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Examiner/Reviewer Prof. Antti Tölli University of Oulu, Finland
Examiner/Reviewer Prof. Meixia Tao Shanghai Jiao Tong University, China
Examiner Prof. Daniela Tuninetti University of Illinois Chicago, U.S.A.
Examiner Prof. Giuseppe Caire Technical University of Berlin, Germany
Examiner Prof. Marios Kountouris EURECOM, France
Thesis Advisor Prof. Petros Elia EURECOM, France





Systèmes de Liaison Descendante Assistés
par Cache Hautes Performances: Nouveaux

Algorithmes et Analyses

Thèse
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Abstract

In this thesis, we focus on the design and analysis of physical layer (PHY) coded caching
schemes for content delivery in realistic wireless networks. The main aim of this thesis is
to show that cache-aided PHY techniques can indeed be used to substantially boost the
performance of existing cutting-edge wireless systems. To do this, we employ advanced
analytical methods inspired by random-matrix theory, as well as provide novel solutions
that substantially ameliorate some of the bottlenecks that have been known to diminish
cache-aided gains in wireless settings.

The thesis first addresses the worst-user bottleneck of wireless coded caching, which
is known to severely diminish cache-aided multicasting gains due to the fundamental
worst-channel limitation of multicasting. We consider the quasi-static Rayleigh fading
Broadcast Channel, for which we first evaluate the exact effective coded caching gain
of the standard XOR-based coded caching scheme for any finite SNR value. The result
reveals that this effective (real) gain is now very diminished, and that it in fact completely
vanishes in the low SNR regime. Then though we present a novel scheme that we
refer to as the aggregated coded caching (ACC) scheme, which can fully recover the
coded caching gains by capitalizing on one aspect that has remained unexploited to
date: the shared side information brought about by the effectively unavoidable file-size
constraint. By analyzing this scheme, we reveal that — under practical considerations —
this collapse is not intrinsic to coded caching, and that in fact, due to the ACC scheme,
the worst-user effect is dramatically ameliorated, as it is substituted by a much softer
worst-group-of-users effect, where the suggested grouping is fixed, and it is decided
before the channel or the user-demands are known. This grouping requires no additional
overhead or assumptions. Our analysis provides achievable rates expressions for the ACC,
and derives approximations which prove to be extremely precise. Importantly, this novel
ACC approach can be translated to other coded caching schemes and scenarios, including
decentralized scenarios.

We further proceed to provide rigorous analysis of the performance of coded caching
— both for the traditional so called MN approach, as well as for the new ACC invented
method — in various realistic scenarios. Toward this we investigate the delivery perfor-
mance of ACC in a single dense urban micro/macro cell, where the system parameters
for wireless propagation are set according to 3GPP standards. Our analysis shows that
ACC-aided delivery provides the equivalent of a spatial-averaging effect, thereby recover-
ing most of the theoretic (nominal) coded caching gains. We also consider ACC in land
mobile satellite (LMS) systems, where a satellite serves a set of terrestrial users. ACC
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Abstract

plays a particularly crucial role here because such LMS systems incur large distances,
heavy shadowing and thus low SNR, which, in the absence of ACC, would severely exac-
erbate the worst-user bottleneck. By considering the widely adopted Rician-Shadowed
fading model (or even the more general mixture Gamma (MG) distribution model) for
the satellite-terrestrial channel, we quantify the aforementioned spatial averaging effect
and reveal how ACC-aided delivery can recover the majority of the theoretical gains.
The effective rates and effective gains derivations for the aforementioned broad class
of channels, nicely reveal that our ACC approach covers substantial ground in better
establishing the direct utility of coded caching in realistic single-stream wireless networks,
both in cellular as well as wireless settings.

The thesis then transitions to scenarios with transmitters with multi-antenna arrays,
where such arrays are rightfully recognized as one of the most valuable resources in
modern networks. In particular, we now consider the multi-antenna cache-aided multi-
user (MU) scenario, where the multi-antenna transmitter delivers coded caching streams
(for example MN-based XORs, or ACC based signals), thus being able to serve multiple
users at a time, with a reduced (or just one) radio frequency (RF) chains. By doing so,
coded caching can assist a simple analog (AG) beamformer (only a single RF chain),
thus incurring considerable power and hardware savings that are particularly useful
in various scenarios such as the mmWave setting. This is in contrast to conventional
cacheless (multiplexing gain) methods which generally require multiple RF chains for
hybrid/full-digital (FD) precoding to multiple users. As we see, the aforementioned
worst-user bottleneck will persist in MN-based coded caching, and for this we will apply
ACC-aided AG beamforming, even without any beamforming optimization to achieve the
same delivery performance of the cacheless FD precoding (e.g., with zero-forcing, ZF) in
realistic wireless networks corresponding to realistic mmWave channel assumptions and
RF-chain requirements. Interestingly we will see that in the context of ACC-aided MU
multicasting, and in the presence of sufficiently many users, a single-antenna transmitter
effectively matches the performance of a similar system with a multi-antenna transmitter.

