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Processus de branchement et modélisation des
structures a terme multiples

Guillaume Szulda

Résumé

Cette these est consacrée a la modélisation des structures a terme multiples a ’aide des pro-
cessus de branchement & état continu avec immigration (processus CBI). Plus précisément, nous
considérons deux marchés financiers ou l'on peut observer la coexistence de structures a terme
multiples : le marché des taux d’apres-crise, ou les courbes multiples de taux ont émergé depuis
la crise financiere des années 2007-2009, et le marché des taux de change, ou de multiples devises
sont échangées a 'aide de transactions au comptant ou par échanges de produits dérivés.

Cette these est divisée en cinq chapitres. Nous introduisons les sujets principaux de la these dans
le chapitre 1. En particulier, nous présentons un cadre de travail général pour la modélisation des
structures a terme multiples, nous motivons notre approche a I’aide des caractéristiques empiriques
des marchés considérés, et définissons 1’objectif principal que cette thése cherche a atteindre.

La partie 1 se compose des chapitres 2 et 3, et est dédiée a la modélisation des courbes multiples
de taux dans le marché des taux d’apres-crise via processus CBI. Dans le chapitre 2, nous présentons
un cadre de travail autonome pour les processus CBI. Ce cadre de travail contient une analyse
des moments exponentiels des processus CBI, une étude des relations entre deux représentations
stochastiques d’un processus CBI, et une vue d’ensemble des nombreux exemples de processus CBI
qui peuvent étre trouvés dans la litérature. Nous introduisons aussi une nouvelle spécification que
I’on nomme processus CBI stable et tempéré.

Dans le chapitre 3, nous développons un modele pour les courbes multiples de taux basé sur les
processus CBI, motivé par les caractéristiques empiriques des “spreads” entre les taux interban-
caires. Nous construisons une nouvelle classe de modeles a courbes multiples dépendant d’un flux
de processus CBI stables et tempérés. Ces modeles sont particulierement parcimonieux du point de
vue du nombre de parametres et maniables, et sont capables de générer des effets de contagion entre
les différents spreads. L’approche proposée permet aussi une évaluation efficace des dérivés de taux
linéaires, et assure 'existence de formules en forme close pour les produits non linéaires a 'aide de
techniques basées sur la transformée de Fourier. Nous comparons numériquement deux méthodes
de pricing basées sur I'algorithme FFT et la quantification, et montrons qu’une spécification de
notre classe de modeles a courbes multiples peut étre calibrée avec succes aux données du marché.

La partie 2 comprend les chapitres 4 et 5, et répond au probleme de la modélisation des devises
multiples dans le marché de change. Dans le chapitre 4, nous construisons une classe de processus a
deux dimensions combinant processus CBI et processus de Lévy changés en temps, que ’on nomme
CBI-time-changed Lévy processes (CBITCL). Nous développons un cadre de travail analytique
étendant la plupart des résultats du chapitre 2, et appliqué a la modélisation des devises multiples
au chapitre 5. En particulier, nous formulons un théoreme de type Girsanov pour les processus
CBITCL, qui aura des applications importantes pour la modélisation des devises multiples.
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Dans le chapitre 5, nous développons un modele a volatilité stochastique pour les devises
multiples basé sur les processus CBITCL. En plus de capturer les facteurs de risque typiques du
marché de change, et de préserver les symétries propres a ses taux, notre modele est aussi capable
de produire des processus de taux de change dont la volatilité peut s’exciter elle-méme, provenant
directement du comportement auto-excitant des processus CBI. L’approche proposée est maniable
du point de vue analytique puisque celle-ci repose sur la technologie des processus affine, et permet
de caractériser une classe de probabilités neutres au risque préservant la structure du modele.
Exploitant la préservation de la structure affine du modele, nous assurons une formule de pricing
de forme semi-close pour les options sur devises par le biais de techniques basées sur la transformée
de Fourier. Enfin, nous testons notre modele a ’aide d’une calibration a un triangle de change ou
deux types de calibration sont proposés : standard et deep, dont ce dernier utilise des techniques

venant du deep learning.

Mots-clés: processus CBI, structures a terme multiples, marché des taux d’apres-crise, modeles
a courbes multiples, flux de processus CBI, quantification, marché forex, stabilité sous inversion,
deep calibration, processus affines, SDEs, transformée de Lamperti, processus de Hawkes, processus

stables et tempérés.



Branching processes and multiple term structure modeling

Guillaume Szulda

Abstract

This thesis is devoted to the modeling of multiple term structures in financial markets by relying
on continuous-state branching processes with immigration (CBI). More specifically, we consider two
financial markets where multiple term structures coexist: the post-crisis interest rate market, in
which multiple yield curves have emerged since the 2007-2009 financial crisis; and the Foreign-
Exchange market (FX), where multiple currencies are traded by spot and derivative transactions.

This manuscript is divided into five chapters. We start by introducing the main topics of the
thesis in Chapter 1. In particular, we present a general multiple term structure framework, we then
draw our motivation from the empirical features of the considered markets, and state the main
objective that this thesis seeks to attain.

Part 1 consists of Chapters 2 and 3, and is dedicated to the modeling of multiple yield curves in
the post-crisis interest rate market with CBI processes. In Chapter 2, we present a self-contained
framework for CBI processes. This framework contains an analysis of exponential moments of CBI
processes, a study of the relations between two stochastic representations of a CBI process, and
an overview of several examples of CBI processes that can be found in the literature. We also
introduce a new specification of a CBI process that we name tempered-stable CBI process.

In Chapter 3, we develop a modeling framework for multiple yield curves based on CBI pro-
cesses, motivated by the empirical features of the spreads between interbank rates. We construct a
new class of multi-curve models driven by a flow of tempered-stable CBI processes. Such models are
especially parsimonious and tractable, and are able to generate contagion effects among different
spreads. The proposed approach also allows for the explicit valuation of all linear interest rate
derivatives, and ensures semi-closed-form formulae for non-linear products by means of Fourier
techniques. We provide a numerical comparison of FFT and quantization-based pricing method-
ologies, and show that a simple specification of the proposed class of CBI-driven multi-curve models
can be successfully calibrated to market data.

Part 2 comprises Chapters 4 and 5, and addresses the issue of modeling multiple currencies in
the FX market. In Chapter 4, we construct a class of two-dimensional processes combining CBI
processes with time-changed Lévy processes, which we name CBI-time-changed Lévy processes
(CBITCL). We develop an analytical framework extending most of the results of Chapter 2 for
CBI processes, which will be applied to multiple currency modeling in Chapter 5. In particular,
we formulate a Girsanov-type theorem for CBITCL processes, which will reveal to have important
applications in multiple currency modeling.
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In Chapter 5, we develop a general stochastic volatility framework for multiple currencies
based on CBITCL processes. Besides capturing the typical sources of risk in the FX market,
and preserving the peculiar symmetries of FX rates, our framework allows for self-excitation in the
volatility of FX rates, which derives from the self-exciting behavior of CBI processes. The proposed
approach is analytically tractable since it relies on the technology of affine processes, and allows to
characterize a class of risk-neutral measures that leave invariant the structure of the framework.
By exploiting the preservation of the affine property, we derive a semi-closed-form pricing formula
for currency options via Fourier techniques. Finally, we test our model by means of a calibration
to an FX triangle where two types of calibration are proposed: standard and deep, the latter of
which uses deep-learning techniques.

Keywords: CBI processes, multiple term structures, post-crisis interest rate market, multi-curve
models, flow of CBI processes, quantization, FX market, stability under inversion, deep calibration,
affine processes, SDEs, Lamperti transform, Hawkes processes, tempered-stable processes.
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Introduction en Francais

SUMMARY. Ce chapitre constitue I'introduction de ce manuscrit et vise principalement & préparer
le lecteur en vue des parties 1 et 2. Nous commengons par présenter un cadre de travail général pour
la modélisation des structures a terme multiples, étendant notamment certaines idées initialement
développées par [JT98|. Nous tirons ensuite notre motivation des caractéristiques empiriques des
deux marchés considérés, et formulons I’objectif principal que cette thése cherche a atteindre. Enfin,
nous exposons les grandes lignes de I’approche proposée basée sur les processus de branchement a

état continu avec immigration (processus CBI), et présentons l'organisation globale de la theése.
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xii INTRODUCTION EN FRANCAIS

Dans ce chapitre introductif, soit (Q, F,F, Q) un espace de probabilité satisfaisant les conditions
usuelles, o Q est une mesure de probabilité et F = (F;);>0 est une filtration a laquelle tous les
processus stochastiques considérés dans ce chapitre sont adaptés. Nous fixons F = Fo, et notons
I’espérance sous Q par E.

0.1. Un cadre de travail pour la modélisation des structures & terme multiples

Cette these a pour sujet la modélisation des structures a terme multiples dans les marchés
financiers. D’abord, nous rappelons la définition classique d’une structure a terme.

DEFINITION 0.1. Soit ¢ > 0, on dit que la fonction T' — P(t,T") définit une structure a terme
si pour tout 7" > t, P(t,T) représente le prix a l'instant ¢t d’un payoff délivré a maturité 7T'.

Une structure a terme est par définition un objet infini-dimensionnel. Nous indiquons aussi
que pour tout 7' > 0, P(-,T) représente le processus de prix du contrat de maturité 7. Un exemple
canonique est la structure a terme des obligations a coupon zéro T +— B(t,T'), ou B(t,T') est le
prix a l'instant ¢ d’un payoff “unitaire” & maturité T (& savoir B(T,T) = 1). Les obligations a
coupon zéro jouent un role fondamental dans la modélisation du marché des taux d’intéréts avant
la crise (nous référons par exemple a [Fil09]). Toutefois, comme nous le verrons par la suite, la
situation s’avere plus complexe dans I’environnement d’aprées-crise.

Plusieurs structures & terme peuvent coexister dans le méme marché. Pour clarifier les idées,
notons N € N le nombre de structures a terme présentes dans le marché considéré. Pour chaque
1 <i < N, T — Pit,T) représente la i structure & terme du marché & I'instant ¢. Nous

introduisons alors notre définition formelle d’un marché a structures a terme multiples.

DEFINITION 0.2. Un marché a structures a terme multiples est un marché financier ou NV
structures & terme sont échangées, c’est-a-dire pour chaque 1 <4 < N et pour tout T > 0, P(-,T)
est un actif échangé sur le marché.

Au cours de leurs travaux présentés dans [JT98], les auteurs ont postulé que tout marché
a structures a terme multiples au sens de la définition 0.2 peut étre expliqué par les processus
stochastiques suivants :
e N structures & terme d’obligations & coupon zéro T — B'(-,T), pour 1 < i < N;
e Une famille de processus “spot” S = (S¢);>0, pour 1 <i < N.
Plus précisément, [JT98| ont développé un cadre de travail au pouvoir unificateur pour les
structures a terme multiples ou, & l'aide d’une simple transformation sans hypotheses initiales
requises’, ils en ont déduit la relation suivante :

(0.1) Pi(t,T) = B(t,T) St,

pour tout 0 < ¢t < T et pour chaque 1 < i < N. Celle-ci donne lieu a une analogie avec le marché
des taux de change, communément appelée foreign exchange analogy en Anglais, ou

Hormis la positivité stricte des processus de prix considérés.



0.2. LE MARCHE FOREX xiii

e B'(-,T) représente une obligation & coupon zéro exprimée dans une devise étrangere i;
o S = (5})i=0 est le taux de change entre la devise étrangere 7 et la monnaie domestique;
e P'(-,T) correspond a l'obligation & coupon zéro B*(-,T") convertie en monnaie domestique.

En appliquant la transformation (0.1) a d’autres marchés financiers, [JT98] ont montré que
de nombreux marchés connus peuvent en réalité étre considérés comme marchés a structures a
terme multiples au sens de la définition 0.2, en particulier le marché des actions, le marché des
taux d’intéréts d’avant-crise, ainsi que le marché des matieres premieres. Cette analogie avec le
marché des taux de change a été ensuite exploitée par [JT98] en vue de réutiliser des techniques
précédemment développées par [AJ91] afin de concevoir un cadre de travail dédié au pricing de
produits dérivés en présence de structures a terme multiples.

L’objet des deux prochaines sections est de revisiter ces idées en les appliquant au marché forex
ainsi qu’au marché des taux d’apres-crise, ces derniers représentant les marchés financiers sujets
a modélisation dans cette these. En particulier, nous allons fournir au lecteur I'intuition qui se
cache derriere les objets que nous allons modéliser au cours des parties 1 et 2. Nous avons 'intime
conviction que les marchés de ’électricité et du gaz peuvent étre traités d’une maniere similaire,

ce qui fera l'objet de futures recherches.

0.2. Le marché forex

Le marché forex est un marché financier ou de multiples devises sont échangées. Différentes
économies y sont impliquées, o1 chacune d’entre elles est associée & une devise spécifique. Les ™€
et j™¢ devises sont reliées par le taux de change S/ = (SZ"j )i=0, OU S’Z’j représente la valeur a
I'instant ¢ d’une unité de la devise j exprimée dans la devise i.

Notons N > 2 le nombre de devises échangées sur le marché, un marché a devises mutliples,
dont la définition formelle sera énoncée au chapitre 5, est un marché financier ou pour chaque

1 <4 < N, les actifs suivants sont échangés au sein de la ™€ économie :

e La structure a terme d’obligations & coupon zéro T+ Bi(-,T);

e Pour chaque 1 < j < N avec j # i, la structure a terme des obligations a coupon zéro de
la j®™¢ économie exprimée dans la devise i, & savoir S™ BJ (-, T), pour tout T > 0.

Lors de la conception d’un modele financier pour les devises multiples, une attention particuliere

doit étre attribuée aux symétries des taux de change :

e Si nous inversons le taux de change S%/, alors nous devons retrouver S7¢ = 1/S%7, & savoir

la valeur d’une unité de la devise ¢ exprimée dans la devise j. Ceci constitue 1’inversion;

e Considérons une devise k quelconque. Le taux de change S*/ doit alors pouvoir étre
retrouvé en multipliant S* et §*J : §4J = §Hk x Sk Ceci constitue la triangulation.

En vue de préserver ces symétries, une approche couramment adoptée est de supposer I’exsitence

d’une devise artificielle indéxée par 0 et d’exprimer chacune des devises échangées sur le marché

par le biais de cette devise artificielle, donnant lieu ainsi & N taux de change artificiels (So7i)1<2-< N-
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Nous calculons alors les taux de change S*/ = (SZ’j)tzo, pour chaque 1 < 4,57 < N, de la facon
suivante :
g0
(0.2) R R
St
¢

Cette approche est communément appelée “I’approche de la devise artificielle”, en Anglais artificial
currency approach, qui fut d’abord présentée par [FH97, Dou07], et appliquée par la suite par
[Doul2, DCGG13, GG14, BGP15].

Un marché a devises multiples généré par une telle approche est alors un exemple de marché a
structures & terme multiples au sens de la définition 0.2. En effet, pour chaque 1 < i < N, la ®™¢
structure & terme T — Pi(t,T) est donnée par la structure & terme des taux de change “forward”
entre la devise i et la devise artificielle (voir [MRO6, Proposition 4.2.1]), comme suit :

(0.3) P'(t,T) = B'(t,T) S},

pour tout 0 < t < T et pour chaque 1 < i < N, sous ’hypothese que 0 = 0, représentant le “taux
court” de la devise artificielle (voir [Fil09]). En résumé, le marché & devises multiples peut étre
expliqué par les N taux de change artificiels (S%%)1<;<n, ainsi que par les N taux courts (7%)1<;<n,

¢ économie. Les processus spot (S%%);<;<n représenteront alors

ou 7’ est le taux court de la ¢*™
les principales quantités sujettes a modélisation du chapitre 5, ot ’'on ne considérera que des taux

d’intéréts constants et déterministes.

0.3. Le marché des taux d’intéréts d’aprés-crise

Le marché des taux d’intéréts d’apres-crise fait I’objet d’une segmentation en courbes multiples
de taux depuis la crise financiere des années 2007-2009. Les courbes de taux les plus importantes
sont d’abord la courbe générée par les taux “Overnight Indexed Swaps” (OIS) T — LOS(T, T, 0),
communément considérés comme les meilleurs représentants du taux “sans risque”, ott LO(T, T, §)
est le taux OIS spot pour la période [T, T + 6] avec § > 0, et ensuite les courbes de taux générées
par les taux dits “Interbank offered” (Ibor) 7' +— L(T,T,d) pour chaque durée 6 d'un ensemble
générique G := {51, ... ,(5m} avec 0 < 01 < ... < dp, pour m e N, ou L(T,T,0) est le taux Ibor spot
pour la période [T, T + 6]. Nous référons le lecteur au chapitre 3 pour plus de détails.

Parmis tous les produits dérivés construits sur les taux Ibor, les contrats couramment appelés
“Forward Rate Agreements” (FRA) peuvent étre considérés comme les plus basiques, un contrat
FRA construit sur le taux Ibor spot L(T,T,¢) avec strike K est un contrat qui délivre le payoff
1) (L(T, T,6) — K) a maturité T + 6. Un marché a courbes de tauxr multiples, dont la définition

formelle sera énoncée au chapitre 3, se compose des actif échangés suivants :

e Les obligations & coupon zéro de type OIS pour toute maturité T > 0;
e Les contrats FRA pour toute durée d € G, pour toute maturité 1" > 0, et pour un strike
K fixé arbitrairement.?

2Par linéarité de la régle de pricing, n’importe quel contrat FRA de n’importe quel strike peut étre déduit de ce

contrat FRA avec strike K ainsi que des obligations & coupon zéro.



0.4. MOTIVATION ET OBJECTIF XV

Représentons maintenant la structure & terme des obligations & coupon zéro par T — BO1S(.. T)
ainsi que la structure & terme des contrats FRA par T — PFRA(. T, §, K) pour chaque durée 6 € G
et strike K fixé, ot PYRA(. T, 6, K) est le processus de prix du contrat FRA construit sur L(T, T, §)
avec strike K, nous pouvons alors vérifier qu'un marché a courbes de taux multiples est un marché
a structures a terme multiples au sens de la définition 0.2 avec N =1 + |G|

Afin de montrer que la relation (0.1) peut étre appliquée au marché a courbes de taux multiples,
nous introduisons le taux Ibor “forward” L(¢,T,d) a l'instant ¢ < T, défini comme la valeur de K

telle que le prix a l'instant £ du contrat FRA est égal a zéro, ce qui donne
(0.4) PRAG T, 6,K) =0 (L(t,T,0) — K) B°®(t, T +4), vt<T.

En procédant comme dans [FGGS20, Section 2], sans aucunes hypotheses supplémentaires, nous

pouvons réécrire 1'équation (0.4) comme suit :
(0.5) PYRAG T 6,K) = S BO(t,T) — (1+ 6 K) BOS(t, T +6), Vt<T,

ot S° = (89)s>0 est donné par

1+ 9 L(t,t,0)
) - s Uy
(06) 5= 13 § LOS(t,t,6)’

pour tout £ > 0 et pour chaque § € G, et ou B5(t, T) est égal a

1+ 0L(t,T,8) BOS(, T +96)
140 L(t,t,6) BOS(t,t+4)’

pour tout 0 <t < 7T et pour chaque § € G.

(0.7) BY(t,T) :=

Nous observons ainsi que 'analogie avec le marché des taux de change, précédemment formulée
par (0.1), reste satisfaite par la “ floating leg” du contrat FRA ol pour chaque durée 6 € G, B%(-,T)
peut étre interprété comme une obligation & coupon zéro fictive exprimée dans une devise étrangere
§ (remarquez que B*(T,T) = 1, pour toute § € G et toute T > 0), et S = (59);=0 est le taux de
change entre la devise § et la monnaie domestique. Nous mentionnons que des analogies similaires
ont été présentées par [Bial0, NS15, CFG16, MM18|.

En adoptant la modélisation de [JT98], le marché a courbes de taux multiples peut étre expliqué
par les processus stochastiques suivants :

e La structure & terme des obligations & coupon zéro T — BOS(., T);

e Les processus spot (S%)seg-

Les processus spot (S°)seg définis par (0.6) correspondent aux “spreads multiplicatifs” spot (en
Anglais spot multiplicative spreads) entre les taux Ibor spot et les taux OIS spot. Ils représenteront,
combinés avec le taux court OIS r = (7¢)i>0, les quantités principales de modélisation dans le
chapitre 3. L’idée de modéliser les courbes multiples de taux a ’aide des spreads multiplicatifs est
initialement due & [Hen14], et a été poursuivie par [CFG16, CFG19b, EGG20, FGGS20].

0.4. Motivation et objectif

Dans cette section, nous commencons par présenter les caractéristiques empiriques qui motivent

le développment des modélisations des parties 1 and 2.
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0.4.1. Les spreads multiplicatifs spot. Les processus spot (56)56g définis par (0.6) peuvent
étre directement récupérés a partir des données du marché par construction. En conséquence, ils
manisfestent plusieurs caractéristiques empiriques, pouvant aisément étre visualisées sur le premier

graphique de la figure 0.2 :

(i) Les spreads sont généralement plus grands que 'unité et croissants en fonction de la durée
deg;
(ii) La présence de mouvements simultanés prononcés (en particulier des sauts positifs) parmis
les différents spreads;
(iii) La présence de clusters de volatilité pendant les périodes de crise, ou les spreads prennent
des valeurs de plus en plus grandes;
(iv) La persistance des valeurs de certains spreads a des niveaux relativement bas.

Nous référons le lecteur au chapitre 3 pour plus d’informations sur la source de ces caractéristiques
empiriques. A notre connaissance, un modele financier capable de capturer convenablement ces

caractéristiques empiriques n’existe pas encore dans la littérature.

0.4.2. Les taux de change artificiels. Contrairement aux spreads multiplicatifs, les taux
de change artificiels (S%%);<;<n représentent des quantités qui ne peuvent étre observées dans la
réalité. Toutefois, a la vue de I’équation (0.2), ils jouent un réle important dans la construction
des vrais taux de changes, connus pour manisfester les caractéristiques empiriques suivantes :

(i) Volatilité stochastique ainsi que des sauts;
(ii) Dépendance stochastique entre les différents taux de change;
(iii) Asymétrie d’ordre stochastique du smile de volatilité;
(iv) Potentiel comportement auto-excitant de la volatilité des taux de change.

Comme précédemment, nous référons le lecteur au chapitre 5 pour plus d’informations sur ces
caractéristiques. Pour une visualisation du point (iv), le second graphique de la figure 0.2 représente
la moyenne pondérée des volatilités implicites d’options call de maturité 1Y et strike ATM de trois
paires de devises majeures (USDJPY, EURJPY, et EURUSD). Manisfestement, nous sommes
en mesure d’observer des clusters de sauts successifs, ce qui indique la présence éventuelle d’un

comportement auto-excitant de la volatilité des taux de change.
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FIGURE 0.2. Visualisation des caractéristiques empiriques motivant le
développement des modeles des parties 1 et 2.

Premier graphique: Spreads Euribor-OIS de 06/2001 & 09/2019.

Second graphique: Moyenne pondérée des volatilités implicites de trois paires de
devises majeures (USDJPY, EURJPY, et EURUSD)..

Source: Bloomberg.
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0.4.3. Formulation de notre objectif. Nous sommes désormais en position de formuler
I’objectif principal que cette these cherche a atteindre. Nous insistons sur le fait que ce dernier est

directement motivé par les caractéristiques empiriques présentées précédemment.

OBJECTIF

Formulation: Développer une approche pour la modélisation des structures a terme
multiples combinant au mieux maniabilité du point de vue analytique

et cohérence avec les caractéristiques empiriques vues précédemment.

Solution proposée: Processus de branchement a état continu avec immigration (CBI).

0.5. L’approche proposée

Dans cette these, afin de répondre a ’objectif formulé ci-dessus, nous proposons une approche
générale pour la modélisation des structures a terme multiples en se basant sur la classe des pro-
cessus de branchement a état continu avec immigration (CBI). Comme mentionné précédemment,
nous nous concentrons sur les courbes multiples de taux dans le marché des taux d’intéréts d’apres-
crise, et sur les devises multiples dans le marché forex. Nous développons alors deux modélisations,

dont nous exposons maintenant les grandes lignes ci-dessous.

0.5.1. Partie 1. Les courbes multiples de taux. Dans cette partie, nous développons
un modele pour les courbes multiples de taux basé sur les processus CBI, capturant toutes les
caractéristiques empiriques des spreads (S°)seg et, en méme temps, permettant une évaluation
efficace des produits dérivés de taux. En exploitant la propriété affine des processus CBI, nous
concevons notre modele dans le cadre des modeles affines multi-courbes récemment développés par
[CFG19b], c’est-a-dire en prenant les spreads multiplicatifs spot (S%)seg et le taux court OIS
(r¢)¢=0 comme principales quantités de modélisation.

Par construction, le modele est en parfaite adéquation avec les structures a terme observées,
et garantit des spreads plus grand que 'unité ainsi que croissants en fonction de la durée § € G.
Le modele génére aussi une structure exponentiellement affine pour les obligations a coupon zéro
de type OIS et les spreads multiplicatifs forward, permettant ainsi une évaluation explicite de tous
les dérivés de taux linéaires.

Cependant, la construction du modele exige une étude précise des moments exponentiels des
processus CBL. A cette fin, nous effectuons une analyse détaillée de leurs moments exponentiels
et donnons une caractérisation explicite et générale de leur instant d’explosion. De plus, nous
définissons une nouvelle spécification que 'on nomme processus CBI stable et tempéré, qui, plus
particulierement, garantit une condition nécessaire et suffisante simple pour la finitude de leurs

moments exponentiels.
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Contrairement a [CFG19Db], ot l'accent a été mis sur les propriétés générales et théroriques du
modele, nous contribuons a travers la mise en place d’une nouvelle classe de modeles multi-courbes,
dirigés par un flur de processus CBI stables et tempérés, dont I'introduction est particulierement
motivée par les caractéristiques empiriques vues précédemment. Ce flux, dont tous les aspects
seront inspectés plus tard, génére des effets de contagion parmis les différents spreads ainsi que
des périodes de clusters de volatilité, ou le comportement auto-excitant typique des processus CBI
s’avere étre un ingrédient clé pour reproduire ces caractéristiques.

Nous établissons une formule de pricing de forme semi-close pour les caplets par le biais
de techniques basées sur la transformée de Fourier. Plus précisément, nous implémentons deux
méthodologies : la premiére repose sur une application directe de ’algorithme FFT (voir [CM99)),
tandis que la seconde utilise un algorithme basé sur la quantification (voir [CFG19a]), qui est ici
appliqué pour la premiere fois dans un contexte de taux d’intéréts. Lors d’une analyse numérique,
ces deux méthodologies sont comparées et une spécification de la modélisation proposée avec deux
durées est calibrée aux données du marché.

0.5.2. Partie 2. Les devises multiples. Dans cette partie, nous développons un modele a
volatilité stochastique pour les devises multiples produisant des processus de taux de change dont
la volatilité peut s’exciter elle-méme, tout en capturant les facteurs de risque typiques du marché de
change (comme la dépendance stochastique entre les différentes devises et 1’asymétrie stochastique
du smile de volatilité), et préservant les symétries propres a ses taux (& savoir les symétries par
inversion et triangulation).

Nous procédons en utilisant la technologie des CBI-Time-Changed Lévy processes (CBITCL),
qui sont définis comme des processus a deux dimensions combinant le comportement auto-excitant
typique des processus CBI et la généralité des processus de Lévy changés en temps. En exploitant
leur structure affine, nous pouvons montrer que les processus CBITCL sont cohérents au sens de
[Gnol7]. Cela signifie que si un taux de change est modélisé par un processus CBITCL, alors le
processus inversé appartient a la méme classe de modeles.

Inspiré par [Gnol7, Section 4] et en prenant en compte notre discussion précédente, nous
construisons notre modele en adoptant ’approche de la devise artificielle, c’est-a-dire en considérant
les taux de change artificiels (S*%);<;<n comme les quantités principales & modéliser. A cet égard,
les taux de change sont symétriques par inversion et triangulation par construction puisque ils sont
définis comme quotients via la relation (0.2).

En formulant un résultat de type Girsanov pour les processus CBITCL, nous sommes capables
de caractériser une classe de probabilités neutres au risque préservant la structure du modele, ce
qui constitue un prérequis indispensable pour le pricing d’options sur devises. En particulier, en
exploitant la préservation de la structure affine du modele, nous établissons une formule de pricing
de forme semi-close pour les options sur devises, découlant d’une application directe de la méthode
COS développée par [FO09].
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Le modele proposé peut aussi reproduire de nombreuses caractéristiques empiriques du marché
forex. Plus particulierement, il peut générer des relations de dépendance d’ordre stochastique entre
les différentes devises, ainsi que entre les taux de change et leur volatilité. Nous insistons sur le
fait que ce type de dépendance est connu pour jouer un role essentiel pour la création de smiles de
volatilité manisfestant une asymétrie stochastique.

Nous évaluons la performance empirique du modele a 'aide d’une calibration a un triangle
de change se composant de trois paires de devises majeures (USDJPY, EURJPY, et EURUSD).
Nous mettons en place deux calibrations : standard et deep, ou cette derniere utilise des techniques
provenant du deep learning et développées par [HMT21]. Ensuite, a ’aide des parameétres calibrés
obtenus, nous effectuons une analyse des sensitivités sur les smiles de volatilité générés par le
modele. L’objectif de cette étude empirique est de déterminer I'impact des différents parametres

du modele sur la forme moyenne du smile de volatilité.

0.6. Structure de la these

La suite est organisée autour de quatre chapitres. La partie 1 comprend les chapitres 2 et 3.
Dans le chapitre 2, nous établissons un cadre de travail autonome pour les processus CBI incluant,
en particulier, une analyse des moments exponentiels des processus CBI ainsi que la définition
formelle des processus CBI stables et tempérés. Ce cadre de travail est ensuite appliqué lors du
chapitre 3 au développement d’un modele pour les courbes multiples de taux basé sur les processus
CBI, ou la construction de modeles multi-courbes dirigés par un flux de processus CBI stables et
tempérés est menée a bien.

La partie 2 se compose des chapitres 4 et 5. Dans le chapitre 4, nous définissons formellement
la classe des CBI-Time-Changed Lévy processes (CBITCL), pour lequel nous mettons en place
un cadre de travail analytique. Le chapitre 5 contient ensuite le développement d’un modele a
volatilité stochastique pour les devises multiples, utilisant la technologie des processus CBITCL.

Pour conclure ce chapitre introductif, une bréve comparaison des modeles développés dans les
parties 1 et 2 peut étre consultée dans le tableau 0.1.
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H Modele de la partie 1

Modele de la partie 2

Type des structures a terme

modélisées

Les courbes multiples de taux dans

le marché d’apres-crise

Les devises multiples dans le

marché forex

Principales quantités de

modélisation

Les spreads multiplicatifs spot

(S%)seg et le taux court OIS (r¢)=0

Les taux de change artificiels

(8%")1<i<n

Processus utilisés

Flux de processus CBI stables et

tempérés

CBI-time-changed Lévy processes
(CBITCL)

Prérequis indispensable pour
la construction

Finitude des moments exponentiels

Invariance du modele sous les

probabilités neutres au risque

La principale caractéristique

empirique capturée

Effets de contagion entre les

différents spreads

Comportement auto-excitant de la

volatilité des taux de change

Techniques basées sur la
transformée de Fourier pour

le pricing

[Lee04] pour le pricing de caplets,
FFT [CM99] ou quantification
[CFG19a] pour approximation

La méthode COS [FOO09]

pour le pricing d’options sur devises

Evaluation numérique

du modele

Comparaison des algorithmes FFT

et quantification pour le pricing,

calibration aux données du marché

Deux types de calibration :
standard et deep inspiré par

[HMT21], analyse des sensitivités

TABLE 0.1. Comparaison des modeles développés dans les parties 1 et 2.






CHAPTER 1

Introduction

SUMMARY. This chapter constitutes the introduction of this manuscript and aims to provide the
reader with some motivation and preliminaries in view of Parts 1 and 2. We start by introducing
the multiple term structure framework, extending some of the ideas first introduced by [JT98]
to the two financial markets considered in this thesis. We then draw our motivation from the
empirical features of the considered markets, and state the main objective that this thesis seeks to
attain. Finally, we outline the proposed modeling approach based on Continuous-state Branching

processes with Immigration (CBI), and present the global organization of the thesis.
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2 1. INTRODUCTION

In this introductory chapter, let (Q,}" ,IF,Q) be a stochastic basis satisfying the usual con-
ditions, where Q is a probability measure and F = (F;)¢>0 is a filtration to which all stochastic
processes are assumed to be adapted. We set F = F, and denote the expectation under Q by E.

1.1. The multiple term structure framework

This thesis deals with the modeling of multiple term structures in financial markets. First, we
recall the classical definition of a term structure as follows.

DEFINITION 1.1. Let t > 0, the function T' — P(¢,T) is said to represent a term structure if
for all T > t, P(t,T) denotes the price at time t of a payoff delivered at maturity 7.

A term structure is by definition an infinite-dimensional object. We also point out that for all
T > 0, P(-,T) stands for the price process of the contract with maturity 7. A canonical example
is the term structure of zero-coupon bonds T +— B(t,T), where B(t,T) is the price at time ¢ of
a unit payoff at maturity 7' (and therefore B(T,T) = 1). Zero-coupon bonds play a fundamental
role in the modeling of the pre-crisis interest rate market (see e.g. [Fil09]). However, as we shall
see in the following, the situation reveals to be more complex in the post-crisis environment.

Multiple term structures may coexist in the same market. As an illustration, let IV € N denote
the number of term structures in the market considered. For every 1 < i < N, T ~ P'(t,T)
represents the i*" term structure of the market at time . We then introduce our formal definition
of a generic multiple term structure market.

DEFINITION 1.2. A multiple term structure market is a financial market where N term struc-
tures are traded, namely for every 1 <4 < N and for all T > 0, P'(-,T) is a traded asset.

In the early work [JT98], the authors postulated that any multiple term structure market in
the sense of Definition 1.2 can be described by the following stochastic processes:

e N term structures of zero-coupon bonds 7'+ B(-,T), for 1 <i < N;
e A family of spot processes S° = (S})¢=0, for 1 <i < N.

More specifically, [JT98] developed a unifying modeling framework for multiple term structures
where, by a means of a simple transformation with no preliminary assumption required’, they

derived the following relation:
(1.1) Pi(t,T) = B'(t,T) S},

for all 0 < ¢t < T and for every 1 < i < N. This gives rise to a foreign exchange analogy where

e Bi(-,T) represents a zero-coupon bond denominated in units of a foreign currency i;

e S = (S})i=0 is the spot foreign exchange rate between currency i and the domestic one;

e Pi(-,T) corresponds to the domestic version of the zero-coupon bond B‘(-,T), namely
measured in units of the domestic currency.

1Except for the strict positivity of the price processes considered.
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By adopting the modeling approach of equation (1.1), [JT98] showed that many different
financial markets can be recovered as special cases of Definition 1.2, in particular the equity market,
the (pre-crisis) interest rate market, and the commodity market. This foreign exchange analogy
was then exploited by [JT98] to utilize techniques previously developed by [AJ91] in order to
design a derivative pricing framework in the context of multiple term structures.

In the next two sections, we revisit these ideas by applying them to the Foreign-Exchange (FX)
market and the post-crisis interest rate market, which represent the financial markets investigated
in this thesis. In these sections, we aim at providing the reader with some intuition on the modeling
quantities that will be considered in Parts 1 and 2. We believe that the electricity and gas markets

can also be treated in a similar manner, leaving it for further research.

