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Résumé

La principale thématique étudiée dans ce travail concerne l’identification des types de cul-

tures à l’aide d’imagerie satellite radar en utilisant des modèles d’apprentissage statistique.

L’identification des types de cultures permet le suivi automatique de la couverture du sol

et l’estimation des surfaces plantées, mais peut aussi être indirectement utile dans plusieurs

applicatifs, par exemple en termes d’amélioration de la prévision des rendements agricoles

résultant d’une meilleure connaissance des surfaces plantées, c’est l’autre sujet qui sera traité

dans le présent travail.

Développer un outil de reconnaissance automatique et à grande échelle des cultures peut créer

une valeur ajoutée considérable dans le monde agricole actuel, de plus en plus demandeur de

technologies innovantes. Les besoins de travailler sur un outil d’identification des cultures sont

multiples. Une application concrète consiste à pouvoir estimer les surfaces globales cultivées

pour une culture donnée à l’échelle d’un bassin de production ou d’exploitations agricoles.

Cela intéresse les différents acteurs: l’agriculteur, pour simplifier ses tâches administratives de

déclaration, les transformateurs, pour une meilleure logistique et planification des collectes,

des assureurs, pour une meilleure évaluation de l’exposition au risque, ou pour un état, pour

anticiper les situations de pénurie.

Pour ces travaux, nous avons pu compter sur un allié majeur, l’imagerie satellitaire qui four-

nit des images multi-temporelles à haute résolution offrant une réelle opportunité de suivre

l’évolution des propriétés réflectives des plantes au cours de leur croissance, en fonction des

variations liées à la phénologie et au pédoclimat. Dans notre travail, nous utilisons des données

issues de l’imagerie de télédétection radar assurant une indépendance vis-à-vis des conditions

climatiques, plus précisément, les images du satellite Sentinel-1 caractérisées par une résolution

spatiale acceptable et une résolution temporelle relativement réduite de l’ordre de quelques

jours.

Notre approche pour la reconnaissance des cultures est basée sur l’utilisation de la dynamique

de croissance des plantes pouvant être capturée par l’imagerie satellite pour discriminer les

cultures. Il s’agit d’une approche basée sur les pixels pour laquelle nous avons choisi d’utiliser

deux modèles supervisés d’apprentissage statistique, les réseaux de neurones récurrents LSTM

(Long Short-Term Memory) et les réseaux de convolution CNN (Convolutional Neural Net-

work). Notre approche est conçue de telle sorte que le modèle puisse produire une évaluation
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du couvert végétal sans avoir à labelliser des parcelles en début de campagne, opération très

complexe à réaliser. Nous avons donc cherché à calibrer les modèles en utilisant les données

des campagnes précédentes.

Nous proposons une méthode dans laquelle le développement phénologique de la plante est

considéré pour l’identifier en utilisant le concept du temps thermique. Cela permet de com-

penser la variabilité inter-annuelle, qu’elle soit pédo-climatique, liée aux caractéristiques de

la culture comme la résistance aux épisodes de gel, ou due aux pratiques culturales. Cette

idée a été motivée par le fait qu’a priori, indépendamment des facteurs précédemment cités,

un stade phénologique d’une culture donnée est atteint à un niveau donné d’accumulation de

température, donc de temps thermique, assurant la robustesse de la variation inter-annuelle de

la dynamique de développement des cultures.

L’identification des cultures peut servir plusieurs applications, comme l’amélioration des prévi-

sions de rendement résultant d’une meilleure connaissance des surfaces plantées. C’est une

autre thématique de recherche de notre thèse. La reconnaissance des cultures peut constituer

un élément essentiel dans le processus visant à obtenir des prévisions de rendements agri-

coles les plus précis possible. En identifiant le type de culture dans le champ, nous connais-

sons les caractéristiques phénotypiques de cette culture pour pouvoir estimer les paramètres

biophysiques, ce qui, couplé aux données pédoclimatiques et aux pratiques culturales, nous

permet d’aller vers une prévision précise des rendements agricoles en utilisant les modèles de

croissance des plantes, les méthodes de calibration et d’assimilation de données.

Cette méthodologie pour la prévision des rendements à l’échelle de la parcelle ou de la région

est également étudiée dans cette thèse. En effet, la connaissance anticipée des rendements agri-

coles est un enjeu majeur en agriculture: dans un bassin de production, pour le chef de silo

afin de prévoir la logistique de culture et de stockage des grains ou à plus grande échelle, pour

anticiper les crises agricoles. Dans ce contexte, nous avons commencé par évaluer le potentiel

de l’imagerie radar pour le développement de modèles statistiques permettant l’estimation des

variables biophysiques des plantes telles que la biomasse. Nous avons également proposé un

outil permettant de conseiller le positionnement des points de mesure dans les parcelles agri-

cole en fonction des hétérogénéités intra-parcellaires et en utilisant un clustering non supervisé

de type K-means de la dynamique de la réponse radar de chaque pixel.

Ensuite, nous présentons une mise en œuvre des méthodes d’assimilation de données pour

montrer comment elles peuvent être utilisées pour améliorer les pouvoirs prédictifs des modèles

de croissance des plantes. Nous utilisons un algorithme d’assimilation de données basé sur le

filtre particulaire par convolution appliqué à un modèle mécaniste de croissance du blé dérivé

du modèle STICS.

Mots-clés: Reconnaissance des cultures, Propriétés réflectives des plantes, Télédétection radar,

Sentinel-1, Temps Thermique, Réseaux de neurones récurrent LSTM, Réseaux de convolution

CNN, Biomasse, Prévision des réndements, Assimilation de données.



Abstract

The main thematic studied in this work concerns the identification of crop types using radar

satellite imagery by using statistical learning models. Crop type identification allows the auto-

matic monitoring of land cover and the estimation of planted areas, but can also be indirectly

useful in several applications, for example in terms of improving the prediction of agricultural

yields resulting from a better knowledge of planted areas, this is the other topic that will be

addressed in this work.

Developing an automatic and large-scale crop recognition tool can create considerable added

value in today’s agricultural world, more and more in demand of innovative technologies. The

needs to work on a crop identification tool are multiple. A concrete application consists in

being able to estimate the global cultivated areas for a given crop at the scale of a production

basin or agricultural exploitation. This interests the different actors: the farmer, to simplify

his administrative tasks of declaration, the transformers, for a better logistics and planning of

collections, the insurers, for a better evaluation of the exposure to the risk, or for a state, to

anticipate the situations of penury.

For these works, we could count on a major ally, the satellite imagery which provides multi-

temporal images with high resolution offering a real opportunity to track the evolution of the

reflective properties of plants during their growth, according to the variations related to the

phenology and the pedoclimate. In our works, we use data from radar remote sensing imagery

ensuring independence from climatic conditions, more precisely, images from the Sentinel-1

satellite characterized by an acceptable spatial resolution and a relatively reduced temporal

resolution of a few days.

Our approach for crop recognition is based on the use of plant growth dynamics that can be

captured by satellite imagery to discriminate crops. It is a pixel-based approach for which

we have chosen to use two supervised statistical learning models, Long Short-Term Memory

(LSTM) recurrent neural networks and Convolutional Neural Network (CNN).

Our approach is designed so that the model can produce a vegetation coverage assessment

without having to label parcels at the beginning of the season, which is a very complex op-

eration to perform. We, therefore, sought to calibrate the models using data from previous

seasons. We propose a method in which the phenological development of the plant is consid-

ered to identify its species using the concept of thermal time. This allows compensating the
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inter-annual variability, whether it is pedo-climatic, related to the characteristics of the crop

such as the resistance to frost episodes, or due to the cultivation practices. This idea was mo-

tivated by the fact that a priori, independently of the above-mentioned factors, a phenological

stage of a given crop is reached at a given level of temperature accumulation, thus of thermal

time, ensuring the robustness of the inter-annual variation of the crop development dynamics.

Crop type identification can be useful for several applications, such as improving yield fore-

casting through a better knowledge of the planted areas. This is another research theme of

our thesis. Crop recognition can be an essential element in the process of obtaining the most

accurate crop yield forecasts possible. By identifying the type of crop in the field, we know

the phenotypic characteristics of that crop to be able to estimate the biophysical parameters,

which, coupled with soil-climate data and cultivation practices, allows us to move towards

accurate crop yield forecasting using plant growth models, calibration and data assimilation

methods. This methodology for yield forecasting at the scale of the parcel or the region is also

studied in this thesis. The anticipated knowledge of agricultural yields is a major challenge in

agriculture: in a production basin, for the silo manager to predict the logistics of cultivation

and storage of grains or on a larger scale, to anticipate agricultural crises. In this context, we

started by evaluating the potential of radar imagery for the development of statistical models

allowing the estimation of plant biophysical variables such as biomass. We also proposed a

tool allowing to recommend the positioning of measurement points in agricultural parcels ac-

cording to intra-parcel heterogeneities and using an unsupervised K-means clustering of the

radar response dynamics of each pixel.

Next, we present an implementation of data assimilation methods to show how they can be

used to improve the predictive powers of plant growth models. We use a data assimilation al-

gorithm based on the particle convolution filter applied to a mechanistic wheat growth model

derived from the STICS model.

Keywords: Crop Recognition, Plant’s Reflective Properties, Rradar Remote Sensing, Sentinel-1

SAR data, Thermal Time, Long Short-Term Memory recurrent neural networks, Convolutional

Neural Networks, biomass, crops yield forecasting, Data Assimilation.
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Introduction

CRop type identification is a key issue in automatic land cover monitoring and to improve

yield prediction in agriculture, thanks to a better knowledge of the planted areas.

The objective of our work is to contribute, through mathematical modeling, statistical analy-

sis, computer science frameworks, and remote sensing, to answer some of today’s agricultural

challenges. Two main topics, jointly linked, are addressed in this manuscript: crop type identi-

fication at the scale of the production basin and agricultural farms, and large-scale agricultural

yield forecasting. It should be noted that our work concerns mainly the field of crops with an

annual cycle such as wheat, barley, maize, beet, and rapeseed. As an indication, government

data on cultivation practices in France indicates that the crops mentioned above, in addition to

sunflower and protein peas, occupy an average of 66% of the cropland.

The needs to work on a crop identification tool are multiple. One concrete application consists

in being able to estimate the overall cultivated areas for a given crop at the scale of a production

basin or agricultural farms, thus allowing to replace conventional farmers declarations and

enrich the agricultural surface databases. For instance, farmers may inform their cooperatives

or the agricultural actors who transform their crops about the surfaces of production. This

declarative process is not always precise and it causes a heavy administrative charge that could

be reduced.

Reciprocally, all the actors of the agricultural transformation chains are interested in being able

to evaluate more accurately and automatically, the surface areas cultivated in each parcel or

farm, and this, as early as possible before harvest. It may help silo managers to have a better

visibility of the crop rotation in their production basin, and consequently on the logistics to

implement. In fact, in a storage organism or an agricultural cooperative, evaluating the crop

productions that will be received a few weeks or even months before harvest allows the silo

manager to prepare the collection plan and the logistics dedicated to grain storage. For exam-

ple, it is important to optimize the filling of the cells as a half-empty silo represents an economic

loss that can be significant. This task relies on strong constraints, since silos are assigned to the

storage of specific crops, with a given variety and quality: not all qualities and/or cultivars can

be combined in one silo. Similarly, the need to estimate in advance the crop type that will be

available may be relevant for mills managers, in particular for cereals, there is a need to adjust

the mill according to the expected crop type and to adjust their offers to the region’s crop rota-
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tion. Another example concerns agricultural insurers, to check the cultivated areas and adapt

their offers as well as exposition to risk according to the crop rotation characteristics of a given

production basin.

In another perspective, a pixel-based crop type recognition approach in a production basin

combined with relevant indicators allows detecting crop surfaces that have not correctly emerged.

For example, for rapeseed that did not emerge properly because of a severe drought, the farmer

can replant with another crop like wheat instead.

Moreover, crop recognition may also be indirectly useful for certain applications. For instance,

for harvest monitoring of a given crop, such as beet for which harvesting can last a considerable

time, crop recognition may constitute the first brick to delimit the beet parcels in a given area,

before using other techniques, such as the satellite imagery signal analysis, to assess the beet

harvesting progress.

We illustrated the interest of crop type recognition for the evaluation of planted areas in a given

year and derived applications, but it can also help for a better management of the crop rota-

tion of agricultural parcels. Knowing the history of crop rotation allows the control of crops

combinations and the qualification of the risks related to diseases (mycotoxins, fusarium, etc.)

and bio-aggressors (weeds, slugs, etc.) [Legrand et al., 2017] [Maiorano et al., 2008] [Peters

et al., 2003]. For instance, a parcel in which corn was sown during the previous season and

had another major crop, like wheat, for the following season presents a risk related to con-

tamination with mycotoxins [Maiorano et al., 2008] [Fischer et al., 2002]. They are toxic fungal

metabolites occurring pre and post-harvest and result in reduced nutritional value and possi-

ble risks for human and animal health, a risk that must be identified. An interesting document

on the agricultural advice magazine ”perspectives agricoles” 1 gives some information on the

impact of previous crop corn on fusarium. Also, the article from ”lafranceagricole” 2 presents

table showing that the risk of developing mycotoxins is more or less critical according to the

previous crop. Readers can find further information on the effect of prior crops on diseases in

[Desgranges et al., 2007].

In addition, the control of crop rotation must allow for a reduction in the use of phytopharma-

ceutical products, either to reduce the impact of these products or to conform to particular spec-

ifications. This is achieved in two manners: directly, by introducing crops that consume fewer

phytopharmaceutical products than those already present in the rotation, such as the introduc-

tion of corn in rapeseed/wheat/barley rotations, or the introduction of alfalfa in corn/wheat

rotations; or indirectly, by introducing crops with different development cycles from those al-

ready present, thus disrupting the development of bio-aggressors.

The challenge is therefore to know the crop combination of the previous and current seasons,

and even older ones, and to draw up a sort of parcel typologies in order to establish a filter by

crop rotation history to anticipate and make the cropping system less vulnerable to such risks.

1https://www.perspectives-agricoles.com/file/galleryelement/pj/8c/65/a6/cf/315 2530984742270309649.pdf.
2https://www.lafranceagricole.fr/article/mycotoxines-des-risques-ane-pas-sous-estimer-1,0,442503861.html.
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In the same idea, crop type recognition can also help guide the decision of which crops to

plant. For example, introducing an oilseed (such as rapeseed), beets, or sunflowers, which are

so-called ”break crops” (tête d’assolement in french), in a cereal rotation (wheat, barley, ...) can

improve the yields/quality of cereals.

More generally, cultivated land monitoring and crop rotation management are key factors from

the point of view of sustainability: the intensification of agricultural productions and disrespect

of the principle of crop rotation in some areas can be threatening for agricultural ecosystems

[Geiger et al., 2010] [Duflot et al., 2022], and a better monitoring could help in controlling some

agricultural practices. Hence the importance of working on tools that provide advice on which

rotations to establish and/or help detect the combinations of rotations conducted. Obviously,

crop rotation is also guided by the soil and climate conditions in the region of interest, the

existence of structured agricultural sectors, or individual farmers’ choices.

Crop recognition is an essential component in yield forecasting. Actually, by identifying the

type of crop in a field, we can refer to the corresponding knowledge on the phenotype charac-

teristics of this crop to be able to estimate the biophysical parameters, which, coupled with the

pedoclimatic data and the cultural practices in place (sowing, fertilization, irrigation, etc.), are

key elements for the accurate forecasting of yields using plant growth models - more particu-

larly the so called mechanistic models - calibration and data assimilation methods which will

be evoked in our work.

In fact, the anticipated knowledge of crop yields is a major challenge in agriculture: in a pro-

duction basin, for the silo manager to forecast the logistics of farming and grain storage and for

the insurers about the adaptation of their strategies and offers according to the typologies of the

yields, with regard to the previously mentioned aspects; at the level of a country, to anticipate

agricultural crises or even food crises in the poorest countries. Better production anticipation

is also essential for different players in agricultural raw material markets.

The issue of agricultural yield prediction has been widely surveyed by the specialized scien-

tific community. It is a crucial subject that remains quite challenging due to the necessity to

take into account the impact of a multitude of factors related to the phenotype and genotype

of plants as well as environmental context, but also the interaction of these factors. With this

in mind, the classical approach for the forecasting of agricultural yields in a broad sense (in

terms of quantity but also the quality and environment) is the modeling of plant growth by

agro-environmental models. Globally, these models simulate the behavior of the pedolimatic

environmental context in interaction with the plant’s development dynamics and cultivation

practices. The most advanced models intend to address the diversity of environmental varia-

tions under a wide range of contexts, such as APSIM ([Keating et al., 2003]) or STICS ([Brisson

et al., 2003, Brisson et al., 2008]), which will be evoked in our thesis work. Document [Jin et al.,

2018a] includes a complete synthesis of plant growth models and their development over time

but also a review with a more historical aspect of agricultural systems modeling, in general, is

carried out in work [Jones et al., 2017].
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Let us note that another type of approach, which has expanded with the advent and progress of

the artificial intelligence domain, is based on the use of machine learning models in forecasting

agricultural yields. We can mention for instance the works [Romero et al., 2013] and [Chu and

Yu, 2020]. Readers may refer to the work of [van Klompenburg et al., 2020] for a complete

review of the machine learning models and features used in crop yield prediction studies.

In the present work, we propose investigating how to crop above-ground biomass (also known

as above-ground dry matter) can be estimated from radar remote sensing data using some

simple machine learning models. Biomass, measured in weight per surface unit, is directly

involved in the yield, and its creation in plants is done according to the following process:

solar radiation is intercepted by the foliage and transformed during photosynthesis into above-

ground biomass allocated to the different claimant organs during crop growth [Brisson et al.,

2008].

More generally, the estimation of plant biophysical variables such as leaf area index (LAI)

or biomass from satellite observation data is a research topic that has received a lot of focus

boosted by the considerable advances in satellite imagery in terms of availability and quality.

In current research works, remote sensing data can most often be optical as in [Guerif et al.,

1988], and more recent works like in [Dong et al., 2020], or from radar as in [Mansaray et al.,

2020]. The use of radar data has been well-reviewed in [Steele-Dunne et al., 2017] and more

references will be given in the present document, particularly in section 3.1.1. The combination

of both technologies has also been exploited as in [Forkuor et al., 2020], as well as the use of

one of these technologies in combination with other imaging sources such as airborne LiDAR

data [Fassnacht et al., 2021].

In the same scope, we propose an implementation case of the methods known as data assimi-

lation in our thesis work. These approaches can significantly improve the predictive power of

plant growth models by correcting the calibration of the latter using field observation data.

Actually, Even with the considerable advances in the matter, it remains rather complex to have

agro-environmental plant growth models that characterize the different varieties under the full

diversity of agronomic and environmental contexts [Chen and Cournède, 2014].

Various works aim to model the plant’s growth by considering the sub-optimal environmen-

tal growth conditions in the development processes. For example, [Fowler et al., 1999] evokes

the case of the extreme temperatures and proposes a functional model that conforms to the

known low-temperature responses of cereals and in which equations taking into account low-

temperature stress are built. In the works of [Tardieu, 2003], the genetic variability of responses

to water stress and consideration of these deficits in plant growth modeling are studied.

More globally, the challenge of designing models for varietal characterization under any con-

text and environment has allowed significant advances in the elaboration of robust models

integrating more biological understanding. The works of [Yin and Struik, 2010] provide a com-

plete synthesis review. In these works, the authors start from the statement that current crop

model parameters may have little biological meaning. They outlined the possibility of making



CONTENTS 5

plant growth models less empirical by incorporating ecophysiological comprehension. They

also present further progress in modeling crop genotype-phenotype relationships and suggest

ways to link crop modeling with biochemical modeling and genomics.

However, considering all the mechanisms mentioned above can engender complex models that

would require a lot of experimental data with a high cost and reliability, usually not sufficient.

Because in effect, the lack of sufficient reliable experimental data permitting to constrain the

plant growth model is the main factor, leading to yield prediction quality that is not always

satisfying. Considering the data specific to these different contexts by means of assimilation

of observation data [Dowd, 2007, Wikle and Berliner, 2007a] makes it possible to correct the

calibration of crop models during the growing season and thus provide a much more reliable

forecast. Readers can refer to the work of [Delécolle et al., 1992] where several kinds of crop

models are described, and specific methods are detailed for introducing remotely sensed infor-

mation into models. Besides, works of [Dorigo et al., 2007] can constitute an overview of dif-

ferent methods used to obtain biophysical and biochemical canopy state variables from optical

remote sensing data. The authors retrace the different processes developed to retrieve canopy

state variables from optical remote sensing data and assimilate them into agro-environmental

models.

The general principle of data assimilation consists in updating the calibration of a model each

time new experimental data is available. It is a statistical approach allowing to refine the learn-

ing of the model parameters dynamically. It fits naturally into the so-called Bayesian formalism

and most of the time involves the use of powerful algorithms such as sequential Monte Carlo

methods [Del Moral, 2004, Arnaud Doucet and Gordon, 2001]. The initial probability distri-

butions are sampled using particles, then propagating them independently through the model

equations and selecting them according to their relevance to the experimental data. Note that

the work of [Makowski et al., 2004] to improve the accuracy of winter-wheat biomass produc-

tion and grain protein content models is among the first works to update predictions within

the framework of a Bayesian formalism.

In all these perspectives and objectives, we have been able to count on a major ally, satellite

imagery, more particularly the one based on radar technology ensuring a certain independence

from climatic hazards. Remote sensing technologies provide high resolution multi-temporal

images offering a real opportunity to track the evolution of plant reflective spectral properties

during their growth process, depending on the variations related to phenology and pedocli-

mate.

Two major types of sensors for land surface observation have been mentioned: optical multi-

spectral sensors, operating in a varied spectrum from the visible to the infrared and allowing

the acquisition of images of a quality close to visual perception (typically, one can perfectly

distinguish the contours, with details, of the imaged agricultural parcels), however, these sen-

sors have a major drawback, their sensitivities to cloud cover, which makes their exploitation

arduous under severe cloud cover. Radar sensors, operating by emitting and receiving elec-
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tromagnetic waves, are insensitive to clouds, which allows the acquisition of relatively high

resolution images at regular time intervals, even if the images acquired are more delicate to

interpret and noisier than optical imagery. In addition, radar sensors allow day and night im-

age acquisition, as they do not depend on the illumination of the observed surfaces (hence

the qualification of an active sensor, while optical sensors are passive sensors depending on

the illumination of the sun). In our work, we use data imagery from the Sentinel-1 satellite,

launched by the European Space Agency as part of the European Copernicus mission, offering

a spatial resolution of about 10 meters and a rather reduced temporal resolution of a few days.

The objective of this PhD work is the identification of crop types from radar imagery. We pro-

pose an approach that takes as input a time series of Sentinel-1 radar satellite images acquired

over the area of interest and returns a label associated with a given crop type for each pixel

covering the area (of an extent depending on the spatial resolution of the pixel). The approach

is conceived such that the models can produce an evaluation of the cropland cover without

having to label parcels at the beginning of the campaign. In other words, we want to calibrate

the model using historical data from previous campaigns and other locations, which is what

we will call the inter-annual approach in our manuscript.

Another situation to identify the types of crops covering a given production basin is to have

the location and the type of crop of a few parcels located in the same production basin at the

beginning of each farming campaign (or at the latest a few days before the desired moment of

prediction). We then train supervised statistical learning models on these parcels to use them

in the prediction of the rest of the parcels within the basin, this is what we will call the intra-

annual approach in our manuscript. However, to implement such a process is not obvious

from a logistical point of view. In fact, having training parcels requires either being in contact

with farmers who tell us what they have sown in each campaign, or going out into the field to

manually label a certain number of parcels. To all this is added an additional level of difficulty,

the training data collected must ensure a certain level of variability, because depending on

the cultural practices, such as the choice of sowing periods, sowing method (tilling, no-till,

direct seeding), weeding method, fertilization, phytosanitary treatments, irrigation, etc., the

development of a given crop may be different from one exploitation to another, or even from

one parcel to another [Wang et al., 2021] [Tomaz et al., 2021].

To remedy all these obstacles, the approach we propose allows us to produce an evaluation

of cropland cover through statistical models trained on crop occupation data from previous

farming seasons, data that are reasonably easy to acquire.

In such an approach, a first natural intuition would be to rely on the dynamics, expressed in cal-

endar time, of the radar response scattered from the fields of a given crop, thus forming a kind

of signature characteristic of this crop type, which can be used to identify it in each agricultural

campaign. However, this growth dynamic of the concerned crop can vary from one campaign

to another and is strongly guided by the pedoclimatic environment, cultural practices (sowing

date, different fertilization applications, irrigation, etc.) as well as the characteristics of the crop
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itself, such as its resistance to extreme frosts. Therefore, the characteristic signature given by

the dynamic in calendar time of the radar response can be very different from one campaign to

another, either with the same evolutionary dynamic but shifted in time, or with a quite different

dynamic evolution.

Many works based on the phenological development of plants to identify their types exist.

For instance, [Peña-Barragán et al., 2011] in a supervised approach combining object-based

image analysis and decision tree algorithms, the authors rely on plant phenology, through dif-

ferent vegetation indices and textural features extracted from optical remote-sensing imagery,

to field-based identification of the most important crops types in Yolo County, California. The

authors highlighted the importance of crop development monitoring using satellite images at

distinct growth stages for discriminating crop types. In another study, [Serra and Pons, 2008]

presented an approach for mapping and monitoring temporal signatures of six agricultural

categories over four seasons (from 2002 to 2005) in irrigated areas located in Spain. They pro-

posed a hybrid classifier for crop identification and characterization of the temporal dynamics

using optical Landsat satellite time-series images. They concluded, amongst other things, the

importance of a multi-temporal approach, allowing to take into account the crop phenology for

such applications.

In this context, we propose an approach in which the phenological development of the plant is

considered to identify its species. Instead of using calendar time series of the radar response,

we proposed to use time series guided by the thermal time to readjust the shift and/or dif-

ference in the dynamics of the radar response allowing a better synchronization of the radar

backscatter evolution between the several years. This idea is motivated by the fact that a priori,

independently from the pedoclimatic conditions, the cultivation practices or the crops’ degree

of resistance, a phenological stage of a given crop is reached at a given level of temperature

accumulation, hence of thermal time, ensuring the robustness of the inter-annual variation of

crop development dynamics.

For this work, we rely on machine learning models. An important part of the use of machine

learning models for classification of time-series optical data in large area land cover character-

ization and mapping are reviewed in [Gómez et al., 2016]. The considerable advances in the

availability, but also in both spatial and temporal resolutions of satellite imagery allow their

use for land cover monitoring, and more particularly for crop types mapping at large scale

[Inglada et al., 2017][Matton et al., 2015][Vuolo et al., 2018]. In terms of pixel-based super-

vised machine learning models, the well-known Support Vector Machines (SVM) and Random

Forests (RF) are widely used [Khatami et al., 2016]. Nevertheless, These models have a major

inconvenience, the temporality aspect of the satellite images time-series is not considered thus

preventing the evolutionary dynamics of plants from being taken into account in their type

identification. Some works have tried to overcome this drawback by temporal features extrac-

tion before making classification, as in [Valero et al., 2016] where the authors propose to use

a set of statistical indicators extracted from the temporal evolution of the Normalized Differ-
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ence Vegetation Index (NDVI), like the maximum or average values, to feed an RF classifier,

in addition to the satellite images. However, it was shown that the performance gain of such

operations remains very slight [Pelletier et al., 2016], in addition to the data preparation cost

that might be involved.

The question of the portability of a model for crop identification using Sentinel-1 imagery learnt

in a production basin/region A to a production basin/region B is also addressed in our work.

Indeed, in order to explore whether a model trained on data from a given region remains valid

in another region, a study aiming to evaluate the effect of the pedoclimatic conditions which

characterize a given region on the radar response was carried out on the soft winter wheat crop

as a pilot crop.

This manuscript is composed of four chapters and is organized as follows: a first chapter, in

which a description of the remote sensing data used in this work is given, followed by a sec-

ond chapter, in which the statistical approaches proposed for crop identification based on time

series of radar images are detailed. The third chapter is a bridge between the previous chapter

on crop recognition and the last chapter on data assimilation. It contains two chapters, the first

chapter in which we present some approaches allowing the estimation of a biophysical vari-

able of critical importance for plants, the biomass, from radar remote sensing data, followed by

a second chapter in which we propose a tool intended for positioning the field measurement

points of these biophysical variables, still using radar images. The fourth and last chapter

deals with the implementation of data assimilation methods intended to improve the predic-

tive power of plant growth models, in the particular case of soft winter wheat. Details of the

different chapters composing this manuscript are given hereafter.

