u 2 , u 3 q, Vp¨, u 1 , u 2 , u 3 q ȋs the unique solution to the complex extended CBITCL Riccati system, starting from pu 1 , u 2 , u 3 q and defined up to the maximum lifetime T pu 1 ,u 2 ,u 3 q , which verifies (4.15)

T pu 1 ,u 2 ,u 3 q ě T pRepu 1 q,Repu 2 q,Repu 3 qq , where T pRepu 1 q,Repu 2 q,Repu 3 qq is the maximum lifetime of the unique solution to the extended CBITCL Riccati system starting from pRepu 1 q, Repu 2 q, Repu 3 qq.

Proof. Let pu 1 , u 2 , u 3 q P O 1 ˆCˆO 2 . Under Assumption 2.4, for all px 1 , x 2 , x 3 q P D 1 ˆRˆD 2 , there is a unique solution to the extended CBITCL Riccati system up to T px 1 ,x 2 ,x 3 q . In particular, this is true for the starting point pRepu 1 q, Repu 2 q, Repu 3 qq. By [KRM15, Theorem 2.26], there also exists a solution to the complex extended CBITCL Riccati system of Definition 4.7 starting from pu 1 , u 2 , u 3 q, which is unique in view of [KRM15, Remark 2.23], and whose lifetime T pu 1 ,u 2 ,u 3 q is related to T pRepu 1 q,Repu 2 q,Repu 3 qq via inequality (4.15) due to [KRM15, Proposition 5.1]. Under these conditions, again by [KRM15, Theorem 2.26], we can then analytically extend the joint conditional Laplace transform (4.12) to the complex domain O 1 ˆC ˆO2 .

As in Section 2.3, we can rely on [KRM15, Proposition 3.3] to assert that the maximum lifetime T px 1 ,x 2 ,x 3 q , for all px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 , characterizes the finiteness of real exponential moments of CBITCL processes:

(4.16) T px 1 ,x 2 ,x 3 q " sup ! t ě 0 : E " e x 1 Xt`x 2 Yt`x 3 Zt ‰ ă ` 8 
) .

In the following, we propose a generalization of Theorem 2.8 to the class of CBITCL processes, providing an explicit and general characterization of the maximum lifetime T px 1 ,x 2 ,x 3 q , for all px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 . Because of the presence of x 3 P D 2 , and also due to the fact that the second coordinate x 2 can at present span the whole real line R, we will not be able to state an analogue to Corollary 2.9 for the specific case of CBITCL processes. As in Section 2.4, we proceed by relying on techniques similar to those employed in the proof of [KR11, Theorem 4.1]. For px 2 , x 3 q P R ˆD2 , let us introduce the following notation: S :"

! x P D 1 : Φpxq `x2 `ΞZ px 3 q ď 0
) and χ :" sup S P r´8, ψ ^φs, with the convention χ " ´8 if S is empty.

Theorem 4.9. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Suppose that Assumption 2.4 holds. Then, for all px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 , the lifetime T px 1 ,x 2 ,x 3 q is characterized as follows:

(i) If x 1 ď χ, then T px 1 ,x 2 ,x 3 q " `8; (ii) If x 1 ą χ, then (4.17) T px 1 ,x 2 ,x 3 q " ż ψ^φ x 1 dx Φpxq `x2 `ΞZ px 3 q .
Proof. Under a slight abuse of notation, it can be easily checked that for the unique solution `Up¨, x 1 , x 2 , x 3 q, Vp¨, x 1 , x 2 , x 3 q ˘to the extended CBITCL Riccati system of Definition 4.5, starting from px 1 , x 2 , x 3 q P D 1 ˆR ˆD2 , the following correspondence holds true:

V `¨, x 1 , x 2 , x 3 ˘" V `¨, x 1 , x 2 `ΞZ px 3 q ˘and U `¨, x 1 , x 2 , x 3 ˘" U `¨, x 1 , x 2 `ΞZ px 3 q ˘,
where `U`¨, x 1 , x 2 `ΞZ px 3 q ˘, V `¨, x 1 , x 2 `ΞZ px 3 q ˘˘is the unique solution to the extended CBI Riccati system of Definition 2.3, starting from `x1 , x 2 `ΞZ px 3 q ˘P D 1 ˆR. As a consequence, we can derive an analogous correspondence for their maximum lifetimes, namely T px 1 ,x 2 ,x 3 q " T px 1 ,x 2 `ΞZ px 3 qq , which therefore allows us to restrict our attention to the study of the lifetimes T px 1 ,x 2 q , for all px 1 , x 2 q P D 1 ˆR, where the second coordinate x 2 is from now on allowed to span the entire real line.

We distinguish two cases: x 2 `ΞZ px 3 q ď 0, corresponding to the setting of Theorem 2.8. In this case, the proof follows exactly the same lines with x 2 replaced by x 2 `ΞZ px 3 q. We refer the reader to Figure 2.1, where a descriptive illustration of the situation when x 2 `ΞZ px 3 q ď 0 can be found. The second case x 2 `ΞZ px 3 q ą 0 was not considered in Chapter 2. Figure 4.1 provides a visualization of the situation and contains several possible shapes of the function Φ over D 1 when x 2 `ΞZ px 3 q ą 0. The solid curves refer to the case ψ ^φ ă `8 and the dashed ones to ψ ^φ " `8. 0 ψ ^φ ´p p px 2 `ΞZ p p px 3 q q qq q q D 1 Φ Figure 4.1. Case x 2 `ΞZ px 3 q ą 0: Possible shapes of the function Φ over D 1 , where the solid curves refer to ψ ^φ ă `8 and the dashed ones to ψ ^φ " `8.

Observe that when x 2 `ΞZ px 3 q ą 0, the set S may be empty (χ " ´8). This is graphically represented by the green and purple curves. In such a situation, we have Φpx 1 q `x2 `ΞZ px 3 q ą 0, for all x 1 ą χ. We mention that this situation is similar to the case (2) of the proof of Theorem 2.8, namely when x 2 `ΞZ px 3 q ď 0, Φpχq `x2 `ΞZ px 3 q " 0, but when x 1 ą χ. Indeed, we can observe that Vp¨, x 1 , x 2 , x 3 q is strictly increasing with values in rx 1 , φs, for all x 1 ą χ. In this regard, by using similar techniques, we obtain that T V and T U are given by (2.18) and (2.19), respectively (with x 2 replaced by x 2 `ΞZ px 3 q), where we recall that T V and T U are given by (2.15). Then, by using T px 1 ,x 2 ,x 3 q " T U ^TV , we can recover formula (4.17) for T px 1 ,x 2 ,x 3 q , for all x 1 ą χ.

When the set S is non-empty, namely when χ ą ´8, as in the proof of Theorem 2.8, two further cases can be distinguished. The first case corresponds to χ " ψ^φ, which is graphically represented in Figure 4.1 by the blue curve (when ψ^φ ă `8) and by the orange line (whether ψ is finite or not, representing the linear case Φpxq " ´b x with b ą 0 and φ " `8). Arguing similarly to the case (3) of the proof of Theorem 2.8, namely when x 2 `ΞZ px 3 q ď 0 and Φpχq`x 2 `ΞZ px 3 q ă 0, there exists a unique ξ ą 0 such that Φpξq `x2 `ΞZ px 3 q " 0 and Φpx 1 q `x2 `ΞZ px 3 q ă 0 for all ξ ă x 1 ď χ by convexity of Φ. By using equation (2.20) (with x 2 replaced by x 2 `ΞZ px 3 q), Vp¨, x 1 , x 2 , x 3 q is strictly decreasing and tends toward ξ as t Ñ `8, so that we have ξ ă Vp¨, x 1 , x 2 , x 3 q ď x 1 for all ξ ă x 1 ď χ, thus implying that T V " `8. Due to the non-decreasing behavior of the function Ψ, we can deduce that t Ψpξq ď Upt, x 1 , x 2 , x 3 q ď t Ψpx 1 q for all t ě 0, which yields T U " `8. Hence, we obtain T px 1 ,x 2 ,x 3 q " `8 for all ξ ă x 1 ď χ and also for all x 1 ď ξ in view of (4.16).

The second case refers to χ ă ψ ^φ, which is graphically represented in Figure 4.1 by the blue curve (when ψ ^φ " `8), the yellow curve (whether ψ ^φ is finite or not) and the gray line (Φpxq " ´b x with b ă 0). Here, we have Φpχq `x2 `ΞZ px 3 q " 0. We proceed as in the case (1) of the proof of Theorem 2.8, i.e. x 2 `ΞZ px 3 q ď 0 and Φpχq `x2 `ΞZ px 3 q " 0. We then have Vp¨, χ, x 2 , x 3 q " χ as the unique solution to equation (4.11), which implies T pχ,x 2 ,x 3 q " `8 and for all x 1 ď χ in view of (4.16). Next, similarly to the case (2) of the proof of Theorem 2.8, namely x 2 `ΞZ px 3 q ď 0 and Φpx 1 q `x2 `ΞZ px 3 q ą 0 for all x 1 ą χ, Vp¨, x 1 , x 2 , x 3 q is strictly increasing with values in rx 1 , φs for all x 1 ą χ. As above (when the set S is empty), by using standard extension results and equation (2.17), we obtain that both T V and T U are given by (2.18) and (2.19), respectively (with x 2 replaced by x 2 `ΞZ px 3 q). As a consequence, by T px 1 ,x 2 ,x 3 q " T U ^TV , we finally obtain formula (4.17) for T px 1 ,x 2 ,x 3 q , for all x 1 ą χ.

A Girsanov-type theorem

The goal of this section is to characterize a class of equivalent changes of probability of Esscher type that leave invariant CBITCL processes. The result is stated in the form of a Girsanov-type theorem for CBITCL processes. This class of equivalent changes of probability will be used in Chapter 5, where the determination of a class of risk-neutral measures for the multiple currency market, leaving invariant the structure of the model, will represent an important requirement.

As a preliminary, the next lemma presents the differential characteristics of the joint process `Xt , Y t , Z t ˘tě0 when seen as a semimartingale, where pX t , Z t q tě0 is a CBITCL process and Y t :" ş t 0 X s ds, for all t ě 0. We refer to [JS03, Chapter II] for details on semimartingale characteristics.

Lemma 4.10. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Consider also the joint process `Xt , Y t , Z t ˘tě0 , where Y t :" ş t 0 X s ds, for all t ě 0. Then, `Xt , Y t , Z t ˘tě0 is a semimartingale whose differential characteristics `A, B, C ˘relative to hpxq " x 1 t|x|ă1u are given by

A t " ¨β `ş1 0 z νpdzq 0 0 ‹ '`Xt´¨´b ´ş`8 1 z πpdzq 1 b Z ‹ ', B t " X t´¨σ 2 0 0 0 0 0 0 0 σ 2 Z ‹ ', C t pdxq " νpdx 1 q δ p0,0q pdx 2 , dx 3 q `Xt´´π pdx 1 q δ p0,0q pdx 2 , dx 3 q `δp0,0q pdx 1 , dx 2 q γ Z pdx 3 q ¯,
for all t ě 0 and x " px 1 , x 2 , x 3 q P R `ˆR `ˆR, where δ p0,0q is the Dirac measure at p0, 0q.

Proof. By Proposition 4.3, the joint process `Xt , Y t , Z t ˘tě0 , where Y t :" ş t 0 X s ds, for all t ě 0, is affine in the sense of [START_REF] Duffie | Affine processes and applications in finance[END_REF]. According to the notation of [DFS03, Definition 2.6 and Theorem 2.7], and taking hpxq " x 1 t|x|ă1u as a truncation function, we can then deduce its admissible parameter set as follows:

' diffusion part: (4.18) ¨¨0 0 0 0 0 0 0 0 0 ‹ ', ¨σ2 0 0 0 0 0 0 0 σ 2 Z ‹ ', ¨0 0 0 0 0 0 0 0 0 ‹ ', ¨0 0 0 0 0 0 0 0 0 ‹ ' ‹ '; ' drift part: (4.19) ¨¨β `ş1 0 z νpdzq 0 0 ‹ ', ¨´b ´ş`8 1 z πpdzq 1 b Z ‹ ', ¨0 0 0 ‹ ', ¨0 0 0 ‹ ' ‹ '; ' jump part: (4.20)
´ν ˆδp0,0q , π ˆδp0,0q `δp0,0q ˆγZ , 0, 0 ¯.

By [DFS03, Theorem 2.12], `Xt , Y t , Z t ˘tě0 is a semimartingale whose differential characteristics, which we denote by `A, B, C ˘and relative to hpxq " x 1 t|x|ă1u , are affine functions as follows:

A t " ¨β `ş1 0 z νpdzq 0 0 ‹ '`Xt´¨´b ´ş`8 1 z πpdzq 1 b Z ‹ '`Yt´¨0 0 0 ‹ '`Zt´¨0 0 0 ‹ ', B t " ¨0 0 0 0 0 0 0 0 0 ‹ '`Xt´¨σ 2 0 0 0 0 0 0 0 σ 2 Z ‹ '`Yt´¨0 0 0 0 0 0 0 0 0 ‹ '`Zt´¨0 0 0 0 0 0 0 0 0 ‹ ',
C t pdxq " ´ν ˆδp0,0q ¯pdxq `Xt´´π ˆδp0,0q `δp0,0q ˆγZ ¯pdxq `´Y t´ˆ0 ¯pdxq `´Z t´ˆ0 ¯pdxq, for all t ě 0 and x " px 1 , x 2 , x 3 q P R `ˆR `ˆR.

Let us fix two constants ζ P R and λ P R, which will play specific roles in the construction of our multiple currency framework in Chapter 5. Consider the process W " pW t q tě0 defined by

(4.21) W t :" ζ X t `λ Z t , @t ě 0.
By [JS03, Proposition II.8.26], it can be easily checked that the process W " pW t q tě0 is an exponentially special semimartingale if and only if ζ P D 1 and λ P D 2 . Therefore, W " pW t q tě0 admits a unique exponential compensator, i.e. a predictable process of finite variation, which we denote by K " pK t q tě0 , such that `e Wt´ζ X 0 ´Kt ˘tě0 is a local martingale. The following lemma shows that K " pK t q tě0 can be computed explicitly.