1.2. The Foreign-Exchange (FX) market

The FX market is a financial market where multiple currencies are traded. Such a market
involves different economies, each one associated to a specific currency. The i*" and j** currencies
are related by the spot FX rate process S/ = (SZ’j )t=0, where Sf’j denotes the value at time ¢ of
one unit of currency j measured in units of currency i.

Letting N > 2 be the number of currencies traded in the market, a multiple currency market,
whose formal definition can be found in Chapter 5, is a financial market where for every 1 < i < N,

the following assets are traded in the i*® economy:

e The term structure of zero-coupon bonds T+ Bi(-,T);
e For every 1 < j < N with j # i, the term structure of zero-coupon bonds of the j*
economy denominated in units of the i*" currency, namely S%/ BJ(-,T), for all T > 0.

When constructing a financial model for multiple currencies, special attention has to be paid
to the symmetries that FX rates typically satisfy as follows:

e If we invert the FX rate S/, then we must obtain S/ = 1/5%, which is the value of one
unit of currency ¢ measured in units of currency j. This is referred to as inversion;

e Take any additional currency k. The FX rate S/ must be implied from S** and S*7
through multiplication: S%/ = §%F x §¥J. This is called triangulation.

In view of satisfying these symmetries, a commonly adapted approach is to assume the existence
of an artificial currency indexed by 0 and express each traded currency with respect to this artificial
currency, giving rise to N artificial spot FX rates (S%);<;<n. We then compute the spot FX rate

processes S% = (S;7)i=0, for every 1 <i,j < N, as follows:

g0
(1.2) Spli= ==, Vt=0.
St
t
This is typically referred to as the artificial currency approach, which was first introduced by
[FH97, Dou07], and pursued by [Doul2, DCGG13, GG14, BGP15] among others.
A multiple currency market generated by an artificial currency approach can be recovered as

a special case of Definition 1.2. Indeed, for every 1 <i < N, the i*" term structure T +— P(t,T)
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is given by the term structure of forward exchange rates between currency i and the artificial one
(see e.g. [MROG6, Proposition 4.2.1]), as follows:

(1.3) P'(t,T) = B'(t,T) S},

for all 0 <t < T and for every 1 < i < N, under the assumption that 7 = 0, denoting the short
rate of the artificial currency. In summary, the multiple currency market can be described by the
N artificial spot FX rates (S%%)1<;<n, together with the N short rates (r");<;<n, where ¢ is the
short rate of the i economy. The spot processes (S%%);<;<ny will constitute our main modeling

quantities in Chapter 5, where we will consider constant and deterministic rates for simplicity.

1.3. The post-crisis interest rate market

The post-crisis interest rate market has been characterized by a segmentation into multiple
yield curves since the 2007-2009 financial crisis. The most important curves are the Overnight
Indexed Swaps (OIS) rates T — LOS(T,T,6), typically considered as the best proxies for risk-
free rates, where LOS(T,T, ) is the OIS spot rate for the period [T, T + 6] with 6 > 0, and the
interbank offered rates T' +— L(T,T,0) for every tenor ¢ of a generic set G := {51, ce ,5m} with
0<d1 <...<dy for somem e N, where L(T,T,0) is the spot interbank offered rate for the period
[T,T + 0]. We refer the reader to Chapter 3 for more details.

Among all financial derivatives written on interbank offered rates, Forward Rate Agreements
(FRAs) can be regarded as the basic building blocks, a FRA written on the interbank offered rate
L(T,T, ) with strike K is a contract that delivers the payoff § (L(T, T,6)— K) at maturity T+ 0.
A multiple yield curve market, whose formal definition can be found in Chapter 3, consists of the
following traded assets:

e OIS zero-coupon bonds for all maturities T > 0;
e FRASs for all tenors 6 € G, for all maturities T > 0, and for an arbitrary fixed strike K .2

Denoting now the OIS term structure by T+ BOS(., T) and the term structures of FRAs by
T — PYRA(. T, 6, K) for every tenor § € G and fixed strike K, where PFRA(. T, 6, K) stands for
the price process of the FRA written on L(T,T,0) with fixed strike K, it can be checked that a
multiple yield curve market can be recovered as a special case of Definition 1.2 with N =1 + |g|.

In order to show that the foreign exchange analogy of equation (1.1) can be applied to the
multiple yield curve market, let us introduce the forward interbank offered rate L(t,T,d) at time
t < T, defined as the value of K that makes the time-¢ price of the FRA equal to zero, thus yielding

(1.4) PYRAG T, 6,K) =0 (L(t,T,0) — K) B°®(t, T +4), vt<T.

Proceeding as in [FGGS20, Section 2|, under no additional assumption, we are able to rewrite
equation (1.4) as follows:

(1.5) P*RAG T 6,K) = S B*(t,T) — (1+ 6 K) BOS(t, T +6), Vt<T,

2By linearity of the pricing rule, all FRA prices for every strike can be derived from the FRA price with this
arbitrary fixed strike and OIS bonds.
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where S = (5?)s0 is given by

1+ 6 L(tt,0)
1. 0 .= >
(16) St 1+ 6 LOS(t,¢,6)’

for all t > 0 and § € G, and where B%(t,T) is given by

1+ 0L(t,T,5) BOS(, T +96)
1. BY(t,T) := o ’
(17) t) 140 L(t, t,6) BOS(t,t+4)’

forall0 <t < T and § €G.

We observe that the foreign exchange analogy, as formulated in equation (1.1), remains satisfied
by the floating leg of a FRA where for every tenor § € G, B°(-,T) can be interpreted as a fictitious
zero-coupon bond measured in units of a foreign currency § (note that BO(T,T) =1, for all § € G
and T > 0), and S® = (S¢)¢=0 is the spot exchange rate between currency ¢ and the domestic one.
Similar foreign exchange analogies have been discussed by [Bial0, NS15, CFG16, MM18]|.

Adopting the modeling paradigm of [JT98], the multiple yield curve market can be described
by the following processes:

e The OIS term structure T — BOS(. T);
e The spot processes (5°)seg.

The spot processes (Sé)(seg as given by (1.6) correspond to the spot multiplicative spreads between
(normalized) spot interbank offerd rates and (normalized) OIS spot rates. They will represent,
together with the OIS short rate r = (r¢)i=0, our main modeling quantities in Chapter 3. The idea
of modeling multiple yield curve markets via multiplicative spreads is initially due to [Hen14], and
has been pursued by [CFG16, CFG19b, EGG20, FGGS20] among others.

1.4. Motivation and objective

In this section, we first discuss the empirical features that motivate the development of the
modeling frameworks in Parts 1 and 2.

1.4.1. The spot multiplicative spreads. The spot processes (S%)seg as given by (1.6) can
be directly retrieved from market quotes by construction as spreads between different interbank
rates. In this respect, they exhibit several empirical features, which can be easily visualized from
the top panel of Figure 1.1 as follows:

(i) Spreads are typically greater than one and non-decreasing with respect to the tenor;
(ii) There are strong co-movements (in particular, common upward jumps) among spreads
associated to different tenors;
(iii) Relatively large values of the spreads are associated to high volatility, showing volatility
clustering zones during crisis periods;

(iv) Low values of some spreads can persist for prolonged periods of time.

We refer the reader to Chapter 3 for further details on the source of these features. To the best of
our knowledge, a financial model that can adequately reproduce all these empirical features does
not yet exist in the related literature.
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1.4.2. The artificial spot FX rates. Unlike the spot multiplicative spreads, the artificial
spot FX rates (S%%)1<;<n are modeling quantities that cannot be observed in reality. However, in
view of equation (1.2), they play an important role in the construction of spot FX rates, which are
known to exhibit the following empirical features:

(i) Stochastic volatility and jumps;
(ii) Stochastic dependence among FX rates;
(iii) Stochastic skewness of the FX volatility smile;
(iv) Potential presence of self-excitation in the volatility of FX rates.

As before, we refer the reader to Chapter 5 for further details on these features. In view of
a visualization of feature (iv), the bottom panel of Figure 1.1 illustrates the weighted average
of the 1Y ATM call-implied volatilities of three major currency pairs (USDJPY, EURJPY, and
EURUSD). Notably, we can observe successive jump clusters, which suggests the potential presence
of self-excitation in the volatility of FX rates.

1.4.3. Statement of the objective. At this point, we are in a position to state the principal
objective that the present thesis seeks to attain. We emphasize that the latter is directly motivated

by the empirical features discussed above.

OBJECTIVE

Formulation: Elaborate a modeling approach for multiple term structures capable of
combining analytical tractability and consistency with the empirical
features previously mentioned.

Proposed solution: Continuous-state Branching processes with Immigration (CBI).
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FIGURE 1.1. Ilustration of the empirical features that motivate the development
of the modeling framework of Parts 1 and 2.

On the top panel: Euribor-OIS spreads from 06/2001 to 09/2019.

On the bottom panel: Weighted average of the implied volatilities of

three major currency pairs (USDJPY, EURJPY, and EURUSD).

Source: Bloomberg.
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1.5. The proposed approach

In this thesis, we propose a general modeling approach for multiple term structures driven by
Continuous-state Branching processes with Immigration (CBI), which is specifically motivated by
addressing the objective stated above. As mentioned previously, we focus on multiple yield curves
in the post-crisis interest rate market, and multiple currencies in the FX market. We then develop
two modeling frameworks in Parts 1 and 2, devoted to the modeling of these two financial markets.

Let us now briefly outline the principal contributions of each part separately as follows.

1.5.1. Part 1. Multiple yield curves. In this part, we develop a modeling framework for
multiple yield curves based on CBI processes, which captures all the relevant empirical features of
the spreads (S 5) seg and, at the same time, permits an efficient valuation of interest rate derivatives.
By exploiting the affine property of CBI processes, we design our modeling framework in the
context of the affine multi-curve models recently introduced by [CFG19b], namely taking the spot
multiplicative spreads (S?%)seg and the OIS short rate (r;);>o as main modeling quantities.

By construction, the model achieves a perfect fit to the observed term structures, and ensures
spreads greater than one and non-decreasing with respect to the tenor. The model also generates
an exponentially-affine structure for OIS zero-coupon bonds and forward multiplicative spreads,
allowing for the explicit valuation of all linear interest rate derivatives.

However, the construction of the model requires a precise investigation of the finiteness of
exponential moments of CBI processes. To this effect, we provide a detailed analysis of exponential
moments and derive an explicit and general characterization of their time of explosion. Moreover,
we define a new specification that we name tempered-stable CBI process, which, in particular,
ensures a simple necessary and sufficient condition for the finiteness of exponential moments.

While [CFG19Db] focused on the general theoretical properties of the model, we contribute by
introducing a novel class of tractable and flexible multi-curve models driven by a flow of tempered-
stable CBI processes, which are specifically motivated by the empirical features discussed above.
Such a flow of CBI processes, which we will clarify later, generates strong co-movements among
spreads such as common upwards jumps and jump clustering, where the characteristic self-exciting
behavior of CBI processes proves to be a key ingredient to reproduce these features.

We derive semi-closed-form pricing formulae for caplets via Fourier techniques. More precisely,
we implement two pricing methodologies: the former relies on a direct application of the FFT
algorithm (see [CM99]), while the latter utilizes a quantization-based algorithm (see [CFG19a)),
which is here applied for the first time to an interest rate setting. In a numerical analysis, these
two pricing methodologies are compared and a specification of the proposed model with two tenors
is calibrated to market data, demonstrating an excellent fit to market data.

1.5.2. Part 2. Multiple currencies. In this part, we develop a general stochastic volatility
modeling framework for multiple currencies that allows for self-excitation in the volatility of FX
rates, while capturing the typical sources of risk in the FX market (such as stochastic dependence
among FX rates and stochastic skewness of the FX volatility smile), and preserving the peculiar
symmetries of FX rates (i.e. symmetries under inversion and triangulation).
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We proceed by relying on the technology of CBI-Time-Changed Lévy processes (CBITCL),
which are defined as two-dimensional processes combining the self-exciting behavior of CBI process
with the generality of time-changed Lévy processes. By exploiting their affine structure, we can
show that CBITCL processes are coherent in the sense of [Gnol7]. This means that if an FX rate
is modeled by a CBITCL process, then the inverse FX rate belongs to the same modeling class.

Inspired by [Gnol7, Section 4] and taking into account our previous discussion, we design our
modeling framework by adopting the artificial currency approach, namely taking the artificial spot
FX rates (S%)1<;<ny as main modeling quantities. In this regard, FX rates satisfy the inversion
and triangulation symmetries by construction since they are defined as ratios by relation (1.2).

By formulating a Girsanov-type result for CBITCL processes, we can characterize a class of
risk-neutral measures that leave invariant the structure of the framework, which is an indispensable
requirement for pricing options written on FX rates. In particular, by exploiting the preservation
of the affine property of CBITCL processes, we provide a semi-closed-form pricing formula for
currency options, deriving from a direct application of the COS method developed by [FOO09].

The proposed model can also reproduce several features of the FX market. More specifically,
it allows for non-trivial stochastic dependence between the different currencies, and for non-trivial
dependence between FX rates and their volatilities. We emphasize that this type of dependence is
known to play a relevant role in generating FX volatility smiles that exhibit stochastic skewness.

We assess the empirical performance of our model via a calibration to an FX triangle consisting
of three major currency pairs (USDJPY, EURJPY, and EURUSD). We perform two calibrations:
standard and deep, where the latter uses deep-learning techniques developed by [HMT21]. Then,
by retaining the calibrated values of the model parameters, we carry out a sensitivity analysis on
model-implied volatility smiles. The purpose of this empirical study is to determine the impact of
the different model parameters on the shape of the FX volatility smile.

1.6. Structure of the thesis

The sequel is organized around four chapters. Part 1 comprises Chapters 2 and Chapter 3.
In Chapter 2, we provide a self-contained framework for CBI processes including, in particular,
an analysis of the exponential moments of CBI processes and the formal definition of tempered-
stable CBI processes. This framework is applied in Chapter 3 to the development of a modeling
framework for multiple yield curves based on CBI processes, where the construction of multi-curve
models driven by a flow of tempered-stable CBI processes is performed in full details.

Part 2 consists of Chapters 4 and 5. In Chapter 4, we formally define CBI-Time-Changed
Lévy processes (CBITCL), for which we give an analytical framework. Chapter 5 contains the
development of a general stochastic volatility modeling framework for multiple currencies, utilizing
CBITCL processes as driving processes.

As a conclusion to this introductory chapter, a brief comparative overview of the modeling
frameworks developed in Parts 1 and 2 is reported in Table 1.1.
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H Modeling framework of Part 1 ‘ Modeling framework of Part 2 ‘

Type of the multiple term
structures modeled

Multiple yield curves in the

post-crisis interest market

Multiple currencies in the

FX market

Main modeling quantities

Spot multiplicative spreads (Sé)geg
and OIS short rate (r¢)i=o0

Artificial spot FX rates (S%%)1<i<n

Driving processes

Flow of tempered-stable CBI

processes

CBI-time-changed Lévy processes
(CBITCL)

Indispensable requirement for
the construction of the model

Finiteness of exponential moments

Invariance under the risk-neutral

measures of the FX market

Most relevant empirical

feature reproduced

Contagion effects among spreads

Self-excitation in the volatility of

FX rates

Fourier techniques used
for the pricing of
non-linear products

[Lee04] for caplet pricing,
FFT [CM99] or quantization
[CFG19a] for approximation

The COS method [FOO09]

for currency option pricing

Numerical assessment of
the model

Comparison of FFT and
quantization pricing methods,

calibration to market data

Two types of calibration: standard
and deep inspired by [HMT21],

sensitivity analysis

TABLE 1.1. Comparative overview of the modeling frameworks of Parts 1 and 2.




Part 1

Multiple yield curves






CHAPTER 2

Continuous-state branching processes with immigration

SUMMARY. We present a self-contained framework for CBI processes, which will be applied to
multiple yield curve modeling in Chapter 3. We first provide an analysis of exponential moments
of CBI processes. We then study the relations between two representations of a CBI process: the
stochastic integral equation of Dawson and Li [DLO6], and the stochastic time change equation
in the sense of Lamperti [ECPGUB13]. We also derive a correspondence between CBI processes
and (marked) Hawkes processes. In particular, we refine the time change Poisson representation of
general point processes for the specific case of Hawkes processes, providing a proof that only relies
on the theory of CBI processes. Finally, we propose a new specification that we name tempered-

stable CBI process, which is well suited to multiple yield curve modeling.
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2.1. Introduction

Continuous-state Branching processes with Immigration (CBI) were first introduced by [KWT71],
where they were obtained by letting the population size of normalized Bienaymé—Galton—Watson
branching processes with immigration tend to infinity (see [Bie45, WGT5]). CBI processes extend
the class of Continuous-state Branching processes (CB), which were introduced by [Fel51] under
the name of Feller diffusions, and later revisited by [Jir58, Lam67b, Sil69, Gri74] among others.

After their original application to population dynamics (see [Par16]), CBI processes have been
adopted with success in finance. Especially for their non-negativity, branching structure, and Feller
property, CBI processes have found an application in interest rate modeling. This began with the
work of [Fil01], where CBI processes extended the class of Coz—Ingersoll-Ross processes (CIR, see
[CIR85]) by allowing for jumps in their dynamics. More generally, CBI processes belong to the
class of affine processes that were studied by [DFS03].

CBI processes exhibit a characteristic self-exciting behavior: the occurrence of a large (upward)
jump increases the likelihood of subsequent jumps. This has been exploited by several contributions
in order to capture volatility clustering. In [JMS17], an alpha-stable extension of the CIR process
was proposed as a single-curve interest rate model. The same stochastic process was then used
by [JMSZ21] for stochastic volatility modeling, extending the Heston model [Hes93]. We also
mention [JMSS19, CMS19], where CBI processes have been applied to energy markets.

In this chapter, we present a self-contained framework for CBI processes with the objective of
modeling multiple yield curves (see Chapter 3). For general accounts on CB and CBI processes,
we refer the reader to [Lill, Chapter 3], [Kyp1l4, Chapter 12], and [Li20]. First, we define CBI
processes and show their link with affine processes (Section 2.2). Next, we provide an analysis
of exponential moments of CBI processes. In particular, we extend the domain of their Laplace
transform, refining some results of [KRM15] (Section 2.3), and prove a general characterization
of the time of explosion of exponential moments of a CBI process, by specializing techniques of
[KR11]. This analysis will play a fundamental role in Chapter 3, where the finiteness of exponential
moments will represent an indispensable requirement.

In the literature on CBI processes, there exist two main representations of a CBI process:
the stochastic integral equation of Dawson and Li (see [DLO06]), and the stochastic time change
equation in the sense of Lamperti (first introduced by [Lam67a] for CB processes, later revisited
by [ECPGUB13] for CBI processes). The main result of Section 2.5 (see Theorem 2.12) shows
the equivalence (in a weak sense) between these two different representations of a CBI process. In
Section 2.6, we present several examples of CBI processes. We first discuss the CIR process and
its alpha-stable extension. We then derive a correspondence between CBI processes and (marked)
Hawkes processes (see [Haw71, HO74]), extending [BS20, Proposition 7.2]. Moreover, we refine
the time change Poisson representation of general point processes for the specific case of Hawkes
processes. Finally, we introduce a novel specification that we name tempered-stable CBI process
(Section 2.7), which is well suited to multiple yield curve modeling (see Chapter 3).
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2.2. Definition and affine property

We fix a stochastic basis (Q, F,F, Q) satisfying the usual conditions, where Q is a probability
measure and F = (F;)¢>0 a filtration to which all stochastic processes are assumed to be adapted.
We set F = Fo, and denote the expectation under Q by E.

We start with the standard definition of a CBI process, which can be found for example in
[Lill, Chapter 3] and [Li20].

e Let the function ¥ : R_ — R be given by

+00
(2.1) U(x) :=6m—|—f (e®* — 1) v(dz), Vo <0,
0
where 8 > 0 and v is a Lévy measure on R, such that Sé zv(dz) < 4o0;

e Let the function ® : R_ — R be given by

1 +00
(2.2) () :——bx+2(ax)2+f (e®% —1—z2)m(dz2), Vo <0,
0
where be R, 0 = 0, and 7 is a Lévy measure on R, such that SIFOO zm(dz) < 400.
DEFINITION 2.1. A Markov process X = (X;);>0 with initial value Xy and state space R is said

to be a Continuous-state Branching process with Immigration (CBI) with immigration mechanism
¥ and branching mechanism ® if its Laplace transform is given by

T
(2.3) E[e*XT] = exp (J U(V(s,z))ds + V(T,z) X0> ,
0
for all x < 0 and T > 0, where the function V(-,z) : Ry — R_ is the unique solution to
oy
(2.4) E(t,x) =o(V(t,z)), V(0,z) = =.

From now on, any CBI process in the sense of Definition 2.1 will be denoted by CBI (XO, v, <I)).
We emphasize that this definition corresponds to a conservative, stochastically continuous CBI
process in the sense of [KW71, Theorems 1.1 and 1.2], where more general CBI processes were
considered in their Definition 1.1. In the present setting, we refer to Definition 2.1 as the standard
definition of CBI processes. This implies that CBI processes are non-negative, strongly Markov
(Feller), with cadlag trajectories, and conservative.

From the perspective of financial modeling, the analytical tractability of CBI processes is
ensured by their fundamental and well-known link with affine processes (see [Fil01, DFS03]).
This is the content of the next result, which provides the joint conditional Laplace transform of
the CBI process X = (X;)¢>0 and its time integral Y; := S(t) Xsds, for all t = 0.

LEMMA 2.2. Let X = (X¢)i=0 be a CBI(XO,\IJ, @). Then, the joint process (X, Yi)i=o0 is affine
with initial value (Xo,0), state space ]Ri, and joint conditional Laplace transform

(2.5) E[e“XTHQYT ‘.7-}] = exp(Z/{(T —tyx,x2) + V(T —t,x1,29) Xt + 22 Y}),
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for all (z1,22) € R?2 and 0 < t < T < +o0, where the functions U(-,x1,72) : Ry — R and

V(-,x1,22) : Ry — R_ solve the following CBI Riccati system:

t
(2.6) U(t,x1,x9) = J ‘P(V(s,xl,xg)) ds,
0
oV
(2.7) g(tfﬁhm) = ®(V(t,z1,22)) + 22, V(0,x1,x2) = 21,
PROOF. A direct application of [KR09, Theorem 4.10] yields the desired result, exploiting the
affine property of the CBI process X = (X¢)>o0. O

2.3. Laplace transform domain extension

In this section, we extend the domain of the conditional Laplace transform (2.5) of the affine
process (X¢, Y;)i=0. To proceed, we rely on some techniques developed by [KRM15]. Let us first
define the set Ds:

(2.8) Dy — {x ER: fooe“ (v + 7)(dz) < +oo}.

Observe that D; is the effective domain of the immigration and branching mechanism functions
¥ and ®. By using standard results on exponential moments of Lévy measures (see e.g. [Sat99,
Theorem 25.17] and [EK20, Theorem 2.20]), we can extend ¥ and ®, as finite-valued convex
functions, to the set D;. Before applying such an extension to the conditional Laplace transform
(2.5), we need to define an extended version of the Riccati system (2.6)—(2.7), In a similar way to
[KRM15, Definition 2.10].

DEFINITION 2.3. For (z1,z2) € D1 x R_, a solution (Z/l(~,a:1,x2),V(-,x1,:E2)) to the extended
CBI Riccati system is defined as a solution to the following system:
t
U(t,x1,x9) = j ‘P(V(s,xl,xQ)) ds,

0
oV
(2.9) E(t,xl,xg) = @(V(t,xl,xg)) + x9, V(O,l‘l,l'z) =21,

up to a time T*1:%2) € [0, +-00], where T(#1:%2) denotes the maximum joint lifetime of the functions
U(-,x1,x2) : [0, TE72)) 5 R and V(-, 21, 22) : [0, T@1%2)) — Dy,

Definition 2.3 extends the CBI Riccati system (2.6)—(2.7) by taking into account the possibility
of explosion in finite time. For this reason, for each initial value (z1,x2) € D; x R_, the lifetime
T(1.22) has to be introduced. In some cases, this lifetime can be infinite, which means that no
explosion occurs (this holds true for example when (x1,z2) € R2).

It is well known that the branching mechanism function @ is locally Lipschitz continuous on
the interior of Dy, but it may fail to be so at the boundary of Di, denoted by ¢D;. Hence, a
solution V(-, x1,z2) : [0, T@1#2)) — D to equation (2.9) may not be unique when it starts at the
boundary of Dy (i.e. when 1 € dD;) or reaches it at a later time. In order to overcome this issue,
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the finiteness of the derivative of ®, denoted by @', at the boundary 0D; does suffice to guarantee
that ® € C}(Dy,R). To formalize this observation, let us introduce two quantities:

(2.10) Y :=sup{x =0:¥Y(z) < +w} € [0,+00] and ¢:=sup{zx >0:P(x) <40} e [0, +w0].

Since Dj is a convex set containing R_, it can be written as D; = (—00, 9 A ¢) or (—00, 1) A ¢] when
Y Ad<+ooand U(Y A @) v B A @) <+ (or equivalently §* e 9)2(v + 1)(dz) < +0). By
a differentiability result for convex functions (see e.g. [Roc70, Theorem 25.5]), the function @ is
differentiable almost everywhere on the interior of D; (i.e. DY), with derivative given by

+a0

(2.11) ' (z) — —b+02x+f S(e™F—1)m(dz),  VreDs.
0

When ¢ A ¢ = 40, we have D; = R and then ® € C}(R,R). When 9 A ¢ < +00, ® may diverge at
0D1 = {1 A ¢}. Under the following assumption, we have ®' (¢ A ¢) < +00 and then ® € C'(Dy,R).

ASSUMPTION 2.4. If ¢ A ¢ < +00, then §™ ze(¥"9)? 7(d2) < +o0.

Under Assumption 2.4, there exists a unique solution (Z/l(-, x1,x2), V(- 21, xg)) to the extended
CBI Riccati system, for all (x1,22) € D; x R_. This enables us to refine the second assertion of
[KRM15, Theorem 2.14] for the specific case of CBI processes.

PROPOSITION 2.5. Let (X¢)i=0 be a CBI(XO, \I/,CID). Suppose that Assumption 2.4 holds true.
Then, the conditional Laplace transform (2.5) can be extended to D1 x R_ as follows:

(2.12) IE[eleTJ””2 Yr \]:t] = exp(Z/{(T —tyxy,x9) + V(T —t,x1,29) Xt + 2 Yt),

for all (x1,22) € D1 x R_ and 0 <t < T < T@122)  ywhere (U(~,$1,$2),V(-,x1,x2)) is the unique
solution to the extended CBI Riccati system starting from (x1,22) € D1 x R_ and up to T(@1.22),

PROOF. Under Assumption 2.4, it holds that ® € C'(D,R). Hence, for all (z1,22) € D1 x R_,
the extended CBI Riccati system has a unique solution (U(-,z1,22), V(-,21,%2)) up to T(x1.22)
The extension of (2.5) to D; x R_ then follows from [KRM15, Theorem 2.14]. O

REMARK 2.6. In the setting of Proposition 2.5, we can state another important property of
the maximum lifetime T(*1:#2) of the unique solution U(-,z1,22), V(- 21, 22)) to the extended CBI
Riccati system. By [KRM15, Proposition 3.3], for all (z1,x3) € Dy x R_, the lifetime T®1:#2) also

characterizes the finiteness of real exponential moments:

(2.13) T(@w2) — sup{t =>0: E[exlx“rmyt] < —i—oo}.

REMARK 2.7. [KRM15] also provides a complex extension of the joint conditional Laplace
transform (2.12), which will be needed later in Chapter 3 for the pricing of non-linear derivatives
by means of Fourier techniques. To this effect, let O := {u € C : Re(u) € D} }, with Re(u) denoting
the real part of u. For all (u1,us) € O1 x C_, Assumption 2.4 guarantees the existence of a unique
solution to the extended CBI Riccati system, starting from (Re(u;), Re(uz)) € DY x R_ and defined
up to the lifetime T(Re(u1):Re(u2)) - By ysing [KRM15, Theorem 2.26], the joint conditional Laplace
(—Fourier) transform (2.12) holds for all (uj,us) € O1 x C_, where we have to replace ¥ and ® by
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their analytic extensions to the complex domain O; (see [KRM15, Proposition 2.21]). However,
this extension is only valid up to a time T(“1:%2)  which verifies T(u1:42) > T®Re(u1)Re(uz)) (see
[KRM15, Proposition 5.1]). We refer the reader to Chapter 4 for further details.

2.4. Finiteness of exponential moments

In this section, we provide an explicit and general characterization of the lifetime T(122)  for
all (z1,x2) € D1 x R_. In view of (2.13), this characterization is intimately related to the finiteness
of exponential moments of CBI processes. Especially for pricing purposes, it is important to know
whether exponential moment explosion happens in finite time or not. Our result specializes [KR11,
Theorem 4.1], but does not require the CBI process X = (X;)i>0 to be subcritical (i.e. b > 0). For

x9 € R_, let us introduce the following notation:
S = {x €Dy :P(x) + a2 < 0} and x:=supS.
We can then formulate the following theorem.

THEOREM 2.8. Let (X¢)t=0 be a CBI (Xo, v, <I>). Suppose that Assumption 2.4 holds true. Then,
for all (x1,x2) € D1 x R_, the lifetime T@122) s characterized as follows:
(i) If z1 < x, then T@1%2) — 4oo;
(ii) If 21 > x, then
(2.14) ) _ f e (ID(z()i:Ijl— -
1 2
PROOF. In view of characterizing T(1:22)  we can decompose it as T#1:%2) = TU A TV, where

(2.15) ™ .= inf{t > 0:V(t,z1,22) =} and TV = inf{t > 0:V(t,z1,32) = ¢},

where T corresponds to the maximum lifetime of the function U(-,z1,22) and TV to that of
the function V(-,z1,z2). Let us first consider the trivial case ® = 0 (¢ = +o0). The CBI process
X = (X})t=0 then degenerates into a non-decreasing Lévy process whose Lévy exponent is given by
W. Then, it is straightforward to see that, for all (z,z2) € D; x R_, the unique solution V(-, z1, x2)
to equation (2.9) is given by V(t,x1,22) = x1 + x2t, for all ¢ > 0, thus leading to TV = +o0. In
addition, we have S = {:U €D;1:x9 < O} = Dy, where D; = (—0,1) (or (—0,%] when ¢ < +o0
and ¥(¢) < +), and then x = 1. Therefore, for all 1 < x, the function V(-,x1,x2) is non-
increasing and never reaches the explosion point of the function ¥, which yields T¥ = +co0 and
therefore T(#1:%2) = 400 for all 21 < x.

Frown now on, let us suppose that there exists at least one point x € Dy such that ®(z) # 0.
Given that ®(0) = 0, the set S is non-empty since it always contains zero. Then, we can write
X =supS € [0, A ¢] and ®(x) + 22 < 0 due to the continuity of ®. Figure 2.1 illustrates some
possible shapes of the function ® over Dy, where the solid curves refer to the case ¥ A ¢ < +00 and
the dashed ones to the case ¢ A ¢ = +00. The determination of T(¥1:22)  for (x1,22) € D1 x R_
relies on the location of y, which is illustrated graphically in Figure 2.1 as the intersection point of
the function ® with the horizontal line y = —z9, whenever this intersection is non-empty. Consider
now the following cases:
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o )
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FIGURE 2.1. Some possible shapes of the function ® over Dy, where the solid curves
refer to ¥ A ¢ < +00 and the dashed ones to ¥ A ¢ = +00.

(1) ®(x) + x2 = 0, corresponding to the green curve (x = 9 A ¢ when ¥ A ¢ < +00), the

red curve and the orange line (linear case ®(z) = —bax with b < 0). In this case, we
have V(-, x,z2) = x as the unique solution to equation (2.9), which implies T®%2) = 400,
Then, for all z; < x, in view of (2.13), we have T@1r2) — 4o since E[ele”“Yt] <
E[exXtt#2Yt] < 400, for all t > 0;

(2) Consider again the case ®(x)+ z2 = 0, but when 27 > x. By convexity of ®, we have that

(2.16)

®(x1) + z2 > 0, implying by equation (2.9) that the unique solution V(-, x1,x2) starting
from x1 > y is strictly increasing with values in [z1, ¢]. At this point, following standard
extension results (see e.g. [Har82, Theorem II.3.1] whose main hypothesis can be reduced
to the continuity of the function ®), V(-,x1,x2) can be extended to a maximal interval of
existence [0, T') such that one of the following two situations occurs:

{T’:+oo} or {T’<+oo and tliI%V(t,xl,a:Q)ng}.

Suppose that T/ = 400. Since the function V(-,x1,x2) is strictly increasing, it must
admit a limit tETooV(t’xl’m) = [ with values in (x, ¢] U {+0}. Assume that [ < +o0,
i.e. the line y = [ is an horizontal asymptote for V(-, x1,x2) as t — +00. This implies that
%—‘;(t,xl,@) o 0. Then, letting ¢ go to infinity on both sides of equation (2.9) yields
®(l) + x2 = 0, contradicting ®(x;) + x2 > 0 for all 1 > x. Therefore, the limit  must
necessarily be infinite, in which case we have ¢ = 400. In particular, this can be reduced to
tli)nTl/V(t, x1,22) = ¢ with T/ = 400 and ¢ = +00. Therefore, T’ is equivalent to the lifetime
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(2.17)

(2.18)

(2.19)
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TV of the function V(-, z1, x2) given by (2.15). Let (T,)n>0 be an increasing sequence such

that T, — TY. Due to the continuity of V(-,x1,z2), we have lim V(T,,x1,z2) = ¢.
n—-+0 n—+-00

In view of equation (2.9), we can write

V(Tnyxl’lﬁ) dx
T, = <
" L1 (P(,r) + 22

for all n € N. Letting n go to infinity on both sides of equation (2.17) yields

v _ﬁ’ da
o P(z) + 0

So far, TV only represents the lifetime of V(-,21,22). In order to recover the joint
lifetime of both U(-, z1,22) and V(-,xz1,x2), for all 21 > x, we have to distinguish two
additional cases:

(i) The case ¢ < 1. This means that U(-, z1,z2) never explodes in finite time before
V(-,x1,22), thus yielding for all 1 > x

T(m1,m2) _ TV _ f¢ diﬂf
2 P(x) + 22’

(ii) The case ¢ > 1), meaning that U(-, z1,x2) explodes in finite time before V(-, x1, x2)

at time TY. In this case, we can assume that there exists n € N such that T,, = TY
and V(TY  x1,29) = 1. By (2.17), we have for all z; > x

Tleres) _ i _ Jw dx '
1 (I)(ZE) + T2

Combining both cases, we obtain formula (2.14) for TELE2) for all 2, > X;

Consider now the case ®(x) + 2 < 0. This means that the function ® never crosses the
line y = —x9 after zero, thus yielding x = ¥ A ¢. In Figure 2.1, this case corresponds to
the blue curve (when ¢ A ¢ < +00), the yellow line (when ¢ < +00) and the magenta line

(x = 400 when ¢ = +0), both of which correspond to the linear case ®(x) = —bx with

b # 0 and ¢ = +00. In this linear case, for all (z1,x2) € D; x R_, the solution V(-, z1, z2)

to equation (2.9) is given by V(t, x1,z2) = (1‘1 — “%2) e bt 4 72, for all t > 0, which then
gives TY = +o0 by (2.15). Concerning T, its determination depends on the sign of the
parameter b # 0 as follows:

(i) If b < 0, then the function ® crosses the line y = —x2 at * = %2 € Ry. In this
case (®(x) + z2 < 0), we necessarily have xy < %2, implying that for all z; < x, the
function V(+, z1, x2) is strictly decreasing and never reaches the explosion point of the
function ¥, thus yielding TY = +00 and T*1:%2) = 40 for all z; < ¥;

(ii) If b > 0, then the function ® crosses the line y = —x2 at = %2 € R_. In this case,
for all %2 < 21 < x, the function V(-,x1,22) is strictly decreasing and never reaches
the explosion point of the function ¥, thus yielding T¥ = +o0 and T#1%2) = 40 for
all % < z1 < x. Similarly, as in the case ®(x) + z2 = 0, we have T@EL22) — 4 oo for
all z1 < %2 in view of (2.13).
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Consider now a non-linear branching mechanism ®. Similarly to the case ®(z) = —bx

with b > 0, there exists a unique £ € R_ such that ®(£)+x2 = 0. Hence, for all £ < x1 < x;,

we have ®(x1) + 22 < 0. The function V(-,x1,22) is then strictly decreasing and by

integrating on both sides of equation (2.9), we obtain

(2.20) t= J B _—de
Viter,as) P(T) + 22

Letting ¢ go to infinity on both sides of this identity, given ®(§) + x2 = 0, we obtain

tETooV(t’$1’$2) =¢and & < V(,21,72) < 21, for all £ < x1 < Y, yielding TV = +o0.