Finally, but perhaps most importantly, after removing the RF-chain limitation (per-
haps being more in line with the assumptions in sub-6GHz bands), the thesis studies the
properties and performance of the so-called vector coded caching technique, and reveals
that this technique can achieve, under several realistic assumptions, a multiplicative
sum-rate boost over the optimized cacheless multi-antenna counterpart that typically
focuses on yielding a proper mixture of multiplexing and beamforming gains. In this
thesis, we modify vector coded caching to account for the PHY properties, and analyze
— under the assumption of symmetric Rayleigh fading channels — the corresponding
sum-rate and effective vector coded caching gains (over optimized multi-antenna systems)
with the help of large random matrix theory. In particular, for a given downlink MISO
system already optimized to exploit both multiplexing and beamforming gains, and
for a fixed set of antenna and SNR resources, our analysis answers a simple question:
What is the multiplicative throughput boost obtained from introducing reasonably-sized
receiver-side caches that can pre-store information content? The schemes are very simple
(we simply collapse precoding vectors into a single vector), and the recorded gains are
notable. For example, for 32 transmit antennas, a received SNR of 20 dB, a coher-
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ence bandwidth of 300 kHz, a coherence period of 40 ms, and under realistic file-size
and cache-size constraints, vector coded caching is here shown to offer a multiplicative
throughput boost of about 310% with ZF (or Regularized ZF) precoding and a 430%
boost in the performance of already optimized Matched Filtering (MF) based (cacheless)
systems. This is after accounting for CSI costs. We further investigate the performance
of vector coded caching aided MU-MIMO systems under more realistic considerations
that include CSI costs but also variable path-loss, max-min fairness and the presence
of multi-antenna receivers, where again the aforementioned large gains are maintained
especially in micro-cell scenarios.
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Dans cette thèse, nous nous concentrons sur la conception et l’analyse de schémas de cache
codés de la couche physique (PHY) pour la diffusion de contenu dans des réseaux sans
fil en réalité. L’objectif principal de cette thèse est de montrer que les techniques PHY
assistées par cache peuvent augmenter considérablement les performances des systèmes
sans fil de pointe. Pour ce faire, nous utilisons des méthodes analytiques avancées inspirées
de la théorie des matrices aléatoires, ainsi que des solutions novatrices qui améliorent
considérablement certains des goulots d’étranglement connus pour diminuer les gains
assistés par le cache dans les paramètres sans fil.

La thèse aborde d’abord le pire goulot d’étranglement pour les utilisateurs de cache
codée sans fil, qui est connue pour diminuer considérablement les gains de multidiffusion
assistée par cache en raison de la limitation fondamentale de la multidiffusion sur les
pires canaux. Nous considérons le canal de diffusion quasi-statique à évanouissement
de Rayleigh, pour lequel nous évaluons d’abord le gain de cache codé effectif exact du
schéma de cache codé basé sur XOR standard pour toute valeur SNR finie. Le résultat
révèle que ce gain effectif (réel) est maintenant très diminué, et qu’il s’annule en fait
complètement dans le régime bas SNR. Ensuite, bien que nous présentions un nouveau
schéma que nous appelons le schéma de cache codée agrégée (ACC), qui peut récupérer
entièrement les gains de cache codée en capitalisant sur un aspect qui est resté inexploité
à ce jour : les informations secondaires partagées apportées par le contrainte de taille de
fichier inévitable. En analysant ce schéma, nous révélons que — sous des considérations
pratiques — cet effondrement n’est pas intrinsèque à la cache codée, et qu’en fait, grâce au
schéma ACC, l’effet du pire utilisateur est considérablement amélioré, car il est remplacé
par un beaucoup plus doux l’effet du pire groupe d’utilisateurs, où le groupement suggéré
est fixé, et il est décidé avant que le canal ou les demandes des utilisateurs ne soient
connus. Ce regroupement ne nécessite aucune surcharge ou hypothèse supplémentaire.
Notre analyse fournit des expressions de taux réalisables pour l’ACC et en déduit des
approximations qui s’avèrent extrêmement précises. Il est important de noter que cette
nouvelle approche ACC peut être traduite dans d’autres schémas et scénarios de cache
codée, y compris des scénarios décentralisés.