Lemma 4.11. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Consider the process W " pW t q tě0 defined by equation (4.21) where ζ P D 1 and λ P D 2 . Then, the exponential compensator of W " pW t q tě0 , which we denote by K " pK t q tě0 , is given by

(4.22) K t " t Ψpζq `Yt ´Φpζq `ΞZ pλq ¯,
for all t ě 0, where Y t :" ş t 0 X s ds.

Proof. We proceed by relying on the techniques of [START_REF] Kallsen | The cumulant process and Esscher's change of measure[END_REF]. Indeed, by using [KS02a, Theorem 2.19], K " pK t q tě0 coincides with the modified Laplace cumulant process of the joint process `Xt , Y t , Z t ˘tě0 at θ " pζ, 0, λq J (see [KS02a, Defintion 2.16]). Since CBITCL processes are by definition quasi-left-continuous, in view of [KS02a, Theorem 2.18], K " pK t q tďT can be computed explicitly in terms of the differential characteristics given by Lemma 4.10:

K t :" ż t 0 ˆθJ A s `1 2 θ J B s θ `żR 3 ´e θ J x ´1 ´θJ x 1 t|x|ă1u ¯Cs pdxq ˙ds " t ˆβ ζ `ż `8 0 ´e ζ x ´1¯ν pdxq ˙`Y t ˆ´b ζ `1 2 pσ ζq 2 `ż `8 0 ´e ζ x ´1 ´ζ x ¯πpdxq Ẏt ˆbZ λ `1 2 pσ Z λq 2 `żR ´e λ x ´1 ´λ x 1 t|x|ă1u ¯γZ pdxq " t Ψpζq `Yt ´Φpζq `ΞZ pλq ¯, @t ě 0,
thus yielding the desired result.

We can now formulate our Girsanov-type theorem for CBITCL processes. To this effect, fix a finite time horizon T ă `8 and suppose, without loss of generality, that the stochastic basis `Ω, F, F, Q ˘is rich enough so that a CBITCL process pX t , Z t q tďT admits the extended Dawson-Li representation (4.4)-(4.5). We also invite the reader to compare the next result with Remark 3.9 and other similar Girsanov-type results for CBI processes obtained in the related literature (see [JMS17, JMSZ21, BBSS21] among others).

Theorem 4.12. Let pX t , Z t q tďT be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Consider the process W " pW t q tďT defined by (4.21) where ζ P D 1 and λ P D 2 , together with its exponential compensator K " pK t q tďT given by (4.22). Then, the process `e Wt´ζ X 0 ´Kt ˘tďT is a true martingale and there exists an equivalent probability measure Q 1 defined by

(4.23) dQ 1 dQ ˇˇˇF t
:" e Wt´ζ X 0 ´Kt , for all t ď T , under which the joint process pX t , Z t q tďT remains a CBITCL process with parameters given by `β1 , ν

1 , b 1 , σ 1 , π 1 , b 1 Z , σ 1 Z , γ 1 Z ˘in Table 4.1
Proof. Let Z t :" e Wt´ζ X 0 ´Kt , for all t ď T . By Lemma 4.11, we know that Z " pZ t q tďT is a local martingale. Since the latter is non-negative, it is a supermartingale by Fatou's lemma. Hence, in order to prove that it is a true martingale, it suffices to show that E " Z T ‰ " 1. To this effect, in view of (4.16), the lifetime T pζ,´Φpζq´Ξ Z pλq,λq should verify T pζ,´Φpζq´Ξ Z pλq,λq ą T to ensure E " Z T ‰ ă `8. By using Theorem 4.9 with x 1 " ζ, x 2 " ´Φpζq ´ΞZ pλq, and x 3 " λ, we obtain S " x P D 1 : Φpxq ď Φpζq ( and this set is therefore always non-empty. Consequently, it holds that χ " sup S ě ζ and Theorem 4.9 yields T pζ,´Φpζq´Ξ Z pλq,λq " `8, thus leading to E " Z T ‰ ă `8. By applying now Lemma 4.6, and noting that the function

V `¨, ζ, ´Φpζq ´ΞZ pλq, λ ˘" ζ is the unique solution to BV Bt `t, ζ, ´Φpζq ´ΞZ pλq, λ ˘" Φ `V`t , ζ, ´Φpζq ´ΞZ pλq, λ ˘˘´Φ `ζ˘, V `0, ζ, ´Φpζq ´ΞZ pλq, λ ˘" ζ,
we obtain E " Z T ‰ " 1. This implies that Z " pZ t q tďT is a true martingale and can then be utilized as the density process of a probability measure Q 1 , equivalent to Q and defined as follows:

dQ 1 dQ ˇˇˇF t :" Z t " e Wt´ζ X 0 ´Kt , @t ď T . CBITCL parameters under Q 1 β 1 :" β ν 1 pdzq :" e ζ z νpdzq b 1 :" b ´ζ σ 2 ´ş`8 0 z `e ζ z ´1˘π pdzq σ 1 :" σ π 1 pdzq :" e ζ z πpdzq b 1 Z :" b Z `λ pσ Z q 2 `ş|z|ă1 z `e λ z ´1˘γ Z pdzq σ 1 Z :" σ Z γ 1 Z pdzq :" e λ z γ Z pdzq Table 4.1. Parameter transformations from Q to Q 1
for the CBITCL process pX t , Z t q tďT . The next step of the proof consists in using Itô's formula, in order to rewrite the process Z " pZ t q tďT as a stochastic exponential:

Z t " E ˆζ σ ż 0 a X t dB 1 s `λ σ Z ż 0 a X t dB 2 s `ż 0 ż `8 0 `e ζ x ´1˘r N 0 pds, dxq Ė ˆż 0 ż X s0 ż `8 0 `e ζ x ´1˘r N 1 pds, du, dxq `ż 0 ż X s0 ż R `e λ x ´1˘r N 2 pds, du, dxq ˙.
By applying Girsanov's theorem, the processes pB 1,1 t q tďT and pB 1,2 t q tďT defined by

B 1,1 t :" B 1 t ´ζ σ ż t 0 a X s ds, B 1,2 t :" B 2 t ´λ σ Z ż t 0 a X s ds,
for all t ď T , are independent Brownian motions under Q 1 . Again by Girsanov's theorem (see e.g. [EK20, Proposition 3.73]), N 0 pdt, dxq, N 1 pdt, du, dxq, and N 2 pdt, du, dxq remain Poisson random measures under Q 1 , but with modified compensators as follows:

r N 1 0 pdt, dxq :" N 0 pdt, dxq ´dt e ζ x νpdxq, r N 1 1 pdt, du, dxq :" N 1 pdt, du, dxq ´dt du e ζ x πpdxq, r N 1 
2 pdt, du, dxq :" N 2 pdt, du, dxq ´dt du e λ x γ Z pdxq, In order to show that the joint process pX t , Z t q tďT remains a CBITCL process under Q 1 , we need to rewrite its extended Dawson-Li representation (4.4)-(4.5) under Q 1 as follows:

X t " X 0 `ż t 0 `β1 ´b1 X s ˘ds `σ ż t 0 a X s dB 1,1 s `ż t 0 ż `8 0 x N 0 pds, dxq `ż t 0 ż X s0 ż `8 0 x r N 1 1 pds, du, dxq, @t ď T , Z t " b 1 Z ż t 0 X s ds `σ1 Z ż t 0 a X s dB 1,2 s `ż t 0 ż X s0 ż |x|ě1 x N 2 pds, du, dxq `ż t 0 ż X s0 ż |x|ă1 x r N 1 2 pds, du, dxq, @t ď T .
In view of Lemma 4.2, we can conclude that the joint process pX t , Z t q tďT remains a CBITCL process under Q 1 and associated to the parameters given in Table 4.1.

In conclusion to this chapter, we briefly investigate the stability under Q 1 of some of the examples of CBI processes reported in Table 2.1. More specifically, we restrict our attention to the CIR process, the α-CIR process, and the tempered-stable CBI process, in view of their applications considered in Chapter 5. The next table contains the following observations: ' The first column describes whether the stability under Q 1 is ensured or not; ' The second column reports the parameters under Q 1 computed with Table 4.1.

Tempered-stable CBI process (see Section 2.7)

Yes, since for all z ě 0:

π 1 pdzq " η α Cα z ´1´α e ´θ´ζ η η z dz,
where θ1 :" θ ´ζ η ě 0, for ζ P D1 " p´8, θ{ηs

β 1 " β, b 1 is given by b ´ζ σ 2 ´α η α Cα Γp´αq θ α´1 ὰ η α Cα Γp´αq pθ ´ζ ηq α´1 , σ 1 " σ, η 1 " η, C 1 α " Cα, θ 1 " θ ´ζ η, and α 1 " α Table 4.2. Stability under Q 1 of
some of the examples of CBI processes reported in Table 2.1 (we refer to Appendix 5.A for the computation of the drift b 1 in both α-CIR and tempered-stable cases).

Introduction

5.1.1. Motivation. The Foreign-Exchange (FX) market has never ceased to grow over the years. According to the Bank for International Settlements (BIS) (see [START_REF]Foreign exchange turnover in[END_REF]), its trading volume attained $6.6 trillion per day in April 2019, in comparison to $5.1 trillion three years earlier. This growth can be partly explained by the ever-growing "electronification" of the FX market, i.e. the rise of electronic and automated trading (see e.g. [START_REF] Wooldridge | FX and OTC derivatives markets through the lens of the Triennial Survey[END_REF]). This induces a significant inflow of diverse market participants, which boosts liquidity but is also accompanied by an increased propensity toward riskier investments. In particular, the trading of "soft" currencies1 grew faster than that of "hard" currencies between 2016 and 2019, attaining 23% of the FX turnover against 19% three years earlier. This has encouraged market participants to manage their risk exposure by relying on financial models capable of capturing the principal risk drivers of the FX market.

When constructing a financial model for multiple currencies, special attention has to be paid to the symmetries that FX rates typically satisfy. To describe these symmetries, consider an FX rate S d,f between the domestic currency d and a foreign currency f (i.e. the value of one unit of currency f measured in units of currency d). The symmetries of FX rates consist in the following: ' If we invert the FX rate S d,f , then we must obtain S f,d " 1{S d,f , which is the value of one unit of currency d measured in units of currency f . This is referred to as inversion;

' Take any additional currency e. The FX rate S d,f must be implied from S d,e and S e,f through multiplication: S d,f " S d,e ˆSe,f . This is called triangulation.

Among the classic sources of risk in the FX market, we find stochastic volatility and jumps in FX rates, whose empirical evidence has been documented in [START_REF] Giovannini | Interest rates and risk premia in the stock market and in the foreign exchange market[END_REF][START_REF] Jorion | On jump processes in the foreign exchange and stock markets[END_REF][START_REF] Nieuwland | Stochastic trends and jumps in EMS exchange rates[END_REF][START_REF] Bekaert | The time variation of expected returns and volatility in foreign-exchange markets[END_REF]. These two features are shared with other financial markets (e.g. equity markets), which has led to employ for FX markets, up to minor modifications, financial models initially conceived for stock returns. We can mention the Garman-Kohlhagen model [START_REF] Garman | Foreign currency option values[END_REF], which is the FX counterpart of the Black-Scholes model. An FX adaptation of the Heston model has also been proposed by [START_REF] Janek | FX smile in the Heston model[END_REF]. For further examples of such models, we can refer the reader to the volumes [START_REF] Lipton | Mathematical Methods For Foreign Exchange: A Financial Engineer's Approach[END_REF][START_REF] Castagna | FX Options and Smile Risk[END_REF][START_REF] Clark | Foreign Exchange Option Pricing: A Practitioner's Guide[END_REF][START_REF] Wystup | FX Options and Structured Products[END_REF].

We can find two other significant risk factors in the FX market: the presence of stochastic dependence among FX rates, and the stochastic skewness of the FX volatility smile. Concerning the latter, [START_REF] Carr | Stochastic skew in currency options[END_REF] analyzed the time series of risk-reversals2 , which are in fact known to measure the asymmetry of the FX volatility smile. The authors showed that their values vary greatly over time and exhibit repeated sign changes. They therefore suggested that the skewness of the FX volatility smile should be stochastic and developed a financial model driven by time-changed Lévy processes in order to reproduce this empirical fact. Finally, volatility clustering has been extensively detected across most asset classes (see e.g. [START_REF] Cont | Financial Modelling with Jump Processes[END_REF]Chapter 7]). This phenomenon tends to be amplified in the FX market, especially due to its electronification (see again [START_REF] Wooldridge | FX and OTC derivatives markets through the lens of the Triennial Survey[END_REF]). Figure 5.1 illustrates the weighted average of the 1Y ATM call-implied volatilities of three major currency pairs (USDJPY, EURJPY, and EURUSD), where the weights are represented by the reciprocal bid-ask spreads. The period spans from 2015 to 2020, thus covering events such as the Brexit referendum, the 2016 United States presidential election, and the first phase of the COVID-19 pandemic. Around these key events, we are able to observe successive jump clusters. This empirical behavior suggests the potential presence of self-excitation in the volatility of FX rates. In particular, one can also expect an amplification of this phenomenon when dealing with currency pairs that involve a hard currency and a soft one.

Contribution.

In this chapter, we develop a general stochastic volatility modeling framework for multiple currencies that allows for self-excitation in the volatility of FX rates, while capturing the typical sources of risk in the FX market (such as stochastic dependence among FX rates and stochastic skewness of the FX volatility smile), and preserving the peculiar symmetries of FX rates (i.e. symmetries under inversion and triangulation).