Since W is non-decreasing on Dy, we have t U (§) < U(t,x1,22) < t¥(xq), for all t = 0,

then TY = +00. We obtain T(*1:%2) — 400 for all ¢ < z; < x and for all z; < & by (2.13).

g

Under an additional assumption, the next result provides a simple necessary and sufficient
condition for the finiteness of the exponential moment E[e o1 X1 + 22 YT], for all (z1,22) € D; x R_
and T > 0. This result will be useful for the construction of the modeling framework in Chapter 3.

COROLLARY 2.9. Let (X¢)i=0 be a CBI(XO,\I/,CI)). Suppose that Assumption 2.4 holds true.
Under i Ad + W(hA¢) < 400, TE22) — Loo for all (z1,x2) € Dy xR_ if and only if ®(1p A ) < 0.

PROOF. Combining Assumption 2.4 with ¢ A ¢ < +00 necessarily yields ®(¢) A ¢) < +o0.
Suppose further that ¥(¢) A ¢) < +00, we then have D = (—o0,% A ¢|. We proceed as follows:

o If ®(¢p A ¢) < 0, then we have x = ¥ A ¢ automatically, therefore the first assertion of
Theorem 2.8 implies that T(*1:#2) = 4o, for all (z1,22) € D x R_;

e Conversely, suppose that T(*1:%2) — 4o for all (1, 29) € Dy x R_. This holds in particular
for 1 = ¥ A ¢ and z9 = 0 since ¥ A ¢ € D;. We now prove that ®(¢ A ¢) < 0 by
contradiction. If ®(¢) A ¢) > 0, then x = 0 since x5 = 0 and in view of the properties
of the function ®. The second assertion of Theorem 2.8 asserts that T(¥*%9) is given by
formula (2.14), i.e. TWA%0) = 0, thus leading to a contradiction.

g

2.5. Stochastic representations

In the literature, there exist two representations of a CBI (Xo, v, <I>): the stochastic integral
equation by Dawson and Li (see [DL0O6, Section 5]), and the stochastic time change equation in
the sense of Lamperti (see [ECPGUB13]). The purpose of this section is to show that these
two representations are equivalent in a weak sense. We begin with the Dawson—Li representation,
where we suppose that the stochastic basis (Q, F, T, Q) is equipped with the following objects:

e A standard Brownian motion B = (By)>0;

e A Poisson random measure Ny(d¢,dz) on R x Ry with compensator dt v(dz) and com-
pensated measure No(dt,dz) := No(dt,dz) — dt v(dz);

e A Poisson random measure N (dt,du,dz) on Ry xR, xR, with compensator dt du 7(dz)
and compensated measure N; (dt,du, dz) := Ni(dt, du, dx) — dt duw(dx).
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In addition, we assume that B, Ny, and N7 are mutually independent. We can then write, for any
Xo = 0, the following stochastic integral equation:

X, = Xo+ft(6—bX)ds+aJ /X, dB
(2.21) JFOOQ;NO ds, dz) ijg_roo \(ds,du,dz), Vit 0.

As a result of [DLO06, Theorems 5.1 and 5.2], for any Xy > 0, there exists a unique non-negative
strong solution to equation (2.21), which is a CBI (Xo, v, <1>). The following statement represents
our formal definition of a Dawson—Li representation.

DEFINITION 2.10. A non-negative cadlag stochastic process X = (X;);>0 with initial value X
admits a Dawson—Li representation if it is a weak solution to equation (2.21).

Following the characterization of [Lill, Theorem 9.31] and [Li20, Theorem 8.1], a non-negative
cadlag stochastic process X = (X;);>0 admits a Dawson—Li representation if and only if it is a
CBI(XO, v, <I>). In particular, we deduce that any CBI(XO, v, (I>) can only jump upward.

In view of the Lamperti-type representation, we first recall that Y; := S(t) Xsds, for all t = 0.
Since X = (X})t>0 is non-negative with cadlag trajectories, Y = (Y3)t>0 is non-decreasing and
almost surely finite at all times. It can then be utilized as a finite, continuous time change in
the sense of [KS02b, Definition 2]. We assume that the stochastic basis (Q, F,F, Q) supports the
following two independent processes:

e A non-decreasing Lévy process LY = (L))o with LY = 0, whose Lévy exponent is given
by ¥ and characterized by the Lévy triplet (3,0, v);

e A spectrally positive Lévy process L® = (L{);=0 with LY = 0 and finite first moment,
whose Lévy exponent is given by ® through the Lévy triplet (—b, o, ).

In this respect, we can define, for any Xy > 0, the following stochastic time change equation:
(2.22) Xe=Xo+ LI+, Vt=0.

Following [ECPGUB13, Proposition 2 and Theorem 2], for any Xy > 0, there is a unique non-
negative strong solution to equation (2.22), which is a CBI (XO, v, <I>). We can then give our formal

definition of a Lamperti-type representation.

DEFINITION 2.11. A non-negative cadlag stochastic process X = (X;);>¢ with initial value X
admits a Lamperti-type representation if it is a weak solution to equation (2.22).

We formulate the main result of this section, which relates the Dawson—Li stochastic integral
representation to the Lamperti-type stochastic time change representation. We give a self-contained
proof, whose techniques are also used for the characterization of CBITCL processes in Chapter 4.

THEOREM 2.12. A non-negative cadlag stochastic process X = (Xi)i=0 with initial value X
admits a Dawson—Li representation if and only if it admits a Lamperti-type representation.
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PROOF. Let X = (X;);>0 admit a Lamperti-type representation, meaning that X = (X;)i>0
is a weak solution to (2.22). Since LY = (L})i>o is a Lévy process with non-decreasing sample
paths, its Lévy-1to decomposition can be written as follows (see e.g. [CT04, Corollary 3.1]):

t +00
(2.23) LY =gt +J f x No(ds,dz), ¥Vt =0,
0 JO

where Ny(dt,dz) is a Poisson random measure with compensator d¢ v(dz). We proceed similarly
with the Lévy process L® = (L{);>0 where we take into account the time change Y = (Y;)¢=o:

Yy p+o0
(2.24) LY = —bY; + o Wy, +f J x N(ds,dz),  Vt=0,
0 Jo

where W = (W})>0 is a Brownian motion independent of the Poisson random measure N (d¢, dx) on
R, x R, with compensator dt 7(dz) and compensated measure N (d¢,dz) := N(dt,dz) — dt w(dz).
By the change of-variable formula of [Jac79, Theorem 10.27], we rewrite the stochastic integral by
means of the time-changed random measure N (X, d¢,dz) with compensator X;_ dt 7(dz):

Y: p+o0 +o0
JJ x N(ds, dx) JJ N(X,ds,dz), vVt > 0.

Following [IW89, Theorem I1.7.4], possibly on an enlarged probability space, there exists a
Poisson random measure Ni(dt,du,dz) with compensator dt dum(dz) and compensated measure
N1(dt, du,dz) := Ni(dt,du, dz) — dt dun(dz) such that

+a0 & s [t
JJ N(Xsds,dz) JJ J 1(ds, du, dx), vVt > 0.

Similarly, by [IW89, Theorem II.7.1°], there exists a Brownian motion B = (B;)¢>0 (possibly on
an enlarged probability space) such that Wy, = Sé v/ X,dBy, for all t > 0. This directly implies
that X = (X})=>0 is a weak solution to (2.21), thus admitting a Dawson—Li representation.

Conversely, suppose that X = (X;);>¢ admits a Dawson—Li representation, meaning that X =
(Xt)e=0 is a weak solution to (2.21). We first observe that the process (8t+ Sé Sroo x No(ds, dx))tzo
is a non-decreasing Lévy process with Lévy triplet (3,0, ), which we denote by LY = (L;I’ )t=0-
Let us then define the process V = (V;)=0 as follows:

s— [+t
Vi =—bYt—|—aJ X dBg +JJ J Ni(ds, du, dz), vVt > 0.

In order to show that V' = (V})¢>0 is a time-changed Lévy process, we follow the scheme of the proof
of [Kal06, Theorem 3.2]. Without loss of generality, we can suppose that the underlying stochastic
basis already supports a spectrally positive Lévy process L = (L;);>0 with Ly = 0 and finite first
moment, whose Lévy exponent is given by ® and characterized by the Lévy triplet (—b, o, 7).

Let Yy := tli»IJPooYt and define the inverse time change 7 = (7;),>0 by 7, := inf{t =>0:Y; > z},
for all z = 0. We recall that X = (X;)¢>0 is a CBI(XO, v, q)) by [Lill, Theorem 9.31] and [Li20,
Theorem 8.1]. When ¥ = 0, X = (X;)i>0 becomes a CB process, for which zero is known to
be an absorbing state (see [Gre74]). In this case, we may have Y,, < +00, which implies that
T = (72) >0 is infinite from time Y, onward. Thus, the time-changed process W = (W,),<y,, given
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by W, := V., for all z < Y, is a well-defined semimartingale, but only on the stochastic interval
[0, Y[ (see [JacT9, Theorem 10.10]). Its characteristics, which we denote by (A4, B,C), can be

computed as follows:

A, =—bY, =—bz, B,=0"Y, =0%2z and C.(dz)=n(dz)Y;

z

= m(dz) z

for all z < Yy, where Y,, = z since 7 = (7;),>0 is strictly increasing on [0, Y, [. The differential
characteristics of W = (W}),<y, are then both deterministic and time-independent. Therefore,
by [Kal06, Proposition 1], W = (W,),<y,, is a Lévy process on [0, Y[ characterized by the Lévy
triplet (—b, o, ).

In view of using [Jac79, Lemma 10.14], we show that V' = (V})¢>0 is constant on every interval
[r,s] = Ry such that Y, = Y,. First, ¥, = Y, means that §’ X;d¢ = 0, which, due to the non-
negativity of X = (X¢)i>0, implies that X; = 0 almost everywhere on [r,s]. We deduce that
[r,s] < {t = 0: X; = 0}. We thus obtain V; = V;, for all ¢ € [r,s], proving that V = (V;)s0 is
constant on every interval of this type. Hence, we can write V; = Wy,, for all ¢ > 0. However,
W = (W,).<vy,, is a Lévy process only on [0,Y,[. In line with [RY99, Theorem V.1.7], we can
construct the stochastic process L® = (L?).>¢ where L? := W, 1oy + La1gsy,,y, for all
2>0. L% = (Lg’) »>0 is a Lévy process characterized by the Lévy triplet (—b, o, ), which extends
W = (W,).<vy,, to the entire R,. We then have V; = Lg‘;, for all t > 0, showing that V' = (V)0 is
a time-changed Lévy process. By inserting LY = (L} );>0 and L? = (L?).>¢ into equation (2.21),
we finally obtain that X = (X});>0 admits a Lamperti-type representation. O

REMARK 2.13. [DL12] also introduced another representation of a CBI(XO, \If,<1>), which is
equivalent to the Dawson—Li representation. We suppose the existence of an independent Gaussian
white noise W (dt,du) as in [Wal86, Chapters 1 and 2|, defined on R x Ry and with intensity
dt du. Consider then the stochastic integral equation

X, = X0+Jt(ﬁ—bx ds+aff W (ds, du)

+oo oe [0
(2.25) J f x No(ds, dx) J f J 1(ds, du, dx), vVt > 0.

By [DL12, Theorem 3.1}, for any Xy > 0, there exists a unique non-negative strong solution
to equation (2.25), which is a CBI(XO,\P,<I>). The peculiarity of representation (2.25) lies in
its comparison property (see e.g. [Li20, Theorem 8.4]), which will be the starting point in the
construction of multi-curve models driven by a flow of CBI processes (see Chapter 3).

REMARK 2.14. Stochastic integral equation (2.25) makes evident the self-exciting behavior of a
CBI (XO, v, <I>). Indeed, the two martingale components (i.e. the stochastic integrals with respect
to W and ]\71), depend on the current value of the process itself and, therefore, large values of the
process give rise to episodes of high volatility. In particular, the jump intensity of N7 increases
whenever a jump occurs, thereby generating jump clustering effects. These features will have a
particularly relevant role in Chapter 3.
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2.6. Examples of CBI processes

We present several examples of CBI processes that can be found in the literature. We first
mention the Coz-Ingersoll-Ross process (CIR), which is a continuous CBI processes. We also
discuss its alpha-stable extension, which is a jump-type CBI process. We derive a correspondence
between CBI processes and Hawkes processes, which we combine with Theorem 2.12 to refine
the time change Poisson representation of general point processes for the specific case of Hawkes

processes. Finally, we obtain similar results for marked Hawkes processes.

2.6.1. The CIR process. The diffusion (17) of [CIR85] is widely known in the literature
as the Cox—Ingersoll-Ross process (CIR). This process is mostly used in interest rate modeling
(see [Fil01]), in stochastic volatility modeling (e.g. the Heston model by [Hes93]), as well as for
default intensity modeling.

This process can be recovered from a CBI(XO,\I/,CP) by letting b > 0, v = 0, and © = 0,
i.e. a continuous subcritical CBI process. The affine property of the joint process (X¢,Y:)i=o0,
where X = (X;)i>0 is a CIR process and where Y; := Sé Xsds for all ¢ > 0, is ensured by
Lemma 2.2 where the immigration and branching mechanisms ¥ and ® become ¥(z) = Sz and
®(z) = —bx + 5 (0 x)?, for all z € Dy, with Dy = R.

For the CIR process, the Dawson-Li representation (2.21) reduces to the CIR diffusion:

t t
(2.26) Xt=X0+bJ <§—Xs) ds+UJ VX.dBs,  Vt=0.
0

0

By using Theorem 2.12, which coincides here with the Dambis-Dubins—-Schwarz theorem (see e.g.
[RY99, Theorem V.1.6]), we can derive the following time change representation of the CIR process
X = (Xt)t=0, which is equivalent to (2.26):

¢
(2.27) Xt—Xo—i—bJ <§—Xs> ds + o Wy, vVt =0,

0
where W = (W})i>0 is a Brownian motion. Since b > 0, the mean reversion of the CIR process
X = (X¢)i=0 holds with long-term value 3/b and speed b. We also recall the Feller condition for
the inaccessibility of 0, which takes the form 23 > o2 (see e.g. [Fil09, Section 5.4.2]).

2.6.2. The a-CIR process. A natural extension of (2.26), which can be found in the litera-
ture (see [LM15, JMS17, JMSZ21] among others), consists in adding jumps via a Lévy-driven
stochastic integral as follows:

t t t
(2.28) Xt:XoerJ (i_XS> ds—l—af «/XsstJrnf /X, dZ,,  Vt>0,
0 0

0
where 7 > 0 serves as a volatility parameter for the jump part and Z = (Z;)¢>0 is an independent,
spectrally positive compensated stable Lévy process with Lévy measure C, 27171 (z>0) dz, where
a € (1,2) is called stability index and C,, = 0 is a normalization constant depending on «.
By [FL10, Corollary 6.3], there exists a unique strong solution to (2.28), which is a stable
Coz—Ingersoll-Ross process (or a-CIR process) and is a jump-type CBI process with b > 0, v = 0,
and 7(dz) = n®Cyz 179 1(.-0ydz. Lemma 2.2 implies the affine property of the joint process
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(X1, Y:)=0 with X = (X{)i=0 being an a-CIR process, where the immigration mechanism ¥ is
given by ¥(x) = Sz and the branching mechanism & by

(2.29) O(z) =—bax+ % (02)? + CoT(—a) (—nx)?, Vz € Dy,

where I" denotes the Gamma function extended to R\Z_ (see [Leb72, Section 1.1]). In this case, we
have D; = R_, implying that the process X = (X;);>0 does not admit finite exponential moments
of any order in the sense that Theorem 2.8 yields E[exXT] = 400, for all z > 0 and T > 0.

By [Lill, Theorem 9.32] and [Li20, Theorem 8.6], if X = (X;)¢=0 is a CBI(Xo, ¥, ®) with
b>0,v=0,and m(dz) = 7 Co 2" 1,20y dz, then X = (X;);0 is a weak solution to (2.28)
and coincides, on an enlarged space, with the corresponding a-CIR process. By Theorem 2.12, we
can obtain a time change representation of the a-CIR process, equivalent to (2.28):

¢
(2.30) Xt=X0+bJO <§—XS> ds + oWy, +nLy,, Vit =0,
where W = (Wy)>0 is a Brownian motion and L = (L;);>0 is a compensated, spectrally positive
stable Lévy process with Lévy measure Cp 2717 1(.-0ydz. These two processes are taken inde-
pendent of each other (a similar representation was derived by [JMSZ21] by relying on [KS02b,
Theorems 2 and 3]). Finally, it has been shown in [JMS17, Proposition 3.4], by relying on the
results of [FUB14, DFM14] for general CBI processes, that the Feller condition for the a-CIR

process is identical to that of the CIR process recalled above, i.e. 23 > 2.

2.6.3. The Hawkes process. First introduced by [Haw71, HO74|, and extensively used

1

in finance (see e.g. [Haw18|), a Hawkes process” is a counting process (N¢);>o whose intensity

X = (X})i>0 satisfies the following stochastic integral equation:

t
(2.31) Xt=X0+f-@f (A= X,) ds +n N, vt =0,
0
where we fix A = X for simplicity. By It6’s formula, this equation can be solved as follows:
¢
(2.32) X; = Xo + ”J e "(=9dN,,  Vt=0.
0

We denote the couple (X, N) by Hawkes (XO, K, 77), where we suppose that k > n always holds.
This is known in the literature on Hawkes processes as the stability condition, ensuring the finite
activity of the process together with its long-run stability (see e.g. [BM96, DFZ14)).

Equation (2.32) makes clear the self-exciting behavior of (N¢)i>o as follows: its intensity at
time t, for all £ > 0, is an affine function of the events of the counting process that occurred before
t, where n = 0 serves as a volatility parameter measuring the contribution of the self-excitation,
while k > 0 controls the dampening, over time, of the effect of the past events. Note that when
n = 0, the process (Ny)i>0 reduces to a Poisson process with constant intensity X = Xj.

The next result, which extends [BS20, Proposition 7.2], provides a correspondence between
(subcritical) CBI processes and Hawkes processes as defined above.

We restrict our attention to univariate Hawkes processes with single-factor exponentially-decaying intensity,

i.e. setting g(v) =ne™"", Vo = 0, with x > 0 and 1 = 0 in the notation of [Haw71, Section 3].
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ProprosITION 2.15. The following implications hold:
(i) Let X = (X¢)i=0 be a CBI(Xo, ¥, ®). Ifb>0,0=0,v =0, 7 =4, withn >0, and
Xy = %, then there exists a counting process (Ni)i=o with intensity X = (Xi)i=0 such
that (X,N) is a Hawkes(bJrn,b + 7, 77)
(ii) Let (X,N) be a Hawkes(Xo,s,n) with n > 0. Then, X = (X;)=0 is a CBI(Xo, ¥, ®)
with B =k X, b=k—n,0=0,v=0, and 7 = ¢,.

PROOF. The first implication follows along the lines of [BS20, Proposition 7.2]. Starting from
the Dawson-Li representation, we fix b > 0, 0 = 0, v = 0, and 7 = §,, where §, is the Dirac
measure at 7 > 0. The stochastic integral with respect to N then becomes

t rXs— p+o0 - t rXs— -
f J f x Ni(ds,du,dz) = 77[ Ni(ds,du), YVt =0,
0Jo

where Nj(dt,du) is a Poisson random measure on R x Ry with compensator d¢tdu and com-
pensated measure Ny (dt,du) := Nj(dt,du) — dt du. In this case, we can separate the pure jump

integral from its compensator, which gives

t t rXo_
Xt=X0+(b+n)J <b577—X>ds+17J Nip(ds,du), vt = 0.
0 JO

Fixing now X = and defining the counting process (INy)i=o as Ny := Sé §o " Ni(ds, du), for all

B
b+n
t = 0, whose intensity clearly coincides with X = (X;)¢>0, we recover equations (2.31) and (2.32)
by It6’s formula, which provides the couple (X, N) with the Hawkes property.

We prove the second assertion. Let (X, N) be a Hawkes(Xy, x,n) with n > 0. We rewrite

equation (2.31) by means of the measure N (d¢,dz) with compensator X;_ dtd,(dz), as follows:

+00
X = X, +J </@X0 — (k—n) ds+f f N(ds,dz) — X,_ ds6n(dx)>, Wt > 0.
0

By using [IW89, Theorem I1.7.4], possibly on an extension of the probability space, there exists a
Poisson random measure N (dt, du,dz) with compensator dtdu d,(dz) and compensated measure
Ny (dt, du, dz) := Ny(dt, du, dz) — dt dud,(dz) such that we have

t Xs— p+0
thXo—l—f (HX()—(K— ds—i—ff J dtdudzv) vVt = 0.
0

Therefore, X = (X;)i>0 has a Dawson-Li representation with 8 = k Xg, b=k —1n, 0 =0, v = 0,
and 7 = §,, and thus [Lill, Theorem 9.31] and [Li20, Theorem 8.1] yield the desired result. [0

It is well-known in point process theory that any counting process, under mild conditions on
its compensator, can be represented by a time-changed Poisson process with unit intensity (see
[DVJO08, Theorem 7.4.1] for the general theorem and [GTO05] for the converse). We now refine
this result for the specific case of Hawkes processes by relying on CBI processes. More precisely,
we provide a self-contained proof that only makes use of Proposition 2.15 and Theorem 2.12.

COROLLARY 2.16. Let (X, N) be a Hawkes(Xo, k,n). Then, there exists a unit-intensity Poisson
process N' = (Ny{)i=0 such that Ny = Ny, where Y := Sé Xsds, forallt =0
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PROOF. Let (X, N) be a Hawkes(Xo,/f,n). We now distinguish two cases. The first one is
trivial and reduces to n = 0, when N = (Ny);>0 degenerates into a Poisson process with constant
intensity X = Xg. The desired result then follows from the time-rescaling theorem in its most basic
form, i.e. relating inhomogeneous Poisson processes to (deterministic) time-changed homogeneous
Poisson processes: N; = Ny, = Ny,, where N' = (IV{)i>0 is a Poisson process with unit intensity.

Let n > 0. By using the second assertion of Proposition 2.15, the process X = (Xi)i>0 is
a CBI(XO,‘IJ,@) with 8 = kKXo, b =k —1n,0 =0, v =0, and 7 = §,. By [Lill, Theorem
9.31] and [Li20, Theorem 8.1], X = (X¢);>0 admits a Dawson-Li representation, which is weakly
equivalent to the Lamperti-type representation by Theorem 2.12. Without loss of generality, we can
suppose that the stochastic basis already supports two independent Lévy processes LY = (L;I’ )t=0
and L® = (L{);>¢ such that X; = Xo + LY + L%, for all t = 0. By applying the Lévy-Ito
decomposition, and then inserting the parameters specified above, we obtain

LY = k Xot, vt = 0,
t oo
L?:(n—/ﬁ;)t—l—ff x N'(ds,dx), YVt = 0,
0 Jo

where N'(dt,dz) is a Poisson random measure defined on Ry x Ry with compensator dtd,(dz)
and compensated measure N'(dt,dz) := N'(dt,dz) — dt dp(dz). Similarly to Proposition 2.15, the

stochastic integral with respect to N’ reduces to
t (+o0 N
f J x N'(ds,dz) = n N, vVt >0,
0 Jo

where N’ = (N/);=0 is a unit-intensity Poisson process with compensated version Kf{ = N/ —t,
for all + > 0. Hence, by inserting both Lévy processes LY = (L{);>0 and L® = (L{);>0 into the
Lamperti-type representation of X = (X;)¢>0, we can rewrite it as follows:

t
X, —X0+/£J (Xo — X.)ds + n Ny,
0
where we finally identify N, = Ny, by (2.31), for all ¢ > 0. O

2.6.4. The marked Hawkes process. The previous results can be readily extended to the
class of marked Hawkes processes, whose terminology is taken from [BSS18] (see also [DVJ08,
Section 6.4] for general marked point processes), obtained by randomizing 7 as follows:

¢ t too
(2.33) Xt:XO+Kj (Xo — Xs) ds+f J x N(ds,dx), Vit =0,
0 0 Jo
which, through It6’s formula, can be solved by
t 4o
(2.34) X = Xo + J f ze ") N(ds,dz),  Vt=0.
0 Jo

The counting measure N (dt,dx), whose compensator is X;_ dt u(dz) where p is a probability
distribution on R, with finite first moment, generates two different processes that share the same
stochastic intensity X = (X¢)i>0:
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e The marked Hawkes process denoted by the counting process Ny := Sg (—]i' N (ds, dx), for
all ¢ = 0;
e The compound Hawkes process defined by M; := So A x N(ds,dx), for all t > 0.
We refer to [BSS18| and [Swi21, SZZ21]| for further details on marked Hawkes processes and
compound Hawkes processes, respectively. In this case, the stability condition becomes x > m,
where m := SOMO x p(dx) (see e.g. [DVJI08, Proposition 6.4.VII]).

We now extend Proposition 2.15 and Corollary 2.16 to marked Hawkes processes. We first
derive a correspondence between (subcritical) CBI processes and marked Hawkes process. Then,
we refine the representation of compound Hawkes processes as time-changed compound Poisson
processes by providing a self-contained proof that only relies on the theory of CBI processes.

COROLLARY 2.17. The following implications hold:
(i) Let X = (Xt)=0 be a CBI(XO,\I/, @). Ifb>0,0=0,v=0, 7 a probability distribution

on Ry with finite first moment m, and Xy = Him, then there exists a counting process
(Ni)i=0 with intensity X = (X¢)i=0 such that (N¢)i=o is a marked Hawkes process with

onlﬂrim, Kk=b+m, and p =7;

(ii) Let (N¢)i=0 be a marked Hawkes process and M = (My)i=o be a compound Hawkes process
with intensity X = (Xy)i=0. Then, there exists a unit-intensity compound Poisson process
M’ = (M{)i=0 with mark distribution p such that My = M{,—t where Y; 1= Sé X, ds, for all
t =0, and where X = (X¢)i=0 is a CBI(XO,\I/,<I>) with 8 = kKXo, b=Kx—m, 0 =0,

v=0, and ™ = p.

PRroOOF. The proof of the first assertion follows along the lines of the first part of the proof of
Proposition 2.15. We first rewrite the Dawson—Li representation of X = (X;)¢>0 with b > 0, 0 = 0,
v =0, and 7 is a probability distribution on R, with finite first moment m := S(J]r P ra(dr) < 4.
We then separate the pure jump integral from its compensator, which gives

t /8 t rXs— [+
thXo—i—(b—i-m)f ( —XS) ds—i—f f J x Ni(ds, du, dz), YVt = 0,
0 0 Jo 0

b+m

We finally fix Xy = T and define the counting process N; := Sé S0 JOO Ni(ds, du,dz), for all
> 0, whose intensity is X = (X¢);>0, thus showing that N = (Ny);>¢ is a marked Hawkes process.
The proof of the converse is similar to the second part of the proof of Proposition 2.15. We

start by inserting the first moment m of the distribution u into (2.33) as follows:
t 400
thXo—i—J </<;X0—(/£— ds—i—j J N(ds,dz) — Xs_dsu(dx)>, vVt = 0.
0

We then use [IW89, Theorem II.7.4], which ensures, possibly on an enlarged probability space,
the existence of a Poisson random measure Nj(d¢, du, dz) with compensator dt du p(dz) and com-
pensated measure Ny (dt, du,dz) := Ni(dt,du, dz) — dt du u(dz) such that

t s (o0
Xt=X0+J (HX()—(H,— d3+JJ f :ENldtdudx) vVt = 0.
0

[Lill, Theorem 9.31] and [Li20, Theorem 8.1] therefore provide the CBI property of X = (X});>o0.
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At this point, we can apply Theorem 2.12 as in the proof of Corollary 2.16, which yields the
Lamperti-type representation of X = (X;);>o as follows:

t

Y: p+o0
Xt=X0+/£J (XO—XS)derfJ x M'(ds,dx), vt >0,
0 Jo

0
where Y; := Sé Xsds, for all t = 0, and M'(dt,dx) is a Poisson random measure defined on
R, x R4 with compensator dt u(dz). Let us now define the stochastic process M’ = (M]/);=o by
M = Sé aroo x M'(ds,dz), for all t = 0. M' = (M]/)¢>0 is then a unit-intensity compound Poisson
process with mark law p such that M, = My, by (2.33), for all ¢ > 0. O

2.7. Tempered-stable CBI processes

We recall that when X = (X;)i>0 is an a-CIR process with a € (1,2), Theorem 2.8 yields
]E[emXT] = +oo, for all x > 0 and T > 0. This represents a drawback of the class of a-CIR
processes in view of the modeling of Chapter 3, where the finiteness of exponential moments
will represent an indispensable requirement. In order to overcome this issue, we develop a new
specification of the CBI process that we name tempered-stable CBI process. This process can be
constructed either from an a-CIR process by means of an equivalent change of probability (see e.g.
[JMS17, Proposition 4.1]), or as a solution to a certain stochastic time change equation. Let us
proceed with the latter approach.

To this purpose, the stochastic basis (Q, F,F, Q) is supposed to be equipped with the following
two independent stochastic processes:

e A standard Brownian motion W = (W});>0;
e A compensated, spectrally positive tempered-stable Lévy process L = (L) with Lévy
measure C,, 21 7% e~ 07 1(;~0ydz, where Cy = 0,60 > 0and o < 2 (or § = O and a € (1,2)).

DEFINITION 2.18. A non-negative cadlag stochastic process X = (X¢);>¢ with initial value X

is said to be a tempered-stable CBI process if it satisfies the stochastic time change equation

t
(2.35) Xt=X0+J (B-bX,)ds+ oWy, +nLy,, V=0,
0

where Y; := SéXsds, forallt>0,beR, 3>0,0>0,and n > 0.

The stochastic time change equation (2.35) is obtained by extending equation (2.30) as follows:

(i) The positivity constraint of the parameter b is relaxed:
(ii) The jumps of the stable process are tempered exponentially via the parameter 6;
(iii) The stable-type behavior of the jumps is preserved and still controlled by «.

A tempered-stable CBI process in the sense of Definition 2.18 cannot be represented by a Lévy-
driven stochastic integral equation in the form of (2.28), which contrasts with an a-CIR process.
This is due to the fact that the symmetry/self-similarity property of the stable process is not
preserved by the exponential tempering.

The exponential tempering enables the Lévy process L = (L;);=0 to have finite moments of
any order (see e.g. [CT04, Section 4.5]), regardless of the value of . Moreover, it also allows « to
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be extended to the whole R_, where the interval in which the value of « lies determines the path
properties of the process L = (L)¢>q as follows:

(i) If & < 0, then L = (L;);>0 is a compensated compound Poisson process;

(ii) If @ € [0,1), then L = (L;);>0 has infinite activity and finite variation;

(iii) If a € [1,2), then L = (L;)¢>0 has infinite activity and infinite variation.

We rely on the findings of [CW03] and [Orn14| and set « € [0, 2). However, in view of not limiting
ourselves to Lévy processes with finite variation, we shall focus on « € (1,2) (while excluding o = 1
for simplicity).

We fix n > 0, where we recall that n serves as a volatility parameter for the jump part (see
Section 2.6.2). By [ECPGUB13, Proposition 2 and Theorem 2], there exists a unique non-negative
strong solution to equation (2.35) for any X > 0, which is a CBI (XO, LG (I)) with Lévy measures
v=0and 7(dz) = n®Chz 7% " 1{z>0} dz. In this regard, for a tempered-stable CBI process
in the sense of Definition 2.18, we have D; = (—0,6/n]. Indeed, for all z € R, x € D; if and
only if SIFOO z71mae(@=0/Mm2q, < 4oo, which holds true if and only if 2 < 6/5. Since v = 0, the
immigration mechanism ¥ of a tempered-stable CBI process reduces to U (z) = x. The branching
mechanism @ is explicitly described in the following lemma.

LEMMA 2.19. Fornp > 0, C, = 0, 0 = 0, and a € (1,2), the branching mechanism ® of a
tempered-stable CBI process is explicitly given by

(2.36) O(x)=—-bx+ % (02)* + Cy F(—a)((G —nz)" -0+ a@aflnx),

for all x < 0/n. Moreover, the branching mechanism ® is non-increasing with respect to the

tempering parameter 6, and Assumption 2.4 is satisfied.

PROOF. Let us first consider the case § = 0, which amounts to 7(dz) = n® C, 2717 10y dz.
This corresponds to a non-tempered stable CBI process in the sense of Section 2.6.2, whose branch-
ing mechanism ® is given by

O(x)=—bx+ % (aa:)2 + Co I'(—a) (—nx)?, Vz < 0.

Henceforth, consider # > 0. Our starting point is the integral appearing in (2.2), where we
replace the exponential e®*? with its Maclaurin series:

+0 +oo+00
j (e** =1 —xz2)n(d2) = n* Cf Z (z2)" __ae_%zdz,

0

for all z < 6/n. By restricting = such that |z| < 6/n, we can apply Fubini’s theorem to interchange

summation and integration:

+00 t©
. C f Z l’Z 11— QaC Z 771:/9 f anaflefzdz.

By using the Gamma functlon we can write

eac Z 775”/9 j L—a— 1 —zdz_eac Z 77:13/9) F(n—a),
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which is well defined for every n > 2 since « € (1,2). At this point, by inserting, for every
n>2T(n—a)=(-1)"n!($)I(—a) into the expression above, where () denotes the generalized

binomial coeflicient, we obtain

6% C, Z ’7”3/9 (n—a) =9acar(—a)§ (Z) (—%)”

We can identify the blnomlal series associated to the Maclaurin series expansion of the function
z — (14 x)%, whose convergence is ensured when |z| < 1. Therefore:
+00 "
0 CyT'(—a) Z <a> (—%) =Cy'(—a) ((9 —nz)" — 0%+ ot nx).

n

The branching mechanism ® is then given by
1 a —
<I>(:c):—bx—l—5(037)24-0&1“(—&)((9—7736) — 0% +ab” 17733),

for all « such that |z| < 6/n. We can then continuously extend the function ® to the whole
interval Dy = (—00,6/n]. Now, by computing the derivative of ®(z) with respect to the tempering

parameter 6, we have

%ot (-3 1003

00

By recalling that I'(—a) > 0 when « € (1,2), and using Bernoulli’s inequality, which here takes
the form (1 —nz/6) “lg1- (v — 1) /0, it then holds that aq;gx) < 0, implying that ® is non-
increasing with respect to the tempering parameter 6. Finally, we can differentiate the function ®

on the open interval (—o0, 8/n) as follows:
d'(z)=—b+c’z+anC,T(—a) (90‘_1 G nx)ail) ,
for all x < 6/n, which proves to be finite when x = 6/n, thus verifying Assumption 2.4. O

We show that the well-known Feller condition for CIR processes (see Sections 2.6.1 and 2.6.2),
applies with the same form to tempered-stable CBI process. We rely on [JMS17, Proposition
3.4], where an analogous result was obtained for the a-CIR process. In particular, we exploit the
non-increasing behavior of the branching mechanism ® with respect to 6.

