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Résumé: L’imagerie tomographique par rayons X,
appelée tomodensitométrie, est accessible en routine
clinique diagnostique grâce au scanner. Le scan-
ner permet de différencier très précisément les tis-
sus humains mais ses performances sont obtenues
par des choix techniques incompatibles avec une util-
isation interventionnelle où le système d’imagerie ne
doit pas empêcher l’accès au patient. Les arceaux
rayons X interventionnels ont donc été dotés d’une
technologie tomographique alternative, le Cone-Beam
Computed Tomography (CBCT). Le CBCT est très
performant en résolution spatiale mais limité pour
la visualisation des faibles contrastes, surtout en
présence de produit de contraste et d’objets thérapeu-
tiques métalliques toujours sous-échantillonnés lors de
l’acquisition. Des acquisitions plus économes en dose
et plus rapides, obtenues en réduisant l’amplitude an-
gulaire des mesures ou le nombre de mesures, sont
souhaitables mais aggravent les problèmes liés au sous-
échantillonnage.
La résolution du problème de reconstruction d’une
région anatomique (ROI) à partir de projections
s’effectue efficacement via la minimisation d’une fonc-
tion de coût compensant le sous-échantillonnage grâce
à l’injection d’informations a priori sur la ROI. La min-
imisation peut être effectuée par un algorithme itératif
lié à un schéma de point fixe. Quatre points essentiels
sont (i) le choix du terme d’attache aux données, (ii)
de la régularisation, (iii) la discrétisation des opérateurs
linéaires présents dans ces deux termes et enfin, (iv) le
choix de l’algorithme itératif. Souvent, ces méthodes
ne sont pas utilisées dans un cadre assurant leur con-
vergence. Dans cette thèse, nous proposons des méth-
odes de reconstruction itérative qui sont théoriquement
convergentes et applicables à des acquisitions pour la
radiologie interventionnelle.
Pour répondre à cet objectif, nous étendons les con-
ditions de convergence d’un ensemble d’algorithmes
proximaux lorsque l’adjoint du projecteur est remplacé

par un autre opérateur. Une des motivations pour
ce changement est l’absence de gestion des variations
d’échantillonnage par le projecteur classique basé sur
l’interpolation linéaire. La convergence des algorithmes
est prouvée sous des conditions s’appuyant sur le car-
actère cocoercif de certains opérateurs linéaires.
Nous montrons ensuite qu’une modélisation des varia-
tions d’échantillonnage dans un schéma d’interpolation
permet d’obtenir une discrétisation à la fois précise du
projecteur et du rétroprojecteur. En partant d’un al-
gorithme de rééchantillonnage proposé pour agrandir
des images, nous concevons de nouveaux projecteurs
et rétroprojecteurs adaptés à la géométrie conique avec
un détecteur plan, avec différents compromis de préci-
sion et rapidité.
Par ailleurs, nous proposons une méthode itérative
pour la reconstruction d’aiguilles percutanées à partir
d’acquisitions ayant une amplitude angulaire limitée.
Nous adoptons une stratégie de décomposition du vol-
ume pour associer différents termes de régularisation
directionnelle à chaque composante et ainsi reconstru-
ire un fond anatomique sur lequel sont superposées les
aiguilles.
Enfin, nous proposons une nouvelle formulation régu-
larisée pour la reconstruction d’une région anatomique
à partir d’acquisitions ayant une faible densité angu-
laire. La combinaison d’un terme d’attache aux don-
nées robuste et d’une régularisation de type variation
totale permet de limiter les artéfacts issus d’objets in-
tenses présents dans les projections mais en dehors de
la grille de reconstruction. Pour permettre une recon-
struction précise et rapide, nous exploitons les apports
des techniques d’apprentissage. Nous proposons un al-
gorithme itératif déroulé permettant un apprentissage
supervisé des paramètres du problème en un nombre
d’itération restreint. Nous montrons qu’une meilleure
reconstruction est obtenue en apprenant l’adjoint des
opérateurs linéaires présent dans le terme de régulari-
sation.
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Abstract: X-ray tomographic imaging, known as CT
scanning, is available in clinical diagnostic routines
thanks to the scanner. CT scanners allow precise dif-
ferentiation of human tissues. However, these perfor-
mances are obtained by technical choices incompatible
with interventional use where the imaging system must
not prevent access to the patient. Interventional X-
ray C-arms have thus been equipped with an alterna-
tive tomographic technology: Cone-Beam Computed
Tomography (CBCT). CBCT offers high spatial reso-
lution for vessel imaging but remains limited for low
contrast visualization, especially in the presence of in-
jected contrast media and metallic therapeutic objects
always under-sampled during the acquisition. Simpli-
fied acquisitions that are more dose-saving and faster,
obtained by reducing the angular amplitude covered by
the measurements or the number of measurements, are
desirable but exacerbate under-sampling issues.
The problem of reconstructing an anatomical region
from projections can be efficiently solved by minimizing
a cost function that compensates for under-sampling
through a priori information about the region to be re-
constructed. The minimization can be performed by an
iterative algorithm built on a fixed point scheme. Four
essential components in iterative methods are (i) the
choice of the data fidelity, (ii) the regularization, and
(iii) the discretization of the linear operators involved
in these two terms (e.g., the projector and its adjoint,
the backprojector), and (iv), the choice of the iterative
algorithm. In practice, these methods are not used in
a framework ensuring their convergence. In this the-
sis, we propose methodological contributions leading to
iterative reconstruction methods that are theoretically
convergent and applicable to acquisitions for interven-
tional radiology.
To achieve this objective, we extend the convergence

conditions of a set of proximal algorithms when the
projector adjoint is replaced by another operator, such
as the voxel-driven backprojector often used in ana-
lytical reconstruction. One of the motivations for this
change is the lack of management of sampling varia-
tions by the classical projector based on linear inter-
polation. The convergence of the algorithms is proved
under conditions based on the cocoercivity of some lin-
ear operators.
We then show that the modeling of sampling varia-
tions in an interpolation scheme allows for the deriva-
tion of an accurate discretization of the projector and
the backprojector. Starting from an existing resampling
algorithm for image enlargement, we design new pro-
jectors and backprojectors adapted to the cone-beam
geometry with a flat detector, with different accuracy
and speed trade-offs.
Next, we propose an iterative method for reconstruct-
ing percutaneous needles from acquisitions with limited
angular amplitude. We adopt a volume decomposition
strategy associated with different directional regular-
ization terms for each component and thus reconstruct
an anatomical background on which the needles are su-
perimposed.
Finally, we propose a new regularized formulation for
reconstructing an anatomical region from low angu-
lar density acquisitions. The combination of a robust
data fidelity term with a total variation regularization
limits artifacts from intense objects present in the pro-
jections but out of the reconstruction grid. To reach an
accurate and fast reconstruction, we exploit recent ad-
vances in deep learning to propose an iterative unfolded
algorithm allowing supervised learning of the problem
parameters in a limited number of iterations. We show
that reconstruction is improved by learning the adjoint
of the linear operators in the regularization term.
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Résumé (French)
Cette thèse a été effectuée dans le cadre d’un partenariat CIFRE. Elle a pour but la
reconstruction tomographique conique sur arceau interventionnel via des méthodes de
points fixes.

L’imagerie tomographique par rayons X, aussi appelée tomodensitométrie, est utilisée
en routine clinique à des fins de diagnostic via le scanner CT. Les scanners permettent
d’identifier les faibles contrastes d’atténuation aux rayons X des tissus anatomiques. En
fournissant des images anatomiques, ils contribuent au diagnostic d’un très grand nombre
de pathologies.
La radiologie interventionnelle est une spécialité médicale regroupant des thérapies mini-
malement invasives faites sous contrôle radiologique rayons X, pour traiter des pathologies
variées (vasculaires, tumorales, osseuses) à l’aide d’outils introduits par voie endovascu-
laire (cathéters, stents, coils) ou percutanée (aiguilles). Durant ce type de procédures,
le radiologue interventionnel a régulièrement besoin d’acquérir des images montrant la
position de son outil par rapport à l’anatomie du patient. Un scanneur CT acquiert
les données tomographiques d’une façon incompatible avec une utilisation en radiologie
interventionnelle où le système d’imagerie ne doit pas empêcher l’accès au patient. Ainsi,
le système de guidage le plus souvent employé est l’arceau interventionnel, robot manip-
ulant un tube à rayons X et un détecteur digital plan qui forment la chaine image. La
conception des arceaux interventionnels privilégie la génération d’images projectives 2D
en temps réel. Une structure mécanique permet de déplacer la chaine image suivant trois
axes de rotation, de manière à l’orienter, à chaque instant de la procédure, de la manière
la plus appropriée à l’anatomie d’intérêt, aussi appelée région d’intérêt (ROI). Pour per-
mettre une visualisation 3D de l’atténuation aux rayons X de la ROI, ces arceaux sont
dotés d’une technologie tomographique spécifique, le Cone-Beam Computed Tomography
(CBCT), aussi appelée tomodensitométrie conique sur arceau interventionnel.
L’imagerie CBCT peut être utilisée à plusieurs étapes d’une procédure interventionnelle.
Elle sert à visualiser des tissus anatomiques pour planifier la procédure, ou un outil inter-
ventionnel pour guider le geste thérapeutique, ou l’anatomie avec l’outil pour contrôler
le résultat de l’intervention (Chapitre 2). Avec le CBCT, la résolution en contraste est
limitée, restreignant la différentiation des tissus anatomiques. En présence de vaisseaux
injectés, de métal ou de câbles électriques d’enregistrement des signaux vitaux du patient,
des artéfacts en stries sont présents dans les images reconstruites. Ces artefacts provi-
ennent des contraintes d’acquisition qui conduisent au sous-échantillonnage des données
tomographiques: projections tronquées et en nombre insuffisants pour la reconstruction
de la ROI. L’acquisition des données autour du patient est lente et requiert souvent de
repositionner ce dernier pour permettre le geste thérapeutique. Une rotation d’amplitude
angulaire réduite est donc souhaitable.
Ainsi, le sous-échantillonnage est un problème constant du CBCT sur arceau, et il y
a un intérêt pratique à l’amplifier. Cela est envisageable s’il existe des informations
contextuelles complémentaires aux mesures et si l’on sait les utiliser pendant la recon-
struction.

7



Mathématiquement, la reconstruction d’une région d’intérêt (ROI) en CBCT est un
problème inverse dit mal posé, et d’autant plus mal posé qu’il est sous-échantillonné.
Les méthodes de reconstruction itérative ont démontré leur supériorité sur les méthodes
analytiques (Chapitre 3) pour intégrer à la reconstruction de la connaissance a priori.
Ces connaissances sont modélisées sous forme de termes de contrainte et/ou de régular-
isation dans un problème de minimisation dont la solution donne une estimation de la
ROI. Par exemple, la régularisation de type variation totale a été utilisée pour compenser
les insuffisances de la trajectoire circulaire et de la faible densité angulaire d’acquisitions
CBCT. Une fois le problème de minimisation formulé, sa résolution est effectuée itéra-
tivement par des méthodes variationnelles d’optimisation. Ces dernières peuvent être
vues comme une forme particulière d’algorithmes de points fixes, un cadre plus général
où ces difficultés théoriques peuvent être résolues. Malgré leurs bénéfices, les méthodes
variationnelles sont associées às temps de calcul souvent incompatibles avec la pratique
clinique. Des accélérations sont obtenues au prix de compromis théoriques, qui mettent
parfois en péril la convergence de ces méthodes.

Le but de cette thèse est de proposer des méthodes de reconstruction itérative, pour
le CBCT interventionnel, qui soient théoriquement convergentes et applicables à des ac-
quisitions simplifiées.
Pour répondre à cet objectif, nous étendons les conditions de convergence d’un ensem-
ble d’algorithmes proximaux lorsque l’adjoint du projecteur est remplacé par un autre
opérateur, tel que le rétroprojecteur discret utilisé en reconstruction analytique. En ef-
fet, l’étape de discrétisation du projecteur et du rétroprojecteur en reconstruction itéra-
tive n’est pas triviale. Ces opérateurs modélisent des effets de rotation dans un repère
cartésien et existe une vaste littérature sur leur discrétisation, avec différent compromis
entre complexité et précision. Ainsi un projecteur rapide et précis n’induit pas forcément
un rétroprojecteur adjoint ayant les mêmes qualités, d’où l’idée de découpler ces opéra-
teurs et de s’affranchir de la propriété mathématique d’adjoint. La symmétrie du produit
de l’opérateur par son adjoint est requise pour s’assurer que la méthode converge vers
un minimiseur que l’on sait caractériser. Mais une image reconstruite à valeur clinique
ne coincide généralement pas avec le minimiseur d’une fonction de coût. Il est donc in-
téressant d’étendre les résultats de convergence de plusieurs algorithmes proximaux afin
de les adapter à ce cadre. Nous effectuons cette étude dans le cas où l’opérateur adjoint
est modifié (Chapitres 4, 5) et où des métriques de préconditionnement différentes sont
utilisées pour l’opérateur proximal et pour le pas de gradient d’une méthode de gradient
proximal (Chapitre 4). Notre analyse couvre les algorithmes du gradient proximal, de
Condat-Vũ - une extension de l’algorithme de Chambolle-Pock -, de Combettes-Pesquet
et de Loris-Verhoeven. Tous ces algorithmes sont couramment utilisés en traitement
d’images, dépassant le cadre de la reconstruction tomographique.
Ensuite, nous présentons une nouvelle perspective sur les schémas de discrétisation des
opérateurs tomographiques (Chapitre 6). Nous montrons que la modélisation des vari-
ations d’échantillonnage en géométrie conique avec un détecteur plan est crucial pour
obtenir une discrétisation à la fois précise du projecteur et du rétroprojecteur. Cela est
possible sans d’adopter un modèle géométrique mais avec une approche par rééchantillon-
nage, qui est une extension d’une méthode existante pour le redimensionnement d’images.
Notre approche repose sur l’optimisation de la représentation des signaux transformés par
une homographie spécifique à la géométrie d’acquisition, à l’aide de B-splines ayant un
support variable. Différents modèles d’interpolation peuvent être réécrits suivant cette
approche, comme le modèle géométrique de l’état de l’art appelé "distance-driven".
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Par ailleurs, nous proposons d’augmenter la qualité des informations a priori en adop-
tant une stratégie de décomposition du volume à reconstruire en composantes associées à
différentes régularisations. Nous montrons l’intérêt de cette stratégie pour la reconstruc-
tion d’aiguilles métalliques à partir d’acquisitions avec une amplitude angulaire réduite
(Chapitre 7). La connaissance de la direction des aiguilles est utilisée pour les reconstru-
ire en les séparant des tissus anatomiques.
Nous montrons également que la modélisation du contenu du volume reconstruit n’est pas
le seul levier, le terme dit d’attache aux données est utilisé pour modéliser le bruit statis-
tique des mesures acquises (on parle de reconstruction statistique). Pour les problèmes
de sous-échantillonnage, notamment pour une reconstruction de la ROI sur une grille ré-
duite, des erreurs doivent être tolérées dans le terme d’attache aux données, suivant une
statistique qui n’est plus celle du bruit quantique. Nous proposons une autre approche
dans le Chapitre 8 i.e., une autre statistique via l’utilisation d’une fonction non-convexe
issue de la théorie des M-estimateurs. L’effet joint du modèle statistique et de la régu-
larisation permet la réduction des artefacts de sous-échantillonnage. Cette approche est
combinée aux outils récents de l’apprentissage profond pour l’accélération des algorithmes
proximaux et pour faciliter leur paramétrisation. Ce dernier point est la clé d’une mise
en oeuvre efficace et effective de reconstructions itératives dans un contexte clinique con-
traint. Les réseaux de neurones profonds comportent, par nature, de nombreux degrés de
liberté, ce qui rend leur analyse difficile et s’accompagne d’un questionnement concernant
leur fiabilité et leur stabilité. Malgré des stratégies différentes, les approches itératives
et celles d’apprentissage profond ont des avantages et des inconvénients complémentaires
qui suggèrent de les combiner. Cette idée est explorée via une architecture, nommée
U-RDBFB, obtenue en “déroulant” un algorithme proximal adapté à notre fonction de
coût. Nous montrons l’intérêt d’apprendre l’adjoint des opérateurs de régularisation dans
notre problème de reconstruction. Nous procédons à des expériences numériques pour
la reconstruction de régions d’intérêt en géometrie parallèle à partir d’un faible nombre
de projections sur 180°. Notre approche présente de bonnes performances par rapport à
l’approche variationnelle classique et à des méthodes d’apprentissage profond, y compris
d’autres architectures issues d’algorithmes déroulés.
Enfin dans le Chapitre 9, nous résumons nos principales contributions et nous proposons
plusieurs pistes pour de futurs travaux.
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1 | General introduction

1.1 Cone-Beam Computed Tomography for interventional
imaging

Imaging with X-ray computed tomography, abbreviated as CT imaging [6], revolutionized
the clinical diagnostic routine 50 years ago with the introduction of diagnostic CT scan-
ners. CT scanners precisely measure small contrasts of attenuation to X-rays that differ-
entiate soft tissues from one another, thus allowing the identification of many pathologies.
The image quality achieved by diagnostic CT is possible due to technical choices, such
as putting the patient into a tunnel. This is generally incompatible with therapeutic use
because the imaging device must not prevent access to the patient.
In the field of interventional radiology, image-guided procedures are practiced under X-
ray guidance with interventional X-ray C-arms [227]. These systems have more recently
been equipped with an alternative tomographic technology called Cone-Beam Computed
Tomography (CBCT). Modern practice increasingly includes CBCT to plan interven-
tional procedures, guide the placement of therapeutic devices and control the result
of the intervention. These steps correspond to distinct imaging tasks: understand the
anatomical context for planning, visualize the therapeutic device for guidance, and vi-
sualize the device and/or the anatomy for assessing the success of the intervention and
the absence of immediate complications. Thanks to its high spatial resolution, CBCT,
combined with iodinated contrast injection, is very efficient for vessel imaging. However,
it remains limited in contrast resolution when it comes to the visualization of human
tissues, all the more so in the presence of injected iodine and metal. The degradation is
due to various sampling limitations inherent to the design of C-arms. Other limitations
of standard CBCT are that it contributes markedly to the overall dose delivered to the
patient during an intervention, and acquiring the CBCT data also slows down the pro-
cedure. So a simpler acquisition with fewer measurements and, thus, a lower X-ray dose
is desired. Then the loss in the number of measurements needs to be compensated for
reconstruction.
In this thesis, in collaboration with GE Healthcare, we aim to increase the usability and
performance of CBCT through advanced reconstruction methods to improve the inter-
ventional clinical practice in terms of confidence and safety of the procedure as well as
in terms of ease of use and speed of execution.

1.2 Goal of this thesis

From a mathematical point of view, computed tomography is an inverse problem [23] for
which many tomographic reconstruction methods with solid theoretical guarantees have
been developed [119, 154]. A tomographic reconstruction can typically be expressed as
the minimization of a convex cost function, not necessarily differentiable, with respect to
a large number of variables. Proximal algorithms [59] provide efficient ways to optimize
such cost functions and have become well-established in tomographic reconstruction. In
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particular, they offer great flexibility in formulating the objective function, allowing elab-
orate models of the data acquisition and the image. Therefore, these methods offer an
appropriate framework for handling CBCT sampling limitations. Note that sampling
limitations are not the only cause of artifacts in C-arm CBCT; several physical effects
induce nonlinear measurement errors, such as beam hardening and scatter. Although
these belong to the context of this work, they will not be addressed specifically.
In this thesis, we propose novel fixed point strategies for iterative reconstruction for
CBCT. Our goal is to exploit the nature of the acquisition process and provide high-
quality results for the specific imaging task while offering theoretically sound approaches
that are fast enough processing for clinical use.
CBCT data acquisition models involve high-dimensional linear operators such as the for-
ward projector. Reconstruction algorithms then rely on them and their adjoints. For
various reasons (e.g., computation cost, convergence rate), the discretization of each op-
erator may differ so that they are no longer adjoint of each other, leading to an adjoint
mismatch. Indeed, the choice of the discretization scheme is critical to minimize infor-
mation loss (e.g., preserving spatial resolution, avoiding noise amplification) and com-
putation time. However, the diagnostic information and the time budget for retrieving
it are highly dependent on the clinical context: there is no one-size-fits-all discretiza-
tion. Therefore, we investigate, on the one hand, how to mitigate the impact of adjoint
mismatch when it is used in iterative reconstruction and, on the other hand, we pro-
pose a new discretization that provides better trade-offs with respect to information loss,
computation time and symmetry. Inherent limitations or voluntary reduction of CBCT
sampling can only be overcome if the image information can be modeled from a priori and
context-dependent knowledge of the clinical task. In particular, sampling artifacts related
to metallic interventional devices such as percutaneous needles can be handled to im-
prove the image quality with standard acquisition protocols or derive context-dependent
alternative protocols. We present, depending on the context, either formal or data-driven
models, through deep unfolding, that increase the image quality of reconstruction from
sub-sampled CBCT acquisitions.

1.3 Outline

This section provides a reading guide to this thesis with a brief description of each chapter.

Chapter 2 introduces the medical context (section 2.1) and gives an overview of C-arm
systems, their 2D and 3D (CBCT) imaging capabilities and their clinical use (section 2.2).
Section 2.3 introduces the mathematical basis of CBCT, with the X-ray transform as a
model of the image acquisition. Artifacts in 3D imaging are covered in section 2.4 and
linked to the sampling limitations imposed by the interventional context and the physical
defects in image formation. Chapter 3 exposes the problem of image reconstruction as
an inverse problem. Three classes of inversion are discussed. First, we recall that an
analytical formulation exists through the inversion of the 2D Radon transform, which
is presented in section 3.1 together with its discretization. In section 3.2, we explain
how iterative reconstruction methods have been used to deal with degraded and, most
notably in this work, missing data. Models of the acquisition and a priori knowledge over
the solution space are most efficiently optimized through proximal algorithms, presented
in section 3.3. section 3.4 debates why iterative reconstruction methods have not com-
pletely replaced analytical methods. Impediments to the use of iterative reconstruction,
notably parameterization and execution time, are discussed as well as how practition-
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ers have introduced deviations in these schemes that violate their theoretical guarantees
but alleviate draw. The situation of adjoint mismatch, where the adjoint of the pro-
jector is replaced by a surrogate operator in an optimization algorithm, is presented.
Iterative reconstruction is also put into perspective with the new deep learning post-
processing architectures that build on analytical methods. Despite their popularity, they
lack mathematical characterization and can thus produce highly variable results. Sec-
tion 3.5 presents how deep learning can be used directly in the reconstruction task from
the projection data in a supervised way. Hybrid methods combining iterative methods
with deep learning architectures, such as deep unfolding architectures, are introduced to
provide more control over the output of the learned reconstruction than post-processing
deep learning approaches.
Chapter 4 is dedicated to the proximal gradient algorithm with unmatched pairs of
projector and backprojector for solving a penalized least-squares optimization problem.
After describing the mismatched algorithm in section 4.2 we provide our main conver-
gence results in section 4.3 before illustrating our results to two reconstruction problems
in section 4.4. In section 4.5, we show that considering an adjoint mismatch in the prox-
imal gradient algorithm can be recast as a problem of unmatched preconditioning where
the metric used in the gradient step differs from the one used in the proximity step.
Application to CT reconstruction in section 4.6 concludes the chapter.
Chapter 5 extends our study to a panel of primal-dual proximal methods, namely, the
Condat-Vũ algorithm, the Combettes-Pesquet algorithm, and the Loris-Verhoeven algo-
rithm for minimizing a penalized least-squares cost function which involves two linear
operators. Sections 5.2, 5.3, and 5.4 detail the properties of the three primal-dual split-
ting algorithms in the presence of adjoint mismatch of one or two operators. Finally, we
show two applications of our results for statistical and compressed sensing reconstruc-
tions in section 5.5.
Chapter 6 presents our magnification-driven interpolation framework for discretizing
cone-beam forward projection (FP) and backward projection (BP). In section 6.2, we
recall how the cone-beam geometry of C-arm systems can be described with "projec-
tion matrices" (not to be confused with projectors). Such matrices provide a continuous
description of the homographic transforms between any plane of the volume and the
detector plane. Discretization of FP and BP reduces to that of these transforms. Sec-
tion 6.3 presents an existing scheme for discretizing a 1D magnification. In section 6.4,
we extend this scheme to the case of 1D and then 2D homographies. Careful analysis
of the sampling rate variation allows us to derive fast implementations. Section 6.5 dis-
cusses how magnification-driven interpolation sheds light on the current advantages and
limitations of standard clinical interpolations and when and how it might better answer
specific usage of flat-panel based CBCT. Finally, we evaluate, in section 6.6, our inter-
polation framework for both analytical reconstruction and iterative reconstruction using
simulated and real CBCT data.
In Chapter 7, we consider the task of reconstructing objects such as percutaneous needles
from acquisitions with reduced angular amplitude. First, in section 7.2, we propose a
method for reconstructing needles superimposed to an anatomical background from a
limited-angle acquisition for a 2D parallel geometry. Our method makes use of a de-
composition strategy coupled with a directional regularization. It is then validated on
simulated data. In section 7.3, we discuss how this method can be extended to a cone-
beam geometry by changing the reconstruction grid through a rotation of the projection
matrices to simplify the directional regularization. Preliminary results from two actual
CBCT acquisitions for biopsy conclude this chapter.
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Finally, in Chapter 8, we investigate ROI reconstruction from sub-sampled measure-
ments. We start by introducing in section 8.2 the use of the Cauchy estimator for limit-
ing artifacts from dense objects located outside of the ROI. We describe the Dual Block
Forward Backward proximal algorithm and the reweighted strategy chosen to handle the
non-convex Cauchy term. We also explain how it is unrolled to yield our U-RDBFB
network. Finally, in section 8.3, we evaluate U-RDBFB with respect to several state-of-
the-art methods.
We conclude and draw some perspectives in Chapter 9.

1.4 Contributions

Chapter 4 studies the stability of the proximal gradient algorithm in the presence of
adjoint mismatch for solving a penalized least-squares problem in an arbitrary Hilbert
space. Our contributions are:

• a characterization of the fixed points of the mismatched algorithm;

• conditions of convergence with new bounds on the gradient step size and the reg-
ularization parameters;

• a characterization of the distance from the generated fixed point of the mismatched
algorithm to a minimizer of the original objective function;

• an extension of our results for analyzing preconditioned iterations of the proximal
gradient algorithm when different preconditioners are used for the gradient and
proximity steps; and

• a validation of these results on image reconstruction scenarios.

Chapter 5 extends the analysis of Chapter 4 to a panel of primal-dual proximal
algorithms, which rely on forward-backward-(forward) splitting schemes, when an adjoint
mismatch occurs. Our contributions are:

• a study of the properties of three main classes of primal-dual splitting algorithms
in the presence of adjoint mismatch: the Condat-Vũ algorithm and its projected
version proposed by Briceño-Arias and López, the Loris-Verhoeven algorithm, and
the Combettes-Pesquet algorithm;

• convergence results for all the above algorithms, with an adjoint mismatch on
different operators;

• a characterization of the resulting fixed points; and

• an illustration of our theoretical findings for CT reconstruction, with two types of
regularization and noise modeling.

Chapter 6 presents our magnification-driven interpolation framework for discretizing
the homographic transforms that arise in C-arm CBCT projection and backprojection.
Our contributions are:

• novel pairs of projector-backprojector based on least squares spline approximation;

• a unified computation pipeline for balancing spatial resolution and noise properties
for both analytical and iterative reconstruction;
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• an alternative and more general formulation of state-of-the-art discretizations de-
rived from geometrical considerations, of which the distance-driven model;

• approximate implementations of our operators to reduce complexity at near-optimal
performance; and

• an assessment of the performance in terms of noise propagation and spatial reso-
lution for low-order B-splines using both simulated and real data.

Chapter 7 introduces a methodology for reconstructing objects modeled as high-
intensity segments, such as metallic needles, from limited-angle acquisitions in presence
of the anatomical background. Our contributions are:

• identification of acquisition conditions which are favorable, or not, for segment
reconstruction;

• a 2D directional total variation regularization (DTV) to capture segments;

• a decomposition strategy to allow several a priori directions to be considered at
once as well as exclude the anatomical background;

• a 3D extension of DTV using a more accurate estimation of the directional gradi-
ents; and

• a numerical validation of the method using simulated and clinical data.

Chapter 8 tackles ROI reconstruction of soft tissues in the presence of high-density
objects. Our contributions are:

• evidence that combining M-estimators and TV regularization in our optimization
problem can effectively limit under-sampling artifacts associated with dense objects
out of the reconstruction grid;

• an iterative optimization algorithm combining an instance of the dual block forward-
backward algorithm with an iterative reweighted scheme;

• a neural network architecture, U-RDBFB, inspired by this algorithm, allowing su-
pervised parameter learning and fast reconstruction on the GPU; and

• numerical experiments that show that U-RDBFB compares favorably with respect
to other variational and deep learning methods, including other neural networks
based on deep unfolding.
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2 | Interventional imaging with
C-arm systems

This Ph.D. thesis is set in the clinical context of interventional radiology. Interventional
radiology is a medical discipline that involves performing minimally invasive procedures
to treat various pathologies using tools introduced through percutaneous and endovascu-
lar means. During such procedures, radiologists must acquire real-time images showing
the position of the tools in the patient’s anatomy. For so doing, C-arm systems have
been introduced and deliver two-dimensional (2D) real-time X-ray projective imaging at
various orientations. Since the end of the 1990s, rotating the C-arm around the patient
allows for three-dimensional (3D) CBCT imaging.

2.1 Medical context

The clinical use of C-arms is established for a wide variety of endovascular and percuta-
neous procedures [202]. Imaging is used at different steps of these procedures. It allows
for planning the procedure, guiding the interventional tools [120,176], and assessing the
outcome of the intervention. We now review some of these use cases.

2.1.1 Endovascular interventions

Angioplasty with stenting is the most widely performed endovascular procedure. Less
frequent but important procedures are the prevention of aneurysm rupture [8] and the
treatment of arterio-venous malformations. Through the intra-arterial injection of an
iodinated contrast agent, the lumen of the vessels becomes visible under X-ray exposure.
Global or selective imaging reveals the target of the procedure (origin of the anomaly of
the blood flow) as well as the path to the target (arterial tree) (see Figure 2.1).

Balloon angioplasty (Figure 2.3) is the first and foremost application of interventional
radiology, in particular for coronary artery diseases (CAD). Angioplasty uses a tiny bal-
loon catheter inserted in a blood vessel’s narrowed lumen (stenosis) to widen it and
restore the blood flow. It is often combined with stent placement to decrease the risk of
restenosis. For CAD, stents are coated with medication (drug-eluting stent) to prevent
an inflammatory reaction of the tissue against the stent that would cause restenosis.
An aneurysm is a vascular pathology in which the arterial wall is abnormally dilated
under the blood flow pressure, developing a "bubble"-like shape. A widening aneurysm
may compress the surrounding nerves and brain tissues when located in the brain. Most
importantly, a cerebral aneurysm may rupture, resulting in a lethal hemorrhagic stroke.
To avoid rupture, embolization consists of performing a vascular occlusion so that the
blood flow is no longer directed toward the aneurysm. Detachable metallic coils induct
occlusion. Each coil is pushed through a catheter from a puncture site (usually in the
groin) up to the brain target. Several coils are packed to fill the aneurysm densely. Al-
ternatively, a new form of a stent with dense struts, called flow diverters, is placed to
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Figure 2.1: MIP image with injected vessels

Figure 2.2: Coil embolization of an
aneurysm

Figure 2.3: Balloon angioplasty

block the entrance of the aneurysm, and they strongly reduce the in-flow. A thrombosis
then initiates within the aneurysm, further blocking any in-flux (Figure 2.2). When plan-
ning an aneurysm coil embolization in the brain, very high spatial resolution imaging is
needed to assess whether there exist vessels close to the aneurysm that the device must
not occlude. The endovascular treatment of aneurysms of the aorta is a more recent
procedure that has gained ground as an alternative to vascular surgery. Instead of sur-
gically replacing the diseased part of the aorta with a graft, a stent covered with tissue
is introduced within the aorta to redirect the blood flow.
Liver trans-arterial embolization (TAE) [75] is used to treat malignant lesions in the
liver. An embolic agent (microscopic beads or lipiodol) is injected to block the arterial
supply of the lesion. Lipiodol can be mixed with chemotherapy drugs (trans-arterial
chemo-embolization or TACE), and the beads can contain radioactivity (trans-arterial
radio-embolization or TARE).
Guidance of catheters and intra-arterial devices is performed via real-time 2D imag-
ing [173] called fluoroscopy. Fluoroscopy uses the minimum amount of the X-ray dose.
Higher dose imaging is used for planning the gesture and assessing its success, either pla-
nar or volumetric. Planar imaging is dynamic, while volumetric imaging is static only.
Figure 2.4 illustrates the superiority of 3D imaging over 2D imaging in terms of contrast
for visualizing a stent within a brain vessel as well as its surroundings.
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(a) 2D DSA imaging (b) Zoom on 2D DSA (c) Axial view from 3D imaging

(d) Coronal view from 3D imaging

Figure 2.4: Visualization of a deployed neurological stent with respect to the treatment region
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2.1.2 Percutaneous interventions

The interventions are called percutaneous when the organ is reached directly rather than
by its arterial supply. They include radiofrequency ablation [102], vertebroplasty [206]
and biopsies [115].
Biopsies consist of sampling a suspected mass with a metallic percutaneous needle. The
sample is then sent to pathology for further analysis.
Radiofrequency ablation relies on the guidance of a coaxial probe inserted into a malig-
nant lesion to heat and destroy all tissues within a sphere of a few centimeters that must
fully contain the lesion. These interventions begin with one CBCT volume to visualize
the skeletal system, the third most common localization of metastases, and potential
lesions in anatomical tissues. Figure 2.5 shows an axial slice of the abdomen where the
liver, kidney, colon, and spinal cord are displayed.

Vertebroplasty is an effective pain treatment for compression fractures that develop in
people with osteoporosis or bone tumors. To prevent further collapse of the vertebra,
the physician injects bone cement into the pathological vertebral body to prevent its
collapse (Figure 2.6). For intra-procedural guidance of the involved devices, the position
of the patient must be optimized. A precise assessment of the device trajectory is critical
to avoid puncturing the spinal cord. Radiologists usually rely on an image fusion of a
pre-intervention CBCT with fluoroscopy imaging. The treatment is completed when 3D
visualization assesses that the distribution of the cement fills the vertebra as planned.

Figure 2.5: Axial slice of an ab-
domen

Figure 2.6: Vertebroplasty
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2.2 Two-dimensional imaging

2.2.1 C-arm interventional system

Figure 2.7: C-arm system (GE Healthcare IGS) Figure 2.8: Three anatomical
planes

A C-arm interventional system (Figure 2.7) is a real-time X-ray video camera com-
posed of an open C-shaped arm holding an X-ray tube on one side and a digital flat-panel
detector on the opposite side. The open design gives access to the patient, who lies on
a bed table that is moved to put the anatomy of interest into the field of view (FOV)
of the camera. The C-arm camera can rotate around three mechanical axes intersecting
at a single point called the isocenter. Axes and directions are given with respect to the
patient. One defines the axial, coronal, and sagittal planes as shown in Figure 2.8. Two
anatomical angles are then considered:

• the CRAnial (CRA) or CAUdal (CAU) angle that describes rotation in the patient’s
sagittal plane;

• the Left Anterior Oblique (LAO) or Right Anterior Oblique (RAO) angle that
describes rotation in the patient’s axial plane.

The C-arm is primarily used for producing a stream of 2D images acquired with the
lowest X-ray dose to guide an interventional device within the patient in real time. The
X-ray tube design must guarantee the availability of such X-rays during interventions that
can last several hours. A medical X-ray tube is a vacuum tube that contains a cathode
filament and an anode rotating disk maintaining an electrical potential difference of up
to 140 kilovolts (kV) called the peak voltage (kVp). Electrons are released at the cathode
by thermal excitation and hit the anode. There they release their energy primarily as
heat that the anode must evacuate. Only a small fraction of them is converted into
X-ray photons. The number of emitted X-ray photons is linearly proportional to the
filament’s current intensity (mA) and the duration of the exposure (s). The energy of
the emitted photons (expressed in keV) takes all the values up to the peak voltage. The
number of emitted photons per energy is called the spectrum of the X-ray tube. From
now on, we call Ω(E) the X-ray spectrum and I0Ω(E) the intensity of the X-ray beam
leaving the tube. I0 expresses the linearity of the beam intensity with respect to the
exposure current (expressed in mAs = mA × second). Ω(E) depends on the voltage
peak and the anode material. The beam must pass through layers of aluminum and
copper, called beam filters, before exiting the tube. Beam filters shape spectrum Ω(E)
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because the attenuation is always stronger at low energies than at higher ones, and more
so with copper and aluminum. They preventively remove the emission of rays that do
not contribute to the image. The X-ray spectrum then becomes narrower with higher
mean energy; it is "hardened". Notably, because of beam filtration, intensity I0Ω(E)
must be increased to output as many X-rays with filtration as without. As a result, heat
increases in the tube, reducing its availability. The safety of hours-long interventions
does not allow as much pre-hardening as with diagnostic systems, where the tube can
be left to cool down between patients, each requiring only a few seconds of exposure.
The X-ray beam is shaped into a rectangular cone-beam using collimator blades of lead,
defining the rectangular exposed area over the detector (FOV).

2.2.2 Interaction of X-ray with matter

When an individual X-ray photon passes through the body, there is a range of possible
interactions [69], but for image formation, it is enough to consider two types of inter-
actions. The first is the photoelectric effect, where the X-ray photon is absorbed by
ejecting a photo-electron from an inner shell. The second is Compton scattering, where
the energy of the incoming photon is only partially converted into electron ejection. A
secondary photon, called a scattered photon, is emitted with a new direction and an
energy loss proportional to the angle of the deviation.
The probability that an X-ray photon will interact with one material is a fundamental
property of the material. It is described by the Beer-Lambert law and the linear attenu-
ation coefficient µ per unit thickness of material (cm−1). A narrow beam of intensity I0
of photons of the same energy E will be attenuated by a material of attenuation µ(E)
and thickness l such that the intensity I of the transmitted beam will be

I(E) = I0 exp (−µ(E)l). (2.1)

The attenuation of a material increases with the material density and mean atomic
number; it is inversely proportional to the photon energy (E).
Let µ = µ(r;E) be the distribution of the linear attenuation coefficient of the patient for
an energy level E, where r stands for a position vector in R3. Let sX ∈ R3 denote the
location of the X-ray source and c ∈ R3 the location of a detector cell, the transmitted
intensity measured by the cell is

I(c) = I0

∫ Emax

0
Ω(E) exp (−

∫ c

sX

µ(l, E)dl)dE. (2.2)

Thanks to beam filtering, the variations due to Ω(E) can be neglected, which allows the
following simplification of (2.2):

I(c) = I0 exp (−
∫ c

sX

µΩ(l)dl), (2.3)

where attenuation µΩ(l) is a mathematical approximation that replaces the real attenu-
ation functions µ(l, E) for E ∈ Ω(E) and l ∈ ]0,+∞[.
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2.2.3 Flat-panel X-ray detector

The detector embedded in a C-arm is a square panel made of crystalline cesium iodide
with a thickness of a few millimeters. It is a scintillator that transforms each incoming
X-ray photon into visible light (scintillation). The intensity of the scintillation is propor-
tional to the photon energy. The light is then turned into electricity by one photodiode
per detector cell. Each cell thus integrates the energy of the incident stream of photons
over a square of 200× 200 square microns. The read-out electronics perform the analog-
to-digital conversion of the measurements recorded by the cells.
Unfortunately, there is not a one-size-fits-all design but three different panel sizes that
target different medical practices. The heart fits in a 20 × 20 cm2 panel, which is the
smallest size. This allows for orienting the camera towards larger values of CRA/CAU
and LAO/RAO angles. Imaging the abdomen and the lower limbs does not require large
rotations, so a large panel of 40× 40 cm2 that fits more anatomy is preferred. The inter-
mediate size of 30× 30 cm2 allows all medical specialties to share the same system and
is also the preferred size for neurology (Table 2.1).

Anatomy Panel size (cm) Number of cells
Heart 20 1000
Head 30 1500

Abdomen, extremities 40 2000

Table 2.1: Panel sizes and number of cells for different anatomies

The detector is made of 2000 lines of 2000 cells (or pixels) of size 0.2 mm for a 40 cm
panel. However, the read-out electronics cannot process more than 1000 samples per
image. Therefore, when the FOV is greater than 20 cm, detector cells are binned, i.e.,
the outputs of neighboring cells are combined in a single reading. In return, spatial
resolution is reduced since binning modifies the effective bin size.

2.2.4 Imaging modes and exposure

As already mentioned, the primary imaging mode is fluoroscopy, which uses the minimum
amount of the X-ray dose and is used for real-time guidance. C-arm systems provide two
higher-dose imaging modes (Table 2.2).
Digital Subtracted Angiography (DSA) takes a few high-dose shots of an organ, one shot
before iodine injection, and around 10 to 20 images after injection, covering the time it
takes for the contrast to fill the arteries and be flushed out by the blood flow into the
venous system. Subtraction of the first contrast-free image from all other images yields a
very high-resolution sequence of the lumen of tiny arteries. Organ perfusion appears as
an image "blush" if the noise is low with respect to the contrast of iodine. Subtraction
assumes the absence of patient motion and works best for identifying vessel occlusion
and abnormal brain perfusion. For liver imaging, respiratory motion often precludes
background removal by subtraction.
The "record" mode is a movie of a few seconds. It has two purposes. The historical
one, called "cardiac record", records at 30 frames per second the propagation of contrast
within the coronaries during a few heartbeats. It is used to localize stenosis or occlusion
before the intervention or to assess the restoration of the blood flow after the placement
of a stent. The second purpose is to acquire images at 50 frames per second (the highest
frame rate of all imaging modes) during a spin, i.e., a 200° rotation from LAO to RAO
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from which a tomographic reconstruction is performed. This feature is now called Flat-
panel Cone Beam Computed Tomography, shortened into CBCT. The "record" mode is
the mode that is used and discussed in this work.

Protocol Frames per second Dose per frame
Fluoroscopy 10 Low

DSA 7.5-15 High
Record 30-50 Medium

Table 2.2: 2D imaging protocols

The dose received by the patient is proportional to the size of the FOV. The maxi-
mum FOV is as large as the detector, but the physician’s focus is, most of the time, the
region of intervention, which is small. To reduce unnecessary peripheral doses and only
image a region-of-interest (ROI) [236], the X-ray beam is collimated in both horizontal
and vertical directions. Depending on the size of the resulting FOV, binning of the de-
tector’s cells may not be necessary.

Because X-ray production and interactions with matter are random processes, the trans-
mission measurements are random variables Ī(c) that follow a Poisson distribution with
mean (and thus variance) equal to I(c). This has two consequences: (i) the signal-to-noise
ratio at a detector cell is equal to

√
I(c) and (ii), to maintain the same measurement

while the attenuation increases linearly, intensity I0 must be increased exponentially. The
dose received by the patient is defined as the absorption of X-ray energy per unit mass
of matter. The dose is approximately linear with respect to I0. On a C-arm, the X-ray
exposure is automatic. It uses the equivalent patient thickness lEPT defined such that∫ c
sX

µΩ(l)dl = µ̄lEPT, with µ̄ the attenuation value of water or plexiglass measured by
the C-arm (e.g., 0.15 cm−1). An average value of lEPT over the field of view is estimated
on the last image to adjust the next image’s filtration, mAs and kVp, called X-ray tech-
niques. It sets a balance between image quality and dose. Value for lEPT can go up to
45 cm in cardiac imaging. It is around 15 cm for the head.

2.3 Three-dimensional imaging

Through the acquisition of a spin with the record imaging mode, C-arm systems can
generate volumetric images that offer high spatial resolution but only moderate contrast
resolution. A reconstruction algorithm then computes function µΩ of the patient from
the set of acquired measurements called projections.

2.3.1 Radon and X-ray transforms

The mathematical basis of CT is best understood in the parallel-beam geometry (see
Figure 2.9). The parallel-beam acquisition geometry assumes that incoming rays are
parallel to each other and orthogonal to the detector. They are parameterized by angle θ
with respect to the x-axis, so that the rays are oriented along vector θ = (cos θ, sin θ)⊤.
The detector axis is orthogonal to the incoming rays, hence it is oriented along vector
θ⊥ = (− sin θ, cos θ)⊤. The projection view at angle θ of a two-dimensional image
f ∈ L1(R2), the space measurable, integrable functions from R2 to R2, is a function
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p : R× R 7→ R defined by the Radon transform R as

p(θ, s) = R[f ](θ, s) = Rθ[f ](s) =

∫
Lθ,s

f(x, y)dl =

∫ +∞

−∞
f(sθ + tθ⊥)dt

=

∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cos θ + y sin θ − s)dxdy (2.4)

where δ(·) is the Dirac distribution. The Radon transform has the following properties:

• If f =
∑I

i=1 cifi then R[f ] =
∑I

i=1 ciR[fi].

• p(θ, s) is 2π-periodic in θ i.e. p(θ, s) = p(θ + 2π, s).

• p(θ, s) is symmetric in θ with period π i.e. p(θ, s) = p(θ ± π,−s).

The Radon transform and the X-ray transform are equivalent descriptions of a 2D parallel
tomographic setup. They are invertible. CT images are thus computed according to the
inverse transform.
The cone-beam geometry induced by the C-arm flat-panel detector is 3D and samples the
X-ray transform of a volume. To describe this geometry, a few parameters must be added:
the X-ray source is located at point Sm, which is at distance α from the center of the flat
detector and at distance tz from the center of rotation O (Figure 2.9). All integration
lines cross point Sm. The orthogonal projection of the source over the detector defines
an angle θ with respect to the x-axis. The detector plane is orthogonal to θ. Coordinate
s = 0 is at the focus point Sm and lies on the optical axis. A point (x, y, z) ∈ R3 projects
onto the detector plane Πm for the position Sm at coordinate (u, v) ∈ R2, according to
the following relation in homogeneous coordinates (su, sv, s) ∈ R3

su
sv
s

 =

−α sin θ α cos θ 0 0
0 0 α 0

− sin θ cos θ 0 tz


︸ ︷︷ ︸

Pθ


x
y
z
1

 . (2.5)

Matrix Pθ is called the projection matrix at view angle θ. Note that Pθ is defined up
to a constant scaling. There is one projection matrix per position of the pair X-ray
source/detector. Cone-beam projections can be expressed using the X-ray transform R̂
as

pθ(u, v) = R̂θ[f ](u, v) =

∫
L(u,v,θ)

f(x, y, z)dl =

∫
f(Sm + tl(u, v))dt (2.6)

where
l(u, v) =

1√
α2 + u2 + v2

(αθ + uθ⊥ + vξ). (2.7)

The cone-beam projection of plane z = 0 falls over line v = 0 of the detector plane. The
relation between (x, y, z = 0) and (u, v = 0) is called fan-beam geometry. The fan-beam
geometry for {pθ | θ ∈ [0, 2π]} samples the 2D Radon transform exactly twice. When
(α, tz) −→ (+∞,+∞), cone-beam, fan-beam, and parallel geometries are equivalent.
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Figure 2.9: Coordinate systems in parallel geometry (left) and cone-beam geometry (right)

2.3.2 Log transform

We set the logarithm of (2.3) as

pθ(c) = log

(
I0
I(c)

)
= log(I0)− log(I(c)). (2.8)

Function pθ is called the log-transform of the data. It converts intensities into densities
which are the X-ray transforms of the attenuation map. Applying a tomographic recon-
struction algorithm to pθ will yield an estimate of attenuation µΩ.
Radiologists typically measure attenuation coefficients in Hounsfield units (HU). The
value Htissue of the attenuation coefficient of a particular tissue in HU is commonly
scaled relative to the value of the attenuation coefficient µwater of water, i.e.,

Htissue =
µtissue − µwater

µwater
× 1000. (2.9)

Thus, with the shifting in (2.9), the attenuation coefficient of water is 0 shifted HU (sHU),
and a substance with an attenuation coefficient of 1000 sHU attenuates X-rays twice as
much as water. An estimate of the Hounsfield units for materials of clinical interest,
computed for E0 = 100 keV, is given in Table 2.3. A large variety of intensity values
can be encountered in interventional radiology imaging among metallic and anatomical
objects. Note that the contrast resolution expected from diagnostic CT scanners is a few
sHU to allow fine differentiation of brain white and gray matter.
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Substance HU
Air -1000
Fat -120 to -90

White matter +20 to +30
Grey matter +37 to +45
Cortical bone +1800 to +1900

Cancelous bone +300 to +400
Clotted blood +50 to +75

Water 0
Lung -700 to -600

Kidney +20 to 45
Muscle +35 to +55

Titanium +6200
Silver +17000
Steel +20000

Gold and brass +30000

Table 2.3: HU for different materials

2.4 Noise and artifacts in C-arm CBCT

Measuring the X-ray transform of a patient with X-rays mounted on a C-arm has limi-
tations in terms of noise and artifacts. Noise in the measurements is propagated to the
reconstructed image and decreases contrast resolution. Noise decreases as the intensity
of the X-ray beam increases. We shall restrict the term "artifacts" to image defects that
do not disappear, whatever the intensity of the X-ray beam.

2.4.1 Noise

As already mentioned, the measured X-ray intensity I(c) is akin to a number of photons,
i.e., a positive integer, realization of a Poisson process, and such that the signal-to-noise
ratio is proportional to

√
I0. For CBCT, values I0 and I(c) must also be high enough for

(2.8) to be numerically accurate. The log transform is thus a non-linear transform and
yields a potential infinite amplification of the noise from the intensity images.

2.4.2 Sampling

Lateral truncation:

Lateral truncation happens in most examinations, either voluntarily because the focus
is an ROI, or because the maximal FOV of the detector does not allow for entirely
exposing the patient. Truncation without adequate processing introduces strong cupping
that alters the visualization of low contrasts in the reconstructed ROI.

Angular sub-sampling:

There are two main types of artifacts related to the angular sampling of the acquisition
trajectory (density and amplitude).
First, ideally, CBCT imaging requires a 360° rotation as found on diagnostic CT scanners.
Standard C-arms have a rotation of maximal amplitude along LAO/RAO over 200°, with
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CRA/CAU = 0 and SID constant. The rotation axis is thus parallel to the patient bed.
The rotation over 200° is called a short-scan rotation. It is the minimum coverage required
by tomography. Below this value, one speaks of limited-angle tomography.
Second, the C-arm gantry is used at maximal rotation speed (40°/s) for acquisition
with an injection of contrast to minimize the volume of injected contrast, as contrast
must fill the imaged lumen for the whole duration of the acquisition. Given a detector
frame rate of 50 fps, this 5-second acquisition delivers 250 views. On the contrary, the
speed is kept slow for a non-angiographic exam (16°/s) to maximize the number of views
within the scan and increase contrast resolution to differentiate human soft tissues better.
Such acquisitions deliver 600 views. This number is sufficient, except in the presence of
metallic devices (see Table 2.3). To reduce storage space and reconstruction time, instead
of using the 1000× 1000× 0.4 mm projections read by the detector, the projections are
further binned into 500× 500× 0.8 mm from which reconstruction of 512× 512 images is
performed. Angular sub-sampling of the densest objects (metal, bone) is responsible for
streaks (Figure 2.10) whose intensity is higher than the contrast of soft tissues, leading
to a loss in contrast detection.

Figure 2.10: sub-sampling streaks due to a low angular density

Cone-beam artifacts:

C-arm circular source trajectory with cone-beam geometry does not allow an exact
reconstruction; only the volume planes crossed by the X-ray source trajectory are fully
sampled (cf. Tuy’s conditions [212]). The circular trajectory fully samples the plane
containing the source rotation only, i.e., the central slice of the volume. In contrast,
all other slices are degraded by conic artifacts that become increasingly apparent as the
slice is away from the central one. A helical trajectory combining bed translation with
a continuous rotation of the imaging chain makes diagnostic systems immune from this
issue. However, such continuous rotation is impossible with an open system such as a
C-arm.
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2.4.3 Physics

Beam Hardening:

Beam filtration is also called beam pre-hardening because as the beam penetrates the
patient, the hardening effect continues, more so if the emitted spectrum is too "soft".
For a single material type (e.g., water), one easily measures that the linearity between
the log-transform of the measured intensity and the material thickness no longer holds
and becomes closer to a square root.
The impact of beam hardening increases with the material attenuation and is specific
to the tube spectrum; most tissues are considered equivalent to water, while bone, io-
dine, and metals will have distinct behaviors. Correction of beam hardening must thus
be performed per material, with the classical case of skull beam-hardening correction
introduced by Joseph [118]. After a first-pass reconstruction, the skull is segmented by
thresholding. The bone contribution is estimated per cell and corrected by inverting (i.e.,
"squaring") the calibrated skull curve. A correction term is reconstructed and summed
to the initial reconstruction.