By relying on the technology of CBI-Time-Changed Lévy processes (CBITCL, Chapter 4), the proposed approach possesses a remarkable level of analytical tractability. More specifically, by exploiting the affine structure of CBITCL processes (see Proposition 4.3), we can show that CBITCL processes are coherent in the sense of [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF]. This means that if an FX rate is modeled by a CBITCL process, then the inverse FX rate belongs to the same modeling class (we refer to Remark 4.4 for further details). Inspired by [Gno17, Section 4], we design our modeling framework by adopting an artificial currency approach. The underlying idea consists in expressing each FX rate as the ratio of two primitive processes, with one primitive process associated to each currency. FX rates will therefore satisfy the inversion and triangulation symmetries by construction. As a consequence, this formulation reduces to modeling all primitive processes with a common family of CBITCL processes, assumed to be mutually independent.

By using a Girsanov-type result for CBITCL processes (see Theorem 4.12), we characterize a class of risk-neutral measures that leave invariant the structure of the model. By utilizing the preservation of the affine property, we derive a semi-closed-form pricing formula for currency options by means of Fourier techniques. The proposed approach can also reproduce several features of the FX market. In particular, it allows for non-trivial stochastic dependence between the different currencies, and for non-trivial dependence between FX rates and their volatilities. We emphasize that the latter type of dependence is known to play a relevant role in generating FX volatility smiles that exhibit stochastic skewness.

We assess the empirical performance of our model by means of a calibration to an FX triangle consisting of three major currency pairs (USDJPY, EURJPY, and EURUSD). We restrict our attention to two specifications of our model: the first one simply considers a Brownian motion as the Lévy process of each CBITCL process; the second one consists in choosing the CGMY process [START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF] as the Lévy process of each CBITCL process. For both specifications, each CBI process is set to be a tempered-stable CBI process in the sense of Section 2.7. We perform two calibrations: standard and deep, where the latter uses deep-learning techniques developed by [START_REF] Horvath | Deep learning volatility[END_REF]. We mention that this type of calibration is here applied for the first time to a multi-currency setting.

Finally, by retaining the calibrated values of the model parameters, we complete our numerical assessment of the proposed approach by carrying out a sensitivity analysis on model-implied volatility smiles. For this empirical study, we restrict our attention to the parameters controlling the self-exciting jump component of each tempered-stable CBI process. The objective behind this sensitivity analysis is to determine the impact of the self-exciting behavior of the tempered-stable CBI processes on the shape of the FX volatility smile. 5.1.3. Related literature. Our modeling framework is based on an artificial currency approach. To the best of our knowledge, the idea of introducing a global numéraire, whose value can be expressed in any currency, first appeared in [START_REF] Flesaker | International models for interest rates and foreign exchange[END_REF]. Later, [START_REF] Doust | The intrinsic currency valuation framework[END_REF] revisited this framework under a different terminology, i.e. the intrinsic currency framework. Then, several stochastic volatility models for multiple currencies have been developed by relying on this approach, see e.g. [START_REF] Doust | The stochastic intrinsic currency volatility model: A consistent framework for multiple FX rates and their volatilities[END_REF][START_REF] De Col | Smiles all around: FX joint calibration in a multi-Heston model[END_REF][START_REF] Gnoatto | An affine multi-currency model with stochastic volatility and stochastic interest rates[END_REF][START_REF] Baldeaux | Pricing currency derivatives under the benchmark approach[END_REF]. From a different standpoint, we can mention the principal component stochastic volatility model of [START_REF] Escobar | A multivariate stochastic volatility model with applications in the foreign exchange market[END_REF]. We also mention the recent work of [START_REF] Gnoatto | Calibration to FX triangles of the 4/2 model under the benchmark approach[END_REF], which unifies [START_REF] De Col | Smiles all around: FX joint calibration in a multi-Heston model[END_REF] and [START_REF] Baldeaux | Pricing currency derivatives under the benchmark approach[END_REF]. All these frameworks preserve the symmetries of FX rates while taking into account most of the sources of risk in the FX market. Yet, none of them allow for self-excitation in the volatility of FX rates as they can all be considered as generalizations of the Heston model.

A large number of FX models for multiple currencies are based on multi-dimensional extensions of the Heston model. This is justified by the fact that the Heston model is known to be closed under inversion (see e.g. [START_REF] Del Baño Rollin | Spot inversion in the Heston model[END_REF]). Motivated by this fact, [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF][START_REF] Graceffa | On the consistency of jump-diffusion dynamics for FX rates under inversion[END_REF] have recently characterized all models that remain stable under inversion, allowing for more general modeling approaches beyond the Brownian setting of the Heston model. These models have been termed coherent by [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF] and consistent by [START_REF] Graceffa | On the consistency of jump-diffusion dynamics for FX rates under inversion[END_REF]. We will see later that CBITCL processes are coherent in this sense.

Several approaches for the modeling of multiple currencies have gone beyond the Brownian setting, especially using time-changed Lévy processes. We first mention the time-inhomogeneous Lévy framework of [START_REF] Eberlein | A cross-currency Lévy market model[END_REF], recalling that time-inhomogeneous Lévy processes can be regarded as time-changed Lévy processes with deterministic activity rate. [START_REF] Carr | Stochastic skew in currency options[END_REF] developed a model based on time-changed Lévy processes with CIR-type activity rate, whose configuration contributed to the stochastic skewness of the FX volatility smile (we also refer the reader to [Joh02, BCW08, AM09, Itk17] on this issue).

More recently, [START_REF] Ballotta | Multivariate FX models with jumps: Triangles, quantos and implied correlation[END_REF] have developed a multi-currency modeling framework driven by a multi-dimensional Lévy process with dependent components, relying on a factor representation for Lévy processes. In this work, only pure Lévy processes were considered and, therefore, stochastic volatility was not explicitly modeled. This was justified by the short maturities of the contracts considered in the calibration. [START_REF] Ballotta | Multivariate FX models with jumps: Triangles, quantos and implied correlation[END_REF] suggested however that time change techniques could be used in future research. In this regard, [START_REF] Ballotta | Hidden correlations: A self-exciting tale from the FX world[END_REF] have proposed a model based on time-changed Lévy processes for the modeling of a single FX rate (USDJPY).

In their model, the activity rate exhibits self-excitation as well as jumps of infinite activity. Moreover, the presence of a common jump structure between the Lévy process and the activity rate induces non-trivial dependence between the FX rate and its volatility. The objective behind such a mechanism was to introduce correlation between the FX rate and its volatility. By comparing their specification with a benchmark, the authors found evidence of a mild correlation between the FX rate and its volatility, with an indication that this correlation is more pronounced as the interest rate differential broadens (e.g. when the FX rate involves a hard currency and a soft currency).

5.1.4. Structure. In Section 5.2, we describe our general modeling framework. Section 5.3 presents the main features of the proposed approach. Section 5.4 provides a numerical assessment of our model, while Section 5.5 concludes the chapter. Finally, Appendix 5.A contains some aspects of the specifications considered in Section 5.4.

A CBITCL modeling framework

Let T ă `8 be a finite time horizon and `Ω, F, F, Q ˘a stochastic basis satisfying the usual conditions, Q is a probability measure and the structure of F " pF t q tďT will be specified later. 5.2.1. Preliminaries on the multiple currency market. The FX market is a financial market where multiple currencies are traded by spot and derivative transactions. Such a market involves different economies, each one associated to a specific currency. The i th and j th currencies are related by the spot FX rate process S i,j " pS i,j t q tďT , where S i,j t denotes the value at time t of one unit of currency j measured in units of currency i. Let us now formally define a multiple currency market. To this end, consider the following ingredients:

(i) Let N ě 2 denote the number of currencies traded in the market; (ii) Let D " pD i t q 1ďiďN tďT be an R N -valued process where each D i represents the bank account of the i th economy given by D i t :" e r i t , for all t ď T , where r i ě 0 denotes the short rate; (iii) Let S " pS i,j t q 1ďi,jďN tďT be an R N ˆN -valued process denoting the spot FX rate processes between the different currencies such that for every 1 ď i ď N we have S i,i t " 1 for all t ď T , and for every 1 ď i, j ď N with i ‰ j, S i,j t ą 0 for all t ď T . In line with the classic construction of financial models for multiple currencies (see e.g. [MR06, Chapter 4]), we formulate the definition of a multiple currency market as follows.

Definition 5.1. We say that the triplet `N, D, S ˘represents a multiple currency market if for every 1 ď i ď N , the following basic assets are traded in the i th economy: ' The bank account D i " pD i t q tďT ; ' For every 1 ď j ď N with j ‰ i, the bank account of the j th economy denominated in units of the i th currency, namely S i,j D j .

For every 1 ď i ď N , no arbitrage in the sense of No Free Lunch with Vanishing Risk (NFLVR) in the i th economy is guaranteed by the existence of a risk-neutral measure Q i with respect to the bank account D i (see [DS94, DS98]) 3 . However, this does not take into account the elementary no-arbitrage relationships that spot FX rates must satisfy, namely symmetries under inversion and triangulation. To this effect, we propose the following definition, extending [EG18, Definition 1] to an FX market consisting of more than three currencies. Definition 5.2. The multiple currency market `N, D, S ˘is well posed if the following hold:

(i) No direct arbitrage: For every 1 ď i, j ď N , S j,i t " 1{S i,j t , @t ď T ; (ii) No triangular arbitrage: For every 1 ď i, k, j ď N , S i,j t " S i,k t ˆSk,j t , @t ď T ; (iii) NFLVR: For every 1 ď i ď N , there exists a risk-neutral measure Q i with respect to the bank account D i for the i th economy.

Remark 5.3. [START_REF] Moosa | Triangular arbitrage in the spot and forward foreign exchange markets[END_REF], and [FKT17, CQTZ20] more recently, have documented that triangular arbitrage opportunities exist in FX markets, but with a duration of less than one second (there may exist a triplet pi, j, kq such that S i,j t ‰ S i,k t ˆSk,j t over a short time interval). Allowing for such possibilities is beyond our scope, and then we consider only markets as in Definition 5.2.

In the case of a two-economy market consisting of currencies i and j, well-posedness is automatically satisfied by construction as long as NFLVR holds for both economies. However, assuming that the spot FX rate process S i,j belongs under Q i to a certain modeling class, nothing indicates that the inverse process S j,i shares the same modeling class under Q j . In this respect, the socalled coherent models of [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF] overcome this drawback by being stable under inversion. More specifically, [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF]Theorem 3.1] shows that affine stochastic volatility models as considered in [START_REF] Keller-Ressel | Moment explosions and long-term behavior of affine stochastic volatility models[END_REF] are coherent, including in particular CBITCL processes as we will see below.

In general, there is no guarantee that coherent models, when extended to N ě 3 currencies, are compatible with well-posedness. Yet, they can be used as building blocks for more general models as discussed in [Gno17, Section 4]. Inspired by this fact, we construct our modeling framework for multiple currencies by adopting the artificial currency approach. We will proceed along the following steps:

(1) We first express each currency with respect to an artificial currency indexed by 0, which gives rise to N artificial spot FX rates pS 0,i q 1ďiďN . We then exploit the Girsanov-type result for CBITCL processes that we formulated in Chapter 4 (see Theorem 4.12), in order to characterize a class of risk-neutral measures for the multiple currency market; (2) The second step consists in the computation of the spot FX rate processes S i,j " pS i,j t q tďT , for every 1 ď i, j ď N , with respect to pS 0,i q 1ďiďN by taking appropriate ratios, which results in a multiple currency market `N, D, S ˘that can be proved to be well posed in the sense of Definition 5.2. 5.2.2. Construction of the CBITCL multi-currency model. Consider the next standing assumption, which is the starting point of the artificial currency approach (see Chapter 1): Assumption 5.4. There exists an artificial currency indexed by 0 and related to the i th currency through the artificial spot FX rate process S 0,i " pS 0,i t q tďT , for every 1 ď i ď N .

Our formulation consists in modeling all artificial spot FX rates pS 0,i q 1ďiďN with a common family of CBITCL processes, assumed to be mutually independent, where each CBITCL process is directly defined by its extended Dawson-Li stochastic integral representation (4.4)-(4.5) (see Chapter 4). To proceed, fix d P N and assume the existence of the following objects, for every 1 ď k ď d: ' Two standard Brownian motions B k,1 " pB k,1 t q tďT and B k,2 " pB k,2 t q tďT ; ' A Poisson random measure N k 0 pdt, dxq on r0, T s ˆR`w ith compensator dt ν k pdxq and compensated measure r N k 0 pdt, dxq :" N k 0 pdt, dxq ´dt ν k pdxq, where ν k is a Lévy measure on R `such that ş 1 0 x ν k pdxq ă `8; We suppose that for every 1 ď k ď d, B k,1 , B k,2 , N k 0 , N k 1 , and N k 2 are mutually independent with respect to the filtration (5.1)

F k t :" F B k,1 t _ F B k,2 t _ F N k 0 t _ F N k 1 t _ F N k 2 t , @t ď T ,
and all these processes are also mutually independent across different 1 ď k ď d.

Let us define, for every 1 ď k ď d and for X k 0 P R `, the following system of stochastic integral equations

X k t " X k 0 `ż t 0 `βk ´bk X k s ˘ds `σk ż t 0 b X k s dB k,1 s `ż t 0 ż `8 0 x N k 0 pds, dxq `ż t 0 ż X k s0 ż `8 0 x r N k 1 pds, du, dxq, @t ď T , (5.2) 
Z k t " b k Z ż t 0 X k s ds `σk Z ż t 0 b X k s dB k,2 s `ż t 0 ż X k s0 ż |x|ě1 x N k 2 pds, du, dxq `ż t 0 ż X k s0 ż |x|ă1
x r N k 2 pds, du, dxq, @t ď T , (5.3) where β k ě 0, b k P R, σ k ě 0, b k Z P R, and σ k Z ě 0. By Lemma 4.2, the joint process pX k t , Z k t q tďT is a CBITCL `Xk 0 , Ψ k , Φ k , Ξ k Z ˘with respect to the filtration pF k t q tďT , for every 1 ď k ď d. We then introduce the following standing assumption on the branching mechanisms `Φk ˘1ďkďd .

Assumption 5.5. For every 1 ď k ď d, Φ k satisfies Assumption 2.4.