Nous procédons ensuite à une analyse rigoureuse des performances de la cache codée
— à la fois pour l’approche traditionnelle dite MN, ainsi que pour la nouvelle méthode
inventée par ACC — dans divers scénarios réalistes. Dans cette optique, nous étudions
les performances de livraison de l’ACC dans une seule cellule micro/macro urbaine dense,
où les paramètres du système pour la propagation sans fil sont définis conformément aux
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normes 3GPP. Notre analyse montre que la livraison assistée par ACC fournit l’équivalent
d’un effet de moyenne spatiale, récupérant ainsi la plupart des gains théoriques (nominaux)
de cache codée. Nous considérons également l’ACC dans les systèmes mobiles terrestres
par satellite (LMS), où un satellite dessert un ensemble d’utilisateurs terrestres. L’ACC i
Abstrait joue ici un rôle particulièrement crucial car de tels systèmes LMS entrâınent de
grandes distances, une forte ombrage et donc un faible SNR, ce qui, en l’absence d’ACC,
aggraverait gravement le goulot d’étranglement des pires utilisateurs. En considérant le
modèle d’évanouissement Rician-Shadowed largement adopté (ou même le modèle de
distribution Gamma (MG) de mélange plus général) pour le canal satellite-terrestre, nous
quantifions l’effet de moyenne spatiale susmentionné et révélons comment la livraison
assistée par ACC peut récupérer la majorité des gains théoriques. Les taux effectifs et
les dérivations des gains effectifs pour la large classe de canaux susmentionnée révèlent
bien que notre approche ACC couvre un terrain substantiel en établissant mieux l’utilité
directe de la cache codée dans des réseaux sans fil à flux unique réalistes, à la fois dans
les paramètres cellulaires et sans fil.

La thèse passe ensuite à des scénarios avec des émetteurs avec des réseaux multi-
antennes, où ces réseaux sont à juste titre reconnus comme l’une des ressources les plus
précieuses des réseaux modernes. En particulier, nous considérons maintenant le scénario
multi-utilisateurs assisté par cache multi-antennes (MU), où l’émetteur multi-antennes
fournit des flux de cache codés (par exemple des XOR basés sur MN ou des signaux
basés sur ACC), pouvant ainsi servir plusieurs utilisateurs. à la fois, avec une châıne
radiofréquence (RF) réduite (ou une seule). Ce faisant, la cache codée peut aider un
simple formateur de faisceau analogique (AG) (une seule châıne RF), entrâınant ainsi
des économies considérables d’énergie et de matériel qui sont particulièrement utiles
dans divers scénarios tels que le réglage mmWave. Cela contraste avec les méthodes
conventionnelles sans cache (gain de multiplexage) qui nécessitent généralement plusieurs
châınes RF pour le précodage hybride/entièrement numérique (FD) pour plusieurs
utilisateurs. Comme nous le voyons, le goulot d’étranglement du pire utilisateur mentionné
ci-dessus persistera dans la cache codée basée sur MN, et pour cela, nous appliquerons
la formation de faisceau AG assistée par ACC, même sans aucune optimisation du
beamforming de faisceau pour obtenir les mêmes performances de livraison que le précodage
FD sans cache (par exemple, avec forçage zéro, ZF) dans des réseaux sans fil réalistes
correspondant à des hypothèses réalistes de canal mmWave et aux exigences de la châıne
RF. De manière intéressante, nous verrons que dans le contexte de la multidiffusion MU
assistée par ACC, et en présence d’un nombre suffisant d’utilisateurs, un émetteur à
antenne unique correspond efficacement aux performances d’un système similaire avec un
émetteur à plusieurs antennes.

Enfin, mais peut-être le plus important, après avoir supprimé la limitation de la
châıne RF (peut-être plus conforme aux hypothèses dans les bandes inférieures à 6
GHz), la thèse étudie les propriétés et les performances de la technique de cache à
codage vectoriel, et révèle que cette technique peut atteindre, sous plusieurs hypothèses
réalistes, une augmentation multiplicative du taux de somme par rapport à la contrepartie
multi-antenne optimisée sans cache qui se concentre généralement sur la production d’un
mélange approprié de gains de multiplexage et de formation de faisceaux. Dans cette
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thèse, nous modifions la cache à codage vectoriel pour tenir compte des propriétés PHY
et analysons — sous l’hypothèse de canaux d’évanouissement de Rayleigh symétriques —
le taux de somme correspondant et les gains de cache à codage vectoriel efficaces (sur des
systèmes multi-antennes optimisés) avec l’aide de la théorie des grandes matrices aléatoires.
En particulier, pour un système MISO de liaison descendante déjà optimisé pour exploiter
à la fois les gains de multiplexage et de formation de faisceaux, et pour un ensemble fixe
d’antennes et de ressources SNR, notre analyse répond à une question simple : Quelle est
l’augmentation de débit multiplicative obtenue en introduisant des caches côté récepteur
de taille raisonnable qui peuvent pré-stocker le contenu des informations ? Les schémas
sont très simples (on regroupe simplement les vecteurs de précodage en un seul vecteur),
et les gains enregistrés sont notables. Par exemple, pour 32 antennes d’émission, un
SNR reçu de 20 dB, une largeur de bande d’abstraction de cohérence de 300 kHz, une
période de cohérence de 40 ms, et sous des contraintes réalistes de taille de fichier et de
taille de cache, la cache à codage vectoriel est montrée ici pour offrent une augmentation
de débit multiplicative d’environ 310% avec le précodage ZF (ou ZF régularisé) et une
augmentation de 430% des performances des systèmes déjà optimisés basés sur le filtrage
adapté (MF) (sans cache). C’est après comptabilisation des coûts de CSI. Nous étudions
plus en détail les performances des systèmes MU-MIMO assistés par cache à codage
vectoriel sous des considérations plus réalistes qui incluent les coûts CSI, mais également
la perte de chemin variable, l’équité max-min et la présence de récepteurs multi-antennes,
là encore les gains importants susmentionnés sont maintenus. en particulier dans les
scénarios de micro-cellules.
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viii