Scatter:

As previously mentioned, scattered photons are the result of Compton interactions.
If a unique detector cell is exposed, it will accumulate photons from the X-ray source. All
scattered photons having other random directions will not hit the cell. If several detector
cells are exposed simultaneously, then scattered photons arising from one cell measure-
ment process will be read into another cell. Therefore, the greater the acquisition field of
view, the higher the scatter cross-contamination. Image artifacts due to the scatter are
low-frequency cupping, reduced contrast, and dark streaks between dense objects [200].
Scatter rejection is achieved through an anti-scatter grid placed upon the detector. It
is made of lead or titanium holes that absorb all photons not coming from the X-ray
source. However, the grid cannot be too strongly focused because C-arms must allow a
variable geometry with a lift that moves the detector closer to or away from the patient.
Reducing the field of view decreases the scattering effect. With lateral truncation, one
exchanges scatter artifacts for truncation artifacts. Reduction of the number of slices
acquired per rotation is very efficient but requires multiple rotations, which takes a pro-
hibitive time on a C-arm and is thus not proposed. Scatter contamination is the most
important reason why CBCT systems have a lower contrast resolution than diagnostic
CT scanners.

2.4.4 Metal artifacts:

Metal artifacts are problematic because they originate from several previously described
sources of artifacts. Medical X-ray tubes are not designed to image metal whose very
high attenuation requires unacceptable X-ray dose levels. The detector measurements
behind metal are thus small integers in (2.8), and the estimation of the log-transform be-
comes unreliable and amplifies these specific measurements dramatically, yielding bright
streaks all over the reconstructed image. Digital filtering is insufficient because beam
hardening and scatter also affect the data. Finally, the streaks due to the angular sam-
pling are proportional to the metal density, which is itself easily 10 times the density of
the anatomical background. These streaks are thus 10 times stronger than usual and also
than the contrasts of the anatomical background. The tissue contrast is hidden under
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the metal streaks.

For example, the evaluation of the placement of a stent in contact with a coil becomes im-
possible. A post-processing algorithm can reduce these artifacts and restore some clinical
information, as seen on Figure 2.11. Like the skull beam hardening algorithm, the metal
is segmented by thresholding after a first-pass reconstruction. The metal contribution is
estimated per cell and removed from the data to reconstruct a metal-free volume that is
then fused with the segmented metal.

Figure 2.11: Coil in contact with a stent with (left) and without (right) artifacts.

2.5 Conclusion

In summary, flat-panel C-arm systems provide the interventional radiologist with real-
time fluoroscopy, digital subtraction angiography, and recording modes such that com-
puted tomography becomes available. The design of C-arm systems is tailored to thera-
peutic intervention guided by 2D imaging.
CBCT brings volumetric imaging to the interventional suite. The design constraints of
C-arms provide a higher spatial resolution but a lower contrast resolution than diagnos-
tic CT. Therefore, CBCT use is tailored to specific needs during the procedure, where
lesser tissue differentiation is acceptable given that the 3D image is made available in
the operating room. Examples are the planning of a gesture and the assessment of a
tool position that requires high spatial resolution but limited contrast resolution. Piling
up pre- and post- corrections for sub-sampling and physical degradations has increased
soft-tissue contrast resolution on the newer systems to assess bleeding or ischemia in the
brain or tissue perfusion in the liver.
Guidance, however, suggests the need for more than one CBCT, as in the case of percu-
taneous needle insertion. This means an increase in dose to the patient and disruption of
the procedure as a common position must be found for the physician to work comfortably
and for the system to rotate without collision over 200°.
This thesis is thus placed in the context of ROI reconstruction, for which we will focus
on handling sub-sampling effects inherent to C-arm CBCT but also tackle those that
arise from decreasing the rotation amplitude of the acquisition to allow better-suited
acquisition protocols.
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3 | CT reconstruction methods
This chapter provides an overview of the methods that have been proposed for recon-
structing a function, such as a patient attenuation map from a set of its integrals over
rays. Three classes of methods are detailed. First, section 3.1 presents analytical re-
construction (AR) methods that directly discretize the continuous inverse of the Radon
transform. Then, section 3.2 and section 3.3 introduce the framework of iterative recon-
struction (IR), which defines a discrete projection model inverted as a classical inverse
problem. In contrast to analytical methods, iterative methods allow for making explicit
assumptions about noise/attenuation map properties. We thus decouple the problem
formulation (section 3.2) from the description of the algorithm used to solve for opti-
mization (section 3.3). Finally, section 3.5 reviews recent deep learning methods, which
can leverage large datasets and estimate the attenuation in a reduced time compared
to iterative methods. We comment on the robustness of these methods to the artifacts
mentioned in the previous chapter and their practical difficulties.

3.1 Analytical reconstruction

3.1.1 Inverse Radon transform

In 2D parallel geometry, the continuous inverse of the Radon transform, R in (2.4), relies
on its adjoint denoted R∗ and called backprojector. Let p(θ, s) be the projection data of
µ ∈ L1(R2). Backprojection of p(θ, s) at position (x, y) is an integration over all θ ∈ [0, π[
as

R∗[pθ(s)](x, y) =

∫
θ
pθ(x cos θ + y sin θ)dθ =

∫
θ
pθ(r)δ(r − x cos θ − y sin θ)dθ. (3.1)

Given (2.4), we get the following relationship between the backprojected image R∗[pθ(s)](x, y)
and the reference object µ(x, y):

R∗[pθ(s)](x, y) = µ(x, y) ∗ 1√
x2 + y2

, (3.2)

where the convolution product is (f ∗ g)(x, y) =
∫ +∞
−∞

∫ +∞
−∞ f(x − i, y − j)g(i, j)didj for

functions f and g in L1(R2). (3.2) shows that the backprojection of the projection data
generates a blurred version of µ(x, y).
One way to derive a closed-form expression for the inverse Radon transform is via the
Fourier Slice Theorem:

p̂θ(ks) = F1[pθ(s)](ks) =

∫ +∞

−∞
pθ(s)e

−j2πkssds = F2[µ](ks cos θ, ks sin θ), (3.3)

where ks is the Fourier domain counterpart to the image domain spatial variables s.
The interpretation is that (u, v) = (ks cos θ, ks sin θ) for θ ∈ [0, π[ and ks ∈ R specifies a
line in the 2D Fourier space rotated by θ relative to the positive u-axis. This corresponds
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to the s-axis in the image space. Thus, the 1D Fourier transform of a projection is
equivalent to the corresponding slice/line through the 2D Fourier transform.
The Fourier Slice Theorem allows us to derive the inverse of the Radon transform as

µ(x, y) = R∗[pθ(s) ∗ F (s)] =

∫ 2π

0
p′(θ, x cos θ + y sin θ)dθ, (3.4)

where ∗ now denotes a 1D convolution, p′(θ, s) =
∫ +∞
−∞ p̂θ(ks)|ks|ejπkssdks and F (s) is a

filter of one variable, called ramp filter, such that F1[F ](ks) = |ks|. This approach is the
filter-then-backproject method (FBP) [73]. Note that (3.4) can be rewritten with a 2D
Fourier transform (the 2D counterpart of the ramp filter is called the cone filter), then
becoming the backproject-then-filter method.

3.1.2 Discretization

Figure 3.1: A schematic illustration of a scanning geometry with a flat panel detector and an X-ray
source moving along an arc. The following parameters are shown: the number of projections T , the
number of detector cells S, the angular sampling ∆θ, the detector sampling rate ∆s and the spatial
indexes of the image grid n1 and n2.

We now suppose that we have T projection views and S detector cells (see Figure 3.1).
Implementation of FBP can be done either by direct discrete convolution or in the Fourier
domain by 1D Fast Fourier Transform (FFT) operations. The discrete projection data,
sampled with a distance ∆s between the detector elements, indexed by s ∈ {1, · · · , S},
represents a band-limited function with a highest frequency of ∆s/2 = kmax

s . Hence, in
FBP, we can replace |ks| with the function

H(ks) =

{
|ks| for ks ⩽ kmax

s

0 else , (3.5)

which corresponds to the discrete impulse response (Figure 3.2)

(∀l ∈ R) h(l) =
1

∆2
s


1/4 if l = 0
0 if l ̸= 0, l is even
−1/(π2l2) l is odd

. (3.6)
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Figure 3.2: Band-limited ramp filter. Left: frequency response. Right: impulse response

As ∆s tends to zero, higher frequencies are sampled, which also means that the ramp
filter amplifies frequency up to +∞. In practice, additional apodization of the ramp filter
is used to reduce Gibbs oscillations and enable the optimized depiction of soft-tissue or
high-contrast structures (e.g., cosine, Hanning, Hamming, Shepp-Logan, Butterworth).
These functions provide a continuous transition between the ramp amplification and the
band-limited windowing.
After filtering, FBP relies on the discretization of the continuous backprojection oper-
ation R∗. The most straightforward choice for discretizing this operation is to directly
discretize (3.1). Let ∆θ be the rotation interval between subsequent views, indexed by
t ∈ {1, · · · , T}. The angle θ is replaced by a discrete set of angles {θt = (t − 1)π/T :
1 ⩽ t ⩽ T} and the integral is replaced by a summation. Let n1, n2 ∈ N2 be the indexes
over a reconstruction grid along the horizontal and vertical directions. Discretizing (3.1)
yields the definition of the discrete backprojection B at location (xn1 , yn2) ∈ R2 such
that

B(xn1 , yn2) =

T∑
t=1

(pθt ∗ h)(xn1 cos θt + yn2 sin θt)∆θ. (3.7)

For a given angle θt, the discrete positions s∆s generally do not coincide with the discrete
values xn1 cos θt+yn2 sin θt. A discrete representation of the continuous projection p(s, θ)
is then assumed to perform the interpolation. Here we see that backprojection at a given
pixel (xn1 , yn2) is independent of neighboring pixels. Depending on the representation of
p, different variants of B can be obtained.

Analytical reconstruction and angular sub-sampling:

The Fourier transform of the attenuation function F2[µ](kx, ky) is known along radial
lines with uniform sampling. The density of points in the angular direction is non-
constant: it becomes smaller when the radius increases. In other words, more projections
are needed for bigger images. The impulse response of the band-limited ramp filter
(Figure 3.2) presents negative components around the central positive peaks. When the
number of projections is infinite, the positive and negative contributions compensate
each other during the backprojection step of FBP. When the number of projections
decreases, non-compensation of the positive and negative contributions results in non-
localized streak artifacts. The rule of thumb in clinical practice is that sampling artifacts
become an issue - the acquisition being qualified as sub-sampled - when the number of
projections for reconstructing an N ×N image is less than N .
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Short-scan acquisition:

As already mentioned, the fan-beam geometry with a 2π rotation of the source sam-
ples the parallel geometry exactly twice. On the contrary, a π rotation does not provide
a sufficient sampling. The shortest scan that samples the parallel geometry at least once
per sample is equal to π plus the fan angle, where the fan angle refers to the aperture
covered by the detector. In this configuration, the redundancy is not uniform, with some
line integrals being measured twice and others once only. In [167], Parker proposed a
function to weight the short-scan fan-beam projection data before ramp-filtering that al-
lows the same FBP-type reconstruction for the short-scan case. Parker’s weights create
a smooth window that sets at zero most of the redundant projection columns, does not
alter most non-redundant projection columns, and smoothly applies a weight between 0
and 1 on a few projection columns. This weighting ensures that the relevant conjugate
rays have weights that sum to unity and is now widely used.

ROI Imaging:

Fourier methods assume non-truncated data. In the case of full angular coverage but
with all projections laterally truncated on both sides, the objective is to reconstruct the
ROI that is visible (nontruncated) by all projections, despite the contamination due to
external parts of the object. This problem is called the interior problem [53]. Although
this problem has an infinity of solutions, the solution becomes unique with little extra
a priori information [181]. In practice, an image of the ROI with FBP is obtained by
extrapolating the projections prior to ramp filtering [132]. When the projections are not
fully truncated, i.e., containing specific transverse truncations, it is no longer an interior
problem, as one shows that a unique solution exists, at least in certain situations. They
are computed with the alternative algorithm of differentiated backprojection with Hilbert
Transform (DBP-HT) [157]. In this thesis, we will refer to ROI imaging the setting of
reconstruction a ROI from projections that are at least partially truncated.

Extension to cone-beam geometry with a circular orbit:

As mentioned in Chapter 2 (section 2.4), Tuy’s conditions are not satisfied for the
cone-beam circular acquisition case, so no exact inversion formula is available. The
Feldkamp-Davis-Kress (FDK) method [90] performs an approximate inversion of the X-
ray transform by applying an FBP-type reconstruction thanks to weighting steps prior-
and post-filtering. These weightings yield an exact reconstruction when the object is
constant along the axis of rotation. A short formula for FDK can be found in [91].

To conclude, AR methods combine projection filtering and one (weighted) backprojec-
tion, leading to very fast implementations. However, they linearly transfer all defects
and inconsistencies from the data into the reconstructed image.
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3.2 Modeling in reconstruction

AR does not allow for using any a priori information on the volume and the nature of
the acquisition. A point in space is reconstructed independently from the others, and the
performance of analytical methods simply reflects the quality of the data: image quality
is degraded when the sampling is not dense and regularly spaced; the ramp filer amplifies
noise. Model-based reconstruction offers the flexibility to model the acquisition setup
(high angular sampling but high noise, or low noise but low angular sampling) and to
include a priori knowledge over the solution.

3.2.1 Geometric modeling

The geometry of the acquisition system can be modeled by a matrix called projector H,
where each row captures one measurement that is a summing process over the volume el-
ements. Matrix H of the ideal tomographic system is the discretization of the continuous
X-ray transform appearing in AR. For real systems, H exclusively includes measurements
delivered by the acquisition, thus modeling sub-sampling. Its columns model a field of
view as a Cartesian grid. The grid’s density and extension shape the properties of the
reconstruction task. The (forward) projection operation is denoted:

Hx = y, (3.8)

where y ∈ RC (C = T × S) and x ∈ RN (N = N1 × N2) are obtained by stacking
respectively the values of matrix p[c1, c2] and of matrix µ[n1, n2] and H ∈ RN×C .
A typical matrix of a tomographic system is huge. It is thus never stored but computed
on-the-fly. Each matrix value contains the contribution of one point of the grid to one
measurement. Because integration happens over lines, this value is generally 0, so H is
sparse. Point contribution is derived from geometric and interpolation considerations,
but physics constrains the result to interval [0, 1], so H is stochastic. Sub-sampling makes
the solution non-unique. The spectrum of eigenvalues of integration operators decreases
to 0, and inversion is thus ill-posed.

Given these characteristics, reconstruction methods using standalone geometric modeling
traditionally trade (3.8) for the following system of linear equations called the normal
equations:

H⊤Hx̂ = H⊤y, (3.9)

where x̂ ∈ RN is an estimation of the attenuation map.
ART [234] was historically proposed in the early days of CT technology during the
1970s [6] for solving (3.9). This method is an instance of the Projection Onto Convex Sets
(POCS) method. ART is a fully sequential row-action method: it updates the volume
estimation using one row of H at a time. The method converges to the minimum-norm
solution

argmin
x∈RN
Hx=y

∥x∥2. (3.10)

Extensions involve changes in how each row is handled in an iteration (order and num-
ber of rows) [204]. Block-row schemes (Cimmino, SART [7], DROP [40], BiCav [41])
converge to a fixed point that is not a (weighted) least-squares solution. There are also
block-columns sequential methods [82,189] such as SOR, column-Cimmino, and column-
BiCav. These methods converge to a least-squares solution, though not necessarily the
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one with the minimum norm. Most methods have been introduced as a faster alternative
to standard gradient descent techniques. Algebraic methods are semi-convergent; the
number of iterations is tuned to control the amount of noise in the solution.

In tomography, backprojector H⊤ is not the inverse of H while the FBP algorithm
provides a linear operator that approximates it. It is therefore interesting to consider
rewriting system (3.8) not with the normal equations but through approximate inversion
with an adequately designed operator H‡ ∈ RC×N :

H‡Hx̂ = H‡y. (3.11)

The reason why H‡H is not the identity is sub-sampling. Hence the conditioning of
H‡H is a measure of sub-sampling in the acquisition. The initial way proposed for
solving (3.11) is through a successive approximation iteration

(∀n ∈ N) xn+1 = xn − τH‡(Hxn − y), (3.12)

that converges if ||| Id −τH‡H||| < 1, where ||| · ||| denotes the spectral norm. Because
approximate inversion aims to satisfy H‡H ≈ Id , the eigenvalues of H‡H are expected
to cluster around 1, and H‡H to be close to a symmetric operator. Note that in the case
of a parallel geometry, in the fully-sampled continuous case, H‡, as provided by FBP, is
exactly the (right) pseudo-inverse of H.
Using H‡ = H⊤F with F the ramp filter, the product H‡H is indeed symmetric and
(3.12) converges to the well-characterized solution of

argmin
x∈RN

1

2
∥F 1/2(Hx− y)∥2. (3.13)

This iterative method is an improvement over an initial approximate analytical recon-
struction. When H‡ is provided by FBP, (3.12) is referred as iterative FBP (I-FBP).
I-FBP is not only used in transmission tomography but also in emission tomography.
In SPECT, the attenuated Radon transform does not have an analytical inverse when
attenuation is heterogeneous. The backprojection of the filtered attenuated data still
produces an image close to the true image. This leads to using the non-symmetric oper-
ator H‡H = H⊤FHa, where Ha is a discrete attenuated Radon transform and H⊤ does
not model attenuation [183, 240]. If it is important to stick to the normal equation, the
introduction of filtering by preconditioning (3.9) is a more generic way to reach faster
convergence [54], without changing the solution.

The ability to model the acquisition does not compensate for the lack of data. If the
exact contour of the object is known a priori, the solutions to (3.9) and (3.11) can be
superior to AR. In CT, model-based reconstruction has been used to decrease the X-ray
dose delivered to the patient. The dose can be reduced by decreasing the X-ray tube
current, which increases the noise. However, dose reduction can also be achieved by de-
creasing the number of measurements, particularly the number of projection angles, while
conserving a high value for the X-ray tube current. Model-based reconstruction must
include more information to provide meaningful solutions to these different setups. In
general, advanced model-based reconstruction methods estimate x through the solution
of the following minimization problem

minimize
x∈RN

d(x) + h(x). (3.14)

46



where d : RN 7→ ]−∞,+∞] is a data fidelity term, which typically depends on vector
y and matrix H, and h : RN 7→ ]−∞,+∞] is a regularization function. We will now
discuss how modeling guides the choice of these functions.

3.2.2 Modeling errors in the data

For setups where the X-ray tube current is low, the choice of the data fidelity term is
often driven by the modeling of the noise properties of the acquisition. In CT, there
are two main ways of modeling the noise depending on whether the modeled data are
log-transformed or not.

Poisson:

In emission tomography, the reconstructed function is not an attenuation map but
the number of photons emitted from each point in space, which gives the map of the ra-
dioisotope injected into the patient. The Radon transform relates the number of photons
counted by the detector and the radioisotope map, with the data following Poisson statis-
tics. In transmission tomography, the data are photon counts as in emission tomography,
thus following Poisson statistics. However, in this imaging modality, the relationship with
the attenuation map is the Beer-Lambert law instead of the Radon transform. Statisti-
cal reconstruction, in such a context, aims at maximizing the Poisson likelihood of the
measured data with respect to the parameters (radioisotope or attenuation maps). In
optimization terms, this task can be reformulated as minimizing the log-likelihood, e.g.,
(3.15) for transmission tomography, leading to the setting

(∀x ∈ RN ) d(x) =
C∑
c=1

(I(c)[Hx]c + I0 exp (−[Hx]c)). (3.15)

One well-established Poisson log-likelihood method is the Expectation-Maximization al-
gorithm (EM) [194] which includes a positivity constraint on x and was first proposed
for emission tomography and then extended to transmission tomography [129].

Post-log Gaussian:

For a large intensity I, the Poisson distribution of mean and variance I is well ap-
proximated by the Gaussian distribution of the same mean and variance I [95]. The
two distributions differ because the probability of a "negative" intensity is 0 with the
Poisson distribution, while it is only asymptotically 0 with the Gaussian distribution.
This difference becomes large for low intensities. If intensity I follows a Gaussian distri-
bution of mean and variance I, the statistics of log(I) can be described by a Gaussian
distribution of mean log(I) and variance 1/I. However, there is also empirical evidence
that CT measurement of a low intensity I deviates significantly from Poisson statistics
because of the noise added by the readout electronics, to the point of making negative
measurements possible [158]. Even if a more complex statistical analysis can be con-
ducted to predict the variance of CT measurements at low intensity in the presence of
electronic noise [76, 147], the model is as efficiently built through variance measurement
on the imaging device.
With the above analysis, statistical modeling of noise in the log-transformed data is
possible using a weighted least square data fidelity term such that

(∀x ∈ RN ) d(x) =
1

2
∥Hx− y∥2Σ, (3.16)
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where ∥ · ∥Σ denotes the Σ-weighted norm for Σ ∈ S+
C , i.e., for every z ∈ RC , ∥z∥Σ =√

⟨z | Σz⟩. Σ contains the estimated standard deviations of the measurement and is
often chosen as a diagonal one (with values (1/Ic)

C
c=1) because CT measurements are

always assumed statistically independent.
When the X-ray tube current is high and the focus is on handling sub-sampling in the
acquisition, we can consider that the data is degraded by a low level of white Gaussian
noise, which translates into the choice

(∀x ∈ RN ) d(x) =
1

2
∥Hx− y∥2. (3.17)

The particularity of the Poisson model (3.15) over the Gaussian model (3.16) is that
mean and variance represents a single parameter so that the signal-to-noise ratio always
follows the square root of the parameter. Note that Σ in (3.16) is given a priori, it
is not estimated with x as in the Poisson case, and there is no embedded constraint of
uniform signal-to-noise ratio. The model is thus compatible with extremely noisy images.
Solutions of the Poisson models have more uniform noise distributions, which forbids local
high-intensity noise measurement to propagate through the entire image as happens with
AR. However, this also comes at a cost as the convergence of high frequencies with EM
is slow [84].

3.2.3 Modeling properties of the image

Regularization function(s) usually favor prior knowledge or expectations of the image’s
characteristics. Regularization is also useful to mitigate the problem of ill-posedness of
the reconstruction task.
In statistical terms, this is done through providing an a priori known distribution of
the possible solution maps, which, in a Bayesian framework, is the Maximum A Pos-
teriori (MAP) estimator, the penalty function h being the negative logarithm of the
prior. Common prior assume spatial correlation of the pixels of the image [241]. Suc-
cessful examples for diagnostic CT are Markov random field model-based priors (GMRF,
q-GMRF) [28, 207]. Additional box or positivity constraints can easily be embedded
in h. The interaction between the regularization and data fidelity terms is critical for
statistical reconstruction to ensure proper noise filtering. It gives a complex a priori
parameterization of the reconstruction problem that locally sets the balance between the
noise level and the spatial resolution to enable the diagnostic.
For sub-sampled acquisitions, h is often a combination of functions that sparsely rep-
resent x. Examples of sparsity-promoting functions are the total variation (TV) [187],
and its various improvements [38,67], and frame-based regularization [45]. Sparse priors
have seen a revival in popularity with the framework of Compressed Sensing [39, 78],
which offers means to recover sparse images from fewer projection angles. The goal is to
generate missing content in the nullspace of operator H according to the prior. Meth-
ods based on this framework have yielded impressive sampling compression factors for
recovering images that perfectly fit sparse priors. Their applicability is long observed in
MRI [104]. Dynamic MRI monitors dynamic processes such as brain hemodynamics and
cardiac motion. Dynamic MR images are highly compressible. For example, the quasi-
periodicity of heart images has a sparse temporal Fourier transform. Compressed sensing
then relies on this sparsity to reconstruct a time-varying volume of the patient’s heart.
However, in the spatial domain, sparse priors do not perfectly fit clinical images. Only
a biased estimation of these images can thus be obtained. For example, clinical images
are only approximately piecewise constant. So TV regularization yields an unwanted
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patchy look and an overall decrease in contrast resolution. Anatomical images are mixed
with geometric devices (needles) in our context. Exploiting the sparsity of the devices
is done by building the regularization on several priors applied to separate components
of the volume (device, anatomical background). In CT, most of the works is focused on
TV regularization [25, 117, 199]. TV methods built on Compressed Sensing consider a
constrained optimization problem that reads

minimize
x∈RN

∥Hx−y∥2⩽ϵ

∥∇x∥1,2, (3.18)

where ∇ ∈ RN×2N is the discrete 2D gradient operator and (∀z = (z1, z2) ∈ R2N ),
∥z∥1,2 =

∑N
n=1

√
(z1)2n + (z2)2n and ϵ = 0 in the noise-free case. Using the regularizing

term h = λ∥∇ · ∥1,2 and d as in (3.14), could sacrifice data fidelity for image regularity
compared to the constrained formulation (3.18). One should still note that there is some
equivalence between the regularized form (3.14) and a constrained version of it, in the
spirit of (3.18). For any ϵ strictly greater than zero, there is a small value λ such that
the constrained optimization problem is equivalent to the unconstrained problem.

In CBCT, the conic geometry and the detector’s limited frame rate and size lead to
an inherent lack of data. Even in the noise-free, densely sampled case, intense objects
are never well sampled in the Fourier domain, so sub-sampling is always part of the prob-
lem. The setup of low noise data but a limited number of projections is thus commonly
encountered in C-arm CBCT.

3.3 Optimization with fixed-point proximal algorithms

A closed-form solution to (3.14) is rarely available, so the solution is estimated itera-
tively. Proximal algorithms provide an iterative reconstruction (IR) of the volume as
the solution of (3.14). They rely on proximal mappings to compute solutions to non-
smooth optimization problems. At the core of the convergence analysis of most proximal
splitting methods is the interpretation of the system of first-order optimality conditions
associated with the optimization problem as an instance of a fixed-point problem and,
more precisely, of a monotone inclusion problem.
We now introduce the mathematical tools required for the proximal algorithms used in
this work. We present these methods in the general setting of optimization problems
over real Hilbert spaces. We denote by H, G, L some real Hilbert spaces, and B(H,G)
the set of bounded and linear operators from H to G. Most of our notations follow from
the reference book [16]. From this point forward, our focus will be on the following
regularized least-squares optimization problem

minimize
x∈RN

1

2
∥Hx− y∥2G + h(x), (3.19)

where we now assume that y ∈ G, H ∈ B(H,G), h : H 7→] − ∞,+∞] is convex but
non-differentiable. Let us define functions f : H 7→] −∞,+∞] and g : L 7→] −∞,+∞]
and operator D ∈ B(H,L) such that

h(x) = f(x) + g(Dx), (3.20)

so that (3.19) can be rewritten as

minimize
x∈RN

1

2
∥Hx− y∥2G + g(Dx) + f(x). (3.21)
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3.3.1 Mathematical analysis tools

The following definitions set up our framework for convex analysis and subdifferential
calculus.

Notions of convex optimization:

Definition 3.3.1.1 Let f : H 7→]−∞,+∞].

(i) The domain of f is the set defined by dom f = {x ∈ H | f(x) < +∞}.

(ii) The function f is proper if dom f is not empty.

(iii) The function f is convex if for every α ∈]0, 1[ the following holds,

(∀(x, y) ∈ dom f) f(αx+ (1− α)y) ⩽ αf(x) + (1− α)f(y). (3.22)

In addition, f is ρ-strongly convex function if f − ρ
2∥x∥

2
H is convex.

(iv) The function f is coercive if

lim
∥x∥H→+∞

f(x) = +∞. (3.23)

(v) The function f is lower semicontinuous (l.s.c) if, for every x0 ∈ H,

lim
x 7→x0

inf f(x) ⩾ f(x0). (3.24)

(vi) The conjugate of f is the function f∗ : H 7→ [−∞,+∞] defined by

(∀x ∈ H) f∗(x) = sup
y∈H

(⟨x | y⟩ − f(y)) . (3.25)

An important remark is that f is ρ-strongly convex if and only if its conjugate
f∗ is continuously differentiable with 1/ρ-Lipschitz gradient. Hence duality allows
trading strong convexity with smoothness.

(vii) The subdifferential of f at the point x is the set-valued operator

∂f : H 7→ 2H : x 7→ {v ∈ H : f(z) ⩾ f(x)+ v⊤(z−x) ∀z, x ∈ dom(z)}, (3.26)

where 2H denotes the power set of H.
Any such element is called a subgradient. If the function is differentiable, the
subdifferential is a singleton set comprising the ordinary gradient.

(viii) The function f is coercive if

lim
∥x∥H→+∞

f(x) = +∞ (3.27)

and supercoercive if

lim
∥x∥H→+∞

f(x)

∥x∥H
= +∞. (3.28)

(ix) The Moreau envelope of f is the function x 7→ fλ(x) = minu∈H f(u) + 1
2λ∥x− u∥2,

where λ > 0. It can be used to smooth a non-smooth convex function without
altering its minimizer. For example, the Moreau envelope of f(x) = |x| is the
Huber function from robust statistics.
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The class of functions which are proper, convex, lower-semicontinuous on H and take
values in R∪ {+∞} is denoted by Γ0(H). The following optimality property is the basis
of many optimization algorithms. For f ∈ Γ0(H),

x∗ = argmin
x∈H

f(x) ⇔ 0 ∈ ∂f(x∗). (3.29)

A solution to (3.21) is thus a solution to the following variational inclusion problem

0 ∈ ∂f(x) +D∗∂g(Dx) +H∗(Hx− y). (3.30)

Notions of operator theory:

Definition 3.3.1.2 Let M : H → 2H be a set-valued operator.

(i) domM = {x ∈ H | Mx ̸= ∅} is the domain of M, ranM and graM = {(x, y) ∈
H2 | y ∈ Mx}, its range and graph, respectively.

(ii) M−1 : H → 2H denotes the inverse operator of M, with domain ranM and range
domM, and M−1(0) = {x ∈ H | 0 ∈ Mx} the set of zeros of M.

(iii) M is monotone if

(∀(x, y) ∈ H2)(∀u ∈ Mx)(∀v ∈ My) ⟨u− v | x− y⟩H ⩾ 0. (3.31)

M is maximal monotone if, in addition, its graph is not properly contained in the
graph of any other monotone operator.

(iv) M is strictly monotone if

(∀(x, y) ∈ H2)(∀u ∈ Mx)(∀v ∈ My) x ̸= y ⇒ ⟨u− v | x− y⟩H > 0. (3.32)

(v) M is strongly monotone if there exists η ∈]0,+∞[ such that M−η Id is monotone.

(vi) The resolvent of a maximally monotone operator M scaled with a parameter γ > 0
is the mapping JγM : H → H : x 7→ JγM(x) = (IdH + γM)−1 x, where IdH refers
to the identity operator in H.

(vii) The Yosida approximation of M of index γ is

γM =
1

γ
(Id −JγM). (3.33)

A prominent example of a monotone operator is the subdifferential operator. The resol-
vent of (γ∂f) is a proximity operator proxγf and the Yosida approximation of ∂f is the
Fréchet derivative of the Moreau envelope; more precisely γ(∂f) = ∇(γf).

Definition 3.3.1.3 Let T : H → H be a single-valued operator

(i) A fixed point of T is any x∗ ∈ H satisfying x∗ = Tx∗.

(ii) T is η-cocoercive with η ∈ [0,+∞[ if

(∀x ∈ H)(∀y ∈ H) η∥Tx− Ty∥2H ⩽ ⟨x− y | Tx− Ty⟩H. (3.34)

For example, let f : H 7→ R be a differentiable convex function, whose gradient is
β-Lipschitz continuous, for some β > 0 then ∇f is 1

β -cocoercice.
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(iii) T is nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(∀(x, y) ∈ H2) ∥Tx− Ty∥H ⩽ ∥x− y∥H. (3.35)

T is α-averaged with α ∈]0, 1] if there exists a nonexpansive operator Q such that
T = (1− α) Id +αQ. Firmly nonexpansive means (1/2)-averaged.

Proximal algorithms aim at constructing α-averaged operators T , for some α ∈]0, 1[,
whose fixed points are solutions to optimization problems. They combine gradients and
proximity operators of functions and iterate through

zn+
1
2 = Tzn

zn+1 = zn + θn(z
n+ 1

2 − zn),
(3.36)

where z0 ∈ H and (θn)n∈N are nonnegative relaxation parameters.

Proximity operators:

Proximal algorithms handle non-smooth functions through their proximity operators.
The use of proximity operators can be viewed as a regularized and implicit way of dealing
with their set-valued subdifferentials.

Definition 3.3.1.4 If x ∈ H, the proximity operator of f at x is defined as [152]

proxf (x) = argmin
z∈H

(
f(z) +

1

2
∥x− z∥2H

)
. (3.37)

It is the point that attains the minimum of the Moreau envelope.

This definition can be extended to an Q-weighted space, where Q ∈ S+
N is self-adjoint

and positive-definite, as proxQf (x) = argmin
z∈H

f(z) + 1
2∥x− z∥2Q.

Proposition 3.3.1.5 • proxf (x) is related to ∂f through the following inclusion

p = proxf (x) ⇔ x− p ∈ ∂f(p). (3.38)

• proxf (x) is firmly non-expansive

∀x, u ∈ Rn ∥proxf (x)−proxf (u)∥H−∥(x−proxf (x))+(u−proxf (u))∥H ⩽ ∥x−u∥H.
(3.39)

• Moreau identity: x = proxλf (x)+λprox 1
λ
f∗(xλ) (λ > 0). It shows that the proximity

operator of a function f is as easy to compute as the proximity operator of its convex
conjugate.

• Evaluating the proximal operator can be viewed as a gradient-descent step for the
Moreau envelope, with λ as a step size parameter i.e.

∇fλ(·) =
1

λ
(Id −proxλf ). (3.40)
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• When f(x) = ιC(x) is the set indicator function of some convex set C, proxf (x) =
argmin

z∈C
∥x − z∥22 = projC(x) is the ordinary Euclidean projection of x onto C.

This suggests that, for other functions, the proximal operator can be thought of as
a generalized projection. A constrained optimization problem minimize

x∈C
f(x) has

an equivalent solution as an unconstrained proximal operator problem.

Although the definition of the proximity operator is implicit, it has a closed form
for many functions of practical interest. For instance, for the absolute value (and by
extension for the ℓ1 norm by element-wise application), this is soft-thresholding: we
have, for any λ > 0,

(∀t ∈ R) proxλ|·|(t) = sign(t)max(|t| − λ, 0). (3.41)

There are closed-form expressions for the proximity operators of a large class of functions
http://proximity-operator.net.

3.3.2 First order splitting schemes

Now that we have seen that finding a minimizer of a function was equivalent to finding
a zero of a monotone operator, we will focus on different operators T : Z 7→ Z in (3.36)
whose fixed points are designed to be the minimizer of (3.21). Considering (3.19) and
following the previous section, the resulting minimizer, denoted x̂, verifies the following
monotone inclusion

0 ∈ (A +B)x̂, (3.42)

where A = H∗(H · −y) and B = ∂h.
We now present two algorithms whose fixed point verify (3.42).

Forward-backward splitting:

The forward-backward algorithm assumes that A is a maximally monotone operator
and B is a cocoercive operator. This method provides a sequence obtained from the fixed
point iteration (3.36) of the nonexpansive operator

T = JγB ◦ (Id −γA ), (3.43)

where γ ∈ ]0,+∞[ is the algorithm step size.
Iterating (3.36) with (3.43) can be equivalently written under the implicit form

0 ∈ Azn+ 1
2
+Bzn +

1

γ
(zn+ 1

2
− zn), (3.44)

where z0 ∈ Z.
For problem (3.19) over Hilbert space H, it becomes

(∀n ∈ N) xn+1 = xn + θn
(
proxγh(xn − γH∗(Hxn − y))− xn

)
, (3.45)

where x0 ∈ H. This method is also called the proximal gradient algorithm (PGA).
Several special cases for regularization are of interest:

• when h ≡ 0, (3.45) becomes the gradient method.

• When h = ιC , (3.45) becomes the projected gradient method.
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• When h = ∥ · ∥1, (3.45) reduces to the well-known ISTA that was developed for the
purpose of wavelet-based signal restoration [21,70].

• When H = 0, (3.45) becomes the proximal point method. In addition, if h =∑I
i=1 ιCi , (3.45) is the Projection Onto Convex Sets (POCS) for finding a solution

in the intersection of convex sets [32, 234].

If θn ∈ [ϵ, 1] with ϵ ∈]0, 1[ and γ ∈]0, 2/||H||2H,G [, the sequence (xn)n∈N generated by
algorithm (3.45) converges weakly to a solution to Problem (3.19) when such a solution
exists [64]. Strong convergence is even achieved in some contexts [31, 63, 70]. Recent
results on overrelaxed versions of (3.45) can be found in [68] for special cases of gradient
operators. The flexibility introduced by an iteration-dependent step size can be used to
improve the algorithm convergence pattern.
In our general template, h is a composite function (3.20); proxγh(x) often has to be
computed iteratively by solving

minimize
z∈H

1

2
∥z − x∥2H + γ(f(z) + g(Dz)). (3.46)

The forward-backward splitting can also be applied to solve sub-problem (3.46) by con-
sidering its dual problem

minimize
u∈G

ϕ(−D∗u) + g∗(u), (3.47)

where ϕ = f∗□ 1
2∥ · ∥

2
H is the Moreau envelope of parameter 1 of f∗.

This yields the dual forward-backward algorithm (DFB)

zn+1 = proxσg∗(zn − σ∇(ϕ ◦ (−D∗·))(zn)), (3.48)

where σ ∈]0, 2/∥D∥2H,L[. Note that

∇(ϕ ◦ (−D∗·)) = −Dproxγf (−D∗·) (3.49)

Thus (3.48) becomes

zn = proxγf (x−D∗un)

un+1 = proxσg∗(un + σDzn). (3.50)

It can be shown that the sequences (zn)n∈N and (un)n∈N converge to the solutions to the
primal and dual problems ẑ and û, respectively and

ẑ = proxγf (D
∗û). (3.51)

Acceleration of the forward-backward:

Inertial extensions improve the theoretical convergence rate of the forward-backward
algorithm leading to the FISTA algorithm [42].
In an attempt to reach greater accelerations, several authors have explored precondition-
ing strategies [48, 156] to improve the conditioning of the gradient step [19, 27, 52, 62].
Let P be a self-adjoint strongly positive bounded linear operator on Z, an equivalent
problem is to multiply (3.42) by P−1. The preconditioned forward-backward iteration
to solve (3.42)-(3.19) is:

0 ∈ Azn+ 1
2
+Bzn + P (zn+ 1

2
− zn), (3.52)
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leading to
xn+1 = xn + θn

(
proxPγh(xn − γP−1H∗(Hxn − y))− xn

)
. (3.53)

Other authors [130, 155, 208, 209] have proposed improving the conditioning of the data
fidelity term using approximate inversion (see subsection 3.2.1), thus leading to a different
solution contrary to the case of preconditioning. When the reconstruction focuses on sub-
sampling, the precise statistical knowledge of the noise in the data is often disregarded,
and the choice of the unweighted least-squares data fidelity term in (3.21) is convenient
from a computational point of view. In this context, [130] proposed to replace 1

2∥Hx−y∥2G
by 1

2∥F
1/2(Hx − y)∥2G in (3.19), where F is the ramp filter of AR. Note that even for

applications other than tomography where a fast analytical inverse is unavailable, authors
have used the pseudo-inverse H† instead of F [208, 209]. [208] showed empirically that
better reconstruction results could be achieved with approximate inversion.
Approximate homotopy strategies have also been proposed to solve ℓ1-regularized least-
squares problems (3.19) (h = λ∥ · ∥1) [79, 159, 230]. The idea is to first solve (3.19)
with a large regularization parameter λ and then gradually decrease λ until the target
regularization is reached. For each fixed λ, the forward-backward algorithm is used to
solve the minimization problem up to an adequate precision. Then, the approximate
solution serves as the initial point for the next value of λ. This strategy was also used
for TV-regularized problems in [130], which reported superior empirical performance.

Tseng’s splitting:

Tseng’s Forward-Backward-Forward splitting relies on less restrictive assumptions on
operator B that is only assumed to be monotone and ϑ-lipschitz continuous for some
ϑ > 0 but not necessarily cocoercive. The method relies on the fixed point iteration
(3.36) of the operator

T = (Id −γB) ◦ JγA ◦ (Id −γB) + γB, (3.54)

with θn ≡ 1. For problem (3.19), it becomes

(∀n ∈ N)

vn = xn − γ∇f(xn)
pn = proxγh(vn)

qn = pn − γ∇f(pn)
xn+1 = xn − vn + qn.

(3.55)

According to [34, Theorem 2.5 (ii)], if zer(A +B) ̸= ∅ and γ ∈]0, 1/ϑ[, sequences (xn)n∈N
and (pn)n∈N converge weakly to some x̂ ∈ zer(A + B). Therefore, sequences (xn)n∈N
generated by (3.55) converge weakly to x̂, which is a solution to (3.19).

Note that other splittings, which do not exploit any Lipschitz assumptions for B, ex-
ist, such as the Douglas-Rachford splitting [29,96], but were not used in this thesis.
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3.3.3 Primal-dual methods defined on a product space

It is possible to avoid computing the proximity operator of h. This section shows how
the two aforementioned splitting techniques can be applied to an equivalent problem to
handle f and g separately and decouple D from g, yielding simpler iterations.
In general, a solution to (3.30) is a solution to (3.21), but the converse may not be true.
From now on, the solution set of (3.30) is supposed to be nonempty, and then so is the
solution set of (3.21). Under mild qualification constraints, the solutions to (3.21) and
(3.30) are the same. One of such qualification conditions is

0 ∈ sri (D(dom f)− dom g) . (3.56)

where sriC denotes the strong relative interior of C ⊂ H. We refer the reader to [16,
Proposition 27.5, Corollary 27.6] for other examples of qualification constraints.
A way to simplify the problem consists in introducing an auxiliary variable u ∈ ∂g(Dx),
called the dual variable so that the problem now consists in finding x and u such that{

u ∈ ∂g(Dx)
0 = D∗u+∇h(x)

(3.57)

So equivalently, the problem is to find a pair of objects z = (x, u) ∈ Z = H × L which
satisfies the following system of decoupled monotone inclusions(

0
0

)
∈
(

∂f(x) +D∗u+H∗Hx−H∗y
−Dx+ ∂g∗(u)

)
. (3.58)

This is also equivalent to {
Dx ∈ (∂g)−1(u)
x ∈ (∇q)−1(−D∗u)

(3.59)

where q : H → R : x 7→ 1
2∥y −Hx∥2G , which implies that

0 ∈ (∂g)−1u−D(∇q)−1(−D∗u). (3.60)

This is the first-order characterization of the dual problem of (3.21)

minimize
u∈G

(f + q)∗(−D∗u) + g∗(u), (3.61)

According to [16, Theorem 19.1], x is a solution to (3.21) and u is a solution to (3.61) if
z = (x, u) ∈ Z = H × L is a solution to (3.58). We now show several ways of splitting
(3.58) which lead to different proximal primal-dual algorithms.

Condat-Vũ algorithm:

The Condat-Vũ (CV) algorithm [66, 221] can be obtained from the preconditioned
forward-backward splitting (3.52) where

(∀z = (x, u) ∈ Z) Az =

(
∂f(x) +D∗u
−Dx+ ∂g∗(u)

)
(3.62)

Bz =

(
H∗Hx−H∗y

0

)
(3.63)

Pz =

(
1
τ x−D∗u
−Dx+ 1

σu

)
, (3.64)
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with (τ, σ) ∈]0,+∞[2. Operator A is maximally monotone [16, Proposition 26.32 (iii)]
and operator B is θ-cocoercive, with θ = 1/∥H∥2H,G . Let {Θn}n∈N be a sequence of
relaxation parameters. Let zn = (xn, un) ∈ Z, and zn+ 1

2
= (xn+ 1

2
, un+ 1

2
) ∈ Z. Plugging

P , A and B in (3.52) yields

CV iterations for solving (3.21):

for n = 0, 1, . . .


xn+ 1

2
= proxτf (xn − τ(H∗(Hxn − y) +D∗un))

un+ 1
2
= proxσg∗

(
un + σD(2xn+ 1

2
− xn)

)
xn+1 = xn +Θn(xn+ 1

2
− xn)

un+1 = un +Θn(un+ 1
2
− un),

(3.65)

with initialization x0 ∈ H and u0 ∈ L.
The convergence of (3.65) to a solution pair (x, u) to (3.58) is guaranteed by [66, Theorem

3.1] for step sizes τ > 0, σ > 0 such that τ

(
σ∥D∥2H,L +

1

2θ

)
< 1, and relaxation

parameters {Θn}n∈N ⊂ [0, δ], with δ = 2 − 1

2θ

(
1

τ
− σ∥D∥2H,L

)
and θ the cocoercivity

constant of operator B such that
∑
n∈N

Θn (δ −Θn) = +∞.

Remark 3.3.3.1 The condition on the step sizes (τ , σ) implies that τσ∥D∥2H,L < 1,
which allows us to conclude that operator P in (3.52) is strongly positive (bounded from
below) and therefore invertible.

Remark 3.3.3.2 We can observe that if we set the smooth term in (3.21) to 0 i.e.,
we remove the quadratic term 1

2∥Hx − y∥2G , the Condat–Vũ iteration reverts to the
Chambolle–Pock iteration [43] (PDHG). CV can be viewed as a generalization of PDHG,
taking into account the gradient of Lipschitz differentiable terms in the cost function.

Loris-Verhoeven algorithm:

We now present another forward-backward primal-dual algorithm proposed by Loris
and Verhoeven (LV) [143] that can be derived for a special case of f such that f =
κ
2∥ · ∥2H with κ ∈]0,+∞[. This algorithm also appears under the name of Primal-Dual
Fixed-Point algorithm based on the Proximity Operator (PDFP2O) [49] and Proximal
Alternating Predictor-Corrector (PAPC) algorithm [80].
The LV iterations can still be described by means of the implicit inclusion (3.52) where
A, B, and P are now given by

(∀z = (x, u) ∈ Z) Az =

(
D∗u

−Dx+ ∂g∗(u)

)
(3.66)

Bz =

(
(H∗H + κ IdH)x−H∗y

0

)
(3.67)

Pz =

(
1
τ x

( 1σ IdL−τD∗D)u

)
(3.68)
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with (τ, σ) ∈]0,+∞[2. The iterations of LV algorithm are then given by

LV iterations:

for n = 0, 1, . . .


tn = H∗ (Hxn − y) + κxn

un+ 1
2
= proxσg∗

(
un + σD

(
xn − τ(tn +D∗un)

))
xn+1 = xn −Θnτ

(
tn +D∗un+ 1

2

)
un+1 = un +Θn

(
un+ 1

2
− un

) (3.69)

where {Θn}n∈N is a sequence of relaxation parameters and (x0, u0) ∈ Z.
The Condat–Vũ algorithm and the Loris–Verhoeven algorithms are both primal-dual
forward-backward algorithms, but they are different. When f = 0, larger values of τ and
σ are allowed in the latter than in the former; this may benefit the convergence speed in
practice.

Combettes-Pesquet algorithm:

We now present the Combettes - Pesquet algorithm (CP), which relies on Tseng’s
splitting (3.54) to solve (3.21). This algorithm was introduced in [58, Theorem 4.2] and
generalizes the one in [34]. In (3.42), we can set

(∀z = (x, u) ∈ Z) Az =

(
∂f(x)
∂g∗(u)

)
(3.70)

Bz =

(
H∗Hx−H∗y +D∗u

−Dx

)
, (3.71)

where A is a maximally monotone operator (see [16, Theorem 26.32 (iii)]) and B is a
monotone operator which is Lipschitz continuous with constant ϑ ⩽ ∥H∥2H + ∥D∥H,L
(see [58]).
It reads

CP-iterations for (3.21):

for n = 0, 1, . . .



v1,n = xn − γ (H∗(Hxn − y) +D∗un)
p1,n = proxγf (v1,n)

v2,n = un + γDxn
p2,n = proxγg∗(v2,n)

q2,n = p2,n + γDp1,n
q1,n = p1,n − γ (H∗(Hp1,n − y) +D∗p2,n)
xn+1 = xn − v1,n + q1,n
un+1 = un − v2,n + q2,n,

(3.72)

where γ > 0 and (x0, u0) ∈ Z. If zer(M +Q) ̸= ∅ and γ ∈]0, 1/ϑ[, sequences (zn)n∈N =(
(xn, un)

)
n∈N and (pn)n∈N converge weakly to some ẑ = (x̂, û) ∈ zer(M +Q). Therefore,

sequences (xn)n∈N (resp. (un)n∈N) generated by (3.72) converge weakly to x̂ (resp. û),
which is a solution to (3.21) (resp. (3.61)).
These primal and primal-dual proximal schemes will appear throughout this thesis in
our numerical experiments and mathematical analysis. Other primal-dual algorithms
exist and can be deduced from the Douglas-Rachford iteration, such as the well-known
Alternating Direction Method of Multipliers (ADMM) algorithm.
We now discuss the practical limitations of model-based iterative reconstruction methods.
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3.4 Why do commercial CT scanners still employ
traditional, filtered back-projection over iterative
reconstruction? [164]

The authors of this 2009 paper stated that "the title poses a question meant to provoke
applied mathematicians and image-reconstruction experts to consider closer collabora-
tion with engineers who design tomographic systems and vice versa.". Since 2009, itera-
tive reconstruction has been introduced into all commercial scanners for dose reduction
through noise modeling and filtering only. No commercial C-arm systems offer an itera-
tive reconstruction solution. The question is thus still open given that, in the meantime,
fixed point proximal algorithms have reached image-reconstruction experts [197]. We
now explore contingencies that still block the introduction of iterative reconstruction
into clinical systems. They form the rationale for the rest of this manuscript.

3.4.1 Computation time

Model-based reconstruction offers a lot of flexibility to take into account different sources
of data degradation simultaneously. However, in the clinical practice of interventional
imaging, if an analytical reconstruction takes T seconds, performing n iterations of prox-
imal algorithms will take at least nT , which quickly becomes prohibitive. C-arm com-
mercial algorithms thus add simpler pre- and post-processing methods to tackle a few
sources of artifacts separately. For instance, dedicated beam hardening and scatter cor-
rections have been proposed [118,211]. Metal artifacts reduction (MAR) algorithms are
used to handle data degradation in the presence of metal [101]. Contrary to proximal
algorithms for model-based reconstruction, MAR algorithms are not implicitly defined;
they do not minimize any global criteria or solve a fixed point problem. A common point
with the homotopy strategy of [130] with TV-regularization is to segment the metal over
a previous reconstruction. However, with MAR, iterations are avoided by interpolating
the data.

3.4.2 Theoretical issues

Reconstruction experts have allowed changes in the system models that break the theo-
retical guarantees of proximal algorithms to reduce the computation time.

Mismatched projection pairs

In the continuous domain, backward projection or backprojection is the adjoint op-
eration of forward projection or projection. In the discrete domain, the expression pro-
jection/backprojection pair (FP/BP) refers to the choices made for the object basis and
the system model. If H is a projection matrix, H⊤ is a backprojection matrix. However,
one may find, for instance, that discretizing the continuous backprojector R⊤ directly as
B ̸= H⊤ is better suited to one’s needs. In that case, H and B are said to be unmatched.
There are two main categories of discretization strategies for deriving such operators; the
ones that use resampling transforms and those that adopt a geometric viewpoint. Geo-
metric models for FP are ray-summation methods [137,195] which model the volume as
a set of cubic voxels. They consider rays or strips connecting the X-ray source and the
detector bins according to the acquisition geometry and compute the intersection length
between each voxel and each ray/strip. Alternative resampling methods consider the
center of each voxel only. They project the center of each detector bin onto the volume

59



and perform separable interpolations with the volume samples. For example, the Joseph
method is such a method using linear interpolation. Resampling methods for FP also
virtually involve summing values on a ray drawn from the detector bin center to the
X-ray source. As such, these methods are often referred to as ray-driven methods. The
sampling of the values is constant for a given ray but varies between rays.
Discretization strategies designed for BP usually use resampling transforms, which are
now voxel-driven [88]: each voxel is visited in a loop and projected on the detector across
lines. A voxel’s contribution is split between two neighboring detector elements using
typically linear interpolation.
Ray-driven FP and voxel-driven BP are destination-driven, one endpoint of the rays or
lines being either a detector bin or a voxel center. An efficient FP does not necessarily
imply that the adjoint BP is also efficient and vice-versa. A precise and fast projector
uses the Joseph method with an increased number of samples in the volume. However,
the adjoint backprojector introduces interpolation redundancies in the volume domain
that must then be suppressed by the iterative reconstruction method. The presence of
redundancies has led to the development of a geometric approach equally suited for the
discretization of FP and BP [72, 138], which is, however, not easily adapted to GPUs.
Due to the difficulty to use adjoint FP and BP which are both fast, accurate, and easily
parallelizable, it has become very common in the CT community to work with unmatched
FP/BP pairs.