PROPOSITION 2.20. Let X = (Xy)i=0 be a tempered-stable CBI process with n = 0, Cy = 0,
0>=0, and a € (1,2). Then, 0 is inaccessible by the process X = (X;)i=o if and only if 2 8 = o2.

PRrROOF. Throughout this proof, we use the techniques of [FUB14, Corollary 6] and [DFM14,
Theorem 2] for general CBI processes. First, there exist two trivial cases: 1 = 0, which corresponds
to a CIR process and where the Feller condition is given by 28 > ¢2. The second case is § = 0,
which is a non-tempered stable CBI process (weakly equivalent to an a-CIR process), and for which
[JMS17, Proposition 3.4] shows that the Feller condition takes the form 2 3 > o2

Let us now set > 0 and 6 > 0. We start by exploiting the non-increasing behavior of the

(I)a—CIR (I)a—CIR

branching mechanism ® with respect to 6 by writing > &, where corresponds to

the non-tempered case § = 0 given by (2.29). Next, by Bernoulli’s inequality, we have ® > ®CR,
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where ®“® denotes the branching mechanism of a CIR process given by ®(z) = —bz + & (0 2)%.
Define, for some p < 0 such that ®(x) > 0 for all x < p by convexity of ®, the quantity

o [ ([ E800)

where we recall that ¥(z) = Sz, for all # < 6/n, which is non-decreasing on D;. By [FUB14,
Corollary 6] and [DFM14, Theorem 2|, Z(®) = oo if and only if 0 is inaccessible by the CBI
process X = (X¢)i>0 associated to the branching mechanism ®. Therefore, in view of inequality
PCIR > § > IR we can write

E((I)Q—CIR) < = ((I)) < E(@CIR)'

First, if 23 > o2, then by [JMS17, Proposition 3.4], 0 is inaccessible by the a-CIR process of
branching mechanism ®*~ R which gives E(@a_CIR) = oo and E(@) = o0 as well. Hence, 0 is
also inaccessible for the tempered-stable CBI process X = (X;);>0. Conversely, if 0 is inaccessible
for X = (X{)¢=0, then E(<I>) = o0, yielding E(@CIR) — . In this case, given that ®“™® is the
branching mechanism of a CIR process, we have 2 3 > ¢2, which finally concludes the proof. O

The next proposition provides a simple necessary and sufficient condition on the parameter b
for the finiteness of the exponential moment E[e”“ X + a2 YT], for all x1 < 0/n, x9 <0, and T > 0,
where X = (X})¢>0 is a tempered-stable CBI process and Y; := Sg Xsds, for all t = 0.

PROPOSITION 2.21. Let X = (Xy)i>0 be a tempered-stable CBI process with n > 0, Cy > 0,
0 >0, and a € (1,2). Then, we have E[exlXT“”? YT] < 400, for all xy < 0/n, xa <0, and T > 0,
if and only if b > 1 o> % +nCoT(—a) 89 (a — 1).

PRrOOF. It suffices to apply Corollary 2.9 to the tempered-stable CBI process X = (X;)i>o0,
knowing that Assumption 2.4 is satisfied by Lemma 2.19. It then yields E[ezl X+ @2 YT] < 400, for
all z1 < 6/n, z9 < 0,and T > 0, if and only if ®(6/n) < 0, where @ is given by (2.36). By computing
®(6/n), we can recover the equivalence: ®(0/n) <0 < b> 50> %4—17 ColT (=)0 (a—1). O

REMARK 2.22. By combining Remark 2.7 with Proposition 2.21, for a tempered-stable CBI
process X = (X;)i=0 where b > 152 % + 10y T(—a) 0%t (a — 1), we also obtain the finiteness of
the complex exponential moment E[e“t 7 +u2Y7] “for all uy € C such that Re(u;) < 6/n, uz € C_,
and T' > 0. Indeed, the extension of the joint conditional Laplace transform (2.12) to all the
couples (u1,ug) of this kind holds only up to a time T(1.u2) guch that T(1-u2) > TRe(ur)Re(uz))
(see Remark 2.7). However, under Proposition 2.21, we have T(*1:2) = 4o, for all 2; < /7 and
x5 < 0, if and only if b > 1 o2 % +1CaT(—a) 6% ! (o — 1). As a result, we obtain T(®1:42) — 4o,
for all u; such that Re(u;) < 6/n and uy € C_, by the previous inequality. This will play an
important role for the application of Fourier-based pricing methods (see Chapter 3).

In conclusion to this chapter, a brief overview of all the examples of CBI processes that have
been considered in Sections 2.6 and 2.7 is reported in Table 2.1. For each example in the table:
e The first column lists the parameters to specify from a general CBI process;
e The second column highlights the principal features of the example considered.
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’ H Parameters Features
CIR process b>0,v=0, Continuous CBI process
([CIRSE)D and T =0 Feller condition

a-CIR process,
([LM15, JMS17, JMSZ21))

b>0,v =0, and
w(dz) = Cp 2z 7 1,50y dz,
with >0, Cq =0, and a € (1,2)

Lévy-driven integral equation
E[e”*T] = +o0, V2 > 0, VT > 0

Feller condition applies

Hawkes process
((Haw71, HO74, Haw18])

b>0,0=0,v=0,
m = 0y with n > 0,

and Xo = %ﬂ

Stochastic intensity
Self-exciting counting process

Time-changed Poisson formulation

Marked Hawkes process
((BNT02, BM02])

b>0,0=0,v=0,
7 probability distribution on Ry,

with SOMO zm(dz) < oo, Xo = %

One mark per event (with law )
Amplified self-exciting behavior

Time-changed compound Poisson

Tempered-stable
CBI process
(see Section 2.7)

v =0, and for all z > 0:
w(dz) = 9 Cpz 72 e_%zdz7
n>0,C0>0,0>0, ac(l,2)

Stochastic time change equation
E[e®*T] < +o0, Y < 0/n, VT > 0

Feller condition applies

TABLE 2.1. Overview of the examples of CBI processes considered in this chapter.




CHAPTER 3

Multiple yield curve modeling with CBI processes

SUMMARY. We develop a modeling framework for multiple yield curves driven by Continuous-state
Branching processes with Immigration (CBI). Exploiting the self-exciting behavior of jump-type
CBI processes, this approach can reproduce the relevant empirical features of spreads between
different interbank rates. In particular, we construct a novel class of multi-curve models by relying
on a flow of tempered-stable CBI processes. Such models are especially parsimonious and tractable,
and are able to generate contagion effects among different spreads. The proposed approach allows
for the explicit valuation of all linear interest rate derivatives, and ensures semi-closed-form formulae
for non-linear products via Fourier techniques. Finally, we provide a numerical comparison of FFT
and quantization-based pricing methodologies, and then show that a simple specification of our
CBI-driven multi-curve model can be successfully calibrated to market data. This chapter is based
on the work Multiple yield curve modelling with CBI processes, co-authored with C. Fontana and

A. Gnoatto, published in Mathematics and Financial Economics, volume 15, pages 579-610, 2021.
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3.1. Introduction

3.1.1. Motivation and literature. The emergence of multiple yield curves can be rightfully
considered as the most relevant feature of interest rate markets over the last decade, starting from
the 2007-2009 financial crisis. While pre-crisis interest rate markets were adequately described by
a single yield curve and Interbank offered rates' associated to different tenors were determined by
simple no-arbitrage relations, this proves to be no longer valid in the post-crisis scenario, where
yield curves associated to interbank rates of different tenors demonstrate a distinct behavior.

This phenomenon is reflected by the presence of tenor-dependent spreads between different
yield curves. In the midst of the financial crisis, such spreads reached their peak beyond 200 basis
points and since then, and still nowadays, they have continued to remain at non-negligible levels
(see Figure 3.1). The credit, liquidity, and funding risks existing in the interbank market, which
were deemed negligible prior to the financial crisis, reveal to be at the origin of this phenomenon
(see for instance [MUO08, GKP11, CD13, GSS17]).

Multiplicative Spreads
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FIGURE 3.1. Euribor-OIS spreads from 06/2001 to 09/2019.
Source: Bloomberg.

IThey are generally referred to as Ibor rates. The most relevant Ibor rates are represented by the Libor rates in

the London interbank market and the Euribor rates in the Eurozone.
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In all major jurisdictions, transaction-based backward-looking risk-free rates are currently being
introduced as a replacement for Ibor rates (e.g. SOFR in the US market, €STR in the Eurozone,
SONIA in the UK market), also as a response to the 2012 Libor manipulation scandal (see e.g.
[KS21] for a brief examination of the alternative rate benchmarks). We can mention several works
where the new reference rates intended to replace Ibor rates have been modeled. We start with
[Mer18b]|, where a simple multi-curve short-rate model was extended to take SOFR rates into
account. [LIM19] presented an extension of the standard Libor market model to backward-looking
rates. [MS20] introduced a class of rational savings account models for backward-looking rates, and
[AB20] developed a modeling framework for interest rate spikes in view of SOFR derivative pricing.
More recently, [GS21] have designed a SOFR short-rate model taking stochastic discontinuities
explicitly into account, and [SS21] have constructed a novel class of dynamic term-structure models
for SOFR futures by relying on historical data.

At the time of writing, definitive conclusions on the evolution of Ibor rates cannot be drawn.
However, there seems to be a consensus on the fact that the multiple yield curve framework will
remain relevant (and, possibly, even more relevant) in the future. Indeed, several authors have
argued that a complete disappearence of Ibor rates, which are known to reflect the fluctuations in
the unsecured term funding costs of banks, does not seem like a realistic scenario. Among others,
we can in particular mention [SS19], who documented that multiple benchmark rates will coexist
in the future. For instance, in some jurisdictions, Ibor benchmarks have been reformed and the
“two-benchmark approach” of [DS15] has been adopted (e.g. in the Eurozone, the Euribor rate
will not be abandoned, but only replaced by a reformed version that will coexist with the €STR
rate as of 2022).

In this chapter, we propose a novel modeling approach to multiple yield curves, which is
specifically motivated by the relevant empirical features of spreads between interbank rates. An
inspection of Figure 3.1 provides an overview of these features (previously listed in Chapter 1):

(i) Spreads are typically greater than one and non-decreasing with respect to the tenor;
(ii) There are strong co-movements (in particular, common upward jumps) among spreads
associated to different tenors;
(iii) Relatively large values of the spreads are associated to high volatility, showing volatility
clustering zones during crisis periods;
(iv) Low values of some spreads can persist for prolonged periods of time.

As already postulated in Chapter 1, as far as we know, a multi-curve model that can adequately
reproduce all these features does not yet exist in the related literature.

Prior to presenting our contribution, let us briefly discuss the literature on multi-curve models.
We emphasize that we do not attempt a general overview of multi-curve modeling, referring instead
to the volumes [BM13, Hen14, GR15] for detailed accounts on the topic. Multi-curve models,
as extensions of standard single-curve interest rate models, can be categorized into four principal
classes: short-rate models [KTW09, Kenl10, FT13, GM16]|; Heath-Jarrow—Morton (HJM)
models [FST11, MP14, CGNS15, CFG16]; Libor market models [Bial0, Mer10, Merl3,
GPSS15]; and finally pricing kernel models [NS15, CMNS16, MM18|.
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We can also add the following more recent contributions: [CFG19b], where the authors have
developed the affine framework unifying all existing multi-curve models based on affine processes;
[BMSS19, AGS20] have adopted a new short-rate approach modeling “roll-over risk” explicitly;
[EGG20] have extended the Libor market model to allow for negative interest rates; [FGGS20]
have constructed an HJM model taking stochastic discontinuities into account; [LH20] have intro-
duced self-exciting features into the multiple yield curve framework through a reduced-form model

of interbank credit risk by relying on self-exciting jump processes.

3.1.2. Contribution. By relying on the theory of Continuous-state Branching processes with
Immigration (CBI), we develop a modeling framework that captures the relevant empirical features
of spreads and, at the same time, guarantees an efficient valuation of interest rate derivatives written
on Ibor rates. Exploiting the affine property of CBI processes, we design our modeling framework
in the context of the affine multi-curve models recently introduced by [CFG19b], taking spot
multiplicative spreads and the OIS short rate as fundamental modeling objects (see Chapter 1).

By construction, the model achieves a perfect fit to the observed term structures, and ensures
spreads greater than one and non-decreasing with respect to the tenor. The model generates
an exponentially-affine structure for OIS zero-coupon bonds and forward multiplicative spreads,
allowing for the explicit valuation of all linear interest rate derivatives.

While [CFG19b] focused on the general theoretical properties of the framework, we con-
tribute by introducing a novel class of tractable and flexible multi-curve models driven by a flow of
tempered-stable CBI processes, which are specifically motivated by the empirical features discussed
above. The adoption of a flow of CBI processes (see [DL12]) enables us to capture strong co-
movements among spreads such as common upwards jumps and jump clustering. In particular, the
self-exciting behavior of CBI processes proves to be a key ingredient to reproduce these features.

The choice of tempered-stable CBI processes, as presented in Section 2.7, offers a remarkable
trade-off between flexibility and analytical tractability, and allows for an explicit characterization of
several important properties of the model. More specifically, tempered-stable CBI processes provide
a simple necessary and sufficient condition for the finiteness of exponential moments, which will
represent an indispensable requirement.

We derive semi-closed-form pricing formulae for caplets via Fourier techniques. More precisely,
we implement two pricing methodologies based on FFT and quantization, where the latter is here
applied for the first time to an interest rate setting. Finally, in a numerical analysis (Section 3.5),
our two pricing methodologies are compared and a specification of the proposed model with two
tenors is calibrated to market data, demonstrating an excellent fit to market data. We believe that
the introduction of such models driven by a flow of CBI processes, can lead to further successful
applications in other contexts where different term structures coexist.

3.1.3. Structure. Section 3.2 introduces the general modeling approach, which is then spe-
cialized in Section 3.3 to multi-curve models driven by a flow of tempered-stable CBI processes.
Section 3.4 presents our pricing formulae for caplets. Section 3.5 contains numerical results, while
Section 3.6 concludes. We finally simulate tempered-stable CBI processes in Appendix 3.A.
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3.2. General modeling with CBI processes

As in Chapter 2, we fix a stochastic basis (Q,}' ,IF, Q) satisfying the usual conditions, where
Q is a probability measure whose role will be specified later, and where F = (F;);> is a filtration
to which all stochastic processes are assumed to be adapted. By convention, we set F = F and
denote the expectation under Q by E.

3.2.1. Preliminaries on the post-crisis interest rate market. The reference rates for
overnight transactions are the EONIA (Euro Overnight Index Average) rate in the Eurozone and
the Federal Funds rate in the US market. These rates are determined on the basis of actual
overnight transactions of the interbank market, and represent the underlying of Overnight Indexed
Swaps (OIS). These swaps are then quoted by their market swap rates, simply referred to as OIS
rates, which are typically considered as the best proxies for risk-free rates.

By using bootstrapping techniques (see e.g. [AB13]), the OIS term structure 7' — B(t,T)
can be recovered from OIS rates, where B(t,T) denotes the price at time ¢ of an OIS zero-coupon
bond with maturity 7. We then represent the OIS short rate by the stochastic process r = (r¢)i=0,
defined as the short end of the term structure of instantaneous forward rates implied by OIS
zero-coupon bond prices. In market practice, the OIS short rate is usually approximated by the
overnight rate associated to the shortest tenor and is often adopted as a collateral rate.

For § > 0 and T > 0, let us now introduce the simply-compounded (risk-free) OIS spot rate
for the period [T, T + 6], which we denote by LO™(T, T, ). The latter is given by

(3.1) LOS(T, T, 6) = % (B(T;M) - 1> .

We point out that equation (3.1) is valid for all 6 > 0 and 7" > 0 as far as OIS rates are concerned.
We also observe that the right-hand side of (3.1) used to be the pre-crisis textbook definition of
the Interbank offered rate (Ibor) prevailing at time 7' for the period [T, T + J].

Ibor rates represent the underlying of interest rate derivatives and are determined by a panel
of primary financial institutions for unsecured lending (refer to [GR15, Chapter 1] for further
details). We denote by L(T,T, ) the spot Ibor rate for the period [T, T + §], where the tenor § is
typically one day (1D), one week (1W), or several months (1M, 2M, 3M, 6M, 12M). We consider
Ibor rates for a generic set G := {61, ... ,5m} of tenors, with 0 < §; < ... < d,,, for some m € N.
We emphasize that in the post-crisis environment, Ibor rates of different tenors exhibit a distinct
behavior and are no longer determined by simple no-arbitrage relations. As in Section 3.1, this
leads to non-negligible basis spreads and to the emergence of multiple yield curves.

Among all financial derivatives written on Ibor rates, Forward Rate Agreements (FRAs) can
be regarded as the basic building blocks, owing to the fact that all linear interest rate products,
such as interest rate swaps and basis swaps, can be represented as portfolios of FRAs (see e.g.
[CFG16, Section 5.2]). We recall that a FRA written on the Ibor rate L(T,T,¢) with fixed strike
K is a contract that delivers the payoff § (L(T, T,6) — K ) at maturity 7"+ §. The forward Ibor
rate L(¢,T, ) at time ¢ < T is defined as the value of K that makes the price at time ¢ of the FRA
equal to zero. We then formulate the definition of a multiple yield curve market as follows.
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DEFINITION 3.1. A multiple yield curve market is a financial market where the following basic
assets are traded:

e OIS zero-coupon bonds for all maturities T > 0;
e FRAs for all tenors § € G, for all maturities 7" > 0, and fixed strike K.

The natural question arising from Definition 3.1 concerns absence of arbitrage in this market.
Recently, [FGGS20] have provided a formulation of the fundamental theorem of asset pricing for
multiple yield curve markets. Indeed, by [FGGS20, Theorem 6.3], absence of arbitrage in the
sense of No Asymptotic Free Lunch with Vanishing Risk (NAFLVR) is equivalent to the existence
of an equivalent separating measure, thus extending the main result of [CKT16] to multiple curves
and an infinite time horizon. In general, an equivalent separating measure cannot be replaced with
Equivalent Local martingale Measure (ELMM), see [FGGS20, Remark 6.4]. However, by using
Fatou’s lemma, the existence of an ELMM always suffices to guarantee NAFLVR.

3.2.2. The general modeling framework. From now on, we adopt a martingale approach
and directly define our modeling framework on the stochastic basis (Q, F,F, Q), where Q is assumed
to be a risk-neutral measure for the multiple yield curve market. By definition, this means that all
traded assets considered above are martingales under Q when discounted by the OIS bank account
B = eJorsds , for all ¢ = 0, which therefore ensures NAFLVR for the multiple yield curve market
by [FGGS20, Theorem 6.3].

OIS zero-coupon bond prices can be represented by

(3.2) B(t,T) = E[e’f“ds

ft]a
for all 0 <t < T < 40, and forward Ibor rates are given by
(3.3) L(t,T,6) = B[ L(T,T,8) | I+ ],

forall 6 € G and 0 < t < T < 400, where ET+® denotes the expectation under the (T + §)-forward
probability measure Q7*9 with the OIS zero-coupon bond B(-,T + ) as a numéraire (see e.g.
[GEKR95]). We also point out that equation (3.3) was first introduced by [Mer10, Section 4] as
a definition of the FRA rate.

As mentioned in Section 3.1, we design our modeling framework in the context of the affine
multi-curve models recently studied by [CFG19b]|. Our main modeling quantities are the OIS
short rate r = (r)¢=0 and the spot multiplicative spreads between (normalized) spot Ibor rates and

(normalized) simply-compounded OIS spot rates (refer also to Chapter 1), defined as follows:

1+ 6 L(t,t,0)
1) - 9 Uy
(3.4) S°(t.) = 1 SLOS(1.1.5] ¥(5,t) € G x R,

In the post-crisis environment, multiplicative spreads are typically greater than one and non-

decreasing with respect to the tenor. By abstracting from liquidity and funding issues, this can be
ascribed to the fact that Ibor rates incorporate the risk that the average credit quality of an initial
panel of creditworthy banks deteriorates over the term of the loan, while OIS rates, in turn, reflect
the average credit quality of a periodically refreshed panel of banks (see e.g. [CDS01, FT13]).
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The idea of modeling multiple yield curve markets via multiplicative spreads is due to [Hen14],
and pursued by [CFG16, CFG19b, EGG20, FGGS20|. They can be directly inferred from
quoted Ibor and OIS rates and, in comparison to additive spreads (see [MX12, Mer13]), admit
a natural economic interpretation. Indeed, S°(t,t) can be considered as a market expectation (at
time t) of the riskiness of the Ibor panel for the period [t,t + ¢]. In particular, this interpretation
reveals to be related to the foreign exchange analogy that we derived in Chapter 1 (see also
[Bial0, NS15, CFG16, MM18]).

Let us now suppose that the stochastic basis (Q,]—" ,F,@) supports a d-dimensional process
X = (Xt)¢>0 such that each component X* is a CBI(X(’]“, Uk <I>k) in the sense of Chapter 2, whose

d

branching mechanism ®* satisfies Assumption 2.4. We also assume that X', ..., X% are mutually

independent. Besides the driving process X, let us then introduce the following ingredients:

A function ¢ : Ry — R such that S(:)F ()| du < +00, for all T > 0;
A vector A € Ri;

A family of functions ¢ = (c1,...,¢p) with ¢; : Ry — R, for every 1 < i < m;

A family of vectors ¥ = (71,...,vm) with v; € R%, for every 1 <i < m.
DEFINITION 3.2. The tuple (X,E7 A, ¢, 'y) is said to generate a CBI-driven multi-curve model if

(3.5) re = 0(t) + AT X,
(3.6) log S% (t,t) = ci(t) + 7 Xu,

for all t = 0 and for every 1 < i < m, and if the following conditions hold true:
(3.7) vk €DE and TV M = fopo,

for every 1 < ¢ < m and for every 1 < k < d, where the set D’f is given by (2.8) and T,(Ji’k’_/\k)
denotes the lifetime as in Theorem 2.8 applied to x1 = 7; and x2 = —A, both with respect to
the CBI process X* = (X[);>0, for every 1 < k < d.

Condition (3.7) guarantees that E[e™ fo 7 ds S%(T,T)] < +oo, for all § € G and T > 0, thus
ensuring that the model can be applied to arbitrarily large maturities (i.e. the expected value
in (3.3) is always well-defined). The role of the time-dependent functions ¢ and ¢ consists in
allowing the model to perfectly fit the observed term structures (we refer the reader to [CFG19b,
Proposition 3.18] for a precise characterization of this property).

A multi-curve model constructed as in Definition 3.2 inherits the properties of the CBI process,
in particular its self-exciting behavior (see Remark 2.14). Moreover, it can easily generate common
upward jumps in different spreads. In view of equations (3.6), this can be achieved by letting
fyZT v # 0, for every 1 < 4,5 < m with ¢ # j, meaning that the spreads associated to the tenors
0; and J; are affected by common risk factors. As mentioned in Section 3.1, common upward
jumps represent a particularly important empirical fact. We refer to Section 3.3 for a more specific
discussion on the adequacy of this approach in reproducing the empirical features of Ibor-OIS
spreads as exhibited by Figure 3.1.
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REMARK 3.3. In general, there are no constraints on the choice of the dimension d of the driving
process X. On the one hand, d = m is needed to ensure non-trivial correlation structures among
the m spreads. On the other hand, the case d < m is in line with market practice, which often
assumes for simplicity the existence of linear (possibly time-varying) dependence among different
spreads. Let us also mention that models driven by a vector of independent CBI processes have
been recently applied to spot and forward energy prices in [JMSS19] and [CMS19], respectively.

3.2.3. Features of the model. As shown in [CFG16, CFG19b], the basic building blocks
for the valuation of interest rate derivatives in a multi-curve setting are represented by OIS zero-
coupon bond prices and forward multiplicative spreads S°(t, T), defined as follows:

146 L(t,T,6)
) . )
(3.8) SET) = 5 5 IO (. T.6)

forall § € G and 0 < t < T < +00, where L(t, T, ) is the forward Ibor rate and LOS(¢, T, §) is the
d (risk-free) OIS forward rate given by

simply-compounde

(3.9) LOS(4,T,6) = % (% - 1) .

We mention that by equation (3.3), the forward multiplicative spread process (S%(t,T))i<r is a
martingale under the T-forward measure Q7 for all § € G and T' > 0 (see [CFG16, Lemma 3.11]).

In the next result, we show that in a CBI-driven multi-curve model, OIS zero-coupon bonds
and forward multiplicative spreads admit an exponentially-affine structure. As a consequence, all
linear interest rate derivatives such as FRAs, interest rate swaps, and basis swaps, can be priced

in closed form by relying on the general valuation formulae stated in [CFG16, Section 5.2].

LEMMA 3.4. Let (X,& /\,c,'y) generate a CBI-driven multi-curve model. Then:
(i) For all0 <t <T < 40, the OIS zero-coupon bond price B(t,T) is given by

(3.10) B(t,T) = exp(Ao(t,T) + Bo(T — )T Xy),
where Ao(t,T) and Bo(T —t) = (B{(T —t),..., BT — t))T are given by

- JT_t <€(s )+ éxpk (Vk(s, 0, —\g) )ds,
i

Ao(t,T) : .

BE(T —t) := V(T —t,0,—\p), for every 1 < k < d;

(ii) For every 1 < i < m and for all 0 < t < T < 40, the forward multiplicative spread
S%(t,T) is given by

(3.11) S%(t,T) = exp(Ai(t, T) + B(T — t) T Xy),
where A;(t,T) and Bi(T —t) = (B}(T —t),...,B{T — 25))T are given by

(2

Ai(t,T) :=¢;(T) + kzdllfoTt (\pk <Vk(s,%',k, —M)) —gF <Vk(8, 0, —)xk)))ds,

BIT —t) := VX(T —t, v, =) — V(T — 1,0, —\g),  for every 1 < k < d.
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PROOF. Due to condition (3.7) and the independence of the processes X!,..., X 4 equations
(3.10) and (3.11) can be easily obtained by relying on the affine property of the CBI process. First,
equation (3.10) for the OIS zero-coupon bond price B(t,T), for all 0 < t < T < +o0, follows
from (3.2) and a direct application of Lemma 2.2 for each CBI process X* = (X[);=0. Then,
equation (3.11) for the forward multiplicative spread S%(t,T)), for every 1 < i < m and for all
0 <t<T < +oo, follows from the martingale property of (S%(t,T))i<r under the T-forward
measure Q7, and an application of Proposition 2.5 for each CBI process X* = (th)tzo- U

As mentioned previously, in typical post-crisis market scenarios, multiplicative spreads are
greater than one and non-decreasing with respect to the tenor. The next lemma shows that these
features can be easily reproduced by a CBI-driven multi-curve model. While this result can be
recovered as a special case of the general statement in [CFG19b, Proposition 3.7], here we provide
a short self-contained proof that relies on the specific properties of CBI processes.

LEMMA 3.5. Let (X,K, /\,c,'y) generate a CBI-driven multi-curve model. Then:
(i) For every 1 <i<m, ifv; € RL and ¢;(t) = 0, for allt > 0, then S%(t,T) = 1 a.s. for all
0<t<T < +4o0;
(ii) For every 1 < i < m —1, if vix1 — v € R and ¢;(t) < cira(t), for all t = 0, then
S%i(t,T) < S%+1(t,T) a.s. for all0 <t <T < +o0.

PROOF. Arguing as in [Lill, Proposition 3.1] and [Li20, Proposition 2.11], it can be shown
that the function V¥ is increasing in its second coordinate on D¥, for every 1 < k < d. In addition,
we know from Chapter 2 that each immigration mechanism ¥* is non-decreasing. Hence, since X
takes values in Ri, the result is a direct consequence of part (ii) of Lemma 3.4. O

REMARK 3.6. Recently, negative short rates have been observed to coexist with non-negative
spreads (see e.g. [EGG20]). Since the function ¢ in equation (3.5) is allowed to take negative
values, our framework does not exclude this possibility. A slight extension of Definition 3.2 permits
to generate OIS short rates not bounded from below by the function ¢. It suffices to replace the
process X with a (d + 1)-dimensional process X’ = (X,Y’) such that X’ is an affine process with
Q(Y; <0) > 0, for all £ > 0, where Y is not restricted to be independent of X. Equation (3.5) is
then replaced by r; = £(t) + AT X; + Y;, while multiplicative spreads remain given by (3.6).

3.3. A new class of multi-curve models

In this section, we introduce a class of multi-curve models driven by a flow of tempered-stable
CBI processes. The proposed specification is motivated by the most relevant features of the spreads
(see Figure 3.1), and reveals to be particularly parsimonious and tractable for our purposes.

3.3.1. Flow of tempered-stable CBI processes. Let us first suppose that the stochastic
basis (Q, F, I, Q) is equipped with the following two independent objects:
e A Gaussian white noise W (dt,du) as in [Wal86] on Ry x R and with intensity dt¢du;

e A Poisson random measure N (dt,du,dz) on Ry xR, xR, with compensator dt du 7(dz)
and compensated measure N} (dt,du, dz) := Ni(dt, du, dx) — dt duw(dx).
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As in Section 3.2, we fix a generic set G := {51, . (5m} of tenors, with 0 < é1 < ... < 4, for some
m € N. In this sense, for all § € G, consider the following stochastic integral equation:

t Ys(0)
Yi(6) = Yo(6) + f (B(6) —bYs(8)) ds + af W(ds, du)

oo
(3.12) j J J x Ni(ds, du, dz), vVt =0,

for be R, o0 = 0, and where the following hold:

e Y5:G—> Ry and S Q — R+ are both deterministic and non-decreasing on G;
o m(dz) =n*Coz "% 171,20y dz, with n >0, Co >0, 6 >0, and a € (1,2).

By [DL12, Theorem 3.1], for all 6 € G, there exists a unique non-negative strong solution to
equation (3.12), which is a CBI(Y;(6), U, ®) (see also Remark 2.13). More precisely, for all § € G,
Y (0) = (Y2(0))¢=0 is a tempered-stable CBI process as in Section 2.7 with immigration mechanism
U(z) = B(8) x and branching mechanism ® given in Lemma 2.19, where we recall that the function
® automatically satisfies Assumption 2.4.

The two-parameter process {Yt(é) :t>0,0eg } defines an instance of a flow of tempered-stable
CBI processes (we refer the reader to [DL12, Section 3| for further details). All the components of
the flow have a common branching mechanism ®, given by (2.36), while the immigration mechanism
of Y(6) is equal to U(z) = B(8)z, for all § € G. Observe also that the processes {Y(6) : § € G}
share the same volatility coefficients ¢ and 7, where we recall that 7 serves as a volatility parameter
for the jump part (see Definition 2.18). They also share the same jump measure 7 and the same
speed of mean reversion b. Only the long-run value 3(4)/b (when b > 0) is specific for each process
Y (0) = (Y2(0))e=0, for all 6 € G. Furthermore, we highlight the fact that the martingale terms in
equation (3.12) are generated by common sources of randomness W and N 1, while depending on the
current value of each process Y () = (Y:(0))¢=0, which therefore implies a non-trivial dependence
structure among the processes {Y((S) :0€eg } This observation will be made more precise below.

3.3.2. Construction of the multi-curve models. Let us now formalize the notion of multi-
curve models driven by a flow of tempered-stable CBI process. To this end, we define the factor
process Y = (Y})i=0 by V; := (Y}((Sl), . ,Yt(ém))T, YVt = 0, and introduce the following ingredients:

o A function £: Ry — R such that ) [¢(u)|du < +oo, for all T > 0;
e A vector ue R,
e A family of functions ¢ = (cy,...,¢p) with ¢; : Ry — Ry, for every 1 <i < m.

DEFINITION 3.7. The tuple (Y, 4, c) is said to generate a multi-curve model driven by a flow
of tempered-stable CBI processes if

(3.13) re = 0(t) + 'Yy,
(3.14) log 8% (t,t) = ¢;(t) + Yi(6;),
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for all t = 0 and for every 1 < i < m, and if the following conditions hold true:
1 5,6
(3.15) >n and b= 5027 +nCaT(—a) 0% (a—1).
n

The second part of (3.15) corresponds to the condition provided by Proposition 2.21 for
tempered-stable CBI processes, which is common to all the processes {Y(é) 10 € g}. In this
regard, 6 > n suffices to guarantee that E[eyf(‘s)] < 4o, for all § € G and t > 0.

Under Definition 3.7, multiplicative spreads are by construction greater than one. Moreover,
thanks to the properties of a flow of CBI processes, monotonicity of multiplicative spreads can be
easily achieved, provided that the initially-observed spreads are non-decreasing in the tenor.

PROPOSITION 3.8. Let (Y,f,u, c) generate a multi-curve model driven by a flow of tempered-
stable CBI processes. Suppose that ¢;(t) < ¢;+1(t), for every 1 <i<m —1 and all t = 0. Then, it
holds that S%(t,T) < S%+\(t,T) a.s., for every 1 <i<m —1 and all0 <t <T < 4.

PROOF. Since both functions Yy : G — Ry and 8 : G — R, are non-decreasing on G, [DL12,
Theorem 3.2] implies that for every 1 < i < m — 1, Q(Y3(6;) < Yi(6i11),Vt = 0) = 1. Hence,
if in addition we have ¢;(t) < ¢j41(t), for every 1 < i < m — 1 and all ¢ > 0, it follows that
SOi(t,t) < S%+1(t,t) a.s. for every 1 <i < m —1 and all ¢ > 0. The claim follows from the fact
that the process (S%(t,T))s<r is a martingale under the T-forward probability measure Q7. [0

The processes {Y(d) :0eg } possess the characteristic self-exciting behavior of CBI processes.
This translates directly into a self-exciting property of spreads: for every 1 < i < m, a large value
of S%(t,t) increases the likelihood of further upward jumps of the spread itself. As discussed in
Remark 2.14, a large value of S% (t,t) increases the volatility of the spread process itself, thereby
generating volatility clustering zones in correspondence of large values of the spreads.

Under the conditions of Proposition 3.8, there is a further self-exciting effect among different
spreads: a large value of S%(t,t) increases the likelihood of upward jumps of all other spreads with
tenor d;, for every j > 4, which reflects the higher risk implicit in Ibor rates with longer tenors.
As pointed out in Section 3.1 (see in particular Figure 3.1), these contagion effects among spreads
represent empirically relevant features of the post-crisis multi-curve interest rate market.

Figure 3.2 shows a sample trajectory of a multi-curve model in the sense of Definition 3.7 with
g = {31\/[, 6M}, providing a clear evidence of jump clustering phenomena. The sample paths have
been generated by exploiting the simulation scheme for tempered-stable CBI processes described
in Appendix 3.A, using the calibrated parameters reported in Table 3.3.