Chapter 1 :

• This chapter aims to describe the Sentinel-1 remote sensing radar data that we will use

in our work, on the aspects that concern their operating mode as well as the series of

operations that compose the pre-processing chain necessary to prepare these data to be

operational. We will then carry out a study aimed at evaluating, by analysis of variance

(ANOVA), the impact of the variation of a satellite remote sensing factor identified as im-

portant, the incidence angle, in addition to the variation of pedoclimatic conditions from

one production basin to another, on the radar response in interaction with the vegetation

cover. An experimental plan to study the effect of these factors at a specific date, but also

over the entire agricultural campaign, is established.

Chapter 2 :

• In this chapter, the proposed approach for crop recognition using time series of satellite

images will be detailed. We will start by describing the research problem based on a

first application case on corn crop in the United States. A mathematical formulation of

the prediction problem will be proposed, followed by details of our main contribution in
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which it is proposed to take into account the phenological development of plants, which

is strongly dependent on climate, by means of thermal time for inter-annual modeling

of identification of crop types. We will then present the supervised statistical learning

models used: a long short-term memory (LSTM) recurrent model and a convolutional

neural network model (CNN). The functioning of these models as well as the approaches

proposed to use these models in the context of crop identification at the pixel level of

the satellite image will be discussed. We will then embark on the experimental phase in

which all the results obtained will be presented. We will start by presenting the prelimi-

nary results obtained with an LSTM model on corn over the United States data sets. We

will then present the study areas in France as well as the results obtained with the intra-

annual modeling as a proof of concept, and the inter-annual modeling to evaluate the

contribution of thermal time and the performance of the trained models, we will focus on

a few types of major crops: soft winter wheat, winter rapeseed, and beet. Finally, We will

conclude with a discussion.

Chapter 3 :

• Chapter 3.1 tackles the issue of estimating plant biophysical variables (biomass, leaf area

index, etc.) from remote sensing data. We will present how, based on Sentinel-1 radar

data and biomass data of the different soft winter wheat compartments, measured in the

field within experimental parcels in France, we have fitted simple supervised statistical

models and evaluated their capacity to estimate these biomass through validation data.

The objective here is to evaluate the opportunities that radar data can offer for these types

of needs.

• Chapter 3.2 presents a tool that we propose to define the positioning of measurement

points of a given biophysical variable in an agricultural field according to the intra-parcel

heterogeneities. We will present an approach to use unsupervised K-means clustering of

radar response signatures in winter rapeseed experimental parcels located in the Beauce

region of France, over the 2019/2020 cropping campaign.

Chapter 4 :

• This chapter is an implementation of data assimilation methods aimed at improving the

predictive power of models by successive updates of their calibration each time observa-

tion data are available, applied to a mechanistic model simulating plant growth. We will

start by recalling the operating principle of mechanistic plant growth models adapted to

the case of winter wheat. We will then discuss the filtering approach used in the frame-

work of a general state-space model. We will discuss the so-called filtering problems,

the convolution particle filter (CPF) methods based on Sequential Monte Carlo (SMC)

methods, and the adapted algorithms. We will then switch to an application case of these

methods, in which we evaluate the performance of the CPF-based data assimilation al-

gorithm applied to the mechanistic winter wheat growth model, employing simulated
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above-ground biomass data. The objective is to calibrate the soil parameterization of the

model using these synthetic simulated biomass data. We also investigate the importance

of the moment of observation as well as having more observations data for model cali-

bration.



Chapter 1

Radar remote sensing for crop

monitoring and interaction with

vegetation

1.1 SAR radar satellite data

The main remote sensing technology used in our work is radar imaging (Radar : for Radio de-

tection and ranging), more particularly, Sentinel-1 at C-Band (around 6cm of wavelength) Syn-

thetic Aperture Radar (SAR), launched by the European Space Agency as part of the European

Copernicus mission and having the advantage of providing images in all weather conditions,

day and night.

Sentinel-1A was launched on 3 April 2014 and Sentinel-1B on 25 April 2016. Sentinel-1 Radar

had a 12-day acquisition period from March 2015 to August 2016 when Sentinel-1A was op-

erating alone, and it has been decreased to 6 days since September 2016 by combining the

Sentinel-1A and 1B acquisitions.

Radar operates by emitting impulses in the centimeter wavelengths and measures the backscat-

tered energy (waves), and the waves can be transmitted and received in two trajectories: ver-

tical and horizontal, as shown in figure 1.1. The operating principle of an imaging radar is

schematized in figure 1.2 1.

The radar response, known in a more technical term as backscatter, is influenced in Sentinel-

1 images by the characteristics of the imaged target, in addition to the characteristics of the

emitted electromagnetic wave. For instance, when the imaged targets are plants, the signal

is strongly impacted by the biomass of the plants, the signal changes as the biomass evolves

during the plants’ growth cycle. More details on what drives the radar response will be given

1Basic image credit: Lucas Ternynck - satellite icon by Jose Luis Algara - tree icon by James Keuning, Cours

de Télédétection Radar, septembre 2013, Ecole Nationale des Sciences Géographiques, image amended by Walid

Hammache.

11
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Figure 1.1: Electromagnetic wave: vertical and horizontal trajectories.

Figure 1.2: Operating mode illustration of an imaging radar.

later, particularly in the section 1.1.2.

We access the Sentinel-1 mission data provided by the European Space Agency (ESA) through

the Copernicus open access hub. For the purposes of our research, an automated pipeline to

download the raw images was developed, in addition to the deployment of appropriate stor-

age logistics, to ensure real-time interaction with our models in the framework of our various

applications.

Sentinel-1 provides C-Band (corresponding to a radar wavelength of about 5.6 cm) SAR data

in interferometric wide swath (IW) mode which is the main acquisition mode over land. Data

is acquired in three swaths for 250km in total using the Terrain Observation with Progressive

Scanning SAR (TOPSAR) imaging technique. This mode provides dual-polarization VV and

VH images at a spatial resolution of 10 meters (V for vertical trajectory, H for horizontal trajec-

tory. The first letter corresponds to the emission and the second one is for the reception). We

use level-1 Ground Range Detected (GRD) processed product consisting of focused SAR data,

multi-looked, and projected to ground range using an Earth ellipsoid model.

Once the Sentinel-1 raw data are loaded, and in order to make images exploitable for our anal-
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yses, pre-processing operations are achieved. The corresponding tools were implemented and

the steps involved in these operations are detailed, in the next paragraph.

1.1.1 SAR radar images pre-processing

Some indispensable processing operations are applied to Sentinel-1 raw data, using the ESA

Sentinel-1 Toolbox (S1TBX) deployed on Sentinel Application Platform (SNAP).2

Without going into too many details of radar imagery, we would like to explain some specific

treatments, in particular speckle filtering, as it allows to see in a concrete way the direct impact

of such a treatment on the radar response, the main data sources of our work.

Thermal noise removal

Thermal noise suppression is performed using the reference table of noise (Lookup Table -

LUT) for each set of measurement data provided in Sentinel-1 Level 1 products.

Orbit information update

The orbit state vectors provided in the Sentinel-1 product metadata are generally not accurate

and can be refined with the accurate orbit files that are available a few days after product gen-

eration. The orbit files provide accurate information about the satellite’s position and velocity.

The orbit information of image acquisition is then updated in the product metadata.

Radiometric calibration

The radiometric calibration of SAR images aims at converting the digital values recorded by the

sensor, i.e., the intensity values, which contain uncorrected radiometric biases, into a physical

variable: the backscatter coefficient σ0, which is directly related to the radar backscatter of the

imaged target. This operation allows a quantitative use of radar images and is also necessary

to be able to compare SAR images acquired with different sensors, under different acquisition

modes, or acquired from the same sensor but at different times. Readers may refer to [Laur

et al., 2004] [Rosich and Meadows, 2004] for a detailed description of the radiometric calibra-

tion of SAR products.

In the case of Sentinel-1 data, this operation, which is actually quite complex, is simplified by

the availability of Look Up Table (LUT) denoted Aσ, included within the Sentinel-1 GRD prod-

uct used in our work, and providing the necessary information to convert the radar intensity

into the backscatter coefficient [Miranda and Meadows, 2015].

In fact, at pixel scale, the radiometric calibration is applied according to Equation (1.1)

σ0 =
DN2

A2
σ

(1.1)

where DN is the pixel digital value and is equal to the pixel amplitude in the case of GRD

products.

Furthermore, the backscatter coefficient is defined from a simplified form of the radar equa-

tion (in which some non-radiometric corrections have already been made in Sentinel-1 GRD

2https://step.esa.int/main/toolboxes/snap/
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products) as follows [Miranda and Meadows, 2015]:

σ0 =
DN2

A2
dn.K

sin(α) (1.2)

where α is the radar incidence angle, K is the absolute calibration constant (calculated during

the satellite commissioning phase and calibrated using knowledge of homogeneous areas, such

as forests), and Adn is the Look Up Table (LUT) scaling applied to generate S1 level-1 product

from initial internal S1 products (allowing to avoid saturation of both brighter and darker tar-

gets, and at the same time to reduce measurement errors).

Therefore, from (1.1) and (1.2) , Aσ is defined as:

Aσ =

√
A2
dn.K

sin(α)
(1.3)

We can see that this radiometric calibration depends mainly on the calibration constant and the

incidence angle.

So far, we have mentioned radiometric calibration to extract the backscatter coefficient σ0 for

which the area normalization is aligned with the ground range plane, thanks to the angle of

incidence. However, other backscatter coefficients, denoted β0 and γ0, can be used for areas of

interest with significant slope effects, through the local incidence angle. Since the majority of

the areas of interest in our work have a relatively flat topography, we will use S1 data that are

calibrated without taking into account the slope effect.

To complete this step, note that the LUT scale provides the absolute values of σ0. It is how-

ever recommended to convert these values into decibels (db) in order to reduce the range of

variation of the values of σ0 by the following formula:

σ0
db = 10. log10 .σ

0 (1.4)

A question is naturally raised during the radiometric calibration phase of the SAR data for the

different applications studied in our thesis work: do we need to calibrate data acquired in dif-

ferent locations in the same way? For example, shall we calibrate a radar image acquired in

Africa or in America in the same way as an image acquired in metropolitan France ?

Our description of the calibration presented above allows us to answer positively from a ra-

diometric calibration viewpoint. It is indeed the whole purpose of radiometric calibration to

ensure comparability of the data. However, it only remains valid for areas with homogeneous

topography. As explained above, for areas with significant slope effects, specific backscatter

coefficients shall be used.

However, it should be noted that this calibration is in no way a correction of the angle of inci-

dence. Radar backscatter varies with the angle of incidence as well as the characteristics of the

electromagnetic waves (mainly polarization and wavelength), the climate, and the properties

of the imaged targets. Therefore, and knowing that the incidence angle varies between 30 and

45 degrees in the Sentinel-1 IW GRD images used in this thesis, as shown in Figure 1.3, the
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(a) (b)

Figure 1.3: Range of incidence angle variations in degrees (b) within a Sentinel-1 IW GRD

product example (a).

effect of the variation of the incidence angle on the radar response in the agricultural areas that

we are interested in, as well as its impact on the performance of our statistical models, will be

studied in detail in Subsection 1.1.2.

Speckle filtering

SAR radar data are exposed to the speckle effect [Lee, 1986]. This is a phenomenon that re-

sults in high variability of radar response from one pixel to another in a homogeneous area.

In fact, if we assume that there are different elementary targets within a given pixel, the radar

response within that pixel is the sum of the responses of these elementary targets. This summa-

tion induces an interference phenomenon that can be constructive or destructive [Elachi, 1988]

(it depends on the wavelength and distances between the different elementary targets and the

radar antenna, in addition to the target characteristics). The image is then strongly granulated,

with a visual pepper and salt effect as shown in figure 1.4, which makes the interpretation

and analysis of the different image characteristics quite complicated. The reader can refer to

the book [S. Lee, 2009], section Polarimetric SAR Speckle Statistics, for more details on speckle

formation, effect, and its statistical property. To reduce this speckle and improve radiometric

resolution, filtering is applied by averaging several pixels. In our study, we apply Lee Sigma

filter [Lee et al., 2009] (7 ∗ 7 local window, 3 ∗ 3 target window, and sigma of 0.9) which is

implemented in S1TBX. This filter is a good compromise between the preservation of polari-

metric information and radiometric resolution [Cazals, 2017] [Boutarfa et al., 2013], so we have

a clearer interpretation of features in SAR radar images.

Let us highlight that speckle reduction is crucial in providing exploitable and interpretable

radar images and therefore has been the subject of considerable research work. Since the first

pioneer works of lee [Lee, 1983], new approaches have emerged to reduce noise in SAR prod-

ucts. one of the most performing is the so-called patch-based approaches, which rely on the

search for similar local configurations within the images and can efficiently replace more com-

plex models using the statistical distribution of images. One can mention the works [Tupin

et al., 2019], which constitutes a global review of such patch-based approaches. Further, the

considerable recent advances in the machine learning field, particularly in deep learning, al-
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lowed the recourse to these approaches for speckle reduction. Works [Fracastoro et al., 2020]

provides extensive reviews of deep learning for SAR image restoration. Those of [Denis et al.,

2021] also evoke the most recent works as well as the principal research perspectives for the

use of deep-learning in SAR product ”despeckling”. Moreover, an interest in combining both

approaches based on similar local configurations and deep learning models such as CNNs has

emerged. In this context, works [Denis et al., 2019] explores different strategies that can be

used.

However, supervised approaches based on deep learning models are often confronted with a

significant blocking point, lack of training speckle-free data. This issue has therefore been the

subject of several research works. For instance, in paper [Dalsasso et al., 2020], the authors

have presented two main strategies for speckle reduction in SAR images. The first one con-

sists of using a convolutional pre-trained natural images denoising, combined with Gaussian

denoisers [Deledalle et al., 2017] to consider the noise generated by the speckle. The second

strategy consists of form scratch convolutional network training with SAR data generated by

multi-temporal multi looking of a time series images at the same areas, followed by a denoising

step with Gaussian denoisers. Besides, noisy images are synthetically simulated with a statis-

tical speckle model [Goodman, 1976] to obtain the necessary samples for supervised learning.

This latter work served as a basis for the development of the SAR2SAR algorithm [Dalsasso

et al., 2021a], in which the synthetically generated input data in [Dalsasso et al., 2020] were

t a later stage replaced by real SAR acquisitions, allowing learning of the spatial correlation

introduced by the processing steps of these acquisitions, and achieving a clear improvement

over existing despeckling algorithms. This work has also been adapted to filter Sentinel 1 GRD

images [Gasnier et al., 2021] [Dalsasso et al., 2021b].

Range Doppler Terrain Correction

Due to the side-looking geometry of radar imagery and the topographical variations in the

monitored area, some geometric distortions may appear in the Sentinel-1 data. Terrain correc-

tions are intended to compensate for these distortions so that the geometric representation of

the image is as close as possible to reality on the ground. For this correction, we use the Range

Doppler ortho-rectification method [Small and Schubert, 2019] for geocoding SAR scenes from

images in radar geometry. The digital elevation model (DEM) used is that of the NASA Shuttle

Radar Topography Mission (SRTM) at 30 m of spatial resolution. The images used in our work

are projected on the WGS84 ellipsoid and expressed in Lat/Long geographic coordinate sys-

tem. They can also be expressed in Universal Transverse Mercator (UTM) coordinate system

to have pixel sizes in meters instead of degrees, this will depend on the different needs in our

work (to have pixel sizes of 10m ∗ 10m, to be in adequacy with the Sentinel-2 optical images

pixel size,. . . ).

Finally, the sequence of all these previous steps is summarized in Figure 1.5.
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(a) VH polarization before speckle reduction,

highly granulated Sentinel-1 product example.

(b) VH polarization after reduction of speckle

leading to a much less granular Sentinel-1 prod-

uct.

(c) VV polarization before speckle reduction,

highly granulated Sentinel-1 product example.

(d) VV polarization after reduction of speckle

leading to a much less granular Sentinel-1 prod-

uct.

Figure 1.4: A demonstration of the effect of the speckle reduction operation on both σ0
V V and

σ0
V H polarizations of an example Sentinel-1 product covering southwest France acquired in

June 2018. Lee Sigma filter [Lee et al., 2009] with 7 ∗ 7 local window size, 3 ∗ 3 target window

size and sigma of 0.9 is applied.

Figure 1.5: Sequence of the preprocessing phases of the Sentinel-1 radar images.
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1.1.2 Effect of the variation in incidence angle on backscatter: a study on soft win-
ter wheat parcels in France

As mentioned in 1.2, the incidence angle varies from about 30 to 45 degrees within a Sentinel-

1 product. The objective of this chapter is therefore to study the effect of this variation on the

radar response from agricultural areas. Note that, within the same Sentinel-1 product, different

areas located at different incidence angles of this product have most likely different pedocli-

matic (soil and climate) conditions. Therefore, what will be really assessed in the present study

is the effect of the interaction between incidence angles and pedoclimate on radar backscatter.

To statistically assess the variability in radar backscatter between incidence angles, as well as

between studied areas with different pedoclimatic conditions, a one-factor analysis of vari-

ance (one-way ANOVA) test was applied to every radar polarization (σ0
V H , σ0

V V and the ratio

σ0
V H/σ

0
V V ), the goal being to assess the statistical differences of the group sample (pixels in our

case study) means, in addition to the analysis that can be carried out directly from the boxplots,

in which it can be complex to draw direct conclusions when working with a large number of

samples. The method for this analysis will be presented in the following.

For this survey, the following experimental test plan has been defined:

Step 1- Impact, at a fixed date, of the variation of incidence angles and pedoclimatic factors

on the same crop type pixels radar response:

We selected Sentinel-1 products acquired at a given date, as well as multiple areas of interest,

located at different incidence angles within these Sentinel-1 products. Afterward, in each of

these areas of interest, and using the French national land use database (registre parcellaire

graphique - RPG) in France, we automatically selected all parcels of the same given crop type

intending to exclude as much as possible the variability related to phenology in radar signal.

The aim here is to study the radar response variability within the pixels of this same crop in

each selected area of interest.

We first chose to study the impact of the interaction between incidence angles and pedocli-

mate on radar backscatter as a single factor, before studying in a second time the impact of

the two incidence angles and pedoclimate factors of variation separately. For that purpose, the

following sub-tests configurations shall be considered:

Step 1 (a)- Impact of incidence angles and pedoclimate interaction as a single factor of

variation:

Within one Sentinel-1 product acquired at a given date, three different zones are selected.

These three zones are chosen so that they correspond to different incidence angles on the

Sentinel-1 product, in addition to being geographically distant to assure different pedo-

climates. The objective is to study the impact of the interaction of both incidence angles

and pedoclimatic conditions with the radar response.
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(a) (b)

(c) (d)

Figure 1.6: Location of study areas: (a) Geographic coordinate of the used sentinel-1 product (in

the blue rectangle) acquired on May 08, 2018 in the center of France. The locations of the areas

of interest with different incidence angles are indicated by the orange, green and red colored

boxes. (b) Geographic location of the study area with an average incidence angle of about 31

degrees. (c) Geographic location of the study area within an average incidence angle of about

38 degrees. (d) Geographic location of the study area with an average incidence angle of about

45 degrees. In the whole manuscript, unless otherwise indicated, the maps are projected on

the ellipsoid WGS84 (latitude/longitude in decimal degrees, EPSG:4326) coordinate reference

system.
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Step 1 (b)- Impact of incidence angle variation under similar pedoclimatic conditions:

Within two (or more) different Sentinel-1 products, acquired on the same date, two (or

more) different zones are selected. The selected areas are close (to ensure similar soil-

climate conditions), but this time they are at totally different incidence angles. In these

conditions, we can study the impact of different incidence angles on the radar response.

Step 1 (c)- Impact of pedoclimate variation under similar incidence angles:

Two (or more) areas are chosen with the same angle of incidence, but far away enough

from each other so that they may have different pedoclimatic conditions. This way, we

study the effect of the pedoclimatic conditions on the radar response.

Step 2- Impact, during the crop growth cycle, of the variation of incidence angles and pedo-

climatic factors on the same crop pixels radar backscatter:

The effects of the angle of incidence and, potentially, of soil-climate conditions are studied over

a farming season this time. We are therefore working on time series of Sentinel-1 products, the

objective being to evaluate the impact of these two factors during the complete crop growth

cycle.

One-way ANOVA analysis

One-way ANOVA is a parametric statistical test that uses a test of significance to determine

whether the population means of a quantitative variable (radar backscatter in our research case)

for a given factor (incidence angles and/or pedoclimat here) are significantly different. It relies

on the normality assumption of the underlying distributions and consistent variances across

the different conditions. However, ANOVA was shown to be relatively robust to departures

from these hypotheses [Schmider et al., 2010].

Suppose we have k regions with different incidence angles and/or soil-climates conditions and

want to compare their respective sample means x̄i, i = 1, . . . , k. We then consider the following

hypotheses: H0 : x̄1 = x̄2 = . . . = x̄k (null hypothesis);

H1 : ∃1 ≤ i, i′ ≤ k : x̄i 6= x̄i′ (alternative hypothesis).

The objective of the ANOVA is to compare the variation between groups (of different incidence

angles and/or pedoclimat) with the variation within each group (different observation areas)

by analyzing their respective variances.

The following test statistic, denoted by Fs, is then computed:

Fs =
between-groups variance (Var between)

within-groups variance (Var within)

where:

Var between =
between-groups sum of squares

between-groups degrees of freedom
=

k∑
i=1

ni · (x̄i − x̄)2

k − 1
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and:

Var within =
within-groups sum of squares

within-groups degrees of freedom
=

k∑
i=1

ni∑
j=1

(xij − x̄)2

n− k

n is the total number of observations, ni is the total number of observation in region i and x̄ is

the mean of all observations, also called the grand mean.

Under the null hypothesisH0, the statistic Fs follows an F distribution F (k − 1, n− k).

H0 is rejected if Fs > F(α,k−1,n−k), where F(α,k−1,n−k) is the critical F-value for a given signifi-

cance level α for F (k − 1, n− k), such that PH0(Fs > F(α,k−1,n−k)) ≤ α.

Here we set the value of α to 0.05, F(α,k−1,n−k) can be obtained from the F distribution table

[Dodge, 2008].

In addition to this one-way ANOVA analysis, we applied an additional test, a post-hoc Tukey-

Kramer test also called Tukey’s Minimum Significant Difference (MSD) test, which aims to

evaluate significant pairwise group differences (see Algorithm 1).

Algorithm 1: Tukey’s Minimum Significant Difference test
Result: Minimum Significant Difference

1 scroll through the Studentized range table to find the critical value statistic Q[α,k,dfw]

depending on the critical threshold α (that we will set to 0.05), the number of groups

to be compared k, and the within-group degrees of freedom dfw (equal to the

difference between the total number of observation and k);

2 compute the Minimum Significant Difference for groups i, j MSDi,j = Q[α,k,dfw]

√
MSw
n̄ ,

where n̄ is the mean of the number of observations of both groups, MSw is the mean

square within groups (can be directly extracted from the one-way ANOVA results);

3 calculate the difference of the means MDi,j = |x̄i − x̄j |, with x̄i, x̄j the means of groups

i and j;

4 if MDi,j >= MSDi,j then

5 the mean difference between groups i and j is significant;

6 else

7 the mean difference is not significant;

8 end
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Experimental test plan: Step 1 (a)- Impact of incidence angles and pedoclimatic conditions

as a single factor of variation:

The location of the Sentinel-1 study product was chosen somewhat arbitrarily. The product is

located in the center-west of France ( 1.6a). The choice of the date of acquisition of the product

was made so as to have a study crop at booting/heading (beginning of the reproductive phase)

to ensure a significant contribution in the radar signal. The date of May 8, 2018 was chosen

for the S1 product, with the intention of working with a winter crop (sufficiently advanced in

growth on this date).

Three sub-study areas were then selected: one at the left end of the S1 product with a low

incidence angle (about 30 degrees, 1.6b), another at the right end of the S1 product with a high

incidence angle (about 45 degrees, 1.6d), and a third area in the center with an intermediate

incidence angle (about 38 degrees, 1.6c).

The choice of the crop to be studied was based on the total surface areas occupied within the

areas of interest, the objective is to ensure as much representativity as possible through a greater

coverage. As shown in figure 1.7, soft winter wheat (Blé Tendre d’Hiver in French - BTH) is the

crop that covers the largest surface in the areas of interest, so parcels of this crop were selected

for our study.

(a) Crop representativity in the

area with an average incidence

angle of 31.47 degrees.

(b) Crop representativity in the

area with an average incidence

angle of 38.76 degrees.

(c) Crop representativity in the

area with an average incidence

angle of 45.19 degrees.

Figure 1.7: Total occupation of the cultivated surface of the most frequent crops in the three

studied areas in the year 2018. The crop codes are in accordance with the RPG naming system

(BTH for Blé Tendre d’Hiver, soft winter wheat).

In each area of interest, the BTH parcels are automatically extracted from the RPG. Figure 1.8

shows the coordinates and contours of these parcels. The variation of the radar backscatter in

each studied sub-area of soft winter wheat parcels is displayed in figure 1.9, for each of the

radar polarizations as well as for the ratio band. In this figure 1.9, we can clearly observe, for

the set of three polarizations, a monotony or a uniformity in the variation between the different

angles of incidence.

Figure 1.10 displays the results of this comparative study. It can be seen that for the two po-

larizations σ0
V H and σ0

V V , there is variability in the distributions of the radar response with the

mean incidence angle at which the study parcels are located. This variability is however re-
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(a) Soft winter wheat parcels,

average incidence angle of

31.47 degrees.

(b) Soft winter wheat parcels,

average incidence angle of

38.76 degrees.

(c) Soft winter wheat parcels,

average incidence angle of

45.19 degrees.

Figure 1.8: Coordinates and contours of soft winter wheat parcels, automatically extracted

from the RPG, using the areas of interest bounding boxes.

duced for the ratio σ0
V H/σ0

V V band. Below, we analyze in more detail whether this diminution

is significant enough to reduce the differences in the backscatter means or not with the analysis

of variance tests.

In order to evaluate more precisely the differences in backscatter distributions with respect to

incidence angles/pedoclimatic conditions interaction, we look at the results of the analysis of

variance presented in table 1.1. We observe that the means of the Sentinel-1 radar response

across the three backscatter bands over the different groups of incidence angles/pedoclimate

are significantly different (p-value significantly lower than α = 0.05).

Also, the results of the Tukey-Kramer test presented below in the table 1.2 indicate that the

backscatter means are different for each two group pairs [incidence/pedoclimate group i and

incidence/pedoclimate group j].

It can also be mentioned, based on these Tukey-Kramer test results, that for this case study, even

if we observe a decrease in backscatter variability on the ratio σ0
V H/σ

0
V V band in the boxplot

1.10, the sample means remain significantly different.
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(a) variation of backscatter in parcels with mean incidence angle of 31.47 degrees.

(b) variation of backscatter in parcels with mean incidence angle of 38.76 degrees.

(c) variation of backscatter in parcels with mean incidence angle of 45.19 degrees.

Figure 1.9: Soft winter wheat parcels pixels variation of backscatter (in decibels) for the bands

σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V .

Figure 1.10: Boxplots of polarizations σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V for soft winter wheat

parcels and for different incidence angles. The black dashed lines represent the medians and

those in blue represent the mean values.
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Table 1.1: One-way ANOVA test statistics for the three bands σ0
V H , σ0

V V and σ0
V H/σ

0
V V , ap-

plied to the Step 1 of the proposed experimental test plan. It is indicated in the table that

p-value < α = 0.05, but in reality the p-value is far smaller in this test case.

σ0
V H σ0

V V σ0
V H/σ

0
V V

d.f sum of mean Fs p-value sum of mean Fs p-value sum of mean Fs p-value

squares square squares square squares square

among groups 2 358041.56 179020.78 45882.44 < 0.05 5.11e+05 255763.35 51607.55 < 0.05 15513.81 7756.90 3146.58 < 0.05

within groups 229967 897268.49 3.90 1.13e+06 4.95 566910.42 2.46

total 229969

Table 1.2: Tukey-Kramer test statistics for the three bands σ0
V H , σ0

V V and σ0
V H/σ

0
V V , applied

to the Step 1 of the proposed experimental test plan. critical Q[α,k,dfw] = 3.31451, σ0
V HMSw =

3.90, σ0
V VMSw = 4.95 and σ0

V H/σ
0
V VMSw = 2.46. We refer to algorithm 1 for the notations.