Non-symmetrical approximate inversion:

In subsection 3.3.2, we pointed out that the ramp filter could be used to improve the
conditioning of the data fidelity term, resulting in an acceleration of the forward-backward
algorithm. For parallel geometry, operator H‡H is symmetrical, but for cone-beam ge-
ometry, the voxel-wise weighting within FDK backprojection makes H‡H paradoxically
closer to the identity, inducing faster convergence, but formally not symmetrical as it is
the case for product BH. When H‡ is provided by an analytical algorithm, in addition
to faster convergence in early iterations [240], the reconstruction criterion does not differ
much from the proximal operator of the regularization. The behavior and parameteriza-
tion of the regularization become independent from model H and easily predictable [182].

Inadequate minimizer

In IR, the prior remains simple enough to design tractable proximal algorithms. Sim-
ple priors lead to an "unnatural look" of the images because they do not perfectly capture
real anatomies. For instance, the minimum of a TV criterion will be a piece-wise constant
image that clinicians do not trust. In [130], the regularization strength goes to zero in
the last step of the homotopy method. The final image is thus not the minimizer of the
criterion, but it is much better than FDK while keeping its preferred "look".
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3.4.3 Hyper-parameters

Model-based reconstruction involves one or several hyper-parameters that appear in the
regularization. These parameters are critical to image quality, yet they are difficult to
tune because they depend on both the patient and the clinical task. Specializing the prior
accordingly increases the number of parameters. There is no universal automatic metric
to set these parameters, so the reconstruction is empirically tuned per context. Bayesian
methods tune the parameters during the reconstruction by assigning them probability
distribution functions [223]. This is attractive but makes the objective function more
complicated, which entails more computational burden.

3.4.4 Deep learning pre-/post-processing

Since the publication of [164], deep learning methods combined with AR have shown
tremendous potential, resulting in rich literature surrounding this subject and making
the question raised in this section even more relevant.
Deep learning methods are fast and do not require manually defining prior or tun-
ing hyper-parameters at inference time. Multi-resolution convolutional neural networks
(CNN) now strongly challenge statistical iterative reconstruction methods for diagnostic
CT [22,201,228].
Recently, researchers also started investigating the benefits of deep learning for sub-
sampled acquisitions [4,222] especially to accelerate the reconstruction [86]. Most of the
proposed deep learning methods either restore, interpolate, or extrapolate the projections
before the application of H‡ [18,97,112,134], or post-process the result of H‡y [245] while
evidence that post-processing approaches achieve better performance than pre-processing
approaches were provided in [135]. The most popular multi-scale CNN used in the litera-
ture for image reconstruction is the U-Net [111,116], first proposed for biomedical image
segmentation [186]. Unlike in IR, it is difficult to incorporate prior knowledge about the
reconstructed images into a neural network, which in most cases is viewed as a black box.
The reliability of such methods can thus be questioned as theoretical foundations have
still to be developed. Notably, in [198], the authors suggest being cautious when using
popular post-processing CNNs as they demonstrate that such networks may not compute
the solution of the CT inverse problem even when it exists. They can introduce struc-
tures not belonging to the scanned objects in the reconstructions. Their performance is
highly dependent on the quality of the training data to properly learn both the artifacts
to remove and the anatomical details to preserve. This dependency is a challenge, espe-
cially for medical applications, where precise training data is often lacking. In contrast,
with IR, a general inverse problem framework for sparsity exploiting image reconstruc-
tion underpins the algorithm so that inverse problem results are testable and repeatable.
The observations of [198] thus suggest that IR is still a competitive alternative to deep
learning post-processing methods.
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3.5 Deep Learning reconstruction

We now review methods that integrate deep learning into the image reconstruction frame-
work as an entirely data-driven mapping from measured projections to images. Our
focus is on supervised learning approaches which rely on pairs of projections (yi)

I
i=1

and artifact-free images (xi)
I
i=1

1. One first attempt in using supervised learning for re-
construction is to directly estimate the mapping between the projection data and the
reconstructed image by minimizing the ℓ2 loss θ 7→ 1

2

∑I
i=1 ∥xi − fθ(yi)∥22 where fθ is

the function representing the parameterized network. Learning such a mapping using a
neural network, though not impossible, was shown to require a very large training set,
to be computationally expensive, and to rely heavily on good initialization of the model
parameters (e.g., AUTOMAP [246]). More successful approaches have been developed
by building on the previous AR or IR methods.

3.5.1 Learning in analytical reconstruction

The first approaches to using deep learning within reconstruction are built on AR meth-
ods [93, 114, 128, 168, 229]. Most of them focus on learning the reconstruction filter.
In [229], the authors note that AR can be encoded as a CNN in one-to-one correspon-
dence; H⊤H being of convolutional type, the ramp filter also acts as a convolution. This
representation allows the authors to learn joint correction steps in the volume and projec-
tion domains and improve Parker’s weighting for cone-beam limited-angle problems with
an angular range of 180°. In [168], the authors learn a non-linear combination of FBP
reconstruction operators. These non-linear combinations of the reconstruction filters in
the FBP reconstruction operators are learned by training against the outcome of the
reconstruction given by the TV regularization. The authors then extend this approach
for cone-beam geometry [128].

3.5.2 Extension of post-processing methods

A direct way to ensure data consistency is to combine a post-processing network such
as a U-net with data consistency layers. The resulting network is not necessarily a
feed-forward architecture [83,203].

3.5.3 Deep Unfolding

Deep unfolding (DU) translates a fixed number N of iterations of an iterative algorithm to
a neural network with an architecture adapted to that algorithm. For example, unrolling
the scheme defining T in (3.36) and stopping the iterates after N steps allow us to express
the N -th iterate as

TN
θ = (TωN ◦ · · · ◦ Tω1). (3.73)

TN
θ can be seen as a feed-forward neural network where each layer in the network evaluates

Tωn and the parameters of the network are θ = (ω1, · · · , ωN ). Moreover, if the parameters
are shared across layers, i.e. ω1 = · · · = ωN = ω for some ω, TN

θ can in fact be interpreted
as a recurrent neural network. The non-linear operations that may appear in TN

θ play
the role of an activation function (soft thresholding is very close to the well-known ReLU
activation function).

1Note that there are unsupervised approaches which either rely on unpaired data (adversarial regu-
larizers [145]) or can be trained only from images (xi)

I
i=1 (Compressed-Sensing generative models [113]).
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The corresponding architecture TN
θ is trained from end-to-end such that

θ̂ = argmin
θ

1

2

I∑
i=1

loss(xi, T
N
θ (xi)). (3.74)

Prior works have unrolled the gradient method [3, 47], PGA [11], ADMM [233], PDHG
[2, 224] and ISTA [106]. No clear consensus has emerged about which methods perform
best in general or even for specific problems. The only formal requirement is that each
iteration of the unrolled algorithm is almost everywhere differentiable.
The set of parameters θ in an unrolled iterative algorithm can be the algorithm’s hyper-
parameters, such as step sizes and regularization parameters. Learning only the algo-
rithm’s hyper-parameters [24] yields a network with very few parameters that remains
close to the original solver. One can also learn linear operators such as convolution
kernels that can be tied [106] or untied [177]. [36] also learns the backprojector in the
context of limited-angle CT. In [243], the authors replaced all linear operators in the
regularization in ISTA with non-linear operators moving further from the original algo-
rithm. Another choice is to learn proximity operators as it is done in ADMM-Net [233],
and Primal-Dual Networks (PD-Net) [2] where a neural network replaces each proxim-
ity operator in the sub-problems of PDHG. [108] replaced the projector in a projected
gradient descent method with a CNN. Another example of using unrolling is the work
of [99], which constructs a deep neural network by unrolling a truncated Neumann series
for the inverse of a linear operator. The closest architectures to IR benefit from their in-
terpretability. Other works focus on designing learned optimization solvers with a better
convergence rate than those achieved with IR [15]. When increasing the capacity of the
unrolled scheme, we also increase the expressivity of the network and allow for further
acceleration, potentially at the price of convergence guarantees.

3.5.4 Deep Equilibrium

Deep equilibrium models (DEQ) is a recent extension of DU to an arbitrary number of
iterations [13]. DEQ is an implicit network; it can be implemented by replacing TN

θ (xi)
in (3.74) by a fixed-point x∗i of a given operator Tθ, and using implicit differentiation for
updating the weights θ. Therefore, contrary to the approaches above, DEQ models do
not have prescribed explicit computation graphs. The benefit of DEQ over DU is that it
does not require the storage of the intermediate variables for solving (3.74); the algorithm
that drives the model to fulfill this equilibrium criterion is not prescribed. Therefore,
DEQ models can leverage black-box solvers in their forward passes and enjoy analytical
backward passes independent of the forward pass trajectories, thus reducing the mem-
ory complexity of training. However, the computation of the fixed-point x̂i can increase
the computational complexity for training. Rigorous optimization of DEQ models can
be challenging because they involve bi-level optimization. DEQ has been used for MRI
reconstruction [100] and multi-scale learning problems [14].

DU and DEQ are at the crossroads of classical deep learning architectures and fixed-
point algorithms and aim at enjoying the benefits of both approaches [10, 231]. When
seen as a modification of a fixed-point algorithm, they provide a framework to possi-
bly make current fixed-point algorithms evolve towards better adapting to clinical data
through a learned prior. When seen as a modification of deep learning architectures, they
offer a way to embed prior information about the data or the reconstructed image (the
most simple form of information being data consistency). DU and DEQ architectures
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typically have much fewer trainable parameters than black-box deep neural networks and
are more suitable for learning on relatively small data sets.

3.6 Conclusion

In the following chapters, we will propose ways to maintain the theoretical guarantees of
proximal methods when the "tricks" mentioned in subsection 3.4.2 are used in practice,
addressing all aspects of iterative reconstruction. Firstly, we will investigate the conver-
gence properties of some of the aforementioned proximal algorithms when unmatched
FP/BP are used. Secondly, we will propose alternative discretizations for H with new
competitive matched pairs; thirdly, a new regularization based on a sum of directional
TV terms will be shown to capture better the content of images in the context of percuta-
neous interventions. We will conclude with an alternative data fidelity term and explore
the benefits of DU for a task of ROI reconstruction with an expected fast convergence
thanks to an untied parameterization of the learned parameters across layers.
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4 | Convergence of the proximal
gradient algorithm with an
adjoint mismatch

4.1 Introduction

As outlined in Chapter 3 (section 3.4), unmatched FP/BP pairs are frequently used in CT
reconstruction. The motivation is often to obtain an estimate of the patient’s attenuation
to X-rays more rapidly (by improving the conditioning [240], reducing the computational
complexity per iteration [88]) or to improve the quality of the reconstruction [238]. How-
ever, unmatched pairs lead to an adjoint mismatch on the forward operator H. With
an adjoint mismatch, the convergence guarantees of classical minimization algorithms no
longer hold; errors might accumulate over iterations [9,238]. Hence, existing results and
schemes must be adapted to these situations.
The effect of an adjoint mismatch has first been studied for CT in the context of row-
action algebraic algorithms based on POCS. The convergence of these schemes was ana-
lyzed with tools from linear algebra. Among them, [77,81,139,240] gave convergence con-
ditions and focused on fixing the convergence of these schemes [77]. In contrast, [161,196]
proposed to use more general optimization schemes that can directly deal with non-
symmetric normal fixed-point equations. Studying the impact of adjoint mismatch also
finds application in deep learning. Very recently, Bubba et al. have proposed a CNN-
based reconstruction algorithm ΦDONet in [36] where the BP operator is replaced with
a partially learned operator in an unrolled ISTA architecture to improve backprojection
for limited-angle acquisitions. They considered an ℓ1 penalization applied to the wavelets
coefficients of the object. By exploiting some conditions on H, ΦDONet was presented
as a perturbed version of ISTA. Adopting a probabilistic approach, the authors establish
the convergence in mean of the output of their optimally trained network with respect
to the ground truth in finite dimensions. Though targeted to a specific application, their
approach could be extended to any convolutional forward operator H, which is a pseudo-
differential or a Fourier integral operator.
As mentionned in Chapter 3, PGA is an algorithm that involves non-smooth operators
for solving the penalized least-squares problems arising in CT reconstruction. It is very
popular because of its simplicity and ability to handle general non-differentiable convex
priors. In this chapter, we extend the stability analysis proposed in [77] to PGA in the
presence of adjoint mismatch in an arbitrary Hilbert space.
This chapter is organized as follows: section 4.2 introduces the mismatched PGA itera-
tion. Section 4.3 gives necessary conditions to preserve the convergence of this iteration
and gives a bound on the discrepancy induced by the mismatch between the resulting
fixed point and the minimizer of the original objective function. Examples of linear
inverse problems with sparsity constraints arising from computed tomography are dis-
cussed in section 4.4. Then, we show in section 4.5 how our theoretical results can be
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exploited to study an unmatched preconditioning approach where two different metrics
are used in the gradient step and the proximity step of PGA. Associated examples are
provided in section 4.6.

4.2 Mismatched PGA

We denote by H, G some real Hilbert spaces. We suppose that our FP, H, belongs to
B(H,G) and that the data y and the attenuation map x evolve respectively in G and H.
In this chapter, we consider the following penalized least squares criterion for finding an
estimate of x:

minimize
x∈H

1

2
∥y −Hx∥2G + g(x) +

κ

2
∥x∥2H, (4.1)

where g ∈ Γ0(H) is a suitable possibly non-smooth regularization function and κ ∈
[0,+∞[. Note that, when κ > 0, an elastic net-like penalization is introduced and the
objective function in (4.1) is thus strongly convex [248].
PGA applied on (4.1) reads, for every n ∈ N,

xn+1 = xn + θn
(
proxγg((1− γκ)xn − γH∗(Hxn − y))− xn

)
, (4.2)

where x0 ∈ H is the initial estimate, (θn)n∈N are nonnegative relaxation parameters, and
γ ∈ ]0,+∞[ is the algorithm step size.
If θn ∈ [ϵ, 1] with ϵ ∈]0, 1[ and γ ∈]0, 2/(||H||2H,G + κ)[, the sequence (xn)n∈N generated
by Algorithm (4.2) converges weakly to a solution to Problem (4.1) when such a solution
exists [63, 64, 70]. Without loss of generality, the step size is hereinafter assumed to be
constant 1.
In the context of an adjoint mismatch, operator H∗ is purposefully replaced by surrogate
operators (Kn)n∈N, iteration (4.2) thus becoming:
For every n ∈ N,

xn+1 = xn + θn
(
proxγg((1− γκ)xn − γKn(Hxn − y))− xn

)
. (4.3)

We now list our assumptions to analyze iteration (4.3).

Assumption 4.2.0.1

(i) g ∈ Γ0(H)

(ii) For every n ∈ N, Kn ∈ B(G,H)

(iii) There exist K ∈ B(G,H) and {ωn}n∈N ⊂ ]0,+∞[ with
∑

n∈N ωn < +∞ such that

KH ̸= 0 (4.4)

(∀n ∈ N) ∥Kn −K∥G,H ⩽ ωn. (4.5)

The last assumption covers two scenarios of particular interest:

• When K = H∗, we get a sequence of operators (Kn)n∈N providing asymptotically
the adjoint of H.

• When, for every n ∈ N, ωn = 0, a constant difference K −H∗ is introduced on the
adjoint.

1Extending our analysis to varying step sizes is straightforward.
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In the context of convergence analysis of fixed point iterations [61] of the modified PGA
Algorithm (4.3), the following notation is central.

Notation 4.2.0.2 Let γ ∈ ]0,+∞[. We define

L = KH + κ Id (4.6)

Tγ : H → H
x 7→ proxγg(x− γLx+ γKy)

(4.7)

λmin = inf
x∈H

∥x∥H=1

⟨x | Lx⟩H (4.8)

λ+
min = inf

x∈(KerL)⊥
∥x∥H=1

⟨x | Lx⟩H (4.9)

λmax = sup
x∈H

∥x∥H=1

⟨x | Lx⟩H (4.10)

β =
1

2
∥L− L∗∥H,H. (4.11)

Note that λmin (resp. λmax) is the minimum (resp. maximum) spectral value of (L+L∗)/2
and that λ+

min ⩾ λmin.
We now show that the convergence of Algorithm (4.3) is guaranteed under cocoercivity
conditions on operator L.

4.3 Convergence analysis

4.3.1 Regularity of the surrogate gradient operator

When K ̸= H∗, the gradient of the smooth part of our objective function is replaced by
operator κ Id +K(H ·−y), which is not guaranteed to be a cocoercive operator. We now
propose conditions preserving this property. First, we prove certain properties induced
by the cocoercivity of operator L.

Lemma 4.3.1.1 Let η ∈ ]0,+∞[. If L is η-cocoercive, then the following hold:

(i) λmin ⩾ 0

(ii) Ker (L+ L∗) = KerL = KerL∗

(iii) L+ L∗ ̸= 0.

Proof: L is η-cocoercive if and only if, for every x ∈ H,

⟨x | Lx⟩H ⩾ η∥Lx∥2H. (4.12)

(i): The fact that λmin ⩾ 0 directly follows from (4.12).
(ii): If x ∈ KerL, then

⟨x | Lx⟩H = 0

⇔ ⟨x | (L+ L∗)x⟩H = 0 (4.13)
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According to (i), L+L∗ is self-adjoint positive. It thus admits a self adjoint square root
(L+ L∗)1/2 and (4.13) is equivalent to

∥(L+ L∗)1/2x∥2H = 0 ⇔ (L+ L∗)1/2x = 0, (4.14)

which yields (L + L∗)x = 0. We have thus proved that KerL ⊂ Ker (L + L∗). By
reexpressing (4.12),

(∀x ∈ H)
1

2
⟨x | (L+ L∗)x⟩H ⩾ η∥Lx∥2H. (4.15)

Consequently, if x ∈ Ker (L + L∗), then x ∈ KerL. In summary, Ker (L + L∗) = KerL.
By symmetry, Ker (L+ L∗) = KerL∗

(iii): L+L∗ = 0 if and only if Ker (L+L∗) = H which, according to (ii), would imply
that KerL = H, that is L = 0. This contradicts our assumption in (4.4).

Whenever cocoercivity is present, we show that the behavior of iterative scheme (4.3)
remains stable. Conditions for cocoercivity are summarized below.

Proposition 4.3.1.2

(i) Assume that λmin ⩾ 0.
If λ+

min ∈ ]0,+∞[ and Ker (L+ L∗) = KerL, then L is η-cocoercive with

η = 1/
(√

λmax +
β√
λ+
min

)2
. (4.16)

If β = 0, then L is (1/λmax)-cocoercive.

(ii) Suppose that ran (L+ L∗) is closed. L is η-cocoercive with η ∈]0,+∞[ if and only
if λmin ⩾ 0, Ker (L+ L∗) = KerL, and

η ⩽ η =
2

∥(Id +(L− L∗)(L+ L∗)†)(L+ L∗)1/2∥2H,H
. (4.17)

Proof: (i): Let A and B be the self-adjoint and skewed parts of L, respectively given by

A =
L+ L∗

2
(4.18)

B =
L− L∗

2
. (4.19)

Assume first that V = KerA = KerL = KerL∗. Let x ∈ H and let xV ⊥ denote its
projection onto the orthogonal complement of V . We have

∥Lx∥2H = ∥LxV ⊥∥2H
⩽ (∥AxV ⊥∥H + ∥BxV ⊥∥H)2. (4.20)

Since λmin ⩾ 0, A is a positive operator and we have then

∥AxV ⊥∥2H ⩽ ∥A∥H,H⟨xV ⊥ | AxV ⊥⟩H = λmax⟨xV ⊥ | AxV ⊥⟩H. (4.21)

In turn,
∥BxV ⊥∥H ⩽ β∥xV ⊥∥H. (4.22)
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and
⟨xV ⊥ | AxV ⊥⟩H ⩾ λ+

min∥xV ⊥∥2H. (4.23)

Then, if λ+
min > 0,

∥BxV ⊥∥2H ⩽
β2

λ+
min

⟨xV ⊥ | AxV ⊥⟩H (4.24)

Altogether (4.20), (4.21) and (4.24) yield

∥Lx∥2H ⩽
1

η
⟨xV ⊥ | AxV ⊥⟩H =

1

η
⟨x | Ax⟩H =

1

η
⟨x | Lx⟩H, (4.25)

where η is given by (4.16). This shows that L is η-cocoercive.
If β = 0, then L = A and the result follows from the inequality

∥Ax∥2H ⩽ λmax⟨x | Ax⟩H. (4.26)

(ii): According to Lemma 4.3.1.1, if L is cocoercive then λmin ⩾ 0 and Ker (L+L∗) =
KerL. To establish the result, we thus assume that these two conditions are satisfied
and prove that L is cocoercive if and only if (4.17) holds.
Let us use the same notation as in the proof of (i). Since V = KerA = KerL, L is
η-cocoercive with η ∈]0,+∞[ if and only if

(∀x ∈ V ⊥) η∥Lx∥2H ⩽ ⟨x | Ax⟩H. (4.27)

Let x ∈ V ⊥ and let y = Ax. Since ranA is closed, this is equivalent to x = A†y. We
have then

∥Lx∥2H = ∥Ax+Bx∥2H
= ∥Ax+BA†y∥2H
= ∥(Id +BA†)Ax∥2H
⩽ ∥(Id +BA†)A1/2∥2H,H∥A1/2x∥2H
= ∥(Id +BA†)A1/2∥2H,H ⟨x | Ax⟩H. (4.28)

Note that ∥(Id +BA†)A1/2∥H,H ̸= 0 (since L is nonzero). We have thus shown that L
is cocoercive with constant 1/∥(Id +BA†)A1/2∥2H,H = η, hence for any constant η > 0
satisfying (4.17).
In addition, the maximum cocoercivity constant ηmax is such that

1

ηmax
= sup

v∈V ⊥\{0}

∥Lx∥2H
⟨x | Ax⟩H

= sup
v∈V ⊥\{0}

∥(Id +BA†)Ax∥2H
∥A1/2x∥2H

. (4.29)

On the other hand,

∥(Id +BA†)A1/2∥2H,H = sup
z∈H\{0}

∥(Id +BA†)A1/2z∥2H
∥z∥2H

. (4.30)

Every z ∈ H can be decomposed as zV + zV ⊥ , where (zV , zV ⊥) ∈ V × V ⊥. Since A is
self-adjoint positive, V = KerA1/2 = KerA. We can thus reexpress (4.30) as

∥(Id +BA†)A1/2∥H,H = sup
z∈H\{0}

∥(Id +BA†)A1/2zV ⊥∥2H
∥zV ∥2H + ∥zV ⊥∥2H

= sup
z
V ⊥∈V ⊥\{0}

∥(Id +BA†)A1/2zV ⊥∥2H
∥zV ⊥∥2H

. (4.31)
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We know however that V ⊥ = (KerA1/2 )⊥ = ran
(
(A1/2 )∗

)
= ran (A1/2 ). The expres-

sions in (4.29) and (4.31) are thus equal.

Remark 4.3.1.3 When β ̸= 0, (4.16) suggests that η is higher when the nonzero spec-
tral values of (L+ L∗)/2 are clustered together.

The following special cases are worth being mentioned.

Corollary 4.3.1.4

(i) If λmin > 0, then L is cocoercive with constant

η =
2

∥(Id +(L− L∗)(L+ L∗)−1)(L+ L∗)1/2∥2H,H

⩾ 1/
(√

λmax +
β√
λmin

)2
. (4.32)

(ii) Assume that H is finite dimensional and λmin ⩾ 0. If the dimensions of KerL and
Ker (L+ L∗) are equal, then L is cocoercive with constant η ⩾ η where η and η are
given by (4.16) and (4.17), respectively.

Proof:

(i) If λmin > 0, then L+L∗ is strongly positive. It is thus invertible, ran (L+L∗) = H
is closed, and Ker (L + L∗) = {0}. In the proof of Proposition 4.3.1.2(ii), we have
seen that KerL ⊂ Ker (L + L∗). Therefore, Ker (L + L∗) and KerL reduce to the
null space and, according to Proposition 4.3.1.2(ii), L is η-cocoercive.
In addition, in this case, λ+

min = λmin, it then follows from Proposition 4.3.1.2(i)
and the fact that η is the maximum cocoercivity constant of L that the lower bound
in (4.32) holds.

(ii) We have seen that λmin ⩾ 0 implies that KerL ⊂ Ker (L+L∗). Therefore, KerL is
equal to Ker (L + L∗) if and only if the dimensions of KerL and Ker (L + L∗) are
equal. In addition, ran (L + L∗) is closed and λ+

min is necessarily positive when H
is finite-dimensional. The result then follows from Proposition 4.3.1.2.

Remark 4.3.1.5 Let λ̃min be the minimum spectral value of (KH+H∗K
∗
)/2. We have

λmin = λ̃min + κ. A practical choice for κ to ensure that λmin is positive is thus to set
κ > −λ̃min.

To ensure the convergence of (4.3), it is straightforward to rely upon conditions based
on the nonexpansiveness of Id −γL. We next show that such conditions are directly
related to the cocoercivity of L.

Proposition 4.3.1.6 If L is η-cocoercive with η ∈ ]0,+∞[ and γ ⩽ 2η, then

∥ Id −γL∥2H,H ⩽ 1 + γ
(γ
η
− 2
)
λmin ⩽ 1. (4.33)

Conversely, if ∥ Id −γL∥H,H ⩽ 1 for some γ ∈ ]0,+∞[, then L is η-cocoercive for every
η ∈]0, γ/2].
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Proof: For every x ∈ H,

∥(Id −γL)x∥2H = ∥x∥2H − 2γ⟨x | Lx⟩H + γ2∥Lx∥2H. (4.34)

Because of (4.12)

∥(Id −γL)x∥2H ⩽ ∥x∥2H − 2γ⟨x | Lx⟩H +
γ2

η
⟨x | Lx⟩H. (4.35)

Therefore, since γ ⩽ 2η,

∥ Id −γL∥2H,H ⩽ 1 + γ
(γ
η
− 2
)
λmin. (4.36)

According to Proposition 4.3.1.2(i), λmin ⩾ 0 and the obtained upper bound is thus less
than or equal to 1.
Conversely, if Id −γL is nonexpansive, then

(∀x ∈ H) ∥x− γLx∥2H ⩽ ∥x∥2H (4.37)

The cocoercivity of L thus straightforwardly follows from (4.34).

4.3.2 Characterization of the fixed points of the mismatched iteration

We now characterize the existence and uniqueness of the fixed point set of operator Tγ .
Such a fixed point generally no longer coincides with the global solution to (4.1).

Proposition 4.3.2.1

(i) Let γ ∈ ]0,+∞[ and let x̃ ∈ H. We have x̃ ∈ FixTγ if and only if x̃ belongs to

F =
{
x ∈ H

∣∣ 0 ∈ Lx−Ky + ∂g(x)
}
. (4.38)

In addition, F is non empty if L+ ∂g is surjective.

(ii) If λmin ⩾ 0, then F is a closed and convex set.

(iii) F has at most one element if one of the following conditions holds:

(a) L+ ∂g is strictly monotone;

(b) L+ L∗ is positive definite;

(c) λmin ⩾ 0 and g is strictly convex.

In addition, F is a singleton if λmin ⩾ 0 and one of the following conditions holds:

(d) L+ ∂g is strongly monotone;

(e) λmin ̸= 0;

(f) g is strongly convex.

(iv) Assume that L is cocoercive. F is nonempty if one of the following conditions
holds:

(a) dom ∂g = H and (L+ L∗)/2 + ∂g is surjective;
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(b) dom ∂g = H and

x 7→ 1

2
⟨x | Lx⟩H + g(x) (4.39)

is coercive;

(c) g is supercoercive;

(d) dom g is bounded.

Proof: (i): We have

x̃ ∈ FixTγ ⇔ x̃ = proxγg((1− γκ)x̃− γK(Hx̃− y))

⇔ (1− γκ)x̃− γK(Hx̃− y) ∈ (Id +γ∂g)(x̃)

⇔ x̃ ∈ F . (4.40)

Under the considered surjectivity condition, there straightforwardly exists x̃ ∈ H for
which (4.38) holds.

(ii): If λmin ⩾ 0, then L is monotone. Since it is continuous, it is maximally monotone,
and x 7→ Lx − Ky is also maximally monotone. As the domain of this operator is H
and ∂g is maximally monotone, x 7→ Lx−Ky + ∂g(x) is maximally monotone. It then
follows from [16, Proposition 23.39] that F is closed and convex.

(iii)(a): This follows from [16, Proposition 23.35].
(iii)(b): If L+ L∗ is positive definite then, for every x ∈ H \ {0},

⟨x | Lx⟩H =
1

2
⟨x | (L+ L∗)x⟩H > 0, (4.41)

which shows that L is strictly monotone. Since ∂g is monotone, we deduce that L+∂g is
strictly monotone, and (iii)(a) allows us to conclude that Tγ has at most one fixed point.

(iii)(c): According to [16, Example 22.4(ii)], if g is strictly convex, then ∂g is strictly
monotone. λmin ⩾ 0 if and only if L is monotone. L + ∂g is then strictly monotone.
Thus the result still follows from (iii)(a).

(iii)(d): If λmin ⩾ 0, because of the monotonicity and the continuity of L, L + ∂g is
maximally monotone. The result then follows from [16, Proposition 23.37].

(iii)(e): For every x ∈ H,

⟨x | Lx⟩H ⩾ λmin∥x∥2H, (4.42)

which shows that L is strongly monotone. We deduce that L+ ∂g is strongly monotone,
and (iii)(d) allows us to conclude that F is a singleton.

(iii)(f): According to [16, Example 22.4(iv)], if g is strongly convex, then ∂g is strongly
monotone. Since L is monotone, L+∂g is strongly monotone and the result follows from
(iii)(d).

(iv)(a): Let A and B be defined by (4.18) and (4.19), respectively. We have thus

L+ ∂g = A+ ∂g +B. (4.43)

According to Proposition 4.3.1.2,

λmin = inf
x∈H ∥x∥H=1

⟨x | Lx⟩H = inf
x∈H ∥x∥H=1

⟨x | Ax⟩H ⩾ 0, (4.44)

which implies that A is maximally monotone. As ∂g is maximally monotone and domA =
H, A + ∂g is maximally monotone. Since B is a skewed continuous linear operator, it
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is also maximally monotone and A + ∂g + B is maximally monotone. According to
Lemma 4.3.1.1(iii), A ̸= 0 and, since it is self-adjoint, it is 1/∥A∥H,H-cocoercive. It then
follows from [16, Proposition 25.16] that A is 3∗ monotone. According to [16, Example
2.13], ∂g is 3∗ monotone. By invoking [16, Proposition 25.22], A+∂g is thus 3∗ monotone.
Since domB = H = dom (A + ∂g), it can be deduced from the Brézis-Haraux theorem
(see [16, Corollary 25.27(ii)]) that A+ ∂g +B is surjective.

(iv)(b): The function defined by (4.39) also reads

h : x 7→ 1

2
⟨x | Ax⟩H + g(x). (4.45)

We have seen that A is self-adjoint and monotone (i.e. positive semi-definite and self-
adjoint). Let z ∈ H. Minimizing

x 7→ h(x)− ⟨x | z⟩H (4.46)

is thus a convex optimization problem. A classical necessary condition for this problem
to admit a solution is that h is coercive. In turn, if x is a solution to the optimization
problem (4.45), it follows from Fermat’s rule that

z ∈ ∂h(x) = Ax+ ∂g(x). (4.47)

Since z can be chosen arbitrarily, this shows that A + ∂g is surjective. The fact that
F ̸= ∅ then follows from (iv)(a).

(iv)(c)-(iv)(d): Let γ ∈]0, 2η] where η is the cocoercivity constant of L and let
W = Id −γL. According to Proposition 4.3.1.6, ∥W∥H,H ⩽ 1 and Id −W = γL is
monotone. In addition, dom g∗ = H if and only if g is supercoercive [16, Proposition
14.15]. The results then follow from [60, Proposition 4.3(vi)(d)].

By design, (4.38) shows that any fixed point of Tγ is a solution to an equilibrium in-
stead of being defined from some optimality condition. In the context of Remark 4.3.1.5,
the existence of a unique fixed point x̃ for Tγ follows from the above result.

4.3.3 Convergence conditions and error bound

The fixed point of Tγ can be viewed as an approximation to the minimizer of Problem
(4.1) whose error is bounded in the following theorem.

Theorem 4.3.3.1 Assume that the following hold.

(i) L is cocoercive.

(ii) Let ν ∈ [0,+∞[ be the strong convexity modulus of g. Either ν > 0 or λmin ̸= 0.

(iii) x̂ is a solution to the minimization Problem (4.1).

Then there exists a unique solution x̃ to (4.38) and the following upper bound on the
error incurred by the mismatch holds:

∥x̃− x̂∥H ⩽ χ ∥(H∗ −K)(Hx̂− y)∥H, (4.48)

where
χ = inf

γ∈]0,2η[

γ

1 + γν − ∥ Id −γL∥H,H
⩽

1

ν + 2λmin
. (4.49)
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Proof: According to Proposition 4.3.1.2(i), λmin ⩾ 0.
If λmin > 0, according to Proposition 4.3.2.1(iii)(e), (4.38) has a unique solution x̃.
If λmin = 0, then ν > 0, which means that g is ν-strongly convex. It then follows from
Proposition 4.3.2.1(iii)(f) that (4.38) has a unique solution x̃.
Let γ ∈ ]0,+∞[. According to Proposition 4.3.2.1(i), x̃ ∈ FixTγ , that is

x̃ = proxγg((1− γκ)x̃− γK(Hx̃− y)), (4.50)

and we also know that

x̂ = proxγg((1− γκ)x̂− γH∗(Hx̂− y)). (4.51)

We can write g = h+ ν/2∥ · ∥2H where h ∈ Γ0(H), which implies that

(∀x ∈ H) proxγg(x) = prox γ
1+γν

h

( x

1 + γν

)
. (4.52)

As prox γ
1+γν

h is nonexpansive, we deduce that

∥x̃− x̂∥H ⩽
1

1 + γν
∥(1− γκ)x̃− γK(Hx̃− y)− (1− γκ)x̂+ γH∗(Hx̂− y)∥H

=
1

1 + γν
∥(Id −γL)(x̃− x̂) + γ(H∗ −K)(Hx̂− y)∥H

⩽ τγ∥x̃− x̂∥H +
γ

1 + γν
∥(H∗ −K)(Hx̂− y)∥H (4.53)

with
τγ =

∥ Id −γL∥H,H
1 + γν

. (4.54)

In addition, according to Proposition 4.3.1.6, when γ ⩽ 2η,

∥ Id −γL∥H,H ⩽ 1. (4.55)

This ensures that τγ < 1, when ν > 0.
Assume now that λmin > 0. If γ < 2η, (4.33) yields

∥ Id −γL∥H,H < 1, (4.56)

which also guarantees that τγ < 1.
In summary, if γ < 2η, it can be deduced from (4.53) that

∥x̃− x̂∥H ⩽
γ

(1− τγ)(1 + γν)
∥(H∗ −K)(Hx̂− y)∥H, (4.57)

which leads to (4.48). In addition, according to (4.54) and (4.33),

(1− τγ)(1 + γν) ⩾ γ

(
ν +

(
2− γ

η

)
λmin

)
> 0. (4.58)

By noticing that
sup

γ∈]0,2η[
ν +

(
2− γ

η

)
λmin = ν + 2λmin, (4.59)

the upper bound on χ is obtained.
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Remark 4.3.3.2

(i) Under the assumptions of the above proposition, we deduce from (4.48) that

∥x̃− x̂∥H ⩽ χ ∥H∗ −K∥G,H∥Hx̂− y∥H. (4.60)

This upper bound indicates that the error depends on the data error (accounting
for noise and modeling errors) and the norm of the mismatch on the adjoint.

(ii) In addition, the parameter χ depends on the strong convexity modulus ν and on
the quadratic regularization parameter κ. Indeed, the larger κ, the larger λmin.
The upper bound in (4.49) shows that increasing ν or κ allows us to decrease the
distance to the true minimizer x̂. At the same time, these parameters control the
regularization term in (4.1) so that large values of them can introduce a bias in the
recovery of the true signal. One should therefore seek values of these parameters
balancing these two effects.

Remark 4.3.3.3 It follows from [77, Theorem 3.3] that, when g = 0 and H∗H + κ Id
is invertible,

∥x̃− x̂∥H ⩽
1

κ
∥(H∗ −K)(Hx̂− y)∥H + o(∥H∗ −K∥G,H). (4.61)

This bound is less tight than the one in (4.48)-(4.49) if 2λmin > κ ⇔ κ > −2λ̃min, where
λ̃min is the minimum spectral value of (KH +H∗K

∗
)/2.

We present a first result concerning the averageness properties of Tγ with γ ∈ ]0,+∞[.

Lemma 4.3.3.4 Let η ∈ ]0,+∞[, let γ ∈]0, 2η[, let

α =
1

2− γ/(2η)
∈
]1
2
, 1
[
, (4.62)

and let W = Id −γL. The following properties hold.

L is η-cocoercive (4.63)

⇔ W is γ/(2η)-averaged (4.64)

⇒ (∀x ∈ H) ∥Wx− 2(1− α)x∥H + ∥Wx∥H ⩽ 2α∥x∥H (4.65)
⇒ Tγ is α-averaged. (4.66)

Proof: If γ < 2η and L is η-cocoercive, then the first equivalence holds [16, Proposition
4.39].
Let us now show that (4.64) implies (4.65). Set α = γ/(2η). Since W is α-averaged,
there exists a nonexpansive operator Q : H → H such that W = (1 − α) Id +αQ. We
have then, for every x ∈ H,

∥Wx− 2(1− α)x∥H + ∥Wx∥H
= ∥(1− α)x+ αQx− 2(1− (2− α)−1)x∥H + ∥(1− α)x+ αQx∥H

= α∥Qx− (1− α)(2− α)−1x∥H + ∥(1− α)x+ αQx∥H

= α

√
∥Qx∥2H +

(1− α

2− α

)2
∥x∥2H − 2

1− α

2− α
⟨x | Qx⟩H

+
√
α2∥Qx∥2H + (1− α)2∥x∥2H + 2α(1− α)⟨x | Qx⟩H

⩽ φ(θ)∥x∥H, (4.67)
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where

φ(θ) = α

√
1 +

(1− α

2− α

)2
− 2

1− α

2− α
θ +

√
α2 + (1− α)2 + 2α(1− α)θ.

In the last inequality, we have set ⟨x | Qx⟩H = θ∥x∥H∥Qx∥H and used the nonexpan-
siveness of Q. Let us now study function φ on [−1, 1]. The derivative φ′ of this function
is such that

α−1(1− α)−1φ′(θ) =
1√

α2 + (1− α)2 + 2α(1− α)θ
− 1√

(2− α)2 + (1− α)2 − 2(1− α)(2− α)θ
.

Therefore, φ′(θ) ⩾ 0 since

α2 + (1− α)2 + 2α(1− α)θ ⩽ (2− α)2 + (1− α)2 − 2(1− α)(2− α)θ

⇔ θ ⩽ 1, (4.68)

where we used the fact that α ∈]0, 1[. This shows that φ is increasing on [−1, 1] and we
deduce from Lemma 4.67 that

∥Wx− 2(1− α)x∥H + ∥Wx∥H ⩽ φ(1)∥x∥H =
2

2− α
∥x∥H = 2α∥x∥H. (4.69)

Since proxγg is firmly nonexpansive, it follows from [60, Theorem 3.8], that when
(4.65) holds, Tγ is α-averaged.
Given the above properties, the convergence of the mismatched PGA is guaranteed by
the following result.

Proposition 4.3.3.5 Assume that L is η-cocoercive with η ∈]0,+∞[. Let γ ∈]0, 2η[
and δ = 2−γ/(2η). Let (θn)n∈N be a sequence in [0, δ] such that

∑
n∈N θn(δ−θn) = +∞.

Suppose that F ̸= ∅. Then the sequence (xn)n∈N generated by Algorithm (4.3) converges
weakly to a point x̃ ∈ F . In addition, if λmin ̸= 0 and, for every n ∈ N, ωn = 0 and
θn ∈ [θ, 1] with θ ∈]0,+∞[, then (xn)n∈N converges linearly.

Proof: For every n ∈ N, let Wn = (1− γκ) Id −γKnH, let bn = γKny, let W = Id −γL,
and let b = γKy. Then (4.3) reads, for every n ∈ N,

xn+1 = xn + θn
(
proxγg(Wnxn + bn)− xn

)
. (4.70)

The algorithm can thus be interpreted as an instance of the recurrent neural network
investigated in [60] with m = 1 layer. It follows from Lemma 4.3.3.4 that [60, Condition
3.1] holds. In addition, as a consequence of Assumption 4.2.0.1, [60, Assumption 5.1] is
satisfied since ∑

n∈N
∥Wn −W∥H,H ⩽ γ∥H∥H,H

∑
n∈N

ωn < +∞ (4.71)∑
n∈N

∥bn − b∥H ⩽ γ∥y∥G
∑
n∈N

ωn < +∞. (4.72)

The convergence of (xn)n∈N to x̃ ∈ F can then be deduced from [60, Theorem 5.4].
Assume now that λmin ̸= 0, (∀n ∈ N) ωn ≡ 0 and θn ∈ [θ, 1]. It follows from (4.3) and
(4.50) that, for every n ∈ N,

xn+1 − x̃ = (1− θn)(xn − x̃) + θn(proxγg
(
(Id −γL)xn + γKy)− proxγg((Id −γL)x̃+ γKy)

)
.

(4.73)
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Using the nonexpansivity of the proximity operator and the triangle inequality yield

∥xn+1 − x̃∥H ⩽ (1− θn)∥xn − x̃∥H + θn∥(Id −γL)(xn − x̃)∥H
⩽ (1− θn + θn∥ Id −γL∥H,H)∥xn − x̃∥H. (4.74)

By using now Proposition 4.3.1.6, we deduce that

∥xn+1 − x̃∥H ⩽

(
1− θn + θn

√
1− γ

(
2− γ

η

)
λmin

)
∥xn − x̃∥H

⩽ ρ∥xn − x̃∥H, (4.75)

where
ρ = 1−

(
1−

√
1− γ

(
2− γ

η

)
λmin

)
θ ∈]0, 1[. (4.76)

We deduce that, for every n ∈ N, ∥xn − x̃∥H ⩽ ρn∥x0 − x̃∥H, which shows the linear
convergence of (xn)n∈N.
We now see that the cocoercivity constant of L is useful to obtain an upper bound on
the gradient descent parameter.

Remark 4.3.3.6 If L is self-adjoint positive (i.e. β = 0 and λmin ⩾ 0), then it follows
from Proposition 4.3.1.2 that L is η-cocoercive with 1/η = λmax = ∥L∥H,H. Proposi-
tion 4.3.3.5 thus leads to 2/∥L∥H,H as a strict upper bound on step size γ to guarantee
the convergence of the algorithm. This allows us to recover the classical upper bound on
the step size for Algorithm (4.3) in the special case when K = H∗.

Remark 4.3.3.7 When g = 0, θn ≡ 1, and H = RN , (4.3) becomes a linear recursive
equation and tools from matrix analysis can be employed to derive the following necessary
and sufficient convergence conditions [77, Theorem 3.1]:

(∀j ∈ J) γ < 2
Re ζj
|ζj |2

(4.77)

Re ζj > 0, (4.78)

where (ζj)i∈J are the nonzero eigenvalues of L. It is easy to show that, for every j ∈ J,
λmin ⩽ Re ζj . Therefore, if λmin > 0, (4.78) is satisfied. Then, it follows from Propositions
4.3.1.2(ii) and Corollary 4.3.1.4(i) that a sufficient and necessary condition for L to be
η-cocoercive is η ⩽ η where η is given by (4.32). Since Proposition 4.3.3.5 guarantees
the convergence of (4.3) when γ ∈]0, 2η[, we deduce that

(∀j ∈ J) η ⩽
Re ζj
|ζj |2

. (4.79)

This emphasizes that, in the presence of adjoint mismatch, the cocoercivity of L only
provides a sufficient condition for the convergence of PGA.
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4.4 Application

We now show the applicability of the proposed approach through two examples of re-
construction of piecewise constant numerical phantoms where instability arises from the
presence of truncation. The FP is ray-driven, while the BP is pixel-driven. In our first
experiment, a geometric abdomen phantom is reconstructed using a wavelet-based regu-
larization. In the second experiment, we perform a joint reconstruction and segmentation
of a metallic device (e.g., needles) present in a region of interest of another geometric
phantom from sub-sampled projections. Here we relied on a geometric decomposition of
the phantom into two components (a needle and a background).

4.4.1 Reconstruction of a geometric abdomen from undersampled
projections

4.4.1.1 Problem statement:

We simulated a scan of an abdomen of size 45 cm, made of a vertebra set to 3000,
metallic inserts ranging from 4000 sHU to 4500 sHU, and a liver area set to 1840 sHU.
The source-to-object and source-to-image distances were respectively set to 800 mm and
1200 mm leading to a magnification factor of 1.5, as can be found on clinical scanners.
The associated sinogram was computed in fan-beam geometry over 180° using 50 regu-
larly spaced angular steps. The projection and backprojection operators were rescaled
by π/50 to make the parametrization independent from the number of projections. The
detector has 62 bins of size 6.4 mm, so that M = 62 × 50, and the image is recon-
structed on a discrete grid of N = 128 × 128 pixels, with size 1.5 × 6.4 = 4.26 mm.
The image reconstruction problem is undetermined due to the small detector FOV and
the limited angular coverage. The noise standard deviation is set to σ = 0.69, so that
∥b∥G/∥Hx∥G ≈ 6.3× 10−5. Figure 4.1 shows the phantom x and the data y.

Figure 4.1: Phantom x (left) and sinogram y (right)

With those settings, H∗ contains 1.08% nonzero elements, whereas this proportion de-
creases to 0.89% for K. The coupling ratio is ξ = 1.151, and the asymmetry metric µ
equals 0.159. Figure 4.2 shows the backprojection of constant measurements at a single
angle using either K or H∗. A high-frequency Moire pattern is visible when using H∗

(right image) due to the redundancy introduced by oversampling the projection. In con-
trast, the backprojected view remains uniform with K (left image).
An estimate of x is obtained by adopting a sparse inducing compressed-sensing formula-
tion. We solve the penalized least squares Problem (4.1) with g = ρ∥W · ∥1, W ∈ RN×N
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Figure 4.2: Backprojection of a uniform view with K (left) and H∗ (right)

being the orthogonal Symlet 2 wavelet transform on 2 resolution levels, and ρ > 0 the
associated regularization parameter.
We ran Algorithms (4.2) and (4.3), for two settings κ1 and κ2 of parameter κ such that
L is not cocoercive with κ1, but becomes cocoercive with κ2. In such case, the condition
given in Proposition 4.3.2.1(iii)(e) holds, which proves the existence of a unique fixed
point of scheme (4.3) and its convergence is ensured according to Proposition 4.3.3.5.
We set κ1 = 10−2. Moreover, following Remark 4.3.1.5, κ2 is set as −λ̃min + 10−2. The
eigenvalue λ̃min = −1.61 is computed using the Matlab function eigs. Note that although
matrices H and K were stored in these experiments, matrix-free iterative methods can
be used to compute the dominant and the smallest eigenvalues of operator (L + L∗)/2,
thus complying with practical implementations of the FP-BP pair for higher dimensional
problems. Moreover, to bypass the need for the exact adjoints of H and K

∗ while com-
puting minimum eigenvalues, we refer to the strategy in [77]. We additionally set the
regularization hyperparameter ρ to 600 and the relaxation parameter θn ≡ 1.
For the coupled settings (H∗, κ1), (K,κ1) and (H∗, κ2), step size γ was set to 1.9/(∥H∥2H,H+

κ) = 2.9× 10−3. For (K,κ2), γ is chosen equal to 1.82× 10−5 in accordance with Corol-
lary 4.3.1.4 and Proposition 4.3.3.5. The algorithms are run until a stopping precision
on the relative distance between two consecutive iterates is below 10−7 or a maximum
number of iterations of 104 is reached.

4.4.1.2 Results:

Figure 4.3 displays the normalized mean square error (NMSE) defined as (∥x−xn∥H/∥x∥H)n,
computed along the iterations when applying Algorithms (4.2) and (4.3). The plots con-
firm that with value κ1, PGA converges when the exact adjoint H∗ is used but diverges
when H∗ is replaced by K, as was expected from our theoretical analysis. In the latter
case, Algorithm (4.3) shows an initial convergence trend that reaches a minimum dis-
crepancy point close to the minimizer obtained with H∗ before diverging. For value κ2,
both Algorithms (4.2) and (4.3) converge to fixed points that are close to each other,
again confirming our theoretical analysis. The corresponding NMSE values are 0.4432
and 0.4572, respectively. PGA without mismatch requires fewer iterations to reach con-
vergence than its perturbed version using K. Note that, in a real context, practitioners
often use early stopping to avoid the potential negative effects of the adjoint mismatch.
Nevertheless, it is difficult for the user to know when the iterations should be stopped to
reach this good intermediary solution; hence the result is often suboptimal. Our analysis
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shows that one can still use an inaccurate adjoint without using an empirical rule.

Figure 4.3: Decay of the error along iterations for Algorithms (4.2) and (4.3) and two choices of κ
parameter.

Reconstruction results are displayed in Figure 4.4 and Figure 4.5 using the same
windowing. Let us remark that, due to a short detector, the projections suffer from axial
truncation. The set of pixels of the image whose projections belong to the detector FOV
then defines the image FOV. We added a comparison with two reconstructions obtained
from the standard FBP approach in Figure 4.6. The image is obtained from FBP by zero-
padding the sinogram on the left. On the right, the borders of the sinogram have been
replicated before FBP. Only the image FOV is depicted since the FBP reconstruction
outside this zone is irrelevant. We also indicated the NMSE and the maximum absolute
error (MAE), defined as maxi∈{1,...,N} |xi − xi|, for all the reconstructed images when
compared with the ground truth. Both FBP reconstructions suffer from various artifacts
(peripheral bright-band artifacts, cupping, over-estimation of the values as shown in
Figure 4.7) [163,181], in contrast with the solutions provided by our regularized iterative
approach. Furthermore, when parameter κ2 is used, the reconstructed image obtained
by PGA with the mismatched adjoint K is very similar to the image obtained without
mismatch. In contrast, combining the setting κ1 with the mismatched adjoint in PGA
yields a reconstruction that is deteriorated by artifacts propagating from the exterior
of the FOV. It leads to a higher NMSE compared to the solution obtained when using
the exact H∗ as shown on the reconstructed image in Figure 4.4 (bottom left) and
the FOV error map in Figure 4.8 (top right). As soon as the convergence of PGA is
ensured, an unmatched FP/BP pair gives a similar reconstruction quality to the matched
pair but may lead to a slower convergence. Let us emphasize that, in practice, the
decrease in the convergence rate in terms of iterations could be compensated by a reduced
computation cost for operator K. Finally, note that computing the infimum in (4.49)
in Theorem 4.3.3.1 with a grid search gives an upper bound of 3.25 × 105. The actual
error is 1.0934× 104, which is indeed lower than this upper bound, as expected from our
theoretical analysis.
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Figure 4.4: Reconstructions (left) and zoomed versions within the FOV (right) obtained using κ1 and
either Algorithm (4.2), NMSE = 0.1207, MAE = 2330 (top) or Algorithm (4.3), NMSE = 0.1610, MAE
= 3141 (bottom).

Figure 4.5: Reconstructions (left) and zoomed versions within the FOV (right) obtained using κ2 and
either Algorithm (4.2), NMSE = 0.16, MAE = 2205 (top) or Algorithm (4.3), NMSE = 0.1534, MAE =
2399 (bottom).
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Figure 4.6: FBP reconstructions, in the FOV, with zero-padded FBP, NMSE = 1.776, MAE = 8534
(left) and extrapolated FBP by replicating the borders of the sinogram, NMSE = 0.366, MAE = 1871
(right).

Figure 4.7: Absolute difference between the reconstructed image from FBP using replicated sinogram
borders and the ground truth within the FOV.