In Definition 3.7, each process Y (0) = (Y;(6))¢>0 drives the multiplicative spread with tenor d,
while all the processes {Y (6) : § € G} can affect the OIS short rate given by (3.13). This generates
a non-trivial dependence between the OIS short rate and the multiplicative spreads, and among the
spreads themselves, in line with the dynamics observed on market data. The quadratic co-variation

of log-spreads of tenors d; and ¢;, such that i < j, can be computed as follows:

t t rYs—(6;) p+oo
(3.16) [logSéi(-,-)JogS‘sJ'(-,-)]t :a2f0 Ys(éi)ds—kLL L 2% Ny (ds, du, dz),
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18 Behavior of the CBI-driven model for two tenors:
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FIGURE 3.2. One sample path of the short rate (red line) and the multiplicative
spreads for two tenors (3M in blue and 6M in green) given in Definition 3.7.

for all ¢ = 0. This representation of the quadratic co-variation between log-spreads shows that
common jumps arise due to the presence of the common random measure Ni. The presence of
common upward jumps is consistent with the contagion effects reported in Section 3.1 (see also
Figure 3.1), and is clearly visible in the simulated paths of Figure 3.2.

Figure 3.2 exhibits prolonged periods of time during which spreads remain at relatively low
levels. This behavior is also observed in Figure 3.1, and can be achieved by small values of « in
(1,2), common to all the processes {Y(5) :0€eg } Indeed, for all § € G, a smaller value of « implies
a stronger compensation effect in Krl, corresponding to a stronger negative drift after a large jump
of the process Y (9) = (Y2(0))¢=0. This leads to a sharp reduction of the jump intensity, which then
increases the likelihood of a persistence of low values for the spread S%(t,t).

REMARK 3.9. By adapting [BBSS21, Proposition 5] to our setting, we can show that the flow
of processes {Y(é) :0eg } as defined above, is closed under a wide class of equivalent changes of

probability. Indeed, we can construct an equivalent probability measure [P as follows:
dP
(3.17) —

- Y (6m) © Ys—(Om) ptoo ~
. =¢ gff W(ds,du)+JJ f (er—1) Ni(ds, du, dz) | |
2 0 Jo 0 Jo 0 .

for all ¢ > 0, for some £ € R and ¢ < 6/n, where the stochastic exponential is a true martingale

under Q as a direct consequence of [KIMK10, Corollary 3.9]. The stochastic exponential has been
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expressed with respect to the process Y (d,,) = (Yi(6m))i=0 of longest tenor d,, in the set G, so as
to preserve the structural properties of the flow {Y((S) :0eg } under P. Additionally, as a direct
consequence of Girsanov’s theorem (see e.g. [EK20, Section 3.12]), the processes {Y(§) : § € G},
for all 0 € G, remain tempered-stable CBI processes under P up to parameter rescaling.

3.3.3. Embedding of the multi-curve models. The components of the flow of tempered-
stable CBI processes {Y(&) 10 € g} are highly dependent. Hence, the multi-curve models of
Definition 3.7, in their present form, do not seem to belong to the general class of CBI-driven
multi-curve models as introduced by Definition 3.2. However, an easy transformation allows to
consider the present specification as an instance of the general modeling framework of Section 3.2.

THEOREM 3.10. Let (Y7 4, c) generate a multi-curve model driven by a flow of tempered-stable
CBI processes. Consider the following objects:

e The m-dimensional process X = (Xy)i=0 defined by
(3.18) X! = Y3(6) — Yi(6i1), vt >0,

for every 1 < i < m, with Y (do) =0 and [(dp) :=
o The vector A € R given by

m
(3.19) A = Z ks for every 1 <i < m;
k=1
o The family of vector v = (V1,...,vm) € RT*™ given by
(3.20) Yig = Lyj<iys for every 1 <i,7 < m.

Then, the tuple (X, A, c,’y) generates a CBI-driven multi-curve model such that

(i) for every 1 < i < m, the process X' = (X})i=0 is a tempered-stable CBI process with
branching mechanism ® and immigration mechanism ¥'(z) = (8(6;) — B(0;—1)) x
(ii) the processes X',..., X™ are mutually independent;
(iii) the OIS short rate and multiplicative spreads are given by (3.13) and (3.14), respectively.

PRrROOF. Parts (i) and (ii) are direct consequences of the properties of the flow of processes
{Y(0) : 6 € G} (see [DL12, Theorems 3.2 and 3.3]). To prove part (iii), it suffices to observe that,
due to the definitions of A and ~ in (3.19) and (3.20), respectively, it holds that

ANXe=p'Y,  and [ X =Yi(5),

for all t = 0 and for every 1 < i < m. Note that condition (3.7) is implied by condition (3.15),
since D! = (—o0,0/n], for every 1 < i < m, where we have ®(0/n) < 0 with 6 > 7. O

In view of Theorem 3.10, the multi-curve models of Definition 3.7 driven by the flow of
tempered-stable CBI processes {Y((S) :0€eg } can be equivalently described in terms of a family
of mutually-independent risk factors X1, ..., X™ where each factor X is affecting all spreads with
tenor 6; > 0; (and, possibly, the OIS short rate). In particular, the presence of common risk factors



48 3. MULTIPLE YIELD CURVE MODELING WITH CBI PROCESSES

among different spreads accounts for the possibility of common upward jumps, as mentioned above,
in line with the contagion effects reported in Section 3.1 (see also Figure 3.1).

Another consequence of Theorem 3.10 is that multi-curve models as in Definition 3.7 can
generate OIS zero-coupon bonds and forward multiplicative spreads that admit an exponentially-
affine structure (see Lemma 3.4). As a result, in the context of a multi-curve model driven by a
flow of tempered-stable CBI processes, all linear interest rate derivatives can be explicitly priced.

COROLLARY 3.11. Let (Y,é,u,c) generate a multi-curve model driven by a flow of tempered-
stable CBI processes. Consider the m-dimensional process X = (Xt)i=0 defined by (3.18). Then:

(i) For all0 <t < T < 40, the OIS zero-coupon bond price B(t,T) is given by
(3.21) B(t,T) = exp(Ao(t,T) + Bo(T — )" Xy),
where Ao(t,T) and Bo(T —t) = (B{(T —t),..., By (T — t))T are given by

Ao(t,T) = — JT_te(s +t)ds + i(ﬂ(&-) —B(Si)) LT_tv<s,o, —é uk>ds

0 i=1
BY(T —t) :=V<T—t,0,—2uk), for every 1 <i < m;
k=i
(ii) For every 1 < i < m and for all 0 < t < T < 40, the forward multiplicative spread
S%i(t,T) is given by
(3.22) S%(t,T) = exp(Ai(t, T) + BT — t) T X3),
where A;(t,T) and B;(T —t) = (B}(T —t),...,B"(T — t))T are given by

Ai(t,T) = (T ; jl))f—t< (s,l, i > <sO Z_:mf))

Bg(T—t) = (V(T—t,l,— Z Mk) — V(T—t,O,— Z bk ) 1i<iys for every 1 < j < m.
k=j k=j

PrOOF. It suffices to apply Theorem 3.10 and Lemma 3.4, and then insert the definitions of A

and v given by (3.19) and (3.20), respectively, into (3.10) and (3.11). O

Finally, observe that, unlike the general modeling framework of Section 3.2, the function V
appearing in the above formulae is the same for every 1 < 7,7 < m, due to the fact that the
components of a flow of CBI processes {Y(é) :0€eg } share a common branching mechanism ®.
This results in additional analytical tractability of the proposed specification in comparison with
the more general modeling framework of Section 3.2.

3.4. Valuation of non-linear products

In this section, we provide semi-closed-form formulae for non-linear interest rate derivatives
via Fourier techniques. We place ourselves in the modeling framework of Section 3.3 and restrict
our attention to caplets, referring the reader to [CFG19b, Section 4.2] where swaptions and
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basis swaptions were priced in the context of affine multi-curve models by relying on a suitable
approximation of the exercise region (see [GCF17]).

Let us first consider a caplet in the multiple yield curve market of Definition 3.1, written on
the Ibor rate of tenor d; for some 1 < i < m, with strike K, maturity 7, and settled in arrears
at time T + ;. For simplicity of presentation, we fix a unitary notional amount and consider the
pricing of the product at time ¢t = 0. By using the general valuation formulae stated in [CFG186,

Section 5.2], the arbitrage-free price of the caplet can be written as

. +
PCPLT(O,T7 8, K) = PCPLT(T, 5, K) = &E[e_sgw rsds (L(T, T,0;) — K) ]

(3.23) = B(0,T+8;) BT+ [ (¥ — (145, K)) |
where the process X% = (X});>o is defined by
, S0 (t,t)
Xl =1 _ vVt = 0.
LT <B(t7t+5i)>7

As a direct consequence of Theorem 3.10 and Corollary 3.11, the process X? admits the explicit

representation
X = ci(t) — Aolt,t +6) + (v — Bo(6:)) Xy, VE>0,

where we recall that the vector 4; is given by (3.20), the m-dimensional process (X;)¢>0 is defined
by equation (3.18), and the functions Ay and By are given by (3.21).

We now present two pricing methodologies: the former relies on a direct application of the
FFT algorithm (see [CM99]) and specializes [CFG19b, Section 4.1] to our setting, while the
latter utilizes a quantization-based algorithm (see [CFG19a]), which is here applied for the first

time to an interest rate setting.
3.4.1. Caplet pricing by FFT. Let us introduce the set
OUT) i= {we R BT+ [e" %] < 1o},

and the strip A;(T) := {¢ € C: —Im(¢) € ©;(T)}. By using the independence of the processes
Xt Xxm, together with condition (3.15), we can show that for u € R, u € ©;(T) if and only if

V((Si,(), —)\j) +u (1 — V((Si,O, —)\j)) <0/n, forevery1l<j<i,
V(éi,O, —)\j) — uV(éi,O, —)\j) < 0/n, for every i + 1 <

//\

Jsm,

where the vector X is given by (3.19). Given that V(d;,0,—);) < 0, for every 1 < j < m, and the
function V is increasing in its third coordinate on R_, it can checked that the condltlon
0/77 - V((Sz, 0) _)\l)

— V(éi, 0,—A1)

(3.24)

is sufficient to ensure that V((Si,O, —)\j) +u (1 — V((Si,O, —)\j)) < 0/n, for every 1 <

7 < i, while
u < 1 suffices to guarantee that V(é,-,O,—)\j) — uV(dZ-,O, —)\j) < O/n, for every i + 1 < j < m.
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Furthermore, since 6 > 7, it always holds that (—o0o, +1] € ©;(T"). Consequently, for all ¢ € A;(T),
the modified characteristic function of X} can be defined and explicitly computed as follows:

Z(0) = BOT 4 ) BN [l ] = E[elre BT+ 5) 10

= exp (— LTK(S) ds + Ao (T, T + 6;) +i¢ (ci(T) — A(T, T + 51)))

xexp(
J
xexp(

J

where the application of Proposition 2.5 in the complex domain is justified by Remark 2.7 since
that ¢ € A;(T') ensures that Re(Bé(éi) +i¢ (v — Bé(éi))) < @/n, for every 1 < j < m.

We state the caplet valuation formula, which is a consequence of [Lee04, Theorem 5.1] and
allows for a straightforward application of the FFT algorithm by [CM99]. Note that, according
to the notation used by [Lee04], we have that G = G; and by = by = 1 € ©,;(T") (since condition
(3.15) holds). Let K; := 1+ 6; K and £ € R such that 1 + & € ©;(T). The arbitrage-free price of
the caplet written on the Ibor rate of tenor §; for some 1 < ¢ < m, of strike K, maturity 7', and
settled in arrears at time T + §;, is given by

NgE

T . .
(8(8;) = B(d-1)) L V(Sa By(:) +i¢ (vi — By(64)), —Aj)d8>

Il
—

NgE

V(T, BY(6:) +i¢ (vig — BY(33)), —)\j) Xé) :

Il
—

CPLT , _ pi (f. 1 woie <—iclog(Ki)EiT(C_i))
(3.25) PPYN(T 65, K) RTquy+WL_m1m e — ac,

where Egﬂ has been explicitly computed above, and where RiT(I_(i, €) is given by

(
=i (i) — B =i (0), if ¢ =1,
(

R%(Ki,§)=<5?r —i), if —1<¢<0,
3 Eh(=), if € =0,

3.4.2. Caplet pricing via quantization. The analytical tractability of CBI processes allows
for the development of a quantization-based pricing methodology, which is here proposed for the
first time in an interest rate setting. In this section, we show that the Fourier-based quantization
technique recently introduced by [CFG19a] can be easily applied for the pricing of caplets.

The key ingredient of this approach is represented by the quantization grid denoted by IT'N =
{z1,..., 2N}, with z1 < ... < ay, for some chosen N € N (see [GL00, Pagl5] for details).
Once the quantization grid T'V has been determined, the random variable eXr appearing in the
general caplet valuation formula (3.23) can be approximated by its Voronoi I'N-quantization, i.e.
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o~

the nearest neighbor projection eXt of e onto TN , given by the discrete random variable

T— xXq
Z ‘7 x <e T<x+}

where ;= (zj-1+x;)/2 and :1:;|r = (Tj+1 —l—xj)/2, for every 1 < j < N, with z] = 0 and 2}, = +o0.

Formula (3.23) can then be approximated as follows:

PPLL(T 5, K) ~ B(0,T + 6;) Z 1+ K5)) Q'+ ( = mj)
where the companion weights QT 0 ( T = :E]) for every 1 < j < N, are computed by
(3.26) QT+ ( T =1, ) QT+ ( T <) ) QT+5 ( T < )

The core of quantization consists in optimally determining the quantization grid I'V in such

a way that the discrete distribution of eXr over T'V is a good approximation of the continuous
distribution of e*r. This is achieved by choosing a grid I" that minimizes the following LP-distance:

—

, 1/p
621) Dyfr) = Dy ) o [ ]y = i ]

In the present setting, it can be shown that this minimization problem admits a unique solution

of full size N (see [Pagl5, Proposition 1.1]). In practice, I'V is typically determined by searching
for the critical points of the map I' — D, (F) (called sub-optimal quantization grids). In view of
[CFG19a, Theorem 1], a sub-optimal quantization grid I'V = {ml, e xN} is given by the solution
to the following equation:

Aéﬂ(u)eiiumg(xj) B ﬁa_iu7p _B Lia]-_p—i_lump du: 9
Xy $j

for every 1 < j < N, where f3 is defined as

(3.28) EOO Re

1

B(x, a,b) :f 11— bt

x
for a € C, Re(b) > 0, and z € (0, 1), and A% stands for the (T + §;)-forward characteristic function
of X}:
Al (u) := BT+ [eiux%] _ S :
B(0,T + 6;)

Equation (3.28) can be efficiently solved by using algorithms of Newton—Raphson type. Indeed,
in the present framework, the gradient VD, of the function D, can be analytically computed and
the associated Hessian matrix H [Dp] turns out to be tridiagonal. In order to initialize the algo-
rithm, the starting grid Fé\é) can be constructed by using a regular spacing around the expectation

of the state variable eX%, which is directly determined by market observables:

S%(T,T)

g1+ [ ] RET+5i
B(T, T + 6;)

] =1+46;L(0,T,5).
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Starting from I‘é\é), a basic formulation of the Newton—Raphson algorithm for the determination of

a sub-optimal quantization grid I'"V is then based on the following iterations:

-1
Non =T = (H[D](T)) VD, (TR,

which is performed at each iteration n € N.

I

—_—

REMARK 3.12. We stress the fact that the companion weights Q7% (eXiiF = xj), for every
1 < j < N, as well as the density function of the random variable eX%, needed for the computation
of the function Dy (T') in equation (3.27), can be recovered from the (T + §;)-forward characteristic
function AiT. More specifically, it holds that

; 1 +00 . .
@T—l—&; (eXT c de’) _ (f Re (6_Iu log(x) A,}(u)) du) dl‘,

T Jo

i +00 —iulog(z) At
QTMi (EXT < :U) = ! - lj Re (e . AT(U)) du.

2w 1

Similarly to E’T as explicitly computed in Section 3.4.1, AiT can also be analytically expressed by
relying on the affine property of the CBI-driven multi-curve model.

3.5. Numerical results

This section contains some numerical results. We proceed as follows: first, we compare the two
pricing methodologies proposed in Sections 3.4.1 and 3.4.2. Then, we calibrate the specification
introduced in Section 3.3 to market data relative to the 3M and 6M tenors.

3.5.1. Numerical comparison of pricing methodologies. In this section, we implement
the FFT and quantization-based pricing methodologies as previously developed. In order to assess
the reliability of both approaches, we compare them under different combinations of moneyness,
maturities, and model parameters. We preliminarily validate the FFT methodology by means of
Monte Carlo simulations and, by relying on the simulation method described in Appendix 3.A,
we verify that caplet prices computed by FFT correspond to Monte Carlo prices. This validation
procedure enables us to take FFT prices as benchmark in the sequel.

We then compare the FFT and quantization-based pricing methods. Table 3.1 shows the results
of this comparison, reporting the percentage differences between FFT and quantization prices for
caplets with strikes 1% and 2%, and maturities ranging from 1 up to 2 years. This comparison over
different strikes and maturities allows us to evaluate the reliability of the quantization approach
against the FFT methodology. In Table 3.1, we use an FFT with 4096 points and a quantization grid
of 10 points. The two proposed methodologies have different computation times. For the parameter
set considered in Table 3.3, FFT prices are obtained in 2 seconds for each maturity. Concerning
the quantization-based pricing method, the computation time is initially lower (0.5 seconds) but
then, as the maturity increases, quantization becomes computationally more expensive, with an

average computation time of 3 seconds for larger maturities.
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As a further example, we report in Table 3.2 a comparison between the two methodologies for
a different parameter set, corresponding to increased volatility. More specifically, we increase the
parameters o and 1 by 50% with respect to the calibrated values reported in Table 3.3, and set
a = 1.8. The first run of the comparison was not totally satisfactory since we observed that the
prices produced by quantization (using a grid with 10 points) were diverging from those obtained
via FFT. This issue has been solved by increasing the number of points for the quantization from
10 to 20, leading to an accuracy comparable to Table 3.1. This analysis highlights the fact that
some care should be taken when utilizing the quantization-based pricing methodology: for some
parameter set, one needs to re-adjust the meta-parameters of the numerical scheme, which is a
delicate task to carry out during the execution of a calibration. In summary, we consider the FFT

approach more robust and more computationally efficient in view of the calibration of the model.

’ H FFT 2% ‘ Quant. 2% | Difference 2% | FFT 1% ‘ Quant. 1% | Difference 1%

1 ]| 0.0064146 | 0.0063414 1.1554% 0.0065360 | 0.0070082 —6.7368%
1.1 |/ 0.0064303 | 0.0063641 1.0404% 0.0065520 | 0.0070325 —6.8330%
1.2/|| 0.0064460 | 0.0063868 0.92556% 0.0065679 | 0.0070569 —6.9292%
1.3 || 0.0064679 | 0.0064187 0.76738% 0.0065903 | 0.0070910 —7.0616%
1.4 || 0.0064983 | 0.0064626 0.55350% 0.0066212 | 0.0071381 —7.2408%
1.5 || 0.0065291 | 0.0065069 0.34038% 0.0066525 | 0.0071857 —7.4193%
1.6 || 0.0065600 | 0.0065516 0.12813% 0.0066839 | 0.0072335 —7.5972%
1.7 || 0.0065911 | 0.0065966 | —0.083181% | 0.0067157 | 0.0072818 —7.7743%
1.8 || 0.0066250 | 0.0066458 —0.31232% | 0.0067502 | 0.0073345 —7.9664%
1.9 || 0.0066620 | 0.0070707 —5.7812% | 0.0067878 | 0.0078016 —12.995%

2 || 0.0066992 | 0.0071339 —6.0934% | 0.0068257 | 0.0078694 —13.264%

TABLE 3.1. Comparison of FFT and quantization prices for different maturities
(strikes at 2% and 1%, differences in relative terms). Quantization with 10 points
and FFT with 4096 points. The parameter set used here is reported in Table 3.3.
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| FFT 2% | Quant. 2% | Difference 2% | FFT 1% | Quant. 1% | Difference 1%

1 ]| 0.0064262 | 0.0063429 1.3127% 0.0065478 | 0.0070095 —6.5867%
1.1 || 0.0064433 | 0.0063672 1.1951% 0.0065652 | 0.0070356 —6.6849%
1.2/|| 0.0064605 | 0.0063917 1.0773% 0.0065827 | 0.0070618 —6.7832%
1.3 || 0.0064841 | 0.0064252 0.91574% 0.0066067 | 0.0070978 —6.9182%
1.4 || 0.0065162 | 0.0064710 0.69830% 0.0066394 | 0.0071468 —7.1000%
1.5 || 0.0065487 | 0.0065173 0.48133% 0.0066725 | 0.0071965 —7.2815%
1.6 || 0.0065814 | 0.0065641 0.26495% 0.0067058 | 0.0072466 —7.4625%
1.7/|| 0.0066145 | 0.0066113 0.049213% | 0.0067395 | 0.0072973 —7.6430%
1.8 || 0.0066505 | 0.0066628 —0.18451% | 0.0067761 | 0.0073525 —7.8387%
1.9 || 0.0066896 | 0.0070315 —4.8632% 0.0068159 | 0.0077575 —12.138%

2 |1 0.0067291 | 0.0070963 —5.1748% 0.0068561 | 0.0078270 —12.405%

TABLE 3.2. Comparison of FFT and quantization prices for different maturities
(strikes at 2% and 1%, differences in relative terms). Quantization with 20 points
and FFT with 4096 points. Starting from the parameters reported in Table 3.3, we
increased o and 7 by 50% and set o = 1.8.
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3.5.2. Model calibration. To illustrate the calibration of our model specification presented
in Section 3.3, we start by describing the market data and the reconstruction of the term structures.

3.5.2.1. Market data. We consider market data for the EUR market as of 25 June 2018, which
consists of both linear and non-linear interest rate derivatives. The set of tenors is G = {BM, 6M}.
Market data on linear products consist of OIS and interest rate swaps, from which the discount
curve T — B(0,T) along with the forward curves T +— L(0,T,d;), for §; = 3M and &, = 6M, are
constructed by relying on the bootstrapping procedure from the Finmath Java library (see [Fri21]).
The OIS discount curve is bootstrapped from OIS swaps, by using cubic spline interpolation on
logarithmic discount factors with constant extrapolation. Similarly, the 3M and 6M forward curves
are bootstrapped from market quotes of FRAs (for short maturities) and swaps (for maturities
beyond two years), by using cubic spline interpolation on forwards with constant extrapolation.
Figure 3.3 reports the resulting discount and forward curves. We notice that, for short maturities,

discount factors are larger than one and forward rates are negative.

Discount Curve Forward Curves
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FIGURE 3.3. Discount and forward curves as of 25 June 2018.

As far as non-linear interest rate products are concerned, we focus on caplet market data,
suitably bootstrapped from market cap volatilities. Consistently with the presence of negative
interest rates, we also have market quotes for caps having a negative strike rate. Therefore, the
boostrapped caplet volatility surface refers to strike prices ranging between —0.13% and 2%, and
maturities between 6 months and 6 years. Caplets with maturity larger than two years are indexed
to the 6-month rate, while those with shorter expiry are linked to the 3-month curve. Market data
is given in terms of normal implied volatilities. More specifically, for a caplet written on the Ibor
rate of tenor 9§, of strike K, and maturity T, the normal implied volatility is obtained by searching

P} T+ §) such that the Bachelier pricing formula

for the value of Tkt

V2T

1 r 2 L(0,T,8) — K
e =
—00

N(x) = Wor T dy and s

; 1 22
(3.29) PSEEN(T, 6, K) := B(0,T +68)§ 0P (K, T + §) VT < e~ T + zN(z)) ,

where we have
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provides the best fit to the market price of the caplet under consideration.

3.5.2.2. Implementation. For a certain vector p of model parameters belonging to the set P of
admissible values (see Section 3.3), we compute model-implied caplet prices by means of the FFT
pricing method presented in Section 3.4.1, where the numerical integration is performed along the
lines of [CM99] with 32768 points and integration mesh size 0.05. For a fixed maturity, a single
execution of the FFT routine yields a vector of model prices for several moneyness levels. Prices
are then converted into normal implied volatilities by using formula (3.29).

Repeating this procedure for different maturities, we are able to generate a model-implied

imp

volatility o 5

(K, Tj,p) for each strike Kj and each maturity 7} of the sample of market data
under consideration. The purpose of the calibration is then to find the vector of parameters that

solves the following minimization problem:
. . 2

(3.30) min 3 (o8 (K T)) = oy (K5, T5.))
j?k

3.5.2.3. Calibration results. We calibrate a two-tenor version of the model specification of
Section 3.3. In view of the resolution of problem (3.30), we use the multi-threaded Levenberg—
Marquardt optimizer of the Finmath Java library with 8 threads, while imposing the necessary
parameter restrictions presented in Sections 3.3.1 and 3.3.2. We also fix the normalization constant
C, appearing in the measure 7 of the flow of tempered-stable CBI processes as follows:

1

I'(—a)cos(am/2)

The calibrated values of the model parameters are then reported in Table 3.3. In particular,

Cyi=—

we can observe that the results demonstrate an important role of the jump component, apparently
more important than the diffusive component. The calibrated value of « is rather close to 1, thus
showing evidence of persistence of low values (compare with the discussion before Remark 3.9 in
Section 3.3.2). Together with the rather small value of 6, this also indicates a significant likelihood
of large jumps, giving rise to potential jump clustering.

As illustrated by Figures 3.4, the model achieves a good fit to market data, across different
strikes and maturities. Furthermore, we remark that, in terms of number of parameters, the
specification under consideration, i.e. driven by a flow of tempered-stable CBI processes, is even
more parsimonious than the simple specifications calibrated in [CFG19b].

Motivated by the presence of negative forward rates, we also calibrated a version of the model
where the OIS short rate is affected by an auxiliary Ornstein—Uhlenbeck process, in line with
Remark 3.6. However, this alternative specification did not yield a significant improvement of the
quality of the fit. This seems to indicate that the deterministic-shift function ¢, accounting for the
initially-observed term structure of OIS zero-coupon bonds, does suffice to capture the negativity
of the short rate. This is also in line with the widespread use of deterministic-shift extensions in
the financial industry (see e.g. [Merl8al]).



3.5. NUMERICAL RESULTS

b |0.05353 | « 1.31753

o | 0.00582 | Yy (0.00495,0.00507) "

n 0.04070 | B | (9.99999EF — 4,0.00340) "
6 | 0.05070 | u (1.49999, 1.00000) "
TABLE 3.3. Calibrated values of the parameters.

Price Surfaces Comparison
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FI1GURE 3.4. Model prices against market prices as of 25 June 2018.
On the top panel, market prices are represented by blue circles, while model prices
by red stars. On the bottom panel, price squared errors are reported.
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3.6. Conclusion

In the present paper, we have proposed a modeling framework for multiple yield curves based
on CBI processes. The self-exciting behavior of jump-type CBI processes is consistent with most
of the empirical features of spreads. At the same time, exploiting the fundamental link with affine
processes, the proposed approach allows for an efficient valuation of interest rate derivatives.

Specifically motivated by capturing the relevant empirical features of the spreads between
different interbank rates (see Figure 3.1), we have constructed a novel class of multi-curve models
driven by a flow of tempered alpha-stable CBI processes.

In particular, we have shown that such multi-curve models represent a parsimonious way of
modeling spreads in a realistic way, with a natural interpretation of the stochastic drivers in terms
of risk factors. In our view, flows of CBI processes can lead to further interesting applications to

financial markets where multiple term structures coexist.

3.A. Appendix: A simulation scheme

In this appendix, we describe a simulation scheme for tempered-stable CBI processes as pre-
sented in Section 2.7. We emphasize that this scheme has been used to generate the sample paths
exhibited by Figure 3.2. Note that, by Theorem 3.10, and in view of simulating a multi-curve
model driven by a flow of tempered-stable processes in the sense of Definition 3.7, it suffices to
simulate m mutually-independent tempered-stable CBI processes. Consequently, we shall restrict
our attention to the simulation of a one-dimensional tempered-stable CBI process X = (X):<7,
for some fixed time horizon 7 > 0.

We can suppose, without loss of generality, that the underlying stochastic basis supports the
following two independent objects:

e A standard Brownian motion B = (By)<T;
e A Poisson random measure N (dt, du, dz) on [0, T] xRy xRy with compensator dt du 7(dx)
and compensated measure N} (dt,du,dz) := Ni(dt, du, dx) — dt duw(dx),

6
where we set m(dz) = n®Cqz717%e n” 1(~0y dz, with n > 0, Cy >0, 6 > 0, and a € (1,2). For

Xp = 0, consider the stochastic integral equation

¢ ¢ t pXoo o0
(3.31) X =X0+J (B—bXS) ds+af \/Xsst—i-J f J x Ni(ds, du, dz), Ve<T.
0 0 0 JO 0

We recall from Section 2.5 that there exists a unique non-negative strong solution to equation
(3.31), which is a tempered-stable CBI process (see Theorem 2.12 and Definition 2.18).

In order to simulate a sample path of the process X = (X;);<7, we resort to the regular Euler
method for stochastic differential equations with jumps as described by [PBL10, Chapter 6]. We
consider an equidistant partition of the time interval [0, 7] with N steps (e.g. N = 1000). We let
A :=T/N and t, :=nA, forevery 0 < n < N, and denote by X = (th)ogngN, the approximation
of the tempered-stable CBI process X = (X;)i<7-
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We start by approximating the Lévy measure 7 by its truncated version 7(dz) := m(dz) 1(.>q,
for a sufficiently small € > 0 (e.g. € = 0.001)2. The total mass of 7 is given by

+00
Ce:=m(Ry) =n*Cyq J P e_%zdz =0“ COLF(*O[,GQ/T]),

where I'(—a, €0/n) := S;ﬁ u~* ! e~%du denotes the incomplete Gamma function (see e.g. [LebT72,
Problem 1.10]). For every 1 < n < N, we approximate the number of jumps generated by the
Poisson random measure Nj in the time interval [t,_1,%,] by a random variable J,, following a
Poisson distribution with intensity

tn th—l +o0 A~
(3.32) f f f dsdumc(dz) = Cc Xy, , A.
tpn—1 JO 0

The random variables representing the sizes of the jumps generated by the Poisson random
measure N7 are drawn from a distribution with density f., where

1 m(dz) ne _
(3.33) fe(Z)—a dz 6T (—a,e/n) 1

—Q

_8
e n o 1{z26}-

In particular, observe that

a ,—eb/n a ,—eb/n
ne a —l-«a ne Par

3.34 (2) < s = ,

(3:34) fez) o (€0)*T (o, e/n) ae s tz>d) =)

o (e0)*T(—a,e/n) "

where fel? 2 denotes the density function of a Pareto distribution with scale € and shape «a. In view
of relation (3.34), we can simulate random variables with density fe by means of an acceptance-
rejection scheme (see e.g. [Pagl5, Section 1.4]) based on a Pareto distribution.

In order to construct the approximation X = (th)lgngj\], we set XO := Xo and by means of

successive iterations, for every 1 < n < N, we write

JIn,
X =X+ (5 - (b + 0ot L T(1 - a,ee/n)) XtM) A+ oy/A (th71)+ Zn + Y ns
k=0

where (Z,,)1<n<n is a sequence of i.i.d. standard Normal random variables, (J,,)1<n<n is a sequence
of independent random variables such that each J,, follows a Poisson distribution with intensity
given by (3.32), and (&, k)1<n<N, k>0 is a family of i.i.d. random variables with common density f.
as computed in (3.33).

2This truncation of the Lévy measure 7 serves to achieve integrability, at the expense of eliminating very small
jumps. Along the lines of [ARO1], the small jump component can be approximated by introducing a suitably-rescaled

Brownian motion B’, which is independent of the Brownian motion B appearing in (3.31).
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CHAPTER 4

CBI-time-changed Lévy processes

SUMMARY. We introduce a class of two-dimensional processes combining CBI processes with time-
changed Lévy processes, which we name CBI-time-changed Lévy processes (CBITCL). We develop
an analytical framework extending most of the results presented in Chapter 2 for CBI processes,
which will be applied to multiple currency modeling in Chapter 5. We generalize the stochastic
representations of a CBI processes, obtaining a characterization of CBITCL processes as weak
solutions to a system of stochastic integral equations of Dawson—Li type. We show that CBITCL
processes are affine, allowing for a precise analysis of exponential moments of CBITCL processes.

Finally, we formulate a Girsanov-type theorem for CBITCL processes.
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4.1. Introduction

Time-changed processes were first introduced in finance by [Cla73] as subordinated processes,
where the base process was a Brownian motion and the stochastic clock a subordinator (i.e. a non-
decreasing Lévy process). In order to relax the restrictions imposed by subordinators, [AGO0O0,
GMYO01] introduced more general stochastic time changes. Moreover, [AGO00] showed that the
accumulated number of trades represents a better stochastic clock as a proxy for the market activity
than the trading volume, as initially postulated by [Cla73|.

In general, a stochastic time change is defined by a time integral of a non-negative cadlag
stochastic process. This integral denotes the accumulated number of trades, while the process to
be integrated, also called instantaneous activity rate, represents the number of trades per unit of
time (i.e. the speed at which the trading activity runs). As an illustration, if the speed of trading
is high/low, then the stochastic clock elapses faster/slower, giving rise to stochastic volatility.

In this regard, [CGMYO03] developed a class of stochastic volatility models based on more
general time-changed processes, where the base process was allowed to be a Lévy process. Then,
[CWO04] presented an analytical framework for time-changed Lévy processes unifying almost all
existing stochastic volatility approaches, also pointing out the possible use of CBI processes for
modeling the activity rate. An empirical analysis of specifications of this general framework was
performed by [HWO04], restricting however the analysis to CIR-type activity rates. The authors
concluded that a modern approach for modeling the activity rate should contain a high-frequency
jump structure that can potentially excite itself.

In this chapter, we introduce a class of two-dimensional processes combining the self-exciting
behavior of CBI process with the generality of time-changed Lévy processes, which we name CBI-
time-changed Lévy processes. This class of processes will be applied to multiple currency modeling
in Chapter 5. In Section 4.2, we start by defining CBITCL processes as solutions to a system
of stochastic time change equations, where we extend the Lamperti-type stochastic time change
representation of a CBI process. We then characterize CBITCL processes as weak solutions to a
system of stochastic integral equations of Dawson—Li type.

We show in Section 4.3 that CBITCL processes are affine in the sense of [DFS03]. We exploit
this result by deriving a complete analysis of exponential moments of CBITCL processes, which
mostly generalizes the results previously obtained for CBI processes. Finally, by relying on the
techniques of [KS02a] in Section 4.5, and by fixing a finite time horizon, we characterize a class of
equivalent changes of probability of Esscher type that leave invariant the class of CBITCL processes.
We formulate this result as a Girsanov-type theorem, which will find relevant applications in
multiple currency modeling (see Chapter 5).
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4.2. Construction and characterization

We fix a stochastic basis (Q, F,F, Q) satisfying the usual conditions, where Q is a probability
measure and F = (F;)¢>0 a filtration to which all stochastic processes are assumed to be adapted.
We set F = Fo, and denote the expectation under Q by E.