We denote the incidence angles/pedoclimate interaction by ”interact” in the table.

σ0
V H σ0

V V σ0
V H/σ

0
V V

pair of groups MDi,j MSDi,j reject MDi,j MSDi,j reject MDi,j MSDi,j reject

interact1-interact2 1.3248 0.0229 True 1.7918 0.0259 True 0.467 0.0182 True

interact1-interact3 1.8804 0.0231 True 2.0553 0.0261 True 0.175 0.0184 True

interact2-interact3 3.2052 0.0249 True 3.8472 0.0280 True 0.642 0.0197 True
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Experimental test plan: Step 1 (b)- Impact of the variation in incidence angle under similar

pedoclimatic conditions:

For this test, parcels of soft winter wheat are selected in two different areas, close enough to

ensure similar pedoclimatic conditions, but at different angles of incidence in terms of im-

age coverage, at the same date of acquisition. To obtain such a configuration, two different

Sentinel-1 products must be used this time. The ideal configuration would have been to have

two adjacent (side-by-side) products on exactly the same date. However, the acquisition mode

of the used Sentinel-1 images (Ground Range Detected (GRD), Interferometric Wide (IW) ac-

quisition mode) implies that such a configuration is not possible. There are two possibilities in

this case:

• Work with two distinct, partially overlapping Sentinel-1 products which are on the same

orbit direction (ascending for example) but with a 24-hour acquisition time delay. See

Figure 1.11 (a) for an illustration.

• Work with two distinct Sentinel-1 products, which may have partial overlapping points,

acquired on the same calendar date, but with an acquisition delay of about 12 hours and

two different orbit directions (ascending for the first one, descending for the second one).

See Figure 1.11 (b) for an illustration.

Tests on the study of the Sentinel-1 radar signatures were done, and we found that the vari-

ability produced by a different orbit direction (e.g., ascending and descending) is important

compared to the variability produced by a one-day shift with the same orbit direction. In ad-

dition, studies such as [Wood et al., 2002] pointed to the possibility that early morning dew

is often present on the crop canopy at the time of the satellite overpass, which can impact the

radar response of these crops and which must be taken into account in the processing of the

information provided by the radar signal. In fact, they observed an increase of the order of 2 to

4 db in radar backscatter when dew was present on the crop canopy, which can be consequent.

Moreover, [Brisco et al., 1993] hypothesized that the formation of dew on the crop canopy likely

has an effect on backscatter similar to rainfall, this may lead us to expect an increase in radar

backscatter at times of heavy rainfall. It will be evoked in this manuscript.

For all these reasons, and to reduce the effect of any factor, external to the characteristics of the

electromagnetic waves and the imaged target (the crop), we decided to work with Sentinel-1

images having the same orbit directions (ascending, whenever possible, to reduce the effect of

early morning dew), despite the one day delay.
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(a) Neighboring Sentinel-1 products with the

same orbit direction (ascending). The product

in blue is acquired on day j at approximately

5:00 PM, the one in orange is acquired at about

j + 24 hours, also at approximately 5:00 PM.

(b) Neighbouring Sentinel-1 products acquired

on the same day j, but with a 12 hour time lag.

The product in orange is acquired on day j at

approximately 5:00 AM, with a descending or-

bit, the one in blue is acquired about 12 hours

later, at approximately 5:00 PM, with an as-

cending orbit.

Figure 1.11: Possible configurations for two neighbouring Sentinel-1 products at a given date.

(a) (b)

Figure 1.12: Step 1-b of the experimental test plan, location of study areas: (a) geographic

coordinate of the used sentinel-1 products (product acquired on May 08, 2018 in blue rectangle

and the one acquired on May 09, 2019 in orange rectangle) in the center of France. The location

of the areas of interest with similar pedoclimatic conditions and at different angles of incidence

is indicated by the green and red colored boxes. (b) coordinates and contours of soft winter

wheat parcels, automatically extracted from the RPG, using the areas of interest bounding

boxes.
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Figure 1.14: Boxplot of the variation of the radar response of the of soft winter wheat parcels

for both mean incidence angles areas, for σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V polarizations. The

black dashed lines represent the medians and those in blue represent the mean values.

(a) variation of backscatter in parcels with mean incidence angle of 40.42 degrees.

(b) variation of backscatter in parcels with mean incidence angle of 30.96 degrees.

Figure 1.13: Soft winter wheat parcels pixels variation of backscatter (in decibels) for the bands

σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V .

In this case study, it is complex to have more than two areas with the same pedoclimatic condi-

tions and different angles of incidence for a given date. We, therefore, restrict ourselves in this

phase of the test plan to two study areas. Therefore, to evaluate whether or not the difference

in the means of the two groups with different incidence angles is significant, the parametric

Student’s t-test is used this time.

This test uses as test statistic the ratio between the difference in the means of the two groups

and the standard error of the means difference (equation (1.5)).

t =
x̄1 − x̄2

s ·
√

1
n1

+ 1
n2

(1.5)

Where s is the standard deviation of the backscatter measurements among the two areas with

different mean incidence angles (equation 1.6). s1 and s2 are the respective standard deviations
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(a) (b)

Figure 1.15: Step 1-c of the experimental test plan, location of study areas: (a) geographic co-

ordinate of the used sentinel-1 product(in the blue rectangle) acquired on May 08, 2018 in the

center of France. The location of the areas of interest located on the same incidence angles in

different pedoclimatic conditions is indicated by the orange, green and red boxes. (b) coordi-

nates and contours of soft winter wheat parcels, automatically extracted from the RPG, using

the areas of interest bounding boxes.

of the samples, of respective sizes n1 and n2, for each incidence angle area.

s =

√
(n1 − 1) · s1

2 + (n2 − 1) · s2
2

n1 + n2 − 2
(1.6)

In this step 2.b of the present experimental plan, the Student’s t-test results, for each of the three

Sentinel-1 radar bands are (t = 172.16, p − value < α = 0.05) for the σ0
V H band measurement,

(t = 129.21, p − value < α = 0.05) for the σ0
V V band and (t = 70.94, p − value < α = 0.05) for

the ratio σ0
V H/σ

0
V V band.

This probability being very low, H0 is rejected, and the differences in the means are therefore

considered significant across the three bands when comparing the two studied areas.

Experimental test plan: Step 1 (c)- Impact of pedoclimate variation under similar incidence

angles:

We now aim to study the effect of the variation in pedoclimatic conditions on the radar response

of crops. We continue our study on soft winter wheat parcels located in central France. Within

a Sentinel-1 product acquired on May 8, 2018, we selected three areas located on the same

incidence angles but, this time, sufficiently distanced so that they have the highest possible

probability of having different soil and climate conditions. The location of the study areas is

detailed in Figure 1.15.

Base on a first analysis of the 1.17 boxplots, we can already observe a quasi-similar behavior

of the two bands σ0
V H and σ0

V V in the three different studied areas. On these same bands,
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(a) Variation of backscatter in parcels with mean incidence angle of 38.8 degrees and the first

pedoclimatic condition.

(b) Variation of backscatter in parcels with mean incidence angle of 38.8 degrees and the

second pedoclimatic condition.

(c) Variation of backscatter in parcels with a mean incidence angle of 38.8 degrees and third

pedoclimatic condition.

Figure 1.16: Step 1-c of the experimental test plan: soft winter wheat parcels pixels variation

of backscatter (in decibels) for the bands σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V .
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variability in the backscatter distributions can also be observed, which can be significant. Nev-

ertheless, one has the impression that this variability is reduced by the ratio σ0
V H/σ

0
V V band,

more particularly on the two green and red areas in the boxplot.

Figure 1.17: Step 1-c of the experimental test plan: boxplots of the variation in the radar re-

sponse of the soft winter wheat parcels in areas with different pedoclimatic conditions, for the

σ0
V H , σ0

V V and the ratio σ0
V H/σ

0
V V polarizations. The black dashed lines represent the medians

and those in blue represent the mean values.

The results of a more detailed variance analysis with a one-way ANOVA test are presented

in table 1.3. The means of the backscatter distributions are significantly heterogeneous, for all

three bands (p− value < α = 0.05). For each band, the average backscatter differs according to

the pedoclimatic conditions, we can therefore conclude that, in our case study, the pedoclimatic

conditions have played a role in the way the crop interacted with the Sentinel-1 radar.

Table 1.3: One-way ANOVA test statistics for three bands σ0
V H , σ0

V V and σ0
V H/σ

0
V V , applied

to the step (1.c) of the proposed experimental test plan. It is indicated in the table that p-value

< α = 0.05, but in reality the p-values are far smaller in this study case.

σ0
V H σ0

V V σ0
V H/σ

0
V V

d.f sum of mean Fs p-value sum of mean Fs p-value sum of mean Fs p-value

squares square squares square squares square

among groups 2 16911.25 8455.63 2302.88 < 0.05 19146.41 9573.20 2510.52 < 0.05 4217.50 2108.75 1030.57 < 0.05

within groups 220318 808955.81 3.67 840122.84 3.81 450813.17 2.05

total 220320

Even with the results of the ANOVA test, we still opted to apply Tukey-Kramer test with the

intention of trying to understand, by pair of pedoclimatic areas, which class mean is signif-

icantly different from the others. The results are presented in table 1.4. The results of this

test are consistent with our first impressions derived from the boxplots 1.17. The differences

of the backscatter means are, pair by pair, significantly different for the σ0
V H and σ0

V V bands
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(MDi,j > MSDi,j), and it is true over the three areas of interest. On the other hand, the results

show that for the [pedoclimat2 area - pedoclimat3 area] pair (green and red-colored boxes), the

difference in means is not significant for the ratio σ0
V H/σ

0
V V band, which was already revealed

by the boxplots 1.17.

Table 1.4: Tukey-Kramer test statistics for three bands σ0
V H , σ0

V V and σ0
V H/σ

0
V V , applied on the

step (1.c) of the proposed experimental test plan. criticalQ[α,k,dfw] = 3.31452, σ0
V HMSw = 3.67,

σ0
V VMSw = 3.81 and σ0

V H/σ
0
V VMSw = 2.05. We refer to the algorithm 1 for notations.

σ0
V H σ0

V V σ0
V H/σ

0
V V

pair of groups MDi,j MSDi,j reject MDi,j MSDi,j reject MDi,j MSDi,j reject

pedoclimat1-pedoclimat2 0.2297 0.02 True 0.0555 0.0204 True 0.2852 0.0149 True

pedoclimat1-pedoclimat3 0.7417 0.028 True 1.0445 0.0289 True 0.3027 0.0211 True

pedoclimat2-pedoclimat3 0.9714 0.024 True 0.989 .0244 True 0.0176 0.0178 False

At this stage, the insights that can be drawn from our study are the following: the angles of

incidence and the pedoclimatic conditions may play a role in the way the imaged target,

agricultural areas in our case, interacts with the radar satellite antenna, as well as the other

factors whose impact is already known and which depend on the characteristics of the electro-

magnetic wave (wavelength or polarisation) or those of the imaged target.

Therefore, when we work with Sentinel-1 radar data in our different models, we believe that

it is necessary, as far as possible, to take into account the incidence angle and pedoclimatic

conditions. One way of doing this would be to limit the scope of validity of the developed

models to a given pedoclimate, region, or range of incidence angles.

However, taking into account pedoclimatic conditions seems achievable by limiting the valid-

ity range of a given model to a specific region, for example, but it seems less feasible or intuitive

in terms of incidence angles because, in the case of Sentinel-1 images, the field of variation of

incidence angles within a given product can be relatively large (as seen in 1.1.1 ). Without for-

getting the difficulties that the acquisition mode of Sentinel-1 images can generate: typically,

when working with time series of images with reduced time steps (less than 12 days for ex-

ample), or when working on large areas of interest covering a wide range of incidence angles,

it can be complex to form the desired time series in such a way that it remains valid over an

extensive range of incidence angles.
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Experimental test plan: Step 2- Impact, during the crop growth cycle, of the variation of

incidence angles and pedoclimate factors on radar backscatter, for the same crop pixel

In this part of the test plan, by working on a time series of sentinel-1 images covering the

main stages of the plant’s growth cycle, we aim to study and evaluate how one or all of the

investigated factors impact the radar backscatter during key moments of the crop growth cycle.

Soft winter wheat is still used as a test crop for consistency with the previous steps of the

proposed experimental test.

Contrary to the Step-1 of the above-proposed experimental plan, this analysis will be based on

the interpretations of the graphs of radar backscatter evolution during the growth cycle of soft

winter wheat, consolidated by graphs of temperature and rainfall data presented in figure 1.18.

Table 1.5: Sentinel-1 images time series

Campaign SAR Sentinel-1 acquisition dates

November 09, 21; December 03, 15, 27;

January 08, 20; February 01, 13, 25;

2017/2018 March 09, 21; April 02, 14, 26;

May 08, 20; June 01, 13, 25;

July 07, 19, 31.

The time series of Sentinel-1 images was chosen so that all the images cover the same geograph-

ical footprint (the same one we worked on within the Step 1 of our test plan, Fig. 1.6) at each

acquisition date, the objective being to remain on the same angle of incidence at each date for

each study area, which is very important for carrying out our study. Likewise, each area within

a given average angle of incidence is characterized by a given pedoclimate.

We have therefore defined a time step of 12 days for images from the beginning of November

to the end of July of the 2017/2018 soft winter wheat crop campaign, this time step guarantees

us coverage of the same geographical footprint at each date. Table 1.5 shows the set of images

used.

The daily resampled climate data used are derived from ERA5 dataset [Hersbach et al., 2020],

which consists of a reanalysis3 dataset, hourly evaluating the most common weather features

on a regular grid with a spatial resolution of 0.25◦ × 0.25◦.

The daily surface4 soil moisture content, one of the main pedological factors affecting vege-

tation backscattering, is used in this work. the data are obtained from the European Space

Agency’s Climate Change Initiative for Soil Moisture (ESA CCI SM) project [Gruber et al.,

2019, Gruber et al., 2017, Dorigo et al., 2017] with models based on the harmonization and

3reanalysis technique gives a numerical description of the recent climatic data, produced by combining models

with observations
4The surface layer is conventionally considered to be within 2 to 5 cm [Ulaby, 1982]
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Figure 1.18: Temporal evolution of the radar signal in the bands σ0
V H/σ

0
V V , σ0

V H and σ0
V V ,

average daily temperature (◦C), wind speed (m ·s−1) at the height of 2 m above the surface,

volumetric soil moisture (m3.m−3) at 2 cm depth and precipitation (mm) in the three studied

areas, each is characterized by a given angle of incidence and a specific pedoclimate. Approx-

imate periods around the dates of sowing, harvesting, and the main growth stages of wheat

from March 2018 (early tillering, stem elongation, second node, flowering and senescence) are

indicated respectively by the two orange and yellow vertical dashed lines. The grey dotted

vertical lines in the climate data graphs correspond to the acquisition date of the images.
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fusion of soil moisture data retrieved from several satellites with active or passive sensors.

These data are sampled on a regular spatial grid of 0.25◦ (around 25 km) and considered in

m3.m−3 volumetric unit.

We can observe similar evolution profiles for all three bands with differences in the magnitude

of the backscatter dynamics over the three study areas. We can also see, and in coherence with

what was observed in the first part of the elaborated experimental plan, that the differences are

reduced by the ratio band compared to the other two bands. Also, it can be noted that these

differences remain relatively stable over time.

From the viewpoint of the particular sensitivity of a given band to the interaction between

incidence angles/pedoclimate and given the backscatter differences that appear in the graphs,

it can be said that the σ0
V H band is slightly more sensitive to this interaction compared to the

σ0
V V band, this is best seen from the early tillering to the second node stages between early

March and early May. This is an observation that remains valid for our case study and can in

no way be generalized.

The radar signal that the imaged crop returns to the satellite antenna is a composite of the re-

sponse of the canopy, that of the soil more or less attenuated by the canopy, and finally the

response of the crop-soil composite. It appears that the contribution of each of the three ele-

ments mentioned above can be driven by the characteristics of the electromagnetic wave: wave-

length, polarization, but also the angle of incidence from which the target is imaged ([Ulaby,

1982], [Ferrazzoli et al., 1997]).

Indeed, in a very interesting paper [Blaes et al., 2006] identified some of the most appropriate

configurations (in terms of polarization and incidence angles) for monitoring maize by max-

imizing the sensitivity of the signal to plant growth while reducing the contribution of soil

moisture in this signal. Using a discrete radiative transfer model to simulate maize backscatter,

they showed that in simple VV and HH polarizations, the sensitivity of the signal to soil mois-

ture is reduced at high incidence angles. Moreover, the configuration that is the least dependent

on soil moisture variation throughout the growing season appears to be the HH polarization

at high incidence angles. Also, they identified the VV/VH ratio calculated at high incidence

angles (about 45 degrees) as the most appropriate index for monitoring maize growth due to

its low sensitivity to soil moisture. Finally, the VV/HH index, at low incidence angles, was

chosen to detect maize emergence due to its sensitivity at early stages and its low sensitivity to

soil moisture variation.

What emerges from this study, carried out on maize (which remains relatively close to wheat)

under fixed soil conditions (especially soil moisture), and knowing that in reality, this soil mois-

ture varies throughout the growth cycle of the plant as can be seen on the surface soil moisture

evolution plot in figure 1.18, we can realize the importance of choosing the angle of incidence

for better monitoring of the crops, by minimizing as much as possible the contribution of soil

moisture in the radar signal.

Gradual analysis of radar signals can be carried out to explain/interpret certain behaviors at
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given time periods.

Rainfall just before a given acquisition date may partially explain an increase, even slight, in

the radar signal as reported in [Veloso et al., 2017]. Indeed, this can be seen in our case study,

in the σ0
V H and σ0

V V bands, over the first four acquisition dates (much more pronounced on

the red signal corresponding to the area with an angle of incidence of about 45 degrees), this

is due to the fact that at this period the plants are in the germination/emergence stages, the

effect of soil characteristics (more particularly roughness and water content) is dominant in the

response of the imaged targets.

Both the σ0
V H and σ0

V V bands recorded a brutal drop in backscatter on the acquisition date corre-

sponding to 25 February 2018, which is typical behavior for a frozen episode release according

to the literature as in [Veloso et al., 2017] and [Khaldoune et al., 2011]. This observation is valid

for all three areas, but with varying magnitudes. In fact, this drop is clearly more marked in

the region with an angle of incidence of 45 degrees, because the frozen episode was stronger

in this region compared to the other two regions (difference of around 5 ◦C) according to the

temperature curve around 10 February 2018.

However, even though the same frost event occurred again around February 28, with almost

the same temperature and over all three studied areas this time, there was no such abrupt drop

in the radar signal, but just a much smaller drop which is seen on the acquisition date of March

21, 2018 (visible especially in the signal of the region with an angle of incidence of 45 degrees

in red color).

Several assumptions may justify a different time behavior of the radar response after a period

of frost, one of the possibilities is that the impact of a frost episode becomes less important at

a more advanced stage of growth where the structure/volume of the plant has evolved (we

move from the early tillering stage to the ear at 1cm stage in our case study). Another is that

an additional factor (climatic or otherwise) is involved in addition to frost in producing such

a severe signal drop. For example, on the graphs of the climatic data in figure 1.18 above, we

can see that the wind was stronger at the time of the second frost episode compared to the first

one, which may impact the orientation at the canopy level. We can also see a strong decrease in

relative humidity just before the second frost episode as opposed to the first one. This remains

suppositions because studying in detail what guides the dynamics of backscatter is not a simple

task. We will try to provide more detail in the remainder of this document.

Moreover, It can be seen that, unlike the two σ0
V H and σ0

V V bands with trajectories that are

somewhat unstable and complex to interpret, the ratio band reproduces the wheat growth cycle

well, with a relatively stable phase corresponding to the period between sowing and the start

of tillering (early March), then a slight increase from the latter to flowering, before starting to

decrease gradually, characterizing the start of senescence around mid-June.

Finally, as a recap synthesis, we feel that the following conclusions can be drawn from this part

of our work:
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• With the perspective of developing machine learning models, notably for crop type recog-

nition, using S1 radar imagery data, we proposed an experimental scheme with the pri-

mary objective of identifying the extent of validity of these models depending on some

factors of variation of the radar response that we deemed most influential: incidence

angle and pedoclimate. Statistical tests of variance revealed that, for the most optimal

results, the field of validity of a model built based on S1 data should, as far as possible,

be limited to a given region with a given pedoclimate and/or range of incidence angles.

• Also, based on state-of-the-art elements, we have seen what may drive the dynamics

of radar backscatter in interaction with vegetation. We have drawn up interpretations of

certain behaviors of the radar signal when confronted with rainfall or frost episodes. This

study has also allowed us to see the added value that the ratio polarization can provide

to our developed machine learning models using this type of imaging data, which can

constitute an interesting additional feature.
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Chapter 2

Crop type identification with deep

learning using multi-temporal satellite

images

2.1 Research problem introduction

Identifying crops from remote sensing images can help automatic land cover monitoring and

serve several purposes. For example, it can be used for the large-scale estimation of the over-

all area of a given planted crop. The potential benefits are numerous, first in terms of yield

prediction, with a better knowledge of the planted areas. The anticipated evaluation of agricul-

tural yields is a major challenge in agriculture: in a production basin, to forecast the logistics

of farming and grain storage; at the level of a country, to anticipate agricultural crises or even

food crises in the poorest countries. Better anticipation is also essential for insurers or players

in agricultural raw material markets. The monitoring of cropland use gives also another inter-

esting perspective from the point of view of sustainability: the intensification of agricultural

productions and disrespect of the principle of crop rotation in some areas can be threatening

for agricultural ecosystems, and better monitoring could help to control agricultural practices,

as underlined in the introduction of this manuscript.

Every plant type has a growth dynamics characterized by different phenological stages from

emergence to maturity. During these successive development steps, plants change their reflec-

tive spectral properties [Thenkabail et al., 2000], which can be observed using remote sensing,

and more precisely with backscattering in the case of radar. This dynamics can be thought of as

a specific signature of the crop, as illustrated in Fig. 2.1, and can thus be used to identify crop

types.

Fig. 2.2 represents a composite of both VV and VH polarizations of a Sentinel-1 product ac-

quired at different observation times in South Dakota (USA) and illustrates the evolution of

crop spectral properties in different parcels during plant growth cycle.

39



CHAPTER 2. CROP TYPE IDENTIFICATION WITH DEEP LEARNING USING
MULTI-TEMPORAL SATELLITE IMAGES 40

180 200 220 240 260 280

Day of year (DOY)

−22

−20

−18

−16

−14

−12

−10

−8

ba
ck

sc
at

te
ra

m
pl

itu
de

(d
b)

σV H

σVV

(a)

180 200 220 240 260 280

Day of year (DOY)

−24

−22

−20

−18

−16

−14

−12

−10

−8

ba
ck

sc
at

te
ra

m
pl

itu
de

(d
b)

σV H

σVV

(b)

180 200 220 240 260 280

Day of year (DOY)

−30

−25

−20

−15

−10

ba
ck

sc
at

te
ra

m
pl

itu
de

(d
b)

σV H

σVV

(c)

180 200 220 240 260 280

Day of year (DOY)

−26

−24

−22

−20

−18

−16

−14

−12

ba
ck

sc
at

te
ra

m
pl

itu
de

(d
b)

σV H

σVV

(d)

Figure 2.1: Evolution of the means (plus or minus one standard deviation) of radar dual po-

larization backscatters σ0
V V and σ0

V H , from June 11, 2016 to October 15, 2016, in two parcels

of corn (a) and (b), a parcel of soybean (c), and a parcel of spring wheat (d) in South Dakota,

USA. It can be observed that the two parcels of corn share comparable profiles of backscatter

dynamics while differing significantly from those of soybean and even more spring wheat.

In this section, we propose an approach allowing the identification of major crop types by

satellite imagery. In a pixel-based system, the temporal evolution of the radar signal is used to

identify the type of crop covering this pixel. These dynamics will be compared to the specific

signatures characterizing each crop type, illustrated in figure 2.1 for some crops and learned

by machine learning models. For this purpose, we used the long short-term memory (LSTM)

Recurrent Neural Networks (RNNs), well adapted to the modeling of time series data, and

Convolutional Neural Networks (CNNs), widely used to process imagery data and for which

we propose a pixel transformation allowing to consider both temporal and spectral dimensions

of satellite images.

We have evaluated the proposed approach in two situations:

• Intra-annual crop recognition, in which we extrapolate, within the same agricultural sea-

son, a model trained from a limited number of pixels to the whole area of interest. Con-

cretely, knowing the crops in a subset of parcels in a production basin, for a given agri-

cultural season, we aim at determining the crop type coverage of the remaining parcels

in the production basin, for the same season.

• Inter-annual crop recognition, dictated by the difficulties of obtaining training data at
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(a) June 11, 2016 (b) July 17, 2016 (c) August 17, 2016

(d) September 10, 2016 (e) October 03, 2016 (f) October 15, 2016

Figure 2.2: Sentinel-1 images combining σ0
V V and σ0

V H polarizations, acquired at six observa-

tion times covering parts of both Jerauld and Sanborne counties in U.S. South Dakota state.

For illustration purposes, we delineate some specific fields: one corn parcel in blue, one soy-

bean parcel in white, and one spring wheat parcel in red. We can clearly observe color changes

in these reference parcels at different dates, which illustrates the variation in the radar re-

sponse of imaged targets due to the phenological development of plants.

the beginning of each agricultural season. We want a model to predict an evaluation

of crop rotation without having to manually label and/or request a set of parcels from

agricultural partners at the beginning of each season. In other words, we want to cali-

brate the model from historical data of previous crop campaigns and extrapolate to new

crop seasons. In this inter-annual recognition approach, we proposed a new approach

integrating the phenological development of plants through the concept of thermal time.

Thermal time allows to compensate and readjust the potential discrepancies in the radar

signatures due to intra-annual variability related to different factors such as pedoclimate,

plant characteristics such as frost episodes resistance, and crop practices.

We will use data sets from two different locations to test the proposed approaches. The first

one is located in the United States, for which a national database of crop rotation is available

with agricultural campaigns that can go back two years (if n is the current season, years n − 1

and n−2 are available). The second data set, more consequent and on which more experiments

will be done, is located in France. For this second data set, a database of the crop rotation of

the previous campaigns is available, with a 2 years delay (if n is the current season, years up to

n− 2 are available).
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With these data sets, we will principally try to answer the following questions: How to formal-

ize mathematically the training and inference problems in the proposed supervised approach?

How is the satellite image time series transformed for an alignment according to thermal times

instead of an alignment on image acquisition calendar times? And how, for both intra- and

inter-annual situations, these satellite image time series and the land cover training data can

serve as inputs to both LSTM and CNN models?.

2.2 First study areas and data sets

The first data sets for which we opted at the beginning of our work were in the United States.

Such a choice was mainly dictated by the availability of cropland cover databases correspond-

ing to the dates of availability of the radar (Sentinel-1) and optical (Sentinel-2, Landsat-8) im-

ages.

In fact, the cropland cover data required for the training of our supervised learning models are

widely available from the US Cropland Data Layers (CDL) database of the National Agricul-

tural Statistics Service (NASS) of the US Department of Agriculture (USDA) through the web

service called CropScape. Data up to year n−1 are provided with a spatial resolution of 30

meters, n being the current year.

These data are generated from classification models [Han et al., 2012] using satellite imagery

from the Advanced Wide Field Sensor (AWiFS) and LandsatTM 5 and ETM+ 7. For the ground

truth data, multiple data sources are used: USDA agricultural programs with experimental

parcels reporting crop types and crop management, information from the annual NASS sur-

veys (more precisely the June Agricultural Survey - JAS data), and the U.S. Geological Survey’s

National Land Cover Data-sets (NLCD). The latter is based on Landsat with a spatial resolu-

tion of 30 meters and provides descriptive data for land surface characteristics such as thematic

class (e.g. urban, agricultural and forest) and percentage of forest cover.

Fig.2.3 shows an example of a CDL raster in the U.S. Midwest, commonly known as the ”Corn

Belt”, a region in which corn is the prevalent crop, and this is precisely the crop with which we

decided to start our work (a sort of pilot crop), the idea being to become familiar with satellite

imagery while starting to develop our models.

On the other hand, and knowing that the first Sentinel-1 (resp. Sentinel-2 and Landsat-8) ac-

quisitions started from year 2015 (a few years before for Landsat-8 but with a less interesting

spatial resolution and repeating cycle compared to Sentinel products), the CDL database was,

to our knowledge, the only massive and freely accessible database allowing at least two years

of cropland cover data. The French Registre Parcellaire Graphique (RPG) data already men-

tioned in Section 1.1.2, and that will be described in more detail later in this document (which

will serve as the main basis for our learning data) has, unlike the CDL, a latency of two years

(data up to year n−2 available in year n).