Figure 4.8: Absolute difference between the reconstructed image and the ground truth, within the FOV,
using κ1 (top) or κ2 (bottom), and either Algorithm (4.2) (left) or Algorithm (4.3) (right).
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4.4.2 Joint object-background decomposition and reconstruction

4.4.2.1 Problem statement:

This example focuses on a joint reconstruction and decomposition task. Flat-panel de-
tectors commonly sample projections with small pixels but at a slow frame rate, so the
angular sampling is comparatively poor. Then reconstructing the entire object on a fine
grid is time-consuming and produces large volumes that are also difficult to manipulate.
We thus look at reconstructing a relevant ROI only, as is the case when the clinical goal
is to assess the precise position of metallic needles within a soft-tissue background. A
priori knowledge about the device (e.g., sparsity, high contrast, and direction [125]) can
be used, given that the object is separated from the background.
The phantom grid is of 256× 256 pixels of size 0.53 mm, of which the ROI, denoted by
xr, is a patch of size 88 × 88. The simulated phantom x and the ROI are displayed in
Figure 4.9. The phantom projection is computed for a detector of 500 bins of 0.4 mm.
The detector bins are sampled on a twice thinner grid than the pixels. The number of
uniformly spaced angular positions is set to 100 only over the interval [0°, 180°] leading
to M = 100×500. The source-to-object and source-to-image distances were set as in our
first experiment. The operators are rescaled by π/100. The noise standard deviation σ
is chosen equal to 0.35, so that ∥b∥G/∥Hx∥G ≈ 3.32× 10−5.
The acquired projections contain information regarding pixels outside the ROI. In or-
der to reduce reconstruction artifacts, we define a larger reconstruction grid, with size
N = 140×140 containing the ROI. Let us introduce the sampling operator S ∈ R882×1402 ,
which selects the ROI within this extended image. We then aim at decomposing the spa-
cial contents xr within this ROI into two maps Sxm ∈ R88×88 and Sxb ∈ R88×88 which
describe respectively the metal component of the ROI (needles) and the tissues of the
ROI as shown in Figure 4.10, so that xr = Sxm + Sxb.

Figure 4.9: Phantom x (left) and ROI xr (right).

Estimates of the two maps (xm, xb) ∈ R2N on the extended grid of size N , are
obtained by solving the following penalized least-squares problem:

minimize
(xm,xb)∈R2N

1

2
∥y −Hr(xm + xb)∥22 + g(xm, xb) +

κ

2
(∥xm∥22 + ∥xb∥22). (4.80)

Furthermore, we define g(xm, xb) = ρDTVΩ(xm)+ βTV(xb)+α∥xm∥1 + ι[0,+∞[N (xm)+

ι[0,+∞[N (xb) where ιC denotes the indicator function of set C and (ρ, β, α, κ) ∈ [0,+∞[4
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Figure 4.10: Sxm (left) and Sxb (right).

and the TV term, acting on the background image, is defined as

(∀u ∈ RN ) TV(u) =

N∑
i=1

√
(∆h

i u)
2 + (∆v

i u)
2 (4.81)

with ∆h
i ∈ RN , ∆v

i ∈ RN , the horizontal and vertical discrete gradient operators at
location i (assuming zero-padding), respectively. Furthermore, given that xm is sparse,
and contains needles following about the same direction, we use both an ℓ1 penalty
and the directional total variation introduced in [17], defined, for every u ∈ RN , as
DTVΩ(u) =

∑N
i=1 ∥(∇Ωu)i∥ where ∇Ω ∈ R2×N computes the two directional derivatives

at the pixel i, parameterized by an angular direction θ ∈ [0°, 180°[, and a scaling factor
s > 0 (Ω = {θ, s}), i.e.

(∇Ωu)i =

(
1 0
0 s

) (
cos θ sin θ
− sin θ cos θ

) (
∆h

i u
∆v

i u

)
. (4.82)

Let H = (Hr, Hr) in RM×2N . Equation (4.80) can be rewritten as

minimize
z=(x⊤

m,x⊤
b )⊤∈R2N

1

2
∥y −Hz∥22 + h(z) +

κ

2
∥z∥22 + i[0,+∞[2N (z), (4.83)

with h : z = (x⊤m, x
⊤
b )

⊤ 7→ ρDTVΩ(xm) + α∥xm∥1 + βTV(xb).
The coupling ratio between H and its associated adjoint approximation K = (Kr,Kr)
is ξ = 0.75 and the asymmetry metric is µ = 0.0418. The proximity operator of h does
not have a closed form; hence it is approximated by using inner iterations of the dual
forward-backward algorithm [55, 56] with a stopping precision of 10−8. We set θn ≡ 1,
ρ = 5500, β = 2950, α = 500, s = 0.2, and θ = 10°. Initial estimates for both maps are
zero-valued. As in our first experiment, two values of κ are tested, namely κ1 = 10−2

and κ2 = 0.2438. L is guaranteed to be cocoercive for κ = κ2, but not for κ = κ1. Here
again, the existence and uniqueness of the fixed point of scheme (4.3) are guaranteed
for κ = κ2 because the condition in Proposition 4.3.2.1(iii)(e) is fulfilled. Furthermore,
for the settings (H∗, κ1), (K,κ1) and (H∗, κ2), the step size γ is set respectively to
2× 10−3 while for (K,κ2), γ is set to 1.5× 10−3. The stopping precision on the relative
distance between two consecutive iterates is 10−7, and the maximum number of iterations
is 2× 104.
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4.4.2.2 Results:

In Figure 4.11 and Figure 4.12, we plot the relative errors between the ground truth
metal map Sxm and tissues map Sxb, cropped to the ROI, and their estimates along
the iterations. In Figure 4.12, one sees that the iterates obtained from (4.3) with κ1 are
unstable. Oscillations hamper the convergence of scheme (4.3). The stopping convergence
criterion is never met, and the maps cannot be reconstructed at the end of the 2 × 104

iterations. Figure 4.11 shows that for the three other cases, the algorithm stops in a phase
where the errors associated with both maps are simultaneously decreasing. These plots
confirm that, with setting κ1, only Algorithm (4.2) (i.e., PGA without adjoint mismatch)
converges. For κ2, Algorithms (4.2) and (4.3) converge to two fixed points that are quite
close to each other and the exact solution. Figure 4.13 shows the reconstructed maps
within the ROI, obtained with Algorithm (4.2) and κ1, Algorithm (4.2) and κ2, Algorithm
(4.3) and κ2. Upon visual inspection, the two restored components Sx̂b and Sx̂m are
efficiently separated and well reconstructed in all three cases. Furthermore, no visible
deterioration arises on the images reconstructed with κ2.

Figure 4.11: Evolution of the error, inside the ROI, of the metal and tissue maps (Sxm,n)n and (Sxb,n)n
estimated along iterations by Algorithms (4.2) and two choices of κ parameter and Algorithm (4.3) with
κ2.
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Figure 4.12: Evolution of the error, inside the ROI, of the metal and tissue maps (Sxm,n)n and (Sxb,n)n
estimated along iterations by Algorithm (4.3) with κ1.
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Figure 4.13: Reconstructed maps within the ROI Sx̂m (left) and Sx̂b (right) using κ1 (first row) or κ2

(last two rows), and either Algorithm (4.2) (first two rows) and Algorithm (4.3) (last row).
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4.5 Unmatched preconditioning of the proximal gradient
algorithm

The problem of adjoint mismatch is closely related to the use of unmatched precondi-
tioning metrics in PGA.
As a first-order optimization method, the convergence of PGA is slow [46], bringing into
question the relevance of the algorithm for high-dimensional applications. Precondition-
ing strategies (Chapter 3-subsection 3.3.2) offer a way to accelerate PGA. They consist
of performing a change of metric to reduce the condition number of the linear operator
(typically the Hessian) involved in updating the smooth part of the cost function. Pre-
conditioning does not affect the fixed points of PGA. However, one main issue is that the
metric used in the gradient term must theoretically also be included, via its inverse, in
the proximity operator. Such an inversion can be computationally costly. Computation-
ally cheap metrics resulting from rough approximations to the Hessian operator can be
conveniently inverted (e.g., diagonal matrices), but they may fail to achieve significant
acceleration. Moreover, the proximity operator might no longer have a closed form in
the chosen metric. In this case, the proximity operator must be computed through inner
iterations so that the extra computations outweigh the benefit in terms of convergence
rate. Designing both effective and efficient preconditioners is then especially challenging
for proximal methods [20].
This section investigates the use of unmatched preconditioners, which relax the con-
straints associated with preconditioning for penalized least-squares problems.

4.5.1 Preconditioning for CT reconstruction

We now consider a slightly more general problem than (4.1) with a weighted least-squares
data fidelity term, and we focus on the case where H = RN and G = RM :

minimize
x∈RN

1

2
∥y −Hx∥2W + g(x) +

κ

2
∥x∥2. (4.84)

For ease of notation, we define ⟨·, ·⟩ and ∥·∥ as the standard scalar product and the norm
associated with RN .
Problem (4.84) can be solved by PGA preconditioned by Q ∈ S+

N [27] and the resulting
iteration reads, for every n ∈ N,

xn+1 = (1− θn)xn + θnprox
Q
γg((xn − γQ−1(Mxn −H⊤Wy))), (4.85)

where M is the Hessian of the smooth part of the cost function:

M = H⊤WH + κ Id . (4.86)

The convergence conditions of PGA, given in the previous section, can be adapted to
the preconditioned scheme: if θn ∈ [ϵ, 1] with ϵ ∈]0, 1[ and γ ∈]0, 2/α[, where α is the
Lipschitz constant of the preconditioned gradient operator Q−1(M · −H⊤Wy), i.e. α =
|||Q−1/2MQ−1/2|||, then the sequence (xn)n∈N generated by Algorithm (4.85) converges
to a solution to Problem (4.84).
We see that the convergence of PGA depends on the norm of the Hessian of the quadratic
part of the objective function and, more particularly, on its maximum eigenvalue. A large
value results in small gradient steps leading to slow convergence.
The criteria for identifying an effective preconditioner Q are twofold: (i) the action of
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Q and Q−1 on an element x ∈ RN should be easily computed; (ii) the conditioning
number of Q−1M should be small. These criteria often limit the use of preconditioning
to a simple form of regularizer g, e.g., a positivity constraint [26], an ℓ1, or a quadratic
penalty.
For CT, most preconditioners were proposed in the case when no proximity operator is
involved [92,94,107,179,210]. Diagonal preconditioners [105] provide limited acceleration
so Fourier preconditioners are preferred [54, 87, 92]. Preconditioning PGA when the
precision matrix W = Id in Problem (4.84) derives from the Fourier-slice theorem (see
Chapter 3), which states that the continuous version of the normal operator M =H⊤H
is a convolutional circulant operator. This theorem provides two inversion filters. The
first is the 2D cone filter, which is applied after H⊤, yielding a potential choice of
preconditioner Q−1 in Algorithm (4.85). However, this 2D filter requires infinite support
and is computationally expensive. Many variants have been proposed to simplify [172]
or improve it by considering the underlying sampling in H⊤H. Improved filters were
obtained by approximating the SIRT algorithm [170], or in a learning framework [169,
205]. The second choice is the 1D ramp filter, which is simpler to compute and does not
require infinite support. However, since it is applied before H⊤, it does not fit the form of
Algorithm (4.85): the product PM = PH⊤H is replaced by the more general structure
H‡H. Both filters are particularly efficient because they provide a close approximate
inversion of H. Regularized I-FBP/I-FDK methods, presented in Chapter 3, speed up
convergence by using this approximate inversion. This method applies H‡H rather than
H⊤H in the gradient step, followed by an unweighted proximity step. These methods
thus relate to a version of Algorithm (4.85) where Q−1 is kept while Q is replaced by Id .
We now present the generic unmatched preconditioned version of Algorithm (4.85) under
study.

4.5.2 Preconditioning with unmatched metrics

The standard form of preconditioned PGA with matrix Q converges in a reduced number
of iterations for a suitably chosen Q and a limited panel of regularization functions. To
include a more generic prior, we introduce a second matrix P ∈ RN×N such that PM ̸= 0,
that leads to a relaxed version of iteration (4.85) which reads

xn+1 = (1− θn)xn + θnprox
Q
γg((xn − γP (Mxn −H⊤Wy))). (4.87)

We say that P and Q are matched when PQ = Id , hence we recover (4.85). Note that
iteration (4.87) can be viewed as a deviation of (4.85) where the error involved in the
argument of the proximity operator is e(xn) with

(∀x ∈ RN ) e(x) = γ(Q−1 − P )(Mx−H⊤Wy). (4.88)

However, the assumption of summability of the error often adopted in the literature
[64,192] is generally not satisfied in our context.
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4.5.3 Adaptation of previous results

Similar to section 4.3, we introduce the nonlinear operator

Tγ : RN → RN : x 7→ proxQγg((Id −γL)x+ γPH⊤Wy). (4.89)

Iteration (4.87) can be expressed more concisely as

xn+1 = (1− θn)xn + θnTγxn,

with L = P (H⊤WH + κ Id ) = PM ∈ RN×N . (4.90)

We also define LQ = Q1/2LQ−1/2. It results from simple algebra that

|||L|||Q = sup
x∈RN

∥Lx∥Q
∥x∥Q

= |||LQ||| (4.91)

and the adjoint of L in metric ∥ · ∥Q is

L∗ = Q−1L⊤Q = Q−1/2L⊤
QQ

1/2. (4.92)

We redefine the gap β, the spectral values λmin, λ+
min, λmax as

λmin = inf
x∈RN

∥x∥Q=1

⟨x | Lx⟩Q = inf
x∈RN
∥x∥=1

⟨x | LQx⟩, (4.93)

λ+
min = inf

x∈(KerLQ)⊥

∥x∥=1

⟨x | LQx⟩, λmax = sup
x∈RN
∥x∥=1

⟨x | LQx⟩, (4.94)

β =
1

2
|||L− L∗|||Q =

1

2
|||LQ − L⊤

Q|||. (4.95)

The notion of cocoercivity can also be redefined in a weighted space.

Definition 4.5.3.1 Let η ∈]0,+∞[. L is η-cocoercive in (RN , ∥ · ∥Q) if

(∀x ∈ RN ) ⟨x | Lx⟩Q ⩾ η∥Lx∥2Q. (4.96)

We now provide conditions for this property to be satisfied.

Proposition 4.5.3.2 L is cocoercive in (RN , ∥ · ∥Q) with η ∈]0,+∞[ if and only if

{
λmin ⩾ 0

Ker(LQ + L⊤
Q) = KerLQ.

(4.97)

(4.98)

Then, the maximum cocoercivity constant of L is

η =
2

|||(Id +(LQ − L⊤
Q)(LQ + L⊤

Q)
†)(LQ + L⊤

Q)
1/2|||2

. (4.99)

In particular, L is cocoercive in (RN , ∥·∥Q) with constant η = 1/
(√

λmax+β/
√
λ+
min

)2
⩽

η.
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Proof: For z ∈ RN , by setting x = Q−1/2z, it follows that condition (4.96) is equivalent
to

(∀z ∈ RN ) ⟨z | LQz⟩ ⩾ η∥LQz∥2. (4.100)

In other words, L is η-cocoercive in (RN , ∥ · ∥Q) if and only if LQ is η-cocoercive in RN .
The result then follows from Proposition 4.3.1.2, which provides cocoercivity conditions
for LQ.

From (4.90) and (4.92), some special cases are worth being considered:

(i) If P = Q−1 (matched preconditioning) then LQ = Q−1/2MQ−1/2 and β = 0, which
leads to η = η = 1/|||LQ|||.

(ii) If M is invertible and P = M−1 (Newton preconditioning) then L = Id , LQ =
Q1/2Q−1/2 = Id , and β = 0, which leads to η = η = 1.

Let x̂ be a solution to Problem (4.84). Then, x̂ satisfies the following first-order
optimality condition:

0 ∈ Q−1∂g(x̂) +Q−1Mx̂−Q−1H⊤Wy, (4.101)

where ∂g(x̂) denotes the subdifferential of g at x̂. Similarly, for every γ ∈ ]0,+∞[, the
fixed point set of operator Tγ is

F =
{
x̃ ∈ RN

∣∣ 0 ∈ Q−1∂g(x̃) + Lx̃− PH⊤Wy
}
. (4.102)

One can notice that F is no longer the set of minimizers of the objective function in
(4.84). We first characterize the existence and uniqueness of a fixed point of Tγ .

Proposition 4.5.3.3 Assume that conditions (4.97)-(4.98) hold.

(i) F is nonempty if dom ∂g = RN and the function defined as

(∀x ∈ RN ) h(x) =
1

2
⟨x | Lx⟩Q + g(x) (4.103)

is coercive, i.e., lim∥x∥→+∞ h(x) = +∞.

(ii) F is a singleton if g is strongly convex or λmin > 0 .

Proof.

(i) According to (4.90) and (4.102), x̃ ∈ F if and only if x̃ = Q−1/2z̃ and

Q1/2PH⊤Wy ∈ Q−1/2∂g(Q−1/2z̃) + LQz̃. (4.104)

To prove the existence of a solution to this inclusion, let us define the auxiliary
function h̃ as

h̃ : x 7→ h(Q−1/2x) =
1

2
⟨x | LQx⟩+ g(Q−1/2x). (4.105)

If dom ∂g = RN and h (hence h̃, since Q−1/2 is invertible) is coercive, the cocoerciv-
ity of LQ allows us to apply Proposition 4.3.2.1(iv)(a)-(b) that establishes the sur-
jectivity of ∂(g◦Q−1/2)+LQ. Given that Q−1/2◦∂g◦Q−1/2+LQ = ∂(g◦Q−1/2)+LQ,
this shows the existence of z̃ in (4.104).
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(ii) According to (4.104), x̃ ∈ F is uniquely defined if and only if z̃ is. From the
assumption of convexity made on g, and the cocoercivity of LQ, it follows from
[16, Corollary 23.37] that x̃ is unique if either ∂(g ◦ Q−1/2) or LQ is strongly
monotone [16]. This holds in particular if g is strongly convex or λmin > 0.

The unmatched preconditioned scheme (4.87) benefits from convergence results simi-
lar to those existing for the standard preconditioned PGA. However, there usually exists
a discrepancy between the limit point x̃ of (4.87) and any minimizer x̂ of the objective
function in (4.84).

Proposition 4.5.3.4 Suppose that F ≠ ∅. Assume that conditions (4.97) and (4.98)
hold. Let η be defined by (4.99), let γ ∈]0, 2η[, let δ = 2 − γ/(2η), and let (θn)n∈N
be a sequence in [0, δ] such that

∑
n∈N θn(δ − θn) = +∞. Then any sequence (xn)n∈N

generated by iteration (4.87) converges to a point x̃ ∈ F .
In addition, let ν ∈ [0,+∞[ be such that g = h+ ν/2∥ · ∥2Q where h ∈ Γ0(RN ).2 If ν > 0
or λmin > 0, then

∥x̃− x̂∥Q ⩽ inf
γ∈]0,2η[

∥e(x̂)∥Q
1 + γν − ||| Id −γLQ|||

. (4.106)

Proof: In the renormed space (RN , ∥ · ∥Q), Algorithm (4.87) with L defined by (4.90)
takes the same form as the mismatched PGA studied in the previous section (4.3). The
convergence thus follows from Proposition 4.3.3.5.
The existence of a unique point x̃ ∈ F is a direct consequence of Proposition 4.3.2.1(iv).
Let x̂ be a solution to Problem (4.84) and let γ ∈ ]0,+∞[. We have{

x̃ = proxQγg(x̃− γP (Mx̃−H⊤Wy)),

x̂ = proxQγg(x̂− γQ−1(Mx̂−H⊤Wy)).

(4.107)

(4.108)

From properties of the proximity operator [59], since ν ⩾ 0, for every x ∈ RN , proxQγg(x) =
proxQ γ

1+γν
h
( x
1+γν ). Since proxQ γ

1+γν
h

is nonexpansive in (RN , ∥·∥Q), we deduce from (4.107)

and (4.108) that

(1− τγ)∥x̃− x̂∥Q ⩽
γ

1 + γν
∥(Q−1 − P )(Mx̂−H⊤Wy)∥Q

with τγ =
||| Id −γL|||Q

1+γν =
||| Id −γLQ|||

1+γν . In addition, according to Proposition 3.9, for
λmin > 0 or ν > 0, if γ ∈]0, 2η[, then τγ < 1.
In summary, if γ < 2η and either λmin > 0 or ν > 0,

∥x̃− x̂∥Q ⩽
∥e(x̂)∥Q

(1− τγ)(1 + γν)
=

∥e(x̂)∥Q
1 + γν − ||| Id −γLQ|||

,

which leads to (4.48).
It is worth noting that the symmetry and positiveness of P are not mandatory to ensure
the convergence of (4.87).
Usually, the regularization function g depends on some parameter vector ω. The previous
analysis assumes that ω is set to the same value for the exact and unmatched precondi-
tioned PGA. A better strategy may be to adjust ω in the unmatched case to reduce the
discrepancy between x̃ and x̂.

2ν is the strong convexity modulus of g in (RN , ∥ · ∥Q).
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4.6 Application

From now on, H is a FP in parallel-beam geometry, y represents limited tomographic
measurements, and x is the imaged phantom.
FP and BP are often the most computation-intensive operations in IR for CT. To limit
the number of PGA iterations and thus multiplications with these operators, we use
an effective preconditioner P for the gradient step. The numerical experiments were
conducted in MATLAB with the ASTRA Toolbox [219].

Tomographic geometry:

Reference image x is a slice of size N = 256 × 256 extracted from a computerized
tomographic scan of an abdomen with values belonging to [1000, 2100] sHU. The image
contains simulated small structures of comparatively high intensity (3000 sHU). We sim-
ulate 60 projections at uniformly spaced angular positions within the interval [0°, 180°].
The detector has 363 ≃

√
2× 256 bins of the same size as the pixels so that the data is

not truncated and K = 60× 363. Operator H is based on the line-length model, which
corresponds to ASTRA GPU implementation [162]. For the measurement y, we simu-
late a noise-free sinogram and add some low level of noise b drawn from the Gaussian
distribution N (0, 100× Id ), so that W = 10−2 × Id .

Regularization:

For such an underdetermined problem, we adopt an Ivanov variational formulation
[141] combined with a TV bound [57]: an estimate ρ > 0 of the value range for the TV
bound of our target image is supposed to be known. Thus, in (4.1), g = ιB1,2(0,ρ)(∇·),
where ∇ is the 2D discrete spatial gradient operator and ιB1,2 is the indicator function
of the ball of radius ρ associated with the ℓ1,2 norm. More precisely, B1,2(0, ρ) = {u ∈
R2N | ∥u∥1,2 ⩽ ρ}. Even without any metric, the proximity operator of g does not have
a closed form and is computed by DFB with a maximum of 500 iterations and warm
restart.

Parameter selection:

Except otherwise stated, we choose ρ equal to ρ = ∥∇x∥1,2. Parameter κ in (4.86)
is set to 10−5, which implies that M is invertible and we set P = M−1. To compute
products between P and any vector, we use the conjugate gradient algorithm (CG) with a
tolerance of 10−4 initialized with the previous iterate (warm restart). Preconditioning the
gradient term with P might require extra projections and backprojections per iteration
due to the CG inner loop. However, we demonstrate in the sequel that this inversion of
the Hessian effectively accelerates the method, especially when combined with a simpler
preconditioner for the proximity operator. Following Proposition 4.3.1.2, the cocoercivity
constant of L equals 1. In addition, λmin = 1 and the conditions in Proposition 4.3.2.1(iv)
are satisfied; F is thus a singleton. In PGA, the step size γ is set to 0.9, which, according
to Proposition 4.3.3.5, guarantees the convergence of Algorithm (4.87). In the DFB
iterations, the metric Q weighting the proximity operator is inverted. Setting Q = P−1 =
M would require using CG again in the DFB step, which would be computationally
heavy. Several other choices of proximity metrics are considered instead, as described
hereinafter.
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Matched versus unmatched preconditioning:

We first set metric Q to the diagonal majorant matrix proposed in [148]: Q1 =

W diag(S⊤1N )+κ Id , where 1N = [1, . . . , 1]⊤ ∈ RN and S =
(
|Hi,k|

∑K
k′=1 |Hi,k′ |

)
1⩽i⩽N,1⩽k⩽K

.

We also compare PGA schemes (4.85) and (4.87) to PDHG, which involves neither sub-
iterations nor preconditioning. We assess the performance of the three methods in Fig-
ure 4.14 showing the overall normalized reconstruction error NRMSE = ∥xn−x∥/∥x∥ as
a function of the execution time in seconds. We notice that Algorithm (4.87) converges
faster than both Algorithm (4.85) and PDHG. The convergence curve of PDHG oscil-
lates in the first iterations. After only 10 seconds, the reconstruction error associated
with Algorithm (4.87) is lower than the error corresponding to the estimate delivered by
Algorithm (4.85) at convergence. Interestingly, the resulting fixed point was observed to
be closer to the ground truth x than the minimizer of Problem (4.1). The reconstructed
solutions are displayed in Figure 4.15. Residual deconvolution artifacts (undershooting)
and sub-sampling streaks are present in the estimate produced by Algorithm (4.85) with
Q1 but not in the one yielded by our unmatched scheme.

Figure 4.14: Evolution of the NRMSE along iterations for Algorithms (4.85) and (4.87), ρ = ρ, and
Q = Q1.

Figure 4.15: From left to right: x, reconstructed images for ρ = ρ with Alg. (4.85) using Q1, and with
Alg. (4.87) using Q1.

Alternative choices for Q:

Four additional approximations to M in S+
N have been tested:

• Q2 = Id ,
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• Q3 is the inverse of 2D Laplacian filter3,

• Q4 = Diag
(
(Mi,i)1⩽i⩽N

)
(Jacobi preconditioner),

• Q5 = argminQ∈D+
N
∥Q1/2 −Q−1/2M∥2F,

• Q6 is a tridiagonal approximation to M i.e., the symmetric matrix whose elements
on the main diagonal are (Mi,i)1⩽i⩽N and those on the next upper / lower diagonals
are 1

2(Mi+1,i +Mi,i+1)1⩽i⩽N−1.

Note that the entries of H correspond to line integrals between a ray and a pixel, which
are positive. Since λmin > 0, the entries of M are strictly positive. Table 4.1 (first row)
contains the NRMSE values after 1000 iterations obtained with Algorithm (4.87) for the
different metrics, and ρ = ρ. First, we see that all choices are competitive compared to
the baseline Algorithm (4.85), and their NRMSE values are close. Metric Q1 leads to
the best quantitative results. Metric Q3 provides the poorest reconstruction with the
highest NRMSE and a patchy look (see Figure 4.16).

Figure 4.16: Reconstructed images for ρ = ρ with Alg. (4.87) using Q3 (left) and Q1 (right).

Sensitivity to ρ:

Table 4.1 also shows the sensitivity of the reconstruction to the TV bound when
performing sets of trials reconstructions for ρ ∈ {ρ−, ρ+}, with ρ+ = 1.1×ρ, ρ− = 0.9×ρ.
We observe that ρ− generally leads to lower reconstruction errors. Q1 is consistently
associated with the lowest NRMSE. The choice of Q = Q2 was noticeably shown to rank
second-best for the lowest bound ρ−.

Q1 Q1 Q2 Q3 Q4 Q5 Q6

ρ 0.0621 0.0543 0.0562 0.0622 0.0558 0.0559 0.0560
ρ− 0.0559 0.0484 0.0489 0.0544 0.0494 0.0494 0.0490
ρ+ 0.0664 0.0614 0.0622 0.0708 0.0621 0.0628 0.0626

Table 4.1: NRMSE after 1000 iterations for Algorithms (4.85) (first column) and (4.87) (all other
columns), for various choices of Q and ρ.

3The cone filter is decomposed into a local Laplacian operator coupled with a nonlocal logarithmic
kernel filtering [230].
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4.7 Conclusion

In this chapter, we established some necessary conditions to ensure the convergence
of PGA when the adjoint of the forward operator involved in the quadratic part of
the objective function was changed. Using cocoercivity and monotone operators, we
derived conditions on the step size and the gradient of the smooth part of the objective
function under which convergence of the algorithm to a fixed point is guaranteed. We
also derived bounds on the error between this point and the solution to the original
minimization problem. In addition to generalizing the original PGA method, our results
give foundations for unmatched preconditioned PGA schemes where the metric used in
the gradient step of PGA differs from the one used in the proximity step. Our simulations
demonstrated that an unmatched preconditioning strategy offers an effective solution for
X-ray tomographic imaging. Note that the considered minimization problem captures a
broader class of image recovery problems than CT reconstruction.
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5 | Convergence of primal-dual
algorithms with an adjoint
mismatch

5.1 Introduction

One main limitation of PGA is that when the cost function involves a non-smooth term
composed with a linear operator, the proximal step may not have a closed form, thus
requiring inner iterations. For instance, this is the case when TV regularization is used
as in Chapter 4 (section 4.6). A way to avoid these sub-iterations is to rely on primal-
dual proximal splitting algorithms [5, 30, 34, 58, 85, 124]. These algorithmic schemes are
grounded on splitting strategies such as the forward-backward, the Douglas-Rachford, or
Tseng’s forward-backward-forward algorithms, presented in Chapter 3 (subsection 3.3.2).
This chapter extends the analysis conducted in Chapter 4 to these primal-dual algorithms,
namely the CV, the LV, and the CP algorithms.
To our knowledge, the first proposal to analyze a primal-dual proximal splitting method
under an adjoint mismatch is [140], which studied a mismatched form of PDHG with
fixed step sizes. The analysis was conducted under strong convexity assumptions. The
authors gave convergence conditions on the strong convexity modulus of the involved
functions and derived update rules for the step sizes to recover a similar convergence rate
to the matched scheme. However, they did not investigate the existence and uniqueness
of the fixed points of the mismatched algorithm. Similarly, in the context of microscopy
imaging, where the forward operator satisfies a specific orthogonality condition, [180]
gave conditions for the Douglas-Rachford/ADMM iterations to converge in the Multi-
Agent Consensus Equilibrium framework [37]. The authors highlighted that using an
adjoint mismatch on the forward operator in a quadratic term was equivalent to using
the proximity operator (or agent) of the quadratic term with a different prior model for
the image that depends on the mismatched adjoint.
The chapter is organized as follows. Section 5.2 focuses on a mismatched CV algorithm.
We consider the case when an adjoint mismatch appears on the linear operator in the
quadratic term. Note that this complements the work of [140], where the mismatch
appears on the second linear operator. This analysis is then extended to the projected
form of the CV algorithm proposed by Briceño-Arias and López [35]. In section 5.3, we
perform an analysis of the LV algorithm in the case of an adjoint mismatch on the linear
operator involved in the quadratic term. In section 5.4, we analyze the CP algorithm
when the adjoints of both linear operators are changed. Finally, in section 5.5, we
illustrate our theoretical findings on examples involving two different inverse problems
in CT reconstruction, with two types of regularization and noise modeling.
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5.2 The mismatched Condat-Vũ Algorithm

5.2.1 Algorithm

Let H ∈ B(H,G), D ∈ B(H,L), f ∈ Γ0(H), and g ∈ Γ0(L). Given y ∈ G, we are now
interested in solving the following problem

minimize
x∈H

1

2
∥y −Hx∥2G + f(x) + g(Dx). (5.1)

As we have seen in Chapter 3 (subsection 3.3.3), the CV algorithm (5.6) can solve (5.1).
It is derived from a preconditioned form of the forward-backward algorithm of the form,
for every n ∈ N,

0 ∈ Azn+ 1
2
+Bzn + P (zn+ 1

2
− zn), (5.2)

where zn = (xn, un) ∈ Z = H×L, zn+ 1
2
= (xn+ 1

2
, un+ 1

2
) ∈ Z and

(∀z = (x, u) ∈ Z) Az =

(
∂f(x) +D∗u
−Dx+ ∂g∗(u)

)
(5.3)

Bz =

(
H∗Hx−H∗y

0

)
. (5.4)

The preconditioning metric P is defined as

(∀z = (x, u) ∈ Z) Pz =

(
1
τ x−D∗u
−Dx+ 1

σu

)
, (5.5)

where τ and σ are two positive real parameters.
We recall that a CV iteration is obtained by rewriting (5.2) as

CV iterations:

for n = 0, 1, . . .


xn+ 1

2
= proxτf (xn − τ(H∗(Hxn − y) +D∗un))

un+ 1
2
= proxσg∗

(
un + σD(2xn+ 1

2
− xn)

)
xn+1 = xn +Θn(xn+ 1

2
− xn)

un+1 = un +Θn(un+ 1
2
− un).

(5.6)

with initialization x0 ∈ H and u0 ∈ L.
In this section, we study the impact of replacing the operator H∗ in the n-th iteration
of the CV algorithm by a surrogate operator Kn ∈ B(G,H).
This yields:

Mismatched CV iterations:

for n = 0, 1, . . .


xn+ 1

2
= proxτf (xn − τ(Kn(Hxn − y) +D∗un))

un+ 1
2
= proxσg∗

(
un + σD(2xn+ 1

2
− xn)

)
xn+1 = xn +Θn(xn+ 1

2
− xn)

un+1 = un +Θn(un+ 1
2
− un),

(5.7)

where {Θn}n∈N is a sequence of relaxation parameters.
As in Chapter 4, we suppose that the sequence of surrogates (Kn)n∈N is related to a
constant linear operator K ∈ B(G,H) through Assumption 4.2.0.1(iii).
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5.2.2 Adaptation of previous results

To perform the convergence analysis of (5.7), we introduce notation involved in charac-
terizing the spectra of the linear operators of the cost function.

Notation 5.2.2.1 For every n ∈ N,

(i) L = KH

(ii) λmin = inf {⟨x, Lx⟩H | x ∈ H, ∥x∥H = 1}

(iii) L̃ = ΠL, L̃n = ΠKnH, K̃ = ΠK, and K̃n = ΠKn, with Π: Z → Z : (x, u) 7→ (x, 0).

(iv) Tn : Z → Z : z 7→ JP−1A

(
z − P−1

(
L̃nz − K̃ny

))
and

T : Z → Z : z 7→ JP−1A

(
z − P−1

(
L̃z − K̃y

))
.

Under this notation, Algorithm (5.7) can be rewritten more concisely with a simple
update rule on the pair zn = (xn, un):

(∀n ∈ N) zn+1 = zn +Θn (Tn (zn)− zn) . (5.8)

We introduce the Hilbert space ZP obtained by equipping Z with the inner product
⟨·, ·⟩P : (z, z′) 7→ ⟨z, z′⟩P = ⟨z, Pz′⟩Z . In the case of CV, operators P−1A and P−1B
are maximally monotone [16, Proposition 20.24] and cocoercive [66, Theorem 3.1] in
ZP , respectively. (5.8) can be viewed as a mismatched form of the forward-backward
algorithm for finding a zero of a sum of maximally monotone operators in ZP . Similar to
our analysis in Chapter 4, we rely on the cocoercivity properties of operator L̃ to study
the convergence of (5.8).

Proposition 5.2.2.2 Assume that (τ, σ) ∈]0,+∞[2 are such that τσ∥D∥2H,L < 1. We
have the following properties.

(i) P−1L̃ is cocoercive in ZP if and only if L is cocoercive.

(ii) Suppose that Ran(L+L∗) is closed. Then P−1L̃ is cocoercive in ZP with constant
η̃ > 0 if and only if λmin ⩾ 0, Ker(L+ L∗) = KerL, and

η̃ ⩽ η̃max =
2

∥P−1/2ΠM∥2H,Z
, (5.9)

where
M = (IdH + (L− L∗)(L+ L∗)†)(L+ L∗)1/2. (5.10)

In addition,
η̃max ⩾ τ−1(1− τσ∥D∥2H,L)ηmax (5.11)

where ηmax = 2/∥M∥2H,H is the largest cocoercivity constant of L.

Proof:

(i) P−1L̃ is cocoercive in ZP if and only if there exists η̃ > 0 such that, for every
z ∈ Z,

(∀z ∈ Z) ⟨z, P−1L̃z⟩ZP
⩾ η̃∥P−1L̃z∥2ZP

⇔ (∀z′ ∈ Z) ⟨z′, P−1/2L̃P−1/2z′⟩Z ⩾ η̃∥P−1/2L̃P−1/2z′∥2Z . (5.12)
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Therefore P−1L̃ is cocoercive in ZP if and only if P−1/2L̃P−1/2 is cocoercive
in Z. In turn, it follows from [16, Proposition 4.12] that, if L̃ is cocoercive,
then P−1/2L̃P−1/2 is cocoercive. Conversely, if P−1/2L̃P−1/2 is cocoercive, then
P 1/2(P−1/2L̃P−1/2)P 1/2 = L̃ is cocoercive, that is

(∀z ∈ Z) ⟨z, L̃z⟩Z ⩾ η∥L̃z∥2Z
⇔ (∀x ∈ H) ⟨x, Lx⟩H ⩾ η∥Lx∥2H, (5.13)

for some η > 0.

(ii) Let L̃∗
P denote the adjoint of P−1L̃ in ZP and let

λ̃min = inf
{
⟨z, P−1L̃z⟩ZP

| z ∈ ZP , ∥z∥ZP
= 1
}
. (5.14)

According to Proposition 4.3.1.2(ii), provided that Ran(P−1L̃+L̃∗
P ) is closed, P−1L̃

is cocoercive in ZP with constant η̃ if and only if λ̃min ⩾ 0, Ker(P−1L̃ + L̃∗
P ) =

Ker(P−1L̃), and

η̃ ⩽
2

∥(IdZ + (P−1L̃− L̃∗
P )(P

−1L̃+ L̃∗
P )

†)(P−1L̃+ L̃∗
P )

1/2∥2ZP ,ZP

. (5.15)

Since L̃∗
P = P−1L̃∗, Ker(P−1L̃ + L̃∗

P ) = Ker(L̃ + L̃∗) = Ker(L + L∗) × L and,
similarly, Ker(P−1L̃) = KerL × L. Theqrefore Ker(P−1L̃ + L̃∗

P ) = Ker(P−1L̃) if
and only if Ker(L+L∗) = KerL. Similarly, Ran(P−1L̃+L̃∗

P ) = P−1Ran(L̃+L̃∗) =

P−1(Ran(L+L∗)×{0}). Thus, Ran(P−1L̃+L̃∗
P ) is closed if and only if Ran(L+L∗)

is closed.

For every z = (x, u) ∈ Z,

⟨z, P−1L̃z⟩ZP
⩾ λ̃min∥z∥2ZP

⇔ ⟨z, L̃z⟩Z ⩾ λ̃min∥z∥2ZP

⇔ ⟨x, Lx⟩H ⩾ λ̃min∥(x, u)∥2ZP
. (5.16)

So, λ̃min ⩾ 0 if and only if, for every x ∈ H, ⟨x, Lx⟩H ⩾ 0, that is λmin ⩾ 0. In
addition, when condition λmin ⩾ 0 is met, λ̃min = 0.

Since ∥ · ∥ZP ,ZP
= ∥P 1/2 · P−1/2∥Z,Z , we have

∥(IdZ + (P−1L̃− L̃∗
P )(P

−1L̃+ L̃∗
P )

†)(P−1L̃+ L̃∗
P )

1/2∥2ZP ,ZP

= ∥(IdZ + (P−1L̃− L̃∗
P )(P

−1L̃+ L̃∗
P )

†)(P−1L̃+ L̃∗
P )(IdZ+

(P−1L̃+ L̃∗
P )

†(L̃∗
P − P−1L̃)∥ZP ,ZP

= ∥P 1/2(IdZ + P−1(L̃− L̃∗)(L̃+ L̃∗)†P )P−1(L̃+ L̃∗)(IdZ+

(L̃+ L̃∗)†PP−1(L̃∗ − L̃))P−1/2∥Z,Z

= ∥P−1/2(IdZ + (L̃− L̃∗)(L̃+ L̃∗)†)(L̃+ L̃∗)(IdZ + (L̃+ L̃∗)†(L̃∗ − L̃))P−1/2∥Z,Z

= ∥P−1/2(IdZ + (L̃− L̃∗)(L̃+ L̃∗)†)(L̃+ L̃∗)1/2∥2Z,Z .

By using the specific form of L̃, we deduce that

∥(IdZ + (P−1L̃− L̃∗
P )(P

−1L̃+ L̃∗
P )

†)(P−1L̃+ L̃∗
P )

1/2∥2ZP ,ZP
= ∥P−1/2ΠM∥2H,Z .

(5.17)
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Altogether with (5.15), this yields (5.9).

In addition,

∥P−1/2ΠM∥H,Z ⩽ ∥P−1/2Π∥Z,Z∥M∥H,H = ∥P−1/2Π∥Z,Z

√
2

ηmax
, (5.18)

where

∥P−1/2Π∥Z,Z = ∥Π∗P−1/2∥Z,Z = ∥ΠP−1/2∥Z,Z

= sup
z′∈Z\{0}

∥ΠP−1/2z′∥Z
∥z′∥Z

= sup
z=(x,u)∈Z\{0}

∥x∥H√
⟨z, Pz⟩Z

. (5.19)

For every z = (x, u) ∈ Z,

⟨z, Pz⟩Z =
1

τ
∥x∥2H − 2⟨Dx, u⟩L +

1

σ
∥u∥2L

=
1

τ
∥x∥2H +

1

σ
∥u− σDx∥2L − σ∥Dx∥2L

⩾
1

τ
(1− τσ∥D∥2H,L)∥x∥2H. (5.20)

We deduce from (5.19) and (5.20) that

∥P−1/2Π∥2Z,Z ⩽
τ

1− τσ∥D∥2H,L
, (5.21)

which, combined with (5.18), yields (5.11).

The following results provide a characterization of the fixed point set of T .

Proposition 5.2.2.3 Let (x̃, ũ) ∈ Z. Then (x̃, ũ) ∈ Fix
(
T
)

if and only if (x̃, ũ) belongs
to

F =
{
(x, u) ∈ Z | Ky ∈ ∂f(x) + Lx+D∗u, u ∈ ∂g(Dx)

}
, (5.22)

which is nonempty if L+ ∂f +D∗ ◦ ∂g ◦D is surjective.

(i) If λmin ⩾ 0, then F is closed and convex.

(ii) Let F1 = {x ∈ H | (∃u ∈ L) (x, u) ∈ F}.
F1 has at most one element if one of the following conditions holds:

(a) L+ ∂f +D∗ ◦ ∂g ◦D is strictly monotone.

(b) λmin ⩾ 0 and g ◦D + f is strictly convex.

F1 is a singleton if
0 ∈ sri (D(dom f)− dom g) . (5.23)

is satisfied and one of the following conditions holds:

(c) λmin ⩾ 0 and L+ ∂f +D∗ ◦ ∂g ◦D is strongly monotone.

(d) λmin > 0.
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(e) λmin ⩾ 0, and f is strongly convex or [g is strongly convex and D∗D is strongly
positive].

(f) L is cocoercive, and f is strongly convex or [g is strongly convex and D∗D is
strongly positive].

Proof:

z̃ = (x̃, ũ) ∈ FixT ⇔ z̃ = T z̃

⇔ 0 ∈ P−1
(
L̃z̃ − K̃y

)
+ P−1Az̃

⇔ Ky ∈ ∂f(x̃) + Lx̃+D∗ũ, Dx̃ ∈ ∂g∗(ũ),

that is z̃ ∈ F . In addition,

(∃ũ ∈ L)

{
Ky ∈ ∂f(x̃) + Lx̃+D∗ũ

Dx̃ ∈ ∂g∗(ũ)
⇔ Ky ∈ ∂f(x̃) + Lx̃+D∗∂g(Dx̃), (5.24)

and the latter condition is satisfied if ∂f + L+D∗ ◦ ∂g ◦D is surjective.

(i) If λmin ⩾ 0, then, for every z = (x, u) ∈ Z, ⟨L̃z, z⟩Z = ⟨Lx, x⟩H ⩾ 0 and, since
L̃ is continuous, L̃ is maximally monotone on Z. Operator A being maximally
monotone, by [16, Proposition 23.39], we conclude that F = zer(L̃ − K̃y + A) is
closed and convex.

(ii) According to (5.24), F1 = zer(L−Ky + ∂f +D∗ ◦ ∂g ◦D).

(a) Follows from [16, Proposition 23.35].

(b) From standard subdifferential calculus rules, F1 ⊂ zer(L−Ky+∂(f+g◦D)).
λmin ⩾ 0 ⇔ L+L∗ positive ⇔ L is monotone. In addition, f+g ◦D is strictly
convex if and only if ∂(f +g ◦D) is strictly monotone. Thus, under the stated
condition, L −Ky + ∂(f + g ◦D) is strictly monotone, and F1 has at most
one element.

(c) Since (5.23) holds, it follows from [16, Theorem 16.47] that ∂f+D∗ ◦∂g ◦D =
∂(f + g ◦D) is maximally monotone. Since L is maximally monotone and has
a full domain, L + ∂f +D∗ ◦ ∂g ◦D is thus maximally monotone. Then we
deduce the result from [16, Proposition 23.37].

(d) If λmin > 0, L is strongly monotone and (c) is satisfied.

(e) If g is ρG-strongly convex with ρG > 0, there exists h ∈ Γ0(L) such that
g = h + ρG∥ · ∥2L/2 and D∗ ◦ ∂g ◦ D = D∗ ◦ ∂h ◦ D + ρGD

∗D is strongly
monotone as D∗D is strongly positive. If f is strongly convex, then ∂f is
strongly monotone. The result then follows from (c).

(f) Since L is cocoercive, from Lemma 4.3.1.1(i) λmin ⩾ 0 and the result follows
from (e).

We now focus on the averagedness properties of operator T .

Lemma 5.2.2.4 Let η̃ ∈]12 ,+∞[, α =
1

2− 1
2η̃

, and W = IdZP
− P−1L̃. Then, if P−1L̃

is η̃-cocoercive in ZP , then T is α-averaged in ZP .
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Proof: If P−1L̃ is η̃-cocoercive in ZP and η̃ > 1/2, according to [16, Proposition 4.39],
W is 1

2η̃ -averaged in ZP . Similarly to the proof of Lemma 4.3.3.4, we deduce that

(∀z ∈ ZP ) ∥Wz − 2 (1− α) z∥ZP
+ ∥Wz∥ZP

⩽ 2α∥z∥ZP
. (5.25)

Since P−1A is maximally monotone on ZP , then JP−1A is firmly nonexpansive [16, Corol-
lary 23.9]. Finally, it follows from (5.25) and [60, Theorem 3.8], that T = JP−1A(W ·
+P−1K̃y) is α-averaged.

The following theorem provides conditions under which iteration (5.7) converges to a
fixed point of T .

Theorem 5.2.2.5 Let (τ, σ) ∈]0,+∞[2 be such that τσ∥D∥2H,L < 1. Assume that η̃ ∈
]1/2,+∞[ is a cocoercivity constant of P−1L̃ in ZP . For δ = 2− 1/(2η̃), let {Θn}n∈N ⊂
[0, δ] be a sequence such that

∑
n∈N

Θn (δ −Θn) = +∞, and suppose that F ̸= ∅. Then the

sequence ((xn, un))n∈N given by (5.7) converges weakly to some point in F .

Proof: Let z0 = r0 ∈ Z, let (zn)n⩾1 be given by (5.8), and let (rn)n⩾1 be defined as

(∀n ∈ N) rn+1 = rn +Θn

(
T (rn)− rn

)
. (5.26)

By applying Lemma 5.2.2.4, operator T is α-averaged in ZP with α = 1/(2− 1
2η̃ ). Thus,

the sequence (rn)n∈N converges weakly to some r ∈ Fix
(
T
)

[16, Proposition 5.16], which
implies that ϱ = supn∈N ∥rn∥ZP

< +∞.
For every n ∈ N, let us bound zn+1 − rn+1 as follows

∥zn+1 − rn+1∥ZP
=
∥∥zn − rn +Θn (rn − zn) + Θn

(
Tn(zn)− T (rn)

)∥∥
ZP

⩽
∥∥zn − rn +Θn

(
T (zn)− T (rn)− zn + rn

)∥∥
ZP

+Θn

∥∥Tn(zn)− T (zn)
∥∥
ZP

.

(5.27)

T being α-averaged in ZP , there exist a nonexpansive operator W : ZP → ZP such that
T = (1− α)Id + αW . Since {Θn}n∈N ⊂ [0, 1/α], we have

∥zn − rn +Θn(T (zn)− T (rn)− zn + rn))∥ZP
= ∥ (1− αΘn) (zn − rn) + αΘn (W (zn)−W (rn)) ∥ZP

⩽ (1− αΘn) ∥zn − rn∥ZP
+ αΘn∥W (zn)−W (rn)∥ZP

⩽ ∥zn − rn∥ZP
. (5.28)

Since JP−1A is firmly nonexpansive in ZP , for every z ∈ Z,∥∥Tn(z)− T (z)
∥∥
ZP

⩽ ∥P−1(L̃nz − K̃ny − L̃z + K̃y)∥ZP

⩽ ∥P−1(L̃n − L̃)z∥ZP
+ ∥P−1(K̃n − K̃)y∥ZP

⩽ ∥P−1(L̃n − L̃)∥ZP ,ZP
∥z∥ZP

+ ∥P−1(K̃n − K̃)∥ZP ,ZP
∥y∥ZP

= ∥P−1/2(L̃n − L̃)P−1/2∥Z,Z∥z∥ZP
+ ∥P−1/2(K̃n − K̃)P−1/2∥Z,Z∥y∥ZP

⩽ ∥P−1∥Z,Z(∥L̃n − L̃∥Z,Z∥z∥ZP
+ ∥K̃n − K̃∥Z,Z∥y∥ZP

)

= ∥P−1∥Z,Z(∥Ln − L∥H,H∥z∥ZP
+ ∥Kn −K∥G,H∥y∥ZP

)

= ∥P−1∥Z,Z(∥(Kn −K)H∥H,H∥z∥ZP
+ ∥Kn −K∥G,H∥y∥ZP

)

⩽ ∥P−1∥Z,Z(∥H∥H,G∥z∥ZP
+ ∥y∥ZP

)∥Kn −K∥G,H
⩽ ∥P−1∥Z,Z(∥H∥H,G∥z∥ZP

+ ∥y∥ZP
)ωn, (5.29)
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where the last inequality follows from Assumption 4.2.0.1(iii). Altogether (5.27), (5.28),
and (5.29) yield, for every n ∈ N,

∥zn+1 − rn+1∥ZP
⩽ ∥zn − rn∥ZP

+Θn∥P−1∥Z,Z(∥H∥H,G∥zn∥ZP
+ ∥y∥ZP

)ωn

⩽ ∥zn − rn∥ZP
+Θn∥P−1∥Z,Z

(
∥H∥H,G(∥zn − rn∥ZP

+ ∥rn∥ZP

)
+ ∥y∥ZP

)ωn

⩽ (1 + µn)∥zn − rn∥ZP
+ νn (5.30)

with

µn = δ∥P−1∥Z,Z∥H∥H,G ωn (5.31)

νn = δ∥P−1∥Z,Z(ϱ∥H∥H,G + ∥y∥ZP
)ωn. (5.32)

Since (µn) ∈ ℓ1+ and (νn) ∈ ℓ1+, according to [16, Lemma 5.31], ∥zn − rn∥ZP
< +∞.

Consequently, δ′ = supn∈N ∥zn∥ZP
< ϱ+ supn∈N ∥zn − rn∥ZP

< +∞.
Let us define

(∀n ∈ N) en =
Tn(zn)− T (zn)

α
, (5.33)

and it follows from (5.29) that

∑
n∈N

∥en∥ZP
⩽

∥P−1∥Z,Z
α

(∥H∥H,Gδ
′ + ∥y∥ZP

)
∑
n∈N

ωn < +∞. (5.34)

Algorithm (5.8) can be re-expressed as

(∀n ∈ N) zn+1 = zn +Θ′
n (Qzn + en − zn) with Θ′

n = αΘn ∈]0, 1[. (5.35)

Therefore, the weak convergence of (zn)n∈N to some z̃ ∈ Fix(Q) = Fix
(
T
)
= F follows

from [16, Theorem 5.5].
We deduce the following more restrictive convergence result which is an extension of
standard convergence results for CV.

Corollary 5.2.2.6 Assume that Ran(L + L∗) is closed, λmin ⩾ 0, and Ker(L + L∗) =
KerL. Let (τ, σ) ∈]0,+∞[2 be such that τ−1−σ∥D∥2H,L > ∥M∥2H,H/4, where M is given
by (5.10). For

δ = 2− 1

4

(1
τ
− σ∥D∥2H,L

)−1
∥M∥2H,H, (5.36)

let {Θn}n∈N ⊂ [0, δ] be a sequence such that
∑
n∈N

Θn (δ −Θn) = +∞, and suppose that

F ≠ ∅. Then the sequence ((xn, un))n∈N given by (5.7) converges weakly to some point
in F .