In summary, the global filtration pF t q tďT is given by (5.4)

F t :" ł 1ďkďd F k t , @t ď T .
Denoting now the factor processes X " pX t q tďT and Z " pZ t q tďT by X t :" `X1 t , . . . , X d t ˘J and Z t :" `Z1 t , . . . , Z d t ˘J for all t ď T , respectively, we also consider the following objects: ' A family of vectors ζ " pζ 1 , . . . , ζ N q with ζ i P R d , for every 1 ď i ď N , and where for every 1 ď i ď N and 1 ď k ď d, ζ i,k P D k 1 ; ' A family of vectors λ " pλ 1 , . . . , λ N q with λ i P R d , for every 1 ď i ď N , and where for every 1 ď i ď N and 1 ď k ď d, λ i,k P D k 2 ; ' A family of stochastic processes pK i,k q 1ďiďN 1ďkďd , where for every 1 ď i ď N and 1 ď k ď d, K i,k " pK i,k t q tďT denotes the exponential compensator of the process `ζi,k X k t `λi,k Z k t ˘tďT in the sense of Lemma 4.11, where we recall from Chapters 2 and 4 that D k 1 represents the effective domain of the immigration and branching mechanism functions Ψ k and Φ k , given by (2.8), while D k 2 refers to the effective domain of the Lévy exponent Ξ k Z , given by (4.10), for every 1 ď k ď d.

Definition 5.6. The tuple `X, Z, ζ, λ ˘is said to generate a CBITCL multi-currency model if (5.5) S 0,i t " S 0,i 0 e

´ri t d ź k"1 e ζ i,k X k t `λi,k Z k t ´Ki,k t , @t ď T ,
where S 0,i 0 ą 0 and r i ě 0 denotes the short rate of the i th economy, for every 1 ď i ď N .

We point out that the artificial spot FX rates pS 0,i q 1ďiďN are modeling quantities that cannot be observed in reality (see Chapter 1). Yet, the constants ζ i,k and λ i,k will play specific roles in the dynamics of the spot FX rate processes. While λ i,k will capture the relative importance of the jump risk arising from the k th time-changed Lévy process Z k " pZ k t q tďT , ζ i,k will measure the weight of the dependence between the k th CBI process X k " pX k t q tďT and the FX rate. As a preliminary, we can derive the dynamics of each artificial spot FX rate pS 0,i q 1ďiďN , making use of the standing assumption that each CBITCL process pX k t , Z k t q tďT is defined by its extended Dawson-Li stochastic integral representation (5.2)-(5.3).

Lemma 5.7. Let `X, Z, ζ, λ ˘generate a CBITCL multi-currency model. Then, for every 1 ď i ď N , the artificial spot FX rate process S 0,i " pS 0,i t q tďT is the unique strong solution to the following stochastic differential equation: The next theorem provides a characterization of a class of risk-neutral measures for the multiple currency market, preserving the structure of the CBITCL multi-currency model of Definition 5.6. This result can be regarded as a multi-dimensional extension of the Girsanov-type theorem for CBITCL processes that we formulated in Chapter 4 (see Theorem 4.12). Theorem 5.8. Let `X, Z, ζ, λ ˘generate a CBITCL multi-currency model. Then, for every 1 ď i ď N , the stochastic process S 0,i D i is a true martingale and there exists an equivalent probability measure Q i defined by

dS 0,i t S 0,i t´" ´ri dt `d ÿ k"1 ˆbX k t ´ζi,k σ k dB k,1 t `λi,k σ k Z dB k,2 t ¯`ż `8 0 ´e ζ i,k x ´1¯r N k 0 pdt, dxq ḋ ÿ k"1 ż X k t0 ˆż `8 0 ´e ζ i,k x ´1¯r N k 1 pdt, du, dxq `żR ´e λ i,k x ´1¯r N k 2 pdt
(5.7) dQ i dQ ˇˇˇF t :" S 0,i t D i t S 0,i 0 , @t ď T , CBITCL parameters under Q i β i,k :" β k ν i,k pdzq :" e ζ i,k z ν k pdzq b i,k :" b k ´ζi,k pσ k q 2 ´ş`8 0 z `e ζ i,k z ´1˘π k pdzq σ i,k :" σ k π i,k pdzq :" e ζ i,k z π k pdzq b i,k Z :" b k Z `λi,k pσ k Z q 2 `ş|z|ă1 z `e λ i,k z ´1˘γ k Z pdzq σ i,k Z :" σ k Z γ i,k Z pdzq :" e λ i,k z γ k Z pdzq Table 5.1. Parameter transformations from Q to Q i for the CBITCL process pX k t , Z k t q tďT .
which is a risk-neutral measure with respect to the bank account D i for the i th economy, and under which for every 1 ď k ď d, the joint process pX k t , Z k t q tďT remains a CBITCL process with parameters given by `βi,k , ν

i,k , b i,k , σ i,k , π i,k , b i,k Z , σ i,k Z , γ i,k Z ˘in Table 5.1.
Proof. By Theorem 4.12, for every 1 ď i ď N and 1 ď k ď d, the process Z i,k " pZ i,k t q tďT defined by

Z i,k t :" e ζ i,k X k t `λi,k Z k t ´Ki,k t , @t ď T ,
is a martingale with respect to the filtration pF k t q tďT . By applying [Che06, Theorem 2.1] among others to the product of independent martingales (5.5), for every 1 ď i ď N , we obtain that the stochastic process S 0,i D i is a true martingale, for every 1 ď i ď N . In turn, this implies the existence of a probability measure Q i , equivalent to Q and defined as follows:

dQ i dQ ˇˇˇF t :" S 0,i t D i t S 0,i 0 , @t ď T ,
where it can be easily checked, by referring to [GEKR95, Theorem 1] for example, that Q i is a risk-neutral measure with respect to the bank account D i for the i th economy, for every 1 ď i ď N .

In order to show that the joint processes pX k t , Z k t q tďT , for every 1 ď k ď d, remain CBITCL processes under Q i , we follow the proof of Theorem 4.12. For convenience of the reader, we give full details. To proceed, we first need to rewrite (5.7) as a stochastic exponential by Lemma 5.7, as follows:

dQ i dQ ˇˇˇF t " d ź k"1 E ˆζi,k σ k ż 0 b X k t dB k,1 s `λi,k σ k Z ż 0 b X k t dB k,2 s `ż 0 ż `8 0 `e ζ i,k x ´1˘r N k 0 pds, dxq ˙t ˆd ź k"1 E ˜ż 0 ż X k s0 ż `8 0 `e ζ i,k x ´1˘r N k 1 pds, du, dxq `ż 0 ż X k s0 ż R `e λ i,k x ´1˘r N k 2 
pds, du, dxq ¸t , for all t ď T . By applying Girsanov's theorem, the processes pB i,k,1 t q tďT and pB i,k,2 t q tďT defined for every 1 ď i ď N and 1 ď k ď d by

B i,k,1 t :" B k,1 t ´ζi,k σ k ż t 0 b X k s ds, B i,k,2 t :" B k,2 t ´λi,k σ k Z ż t 0 b X k s ds,
for all t ď T , are independent Brownian motions under Q i . Again by Girsanov's theorem, N k 0 pdt, dxq, N k 1 pdt, du, dxq, and N k 2 pdt, du, dxq remain Poisson random measures under Q i , but with modified compensators as follows:

r N i,k 0 pdt, dxq :" N k 0 pdt, dxq ´dt e ζ i,k x ν k pdxq, r N i,k 1 pdt, du, dxq :" N k 1 pdt, du, dxq ´dt du e ζ i,k x π k pdxq, r N i,k 2 pdt, du, dxq :" N k 2 pdt, du, dxq ´dt du e λ i,k x γ k Z pdxq,
for every 1 ď i ď N and 1 ď k ď d. Finally, we rewrite system (5.2)-(5.3) under Q i as follows:

X k t " X k 0 `ż t 0 `βi,k ´bi,k X k s ˘ds `σi,k ż t 0 b X k s dB i,k,1 s `ż t 0 ż `8 0 x N k 0 pds, dxq `ż t 0 ż X k s0 ż `8 0 x r N i,k 1 pds, du, dxq, @t ě 0, Z k t " b i,k Z ż t 0 X k s ds `σi,k Z ż t 0 b X k s dB i,k,2 s `ż t 0 ż X k s0 ż |x|ě1 x N k 2 pds, du, dxq `ż t 0 ż X k s0 ż |x|ă1 x r N i,k 2 
pds, du, dxq, @t ě 0.

In view of Lemma 4.2, we can conclude that the joint process pX k t , Z k t q tďT remains a CBITCL process under Q i with parameters given in Table 5.1, for every 1 ď i ď N and 1 ď k ď d.

We define the spot FX rate process S i,j " pS i,j t q tďT , for every 1 ď i, j ď N , as follows:

(5.8) S i,j t :" S 0,j t S 0,i t , @t ď T .

In the next result, we first show that the triplet `N, D, S ˘is a well-posed multiple currency market in the sense of Definitions 5.1 and 5.2. We then provide each spot FX rate process S i,j " pS i,j t q tďT with a stochastic integral representation under Q i . In particular, we will notice that their dynamics are functionally symmetric with respect to ratios/products, which is a direct consequence of the fact that CBITCL processes are coherent in the sense of [START_REF] Gnoatto | Coherent foreign exchange market models[END_REF].

Corollary 5.9. Let `X, Z, ζ, λ ˘generate a CBITCL multi-currency model. Then:

(i) The triplet `N, D, S ˘is a well-posed multiple currency market;

(ii) For every 1 ď i, j ď N with i ‰ j, under Q i , the spot FX rate process S i,j " pS i,j t q tďT is the unique strong solution to the following stochastic differential equation:

dS i,j t S i,j t´" `ri ´rj ˘dt `d ÿ k"1 b X k t ´σk `ζj,k ´ζi,k ˘dB i,k,1 t `σk Z `λj,k ´λi,k ˘dB i,k,2 t d ÿ k"1 ż `8 0 ´e pζj,k´ζi,kq x ´1¯r N i,k 0 pdt, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e pζj,k´ζi,kq x ´1¯r N i,k 1 pdt, du, dxq `d ÿ k"1 ż X k t0 ż R ´e pλj,k´λi,kq x ´1¯r N i,k 2 
pdt, du, dxq. (5.9)

Proof. The well-posedness of the multiple currency market `N, D, S ˘directly follows from Theorem 5.8 and equation (5.8). Concerning part (ii), the product rule for semimartingales reads (5.10) dS i,j t " d ˆS0,j

t ˆ1 S 0,i t ˙" S 0,j t´d 1 S 0,i t `1 S 0,i t´d S 0,j t `d" S 0,j , 1 S 0,i  t ,
where, by using Itô's formula, we can show that the inverse process of S 0,i " pS 0,i t q tďT satisfies S

0,i t´d 1 S 0,i t " r i dt ´d ÿ k"1 b X k t ´ζi,k σ k dB i,k,1 t `λi,k σ k Z dB i,k,2 t d ÿ k"1 ż `8 0 ´e´ζ i,k x ´1¯r N i,k 0 pdt, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e´ζ i,k x ´1¯r N i,k 1 pdt, du, dxq `d ÿ k"1 ż X k t0 ż R ´e´λ i,k x ´1¯r N i,k 2 
pdt, du, dxq, and the co-variation " S 0,j , 1

S 0,i ‰ is determined by 1 S i,j t´d " S 0,j , 1 S 0,i  t " ´d ÿ k"1 X k t ´ζi,k ζ j,k pσ k q 2 `λi,k λ j,k pσ k Z q 2 ¯dt `d ÿ k"1 ż `8 0 ´e´ζ i,k x ´1¯´e ζ j,k x ´1¯N k 0 pdt, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e´ζ i,k x ´1¯´e ζ j,k x ´1¯N k 1 pdt, du, dxq `d ÿ k"1 ż X k t0 ż R ´e´λ i,k x ´1¯´e λ j,k x ´1¯N k 2 pdt, du, dxq.
5.3. Features of the model 5.3.1. Stochastic volatility and jumps. Corollary 5.9 highlights the presence of stochastic volatility and jumps in the dynamics of the spot FX rate processes. Let us fix a couple pi, jq with 1 ď i, j ď N and i ‰ j, omitting the index k for simplicity, the dynamics of the spot FX rate process S i,j " pS i,j t q tďT are then influenced by the following sources of randomness: a diffusive component driven by the two Brownian motions pB i,1 t q tďT and pB i,2 t q tďT , and three jump components driven by the three compensated Poisson random measures r N i 0 , r N i 1 , and r N i 2 . Let us now comment on the interpretation of these different sources of randomness.

We start with the diffusive component, which is proportional to the square root of the CBI process X " pX t q tďT , thus giving rise to stochastic volatility. Moreover, this shows that our modeling framework allows for self-excitation in the volatility of FX rates, which directly derives from the self-exciting behavior of CBI processes. The first jump component driven by r N i 0 results from the immigration of the CBI process X " pX t q tďT , whose magnitude is controlled by the difference ζ j ´ζi .

The second jump component driven by r N i 1 represents the dependence of self-exciting type between the CBI process X " pX t q tďT and the FX rate, whose magnitude is again controlled by the difference ζ j ´ζi . When this difference is large, e.g. between a hard currency and a soft one, it indicates strong dependence between the CBI process X " pX t q tďT and the FX rate. If the quantity ζ j ´ζi is small, e.g. between two hard currencies, then it suggests moderate dependence, in line with the findings of [START_REF] Ballotta | Hidden correlations: A self-exciting tale from the FX world[END_REF].

The third jump component driven by r N i 2 represents the jump risk of self-exciting type generated by the time-changed Lévy process Z " pZ t q tďT , whose magnitude is controlled by the difference λ j ´λi . If this difference is large, then it implies an important contribution of the time-changed Lévy process Z " pZ t q tďT to the jump risk of the FX rate. If the quantity λ j ´λi , then it implies a weaker contribution.

Stochastic dependence and skewness.