Acknowledgements

This thesis has been the effort of approximately three and a half years and has flourished
only because of the many people that have contributed directly, by being part of these
works, or indirectly, through their support during this process.

First and foremost, I would like to express my gratitude to my thesis advisor Prof.
Petros Elia. His constant strive for excellence, his vision and his patience have helped
me improve my skills and taught me to always look for the underlying meaning of things.
I am deeply grateful to Antonio Bazco-Nogueras and Eleftherios Lampiris, who help my
advisor to conduct my research. I really appreciate their profound technical knowledge,
in conjunction with their human kindness and comprehension. I would also like to
thank Prof. Christoph Studer for hosting me at Swiss Federal Institute of Technology in
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Chapter 1

Introduction

Cache-aided communication is a promising approach toward reducing congestion in
modern communication networks [1,2]. The promise of this approach has been recently
fostered by the seminal paper of Maddah-Ali and Niesen [1], who proposed coded caching
as a means to speed up content delivery by exploiting receiver-side stored content to
remove interference.

The work in [1] considers the error-free (or equivalently, the high-SNR) shared-link
Broadcast Channel (BC), where a transmitter with access to a library of N content files
serves K cache-aided users. Each such user enjoys a local (cache) memory of size equal
to a fraction γ ∈ [0, 1] of the library size. The so-called MN scheme in [1] involves a
cache placement phase and a subsequent delivery phase. During the first phase, each
file is typically split into a very large number of subfiles, which are selectively placed in
various different caches. During the second phase, the communication process is split
into a generally large number of transmission stages, and at each such stage, a different
subset of Kγ + 1 users is simultaneously served via an XOR multicast transmission, thus
allowing for a theoretical speed-up factor (again in the infinite SNR regime) of Kγ +1 as
compared to the uncoded (effectively cacheless) case. This speed-up factor of Kγ + 1 is
also referred to as the coded caching gain or the degrees-of-freedom (DoF) achieved by
this scheme. In the following, let us elaborate on the placement phase and the delivery
phase of this MN coded caching scheme.

Placement Phase: During the placement phase, each file Wn is partitioned into
(
K
Kγ

)
non-overlapping and equal-sized segments (subfiles), such that

Wn →
{
W T
n : T ⊆ [K], |T | = Kγ

}
,

where [K] ≜ {1, 2, · · · ,K}, and where |T | denotes the cardinality of the set T . User k
stores all the segments W T

n such that k ∈ T , for any n ∈ [N ]. The content cached at
user k, denoted by Zk, is hence given by

Zk = {W T
n : T ⊆ [K], |T | = Kγ, T ∋ k, ∀n ∈ [N ]}.

This placement phase is also illustrated in Fig. 1.1. It follows that the total content
cached at each user amounts to γNF bits, which satisfies the local cache size constraint.
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Chapter 1. Introduction

Figure 1.1: Placement phase in MN Coded Caching

Delivery Phase: At the beginning of this phase (cf. Fig. 1.2), each user requests a
different file Wdk from the library, where dk ∈ [N ] denotes the index of the file demanded
by user k ∈ [K]. The transmission is divided in different transmission stages. At each
transmission stage, the transmitter simultaneously serves a unique set of Kγ + 1 users.
Since there are

(
K

Kγ+1

)
different subsets of Kγ+1 users in [K], the delivery phase consists

of
(

K
Kγ+1

)
transmission stages, and at each stage the transmitter serves a different subset

of users Ψ ⊆ [K] of |Ψ| = Kγ + 1 users. Specifically, for the transmission stage intended
for a particular set of users Ψ, the transmitted signal is designed as

XΨ =
⊕

k∈Ψ
W

Ψ\{k}
dk

,

where
⊕

stands for the bit-wise XOR operator, and the superscript Ψ\{k} implies that
the segment transmitted to user k is the one stored at all other users in Ψ. In the physical
layer, XΨ is mapped into a common multicast message which is then sent to the users in
Ψ via a BC.