The first U.S. area of interest which is denoted by U.S.A1 covers parts of both Jerauld and San-

borne counties in South Dakota, spreading over a surface of 14000 hectares.
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Figure 2.3: Preview example of crop type information (as well as other land cover classes) in

an area of interest in the U.S. Corn Belt. The data was produced thanks to the CropScape web

service.

We worked with all the exploitable Sentinel-1 images acquired in 2015, 2016, and 2017 and

covering U.S.A1 during a large part of the corn growth cycle (from June to the end of Octo-

ber/beginning of November) as reported in Table 2.1.

2.3 Methodology

2.3.1 Mathematical representation of the training data

Let k, 1 ≤ k ≤ N , represent the index of the scenario under investigation (a scenario corre-

sponding in our case to a cropping season and a location as introduced by [Kang et al., 2011].

For example, if we work in a single geographic region, over three different years, the total

number of scenarios N is then equal to 3.

Table 2.1: Sentinel-1 acquisition dates in the A1 area of interest

Area of interest Year Sentinel-1 acquisition dates

2015 June 05, 12, 24; July 23, 30; August 11, 16, 23;

September 04, 09, 16, 21; October 03, 27.

test area A1 2016 June 06, 11, 30; July 05, 17, 24, 29; August 05,

10, 17, 22, 29; September 03, 10, 15, 22, 28;

October 03, 10, 15, 22, 27.

2017 June 07, 12, 24; July 01, 06, 30; August 06, 18, 23;

September 04, 11, 16; October 05, 10, 17, 22, 29.
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Let
(
tko
)
, 1 ≤ o ≤ Tk, be the observation times for scenario k and Tk the total number of obser-

vation times for scenario k.

For each scenario, the area of interest is characterized at time step tko by the observation vec-

tor (xk1(tko), . . . , x
k
mk

(tko)), where mk is the number of pixels in the corresponding zone, and

xki (t
k
o) ∈

∏p
j=1[aj , bj ], where 1 ≤ i ≤ mk, p is the number of spectral bands of the satellite and

[aj ; bj ] is the range of variation of each band.

We note that in the case of optical satellite data, values of reflectance vary between aj = 0 and

bj = 1. In the case of Sentinel-1 SAR data which contains dual polarization backscatter σ0
V V

and σ0
V H , the number of bands is thus p = 2 (p = 3 if one adds the ratio band σ0

V H/σ0
V V ). For

this kind of data, to estimate the backscatter range of variations is less intuitive, values of both

V V and V H polarizations do not have the same magnitude, it depends on the crop type and

more generally, on the target of radar satellite.

We will denote in what follows Ωr = [aV V ; bV V ] × [aV H ; bV H ] × [aV H/V V ; bV H/V V ], the 3-

dimensional space corresponding to the ranges of variation of the dual-polarization and the

ratio radar data.

Let Xk
i = (xki (t

k
1), . . . , xki (t

k
Tk)) ∈ Xk with Xk = ΩTkr . To each Xk

i is associated a ground truth

data output Y k
i ∈ Y , Y = {0, . . . , q} ⊂ N, q is the number of crops to classify, with therefore

q + 1 classes, 0 corresponding to none of the q crops. For the particular case of a binary model

(for example only identifying all corn crops), q = 1, and we take Y k
i = 1 for the crop of interest

and 0 otherwise.

(Xk
i , Y

k
i )1≤i≤mk

form the training data set for scenario k and we define the prediction function

f as follows :

f : Xk → Y
Xk
i 7→ Ŷi

2.3.2 Use of the Thermal Time

A key point of our methodology is that we do not align the sequential data of the different data

sets (corresponding to the different scenarios) according to the calendar time, but according to

the thermal time.

Indeed, there is a difficulty to generalize from one scenario to another, if we choose the calendar

time as the reference to make coincide the different data sets (coming from different scenarios).

We explain this difficulty by the variability of temperature dynamics across seasons and loca-

tions, while it is the main driver of plant development [Ritchie and Nesmith, 2015]: two similar

dates can thus represent very different development stages for crops.

The temperature variation during crop development can be measured by a widely used con-

cept: thermal time. In its simplest formulation, it is expressed in growing degree-days (GDD)

and corresponds to the accumulated daily temperature since emergence above a threshold tem-

perature (see for example a detailed calculation for sugar beet in [Lemaire et al., 2009] or for

rapeseed in [Jullien et al., 2011]).
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Even if the scientific literature suggests taking emergence day as a starting day for the calcula-

tion of the accumulated daily temperature [McMaster and Wilhelm, 1997], the sowing date is

used instead for thermal time initialization, since this information is most likely to be available

in agricultural statistics compared to the emergence date which is not usually available. Except

for extraordinary conditions (mainly cultural practices and pedoclimatic conditions affect the

time between sowing and emergence), the impact of such an approximation is thought to be

minimal, since, in normal conditions, the time span between planting and emergence is rela-

tively short (about 30-90 accumulated GDD (in degrees Celsius) [Angel et al., 2017] for corn,

which corresponds to 5-15 days).

Nevertheless, it is necessary to keep in mind this approximation since the satellite signal is af-

fected by crop growth only after emergence, and the potential differences between sowing and

emergence in different scenarios (location × year, as described in Section 2.3.1) will affect the

whole growth dynamic.

In this document, we rely on the most commonly corn GDD evaluation method explained in

[McMaster and Wilhelm, 1997] where it is considered that GDDs are only accumulated when

daily temperature condition are optimal for corn development (between 10◦C and 30◦C, from

[Cross and Zuber, 1972]). Daily thermal time accumulation on day t is thus given by:

∆TT (t) = max

[
min

(
TMax(t) + TMin(t)

2
; 30

)
− 10; 0

]
(2.1)

where TMax(t) and TMin(t) are the daily maximum and minimum air temperatures on day t.

The thermal time on day t is simply the accumulation of GDD since planting date:

TT (t) =
t∑
i=1

∆TT (i),

where day 1 corresponding to the planting date.

In [Angel et al., 2017, Cross and Zuber, 1972, Abendroth et al., 2011], field studies were carried

out to evaluate the relationship between accumulated daily temperature and corn development

stage. [Angel et al., 2017] underlines the two most important stages in corn growth develop-

ment: Silking (also called R1) when flowering begins (a stage very sensitive to extreme values

of temperature), and Maturity (R6) when kernel moisture is relatively high and no more water

or nutrient input is needed. We refer to [Angel et al., 2017] to estimate the values of accumu-

lated GDD for Silking and Maturity stages of corn in our studied experimental areas.

Temperature data are obtained from the US National Oceanic and Atmospheric Administration

(NOAA). Corn planting dates in the studied areas are estimated thanks to data from the Risk

Management Agency of the U.S. Department of Agriculture (USDA).

Fig. 2.4 shows the evolution of thermal time as a function of calendar time (Day of Year (DOY))

for corn over three years, 2015 and 2016 in studied test areaA1 and 2017 in studied test areaA2.

Estimation of temperature accumulation for two important corn development stages, Silking

(R1 stage) and Maturity (R6 stage), are represented by red and black dotted lines respectively
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[Angel et al., 2017]. These curves illustrate that for different years and/or different locations,

reference phenological development stages are reached on very different days, for the same

crop.
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Figure 2.4: Evolution of corn thermal time (growing degree day (GDD)) according to calendar

time (Day of Year (DOY)) with TBase = 10◦C and TTreshold = 30◦C in three years, 2015 and

2016 in South Dakota and 2017 in Ohio. Corn estimated temperature accumulation of Silking

and Maturity stages are represented by red and black dotted lines, respectively.

We thus map the sequence of data Xk
i = (xki (t

k
1), . . . , xki (t

k
Tk)) ∈ X k onto a sequence defined for

periods of constant GDD. This constant thermal time step will be denoted by α.

For scenario k, TTk(tkTk) corresponds to the final thermal time of acquisition, and the number

of periods for scenario k is thus given by Nk = dTTk(tTk)/αe.

Formally, we define the mapping from the calendar time sequence to the thermal time sequence

as follows:

First, ∀o, 1 ≤ o ≤ Tk, we define ψk(o) such that ψk(o) represents the index of the defined thermal

time periods in which fall the observation at time tko .

Using this correspondence, we can now define a map Ψk from Xk = ΩTkr into X̃k = ΩNk
r which

to Xk
i = (xki (t

k
1), . . . , xki (tTk)) ∈ Xk maps X̃k

i ∈ X̃k as follows: ∀j, 1 ≤ j ≤ Nk, the j-th compo-
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nent of X̃k
i denoted

[
X̃k
i

]
j

is given by:

[
X̃k
i

]
j

=


xki (t

k
l ) if there exists l such that ψk(l) = j

0 otherwise

In what follows, the zeros will be handled as missing data. Observation vectors can also be

interpolated instead of having null missing data.

Furthermore, if it happens that φk(l1) = φk(l2) = j for l1 6= l2, then the average of the values

xi(t
k
l1

) and xi(tkl2) will be chosen, and similarly for more indices.

Note that for the example of corn, the thermal time between sowing and maturity exceeds 1000

GDD. The choice of the value of α can be adapted according to the difference in thermal time

between image acquisitions.

For each scenario k, our training data are now given by (X̃k
i , Y

k
i )1≤i≤mk

and we define the

prediction function f̃ as follows:

f̃ : X̃k → Y
X̃k
i 7→ Ŷi

The approach we have already proposed and described aims to align a time series of satellite

images with dates chosen ”à priori” on a thermal time grid by calculating the thermal times

corresponding to each date in the time series.

Such an approach can be seen from another angle by taking the opposite procedure as follows:

for a given crop, the most important phenological growth stages are fixed, the thermal times

corresponding to each phenological stage are then calculated (for this, we can refer to the sci-

entific literature), which will generate a time series of thermal times, then the satellite images

that coincide with the dates of each thermal time are identified and collected.

This latter approach, in which the temporality is guided by the plant’s growth stages, allows

for more implementation comfort and shorter time series, and in the same manner as above,

the training data can be mathematically formulated as follows:

for a given crop type c, TTc(p), 1 ≤ p ≤ P where P is the number of phenological stages

maintained for the crop c, represents the thermal time that the plant is expected to reach at

growth stage p.

Under scenario k, (dk(TTc(1)), . . . , (dk(TTc(P))) represents the vector of the calendar dates

corresponding to the thermal time series formed by the sequence of TTc(p).

The j-th component of the resulting observation time series can then be defined by
[
X ′ki

]
j

with

1 ≤ j ≤ P and 1 ≤ i ≤ mk, where: [
X ′

k
i

]
j

= xki (d
k(TTc(j))),

or when not available, by finding tklj as close as possible to dk(TTc(j)).
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2.3.3 Supervised deep learning models: Neural Networks

A neural network (NN) is a powerful type of model f of the form f : Rdimx → Rdimŷ such

that ŷ = f(x, θ) where x ∈ Rdimx and ŷ ∈ Rdimŷ are input and output vectors, respectively.

For a dataset of input-output couples (xi, yi)i, training an NN corresponds to adjusting param-

eters θ such that f be the best approximation of E(Y |X), where (X,Y ) is the random vector

corresponding to the input-output couple.

We briefly describe below the basic concepts underlying modeling by NNs, an in-depth com-

prehensive presentation can be found for example in [Goodfellow et al., 2016].

The most fundamental form of neural networks are Multilayer Perceptrons (MLPs), they are

formed by a sequence of hidden layers connecting an input layer to an output layer.

Each layer l is characterized by the number of neurons that we denote nl, nonlinear activation

function fl : Rnl → Rnl , and parameters θl = (Wl, bl), where Wl ∈ Rnl−1×nl , bl ∈ Rnl are the

weight matrix and bias vector respectively.

Input information propagates through these hidden layers (where the output of one layer rep-

resents the input of the next hidden or output layer) by activation of an affine transformation

as follows :

hl = fl(Wl.hl−1 + bl) (2.2)

where hl−1 is the output vector from the previous layer l − 1, this process is called forward

propagation. The difference between the predicted output ŷ and the real output y is quantified

through a loss function L which will be minimized by optimization algorithms like stochastic

gradient descent algorithms, with gradients of the loss function computed by back-propagation

[Ruder, 2017].

A particular architecture of neural networks, the Recurrent Neural Networks (RNNs), are

adapted to the modelling of time series data. They were introduced in [Rumelhart et al., 1986]

and different variants have been proposed such as for example [Elman, 1990].

In RNNs, a time dimension is added to the layer of classical NNs, the network parameters will

then be expressed by θl = (Wl, W̄l, bl) where W̄l ∈ Rnl×nl is the weight matrix connecting the

temporal sequences, known as the recurrent weights. Information propagates through hidden

layers as follows: hl(t) = fl(Wl.hl−1(t) + W̄l.hl(t−1) + bl), where hl(t) is the output of layer l at

observation time t (e.g. in the case of a network with a single hidden layer, hl−1(t) will be x(t)).

This process is applied recursively incrementally with t, 1 ≤ t ≤ T with the same weights at

each time step. More details on RNNs can be found in [Graves, 2012].

Such an architecture is well adapted for a multi-temporal sequence of satellite images, the use

of information at the previous observation time t − 1, in addition to the one at t allows us to

better take into account the variation in the reflective spectral properties of the crop during its

growth cycle.
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2.3.4 Long Short-Term Memory network

A particular architecture of RNNs known as Long Short Term Memory network (LSTM), in-

troduced by Hochreiter and Schmidhuber [Hochreiter and Schmidhuber, 1997], has shown its

effectiveness in learning long-term dependencies compared to classical RNNs.

An LSTM block, showed in Fig. 2.5, replaces the classical RNN unit: a simple nonlinear activa-

tion is applied to the affine transformation of inputs. It has a more complex but efficient system

to propagate information, and moreover largely solves the issues of vanishing and exploding

gradients, as detailed in [Hochreiter et al., 2001] and [Bengio et al., 1994].

Our models will rely on the variant called the standard extended LSTM ([Gers, 2001]), an im-

proved version of the LSTM networks in their initial form, which had only two weighted gates,

input gate, and output gate. Indeed, two major modifications have been added to the basic

LSTM networks, as explained and evaluated in [Gers et al., 2000] and [Gers et al., 2002]: a

forget gate allows an updating of the cells by forgetting previous information, and weighted

connections from the cells to the different gates of an LSTM block, called ”peephole connec-

tions”, are designed to allow all gates to inspect current cell state, even in the case where the

output gates are closed (which means that the output activation is close to zero).

This standard extended form seems to be a good compromise between relative simplicity and

efficiency and has given good results in different applications, such as for learning context

free languages ([Gers and Schmidhuber, 2001]), handwriting recognition (as in [Graves et al.,

2007]), speech recognition ([Graves et al., 2013]), or also more recent applications in sequence-

to-sequence models to generate captions for videos ([Venugopalan et al., 2015]) and images

generation ([Gregor et al., 2015]).

The key idea in an LSTM memory block is the memory cell, whose activation is called the

cell state ct, acting as a memory of relevant information and allowing it to persist as long as

possible (hence the ”long term memory” name): they prevent error signals from degrading

quickly because they ”propagate over time”.

The flow of information in this block is controlled through sigmoid gating as follows: in layer

l and at time t, cell state clt is updated by adding the forget gate ft multiplied by the cell state

at previous time clt−1 and an external input gate it multiplied by the non-linearly activated

(generally by tanh) new candidate information c̃lt. The output hlt of the LSTM block will be

non-linearly activated, usually by tanh(clt) and controlled by an additional output gate ot.

Note that for reasons of clarity, the observation vector of the scenario k which was denoted by

(xk1(tko), . . . , x
k
mk

(tko)) in 2.3.1, will be simplified to xt and in the same way, Tk will be simplified

into T . The operating process of a single-cell LSTM with one hidden layer is then detailed by

the following equations, recursively applied while incrementing t, 1 ≤ t ≤ T :

(2.3)
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Figure 2.5: Representation of an extended single-cell LSTM memory block in one hidden layer

network at time step t: The basic unit of an LSTM network is the memory block containing one

or several memory cells (one in our case for the sake of clarity) and three gating units shared

by all cells in one memory block. The weighted peephole connections from the cell to the three

gates are shown with blue lines. act is used to represent the gating, cell input, and output units

activation.

At time t, the information from the input xt and the output at the previous time in the hidden

layer ht−1 enter the block. The flow of this information is controlled by three sigmoid gates via

element-wise vector multiplication �: the forget gate ft updates the cell taking into account

the cell’s previous state, an external input gate it updating the memory cell taking into account

the activated block input, and an output gate ot controlling the LSTM block output taking into

account the activated cell’s output. The memory cell allows this information to persist through

the cell state ct.
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Input gates

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (2.4)

Forget gates

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (2.5)

Cell updating

c̃t = gin(Wcxxt +Wchht−1 + bc) (2.6)

ct = ft � ct−1 + it � c̃t (2.7)

Output gates

ot = σ(Woxxt +Wohht−1 +Wocct−1 + bo) (2.8)

Cell outputs

ht = ot � gout(ct) (2.9)

Prediction

Ŷt = φ(Wyhht + by) (2.10)

i, f , and o respectively refer to the input gate, forget gate and output gate. h refer to the

activation of hidden units (eg. at time t, ht−1 is the activation of hidden units at the previous

time) and c is the activation of the cell unit.

Wδx and Wδh , δ = {i, f, o} are the matrices of the weighted connections from the δ gates

to the input and from the δ gates to the hidden units, respectively. Wδc are the matrices of

the weighted connections from the cell c to the δ gates, commonly known as the weighted

”peephole” connections. As well, the bγ , γ = {i, f, c, o, y} are the bias vectors.

σ is the logistic sigmoid activation function so that the gates activations are between 0 and 1,

this means, gates closed and gates open, respectively.

gin and gout are the cell input and output activation functions, usually tanh or logistic sigmoid

functions. φ is the network output activation function, chosen, in our prediction context, as the

softmax function to obtain probability distributions vector, where the j-th component that we

will note
[
Ŷt

]
j

is calculated by the equation 2.11. Note finally that � means the element-wise

vector product.

[
Ŷt

]
j

=
e
[Wyhht+by]j∑q+1

c=1 e
[Wyhht+by]c

, ∀j ∈ 1, . . . , q + 1 (2.11)

Where [Wyhht + by]j is the j-th component of the linear combinations vector result Wyhht +

by. We recall that q is number of studied crop types (thus q + 1 classification possibilities,

considering a class corresponding to other cases), see Section 2.3.1.
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Figure 2.6: Information flow within the proposed LSTM model in its unfolded form. For clarity,

the illustrated network contains a single hidden layer. An LSTM cell is composed of several

recurrently connected LSTM blocks described in 2.5.

The equations detailed above describe the functioning of an LSTM which calculates a mapping

from x = (x1, . . . , xT ) to Y = (Ŷ1, . . . , ŶT ). In our particular case study, the crop type remains

the same throughout the growing season, the prediction is then made at time T and therefore

equation 2.10 becomes:

Ŷt = φ(Wyhht + by) if t = T (2.12)

Such an architecture is sometimes called the ”many-to-one” LSTM variant in the literature.

2.3.5 LSTM-based proposed crop classification approach

We train a model built from the LSTM network variant presented above to identify crop specie

for each pixel using a temporal sequence of satellite images providing the variation of spectral

response during crop development (Fig. 2.6).

A key objective for us is that the proposed LSTM model remains generic for both the input

time series aligned according to the calendar time or aligned according to the thermal time

(notably to test and compare the two cases). Therefore we introduce a common notation for
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both situation: for a scenario k (evoked in 2.3.1), T̃ denotes the time step:
1 ≤ T̃ ≤ Tk in the case of a calendar time alignment;

1 ≤ T̃ ≤ dTTk(tTk)/αe in the case of a thermal time alignment.

(Let us recall that the definitions of T , dTTk(tTk)e and α are introduced in Section 2.3.1.) The

observation vector (xk1(T̃ ), . . . , xkm(T̃ )) is injected in the model wherem is the number of pixels.

Equations 2.3 are then iteratively carried out at each t and, at the last time step, the error be-

tween the predicted output probability vector for the instance i, Ŷi, and the real one-hot coded

output vector Yi is assessed by the cross entropy loss defined below:

L(Ŷi, Yi) = −
i=1+q∑
i=1

Yi log(Ŷi) (2.13)

let us recall that one-hot coded vector is defined as follow: if there are q crop labels to classify,

each label is encoded as a vector of length |q + 1| (adding class 0 corresponding to none of the

q crops), taking the value 1 at the position of the correct label and 0 elsewhere.

The average cost function, which we denote by J will be defined by:

J =
1

N

∑
i

L(Ŷi, Yi) (2.14)

Where N is the number of instances that will depend on the batch size in the training strategy.

Unless otherwise indicated, the update of network parameters is performed by the ADAM

optimizer [Kingma and Ba, 2017] after computing the gradient of the loss function.

Note that a batch normalization [Ioffe and Szegedy, 2015] layer, which aims to normalize the

distribution of input at each network’s hidden layer, is inserted before the activation fl of the

affine transformation Wl.hl−1 + bl as denoted earlier in 2.3.3. Indeed, this technique has been

proposed to address the problem that, during training, the distribution of inputs in each layer

evolves according to changes in the parameters of the previous layers (what [Ioffe and Szegedy,

2015] called ”internal covariate shift”).

This operation consists of normalizing the layer’s inputs, by mini-batch, followed by an affine

transformation allowing the result of the normalization to be scaled and shifted using two new

parameters per layer (γ and β in 2.15), which will in their turn be learnt during training. An

element in the mini-batch B, which can be denoted by Ii is then mapped to Oi as follows :

Oi = γ

 Ii − µB√
σ2
B + ε

+ β (2.15)

Where µB and σ2
B are, respectively, the current mini-batch mean and variance. The constant ε

is added for numerical stability.
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Finally, it should be mentioned that we can find works in which this operation is applied after

the activation functions, but we have opted, after various experiments and in keeping with

most works in the literature, to apply it before the non-linear layer activation.
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Figure 2.7: Method for the preparation of input data of the 2D-CNN convolution model: for a

given scenario k, each pixel i is expressed as an observation vector Xk
i = (xki (t

k
1), . . . , xki (t

k
Tk))

of size Tk, where Tk is the length of the time series of observations for scenario k. Each pixel

i, 1 ≤ i ≤ m where m is the total number of pixels, is then transformed (as illustrated for the

purple colored pixel) into a two-dimensional image: a temporal dimension denoted t and a

spectral/polarisation dimension denoted b. The set of created images is then injected into the

convolution model.

2.3.6 Convolutional Neural Network (CNN)

CNNs are defined as follows in [Goodfellow et al., 2016]: ”Convolutional networks are simply

neural networks that use convolution in place of general matrix multiplication in at least one of

their layers”. In at least one of the network’s layers, the transformation described in Equation

2.2, more generally known as the ”dense layer”, is replaced by a convolution layer.

The main motivation to use convolution layers instead of dense layers is the reduction of the

number of weights in the neural network [LeCun and Bengio, 1998] by means of a technique

called ”Parameter sharing” whereby the same linear combination is used all over the inputs.

Indeed, each unit of a given layer l receives input from a small set of units located in a small

neighborhood in the previous layer l − 1 instead of from all units in the classical dense layer,

which considerably reduces the number of parameters to train while trying to learn the most

important features in the data. We denote this reduced neighborhood by LocalPatch.

Typically, in our case study, an image created from the transformation of a time series of satellite

responses in a given pixel into a 2D-image (as explained in Figure 2.7), such features can for

example represent some distinctive behavior in the response variation curve over time like a

strong increase, a strong decrease, or a stagnation.

The equation 2.2 is then transformed as follows to define this convolution layer:

hl = fl((W ∗ hl−1)LocalPatch + bl) (2.16)
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Figure 2.8: Global structure of the proposed 2D-CNN network architecture: this architecture

illustrates the skeleton of the proposed network (the detailed model that is used in our work

will be detailed later in this section). Each pixel created according to the transformation ex-

plained in figure 2.7 is injected into the network, convolution filters as well as pooling layers

are applied, and the data from the last layer, in its flattened form, is then fed into a simple

fully connected network, described at the beginning of 2.3.3, to make predictions.

where W denotes a kernel also known as filter and ∗ the convolution operation. The size of

the kernel defines the spatial extension of this local neighborhood and a convolution layer can

have several filters allowing to consider different characteristics from the input layer.

It is important to remember some language elements about convolution networks. The shape

of the output of a convolution layer is controlled by the size of the convolution filters, but also

by stride and padding. The stride represents the number of units of which the filter is shifted,

and the padding is used to control the size of the data after the application of the convolution

filters, generally by filling in the borders of the input data with zeros.

Another layer, which is widely used in a convolution network and which can be very efficient

in some applications is the pooling layer. The pooling operation allows, by means of data sub-

sampling, to ensure a form of robustness to the model by making it invariant or insensitive to

small variations in the input data. The operation that we will use in our work is the max pooling

[Zhou and Chellappa, 1988], which consists in keeping the maximum within a neighborhood

window of size k. Generally, in a pooling layer, the stride is also equal to k.

Overview of various works using convolutional networks in remote sensing

Convolutional neural networks (CNNs) have demonstrated their good performances across

multiple applications, more particularly those that can be structured in the form of a grid allow-

ing to take advantage of the notion of the neighborhood, such as time series (one-dimensional

grid) and images (two or more dimensional grid) [LeCun and Bengio, 1998], or even videos

(three or more dimensional grid) as in [Wu et al., 2015]. The most well-known application

probably remains the recognition of handwritten digits [LeCun et al., 1999].
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A variety of works have used convolution networks in applications that rely on remote sensing

data. For the particular application of crop monitoring and land cover classification, CNNs

have been used for pixel-based landcover classification of hyper-spectral images, as in [Mid-

hun et al., 2014] and [Slavkovikj et al., 2015], where convolutions based only on the spectral

dimension are applied, i.e. 1D-convolution. Afterward, research works started to focus on the

pixel neighborhood, taking into account the spatial dimension in addition to the spectral one,

but still with 1D-convolution filters, flattening the spectrum of the neighborhood as in [Chen

et al., 2014], [Rustowicz, 2017] and [Chen et al., 2015].

[Maggiori et al., 2017] further proposed an approach based on a fully convolutional network to

remote sensing image classification taking into account both spatial and spectral dimensions as

for [Postadjian et al., 2017] who proposed a CNN-based framework for performing a large-scale

landcover of multi-spectral satellite images.

Other works such as [Kussul et al., 2017] and [Scarpa et al., 2018] in which the temporal di-

mension of the data has been integrated into the convolution models, but without taking into

account the chronological aspect of the data. Indeed, data within the same time series are con-

sidered as independent entities and the information vector generated by the sequencing of the

data is not taken into account. In ([Kussul et al., 2017]), the authors aim to make a pixel-based

classification of major agricultural crops in addition to water-based on multi-temporal opti-

cal and radar images, using CNNs with convolutions in the spatial domain in addition to the

spectral dimension. However, the chronological aspect of the time series is not taken into ac-

count in the preparation phase of the models’ input data. [Scarpa et al., 2018] have proposed a

spatial CNN-based method for the estimation of spectral features, particularly the normalized

difference vegetation index, when remote sensing data are missing (due to meteorological con-

ditions for optical data for example) using multi-source data. A classical non-temporal CNN

model is also used as a baseline for land cover classification, in addition to support vector

machine(SVM) model, in [Rußwurm and Körner, 2017], with the aim of comparing the perfor-

mances of the latter models with those achieved with recurrent networks.

To the best of our knowledge, our work is among the first to propose a supervised inter-annual

approach for pixel-based major crops classification with a convolutional model in which both

the spectral and temporal dimensions are taken into account, using Sentinel remote sensing

data. [Pelletier et al., 2018] is the only similar work we found in which the authors adopted a

similar methodology in the preparation of input data for a CNN, using Formosat optical data

over the year 2006, with the objective of land cover classification.

Proposed convolutional approach

The proposed model comprises two main phases :

1. A first step which consists in preparing the input samples of the convolution model (fig-

ure 2.7). The observation vector Xk
i = (xki (t

k
1), . . . , xki (t

k
Tk)) of a given pixel i is trans-

formed into a two-dimensional image with a spectral dimension b which represents the
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value in i for all polarizations/spectral bands at a given acquisition time step t, and a

temporal dimension t consisting of the dynamics of the pth polarization/spectral band

(1 ≤ p ≤ b) throughout the acquisition periods of the satellite images.