We investigate whether our framework can generate stochastic dependence among FX rates and FX volatility smiles with stochastic skewness. To this end, we compute the co-variations between the different FX rates and examine, for each FX rate, the instantaneous correlation between the FX rate and the sum of the d CBI processes pX k q 1ďkďd driving the volatility of the FX rate. This quantity is known to be intimately related to the skewness of the FX volatility smile (see e.g. [CHJ09, Section 3] and [DFG11, Section 3]).

For every 1 ď i, j ď N with i ‰ j, consider, for t ď T , the time-t instantaneous correlation between the spot FX rate process S i,j " pS i,j t q tďT and the sum of the CBI processes pX k q 1ďkďd , denoted by d Corr t `Si,j , ř d k"1 X k ˘. By [DFG11, Section 3], it can be informally defined as

(5.11) d Corr t ˆSi,j , d ÿ k"1 X k ˙:" d " S i,j , ř d k"1 X k ı t c d " S i,j ı t c d " ř d k"1 X k ı t .
We shall verify the following two properties:

(1) If for every 1 ď i ď N and every 1 ď p, q ď N with p ‰ i, q ‰ i, and p ‰ q, the co-variation " S i,p , S i,q ‰ is a stochastic process, then we can say that there exists stochastic dependence among FX rates;

(2) If for every 1 ď i, j ď N with i ‰ j, and for all t ď T , the time-t instantaneous correlation d Corr t `Si,j , ř d k"1 X k ˘is stochastic, then we can say that every FX rate of the market generates a volatility smile with stochastic skewness. We first compute " S i,p , S i,q ‰ by using (5.9), for every 1 ď i, p, q ď N with p ‰ i, q ‰ i, and p ‰ q:

1 S i,p t´S i,q t´d " S i,p , S i,q ı t " d ÿ k"1 X k t ´pσ k q 2 `ζp,k ´ζi,k ˘`ζ q,k ´ζi,k ˘`pσ k Z q 2 `λp,k ´λi,k ˘`λ q,k ´λi,k ˘¯dt `d ÿ k"1 ż `8 0 ´e pζp,k´ζi,kq x ´1¯´e pζq,k´ζi,kq x ´1¯N k 0 pdt, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e pζp,k´ζi,kq x ´1¯´e pζq,k´ζi,kq x ´1¯N k 1 pdt, du, dxq `d ÿ k"1 ż X k t0 ż R ´e pλp,k´λi,kq x ´1¯´e pλq,k´λi,kq x ´1¯N k 2 pdt, du, dxq,
thus showing evidence of stochastic dependence among FX rates. As far as the time-t instantaneous correlation d Corr t `Si,j , ř d k"1 X k ˘is concerned, for every 1 ď i, j ď N with i ‰ j, and for all t ď T , the latter is determined by the (quadratic) co-variations "ř d k"1 X k ‰ , " S i,j ‰ , and

" S i,j , ř d k"1 X k ‰ : d « d ÿ k"1 X k ff t " d ÿ k"1 ˜Xk t pσ k q 2 dt `ż `8 0 x 2 N k 0 pdt, dxq `ż X k t0 ż `8 0 x 2 N k 1 pdt, du, dxq ¸, d " S i,j ‰ t `Si,j t´˘2 " d ÿ k"1 X k t ˆ´σ k `ζj,k ´ζi,k ˘¯2 `´σ k Z `λj,k ´λi,k ˘¯2 ˙dt `d ÿ k"1 ż `8 0 ´e pζj,k´ζi,kq x ´1¯2 N k 0 pdt, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e pζj,k´ζi,kq x ´1¯2 N k 1 pdt, du, dxq `d ÿ k"1 ż X k t0 ż `8 0 ´e pλj,k´λi,kq x ´1¯2 N k 2 pdt, du, dxq, 1 S i,j t´d « S i,j , d ÿ k"1 X k ff t " d ÿ k"1 ˜Xk t pσ k q 2 `ζj,k ´ζi,k ˘dt `ż `8 0 x ´e pζj,k´ζi,kq x ´1¯N k 0 pdt, dxq ḑ ÿ k"1 ż X k t0 ż `8 0 
x ´e pζj,k´ζi,kq x ´1¯N k 1 pdt, du, dxq.

Replacing all the terms into (5.11), we obviously find a rich stochastic structure for the instantaneous correlation, showing that every FX rate generates a volatility smile with stochastic skewness.

Currency option pricing.

In view of Theorem 5.8, our modeling framework retains analytical tractability under a suitable class of risk-neutral measures. By relying on this result, we derive a semi-closed-form representation of the characteristic function of each spot FX rate process. We denote the expectation under Q i by E i , for every 1 ď i ď N . Lemma 5.10. Let `X, Z, ζ, λ ˘generate a CBITCL multi-currency model. Then, for every 1 ď i, j ď N with i ‰ j, the characteristic function of log S i,j " `log S i,j t ˘tďT under Q i is given by

E i " e i u log S i,j t ı " e i u plog S i,j 0 `pr i ´rj q tq ˆd ź k"1 e i u pΨ k pζ i,k q´Ψ k pζ j,k qq t ˆd ź k"1 exp ´Ui,k `t, u k 1 , u k 2 , u k 3 ˘`V i,k `t, u k 1 , u k 2 , u k 3 ˘Xk 0 ¯, @pu, tq P R ˆr0, T s,
where for every

1 ď k ď d, `Ui,k `¨, u k 1 , u k 2 , u k 3 ˘, V i,k `¨, u k 1 , u k 2 , u k 3 ˘˘is the unique solution to the CBITCL Riccati system associated to pX k t , Z k t q tďT under Q i with u k 1 " i u `ζj,k ´ζi,k ˘, u k 2 " i u `Φk pζ i,k q`Ξ k Z pλ i,k q´Φ k pζ j,k q´Ξ k Z pλ j,k q ˘, and u k 3 " i u `λj,k ´λi,k ˘.
Proof. The logarithm of the spot FX rate process S i,j " pS i,j t q tďT , for every 1 ď i, j ď N with i ‰ j, has the following form log S i,j t " log S i,j 0 ``r i ´rj ˘t

`d ÿ k"1 ´`ζ j,k ´ζi,k ˘Xk t ``λ j,k ´λi,k ˘Zk t `Ki,k t ´Kj,k t ¯,
for all t ď T . Since the CBITCL processes are mutually independent, we have E i " e i u log S i,j t ı " e i u plog S i,j 0 `pr i ´rj q tq ˆd ź

k"1 E i " e i u ´pζ j,k ´ζi,kq X k t `pλ j,k ´λi,kq Z k t `Ki,k t ´Kj,k t ¯ .
By inserting equation (4.22), we obtain

E i " e i u log S i,j t ı " e i u plog S i,j 0 `pr i ´rj q tq ˆd ź k"1 e i u pΨ k pζ i,k q´Ψ k pζ j,k qq t ˆd ź k"1 E i " e i upζ j,k ´ζi,kq X k t `i u pΦ k pζ i,k q`Ξ k Z pλ i,k q´Φ k pζ j,k q´Ξ k Z pλ j,k qq Y k t `i u pλj,k´λi,kq Z k t ı .
where Y k t :" ş t 0 X k s ds, for all t ď T and for every 1 ď k ď d. The conclusion then follows from the preservation of the affine property of CBITCL processes under Q i (see Theorem 5.8), for every 1 ď i ď N , and a direct application of Proposition 4.3 to each joint process `Xk t , Y k t , Z k t ˘tďT .

The availability of a semi-closed-form expression for the characteristic function of each spot FX rate process allows for currency option pricing via Fourier techniques. Unlike in Chapter 3, where the approach of [Lee04] was followed for caplet pricing, here we adopt the COS method developed by [START_REF] Fang | A novel pricing method for European options based on Fourier-cosine series expansions[END_REF]. The latter presents the advantage of utilizing only the characteristic function of the underlying process, without requiring any domain extensions as in other Fourier pricing techniques.

In our setting, such domain extensions would require additional constraints on the parameters. We proceed as follows:

' Consider a European call option in the i th economy written on the spot FX rate process S i,j " pS i,j t q tďT for 1 ď j ‰ i ď N with maturity T ď T and strike K ą 0. Thanks to the well-posedness of the multiple currency market `N, D, S ˘, we can apply the risk-neutral valuation formula under Q i to this European call option. The resulting arbitrage-free price CpT, Kq, considered at t " 0 for simplicity, is given by (5.12)

CpT, Kq " e ´ri T E i " ´Si,j

T ´K¯` " e ´ri T ż R K `ex ´1˘`f i,j T pxq dx,
where f i,j T represents the density function of log `Si,j T {K ˘under Q i ; ' Introduce an appropriately chosen truncation range ra, bs Ă R such that CpT, Kq can be approximated with good accuracy by

(5.13) CpT, Kq « e ´ri T ż b a K `ex ´1˘`f i,j T pxq dx.
Let us now propose a simple semi-closed-form pricing formula for currency options based on the COS method of [START_REF] Fang | A novel pricing method for European options based on Fourier-cosine series expansions[END_REF]. We emphasize that this pricing formula does not involve any additional assumptions or domain extensions of the characteristic function given by Lemma 5.10.

Proposition 5.11. Let `X, Z, ζ, λ ˘generate a CBITCL multi-currency model. Then, the arbitrage-free price CpT, Kq of a European call option written on the spot FX rate process S i,j " pS i,j t q tďT with maturity T ď T and strike K ą 0, can be approximated by Proof. We proceed along the lines of [FO09, Section 3]. The starting point for deriving formula (5.14) is the approximation (5.13) of the arbitrage-free price CpT, Kq. We replace f i,j T with its cosine expansion on ra, bs, given by (5.15) f i,j T pxq " where N P N ˚. We then recover formula (5.14) by making use of the characteristic function of log S i,j T , as given by Lemma 5.10. We proceed as follows

A k « 2 b ´a ż R f i,j T pxq cos ˆk π x ´a b ´a ˙dx " 2 b ´a Re ˆe´i k π a b´a ż R f i,j T pxq e i k π b´a x dx " 2 b ´a Re ´e´i k π a`log K b´a E i " e i k π
b´a log S i,j T ı¯, (5.19) which finally enables us to conclude the proof by inserting (5.19) into (5.18). Remark 5.12. In order to preserve the accuracy of formula (5.14), one needs to select the truncation range ra, bs properly. Inspired by [FO09, Section 5.1], one can choose it as follows:

(5.20) ra, bs "

" c 1 ´L b c 2 `?c 4 , c 1 `L b c 2 `?c 4  ,
with L " 10 and where c n , for n " 1, 2, 4, represents the n th cumulant of log `Si,j T {K ˘. In our framework, the cumulants are not available in closed form. However, they can be approximated by using finite differences since they are by definition given by the derivatives at zero of the cumulantgenerating function of log `Si,j T {K ˘(see [FO09, Appendix A] for further details).

Remark 5.13. As in [FO09, Section 3.3], formula (5.14) can be readily extended to a multistrike setting, which is practically important when one needs to price many European options at once, with the same maturity but associated to different strikes, e.g. during a calibration routine. Suppose that we are given M European call options with the same maturity T ď T but associated to M different strikes denoted by K i ą 0 for every 1 ď i ď M . Consider the following objects: ' Let K " pK i q J 1ďiďM represent the vector containing M different strikes; ' Let CpT, Kq " pCpT, K i qq J 1ďiďM be the vector containing the corresponding prices.

Denote the spot FX rate process by S " pS t q tďT where we omit the indexes i and j for simplicity of notation. Following Remark 5.12, the quantities b´a and a`log K in formula (5.14) do not depend on the strike K. By introducing the diagonal matrix diagpB k q " diag `Bk pK 1 q, . . . , B k pK M q ˘for every 0 ď k ď N ´1, we can derive the following multi-strike version of formula (5.14)

(5.21) CpT, Kq « e ´ri T N ´1 ÿ k"0 ˆ1 ´δ0 pkq 2 ˙Re ´e i k π a´b pa`log Kq E i " e i k π b´a log S T ı¯d iagpB k q K,
where each term diagpB k q K refers to a matrix-vector product and each real part in the summation is a scalar. The characteristic function of log S T needs to be evaluated only N ´1 times for the pricing of a European option smile, thus reducing the computation time in a calibration.

5.4. Numerical analysis 5.4.1. FX market data. We start by describing the market data. For a given trading date (April 15, 2020), we consider three FX implied volatility surfaces: EURUSD, EURJPY, along with USDJPY. The latter are quoted according to the FORDOM convention, meaning that the second currency in each pair represents the domestic one. We emphasize that the quoting convention for FX implied volatility surfaces differs from what we observe in equity markets: implied volatilities are not quoted in terms of strikes and maturities, but in terms of deltas and maturities.

Furthermore, excluding ATM, single volatilities are not directly quoted: the market practice consists in quoting certain combinations of contracts (risk-reversals and butterflies) from which, by means of conversion formulas, one can recover implied volatilities for single contracts in terms of maturities and deltas. The conversion between deltas and strikes is then performed by suitable inversions of the Black-Scholes formula. We stress that also the definition of ATM poses some challenges in FX markets, which depends on how the currency pair is quoted. We refer to [START_REF] Clark | Foreign Exchange Option Pricing: A Practitioner's Guide[END_REF] for a complete overview of quoting convention and smile construction in the FX market.