Figure 1.2: Delivery phase in MN Coded Caching

After successfully receiving XΨ — according to the MN approach — user k can “cache
out” the undesired messages in XΨ by using its locally-cached content, and thus it obtains

the desired subfile W
Ψ\{k}
dk

. This is possible because all subfiles
{
W

Ψ\{k′}
n

}N
n=1

, for k′ ∈ Ψ

and k′ ̸= k, have been stored in the cache of user k ∈ Ψ. After
(

K
Kγ+1

)
transmission

stages, all the users obtain their demanded files. Note that even when Kγ is not an
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Chapter 1. Introduction

integer, the MN scheme can still achieve the coded caching gain Kγ + 1 by considering
the memory-sharing strategy. We refer to [1] for more details about the MN scheme.

The above algorithm was originally developed for the scenario where the channel is
error-free and the capacity of the channel to each user is identical. In recent years, a variety
of works have investigated coded caching under more realistic wireless settings, considering
for example uneven channel qualities [3–6], the role of Channel State Information (CSI)
availability [7–9], statistically diverse channels [10,11], and a variety of other scenarios [12–
17].

1.1 Two Fundamental Bottlenecks in Coded Caching

Unfortunately, it is the case that coded caching suffers from two major constraints.
The first is often referred to as the “file-size constraint” of coded caching, which, as we
will clarify later, effectively forces different users to fill up their caches with identical
content [18–20]. This constraint, which has been extensively analyzed in the literature
[12, 19–22], essentially foregoes the freedom to endow users with their own dedicated
caches, and rather forces these users to share a very limited number of cache states1 that
is considerably smaller than K. This will result in reduced gains, as we will note later on.
On the other hand, there is a seemingly unrelated constraint which stems from the fact
that the XOR multicast transmissions are fundamentally and inevitably limited by the
rate of the worst user that they address [23]. This constraint, often referred to as the
“worst-user bottleneck” of coded caching, arises when users experience different channel
strengths, and it is a constraint that is severely exacerbated as the SNR becomes smaller.
This bottleneck also substantially diminishes the real cache-induced gains.

Both these realities, of bounded file sizes and limited SNR, are naturally inherent to
any practical wireless content-delivery system. Let us look at these bottlenecks in greater
detail.

1.1.1 Subpacketization Bottleneck and the Need for Shared Caches

Our work builds on the premise that almost any realistic single-stream coded caching
scenario will involve the use of shared, rather than dedicated, cache states. As we will see
right below, this has to do with the simple fact that, under realistic assumptions on γ and
K, the file sizes required by coded caching schemes dwarf any realistic file sizes that we
encounter in wireless downlink applications. The evidence for this is overwhelming, and
to date, under realistic assumptions, any high-performance coded caching scheme requires
files to be split into a number of sub-files that grows exponentially or near-exponentially
with K (unless K it self becomes astronomical, which is a scenario that is of no interest
in this thesis). For example, the MN algorithm requires files to be split into at least(
K
Kγ

)
subfiles, and it is known from [21, Thm. 3] that this same subpacketization is

indeed necessary for any algorithm to achieve this same gain under some basic symmetry
conditions. Similarly, it was shown in [18] that decentralized schemes (cf. [24]) require

1Hereinafter, cache state refers to the content stored at the cache of a certain user. Thus, two users
storing the exact same content in their local cache are said to have the same cache state.
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exponential (in K) subpacketization in order to achieve linear caching gains, and, along
similar lines, [25, Thm. 12] proved that, under basic assumptions, there exists no coded
caching scheme that enjoys both linear caching gains and linear subpacketization.

From these previous results, we are in a position to say that such schemes will
inevitably require many users to store the same cache content. While there is not a
fundamental limitation that forces users to cache the same content, an extensive literature
overview indicates that there are two possible solutions to keep the subpacketization low
while maintaining the gains: either to repeat the same cache state at several users, or to
massively increase K [21,22,25]. Let us consider for instance the original MN scheme.
Under the constraint that the subpacketization (number of subfiles) cannot exceed a
realistic value Smax, we know that the best course of action is to encode over a limited
number of Λ < K users at a time [18], creating Λ different cache states. This Λ is indeed
limited by the file size constraint that asks that

(
Λ
Λγ

)
≤ Smax. This approach naturally

limits the aforementioned (error-free) gain to Λγ + 1 [26], and it entails cache replication
simply because now there are only Λ cache states to be shared2 or replicated among the
K users. As this thesis will show later on, this forced replication can be exploited to
circumvent the other major problem: the worst-user bottleneck.

1.1.2 Worst-User Bottleneck: Motivation, Nature of the Problem, and Prior
Work

As we have suggested, the worst-user limitation induced by the nature of the multicast
transmission [23] is exacerbated when the SNR becomes smaller and when the channel
strengths for each of the served users are different. Consequently, this dependence on
multicasting can severely affect the applicability of coded caching in many wireless
scenarios that possess such characteristics. These scenarios prevail in cellular or satellite
communications settings [28] that suffer from heavy path-loss and/or shadowing, as well
as in other massive Machine-Type Communication (mMTC) settings [29]. Similarly,
we know that in 4G LTE networks, the range of users’ signal-to-interference-plus-noise
ratio (SINR) is typically 0–20 dB [30], while the SINR of cell-edge users can be closer
to 0–5 dB. The worst-user bottleneck is also exacerbated when considering the well-
established setting of quasi-static fading that we will consider in the following, and which
generally comes about in the presence of longer coherence periods and shorter latency
constraints. This quasi-static setting applies to low-mobility scenarios, which nicely
capture coded-caching use-cases where pedestrians or static users are consuming video
streaming.