2. A second phase which consists in injecting the set of data created in the previous step

into a convolution model whose basic global architecture is depicted in figure 2.8 and

composed of:

• Convolutional layers: in this layer defined in 2.16, each consists of several parallel

convolution operations equal to the number of filters. To each filter, a non-linear

activation function is applied (the rectified linear unit activation function (ReLu),

calculated by Relu(x)=max(0, x), is used), which thus produces a set of non-linear

activations whose size is the number of filters at each convolution layer.

Batch normalization layers, detailed previously in page 53 by equation 2.15, will be

applied after each activation function.

• Pooling layers allowing, as explained above, for more robustness by sub-sampling

the incoming data to these layers.

• Dropout layer [Srivastava et al., 2014] helps prevent overfitting by randomly drop-

ping a set of layers’ input units during model training.

• At the last layer of the network among the two previous layers, a flattening operation

is then carried out to prepare the inputs of a classical fully connected network to

obtain the final prediction probability distribution by way of the softmax function

(equation 2.11). Cross entropy loss between the predicted probability and the one-

hot coded ground truth is then computed as done in 2.13.

More details on the configuration of each layer of the proposed model will be given in

section 2.4.4.

One important point to evaluate and take into account in our various experiments is the shape

of the different filters and their impact on the performance of the model. In fact, for the 2D-

image at the input of the model, there are two possibilities concerning the shape of the convo-

lution filters:

• We can separate the spectral features and consider that the spectral bands are indepen-

dent of each other, the convolution filters will have a shape of (1, t̄), t̄ < the number

of time steps, in this case, and the same filters will then be applied, over the temporal

dimension, on each polarization / spectral band.

• A second possibility consists in trying to link the temporal and spectral dimensions, by

applying filters of shape (b̄, t̄), where b̄ ≤ to the number of spectral features.

The first and second cases will be denoted by Temporal-convFilter and Spectral-Temporal-

Conv, respectively.
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Note that a third choice may be possible, by applying filters of shape (b̄, 1), a possibility which

will however be discarded because such a choice leads to ignoring the temporal aspect on

which our approach is based.
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2.4 Experiments

This part aims at evaluating the approaches proposed in 2.3.1 with the models detailed in sec-

tion 2.3.3.

This part is organized as follows :

• Presentation of the first results obtained by applying the proposed LSTM and CNN mod-

els to the U.S.A1 data set earlier presented in 2.2, over three corn growing seasons.

• As a proof of concept, presentation of some results obtained in study areas in France for

an intra-annual approach.

• The results obtained with the models developed, for an inter-annual approach, on a se-

lection of crops of interest, still in France located study areas, are then presented.

• These results will be finally discussed.

As previously mentioned in this document, the supervised learning of the proposed pixel-

based models in France is carried out using the Sentinel-1 images as input data, and the French

registre parcellaire graphique (RPG) as reference data by extracting the crop types associated

with these pixels.

The RPG is a geographical information system that provides, based on declarations from the

farmers, annual information on the occupation of agricultural soil in France. The data are made

available with an annual latency of two years.

The parcels constitute the unitary classes of the RPG and are grouped into ”crop islands” which

correspond to a group of contiguous parcels and are managed by the same farmer. In our work,

we are interested in this smallest achievable unit, which is the parcel. Each parcel is character-

ized by different attributes, those of interest to us are the type of crop (coded with the attribute

”CODE CULTU”, the group to which the crop belongs (represented by the ”CODE GROUP”

attribute, such as cereals) and eventually the surface area of the parcels in hectares (with the

attribute ”SURF PARC”).

Figures 2.10b and 2.10c further down in the document will provide an overview of vector layers

of a set of parcels located in the east of France that has been extracted from the RPG by post-

processing treatments that have been developed.
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2.4.1 LSTM and CNN results in the U.S.A1 test area

To study the impact of variability in temperature profiles between different years, we make ex-

perimental tests for both the proposed inter-annual approaches taking into account the thermal

time and when the sequential data are synchronized with the calendar time. These first tests

were carried out on U.S.A1 test area using a temporal series of Sentinel-1 images covering a

wide part of the corn growing season, from early June to late October over the three 2015, 2016,

and 2017 farming years.

A series of three tests is performed: for each one, both LSTM and CNN models are trained on

the data of two years (what will constitute the training data set), and tested on the third year

data (test data set), which is thus not represented in the training data set. In order to prevent

model overfitting, the training data set is randomly split into two subsets: a training subset

(90%) and a validation subset (10%), this process is repeated K times to perform a kind of

K*2-fold cross-validation, K was set to 5 here.

Results are presented in tables 2.2 and 2.3 for the inter-annual approach with and without

taking into account the thermal time for the three test configurations. We note that the perfor-

mance measures retained for these initial tests in the U.S.A1 area are overall accuracy and Area

Under the Curve (AUC).

The results clearly show the superiority of the approach based on the thermal time, in all sit-

uations. But we particularly note the case in which models are trained on 2015 and 2017 data,

and tested on 2016 data: a considerable gain is obtained when adding the thermal time in this

test. Indeed, the study of the temperature data and the estimated evolution of the degree-days

accumulated over the three years showed that 2016 was characterized by a very different tem-

perature profile compared to 2015 and 2017. Actually, in South Dakota, it was warmer during

the 2016 corn growing season compared to the 2015 and 2017 seasons.

Table 2.2: Summary results of the proposed LSTM model

Training data 2015 and 2016 2015 and 2017 2016 and 2017

Test data 2017 2016 2015

Calendar Thermal Calendar Thermal Calendar Thermal

time time time time time time

Overall Accuracy 0.92 0.94 0.85 0.93 0.92 0.92

AUC 0.84 0.86 0.67 0.86 0.88 0.89
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Table 2.3: Summary results of the proposed CNN model

Training data 2015 and 2016 2015 and 2017 2016 and 2017

Test data 2017 2016 2015

Calendar Thermal Calendar Thermal Calendar Thermal

time time time time time time

Overall Accuracy 0.93 0.94 0.85 0.93 0.92 0.93

AUC 0.85 0.87 0.67 0.87 0.89 0.89

2.4.2 Data and materials for experiments in France

The second series of experiments, which represents the large majority of the tests conducted

within the scope of our thesis work, was carried out on areas of interest located in France, for

which we had a progressive availability of data, in particular training data.

Note that in experiments conducted in France, we have chosen to concentrate on convolutional

models. Knowing that the work carried out in the framework of this thesis have purely re-

search objectives, but also industrial purposes, this choice is mainly justified by the needs of

the industrial partner of the thesis, CybeleTech, who works a lot on multi-source imaging, the

convolutional models developed had more chances to be used on other projects and themes

compared to the recurrent LSTM networks. Furthermore, the results obtained with convolu-

tional models were slightly better than those obtained with LSTM networks according to the

tests developed in the U.S.A1 (see section 2.4.1).

To carry out these experiments in France, we have selected two large areas of interest whose

location is illustrated by figure 2.9. The first area, outlined in orange in figure 2.9, which we

will name France-East is located in the east of France, while the second, outlined in blue in the

same figure, and which we will name France-Center is located in the Centre region. The choice

of these areas was guided, in large part, by the availability of client information such as field

knowledge and the possibility of obtaining training and/or validation data. The set of con-

ducted experiences in these study areas will concern the 2016/2017, 2017/2018, and 2018/2019

agricultural seasons.

To have an idea about the dominant crop types in the France-East study area (resp. the France-

Center study area), we have calculated the overall surface area per crop and we have displayed

in figure 2.10a (resp. in figure 2.11a) the ten most important crops within this area.

Figures 2.10b and 2.10c (resp. 2.10b and 2.10c) provides an overview of parcel contours for a set

of parcels located in France-East area (resp. in France-Center area). These data were extracted

from the RPG.
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(a) Coordinates of the areas of interest on France map.

(b) Study areas on open street map.

Figure 2.9: Location of study areas for crop recognition experiments.
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(a) (b) (c)

Figure 2.10: The ten majority crop statistics in the area of interest France-East (a) for the

parcels of years 2017 (b) and 2018 (c). Figures (b) and (c) provides an overview of parcel con-

tours for a set of parcels extracted from RPG. Crop codes according to the RPG naming are:

BTH: Soft winter wheat, ORP: Spring barley, BTN: Beet, CZH: Winter rapeseed, LUD: Alfalfa,

ORH: Winter barley, PTC: Ware potato, MIS: Corn, PTF: Starch potato, PPH: Grassland.

(a) (b) (c)

Figure 2.11: The ten majority crop statistics in the area of interest France-Center (a) for the

parcels of the year 2017 (b) and 2018 (c). The same geographical location footprint is used for

the two years. Figures (b) and (c) provides an overview of parcel contours for a set of parcels

extracted from RPG and crop codes according to the RPG naming are: BTH: Soft winter wheat,

ORP: Spring barley, BTN: Beet, CZH: Winter rapeseed, BDH: Winter durum wheat, MIS: Corn,

ORH: Winter barley, PTC: Ware potato, J6S: Fallow land, PPR: Spring peas.
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2.4.3 Intra-annual experiments

The models developed were first tested for intra-annual crop recognition on a set of crops of

interest. Concretely, knowing the crops in parcels P1, P2, . . . , PN in a production basin for the

agricultural season S, we aim at determining the crop rotation of parcelsPN+1, PN+2, . . . , PN+M

for the same season S, using time series of Sentinel-1 images as input data, and RPG for ground

truth data.

Table 2.4 summarises some results obtained with experiments carried out using the proposed

multi-temporal 2D-convolutional model for the 2016/2017 agricultural campaign on some in-

teresting crop types. For each of these, the crop-type prediction is made around two months

before the harvest.

Table 2.4: Summary of results of the first phase of tests: Application of the proposed multi-

temporal 2D-convolutional model for the classification of a selection of crops within the same

production basin and for the same agricultural season.

Area Crop
Training parcels

number
Predicted parcels

Surface error based on

real land coverage

Sub-area in

France-East zone

Winter rape-

seed
93 parcels 25 parcels 1% pixel error (3.91 ha)

0 parcel not detected

2 sub-areas in

France-East and

France-Center

zones

Corn
43 parcels in the

north-east
49 parcels 4% pixel error

25 parcels in the

region centre

03 parcels not detected

(5.5 ha)

Sub-area in

France-East zone

Soft winter

wheat
241 parcels 66 parcels 4.3% pixel error

1 parcel not detected

(15ha)

Sub-area in

France-East zone
Spring barley 179 parcels 32 parcels 4% pixel error

1 parcel not detected

(14ha)

We present just below, in figure 2.12, some of the visual results obtained, the purpose being to

get an idea, visually speaking, of this part of our work.

These results were obtained with multi-temporal convolutional models following the global

framework of the approach we proposed in 2.3.6. However, the tuning of the hyper-parameters

and, eventually, the network architecture (in terms of the number of convolution layers, use

of pooling layer,... etc) is specific to each type of crop. The choice of these parameters and

architecture is discussed in detail later starting from section 2.4.4 in the ”Training strategy and

model configuration” paragraph.
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(a) Effective winter rapeseed parcels (b) Predicted winter rapeseed parcels

(c) Effective corn parcels (d) Predicted corn parcels

(e) Effective soft winter wheat parcels (f) Predicted soft winter wheat parcels

(g) Effective spring barley parcels (h) Predicted spring barley parcels

Figure 2.12: Intra-annual approach results visualizations for a selection of crops.
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2.4.4 Inter-annual experimental design

Convolutional models

Target crop 1: soft winter wheat

(a) (b)

(c) (d)

Figure 2.13: The ten majority crop statistics (a) in the study zone located within the area of

interest France-East for the parcels of the 2017 (b), 2018 (c) and 2019 (d) seasons. Crop codes

according to the RPG naming are: ORP: Spring barley, BTH: Soft winter wheat, BTN: Beet,

PTC: Ware potato, CZH: Winter rapeseed, ORH: Winter barley, OIG: Onion, PPA: Perfume

plant, J6S: Fallow land, CHV: Hemp.

For the inter-annual approach, we wanted to start our experiments with soft winter wheat crop

(”BTH” code in RPG), which appeared to be one of the most complex crops to discriminate by

our models. In fact, the presence of another crop in the training database, winter barley, which

is very close to winter wheat in several physiological characteristics related to the structure of

the plant (volume, orientation, height,. . . , etc.), or to genetic / phenological characteristics de-

veloped during the growth cycle and resulting from backscatter signals that are almost similar

at different stages of the growth cycles of the two crops, which may disrupt the learning of the

binary soft winter wheat recognition model.

This is well illustrated in Figure 2.14 where, for two parcels of soft winter wheat and winter

barley located within France-East area during the 2017/2018 season, there are clear overlaps in

the backscatter distributions on at least three of the four dates showed beginning around the

start of booting growth stage.

In addition, and at a similar level of complexity, the presence in the learning database of other
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(a)

(b)

Figure 2.14: boxplots of backscatter variation for the Sentinel-1 σ0
V H , σ0

V V and the ratio

σ0
V H/σ

0
V V polarizations (b) on the two blue soft winter wheat and red winter barley parcels

showed in (a). The black dashed lines represent the medians and those in yellow represent the

mean values.

types of cereals, which are not wheat but which are very close to it, makes training even more

difficult. In fact, in the RPG, winter cereals of the type Hordeum, Secale, or Triticum as well as

Winter Rye, Sorghum, Buckwheat, or winter Triticum are cataloged and considered. With the

knowledge that these cereals (categorized as ”Other cereals” group in the RPG), as for winter

barley, also share quite a few characteristics with winter wheat, such as orientation, height, or

even the way in which the plant evolves during its growth cycle, the learning of our winter

wheat models may be impacted, although they are a minority in the database.

It should be noted that, in principle, such a problem does not occur with spring cereals, includ-

ing spring soft wheat crop, because there are seasonality differences, and thus in the periods of

the time series, that the model is capable to distinguish and handle.

The proposed test phase is based on the evaluation of an inter-annual 2d-CNN model devel-

oped for the recognition of soft winter wheat crop (previously proposed in 2.3.6).

For a variety of practical reasons related to calculation times and simplifying the results visu-

alization, but also for reasons related to the spatial resolution of environmental data [Hersbach

et al., 2020] (about thirty kilometers, already evoked in 8 earlier in the document), we restricted
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to working on sub-parts of the study areas we had chosen.

The sub-study areas during this stage of experiments on soft winter wheat are illustrated above

in figure 2.13. The prevalence of cereal crops such as soft winter wheat, spring barley, but

also beet (code ”BTN”), which will be studied in the rest of this experimental design, can be

observed over the three seasons on the graphs (a) of this figure.

The experiments are conducted as follows :

• The 2d-CNN model for the soft winter wheat crop, which takes as input data a time

series of S1 images aligned according to calendar time, is assessed on both 2017/2018

and 2018/2019 seasons.

We will denote this experiment by 2d-CNN-CT Temporal-Conv for the model trained with

convolution filter of shape (1, t̄), and 2d-CNN-CT Spectral-Temporal-Conv for the one trained

with convolution filter of shape (b̄, t̄), return to the last paragraph in 2.3.6 for more details

on how to manage the convolution filter shape.

• This model is also tested over the two above-mentioned seasons, taking as input data,

this once, a time series of S1 images aligned according to thermal time, an approach pre-

viously explained in section 2.3.2.

In accordance with the notations in the previous item, we note this experiment by 2d-

CNN-TT Temporal-Conv and 2d-CNN-TT Spectral-Temporal-Conv.

Training strategy and model configuration :

The objective of our work is not to propose the best possible convolutional model, but to reveal,

through these experimental tests, the interest that the proposed inter-annual approach can offer,

itself, but also by working with the thermal time in some particular temperature conditions that

can directly impact the normal process of plant growth.

The construction of the proposed convolutional model is carried out according to the following

procedure:

• In a preliminary step, the training data is divided into two subsets, training and test sub-

sets with consecutive proportions of 90% and 10%. This splitting is done randomly, but in

a stratified way to keep the same proportions of each class (soft winter wheat and other

crop classes) in the two subsets. The training subset will be used for the model learning

and the test subset will be used at the end of the process to validate the performances.

• The following step is the tuning of the model hyperparameters. Using the training subset

(the 90% selected samples) and starting from a basic CNN architecture, described in 2.3.6,

and composed of a single convolution layer (we remind that a convolution layer as we

defined it in 2.3.6 is composed of a number of filters parallel convolution operations, fol-

lowed by a batch normalization layers and the non-linear ReLu activation function), we

aim to find which combination of hyper-parameters, whose list is specified in advance,
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allows to achieve satisfying performances. This strategy, based on exhaustive research

over a list of hyper-parameter candidates is commonly known as Grid Search method.

This research is done with a stratified K-Fold Cross-Validation : the training subset is

split into K consecutive folds in a stratified manner, the training is done on K − 1 folds,

and the validation is done on the remaining fold, at each time. The score retained is the

average of the K obtained scores and the hyper-parameters maximizing this score are

then selected. The model is refitted on the whole training subset this time and evaluated

one last time on the test subset data, the idea being to ensure the coherence of the results.

Accuracy was chosen as a score metric over K = 5 folds, and the hyper-parameters on

which this optimization is performed are : the batch size, optimizer, and the learning rate.

It should be noted that this procedure remains very expensive in terms of computing

time. As an indication, it takes between 12 and 18 hours to build the soft winter wheat

model, depending on the device and the data.

Once this baseline model has been elaborated, we apply a sort of exhaustive manual research

on a relatively small number of candidates to define the architecture of the network in terms

of depth, convolution filter size, and the use of pooling layers. In fact, we vary the number

of convolution layers, the filter shape with candidates on both the temporal and spectral di-

mensions as explained in the last paragraph of 2.3.6, and, also, the use or not of pooling layers.

The best architecture is selected according to the maximum score on the test subset, including

an early stopping technique on a validation subset. We could have, again, used the K-fold

cross-validation in this phase, but for reasons of computing cost, we preferred to use a simple

procedure for choosing the network architecture.

The final convolutional model retained for soft winter wheat crop is composed of 2 convolu-

tion layers (16 2d-convolution operations each, with filters of shape (1, 3), followed by a batch

normalization layer and a non-linear ReLu activation). Based on the test results, no pooling

layers are used.

The flattened outputs of the second convolution layers are injected into a fully connected net-

work by means of a dense layer composed of 512 units, followed by batch normalization and

ReLu activation layers. These will, at last, be connected to a binary output layer, to which a

softmax function is applied to obtain the final prediction probability distribution.

As well, and in order to prevent overfitting, two dropout layers, one after the second convolu-

tion layer and the other after the first dense layer, were used with 0.3 rate.

This network has been implemented with Tensorflow framework [Abadi et al., 2015] under

Keras [Chollet et al., 2015] as a high-level API, and its parameters are trained using an RMP-

SProp optimizer [Tieleman and Hinton, 2012] with a learning rate equal to 0.0025, a batch size

of 700 samples over 15 training epochs. The initialization of the network parameters is done

with a Glorot uniform [Glorot and Bengio, 2010] initialization technique.
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Table 2.5: Confusion matrix.

Observed ground truth

Interest crop Other crops

Predicted ground truth
Interest crop True Positive (TP ) False Postitive (FP )

Other crops False Negative (FN ) True Negative (TN )

The evaluation of the quality of the classifications produced by our models is based on accuracy

and F1-score as performance metrics.

Accuracy, a measure widely used by the scientific community, is defined in the equation 2.17,

where TP, FP, TN, and FN represent, consecutively, True Positive, False Positive, True Negative,

and False Negative, which are defined in the confusion matrix presented in table 2.5.

Accuracy =
TP + TN

total number of samples
(2.17)

F1-score, that we have chosen to display for each of the two studied classes, is on its turn

defined as an harmonic mean of precision and recall in equation 2.18 :

F1−score =
2 ∗ precision ∗ recall
precision+ recall

(2.18)

with

precision =
TP

TP + FP
(2.19)

and

recall =
TP

TP + FN
(2.20)
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Figure 2.15: Green marked ERA5 points located close to the France-East area of interest, whose

bounding box is showed in blue color. The point marked in red corresponds to the ERA5 point

chosen for our study.
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Figure 2.16: Average daily temperatures recorded in the France-East area over the three survey-

ing seasons since the 15 October estimated sowing date of the target crop.

On the basis of data from many field experiments, we defined for the purposes of our exper-

iments on soft winter wheat, a sowing date that we had set at 15 October of each surveyed

farming season.



CHAPTER 2. CROP TYPE IDENTIFICATION WITH DEEP LEARNING USING
MULTI-TEMPORAL SATELLITE IMAGES 73

The ERA5 reanalysis data [Hersbach et al., 2020] point retained in these experiments over the

France-East study area is the one marked in red on figure 2.15 and the daily resampled temper-

atures curves for the three studied seasons are shown in figure 2.16.

An initial analysis of these temperatures data allows us to draw up an initial assessment. In-

deed, according to figure 2.16, the most striking events are the two abrupt drops, at different

magnitudes, of temperatures in the 2017/2018 season at 135 and 155 days after the estimated

sowing date, around the tillering stage of the winter wheat growth cycle.

Knowing that we saw earlier in our work, in part 8, that this has an obvious impact on the radar

signal by causing an abrupt drop in backscatter at these two periods, we, therefore, expect, as

a first intuition, that the parcels of soft winter wheat in this season may be particularly difficult

to classify with a model trained on the 2016/2017 season.

As a confirmation of this, four different parcels of soft winter wheat were selected over the two

agricultural seasons 2016/2017 and 2017/2018, and the evolution of each of the radar polar-

ization was traced. These graphs are shown in figure 2.17 and illustrate how the temperature

conditions shown in figure 2.16 impacted the backscatter signal.
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Figure 2.17: Average radar backscatter evolution of the three studied polarizations in four

different soft winter wheat parcels located in the France-East area, across the farming seasons,

2016/2017 and 2017/2018.



CHAPTER 2. CROP TYPE IDENTIFICATION WITH DEEP LEARNING USING
MULTI-TEMPORAL SATELLITE IMAGES 74

Time series data preparation :

For the 2d-CNN-CT experience, the dates composing the time series of the input images are

chosen as follows : calendar dates covering the period from the beginning of November to

the second half of May of the 2016/2017 farming campaign are chosen to be used as training

data of the proposed model. The same calendar dates for the two campaigns 2017/2018 and

2018/2019 will then be requested to be used as test data.

However, as explained above in this document, and knowing that we restrict ourselves, as

far as possible and for the reasons previously mentioned in the last paragraph on page 25,

in particular the non-negligible effect of early morning dew, to images with the same orbit

direction (ascending), the operating mode of the Sentinel-1 satellite makes it usually difficult to

find exactly the same desired calendar dates. A delay of one (in the majority of cases) or even

two days is often inevitable, depending, among other things, on the size of the area of interest.

In fact, the more the zone of interest is large, the more difficult it is to find images with dates

that match perfectly.

In the same reasoning logic, the alignment according to thermal time in the 2d-CNN-TT ex-

perience is, on its side, done through the procedure explained in 2.3.2, based on the calendar

dates previously chosen for the 2016/2017 campaign.

The calculation of the thermal times is done according to the procedure explained in 2.3.2 with

a base temperature of 0◦C and a saturation temperature of 28◦C for wheat. An analysis, like the

one made in 2.3.2 for the corn crop, illustrated by the graph 2.18, shows that for the different

farming seasons, reference phenological stages (tillering and heading as for instance here) are

reached at different dates, for the soft winter wheat crop.

The dates of the images used for the two inter-annual 2d-CNN-CT and 2d-CNN-TT experi-

ments are summarized in Table 2.6.

Note an unavoidable derogation to the rule concerning the ascending orbit direction, where

for image availability purposes, images with a descending orbit direction will be used when

necessary; these are the dates noted with an asterisk in the cited above table.
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Figure 2.18: Evolution of soft winter wheat thermal time (growing degree day (GDD)) accord-

ing to calendar time (Day of Year (DOY)) with TBase = 0◦C and TTreshold = 28◦C over three

agricultural campaigns, 2016/2017, 2017/2018 and 2018/2019 in area France-East. For illustra-

tion purposes, soft winter wheat estimated temperature accumulation of end of tillering and

heading stages are represented by red and black dotted curves, respectively.

Table 2.6: Sentinel-1 acquisition dates in the France-East area of interest over the three study

seasons.

Usage Campaign 2d-CNN-CT 2d-CNN-TT

S-1 chosen dates (2016/2017) S-1 estimated corresponding

and corresponding calendar times in thermal time

dates (2017/2018; 2018/2019) (2017/2018; 2018/2019)

Train 2016/2017 November 04, 16, 28; December 10, 22;

January 03, 15, 27; February 02, 14, 26; –

March 04, 16, 28; April 09, 21;

May 03, 15, 27.

2017/2018 November 05, 17, 29; December 11, 23; October 30; November 08*, 23;

January 04, 16, 28; February 03, 15, 27; December 08*, 20*, 23, 29, 29;

March 05, 17, 29; April 10, 22; January 04, 16, 25*; February 09;

Test May 04, 16, 28. March 09*, 26*; April 10, 19*, 22; May 07*, 20*.

2018/2019 November 05, 17, 29; December 12, 23; November 04*, 09*, 24, 30; December 06,

January 04, 16, 28; February 04, 16, 28; 09*, 18, 18, 24; January 11;

March 05, 17, 29; April 10, 22; February 08*, 16, 28; March 12, 29;

May 04, 16, 28; April 09*, 20*; May 02*, 23.

* S1 images with descending orbit direction.
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In order to have an idea of the shifting (in calendar dates) that can be created during a re-

alignment operation according to thermal times for the 2d-CNN-TT experiment, the scheme

2.19 has been established.

01 Nov
01 Dec

01 Jan
01 Feb

01 Mar
01 Apr

01 May
01 Jun

11
-0

4

11
-1

6

11
-2

8

12
-1

0

12
-2

2

01
-0

3

01
-1

5

01
-2

7

02
-0

2

02
-1

4

02
-2

6

03
-0

4

03
-1

6

03
-2

8

04
-0

9

04
-2

1

05
-0

3

05
-1

5

05
-2

7

10
-3

0

11
-0

8

11
-2

4

12
-0

7

12
-1

9

12
-2

3

12
-3

0
12

-3
0

01
-0

4

01
-1

5

01
-2

6

02
-0

9

03
-0

9

03
-2

7

04
-0

9

04
-1

8

04
-2

3

05
-0

6

05
-2

0

11
-0

3

11
-0

9

11
-2

5

11
-3

0

12
-0

5

12
-0

9

12
-1

8
12

-1
9

12
-2

4

01
-1

1

02
-0

7

02
-1

5

02
-2

7

03
-1

2

03
-2

9

04
-0

9

04
-1

9

05
-0

2

05
-2

2

Figure 2.19: The schematization of the expected acquisition dates for Sentinel-1 images: these

dates are estimated based on a time series of calendar dates of the 2016/2017 farming campaign

(dates chosen in advance, in red color). On the one hand, the thermal times corresponding to

each of these dates are calculated. On the other hand, the thermal times between the beginning

and the end of the 2017/2018 and 2018/2019 farming campaigns are calculated (with an esti-

mated start date of 15 October for each season, the base and saturation temperature considered

are those of wheat), then for each campaign, 2017/2018 (in green color) and 2018/2019 (in blue

color), the calendar dates corresponding to the accumulated degree-days and coinciding with

the degree-days of the 2016/2017 season previously calculated are deducted. Just mentioning

that the dates written in bold are repeated twice or very close (30 December for 2017/2018, 18

and 19 December for 2018/2019 seasons), which corresponds to thermal times which evolved

very slightly between the two dates because of the low temperatures.
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Table 2.7: Summary results of proposed convolutional approach evaluated on soft win-

ter wheat, trained over 2016/2017 campaign data. Just note that for experiments 2d-CNN-

CT Spectral-Temporal-Conv and 2d-CNN-TT Spectral-Temporal-Conv, since we use 3 bands in the case of

the Sentinel-1 data, the reported results for each of the two experiments are the best between

the one with model using a convolution filter of shape (2, t̄) and the one with a model using a

convolution filter shape of (3, t̄), see the last paragraph in 2.3.6 for more details.

Test campaign 2017/2018 2018/2019

Metric Overall accuracy F1-score Overall accuracy F1-score

2d-CNN-CT Temporal-Conv 0.86 (0.91, 0.73) 0.96 (0.97, 0.92)

2d-CNN-TT Temporal-Conv 0.94 (0.96, 0.89) 0.92 (0.95, 0.85)

2d-CNN-CT Spectral-Temporal-Conv 0.85 (0.91, 0.71) 0.95 (0.96, 0.89)

2d-CNN-TT Spectral-Temporal-Conv 0.93 (0.95, 0.87) 0.90 (0.94, 0.83)

Best result for each season shown in bold font.