We begin with the construction of CBITCL processes, extending the Lamperti-type stochastic
time change representation of Definition 2.11. Recall from Chapter 2 that when X = (X;)i>0 is
a non-negative cadlag stochastic process, its time integral Y; := SS Xsds, for all t = 0, can be
utilized as a finite, continuous time change. We then suppose that the stochastic basis (Q, F,F, Q)
supports the following Lévy processes, assumed to be mutually independent:

e A mnon-decreasing Lévy process LY = (L})i=o with Lg’ = 0, whose Lévy exponent is
denoted by ¥, given by (2.1), and characterized by the Lévy triplet (3,0, v), where 8 = 0
and v is a Lévy measure on Ry such that S(l) zv(dz) < 4o0;

e A spectrally positive Lévy process L® = (L{);>o with LY = 0 and finite first moment,
whose Lévy exponent is denoted by ®, given by (2.2), and characterized by the Lévy triplet
(=b,0,7), where b € R, 0 = 0, and 7 is a Lévy measure on R such that SIFOO z7(dz) < +oo;

e A Lévy process L? = (L#)i=¢ with LZ = 0, whose Lévy exponent Zz : iR — C is
determined by the Lévy triplet (bz,0z7,7vz7), where by € R, 0z = 0, and 7z is a Lévy
measure on R. We recall that =z is given by the Lévy—Khintchine representation

1 .
(4.1) Zz(u) := bzu~|—2(azu)2+ﬁR (e —1—zulg, <) yz(dz), Vu € iR.

DEFINITION 4.1. A joint process (X, Z;)¢=0, where

e X = (X¢)i=0 is a non-negative cadlag stochastic process with initial value Xo;
o 7 = (Zy)t=0 is a cadlag stochastic process with initial value Zy = 0,

is said to be a CBI-time-changed Lévy process (CBITCL) if it satisfies the following stochastic time

change equations:
(4.2) Xy =Xo+ L} + LY,
(4.3) Z=LZ,

for all t > 0, where Y; := SS X, ds.

For any X = 0, there exists a unique strong solution to system (4.2)—(4.3). Indeed, equation
(4.2) corresponds to the Lamperti-type representation of a CBI process, for which there exists a
unique non-negative strong solution X = (X;);>0, which is a CBI(XO, v, <1>) of Definition 2.1 (see
Section 2.5). Observe that the right-hand side of equation (4.3) does not depend on the process
Z = (Z1)1=0, but on the CBI process X = (X})¢>o0.

Any CBITCL process in the sense of Definition 4.1 will be denoted by CBITCL (XO, v, P, EZ).
Inspired by [DLO6|, we can also extend the Dawson—Li stochastic integral representation in the
sense of Definition 2.10 to CBITCL processes. To this purpose, let us assume the existence of the

following objects:
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Two standard Brownian motions B! = (B});>0 and B2 = (B?);>0;

A Poisson random measure Ny(dt,dz) on Ry x Ry with compensator d¢ v(dx) and com-
pensated measure No(dt,dz) := No(dt, dz) — dt v(dz);

A Poisson random measure Nj(dt,du,dz) on Ry x Ry x Ry with compensator dt du m(dx)
and compensated measure N} (dt,du,dz) := Ni(dt, du, dx) — dt duw(dzx);

A Poisson random measure No(dt, du,dz) on Ry x Ry x R with compensator dt duyz(dz)
and compensated measure Na(dt, du, dz) := No(dt, du, dz) — dt duyz(dz).

We suppose that B!, B2, Ny, Ni, and Ny are mutually independent. Let us then define, for any
Xo € R4, the following system of stochastic integral equations:

t t
X, =X0+J (B—bXs) ds+af VX, dB]
0 0
t 400 t rXs— ptoo
(4.4) + J J x No(ds,dx) + J f f x N1(ds, du, dz), vVt =0,
0 JO 0 JO 0
t t t rXo_
Zy = bZJ Xsds+azf «/XSdBEJrJ f J x Ny (ds, du, dz)
0 0 0 Jo |z|>1

t (Xse N
(4.5) + f J f x Na(ds, du, dx), Vt =0,
0Jo Jpz|<t

Since we do not assume finiteness of the first moment of the Lévy measure vz, we cannot
directly apply [DL06, Theorem 6.2] to system (4.4)—(4.5). However, it can be easily checked that
for any X > 0, there exists a unique strong solution to system (4.4)-(4.5). Indeed, equation (4.4)
corresponds to the Dawson—Li representation of a CBI process, for which there is a unique non-
negative strong solution X = (X¢)s>0, which is a CBI(Xy, ¥, ®) (see Section 2.5). The existence
of a unique strong solution follows from the fact that the right-hand side of (4.5) does not depend
on the process Z = (Z;)i>0, but only on the process X = (X¢)>o0.

The next result, which extends Theorem 2.12 and relies on similar techniques, characterizes the
class of CBITCL processes as weak solutions to system (4.4)—(4.5). In particular, it provides an
alternative way of defining a CBITCL process, which will be used in multiple currency modeling
in Chapter 5.

LEMMA 4.2. A joint process (X, Zt)i=0 with initial value (Xo,0) is a CBITCL(XO,\II, <I>,EZ)
if and only if it is a weak solution to system (4.4)—(4.5).

ProoF. We follow the lines of the proof of Theorem 2.12, providing full details for the sake
of completeness. Since X = (X;)i>0 is a CBI (Xo, v, <I>), the weak equivalence between equations
(4.2) and (4.4) follows directly from Theorem 2.12. We henceforth restrict our attention to the
process Z = (Z;)i=0. We then proceed as follows.

Let Z = (Z¢)i=0 be given by equation (4.3). By using the Lévy-Ité6 decomposition of the Lévy
process L? = (L )=0, we obtain

Y Yi ~
(4.6) Zy=LE =by Y+ o0z Wy, —l—f f a:N(ds,dx)—i—f f x N(ds,dx), vVt >0,
0 Jiz|=1 0 Jz|<1
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where W = (W});>0 is a Brownian motion independent of the Poisson random measure N (dt, dx)
with compensator dt~z(dz) and compensated measure N(dt,dz) := N(dt,dz) — dtvz(dz). By
using the change-of-variable formula of [Jac79, Theorem 10.27], we can rewrite both stochastic
integrals appearing in (4.6) by means of the time-changed random measure N (X;dt,dz) with
compensator X;_ dtyz(dz), yielding

Y ¢
J f x N(ds,dx) = J f x N(Xsds,dx),
0 Jz|=1 0 Jlz|=1

Yi N t N
J J z N(ds,dx) = J f x N(Xsds,dx),
0 Jlz|<1 0 J]z|<1

for all t > 0. By [IW89, Theorem I1.7.4], possibly on an enlarged probability space, there exists a
Poisson random measure No(dt, du,dz) with compensator dt duyz(dx) and compensated measure
No(dt, du, dz) := Ny(dt,du, dz) — dt duyz(dz) such that

t t X
f f zN(Xsds,dx) —J J f x Na(ds, du, dzx)
0 Jiz|=1 0Jo  Jjz=1

t t Xse N
f J x N(X;sds,dz) =f J J x Na(ds, du, dz)
0 Jlz|<1 0 JoO lz|<1

0. Similarly, there exists a Brownian motion B2 = (B?);>o such that Wy, = SS VX dB?
0, thus showing that Z = (Z;):>0 is a weak solution to equation (4.5).

for all ¢
for all ¢
Conversely, suppose that Z = (Z;)i>0 is a weak solution to (4.5). As we did in Section 2.5,

=
>

in order to show that Z = (Z;);>0 is a time-changed Lévy process, we follow the scheme of the

proof of [Kal06, Theorem 3.2]. Without loss of generality, we can suppose that the underlying

stochastic basis already supports a Lévy process L = (L;);=0 with Ly = 0, whose Lévy exponent
lim Y; and denote

t—+00

the inverse time change by 7 = (7,).>0, where 7, := inf{t =20:Y > z}, for all z = 0. We recall

is given by =7 and characterized by the Lévy triplet (bz,0z,7z). Let Y, :=

that we may have Y, < 400 when ¥ = 0, which implies that 7 = (7,),>0 is infinite from time Y,
onward. As a result, the time-changed process W = (W,),<y,, given by W, := Z,_, for all z < Y,
is a well-defined semimartingale, but on the stochastic interval [0, Y5 [. Its characteristics, which
we denote by (A, B, C), are given by

A, =bzY,, =bzz, B,=o0%Y, =0%z and C,(dz)=vz(dz)Y, = vz(dz)z,

for all z < Yy, where we recall that Y;, = z on [0,Y,[. We can observe that W = (W,).y,, is
a Lévy process on [0, Y[, and characterized by the Lévy triplet (bz,07,7z). As in the proof of
Theorem 2.12, we need to show that Z = (Z;);>0 is constant on every interval [r, s] £ R such that
Y, = Y,. We recall from this proof that an interval of this type must verify [r, s] {t =>0:X; = O},
which yields Z; = Z,, for all t € [r,s]. Then, we can write Z; = Wy,, for all ¢t = 0. However,
W = (W,).<vy,, is a Lévy process only on [0, Y, [. In order to overcome this issue, we construct the
process L? = (L?),=0 where LZ := W, 1cvy + Le 1oy, y, forall 2 > 0. L% = (L?),>¢ defines
a Lévy process characterized by the Lévy triplet (bz,0z,7vz), which extends W = (W,),<y,, to the
entire R;. We then obtain Z; = L%, for all ¢ > 0, thus satisfying equation (4.3). O
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We conclude this section by discussing the self-exciting behavior of CBITCL processes, which

can be seen from system (4.4)—(4.5) as follows:

e First, the CBI process X = (X;)¢>0 is self-exciting due to the presence of the stochastic
integral with respect to ]\71. When a jump occurs, it increases the domain of integration.
This in turn increases the jump intensity of N1 and, therefore, the likelihood of subsequent
jumps, thus generating jump clusters (see Remark 2.14);

e Second, the persistence of high values for the CBI process X = (X;);>0 has an impact
on the stochastic integrals with respect to No and ]\72. As before, when X = (X})i=0
increases, both domains of integration increase, which in turn increases the likelihood of
volatility clusters in the dynamics of the process Z = (Z;):>0.

4.3. Affine property of CBITCL processes

In this section, we show that CBITCL processes are affine in the sense of [DFS03]. We mostly
rely on a key result provided by [KR09, Theorem 4.16].

PROPOSITION 4.3. Let (X3, Z)i=0 be a CBITCL(XO,\I/,Q,EZ). Consider the joint process

(Xta na Zt)t>07
(X0,0,0), state space Ri x R, and joint conditional Laplace—Fourier transform

where Yy 1= Sé Xsds, for all t = 0. Then, it is an affine process with initial value

(4.7) E[e“1 Xrtuz Yrtus Zr .7-}] = exp(Z/I(T—t,u1,uQ,U3)+V(T—t,u1,ug,ug)Xt—i—uQY}—Fug Zt>,

for all (uy,uz,u3) € C2 x iR and 0 <t < T < +00, where the functions U(-,u1,uz,u3) : Ry — C
and V(-,ui,u2,u3) : Ry — C_ solve the following CBITCL Riccati system:

¢
(4.8) U(t,ur, ug,ug) = J W (V(s,u1,ug,uz)) ds,
0
oV -
(4.9) E(t,ul,ug,ug) = <I>(V(t, Ul,UQ,U?,)) + ug + Ez(us), V(0,u1,u2,ug) = u,

where the functions ¥ : C_ — C and ® : C_ — C correspond to their analytic extensions to the

complex domain C_.

PROOF. Lemma 2.2 yields the affine property of the joint process (X¢,Y:)i>0, whose affine

characteristics are given by
U(uy,ug) :=V(uy) and D(up,uz) = ®(u1) + ug, V(uy,us) € C2.

Consider now the Lévy process L? = (L#)¢>0, appearing in the definition of the process Z = (Z;)i=0
(see Definition 4.1). We emphasize that the latter is by construction independent of the CBI process
X = (Xy)i=0. Following [KR09, Theorem 4.16], the joint process (Xt,Yt, Zt)t>07 where Z; = L3Z,t
for all ¢ > 0 by equation (4.3), is affine with initial value (Xo,0,0), state space RZ x R, and affine
characteristics are given by

\I/(ul,uQ,u;:,) = \If(ul,uQ + Ez(U3)) = \I/(ul),
=

®(ur,ug,u3) := ®(u1, ug + Ez(uz)) = ®(u1) + ug + Ez(u3),
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for all (uy,u2,u3) € C2 x iR. The claim then follows from [DFS03, Theorem 2.7], which enables
us to derive the joint conditional Laplace—Fourier transform of the joint process (Xt, Y:, Zt) 50"
given by (4.7), and associated to the CBITCL Riccati system (4.8)—(4.9). O

REMARK 4.4. In view of Proposition 4.3, CBITCL processes can be regarded as affine stochas-
tic volatility models in the sense of [KR11, Definition 2.8], which were proved to be coherent by
[Gnol7]. This means that if an asset price process is modeled by a CBITCL process (X¢, Z;)>o0,
where Z = (Z;)i=0 represents the discounted log-price process and X = (X;);>0 its stochastic
volatility process, then the inverse asset price process, under a suitable equivalent change of prob-
ability, belongs to the same modeling class. This feature is fundamental for the construction of a
modeling framework for multiple currencies, where foreign exchange rates and their inverse must

be considered simultaneously (see Chapter 5).

4.4. Finiteness of exponential moments

This section generalizes the results of Sections 2.3 and 2.4 to CBITCL processes. In doing so,
we mostly use techniques analogous to those employed in Sections 2.3 and 2.4, and rely on the
results of [KR11, KRM15|. Let us first introduce, on top of D; given by (2.8), the set Dy that
we define as follows:

(4.10) Dy = {I’ERZJ e®?yz(dz) < —I—OO}.
l2|>1

While D; represents the effective domain of the immigration and branching mechanisms ¥ and ®,
D5 denotes the effective domain of the Lévy exponent =z, when restricted to real arguments. As in
Section 2.3, by using standard results on exponential moments of Lévy measures (see e.g. [Sat99,
Theorem 25.17]), we can extend =z, as a finite-valued convex function, to Dy. Let us now extend
the CBITCL Riccati system (4.8)—(4.9), similarly to Definition 2.3.

DEFINITION 4.5. For (x1,x2,23) € D1 x R x Ds, a solution (U(',l'l,l'g,l’g),V(',ZL‘l,l‘Q,SL‘g)) to
the extended CBITCL Riccati system is defined as a solution to the following system:

t

U(t,x1, 20, 73) = J U (V(s,z1,22,23))ds,
0

ov -
(4.11) E(t’ x1,T9,T3) = @(V(t,xl,zm,xg)) + x9 + Ez(x3), V(0,x1, e, x3) = 71,

up to a time T@1.22:73) ¢ [0, +00], where T(*1:22,%3) denotes the maximum joint lifetime of the
functions U(-, z1, T2, x3) : [0, TE*223)) 5 R and V(-, 21, 29, 23) : [0, T@1#2:23)) 5 Dy,

By referring to Section 2.3, under Assumption 2.4, we know that there exists a unique solution
(U(',xl,xg,xg), V(-,:vl,xg,mg)) to the extended CBITCL Riccati system of Definition 4.5, for all
(x1,29,23) € D1 x R x Dy. We are then allowed, similarly to Proposition 2.5, to refine the result
of [KRM15, Theorem 2.14] for the specific case of CBITCL processes.
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LEMMA 4.6. Let (X, Zi)i=0 be a CBITCL(XO7 v, P, EZ). Suppose that Assumption 2.4 holds.
>0 Where Y = Sé Xgsds, for all t = 0. Then, the joint
conditional Laplace transform given by (4.7) can be extended to D1 x R x Dy as follows:

Consider the joint process (Xt,Yt,Zt)

(4.12) E[exl Xr+x2 Yr+Is Z

ft] = exp <Z/{(T—t, x1, w2, x3)+ V(T —t,x1, 2, 23) Xi+x2 Yi+xs Zt>,

for all (z1,z2,23) € D1 xRx Dy and 0 < t < T < TE22:53) yhere (L{(-,xl,xg,:ng),V(-,ml,a:Q, 1‘3))
is the unique solution to the extended CBITCL Riccati system starting from (x1, x2,x3), and defined
up to the mazimum joint lifetime T(*1:22:73)

PrOOF. The proof follows the lines of the proof of Proposition 2.5, where the claim was obtained
by applying [KRM15, Theorem 2.14]. O

We investigate the existence of complex exponential moments of CBITCL processes. We recall
that they were briefly studied in Remark 2.7 for the specific case of CBI processes, but not totally
treated in Section 2.3. To this purpose, let O; = {u e C: Re(u) € Df}, for i = 1,2. Observe that
O; and O are open and connected. By relying on the principle of analytic continuation (see e.g.
[Die69]), we can analytically extend the immigration and branching mechanisms ¥ and ¢ from
D] to O, as well as the Lévy exponent =z from D5 to Oz. We can then introduce a complex
extended version of the CBITCL Riccati system (4.8)—(4.9).

DEFINITION 4.7. For (uy,ug,us) € O1 x C x O, a solution (Z/{(',Ul,UQ,UE]),V(',u1,u2,u3)) to
the complex extended CBITCL Riccati system is defined as a solution to the following system:

t

u(t,’LL1,U2,U3) = J \II(V(SaulaUQaui’)))dsa
0

oV -
(4.13) E(t,ul,u%u?,) = @(V(t,ul,UQ,u;),)) + ug + :Z(U3), V(O,ul,UQ,U3) = Uuj,

up to a time T(#1:42:43) ¢ [0, +00], where T(#1%2:43) denotes the maximum joint lifetime of the
functions U (-, uy, ug, uz) : [0, TM1:¥243)) — C and V(-,uy, uz, uz) : [0, TE12:43)) O,

Unlike the extended CBITCL Riccati system of Definition 4.5, a solution to equation (4.13) is
necessarily unique since the function @ is analytic on the entire complex domain O; and the function
V(-,u1,u2,u3) is constrained to stay inside O; (see [KRM15, Remark 2.23]). Furthermore, if
a solution to the complex extended CBITCL Riccati system of Definition 4.7 has a real-valued
starting point (u1, ug, u3), then the latter solution also solves the extended CBITCL Riccati system.

We are in a position to formulate the next result, which specializes [KRM15, Theorem 2.26]
to our setting. Indeed, [KRM15] had to assume the existence of a solution to the extended Riccati
system that remains inside the interior of the effective domain, thus ensuring the uniqueness of the
latter. In our setting, there is no necessity to introduce this additional requirement since under
Assumption 2.4, we know that there always exists a unique solution V(-,x1,x2,x3) to equation
(4.11), whether this solution starts from the boundary of Dj, or reaches it at a later time.
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PROPOSITION 4.8. Let (X, Zt)i=0 be a CBITCL(XO, \II,<I>,EZ). Suppose that Assumption 2.4
holds. Consider the joint process (Xt,Yt,Zt)t>0, where Y; := Sé Xsds, for allt = 0. Then, the
joint conditional Laplace transform (4.12) can be analytically extended to O1 x C x Oz as follows:

(414) ]E[eul Xp+4ue Yr+us Zp

]:t] = exp (Z/{(Tft, uy, ug, us)+ V(T —t, uy, ug, uz) Xe+us Yy +us Zt>,

for all (uy,uz,uz) € O1 x Cx Oy and 0 < t < T < T1U2:43) yhere (U(-,ul,ug,ug), V(- u1,us, U3))
is the unique solution to the complex extended CBITCL Riccati system, starting from (uq,usg,us3)

and defined up to the mazimum lifetime T(“1:423) which verifies

)

(415) T(ul,uz,U3) > T(Re(uﬂ,Re(ug),Re(u;g))

where T(Re(u1).Re(u2).Re(u3)) ¢ the mazimum lifetime of the unique solution to the extended CBITCL

Riccati system starting from (Re(u1), Re(uz2), Re(us)).

PROOF. Let (u1,ug,us) € O1 x Cx Oy. Under Assumption 2.4, for all (z1, z2,x3) € D1 x Rx Dy,
there is a unique solution to the extended CBITCL Riccati system up to T(@122,23) T particular,
this is true for the starting point (Re(u;),Re(uz), Re(us)). By [KRM15, Theorem 2.26], there
also exists a solution to the complex extended CBITCL Riccati system of Definition 4.7 starting
from (w1, u9,us), which is unique in view of [KRM15, Remark 2.23], and whose lifetime T (u1,u2,us)
is related to T(Re(w1).Re(u2).Re(u3)) via inequality (4.15) due to [KRM15, Proposition 5.1]. Under
these conditions, again by [KRM15, Theorem 2.26], we can then analytically extend the joint
conditional Laplace transform (4.12) to the complex domain O x C x Os. O

As in Section 2.3, we can rely on [KRM15, Proposition 3.3] to assert that the maximum
lifetime T(#1:2:%3)  for all (x1, 2o, x3) € D1 x R x Dy, characterizes the finiteness of real exponential
moments of CBITCL processes:

(4.16) T2 — gupl > 0 Blem YermYirn 2 < fopl,

In the following, we propose a generalization of Theorem 2.8 to the class of CBITCL processes,
providing an explicit and general characterization of the maximum lifetime TELe2,23) - for all
(x1,m2,23) € D1 x R x Dy. Because of the presence of x3 € Dy, and also due to the fact that
the second coordinate x5 can at present span the whole real line R, we will not be able to state
an analogue to Corollary 2.9 for the specific case of CBITCL processes. As in Section 2.4, we
proceed by relying on techniques similar to those employed in the proof of [KR11, Theorem 4.1].
For (x9,23) € R x Dy, let us introduce the following notation:

S = {x €Dy : P(x) +x2 + Ez(x3) < O} and x:=supS €[, ¢ A @],
with the convention y = —oo if § is empty.

THEOREM 4.9. Let (X, Zt)i=0 be a CBITCL(XO,\I/,CI),EZ). Suppose that Assumption 2./
holds. Then, for all (x1,x2,x3) € D1 x R x Dy, the lifetime T(@1.22:23) s characterized as follows:

(i) If z1 < x, then TE1r2,23) = 4op;
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(i) If 1 > x, then

(4.17) T(@1,22,03) _ fbw d )
o (I)(J)) + X9 + Ez(wg)

PrOOF. Under a slight abuse of notation, it can be easily checked that for the unique solution
(Z/{(-, x1, T2, x3), V(- x1, T2, a:3)) to the extended CBITCL Riccati system of Definition 4.5, starting
from (z1,x2,x3) € D1 x R x Dy, the following correspondence holds true:

V(- x1,20,23) = V(- 1,22 + Ez(x3)) and  U(-, 1,20, 23) = U(-, 21,22 + Ez(3)),

where (U(-,z1,22 + Ez(x3)),V(-, 1,22 + Ez(x3))) is the unique solution to the extended CBI
Riccati system of Definition 2.3, starting from (.7,'1,.1‘2 + Ez(xg)) € D1 x R. As a consequence,
we can derive an analogous correspondence for their maximum lifetimes, namely T(*1:22:23) —
T(@1.22+E52(23)  which therefore allows us to restrict our attention to the study of the lifetimes
T@1.22)  for all (x1,x2) € D1 x R, where the second coordinate x9 is from now on allowed to span
the entire real line.

We distinguish two cases: zo + ZEz(x3) < 0, corresponding to the setting of Theorem 2.8. In
this case, the proof follows exactly the same lines with z2 replaced by x2 + Zz(z3). We refer the
reader to Figure 2.1, where a descriptive illustration of the situation when zo + Zz(23) < 0 can be
found. The second case x2 + Zz(x3) > 0 was not considered in Chapter 2. Figure 4.1 provides a
visualization of the situation and contains several possible shapes of the function ® over D; when
x9+EZz(x3) > 0. The solid curves refer to the case 1) A ¢ < +00 and the dashed ones to ¥ A ¢ = +0.

o
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/
/
/
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_(,’152 +’57(515;;)) \ —_— - - -

FIGURE 4.1. Case z3 + Zz(x3) > 0: Possible shapes of the function ® over D,
where the solid curves refer to ¥ A ¢ < 400 and the dashed ones to ¥ A ¢ = +00.



4.5. A GIRSANOV-TYPE THEOREM 73

Observe that when zo + Zz(23) > 0, the set S may be empty (x = —o0). This is graphically
represented by the green and purple curves. In such a situation, we have ®(x1) + x2 + Zz(x3) > 0,
for all x1 > x. We mention that this situation is similar to the case (2) of the proof of Theorem 2.8,
namely when xs + Zz(z3) < 0, ®(x) + 22 + Zz(x3) = 0, but when z; > x. Indeed, we can observe
that V(-,z1, z2, x3) is strictly increasing with values in [z1, ¢], for all z; > x. In this regard, by
using similar techniques, we obtain that TY and T are given by (2.18) and (2.19), respectively
(with a9 replaced by 2 + Zz(x3)), where we recall that TY and TY are given by (2.15). Then, by
using T(®122:23) — TU A TV we can recover formula (4.17) for T(*1:%2%3) for all 1 > .

When the set S is non-empty, namely when y > —o0, as in the proof of Theorem 2.8, two further
cases can be distinguished. The first case corresponds to x = ¥ A ¢, which is graphically represented
in Figure 4.1 by the blue curve (when ¢ A ¢ < +00) and by the orange line (whether 1) is finite or not,
representing the linear case ®(x) = — bz with b > 0 and ¢ = +0). Arguing similarly to the case (3)
of the proof of Theorem 2.8, namely when z9+Z7(z3) < 0 and ®(x) +z2+Zz(z3) < 0, there exists
a unique & > 0 such that ®(&) + z2 + Zz(z3) = 0 and ®(z1) + 22 + Ez(23) <0 for all £ <x1 < x
by convexity of ®. By using equation (2.20) (with zo replaced by xo + Zz(z3)), V(-, x1, X2, x3) is
strictly decreasing and tends toward § as t — +00, so that we have £ < V(-, z1, 22, 23) < 21 for all
¢ < 1 < x, thus implying that TY = +0. Due to the non-decreasing behavior of the function ¥,
we can deduce that t W(€) < U(t, 21,2, 23) <t ¥(x1) for all ¢ > 0, which yields T = +c0. Hence,
we obtain T(®1:72:%3) — 4 oo for all € < x1 < x and also for all z; < € in view of (4.16).

The second case refers to x < ¥ A ¢, which is graphically represented in Figure 4.1 by the blue
curve (when ¥ A ¢ = 40), the yellow curve (whether ¥ A ¢ is finite or not) and the gray line
(®(x) = — bz with b < 0). Here, we have ®(x) + z2 + Zz(x3) = 0. We proceed as in the case (1)
of the proof of Theorem 2.8, i.e. zo + Zz(x3) < 0 and P(y) + x2 + Ez(x3) = 0. We then have
V(-, X, T2, 23) = x as the unique solution to equation (4.11), which implies T(X-#2:%3) — 40 and for
all x1 < x in view of (4.16). Next, similarly to the case (2) of the proof of Theorem 2.8, namely
xo + Ez(x3) < 0 and ®(z1) + 22 + Ez(z3) > 0 for all 1 > x, V(-, z1, z2, x3) is strictly increasing
with values in [z1,¢] for all z; > x. As above (when the set S is empty), by using standard
extension results and equation (2.17), we obtain that both TY and T are given by (2.18) and
(2.19), respectively (with x5 replaced by 2o +Zz(x3)). As a consequence, by T(#1:#2:%3) = TU A TV,
we finally obtain formula (4.17) for T®122:%3) for all 271 > . O

4.5. A Girsanov-type theorem

The goal of this section is to characterize a class of equivalent changes of probability of Esscher
type that leave invariant CBITCL processes. The result is stated in the form of a Girsanov-type
theorem for CBITCL processes. This class of equivalent changes of probability will be used in
Chapter 5, where the determination of a class of risk-neutral measures for the multiple currency
market, leaving invariant the structure of the model, will represent an important requirement.

As a preliminary, the next lemma presents the differential characteristics of the joint process
(Xt’ i, Zt)t>0
SS X ds, for all t = 0. We refer to [JS03, Chapter II] for details on semimartingale characteristics.

when seen as a semimartingale, where (X, Z;)¢>0 is a CBITCL process and Y; :=
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LEMMA 4.10. Let (X, Zt)i=0 be a CBITCL(XO,\I/,@,EZ). Consider also the joint process
(X1, Y2, Z4) s where Yy := §g Xods, for allt = 0. Then, (X4, Yy, Zy),,
differential characteristics (.A,B,C) relative to h(r) = x 1y;<1y are given by

18 a semimartingale whose

B+ Sézu(dz) —b— ;_OOZﬂ'(dZ) o2 0 0
At = 0 + Xi— 1 , Bt = X;_ 0o 0 0],
0 bz 0 0 o%

Ci(dx) = v(dwx1) §(0,0)(dw2, dos) + X¢- (W(dﬂh) 6(0,0)(dz2, dz3) + d(0,0)(dx1, dw2) ’YZ(dﬂ?3))7
for allt >0 and x = (z1,22,73) € Ry x Ry x R, where §(g ) is the Dirac measure at (0,0).

PRrROOF. By Proposition 4.3, the joint process (Xt,}/t,Zt)t>0, where Y; = Sé Xsds, for all
t = 0, is affine in the sense of [DFS03]. According to the notation of [DFS03, Definition 2.6
and Theorem 2.7], and taking h(z) = z 1(jz|<1) as a truncation function, we can then deduce its
admissible parameter set as follows:

o diffusion part:

0 00 o 0 O 0 00 0 00
(4.18) 00 O0f,J]O0 O O01},{0 O 0},]0 O O}]);
000 0 0 02/ \0 0 0/ \0O 0 O
e drift part:
B+ S(l) zv(dz) —b— IFOO zm(dz) 0 0
(4.19) 0 ) 1 1010
0 bz 0 0
e jump part:
(4.20) (V X (5(0,0),71' X (5(0’0) + 5(070) X ’yz,0,0).

By [DFS03, Theorem 2.12], (X, Y:, Z1),.,
which we denote by (A, B, C) and relative to h(z) = x 1{;|<1}, are affine functions as follows:

is a semimartingale whose differential characteristics,

B+ Sé zv(dz) —b— ;roo zm(dz) 0 0
Ay = 0 + X 1 +Yi_ 0|+ Z— | 0],
0 by 0 0
000 a2 0 0 000 000
Bi=|0 0 0]|]+X;—|0 0 0 [|+Y—|0O O O|+Z~—]|0 0 0],
000 0 0 o2 000 000

Ci(dz) = (V x 5(0,0))(@;) X (w X 80,0) + 50,0 X w) (dz) + (Yt_ x 0> (dz) + (Zt_ x o) (dz),

for all ¢ > 0 and x = (x1, z2,23) € Ry x Ry x R. O
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Let us fix two constants ¢ € R and A € R, which will play specific roles in the construction of
our multiple currency framework in Chapter 5. Consider the process W = (W,);>¢o defined by

(421) Wy =Xy + X2y, vVt = 0.

By [JS03, Proposition I1.8.26], it can be easily checked that the process W = (W;)i>o is an
exponentially special semimartingale if and only if ( € D; and A € Dy. Therefore, W = (W;)i>0
admits a unique exponential compensator, i.e. a predictable process of finite variation, which we
denote by K = (K})¢=0, such that (eWt_CXO_’Cf)tZO
shows that K = (Ky)i>0 can be computed explicitly.

is a local martingale. The following lemma

LEMMA 4.11. Let (Xy, Zt)i=0 be a CBITCL(Xo, ¥, ®,Z2). Consider the process W = (Wy)i=0
defined by equation (4.21) where ( € Dy and A\ € Dy. Then, the exponential compensator of
W = (W;)=0, which we denote by K = (K¢)i=0, is given by

(4.22) Ki = t9(Q) + Y (2(0) + 22 (0)),
for allt = 0, where Yy := Sé Xsds.

PROOF. We proceed by relying on the techniques of [KS02a]. Indeed, by using [KS02a,
Theorem 2.19], K = (K¢)t>0 coincides with the modified Laplace cumulant process of the joint
process (Xt,Yt,Zt)tZO at 0 = (¢,0,\)" (see [KS02a, Defintion 2.16]). Since CBITCL processes
are by definition quasi-left-continuous, in view of [KS02a, Theorem 2.18], £ = (K;);<7 can be
computed explicitly in terms of the differential characteristics given by Lemma 4.10:

t
,Ct - f (QTAS + EQTBS 0+ f (€6T:c —1 - QTw 1{\x|<l}> Cs<d.1‘)> ds

_¢ <ﬂ<+fw (e@— 1) u(dx)> +Y, (—b§+;(ag)2 +f0+oo (e@“ 1 —Cac) W(dx))

0

1
+Y; <bZ)\+2(o—Z>\)2+J

(6’” —1-Az 1{|m\<1}> VZ(dﬂf)>
R

—tW(Q) + Y (@) +E,(0), V=0,
thus yielding the desired result. O

We can now formulate our Girsanov-type theorem for CBITCL processes. To this effect, fix
a finite time horizon 7 < +00 and suppose, without loss of generality, that the stochastic basis
(Q, F, T, Q) is rich enough so that a CBITCL process (X, Z;)i<7 admits the extended Dawson—Li
representation (4.4)—(4.5). We also invite the reader to compare the next result with Remark 3.9

and other similar Girsanov-type results for CBI processes obtained in the related literature (see
[JMS17, JMSZ21, BBSS21] among others).

THEOREM 4.12. Let (X, Zi)i<T be a CBITCL(XO,\IJ,@,EZ). Consider the process W =
W)t defined by (4.21) where ¢ € Dy and A € Do, together with its exponential compensator
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K = (Ki)i<r given by (4.22). Then, the process (eWﬁ*CXO*’Ct)KT is a true martingale and there
exists an equivalent probability measure Q' defined by

(4.23) @ e Wi Xo=ke
dQ | £,

for allt < T, under which the joint process (X, Zi)i<7 remains a CBITCL process with parameters
given by (B’,I/’,b',a’,ﬂ’,b’Z,a’Z,’y’Z) in Table 4.1

PROOF. Let Z; := eWt=¢Xo=X¢ for all t < 7. By Lemma 4.11, we know that Z = (Z;)i<7 is a
local martingale. Since the latter is non-negative, it is a supermartingale by Fatou’s lemma. Hence,
in order to prove that it is a true martingale, it suffices to show that E[ZT] = 1. To this effect,
in view of (4.16), the lifetime T(G~®()==2(NA) ghould verify TE=2O-22(0A) > T to ensure
E[ZT] < 400. By using Theorem 4.9 with 1 = (, 20 = —®({) — Ez()), and x3 = A, we obtain
S ={zeD;: ®(x) < P()} and this set is therefore always non-empty. Consequently, it holds
that y = supS > ¢ and Theorem 4.9 yields T(¢:—2()=E2(M):A) = L0, thus leading to E[ZT] < +0o0.
By applying now Lemma 4.6, and noting that the function V(-,¢, —=®(¢) — Zz(X),A) = ( is the

unique solution to

D¢ -0(0) ~ 220, 3) = B(V(1, ¢, ~0(0) ~ =20, 1)) ~ 8(0),

V(0,¢,—@(¢) —Ez(N\),\) = ¢,

we obtain E[ZT] = 1. This implies that Z = (Z;);<7 is a true martingale and can then be utilized
as the density process of a probability measure Q’, equivalent to Q and defined as follows:

dQ’
dQ

2= MK K o T
Fi

’ CBITCL parameters under Q' ‘
=5
V(dz) = eS* v(dz)

V:=b—Co?— arooz(eczfl)ﬂ'(dz)

o =0

7'(dz) := e$* m(dz)

vy :=bz+\(oz)?+ S|Z‘<1 z (e = 1) vz(dz)
oy =0y

v, (dz) := e yz(dz)

TABLE 4.1. Parameter transformations from Q to Q'
for the CBITCL process (X¢, Z¢)i<T-
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The next step of the proof consists in using It6’s formula, in order to rewrite the process

Z = (24)1<1 as a stochastic exponential:

<gaf /X, dB! +Aozj\/ZdB2 JJ 1) No(ds, dx))

x & <J f Sfoo 1) Ny (ds, du, dz) f f J 1) No(ds, du d:c)) .