This bottleneck has sparked considerable research interest that resulted in a variety
of notable results [3, 4, 31–33]. For example, the work in [31] shows that, in a single
transmit-antenna setting with finite power and quasi-static fading, the effective gain does
not scale as K becomes larger even in the absence of a file-size constraint ; moreover, the
power must scale linearly with K in order to preclude the collapse of the multicast rate

2It is worth noting that the shared cache setting not only captures the effect of the file-size constraint,
but also reflects promising heterogeneous scenarios where a main station serves users with the help of
smaller cache-endowed helper nodes [26,27].
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(cf. [31, Table I]). Taking a different approach, the work in [32] employs superposition
coding for opportunistic scheduling. Another notable work can be found in [33], which
groups together users that experience similar SNR and delivers to each group in a separate
way after neglecting users with the weakest channels.

However, to date, no scheme is known to overcome the worst-user bottleneck without
user selection for the single transmit-antenna setting. In this context, we analyze in
this work the worst-user bottleneck when no user selection techniques are applied, in
order to expressly show that these techniques are not needed to overcome the worst-user
bottleneck. This is an interesting outcome because user selection increases the complexity
of the transmission in several aspects. First, because of the CSI required to decide which
users to serve in each transmission. This CSI requirement entails a trade-off: In order
to better exploit the benefits of user-selection techniques, the transmitter would require
CSI from many users (ideally, all) at every time, which in turn may consume a lot of
resources. Second, the transmitter would need to add an extra step to select the suitable
user subset. Both CSI acquisition and selection algorithm can become challenging when
the number of users become large, as it is sometimes assumed in our analysis.

In all these previous scenarios, this bottleneck substantially diminishes the afore-
mentioned coded caching gain3. Had the SNR been infinite, or the instantaneous link
strengths identical, this hypothetical gain would have taken the form Λγ + 1 for any
allowable Λ up to K (where, we recall, this allowable Λ is generally much less than K
due to the bounded file sizes). Yet, as the SNR decreases, the effect of the worst-user
bottleneck becomes more accentuated4, and the effective gain eventually collapses. This
collapse will be rigorously described in Proposition 2.2, and it is illustrated in Fig. 1.3.

1.2 Multi-Antenna Coded Caching

At the same time, it became apparent that for coded caching to develop into an impactful
ingredient in wireless systems, it would have to work in conjunction with multi-antenna
arrays which are rightfully recognized as the most valuable resource in modern networks.
This realization brought to the fore notable research in the area of multi-antenna coded
caching [34, 35]. In recent years, several related works explored various aspects of the
problem, with substantial emphasis on physical-layer (PHY) considerations. One of
the first such works can be found in [13] which designed PHY adaptations of various
multi-antenna coded caching schemes. Another interesting approach can be found in [36]
which presented a multi-antenna coded-caching scheme for lower SNR regimes when
the placement exploits prior information on the users’ locations. Furthermore, the work
of [31] considered the use of transmit antennas for achieving rate scalability in the limit
of large K.

3We remind the reader that the gain describes the cache-aided speed-up factor over the approach
which employs the basic Time Division Multiplexing (TDM) method that serves one user at a time.

4To see this, simply recall that for smaller values of SNR and for z < 1, it follows that ln(1+ zSNR) ≈
z ln(1 + SNR).
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Figure 1.3: Ratio between the average rates of the MN scheme and TDM (i.e., the
effective coded-cahing gain) over quasi-static Rayleigh fading channel for different values
of G = Λγ + 1.

1.2.1 Multi-Antenna Coded Multicasting

Multi-antenna base stations (BSs) with full-digital (FD)/hybrid precoding allow us to
simultaneously serve many users at a time, thus yielding higher spectral efficiencies. This
comes though at the cost of needing a large number of radio frequency (RF) chains [37],
which in turn requires larger energy and hardware costs compared to analog beamforming
which uses, for example, a single-RF chain. Indeed the energy consumption on an
RF chain is several dozens of times larger than that of a phase shifter [38]. Typically,
employing a single RF chain analog beamforming forces TDMA delivery across the users
requesting different content. As one can imagine, traditional coded caching bypasses
this limitation by employing coded multicasting [34, 35], which considers the same model
as the aforementioned cache-aided BC, except that now the server (the BS) is endowed
with multiple transmit antennas. This approach though, even in its multi-antenna
implementation, is still fundamentally constrained by the aforementioned worst-user
bottleneck, which becomes particularly detrimental in realistic SNR implementations. As
one can imagine, adding a large number of BS antennas to mitigate this bottleneck, will
bring about higher costs in hardware/software and higher energy costs. Furthermore,
again as one would expect, the overall throughput of this coded multicasting approach,
even with a FD beamformer, would be much lower than that of its FD/hybrid precoding
counterpart (for example, zero-forcing). Thus, under constraints on the number of RF
chains, it seems that multi-antenna coded multicasting is meaningful in terms of energy
savings and hardware/software costs, but runs the risk of yielding much lower overall
throughputs. Therefore, how to efficiently boost coded multicasting rates in practical
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cache-aided systems is an open question of practical interest.