The results obtained with the convolutional model trained on the 2016/2017 agricultural cam-

paign data for the recognition of soft winter wheat are summarized in the table 2.7.

Figures 2.20 and 2.21 give a visual aspect to the prediction results of soft winter wheat pixels

for the 2d-CNN-TT Temporal-Conv and 2d-CNN-CT Temporal-Conv approaches, respectively.

In each of the two figures, visual (a) represents the ground truth of the soft winter wheat

cropland cover, extracted from the RPG, and visual (b) represents the output predicted by the

model.
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(a) Effective land cover (b) Model prediction land cover

Figure 2.20: Visualization of observed and predicted crop rotation of soft winter wheat parcels

under the 2d-CNN-TT Temporal-Conv experiment in the studied sub-area of France-East zone over

the campaign 2017/2018. Yellow pixels are those of soft winter wheat crop, the remaining pixels

represent other crops.

(a) Effective land cover (b) Model prediction landcover

Figure 2.21: Visualization of observed and predicted crop rotation of soft winter wheat parcels

under the 2d-CNN-CT Temporal-Conv experiment in the studied sub-area of France-East zone over

the campaign 2018/2019. Yellow pixels represent the soft winter wheat crop, the remaining

pixels represent the rest of the crops.
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In order to evaluate the impact and the importance of the choice of the prediction date on

the performance of the proposed models, the following experiment has been conducted : the

2d-CNN model is trained with time series starting at the beginning of November and going to

dates between the first half of April and the second half of May (or the equivalent with the ther-

mal time experiments). The results of this test with the experiments 2d-CNN-TT Temporal-Conv

on 2017/2018 campaign and 2d-CNN-CT Temporal-Conv on 2018/2019 campaign are shown in

figures 2.22 and 2.23, respectively.

Figure 2.22: Temporal precision evaluation for the experiment 2d-CNN-TT Temporal-Conv over the

campaign 2017/2018.
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Figure 2.23: Temporal precision evaluation for the experiment 2d-CNN-CT Temporal-Conv over the

campaign 2018/2019.

As a global statement that can be deduced from these two graphs, the performance of the con-

volutional model improves with increasingly late prediction dates. this is due to the fact that

at later dates, the plants of a given crop develop more properties that enable them to be distin-

guished from other crops. these characteristics are captured by the imagery and subsequently

taken into account in the model. In fact, the accuracy of the models developed in our work will

depend heavily on the desired prediction timing.
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Target crop 2: winter rapeseed

Winter rapeseed, present in almost all of the French territory, is another crop we have been

interested in during our work. In addition to being a plant rich in oil and vegetable proteins,

rapeseed has beneficial effects in cereal rotations by allowing a rupture in the cycle of cereal

diseases and weeds as well as improving the organic state of the soil. Its high nitrogen require-

ments, particularly in autumn and winter, reduce nitrate losses through soil leaching during

these very sensitive periods. Rapeseed also reduces the risk of erosion due to its relatively long

soil cover. Refer to document 1 for more details

Experiments were conducted in the France-Center area of interest located in the region centre

of France, whose geographical coordinates and statistics concerning the ten predominant crops,

over the two agricultural campaigns of 2016/2017 and 2017/2018, were illustrated in the above-

mentioned figure 2.11.

Winter rapeseed is planted at the end of the summer and harvested in July, it covers the soil

for about 300 days. The sowing date can vary from the beginning of August for precocious

sowing to the end of the first half of September for tardive sowing. This date depends on

several parameters such as soil type, soil nitrogen availability, and climate, more particularly,

temperature and rainfall. For the purposes of our study, and as we do not have information

on exact sowing dates, we have estimated sowing to an arbitrary date of 1 September for each

season studied.

The climatic ERA5 [Hersbach et al., 2020] points retained in these experiments over the France-

Center area are the two points marked in red on figure 2.24, and we have created the interme-

diate point marked in yellow in the same figure, which represents the average of the data from

the two red points taken.

An initial comparative analysis of the temperature curves between the three seasons of interest

allows us to see, through figure 2.25, different temperature profiles. Globally, it can be said that

the temperature profiles of the three seasons are more or less different. Also, abrupt drops in

temperature near −5◦C are registered at different periods for the two seasons 2016/2017 and

2017/2018 particularly. The 2016/2017 season recorded two frost episodes in January, whereas

such episodes occurred at the beginning and end of February for the 2017/2018 season, with

slightly more intensity. These episodes of extreme frost are less intense for the 2018/2019 sea-

son, it is in fact the warmest season on average among the three seasons.

1Document Terresinovia, Les atouts du colza, Aurore BAILLET, 18 juin 2019
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Figure 2.24: Green marked ERA5 points located close to the France-Center area of interest,

whose bounding box is showed in blue color. The point marked as yellow corresponds to the

chosen averaged both red ERA5 points.
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Figure 2.25: Average daily temperatures recorded in the France-Center area over the three

2016/2017, 2017/2018, and 2018/2019 seasons since the estimated sowing date of the target crop.

With the aim of trying to understand how the winter rapeseed parcels studied could grow un-

der such temperatures, the curves in figure 2.26 showing the evolution of thermal times in win-

ter rapeseed parcels from the estimated sowing date for all seasons was plotted. The calculation
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Figure 2.26: Evolution of winter rapeseed thermal time (growing degree day (GDD)) according

to calendar time (Day of Year (DOY)) with TBase = 3◦C and TTreshold = 28◦C over the agricul-

tural campaigns, 2016/2017, 2017/2018 and 2018/2019 in France-Center area. For illustration

purposes, the winter rapeseed estimated temperature accumulation of F1 flowering stage (con-

sidered reached when at least 50% of the plants with an open flower) is represented by a red

dotted curve. The time lag in calendar time is equal to 2 days between the two first seasons.

of thermal times was made assuming a base temperature TBase = 3◦C and a saturation temper-

ature TTreshold = 28◦C. The red dashed lines represent the accumulated temperatures of winter

rapeseed plants at the flowering stage, also called F1 (according to the works of [d’Andrimont

et al., 2020], about 425 growing degree days are needed to reach flowering beginning on 1 Jan-

uary, this obviously remains an order of magnitude, as we are not working on the same regions

and probably not the same cultural practices and rapeseed cultivars).

Two major phases can be seen through these curves. A first phase that starts at sowing and ter-

minates around the beginning of flowering with curves of the thermal times of whole seasons

that most often diverge. Then follows a second phase that starts at flowering (around day 240

after sowing), where the curves become smoother and closer to each other, especially for the

first two seasons, until the end of the plant cycle.

This ”pivot” period around flowering seems particularly interesting in a perspective of the

choice of the time series dates for our winter rapeseed recognition models.

We, therefore, investigated the profiles of the Sentinel-1 radar backscatter on winter rapeseed

parcels surveyed, whose geographical coordinates are shown in figure 2.27.

As an illustration, figure 2.28 describes the evolution of the average backscatter in σ0
V V polar-
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Figure 2.27: Location of the winter rapeseed parcels studied for the three farming seasons,

2016/2017 in blue color, 2017/2018 in orange color, and 2018/2019 in green color.

ization of the winter rapeseed parcels over the three seasons. It can be seen that the two phases

previously described based on the curves of thermal times in figure 2.26, are also present in the

current figure, with relatively different profiles from sowing to the first half of April and then

profiles of σ0
V V that vary in a quasi-similar way, at relatively different magnitude, however,

since the second half of April.

According to [d’Andrimont et al., 2020], the flowering peak, they defined as when 50% of the

plants are at this stage, occurs at the local minimum of the σ0
V V curve around this period of

spring. This flowering peak is effectively observed around the last days of April in our study

parcels, marked by the black dashed line in 2.28 and corresponds well to the 240 days after

sowing as discussed above.

What these σ0
V V backscatter curves reveal is that, a priori, if one works with time series of im-

ages with dates around this flowering stage, a convolutional model with an alignment in cal-

endar time, previously noted by 2d-CNN-CT Temporal-Conv and 2d-CNN-CT Spectral-Temporal-Conv

approaches, should be sufficient to achieve satisfactory performance.

We, therefore, chose to work with Sentinel-1 data acquired during the flowering period. The

dates taken into account in the training and testing of our convolutional winter rapeseed de-

tection models are summarized in table 2.8.
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Figure 2.28: Average radar backscatter evolution in σ0
V V polarisation over France-Center win-

ter rapeseed parcels over the three study seasons. For each graph, the vertical black dashed

line corresponds, eventually, to the date when the flowering peak occurs. The grey area corre-

sponds to the interval of the dates, around the flowering stage, chosen for the winter rapeseed

crop recognition models, this will be discussed below.

The results of the evaluation of the convolutional approach are presented in table 2.9 and the

comparative visuals, between ground truth and model prediction, obtained from the 2d-CNN-

CT Temporal-Conv experiment over the 2017/2018 and 2018/2019 farming seasons are shown in

figures 2.29 and 2.30, respectively.
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Table 2.8: Sentinel-1 acquisition dates in the France-Center area of interest over the three study

seasons.

Usage Campaign 2d-CNN-CT

S-1 selected dates (2016/2017)

and corresponding calendar

dates (2017/2018; 2018/2019)

Train 2016/2017 April 18, 24, 30;

May 06, 12, 18.

Test 2017/2018 April 18, 24, 30;

May 06, 12, 18.

Test 2018/2019 April 19, 25;

May 01, 08, 13, 19.

Table 2.9: Summary results of proposed convolutional approach evaluated on winter rapeseed,

trained over 2016/2017 campaign data, and evaluated on both 2017/2018 and 2018/2019 cam-

paigns. Note that for experiment 2d-CNN-CT Spectral-Temporal-Conv, since we use 3 bands in the

case of the Sentinel-1 data, the reported results are the best between the one with a model using

a convolution filter of shape (2, t̄) and the one with a model using a convolution filter shape of

(3, t̄), see the last paragraph in 2.3.6 for more details.

Test campaign 2017/2018 2018/2019

Metric Overall accuracy F1-score Overall accuracy F1-score

2d-CNN-CT Temporal-Conv 0.99 (0.996, 0.94) 0.99 (0.99, 0.915)

2d-CNN-CT Spectral-Temporal-Conv 0.98 (0.98, 0.93) 0.98 (0.98, 0.91)

Best result for each season shown in bold.
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(a) Effective land cover (b) Model prediction land cover

Figure 2.29: Visualization of observed and predicted crop rotation of winter rapeseed parcels

under the 2d-CNN-CT Temporal-Conv experiment in France-Center zone over the farming cam-

paign 2017/2018. Yellowish-brown pixels represent the winter rapeseed crop, the remaining

pixels represent the rest of the crops.

(a) Effective land cover (b) Model prediction land cover

Figure 2.30: Visualization of observed and predicted crop rotation of winter rapeseed parcels

under the 2d-CNN-CT Temporal-Conv experiment in France-Center zone over the farming cam-

paign 2018/2019. Yellowish-brown pixels represent the winter rapeseed crop where the remain-

ing pixels represent the other crop types.
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Target crop 3: beet

Table 2.10: Sentinel-1 acquisition dates in the France-Center area of interest for beet experi-

ments.

Usage Campaign 2d-CNN-CT

S-1 selected dates (2016/2017)

and corresponding calendar

dates of 2017/2018 season

Train 2016/2017 May 6, 12, 18, 24, 30; June 6, 12, 18, 24, 30;

July 6, 12, 18, 24, 30; August 5, 11, 17.

Test 2017/2018 May 6, 12, 18, 24, 30; June 6, 12, 18, 24, 30;

July 6, 12, 18, 24, 30; August 5, 11, 17.

Table 2.11: Summary results of proposed convolutional approach evaluated on beet, trained

over 2016/2017 campaign data, and evaluated on 2017/2018 campaign in France-Center area.

For experiment 2d-CNN-CT Spectral-Temporal-Conv, and since we use 3 bands in the case of the

Sentinel-1 data, the reported results are the best between the one with a model using a convo-

lution filter of shape (2, t̄) and the one with a model using a convolution filter shape of (3, t̄),

see the last paragraph in 2.3.6 for more details.

Test campaign 2017/2018

Metric Overall accuracy F1-score

2d-CNN-CT Temporal-Conv 0.98 (0.988, 0.935)

2d-CNN-CT Spectral-Temporal-Conv 0.96 (0.97, 0.92)

Best result for each season shown in bold.
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(a) Effective land cover (b) Model prediction land cover

Figure 2.31: Visualization of observed and predicted crop rotation of winter rapeseed parcels

under the 2d-CNN-CT Temporal-Conv experiment in France-Center zone over the beet farming cam-

paign 2017/2018. Purple pixels constitute the beet crop parcels where the remaining pixels rep-

resent the other crops.
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2.5 Discussion

We could see, through the preliminary tests of the intra-annual approach, how the proposed

multi-temporal convolutional binary models, aimed at identifying crop types, perform on all

the tested crops. In such an approach, a model is trained on a part of the parcels (more exactly

pixels), and tested on another part of the parcels. The effect of climatic variability in this case

study is limited, and very satisfying performances are achieved on all the crops studied.

Then, we aimed to reveal, through the presented experimental tests, the interest that the pro-

posed inter-annual approach can provide, with a data preparation phase of the satellite time-

series, either aligned along the calendar time or aligned according to the thermal time in some

particular temperature conditions that can directly impact the normal process of plant growth.

Through the first stage of experimentation on soft winter wheat, we wanted to evaluate the

capabilities of the proposed inter-annual convolutional approach in the recognition of this crop.

The obtained results show both the interest of the temporality of the satellite data in improving

performance, as seen in the tests for the 2018/2019 farming campaign, but also the contribution

of a thermal time alignment in particular temperature conditions, which differs at significant

growth stages from the temperature conditions of the season over which the model was trained,

as seen for the 2017/2018 soft winter wheat farming campaign.

It was also noted that globally, the test performances on data aligned in calendar time remain

slightly higher than the test results on data aligned in thermal time. This is probably due to

various reasons.

Indeed, as previously discussed, and to ensure maximum coherence and to avoid the effect of

morning dew, we restrict ourselves to Sentinel-1 data with an ascending orbit direction. How-

ever, and contrary to a calendar time alignment, a thermal time alignment imposes, for reasons

of data availability, to use the descending mode in addition to the ascending orbit direction,

and this contributes to this performance reduction, even when compared to an alignment ac-

cording to calendar time. Without neglecting the inevitable delay of one or two days between

the date desired and the date available, as mentioned earlier in this section.

The experiments that followed on winter rapeseed revealed an important aspect : each crop

has its own specific way to deal with particular climatic conditions such as frost. Evidently,

this depends on the intensity of these climatic conditions, but also on the ability of each type of

crop to resist/tolerate to/the climatic conditions.

In fact, winter rapeseed has a certain capacity to resist to extreme cold and to tolerate negative

temperatures (until −17◦C 2), a capacity acquired during the period extending from sowing

to the rosette stage, also called 8-leaf stage, reached at approximately 600 GDD. This period is

being followed by another phase, the vernalization, which is a process that usually takes place

at the end of autumn and continues into winter, that allows the transition from the vegetative

2 André Merrien et Nathalie Landé, Rencontres Techniques Régionales, ”PHYSIOLOGIE DU COLZA : mise en

place du rendement”, CETIOM (2009).
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phase to the reproduction phase, during which the plants requires a winter period with tem-

peratures below 10◦C in order to complete its vegetative cycle (the optimum winter rapeseed

vernalization temperatures are between 3 and 7◦C 2). Afterward, the floral transition phase

takes place, marking the end of the vernalization and the progressive passage to the flowering

stage, which can take 4 to 6 weeks 3 and requires relatively fresh temperatures (ideally between

10 and 25◦C).

Through this information on the tolerance levels of winter rapeseed, and the results obtained by

the convolutional winter rapeseed recognition models, it can be deduced that in an inter-season

approach, if climatic disparities, notably of temperatures, are present but are not extreme, i.e.

remains in the forks tolerated by the winter rapeseed plants, the latter finish by regaining sim-

ilar levels of growth, as around flowering stage and the formation of siliques also known as

pods, in our rapeseed case study in France-Center. This may contribute to the good perfor-

mance of our winter rapeseed recognition models with input radar images aligned according

to calendar times around these periods.

Of course, these good performances are mainly due to the fact that during these periods around

flowering for our rapeseed first case study, winter rapeseed plants developed specific charac-

teristics, particularly geometric such as plant height, foliage and flowers characteristics and

orientation, which make the signal captured by the radar from these plants different from the

signals from other crops plants present at the same time and in the same study area, at least in

France.

Consequently, the winter rapeseed convolution model trained with a time series of dates around

flowering during the 2016/2017 farming season performed very well while testing over the two

following seasons, still with imagery data around flowering, even if it was noted that the test

results for the last 2018/2019 season were slightly less good than those obtained in the test over

the 2017/2018 season.

This is because the higher temperatures in the 2018/2019 season generated a potential slight

advance in the growth of winter rapeseed plants compared to the two remaining seasons. This

growth advance could be observed on the thermal time evolution in figure 2.26, and trans-

lated into a slight advance of the date of the local minimum of the backscatter signal at σ0
V V

polarisation around flowering, on the green curve of the graph 2.28.

The proposed approach allows detection on a pixel level (with a spatial resolution of 10 meters

in the case of Sentinel-1 radar images). The models can therefore operate without ”à priori”

agricultural parcel delimitation, or be confronted with a given parcel delimitation to extract

the most probable crop on the parcel with an uncertainty of identification of the crop (the type

of crop on the parcel will then be that of the majority of pixels making up this same parcel), or

even detect potential delimitation errors in the parcel provided.

As an example, the yellow parcel in figure 2.32 below within the 2017 parcel delimitation in

3Document of ”Institut national agronomique Paris-Grignon INA P-G, Département AGER” (2003) on rapeseed

published via the Agroparistech course platform.
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Figure 2.32: Example of a yellow-colored spring barley parcel in the 2016/2017 farming season,

for which the proposed model detected a very clear change of disposition, with a passage to

half beet, half spring barley in 2017/2018 season.

the French region centre has visibly changed its disposition, switching from all spring barley in

2017 to half beet, half spring barley in 2018, this was effectively verified when the RPG for this

latest year was made available online.

Moreover, the spatial resolution of the satellite images used induces parcel border effects and

can impact, by underestimating or overestimating, the prediction results of our models.

In effect, with a pixel resolution of 10 meters, it is quite complex to differentiate between a field

of a given crop type and its surroundings (which may be roads, constructions, etc.), this is one

of the limitations of using Sentinel-1 data in the proposed pixel-based approach.

Furthermore, pixels adjacent to two (respectively, to several) different crop type fields, will

necessarily be predicted as belonging to one crop type at the detriment of the other crop type

(respectively, of other crop types). Therefore, the more spatial resolutions of the imagery data

used are fine (i.e., smaller pixels), the better are the results, knowing that the proposed models

are easily adaptable to imagery data that may come from other satellites or even other imagery

sources.



Chapter 3

Estimation of plant bio-physical

variables by satellite imagery : case of

biomass of some major crops

3.1 Biomass estimation

3.1.1 Introduction to remote sensing for plant bio-physical variables estimation :
Review and research problem description

The considerable potential of microwaves and Sentinel-1 backscatter for vegetation monitoring

and estimation of Vegetation Water Content (VWC), biomass, Leaf Area Index (LAI), and height

for winter cereals, corn, and oilseed-rape during two growing seasons was reported in [Vreug-

denhil et al., 2018]. In another interesting study, Veloso et al. [Veloso et al., 2017] compared

Sentinel-1 time series to optical NDVI time series for a variety of winter and summer crops

(wheat, rapeseed, corn, soybeans, and sunflower) over several test sites in France. The time

series of NDVI and radar backscatter are analyzed and physically interpreted with the support

of rainfall and temperature data, as well as the destructive in situ measurements (green area

index (GAI) and fresh biomass). A detailed study in two experimental sites of corn and barley

showed that the Sentinel-1 and NDVI data correlate to GAI and fresh biomass. These studies

point out the interest of radar data and particularly the σ0
V H/σ

0
V V ratio band for crop monitor-

ing (irrigated crops and early crop identification) and biophysical parameters estimation using

both radar and optical data).

In [Steele-Dunne et al., 2017], the authors provide a complete overview of the current state of

knowledge concerning radar backscatter from vegetated agricultural landscapes and identify

opportunities and challenges in this domain. They showed, among many other topics covered,

how radar could be highly suitable for crop monitoring and several other applications. They

also explained how the crop scattering mechanism varies due to changes in geometry and

orientation. For instance, they highlight the fact that during the growing period of a given

93
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crop, the scattering mechanism varies due to changes in the geometry and orientation of leaves

and branches around the stem about the radar line of sight, underneath soil surface roughness,

and vegetation dielectric constant.

In [Kumar et al., 2017], Sentinel-1 radar analysis of time series data at C-band was carried out to

estimate five winter wheat growth parameters (leaf area index, vegetation water content, fresh

biomass, dry biomass, and plant height) using different regression algorithms. The study, car-

ried out using crop growth parameters in-situ measurements in India, demonstrates the good

capability of the Sentinel-1 data for monitoring agricultural areas, and the random forest regres-

sion model provides a useful predictive tool for estimating winter wheat growth parameters.

For another type of vegetation cover, the potential of Synthetic Aperture Radar (SAR) radar

data at several wavelengths for mapping of above-ground biomass at the provincial level in

a Mediterranean forested landscape (area test in central Italy) was discussed in [Laurin et al.,

2018].

We aim to develop statistical models capable of estimating the biomass of plants from radar

imagery data, such approach may be important in different contexts. For example, for winter

rapeseed plants, estimating biomass at specific periods of the growth cycle can help regulate

nitrogen fertilization, an opportunity that is detailed later in this manuscript in chapter 3.2.

Moreover, biomass estimation can constitute a source of real-time data for data assimilation

methods aiming to improve the predictive power of plant growth models, this is the purpose

of the work in part 4 of this manuscript on soft winter wheat crop.

The objective here is not to develop the most complex and efficient possible models, but to eval-

uate, with quite simple supervised models based on real field measurements data, the potential

and opportunities that Sentinel-1 imagery data can provide for the estimation of above-ground

biomass.

Let x ∈ R represent radar backscatter at different time steps and y ∈ R represent the above-

ground plant biomass associated with the backscatter value.

The relationship between these two variables can be modeled through a widely used empirical

approach : regression analysis. This relationship, where we want to predict y from x with the

predicted value ŷ, can be formulated as follows :

ŷ = wx+ b (3.1)

where w ∈ R is the slope parameter and b is the intercept term (or bias parameter).

The estimation of the parameters w and b is obtained by minimizing the sum of the squares of

the differences between the observations and the model linear approximation predictions, it is

the criterion of least squares (LS) defined as follows :
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For an observation sequence (xi, yi), i = 1, . . . , n, the LS criterion consists in :

min
w,b

n∑
i=1

(yi − ŷi)2

where the parameters w and b are estimated by :

w =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
and b = ȳ − wx̄

For the n observations samples, x̄ and ȳ represent the backscatter and the above-ground biomass

samples means, consecutively.

3.1.2 Study areas and data

The study area is located on the Limagne plain, in the center of the Auvergne region in the

north-east of the Puy-de-Dôme department (Fig. 3.1). Ten agricultural parcels of soft winter

wheat, covering a total area of 1.5 km2, and spreading over an area of 342 km2, are being

studied during the 2014/2015 season. Five different varieties of soft winter wheat are planted

in the studied parcels (one variety per pair of parcels).

Figure 3.1: 10 parcels of soft winter wheat in Limagne in the Auvergne region are being studied

during the 2014/2015 agricultural season. Five varieties of soft winter wheat, one variety per

pair of parcels, have been sown, with sowing dates ranging from 23 October to 23 December

2014.

We are working with a time series of Sentinel-1 images, covering the studied parcels, acquired
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March 18, 2015 May 17, 2015 July 16, 2015

Figure 3.2: Illustration of the Sentinel-1 radar data used, a combination of σ0
V H and σ0

V V po-

larization, acquired at three different dates and covering three parcels, marked in red, in the

study area.

between the end of October 2014 and the end of July 2015 during the growth cycle of soft winter

wheat (Table 3.1).

Table 3.1: Sentinel-1 acquisition dates in the studied area

Area of interest Campaign SAR Sentinel-1 acquisition dates

October 25, November 01, 06, 14, 18, 25, 30 ;

December 08, 20, 31; January 01, 05, 13, 17, 29;

Limagne study area 2014/2015 February 06, 17, 22; March 01, 06, 13, 18, 25, 30;

April 06, 11, 18, 23, 30; May 05, 12, 17, 24, 29;

June 05, 10, 18, 29; July 11, 16, 24, 28.

The in situ biomass measurements data of the different plant compartments are measured ac-

cording to a specific protocol of destructive biomass measurements per field (named placette in

French in the biomass measurement protocol document).

Above-ground biomass data by plant compartments (total above-ground biomass, leaf, stem,

and grain biomass, when possible) collected across 10 geo-located soft winter wheat parcels

during the 2014/2015 crop year are available. Five varieties were sown, between 23 October

and 23 December 2014, across these 10 parcels, with two varieties per parcel.

For 8 of the 10 parcels, the above-ground biomass was measured on 6 different dates between

2 March and 16 July 2015. For the remaining two plots, above-ground biomass was measured

on 5 different dates between 24 March and 22 June 2015.

For the dates after 30 April 2015, total above-ground biomass, leaf biomass, and stem biomass

were measured. For samples taken before 30 April, only the total above-ground biomass of

the sample was measured, as it is difficult to accurately separate compartments in advanced

stages.

For the grain biomass, these were measured for dates after 19 June 2015 (i.e. only 1 or 2 mea-

surements for the parcels), on which samples were taken on 5 and 6 different dates respectively.

3.1.3 Methodology
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Figure 3.3: Temporal evolution of the signal ratio σ0
V H/σ

0
V V , the two radar bands σ0

V H and σ0
V V ,

biomass measurements, temperature, and precipitation for one of the study parcels. Sowing

dates, different growth stages (early tillering, booting, 2 nodes, flowering, and senescence) as

well as harvesting dates are indicated respectively by the green, yellow and red vertical lines.

Correlation study between biomass data and Sentinel-1 imagery data

To explore how the radar backscatter and above-ground biomass variables are related, we first

perform a correlation analysis using Pearson’s correlation coefficient r defined using the fol-

lowing formula :

r =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1) SxSy
(3.2)

where Sx and Sy are the sample standard deviation of the two variables.

The results of the correlation study between the biomass data of the different plant compart-

ments and the radar backscatter data from Sentinel-1 are presented.

First, variations in radar backscatter during the wheat growing season over the ten study

parcels are analyzed. With the support of precipitation and temperature data, as well as biomass

measurements of the different compartments and at different dates, an attempt was made to

explain, physically in the field, the behavior of the radar backscatter on each of the ten parcels.

Figure 3.3 illustrates the variation of the σ0
V V , σ0

V H and σ0
V H/σ

0
V V ratio bands during the wheat

growing season on one of the studied parcels (Apache variety). Precipitation and temperature

data, as well as the measured fresh biomass of the different plant compartments, are also shown

in the figure.
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Figure 3.4: Filtering of the temporal evolution curve of the signal ratio σ0
V H/σ

0
V V .

The instability of the radar signal can be explained by variations in the structure, volume, and

orientation of the plant, in addition to the impact of the soil (mainly the effect of soil smoothing

due to rainfall, in addition to the roughness of the soil). For this reason, we proposed to apply

a smoothing of the radar curve by interpolating the data with a cubic spline [Mckinley and

Levine, 1998] as illustrated in the figure 3.4.

The basic idea of the cubic spline operation is that a series of unique cubic polynomials are

fitted between each of the observations data points.

For n data observations of variable x, the cubic spline function Si(x), i = {1, . . . , n − 1} can be

defined by :

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di

where x ranges from xi to xi+1 It is therefore about finding the parameters a,b,c and d for each

interval of points. The procedure is detailed in the above cited paper [Mckinley and Levine,

1998]. Note that the implementation of such an interpolation has been done under the package

scipy.interpolate of SciPy library [Virtanen et al., 2020].

As can be seen in Fig. 3.4, the ratio band σ0
V H/σ

0
V V is the one that best models the global dynam-

ics of wheat during its growth cycle, with three essential phases : a first plateau corresponding

to the pre-stem elongation growth cycle, an increase starting from the early stem elongation

phases and a descent from the early senescence stage.