Proof: Note that, if τ−1 − σ∥D∥2H,L > ∥M∥2H,H/4, then τσ∥D∥2H,L < 1. In addition,
it follows from Proposition 5.2.2.2 that, when Ran(L + L∗) is closed, λmin ⩾ 0, and
Ker(L+ L∗) = KerL, P−1L̃ is η̃ -cocoercive in ZP with

η̃ = τ−1(1− τσ∥D∥2H,L)ηmax (5.37)

and ηmax = 2/∥M∥2H,H. The result then follows by applying Theorem 5.2.2.5.
We now provide an estimate of the distance between a Kuhn-Tucker pair (x̂, û) of the
original optimization problem and a fixed point (x̃, ũ) of T .
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Proposition 5.2.2.7 Assume that (5.23) holds and L is a cocoercive operator.
If f + g ◦D is strongly convex with modulus ρ > 0, then there exists a unique vector x̃
in F1 and a unique solution x̂ to the primal problem (5.1), and we have

∥x̃− x̂∥H ⩽
1

ρ

∥∥(K −H∗) (Hx̂− y)
∥∥
H . (5.38)

In addition, if g is β-Lipschitz differentiable with β ∈ [0,+∞[, there exists a unique
(x̃, ũ) ∈ F and a unique solution û to the dual problem, and we have

∥ũ− û∥L ⩽
β

ρ
∥D∥H,L

∥∥(K −H∗) (Hx̂− y)
∥∥
H . (5.39)

Proof: Since (5.23) is satisfied, ∂f + D∗ ◦ ∂g ◦ D = ∂(f + g ◦ D) [16, Theorem 16.47
(i)]. As we have assumed that f + g ◦ D is ρ-strongly convex and L is cocoercive,
L + ∂f +D∗ ◦ ∂g ◦D is strongly monotone. It follows from Proposition 5.2.2.3(c) that
there exists a single element x̃ in F1 which is such that

Ky ∈ Lx̃+ ∂f(x̃) +D∗∂g(Dx̃). (5.40)

For any γ > 0, (5.40) is equivalent to

x̃ = proxγ(f+g◦D)

(
x̃− γK(Hx̃− y)

)
. (5.41)

For similar reasons, there exists a unique solution x̂ to the primal problem, which satisfies
the fixed point equation

x̂ = proxγ(f+g◦D)

(
x̂− γH∗(Hx̂− y)

)
. (5.42)

Because of the ρ-strong convexity of f + g ◦D, proxγ(f+g◦D) is (1 + γρ)−1-Lipschitzian.
The error bound in (5.38) is thus derived by the same arguments as in the proof of
Theorem 4.3.3.1.
In addition, if g is Gâteaux differentiable, there exists a unique ũ ∈ L such that (x̃, ũ) ∈ F ,
which is given by

ũ = ∇g(Dx̃), (5.43)

where ∇g is the gradient of g. Similarly, there exists a unique solution û to the dual
problem, given by

û = ∇g(Dx̂). (5.44)

By using the fact that ∇g is β-Lipschitzian, we deduce that

∥ũ− û∥L ⩽ β∥D(x̃− x̂)∥L
⩽ β∥D∥H,L∥x̃− x̂∥H. (5.45)

The upper error bound in (5.39) then follows from (5.38).
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5.2.3 Remarks on the mismatched projected Condat-Vũ algorithm

When a constraint is added to primal problem (5.1), the latter becomes

Find x̂ ∈ C ∩ argmin
x∈H

1

2
∥Hx− y∥2G + f(x) + g(Dx), (5.46)

where C is a closed and convex nonempty subset of H. The dual problem reads

Find û ∈ E ∩ argmin
u∈L

(f + h)∗(−D∗u) + g∗(u), (5.47)

where E is a closed vector subspace of L such that ranD ⊂ E. Such a problem can be
solved by the projected form of CV proposed by Briceño-Arias and López in [35]. We
are interested in a mismatched form of this algorithm with a fixed operator K: Given
(x0, u0) ∈ Z and (τ, σ) ∈]0,+∞[2,

Projected mismatched primal-dual algorithm:

for n = 0, 1, . . .


pn = proxτf

(
xn − τ

(
K (Hxn − y) +D∗un

))
xn+1 = projC(pn)
xn = xn+1 + pn − xn
qn = proxσg∗ (un + σDxn)

un+1 = projE (qn)

. (5.48)

In particular, if K = H∗, C = H, and E = L, we recover the CV Iteration (5.6) in the
case when, for every n ∈ N, Θn = 1.
Then we obtain the following convergence result for the same L and F .

Proposition 5.2.3.1 Assume that Ran(L+L∗) is closed, λmin ⩾ 0, and Ker(L+L∗) =
KerL. Let (τ, σ) ∈]0,+∞[2 be such that τ−1−σ∥D∥2H,L > ∥M∥2H,H/4, where M is given
by (5.10). Suppose that F ∩ (C × E) ̸= ∅. Then the sequence ((xn, un))n∈N generated
by (5.48) converges weakly to some point in F ∩ (C ×E). In addition (pn − xn)n∈N and
(qn − un)n∈N converge strongly to 0.

Proof: On the one hand, under the assumptions made on L, we have seen that x 7→
K(Hx−y) is ηmax-cocoercive with ηmax = 2/∥M∥2H,H. On the other hand, [35, Theorem
3.2 (ii)] guarantees the weak convergence of ((xn, un))n∈N under the condition

∥D∥2H,L <
1

σ

(
1

τ
− 1

2ηmax

)
. (5.49)

The strong convergence properties of (pn − xn)n∈N and (qn − un)n∈N are also stated in
the proof of [35, Theorem 3.2].
Note that the error related to the mismatch can still be quantified by Proposition 5.2.2.7.
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5.3 The mismatched Loris-Verhoeven algorithm

In this section, we consider a specific instance of our original template (5.1) where f =
κ
2∥ · ∥2H with κ ∈]0,+∞[. This problem can be solved by the primal-dual algorithm
proposed by Loris and Verhoeven [143] shown in Chapter 3 (section 3.3).
Like the CV iterations, the LV iterations can be described by means of the implicit
inclusion (5.2) where A, B, and P are now given by

(∀z = (x, u) ∈ Z) Az =

(
D∗u

−Dx+ ∂g∗(u)

)
(5.50)

Bz =

(
(H∗H + κ IdH)x−H∗y

0

)
(5.51)

Pz =

(
1
τ x

( 1σ IdL−τDD∗)u

)
(5.52)

with (τ, σ) ∈]0,+∞[2. In detail, the LV iterations take the form

LV iterations:

for n = 0, 1, . . .


tn = H∗ (Hxn − y) + κxn

un+ 1
2
= proxσg∗

(
un + σD

(
xn − τ(tn +D∗un)

))
xn+1 = xn −Θnτ

(
tn +D∗un+ 1

2

)
un+1 = un +Θn

(
un+ 1

2
− un

) (5.53)

where {Θn}n∈N is a sequence of relaxation parameters and (x0, u0) ∈ Z.
When, at iteration n ∈ N, H∗ is replaced by an operator Kn ∈ B(H,G) satisfying
Assumption 4.2.0.1(iii), the mismatched form of LV algorithm reads

Mismatched LV iterations:

for n = 0, 1, . . .


tn = Kn (Hxn − y) + κxn

un+ 1
2
= proxσg∗

(
un + σD

(
xn − τ(tn +D∗un)

))
xn+1 = xn −Θnτ

(
tn +D∗un+ 1

2

)
un+1 = un +Θn

(
un+ 1

2
− un

) (5.54)

This iteration can be reexpressed as (5.8) where Notation 5.2.2.1(ii)-(iv) holds, but L is
now defined as

L = KH + κIdH. (5.55)

It follows that all the results in subsection 5.2.2 can be extended to the mismatched LV
algorithm.
Proposition 5.3.0.1 is a straightforward adaptation of Proposition 5.2.2.3 to characterize
the fixed point set of the nonlinear mapping T (see Notation 5.2.2.1(iv)).

Proposition 5.3.0.1 Let (x̃, ũ) ∈ Z. Then (x̃, ũ) ∈ Fix
(
T
)

if and only if (x̃, ũ) belongs
to

F =
{
(x, u) ∈ Z | Ky ∈ Lx+D∗u, u ∈ ∂g(Dx)

}
, (5.56)

which is nonempty if L+D∗ ◦ ∂g ◦D is surjective.

(i) If λmin ⩾ 0, then F is closed and convex.
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(ii) Let F1 = {x ∈ H | (∃u ∈ L) (x, u) ∈ F}.
F1 has at most one element if one of the following conditions holds:

(a) L+D∗ ◦ ∂g ◦D is strictly monotone.

(b) λmin ⩾ 0 and g ◦D is strictly convex.

F1 is a singleton if (5.23) is satisfied and one of the following conditions holds:

(c) λmin ⩾ 0 and L+D∗ ◦ ∂g ◦D is strongly monotone.

(d) λmin > 0.

(e) λmin ⩾ 0, g is strongly convex, and D∗D is strongly positive.

(f) L is cocoercive, g is strongly convex, and D∗D is strongly positive.

Similarly, we derive an equivalent of Corollary 5.2.2.6 concerning the convergence of the
mismatched LV.

Proposition 5.3.0.2 Assume that Ran(L+L∗) is closed, λmin ⩾ 0, and Ker(L+L∗) =
KerL. Let (τ, σ) ∈]0,+∞[2 be such that τ < 4/∥M∥2H,H and τσ∥D∥2H,L < 1, where M
is given by (5.10). For

δ = 2− τ

4
∥M∥2H,H, (5.57)

let {Θn}n∈N ⊂ [0, δ] be a sequence such that
∑
n∈N

Θn (δ −Θn) = +∞, and suppose that

F ̸= ∅. Then the sequence ((xn, un))n∈N given by (5.54) converges weakly to some point
in F .

Proof: The result from Proposition 5.2.2.2 stating that, when Ran(L + L∗) is closed,
λmin ⩾ 0, and Ker(L + L∗) = KerL, P−1L̃ is cocoercive in ZP with constant η̃max =
2/∥P−1/2ΠM∥2H,Z still holds for LV algorithm. We also have

η̃max ⩾
2

∥P−1/2Π∥2H,Z∥M∥2H,H
=

2

τ∥M∥2H,H
= η̃, (5.58)

which shows that P−1L̃ is η̃-cocoercive in ZP . The result then follows from Theo-
rem 5.2.2.5, which remains valid in this context.

Remark 5.3.0.3 When there is no mismatch, M =
√
2(H∗H+κ IdH)

1/2 and we recover
the conditions derived in [143, Theorem 3.1], [68, Theorem 3.1] for the convergence of
sequences (xn)n∈N and (un)n∈N generated by (5.53).

Similarly to Proposition 5.2.2.7, we provide an estimate of the distance between a Kuhn-
Tucker pair (x̂, û) of the original problem and a fixed point (x̃, ũ) of T .

Proposition 5.3.0.4 Assume that 0 ∈ sri (Ran(D)− dom(g)) and L, given in (5.55), is
a cocoercive operator.
Let ρ ∈]0,+∞[. If κ ⩾ ρ or g ◦D is strongly convex with modulus ρ, then there exists a
unique vector x̃ in F1, defined in Proposition 5.3.0.1(ii), and a unique solution x̂ to the
primal problem (5.1). Moreover, inequality (5.38) holds.
In addition, if g is β-Lipschitz differentiable with β ∈ [0,+∞[, there exists a unique
(x̃, ũ) ∈ F , defined in (5.56), and a unique solution û to the dual problem. Finally,
inequality (5.39) is satisfied.
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5.4 The mismatched Combettes-Pesquet algorithm

5.4.1 Algorithm

The last algorithm explored in this chapter is the Combettes - Pesquet algorithm, which
relies on Tseng’s splitting to solve (5.1). We recall that CP iterations read

CP-iterations for (5.1):

for n = 0, 1, . . .



v1,n = xn − γ (H∗(Hxn − y) +D∗un)
p1,n = proxγf (v1,n)

v2,n = un + γDxn
p2,n = proxγg∗(v2,n)

q2,n = p2,n + γDp1,n
q1,n = p1,n − γ (H∗(Hp1,n − y) +D∗p2,n)
xn+1 = xn − v1,n + q1,n
un+1 = un − v2,n + q2,n,

(5.59)

where γ > 0 and (x0, u0) ∈ Z. By setting, for every n ∈ N,

zn = (xn, un) , vn = (v1,n, v2,n) , pn = (p1,n, p2,n) , and qn = (q1,n, q2,n) , (5.60)

(5.59) can be rewritten as

Tseng iterations:

for n = 0, 1, . . .


vn = zn − γQ(zn)
pn = JγM (vn)
qn = pn − γQ(pn)
zn+1 = zn − vn + qn,

(5.61)

with

M : Z → 2Z : (x, u) 7→ (∂f(x), ∂g∗(u)) (5.62)
Q : Z → Z : (x, u) 7→ (H∗Hx+D∗u−H∗y,−Dx) . (5.63)

For Algorithm (5.59), we consider a mismatched form obtained by substituting a fixed
operator K ∈ B(G,H) for H∗ as well as an operator V ∗ ∈ B(L,H) for D∗. This leads to:

Mismatched CP-iterations:

for n = 0, 1, . . .



v1,n = xn − γ
(
K(Hxn − y) + V ∗un

)
p1,n = proxγf (v1,n)

v2,n = un + γ(Dxn + εun)
p2,n = proxγg∗(v2,n)

q2,n = p2,n + γ(Dp1,n + εp2,n)

q1,n = p1,n − γ
(
K(Hp1,n − y) + V ∗p2,n

)
xn+1 = xn − v1,n + q1,n
un+1 = un − v2,n + q2,n,

(5.64)

where ε > 0 is an extra parameter. Note that there are two algorithmic modifications
other than the presence of mismatched adjoints in the update rules of variables v2,n and
q2,n.
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By making the change of variables (5.60), Algorithm (5.64) can be rewritten in the
product space Z, as

Tseng form of (5.64):

for n = 0, 1, . . .


vn = zn − γQ̃(zn)
pn = JγM (vn)

qn = pn − γQ̃(pn)
zn+1 = zn − vn + qn,

(5.65)

where
Q̃ : Z → Z : (x, u) 7→

(
Lx+ V ∗u−Ky,−Dx+ εu

)
(5.66)

and
L = KH, (5.67)

as in section 5.2.

5.4.2 Convergence analysis

5.4.2.1 Regularity of the surrogate gradient operator

We first provide some preliminary results on operator Q̃.

Proposition 5.4.2.1 Let λmin be defined in Notation 5.2.2.1 and

ελmin = λmin −
1

4ε
∥V −D∥2H,L, (5.68)

εϑ1 = max{∥L∥H,H, ε}+max{∥D∥H,L, ∥V ∥H,L}, (5.69)
εϑ2 =

√
∥L∥2H,H + ∥V ∥2H,L + ∥D∥2H,L + ε2, (5.70)

and εϑ = min{ εϑ1,
εϑ2}. We have the following properties:

(i) Q̃ is Lipschitz continuous with constant εϑ.

(ii) If ελmin ⩾ 0, then Q̃ is monotone.

(iii) If ελmin > 0, then Q̃ is strongly monotone and cocoercive.

Proof: Since Q̃ is an affine operator, its monotonicity, Lipschitz continuity, and cocoer-
civity properties are the same as those of the linear operator

Q = Q̃+ (Ky, 0). (5.71)

(i) On the one hand

∥Q∥Z,Z ⩽

∥∥∥∥[L 0
0 ε IdL

]∥∥∥∥
Z,Z

+

∥∥∥∥[ 0 V ∗

−D 0

]∥∥∥∥
Z,Z

⩽ max{∥L∥H,H, ε}+max{∥D∥H,L, ∥V ∥H,L} = εϑ1. (5.72)

On the other hand, for every z = (x, u) ∈ Z,

∥Qz∥2Z = ∥Lx+ V ∗u∥2H + ∥ −Dx+ εu∥2L
⩽ ∥LL∗ + V ∗V ∥H,H∥z∥2Z + ∥DD∗ + ε2 IdL ∥L,L∥z∥2Z
⩽ (∥L∥2H,H + ∥V ∥2H,L + ∥D∥2H,L + ε2)∥z∥2Z , (5.73)
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which implies that
∥Q∥Z,Z ⩽ εϑ2. (5.74)

In summary, Q, and thus Q̃, are Lipschitz continuous with constant ∥Q∥Z,Z ⩽ εϑ.

(ii) By using Cauchy-Schwarz inequality, for every z = (x, u) ∈ Z,〈
Qz, z

〉
Z = ⟨Lx, x⟩H + ε∥u∥2L + ⟨u, (V −D)x⟩L
⩾ λmin∥x∥2H + ε∥u∥2L − ∥u∥L∥(V −D)x∥L
⩾ λmin∥x∥2H + ε∥u∥2L − ∥V −D∥H,L∥u∥L∥x∥H

=
[
∥x∥H ∥u∥L

]
C

[
∥x∥H
∥u∥L

]
, (5.75)

where

C =

[
λmin −1

2∥V −D∥H,L
−1

2∥V −D∥H,L ε

]
. (5.76)

C is positive semidefinite if and only if{
tr(C) = λmin + ε ⩾ 0

det(C) = λminε− 1
4∥V −D∥2H,L ⩾ 0,

(5.77)

that is ελmin ⩾ 0. we deduce from (5.75) that, subject to this condition, Q and
thus Q̃ are monotone.

(iii) Assume now that ελmin > 0. Then C is positive definite and its smallest eigenvalue
is

ευ =
λmin + ε−

√
(λmin + ε)2 − 4 ελminε

2
> 0. (5.78)

It follows from (5.75) that Q is strongly monotone with constant ευ.
We have then, for every z ∈ Z,〈

Qz, z
〉
Z ⩾ ευ ∥z∥2Z ⩾ ευ

∥Qz∥2Z
∥Q∥2Z,Z

⩾
ευ

( εϑ)2
∥Qz∥2Z .

This shows that Q (and thus Q̃) is cocoercive with constant

εη =
ευ

( εϑ)2
. (5.79)

5.4.2.2 Characterization of the fixed points of the mismatched iterations

We now characterize the set of limit points.

Proposition 5.4.2.2 Let εg be the Moreau envelope of g of parameter ε > 0 defined as

(∀v ∈ L) εg(v) = inf
w∈L

g(w) +
1

2ε
∥w − v∥2L. (5.80)

Let (x̃, ũ) ∈ Z. Then (x̃, ũ) ∈ zer(M + Q̃) if and only if (x̃, ũ) belongs to

εF =

{
(x, u) ∈ Z | Ky ∈ ∂f(x) + Lx+ V ∗u, u = ∇ εg(Dx) =

Dx− proxεg(Dx)

ε

}
,

(5.81)
which is nonempty if L+ ∂f + V ∗ ◦ ∇ εg ◦D is surjective.
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(i) If ελmin defined by (5.68) is nonnegative, then εF is closed and convex.

(ii) Let εF1 = {x ∈ H | (x,∇ εg(Dx)) ∈ εF} and let

ελ1,min = λmin −
1

ε
∥V −D∥H,L∥D∥H,L ⩾ 0. (5.82)

εF1 has at most one element if one of the following conditions holds:

(a) L+ ∂f + V ∗ ◦ ∇ εg ◦D is strictly monotone.

(b) ελ1,min ⩾ 0 and εg ◦D + f is strictly convex.

F1 is a singleton if one of the following conditions holds:

(c) L+ ∂f + V ∗ ◦ ∇ εg ◦D is strongly monotone.

(d) ελ1,min > 0

(e) ελ1,min ⩾ 0, and f is strongly convex or [g∗ is Lipschitz-differentiable and
D∗D is strongly positive].

Proof: The proof follows the same lines as in the proof of Proposition 5.2.2.3. In the
following, we point out the main differences.
By using (5.10) and (5.66), we have

(x̃, ũ) ∈ zer(M + Q̃)

⇔

{
0 ∈ ∂f(x̃) + Lx̃+ V ∗ũ−Ky

0 ∈ ∂g∗(ũ)−Dx̃+ εũ.
(5.83)

We know that ( εg)∗ = g∗+ ε
2∥ · ∥

2 ⇒ ∂( εg)∗(ũ) = ∂g∗(ũ)+ εũ [16, Proposition 14.1] and
εg is differentiable with gradient ∇ εg = ε−1(IdL−proxεg) [16, Proposition 12.30]. We
thus deduce that

(x̃, ũ) ∈ zer(M + Q̃)

⇔

{
Ky ∈ ∂f(x̃) + Lx̃+ V ∗ũ

Dx̃ ∈ ∂( εg)∗(ũ)

⇔

{
Ky ∈ ∂f(x̃) + Lx̃+ V ∗ũ

ũ = ∇ εg(Dx̃).
(5.84)

This shows that (x̃, ũ) ∈ εF .

(i) According to Proposition 5.4.2.1(i)-(ii), if ελmin ⩾ 0, Q̃ is monotone and contin-
uous. Since M is maximally monotone, M + Q̃ is also maximally monotone and
zer(M + Q̃) is closed and convex.

(ii) We can perform the decomposition

L+ ∂f + V ∗ ◦ ∇ εg ◦D = ∂f +D∗ ◦ ∇ εg ◦D + L+ (V −D)∗ ◦ ∇ εg ◦D. (5.85)
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Subdifferential ∂f +D∗ ◦∇ εg ◦D = ∂(f + εg ◦D) is maximally monotone. Using
the Cauchy-Schwarz inequality, for every (x, x′) ∈ H2,

⟨L(x− x′), x− x′⟩H + ⟨(V −D)∗∇ εg(Dx)− (V −D)∗∇ εg(Dx′), x− x′⟩H
⩾ λmin∥x− x′∥2H −

∥∥(V −D)∗
(
∇ εg(Dx)−∇ εg(Dx′)

)∥∥
H∥x− x′∥H

⩾ λmin∥x− x′∥2H − ∥V −D∥H,L∥∇ εg(Dx)−∇ εg(Dx′)∥L∥x− x′∥H

⩾ λmin∥x− x′∥2H − 1

ε
∥V −D∥H,L∥D(x− x′)∥L∥x− x′∥H

⩾ ελ1,min∥x− x′∥2H, (5.86)

where we have used the ε−1-Lipschitz continuity of ∇ εg. This shows that L+(V −
D)∗ ◦ ∇ εg ◦ D is monotone, if ελ1,min ⩾ 0. In addition, it is strongly monotone
(hence, strictly monotone) if ελ1,min > 0. Since this operator is also continuous,
it is maximally monotone in both cases. The rest of the proof is similar to that
of Proposition 5.2.2.3, by noticing that εg is strongly convex ⇔ ( εg)∗ is Lipschitz-
differentiable ⇔ g∗ is Lipschitz-differentiable.

5.4.2.3 Convergence conditions and error bound

Conditions of convergence for our mismatched CP algorithm are deduced from this result.

Proposition 5.4.2.3 Let ελmin and εϑ be defined as in Proposition 5.4.2.1. Let γ ∈
]0, ( εϑ)−1[. Assume that zer(M + Q̃) ̸= ∅ and ελmin ⩾ 0. Then the sequences
((xn, un))n∈N and ((p1,n, p2,n))n∈N generated by Algorithm (5.64) converge weakly to
(x̃, ũ) ∈ zer(M + Q̃). In addition, if ελmin > 0, then ((xn, un))n∈N and ((p1,n, p2,n))n∈N
converge strongly to the unique zero of M + Q̃.

Proof: Under the considered assumptions, Q̃ is monotone and εϑ-Lipschitzian. Thus,
the result follows from standard conditions for the convergence of Tseng’s algorithm ap-
plied to (5.65). Then, if ελmin > 0, Q̃ is strongly monotone and the strong convergence
property follows from [16, Theorem 26.17 (iii)].

We now provide a bound on the distance between an optimal pair of solutions (x̂, û)
to Problem (5.1) and (x̃, ũ) ∈ εF .

Proposition 5.4.2.4 Let ελmin be defined by (5.68). Assume that ελmin > 0, f is
strongly convex with modulus ρ > 0, and g is Lipschitz-differentiable with constant
β > 0. Then, there exists a unique pair z̃ = (x̃, ũ) ∈ εF and a unique solution (x̂, û) to
the primal-dual problem. In addition,√

∥x̃− x̂∥2H + ∥ũ− û∥2L ⩽
1

µ

(
∥(K −H∗)(Hx̂− y)∥H +

√
∥V −D∥2H,L + ε2 ∥û∥L

)
,

(5.87)
where µ = min{ρ, 1/β}.

Proof: f is ρ-strongly convex and g is β-Lispchitz differentiable (i.e., g∗ is β−1-strongly
convex), ∂f and ∂g∗ are strongly monotone with constants ρ and 1/β, respectively. M
is thus strongly monotone with constant µ. Since Q is continuous and monotone, M +Q
is maximally monotone and strongly monotone. The existence of a unique zero ẑ to
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M +Q is thus guaranteed by [16, Corollary 23.37]. Similarly, it follows from Proposition
5.4.2.1(i) and Proposition 5.4.2.1(iii) that Q̃ is continuous and strongly monotone. Hence
M + Q̃ is maximally monotone and strongly monotone and zer(M + Q̃) is a singleton
{z̃}.
For every γ > 0,

ẑ ∈ zer(M +Q) ⇔ ẑ = JγM (ẑ − γQẑ) (5.88)

z̃ ∈ zer(M + Q̃) ⇔ z̃ = JγM (z̃ − γQ̃z̃) (5.89)

Since M is strongly monotone with constant µ, JγM is Lipschitz continuous with constant
1/(1 + γµ) [16, Proposition 23.13]. From (5.88) and (5.89), we deduce that

∥z̃ − ẑ∥Z ⩽
1

1 + γµ
∥z̃ − ẑ − γ(Q̃z̃ −Qẑ)∥Z

⩽
1

1 + γµ
∥(IdZ −γQ̃)(z̃ − ẑ)− γ(Q̃−Q)ẑ∥Z

⩽
1

1 + γµ

(
∥ IdZ −γQ̃∥Z,Z∥z̃ − ẑ∥Z + γ∥(Q̃−Q)ẑ∥Z

)
. (5.90)

According to Proposition 5.4.2.1(iii), Q̃ is cocoercive with constant εη given by (5.79).
Therefore, by assuming that γ ∈]0, εη], we have ∥ IdZ −γQ̃∥Z,Z ⩽ 1. We deduce from
(5.90) that

∥z̃ − ẑ∥Z ⩽
1

µ
∥(Q̃−Q)ẑ∥Z

=
1

µ

∥∥((K −H∗)(Hx̂− y) + (V −D)∗û, εû
)∥∥

Z

⩽
1

µ

(∥∥((K −H∗)(Hx̂− y), 0
)∥∥

Z +
∥∥((V −D)∗û, εû

)∥∥
Z
)

⩽
1

µ

(
∥(K −H∗)(Hx̂− y)∥H +

√
∥V −D∥2H,L + ε2 ∥û∥L

)
. (5.91)

Remark 5.4.2.5

(i) In the absence of mismatch on D∗ (i.e., V ∗ = D∗), one can choose ε = 0 in (5.64)
and (5.66). zer(M + Q̃) is then equal to the set F characterized in Proposition
5.2.2.3. If F ̸= ∅, λmin ⩾ 0, and γ ∈]0, ( 0ϑ)−1[, then the sequences ((xn, un))n∈N
and ((p1,n, p2,n))n∈N generated by Algorithm (5.64) converge weakly to (x̃, ũ) ∈ F .
Proposition 5.2.2.7 applies to evaluate the mismatch error.

(ii) When H = K = 0, it follows from [140, Theorem 1.2] that, if f is strongly convex
with constant ρ > 0, (x̃, ũ) ∈ εF and x̂ is the solution to the primal problem, then

∥x̃− x̂∥H ⩽
1

ρ
∥V −D∥H,L∥ũ∥L. (5.92)
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5.5 Application

This section illustrates our theoretical results applied to the resolution of 2D image
reconstruction problems. All the simulations presented in this section are performed
using the ASTRA Toolbox [218,219] in Matlab.

5.5.1 Example 1: reconstruction from few CT views

We aim at recovering an image x with N pixels, reshaped as a vector in the Euclidean
space H = RN . A set of noisy tomographic projections p ∈ G = RS of the original image
x is available, according to the following observation model:

p = Rx+ b (5.93)

where R ∈ RS×N is the FP, and b is an additive i.i.d. zero-mean Gaussian noise. R is
chosen as the line-length ray-driven projector [239]. A surrogate adjoint of R, denoted
by B ∈ RN×S , is the pixel-driven backprojector which is particularly suited for a GPU
implementation compared to the adjoint of R [88]. For (u, v) i.i.d. uniformly sampled
on ([0, 1]N )2, the average over 20 realizations of the ratio ⟨Ru | v⟩/⟨u | Bv⟩ is 1.005.
We aim to retrieve an estimate of x given p, the projector R, and its surrogate adjoint B.

5.5.1.1 Data

In model (5.93), x is an axial slice of an abdomen of size 41 cm whose values range
from 1000 sHU to 3000 sHU, containing intense inserts with pixel intensity ranges in
[3500, 4200] sHU (see Figure 5.2). The source-to-object distance is 800 mm, and the
source-to-image distance is 1200 mm. R describes a fan-beam geometry over 180° using
50 regularly spaced angular steps. The detector has a length of 40 cm. The bin grid is
twice up-sampled with respect to the pixel grid: the detector has 250 bins of size 1.6 mm
so that S = 250 × 250. The image is reconstructed on a grid of N = 160 × 160 pixels,
with size 2 × 1.6/1.5 = 2.13 mm. Data p is obtained after adding 1% relative Gaussian
noise on Rx. The inverse problem (5.93) is highly ill-posed because of the small detector
FOV and the limited angular density. This problem corresponds to a setup where the
detector is not large enough to measure the projections of large body parts such as the
abdomen. The set of pixels in the image whose projections belong to the detector FOV
defines an image FOV. Because of truncation, we estimate the exterior of the FOV so
that the FOV can be accurately reconstructed. The size of the reconstruction grid is
thus slightly larger than the support of the FOV.

5.5.1.2 Regularization

We provide an estimate of x by solving the following penalized least squares problem:

minimize
x∈RN

1

2
∥p−Rx∥2 + f(x) + g(Dx) +

κ

2
∥x∥2 (5.94)

with κ ∈ [0,+∞[. We promote sparsity of the image vertical and horizontal gradients
[39]. We additionally constrain the nonnegativity of the reconstructed pixel intensities.
This leads us to set f = ι[0,+∞[N where ιC denotes the indicator function of a set C.

Moreover, we set g = ξ∥ · ∥1,2 with D = ∇ =

[
∇h

∇v

]
, where ∇h ∈ RN×N , ∇v ∈ RN×N
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are, respectively, the horizontal and vertical discrete gradient operators (assuming zero-
padding) and ∥ · ∥1,2 is the ℓ1,2-norm of RN , so that g ◦D is the discrete total variation
penalty weighted by ξ ∈ [0,+∞[ [187]. We set the regularization hyperparameter ξ to
800 through a grid search, minimizing the error on the image FOV.

5.5.1.3 Condat-Vũ algorithm

Problem (5.94) can be rewritten as (5.1) with

H =

[
R√

κIdRN

]
,

y =

[
p
0

]
,

where κ ∈ [0,+∞[. The surrogate adjoint of H is

K =
[
B

√
κIdRN

]
.

For such a problem, we can apply the CV approach presented in section 5.2.
We run Algorithms (5.6) and (5.7) (i.e., CV algorithm without/with an adjoint mismatch,
respectively) for κ ∈ {κ1, κ2} where L = KH = BR+κIdRN is only cocoercive for κ = κ2.
In the latter case, the condition given in Proposition 5.2.2.3(d) holds, which proves the
existence of a unique fixed point x̃ of scheme (5.7) and its convergence is ensured according
to Corollary 5.2.2.6. In contrast, nothing can be said about the convergence of the scheme
in the case involving κ1. We set κ1 = 1 and κ2 to −λ̃min + 0.01 where λ̃min = −28.24
is the minimum spectral value of (BR + R∗B∗)/2 estimated from the power iterative
method. The cocoercivity constant η is computed using Proposition 5.2.2.2(ii).
The convergence parameter σ is set to 10−3. For Algorithm (5.6), the step size τ is set
to 0.99/(8σ + 0.5/θ) with θ = 1/∥H∥2H,G . To illustrate the instabilities incurred by the
use of the mismatched adjoint K when using κ1, the same step size value τ is used as in
the matched case. With κ2, the convergence of Algorithm (5.7) is ensured, as stated by
Corollary 5.2.2.6 and Proposition 5.2.2.2, by setting τ = 0.99/(8σ + ∥M∥2H,H/4), where
M is defined in (5.10). Both algorithms are run until a maximum number 3 × 104 of
iterations is reached. Initial iterates x0 and u0 are set to zero.

5.5.1.4 Loris-Verhoeven algorithm

Problem (5.94) can also be solved with the LV approach presented in section 5.3. The
cost function can be rewritten as in (5.1) by setting

H = R,

y = p,

D =

[
∇

IdRN

]
,

f =
κ

2
∥ · ∥2,

and (
∀(z1, z2) ∈ (RN )2

)
g

([
z1
z2

])
= ∥z1∥1,2 + ι[0,+∞[N (z2). (5.95)

Similarly to the CV case, L = BR+κIdRN . Therefore, for the mismatched LV algorithm
(5.54), the existence and uniqueness of a fixed point x̃ in F1, defined in Proposition
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5.3.0.1(ii)(c), is only guaranteed when κ = κ2, but not when κ = κ1. The convergence
parameter σ is set as 1.99/(9τ). For Algorithm (5.53) with both values of κ and Algorithm
(5.54) with κ1, step size τ is set to 1.99/(∥H∥2H,G + κ). The convergence of Algorithm
(5.54) with κ2 is ensured by setting τ to 3.99/∥M∥2H,H, where M is the same as in the
CV case, in accordance with Proposition 5.3.0.2.

5.5.1.5 Results

Figure 5.1 displays the normalized root mean square error (NMSE) defined as (∥x −
xn∥/∥x∥)n, computed along the iterations when applying CV Algorithms (5.6)-(5.7) and
LV Algorithms (5.53)-(5.54). We recall that Algorithms (5.6) and (5.53) require the use
of the exact adjoint of H. The plots confirm that with κ1, both CV and LV algorithms
converge when this exact adjoint H∗ is used, but diverge when H∗ is replaced by K, as
was expected from our results.
In the latter case, CV and LV algorithms show an initial convergence trend before di-
verging. We notice that on this example, the mismatched CV (5.7) diverges faster than
the mismatched LV (5.54). When reaching the maximal number of iterations, the NMSE
associated with (5.7) is 0.93 whereas the NMSE associated with (5.54) is 0.57.
When using κ2, all algorithms converge to close fixed points, as expected by our theory.
The corresponding NMSE values are 0.251 for (5.6), 0.242 for (5.7), 0.253 for (5.53) and
0.252 for (5.54). Remarkably, our mismatched algorithms (5.7)-(5.54) with κ2 lead to
lower reconstruction error in the first iterations of the algorithms.
Reconstructed images and their FOVs are displayed in Figure 5.2 using the same window-
ing. Note that the reconstructions obtained using (5.53) look the same as those obtained
with (5.6). Likewise, the same reconstruction is obtained with (5.7) and (5.54), when κ2 is
used. For all the reconstructed images, we also provide the NMSE and the maximum ab-
solute error (MAE) computed in the FOV image, defined as maxi∈{1,...,N} |[maskFOV(x−
x)]i| where [maskFOV(xn)]i = [xn]i if pixel i of xn is in the FOV, and [maskFOV(xn)]i = 0
otherwise. When parameter κ2 is used, the reconstructed image obtained by CV/LV with
the mismatched adjoint K (MAE=461, NMSE=0.040) is very similar to the image ob-
tained without mismatch (MAE=495, NMSE=0.041). In contrast, combining the setting
κ1 with the mismatched adjoint yields reconstructions that are highly deteriorated by
high-frequency patterns leading to a higher error (MAE=2735, NMSE=0.637 for CV and
MAE=1249, NMSE=0.249 for LV) compared to the solution obtained when using the
exact adjoint (MAE=215, NMSE=0.026 for both CV and LV).
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Figure 5.1: Evolution of the error (∥x− xn∥/∥x∥)n along iterations for Algorithms (5.6)-(5.7) (top) and
Algorithms (5.53)-(5.54) (bottom), for two settings of parameter κ.

Figure 5.2: Reconstructed images (top) and zoomed FOVs (bottom). From left to right: x, reconstruc-
tions obtained using (5.6) with κ1, (5.7) with κ1, (5.6) with κ2, (5.7) with κ2, (5.54) with κ1.
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5.5.2 Example 2: reconstruction from Poisson data

In this second example, we focus on another acquisition scenario: the projection data p
contain photon count views that follow a Poisson distribution:

p = P(Rx), (5.96)

that each component ps of p ∈ RS , s ∈ {1, . . . , S}, is drawn independently from a Poisson
distribution with mean [Rx]s. The goal is again to restore an estimate of x given p, R,
and its mismatched adjoint B.

5.5.2.1 Data

This second test problem uses a fan-beam geometry with 200 views. In model (5.96),
x is an axial slice of an abdomen. Contrary to Example 1, it is now made only of
an anatomical background (see Figure 5.3). We set the source-to-object distance, the
source-to-image distance, the detector length, the number of bins, and the bin size as in
Example 1. Hence, S = 250 × 200. Projections p are then simulated by using model
(5.96). The image is reconstructed on a discrete grid of N = 220× 220 pixels, with size
2.13 mm. B is derived from the same discretization scheme as in Example 1.

Figure 5.3: Phantom x with highlighted FOV

5.5.2.2 Regularization

Due to Poisson noise, the data discrepancy term in the cost function differs from the one
in Example 1. Namely, we introduce the negative log-likelihood of the image given the
data [127] to define ℓ ◦R with

(∀z = (zs)1⩽s⩽S ∈ RS) ℓ(z) =
S∑

s=1

KL(zs, ps) (5.97)

and

(∀(u, v) ∈ R2) KL(u, v) =


−v log u+ u if u > 0, v > 0
u if u ⩾ 0, v = 0
+∞ otherwise.

(5.98)

Furthermore, we introduce a nonnegativity constraint on the components of the solution
and a Tikhonov-based penalty. Altogether, the resulting minimization problem reads

minimize
x∈RN

χ ℓ(Rx) +
1

2
∥Hx∥2 + ι[0,+∞[N (x) (5.99)
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where χ ∈ [0,+∞[ weights the Poisson data fidelity term and we define the linear operator

H =

[
∆

κIdRN

]
.

Moreover, ∆ ∈ RN×N refers to the 2D discrete Laplacian operator (here, implemented
in the 2D Fourier domain), and κ ∈ [0,+∞[.
Problem (5.99) can be rewritten as (5.1) with

y = 0R2N ,

D = R,

g = χ ℓ,

f = ι[0,+∞[N .

5.5.2.3 Combettes-Pesquet algorithm

Problem (5.99) is solved with CP algorithm (5.59)-(5.64). In our configuration, an ad-
joint mismatch only arises on D (i.e., the projector R), and again denoting by B the
mismatched adjoint. We hence have V = B∗ and K = H∗ in Algorithm (5.64).
To guarantee the convergence of Algorithm (5.64) to a unique fixed point, we must choose
(κ, ε) to satisfy the conditions of Proposition 5.4.2.1 and Proposition 5.4.2.2. We first
set κ and then choose 4ε = ∥V −D∥2H,L/(κ

2 − 0.02) so that ελmin = 0.02 > 0 in (5.68).
In particular, we consider the setting (κ2, ε2) = (3.3, 6.6) for which convergence is guar-
anteed and the setting (κ1, ε1) = (0.6, 0) for which it is not guaranteed.
In Algorithm (5.59), parameter γ is set to 0.99/(4 + κ2 + ∥D∥H,L). When Algorithm
(5.64) is run with κ1, γ is set as in the matched case. When Algorithm (5.64) is run with
κ2 and ε2, we ensure its convergence using Proposition 5.4.2.3 by setting γ = 0.99/ εϑ
with εϑ = min( εϑ1,

εϑ2) = εϑ1 where εϑ1 and εϑ2 are defined respectively by (5.69)
and (5.70). We set the data fidelity parameter χ to 5000, and we perform 4000 iterations
of CP algorithm. Similarly to Example 1, the initial iterates x0 and u0 are set to zero.

5.5.2.4 Results

Figure 5.4: Evolution of the error ∥x − xn∥/∥x∥ along iterations for CP Algorithms (5.59) and (5.64),
for two settings of parameter κ.
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Figure 5.5: Reconstructed images (top) and zoomed FOVs (bottom). From left to right: x, reconstructed
images using (5.59) with κ1 (NMSE = 0.052, MAE = 201), (5.64) with κ1 (NMSE = 0.079, MAE =
401), (5.59) with κ2 (NMSE = 0.056, MAE = 232), (5.64) with κ2 (NMSE = 0.055, MAE = 206).

In Figure 5.4, we plot the relative error between the ground truth x and the esti-
mate along the iterations. We observe the same behavior as in our previous example.
Algorithm (5.64) with (κ1, ε1) diverges quickly, while it converges to a fixed point with
(κ2, ε2). This fixed point is indistinguishable from the minimizer of (5.99) with κ = κ2,
both in terms of NMSE/MAE and visual inspection (see Figure 5.5).

5.6 Conclusion

In this chapter, we analyzed the stability of a set of primal-dual proximal splitting al-
gorithms when the adjoints of the involved linear operators have been replaced by sur-
rogates. By relying on the results of Chapter 4, we established necessary conditions to
ensure the convergence of these modified algorithms when applied to non-smooth con-
vex penalized least-squares problems. We illustrated our results through two numerical
examples of image reconstruction where an adjoint mismatch occurs on FP. A quadratic
and a more sophisticated Poisson fidelity term have been considered in our experiments.
In both cases, we showed that convergence can still be guaranteed for an unmatched
FP/BP pair.
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6 | Magnification-driven
cone-beam tomographic
operators

6.1 Introduction

In Chapter 3 (section 3.4), we outlined one motivation for using unmatched FP/BP
pairs, i.e., avoiding the redundancies that may be produced by the adjoint of the FP
in each IR step. Standard FP/BP use resampling transforms. They are ray-driven and
voxel-driven; they fit a continuous function on given known points and then perform
(linear) interpolation on new points. Ray-driven FP and voxel-driven BP are not each
other transposes. Other matched FP/BP pairs have been proposed for IR, namely the
Distance-Driven (DD) [71,72] and its generalization, the Separable Footprint (SF) [138]
pairs. Since X-ray detector bins are small surfaces over which the X-ray energy is inte-
grated, and the volume is reconstructed on a Cartesian grid, DD and SF pairs share a
geometrical perspective: given a cubic shape for the voxel of the volume, the projective
anisotropic footprint of the shape over the detector, and its relation to the detector bin
surface, are modeled with respect to the rotation of the system. One essential aspect of
such a footprint approach is making explicit assumptions regarding the shape, thus size
and sampling, of both the volume voxels and the detector bins. These assumptions apply
equally to FP and BP, yielding symmetry. This property contrasts with ray-driven and
voxel-driven models, which specify the sampling on either the volume or the detector but
cannot handle both.
Since the FP/BP pair is used during each iteration of IR at least once, an optimal prac-
tical implementation should be fast, accurate, and memory-saving. Model separability
is an essential driver for selecting a fast FP. The DD model, in particular, offers one of
the best compromises between computation cost and image quality for diagnostic CT.
However, implementing the DD and SF pairs on GPUs is not straightforward [44,136].
This chapter will show that it is unnecessary to use the viewpoint of a footprint ap-
proach to model varying sampling levels. A seminal image resizing scheme based on the
convolution of polynomial B-splines displays this key feature and provides an optimal
approximation [215] in terms of L2-norm. Hereinafter, we propose a resampling scheme
based on families of B-splines of varying widths to account for the magnifications in-
troduced by the homographies found in flat-panel cone-beam projection. This defines
a new magnification-driven interpolation framework for discretizing the projection and
backprojection operations in CBCT.
The chapter is organized as follows. Section 6.2 recalls cone-beam projection on a plane.
Then section 6.3 describes the B-spline-based scheme for image resizing, and section 6.4
extends it to derive a resampling scheme for tomographic homographies. New discrete
projection and backprojection operators based on the convolution of B-splines are pro-
posed for either AR or IR. Different approximations are given in subsection 6.4.4 for a fast
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implementation of the FP/BP schemes. Furthermore, we highlight the relation between
state-of-the-art discretizations and our approach in section 6.5, which concludes with the
connection between these pairs and data pre-processing in clinical practice. Experiments
on simulated data are presented in section 6.6 and discussed for analytical and iterative
reconstruction. Finally, an illustration of FDK reconstruction with several interpolation
options on a real data case is provided.

6.2 Flat-panel cone-beam geometry

Figure 6.1: Cone-beam geometry. (O, x, y, z) is the volume coordinate system; (Sm, x′, y′, z′) is the
source coordinate system ; (u, v) is the detector plane. Ideal acquisition: z, v and y′ are aligned.

The projective geometry defines the relationship between voxel coordinates (x, y, z) ∈
R3 and the coordinates of the projected pixels (u, v) ∈ R2. In X-ray cone-beam computed
tomography with a flat-panel detector, the data acquisition is characterized by a set of
M ∈ N∗ projection matrices (Pm)1⩽m⩽M of size 3× 4, that is one projection matrix per
position of the pair X-ray source/detector. For a given projection matrix Pm, coordinates
(u, v) of the projection of point (x, y, z) onto the detection plane Πm for the position Sm

of the source can be written with homogeneous coordinates (su, sv, s) [89] as(
su, sv, s

)⊤
= Pm

(
x, y, z, 1

)⊤
. (6.1)

Coordinate s = 0 is at the focus point Sm and lies on the optical axis, which is orthogonal
to the detector and crosses Sm. Point O is the center of the volume and the center of
rotation. Projection matrices can be measured very accurately. They provide a precise,
compact, and powerful way of capturing cone-beam geometry in a continuous space. Axes
orientations are shown on Figure 6.1 as well as an additional intermediate 3D coordinate
system (Sm, x′, y′, z′) attached to Sm.
Forward projection with one matrix is independent of the other matrices. In contrast,
backprojection requires the M projected images as it is the sum over m ∈ {1, . . . ,M} of
the backprojection of each single projected image obtained using matrix Pm. For every
m, the only common condition we set, pertaining to tomography, is that the projection
matrices operate on the same coordinate system (O, x, y, z) such that z is an axis of
rotation always aligned with the axis v of the detector. We can thus focus the discussion
on a single matrix and drop index m.
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Any projection matrix P = (pi,j)1⩽i⩽3,1⩽j⩽4 can be decomposed into the product of a
matrix Pi of intrinsic parameters relating (x′, y′, z′) to (u, v) and matrix Pe of extrinsic
parameters relating (x, y, z) to (x′, y′, z′) [146]. Matrix Pi is defined by

Pi =

α 0 u0
0 −α v0
0 0 1

 , (6.2)

where α is the source-to-detector distance in the unit of pixel size and (u0, v0) are the
coordinates of the orthogonal projection of point S over the detector, also called the
piercing point where the optical axis crosses the detector plane. Here again, the unit
of length is the pixel size, which is given with the data at backprojection, while it is
a parameter for projection. Matrix Pe is a 3D rotation and translation operator that,
given our specified tomographic conditions, is given by

Pe =

 cos θ sin θ 0 tx
0 0 −1 ty

− sin θ cos θ 0 tz

 , (6.3)

where θ is the rotation angle within plane (x, y), (tx, ty) are translations that, when not
equal to 0, capture a centering shift of the detector, and tz is the distance from source S
to origin O which is also set as the center of rotation. The unit of length is the voxel size,
which is a parameter at backprojection, while it is given with the volume at projection.
The optical axis is positioned at angle θ + π in this configuration. It follows that P has
two null coefficients:

P = PiPe =

p1,1 p1,2 0 p1,4
p2,1 p2,2 p2,3 p2,4
p3,1 p3,2 0 p3,4

 . (6.4)

Matrix P provides direct access to key parameters since p3,1 = − sin θ, p3,2 = cos θ, p3,4 =
tz, and p2,3 = α. However, it does not give access to the voxel and pixel units of length
but only to their ratio given by α/tz, i.e., the magnification factor at the origin O. This
ratio is used as a reference. Projection operations are performed at equivalent sampling
for a ratio of 1 (called isosampling). A ratio greater than 1 oversamples the detector
side or undersamples the volume side, and inversely for a ratio lower than 1. Discretizing
tomographic operators over the Cartesian grid can be seen as decomposing the cone-beam
projection of a volume into the weighted sum along one axis of the projection of each
volume plane orthogonal to said axis. Each projection is thus turned into a homography.
More precisely, when | cos θ| > | sin θ|, we use axis y that is closest to the optical axis;
otherwise, axis x is used. This ensures that all homographies are invertible. Without
loss of generality, we now consider that tx = ty = 0 as these translations do not change
the sampling issues.
Let us consider a summation along axis y: coordinates (u, v) of the projection of any
point (x, y0, z) of the volume coronal plane y = y0 onto the detector plane are given by(

su, sv, s
)⊤

= P
(
x, y0, z, 1

)⊤
= Hy0

(
x, z, 1

)⊤ (6.5)

with Hy0 =

p1,1 0 p1,2y0 + p1,4
p2,1 p2,3 p2,2y0 + p2,4
p3,1 0 p3,2y0 + p3,4

 =

h1,1 0 h1,3
h2,1 h2,2 h2,3
h3,1 0 h3,3

,
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so that 
s(x) = h3,1x+ h3,3

u = h1(x) =
h1,1x+h1,3

s(x)

v = h2(x, z) =
h2,1x+h2,2z+h2,3

s(x) .

(6.6)

The projection of plane y = y0 is thus a resampling by 2D homography Hy0 which, in
our tomographic case, displays a resampling in v that is a 1D magnification between v
and z of factor h2,2/s(x).
The resampling in u is a 1D homography of x only, corresponding to a flat-detector
fan-beam geometry. The projective relationship between (x, y0, z) and (u, v) can be
equivalently defined using another matrix H−1

y0 whose structure is the same as the one of
Hy0 , as (

tx, tz, t
)⊤

= H−1
y0

(
u, v, 1

)⊤ (6.7)

where t > 0, and {
x = h−1

1 (u)

z = h−1
2 (u, v).

(6.8)

Let L be the number of voxels in the volume and K be the number of detector cell
measurements acquired in a conic geometry with a flat panel detector. Applying this
pipeline to all homographies Hs and H̃−1

s deduced from projection matrix P gives rise
to backprojection matrix Bs ∈ RL×K for AR and forward projection matrix Rs for IR.
We now present two resampling approaches for a degenerate case of 1D homography with
a fixed magnification factor resulting in a 1D magnification.

6.3 Resampling for a 1D magnification

6.3.1 B-splines

First, we recall some basic notions and notation for spline interpolation [193]. The
convolution product is (f ∗ g)(·) =

∫ +∞
−∞ f(t)g(·− t)dt for functions f and g in L2(R), the

Hilbert space of measurable, square-integrable functions from R to R. The convolution
product is also defined for discrete signals a ∈ ℓ2 and b ∈ ℓ1 as, for k ∈ Z, (b ∗ a)(k) =∑

ℓ∈Z b(ℓ)a(k− ℓ) where ℓ2 (resp. ℓ1) is the space of square summable (resp. summable)
sequences.
Polynomial splines are piecewise polynomials that satisfy specific continuity constraints
to interpolate or approximate a given sequence a ∈ ℓ2. The generic space of polynomial
splines of order n is denoted Sn

1 , where the superscript n refers to the degree of the
polynomial segments and where the subscript represents the spacing between the knots
(i.e., the joining points of the polynomial segments). More precisely, Sn

1 is the subset
of functions of L2 that are of class Cn−1 (i.e., continuous functions with continuous
derivatives up to order n− 1).
B-splines are the atoms for constructing spline representations because they offer the
best cost-performance trade-off, a benefit well documented in the literature [213]. One
theoretical explanation for this superior performance is that the B-spline of degree n ∈ N,
denoted by βn : R → R, is the shortest and smoothest function that allows for the
reproduction of polynomials of degree n. The magnification of the centered B-spline of
order n is defined by βn

∆ = βn(·/∆) and, most importantly, is itself a centered B-spline of
order n. Let us define bn ∈ RZ as the discrete B-spline of order n, obtained by sampling
βn at integer values, i.e. bn(ℓ) = βn(ℓ) for ℓ ∈ Z.
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The set of shifted B-splines {βn(x− k), k ∈ Z} constitutes a basis of Sn
1 .