By applying Girsanov’s theorem, the processes (Bz’l)th and (Bt’ )i<T defined by

t
B! = B} - gaf VX, ds,
0
t
B? .= B? - Aazf VX, ds,
0

for all t < T, are independent Brownian motions under Q’. Again by Girsanov’s theorem (see e.g.
[EK20, Proposition 3.73]), No(dt,dx), N1(d¢,du,dz), and Na(dt,du,dz) remain Poisson random

measures under @/, but with modified compensators as follows:
N}(dt, dz) := No(dt,dz) — dte® v(dz),
N{(dt, du,dz) := Ni(dt,du,dz) — dt due$® 7(dz),
N5(dt, du, dz) := Ny(dt,du, dz) — dt due? yz(da),

In order to show that the joint process (X, Z;)i<7 remains a CBITCL process under Q', we need

to rewrite its extended Dawson—Li representation (4.4)—(4.5) under Q' as follows:
t
X, = X0+J(6’ VX )ds+0f«/ X,dBi!
+a0 s [0
J J x No(ds,dx) J f f z N (ds, du, dz), Vi< T,

thb’ZfoXsds+o—’ZfO«/XsdB;’2+LJO f lxNg(ds,du,dx)
T|=

t X N
+ J f J x Ni(ds, du, dz), Vi< T.
0 Jo |z|<1

In view of Lemma 4.2, we can conclude that the joint process (X, Z;)i<7 remains a CBITCL
process under Q' and associated to the parameters given in Table 4.1. O

In conclusion to this chapter, we briefly investigate the stability under Q' of some of the
examples of CBI processes reported in Table 2.1. More specifically, we restrict our attention to the
CIR process, the a-CIR process, and the tempered-stable CBI process, in view of their applications
considered in Chapter 5. The next table contains the following observations:

e The first column describes whether the stability under Q' is ensured or not;

e The second column reports the parameters under Q' computed with Table 4.1.
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H Stability under Q’ Parameters under Q'
CIR process Yes, provided that b > ¢ o2, B =8, =b—C(o?
(see [CIR85]) where (e D1 =R and 0’ = o
a-CIR process, No, since for all z = 0: B = B,V is given by
(see [LM15, JMS17], 7'(dz) =0 Co 277 e % dz, b—Co?+an®Col(—a) (=¢n)* 1,
and [JMSZ21]) a-CIR processes then become o =0,n=nC,=C,,
tempered stable where (€ Dy =R_ | and o = «
Tempered-stable Yes, since for all z > 0: B’ = 3, b is given by
CBI process m'(dz) = n* Caz 1 7%e” e dz, | b—Co®—an*Cal(—a)0*t +
(see Section 2.7) where ' := 0 —(n >0, an®CoT(—a) (@ —¢n)
for ¢ € Dy = (—0,0/n] o =0,7 =n,C,=C,,

0 =0—(n,and o =«

TABLE 4.2. Stability under Q' of some of the examples of
CBI processes reported in Table 2.1 (we refer to Appendix 5.A for
the computation of the drift & in both a-CIR and tempered-stable cases).




CHAPTER 5

CBITCL processes for multiple currency modeling

SUMMARY. We develop a general stochastic volatility modeling framework for multiple currencies

based on CBI-Time-Changed Lévy processes (CBITCL). Besides capturing the typical sources of

risk in the FX market, and preserving the peculiar symmetries of FX rates, our framework allows

for self-excitation in the volatility of FX rates, which is generated by the self-exciting behavior of

CBI processes. The proposed approach is analytically tractable since it relies on the technology

of affine processes, and allows to characterize a class of risk-neutral measures that leave invariant

the structure of the framework. Then, we derive a semi-closed-form pricing formula for currency

options via Fourier techniques. Finally, we test our model by means of a calibration to an FX

triangle where two types of calibration are proposed: standard and deep, the latter of which uses

deep-learning techniques.
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5.1. Introduction

5.1.1. Motivation. The Foreign-Exchange (FX) market has never ceased to grow over the
years. According to the Bank for International Settlements (BIS) (see [BIS19]), its trading volume
attained $6.6 trillion per day in April 2019, in comparison to $5.1 trillion three years earlier. This
growth can be partly explained by the ever-growing “electronification” of the FX market, i.e. the
rise of electronic and automated trading (see e.g. [Woo019]). This induces a significant inflow
of diverse market participants, which boosts liquidity but is also accompanied by an increased
propensity toward riskier investments. In particular, the trading of “soft” currencies' grew faster
than that of “hard” currencies between 2016 and 2019, attaining 23% of the FX turnover against
19% three years earlier. This has encouraged market participants to manage their risk exposure
by relying on financial models capable of capturing the principal risk drivers of the FX market.

When constructing a financial model for multiple currencies, special attention has to be paid
to the symmetries that FX rates typically satisfy. To describe these symmetries, consider an FX
rate S%f between the domestic currency d and a foreign currency f (i.e. the value of one unit of

currency f measured in units of currency d). The symmetries of FX rates consist in the following:

e If we invert the FX rate S/, then we must obtain S/¢ = 1/5%/ which is the value of
one unit of currency d measured in units of currency f. This is referred to as inversion;

e Take any additional currency e. The FX rate S%/ must be implied from S%¢ and S/
through multiplication: S%/ = §%¢ x §&f_ This is called triangulation.

Among the classic sources of risk in the FX market, we find stochastic volatility and jumps in
FX rates, whose empirical evidence has been documented in [GJ87, Jor88, NVW94, Bek95|.
These two features are shared with other financial markets (e.g. equity markets), which has led to
employ for FX markets, up to minor modifications, financial models initially conceived for stock
returns. We can mention the Garman—Kohlhagen model [GK83], which is the FX counterpart
of the Black—Scholes model. An FX adaptation of the Heston model has also been proposed
by [JKWW11]. For further examples of such models, we can refer the reader to the volumes
[Lip01, Casl10, Clall, Wys17].

We can find two other significant risk factors in the FX market: the presence of stochastic
dependence among FX rates, and the stochastic skewness of the FX volatility smile. Concerning
the latter, [CW07] analyzed the time series of risk-reversals?, which are in fact known to measure
the asymmetry of the FX volatility smile. The authors showed that their values vary greatly over
time and exhibit repeated sign changes. They therefore suggested that the skewness of the FX
volatility smile should be stochastic and developed a financial model driven by time-changed Lévy

processes in order to reproduce this empirical fact.

TAccording to the terminology of [JFB15, Section 5.4.2], a “soft” currency corresponds to an emerging country,
while a “hard” currency refers to a developed country, i.e. a major currency.
2We recall that a risk-reversal, in the context of FX options, measures the difference in implied volatility between

an OTM call option and its put counterpart such that they share the same maturity and have symmetric deltas.
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FIGURE 5.1. Weighted average of the 1Y ATM call-implied volatilities of the three
major currency pairs USDJPY, EURJPY, and EURUSD, where the weights are
represented by the reciprocal bid-ask spreads. The period spans from 2015 to 2020.
Source: Bloomberg.

Finally, volatility clustering has been extensively detected across most asset classes (see e.g.
[CTO04, Chapter 7]). This phenomenon tends to be amplified in the FX market, especially due
to its electronification (see again [Woo19]). Figure 5.1 illustrates the weighted average of the 1Y
ATM call-implied volatilities of three major currency pairs (USDJPY, EURJPY, and EURUSD),
where the weights are represented by the reciprocal bid-ask spreads. The period spans from 2015
to 2020, thus covering events such as the Brexit referendum, the 2016 United States presidential
election, and the first phase of the COVID-19 pandemic. Around these key events, we are able
to observe successive jump clusters. This empirical behavior suggests the potential presence of
self-excitation in the volatility of FX rates. In particular, one can also expect an amplification of
this phenomenon when dealing with currency pairs that involve a hard currency and a soft one.

5.1.2. Contribution. In this chapter, we develop a general stochastic volatility modeling
framework for multiple currencies that allows for self-excitation in the volatility of FX rates, while
capturing the typical sources of risk in the FX market (such as stochastic dependence among FX
rates and stochastic skewness of the FX volatility smile), and preserving the peculiar symmetries
of FX rates (i.e. symmetries under inversion and triangulation).
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By relying on the technology of CBI-Time-Changed Lévy processes (CBITCL, Chapter 4),
the proposed approach possesses a remarkable level of analytical tractability. More specifically,
by exploiting the affine structure of CBITCL processes (see Proposition 4.3), we can show that
CBITCL processes are coherent in the sense of [Gnol7|. This means that if an FX rate is modeled
by a CBITCL process, then the inverse FX rate belongs to the same modeling class (we refer to
Remark 4.4 for further details). Inspired by [Gnol7, Section 4], we design our modeling framework
by adopting an artificial currency approach. The underlying idea consists in expressing each FX
rate as the ratio of two primitive processes, with one primitive process associated to each currency.
FX rates will therefore satisfy the inversion and triangulation symmetries by construction. As a
consequence, this formulation reduces to modeling all primitive processes with a common family
of CBITCL processes, assumed to be mutually independent.

By using a Girsanov-type result for CBITCL processes (see Theorem 4.12), we characterize
a class of risk-neutral measures that leave invariant the structure of the model. By utilizing the
preservation of the affine property, we derive a semi-closed-form pricing formula for currency options
by means of Fourier techniques. The proposed approach can also reproduce several features of the
FX market. In particular, it allows for non-trivial stochastic dependence between the different
currencies, and for non-trivial dependence between FX rates and their volatilities. We emphasize
that the latter type of dependence is known to play a relevant role in generating FX volatility
smiles that exhibit stochastic skewness.

We assess the empirical performance of our model by means of a calibration to an FX triangle
consisting of three major currency pairs (USDJPY, EURJPY, and EURUSD). We restrict our
attention to two specifications of our model: the first one simply considers a Brownian motion
as the Lévy process of each CBITCL process; the second one consists in choosing the CGMY
process [CGMYO02] as the Lévy process of each CBITCL process. For both specifications, each
CBI process is set to be a tempered-stable CBI process in the sense of Section 2.7. We perform
two calibrations: standard and deep, where the latter uses deep-learning techniques developed
by [HMT21]. We mention that this type of calibration is here applied for the first time to a
multi-currency setting.

Finally, by retaining the calibrated values of the model parameters, we complete our numeri-
cal assessment of the proposed approach by carrying out a sensitivity analysis on model-implied
volatility smiles. For this empirical study, we restrict our attention to the parameters controlling
the self-exciting jump component of each tempered-stable CBI process. The objective behind this
sensitivity analysis is to determine the impact of the self-exciting behavior of the tempered-stable
CBI processes on the shape of the FX volatility smile.

5.1.3. Related literature. Our modeling framework is based on an artificial currency ap-
proach. To the best of our knowledge, the idea of introducing a global numéraire, whose value
can be expressed in any currency, first appeared in [FH97]. Later, [Dou07] revisited this frame-
work under a different terminology, i.e. the intrinsic currency framework. Then, several stochastic

volatility models for multiple currencies have been developed by relying on this approach, see e.g.
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[Doul2, DCGG13, GG14, BGP15]|. From a different standpoint, we can mention the principal
component stochastic volatility model of [EG18]. We also mention the recent work of [GGP21],
which unifies [DCGG13] and [BGP15]. All these frameworks preserve the symmetries of FX
rates while taking into account most of the sources of risk in the FX market. Yet, none of them
allow for self-excitation in the volatility of FX rates as they can all be considered as generalizations
of the Heston model.

A large number of FX models for multiple currencies are based on multi-dimensional extensions
of the Heston model. This is justified by the fact that the Heston model is known to be closed
under inversion (see e.g. [DBnRO8]). Motivated by this fact, [Gnol7, GBP20] have recently
characterized all models that remain stable under inversion, allowing for more general modeling
approaches beyond the Brownian setting of the Heston model. These models have been termed
coherent by [Gnol7] and consistent by [GBP20]. We will see later that CBITCL processes are
coherent in this sense.

Several approaches for the modeling of multiple currencies have gone beyond the Brownian
setting, especially using time-changed Lévy processes. We first mention the time-inhomogeneous
Lévy framework of [EKO06], recalling that time-inhomogeneous Lévy processes can be regarded as
time-changed Lévy processes with deterministic activity rate. [CWO07] developed a model based
on time-changed Lévy processes with CIR-type activity rate, whose configuration contributed to
the stochastic skewness of the FX volatility smile (we also refer the reader to [Joh02, BCWO08,
AMO09, 1tk17] on this issue).

More recently, [BDR17] have developed a multi-currency modeling framework driven by a
multi-dimensional Lévy process with dependent components, relying on a factor representation for
Lévy processes. In this work, only pure Lévy processes were considered and, therefore, stochastic
volatility was not explicitly modeled. This was justified by the short maturities of the contracts
considered in the calibration. [BDR17] suggested however that time change techniques could be
used in future research. In this regard, [BM18] have proposed a model based on time-changed
Lévy processes for the modeling of a single FX rate (USDJPY).

In their model, the activity rate exhibits self-excitation as well as jumps of infinite activity.
Moreover, the presence of a common jump structure between the Lévy process and the activity rate
induces non-trivial dependence between the FX rate and its volatility. The objective behind such a
mechanism was to introduce correlation between the FX rate and its volatility. By comparing their
specification with a benchmark, the authors found evidence of a mild correlation between the FX
rate and its volatility, with an indication that this correlation is more pronounced as the interest
rate differential broadens (e.g. when the FX rate involves a hard currency and a soft currency).

5.1.4. Structure. In Section 5.2, we describe our general modeling framework. Section 5.3
presents the main features of the proposed approach. Section 5.4 provides a numerical assessment
of our model, while Section 5.5 concludes the chapter. Finally, Appendix 5.A contains some aspects
of the specifications considered in Section 5.4.
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5.2. A CBITCL modeling framework

Let 7 < 400 be a finite time horizon and (Q,]—" ,IF,Q) a stochastic basis satisfying the usual
conditions, Q is a probability measure and the structure of F = (F;);<7 will be specified later.

5.2.1. Preliminaries on the multiple currency market. The FX market is a financial
market where multiple currencies are traded by spot and derivative transactions. Such a market
involves different economies, each one associated to a specific currency. The i*" and j** currencies
are related by the spot FX rate process S%/ = (Sf’j )i<T, Where SZ’j denotes the value at time ¢
of one unit of currency j measured in units of currency i. Let us now formally define a multiple

currency market. To this end, consider the following ingredients:

(i) Let N > 2 denote the number of currencies traded in the market;
(ii) Let D = (D%)iffN be an RY-valued process where each D’ represents the bank account
of the i economy given by D} := er t for all t < T, where r* > 0 denotes the short rate;
(iii) Let S = (5P )tf;—] <N pe an RV*N_valued process denoting the spot FX rate processes
between the different currencies such that for every 1 < i < N we have S, = 1 for all

t < T, and for every 1 <i,j < N with i # j, Sf’j>0forallt<7'.

In line with the classic construction of financial models for multiple currencies (see e.g. [MRO6,
Chapter 4]), we formulate the definition of a multiple currency market as follows.

DEFINITION 5.1. We say that the triplet (N,D, S) represents a multiple currency market if
for every 1 < i < N, the following basic assets are traded in the i*" economy:

e The bank account D! = (D});<7;
e For every 1 < j < N with j # i, the bank account of the ;' economy denominated in
units of the i*® currency, namely S%/ D7,

For every 1 < i < N, no arbitrage in the sense of No Free Lunch with Vanishing Risk (NFLVR)
in the ™ economy is guaranteed by the existence of a risk-neutral measure Q° with respect to the
bank account D’ (see [DS94, DS98])3. However, this does not take into account the elementary
no-arbitrage relationships that spot FX rates must satisfy, namely symmetries under inversion and
triangulation. To this effect, we propose the following definition, extending [EG18, Definition 1]
to an FX market consisting of more than three currencies.

DEFINITION 5.2. The multiple currency market (N ,D,S ) is well posed if the following hold:
(i) No direct arbitrage: For every 1 <1i,j < N, Sgl = 1/52’j7 Vi< T,
(i) No triangular arbitrage: For every 1 <i,k,j < N, S}7 = SZ’k X Sf’j, Vi< T;
(iii) NFLVR: For every 1 < i < N, there exists a risk-neutral measure Q' with respect to the
bank account D* for the i*® economy.

3Recall that a risk-neutral measure Q* with respect to the bank account D° for the i*® economy, for every
1 < i < N, is a probability measure equivalent to Q such that for every 1 < j < N, the D‘-discounted process
S%9 DI /D" is a local martingale under Q.
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REMARK 5.3. [Moo01], and [FKT17, CQTZ20] more recently, have documented that tri-
angular arbitrage opportunities exist in FX markets, but with a duration of less than one second
(there may exist a triplet (4, , k) such that Sf’j # SZ"k X Sf J over a short time interval). Allowing
for such possibilities is beyond our scope, and then we consider only markets as in Definition 5.2.

In the case of a two-economy market consisting of currencies ¢ and j, well-posedness is auto-
matically satisfied by construction as long as NFLVR holds for both economies. However, assuming
that the spot FX rate process S belongs under Q° to a certain modeling class, nothing indicates
that the inverse process S’ shares the same modeling class under Q7. In this respect, the so-
called coherent models of [Gnol7] overcome this drawback by being stable under inversion. More
specifically, [Gnol7, Theorem 3.1] shows that affine stochastic volatility models as considered in
[KR11] are coherent, including in particular CBITCL processes as we will see below.

In general, there is no guarantee that coherent models, when extended to N > 3 currencies, are
compatible with well-posedness. Yet, they can be used as building blocks for more general models
as discussed in [Gnol7, Section 4]. Inspired by this fact, we construct our modeling framework
for multiple currencies by adopting the artificial currency approach. We will proceed along the
following steps:

(1) We first express each currency with respect to an artificial currency indexed by 0, which
gives rise to N artificial spot FX rates (S%%);<;<n. We then exploit the Girsanov-type
result for CBITCL processes that we formulated in Chapter 4 (see Theorem 4.12), in order
to characterize a class of risk-neutral measures for the multiple currency market;

(2) The second step consists in the computation of the spot FX rate processes S = (Si/),< 7,
for every 1 < i,j < N, with respect to (S%%);<;<ny by taking appropriate ratios, which
results in a multiple currency market (N , D, .S’) that can be proved to be well posed in
the sense of Definition 5.2.

5.2.2. Construction of the CBITCL multi-currency model. Consider the next standing
assumption, which is the starting point of the artificial currency approach (see Chapter 1):

ASSUMPTION 5.4. There exists an artificial currency indexed by 0 and related to the i** currency
through the artificial spot FX rate process S%% = (S,?’Z)KT, for every 1 <i < N.

Our formulation consists in modeling all artificial spot FX rates (5%%);<;<y with a common
family of CBITCL processes, assumed to be mutually independent, where each CBITCL process
is directly defined by its extended Dawson-Li stochastic integral representation (4.4)—(4.5) (see
Chapter 4). To proceed, fix d € N and assume the existence of the following objects, for every
1<k<d:

e Two standard Brownian motions B*! = (Bf’l)KT and B¥? = (Bf’2)t<7-;

e A Poisson random measure N¥(dt,dx) on [0,7] x R} with compensator dtv*(dz) and
compensated measure Né“(dt, dz) := NE(dt,dz) — dt v¥(dz), where V¥ is a Lévy measure
on Ry such that Sé x V¥ (dr) < +oo;
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e A Poisson random measure Nf(dt, du, dz) on [0, 7] xR, xR with compensator dt du 7% (dx)

and compensated measure N¥(dt, du, dz NF (dt du, dz) — dt du7*(dz), where 7% is a

~—

e A Poisson random measure N2 (dt,du,dz) on T] ><]RJr xR with compensator dt du 'yZ(dx)

)

) =
Lévy measure on R, such that S 7k (dz) <

) on [0,

) := N¥(dt,du,dz) — dt du~%(dz), where 7% is a

and compensated measure N2 (dt, du,dz
Lévy measure on R.

We suppose that for every 1 < k < d, B!, B*2, Néﬁ, N{C, and Néf are mutually independent with
respect to the filtration

k k k
(5.1) Fr=FPVFPVEN VENTNVEY, wesT,

and all these processes are also mutually independent across different 1 < k < d.
Let us define, for every 1 < k < d and for X(’f € R,, the following system of stochastic integral

equations
t t
szXkJrf g — bk x* ds—l—akf XkdBk!
foxg [ (o -t as ot [y
t 400 t rXF oo
(5.2) + f J x N¥(ds,dz) + J J f x N¥(ds, du, dz), Vi< T,
Zk—kaXkds+a Jq/ XkdBk? + JJ f x N§(ds, du, dz
t Z 5|1 2 ( )
(5.3) + J J S_J z N§(ds, du, dz), Vi< T,
0 Jo |z|<1

where BF > 0, b¥ e R, 0% > 0, b5, € R, and o%, > 0. By Lemma 4.2, the joint process (X}, ZF);<7
is a CBITCL (X(')", Tk ok E’%) with respect to the filtration (FF);<7, for every 1 < k < d. We then
introduce the following standing assumption on the branching mechanisms (@k)l <k<d’

ASSUMPTION 5.5. For every 1 < k < d, ®F satisfies Assumption 2.4.

In summary, the global filtration (F;).<7 is given by
(5.4) Foe=\/ Ff, Wt<T.

1<k<d

Denoting now the factor processes X = (X¢)i<7 and Z = (Zy)i<7 by Xi = (X}, .. .,Xtd)T and

= (Ztl, R Zf)T for all ¢t < T, respectively, we also consider the following objects:
o A family of vectors ¢ = ((1,...,(n) with ¢; € R?, for every 1 < i < N, and where for
every l <i< Nand 1 <k <d, (€Dl
o A famlly of vectors A = (Ag,...,\y) with \; € R%, for every 1 < i < N, and where for
every 1 <i< Nand 1 <k<d, \j€ D’;;
o A family of stochastic processes (K k)%fﬁfé\if , where for every 1 <i < N and 1 < k < d,

ICik = (IC“ )t<7 denotes the exponential compensator of the process (Q k XF+ Mg Z ) <T

in the sense of Lemma 4.11,
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where we recall from Chapters 2 and 4 that le represents the effective domain of the immigration
and branching mechanism functions ¥* and ®*, given by (2.8), while D} refers to the effective
domain of the Lévy exponent =%, given by (4.10), for every 1 < k < d.

DEFINITION 5.6. The tuple (X, Z,¢, /\) is said to generate a CBITCL multi-currency model if

d
i i i ) k. k_ yik
(55) Sgﬂ — Sgﬂ e " t H 6<z,k X+ g 27— Ky , Vit < ’7'7
k=1

where Sg’i > 0 and ¥ > 0 denotes the short rate of the i*" economy, for every 1 <i < N.

We point out that the artificial spot FX rates (S%%);<;<n are modeling quantities that cannot
be observed in reality (see Chapter 1). Yet, the constants (;, and A; , will play specific roles in
the dynamics of the spot FX rate processes. While \; ;, will capture the relative importance of
the jump risk arising from the &' time-changed Lévy process Z* = (ZF)i<T, i,k will measure the
weight of the dependence between the k™' CBI process X* = (X[);<7 and the FX rate.

As a preliminary, we can derive the dynamics of each artificial spot FX rate (S%%);<;<n, making
use of the standing assumption that each CBITCL process (XF, ZF);<7 is defined by its extended
Dawson-Li stochastic integral representation (5.2)—(5.3).

LEMMA 5.7. Let (X, Z, C,)\) generate a CBITCL multi-currency model. Then, for every 1 <
i < N, the artificial spot FX rate process S%' = (S’?’l)th is the unique strong solution to the
following stochastic differential equation:

1507 . d
s%i = —rldt+ Y <«/Xf (gk o dBP + g o dBfﬂ) +f
t k=1

0

+00

(eCiv” - 1) Né“(dt,dx))

oo+ 37 (00 1) Mananan s |

(e’\i*” - 1) N¥(dt, du,d:z:)) :
0 R

PROOF. A direct application of It6’s formula, combined with system (5.2)—(5.3) and equation
(4.22), implies weak existence of the solution to equation (5.6). Pathwise uniqueness then follows
from the extended Dawson-Li stochastic integral representation (4.4)—(4.5). By using [BLP15,
Theorem 2] for example, pathwise uniquess together with weak existence implies strong existence
for equation (5.6). O

The next theorem provides a characterization of a class of risk-neutral measures for the multiple
currency market, preserving the structure of the CBITCL multi-currency model of Definition 5.6.
This result can be regarded as a multi-dimensional extension of the Girsanov-type theorem for
CBITCL processes that we formulated in Chapter 4 (see Theorem 4.12).

THEOREM 5.8. Let (X, Z,C,)\) generate a CBITCL multi-currency model. Then, for every
1 < i < N, the stochastic process S%' D' is a true martingale and there exists an equivalent

probability measure Q' defined by

dQ’ S} Di
(5.7) Q = Lt V< T,
dQ Fi SO,
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’ CBITCL parameters under Q° ‘
l@i,k = Bk
ViR (dz) i= eCorZ R (dz)

bk = bF — (g (0F)? — aroo z (eSik? — 1) wF(dz)
k

ok =0
bk (dz) 1= eSikZ 7R (d2)

7,k -2z
by = b5+ Nk (05)? + S|Z|<1 z (etik? — 1) 7% (dz)

ok .k
O'Z = O'Z

ygk(dz) = ek vg(dz)
TABLE 5.1. Parameter transformations from Q to Q°
for the CBITCL process (XF, ZF)i<7.

which is a risk-neutral measure with respect to the bank account D' for the i™* economy, and
under which for every 1 < k < d, the joint process (XF, ZF)i<7 remains a CBITCL process with
parameters given by (Bi’k,yivk, bi’k,ai’k,wi’k,bZZ’k,UZZ’k,ng) in Table 5.1.

PROOF. By Theorem 4.12, for every 1 < i < N and 1 < k < d, the process Z"* = (ZZ’k)th
defined by

. ] k ) k_ ik
ZZ’k = eCi,k Xt +>\Z’k Zt ’Ct ) Vt < 7-7

is a martingale with respect to the filtration (F¥);<7. By applying [Che06, Theorem 2.1] among
others to the product of independent martingales (5.5), for every 1 < ¢ < N, we obtain that the
stochastic process S%* D' is a true martingale, for every 1 < ¢ < N. In turn, this implies the
existence of a probability measure Q?, equivalent to Q and defined as follows:

do’| 5D

= — Vi< T,
d@ = Sg’z

where it can be easily checked, by referring to [GEKR95, Theorem 1] for example, that Q' is a
risk-neutral measure with respect to the bank account D for the i*" economy, for every 1 <i < N.

In order to show that the joint processes (th, Zf‘)tg—, for every 1 < k < d, remain CBITCL
processes under Q°, we follow the proof of Theorem 4.12. For convenience of the reader, we give
full details. To proceed, we first need to rewrite (5.7) as a stochastic exponential by Lemma 5.7,

as follows:
- d . . .
dQ’ ( kf k 1kl k k 10k2 e Sk
= E\Gro XPdBg + Ao XFdBJ* + eSik® (ds,dx)
d@ftﬂ , VA z) VX 00( ) No t
d

© Xkt - - pXkE N
X HS (J J J (eCiv” —1) *(ds, du, dz) —I—J J J (eAiﬂ” —1) f(ds,du,dx)) ,
oJo Jo oJo Jr

k=1 t
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forallt < 7. By applying Girsanov’s theorem, the processes (Bz’k’ )< and (B, 1k,2 )e<7 defined
forevery 1 <i< Nand1<k<dby

, ¢
BiR = BPY ¢ o* f \/ Xk ds,
0
) ¢
B = B — \ix agf \/ XEds,
0

for all ¢t < T, are independent Brownian motions under Q°. Again by Girsanov’s theorem,
NE(dt,dx), Nf(dt,du,dz), and N5(dt,du,dz) remain Poisson random measures under Q¢, but

with modified compensators as follows:

Né’k(dt,dx) :
(dt,du,dx) :
’k(dt du,dz) :

NE(dt,dz) — dt e+ @ v¥(dx),
NE(dt, du, dz) — dt du e+ 7% (dz),
N¥(dt, du, dz) — dt du e+ @ ~5(dx),

)

7,
1
ATe

for every 1 <i < N and 1 < k < d. Finally, we rewrite system (5.2)-(5.3) under Q° as follows:
t t
XF=x5+ f (B7F —v"* XF) ds + J”kf \/ XEdBM!
0 0
t r+o0 t rXE 400
+ f J x N¥(ds,dz) + J J J fo’k(ds, du, dx), Vit =0,
Zt—bZkkads—i—aZqu/ XkdABikR2 4 ff J x N§(ds, du, dz)

|z|=1
+ f J SJ xﬁé’k(ds, du, dz), vt = 0.
0 Jo lz|<1

In view of Lemma 4.2, we can conclude that the joint process (X,fC , ZF) <7 remains a CBITCL

process under Q¢ with parameters given in Table 5.1, for every 1 <i < N and 1 < k < d. Il
We define the spot FX rate process S™ = (S, ’J)t<7', for every 1 <i,j < N, as follows:
(5.8) Syl = SOZ’ Vi< T.

In the next result, we first show that the triplet (N ,D,S ) is a well-posed multiple currency market
in the sense of Definitions 5.1 and 5.2. We then provide each spot FX rate process S/ = (SZ’j)tsT
with a stochastic integral representation under Q°. In particular, we will notice that their dynamics
are functionally symmetric with respect to ratios/products, which is a direct consequence of the
fact that CBITCL processes are coherent in the sense of [Gnol7].

COROLLARY 5.9. Let (X, Z,C,)\) generate a CBITCL multi-currency model. Then:
(i) The triplet (N, D, S) 18 a well-posed multiple currency market;
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(i) For every 1 <i,j < N with i # j, under Q', the spot FX rate process S™ = (SZ’j)th 18
the unique strong solution to the following stochastic differential equation:
asi’ _ (r' —r9)dt + Z VX ( (Gik = Gie) BT + 0l (Aj — g )dBi’kQ)
SZ’j 7,k — Gk t Z \"N\jk i,k t
+00 .
+3 f (e(Cj»k—Ciak)”” - 1) iR at, dz)
k=170
d rXF r+oo .
+ Z J (e (Gr—Gin)o _ 1) N{’k(dt,du, dz)
k=170 0
d - rXE N
(5.9) + f J <e (Aje=Aig)z _ 1) NEF(dt, du, dz).
k=170 R

PRrROOF. The well-posedness of the multiple currency market (N , D, S’) directly follows from
Theorem 5.8 and equation (5.8). Concerning part (ii), the product rule for semimartingales reads

y . 1 0.7 1 ; 0+ 1
(510) dS J = d(S’O"7 X Z> S _ i " + d|:S 7]7 ’L:| 9
t t SO’ t SO SO, t S0, .

t t t—

where, by using It6’s formula, we can show that the inverse process of §% = (So’i)th satisfies

Sfjds— — ridt — Z \/7 (gka RV ZdB““)
+ Z J ~GikT 1) NPR(at, dx)
+ Z Jo tj;oo (e_ Gk _ 1) ]\Nfli’k(dt,du, dz)
k=1
d k
+ 2 LthR <e_ Ak _ 1) ﬁé’k(dt, du, dz),
k=1

and the co-variation [5’0’] , %Z] is determined by

Xt (G Gok (502 Ao A (05)?) at

Mg

0,j
St_ |:S ’ SU,Z

+00

—GkT _q ) ( ng‘T—l) NE(dt, dx)

+
M=~

e
I
—

o ?

+
M=

T

(
J+OO e Gk T 1) <e§j*’€$ - 1) NE(dt, du, dz)

0

B
Il
—_

J —/\l KT _ (e&',kfﬁ — 1) Né“(dt,du, dz).
R

° ><

+
M=

ey
I
—
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5.3. Features of the model

5.3.1. Stochastic volatility and jumps. Corollary 5.9 highlights the presence of stochastic
volatility and jumps in the dynamics of the spot FX rate processes. Let us fix a couple (i, 7) with
1<1,7 < N andi # j, omitting the index k for simplicity, the dynamics of the spot FX rate process
S = (Sf’j )t<7 are then influenced by the following sources of randomness: a diffusive component
driven by the two Brownian motions (Bti’l)th and (Bf’Q)tgfr, and three jump components driven
by the three compensated Poisson random measures Ng, N{, and Nﬁ Let us now comment on the
interpretation of these different sources of randomness.

We start with the diffusive component, which is proportional to the square root of the CBI
process X = (Xy)i<7, thus giving rise to stochastic volatility. Moreover, this shows that our
modeling framework allows for self-excitation in the volatility of FX rates, which directly derives
from the self-exciting behavior of CBI processes. The first jump component driven by Kfé results
from the immigration of the CBI process X = (X;)i<7, whose magnitude is controlled by the
difference (; — ¢;.

The second jump component driven by ]Vf represents the dependence of self-exciting type
between the CBI process X = (X;);<7 and the FX rate, whose magnitude is again controlled by
the difference (; — ;. When this difference is large, e.g. between a hard currency and a soft one,
it indicates strong dependence between the CBI process X = (X;);<7 and the FX rate. If the
quantity (; — ¢; is small, e.g. between two hard currencies, then it suggests moderate dependence,
in line with the findings of [BM18]|.

The third jump component driven by Nﬁ represents the jump risk of self-exciting type generated
by the time-changed Lévy process Z = (Z;):<7, whose magnitude is controlled by the difference
Aj — A;. If this difference is large, then it implies an important contribution of the time-changed
Lévy process Z = (Z;)i<1 to the jump risk of the FX rate. If the quantity A; — A;, then it implies
a weaker contribution.

5.3.2. Stochastic dependence and skewness. We investigate whether our framework can
generate stochastic dependence among FX rates and FX volatility smiles with stochastic skewness.
To this end, we compute the co-variations between the different FX rates and examine, for each
FX rate, the instantaneous correlation between the FX rate and the sum of the d CBI processes
(X*)1<r<q driving the volatility of the FX rate. This quantity is known to be intimately related
to the skewness of the FX volatility smile (see e.g. [CHJ09, Section 3] and [DFG11, Section 3]).

For every 1 < i,j < N with ¢ # j, consider, for ¢ < 7T, the time-t instantaneous correlation
between the spot FX rate process S/ = (S7),<7 and the sum of the CBI processes (X*);<r<d,
denoted by d Corr; (Si’j, Zizl Xk). By [DFG11, Section 3], it can be informally defined as

d

irj d[Sm’ i1 Xk]t
(5.11) d Corr, <S’ ,];Xk> = \/d[sm] \/d[zz_l Xk] .

We shall verify the following two properties:
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(1) If for every 1 < i@ < N and every 1 < p,q < N with p # 4, ¢ # ¢, and p # ¢, the
co-variation [Si’p , Si’q] is a stochastic process, then we can say that there exists stochastic
dependence among FX rates;

(2) If for every 1 < i,j < N with i # j, and for all ¢t < T, the time-¢ instantaneous correlation
dCorrt(Si’j,Zz:1 Xk) is stochastic, then we can say that every FX rate of the market
generates a volatility smile with stochastic skewness.