For each surface and each maturity considered (ranging from one week to one year, all of our surfaces share the same maturity range), we retrieved from Bloomberg the following market quotes: ATM implied volatility, 10∆ and 25∆ risk-reversals and butterflies. For 25∆ 4 , we have

RR 25∆ " σ 25∆Call ´σ25∆P ut , BF 25∆ " σ 25∆Call `σ25∆P ut 2 ´σAT M ,
from which, by straightforward computations, we are able to obtain

σ 25∆Call " σ AT M `1 2 RR 25∆ `BF 25∆ , σ 25∆P ut " σ AT M ´1 2 RR 25∆ `BF 25∆ ,
and similarly for 10∆. In summary, for each surface and each maturity, we have the implied volatilities of 5 contracts at our disposal. Market data not corresponding to the 5 points above is typically interpolated (see again [START_REF] Clark | Foreign Exchange Option Pricing: A Practitioner's Guide[END_REF] for a discussion of different interpolation techniques). Concerning the training step, we start with the random generation of a training set of size N train " 10, 000. After suitably normalizing the data, we proceed with the training of the neural network corresponding to the resolution of minimization problem (5.23). The common practice is to use a stochastic optimization algorithm based on "mini-batch" gradient descent (see [START_REF] Goodfellow | Deep Learning[END_REF]), whose updater can be further specified following the Adam scheme (see [START_REF] Kingma | A method for stochastic optimization[END_REF]). We then set the mini-batch size to 32 and the number of epochs to 150 with potential early stopping.

For its implementation, we rely on the open-source Java library Eclipse Deeplearning4j [START_REF]Deeplearning4j Development Team. Deeplearning4j: Open-source distributed deep learning for the JVM[END_REF], which offers a convenient monitoring interface. Figure 5.3 gives an overview of the latter at the end of the training of the neural network of Figure 5.2. The top left panel, called "score versus iteration", plots the value of the loss function over successive iterations. The top right panel provides a description of the neural network being trained and also further details on how the training process has been carried out. In particular, we also have the exact total number of network parameters to be calibrated, corresponding to the dimension of the vector w appearing in (5.23). The other two panels provide further checks on the state of the hyper-parameters employed during the training phase.

Calibration results.

For the resolution of minimization problems (5.22) and (5.24), we use the Levenberg-Marquardt optimizer of the open-source Finmath Java library (see [START_REF] Fries | Finmath lib v5.1.3: Algorithms and methodologies related to mathematical finance[END_REF]). We recall that we consider on April 15, 2020 the three FX implied volatility surfaces EURUSD, EURJPY, and USDJPY (N " 3 currencies), all sharing the same maturity range: 1 and 2 weeks, 1, 3, and 6 months, and 1 year. These maturities cover the most liquid segment of the implied volatility surface for FX pairs. We work under the modeling framework presented in Section 5.2.2 with d " 2 and consider two specifications: the first one assumes that the Lévy process of each CBITCL process is simply a Brownian motion; the second specification uses the CGMY process [START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF] as the Lévy process of each CBITCL process. For both specifications, each CBI process is a tempered-stable CBI process (see Section 2.7). We refer to Appendix 5.A for an overview of these models.

We first consider the Brownian specification. We perform both standard and deep calibrations. Concerning the standard one, we obtain a root-mean-square error of 0.06119 in 929.086 seconds. Figure 5.4 provides a comparison of model and market prices that demonstrates the capability of the Brownian specification to obtain a satisfactory fit to market data. The quality of the fit is better for shorter maturities and worsens when considering the 6-month and 1-year maturities. The deep calibration performs better: we obtain a root-mean-square error of 0.04157 in 0.218 seconds. The better quality of the fit can be appreciated from Figure 5.5, where it appears that the fit is improving for longer maturities.

We now discuss the CGMY specification. As above, we perform standard and deep calibrations. For the standard, we obtain a root-mean-square error of 0.07557 in 709.977 seconds. Figure 5.6 shows a satisfactory fit that slightly worsens for longer maturities. Similarly to the Brownian specification, we observe that the deep calibration outperforms the standard one since we obtain a root-mean-square error of 0.04092 in 0.269 seconds. We report in Figure 5.7 the comparison between model and market prices from which is visible an improvement for longer maturities.

The calibrated values of the model parameters can be found in Table 5.2 for the four calibrations considered. We can first observe that all the differences ζ EUR ´ζUSD , ζ EUR ´ζJPY , and ζ USD ´ζJPY , are relatively small in absolute value, which brings evidence of moderate dependence between the FX rates considered and their volatility. This is in line with the findings of [START_REF] Ballotta | Hidden correlations: A self-exciting tale from the FX world[END_REF] since in the present calibration we are considering only hard currencies. We also remark that these differences are slightly larger in the case of the CGMY specification.

By inspecting the calibrated values of the parameters of the tempered-stable CBI processes, we can notice a non-trivial contribution from their self-exciting jumps. This documents the presence of self-excitation in the volatility of FX rates (see Figure 5.1). It is also interesting to remark that the calibrated values of the parameters of the CGMY specification are surprisingly stable across the two types of calibration, which might be ascribed to the non-injectivity issue that one typically faces during a deep calibration (refer to [BDL21, Appendix B]). In particular, this issue can be addressed by reducing the number of input parameters, which explains why this phenomenon appears to be mitigated in the case of the Brownian specification.

We can discern a strong discrepancy between the calibrated values obtained by standard calibration and those obtained by deep calibration in the case of the Brownian motion. This may be justified by the fact that the calibrated values obtained by deep calibration tend to underestimate the real contribution of the tempered-stable CBI processes. This is because the neural network returns slightly lower volatilities than the original pricing function, which is a direct consequence of the normalization process applied to the training set before solving minimization problem (5.23).

When restricting our attention to the deep calibration, which outperforms the standard one for both specifications considered, it appears that the CGMY specification marginally improves the quality of the fit compared to the Brownian one. This suggests that incorporating self-exciting jumps into the activity rate allows to replicate FX market-implied volatility surfaces in the presence of self-excitation in the volatility of FX rates. Taking into account the observation that the non-injectivity of the neural network appears to be more pronounced in the case of the CGMY specification, this also suggests that introducing extra jumps into the base process might be redundant. 5.4.4. Sensitivity analysis. In this last section, we study the impact of the self-exciting behavior of the tempered-stable CBI processes on the shape of the FX volatility smile. We focus on the smile at maturity 2 weeks of the FX implied volatility surface USDJPY (smallest RMSE), and restrict our attention to the parameters controlling the self-exciting jumps of the temperedstable CBI processes (α, η, and θ). We fix d " 1 for simplicity.

We start with the sensitivity with respect to the stability index α, which can be visualized in Figure 5.8. First, we decrease the calibrated value by 40%, witnessing a significant increase of the first extremity of the smile, seeking to attain the level of the opposite extremity. We then reduce the obtained value by a further 40%, observing a slight rightward shift of the local minimum together with an increase of the global level of the smile. When looking at smaller values in p1, 2q, we observe that the entire smile stabilizes along a symmetric shape around the local minimum. This limit shape of the smile is compatible with an increased likelihood of large jumps along with stronger compensation effects in the dynamics of the tempered-stable CBI process, which happens when α gets smaller in p1, 2q (compare with the discussion before Remark 3.9 in Chapter 3). Indeed, as far as the FX rate is concerned, this is reflected by prolonged periods of stability during which a relatively large jump of the FX rate, whose direction is unknown, is very likely to occur. Investors then seek to protect themselves against a potential fall/rise of the FX rate, hence the presence of higher volatilities at both ends of the smile.

We then proceed with the study of the sensitivity with respect to η and θ, which can be visualized in Figures 5.9 and 5.10, respectively. In particular, we can observe that when θ gets closer to 0 and when η gets bigger, the smile curvature changes from a convex shape to a concave one, while the global level of the smile increases significantly, where the sign of the slope depends on how the currency pair is quoted. While the increased level of the smile can be justified by higher demand for protection among investors as in the case of smaller values of α in p1, 2q, the curvature change might be caused by the the fact that the parameters ζ JPY , ζ USD , and ζ EUR must be lower than θ{η (we recall that D 1 " p´8, θ{ηs in the case of a tempered-stable CBI process, see Appendix 5.A), with the consequence that these parameters are forced to become either extremely small or negative to comply with this constraint. In view of the discussion in Section 5.3.1, this can give rise to stronger dependence effects between FX rates and their volatility, which translate into the appearance of "frowns" or "smirks" instead of smiles when looking at model-implied volatilities (see [JFB15, Section 5.4.2] and [START_REF] Ballotta | Hidden correlations: A self-exciting tale from the FX world[END_REF]). 5.2; the green one to α ´40%; the blue one to α ´80%; and three black ones almost overlapping perfectly corresponding to α´83%, α´84%, and α ´85%, thus demonstrating convergence to a limit shape. 5.2; the green one to η `30%; the blue one to η `60%; and the two black ones to η `90% and η `120%. 5.2; the green one to 60% of θ; the blue one to 30% of θ; and the three black ones to 10% of θ, 5% of θ, and 3% of θ.

Conclusion

We have proposed a stochastic volatility modeling framework for multiple currencies based on CBI-Time-Changed Lévy processes (CBITCL). The characteristic feature of the proposed approach consists in the self-excitation of the volatility of FX rates (which directly derives from the selfexciting behavior of CBI processes), while preserving the peculiar symmetries that FX rates satisfy. Our framework retains a remarkable level of analytical tractability since we have been able to characterize a class of risk-neutral measures leaving invariant the structure of the model. By relying on this result, we have derived a semi-closed-form pricing formula for currency options.

We have tested our framework via a calibration to an FX triangle. Two specifications of the model have been introduced: Brownian and CGMY, where each CBI process has been chosen tempered stable. Two types of calibration have been implemented: standard and deep, where the latter uses deep-learning techniques. We have observed that the deep calibration outperforms the standard one. We have also found that the CGMY specification marginally improves the quality of the fit over the Brownian one. Taking into account the observed non-injectivity of the neural network in the case of the CGMY specification, this suggests that adding jumps into the base process, when the activity rate exhibits self-excitation, might be redundant.

We have performed a sensitivity analysis on model-implied volatility smiles, restricting our attention to the parameters controlling the self-exciting behavior of the tempered-stable CBI processes. In particular, we have documented a prevailing role of the tempering parameter in the sense that when this parameter approaches zero, the smile curvature radically changes from a convex shape to a concave one, which is a major impact on the shape of the FX volatility smile.

There are many avenues of further research. The first avenue would be to incorporate stochasticity into the short rates appearing in the dynamics of the FX rates, and then relate the present framework to that of Chapter 3. However, special attention should be paid to the growing number of parameters. Another avenue would be to extend the numerical assessment of Section 5.4 by also introducing soft currencies.

5.A. Appendix: Model specifications

In this appendix, we provide more information on the specifications considered in Section 5.4. For every 1 ď k ď 2, X k " pX k t q tďT is chosen to be a tempered-stable CBI process in the sense of Section 2.7, which is defined by ν k " 0 and π k given by (5.25) π k pdzq " pη k q α k C k α z ´1´α k e ´θk η k z 1 tzą0u dz, where we fix (5.26)

C k α " 1 Γp´α k q ,
where η k ą 0 serves as a volatility parameter for the jump part, θ k ą 0 denotes the tempering parameter, and α k P p1, 2q, called stability index, determines the local behavior (see Section 2.7).

We recall from Section 2.7 that in the case of a tempered stable CBI processes X k " pX k t q tďT , we have D k 1 " `´8, θ k {η k ‰ . We also rewrite the expressions associated to the immigration and branching mechanisms Ψ k and Φ k , given by Ψ k pxq " β k x and (5.27) Φ k pxq " ´bk x `1 2 `σk x ˘2 ``θ k ´ηk x ˘αk ´`θ k ˘αk `αk `θk ˘αk ´1 η k x, for all x ď θ k {η k , where we recall that Φ k satisfies Assumption 2.4. We then consider two different specifications for each Lévy triplet `bk Z , σ k Z , γ k Z ˘. The first one consists in taking b k Z " 0, σ k Z " 1, and γ k Z " 0, which reduces to a Brownian motion. We then have D k

2 " R and Ξ k Z puq " While G k ą 0 tempers the downward jumps, M k ą 0 tempers the upward ones, and Y k P p1, 2q controls the local behavior similarly to α k . We also recall that any CGMY process is determined by a Lévy triplet of the form `βk Z , 0, γ k Z ˘. The associated Lévy exponent Ξ k Z is then given by (5.30) Ξ k Z puq :" β k Z u `żR `e z u ´1 ´z u ˘γk Z pdzq, @u P i R,

where the correspondence between β k Z and b k Z is given by (5.31)

β k Z :" b k Z `ż|z|ě1 z γ k Z pdzq,
where the integral is finite since ş |z|ě1 |z| γ k Z pdzq ă `8 for γ k Z given by (5.28). It can be easily checked that in the case of a CGMY process, we have D k 2 "

" ´Gk , M k ‰ , and the Lévy exponent Ξ k Z given by (5.30) takes the following form: We now investigate the stability of both specifications under (5.7). In view of Theorem 5.8, we start by inserting (5.25) into π i,k of Table 5.1:

Ξ k Z pxq " β k Z x ``M k ´x˘Y k ´`M k ˘Y k ``G k `x˘Y k ´`G k ˘Y k `x Y k ´`M k ˘Y k ´1 ´`G k ˘Y k ´1¯,
π i,k pdzq " pη k q α k C k α z ´1´α k e ´θk ´ζi,k η k η k z 1 tzą0u dz.
By taking η i,k :" η k , θ i,k :" θ k ´ζi,k η k , and α i,k :" α k , we notice that X k " pX k t q tďT remains a tempered-stable CBI process under Q i (compare with Table 4.2). Concerning the Lévy processes, two situations can occur: the Brownian specification is preserved under Q i since we have γ i,k Z " 0, but also b i,k Z " λ i,k by Table 5.1 (σ i,k Z " σ k Z " 1 in any case). Regarding the CGMY specification, we plug (5.28) into γ i,k Z of Table 5.1:

γ i,k Z pdzq " C k Y
´z´1´Y k e ´pM k ´λi,kq z 1 tzą0u `|z| where we have moved from pb k Z , b i,k Z q to pβ k Z , β i,k Z q by (5.31). As in the proof of Lemma 2.19, we replace the exponential with its Maclaurin series expansion:

b i,k " b k ´ζi,k pσ k q 2 ´pη k q α k Γp´α k q ż `8 0 `8 ÿ n"1 pζ i,k zq n n! z α k e ´θk η k z dz, β i,k Z " β k Z `1 Γp´Y k q ˜ż `8 0 `8 ÿ n"1 pλ i,k zq n n! z Y k e ´M k z dz `ż `8 0 `8 ÿ n"1 p´λ i,k zq n n! z Y k e ´Gk z dz ¸.
Then, by applying Fubini's theorem and by making use of the Gamma function, we obtain b i,k " b k ´ζi,k pσ k q 2 ´pη k q α k pθ k q α k ´1 Γp´α k q `8 ÿ n"1 `ζi,k η k {θ k ˘n n! Γ `n ´pα k ´1q ˘,

β i,k Z " β k Z `pM k q Y k ´1 Γp´Y k q `8 ÿ n"1 `λi,k {M k ˘n n! Γ `n ´pY k ´1q ˘`pG k q Y k ´1 Γp´Y k q `8 ÿ n"1 `´λ i,k {G k ˘n n! Γ `n ´pY k ´1q ˘.
By inserting Γ `n ´pδ ´1q ˘" ´δ p´1q n n! `δ´1 n ˘Γp´δq into the summations, while introducing the Maclaurin series expansion of x Þ Ñ p1 `xq δ´1 for δ " α k or Y k , we finally obtain b i,k " b k ´ζi,k pσ k q 2 ´αk pη k q α k ´`θ k ˘αk ´1 ´`θ k ´ζi,k η k ˘αk ´1¯, (5.32)

β i,k Z " β k Z `Y k ´`M k ˘Y k ´1 ´`M k ´λi,k ˘Y k ´1 ``G k ˘Y k ´1
´`G k `λi,k ˘Y k ´1¯. (5.33) 

Contents 1 . 1 .