Figure 3.5, as well as Table 3.2 illustrate the results of the correlation study between the biomass



CHAPTER 3. ESTIMATION OF PLANT BIO-PHYSICAL VARIABLES BY SATELLITE
IMAGERY : CASE OF BIOMASS OF SOME MAJOR CROPS 99

of the different plant compartments and the radar ratio smoothed with a cubic interpolation

on the 10 studied parcels.

Figure 3.5: Scatter plot for the study of the correlation between the measured biomass data

and the radar ratio averaged over each parcel, normalized and smoothed with a cubic spline

interpolation.

Table 3.2: Pearson correlation coefficients between the measured biomass data and the nor-

malized radar ratio averaged over each parcel and smoothed with a cubic spline. The values

that are interesting for us are shown in bold.

shoot leaf stem grain radar median

shoot 1.0000 0.5586 0.8632 0.9438 0.5540

leaf 0.5586 1.0000 0.6523 0.6102 0.8230

stem 0.8632 0.6523 1.0000 0.8780 0.6697

grain 0.9438 0.6102 0.8780 1.0000 0.7158

radar median 0.5540 0.8230 0.6697 0.7158 1.0000

Proposed statistical models and results

As explained earlier, linear regression analysis is performed using the simple model detailed

in paragraph 3.1.1 with equation 3.1 and a second model emanating from the first with a log-

arithmic transformation, which involves switching to an exponential model by substituting y

by ln(y) in the simple linear regression equation 3.1.

In fact, these two models are retained because they seem to be the most relevant for the level of

simplicity we are looking for : the simple linear regression to be used as a baseline and a linear

regression with logarithmic transformations will be also assessed.
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For this analysis, above-ground biomass data are randomly divided into two subsets for train-

ing and testing (2/3 and 1/3 respectively).

Note that the evaluation metric used here is the Mean Squared Error (MSE) defined by :

MSE =
1

n

n∑
i=1

(yi − ŷ)2

Simple linear regression

Figures 3.6 and 3.7 summarise the results obtained by fitting the simple least squares linear

regression model on the train and test data, respectively.

In each of the result figures below, each column corresponds to a plant compartment (shoot,

leaf, stem, grain). Graphics in the first row represent the scatter plots of comparison between

the field measured above-ground biomass data and those simulated by the regression model,

the black dashed line corresponds to a perfect concordance between the measured and simu-

lated biomass. The graphics in the second row represent the scatter plots of radar ratio band

with in situ measured above-ground biomass and the red line corresponds to the fitted regres-

sion model line.

Figure 3.6: Results of the linear regression on the training set. Each column represents a plant

compartment (shoot, leaf, stem, grain) and the MSE for the three compartments leaf, stem,

grain is equal to : 0.07, 0.45, and 0.05 respectively. All biomass data are in (g/ha)/1000 to

simplify the orders of magnitude of the MSE error.
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Figure 3.7: Results of the linear regression on the test set. MSE for the three compartments leaf,

stem, grain is equal respectively to : 0.0744, 0.36, and 0.02.

Linear regression with logarithmic transformation

In order to have an exponential adjustment of the relationship between radar data and aerial

biomass, the equation 3.1 was transformed to modelling the relationship between backscatter

and the natural logarithm of the biomass, as follows :

ln(ŷ) = w′x+ b′ (3.3)

Figures 3.8 and 3.9 summarise the results obtained by fitting the logarithmic transformed linear

regression model on the train and test data, respectively.

Figure 3.8: Results of the logarithmic linear regression on the training set. MSE for the three

compartments leaf, stem, grain is equal respectively to : 0.05, 0.5, and 0.06.
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Figure 3.9: Results of the logarithmic linear regression on the test set. MSE for the three com-

partments leaf, stem, grain is equal respectively to : 0.03, 0.40, and 0.02.

3.1.4 Discussion and conclusions

We aimed to evaluate in this work, using simple statistical concepts, the potential of Sentinel-1

radar data for the estimation of plant biophysical variables and growth dynamics monitoring.

This evaluation was applied to a pilot crop, soft winter wheat, for which field data of an im-

portant biophysical variable, the above-ground biomass and that of each compartment, were

available.

Through a first phase of the study, and in order to explore the existence of a relationship be-

tween radar backscatter and biomass, we performed correlation analysis with supporting scat-

ter plots describing the nature of this relationship, as well as Pearson correlation coefficients to

quantify it.

First, to compensate for the fact that the Sentinel-1 radar signal is noisy from one date of acqui-

sition to another, a behavior that is reflected by a visible instability of the signal, we proposed

filtering of the time series of the backscatter by interpolation type cubic spline.

In this correlation study, we could see through the scatter plots and correlation coefficients that

there is a relation between the filtered backscatter and the biomass. Typically, the foliage is the

compartment that most characterizes this relationship, the blue points in the figure 3.5 have a

rather clear curved trend that can be explained with a simple model with an exponential ten-

dency. This is probably due to the fact that in the radar signal captured from plants, leaves are

the most exposed part of the plant, and therefore the most important contributor of the signal.

This has already been discussed earlier in paragraph 8 of our manuscript.

Secondly, based on the earlier analysis and using the collected field biomass measurements and

radar backscatter data, simple regression models were fitted : least squares and logarithmic-

transformed linear regressions.

By opting for the mean squared error as a metric, the performance assessment of these models

was done by splitting the available biomass data into two subsets : train to fit the models and

test to validate the results.

We consider that the most interesting statement is to be drawn from the results obtained for the
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leaf biomass, the compartment most correlated with the radar response as mentioned above.

Indeed, by applying the logarithmic transformation model, we were able to improve the results

on the test data set by passing from a MSE of 0.07 obtained with the simple least squares linear

regression to an MSE of 0.03. This transformation was actually performed after the analysis

of the scatter plot 3.5 of radar ratio band with in situ measured leaf biomass, in which the

blue data have a curved trend that can be explained with an exponential model, hence the

importance of the correlation analysis.

Furthermore, we also tested to fit a random forest model on the data at our disposition as done

in [Vreugdenhil et al., 2018]. The results obtained in terms of MSE were largely worse than

those obtained with the two main models mentioned earlier, so they are not reported here. It is

nevertheless believed that the RF would have performed better with a larger data set.

This work also shows the interest that radar imagery data can have in estimating the periods of

occurring of some plant growth stages. In fact, through figure 3.4 illustrating the evolution of

the average radar responses signal in one of the studied parcels, we could see how each change

of dynamics in the radar signal can be related to the beginning of a given growth stage. This is

particularly visible for the early tillering stage (the first yellow vertical dashed line) where the

signal starts a steady ascending phase and the early senescence (the last yellow vertical line)

where the signal starts to decrease.
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3.2 Study of the temporal heterogeneity of the radar signal : a tool

for positioning rapeseed biomass measurements points for auto-

mated estimation by satellite imagery

3.2.1 Introduction

As winter rapeseed is a crop that requires a lot of nitrogen (between 200 and 250 nitrogen

units for an average yield of 35 quintals per hectare 1), fertilization is an important factor in

optimizing the gross margin of the farmer. This involves finding a compromise between this

economic aspect and the production, energy cost, and environmental impact aspects.

Winter rapeseed crop is usually sown in August-September and harvested around June-July.

A large part of the vegetative biomass can be taken up during the autumn and a significant

part of the nitrogen requirements, therefore, take place during this period, 10 to 25% of the

final requirements, sometimes much more. The remaining nitrogen in the soil at the end of this

period is therefore fairly or very low and is not taken into account in the nitrogen balance. It

is thus considered that everything that has not already been taken up by the crop during the

autumn will have to be provided via fertilization (minus a small amount of mineralization by

soil organisms in the autumn and spring).

Biomass is an indicator of the amount of nitrogen absorbed by winter rapeseed. Actually,

measuring the biomass at the end of the winter enables us to evaluate, by means of procedures

for calculating provisional doses such as the ”Réglette Azote Colza” 2 tool, the quantity of

nitrogen that has already been taken and to deduce what remains to be added to achieve the

desired yield objective.

In regions where winter frost periods are frequent, a biomass measurement at the beginning

of winter is also necessary to assess how much biomass has been lost during the winter. This

biomass constitutes in fact organic matter that will be partially remobilized (about 50%) as soon

as the vegetation recovers in spring, making a certain amount of nitrogen again available for

the crop, meaning that less nitrogen fertilizer is needed.

Therefore, with the aim of collecting winter rapeseed biomass data in experimental parcels at

our disposal, and with a perspective to developing supervised statistical models, as done in

chapter 3.1, capable of estimating the winter entrance and exit biomass of winter rapeseed by

satellite imagery, we have worked on a tool to define the points at which we will measure the

biomass within each parcel, according to the intra-parcel heterogeneities that may exist within

the latter, the overall objective is to ensure that the measurements describe the most variability

possible.

1A. Baillet, 13 octobre 2009, Gestion de l’azote, document du CETIOM
2https://www.terresinovia.fr/p/la-reglette-azote-colza
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3.2.2 Experimental fields and radar imagery data

For the development of the tool, we relied on four pilot parcels in the Beauce region of France.

The geographical coordinates of the contours of the parcels, in longitude and latitude, are

shown in figure 3.10.

For each parcel, a time-series of Sentinel-1 (S1) radar images is acquired, covering the period

from early January to mid-February, approximately one and a half to two months from the

winter output, the images are processed and clipped to the parcel. The dates of acquisition are

summarized in table 3.3.
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(a) Parcel P1 (b) Parcel P2

(c) Parcel P3 (d) Parcel P4

Figure 3.10: Geographical coordinates of the experimental parcels.

Table 3.3: Sentinel-1 acquisition dates in the studied fields

Area of interest Rapeseed campaign SAR Sentinel-1 acquisition dates

Each of the study parcels 2019/2020 January 04, 05, 10, 11, 16, 17, 22, 23 ;

28, 29; February 03, 04, 09, 10, 15, 16.
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3.2.3 Proposed approach

On each of the 4 parcels of interest, the choice of the intra-parcel areas in which the measure-

ments will be carried out is made in the framework of a spatial-temporal classification approach

as follows : from a time series of satellite radar images of the two months preceding the date

scheduled for the measurements, pixel clustering is applied with the aim of grouping pixels

with similar temporal profiles (signature of the radar response) into a single homogeneous

group. We have chosen to work with the radar ratio band σ0
V H/σ

0
V V as a modality.

We will then try to define 3 measurement points per homogeneous area within each parcel

(which will also serve to validate the clustering results). By integrating the effects of borders

and GPS uncertainty when carrying out measurements in the field, the measurements will be

positioned at least 30m from the parcel borders or from previous measurements.

Through the radar backscatter evolution graphs, a kind of stability in the profile of variation

was observed as can be seen on the graph 3.12, which can potentially add difficulty to the

classification model. In effect, this is due to the fact that during the period of acquisition of

our images, which corresponds to the phase when the vegetation cover in the winter rapeseed

parcels is relatively dense, the radar captures little variability in the texture.

Once the measurement points have been recommended according to intra-parcel heterogeneities,

a specific protocol describing the acquisition of rapeseed biomass measurements in the field is

established. On each previously identified point, three samplings spaced 3 to 5m around the

recommended point are carried out, the aim being to better consider local heterogeneity.

Clustering algorithm

A given crop parcel is represented by a satellite image clipped to the contours of this parcel,

grouping a set of N pixels pi, i ∈ 1, . . . , N . Each pixel is a temporal vector of dimension T ,

where T corresponds to the number of acquisition time steps. The set of these pixels is denoted

by P = {p1, p2, . . . , pN} ∈ RT .

Clustering operation then consists of partitioning P into K distinct groups (clusters) whose set

is denoted by C = {c1, . . . , cK}.

We opted for a spatial-temporal clustering of the pixels based on the K-means method, a classi-

cal and widely used clustering technique, whose functioning is presented in the algorithm 2. It

aims at partitioning data into distinct groups by minimizing an objective function of distances

between the data points and the cluster centroids. The distance between two points pi and pj

is denoted by distance(pi,pj) in the algorithm.

In our work, where we consider time series data, we wanted to try two K-means clustering

techniques.

The first one consists of a classical K-means with Euclidean distances to measure the similarity

between the pixels which evolve over time and a standard averaging for the choice of the cen-

troids.
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The second technique consists of using a variant of the classical K-means with a new dis-

tance measure called dynamic time warping (DTW), introduced in [Sakoe and Chiba, 1971]

and [Sakoe and Chiba, 1978] and which seems to be the most adapted to measure the similarity

between the time series by taking into account the order of the sequences and their offset. Actu-

ally, DTW is able to find optimal global alignment between sequences and detecting so-called

flexible similarities, by aligning the points inside both sequences. In this variant of K-means,

called K-means-DTW Barycenter averaging (DBA-K-means) and detailed in [Petitjean et al.,

2011], a new averaging method has been proposed. It consists of iteratively refining an initially

(arbitrary) average sequence, to minimize its squared DTW distance to averaged sequences.

Algorithm 2: K-means

Input: The predefined number of clusters K

The input data set P composed of N pixels, P = {p1, p2, . . . , pN} ∈ RT

1 Centroids initialization of the K clusters producing the set of clusters C = {c1, . . . , cK};

2 ∀i ∈ [1, N ], assign each element pi to the closest centroid;

3 Compute the cost (inertia) function J

J =

N∑
j=1

K∑
k=1

I(pj ∈ ck) distance(pj , c̄k)2

where I(X)=1 if X is true, 0 otherwise, until J is below a certain desired threshold ε;

4 Re-compute the new centroid of each cluster by mean vector as follow

c̄k =
1

|ck|
N∑
i=1

I(pi ∈ ck) pi

where |ck| is the kth cluster number of elements;

5 Repeat steps 2, 3 and 4 until the centroids configuration C does not change;

For the initialization phase, which is an important step that can be determinate, instead of

choosing the centroids of the clusters randomly, we opted for a strategy, known under an im-

proved version of classical K-means noted K-means++ [Arthur and Vassilvitskii, 2007], which

allows, by trying to keep the centroids far from each other, a better data spreading. This cen-

troids initialization is done with the following steps:

• Choose an initial center c1 uniformly at random from P.

• From remaining points of P, choose a new center ci with probability

D(ci)
2∑

p∈P D(p)2

where D(p) is the shortest distance from a data point p to the closest already chosen



CHAPTER 3. ESTIMATION OF PLANT BIO-PHYSICAL VARIABLES BY SATELLITE
IMAGERY : CASE OF BIOMASS OF SOME MAJOR CROPS 109

centroid.

• Repeat both previous steps until K centroids are selected.

The threshold was set to 1e−6 and the final results correspond to the best inertia value over 20

runs with different centroid seeds.

3.2.4 Clustering results

Figure 3.12 shows the results of the pixel clustering into three distinct groups of time series

within the P4 parcel, obtained using the standard Euclidean K-means (figure 3.12a) and DBA-

K-means variant (figure 3.12b). The accompanying visuals are given in the figure 3.11.

(a) Standard Euclidean K-means (b) DTW Barycenter Averaging K-means

Figure 3.11: Visual comparison of the classification results obtained with both clustering

strategies over the parcel P4.
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(a) Clustering results in parcel P4 with euclidean distance strategy

(b) Clustering results in parcel P4 with DTW-DBA distance strategy

Figure 3.12: Example results of pixel temporal evolution clustering in three clusters over one of

the four parcels studied, P4 parcel. Clustering is applied to the radar ratio band σ0
V H/σ

0
V V . For

each cluster whose time series are represented in light black and the two dashed black curves

indicate the dispersion (mean± standard deviation), the green graph represents the time-series

average, while the red graph represents the cluster center.

Figure 3.13 shows some visualizations of the classification results obtained on the four parcels.
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(a) (b)

(c) (d)

Figure 3.13: Final results visualization for the location of biomass measurement points ac-

cording to intra-parcel heterogeneities. The points pi correspond to the points designated for

the biomass measurements, based on 3 distinct points per cluster.
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(a) (b)

Figure 3.14: Pictures were taken in the P4 field in order to check the coherency in the clustering

results. picture 3.14a was taken in an area in the centre of the field, while picture 3.14b was

taken at the border of the field.

3.2.5 Discussion

In this work, a tool was proposed to recommend the locations in the parcel where winter rape-

seed biomass measurements can be collected, in order to enrich the database for developing

statistical models for biomass estimation. These locations are defined in terms of intra-parcel

disparities, allowing the measurements taken to be as representative as possible in terms of the

covered variability.

An unsupervised approach of clustering pixels that vary over time was used, using a K-means

algorithm. Two measures of similarity of each time series were tested, the most classical mea-

sure being the Euclidean distance, and another measure, more adapted to sequential data, dy-

namic time warping (DTW).

Globally, both approaches give relatively similar results in terms of inertia, with, however, a

slight advantage for the DTW distance. Indeed, this latter measure would have been much

more efficient than the classical Euclidean distance if the pixels varied with different profiles,

which is not the case for the Sentinel-1 data, as it is able to detect shifts in the alignment of the

sequences.

The results also show that, in general, the algorithm tends to group the pixels at the borders of

the parcel into a common group. This tendency can be clearly observed, through the orange-

colored cluster, in figure 3.13d of the parcel P4.

Therefore, and in order to understand what happens in the field and to check the consistency

of the clustering results with the field heterogeneities, the plants’ vegetation cover was closely

studied. As an example, in the parcel P4, Figure 3.14 illustrates the difference in winter rape-

seed canopy cover, reflected in the classification of these points into different clusters.
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In effect, picture 3.14a below was taken in a point belonging to the blue coloured cluster (more

exactly close to the point p3 of figure 3.13d ), while image 3.14b was captured from a point

located at the border of the parcel.
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4.1 Introduction

Data assimilation contributes to the development of so-called precision agriculture [Jin et al.,

2018b]. As experimental measurements carried out in the field can be costly or even imprecise,

the resulting varietal characterization is often insufficient to extrapolate a yield forecast of suf-

ficient quality in a distinct environmental context. Data assimilation leverages data available

in new contexts to extrapolate and make more specific the prediction of a generic model (or a

model calibrated in a different condition), in order to provide a much more reliable forecast. In

addition, data assimilation has proved to be suitable for the acquisition of data from automated

sources, more particularly remote sensing, thus allowing the forecasting tool to be dynamically

updated each time new data are available.

The basic principle of data assimilation consists of characterizing the parameters of the model

to be estimated by probability distributions (the so-called Bayesian viewpoint) and updating

these probability distributions according to the experimental data collected. This protocol re-

quires, within the framework of filtering methods, to sample the initial probability distributions

using ’particles’, then to propagate these particles independently of each other utilizing of the

dynamic model equations, before selecting them according to their pertinence regarding the

experimental data [Wikle and Berliner, 2007b].

In the scope of our thesis, we implemented and used a method derived from [Chen and Cournède,

2014], in which the particle selection process is enhanced by a convolution step ensuring a bet-

ter diversity in the particle population and thus a better exploration of the space of the param-

eters to be estimated.

In this section, we will first briefly describe the functioning of the deterministic mechanistic

model adapted to the growth of soft winter wheat. The data assimilation algorithm used in the

statistical framework of a general state-space model will then be described, before presenting

some results of the application of the assimilation method on the mechanistic model. We will

then conclude with a discussion phase.
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4.2 Winter wheat plant growth model: Mechanistic Modelling of

Plant-Environment Interaction (MMPE)

We developed a version of the STICS model [Brisson et al., 2003] (Simulateur mulTIdisciplinaire

pour Cultures Standards) adapted to soft winter wheat. It consists in the mechanistic and deter-

ministic modeling of the plant-environment interaction, characterized by a detailed considera-

tion of biophysical and physico-chemical processes, cultural practices and soil characteristics.

This approach relates the carbon, water and nitrogen balances within the plant organs to its

environment, enabling the prediction of the yield, simulated at compartment level per unit

of land surface area, as well as the protein content of the crop. In addition to the phenological

stages, the growth in STICS is driven by an empirical law for the Leaf Area Index (LAI) growth.

This index represents, for a given surface, the cumulative area of leaf blades located above a

given surface by projection onto the ground.

Figure 4.1 below illustrates, in a global manner, the main processes involved in the STICS model

adapted to the winter wheat crop.

In this mechanistic model, the growth of soft winter wheat is given in the form of a discrete

dynamical system (4.1), with function f , describing the transition from the state variables at

time n denoted by xn (compartments biomass, leaf area index, . . . etc.) to their states at time

n + 1, denoted by xn+1 with a daily time step. This transition depends on the previous state,

but also on the environment variables un at instant n (cultural conditions, climate, . . . etc.) and

the plant physiological parameters denoted by θ.

xn+1 = f(xn, un, θ) (4.1)

All the details concerning the processes and equations of the STICS model can be found in

[Brisson et al., 2008], where the precise growth equations are given.
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Figure 4.1: Global scheme of the mechanistic modelling of the soft winter wheat growth in

interaction with the environment.
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4.3 Data assimilation approach

4.3.1 The filtering problem in the context of Bayesian inference

To introduce filtering and the issues that we want to address in this part, let us start by recall-

ing the concept of general state-space model, on which the used mechanistic model of wheat

growth can be based, with a few adjustments.

Given augmented state variables x (augmented, in the sense that the vector of parameters,

which we denote by θ, is incorporated in the state equation by considering that it has a con-

stant evolution, the aim is to estimate jointly the parameters and the states), parameters θ, envi-

ronmental variables u, noisy observations y, and a discrete-time step n, the general state-space

model dynamics is defined by the following system of equations:xn = fn(xn−1, θ, un, εn)

yn = gn(xn, θ, ηn)
(4.2)

where the random variables ε and η are the modeling and observation noises, respectively. fn
and gn encode time-dependent model and observation functions.

Equations 4.2 can represent dynamic systems, whether they are probabilistic such as hidden

Markov model (HMM) [Cappe et al., 2005] on which some plant growth models can be built

[Cournède et al., 2013], or deterministic such as the STICS model that we use in this work. In

the deterministic model we simply consider that the ε and η noises are zero with probability 1.

Starting from a prior distribution p(x0) on the initial state, state variables follow a a dynamic

evolution characterized by a sequence of transition functions fn(xn|xn−1). Observations are

considered conditionally independent and described by a conditional probability density func-

tion gn(yn|xn). The problem that we want to address in the following is to determine the pos-

terior distribution p(xk|y1:n), given a sequence of experimental observations y1:n = y1, . . . , yn.

In the case where k < n, we face a smoothing problem, while if k > n it represents a prediction

problem. In our work, our interest is the case where k = n, which is called a filtering problem

and falls within the framework of Bayesian inference, whose aim is to use prior knowledge to

infer the conditional probability given limited observations, through the application of Bayes

rule [Bayes, 1763] which we recall below.

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ (4.3)

The posterior distribution p(θ|y) is expressed as a function of the prior distribution p(θ) and

the likelihood p(y|θ).

4.3.2 Convolution Particle Filter

Sequential Monte Carlo in a Particle Filter framework
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Sequential Monte Carlo (SMC) methods [Del Moral, 2004, Arnaud Doucet and Gordon, 2001]

are powerful algorithms to perform Bayesian inference in dynamic systems. These methods,

also known under the heading of particle filters in the context of dynamic systems, have be-

come extremely popular way beyond the borders of the statistics community.

The idea of such methods is to represent the probability distributions by particles, i.e. indepen-

dent identically distributed samples of the distributions, and to propagate and update them

using the general state-space model equations, hence the equivalent nomenclature of particle

filter methods.

One of the main challenges is to circumvent the famous particle degeneracy problem [Gordon

et al., 1993] and to ensure that parameter space is widely explored to enable accurate estima-

tion.

Several methods have been proposed to address this challenge, among which iterated filter-

ing [Ionides et al., 2011] and particle Markov chain Monte Carlo [Andrieu et al., 2010] in the

specific context of joint parameter/hidden state estimation. They constitute batch or offline

methods, however, in that they are unable to take into account new observations dynamically.

A distinct idea is to allow freedom in parameter space by regularizing the posterior density

using a mixture, these are the so-called Regularized Particle Filter methods.

Regularized Particle Filtering and Convolution Particle Filtering

Regularized particle filter methods [Musso and Oudjane, 1998] [Oudjane and Musso, 1998]

represent an interesting variation of traditional particle filters. They rely on kernel-based pos-

terior density estimation at each filtering step, with particle resampling performed from the

reconstructed density.

In many situations, this method was proven to help prevent sample impoverishment in the

resampling step and thereby enhance the robustness of particle filtering.

Inspired by the Regularized methods, the objective of Convolution Particle method, proposed

by [Campillo and Rossi, 2009], is to estimate simultaneously the parameters θ and the state xn
based on the observations y1:n = {y1, . . . , yn}.

The filtering process is performed recurrently in two steps and occurs only at time steps when

observations are available.

The first step, called prediction stage, aims to provide a kernel estimate p̂(xn, y1:n) of p(xn, y1:n).

M particles {x̃(i)
n−1, i = 1, . . . ,M} are sampled from p̂(xn−1, y1:n−1) and propagated through

the dynamical model until the next available measurement, leading to a sample {x̃(i)
n , ỹ

(i)
1:n, i =

1, . . . ,M} from p(xn, y1:n).

The empirical kernel estimation of the joint density of (xn, y1:n), p̂(xn, y1:n) is deduced using the

Parzen-Rosenblatt [Parzen, 1962] Gaussian kernels KxhxM and Ky
hyM

with bandwidth parameters
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hxM and hyM as follows:

p̂(xn, y1:n) =
1

M

n∑
i=1

KxhxM (xn − x̃(i)
n )Kȳ

hȳM
(y1:n − ỹ(i)

1:n) (4.4)

where

Kȳ
hȳM

=
n∏
s=1

Ky
hyM

(ys − ỹ(i)
s )

In the next step, called the correction stage, we aim to provide a kernel estimate of the optimal

filter p(xn|y1:n), p̂(xn|y1:n), is deduced from the prediction step and Bayes’ law as follows:

p̂(xn|y1:n) =

∑M
i=1KxhxM (xn − x̃(i)

n )Kȳ
hȳM

(y1:n − ỹ(i)
1:n)∑M

i=1K
ȳ

hȳM
(y1:n − ỹ(i)

1:n)
(4.5)

The part (Kȳ
hȳM

(y1:n − ỹ(i)
1:n)/(

∑n
i=1K

ȳ

hȳM
(y1:n − ỹ(i)

1:n)) can then be considered as the normalized

weight w̃(i)
n of the particle x̃(i)

n .

The new set of particles {x̃(i)
n , i = 1, . . . ,M} are samples from p̂(xn|y1:n) to perform the cor-

rection at the next time n + 1 with available observation and so on. The convolution particle

filtering algorithm used in this thesis is presented in 3 pseudo code.

Finally, other SMC-based data assimilation approaches have been discussed in various research

papers. In [Chen et al., 2013], the authors have tested the performance of three data assimila-

tion approaches to predict biomass production and allocation in a dynamically evolving prob-

abilistic plant-growth model. In addition to CPF, the Unscented Kalman filter (UKF) and the

ensemble Kalman filter (EnKF) were investigated and assessed in the context of sequential data

assimilation problems for a plant growth model.
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Algorithm 3: Convolution Particle Filter

Result: posterior distribution p̂(xT |y1:T )

1 Initialization phase :

2 At time step t = 0;

3 for i = 1 : M do

4 Initial sampling of x(i)
t from the parameters prior distribution;

5 end

6 for t = 1 : T do ⇒ loop over observation timeline

7 for i = 1 : M do ⇒ loop over particles

8 Prediction phase :

9 State sampling x̃(i)
t ∼ p(xt|x̃

(i)
t−1);

10 Observation sampling ỹ(i)
t ∼ p(yt|x̃

(i)
t );

11 Weight computing and normalization :

12 w
(i)
t = Kȳ

hȳM
(y1:n − ỹ(i)

1:n);

13 w̃
(i)
t =

w
(i)
t∑M

k=1 w
(k)
t

;

14 end

15 Correction phase :

16 p̂(xt|y1:t) =
∑M

i=1 w̃
(i)
t KxhxM (xt − x̃(i)

t );

17 New particle sampling x̃(i)
t ∼ p̂(xt|y1:t)

18 end

19 Return samples from the posterior distribution p̂(xT |y1:T ) ;
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4.4 Method implementation on mechanistic winter wheat growth model

Figure 4.2: Localization of two experimental parcels of the same soft winter wheat variety

(Apache cultivar). For each parcel, the information on agricultural grain yield at 12% of hu-

midity is given in g/m2.

Our objective in this experiment is to study the performance of the CPF-based data assimilation

algorithm applied to the mechanistic winter wheat growth model described in section 4.2, the

aim being to improve the predictive power of such a model with the support of experimental

data which may represent different state variables of the mechanistic model and that can be

collected in fields or estimated from different sources such as remote sensing.