1.2.2 Vector Coded Caching

Assuming though that we have some freedom on the number of RF chains5, one could
employ more advanced techniques that nicely consider the fusion of multi-antenna
multicast beamforming and coded caching toward improved interference management,
e.g., [17, 39]. Interesting works can also be found in [7, 11, 15, 40–46] and in a variety
of other publications. It is the case though that for most of the above schemes, the
corresponding DoF impact of file-size constrained coded caching was merely additive
to the multiplexing gain (denoted here by Q), in the sense that, in most of the above
scenarios, the DoF performance stagnated at around Q+ Λγ for very modest values of
Λγ that rarely exceed 6 under realistic assumptions. In essence, due to the severity of
the file-size constraint, the impact of caching was dwarfed by the existing and available
multiplexing gains which have been extensively demonstrated in various field trials [48].

This imbalance in the impact of caching on multi-antenna systems was reversed
with the introduction in [12] of vector coded caching. This reversal is owed in part
to the fact that this new approach could dramatically ameliorate the subpacketization
problem previously associated to XOR-based schemes. While previous multi-antenna
coded caching techniques essentially focused on using multiple antennas (L transmit
antennas) to efficiently deliver the aforementioned sequence of XORs of the original MN
scheme, the novel method in [12] applied a decomposition-based approach that employed
a clique structure on vectors rather than on scalars. Vector coded caching need not entail
the transmission of XORs. Building on the idea of employing Λ shared caches (Λ cache
states) and linear precoding, the algorithm in [12] was able to offer unprecedented DoF
performance as well as a dramatically reduced subpacketization. To be precise, for some
Q ≤ L representing the aforementioned multiplexing gain of choice, the algorithm in [12]
reduced subpacketization from being exponential in K to being exponential in K/Q, all
while being able to serve up to Q(1 + Λγ) users at a time. This implied a theoretical
multiplicative boost over the DoF of multiplexing-gain systems by a factor of 1 + Λγ,
with the new DoF of Q(1 + Λγ) far exceeding the additive impact (see DoF of Q+ Λγ)
of previous XOR-based multi-antenna coded caching approaches.

It is the case though that the work in [12] focused on the error-free, asymptotically
high-SNR regime, without considering any practical aspects such as power dissemination
across signals, realistic SNR values, the effects of beamforming gain, or the costs of
gathering channel state information (CSI). To date, we know very little about the
practical performance of vector coded caching in wireless systems. While this new
approach was shown to be useful in an information-theoretic (DoF) sense, the real impact
that this approach has on optimized downlink systems, has remained an open question.

5Such freedom may be acceptable in the conventional sub-6GHz systems, where high spectrum efficiency
is often the prime focus.
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1.3 Thesis Outline and Main Contributions

This thesis focuses on designing coded caching delivery schemes adapted to realistic
wireless networks, as well as focuses on analyzing the corresponding performance. The
main results will be presented in the next four chapters. In Chapter 2, we develop a
novel coded caching delivery scheme — referred to here as the Aggregated Coded Caching
(ACC) scheme — which is tailored for wireless settings. We also analyze the achievable
rates and effective gains of this new scheme, and do so in various settings. In Chapter 3,
we slightly modify the vector coded caching scheme originally developed in [12] to tailor it
to realistic wireless networks, as well as proceed to rigorously analyze the corresponding
performance. We further investigate the impact of more practical considerations on the
delivery performance of vector coded caching in Chapter 4. In Chapter 5, we apply the
ACC in cache-aided satellite systems and proceed to analyze the corresponding achievable
rates and effective gains. Chapter 6 concludes the thesis. In the following, we give an
extended summary of the main contributions found in Chapters 2–5.