 11 The multiple term structure framework . . . . . . . . . . . . . . . . . . . . . . 1.2. The Foreign-Exchange (FX) market . . . . . . . . . . . . . . . . . . . . . . . . . 1.3. The post-crisis interest rate market . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1. The spot multiplicative spreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2. The artificial spot FX rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3. Statement of the objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5. The proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1. Part 1. Multiple yield curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2. Part 2. Multiple currencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6. Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  (i) Stochastic volatility and jumps; (ii) Stochastic dependence among FX rates; (iii) Stochastic skewness of the FX volatility smile; (iv) Potential presence of self-excitation in the volatility of FX rates.

  process, ([LM15, JMS17, JMSZ21]) b ą 0, ν " 0, and πpdzq " η α Cα z ´1´α 1 tzą0u dz, with η ě 0, Cα ě 0, and α P p1, 2q Lévy-driven integral equation E " e x X T ‰ " `8, @x ą 0, @T ą 0 Feller condition applies Hawkes process ([Haw71, HO74, Haw18]) b ą 0, σ " 0, ν " 0, π " δη with η ą 0, and X0 " β b`η Stochastic intensity Self-exciting counting process Time-changed Poisson formulation Marked Hawkes process ([BNT02, BM02]) b ą 0, σ " 0, ν " 0, π probability distribution on R`, with ş `8 0 x πpdxq ă 8, X0 " β b`η One mark per event (with law π) Amplified self-exciting behavior Time-changed compound Poisson

  [KTW09, Ken10, FT13, GM16]; Heath-Jarrow-Morton (HJM) models [FST11, MP14, CGNS15, CFG16]; Libor market models [Bia10, Mer10, Mer13, GPSS15]; and finally pricing kernel models [NS15, CMNS16, MM18].
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 32 Figure 3.2. One sample path of the short rate (red line) and the multiplicative spreads for two tenors (3M in blue and 6M in green) given in Definition 3.7.
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 0 pds, duq `ż 0 ż Y s´p δmq 0 ż `8 0 ´e ζ x ´1¯r N 1 pds, du, dxq ¸t ,
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 33 Figure 3.3. Discount and forward curves as of 25 June 2018.

Figure 3 . 4 .

 34 Figure 3.4. Model prices against market prices as of 25 June 2018. On the top panel, market prices are represented by blue circles, while model prices by red stars. On the bottom panel, price squared errors are reported.

  Par ,α pzq, where f Par ,α denotes the density function of a Pareto distribution with scale and shape α. In view of relation (3.34), we can simulate random variables with density f by means of an acceptancerejection scheme (see e.g. [Pag15, Section 1.4]) based on a Pareto distribution.

  pX s ds, dxq, for all t ě 0. By [IW89, Theorem II.7.4], possibly on an enlarged probability space, there exists a Poisson random measure N 2 pdt, du, dxq with compensator dt du γ Z pdxq and compensated measure r N 2 pdt, du, dxq :" N 2 pdt, du, dxq ´dt du γ Z pdxq such that ż t 0 ż |x|ě1 xN pX s ds, dxq "

Figure 5 . 1 .

 51 Figure 5.1. Weighted average of the 1Y ATM call-implied volatilities of the three major currency pairs USDJPY, EURJPY, and EURUSD, where the weights are represented by the reciprocal bid-ask spreads. The period spans from 2015 to 2020. Source: Bloomberg.

  , du, dxq ˙.(5.6) Proof. A direct application of Itô's formula, combined with system (5.2)-(5.3) and equation (4.22), implies weak existence of the solution to equation (5.6). Pathwise uniqueness then follows from the extended Dawson-Li stochastic integral representation (4.4)-(4.5). By using [BLP15, Theorem 2] for example, pathwise uniquess together with weak existence implies strong existence for equation(5.6).

  where δ 0 denotes the Kronecker delta at 0, N P N, B 0 "1 b´a `e b ´1´b˘, and where B k , for every1 ď k ď N ´1, is given by B k " 2 b ´a ¨1 1 `´k π b´a ¯2 ˆp´1q k e b ´cos

5

 5 for all a ď x ď b, where(5.16)A k :" 2 b ´a ż b a f i,j T pxq cos ˆk π x ´a b ´a ˙dx,for every k P N. Then, inserting equation (5.15) into approximation (5.13) and interchanging summation and integration, we obtain (cos ˆk π x ´a b ´a ˙dx, for every k P N. The values of B k have been computed explicitly in [FO09, Section 3.1] in the case of a European call option. We now truncate the series in (5.17) as justified by [FO09, Section 3] due to the rapid decay of the coefficients A k and B k as k Ñ `8, thus yielding (
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 53 Figure 5.3. Monitoring of the neural network training presented in Figure 5.2. Source: Eclipse Deeplearning4j.
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 54 Figure 5.4. Calibration results obtained by standard calibration for the Brownian specification. Market prices are denoted by crosses, model prices are denoted by circles. Moneyness levels follow the standard Delta quoting convention in the FX option market. DC and DP stand for "delta call" and "delta put", respectively.
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 55 Figure 5.5. Calibration results obtained by deep calibration for the Brownian specification. Market prices are denoted by crosses, model prices are denoted by circles. Moneyness levels follow the standard Delta quoting convention in the FX option market. DC and DP stand for "delta call" and "delta put", respectively.
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 56 Figure 5.6. Calibration results obtained by standard calibration for the CGMY specification. Market prices are denoted by crosses, model prices are denoted by circles. Moneyness levels follow the standard Delta quoting convention in the FX option market. DC and DP stand for "delta call" and "delta put", respectively.
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 57 Figure 5.7. Calibration results obtained by deep calibration for the CGMY specification. Market prices are denoted by crosses, model prices are denoted by circles.Moneyness levels follow the standard Delta quoting convention in the FX option market. DC and DP stand for "delta call" and "delta put", respectively.
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 58 Figure 5.8. Sensitivity with respect to α, where each smile is generated by shifting α by a certain decrement. The plot contains six smiles: the red smile corresponds to the calibrated value of Table5.2; the green one to α ´40%; the blue one to α ´80%; and three black ones almost overlapping perfectly corresponding to α´83%, α´84%, and α ´85%, thus demonstrating convergence to a limit shape.
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 59 Figure 5.9. Sensitivity with respect to η, where each smile is generated by shifting η by a certain increment. The plot contains five smiles: the red smile corresponds to the calibrated value of Table5.2; the green one to η `30%; the blue one to η `60%; and the two black ones to η `90% and η `120%.
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 5 Figure 5.10. Sensitivity with respect to θ, where each smile is generated by multiplying θ by some factor. The plot contains six smiles: the red smile corresponds to the calibrated value of Table5.2; the green one to 60% of θ; the blue one to 30% of θ; and the three black ones to 10% of θ, 5% of θ, and 3% of θ.

  for all ´Gk ď x ď M k .In the present context, thanks to the explicit form of the sets D k 1 and D k 2 and in view of satisfying ζ i,k P D k 1 and λ i,k P D k 2 (see Section 5.2.2), it suffices to verify max 1ďiď3 ζ i,k ď θ k {η k in the case of the Brownian specification and max 1ďiď3 ζ i,k ď θ k {η k , ´Gk ď min 1ďiď3 λ i,k , and max 1ďiď3 λ i,k ď M k , in the case of the CGMY specification.
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  .4.3. Formulation de notre objectif. Nous sommes désormais en position de formuler l'objectif principal que cette thèse cherche à atteindre. Nous insistons sur le fait que ce dernier est directement motivé par les caractéristiques empiriques présentées précédemment.
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  Let the function Ψ : R ´Ñ R be given by Definition 2.1. A Markov process X " pX t q tě0 with initial value X 0 and state space R `is said to be a Continuous-state Branching process with Immigration (CBI) with immigration mechanism Ψ and branching mechanism Φ if its Laplace transform is given by

	(2.1)	Ψpxq :" β x	`ż `8	`e x z ´1˘ν pdzq,	@x ď 0,
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		where β ě 0 and ν is a Lévy measure on R `such that	ş 1 0 z νpdzq ă `8;
		' Let the function Φ : R ´Ñ R be given by
	(2.2)	Φpxq :" ´b x	`1 2	0 pσ xq 2 `ż `8	`e x z ´1 ´x z ˘πpdzq,	@x ď 0,
		where b P R, σ ě 0, and π is a Lévy measure on R `such that	ş `8 1	z πpdzq ă `8.
						ˆż T	˙,
	(2.3)	Ere x X T s " exp	Ψ `Vps, xq ˘ds `VpT, xq X 0
						0
	for all x ď 0 and T ě 0, where the function Vp¨, xq : R `Ñ R ´is the unique solution to
	(2.4)		BV Bt	pt, xq " Φ `Vpt, xq ˘,	Vp0, xq " x.
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 2 Multiple yield curve modeling with CBI processesSummary. We develop a modeling framework for multiple yield curves driven by Continuous-state Branching processes with Immigration (CBI). Exploiting the self-exciting behavior of jump-type CBI processes, this approach can reproduce the relevant empirical features of spreads between different interbank rates. In particular, we construct a novel class of multi-curve models by relying on a flow of tempered-stable CBI processes. Such models are especially parsimonious and tractable, and are able to generate contagion effects among different spreads. The proposed approach allows for the explicit valuation of all linear interest rate derivatives, and ensures semi-closed-form formulae for non-linear products via Fourier techniques. Finally, we provide a numerical comparison of FFT and quantization-based pricing methodologies, and then show that a simple specification of our .4.2. Caplet pricing via quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1. Numerical comparison of pricing methodologies . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2. Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The emergence of multiple yield curves can be rightfully considered as the most relevant feature of interest rate markets over the last decade, starting from the 2007-2009 financial crisis.While pre-crisis interest rate markets were adequately described by a single yield curve and Interbank offered rates 1 associated to different tenors were determined by simple no-arbitrage relations, this proves to be no longer valid in the post-crisis scenario, where yield curves associated to interbank rates of different tenors demonstrate a distinct behavior.

1. Overview of the examples of CBI processes considered in this chapter. CHAPTER 3 CBI-driven multi-curve model can be successfully calibrated to market data. This chapter is based on the work Multiple yield curve modelling with CBI processes, co-authored with C. Fontana and A. Gnoatto, published in Mathematics and Financial Economics, volume 15, pages 579-610, 2021.
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3.1. Introduction 3.1.1. Motivation and literature.
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		FFT 2% Quant. 2% Difference 2% FFT 1% Quant. 1% Difference 1%
	1	0.0064146 0.0063414	1.1554%	0.0065360 0.0070082	´6.7368%
	1.1 0.0064303 0.0063641	1.0404%	0.0065520 0.0070325	´6.8330%
	1.2 0.0064460 0.0063868	0.92556%	0.0065679 0.0070569	´6.9292%
	1.3 0.0064679 0.0064187	0.76738%	0.0065903 0.0070910	´7.0616%
	1.4 0.0064983 0.0064626	0.55350%	0.0066212 0.0071381	´7.2408%
	1.5 0.0065291 0.0065069	0.34038%	0.0066525 0.0071857	´7.4193%
	1.6 0.0065600 0.0065516	0.12813%	0.0066839 0.0072335	´7.5972%
	1.7 0.0065911 0.0065966	´0.083181% 0.0067157 0.0072818	´7.7743%
	1.8 0.0066250 0.0066458	´0.31232%	0.0067502 0.0073345	´7.9664%
	1.9 0.0066620 0.0070707	´5.7812%	0.0067878 0.0078016	´12.995%
	2	0.0066992 0.0071339	´6.0934%	0.0068257 0.0078694	´13.264%

1. Comparison of FFT and quantization prices for different maturities (strikes at 2% and 1%, differences in relative terms). Quantization with 10 points and FFT with 4096 points. The parameter set used here is reported in Table

3
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 3 2. Comparison of FFT and quantization prices for different maturities (strikes at 2% and 1%, differences in relative terms). Quantization with 20 points and FFT with 4096 points. Starting from the parameters reported in Table
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 3 [START_REF] Fontana | CBI-time-changed Lévy processes: An analytical framework[END_REF]. Calibrated values of the parameters.

'

  A Poisson random measure N k 1 pdt, du, dxq on r0, T sˆR `ˆR `with compensator dt du π k pdxq and compensated measure r N k 1 pdt, du, dxq :" N k 1 pdt, du, dxq ´dt du π k pdxq, where π k is a Lévy measure on R `such that

	ş `8 1	x π k pdxq ă `8;
	' A Poisson random measure N k 2 pdt, du, dxq on r0, T sˆR `ˆR with compensator dt du γ k Z pdxq
	and compensated measure r N k 2 pdt, du, dxq :" N k 2 pdt, du, dxq ´dt du γ k Z pdxq, where γ k Z is a
	Lévy measure on R.	