In [Chen and Cournède, 2014], a data assimilation approach using the Convolution Particle

Filtering algorithm has been proposed and applied to a mechanistic STICS-type wheat growth

model with the objective of improving the model prediction, based on field measurements of

LAI and soil averaged water content. The results obtained were promising and the filtering

method demonstrated its robustness.

In our work, and in the same perspective of using the CPF-based data assimilation method to

improve the predictive power of our winter wheat growth model which is an adaptation of the

STICS model, we want to test a slightly different approach, by calibrating the soil parameteri-

zation of the model using a sequence of synthetic biomass data, more precisely above-ground

dry matter data.

Indeed, we started from a first observation established through experimental agricultural yield

data in soft winter wheat parcels in France over the 2014/2015 agricultural campaign. Figure

4.2 illustrates two of these winter soft wheat parcels.

We thus noted strong differences in yields on parcels of the same variety of soft winter wheat,

namely Apache cultivar, with, in principle, similar environmental conditions, since the parcels

are located in the same production basin, or even very close to each other.
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For readers who are familiar with STICS model notations recalled in detail in [Brisson et al.,

2008], note that yield is usually represented by the state variable MAGRAIN, which represents

the dry matter of grain yield. In our work, experimental yield data are reported in grain fresh

matter, at 12% of humidity.

Based on available experimental field-measured soil parameters data, it appeared that these

differences in yield are most probably explained, in large part, by the fact that the two parcels

have different soil potentials, which reveals the importance of data related to soil parameters

in mechanistic growth models, notably for soft winter wheat.

The soil potential also called the useful plant reserve represents the soil water content and is

expressed by the state HUR in the STICS model, which corresponds to the difference between

water content at field capacity in the seedbed and the wilting point water content in the seedbed

(the humidity at the wilting point is the quantity of water below which the plant no longer has

access to water because it is too difficult to extract from the soil). These last two parameters are

represented in STICS by HXS and HNS, respectively, and expressed in mm water/cm soil unit.

Therefore, the approach that we chose to evaluate the contribution of the CPF-based data as-

similation algorithm is explained below.

In order to assess the application potential of the CPF-based data assimilation algorithm to

the mechanistic model, we generated simulated biomass data (more precisely above-ground

dry matter data, denoted by MASEC state in STICS) using the mechanistic wheat growth

model with a given soil potential (HUR and the soil layers depth over three horizons) and

pre-calibrated variety parameters, using a sensitivity analysis and a simple calibration step.

This alternative of using simulated biomass data is dictated by the lack of field data.

Figure 4.3 illustrates the evolution of the simulated data: above-ground dry matter (4.3a) as

well as some yields of the different winter wheat compartments (4.3b). We kept the same STICS

notations nomenclature in the legends of the two graphs.

The prior distributions of soil parameters were derived from the literature ([Brisson et al.,

2008]), and the generated biomass data generated were used to correct dynamically the model’s

soil calibration during the season to improve model yield prediction.

CPF-based data assimilation application and discussion

Convolutional Particle Filter data assimilation algorithm was performed using 10,000 particles.

Eight dates among the simulated above-ground dry matter data were selected for recalibration

and evaluation. The recalibration phase was performed using the first five data. Afterwards,

the model was simulated to give the predictions, which were then compared to the validation

data given by the three remaining experimental data. Note that simulations are performed

for each of the 10000 particles x̃(i)
5 obtained after the fifth date as samples of p̂ (x5|y1:5), thus

allowing to obtain samples of the distribution p̂ (yk|y1:5), with k = 6, 7, 8, and 95% credibility

intervals.
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Figure 4.3: Generation of simulated biomass data (expressed as above-ground dry matter

MASEC in g/m2 in 4.3a and the biomass of the different wheat yield compartments in g/m2

(the grain dry mass MASECGRAIN, the grain humidity MAEAUGRAIN, and the grain fresh

mass, MAGRAIN) in 4.3b) using the mechanistic plant growth model adapted to soft winter

wheat with known soil potential and variety parameters.

An example of the results obtained is shown in Figure 4.4. It can be stated that, with this dy-

namic estimation of soil-related parameters, data assimilation has allowed a good predictive

capacity of the model with respect to the simulated validation data. These results remain how-

ever clearly improvable with more precise data, either field measured or statistically estimated

with the help of remote-sensing imagery.

Below, we present some more experiments to illustrate the impact of the dates of the observa-

tions used for model recalibration or the number of observations.

Subsequently, and in order to study the impact and importance of the observation times, the

data assimilation algorithm was run, using as recalibration data some above-ground dry matter

data simulated at precocious time-steps, potentially before the winter soft wheat second node

visible stage. The obtained results are presented in figure 4.5.

It can be seen that the results obtained are not satisfactory. It appears that the data used for the

recalibration phase, taken at dates before the soft winter wheat mounting stage, do not carry
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Figure 4.4: Result of averaged prediction of soft winter wheat above-ground dry matter by the

convolutional particle filter data assimilation algorithm in blue curve, based on experimental

data of the Apache variety. The dark blue dots represent the data used for the assimilation,

the light blue dots represent the data used for the validation of the method. The two red curves

correspond to the 95% credibility interval (CI) limits at each time step.

enough information for the parameterization of the soil parameters. During this early stage,

there is not yet any soil water stress and therefore the soil parameters do not have any impact,

at this stage, on the simulated growth of the wheat.

Another experiment, aimed at assessing the importance of the number of observations dates,

was carried out. For the recalibration phase, instead of taking 5 simulated experimental data,

only the first 3 dates were considered. The results are presented in figure 4.6.

We can clearly observe that we perform less well than the results shown in figure 4.4, hence the

importance of having more data to assimilate.

Finally, a perspective of this work would be to use the evaluation of biomass or biophysical

variables from satellite images (presented in Chapter 3 ) as inputs of the data assimilation algo-

rithm, with a clear advantages in terms of costs and scalability compared to approaches as in

[Chen and Cournède, 2014] where data assimilation was performed from field measurements.
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Figure 4.5: Importance of the timing of observations: the result of prediction of soft winter

wheat above-ground dry matter by the convolutional particle filter data assimilation algo-

rithm, based on simulated observation data of the Apache variety chosen at dates before the

molting stage of soft winter wheat. The dark blue dots represent the data used for the assimi-

lation, the light blue dots represent the data used for the validation of the method.
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Figure 4.6: The importance of the number of observation dates: the result of prediction of soft

winter wheat above-ground dry matter by the convolutional particle filter data assimilation

algorithm, based on simulated observation data of the Apache variety. The dark blue dots

represent the data used for the assimilation, the light blue dots represent the data used for the

validation of the method.



Conclusion & Perspectives

In this work, we discussed topics that can contribute to answering some of the requirements of

today’s agriculture, a field in constant search of improvement through new technologies. The

first application that we studied concerns the identification of crop types in a production basin.

We have used satellite imagery coupled with statistical learning to build models capable of

providing better visibility on crop rotation and agricultural surfaces of field crops. Our second

application concerns agricultural yield forecasting. We only studied some specific parts of this

vast research domain. We started by evaluating the potential of satellite imagery, more specif-

ically radar imagery, for the estimation of plant biophysical variables and growth dynamics

monitoring using simple statistical models. Then, we proposed a tool, still based on satellite

imagery, to determine the optimal locations of measurement points at the parcel scale. Finally,

we presented an implementation of a Convolution Particle Filter data assimilation algorithm,

which was applied to a mechanistic wheat growth model in order to improve the predictive

power of such a model, based on field measurements of Leaf Area Index and averaged Soil

Water Content. We detail in the following the main contributions of our work as well as the

perspectives that could emanate from our results.

Contributions

Radar remote sensing for crop monitoring

We started by recalling the basic concepts of how radar technology works and the various op-

erations to calibrate a radar image so that it is ready for exploitation. We then conducted a

statistical experimental plan with the objective of evaluating the effect of the interaction be-

tween incidence angles and pedo-climate on the radar response of vegetation areas. In fact,

we tried through this study to answer a more global question: at what point statistical models

trained on imagery data acquired in a given area/year remain valid for another area/year?

Also, through this experimental design, we tried to analyze and interpret the elements that

drive the radar signal’s evolution during the plant growth cycle.

Crop type recognition by machine learning methods using satellite images

We have proposed an approach allowing the recognition of crop types at the scale of a produc-

tion basin days or even a few months before the harvest. This subject bears several interests

and applications that we largely developed in the introduction but also within the part dedi-

cated to crop recognition in our manuscript. This approach is based on the temporal dynamics

129
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of the radar signal returned by the vegetation coverage from each satellite image pixel during

the growth cycle of the plants, as a particular signature allows the identification of each crop

type. For this purpose, we chose to use two supervised deep learning models: Long Short-Term

Memory (LSTM) recurrent and Convolutional Neural Network (CNN) models. The function-

ing of these models were presented. We also detailed the proposed approaches to manage

inputs and outputs in the context of crop identification at the pixel level of the satellite image.

Our proposal is conceived such that the models may be able to produce an evaluation of the

cropland cover without having to label parcels at the beginning of the campaign. For this

purpose, we used models calibrated using data from previous campaigns. We called it ”inter-

annual” approach.

We also presented an ”intra-annual” approach, which consists in recognizing the main crops

during a given campaign with models trained on a few parcels during the same campaign.

This task is easier since it avoids the problem caused by the variability of the growth dynamics

of the same plant from one season to another, but also from one region to another if the training

fields are located in the prediction production basin. However, such an approach raises other

difficulties from a feasibility point of view. Indeed, having training parcels requires either being

in contact with farmers who can tell us what they have sown, or going out into the field to

manually label a certain number of parcels. To all this is added an additional level of difficulty,

the training data collected must ensure a certain level of precision and as much variability as

possible. As a matter of fact, depending on the cultural practices, the development of a given

crop may be different from one exploitation to another, or even from one parcel to another.

These processes remain very complicated to achieve if one wants to develop automatic and

large-scale tools. To remedy all these obstacles, the approach we propose allows us to produce

an evaluation of cropland cover through statistical models trained on crop occupation data

from previous farming seasons, data that are reasonably available.

In the proposed approach, our first intuition was to rely on the growth dynamics captured

by satellite imagery, expressed in calendar time, to differentiate crops. However, this growth

dynamic can vary from one campaign to another and is strongly driven by the pedoclimatic

environment, cultural practices, as well as the concerned crop characteristics, such as its frosts

resistance. Therefore, the dynamic in calendar time of the radar images can be very different

from one campaign to another, either with the same evolutionary dynamic but shifted in time,

or with a quite different dynamic evolution.

We then proposed an approach in which the phenological development of the plant was con-

sidered to identify its species. Instead of using calendar time series of the radar response, we

proposed to use time series aligned with the thermal time, a key concept in plant science, to

readjust the shift and/or difference in the dynamics of the radar response. It allows a better

synchronization of the radar backscatter evolution between different years. This idea was mo-

tivated by the fact that a priori, independently of the pedoclimatic conditions, the cultivation

practices or the crop degree of resistance, a specific phenological stage of a given crop is reached
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at a given level of temperature accumulation, hence of thermal time, ensuring the robustness

of the inter-annual variation of crop development dynamics.

Note that I also integratd the methods developed in this chapter into an industrial application

module at CybeleTech, which is now used to deliver services to several clients, and has thus

broadly demonstrated the validity of the approach.

Estimation of plant bio-physical variables by satellite imagery

We discussed the large potential of microwaves for the estimations of plant biophysical vari-

ables. Based on biomass data of the different soft winter wheat compartments measured in the

field, we investigated the interest of Sentinel-1 imagery for the estimation of these variables

by fitting some simple statistical models. We started by performing a Pearson’s correlation

coefficient analysis in order to assess the relationship between backscatter and above-ground

biomass field measurements. First, to compensate for the fact that the Sentinel-1 radar signal is

noisy from one date of acquisition to another, a behavior that is reflected by a visible instability

of the signal, we proposed filtering of backscatter time series using the cubic spline interpo-

lation method. We observed that there is a relation between the filtered backscatter and the

biomass. Typically, the foliage is the compartment that most characterizes this relationship. It

is probably due to the fact that in the radar signal captured from plants, leaves are the most

exposed part of the plant, and therefore the most important contributor to the signal. This has

already been discussed earlier in paragraph 8 of the present manuscript.

Then, based on the earlier analysis, simple regression models were fitted: least squares and

logarithmic-transformed linear regressions. Using the mean squared error as a metric, the per-

formance assessment of these models was done by splitting the available biomass data into two

subsets: train to fit the models and test to validate the results.

We have considered that the most interesting statement should be obtained for the leaf biomass,

the compartment most correlated with the radar response as mentioned above. Indeed, by

applying the logarithmic transformation model, we were able to improve the results on the

validation data set compared to the simple least-squares linear regression. This transformation

was performed after the analysis of the scatter plot of the radar ratio band with in situ measured

leaf biomass. It showed a curved trend that can be explained with an exponential model, hence

the importance of the correlation analysis.

Furthermore, we also trained a random forest model on the data at our disposition and the re-

sults obtained in terms of MSE were worse than those obtained with the two previous models,

so they are not reported here. It is however probable that the RF would have performed better

with a larger data set.

In the second part of this chapter, we presented a tool providing recommendations on the

positioning of measurement points in parcels considering the intra-parcel heterogeneity. These

locations leverage intra-parcel disparities, aiming to make the measurements as representative

as possible.
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We proposed an approach based on unsupervised K-means clustering of the radar response

dynamic in each pixel. Two measures of similarity of each time series were tested, the most

classical Euclidean distance measure, and another measure, more adapted to sequential data,

dynamic time warping (DTW). Globally, both approaches provided relatively similar results in

terms of inertia, with, however, a slight advantage for the DTW distance. This latter measure

would have been much more efficient than the classical Euclidean distance if the pixels varied

with completely different variation typology, which is not the case for the Sentinel-1 data, as it

can detect shifts in the alignment of the sequences. Finally, we observed that, in general, the

algorithm tends to group the pixels at the borders of the parcel into a common group.

Data assimilation methods to improve the predictive power of mechanistic plant
growth models

We presented an implementation of data assimilation methods to show how they can be used

to improve the predictive powers of plant growth models, by leveraging observation data that

could be estimated thanks to satellite imagery, thus opening perspectives of our work towards

large-scale yield predictions.

We started by describing the general functioning of mechanistic plant growth models. We then

discussed the interest of data assimilation as well as the general principle and operating details

of this approach. An experimental part was presented, in which we present an implementation

of a Convolution Particle Filter based data-assimilation algorithm and apply it to a mechanistic

model of wheat growth adapted from the STICS model. The objective was to calibrate the soil

parameters of the model using a sequence of synthetic simulated above-ground biomass data.

We relied on biomass simulated data as the few biomass data sets that were available to us

were incomplete and not very reliable. Starting with prior distributions of the most important

soil parameters in the model, and dynamically correcting model calibration using experimen-

tal biomass data, data assimilation has allowed good predictive capacity, when compared with

the simulated validation data. We also investigated the impact and the importance of the ob-

servation times as well as the number of available observations dates in the model calibration.

Finally, we believe that this feasibility study opens interesting perspectives for large-scale yield

prediction, notably by coupling the results of biophysical data estimation from satellite imagery

with the proposed data assimilation method.

Perspectives

Crop type recognition by machine learning methods using satellite images

The crop recognition tool that we have worked on is now integrated in a wider platform of

agricultural services. In this context, improving its reliability and robustness at large scales

is crucial. Because, even if the proposed models have shown quite satisfactory results on the

evaluations we have conducted Prediction errors still exist. For example, pixels covering a sub-

area of a parcel that has endured vegetation accidents may not be well identified. Similarly,

there are errors related to parcel border effects, where the spatial resolution of the satellite
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images used does not allow for differentiation between a field and its surroundings, and this

may lead to incomplete georeferenced prediction renderings. To face these issues, we have

started to work on two approaches. In the first one, we use the parcel contours over a set

of previous years from an existing crop rotation database, such as the RPG, to establish the

smallest common parcel for these years. Then, parcels are reconstructed by expanding the

predictions to the most probable crop on the parcel presenting uncertainties/anomalies in crop

identification. The second approach, which is necessary when there are no previous rotation

data, consists in developing parcel segmentation models based on optical satellite imagery.

Furthermore, the final renderings of predictions are usually analyzed visually. We have thus

started to work on a tool allowing an automatic diagnosis of the results of the predictions, the

idea being to establish a metric that we have called ”filling rate” and that allows us to indi-

cate how compact/dense the identified parcels are because we believe that it is an important

indicator of the quality of the predictions.

The purpose of this work is to know instantaneously if, for example, a model trained on area

A is acceptably portable on area B or not. In the case where the results on area B are not good

enough (for example in terms of the filling rate previously mentioned), for reasons that may

be related to unlearned variabilities or to imagery effects, the models must be re-trained on

this new zone for a better prediction quality. It leads to another perspective. Indeed, we can

imagine to re-train an already trained model instead of starting from scratch.

By way of medium and long-term perspectives, we believe that the proposed approach is prone

to be used to discriminate varieties (cultivars) of the same crop. Nevertheless, our first impres-

sion is that radar will not be enough and that it will be necessary to integrate other sources of

imagery such as optical, or even other imaging technologies. In this regard, we can mention,

for instance, works of [Schmitt et al., 2017] where challenges and contributions of the fusion of

SAR and optical remote sensing data have been discussed. Future trends in multi-sensor data

fusion are also discussed.

Also, it would be interesting to extend our proposal to the so-called perennial crops which

do not have an annual cycle and occupy the soil permanently, such as cotton or coffee. The

challenge would then be to determine the periods to consider in the study of temporal satellite

signals.

Estimation of plant bio-physical variables by satellite imagery

In addition to allowing the generation of logistically cost-effective, non-destructive, and in-

creasingly accurate measurement estimations, biophysical variable estimation using satellite

imagery can provide a source of quasi-real-time data to adjust the calibration of plant growth

models during the season via data assimilation methods. It promises more and more reliable

forecasts. The statistical models we proposed can thus be used as a complement to plant growth

models. Also, we believe that the diversification of imagery sources, such as the combination

of radar and optical, can allow the design of more robust statistical models for biophysical and
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agronomic variables estimation such as Leaf Area Index, a widely important variable in plant

modeling.

Data assimilation methods to improve the predictive power of mechanistic plant
growth models

As detailed above, a close perspective would be to use plant biophysical variables estimation

such as biomass or LAI through statistical models and remote-sensing as input data for data

assimilation. We concentrated on soil parameter characterization, but the idea of specifying a

generic model to a particular situation is far more general. Data assimilation can be used to

adapt to a new soil type, a new variety, or to new climatic conditions (e.g. severe stresses) not

taken into account by the model for example. As such, it bears similarity to the whole scientific

of ”domain adaptation” in statistical learning.

Conclusion

Through this work, we have recourse to a mixture of technologies to address some concrete

problems of today’s agricultural world. Benefiting from the availability of satellite imagery

with a reasonable spatial and temporal resolution and using artificial intelligence methods, we

have developed models allowing us to establish large-scale vegetation cover maps, particularly

for major crops. This mix of technologies also allowed us to address topics related to agricul-

tural yields. We discussed the contribution of satellite imagery in issues associated with the

estimation of plant biophysical variables, as well as the interest in data assimilation methods

for the improvement of agricultural yield predictions.

This thesis was prepared in an industrial context, in partnership with Cybeletech company,

allowing us to interact permanently with the different agricultural actors. From closer up, we

were able to assess the requirements, but also the issues and challenges of agriculture today

and tomorrow, which we might resume like this: how to improve productions and their qual-

ity while ensuring sustainable development of agriculture in an increasingly diversified and

complex context, marked by climate change.

Besides, we believe that this interaction with agricultural actors was and is essential to pro-

vide the most accurate and appropriate answers to their needs through tools designed with

them. Also, this work has highlighted the crucial importance of data if we wish to propose

increasingly accurate tools. Rightly so, this interaction with the agricultural actors can allow us

to obtain data in quantity and of satisfactory quality because an agricultural actor who better

understands the interest of what we propose to him is an actor who is ready to provide the

maximum of data possible.

At last, we would like to underline that our work aims at accompanying the different actors of

the agricultural chain; in any case, the digital and the new technologies can replace the farmer

and his know-how.
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L., Dôres, J., and Patanita, M. (2021). Yield, technological quality and water footprints of

wheat under mediterranean climate conditions: A field experiment to evaluate the effects of

irrigation and nitrogen fertilization strategies. Agricultural Water Management, 258:107214.

[Tupin et al., 2019] Tupin, F., Denis, L., Deledalle, C.-A., and Ferraioli, G. (2019). TEN YEARS

OF PATCH-BASED APPROACHES FOR SAR IMAGING: A REVIEW. In IGARSS (Interna-

tional Geoscience and Remote Sensing Symposium), Yokohama, Japan.

[Ulaby, 1982] Ulaby, F. R. M. A. F. (1982). Microwave Remote sensing active and passive; V. 2 -

Radar remote sensing and surface scattering and emission theory. Addison-Wesley.

[Valero et al., 2016] Valero, S., Morin, D., Inglada, J., Sepulcre, G., Arias, M., Hagolle, O.,

Dedieu, G., Bontemps, S., Defourny, P., and Koetz, B. (2016). Production of a dynamic crop-

land mask by processing remote sensing image series at high temporal and spatial resolu-

tions. Remote Sensing, 8(1).

[van Klompenburg et al., 2020] van Klompenburg, T., Kassahun, A., and Catal, C. (2020). Crop

yield prediction using machine learning: A systematic literature review. Computers and Elec-

tronics in Agriculture, 177:105709.



BIBLIOGRAPHY 147

[Veloso et al., 2017] Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F.,

and Ceschia, E. (2017). Understanding the temporal behavior of crops using sentinel-1 and

sentinel-2-like data for agricultural applications. Remote Sensing of Environment, 199:415–426.

[Venugopalan et al., 2015] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T.,

and Saenko, K. (2015). Sequence to sequence – video to text.

[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,

Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,

M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
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Résumé:
La principale thématique étudiée dans ce travail con-
cerne l’identification des types de cultures par imagerie
satellite radar avec des modèles d’apprentissage statis-
tique. L’identification des cultures permet le suivi au-
tomatique de la couverture du sol et l’estimation des sur-
faces plantées ainsi que l’amélioration de la prévision
des rendements agricoles, c’est l’autre sujet traité dans
ce travail. Pour ces travaux, nous avons pu compter
sur un allié majeur, l’imagerie satellitaire qui fournit des
images multi-temporelles à haute résolution offrant une
réelle opportunité de suivre l’évolution des propriétés
réflectives des plantes durant leur croissance, en fonc-
tion des variations liées à la phénologie et au pédoclimat.
Nous utilisons l’imagerie radar Sentinel-1 assurant une
indépendance vis-à-vis des conditions climatiques. Notre
approche pour la reconnaissance des cultures est basée
sur l’utilisation de la dynamique de croissance des
plantes pouvant être capturée par l’imagerie satellite
pour discriminer les cultures. Il s’agit d’une approche
par pixels pour laquelle nous avons choisi d’utiliser
deux modèles supervisés d’apprentissage statistique, les
réseaux de neurones récurrents LSTM et les réseaux de
convolution CNN. Notre approche est conçue de telle
sorte que le modèle puisse produire une évaluation du
couvert végétal sans avoir à labelliser des parcelles en
début de campagne, opération complexe à réaliser. Nous
avons donc cherché à calibrer les modèles en utilisant
les données des campagnes précédentes. Nous pro-
posons une méthode dans laquelle le développement
phénologique de la plante est considéré pour l’identifier
en utilisant le concept du temps thermique. Cela permet
de compenser la variabilité inter-annuelle, qu’elle soit
pédo-climatique, liée aux caractéristiques de la culture
comme la résistance aux épisodes de gel, ou due aux pra-
tiques culturales. L’identification des cultures peut servir
l’amélioration des prévisions de rendement résultant

d’une meilleure connaissance des surfaces plantées. C’est
une autre thématique de recherche de notre thèse. La re-
connaissance des cultures peut constituer un élément es-
sentiel dans le processus visant à obtenir des prévisions
de rendements les plus précis possible. En identifiant le
type de culture dans le champ, nous connaissons les car-
actéristiques phénotypiques de cette culture pour pou-
voir estimer les paramètres biophysiques, ce qui, couplé
aux données pédoclimatiques et aux pratiques culturales,
nous permet d’aller vers une prévision précise des ren-
dements agricoles en utilisant les modèles de croissance
des plantes, les méthodes de calibration et d’assimilation
de données. Cette méthodologie pour la prévision des
rendements à l’échelle de la parcelle ou de la région est
également étudiée dans cette thèse. En effet, la con-
naissance anticipée des rendements agricoles est un en-
jeu majeur en agriculture: dans un bassin de produc-
tion, pour le chef de silo afin de prévoir la logistique
de culture et de stockage des grains ou à plus grande
échelle, pour anticiper les crises agricoles. Dans ce con-
texte, nous avons commencé par évaluer le potentiel
de l’imagerie radar pour le développement de modèles
statistiques permettant l’estimation des variables bio-
physiques des plantes telles que la biomasse. Nous avons
également proposé un outil permettant de conseiller le
positionnement des points de mesure dans les parcelles
agricole en fonction des hétérogénéités intra-parcellaires
et en utilisant un clustering non supervisé de type K-
means de la dynamique de la réponse radar de chaque
pixel. Ensuite, nous présentons une mise en œuvre des
méthodes d’assimilation de données pour montrer com-
ment elles peuvent être utilisées pour améliorer les pou-
voirs prédictifs des modèles de croissance des plantes.
Nous utilisons un algorithme d’assimilation de données
basé sur le filtre particulaire par convolution appliqué
à un modèle mécaniste de croissance du blé dérivé du
modèle STICS.
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Abstract: The main thematic studied in this work con-
cerns the identification of crop types using radar satel-
lite imagery by using statistical learning models. Crop
type identification allows the automatic monitoring of
land cover and the estimation of planted areas as well as
the improvement of the prediction of agricultural yields,
this is the other topic that will be addressed in this work.
For these works, we could count on a major ally, the
satellite imagery which provides multi-temporal images
with high resolution offering a real opportunity to track
the evolution of the reflective properties of plants during
their growth, according to the variations related to the
phenology and the pedoclimate. We use radar remote
sensing imagery ensuring independence from climatic
conditions, more precisely, images from the Sentinel-1
satellite. Our approach for crop recognition is based on
the use of plant growth dynamics that can be captured
by satellite imagery to discriminate crops. It is a pixel-
based approach for which we have chosen to use two
supervised statistical learning models, LSTM recurrent
and CNN convolutional neural networks. Our approach
is designed so that the model can produce a vegetation
coverage assessment without having to label parcels at
the beginning of the season, which is a very complex
operation to perform. We, therefore, sought to calibrate
the models using data from previous seasons. We pro-
pose a method in which the phenological development
of the plant is considered to identify its species using the
concept of thermal time. This allows compensating the
inter-annual variability, whether it is pedo-climatic, re-
lated to the characteristics of the crop such as the resis-
tance to frost episodes, or due to the cultivation practices.

Crop type identification can be useful for several applica-
tions, such as improving yield forecasting through a bet-
ter knowledge of the planted areas. This is another re-
search theme of our thesis. Crop recognition can be an
essential element in the process of obtaining the most ac-
curate crop yield forecasts possible. By identifying the
type of crop in the field, we know the phenotypic char-
acteristics of that crop to be able to estimate the biophysi-
cal parameters, which, coupled with soil-climate data and
cultivation practices, allows us to move towards accurate
crop yield forecasting using plant growth models, calibra-
tion and data assimilation methods. This methodology
for yield forecasting at the scale of the parcel or the region
is also studied in this thesis. The anticipated knowledge
of agricultural yields is a major challenge in agriculture:
in a production basin, for the silo manager to predict the
logistics of cultivation and storage of grains or on a larger
scale, to anticipate agricultural crises. In this context, we
started by evaluating the potential of radar imagery for
the development of statistical models allowing the esti-
mation of plant biophysical variables such as biomass.
We also proposed a tool allowing to recommend the posi-
tioning of measurement points in agricultural parcels ac-
cording to intra-parcel heterogeneities and using an un-
supervised K-means clustering of the radar response dy-
namics of each pixel. Next, we present an implementa-
tion of data assimilation methods to show how they can
be used to improve the predictive powers of plant growth
models. We use a data assimilation algorithm based on
the particle convolution filter applied to a mechanistic
wheat growth model derived from the STICS model.
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