In particular, we have

(∀τ ∈ R) β0(τ) =

{
1 if |τ | < 1

2

0 otherwise,
, β1(τ) =

{
1− |τ | if |τ | < 1

0 otherwise.
(6.9)

The simplest B-spline, of order 0, leads to nearest neighbor interpolation, while order
1 corresponds to linear interpolation. Notably, B-splines functions can be constructed
recursively from

βn(x) = βn−1 ∗ β0(x) (6.10)

which states that a B-spline of order n can be generated by convolving β0 (n+ 1) times
with itself. Both the support length and the smoothness of B-splines increase with the
order. In the limit, B-splines converge to the Gaussian function. From (6.10), we see that
all B-splines are positive, symmetric, and have an integral equal to one. The support
and the approximation order of these functions is one more than their degree.
Any signal s ∈ Sn

1 can be expressed as

s(x) =
∑
k∈Z

c(k)βn(x− k), (6.11)

where c(j) is the associated sequence of B-spline coefficients of s such that

(∀z ∈ Z) s(k) = bn ∗ c(k). (6.12)

In (6.12), bn is a finite impulse response (FIR) filter.
Similarly, the B-splines coefficients of s can be obtained from the signal samples as

(∀k ∈ Z) c(k) = b−n ∗ s(k). (6.13)

In (6.13), b−n is an all-pole infinite impulse response filter (IIR) which can be conve-
niently implemented using the fast recursive technique in [214].
The spline formalism extends Shannon’s sampling theory and provides a unifying view of
continuous/discrete signal processing using least-squares approximation. The multireso-
lution property of splines makes them prime candidates for constructing multiresolution
pyramids and wavelets. We now show how splines have been used for image resizing by
a non-integer factor.

6.3.2 Continuous-to-discrete (C-D) approach

Let ∆ > 0 and let a(∆·) be the continuous magnified version of a 1D continuous signal
a : R → R.
The resampling task we consider here consists of computing from NJ uniformly spaced
samples of a with sampling step 1, NI samples that are therefore uniformly spaced by
∆. A resampling step ∆ > 1 thus corresponds to a downsampling (reduction) while a
sampling step ∆ < 1 is an upsampling (enlargement), the magnification factor being
equal to 1/∆. We denote I = {1, . . . , NI} and J = {1, . . . , NJ} the respective sets of
indices. The goal is to compute a reduction/enlargement a∆ on the same axis as a from
the vector a ∈ RNJ of known values (a(j))j∈J of a using B-splines expansions.
In the C-D approach, from the discrete set of data points, we aim to find a discrete set of
B-splines coefficients (c(j))j∈J ∈ RNJ which parameterizes a under the constraint that
the evaluation of a at the sampling points yields the same value as the data themselves.
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Then, the C-D approach assumes that it is possible to compute discrete data values of a
at any abscissa from its continuous B-splines representation.
Given values (a(j))j∈J , we build a representation of a on the space spanned by {βn(·−j) |
j ∈ J} given by

a(x) =
∑
j∈J

c(j)βn(x− j), (6.14)

The magnified signal is then summarized by the set of discrete samples a∆ = (a(∆i))i∈I
derived by applying the resampling transform on the set of coordinates of the initial data
points

(∀i ∈ I) a(∆i) =
∑
j∈J

c∆(j)β
n(∆i− j). (6.15)

Altogether C-D resampling is a two-step procedure. The first step is fitting a continu-
ous representation to the data points (a(j))j∈J . This results in the inversion of (6.14):
coefficients c(j) are found by deconvolving the sampled function a(j) with the factorized
filter b−n. The second step computes the arbitrarily located samples of a(∆·) according
to (6.15).

6.3.3 Continuous-to-continuous (C-C) approach

The C-C approach has been advocated by [215] to minimize information loss during
resizing. Given values (a(j))j∈J , we assume that our representation of a in (6.14) still
holds. Instead of deriving directly signal samples from the continuous representation of
a, the C-C approach relies on an intermediate continuous expansion a∆ which represents
the magnified signal on the same scale as a. This representation is provided onto the
space spanned by functions {βn

∆(· −∆i) | i ∈ I} given by

a∆(x) =
∑
i∈I

c∆(i)β
n
∆(x−∆i). (6.16)

In contrast to the C-D approach, the C-C approach relates the two continuous represen-
tations (6.16) and (6.14). The vector of coefficients c∆ = (c∆(i))i∈I ∈ RNI is determined
by minimizing the norm ∥a∆ − a∥L2(R) and thus satisfies normal equations [144], which
are expressed in matrix form as

Tc∆ = Ξc, (6.17)

where Ξ = (Ξi,j)(i,j)∈I×J ∈ [0,+∞[NI×NJ and T = (Ti,i′)(i,i′)∈I2 ∈ [0,+∞[NI×NI are
such that,1

Ξi,j =

∫ +∞

−∞
βn(x− j)βn

∆(x−∆i)dx = ξn,n∆ (j −∆i) (6.18)

with, for every θ ∈ R,
ξn,n∆ (θ) = (βn ∗ βn

∆)(θ) (6.19)

and, for every (i, i′) ∈ I2,

Ti,i′ =

∫ +∞

−∞
βn
∆(x−∆i)βn

∆(x−∆i′)dx = β2n+1
∆ ((i− i′)∆) = b2n+1(i− i′). (6.20)

Ξ is a cross-correlation matrix containing the correlations of functions βn
∆ and βn ac-

cording to the relative positions of the samples. In our context of projective geometry,
1The functions βn with n ∈ N are even.
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these cross-correlations will be interpreted as "footprints". Note that the general scaling
property of the convolution of B-splines implies that

(∀θ ∈ R) ξn,n∆ (θ) = ∆ξn,n1
∆

(θ/∆). (6.21)

This means that the magnification of step ∆ and the inverse magnification of step 1/∆
result in the same footprint, up to a normalization factor.
The matrix T is a Gram matrix, hence symmetric and semi-definite positive, independent
of ∆. It is also Tœplitz so that its inverse can be implemented by means of digital filters.
Finally, a∆ = (a∆(i))i∈I is given by

a∆ = ΛT−1Ξc, (6.22)

where Λ = (Λi,i′)(i,i′)∈I2 is such that,

(∀(i, i′) ∈ I2) Λi,i′ = bn(i− i′). (6.23)

The discrete convolution form of (6.22) is

(∀i ∈ I) a∆(i) =
(
bn ∗ (b2n+1)−1 ∗ (Ξc)

)
(i). (6.24)

Remark 6.3.3.1 This routine can be directly applied to image magnification by imple-
menting separable magnifications along each direction resulting in successive 1D process-
ing along the rows and the columns of an image.

Remark 6.3.3.2 In general, the C-C solution results in a higher-order interpolation
than the one of C-D. In (6.20), we see that the C-C solution corresponds to a polynomial
spline interpolation of degree 2n+ 1 (i.e., twice the order) 2.

6.4 Proposed magnification-driven approach: an extension
of C-C

In the following, we extend the C-C approach for dealing with homographies found in
C-arm CBCT. First, we allow the signal of known samples to be approximated with
B-splines of order m, possibly different from the order n of the output. We present our
approach in 1D before extending it to 2D.
We now consider that one line f(x) of the volume and one line of the projector p(u) are
related by the 1D homography h such that, for every x ∈ X =]− h3,3/h3,1,+∞[,

u = h(x) =
h1,1x+ h1,3
h3,1x+ h3,3

. (6.25)

This defines a bijective mapping from X to U = h(X ). Backprojection generates f from
p and projection generates p from f , as shown in Figure 6.2, according to

p(u) = p ◦ h(x) = f(x)

|h′(x)|
, (6.26)

2The C-D and C-C solutions are identical asymptotically for the bandlimited case because
sinc ∗ sinc(x) = sinc(x)
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or
f(x) = f ◦ h−1(u) = |h′(h−1(u))|p(u), (6.27)

where h′ denotes the derivative of h. These relations ensure the expected conservation
of matter density through the integral identity:∫

U
p(u)du =

∫
X
f(x)dx. (6.28)

Now NI (resp. NJ) refers to the number of samples along u (resp. x) and I = {1, . . . , NI}
(resp. J = {1, . . . , NJ}) are the associated set of indices. Let (ui)i∈I be the locations
of values (pi)i∈I of discrete signal p = (p(ui))i∈I . Let (xj)j∈J be the locations of the
observed values (fj)j∈J of f , giving rise to the discrete signal f = (f(xj))j∈J .

6.4.1 Projector

As an extension of (6.21), let us define function ξm,n
∆ such that

(∀θ ∈ R) ξm,n
∆ (θ) = βm ∗ βn

∆(θ). (6.29)

We first assume that f belongs to the space spanned by {βm(· − xj) | j ∈ J} i.e.,

f(x) =
∑
j∈J

c(j)βm(x− xj), (6.30)

where c = (c(j))j∈J is the associated set of B-spline coefficients of f .
Unlike the magnification case, the homography of a centered B-spline is not a B-spline
in general. The magnification-driven approach consists therefore in approximating the
homography of the centered B-spline by its magnification. We thus use the absolute value
|h′(x)| of the derivative of h at x, which provides the continuous change in sampling rate
from x to u induced by h. Furthermore, we note that |(h−1)′(u)| = 1/|h′(x)|. For the
approximation to be valid, coefficient h3,1 must be small enough to make the variation
of the magnification factor negligible over the support of the B-splines. We have then
|(h−1)′(z)| ≃ 1/|h′(z)| ≃ h1,1/h3,3. Let ∆i = 1/|h′(h−1(ui))| be the local sampling step
in an open neighborhood V(ui) of ui with i ∈ I. This defines a vector of resampling
parameters ∆ = (∆i)i∈I . Hence, when u ∈ V(ui), (6.27) yields

p(u) =
f(h−1(u))

|h′(h−1(u))|
≃ ∆if(h

−1(u)). (6.31)

Let p∆ be an approximation of p on the same axis as f such that, for every i ∈ I,

p(ui) = ∆i p∆(h−1(ui)) (6.32)

(see Figure 6.4). We assume that p∆ can be decomposed onto a family of nonuniform
B-splines of order n ∈ N as

p∆(x) =
∑
i∈I

s∆i(i)β
n
∆i
(x− h−1(ui)). (6.33)

The optimal coefficients s∗∆ = (s∆i(i))i∈I satisfy the normal equations according to

Gs∗∆ = Fc, (6.34)

130



where F = (Fi,j)(i,j)∈I×J ∈ [0,+∞[NI×NJ and G = (Gi,l)(i,l)∈I2 ∈ [0,+∞[NI×NI are such
that, for every (i, l) ∈ I2 and j ∈ J ,

Fi,j =

∫ +∞

−∞
βm(x− xj)β

n
∆i
(x− h−1(ui))dx = ξm,n

∆i
(xj − h−1(ui)) (6.35)

and

Gi,l =

∫ +∞

−∞
βn
∆l
(x− h−1(ul))β

n
∆i
(x− h−1(ui))dx = βn

∆l
∗ βn

∆i
(h−1(ul)− h−1(ui))

= ∆iξ
n,n
∆l/∆i

(
h−1(ul)− h−1(ui)

∆i

)
= ∆lξ

n,n
∆i/∆l

(
h−1(ui)− h−1(ul)

∆l

)
. (6.36)

F contains the footprints of functions (βn
∆i
(· − h−1(ui)))i∈I and (resp. over) (βm(· −

xj))j∈J (see Figure 6.3). Note that the Gram matrix G is not Tœplitz anymore and that
its diagonal elements are

(∀i ∈ I) Gi,i = ∆iξ
n,n
1 (0) = ∆ib

2n+1(0). (6.37)

Finally, the expression of vector p is derived from (6.32):

p = Diag(∆)Λ̃s∗∆ (6.38)

where Diag(∆) is the diagonal matrix whose diagonal is equal to vector ∆ and Λ̃ =
(Λ̃i,l)(i,l)∈I2 ∈ [0,+∞[NI×NI is such that,

Λ̃i,l = βn
∆i

(
h−1(ul)− h−1(ui)

)
. (6.39)

By combining (6.34) and (6.38), we have

p = Diag(∆)Λ̃G−1Fc, (6.40)

where G−1 denotes the pseudo-inverse of G. Note that the above equality holds exactly
provided that model (6.30)-(6.33) is perfectly satisfied, which is obviously an approxima-
tion in practice.

Remark 6.4.1.1 For every (n,m) ∈ N2, the support of βn
∆ is ]−(n+1)∆/2, (n+1)∆/2[

and, for every ∆ > 0 the support of function ξm,n
∆ is thus equal to ] − (m + 1 + (n +

1)∆)/2, (m + 1 + (n + 1)∆)/2[. This implies that most elements of matrices G, F, Λ̃,
G′, F′, and Λ̃

′
are zero, giving them a band structure. For example, according to (6.36),

for every (i, l) ∈ I2, if

|h−1(ul)− h−1(ui)| ⩾ (n+ 1)
∆i +∆l

2
, (6.41)

then Gi,l = 0 and, if

|h−1(ul)− h−1(ui)| ⩾ (n+ 1)
∆i

2
, (6.42)

then Λ̃i,l = 0.
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Figure 6.2: Example of a signal (solid line) and its B-splines approximations in the volume and in the
projections (dashed line).

Figure 6.3: Least-square resampling of f(x) on a basis of non-uniform B-splines centered on (h−1(ui))i∈I .

Figure 6.4: Construction of p∆(x) from p(u) on the same axis as f(x).

132



6.4.2 Backprojector

Let us now see how to retrieve f from p in the backprojection stage. Here, we assume
that the continuous projection p can be decomposed as

p(u) =
∑
i∈I

c′(i)βn(u− ui), (6.43)

where c′ = (c′(i))i∈I is the associated set of B-spline coefficients. A new vector of
resampling parameters ∆′ = (∆′

j)j∈J is defined such that ∆′
j = |h′(xj)|, the sampling

step in V(xj), an open neighborhood of xj . Thus,

f(xj) = |h′(xj)|p(h(xj)) = ∆′
j p(h(xj)). (6.44)

Let f∆′ be an approximation of f on the same axis as p and such that, for every j ∈ J ,

f(xj) = ∆′
jf∆′(h(xj)). (6.45)

We now assume that f∆′ is the projection of p onto the vector space generated by
{βm

∆j
(· − h(xj)) | j ∈ J}, which leads to the following relation:

f = Diag(∆′)Λ̃
′
(G′)−1F′c′, (6.46)

where matrices F′ ∈ [0,+∞[NJ×NI , G′ ∈ [0,+∞[NJ×NJ , and Λ̃
′ ∈ [0,+∞[NJ×NJ are

such that, for every (j, l) ∈ J2 and i ∈ I,

F ′
j,i = ξn,m

∆′
j
(ui − h(xj)), G′

j,l = ∆′
jξ

m,m
∆′

l/∆
′
j

(
h(xl)− h(xj)

∆′
j

)
, Λ̃′

j,l = βm
∆′

l
(h(xl)− h(xj)) .

(6.47)

6.4.3 Choice of the magnification factors

When comparing (6.40) and (6.46), we note that the main modeling difference lies in the
set of magnification factors. Given the scaling property

(∀θ ∈ R) (1/∆)ξm,n
∆ (θ) = ξn,m1/∆(θ/∆), (6.48)

we remark that

F ′
i,j = ξn,m

∆′
j
(h(xj)− ui) = ∆′

jξ
m,n
1/∆′

j
((h(xj)− ui)/∆

′
j). (6.49)

If ui ≃ h(xj) with j ∈ J (with NJ ⩽ NI), then

∆′
j ≃

1

∆i
. (6.50)

This means that one could use the sampling steps ∆−1 = (1/∆j)j∈J instead of ∆′ and
thus, according to (6.48), (6.35), and (6.47),

F ′
j,i =

1

∆i
ξm,n
∆i

(
∆i(h(xj)− ui)

)
≃ 1

∆i
ξm,n
∆i

(
∆i h

′(h−1(ui)) (xj − h−1(ui)
)

≃ 1

∆i
ξm,n
∆i

(xj − h−1(ui)) =
1

∆i
Fi,j . (6.51)

In this case, the projection and backprojection steps would share the same interpolation
model. The sampling steps may be close but are different since they cannot be defined
at the same locations (i.e., there exists no bijection between the set of locations (xj)j∈J
and the set of locations (ui)i∈I).
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Remark 6.4.3.1 For the projection step, the sampling steps (∆i)i∈I are the derivative of
h−1 at the sampling points (ui)i∈I . When n = m = 0, piecewise constant approximations
are performed for each signal which matches the description made by geometric models
that compute the footprints between pixels and detector bins based on the locations of
their edges. It is straightforward to compute sampling steps δi from these edge locations.
We define the set of segments of center h−1(ui) and width δi by setting

δ1 = δ2 = h−1(u2)− h−1(u1) (6.52)

and, for every i ∈ {2, . . . , NI − 1},

h−1(ui+1)− h−1(ui) =
δi+1 + δi

2
. (6.53)

In this way, given that (h−1(ui+1)− h−1(ui))1⩽i⩽NI−1 is a sequence of increasing steps,
the interval [h−1(u1), h

−1(uNI
)] is partitioned in intervals [h−1(u1), h

−1(u1) + δ1/2],
(]h−1(ui) − δi/2, h

−1(ui) + δi/2])2⩽i⩽NI−1, and ]h−1(uNI
) − δI/2, h

−1(uNI
)]. By con-

struction when l > i

h−1(ul)− h−1(ui)

δl
=

1 + δi/δl
2

+

∑l−1
k=i+1 δk

δl
⩾

1

2
(1 +

δi
δl
) ⩾

1

2
. (6.54)

When δi is substituted for ∆i in (6.31), it follows from Remark 6.4.1.1, that G =
Diag(∆), Λ̃ = bn(0) Id NI

, where Id NI
denotes the identity matrix of size NI × NI1

and (6.40) leads to
p = bn(0)Fc. (6.55)

This provides an alternative way of setting the magnification factors.

6.4.4 Approximation for fast implementation

For projection, in order to reduce the computation burden related to the inversion of
matrix G, we propose to approximate this matrix by a surrogate matrix G̃ ∈ RNI×NI in
(6.40).
For every (i, l) ∈ I2 for which (6.41) is not satisfied, we will make the assumption that

h−1(ul) ≃ h−1(ui) +
1

h′(h−1(ui))
(ul − ui) = h−1(ui)±∆i(l − i). (6.56)

Based on these approximations, (6.36), and Remark 6.4.1.1, we will define G̃ = (G̃i,l)(i,l)∈I2
as follows:

• if |ul − ui| ⩽ n, then

G̃i,l =
√
∆i∆lξ

n,n
1 (l − i) =

√
∆i∆lb

2n+1(l − i), (6.57)

• otherwise G̃i,l = 0.

In particular, G̃i,i = Gi,i and we can write G̃ = Diag(∆)1/2TnDiag(∆)1/2 where Tn is
the Tœplitz matrix previously encountered for the magnification case with B-splines of
order n. The resulting approximate vector of B-spline coefficients then reads as

s̃∗∆ = Diag(∆)−1/2T−1
n Diag(∆)−1/2Fc. (6.58)
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Remark 6.4.4.1 (i) Since multiplication by a Tœplitz matrix is equivalent to discrete
convolution with suitable boundary conditions, the components (s̃∗∆,i)i∈I of vector
s̃∗∆ are given by

(∀i ∈ I) s̃∗∆,i =
1√
∆i

NI∑
l=1

1√
∆l

(Fc)l (b
2n+1)−1(i− l), (6.59)

where

(∀l ∈ I) (Fc)l =

NJ∑
j=1

c(j) ξm,n
∆i

(h−1(ul)− xj). (6.60)

(ii) Applying (6.56) for every couple (i, l) ∈ I2 that does not satisfy (6.41) and using
(6.39), leads to a rougher approximation where Λ̃ is replaced by Λ, which was
also introduced in the magnification case with B-splines of order n. Here again,
Λi,i = Λ̃i,i.

Then, the components of vector p in (6.40) are approximated by the following discrete
convolution

(∀i ∈ I) p̃i = ∆i (b
n ∗ s̃∗∆)(i). (6.61)

The same simplifications apply for backprojection: we define surrogate matrix G̃′ ∈
RNJ×NJ such that, for (j, l) ∈ J2 such that |xl − xj | ⩽ m,

G̃′
j,l =

√
∆′

j∆
′
l b

2m+1(l − j). (6.62)

As above, vector f in (6.46) can be approximated by

f̃ = Diag(∆′)Λ̃
′
Diag(∆′)−1/2T−1

m Diag(∆′)−1/2F′c′, (6.63)

where the inversion performed by T−1
m can be implemented by filtering with (b2m+1)−1.

In our context, low order splines corresponding to (n,m) ∈ {0, 1}2 and s = m+ n+ 1 ∈
{1, 2, 3} are used. Order 0 indeed provides a good model of the sampling process per-
formed at the physical detector level, while order 1 corresponds to the most common
linear interpolation used in signal/image processing. In the implementation, the three
main practical aspects are the explicit evaluation of the sampling kernel ξm,n

∆ , and the
multiplication by the inverse of the Gram matrix (i.e., G̃ for projection). No prefiltering
is needed to compute the B-spline coefficients which are equal to the pixel values.
We derive from (6.29) explicit formulas for correlation functions ξ0,0∆ , ξ1,0∆ (ξ0,1∆ being
deduced by using (6.48)), and ξ1,1∆ :

• Case 1

(∀θ ∈ R) ξ0,0∆ (θ) =


min(1,∆) if |θ| < a1
a2 − |θ| if a1 ⩽ |θ| < a2

0 if |θ| ⩾ a2

(6.64)

with a1 =
|∆−1|

2 , and a2 =
∆+1
2 .

• Case 2

(∀θ ∈ R) ξ1,0∆ (θ) =


ck,0 + ck,1|θ|+ ck,2|θ|2 for |θ| ∈ [ak−1, ak[

and k ∈ {1, 2}
0 otherwise

(6.65)
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with a0 = 0, a1 = |∆2 − 1|, a2 = ∆
2 + 1, and expressions for (ck,0, ck,1, ck,2) given in

Table 6.1. Calculation details can be found in the Appendix.

Interval ck,0 ck,1 ck,2

|θ| < a1

if ∆ ⩽ 2 and |θ| < ∆/2

if ∆ ⩽ 2 and |θ| ⩾ ∆/2

if ∆ > 2

∆−∆2/4

∆

1

0

−∆

0

−1

0

0

a1 ⩽ |θ| < a2

if |θ| ⩾ ∆/2

if |θ| < ∆/2

(∆2 + 4∆+ 4)/8

(−∆2 + 4∆+ 4)/8

−1−∆/2

−1 + ∆/2

1/2

−1/2

Table 6.1: B-spline correlation function parameters for case 2

• Case 3 The expression of ξ1,1∆ (θ) is given in Table II. in [215].

Figure 6.5 displays the 1D kernels. Their width increases with both ∆ and the
approximation order. By design, our method makes use of all sampling points therefore
the computation cost is proportional to the total number of samples NI + NJ . On the
contrary, destination-driven interpolation skips samples when ∆ > 1. Thanks to the
property (6.48) of ξm,n

∆ , the footprints can always be computed using ∆ < 1 so that the
computation complexity only depends on the order of the splines. The weighted sums will
require between two samples for s = 1 and four samples when s = 3. The computation
of ξ1,1∆ is complex with several tests to handle. Efficiency relies on using pre-computed
look-up tables, with a trade-off between the sizes of the tables and the desired numerical
precision.
Finally, when numerical simplifications presented in Remark 6.4.4.1 are implemented,
multiplication by Λ and by G̃−1 reduces to applying the identity except when n = 1
where G̃−1 is the direct cubic filter (b3)−1. Its complexity is proportional to the number
of output samples NJ , hence it is faster at downsampling. This filter is classically applied
according to [216] but one can resort to more efficient implementations, for instance on
GPU [33] or using FIR filters [220].

Figure 6.5: Normalized spline correlation kernels when ∆ ∈ [0.5, 2]. From left to right: 1
∆
ξ0,0∆ , 1

∆
ξ0,1∆ ,

1
∆
ξ1,0∆ , 1

∆
ξ1,1∆ . For ∆ = 1, the kernels reduce to B-splines of order 2 (second and third), B-splines of

order 1 (first) and B-splines of order 3 (fourth) plotted in dashed lines.
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6.4.5 Resampling with a 2D representation

We recall that the resampling associated with Hy0 ((6.6)) is a combination of a 1D ho-
mography with a 1D magnification in z when x is fixed. Thus the presented optimal
resampling for 1D magnifications and homographies is sufficient to perform this opera-
tion. We now investigate the potential of a 2D approach to the problem. We require the
following conservation of 2D integrals:∫

U×V
p(u, v)dudv =

∫
X×Z

f(x, z)dxdz, (6.66)

where U × V and X × Z are suitable domains of integration. It follows from (6.6) that

(∀(u, v) ∈ U × V) p(u, v) = f
(
h−1
1 (u), h−1

2 (u, v)
)
| detJH−1

y0
(u, v)|, (6.67)

and the Jacobian JH−1
y0
(u, v) is given by

JH−1
y0
(u, v) =

(
∂h−1

1 (u)
∂u 0

∂h−1
2 (u,v)
∂u

∂h−1
2 (u,v)
∂v

)
, (6.68)

so that |detJH−1
y0
(u, v)| = |∂h

−1
1 (u)
∂u

∂h−1
2 (u,v)
∂v |.

We now assume that p and f can be decomposed in 2D. For the projection task, f is
decomposed as follows:

f(x, z) =
∑
j2∈J2

∑
j1∈J1

c(j1, j2)β
m(x− xj1)β

m(z − zj2). (6.69)

The two-dimensional representation p∆ of the resampling of p is defined by

p∆(x, z) =
∑
i1∈I1

∑
i2∈I2

s∆(i1, i2)β
n
∆1,i1

(x− h−1
1 (ui1))β

n
∆2,i1

(z − h−1
2 (ui1 , vi2)) (6.70)

where ∆ = (∆1,i1∆2,i1)i1∈I1 is the vector whose components are the products of the
diagonal elements of the Jacobian matrix which describes the continuous change of sample
rate in x (resp. z) along u (resp. v), i.e. ∆1,i1 = |h−1

1
′
(ui1)| and ∆2,i1 =

∂h−1
2 (ui1

,vi2 )

∂v .
We thus use the same values that would appear with successive 1D processing, while
verifying

p(ui1 , vi2) = |detJH−1
y0
(ui1 , vi2)|p∆(h−1

1 (ui1), h
−1
2 (ui1 , vi2)). (6.71)

Let us define the vector c = (c(j1, j2))j1∈J1,j2∈J2 (resp. s∆ = (s∆(i1, i2))i1∈I1,i2∈I2) whose
components have been indexed according to (j1 − 1)NJ2 + j2 (resp. (i1 − 1)NI1 + i2).
The normal equations in 2D are expressed in matrix form as

Gs∆ = Fc, (6.72)

where F ∈ [0,+∞[NI1
NI2

×NJ1
NJ2 and G ∈ [0,+∞[NI1

NI2
×NI1

NI2 are such that, for every
i = (i1 − 1)NI2 + i2, j = (j1 − 1)NJ2 + j2 and l = (l1 − 1)NI2 + l2 with (i1, l1) ∈ I21 ,
(i2, l2) ∈ I22 , j1 ∈ J1, and j2 ∈ J2,

Fi,j =

∫ +∞

−∞

∫ +∞

−∞
βm(x− xj1)β

n
∆1,i1

(x− h−1
1 (ui1))β

m(z − zj2)β
n
∆2,i1

(z − h−1
2 (ui1 , vi2))dxdz

= ξm,n
∆1,i1

(xj1 − h−1
1 (ui1))ξ

m,n
∆2,i1

(zj2 − h−1
2 (ui1 , vi2)) (6.73)
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and

Gj,l =
(
βn
∆2,l1

∗ βn
∆2,i1

(h2(ui1 , vi2)− h2(ul1 , vl2))
)(

βn
∆1,l1

∗ βn
∆1,i1

(h−1
1 (ui1)− h−1

1 (ul1))
)

= ∆2,i1∆1,i1ξ
n,n
∆2,l1

/∆2,i1

(
h−1
2 (ui1 , vi2)− h−1

2 (ul1 , vl2)

∆2,j1

)
ξn,n∆1,l1

/∆1,i1

(
h−1
1 (ui1)− h−1

1 (ul1)

∆1,i1

)
.

(6.74)

Since h−1
1 does not depend on v, separability of F is achieved as

F =


(F1)1,1F

1
2 . . . (F1)NI1

,1F
NI1
2

... . . .
...

(F1)1,NJ1
F1
2 . . . (F1)NI1

,NJ1
F
NI1
2

 =
[
(F1)1,∗ ⊗ F1

2 . . . (F1)NI1
,∗ ⊗ F

NI1
2

]
,

(6.75)
where ⊗ denotes the Kronecker product. Matrix F1 ∈ [0,+∞[NI1

×NJ1 is such that, for
every i1 ∈ I1 and j1 ∈ J1,

(F1)i1,j1 = ξm,n
∆1,i1

(xj1 − h−1
1 (ui1)). (6.76)

For every i1 ∈ I1, (F1)i1,∗ denotes the i1-th row of F1 and matrix Fi1
2 ∈ [0,+∞[NI2

×NJ2

is such that, for every i2 ∈ I2 and j2 ∈ J2,

(F2
i1)i2,j2 = ξm,n

∆2,i1
(zj2 − h−1

2 (ui1 , vi2)). (6.77)

Then, vector p = (p(ui1 , vi2))i1∈I1,i2∈I2 ∈ RNI1
NI2 (whose components are indexed ac-

cording to (i1 − 1)NI2 + i2) is expressed as

p = (Diag(∆)⊗ Id NI2
)Λ̃G−1Fc, (6.78)

where matrix Λ̃ ∈ [0,+∞[NI1
NI2

×NI1
NI2 is such that, for every i = (i1 − 1)NI2 + i2 and

l = (l1 − 1)NI2 + l2, with (i1, l1) ∈ I21 , (i2, l2) ∈ I22 ,

Λ̃i,l = βn
∆1,l1

(
h−1
1 (ui1)− h−1

1 (ul1)
)
βn
∆2,l1

(
h−1
2 (ui1 , vi2)− h−1

2 (ul1 , vl2)
)
. (6.79)

Since we use the same low order B-splines, for every (i1, l1) ∈ I21 for which

|h−1
1 (ui1)− h−1

1 (ul1)| ⩽ (n+ 1)
∆1,i1 +∆1,l1

2
, (6.80)

we can again assume that ui1 and ul1 are close enough so that ∂h−1
2

∂v (ui1 , vi2) ≃
∂h−1

2
∂v (ul1 , vl2),

leading to

∆2,i1ξ
n,n
∆2,l1

/∆2,i1

(
h−1
2 (ui1 , vi2)− h−1

2 (ul1 , vl2)

∆2,i1

)
≃
√
∆2,i1∆2,l1β

2n+1 (vi2 − vl2) . (6.81)

In matrix form, this translates to the following approximation:

G ≃ G1 ⊗ G̃2, (6.82)

where the elements of G1 ∈ [0,+∞[NI1
×NI1 and G̃2 ∈ [0,+∞[NI2

×NI2 are, for every
(i1, l1) ∈ I21 ,

(G1)i1,l1 = ∆1,i1

√
∆2,i1∆2,l1ξ

n,n
∆1,l1

/∆1,i1

(
h−1
1 (ui1)− h−1

1 (ul1)

∆1,i1

)
(6.83)
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and, for every (i2, l2) ∈ I22 ,

(G̃2)i2,l2 = β2n+1 (vi2 − vl2) . (6.84)

It can be noticed that both G1 and G̃2 are symmetric matrices. Likewise Λ̃ can be
approximated as

Λ̃ ≃ Λ̃1 ⊗Λ2, (6.85)
where the elements of Λ̃1 ∈ [0,+∞[NI1

×NI1 , Λ2 ∈ [0,+∞[NI2
×NI2 are, for every (i1, l1) ∈

I21 and (i2, l2) ∈ I22 ,

(Λ̃1)i1,l1 = βn
∆1,l1

(
h−1
1 (ui1)− h−1

1 (ul1)
)
, (Λ2)i2,l2 = βn

1 (vi2 − vl2). (6.86)

Finally, p can be derived as

p ≃ (Diag(∆)⊗ Id NI2
)(Λ̃1 ⊗Λ2)(G

−1
1 ⊗ G̃−1

2 )Fc

=
(
(Diag(∆)Λ̃1G

−1
1 )⊗ (Λ2G̃

−1
2 )
)
Fc. (6.87)

As long as the magnification of the B-splines provides a good enough approximation of
the change of sampling rates induced by the homography, the 2D solution is separable
into 1D computations. Note that (6.87) shares the same footprint as would be obtained
by applying our 1D resampling approach separately on each row and column.
The backprojection task uses the reverse geometric transforms{

u = h1(x)

v = h2(x, z).
(6.88)

The magnification factors are then chosen equal to ∆′
1,j1

= |h′1(xj1)| and ∆′
2,j1

=
∂h2(xj1

,zj2 )

∂z = h22/s(xj1) where j1 ∈ J1 and j2 ∈ J2. Hereinafter, we will denote Hs

the discretized homographic transform involved in backprojection implemented as (6.87)
and H̃−1

s the discretized homographic transform involved in projection for s = m+n+1.

Remark 6.4.5.1 Up to now, the cone-beam geometry has been assumed to have axis
v aligned with axis z. When a 2D rotation within the detector plane can make the
axes parallel again, it can be computed within the same framework of centered B-splines
and separable 1D processing [217] and can be merged with the steps of rebinning or
rectification.
Otherwise, in the practical case of the vibrations of a C-arm system, the rotations that
break the parallelism at each angle are small. They cannot be ignored without degrading
the resolution, but they can be neglected in the definition of the set of magnifications. We
therefore now assume that the null elements, h3,2 and h1,2 of Hy0 in (6.5) are replaced

by small nonzero values. In this case ∂h−1
1

∂v no longer vanishes. We use the diagonal
elements of the Jacobian, considered a sufficient description of the local magnifications
while keeping the correct projection matrix to compute the sampling point’s locations.
This yields magnification factors (∆1,i1,i2 ,∆2,i1,i2)i1∈I1,i2∈I2 . In this case, the elements of
F are

Fi,j = ξm,n
∆1,i1,i2

(xj1 − h−1
1 (ui1 , vi2))ξ

m,n
∆2,i1,i2

(zj2 − h−1
2 (ui1 , vi2)) (6.89)

and (Diag(∆) ⊗ Id NI2
) has to be replaced by the diagonal matrix whose i-th diagonal

elements for i = (i1 − 1)NI2 + i2 with i1 ∈ I1 and i2 ∈ I2 is equal to | detJH−1
y0
(ui1 , vi2)|.

Note that the separability of F and the scaling diagonal matrix no longer hold. We can
neglect h3,2 for matrices G and Λ̃ to resort to the same surrogate matrices as in the ideal

case. Assuming small rotations, the gradient ∂h−1
1

∂v is small, and using such a model is
expected to outperform linear interpolation that ignores magnifications.
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6.5 Revisiting current data resampling strategies

Within our formalism, several conventional projection models can be revisited and their
limitations highlighted.

6.5.1 Distance-driven interpolation

Similar to our approach, the DD model [72] captures both sides of the sampling process, at
the voxel and detector bin levels, but from the perspective of a geometrical discretization,
which is not specific to flat panel detector and therefore not relying on projection matrices
and homographies. For planar parallel or fan-beam geometry, or when separability holds,
the 1D version is used as follows: voxels and bins are located by their edges on their
respective axis. These locations are mapped according to the system geometry onto a
common axis. Interpolation between one voxel and one bin is computed as the length of
the overlapping segment footprints of the voxel and the bin over this axis as shown in
Figure 6.6 for a flat-panel detector. Under this choice, the scheme is neither destination

Figure 6.6: 1D Distance-Driven

nor source driven, rendering it equally adequate for projection and backprojection. This
results in a matched pair (up to normalization factors) for this particular axis.
Remarkably, for projection, for every i ∈ I and j ∈ J ,

ξ0,0∆i
(h−1(ui)− xj) =

∫ +∞

−∞
β0
1(τ)β

0
∆i
(h−1(ui)− xj − τ)dτ =

∫ xj+
1
2

xj− 1
2

β0
∆i
(h−1(ui)− τ)dτ.

(6.90)

The above integral is equal to the intersection of the support of β0
1 centered at xj and of

length 1, with that of β0
∆i

centered at h−1(ui) and of length ∆i, which is the quantity
at the core of the DD scheme. The function β0

∆i
(h−1(ui) − ·) can be viewed as the

projection of the detector bin centered at ui, that is a segment centered at h−1(ui) with
length ∆i. As a result, in the context of flat panel cone-beam geometry, the DD scheme
can be expressed in our framework with n = m = 0 with a slightly different set of
magnification factors ∆DD as described in Remark 6.4.3.1. In particular, our choice of
setting ∆DD = ∆′ corresponds to the case when the intermediary axis is chosen as the
detector axis while setting ∆DD = ∆ corresponds to magnifications at the voxel axis. In
the following, we shall not discuss this degree of freedom of the method, we will instead
consider the DD with any intermediate axis and associated set of magnifications as being
an instance of our approach when n = m = 0.
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6.5.2 Destination-driven interpolation

The standard Joseph ray-driven projection model and voxel-driven backprojection model
are instances of C-D resampling. C-D backprojection with homography matrices H is
straightforward: from arbitrary location (xj1 , zj2), the corresponding coordinates onto
the detector (u, v) are computed according to (6.5). Then interpolation takes place in
the projection space. Likewise, C-D forward projection based on H−1 steps through
destination locations, i.e. every bin center (ui1 , vi2) and finds the corresponding set of
voxels in the volume that map into the output. Setting (ui1 , vi2) into (6.5) yields the
equation of the line that goes from location (ui1 , vi2) to the focal point S. Numerical
integration of volume f is then performed over this line (or ray) by means of interpolation
in the volume space. The most common instance of this approach consists in using
bilinear interpolation. For 1D projection, this amounts to plugging h−1(ui) in (6.30)
with m = 1. Our framework offers an alternative interpretation of this approach. In
(6.40) if we set n = m = 0 and define set ∆ with constant sampling step 1 in the normal
equations (6.34), then the C-D projection footprint matrix F is such that, for every i ∈ I
and j ∈ J ,

Fi,j = ξ0,01 (xj − h−1(ui)) = β1(xj − h−1(ui)) (6.91)

while the C-D backprojection footprint matrix F′ in (6.46) is

F ′
j,i = ξ0,01 (ui − h(xj)) = β1(ui − h(xj)). (6.92)

Even though both F and F′ use β1, they rely on different representations so that they are
far from being the transpose of each other. This teases out the magnification-agnostic
nature of such projection and backprojection models, thus explaining their limitations
in terms of adjoint and noise handling as we will show further on in our numerical
experiments.

6.5.3 Data downsampling

As we outlined in Chapter 2 (section 6.2), in the current medical practice, the recon-
structed slices are of size 512 × 512 while X-ray flat panels with a pitch of 200µ can
deliver many more samples, yielding a small ratio α/tz in (6.2) and (6.3). Therefore, the
downsampling factor is large. The C-D projector thus oversamples the volume, yield-
ing modelization errors when applying the adjoint during reconstruction, while the C-D
backprojector misses samples, thus not making use of the full X-ray dose. To limit
downsampling, reconstruction needs to be performed on small voxels. However, it must
also comply with the clinical constraints of fast reconstruction and limited storage ca-
pability in favor of downsampling. Besides, in IR, using smaller voxels increases L and
degrades the conditioning of Rs because the angular sampling becomes insufficient. Since
it is impossible to oversample the data in the angular direction, prior downsampling is
often performed. This pre-processing induces a loss of information and forces optimiz-
ing image and data representations. A prior rebinning3 of the data to larger pixels by
block-averaging is commonly used. Rebinning trades resolution loss for noise and aliasing
reduction. Resizing with a non-necessarily integer factor is less restrictive, but bilinear in-
terpolation modifies the noise properties by introducing correlations. This is detrimental
to statistical reconstruction methods directly modeling the detector’s statistically inde-
pendent bin measurements. One expected outcome of using convolutions of B-splines is
to provide less alteration of the noise properties to allow one to keep a simple noise model

3The term rebinning refers to using constant magnifications of integer factors at the detector level
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after data resampling, whether after a magnification by a real factor or a rectification
homography. Our model embeds the magnifications factors, hence alleviating the need
for rebinning. With better noise handling, IR allows for improved resolution. Note again
that a B-spline of order 0 at the detector level is a faithful resolution degradation model,
but a large cubic voxel model may not be appropriate for representing a higher resolution
volume. Our approach shows how to introduce a higher level of precision for the solution
(potentially higher than the precision of the DD).
Another downsampling routine that may be used for reconstruction is rectification [184].
Rectification relies on the observation that, for any paired homographies (Hy0 , Hy1)
derived from projection matrix P, each one can be deduced from the other by a magnifi-
cation. The decomposition of the projection into a composition of homographies can thus
be simplified into computing a single rectification homography derived from, e.g., Hy0 ,
to which 2D magnification Hy1H

−1
y0 is applied to obtain Hy1 . As magnifications present

a better computation layout than homographies, rectification has been introduced to
get faster FP-BP pairs for both FBP and IR. Resampling based on the convolution of
B-splines is an obvious candidate for both steps. The last benefit of IR is to reduce the
undersampling artifacts appearing, for instance, in CBCT with a circular orbit or with
a limited number of projections [130]. Missing projections are obviously independent of
the interpolation scheme within a projection; in that case, an accurate model minimizes
interpolation errors [151]. This is easier to achieve using a virtual rectified detector with
2D magnifications where the order of the B-spline sets the compromise between speed
and precision. We see that there is no one-fit-for-all discretization, but B-splines adapt
remarkably well to one’s various needs.

6.6 Application

6.6.1 Experiments

We tested our magnification-driven interpolation scheme for cone-beam projection using
orders (n,m) ∈ {0, 1}2 with m ⩾ n. The destination-driven FP and bp based on lin-
ear interpolation taken as a reference, are denoted by Rr and Br. The corresponding
homographic transforms are denoted by H̃−1

r and Hr. In subsection 6.4.4, we proposed
various simplified implementations of FP and BP. Henceforth, we will use a label a, b, or
c to specify the chosen implementation. For backprojection, implementation a consists
in computing p according to (6.87) using inversion of tridiagonal matrices [150,175]. Im-
plementation b consists in substituting Diag(∆)−1/2T−1

n Diag(∆)−1/2 for G−1
1 in (6.87).

Based on implementation b, implementation c consists in further replacing Λ̃1 by Λ1. It
can be noticed that given the range values of (n,m), (6.87) then becomes

p =
(
(Diag(∆)1/2T−1

n Diag(∆)−1/2)⊗ G̃−1
2

)
Fc. (6.93)

Note that with c, post-filtering through operator G̃−1
2 in (6.93) is completely indepen-

dent of the homography step. By linearity, it can thus be performed in a single global
pass, after summation of each transformed plane, on the resulting projections (or on the
volume for backprojection).
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6.6.1.1 Simulation scenarios

An ideal cone-beam geometry is considered; it is made of 600 projection matrices covering
a 360° circular acquisition. By ideal, we mean that the trajectory of the source point is
strictly planar and that the optical axis always crosses the center of rotation and hits the
center of the detector, which gives tx = ty = u0 = v0 = 0. All projection matrices are
thus of the form

P =

α cos θ α sin θ 0 0
0 0 α 0

− sin θ cos θ 0 tz

 . (6.94)

The detector size is such that the data is never truncated. Isosampling is defined as
tz = α = 1500 voxels. The set of magnification factors for approximating the homogra-
phies is defined at the destination level, namely at the detector level for Rs and at the
volume level for Bs. Recall that these operators rely on the repeated use of operators
Hs and H̃−1

s for various matrices H. We also considered FP and BP Vs corresponding
to the discretization of the associated rectified virtual geometry made of magnifications
only. The latter case serves as a baseline since it is known that magnification-driven
interpolation fulfills optimality conditions for magnifications [215].

6.6.1.2 Tasks

Projection for the whole orbit involves a mix of homographies, from simple magnification
when the detector is aligned with the volume to the worst case for a Cartesian grid at
π/4. The impact of such homographies is over coronal and sagittal slices. Therefore, we
first tested our different implementations of Hs and H̃−1

s for the matrix H deduced from
θ = π/4 and y = 0 as

H =

 α α sinπ/4 0
0 α 0

− sinπ/4 0 tz

 . (6.95)

We tested resampling steps δH = α/tz ∈ {1, 2, 3.5}, where δH = 1 means isosampling
and δH > 1 means that the voxel size is chosen δH times bigger than isosampling, and
that downsampling by a factor δH is performed.
Projectors and backprojectors themselves were evaluated through tasks of analytical and
iterative reconstructions. For analytical reconstruction, each model Rr and Rs was
successively used to simulate the projection of a vertical edge at isosampling followed
by FDK reconstruction with the corresponding operator Br or Bs. At backprojection,
all projection matrices were rotated by angle atan(1/16) to yield a slanted edge in the
reconstructed image so that the edge is sampled with 16 sub-voxel shifts. For iterative
reconstruction, the pair (Rs,R

⊤
s ) is employed. For a given forward model Rs, IR was

the result of minimizing the following objective function:

Ψ(f) =
1

2
∥Rsf − p∥2 + β

2
∥f∥22. (6.96)

Parameter β, set to 2 × 10−2, ensures the strong convexity of the cost function Ψ, and
thus the uniqueness of the minimizer. The initial value for volume f was set to the zero
vector. The minimization problem was solved by simple gradient descent. Vector p is
the projection of the 512 × 512 image displayed in Figure 6.7b with Rr performing an
8-times oversampling followed by an 8× 8 bin averaging.
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6.6.1.3 Image quality metrics

We compared the models in terms of bias (accounting for the loss of spatial resolution
or presence of artifacts) and noise propagation. For visual assessment of bias, we used
two simulated images: a "wire" image made of cylinders of varying diameters and fixed
intensity set to 100 Figure 6.7a, and a phantom Figure 6.7b containing sharp geometri-
cal shapes (two cylinders, one rectangle, six wires, and one line pair pattern). Spatial
resolution was assessed by computing the modulation transfer functions (MTF) of the
FDK-reconstructed slanted edge. Bias was evaluated for IR as the root mean square
error (RMSE) with respect to the ground truth over uniform ROIs.
For noise propagation, we used ensemble statistics: for two different operations (homog-
raphy Hs and backprojection Bs), N statistical replicates of noise were processed by
the same operation so that the mean, standard deviation (STD), and signal-to-noise ra-
tio (SNR), taken as the ratio of mean to standard deviation, can be computed at each
pixel of the output after processing. The 2D Noise Power Spectrum (NPS) can also be
computed and averaged radially over a circular region of interest. The noise, added on
each operation input, was always independent and identically distributed, zero-mean and
Gaussian with variance set to 1 for each test of Hs and to 103 for tasks involving Bs.

(a) Resolution image (b) Phantom for iterative reconstruction
(axial slice)

Figure 6.7: Reference images

6.6.1.4 C-arm CBCT data

An exemplary real-data case is also studied. A CBCT acquisition of a quality assur-
ance phantom, containing a resolution section with bar patterns, was obtained on a GE
Healthcare C-arm system with a circular orbit of 200° sampled by 607 projections. The
detector bin size was 0.2 mm. The distance from the focal spot to the detector is 1295 mm
which yields α = 1295/0.2 = 6475. The distance from the focal spot to the center of
rotation is 820 mm. The voxel size at isosampling is 0.127 mm (tz = 820/0.127 = 6456).
A 512×512 image with this voxel size yields only a field of view of 65 mm. We, therefore,
compared the performance of interpolation for the voxel size at isosampling and for a
four times bigger field of view by increasing the voxel size to 0.508 mm. For the latter
case, we compared FDK reconstructions with the following three options: i) direct back-
projection of the original data (α = 1295/0.2, tz = 820/0.508), ii) rectification of the
original data (α = 1295/0.200, tz = 820/0.127) followed by backprojection in rectified
geometry (α = 820/0.127, tz = 820/0.508) and iii) bin averaging by a factor 4, designated
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by operator A, followed by direct backprojection (α = 1295/0.800, tz = 820/0.508). We
compared the reconstruction of the bar pattern of 8 line pairs per mm on an axial slice
7.62 mm away from the central slice. The system perfectly resolves this pattern when
the voxel size is equal to 0.127 mm, but it is degraded for a voxel size of 0.508 mm. The
amount of degradation induced by the large voxel size depends only on the interpolation,
not the system. In such real-data conditions, (6.6) is not rigorously satisfied, hence we
fall in the situation described in Remark 6.4.5.1.

6.6.2 Results

6.6.2.1 Homography

Table 6.2 reports measures of RMSE associated to implementations b and c with respect
to implementation a after applying either homography H̃−1

s or Hs with our splines of
order s = m + n + 1 on the wire image degraded by noise. First, for all models, the
errors are very low. For δH > 1, Hs corresponds to a downsampling while H̃−1

s performs
an upsampling. We see almost no error when performing downsampling with our lowest
order model. Moreover, implementations b and c are on average 1.15 and 1.4 times faster
than implementation a for the considered homographies. Based on these facts, we now
focus on implementation c and drop the corresponding index.

H1 H2 H3 H̃−1
1 H̃−1

2 H̃−1
3

b c b c b c b c b c b c
δH = 1 0 0 5.2 22 4.6 20 53 53 49 56 46 53

δH = 2 0 0 37 54 35 52 10 10 27 31 26 30

δH = 3.5 0.1 0.1 25 25 24 25 1.8 1.8 0.2 2.9 0.2 2.4

Table 6.2: Comparison of implementations b and c with respect to implementation a in terms of RMSE
(×10−3)

Figure 6.8a shows the wire images obtained after performing a homography with
δH = 3.5 followed by the inverse homography. One can notice that the image obtained
with linear interpolation i.e. H̃−1

r Hr lacks some wires as indicated by the arrow on Fig-
ure 6.8b. This highlights the issue of nonstationarity with linear interpolation. With the
proposed magnification-driven interpolation, all wires are visible. The images obtained
with H̃−1

1 H1 have a patchy look typical of 0-order B-spline models. The highest-order B-
spline model gives the images with the least distortion at the price of small undershoots.
These differences between models are less apparent for lower downsampling factors as
illustrated for δH = 1 by Figure 6.8c showing the profile through the three bottom-right
wires (solid box) on Figure 6.8b. The profiles with H̃−1

2 H2 and H̃−1
3 H3 show higher

resolution than H̃−1
r Hr and H̃−1

1 H1.
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(a) Output wire slice using δH = 3.5. From left to right: H̃−1
r Hr, H̃−1

1 H1, H̃−1
2 H2, H̃−1

3 H3.

(b) Input resolution image (c) Plots through three wires (solid box in Figure 6.8b) using
δH = 1

Figure 6.8: Assessment of resolution for direct and inverse homography
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Figure 6.9 shows the SNR images obtained from N = 200 replicate homographies
H̃−1

s Hs and H̃−1
r Hr for δH = 2.025. The window widths (WW) and window levels (WL)

are set independently for each image. We see that noise correlation appears along the
columns where the homography is a magnification, while along the rows, the varying local
magnification factor of the homography induces a complex pattern. These correlations
vanish as the B-spline order grows. The mean and standard deviation of these SNR
images are reported in Table 6.3.