Table 5 .

 5 [START_REF] Fontana | CBI-time-changed Lévy processes for multi-currency modeling[END_REF]. Calibrated values of the model parameters. We can observe that all parameter constraints set in Section 5.2.2 are satisfied.

		Brownian			CGMY	
		Standard	Deep		Standard	Deep
	X 1 0	1.5079	1.3234	X 1 0	1.1040	1.1106
	β 1	0.87413	1.2538	β 1	0.37721	0.65766
	b 1	´0.47807	´1.5635	b 1	0.43082	0.43082
	σ 1	3.8930	1.1439	σ 1	2.1473	2.1473
	η 1	9.5007	0.76198	η 1	1.7208	1.7208
	θ 1	0.26712	0.43398	θ 1	1.9338	1.9338
	α 1	1.9999	1.8677	α 1	1.1697	1.1697
				β 1 Z	´0.16220 ´0.16220
				G 1	3.0313	3.0313
				M 1	0.79529	0.79529
				Y 1	1.7675	1.7675
	ζ JP Y,1	0.013356	0.021699	ζ JP Y,1	1.12323	1.12366
	ζ U SD,1	0.0043576 0.012494	ζ U SD,1	0.27244	0.27244
	ζ EU R,1	0.0070923 0.00087200	ζ EU R,1	0.089747	0.097352
	λ JP Y,1	0.56295	0.56517	λ JP Y,1	0.39764	0.39764
	λ U SD,1	0.49695	0.39581	λ U SD,1	0.32863	0.32863
	λ EU R,1	0.58852	0.58201	λ EU R,1	0.16260	0.16260
	X 2 0	0.37404	0.44963	X 2 0	0.19652	0.18549
	β 2	1.6333	0.51905	β 2	1.7524	1.7782
	b 2	0.96291	´0.16185	b 2	´0.73467 ´0.73467
	σ 2	0.19556	1.1141	σ 2	1.1174	1.1174
	η 2	0.51939	1.0396	η 2	2.1855	2.1855
	θ 2	0.30117	0.26946	θ 2	0.65273	0.65273
	α 2	1.7560	1.8584	α 2	1.1122	1.1122
				β 2 Z	0.88065	0.88065
				G 2	0.59711	0.59711
				M 2	0.22821	0.22821
				Y 2	1.2390	1.2390
	ζ JP Y,2	0.15058	0.13473	ζ JP Y,2	0.232636	0.232636
	ζ U SD,2	0.094102	0.065180	ζ U SD,2	0.092184	0.060470
	ζ EU R,2	0.030499	0.029955	ζ EU R,2	0.025973	0.024422
	λ JP Y,2	1.3190	1.3190	λ JP Y,2	0.11410	0.11410
	λ U SD,2	0.72105	0.67472	λ U SD,2	´0.014839 ´0.014839
	λ EU R,2	0.88728	1.0493	λ EU R,2	0.040496	0.040496
	RMSE	0.06119	0.04157	RMSE	0.07557	0.04092
	Time (in sec.) 929.086	0.218	Time (in sec.)	709.977	0.269

1 2

 2 `σkZ u ˘2, for all u P C. The second specification makes use of the CGMY process[START_REF] Carr | The fine structure of asset returns: An empirical investigation[END_REF] as the Lévy process of each CBITCL process so that the Lévy measure γ k ´M k z 1 tzą0u `|z| ´1´Y k e ´Gk |z| 1 tză0u ¯dz,

					Z is
	given by			
	(5.28)	γ k Z pdzq " C k Y	´z´1´Y k e	
	where we fix			
	(5.29)		C k Y "	1 Γp´Y k q	.

  1`Y k e ´pG k `λi,kq |z| 1 tză0u ¯dz, where, by defining G i,k :" G k `λi,k , M i,k :" M k ´λi,k , and Y i,k :" Y k , we observe that each Lévy process remains a CGMY process under Q i .The computation of the drifts b i,k and β i,k Z follows the lines of the proof of Lemma 2.19:b i,k :" b k ´ζi,k `σk ˘2 ´ż `80z `e ζ i,k z ´1˘π k pdzq and β i,k Z :" β k

	Z	`żR	z `e λ i,k z ´1˘γ k Z pdzq,

CONTINUOUS-STATE BRANCHING PROCESSES WITH IMMIGRATION

MULTIPLE YIELD CURVE MODELING WITH CBI PROCESSES

This truncation of the Lévy measure π serves to achieve integrability, at the expense of eliminating very small jumps. Along the lines of[START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF], the small jump component can be approximated by introducing a suitably-rescaled Brownian motion B 1 , which is independent of the Brownian motion B appearing in(3.31).

CBI-TIME-CHANGED L ÉVY PROCESSES

" β, b 1 is given by b ´ζ σ

`α η α Cα Γp´αq p´ζ ηq α´1 , σ 1 " σ, η 1 " η, C 1 α " Cα, and α 1 " α

According to the terminology of [JFB15, Section 5.4.2], a "soft" currency corresponds to an emerging country, while a "hard" currency refers to a developed country, i.e. a major currency.

We recall that a risk-reversal, in the context of FX options, measures the difference in implied volatility between an OTM call option and its put counterpart such that they share the same maturity and have symmetric deltas.

Recall that a risk-neutral measure Q i with respect to the bank account D i for the i th economy, for every 1 ď i ď N , is a probability measure equivalent to Q such that for every 1 ď j ď N , the D i -discounted process S i,j D j {D i is a local martingale under Q i .

Acknowledgments

Part 2

Multiple currencies CHAPTER 4

CBI-time-changed Lévy processes

Summary. We introduce a class of two-dimensional processes combining CBI processes with timechanged Lévy processes, which we name CBI-time-changed Lévy processes (CBITCL). We develop an analytical framework extending most of the results presented in Chapter 2 for CBI processes, which will be applied to multiple currency modeling in Chapter 5. We generalize the stochastic representations of a CBI processes, obtaining a characterization of CBITCL processes as weak solutions to a system of stochastic integral equations of Dawson-Li type. We show that CBITCL processes are affine, allowing for a precise analysis of exponential moments of CBITCL processes. Finally, we formulate a Girsanov-type theorem for CBITCL processes. Lemma 4.6. Let pX t , Z t q tě0 be a CBITCL `X0 , Ψ, Φ, Ξ Z ˘. Suppose that Assumption 2.4 holds. Consider the joint process `Xt , Y t , Z t ˘tě0 , where Y t :" ş t 0 X s ds, for all t ě 0. Then, the joint conditional Laplace transform given by (4.7) can be extended to D 1 ˆR ˆD2 as follows:

for all px 1 , x 2 , x 3 q P D 1 ˆRˆD 2 and 0 ď t ď T ă T px 1 ,x 2 ,x 3 q , where `Up¨, x 1 , x 2 , x 3 q, Vp¨, x 1 , x 2 , x 3 q ȋs the unique solution to the extended CBITCL Riccati system starting from px 1 , x 2 , x 3 q, and defined up to the maximum joint lifetime T px 1 ,x 2 ,x 3 q .

Proof. The proof follows the lines of the proof of Proposition 2.5, where the claim was obtained by applying [KRM15, Theorem 2.14].

We investigate the existence of complex exponential moments of CBITCL processes. We recall that they were briefly studied in Remark 2.7 for the specific case of CBI processes, but not totally treated in Section 2.3. To this purpose, let O i " tu P C : Repuq P D i u, for i " 1, 2. Observe that O 1 and O 2 are open and connected. By relying on the principle of analytic continuation (see e.g. [START_REF] Dieudonné | Foundations of Modern Analysis, volume 1 of Elément d'analyse[END_REF]), we can analytically extend the immigration and branching mechanisms Ψ and Φ from D 1 to O 1 , as well as the Lévy exponent Ξ Z from D 2 to O 2 . We can then introduce a complex extended version of the CBITCL Riccati system (4.8)-(4.9). Definition 4.7. For pu 1 , u 2 , u 3 q P O 1 ˆC ˆO2 , a solution `Up¨, u 1 , u 2 , u 3 q, Vp¨, u 1 , u 2 , u 3 q ˘to the complex extended CBITCL Riccati system is defined as a solution to the following system:

up to a time T pu 1 ,u 2 ,u 3 q P r0, `8s, where T pu 1 ,u 2 ,u 3 q denotes the maximum joint lifetime of the functions Up¨, u 1 , u 2 , u 3 q : r0, T pu 1 ,u 2 ,u 3 q q Ñ C and Vp¨, u 1 , u 2 , u 3 q : r0, T pu 1 ,u 2 ,u 3 q q Ñ O 1 .

Unlike the extended CBITCL Riccati system of Definition 4.5, a solution to equation (4.13) is necessarily unique since the function Φ is analytic on the entire complex domain O 1 and the function Vp¨, u 1 , u 2 , u 3 q is constrained to stay inside O 1 (see [KRM15, Remark 2.23]). Furthermore, if a solution to the complex extended CBITCL Riccati system of Definition 4.7 has a real-valued starting point pu 1 , u 2 , u 3 q, then the latter solution also solves the extended CBITCL Riccati system.

We are in a position to formulate the next result, which specializes [KRM15, Theorem 2.26] to our setting. Indeed, [START_REF] Keller-Ressel | Exponential moments of affine processes[END_REF] had to assume the existence of a solution to the extended Riccati system that remains inside the interior of the effective domain, thus ensuring the uniqueness of the latter. In our setting, there is no necessity to introduce this additional requirement since under Assumption 2.4, we know that there always exists a unique solution Vp¨, x 1 , x 2 , x 3 q to equation (4.11), whether this solution starts from the boundary of D 1 , or reaches it at a later time.

Stability under Q 1

Parameters under Q 1

CIR process (see [START_REF] Cox | A theory of the term structure of interest rates[END_REF])

where

and σ 1 " σ α-CIR process, (see [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF][START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF], and [START_REF] Jiao | The Alpha-Heston stochastic volatility model[END_REF])

No, since for all z ě 0: In order to reconstruct observed market prices, we also retrieved from Bloomberg FX spots and FX forward points, which enable us to build FX forward curves by adding the spot and the forward points. Equipped with such data, we have all the information needed to convert deltas into strikes and implies volatilities into prices. We performed these tasks by using the open-source Java library Strata by OpenGamma [START_REF] Opengamma | Strata[END_REF].

5.4.2. Two types of calibration. In general, the objective of a calibration to an FX triangle (N " 3 FX implied volatility surfaces) is to solve the following problem: let p denote a vector of model parameters, belonging to some set of admissible parameters P. Let #T be the number of maturities and #K be the number of strikes that we consider. For simplicity of presentation, we assume that all smiles have the same strike range and the same number of strikes. We aim at solving the following minimization problem:

where σ imp mkt pu, T i , K j q denotes the market-observed implied volatility for surface u, maturity T i , and strike K j , while σ modppq imp pu, T i , K j q denotes its model-implied counterpart for a given vector of parameters p P P. The penalty function in (5.22) is one of the many possible alternatives that can be found in the literature. A popular alternative involves the use of prices in place of implied volatilities, also the introduction of weights in terms of bid-ask spreads or by using greeks (most notably the vega) is common.

We now present two types of calibration. The first one, to which we refer as standard calibration, utilizes the semi-closed-form pricing formula for currency options of Proposition 5.11 (or its multistrike version considered in Remark 5.13), in order to produce model prices for a given choice of model parameters. Such prices are then converted into model-implied volatilities by means of a standard implied volatility bootstrapper, and inserted into minimization problem (5.22). This gives rise to a multi-dimensional pricing function Σ : P Ñ R N ˆ#T ˆ#K such that for all p P P, for every 1 ď u ď N , 1 ď i ď #T , and 1 ď j ď #K, we have Σppq pu,i,jq " σ modppq imp pu, T i , K j q. The second type of calibration, which we name deep calibration, adopts the two-step approach developed by [START_REF] Horvath | Deep learning volatility[END_REF] for the resolution of minimization problem (5.22). We proceed as follows:

Grid-based implicit training: The goal is to approximate the non-linear function Σ by a fully-connected feed-forward neural network N w : P Ñ R N ˆ#T ˆ#K in the sense of [HMT21, Definition 1], where w denotes some vector of network parameters (weights and biases). We first generate a training set pp n , Σpp n qq ( 1ďnďN train of size N train , where each vector of parameters p n is generated randomly and where we have fixed the grid pu, T i , K j q, for every 1 ď u ď N , 1 ď i ď #T , and 1 ď j ď #K, throughout the generation (hence the term "grid-based"). We then solve the following minimization problem called "training" of the neural network:

(5.23) min

´Σpp n q pu,i,jq ´N w pp n q pu,i,jq ¯2, whose solution represents an optimal vector of network parameters p w such that the neural network N :" N p w best approximates the observations Σpp n q ( 1ďnďN train . Notice that p w depends on the grid that we have fixed, thus explaining the term "implicit"; Deterministic calibration: We rewrite minimization problem (5.22) by means of the trained neural network N as follows:

(5.24) min

Given the linear structure of the trained neural network N , the resolution of problem (5.24) is considerably faster than a standard calibration problem.

Inspired by [START_REF] Horvath | Deep learning volatility[END_REF], we choose the following neural network architecture:

' 3 hidden layers with 30 nodes on each; ' N " 3 surfaces, all sharing the same maturity range of size #T " 6, where all smiles have the same number of strikes #K " 5, which yields an output layer of 3 ˆ6 ˆ5 " 90 nodes.

The size of the input layer is simply the number of model parameters;

' All input and hidden layers equipped with the Exponential Linear Unit (ELU) activation function. The output layer is in turn equipped with the Sigmoid function. 

Good: C, C++, Java

Medium: Python, R project Basic: Scilab, Maple, Matlab