We first compute [Si’p, Si’q] by using (5.9), for every 1 <i,p,q < N with p # i, ¢ # i, and p # ¢:

1 o d
g (57757 = 20 XE (0" (Gt = o) (G = G + (05 Qe = Aa) (g = Ni))
t= M- k=1
i +Oo((c )z 1) (e ()= _ 1)
+ J e p,k—Cik )T __ 1 e a,k—Cik)T __ 1 N() (dt,diﬁ)
k=10
d rXE 4o
(Cv_<i7>$_ (C,—Ci,)CC_ k
“rkZ:lL J;) (e D,k k 1) (6 a,k k 1) Nl (dt,du,daﬁ)
d

.S fo—fR (6 Ow—Aix) e _ 1) (6 (ar—Aig) e _ 1) NE(dt, du, dz),

thus showing evidence of stochastic dependence among FX rates. As far as the time-¢ instantaneous
correlation d Corry (Si’j, Zzzl Xk) is concerned, for every 1 < i,7 < N with i # j, and forall t < T,
the latter is determined by the (quadratic) co-variations [ZZ:l Xk], [Sivj], and [Sivj, Zi:l Xk]:

d +00 Xp oo
d [Z Xk] = <th (ak)2dt+f 2% NE(at, dz) +f f 2% NF(dt, du, d:r:)),
k=1 t k=1 0 0 0
d[si,j]t . k 2 2
st~ (e a) (5 Gua ) a
+00
+ ) f <e (GaCi) e _ 1)2 Ng (dt, d)
k=10
Xk oo
+ Z J ' f (e (C] k—Gi k)x — 1>2 N{C(dt, du,dm)
k=170 JO

+00

x (e (Ga—Gin) 1) NE(dt, dx))

d  ~XF 4o
+ Z J x (e (GaCin)w 1) NF(dt, du, dz).
k=170 JO

Replacing all the terms into (5.11), we obviously find a rich stochastic structure for the instanta-
neous correlation, showing that every FX rate generates a volatility smile with stochastic skewness.
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5.3.3. Currency option pricing. In view of Theorem 5.8, our modeling framework retains
analytical tractability under a suitable class of risk-neutral measures. By relying on this result, we
derive a semi-closed-form representation of the characteristic function of each spot FX rate process.
We denote the expectation under Q* by E?, for every 1 <i < N.

LEMMA 5.10. Let (X, Z,C,}\) generate a CBITCL multi-currency model. Then, for every

1<i,j <N withi # j, the characteristic function of log S* = (log Sf’j) under Q' is given by

t<T

Ei [eiu logSZ’j] _ 6 (logS J+ r —'r7 \Ifk (Ci,k)— (ijk))t

n:]&

d
X H exp (Ui’k (t,ulf,ué,ug) + Yok (t,ulf,ug,ulg) ng) , V(u,t) € R x [0,7T],
k=1

where for every 1 < k < d, (U™ (-, uf,uf, uf), V¥ (-, uf, uf,uf)) is the unique solution to the
CBITCL Riccati system associated to (XF, ZF)i<1 under Q' with

uf =iu (Gr—Gr), uh=iu (P (Gr)+E5Nip) = (Gr)—E5(Njk)), and uf =iu(Njp—Aik)-

PROOF. The logarithm of the spot FX rate process S% = (S7),<r, for every 1 < i,j < N
with ¢ # j, has the following form

d
log S;7 =log Sg7 + (r' —ri)t + ] ((cj,k —CGik) XE+ (Njk — M) ZF + KCF — /cg”“),
k=1
for all t < 7. Since the CBITCL processes are mutually independent, we have

Ei [eiu logS:‘j] _ eiu(logS’é"7 r —rJ % H EZ [ iu CJ k‘Ci,k)Xf-i—()\j,k—)\i,k)Zt’“+lCi’k—lC{’k):| .

By inserting equation (4.22), we obtain

- ) d
E¢ [eiu logSZ’J] _ eiu(logSé’] T —rJ 1_[ \I!’C (Cir)— \I/k(cjk))
k=1

d
H [ w(Gye—Gi k) XEFiu (F (Gir) +EE (N >f<1>’“(<j,k>75’§(xj,k))Yt’wiu(xj,k—xi,k)Zf].

where Y/} := Sé Xkds, for all t < T and for every 1 < k < d. The conclusion then follows from
the preservation of the affine property of CBITCL processes under Q! (see Theorem 5.8), for every

1 <i < N, and a direct application of Proposition 4.3 to each joint process (Xf, Y;k, Zf)KT. O

The availability of a semi-closed-form expression for the characteristic function of each spot FX
rate process allows for currency option pricing via Fourier techniques. Unlike in Chapter 3, where
the approach of [Lee04] was followed for caplet pricing, here we adopt the COS method developed
by [FOO09]. The latter presents the advantage of utilizing only the characteristic function of the
underlying process, without requiring any domain extensions as in other Fourier pricing techniques.
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In our setting, such domain extensions would require additional constraints on the parameters. We
proceed as follows:

e Consider a European call option in the i*" economy written on the spot FX rate process
S = (SZ’])KT for 1 < j # ¢ < N with maturity T < T and strike K > 0. Thanks to the
well-posedness of the multiple currency market (N ,D,S ), we can apply the risk-neutral
valuation formula under Q° to this European call option. The resulting arbitrage-free
price C(T, K), considered at t = 0 for simplicity, is given by

(5.12) C(,K)=e "TE {(s;’:j - K)j —e T fRK (e" — 1) £ () da,

where f%j represents the density function of log(Sélj /K ) under Q;
e Introduce an appropriately chosen truncation range [a,b] < R such that C(7, K) can be
approximated with good accuracy by

S -
(5.13) C(T,K) ~ e—”TJ K (e* —1)" 2 (z) da.

Let us now propose a simple semi-closed-form pricing formula for currency options based on the
COS method of [FO09]. We emphasize that this pricing formula does not involve any additional

assumptions or domain extensions of the characteristic function given by Lemma 5.10.

PROPOSITION 5.11. Let (X, Z,C,)\) generate a CBITCL multi-currency model. Then, the
arbz'tmge—free price C(T,K) of a European call option written on the spot FX rate process S“ =
(S; ’]>t<T with maturity T' < T and strike K > 0, can be approzimated by

i & do(k) k7 (44 log K ™ Jog Si7
(5.14) CT,K)~e " TK Y <1 -2 )Re (citmteon g [t 0s5 )
k=0

where 0y denotes the Kronecker delta at 0, N e N, By = ﬁ (eb —1- b), and where By, for every
1< k< N-—-1, is given by

2 1 kma km kma b—a kma
B = _1k’ b . . .
FThal (h)? <( Je Cos(b—a>+b—asm<b—a>) ko Sm(b—a)
+ \r=a

PROOF. We proceed along the lines of [FO09, Section 3]. The starting point for deriving

formula (5.14) is the approximation (5.13) of the arbitrage-free price C(T, K). We replace fr}]
with its cosine expansion on [a,b], given by

(5.15) 7@ )Zic(l(%M)A’“COS(Mi:Z)’

k=0

for all a < x < b, where

r—a
(5.16) Ap = b—af cos< b_@)dx,
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for every k € N. Then, inserting equation (5.15) into approximation (5.13) and interchanging

summation and integration, we obtain

(5.17) C(T,K) ~ b_ e " TK Z < )Ak B,

where we define the coefficients By, by

2 b L T—a 2 b T—a
Bk.—b_aL(e -1) cos(kﬂb_a>da?—b_ajo(e —1)cos<k7rb_a>dx,

for every k € N. The values of By have been computed explicitly in [FO09, Section 3.1] in the case

of a European call option. We now truncate the series in (5.17) as justified by [FO09, Section 3]
due to the rapid decay of the coefficients Ay and By as k — +00, thus yielding

(5.18) C(T,K) ~ b_ e T K 2 < )Ak By,

where N € N*. We then recover formula (5.14) by making use of the characteristic function of
log 577, as given by Lemma 5.10. We proceed as follows

r —a
d
—CLJ COS( b—a>$
N
_ — ik atla K ™ log Si
=g Re (T [ e )

which finally enables us to conclude the proof by inserting (5.19) into (5.18). O

(5.19)

REMARK 5.12. In order to preserve the accuracy of formula (5.14), one needs to select the
truncation range [a, b] properly. Inspired by [FO09, Section 5.1], one can choose it as follows:

(5.20) [a,b] { co +4/ca, 1+ Lm]

with L = 10 and where ¢,, for n = 1,2,4, represents the n'" cumulant of log(Sélj /K ) In our
framework, the cumulants are not available in closed form. However, they can be approximated by
using finite differences since they are by definition given by the derivatives at zero of the cumulant-
generating function of log(Sp}’j /K) (see [FO09, Appendix A] for further details).

REMARK 5.13. As in [FOO09, Section 3.3], formula (5.14) can be readily extended to a multi-
strike setting, which is practically important when one needs to price many European options at
once, with the same maturity but associated to different strikes, e.g. during a calibration routine.
Suppose that we are given M European call options with the same maturity 7' < 7 but associated
to M different strikes denoted by K; > 0 for every 1 < i < M. Consider the following objects:

o Let K = (Ki)Tgi <y represent the vector containing M different strikes;
e Let C(T,K) = (C(T, K; i))1<i<as be the vector containing the corresponding prices.
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Denote the spot FX rate process by S = (S¢)i<7 where we omit the indexes i and j for simplicity of
notation. Following Remark 5.12, the quantities b—a and a+log K in formula (5.14) do not depend
on the strike K. By introducing the diagonal matrix diag(By) = diag(By(K1),. .., Bi(Ku)) for
every 0 < k < N — 1, we can derive the following multi-strike version of formula (5.14)

S 2 ip N do(k) P ET (a1 log K)mi [ i A7 log S =
(5.21) C(T,K)~e " Z <1 - 2) Re (e' a—p\OHO8 )i [e' b—a 108 T]) diag(By) K,

k=0

where each term diag(By) K refers to a matrix-vector product and each real part in the summation

is a scalar. The characteristic function of log St needs to be evaluated only N — 1 times for the
pricing of a European option smile, thus reducing the computation time in a calibration.

5.4. Numerical analysis

5.4.1. FX market data. We start by describing the market data. For a given trading date
(April 15, 2020), we consider three FX implied volatility surfaces: EURUSD, EURJPY, along with
USDJPY. The latter are quoted according to the FORDOM convention, meaning that the second
currency in each pair represents the domestic one. We emphasize that the quoting convention for
FX implied volatility surfaces differs from what we observe in equity markets: implied volatilities
are not quoted in terms of strikes and maturities, but in terms of deltas and maturities.

Furthermore, excluding ATM, single volatilities are not directly quoted: the market practice
consists in quoting certain combinations of contracts (risk-reversals and butterflies) from which,
by means of conversion formulas, one can recover implied volatilities for single contracts in terms
of maturities and deltas. The conversion between deltas and strikes is then performed by suitable
inversions of the Black—Scholes formula. We stress that also the definition of ATM poses some
challenges in FX markets, which depends on how the currency pair is quoted. We refer to [Clal1]
for a complete overview of quoting convention and smile construction in the FX market.

For each surface and each maturity considered (ranging from one week to one year, all of our
surfaces share the same maturity range), we retrieved from Bloomberg the following market quotes:
ATM implied volatility, 10A and 25A risk-reversals and butterflies. For 25A%, we have

RRosA = 025ACall — 025APuts

025ACall T 025APut
BFosa = 5 — OATM,

from which, by straightforward computations, we are able to obtain

1
O25ACall = OATM + 5 RRosA + BFosa,

1
O%APut = OATM ~ 5 RRosA + BFosa,

and similarly for 10A. In summary, for each surface and each maturity, we have the implied
volatilities of 5 contracts at our disposal. Market data not corresponding to the 5 points above is
typically interpolated (see again [Clall] for a discussion of different interpolation techniques).

4By 25A, we mean an OTM call option with a delta of 25% and its put counterpart with a delta of —25%.
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In order to reconstruct observed market prices, we also retrieved from Bloomberg FX spots
and FX forward points, which enable us to build FX forward curves by adding the spot and the
forward points. Equipped with such data, we have all the information needed to convert deltas
into strikes and implies volatilities into prices. We performed these tasks by using the open-source
Java library Strata by OpenGamma [Opel6].

5.4.2. Two types of calibration. In general, the objective of a calibration to an FX triangle
(N = 3 FX implied volatility surfaces) is to solve the following problem: let p denote a vector of
model parameters, belonging to some set of admissible parameters P. Let #T be the number of
maturities and # K be the number of strikes that we consider. For simplicity of presentation, we
assume that all smiles have the same strike range and the same number of strikes. We aim at

solving the following minimization problem:

N #T #K 5
(5.22) mln Z 2 2 (af”,,g u, Tj, Kj) — %d( )( T, K )) ,
u=1i=1j=1

where Umkt(u T;, K;) denotes the market-observed implied volatility for surface u, maturity 7;,
and strike K, while amo;( )(u, T;, K;) denotes its model-implied counterpart for a given vector of
parameters p € P. The penalty function in (5.22) is one of the many possible alternatives that
can be found in the literature. A popular alternative involves the use of prices in place of implied
volatilities, also the introduction of weights in terms of bid-ask spreads or by using greeks (most
notably the vega) is common.

We now present two types of calibration. The first one, to which we refer as standard calibration,
utilizes the semi-closed-form pricing formula for currency options of Proposition 5.11 (or its multi-
strike version considered in Remark 5.13), in order to produce model prices for a given choice
of model parameters. Such prices are then converted into model-implied volatilities by means of
a standard implied volatility bootstrapper, and inserted into minimization problem (5.22). This
gives rise to a multi-dimensional pricing function ¥ : P — RN*#T*#K gych that for all p € P, for
every 1 Su< N, 1<i<#T,and 1 <j<#K, we have X(p)(yi5) = J;-n:rf;(p) (u, T, K).

The second type of calibration, Wthh we name deep calibration, adopts the two-step approach
developed by [HMT21] for the resolution of minimization problem (5.22). We proceed as follows:

Grid-based implicit training: The goal is to approximate the non-linear function ¥ by
a fully-connected feed-forward neural network N : P — RN*#T*#K in the sense of
[HMT21, Definition 1], where w denotes some vector of network parameters (weights

and biases). We first generate a training set {(pn, X(pn)) of size Niyqin, where

} <in< i
each vector of parameters Dn is generated randomly andlsvnh\ejl\“femxe have fixed the grid
(u, T;, Kj), forevery 1 <u < N,1<1i<#T,and 1 < j < #K, throughout the generation
(hence the term “grid—based”). We then solve the following minimization problem called
“training” of the neural network:

Ntraln N #T #K

(5.23) mln Z Z Z Z( ) (w,ing) Nw(pn)(u,i,j)>2a

n=1 u=1li=1j=1
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whose solution represents an optimal vector of network parameters @ such that the neural
)}lénéNtmm' Notice that w
depends on the grid that we have fixed, thus explaining the term “implicit”;

network A := N'% best approximates the observations {E(pn

Deterministic calibration: We rewrite minimization problem (5.22) by means of the trained

neural network A as follows:
N #T #K

(5.24) min 37303 (bt T K~ NP u)

u=1i=1j=1
Given the linear structure of the trained neural network N, the resolution of problem

(5.24) is considerably faster than a standard calibration problem.
Inspired by [HMT21], we choose the following neural network architecture:

e 3 hidden layers with 30 nodes on each;

e N = 3 surfaces, all sharing the same maturity range of size #1 = 6, where all smiles have
the same number of strikes #K = 5, which yields an output layer of 3 x 6 x 5 = 90 nodes.
The size of the input layer is simply the number of model parameters;

e All input and hidden layers equipped with the Exponential Linear Unit (ELU) activation
function. The output layer is in turn equipped with the Sigmoid function.

Figure 5.2 provides a visualization of the chosen neural network architecture.

FIGURE 5.2. Illustration of the chosen neural network architecture, where all
weights have been generated randomly. The width of an edge is proportional to
the weight. The color of an edge defines the sign of the weight, namely if the latter
is positive, then the edge color is red; if it is negative, then the color is blue.
Source: NN-SVG schematic generator developed by [LeN19].
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Model Score vs. Iteration Model and Training Information

Model Type MultiLayerNetwork
Layers 5

Total Parameters 16992

Start Time

Total Runtime

Last Update 2021-05-27 15:34:37
Total Parameter Updates 3541

Updates/sec 208.33

Examples/sec 6666.67

500
Score : 37.59327, Iteration : 1534

Update:Parameter Ratios (Mean Magnitudes): logo Standard Deviations: logy Activations Gradients Updates

e
,.,/""/ m3zw O
s

30 10
500 2000 2500 3000 3500

500 1000 0 500 1000 150
Ratio : 0.00032, log 10 Ratio : -3.49814, Iteration: St. Dev : 14.08312, log 1o St. Dev : 1.14870, lteration: 2364

FIGURE 5.3. Monitoring of the neural network training presented in Figure 5.2.

Source: Eclipse Deeplearning4;j.

Concerning the training step, we start with the random generation of a training set of size
Nirain = 10,000. After suitably normalizing the data, we proceed with the training of the neural
network corresponding to the resolution of minimization problem (5.23). The common practice is
to use a stochastic optimization algorithm based on “mini-batch” gradient descent (see [GBC16]),
whose updater can be further specified following the Adam scheme (see [KB17]). We then set the
mini-batch size to 32 and the number of epochs to 150 with potential early stopping.

For its implementation, we rely on the open-source Java library Eclipse Deeplearning4j [Teal6],
which offers a convenient monitoring interface. Figure 5.3 gives an overview of the latter at the
end of the training of the neural network of Figure 5.2. The top left panel, called “score versus
iteration”, plots the value of the loss function over successive iterations. The top right panel
provides a description of the neural network being trained and also further details on how the
training process has been carried out. In particular, we also have the exact total number of
network parameters to be calibrated, corresponding to the dimension of the vector w appearing in
(5.23). The other two panels provide further checks on the state of the hyper-parameters employed

during the training phase.

5.4.3. Calibration results. For the resolution of minimization problems (5.22) and (5.24),
we use the Levenberg-Marquardt optimizer of the open-source Finmath Java library (see [Fri21]).
We recall that we consider on April 15, 2020 the three FX implied volatility surfaces EURUSD,
EURJPY, and USDJPY (N = 3 currencies), all sharing the same maturity range: 1 and 2 weeks,
1, 3, and 6 months, and 1 year. These maturities cover the most liquid segment of the implied
volatility surface for FX pairs.
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We work under the modeling framework presented in Section 5.2.2 with d = 2 and consider
two specifications: the first one assumes that the Lévy process of each CBITCL process is simply
a Brownian motion; the second specification uses the CGMY process [CGMYO02] as the Lévy
process of each CBITCL process. For both specifications, each CBI process is a tempered-stable
CBI process (see Section 2.7). We refer to Appendix 5.A for an overview of these models.

We first consider the Brownian specification. We perform both standard and deep calibrations.
Concerning the standard one, we obtain a root-mean-square error of 0.06119 in 929.086 seconds.
Figure 5.4 provides a comparison of model and market prices that demonstrates the capability
of the Brownian specification to obtain a satisfactory fit to market data. The quality of the fit is
better for shorter maturities and worsens when considering the 6-month and 1-year maturities. The
deep calibration performs better: we obtain a root-mean-square error of 0.04157 in 0.218 seconds.
The better quality of the fit can be appreciated from Figure 5.5, where it appears that the fit is
improving for longer maturities.

We now discuss the CGMY specification. As above, we perform standard and deep calibrations.
For the standard, we obtain a root-mean-square error of 0.07557 in 709.977 seconds. Figure 5.6
shows a satisfactory fit that slightly worsens for longer maturities. Similarly to the Brownian
specification, we observe that the deep calibration outperforms the standard one since we obtain
a root-mean-square error of 0.04092 in 0.269 seconds. We report in Figure 5.7 the comparison
between model and market prices from which is visible an improvement for longer maturities.

The calibrated values of the model parameters can be found in Table 5.2 for the four calibrations
considered. We can first observe that all the differences (gur —Cusp, (eur — (JpY, and Cusp — (Ipy,
are relatively small in absolute value, which brings evidence of moderate dependence between the
FX rates considered and their volatility. This is in line with the findings of [BM18| since in the
present calibration we are considering only hard currencies. We also remark that these differences
are slightly larger in the case of the CGMY specification.

By inspecting the calibrated values of the parameters of the tempered-stable CBI processes, we
can notice a non-trivial contribution from their self-exciting jumps. This documents the presence
of self-excitation in the volatility of FX rates (see Figure 5.1). It is also interesting to remark that
the calibrated values of the parameters of the CGMY specification are surprisingly stable across
the two types of calibration, which might be ascribed to the non-injectivity issue that one typically
faces during a deep calibration (refer to [BDL21, Appendix B]). In particular, this issue can
be addressed by reducing the number of input parameters, which explains why this phenomenon
appears to be mitigated in the case of the Brownian specification.

We can discern a strong discrepancy between the calibrated values obtained by standard cali-
bration and those obtained by deep calibration in the case of the Brownian motion. This may be
justified by the fact that the calibrated values obtained by deep calibration tend to underestimate
the real contribution of the tempered-stable CBI processes. This is because the neural network
returns slightly lower volatilities than the original pricing function, which is a direct consequence of
the normalization process applied to the training set before solving minimization problem (5.23).
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When restricting our attention to the deep calibration, which outperforms the standard one
for both specifications considered, it appears that the CGMY specification marginally improves
the quality of the fit compared to the Brownian one. This suggests that incorporating self-exciting
jumps into the activity rate allows to replicate FX market-implied volatility surfaces in the pres-
ence of self-excitation in the volatility of FX rates. Taking into account the observation that the
non-injectivity of the neural network appears to be more pronounced in the case of the CGMY spec-

ification, this also suggests that introducing extra jumps into the base process might be redundant.

5.4.4. Sensitivity analysis. In this last section, we study the impact of the self-exciting
behavior of the tempered-stable CBI processes on the shape of the FX volatility smile. We focus
on the smile at maturity 2 weeks of the FX implied volatility surface USDJPY (smallest RMSE),
and restrict our attention to the parameters controlling the self-exciting jumps of the tempered-
stable CBI processes («, 1, and ). We fix d = 1 for simplicity.

We start with the sensitivity with respect to the stability index «, which can be visualized
in Figure 5.8. First, we decrease the calibrated value by 40%, witnessing a significant increase
of the first extremity of the smile, seeking to attain the level of the opposite extremity. We then
reduce the obtained value by a further 40%, observing a slight rightward shift of the local minimum
together with an increase of the global level of the smile. When looking at smaller values in (1, 2),
we observe that the entire smile stabilizes along a symmetric shape around the local minimum.
This limit shape of the smile is compatible with an increased likelihood of large jumps along with
stronger compensation effects in the dynamics of the tempered-stable CBI process, which happens
when « gets smaller in (1, 2) (compare with the discussion before Remark 3.9 in Chapter 3). Indeed,
as far as the FX rate is concerned, this is reflected by prolonged periods of stability during which a
relatively large jump of the FX rate, whose direction is unknown, is very likely to occur. Investors
then seek to protect themselves against a potential fall/rise of the FX rate, hence the presence of
higher volatilities at both ends of the smile.

We then proceed with the study of the sensitivity with respect to n and 8, which can be
visualized in Figures 5.9 and 5.10, respectively. In particular, we can observe that when 6 gets
closer to 0 and when n gets bigger, the smile curvature changes from a convex shape to a concave
one, while the global level of the smile increases significantly, where the sign of the slope depends
on how the currency pair is quoted. While the increased level of the smile can be justified by
higher demand for protection among investors as in the case of smaller values of « in (1,2), the
curvature change might be caused by the the fact that the parameters (jpy, (usp, and (gur must
be lower than 6/n (we recall that D1 = (—00,60/n] in the case of a tempered-stable CBI process, see
Appendix 5.A), with the consequence that these parameters are forced to become either extremely
small or negative to comply with this constraint. In view of the discussion in Section 5.3.1, this can
give rise to stronger dependence effects between FX rates and their volatility, which translate into
the appearance of “frowns” or “smirks” instead of smiles when looking at model-implied volatilities
(see [JFB15, Section 5.4.2] and [BM18]).
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FIGURE 5.4. Calibration results obtained by standard calibration for the Brownian
specification. Market prices are denoted by crosses, model prices are denoted by
circles. Moneyness levels follow the standard Delta quoting convention in the FX
option market. DC and DP stand for “delta call” and “delta put”, respectively.
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FiGURE 5.5. Calibration results obtained by deep calibration for the Brownian
specification. Market prices are denoted by crosses, model prices are denoted by
circles. Moneyness levels follow the standard Delta quoting convention in the FX
option market. DC and DP stand for “delta call” and “delta put”, respectively.
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FIGURE 5.6. Calibration results obtained by standard calibration for the CGMY
specification. Market prices are denoted by crosses, model prices are denoted by
circles. Moneyness levels follow the standard Delta quoting convention in the FX
option market. DC and DP stand for “delta call” and “delta put”, respectively.
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FIGURE 5.7. Calibration results obtained by deep calibration for the CGMY spec-
ification. Market prices are denoted by crosses, model prices are denoted by circles.

Moneyness levels follow the standard Delta quoting convention in the FX option
market. DC and DP stand for “delta call” and “delta put”, respectively.
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’ Brownian H CGMY ‘
’ ‘ Standard Deep H ‘ Standard Deep ‘
X3 1.5079 1.3234 X3 1.1040 1.1106
ik 0.87413 1.2538 Bt 0.37721 0.65766
bt —0.47807 | —1.5635 bt 0.43082 0.43082
1 3.8930 1.1439 ol 2.1473 2.1473
nt 9.5007 0.76198 nt 1.7208 1.7208
o' 0.26712 0.43398 6! 1.9338 1.9338
al 1.9999 1.8677 al 1.1697 1.1697
. —0.16220 | —0.16220
X 3.0313 3.0313
M? 0.79529 0.79529
y! 1.7675 1.7675
CIpPY,1 0.013356 | 0.021699 Cipy,1 1.12323 1.12366
Cusp,1 0.0043576 | 0.012494 Cusp,1 0.27244 0.27244
CEURA 0.0070923 | 0.00087200 CEUR,1 0.089747 | 0.097352
AJPY,1 0.56295 0.56517 AJPY,1 0.39764 0.39764
AUSD,1 0.49695 0.39581 AUSD1 0.32863 0.32863
AEURA 0.58852 0.58201 AEURA 0.16260 0.16260
X2 0.37404 0.44963 X2 0.19652 0.18549
(2 1.6333 0.51905 (2 1.7524 1.7782
b? 0.96291 | —0.16185 b? —0.73467 | —0.73467
o? 0.19556 1.1141 o2 1.1174 1.1174
n? 0.51939 1.0396 n? 2.1855 2.1855
62 0.30117 0.26946 62 0.65273 0.65273
o? 1.7560 1.8584 o? 1.1122 1.1122
2 0.88065 0.88065
G? 0.59711 0.59711
M? 0.22821 0.22821
Y2 1.2390 1.2390
CIPY;2 0.15058 0.13473 CIPY;2 0.232636 | 0.232636
CUsD,2 0.094102 | 0.065180 CUusp,2 0.092184 | 0.060470
CEUR2 0.030499 | 0.029955 CEUR2 0.025973 | 0.024422
AJPY2 1.3190 1.3190 AJPY2 0.11410 0.11410
\USD.2 0.72105 0.67472 \USD.2 —0.014839 | —0.014839
AEUR.2 0.88728 1.0493 AEUR.2 0.040496 | 0.040496
RMSE 0.06119 0.04157 RMSE 0.07557 0.04092
Time (in sec.) | 929.086 0.218 Time (in sec.) | 709.977 0.269

TABLE 5.2. Calibrated values of the model parameters. We can observe that all

parameter constraints set in Section 5.2.2 are satisfied.
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Implied volatilities
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FIGURE 5.8. Sensitivity with respect to «, where each smile is generated by shifting
a by a certain decrement. The plot contains six smiles: the red smile corresponds to
the calibrated value of Table 5.2; the green one to o —40%; the blue one to o —80%;
and three black ones almost overlapping perfectly corresponding to a—83%, a—84%,
and a — 85%, thus demonstrating convergence to a limit shape.
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FIGURE 5.9. Sensitivity with respect to 7, where each smile is generated by shifting
7 by a certain increment. The plot contains five smiles: the red smile corresponds to
the calibrated value of Table 5.2; the green one to 1+ 30%; the blue one to n + 60%;
and the two black ones to 1 + 90% and n + 120%.
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104.5 105 105.5 106 106.5 Strikel(ﬁ 107.5 108 108.5 109 109.5
FIGURE 5.10. Sensitivity with respect to 6, where each smile is generated by mul-
tiplying 6 by some factor. The plot contains six smiles: the red smile corresponds
to the calibrated value of Table 5.2; the green one to 60% of #; the blue one to 30%
of #; and the three black ones to 10% of 0, 5% of 0, and 3% of 6.
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5.5. Conclusion

We have proposed a stochastic volatility modeling framework for multiple currencies based on
CBI-Time-Changed Lévy processes (CBITCL). The characteristic feature of the proposed approach
consists in the self-excitation of the volatility of FX rates (which directly derives from the self-
exciting behavior of CBI processes), while preserving the peculiar symmetries that FX rates satisfy.
Our framework retains a remarkable level of analytical tractability since we have been able to
characterize a class of risk-neutral measures leaving invariant the structure of the model. By
relying on this result, we have derived a semi-closed-form pricing formula for currency options.

We have tested our framework via a calibration to an FX triangle. Two specifications of the
model have been introduced: Brownian and CGMY, where each CBI process has been chosen
tempered stable. Two types of calibration have been implemented: standard and deep, where the
latter uses deep-learning techniques. We have observed that the deep calibration outperforms the
standard one. We have also found that the CGMY specification marginally improves the quality
of the fit over the Brownian one. Taking into account the observed non-injectivity of the neural
network in the case of the CGMY specification, this suggests that adding jumps into the base
process, when the activity rate exhibits self-excitation, might be redundant.

We have performed a sensitivity analysis on model-implied volatility smiles, restricting our
attention to the parameters controlling the self-exciting behavior of the tempered-stable CBI pro-
cesses. In particular, we have documented a prevailing role of the tempering parameter in the sense
that when this parameter approaches zero, the smile curvature radically changes from a convex
shape to a concave one, which is a major impact on the shape of the FX volatility smile.

There are many avenues of further research. The first avenue would be to incorporate stochas-
ticity into the short rates appearing in the dynamics of the FX rates, and then relate the present
framework to that of Chapter 3. However, special attention should be paid to the growing number
of parameters. Another avenue would be to extend the numerical assessment of Section 5.4 by also

introducing soft currencies.

5.A. Appendix: Model specifications

In this appendix, we provide more information on the specifications considered in Section 5.4.
For every 1 < k < 2, X* = (X[);<7 is chosen to be a tempered-stable CBI process in the sense of
Section 2.7, which is defined by v* = 0 and 7* given by

ok

5.25 7 (dz) = (n* of ok y—1-ak ;7o 7y >0 dz,
a {=>0}
where we fix

1
(5.26) ck = T(—ab)’

where n* > 0 serves as a volatility parameter for the jump part, #* > 0 denotes the tempering
parameter, and o € (1,2), called stability index, determines the local behavior (see Section 2.7).
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We recall from Section 2.7 that in the case of a tempered stable CBI processes X* = (XF)<7,
we have D} = (—oo, Hk/nk]. We also rewrite the expressions associated to the immigration and
branching mechanisms U* and ®F, given by ¥*(z) = ¥ 2 and

(527) @k(x) _ —bk.’lj‘ 4 % (O’k CC)Q T (ek . 7’/k x)ak _ (ek)ak I Oék (ek‘)ak_l nk z,

for all z < % /nF, where we recall that ®* satisfies Assumption 2.4.

We then consider two different specifications for each Lévy triplet (b%, aé, ’yg) The first one
consists in taking b’% =0, O’% =1, and ’yé = 0, which reduces to a Brownian motion. We then have
DE = R and Z%(u) = % (o u)2, for all uw € C. The second specification makes use of the CGMY
process [CGMYO02] as the Lévy process of each CBITCL process so that the Lévy measure 7% is

given by
(5.28) (dz) = O (2717 e Mgy 2T e O gy )
where we fix
1
2 L

While G¥ > 0 tempers the downward jumps, M* > 0 tempers the upward ones, and Y* € (1,2)
controls the local behavior similarly to a. We also recall that any CGMY process is determined
by a Lévy triplet of the form (ﬁg, 0, VE) The associated Lévy exponent E’% is then given by

[1]

(5.30) Eu) = 5§u+J (e** —1—zu) 7E(dz), Vue iR,
R

where the correspondence between ﬂ% and b’% is given by
(5.31) g =t + | s,
|z|=1
where the integral is finite since S‘Z|>1 2|75 (dz) < +o0 for 4% given by (5.28).

It can be easily checked that in the case of a CGMY process, we have DS = [—Gk, Mk], and
the Lévy exponent 5 given by (5.30) takes the following form:

(@) = Bha+ (MF =)' — (M) 4 (GF +a)" = (65 eyt ()7 - (@),

for all —-G* < & < MF.

In the present context, thanks to the explicit form of the sets DY and D5 and in view of
satisfying (;r € D’f and A ; € 2)]2C (see Section 5.2.2), it suffices to verify 122‘2{3 Gik < 0% /n* in the
case of the Brownian specification and

k. k k . k
max (. <6 —G" < min \; and max N\ < M
1<i3 CZJC = /77 > S B ik> o ik )

in the case of the CGMY specification.
We now investigate the stability of both specifications under (5.7). In view of Theorem 5.8, we
start by inserting (5.25) into ¥ of Table 5.1:

. k k —7916_4““"]6
7R (dz) = (fF) Ck 27177 e w 1(.~0y dz.
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By taking n®* := nF, bk .= g% — Gi k n*, and o®* := oF, we notice that X* = (X});<7 remains a
tempered-stable CBI process under Q' (compare with Table 4.2). Concerning the Lévy processes,
two situations can occur: the Brownian specification is preserved under Q° since we have 'ygk =0,
but also biZ’lC = A by Table 5.1 (aiZ’k = ok =1 in any case). Regarding the CGMY specification,

we plug (5.28) into ’ygk of Table 5.1:
(e = Cf (7 e (M) T gy o (G B g ) dz,

where, by defining G** := GF + i ks Mk = MF— ik, and Y4k .= Y* we observe that each
Lévy process remains a CGMY process under Q.
The computation of the drifts b** and B}k follows the lines of the proof of Lemma 2.19:

+00

B = bF — g (0F)? - L

where we have moved from (b’%,biz’k) to (Bé,ﬁ%k) by (5.31). As in the proof of Lemma 2.19, we

replace the exponential with its Maclaurin series expansion:

f+w+m Czkz —9k

1 Z
o 7" dz,
n!z%

+o0 t0 (N kz) +0 +OO kz) .
(3 z 7 7G z
f ) dz+J n'zyk dz | .

Tl YE
0 nel n:z

z (eCiv’“’Z - 1) m¥(dz) and ﬁiz’k = B + f z (e/\i’kz - 1) V5 (dz),
R

b' gzk( -

ak

i,k _ ok 1

Then, by applying Fubini’s theorem and by making use of the Gamma function, we obtain

ik ik (k)" (%)™ =1 EX (¢ /0%)"
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Buk = gk + T(n— (Y —1)+ ['(n—(Y*-1).

By inserting I'(n — (0 — 1)) = (‘S 1) I'(—¢) into the summations, while introducing the
o—

Maclaurin series expansion of x — (1 + x) ! for 5 = o or Y*, we finally obtain
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