Figure 6.9: SNR images using δH = 2. From left to right: H̃−1
r Hr, H̃−1

1 H1, H̃−1
2 H2, H̃−1

3 H3.

H̃−1
r Hr H̃−1

1 H1 H̃−1
2 H2 H̃−1

3 H3

δH = 1 29 ± 7.8 28 ± 7.9 25 ± 4.5 21 ± 3.7
δH = 2 29 ± 7.8 33 ± 8.5 27 ± 6.5 23 ± 6.8
δH = 3.5 29 ± 7.8 48 ± 13 42 ± 12 40 ± 13

Table 6.3: Mean ± standard deviation of the SNR image generated by H̃−1
s Hs

First of all, linear interpolation has the same mean SNR no matter the change in the sam-
pling step, as only two samples are always considered. In contrast, with magnification-
driven models, the mean SNR grows with the downsampling factor as more samples get
involved. Model H̃−1

1 H1 gives a higher mean SNR than linear interpolation when δH > 1
and an equivalent mean SNR for smaller δH . Models H̃−1

3 H3 and H̃−1
2 H2 display higher

mean SNR than linear interpolation for large downsampling factors and lower ones for
lower downsampling factors. Understandably, the reduction presented above of the image
distortions for s > 1 is associated with noisier images. The noise is compensated by a
superior resolution, resulting in SNR increases.
Regarding the evaluation of the adjoint scheme, Figure 6.10 compares the interpolation
models for operation H⊤

s Hs and (H̃−1
s )⊤H̃−1

s with δH = 2. On Figure 6.10a, one can
see that, since linear interpolation always uses two samples no matter the magnification
factor, applying H⊤

r Hr or (H̃−1
r )⊤H̃−1

r to a constant image results in artificial high-
frequency patterns that are eliminated with our models. The model order has no impact
on a constant image. Regarding noise propagation, (H̃−1

r )⊤H̃−1
r yields a higher SNR

(25± 4.8) than (H̃−1
s )⊤H̃−1

s (20± 4.5 for s = 1, 20± 3.5 for s = 2, 19± 3.6 for s = 3). In
all scenarios, for higher-order models, the SNR images, however, display reduced corre-
lation patterns. Figure 6.10b and Figure 6.10c show two profiles taken at large wires of
the resolution image for H⊤

s Hs and (H̃−1
s )⊤H̃−1

s . Oscillations patterns are mostly visible
with schemes based on linear interpolation and are more pronounced with H⊤

r Hr. Small
overshoots are noticeable at the border of the wires with H⊤

2 H2 and H⊤
3 H3 that do not

appear using any model (H̃−1
s )⊤H̃−1

s .
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(a) Uniformity. From left to right: (H̃−1
r )⊤H̃−1

r , H⊤
r Hr, others: (H̃−1

s )⊤H̃−1
s and H⊤

s Hs.
Grayscale: 0-50

(b) Plots through two large wires (dotted box of Figure 6.8b) with
(H̃−1

s )⊤H̃−1
s

(c) Plots through two large wires (dotted box of Figure 6.8b) with H⊤
s Hs

Figure 6.10: Evaluation of direct and adjoint homography with δH = 2.
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6.6.2.2 Projector and backprojector

(a) MTF curves obtained with tz = α (solid lines) and with tz = 2α (dashed lines)

(b) 1D radial NPS obtained with tz = α

Figure 6.11: Frequency Analysis

Figure 6.11a displays the MTF curves obtained for FDK reconstruction at iso-sampling
and with tz = 2α for the direct geometry. All curves were normalized to 1 at zero fre-
quency. At iso-sampling, the MTF curves for Br and B1 are superimposed. Above, one
can see the curves obtained with B2 and B3 that are also superimposed. When tz = 2α,
model B3 outperforms B2 while the MTF for linear interpolation is slightly higher than
that of B1. For the rectified geometry, Vs provides the same MTF as their counterparts
Bs (curves not shown).
Figure 6.11b displays the radial NPS curves obtained from the replicate FDK reconstruc-
tions at iso-sampling. The positive slope of these curves results from the ramp filtering.
Models Br and B1 behave similarly and correlate more the noise than higher-order mod-
els.
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Figure 6.12: SNR images after FDK reconstruction of a uniform cylinder. From left to right, Br

(WL=128, WW=18), B1 (WL=122, WW=18), B2 (WL=63, WW=18) and B3 (WL=100, WW=18).

Figure 6.12 shows the SNR images obtained from N = 200 replicate FDK reconstruc-
tions of a uniform cylinder with Br and Bs at iso-sampling. The window level was chosen
as the mean value of each cylinder image (i.e., each mean SNR), while the window width
was kept constant. Uniform SNR images are expected. We see that models Br and B1

have similar mean SNR and display a small streak pattern, which is reduced with models
B2 and B3. Model B3 appears as the best compromise between a uniform SNR and a
high global SNR level.

Figure 6.13a shows a zoom on the error images between the ground truth and IR af-
ter 300 iterations for the central slice using projectors Rs and Rr. Edge distortions and
aliasing patterns are visible in all images. However, they are more pronounced with Rr.
The strength of these artifacts was quantified as the mean RMSE over a union of three
ROIs where they have the strongest effect. The RMSE errors are 0.74%, 0.59%, 0.56%
and 0.53% of the background for projectors Rr, R1, R2, and R3 respectively. Projector
Rr yielded the highest error while projector R3 led to the lowest one. Plots of the hori-
zontal profiles along the central wire are presented in Figure 6.13c. Peaks have a greater
intensity for Rr, R1, and R2 than the ground truth intensity (equal to 20), while for
R3 the intensity is correct. The iterative process inverts the discretization errors of the
projector, which yields a stronger unwanted deconvolution. The profiles thus show that
higher-order projectors induce fewer deconvolution biases because they rely on a more
accurate representation of the signal. This means that magnification-driven interpolation
can lead to reduced edge artifacts with respect to linear interpolation.
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(a) Error images between reconstructions and phantom (WL=0.15, WW=0.30). From left to right: Rr, R1, R2, R3

(b) Phantom with three ROIs

(c) Profiles through the six wires pointed by the arrow of Figure 6.13b

Figure 6.13: Iterative reconstruction of the simulated geometric phantom after 300 iterations
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6.6.2.3 Real data

(a) Br (tz = α) (b) BrA (tz = 4α) (c) Br (tz = 4α) (d) B3 (tz = 4α)

Figure 6.14: C-arm CBCT reconstruction of a quality assurance phantom. Displayed ROI centered on
the bar pattern of 8 lp/cm (WL = 1200, WW = 2000).

Figure 6.14 shows the reconstructions of the bar pattern of 8 line pairs at iso-sampling
and with a downsampling factor of 4. Figure 6.15 shows the profiles through the resolu-
tion bars according to different options and interpolation models.
All models offer similar performance when reconstructing at iso-sampling. With a down-
sampling of 4, the worst case is the standard approach of detector rebinning followed by
linear interpolation. A first improvement is obtained by substituting the rebinning step
with rectification. The highest resolution is obtained using the native geometry with B2

and B3. With Br, the issue of non-stationarity from peak to peak is again visible.
Table 6.4 shows that bin averaging of the data with A before backprojecting with linear
interpolation Br achieved the best noise performance but at the price of a strong loss of
resolution. Linear interpolation without bin averaging Br yielded the highest noise level.
In contrast, model B1, which led to a resolution very close to that provided by Br, was
associated with the second lowest RMSE, which is twice lower than the RMSE obtained
with Br. Using a first rectification homography Hs followed by our spline models in rec-
tified geometry Vs achieved an intermediate compromise between noise and resolution
for a reduced computational complexity. Using model V3H3 barely decreased spatial
resolution compared to performing a direct reconstruction with B3 while gaining noise
uniformity (RMSE decrease of 20 sHU).
All these observations show that the behavior of magnification-driven interpolation as-
sessed in simulations extends to real data. Moreover, despite a non-ideal geometry,
requiring a non-separable interpolation and approximate local magnifications, our ap-
proach still resulted in improvements over C-D methods with linear interpolation.

Br B1 B2 B3 BrA V1H3 V3H3

151 76 136 129 43 85 110

Table 6.4: Mean RMSE of the four uniform ROIs
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(a) tz = α

(b) tz = 4α

Figure 6.15: Profiles through the bar pattern of 8 lp/cm shown in Figure 6.14
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6.6.3 Discussion

The modeling of magnification, performed through optimal expansions over B-splines of
varying widths, provides a new framework for computing homographies found in flat-
panel cone-beam FP and BP. The proposed framework generalizes current separately
developed approaches of magnification-agnostic signal resampling on the one hand and
geometric discretization on the other. The first approach works well enough for common
image processing tasks, especially when using high-order polynomial interpolation. How-
ever, in the practice of clinical X-ray imaging, nearest neighbor (for rebinning) and linear
interpolations are preferred for AR. The reasons are related to limited computation and
storage resources, and the constraint of full X-ray dose utilization, so spatial resolution
is sacrificed to noise reduction through the use of large or rebinned acquisition pixels.
We here provide an array of interpolation kernels to fully benefit from small acquisition
pixels with improved data resizing or rectification steps and improved projection inner
steps. Our method displays reasonably simple computations through interpolation ker-
nels of order up to 3 and enhanced noise uniformity.
We do not claim that resolution can be improved and noise decreased simultaneously: the
proposed kernels may either keep the noise or blur the signal, but they do not randomly
lose information, as may happen when downsampling with a magnification-agnostic linear
interpolation. At iso-sampling, the current state-of-the-art linear and DD interpolations
have similar performances.
The shortcomings of the adjoint of the destination-driven FP are induced by the lack of
magnification modeling in the interpolation process. The alternative footprint approach
has been introduced to overcome this issue. Again, dose and computation constraints
have made the DD model a better tool for IR than alternative classical tools of image
processing. Put into our framework, we get several advantages. First, the DD appears
to oscillate between linear interpolation and nearest-neighbor interpolation depending on
the magnification factor, so its preferential use is at iso-sampling. Second, its computa-
tion can be simplified through the use of the convolution of 0-order B-splines with respect
to the complex logic of sorting the edges of the voxels and pixels on an intermediate axis.
Third, it can be improved by slightly higher-order kernels, and it can be associated with
rebinning and rectification within a single modeling framework.

Improvements in clinical systems are expected from our framework. First, the increase
in resolution achieved on a real acquisition of a quality assurance phantom will translate
to clinical exams for linear AR. Secondly, regarding IR, let us recall that working with
finer voxels than that of iso-sampling increases the computation load. Instead, a higher-
order model for the volume side allows the compression of the information held by many
small pixels on the detector side. We consider it important to provide an optimized link
between a 0-order acquisition sampling model and a higher-order reconstruction model
through either resizing or rectification, to perform reconstruction at isosampling. Accord-
ingly, through the use of operators with increased symmetry, possibly based on virtual
detectors where the resampled data can still be modeled as uncorrelated, our method
displays features necessary for faster convergence and computation, much desirable in
clinical practice.
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6.7 Conclusion

In this chapter, we introduced a new magnification-driven interpolation framework for
tomography. It leverages a resizing scheme based on families of B-splines of varying
widths to account for the magnifications introduced by the homographies found in flat-
panel cone-beam projection. Focusing on magnification was a key path toward improving
the modeling of a cone-beam projector and its adjoint. An interpolation kernel set was
derived that allows novel forward and backward projection pairs. These kernels balance
spatial resolution versus noise and yield better noise uniformity. The benefits with respect
to standard FP/BP models based on linear interpolation appeared more significant when
downsampling frames acquired by the small pixels of X-ray flat-panel detectors: full dose
usage is guaranteed, while linear interpolation randomly misses data. Magnification-
driven interpolation is perfectly adapted to downsampling high-resolution data at the
detector level through simple magnification or rectification that further provides simpler
and faster computations. In our experiments, the tested kernels were of order up to 3.
Such a choice results in reasonable computations, which, by taking advantage of separa-
bility, translate well to highly-parallel computing architectures. The lowest order model
reduces to the DD interpolation, for which we provided new insight and computational
scheme.

155





7 | Decomposition method for
DTV with application to
needle reconstruction from
limited-angle acquisitions

7.1 Introduction

As mentioned in Chapter 2, flat-panel C-arm systems provide real-time 2D imaging to
navigate therapeutic devices during minimally invasive vascular or percutaneous pro-
cedures. This chapter investigates iterative reconstruction methods in the context of
interventions involving metallic needles.
During such interventions, the patient is positioned to optimize the real-time 2D visual-
ization of the device and its trajectory. Although a CBCT scan could be performed to
precisely assess the position of the device according to the planned trajectory, repeated
acquisitions would increase the X-ray dose received by the patient. It would also require
multiple repositionings of the patient because of kinematic constraints - due to the pa-
tient size or additional medical equipment - that are incompatible with a 200° short-scan
rotation. An alternative to 2D imaging could be rotating over a smaller angular ampli-
tude to reduce the number of required position changes and the number of projections,
and thus patient dose.
In this chapter, we consider a series of acquisitions, the first of which is acquired around
a 200° rotation. The first acquisition enables a precise reconstruction of the anatomi-
cal tissues, while subsequent shorter acquisitions focus on monitoring the needles. We
assume that the fusion of the first pre-operative reconstruction with subsequent recon-
structions is possible through registration techniques and allows the visualization of both
the needles and the anatomy. As a result, we solely focus on reconstructing needles over
a background from limited-angle acquisitions shorter than 200°.
Iterative reconstruction methods based on TV regularization have proven useful to re-
construct both interventional devices [74], and human tissues from a reduced number
of projections [130]. However, these methods fail when reducing the angular amplitude
of the acquisition. In 2D, the original isotropic TV, proposed in [187], penalizes the
sum of the ℓ2 norms of the image partial derivatives in the vertical and horizontal direc-
tions equally. It cannot recover the edges along directions not sampled by the limited
angular amplitude. Only edges and details tangent to the projection directions are re-
covered [178]. For piecewise constant geometrical objects, successful results have been
obtained with the anisotropic total variation (ATV). ATV assigns different weights to
the image’s vertical and horizontal partial derivatives. This strategy allows for consid-
ering the angular range as an additional prior information [225]. Non-convex potentials
approximating the ℓ0 pseudo-norm, combined with reweighting strategies, have also been
explored within the ATV approach. However, due to non-convexity, it is not clear that
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the resulting optimization methods converge to a global minimum [225, 232, 237]. Re-
cently, ATV constrained formulations (instead of regularization-based ones) have been
successfully used for the reconstruction of complex patterns from limited-angle acqui-
sitions [244]. The anisotropic regularizer proposed in [17] is particularly suited to thin
objects like needles because it emphasizes one specific direction. Hereinafter, we call this
directional total variation (DTV). DTV relies on estimating the gradient norm along one
selected direction that is not necessarily aligned with the pixel grid. Applications on
denoising and reconstructing images of fiber materials have been successful [126]. Addi-
tionally, DTV with a spatially varying direction and strength [149,166,242], that includes
higher-order derivatives [126, 165], has been proposed for applications involving vessels
and fingerprints, which exhibit more complex directional patterns. In this chapter, we
consider the simple geometric shape of needles that is very sparse and can be recon-
structed from a limited-angle acquisition. We here allow for more than one direction for
needles and assume a superposition of them over a non-sparse anatomical background.
We adopt an image decomposition approach that applies DTV over multiple directions
for needles and TV to approximate the background. Decomposition was first proposed
for texture-geometry decomposition [12] and has also been applied to CT imaging to de-
compose the reconstruction into three components of the object, sub-sampling artifacts
and noise [133].
This chapter is organized as follows. In section 7.2, we propose an iterative reconstruc-
tion method in 2D. Because of their simpler geometry, needles benefit from a directional
a priori that can be easily embedded in iterative methods. In particular, we adapt
the 2D DTV regularization of [17] for incorporating directional information and the de-
composition method to apply different directional constraints on separate components
selectively, as well as to exclude the anatomical background. Then, in section 7.3, we
show how we can modify the 2D method to be used in 3D cone-beam geometry with a
low computational cost.

7.2 Two-dimensional case with a 2D regularization

7.2.1 Method

Let H ∈ RM×N be the discretized model of forward projection adapted to a limited-angle
acquisition, x ∈ RN the unknown attenuation image, and y ∈ RM the log-transform of
the data measured by the detector. To estimate the attenuation map, we consider the
sum of a least-squares data fidelity term and a convex regularizer g embedding this prior
information, in particular, sparsity and direction:

minimize
x∈RN

1

2
∥y −Hx∥2F + g(x), (7.1)

where F ∈ RM×M is a symmetric positive definite matrix. We now discuss choices for g.

Directional total variation

DTV enforces the prior that the object is piecewise constant and follows one main
direction. For an image x ∈ RN , its DTV can be defined as

DTVΩ(x) =

N∑
n=1

∥(∇Ωx)n∥1 = ∥ΛRθ(∇x)∥1,1, (7.2)
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where Ω = {θ, s}, ∇Ω ∈ R2×N contains two directional derivatives at pixel n, ∆θ
nx and

∆
θ+π/2
n x, parameterized by an angle θ ∈ [0°, 180°[, and a "stretching factor" s > 0 for

anisotropy, i.e.

(∇Ωx)n =

(
∆θ

nx

s∆
θ+π/2
n x

)
= ΛRθ

(
∆h

nx
∆v

nx

)
=

(
1 0
0 s

) (
cos θ sin θ
− sin θ cos θ

) (
∆h

nx
∆v

nx

)
, (7.3)

with ∆h
n ∈ RN , ∆v

n ∈ RN the horizontal and vertical discrete gradient operators at
location n respectively. The discrete gradient operators can be obtained by applying a
forward finite difference scheme with zero boundary conditions.
Given that a set of needles makes a very sparse image, we add an ℓ1 penalty so that
g(x) = gΩ(x) = ρDTVΩ(x) + α∥x∥1 + i[0,+∞[N (x), (α, ρ) ∈]0,+∞[2 in (7.1).

Image decomposition

With a non-sparse background, the lack of data due to the low angular amplitude
cannot be compensated, and the problem does not have a sparse solution. Decomposing
x into a linear combination of several components restores sparsity in all components
that can then be recovered from the limited data. A component is thus defined by its
specific sparsity prior. A different sparse approximation is used to direct the interfering
background into a single component. Then, instead of estimating the sum directly, we
simultaneously solve the minimization problem for each of these components.
Here we decompose x into the anatomical background component xB, penalized with TV,
and I ∈ N directional components xΩi , penalized with DTV of direction θi ∈ [0°, 180°[
and stretching parameter si > 0 such that

x = xB +
I∑

i=1

xΩi , (7.4)

where Ωi = {θi, si}, i ∈ {1, . . . , I}.
Altogether, we must solve the following convex problem:

minimize
xB,(xΩi

)Ii=1∈RN

1

2
∥y −H(xB +

I∑
i=1

xΩi)∥2F +

I∑
i=1

gΩi(xΩi) + gTV(xB), (7.5)

where gTV(xB) = β∥∇xB∥1,2 + i[0,+∞[N (xB), β ∈]0,+∞[.
Note that each directional component xΩi can capture a needle or a group of needles of
about the same direction. The decomposition is expected because each regularization
function captures features targeted to one component.
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Optimization algorithm

We compare two optimization methods for solving (7.5): FISTA and CV, presented
in Chapter 3 (subsection 3.3.3).

FISTA:

Let z =
[
x⊤B x⊤Ω1

. . . x⊤ΩI

]⊤ ∈ R(I+1)N . Let H̃ = ΠH and F̃ = ΠF where
Π: M 7→

[
M . . . M

]
∈ R((I+1)L)×L. A first reformulation of (7.5) is

minimize
z∈R(I+1)N

1

2
∥y − H̃z∥2

F̃
+ h(z), (7.6)

with h : z 7→
∑I

i gΩi(xΩi) + gTV(xB).
Let a be a positive real number such that a > 2. The k-th iteration of FISTA applied to
(7.6) reads 

βk = k/(k + 1 + a)
z̃k = zk + βk(z

k − zk−1)

zk+1 = proxτh(z̃
k − τH̃⊤F̃ (H̃z̃k − y))

, (7.7)

where z0 ∈ R(I+1)N .
Thanks to the separability of h in each component of z, we derive an update rule for
each map as 

βk = k/(k + 1 + a)

x̃kB = xkB + βk(x
k
B − xk−1

B )
For i ∈ {1, . . . , I}:

x̃kΩi
= xkΩi

+ βk(x
k
Ωi

− xk−1
Ωi

)

x̃k = H⊤F
(
H(x̃kB +

∑I
i x̃

k
i )− y

)
xk+1
B = proxτgTV

(x̃kB − τ x̃k)

For i ∈ {1, . . . , I}:
xk+1
Ωi

= proxτgΩi
(x̃kΩi

− τ x̃k)

. (7.8)

The sequence (xk+1
B , (x̃kΩi

)Ii=1)k∈N produced by Algorithm (7.8) converges to a solution
to (7.5) for

0 < τ ⩽
1

|||H̃⊤F̃ H̃|||
=

1

(I + 1)|||H⊤FH|||
. (7.9)

The proximity operators of gTV and gΩi do not have a closed form, hence they are
both approximated using inner iterations of the DFB algorithm, presented in Chapter 3
(section 3.3), with warm-restart. In particular, for DTV and x̃ ∈ RN , x̂ = proxτgΩi

(x̃) is
estimated using the following sub-iteration:{

xn = proj[0,+∞[N (x̃−∇⊤
Ωu

n)

un+1 = proj∥·∥∞,∞⩽τρ(u
n + γ∇Ωx

n)
, (7.10)

where γ < 2/|||∇Ω|||2, u0 ∈ R2N and ∥un∥∞,∞ is the maximum value of the 2 components
of un ∈ R2N .
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CV:

A second way of reformulating (7.5) leads to

argmin
z∈R(I+1)N

g(z) + f(Kz) +
1

2
∥H̃z − y∥2

F̃
, (7.11)

where

(∀z =
[
x⊤B x⊤Ω1

. . . x⊤ΩI

]⊤ ∈ R(I+1)N ) g(z) = i[0,+∞[(I+1)N (z) +

I∑
i=1

α∥xΩi∥1,

(∀u =
[
u⊤B u⊤Ω1

. . . u⊤ΩI

]⊤ ∈ R(I+1)2N ) f(u) = β∥uB∥1,2 +
I∑

i=1

ρ∥uΩi∥1,1,

K =
[
∇ ∇Ω1 . . . ∇ΩI

]
. (7.12)

The k-th iteration of CV applied to (7.11) reads{
zk+1 = proxτg(z

k − τ(H̃⊤F (H̃zk − y) +K∗uk))

uk+1 = proxσf∗(uk + σK(2zk+1 − z))
, (7.13)

where z0 ∈ R(I+1)N and u0 ∈ R2(I+1)N .
The convergence of Algorithm (7.13) is guaranteed for τ, σ > 0 such that

τ
(
σ|||K|||2 + |||H̃⊤F̃ H̃|||

)
< 1, (7.14)

where we note that

σ|||K|||2 + |||H̃⊤F̃ H̃||| ⩽ σ(|||∇|||2 + I|||∇Ω1 |||2) + (I + 1)|||H⊤FH|||. (7.15)

Component-wise, the update (7.13) becomes

vk+1 = H⊤F
(
H(xkB +

∑I
i x

k
i )− y

)
xk+1
B = proj[0,+∞[N (x

k
B − τ(vk+1 +∇⊤ukB))

For i ∈ {1, . . . , I}:
xk+1
i = proj[0,+∞[N (proxτα∥·∥1(x

k
i − τ(vk+1 +∇⊤

Ωi
ukθi)))

vk+1 = ∇(2xk+1
B − xkB) +

∑I
i ∇Ωi(2x

k+1
i − xki )

uk+1
B = proj∥·∥∞⩽β(u

k
B + σvk+1)

For i ∈ {1, . . . , I}:
uk+1
i = proj∥·∥∞⩽ρ(u

k
i + σvk+1)

(7.16)

Contrary to Algorithm (7.8), Algorithm (7.16) does not require sub-iterations.
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7.2.2 Application

Simulations

Figure 7.1: A scanning configuration collecting data over limited angular range Θ.

Figure 7.2: Reference images. From left to right: Phantom (A) with needles of intensity 3500 sHU, Image
with needles of growing intensity from 3000 sHU up to 5000 sHU, Anatomical background [1800-2200
sHU].

We carried out simulations in parallel geometry (Figure 7.1): an X-ray source and a
1D detector rotate over a circular arc Θ.
We considered two numerical phantoms on a 256 × 256 grid. Phantom (A) is purely
geometric and represents a set of needles of intensity 3500 sHU covering 8 directions (5°,
27.5°, 50°, 72.5°, 95°, 107.5°, 130°, 152.5°) as shown in Figure 7.2. Phantom (B) is the
sum of an axial CT slice of an abdomen (see Figure 7.2) with a subset of needles of
varying intensity (3000-5000 sHU).
A needle is said to be within the scanning arc if the projection data contain its bull’s eye
view. We computed simulated data of these phantoms over a circular arc of amplitude
θ ∈ [29°, 95°] (indicated by the arrows in Figure 7.2) so that the projection data contains
the bull’s eye view of three needles. I.i.d. Gaussian noise of mean 0 and standard
deviation 50 was then added to the projections. The angular sampling was uniform
with a step of 2°. Reconstruction with TV regularization was taken as a baseline. FBP
reconstruction followed by thresholding of the intensity was added to the comparison.
First, we analyzed the performance of our DTV decomposition method (7.5) for the
reconstruction of a subset of the needles of Phantom (A). We performed a reconstruction
using four DTV of direction {5°, 27.5°, 72.5°, 107.5°} (i.e., I = 4). Then we reduced the
angular density. Finally, we added two directional components (I = 6) {130°, 152.5°} to
model (7.5) so that all the directions of Phantom (A) were covered. We compared the
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convergence of CV and FISTA (with 100 inner iterations of DFB). Then we showed the
method’s applicability to the more complex case of background and needles of different
intensities by reconstructing Phantom (B). This time, a set of I = 3 directions was used:
{27.5°, 72.5°, 107.5°}. In all these simulations, the needles have the same size, so we used
the same stretching parameter s = 0.001. Needles with the same intensity have the
same regularization parameters ρ and α. The matrix F was chosen as the ramp filter
(see Chapter 3), which provides an approximate inversion of HH⊤. The TV and DTV
parameters then became thresholds that are homogeneous to the sHU intensity values of
the image.

Background-free needles

Figure 7.3 shows the reconstructions of Phantom (A) with FBP, (7.1) with TV
(β = 50) and (7.5) with DTV decomposition (ρ = 50, α = 1). First, we see that
with FBP, only a partial reconstruction of the three needles within the scanning arc is
achieved. Figure 7.4 displays the four reconstructed directional components. Both DTV
and TV methods lead to similar reconstructions for the three needles in the scanning
arc. For the two needles of direction close to the starting value of Θ, TV yields a partial
recovery only. In contrast, the DTV decomposition method fully recovers 12 out of 16
needles because their directions were sufficiently close to the imposed a priori directions.
The four remaining missing needles show no recovery without a priori directional in-
formation. Reconstruction of the 12 needles is the same with the DTV decomposition
method when doubling the angular sampling step, which shows the robustness of the
method to a varying angular density (see Figure 7.5).
Figure 7.6 shows that the last four needles can be recovered by adding two more direc-
tional components (I = 6) to (7.5).
Regarding the comparison of the performance of our two optimization algorithms for
the DTV decomposition problem, Figure 7.7 displays the evolution of the PSNR asso-
ciated with the iterates of (7.8) and (7.16). We see that FISTA converges faster than
CV in terms of the number of iterations, as expected by the improved convergence rate
of FISTA. Figure 7.8 shows the estimated directional maps for the case I = 4 at 2500
and 5000 iterations with FISTA, while Figure 7.9 shows the same maps obtained after
2500, 5000, and 50000 iterations of CV. We see that the directional maps are the same
for CV after 5000 iterations while they are already well-estimated after 2500 iterations
of FISTA.

Figure 7.3: Reconstructed images for θ ∈ [29°, 95°]. From left to right: FBP, (7.1) with TV and (7.5)
with DTV decomposition (I = 4).
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Figure 7.4: Directional components obtained with the DTV decomposition method (I = 4) for θ ∈
[29°, 95°] on Phantom (A). Top: from left to right, θ1 = 107.5°, θ2 = 72.5°. Bottom: from left to right,
θ3 = 27.5°, θ4 = 5°.

Figure 7.5: Reconstructions obtained with the DTV decomposition method (I = 4) for θ ∈ [29°, 95°] when
decreasing the angular density. Sum of all directional components obtained with the DTV decomposition
method on Phantom (A) for an angular step of, from left to right, 2°, 3° and 4°.

Figure 7.6: Reconstruction obtained with the DTV decomposition method for θ ∈ [29°, 95°] when using
a directional component for all possible directions (I = 6). Top: sum of all reconstructed components.
Bottom: directional components obtained with the DTV decomposition method on Phantom (A). From
left to right, θ1 = 107.5°, θ2 = 72.5°, θ3 = 27.5°, θ4 = 5°, θ5 = 152.5°, θ4 = 130°.
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Figure 7.7: PSNR associated to the sum of all reconstructed maps produced by FISTA and CV with
respect to Phantom (A) for θ ∈ [29°, 95°] and I = 4.
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Figure 7.8: Estimates of the components of Phantom (A) for θ ∈ [29°, 95°] with FISTA and I = 4. From
top to bottom: 2500, 5000 iterations. From left to right, θ1 = 107.5°, θ2 = 72.5°, θ3 = 27.5°, θ4 = 5°,
sum of all components.

Figure 7.9: Estimates of the components of Phantom (A) for θ ∈ [29°, 95°] with CV and I = 4. From
top to bottom: 2500, 5000, and 50000 iterations. From left to right, θ1 = 107.5°, θ2 = 72.5°, θ3 = 27.5°,
θ4 = 5°, sum of all components.
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Needles with background

Figure 7.10 shows the reconstruction of the needles of Phantom (B) with FBP, (7.1)
with TV and (7.5) with DTV decomposition (sum of all needle maps). First, as expected,
the anatomical background cannot be recovered with sufficient quality with a sparse prior
in this limited angle setting. The needles reconstructed with FBP are distorted, and the
intensity values are not retrieved. With a simple TV regularization, only the three needles
within the scanning arc remain after thresholding, whereas five are recovered with the
DTV decomposition method. Figure 7.11 shows that the decomposition method coupled
with directional information separates the three sets of needles from the background map.

Figure 7.10: Reconstruction of needles of Phantom (B) in the presence of a background for θ ∈ [29°, 95°].
Left: needles with background. Right: needles map. From top to bottom: FBP, (7.1) with TV and (7.5)
with DTV decomposition.

Figure 7.11: Reconstructed needles maps obtained with the DTV decomposition method on Phantom
(B). From left to right: xΩ1 (θ1 = 107.5°), xΩ2 (θ2 = 27.5°), xΩ3 (θ3 = 72.5°).
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7.3 Three-dimensional case with a 1D regularization

7.3.1 Method

In cone-beam geometry, applying a 2D DTV within each axial slice does not capture the
main direction of the needles when they deviate from the tomographic plane. We now
extend the previous model to this case.

Limitations of the 2D DTV formulation

In (7.3), the gradient in an arbitrary direction θ, ∇θ is estimated from a linear com-
bination of the vertical ∆v and horizontal ∆h differences operators. This estimation has
two main limitations.
First, a straightforward extension of the previous DTV decomposition method to an ar-
bitrary direction in a 3D volume includes three finite difference operators along with the
three directions of the reference frame. Using a 3D formulation of the DTV regulariza-
tion to enhance a 1D structure is computationally heavy.
Second, the estimation of the directional gradient is poor at θ ∈ {±45°} while it is the
most precise at θ ∈ {0°, 90°}, i.e., along the axis of the Cartesian grid. Such poor dis-
cretization indicates that the rate of recovery of a needle by our optimization algorithms
solving (7.5) depends on the needle’s direction. We illustrate this point by considering
two different starting and ending angular positions to acquire the projections of Phantom
(A) while keeping the angular amplitude fixed. More precisely, we choose θ ∈ [−35°, 15°]
(Case 1) and θ ∈ [35°, 85°] (Case 2). Similar to our previous experiments, we computed
simulated projections and added i.i.d Gaussian noise of mean 0 and standard deviation
50. This time, we focused on the reconstruction of two maps: a map containing all well-
sampled needles (θ1 = −14° for Case 1 and θ1 = 61° for Case 2) and a map containing a
needle with a direction close to the end of the scanning arc (θ2 = −50° for Case 1 and
θ2 = 95° for Case 2).
Figure 7.12 shows the reconstruction of the two directional maps for both acquisitions
after 2500 iterations of FISTA. We see that the needle whose direction is closest to that
of the grid is recovered before the needle whose direction is closest to a diagonal.

Building on these limitations, we propose to change the reconstruction problem (7.5)
so that the directional filtering is enabled by a 1D regularization.
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Figure 7.12: Two reconstructed needle maps of Phantom (B) for different scanning trajectories with a
2D DTV regularization. Top: θ ∈ [−35°, 15°]. Bottom: θ ∈ [35°, 85°]. From left to right: component of
direction θ1, component of direction θ2, sum of the two components.

Changing the reconstruction grid for each directional component

In Chapter 6 (section 6.2), we have seen that the cone-beam geometry can be de-
scribed by a set of 3 × 4 projection matrices. More specifically, the matrix of extrinsic
parameters Pe relates the reconstruction frame to a 3×3 rotation matrix with coefficients
(ri,j)1⩽i,j⩽3 followed by three translations (tx, ty, tz) ∈ R3, one along each rotated axis
to reach the position of the source of the acquisition system with respect to the world
coordinate system:

Pe =

r1,1 r1,2 r1,3 tx
r2,1 r2,2 r2,3 ty
r3,1 r3,2 r3,3 tz

 . (7.17)

A rotation of the reconstruction frame around the rotated x−axis is performed by right-
multiplying Pe with a 4× 4 matrix such that

Rθ1 =


1 0 0 0
0 cos θ1 − sin θ1 0
0 sin θ1 cos θ1 0
0 0 0 1

 . (7.18)

Likewise a rotation around the rotated y- and z- axis is achieved using the matrices

Rθ2 =


cos θ2 0 sin θ2 0
0 1 0 0

− sin θ2 0 cos θ2 0
0 0 0 1

 (7.19)

and

Rθ3 =


cos θ3 sin θ3 0 0
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

 . (7.20)

We now introduce different projectors associated to rotated reconstruction grids. Let
Ωi = {θi1, θi2, θi3}. H is the projector obtained from Pe while HΩi is the projector ob-
tained from PeRθi1

Rθi2
Rθi3

. We define different projectors (HΩi)
I
i=1 ∈ RI(M×N) for each
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directional component. The set of angles Ωi is selected such that the ratio between the
sampling step along each direction θij (j ∈ {1, 2, 3}) and the sampling step along the new
vertical or horizontal direction is closest to one. Ωi then contains the minimal rotations
required to align the needle map with one of the grid’s axis. The pipeline is summarized
in Figure 7.13.

(a) Initial C-arm CBCT geometry (Pe) (b) 1st rotation of the reconstruction frame

(c) 2nd rotation to align the needle
with the vertical axis

(d) The proximity operator of g1D performing
a 1D filtering

Figure 7.13: Pipeline for replacing DTV regularization by a 1D directional regularization. Two rotations
are performed to change the reconstruction frame. The first rotation makes the needle parallel to a plane
of type z = z0 and the second aligns the needle with the axis y of the new frame.
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We can then consider the following optimization problem:

minimize
xB,(xΩi

)Ii=1∈RN

1

2
∥y −HxB −

I∑
i=1

HΩixΩi∥2F +
I∑

i=1

g1D(xΩi) + gTV(xB), (7.21)

where, for x ∈ RN , g1D(x) = i[0,+∞[N (x) + α∥x∥1 + ρ∥∆vxωi∥1 if x follows the vertical
direction in the new reconstruction frame or g1D(x) = i[0,+∞[N (x) + α∥x∥1 + ρ∥∆hxωi∥1
if x follows the horizontal direction.

Optimization algorithm

The FISTA algorithm now yields

βk = k/(k + 1 + a)

x̃kB = xkB + βk(x
k
B − xk−1

B )
For i ∈ {1, . . . , I}:

x̃kΩi
= xkΩi

+ βk(x
k
Ωi

− xk−1
Ωi

)

yk = F (Hx̃kB +
∑I

i H
θi x̃ki − y)

xk+1
B = proxτgTV

(x̃kB − τH⊤yk)

For i ∈ {1, . . . , I}:
xk+1
Ωi

= proxτg1D(x̃
k
Ωi

− τ(Hθi)⊤yk)

, (7.22)

where x0B ∈ RN and ∀i ∈ {1, . . . , I}, x0Ωi
∈ RN . Algorithm (7.22) trades a complex

regularization scheme for a simpler and more precise scheme with additional forward
projections and backprojections, one for each component (total of 2 in Algorithm (7.8)
versus 2(I + 1) in Algorithm (7.22)).
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7.3.2 Application

Before testing our alternative DTV decomposition method (7.21) on 3D data, we provide
a first illustration of its performance compared to that of the one relying upon a 2D DTV
(7.5) on the simulated case presented in Figure 7.12 (subsection 7.3.1).
Figure 7.14 shows the equivalent reconstructed components obtained with (7.21) for Case
1 after 2500 iterations of FISTA. The first needle map along θ1 is thus associated with the
projector HΩ1 where Ω1 = {0°, 0°,−θ1} while the second is associated with the projector
HΩ2 where Ω2 = {0°, 0°,−θ2}. Both projectors align the map directions with the vertical
axis (see Figure 7.14). Comparing the last column of Figure 7.12 (Top) and Figure 7.14,
we see that pre-aligning the needle of direction θ2 out of the scanning arc with the
horizontal axis allows for a faster reconstruction than when the 2D DTV is used.

Figure 7.14: Reconstructed needle maps of Phantom (B) for θ ∈ [−35°, 15°] with a 1D regularization.
From left to right: component of direction θ1, component of direction θ2, sum of rotated components.

We now demonstrate how our DTV decomposition method performs on two CBCT
acquisitions for biopsies. Contrary to our previous simulations, noise is not the only
source of data corruption in real data. Other physical effects, such as beam-hardening,
are associated with metallic needles. Our DTV decomposition method was thus tested
against these data inconsistencies.
We provided, as a comparison, the FDK reconstructions for θ ∈ [0°, 200°] and for limited-
angle scans with a shorter angular amplitude. Note that, when θ ∈ [0°, 200°], Parker’s
weights were included in FDK. FDK reconstructions were performed on a grid of size
N = 512× 512× 512. Hereinafter, the a priori set of directions for each needle map was
estimated from a first FDK reconstruction using the complete acquired measurements
over 200°.

First, we looked at a volume that contains a thick needle that belongs to the tomographic
plane. Figure 7.15 shows a 2D view of the projections. We compared the reconstructions
of the volume from three acquisitions: the first was such that θ ∈ [0°, 200°], the second
was such that θ ∈ [20°, 123°], and the last was such that θ ∈ [97°, 200°]. The angular
density was constant for each acquisition (1 view every 0.68°).
We applied our DTV decomposition method for I = 1 for all three acquisitions with
Ω1 = {θ11, θ12, θ13} = {0°, 0°, 36°}. The initialization of the needle map was chosen as the
FDK reconstruction while the background map was initialized to zero. Contrary to our
2D simulations in subsection 7.2.2, the projections are now truncated. We thus recon-
structed each component of the volume xB, xΩ1 ∈ RN on a slightly extended grid such
that N = 576×576×512. We performed 300 iterations of FISTA and 80 inner iterations
of DFB (with warm restart). Regularization parameters were chosen as β = 5, α = 10
and ρ = 50.
Figure 7.16 shows the same transaxial slice where the needle appears in FDK reconstruc-
tions from the three acquisitions. We see that the intensity of the needle is distributed
in a fan shape across the transaxial slice for θ ∈ [97°, 200°] and only the tip of the needle
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Figure 7.15: 2D view of the projection data (Case 1).

is visible. In contrast, when the starting and ending angles are shifted by 77°, the needle
is perfectly visible.

Figure 7.16: Transaxial slices obtained from FDK-reconstructed volumes for different acquisition ampli-
tudes. From left to right: θ ∈ [0°, 200°], θ ∈ [20°, 123°], and θ ∈ [97°, 200°].

Figure 7.17: Transaxial slices obtained from reconstructions with our DTV decomposition method for
the acquisitions considered in Figure 7.16.

Figure 7.17 shows the same slices obtained from the superposition of the rotated
directional and background components given by the DTV decomposition method after
300 iterations. For the superposition to be possible, all components must be represented
in the same reference frame. The reconstruction frame of the anatomical background
component corresponds to the reference frame used in Figure 7.16. The directional com-
ponents were therefore rotated so they could be summed with the background. We
see that the needle is recovered for all angular ranges. Figure 7.18 shows the different
reconstructed maps for the angular range θ ∈ [97°, 200°] which have been successfully
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estimated and separated.

Figure 7.18: Reconstructed components obtained with our DTV decomposition method for θ ∈
[97°, 200°]. From left to right: rotated needle map, background map.

We investigated a second case where three thin needles slightly deviate from the to-
mographic plane (see Figure 7.19).

Figure 7.19: 2D view of the projection data (Case 2).

As in the first case, we show the transaxial slices where two needles appear (Figure 7.20)
obtained using FDK with θ ∈ [0°, 200°], θ ∈ [27°, 82°], θ ∈ [86°, 200°]. The maximum
value of a voxel stack with a thickness of 10 voxels in the axial direction was taken.
Again when the view minimizing the projected size of the needle is not sampled, we see
that the needles cannot be reconstructed with FDK.
The needles are approximately parallel so we used a unique directional map (I = 1) with
Ω1 = {θ11, θ12, θ13} = {0°,−6°,−38°} for applying our DTV decomposition method. The
size of the reconstruction grid, the initialization strategy, and the regularization param-
eters were the same as in the first case. We performed 1000 iterations of FISTA and 80
inner iterations of DFB. Figure 7.21 shows the reconstructions obtained with our method
(the two components and their sum) for θ ∈ [0°, 200°], θ ∈ [27°, 82°], θ ∈ [86°, 200°]. As
expected, our method successfully interpolates along the direction of the needles. Fig-
ure 7.22 shows the different reconstructed maps for the less favorable angular range
θ ∈ [97°, 200°].
Note that we used a higher number of iterations of FISTA in the second case than in the
first case because the method had not converged after 300 iterations.
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Figure 7.20: Transaxial slices (MIP with a thickness of 10 voxels) of three FDK-reconstructed volumes
from different angular amplitudes and the same angular density. From left to right: θ ∈ [0°, 200°],
θ ∈ [27°, 82°], θ ∈ [86°, 200°].

Figure 7.21: Transaxial slices (MIP with a thickness of 10 voxels) obtained from reconstructions with
our DTV decomposition method for the acquisitions considered in Figure 7.20.

Figure 7.22: Reconstructed components obtained with our DTV decomposition method for θ ∈
[86°, 200°]. From left to right: rotated needle map, background map.
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7.4 Conclusion

In this chapter, we exploited the simple geometric shape of percutaneous needles, which
is very sparse and follows one main direction for iterative reconstruction. We introduced
a decomposition method that allows several DTV regularizations - and thus several direc-
tional a priori to be considered at once - and treats the anatomical background separately.
The potential of our DTV decomposition method for reconstructing geometrical objects
from small scanning arcs was confirmed in our results, where needles are recovered even
when their bull’s eye view is not sampled. We showed that the FISTA algorithm was
more effective than the Condat-Vũ algorithm for solving our reconstruction problem.
Note that an inertial variant of the Condat-Vũ algorithm has been proposed in [142].
Still, since one application of H⊤FH takes significantly longer than one application of
∇⊤∇, FISTA remains interesting in terms of computing time as it requires fewer forward
and backward projections. We also demonstrated that the 2D formulation of the DTV
could reduce to a 1D formulation when changing the reconstruction grid for each nee-
dle component through different rotations of the projection matrices associated with the
projector. This reformulation is especially convenient for the cone-beam geometry as it is
more computationally efficient and bypasses the angular sensitivity of the original DTV
discretization. Our study highlighted that the benefit of DTV over TV depends on the
direction of the needle with respect to the directions covered by the scanning arc. In the
case where the most critical projections (around the bull’s eye view) are collected, our
method performed as well as TV. However, we argue that choosing a convenient scanning
arc is not always easy. First, the trajectory may not be available on the system because
it has not been pre-calibrated. Then, when the trajectory has been calibrated, various
equipment surrounding the patient could collide with the C-arm, depending on the inter-
vention. Our DTV decomposition method thus offers a robust alternative to TV, shifting
the issue of developing a flexible calibration for the systems to that of computation time.
To reduce the computational time of our method, fast non-iterative algorithms for com-
puting the proximity of the 1D DTV regularization [65] should be investigated. Finally,
we should also devise an automated way of roughly selecting the direction of each needle
map from the projection data; the direction being here given as prior knowledge.
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8 | Deep unfolding of the DBFB
Algorithm with application to
ROI imaging with limited
angular density

8.1 Introduction

8.1.1 Challenges of ROI imaging

As outlined in Chapter 2, in most interventions involving CBCT imaging, only a small
region of the patient is of interest. On a C-arm, the problem of reconstructing a ROI
from a set of truncated projections is also combined with low angular sampling. In this
chapter, we will consider the setup of using IR for reconstructing ROIs from angularly
under-sampled and truncated tomographic acquisitions.
Many works have been published on this subject; it is known that with only a few addi-
tional data [181], the reconstruction can be greatly improved. However, hereinafter, we
will consider cases where such data is unavailable.
To implement IR, one must choose the reconstruction grid, i.e., the support of the recon-
structed area. When the grid matches the support of the ROI, the data will not agree
with the reprojection of the ROI. When the reconstruction grid includes the support of
the entire object [235], the reconstruction becomes computationally expensive and less
stable due to the increase of unknowns for the same amount of data. Truncated data
only allows a rough estimation of the exterior anatomical background, which can never
be clinically acceptable. Thus, one more practical solution is to consider an intermediate
smaller grid size with a "margin" outside of the ROI [163]. This achieves a faster and
more stable ROI reconstruction in general. Yet, when dense objects such as metallic
cables or needles are outside the reconstruction grid, the reprojection of the extended
ROI contains high-frequency errors. Moreover, when too few projections are used for
reconstruction, such objects suffer from aliasing, and additional streak artifacts can de-
grade the reconstructed ROI [130]. Another approach is to reconstruct the entire object
with large voxels and then subtract the reprojection of the exterior from the data before
reconstructing only the ROI from the subtracted data [109,247]. This approach produces
a low-frequency approximation of the exterior of the ROI. However, such an approxima-
tion is poor in the presence of dense objects in the exterior of the ROI, and unwanted
high-frequency content remains after subtraction that must again be dealt with.
In Chapter 3 (section 3.5), we highlighted that convolutional neural networks are an
attractive alternative to IR due to their increased expressivity and fast inference. CNNs,
particularly the U-net [186], have already been used for removing sub-sampling artifacts
in reconstructions obtained from analytical methods for both non-truncated [111, 116]
and truncated data [110]. However, there are concerns about the lack of guarantees and
capacity for generalization of post-processing CNNs, because these networks do not en-
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sure data consistency [198]. Deep unfolding methods circumvent this issue by offering a
way to include a priori information in a neural network. They have been applied to many
fields of imaging, such as denoising [224], deblurring [24], MRI reconstruction [233], and
CT reconstruction from few-view data [3]. Unfolding consists of untying each iteration
of an optimization algorithm, defining a set of learnable parameters, and training each
iteration (or layer) in an end-to-end manner. Some authors allow the unfolding network
to learn the optimization algorithm hyperparameters [24] as well as linear operators in
the regularization, such as convolution kernels in ISTA-net [243]. Others use CNNs to
replace proximity operators as in PD-net [3]. Deep unfolding networks automatically
inherit from the feedback mechanism of IR for data consistency.
This chapter presents a deep learning architecture called Unfolded Reweighted Dual
Block Forward Backward (U-RDBFB). The method exploits the framework of deep un-
folding for accelerating the convergence, ensuring data consistency, and optimizing the
parameters involved both in our cost function (e.g., adjoint of the linear operators) and
our optimization algorithm (e.g., step sizes).
This chapter is divided into three sections. Section 8.2 presents our choices for the
data fidelity and regularization terms and introduces a convergent iterative algorithm to
minimize the resulting cost function. We then explain how this algorithm is unfolded
into a deep learning architecture. This is followed by experiments (section 8.3), results
(section 8.4), and discussions (section 8.5).

8.1.2 Problem formulation

We consider a 1D detector array of B ∈ N bins rotating around an object. The detector
is too short to measure the projections of the entire object; its size defines a circular ROI
we aim to reconstruct. Let S ∈ N be the number of projection angles. The vector of
truncated sub-sampled tomographic data is y ∈ RT with T = B S.
A reconstruction of the object attenuation map in the ROI can be obtained by considering
a model of the form:

HxG = y + n, (8.1)

where n ∈ RT accounts for some acquisition noise, xG ∈ RL is the scanned image re-
stricted to a grid G with support larger than the ROI but smaller than that of the entire
object, and H ∈ RT×L is the projector that models projection over this intermediary grid
G. Operator H contains a subset of the columns of the projector on the entire space, or
equivalently it corresponds to setting a subset of the columns of the complete projector,
corresponding to the pixels outside of G, to zero.
When the grid G corresponds to the ROI, (8.1) assumes that the image values are 0
outside of the ROI. This assumption is not necessarily true for truncated data, so (8.1)
does not hold. Hereafter, we suppose that the grid is extended beyond the ROI so that
no assumption is made about the values outside the ROI.
We find an estimate of xG by computing a minimizer of a penalized cost function con-
sisting of the sum of a data fidelity term f involving H and y, and a regularization term
r, as

argmin
x∈RL

f(x) + r(x). (8.2)
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8.2 A deep unfolding network based on semi-local TV
regularization and a Cauchy data fidelity

8.2.1 Iterative reconstruction

8.2.1.1 Cost function

Cauchy data fidelity:

When objects with high gradients (metallic wires or needles) do not belong to the
reconstruction grid G, the error between the data and the reprojection of the estimate
over G contains outliers at the projections of those high gradients. Angular sub-sampling
of these outliers leads to streaks originating from these objects, i.e., from outside the
grid. This means that the data should not be trusted equally but through a statistical
analysis different from measurement noise. To avoid the streaks, we propose to decrease
the influence of the largest errors between y and the reprojection of HxG using an M-
estimator.
Here, we focus on the Cauchy estimator ϕ, which is a redescending M-estimator i.e., its
derivative decreases to zero on ]−∞, κ] ∩ [κ,+∞[. It is defined as

(∀ζ ∈ R) ϕ(ζ) =
βκ2

2
ln

(
1 +

(
ζ

κ

)2
)
, (8.3)

where β > 0 is a weighting term and κ > 0 monitors the sensitivity to outliers: the lower
κ, the lower the influence of the outliers.
A graphical comparison of the Cauchy function (8.3) and the quadratic function ϕ(·) =
β
2 (·)

2 is displayed in Figure 8.1 for β = 1 and various values of κ.

Figure 8.1: Comparison between the Cauchy and the quadratic functions.

Our data fidelity term f reads

(∀x ∈ RL) f(x) = g(Hx− y), (8.4)

with

(∀z = (zt)1⩽t⩽T ∈ RT ) g(z) =

T∑
t=1

ϕ(zt). (8.5)
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Semi-local total variation:

Semi-local Total Variation regularizations (STV) [123] extend TV in a neighborhood
of pixels indexed in ΛJ = {−J, . . . , J} \ {0}:

(∀x ∈ RL)

rSTV(x) =
J∑

j=1

L∑
ℓ=1

αj,ℓ

√
(x− Vjx)2ℓ + (x− V−jx)2ℓ

=
J∑

j=1

rj(∇jx). (8.6)

Hereinabove ℓ ∈ {1, . . . , L} is the spatial index and Vj , V−j ∈ RL×L are shift oper-
ators as shown in Figure 8.2 for j ∈ {1, . . . , J} and J = 6. Moreover, for every
j ∈ {1, · · · , J}, we define ∇j =

[
V ⊤
j V ⊤

−j

]⊤ ∈ R2L×L and, for every z = (z1, z2) ∈ R2L,

hj(z) =
∑L

ℓ=1 αj,ℓ

√
(z1)2ℓ + (z2)2ℓ .

Parameters (αj,ℓ)1⩽j⩽J,1⩽ℓ⩽L are nonnegative weights that can be chosen to vary spa-
tially, so making STV adaptive to the spatial contents [98]. We recover the standard TV
regularization for constant values of these parameters and J = 1.

Figure 8.2: Shift operators (Vj)j∈Λ6 applied to a given pixel position ℓ

We add a nonnegativity constraint on the pixel values and a quadratic term 1
2∥x∥

2
M =

x⊤Mx to the STV regularization. Here, matrix M = diag((mℓ)
L
ℓ=1) ∈ S+

L is such that,
for every ℓ ∈ {1, . . . , L}, mℓ = 1 if the ℓ-th entry xℓ of vector x belongs to the ROI, and
mℓ = ξ > 1 otherwise. Thus M ∈ S+

L and acts as a mask, limiting high values outside of
the ROI.

Altogether, our regularization function in (8.2) reads

(∀x ∈ RL) r(x) =
J∑

j=1

rj(∇jx) +
1

2
∥x∥2M + ι[0,+∞[L(x). (8.7)

In this work, STV provides extra capacity compared to TV for learning. The Cauchy
fidelity term has been used in ultrasound imaging [160] and in CT imaging [121] for
mitigating the ring artifacts that appear due to defective detector bins only.
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8.2.1.2 Minimization algorithm

Reweighting for non-convex data fidelity:

Given our choices for r and f , Problem (8.2) becomes

argmin
x∈RL

g(Hx− y) +
J∑

j=1

rj(∇jx) +
1

2
∥x∥2M + ι[0,+∞[L(x). (8.8)

Because of the non-convexity of g, we adopt an iterative reweighting strategy where
Problem (8.8) is replaced by a sequence of surrogate convex problems built following a
majoration principle.
Let ϕ be given by (8.3). It was shown in [51] that, for every ζ ∈ R, the following convex
quadratic function ϕ̃(·, ζ), defined for every ζ ∈ R as

ϕ̃(ζ, ζ) = ϕ(ζ) + β
(ζ − ζ)ζ

1 + (ζ/κ)2
+

β

2

(ζ − ζ)2

(1 + (ζ/κ)2)
, (8.9)

is a tangent majorant approximation to ϕ at ζ, that is

(∀ζ ∈ R) ϕ̃(ζ, ζ) ⩾ ϕ(ζ) and ϕ̃(ζ, ζ) = ϕ(ζ). (8.10)

This allows us to deduce a tangent majorant function g̃ of function g at any point z ∈ RT :
(∀z ∈ RT ),

g̃(z, z) =

T∑
t=1

ϕ(zt, zt)

= g(z) + β diag

((
zt

1 + (zt/κ)2

)T

t=1

)
(z − z)

+
β

2
(z − z)⊤ diag

((
1

1 + (zt/κ)2

)T

t=1

)
(z − z) ⩾ g(z).

Finally, for every x ∈ RL, we set

(∀x ∈ RL) f̃(x, x) = g̃(Hx− y;Hx− y), (8.11)

that satisfies f̃(x, x) ⩾ g(Hx− y) = f(x). Given this majoration, the iterative reweight-
ing strategy approximates the solution to (8.8) by the estimate produced by Algorithm 1,
where

(∀(x, x) ∈ (RL)2) Q(x, x) =f̃(x, x) + r(x). (8.12)

is a convex surrogate cost function.
Q(·, x) can be rewritten as

Q(x, x) = ι[0,+∞[L(x) + h0(B0x;B0x) + h1(B1x) +
1

2
∥x∥2M , (8.13)

where ∀(x, x) ∈ (RL)2, with

B0 = H ∈ RT×L, B1 =
[
∇⊤

1 · · · ∇⊤
j

]⊤ ∈ R2JL×L (8.14)
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and, for every x ∈ RL,

h0(·;B0x) = g̃(· − y;B0x− y)

h1(B1x) =
J∑

j=1

rj(∇jx). (8.15)

Algorithm 1 Iterative reweighting strategy for Problem (8.8)

Require: Number of iterations K ∈ N∗, x0 ∈ RL

for k = 0 to K − 1 do
Define majorant function Q(x;x) using (8.13)

xk+1 = argmin
x∈RL

Q(x, xk) (8.16)

end for
Ensure: xK approximating the solution to (8.8)

Let (xk)k∈N be generated by Algorithm 1. The cost sequence value (defined from (8.8))
monotonically converges.

Dual block coordinate forward-backward algorithm:

The k-th iteration of Algorithm 1 requires to solve (8.16), which amounts to minimiz-
ing the function Q(·, x), with x equals to the current iterate xk. Since M ∈ S+

L , Q(·, x)
is strongly convex for every x ∈ RL. The minimization (8.16) is hence well-defined, with
a unique solution that can be conveniently obtained using the dual forward-backward
algorithm [177]. An accelerated and light version of this algorithm is its block coordinate
version (DBFB) [1], which allows for accessing the proximity operators of h0 and h1
separately.
Algorithm 2 describes N ∈ N∗ iterations of DBFB. The output xN generated by DBFB
with input xk then defines xK+1 in Algorithm 1. For every n ∈ {1, . . . , N}, DBFB up-
dates the main primal variable xn as well as two dual variables z0n ∈ RT and s1n ∈ R2JL,
associated to the data fidelity (data step (D)) or the regularization (regularization step
(R)) terms, respectively. Each dual variable is activated (or not) at iteration n according
to a binary variable εn.
When N → ∞, the DBFB sequence (xn)n∈N converge to the solution to (8.16) under
the following assumptions on the algorithm parameters:

σ ⩾ |||B0M
−1B⊤

0 |||,
(∀j ∈ {1, . . . , J}) τj ⩾ |||∇jM

−1∇⊤
j |||,

γn ∈ [ϵ, 2− ϵ] with ϵ ∈]0, 1]
(∃M ∈ N \ {0, 1})(∀n ∈ N) 0 <

∑n+M−1
n′=n εn′ < M.

(8.17)

The first three assumptions are stepsize range conditions. The last one means that each
step (D) and (R) is performed at least once, every M iterations.
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Algorithm 2 DBFB algorithm to solve (8.16) with xk = x ∈ RL

Require: Number of iterations N ∈ N∗, tangent point x ∈ RL, initial dual variables
z00 ∈ RT , (∀j ∈ {1, . . . , J}) zj0 ∈ R2L with constant J defined in (8.6), operators B0

and B1 defined in (8.14), stepsizes (σ, τ1, . . . , τJ) ∈]0,+∞[J+1.

s10 = (z10 , . . . , z
J
0 )

Σ = diag(τ1, . . . , τJ)

w0 = −M−1(B⊤
0 z

0
0 +B⊤

1 s
1
0)

For n = 0, 1 . . . , N

(z1n, . . . , z
J
n) ≡ s1n

xn = proj[0,+∞[L(wn)

Select εn ∈ {0, 1} and γn ∈]0,+∞[
If εn = 0 (D)

z̃0n = z0n + γnσ
−1B0xn

z0n+1 = z̃0n − γnσ
−1proxγ−1

n σh0(·;B0x)
(γ−1

n σz̃0n)

wn+1 = wn −M−1B⊤
0 (z

0
n+1 − z0n)

s1n+1 = s1n
If εn = 1 (R)

s̃1n = s1n + γnΣ
−1B1xn

s1n+1 = s̃1n − γnΣ
−1proxγ−1

n Σh1
(γ−1

n Σs̃1n)

wn+1 = wn −M−1B⊤
1 (s

1
n+1 − s1n)

z0n+1 = z0n

Ensure: xN approximating the minimizer of Q(·, x).

Step (D) involves the calculation of the proximity operator proxγ−1
n σh0(·,B0x)

, which
has a closed-form [16, Example 24.2], for (∀(z, z) ∈ (RT )2),

proxγ−1
n σh0(·,B0z)

(z) = proxγ−1
n σg̃(·−y,z−y)(z),

= y + proxγ−1
n σg̃(·,z−y)(z − y)

=

(
yt +

zt − yt

1+βγ−1
n σ

(
1 + (zt − yt)2/κ2

)−1

)T

t=1

. (8.18)

Step (R) requires calculating the proximity operator of h1 scaled by parameter γ ∈
]0,+∞[. It also has a closed form: for s = (s1, . . . , sJ) ∈ R2JL, proxγh1

(s) =
(
proxγrj (sj)

)J
j=1

,

where, for every z = (z1, z2) ∈ R2L,

proxγrj (z) =

(
max

{
0, 1−

γαj,l

∥zℓ∥2

}
zℓ

)L

ℓ=1

, (8.19)

where, for every ℓ ∈ {1, . . . , L}, zℓ = ((z1)ℓ, (z2)ℓ) ∈ R2.

The overall iterative strategy for approximating the solution to (8.8) consists of ap-
plying Algorithm 1, where, for every k ∈ N∗, Nk ∈ N∗ iterations of Algorithm 2 are used
as an inner solver with x = xk to compute xk+1 in (8.16). We call the resulting iterations
reweighted DBFB (RDBFB) algorithm.
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In the context of CT, iterative reweighted algorithms usually involve surrogates to the
regularization term [225,237] rather than to the data fidelity, as done here.

8.2.2 Unfolded reconstruction

Hereafter, we present a deep neural network, designated as U-RDBFB (Unfolded Reweighted
DBFB), by unfolding all the steps of RDBFB. Specifically, the network mimics the appli-
cation of K iterations of Algorithm 1, as K main layers, each of them grouping Nk ∈ N
iterations of Algorithm 2. This yields an architecture with

∑K−1
k=0 Nk layers in total.

8.2.2.1 From RDBFB iterations to U-RDBFB layers

The deep unfolding paradigm recasts every step of Algorithm 2 as one neural network
layer: step (D) becomes LD (εn = 0) and step (R) becomes LR (εn = 1). It requires
truncating the number of layers drastically. To optimize the depth of our network, we
will introduce two modifications of the steps (D) and (R) to construct the corresponding
layers.

Throughout this thesis, we have highlighted that replacing an adjoint operator with
a surrogate has the potential to accelerate convergence or improve the solution of an IR
method [196, 238, 240]. In CT, a frequently encountered operator is the ramp filter F ,
which satisfies FHH⊤ ≈ Id . Thus, to improve conditioning and allow larger values for
the step sizes associated with layer LD, hence a lower number of such a layer, we replace
B0 in Algorithm 2 with FH.
By setting νn,0 = γnσ

−1 and by using the relation

proxνn,0h0(·;FHx) = proxνn,0g̃(·;Hx−y)(· − Fy) + Fy,

we define layer LD as

Data layer (LD):
xn = proj[0,+∞[L(wn)

un = z0n + νn,0F (Hxn − y)

z0n+1 = un − ν−1
n,0 proxνn,0g̃(·;FHx−y)(νn,0un)

wn+1 = wn −M−1H⊤(z0n+1 − z0n)

zjn+1 = zjn (∀j ∈ {1, . . . , J}).

(8.20)

Similarly, for step (R), we unfold by replacing the adjoint of the regularization operator

B1 with B̃1 =
[
∇̃⊤

1 · · · ∇̃⊤
j

]⊤
. Setting, for every j ∈ {1, . . . ,K}, νn,j = γnτ

−1
j yield

the following regularization layer LR:

Regularization layer (LR) :

xn = proj[0,+∞[L(wn)

For j ∈ {1, . . . , J}
(∀ℓ ∈ {1, . . . , L})

(zjn+1)ℓ =

(
zjn + νn,j∇jxn

)
ℓ

max
{
1, ∥

(
zjn + νn,j∇jxn

)
ℓ
∥2/αj,ℓ

}
wn+1 = wn −M−1

∑J
j=1 ∇̃j(z

j
n+1 − zjn)

z0n+1 = z0n.

(8.21)

Note that LR does not involve x.
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8.2.2.2 Total architecture

The total architecture of U-RDBFB, denoted A, can be summarized as

A = LK−1 ◦ · · · ◦ L0. (8.22)

For 0 ⩽ k ⩽ K−1, Lk corresponds to a sequence of Nk layers LD or LR and implements
the following update:

(z0,k+1, xk+1) = Lk(z0,k, xk; Θk), (8.23)

where

• xk is the current reweighted estimate x in LR-LD (x0 = H⊤Fy).

• xk+1 is the next reweighted estimate; it is equal to xNk−1 given by the Nk-th layer
LR-LD.

• z0,k ∈ RT × (R2L)J is the initial value of the variables (zj0)0⩽j⩽J for layers LR-LD

(for k = 0, (zj0)
J
j=1 are initialized to zero while z00 is set to −Fy).

• z0,k+1 ∈ RT × (R2L)J is is equal to (zjNk−1
)0⩽j⩽J given by the Nk-th layer LR-LD

• Θk is the vector of trainable parameters. The parameters are layer-dependent, so
we index them by k and n.
For layer LD, the parameters are those of the Cauchy function (βk,n, κk,n), the one
of the quadratic regularization ξk,n, and a single step size νk,n,0.
For layer LR, the regularization parameters (αk,n,j,ℓ)1⩽j⩽J,1⩽ℓ⩽L, κk,n, ξk,n, and
step sizes (νk,n,j)Jj=1 are learned as well as the surrogates (∇̃k,n

j )Jj=1 to the adjoints
of operators (∇⊤

j )
J
j=1.

To infer all these parameters, we introduce learning modules (L(θ)
k,n)

Nk−1
n=0 for θ ∈ Θk.

Schematic views of layers LD and LR can be found in Figure 8.3a and Figure 8.3b, and
a composition A of such layers is displayed in Figure 8.3c.
Here we propose using K = 7 in (8.22) with Nk = 4 for each k ∈ {0, · · · ,K−1}, resulting
in a total of 28 layers:

L0 = · · · = L6 = (LR ◦ LD)
2. (8.24)
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(a) Schematic view of a Nk-th layer LD (8.20). The layer relies on x = xk, the k-th reweighted iterate to generate
the next reweighted iterate xk+1. The layer takes as inputs wn, z0n from the previous layers. The projections y
are also used as input.

(b) Schematic view of a Nk-th layer LR (8.21). The layer takes as inputs wn, (zjn)J1 from the previous layer and
generates the next reweighted iterate xk+1. The update of parameters for j ∈ {2, . . . , 5} is hidden in the orange
block for the sake of readability. Only parameters αj depend on the input.

(c) U-RDBFB in the case where A = L1 ◦L0
2 where L0 = (LR)2 ◦LD and L1

2 = LD (i.e., K = 2, N0 = 3, N1 = 1).
Red blocks represent the hidden structures to infer all the parameters θ ∈ Θ. When k = 1, the dual variables
of DBFB are initialized with the values of the dual variables at the end of the previous N0 iterations of DBFB
(k = 0).

Figure 8.3: Architecture of U-RDBFB

186



We now discuss our choices for (L(θ)
k,n)

Nk−1
n=0 :

• step size for LD: νk,n,0 = L(ν)
k,n = softplus(ak,n) where ak,n is a learnable real-valued

parameter.

• Parameters of the Cauchy function for LD:

∗ κk,n = L(κ)
k,n = Wκ softplus(ck,n) where ck,n is inferred from a fully con-

nected layer, whose weights are shared across the U-RDBFB network, ap-
plied on a histogram of the absolute value of the filtered reprojection error,
i.e., H⊤(Fxn − y). We implemented the learnable histogram layer proposed
in [226], which is piecewise differentiable. More precisely, we built a cumu-
lated histogram using 100 bins from 0 to the maximum value of the filtered
reprojection error.

∗ βk,n = L(β)
k,n = Wβ softplus(dk,n).

• Diagonal elements of M involved in (8.7) corresponding to the locations of pixels
outside of the ROI for both LD and LR: ξk,n = L(ξ)

k,n = softplus(ek,n) where ek,n is
learned.

• step size for LR: For every j ∈ {1, . . . , J}, νk,n,j = L(νj)
k,n = Wν softplus(bk,n,j).

• Parameters of the STV regularization for LR: For every j ∈ {1, . . . , J},

αk,n,j = (αk,n,j,l)
L
ℓ=1 = L(αj)

k,n

= Wα softplus(Ak,n ◦ relu ◦Bk,n(∇jxk)),

where Ak,n is a grouped convolution of 7 groups with size 3× 3 kernels and J = 7
channels and Bk,n is a grouped convolution of 14 groups with size 5×5 kernels and
14 channels.

In LD, initial values of ak,n, dk,n are set to 1. In LR, initial values for bk,n,j , ek,n are 1.
Normalization scalars Wκ, Wν , Wβ and Wα are set to 10−5, 10, 10 and 0.05 respectively.

For each layer LR, we also learn operators (L̃k,n
j )Jj=1 which have the same support as

(Lk,n
j )Jj=1.

8.2.2.3 Incremental training strategy

We circumvent the issue of optimizing the initial values of the parameters of our learning
modules using an incremental training strategy, as sometimes advocated for when ini-
tializing the weights of recurrent neural networks [191]. The learning in each layer (k, n)
(n ⩾ 1) starts by considering all the previous layers from (0, 0) to (k, n − 1) with their
past trained parameters as an initialization. This means that an increasing number of
layers is trained simultaneously. In the last step, all layers are trained end-to-end.
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8.3 Experiments

We now describe our experimental setup. First, we illustrate the benefits of using a
Cauchy-based data fidelity function. We compare the results of our RDBFB iterative
approach to a simpler DBFB scheme minimizing the same cost function but with g in
(8.8) replaced with the ℓ2 norm.
Second, we comment on the improved performance brought by our unfolding strategy
(learning of adjoints and parameters as well as the use of the ramp filter), and so U-
RDBFB (subsection 8.2.2) is compared to the original RDBFB algorithm.
Third, we compare U-RDBFB to several state-of-the-art reconstruction methods and
comment on the transfer of performance over different synthetic datasets.

8.3.1 Datasets

We used three datasets for evaluation.

8.3.1.1 Abdomen dataset

Our first dataset consists of 2D images obtained from 60 CT volumes of size 512×512×512
from the lower lungs to the lower abdomen of 60 patients, which were extracted from the
public dataset CT Lymph Nodes from https://www.cancerimagingarchive.net/. These
volumes correspond to fully sampled CT reconstructions. They were made isotropic by
interpolating the axial slices. A total of 50 out of 512 slices were kept per volume. We
randomly added intense metallic wires between 3000 and 5000 Hounsfield units (HU) of
varying sizes on the axial slices. We shifted the HU values of the images by 1000 so
that air is 0 HU and water is 1000 HU, using atissue 7→ (atissue − µwater)× (1000/µwater),
where µwater is the value of the attenuation coefficient of water equal to 0.017 mm−1 and
atissue ∈ RQ is the initial vector of attenuation values. Finally the 512 × 512 slices xP
were normalized between [0, 1] (a value of 1 corresponding to an object of HU intensity
equal to 5000).
To eliminate bias with respect to model discretization, projections were simulated for
each slice of each volume in a 2D parallel geometry with a short detector of 600 bins (bin
size equal to half a pixel size, i.e., 0.5 mm) and an angular density of 110 projections over
180° through to the projector HP ∈ R5122×(110×600). The projections were then rebinned
by a factor 2 (operator R ∈ R300×600). Noisy projections y = (yt)

T
t=1 are computed as

(∀t ∈ {1, . . . , T}) yt = µ log

(
I0

P(I0 exp (−µ(RHPxP)t))

)
,

where we set µ = µwater/1000, I0 = 104, and, for some δ > 0, P(δ) denotes a realization
of a Poisson law with mean δ. In this context, the ROI was a centered disk of diameter
300. The resulting pairs of axial slice/projections (xP, y) were split into a training of 2500
pairs from a pool of 50 patients and a testing set of 500 pairs from 10 other patients.

8.3.1.2 Head dataset

We used a second dataset containing 2D images extracted from 10 CT high-dose brain
reconstructions. These volumes are from the public repository 2016 Low Dose CT Grand
Challenge from https://www.cancerimagingarchive.net/. After extracting 50 slices of size
512 × 512 per volume (pixel size of 0.5 mm), we performed the same processing as for
the Abdomen dataset (addition of intense wires, normalization, projection, rebinning)
for generating a testing set of 500 pairs of axial slices/projections (xP, y).
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8.3.1.3 Geometrical dataset

Our third dataset was created using the toolbox TomoPhantom [122]. 500 geometrical 2D
piecewise-constant phantoms were randomly generated on a 512×512 grid and normalized
between 0 and 1. Again, we performed the same processing as for the Abdomen dataset
for generating a testing set of 500 pairs of axial slices/projections (xP, y).

8.3.2 Training details for U-RDBFB

Let i ∈ {1, . . . , I} be the index covering all I = 2500 instances of the training set.
The reconstruction grid (G) is a disk of diameter 400. Let x∗G,i ∈ RL be the output of
U-RDBFB for a given projection input yi. Our network is thus designed to minimize∑I

i=1 ℓ(CGx
∗
G,i, CPxP,i), where CG is a cropping operator which extracts the ROI from

the grid G, CP is a cropping operator which extracts the ROI from the entire 512× 512
grid, and ℓ is the loss retained for training the network. For all instances of the training
set,

ℓ(CG·, CPxP,i) =
1

I
∥CG · −CPxP,i∥2, (8.25)

corresponding to the MSE loss.
We implemented U-RDBFB following (8.24) in Pytorch, using a Tesla V100 32 Gb GPU.
We used six epochs for training each layer LR and ten epochs for training each layer
LD; the only exception was the last layer, for which we used 20 epochs. The learning
rate is decreased with a step decay by a factor of 0.99 from 10−2 every 4 epochs. The
batch size for each epoch varied from 20 to 8 as the number of trained layers increased.
We employed the toolbox TorchRadon [185] to include Pytorch-compatible parallel-beam
tomographic operators in all architectures. Standard auto-differentiation tools can com-
pute all necessary derivatives for backpropagation. The training procedure takes about
one day and a half.

8.3.3 Competing methods

The quantitative metric used to assess the reconstruction quality of CGx
∗
G,i is the PSNR.

We also evaluate the reconstruction performance using the structural similarity index
(SSIM), the PieApp value [174], and the Mean Absolute Error (MAE) of the difference
between CGx

∗
G,i and CPxP,i.

We compare U-RDBFB with FBP, an iterative method, and four deep-learning methods
that we describe hereinafter.

8.3.3.1 FBP

This analytical method consists of computing H⊤
ROIFy, where HROI ∈ R3002×(110×300).

As is commonly the case when applying FBP on truncated data, we extrapolated the
projections prior to ramp filtering (using anti-symmetric padding).

8.3.3.2 RDBFB algorithm

For completeness, we perform comparisons with the iterative method proposed in sub-
section 8.2.1.2. For each reweighted iteration k, we used Nk = 10 DBFB iterations
alternating between data and regularization steps (1:1 correspondence). For an easier
manual tuning of the hyperparameters, instead of using J = 6 as in U-RDBFB, we set
J = 1 so that STV reduces to TV and α1,ℓ ≡ α1, for all ℓ ∈ {1, · · · , L}. The remaining
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cost function parameters (ξ, κ, β) are selected by optimizing PSNR on the training set
via a grid search.

8.3.3.3 Post-processing U-net

The third competing method is the CNN proposed in [111,116], which is a post-processing
of FBP. It relies on a trained residual U-net, with a depth of 4 levels, filters of size 32,
and batch normalization to improve the stability of training.

8.3.3.4 Preconditioned Neumann Network (PNN)

Our fourth competing method is a preconditioned Neumann network (PNN) initially
introduced in [99] for MRI reconstruction. It builds on a method for solving Problem
(8.2) with f(x) = 1

2∥Hx − y∥2. For a differentiable function r, the resulting minimizer
reads

(H⊤H +∇r)x = H⊤y, (8.26)

which can be rewritten as

(H⊤H + λ Id )x+ (∇r − λ Id )x = H⊤y. (8.27)

Setting Tλ = (H⊤H + λ Id )−1 yields

(Id −λTλ + Tλ∇r)x = TλH
⊤y. (8.28)

Using the Neumann identity B−1 =
∑∞

n=0(Id −B)n, the authors derive the architecture
of PNN with N ∈ N∗ layers (see Figure 8.4)

(λTλ − Tλ∇r)N ◦ Tλ(H
⊤y). (8.29)

All instances of Tλ are applied approximately using an unrolling of 10 iterations of the
conjugate gradient algorithm.
The operator Tλ∇r is replaced by a U-net, denoted by Ψ, which has the same architecture
as the aforementioned U-net without the residual connection. The weights of the U-net
are shared for all layers. Following [99], no batch normalization is used. The inner U-net
has a depth of 4, the learning rate is set to 10−4, and the initial value for λ is 0.01. We
choose N = 3. One feature of PNN compared to other deep unfolding networks is that
it contains skip connections.

8.3.3.5 ISTA-net

Our fifth competing method is ISTA-net, derived from the work of [243]. ISTA-net is
designed to solve Problem (8.2) for f(x) = 1

2∥Hx − y∥2, and r(x) = λ∥Wx∥1 (λ > 0),
where operator W is not known a priori but learned. W is an orthogonal linear operator
in the initial ISTA algorithm, whose iteration reads

xn+1 = W⊤ soft
(
W (xn − τH⊤(Hxn − y), λτ

)
, (8.30)

where soft is the soft-thresholding operation and τ > 0 is the gradient step size. In
ISTA-net, the authors replace W and W⊤ by two decoupled nonlinear operators namely
An ◦ReLU ◦Bn and Cn ◦ReLU ◦Dn (see Figure 8.5). The property of orthogonality of W
is not imposed but favored during training by adding a term, weighted by χ ∈ ]0,+∞[,
penalizing the difference between (Cn ◦ ReLU ◦Dn) ◦ (An ◦ ReLU ◦Bn)xn and xn in the
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loss function. Each An, Bn, Cn and Dn is a 2D convolutional operator. Bn and Cn are
associated with a kernel of size 3× 3 and 32 input and output channels; An has 1 input
channel and 32 output channels and vice-versa for Dn. As suggested by the authors, we
learn these convolutional operators as well as λ and τ , which are allowed to vary at each
iteration.
Experiments are carried out with 10 layers, χ = 0.1, x0 is the FBP reconstruction, λ and
τ are initialized to 0.1 and 0.01 respectively.

8.3.3.6 PD-net

The last competing method is the learned Primal-Dual (PD-net) introduced in [2] by
unrolling the Primal-Dual Hybrid Gradient (PDHG) optimization algorithm [50]. The
authors consider Problem (8.2) with a more generic data fidelity term f(x) = G(Hx; y).
They replace both the proximity operators of G and r in PDHG by residual CNN so that
one layer n of their network reads

zn+1 = CNN(zn + σHx̃n; y) (8.31)

xn+1 = CNN(xn − τH⊤zn+1) (8.32)
x̃n+1 = xn+1 + γ(xn+1 − xn). (8.33)

The CNNs act both in the image and projection domains. Furthermore, buffers of pre-
vious iterates of size Np ∈ N in the primal domain (image) and of size Nd ∈ N in the
dual domain (projection) are kept to enable the network to learn an acceleration. We
used 9 layers, Nd = Np = 3, and 32 filters in the convolutional layers. This network is
illustrated in Figure 8.6.

U-RDBFB U-net PNN PD-net ISTA-net
|Θ| 2.3169× 104 1.9278× 106 1.9278× 106 2.5470× 105 1.7109× 105

Table 8.1: Number of learnable parameters (Θ)

The competing networks were also trained with the MSE loss (using (8.25) for un-
folding networks and a regularization term for ISTA-net weighted by χ) in a standard
end-to-end manner. The number of epochs was chosen such that all networks have con-
verged. Note that codes are publicly available for these networks. We re-implemented
them in Pytorch, and kept the setting of the parameters advocated by the authors, except
for PNN, for which we reduced the number of layers to 3 to obtain a stable behavior for
training. The total number of parameters of each network is reported in Table 8.1.
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Figure 8.4: Architecture of PNN [99]: The network maps a linear function of the measurements TλH
⊤y

to a reconstruction xn by successive applications of an operator of the form λTλ − Ψ, while summing
the intermediate outputs of each block. All instances of Tλ are replaced by an unrolling of 10 iterations
of the conjugate gradient algorithm. Ψ is a trained network and the scale parameter λ is also trained.

Figure 8.5: Architecture of ISTA-net [243]: Each layer is composed of a gradient step followed by
the application of a nonlinear operator, which is the combination of two learnable linear convolutional
operators (An, Bn) separated by a ReLU, a soft-thresholding operation and then two other learnable
linear convolutional operators (Cn, Dn) separated by a ReLU. The property (Cn ◦ ReLU ◦Dn) ◦ (An ◦
ReLU ◦Bn) = Id is favored during training.

Figure 8.6: Architecture of PD-net [2]: The red and blue boxes represent the primal and dual networks,
respectively. Buffers of 3 primal (x1

n, x
2
n, x

3
n) and dual (z1n, z2n, z3n) estimates are used at each iteration.

The initial primal estimates are set to the FBP reconstruction given by H⊤Fy, and the initial dual
estimates are set to zero.
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(a) (b) (c)

(d)

(e)

Figure 8.7: (a) Ground truth xP. (b) Evolution of the PSNR along iterations using a Cauchy or quadratic
data term for 110 projections. (c) Reconstructed extended ROIs using 110 projections, a Cauchy data
fidelity, and a quadratic data fidelity. (d) Reconstructed ROIs using 110 projections. (e) Reconstructed
ROIs using 600 projections. From left to right: Ground truth, reweighted DBFB with Cauchy fidelity,
DBFB with quadratic fidelity, FBP.

8.4 Results

8.4.1 Assessing the benefits of the Cauchy fidelity term

Figure 8.7c shows the full reconstructed images on grid G of size 400 × 400 obtained
using the DBFB algorithm with a quadratic fidelity term and the reweighed DBFB al-
gorithm with a Cauchy fidelity on a test instance of the Abdomen dataset (shown in
Figure 8.7a). Since the two data fidelity terms can be put into our optimization frame-
work (Algorithm 1-Algorithm 2), the comparison is straightforward. Figure 8.7d shows
the corresponding ROIs as well as the FBP reconstruction. The full image contains two
intense objects out of the ROI and at the border of the reconstruction grid. In the solution
obtained using the quadratic data fidelity term, the reduction of sub-sampling streaks is
selective; only the streaks originating from objects within G have been eliminated in the
ROI. When trading the quadratic term with a Cauchy term, as we proposed, the inten-
sity of these streaks is reduced. This artifact reduction translates into an improvement
of the PSNR as shown in Figure 8.7b. Figure 8.7e shows the ROIs obtained using the
same reconstruction methods and grid size when increasing the number of projections
from 110 to 600. The images now look identical and close to the ground truth. This
observation highlights that, for relatively ’clean’ data (no modeling of beam hardening
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and scattering), the benefits of using a Cauchy fidelity over a quadratic fidelity emerge
when data is sub-sampled.
We have shown that by using a regularized cost function with a Cauchy fidelity term and,
thus, a more complex optimization framework, we can successfully reconstruct truncated
data on a short grid, and that the reconstruction is at least as good as the one obtained
with quadratic fidelity and even better when the data are sub-sampled.

(a) (b)

(c)

Figure 8.8: (a) Evolution of the PSNR along iterations using a Cauchy fidelity term with and without the
ramp filter for the example of Fig Figure 8.7a. (b) Evolution of the PSNR along layers in U-RDBFB for
the example of Fig Figure 8.7a. (c) Reconstructed ROIs. From left to right: Ground truth, Cauchy with
ramp filter (500 iterations of the modified reweighted DBFB), Cauchy with ramp filter (28 iterations of
the modified reweighted DBFB), U-RDBFB.

8.4.2 Comparing iterative RDBFB algorithm with U-RDBFB

Figure 8.8a shows the evolution of the PSNR along the iterations when inserting the ramp
filter in the reweighted DBFB algorithm, re-tuning the regularization strength, and still
using the same data. The PSNR stagnates around 300 iterations with the ramp filter
while it stagnates around 12500 iterations without it (see Figure 8.7b). Thus applying
the ramp filter on the reprojection error before backprojection can empirically accelerate
convergence without degrading the solution (reconstructed ROI displayed in Figure 8.8c)
in an early stopping scenario. This motivates our translation of a data iteration of DBFB
to a data layer of U-RDBFB which embeds the ramp filter. It also provides empirical
evidence that performance can be optimized by introducing mismatched adjoints without
learning.
U-RDBFB also includes learned parameters, especially adjoints to the STV operators.
It performs a total of 28 RDBFB iterations. Figure 8.8c compares the reconstruction
ROI obtained with U-RDBFB, 500, and 28 iterations of the reweighed DBFB algorithm
with the ramp filter. We see that after 28 iterations of the reweighed DBFB algorithm,
there is a local offset near the intense object, and some streaks remain. On the contrary,
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the image obtained with U-RDBFB does not contain these artifacts. It is similar to the
ground truth and slightly smoother than the reconstruction after 500 iterations of the
reweighed DBFB algorithm but with approximately 18 times fewer iterations.

8.4.3 Comparing U-RDBFB with deep learning methods on the
Abdomen dataset

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 38.7 38.6 38.6 36.5 38.1 33.9
SSIM 0.981 0.972 0.974 0.956 0.975 0.903
MAE (×10−3) 3.54 4.81 3.94 5.53 4.97 8.41
PieApp 0.389 0.501 0.603 0.599 0.614 0.653

Table 8.2: Quantitative assessment of the reconstructed ROIs. Mean values computed over the test set
of the Abdomen dataset.

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 31.7 16.8 18.3 17.6 23.2 21.1
SSIM 0.979 0.903 0.845 0.765 0.956 0.908
MAE (×10−3) 2.17 7.86 4.85 6.47 3.70 6.25
PieApp 0.276 0.881 0.941 0.984 0.650 0.476

Table 8.3: Quantitative assessment of the reconstructed ROIs. Mean values computed over the test set
of the Head dataset.

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 27.3 25.1 26.7 25.2 25.8 26.1
SSIM 0.856 0.656 0.736 0.736 0.817 0.848
MAE (×10−3) 16.6 44.1 51.4 25.4 18.4 16.5
PieApp 0.267 1.166 1.255 1.324 0.894 0.158

Table 8.4: Quantitative assessment of the reconstructed ROIs. Mean values computed over the testing
set of the Geometrical dataset.

Table 8.2 reports the performance of U-RDBFB compared to U-net and other deep
unfolding networks on the testing set of the Abdomen dataset and Figure 8.9a-Figure 8.9b
display the training and testing losses as a function of the number of epochs for all these
networks. U-RDBFB performs, on average, better than the other unfolding networks
(PNN, PD-net, and ISTA-net) and U-net for all considered metrics. We note that the
peaks in the training and testing losses associated with U-RDBFB correspond to the
addition of a new data layer during incremental training.
Figure 8.11a illustrates the reconstructed ROIs for four examples from the test set of the
Abdomen dataset. The FBP reconstruction is also displayed as it is also the input of U-
net. The figure confirms that U-RDBFB reduces streaks more effectively than the other
unfolding networks. At first sight, the images produced by U-net have fewer artifacts
than most deep unfolding networks. However, in the second-row and fourth-row images,
U-net introduces an artificial dark background. This observation highlights that U-net
can hallucinate structures under the sub-sampling streaks of the FBP input. Unfolding
networks avoid these hallucinations; by simply alternating between U-net and several
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consistency layers, PNN already minimizes this effect.
Figure 8.10b shows the complete reconstruction on grid G for all unfolding networks.
In all cases, since the training loss acts on the ROI only, the exterior is always poorly
reconstructed (with ISTA-net, it is very sparse).

(a)

(b)

Figure 8.9: (a) MSE on the training set as a function of the epoch number. (b) MSE on the testing set
as a function of the epoch number.
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8.4.4 Changing the testing set

We now evaluate the generalization ability of the methods trained on the Abdomen
dataset, using examples from the Head and Geometrical datasets. In Table 8.3 and
Table 8.4, we report the performance of the trained networks when tested on the Head and
the Geometrical datasets. U-RDBFB outperforms the competing unfolding networks for
both datasets. ISTA-net is second-best on the Head dataset, and the iterative algorithm
ranks second-best on the Geometrical dataset.
The four reconstructed images displayed in Figure 8.12a-Figure 8.12b confirm this trend.
For the Head dataset, U-net performs poorly relative to U-RDBFB on all metrics except
for SSIM, where the two methods are rather close. One explanation is that it introduces
an offset in some images while limiting the streaks (cf second head image). However,
when applied to the geometrical images, it yields unwanted background patterns that
strongly degrade our metrics. Offsets and background artifacts are also visible with
most unfolding networks, especially PNN and PD-net, except for U-RDBFB. We still
note that the head images and the first geometrical image obtained with U-RBFB have
a slightly patchy look, often characteristic of TV regularization. This shows that U-
RDBFB retains the characteristics of the original optimization problem, avoiding the
generation of unexpected content as is possible with U-net.
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8.5 Conclusion

In this chapter, we proposed an iterative reweighted algorithm (RDBFB) where each
inner optimization problem is solved using dual block coordinate forward-backward it-
erations, and an unfolded version of it (U-RDBFB), yielding a neural network for ROI
reconstruction from a few measurements. These methods include a convex surrogate
to a Cauchy data fidelity and a TV-based regularization to limit sub-sampling streaks
originating from inside and outside the reconstruction grid.
Our results show that U-RDBFB outperforms its iterative counterpart as measured in
PSNR, SSIM, and PieApp. It not only presents results similar to its iterative counterpart
RDBFB in terms of streaks reduction, but it also recovers image details in a much lower
number of iterations. We note that U-RDBFB leads to smoother images: the noise is
reduced, but the resolution of the image is decreased. This could be explained by the
fact that U-RDBFB is designed to minimize the ℓ2 norm of the error with the noiseless
ground truth, using very few regularization layers; it tends to selectively smooth some
parts of the image to remove remaining artifacts. The smoothing also happens with
other deep learning networks. Hence it is interesting to check other loss functions for
training and investigate the relation between the number of layers (number of K, Nk and
distribution of LD and LR) and resolution.
All metrics agree that U-RDBFB improves upon learned post-processing U-net and other
unfolding networks for our Abdomen dataset. The U-net was often associated with a high
PSNR compared to the other reconstructions, but this was not always reflected by the
PieApp metric. This can be explained by the learned post-processing being limited by
the information content of the FBP input while the unfolding networks act directly with
the information content of the data, which is greater than that of the FBP.
The computation time for U-RDBFB was about 200 ms in GPU for a 400× 400 recon-
struction grid. This is much faster than the iterative reconstruction, which, in our case,
requires around 180 s after the regularization parameters have been selected, but slower
than other deep learning methods (38 ms for U-net, 68 ms for PNN, 85 ms for PD-net,
74 ms for ISTA-net).
U-RDBFB contains fewer learnable parameters than all the other networks. Thanks to
our incremental training strategy, training U-RDBFB was also found to be easier than
other unfolding networks, such as PNN, whose stability highly depends on the initial-
ization for parameter λ and the learning rate. Optimizing the architecture and, more
precisely, the number of parameters of a neural network is key to transferring its perfor-
mance to out-of-distribution examples, as shown on the Head and Geometrical datasets.
This characteristic could help training from a low amount of data or even apply a net-
work trained on synthetic data to real data. Generally, deep unfolding networks are
introduced mainly to ensure data consistency through H and embed a fast optimization
scheme for fast inference. Our results suggest that including additional a priori knowl-
edge can further boost the performance of deep-learning-based techniques. Note that the
structure of U-RDBFB was not extensively fine-tuned. Our results illustrate that the
most straightforward choices work well in our context of ROI imaging from angularly
sub-sampled data.
Our results also hinted that, even without learning, trading a quadratic fidelity for a
Cauchy fidelity and including the ramp filter is still of interest to improve reconstruction
and reduce the number of iterations.
Here, the Cauchy fidelity term aimed to discard the data incompatible with the a priori
support of the object embedded in our IR criterion. Still, in other contexts, it could be
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used to discard the data most degraded by physical effects such as noise and beam hard-
ening strongly affecting the metal. Our work focused on 2D X-ray CT reconstruction on
simulated data. We, however, acknowledge that our target remains the 3D cone-beam
geometry.
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9 | Conclusions

9.1 Contributions for CBCT reconstruction

In this thesis, we extended the use of fixed-point algorithms for C-arm CBCT recon-
struction in interventional radiology. We considered two scanning configurations of clin-
ical significance to reduce dose and scanning time: the limited-angle (Chapter 7) and
the limited-density (Chapter 4, Chapter 5, Chapter 8) acquisitions. Iterative recon-
struction methods are seldom used in clinical contexts despite compensating for missing
data through a priori information and thus avoiding the necessity of expensive hardware
counter-measures to under-sampling. CT practitioners have used "tricks" to improve
the convergence and/or parameterization of these methods. However, these tricks often
translate into replacing the hessian of the quadratic data fidelity term with an asymmet-
rical operator in the optimization algorithm used for reconstruction.
Throughout this thesis, we investigated ways of using iterative reconstruction methods
without theoretical compromises in a clinical practice setting.

Our results in Chapter 4 and Chapter 5 proved that the convergence of a panel of
proximal algorithms could be retained when the adjoint backprojector is replaced by
a surrogate operator. A simple way to ensure convergence is to change the acquisition
model by including an additional small quadratic term and tune the algorithm’s pa-
rameters according to our convergence results. The magnification-driven interpolation
proposed in Chapter 6 demonstrated that modeling the varying sampling variation over
the Cartesian grid was key to improving the discretization model’s symmetry for projec-
tion and backprojection. While the magnification-driven interpolation was developed for
a cone-beam geometry with a flat panel detector, it can be adapted to other geometries.
For instance, the native geometry of diagnostic CT with a curved detector cannot be
described with projection matrices and homographies. As we showed for the distance-
driven model, the local sampling steps can be estimated from a geometrical description,
and the magnification-driven interpolation is applicable. Additionally, a cone-beam ge-
ometry with a very large source-to-detector distance is close to parallel geometry. One
should not consider that the issue of magnification vanishes in that case. This issue van-
ishes only happens when the detector is parallel to the volume. However, sub-sampling
arises as soon as the detector plane is not aligned with the Cartesian grid, and in this
case, our framework maintains all of its advantages.
The results of these three chapters have thus either accounted for or made obsolete the
use of tricks such as unmatched projector/backprojector.

Then, in Chapter 7, our DTV decomposition method allowed for reducing the acqui-
sition trajectory as shown in two real CBCT cases of different contexts and the extreme
case of acquisition not recording the bull’s eye view. Although the latter is not a clin-
ical constraint per se, the method also produced conclusive results. In practice, only a
limited number of trajectories are pre-calibrated on the C-arm systems. Since calibrated
trajectories may not record the optimal view, the robustness of our DTV decomposition
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method allows for shifting from hardware constraints, i.e., having a generic calibration
method for the C-arm system to computation time constraints.

Finally, inspired by accelerated reconstruction algorithms which vary the strength of
the regularization along the iterations, in Chapter 8, we advanced the idea of finding
an optimal untied parameterization further by unfolding a proximal algorithm for ROI
reconstruction from limited-density acquisitions. Parameters of both the algorithm and
cost function were learned. Thanks to the combined effect of a Cauchy fidelity term with
a TV-based regularization, unmatched adjoints, and a learned parametrization, under-
sampling artifacts related to structures inside and outside of the reconstruction grid were
successfully limited within a reduced number of iterations.

These last two chapters then offer ways to relax the matching between priors used for
reconstruction and the type of data or images. The first uses decomposition to apply
several regularizations that match some components of the images instead of one regu-
larization for the superposition of all components. The second identifies and lowers the
influence of problematic parts of the data to better comply with the prior.

9.2 Theoretical contributions

Initially motivated by practical constraints in C-arm CBCT imaging, this thesis has also
led to theoretical contributions built on two observations.
First, iterative reconstruction methods have been designed to solve minimization prob-
lems. The formulation as a minimization problem is convenient because it offers a natural
way of including a priori information, and the resulting solution is well-characterized.
However, the closest ground truth estimation is not ensured to be the minimizer of any
cost function.
Second, preconditioning is the most effective way of accelerating iterative algorithms, but
its requirements appear too restrictive in many applications such as CT reconstruction.
Therefore, decoupling matched operators, such as linear operators and their adjoints or a
preconditioning metric and its inverse, in the iterations of a proximal algorithm gives rise
to non-minimization equilibrium problems. By studying the behavior of a panel of prox-
imal algorithms with such mathematical deviations, we have provided ways to include
more information into these algorithms to accelerate them and/or reach a solution with
minimum discrepancy. Although each proximal algorithm requires a separate study, a
unique mathematical approach based on fixed-point theory has allowed the demonstra-
tion of their convergence. The results of Chapter 4 and Chapter 5 contribute to the shift
in paradigm from minimization problems to equilibrium problems, which also arise in
neural network architectures. They are in line with the recent efforts to design [190] and
learn [15, 36, 37, 171] more expressive variants of well-known optimization schemes while
keeping convergence guarantees. An important consequence is that taking unmatched
adjoints and thus non-symmetrical surrogates of the hessian into account validates ap-
proximate inversion as an alternative to classical preconditioning, which is built, and
therefore limited, to respect symmetry while approximate inversion does not.
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9.3 Discussion

The considered unmatched algorithms were shown to converge to a fixed point different
from the minimizer of a function. We characterized the fixed point as a perturbed solu-
tion at a certain distance from the original minimizer, but this characterization may still
appear incomplete.
Our upper bounds on distance highlighted a trade-off between proximity to the minimizer
and bias introduced by the regularization. To avoid using a strong regularization, large
negative spectral values should be excluded from the spectrum of the linear operators
involved in our convergence results.
Focusing on the magnifications arising in cone-beam geometry highlighted the reasons
for the non-symmetry of pre-existing projectors and backprojectors based on linear in-
terpolation. Our results from Chapter 4 and Chapter 5 with the magnification-driven
interpolation could be combined, leading to different trade-offs between speed and sym-
metry and keeping lower values of κ. Using an approximate inverse of the projector
instead of the backprojector requires a case-by-case evaluation. However, this is worth
considering, as using FDK instead of the backprojection is more efficient and eases the
parameterization.
Regarding the DTV decomposition method, a limited-angle acquisition lacks so much
data that the generated fixed point, whether the minimum of a function or at a certain
distance, depends on the relevance of the a priori knowledge to the real situation and can
be very far from reality. There is, therefore, some doubt about the generalizability of the
method to clinical practice. One very encouraging observation is that a single parameter-
ization was sufficient in all cases, from the most obvious to the most difficult. However,
if effective in all contexts, the DTV decomposition method induces a rate of recovery
of the needles strongly dependent on the context. For both our results for limited-angle
and limited-density acquisitions, we acknowledge that more extensive tests that include
different sources of inconsistencies in the data should be performed to reach any clinical
acceptance.

In the next section, we suggest several extensions of the aforementioned contributions.

9.4 Perspectives

Our analysis of mismatched forms of proximal algorithms could be further extended, as
suggested hereinafter.

Extend the stability analysis of the algorithms under an adjoint mismatch
to more general minimization problems:

The theoretical results obtained in Chapter 4 and Chapter 5 hold for penalized least-
squares cost functions. Our considered form of the Combettes-Pesquet algorithm allows
for using a Poisson data fidelity term, but then a quadratic regularization must be kept.
Thus, it would be interesting to extend our analysis to more general forms of convex data
fidelity terms arising from the Poisson modeling of the noise on pre-log data or based on
the Huber function used in Chapter 8. In the current CT clinical practice, Poisson noise
models are not used. However, with the advent of photon counting detectors, which cut
off electronic noise, instead of energy-integrating detectors, Poisson models are likely to
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become popular in the upcoming years for low-dose quantitative imaging. In CT, the use
of efficient discretization rationales equivalently suited for projection and backprojection
alleviates the need for using unmatched pairs of projection and backprojection. However,
this motivation remains in other imaging modalities such as SPECT, where bypassing
the modeling of the attenuation in the backprojection is beneficial to the convergence
speed, and where the noise follows a Poisson distribution.
Since the choice of the regularization is critical to the reconstruction quality, more com-
plex regularization schemes formulated as the sum of several functions (as in the semilocal
total variation in Chapter 8) could also be interesting to consider. For instance, by us-
ing other algorithms for finding a zero of a sum of more than two maximally monotone
operators [61] under an adjoint mismatch.

Improve the stability analysis of the algorithms under an adjoint mismatch:

In our analysis of PGA and primal-dual proximal algorithms, the error bounds on
the distance between a solution of the original minimization problem and a fixed point
of the new perturbed schemes are provided under strong convexity assumptions for the
functions involved. A first improvement should be to relax the assumption of strong
convexity, as done in our convergence results. Then, an extension of our results to the
accelerated variants (with variable step sizes) of the primal-dual Chambolle-Pock and
Combettes-Pesquet methods, which exhibit in these settings better convergence rates,
could be conducted using results beyond fixed point theory as proposed in [140].

Consider other mismatched forms of the same primal-dual algorithms:

In our analysis of Chapter 5, we could have explored other ways of introducing a
mismatch in the iterations of the primal-dual algorithms. For example, the Condat-Vũ
algorithm is an instance of a preconditioned proximal gradient algorithm on a product
space. Therefore, novel deviations from this scheme could be analyzed as an instance
of our unmatched preconditioned PGA scheme of Chapter 4. In particular, the adjoint
mismatched considered in [140] could be studied in such a way in the case of fixed step
sizes.

We propose the following improvements and future leads related to our magnification-
driven tomographic operators of Chapter 6.

Extend the magnification-driven approach to higher degree basis functions:

When the image expansion cannot be increased due to storage and time constraints,
the form of the expansion elements for the volume must be optimized. In this thesis, we
used exclusively centered B-splines of low orders, but alternative basis functions can pro-
vide additional flexibility between precision and computation. Splines of higher degrees
could, for instance, be tested to quantify the loss in precision associated with the use of
low-order splines. When using higher order B-splines, the formulation proposed in [153]
for least-squares approximation might be more suitable. This formulation is based on a
finite difference method applicable to splines of arbitrary degrees. Its main advantage is
that it avoids computing the footprint function.
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Produce more extensive tests of the magnification-driven framework on real
clinical data:

We have shown the performance of the magnification-driven framework using piece-
wise constant numerical and physical phantoms. As a next step, the translation of
resolution improvements obtained for analytical methods to clinical exams should be
investigated, to be extended to iterative reconstruction in an early stopping scenario.
However, we highlight that it might be difficult to directly link the single technical choice
of the interpolation to any improvements in image quality that depend on the clinical
task and sophisticated iterative reconstruction schemes. Deteriorated data may require
a strong regularization which could compensate for the insufficiencies of the discrete for-
ward projector. Our framework could also be interesting for high-resolution applications
involving photon counting detectors which allow for the use of smaller bins thanks to the
removal of septa from the detector’s design.

Next, we suggest two possible future directions related to needle reconstruction from
limited-angle acquisitions.

Accelerate the convergence of our decomposition method for needle
reconstruction using deep unfolding:

The experiments performed in Chapter 7 demonstrated that between 300 and 1000
iterations of FISTA were needed to reconstruct needles whose bull’s eye view is not sam-
pled in the measurements and to interpolate the missing edges in the volume domain.
We also observed that the number of iterations should be increased when the number of
components increases. Translating our optimization algorithm to an unfolding architec-
ture would be one next step for interpolating the missing edges more rapidly and tuning
the regularization strength for each component. By embedding the projector and thus
the scanning angular range into the network’s architecture, we would expect the network
to differentiate the directions of missing edges from that of visible edges, thus avoiding
interpolation between random points.

Investigate the robustness of the decomposition approach with a variety of
needle sizes and forms:

To reach clinical practice, we should further test our method with different needles,
which vary in size and form (curved or thick) that influence the physical effects affecting
needles.

Finally, building on the neural network architecture presented in Chapter 8, we pro-
pose the following research directions related to deep learning methods.

Investigate the benefits of embedding the projector and backprojector in
the network’s architecture:

Deep unfolding for reconstruction embeds the tomographic operators in the network’s
architecture. Other approaches, such as the plug-and-play approach, focus on learning
the regularization in a standalone way. The learned regularization is then inserted into
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a proximal algorithm. Even if the plug-an-play approach is likely to require more train-
ing data than the unfolding approach, we could evaluate and quantify the benefits of
including the tomographic operators in the learning task. Such an evaluation would be
conducted using task-based metrics with the aid of radiologists rather than perceptual
image quality metrics, as radiologists might prefer some artifacts over others.

Evaluate the impact of acceleration techniques in U-RDBFB:

Following the work of [131] in the case of image denoising, we believe that studying
the impact of accelerated schemes - through preconditioning or inertial steps - on learning
performance would be useful to optimize the architecture of our unfolding approach.

Explore the robustness of architecture of type U-RDBFB:

First, we have not conducted any robustness analysis of our network: we assumed
overall stability by staying close to the original stable iterative algorithm. Still, we should
study the effects of a perturbation on the input of our architecture.
Second, to bridge the gap from our results to clinical applications, our network needs to
be retrained and evaluated with changes in the acquisition pattern and detector settings
(variation in the number of views, the number and size of detector bins), as well as
the presence of other artifacts. We could investigate the trade-off between the number
of measurements and the dose required to reach clinically satisfying images and the
resolution/total number of layers trade-off. Deep unfolding has the potential to produce
an accelerated reconstruction adapted to pre-corrected data by reproducing the pre-
processing imaging chain to generate the datasets. However, we believe it is unlikely
that unfolding schemes could replace all pre-corrections.

Reduce the memory footprint of U-RDBFB:

A significant impediment to the 3D adaptation of U-RDBFB is its memory footprint
when performing end-to-end backpropagation. This memory footprint grows linearly
with the depth of the network, and reducing the number of layers through acceleration
techniques may not be sufficient to limit the memory footprint. Recent progress in de-
creasing the GPU memory footprint of deep unfolding methods can be found in [188],
where the authors proposed to use invertible neural networks in the PD-net architecture
of [3]. As outlined in [103], one of the key benefits of an invertible network is that the
depth of the network can be increased while maintaining a constant memory footprint.
The number of unfolded iterations in a learned iterative method can then be increased.
Our current unfolding architecture could be easily translated into a Deep Equilibrium
model, which economizes memory during training thanks to the Implicit Function Theo-
rem. Note that the question of memory limitation also arises for post-processing CNNs.
Since 3D convolutions have substantial storage requirements, "2.5"D architectures could
be introduced to exploit spatial coherence in volumetric data.
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