1.3.1 Main Contributions Toward Resolving Worst-User Bottleneck

Aggregated Coded Caching (ACC) Design

In Chapter 2, focusing on the file-size constrained scenario (which corresponds to having
a limited number Λ of different cache states, and which is effectively forced upon us), we
present the novel ACC transmission scheme, which substantially improves the effective
gain, and which manages to recover — without user selection or any additional overhead
— the entire nominal coded caching gain Λγ + 1 in the presence of sufficiently many
users. This means that the proposed ACC enables us to asymptotically remove the
aforementioned worst-user bottleneck which was thought to diminish any coded caching
gains in realistic wireless networks. The proposed ACC scheme builds on the practical
inevitability of having users with identical cache content, and it employs multi-rate
encoding that avoids XOR transmissions, thus allowing each user to receive at a rate
that matches its single-link capacity. We note that the transmission rate for a served user
achieving its single-link capacity is possible because this user knows (and has access to)
the messages intended for other simultaneously served users (cf. [49]), which here holds
due to the shared-cache placement policy. Fig. 1.4 offers a small illustration of the main
difference between ACC and XOR-based (MN) coded caching, where in the latter case
we see that one has to wait for the worst user to decode its desired subfile before starting
a new transmission round, whereas with ACC, when a served user decodes its desired
subfile successfully, another user with the same cache state can replace the served user,
immediately, without interrupting the subfile decoding, and without generally reducing
the numbers of simultaneously served users. As it turns out, the ACC introduces a time
(or space) diversity effect, where having B users per cache state is — in terms of effective
channel statistics — akin to enjoying the time diversity benefits of encoding across B
coherence times, or the space diversity benefits of degree B (see Fig. 2.3 which is also
shown at the top of next page). To be clear, neither do we encode over coherence times,
nor over space. We refer to Section 2.2 for more details on the ACC design which will be
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Figure 1.4: An example of ACC delivery.
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Fig. 2.3: Effective gain versus ρ (SNR) for G = 10 over symmetric Rayleigh fading channels. Right-side
plot focuses on realistic SNR values.

based on the dual idea of combining cache replication and multi-rate transmission. This
same idea can be readily applied to a variety of different coded caching algorithms in
order to ameliorate the worst-user effect. This ability is highlighted in Fig. 2.11, where
we also apply our ideas in the context of decentralized coded caching.

Average Rate Analysis of ACC

We analyze the delivery performance of ACC in terms of average achievable rate. With
the help of the inverse transform of characteristic functions (CF), we are able to derive
an analytical expression for the average rate R̄ACC of ACC over quasi-static Rayleigh
fading channels. To simplify the expression and to provide insight, we also consider the
practical large-B (large-K) scenario. Using the Central Limit Theorem (CLT) and after
defining HG as the expectation of the maximum of G i.i.d. standard normal random
variables, we derive in Lemma 2.6 a simple rate approximation in the form

R̄ACC ≈ G

ln 2

(
ϱ− σ√

B
×HG

)
bits/s/Hz, (1.1)
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where G denotes the file-size constrained nominal gain, and where ϱ
ln 2 is the average rate

of time-division multiplexing (TDM) transmissions (corresponding to uncoded caching
delivery, or effectively corresponding to the cacheless case). In (1.1), σ reflects the average
channel fluctuation resulting from random fading. The above shows that when B is
sufficiently large, the impact of channel fluctuation on R̄ACC is negligible, and it also
shows that R̄ACC converges to G

ln 2ϱ, which mathematically explains why ACC can fully
recover the nominal gain G at any SNR. Numerical results then also show that this
simple approximation is very tight even for small values of B (cf. Fig. 2.7). Moreover,
based on the second-order Taylor expansion, we also develop a simple approximation
(without any use of special/advanced functions) for the average rate R̄MN of the original
(MN) coded caching in the low SNR region (SNR is also often denoted by ρ), which is
shown in Lemma 2.2 to take the form

R̄MN ≈ G

ln 2

(
ln
(
1 +

ρ

G

)
− ρ2

2G2 (1 + ρ/G)2

)
bits/s/Hz, (1.2)

which is later numerically shown to be robust even in the medium-SNR region (cf.
Fig. 2.5), or even in the higher SNR regions.

Delivery Time Analysis of the ACC Scheme

In order to analyze the impact of the novel ACC on the delivery time, we consider
Nakagami-m fading and analyze the delivery time for both the MN and the ACC schemes.
We do so in the low SNR region. Our considering of Nakagami-m fading — in addition
to allowing for convergence of the delivery time — also allows us to capture a broad
spectrum of practical wireless scenarios, such as land–mobile and indoor–mobile scenario
with multi-path propagation, the scenario with scintillating ionospheric radio links [50], or
(when m is a positive integer), the scenario of having m-antenna receivers over symmetric
Rayleigh fading after applying maximal-ratio combining (MRC).

Similar to the average rate analysis, we first employ the CF inverse transform to
derive an analytical expression for the average delivery time of ACC in the low SNR
region. To further simplify the derived double-integral expression, we consider the large-B
case and use the CLT to obtain a simple expression for the effective coded caching gain
that takes the form

GACC ≈
G

1 +HG/
√
B(m− 2)

, for m > 2, (1.3)

which reveals how the fading parameter m and the ratio K
Λ = B tend to impact in a

similar manner the performance of ACC, since they both offer an equivalent diversity
effect. The above reveals that we can recover the full nominal gain of coded caching even
at low SNR, provided that there are enough users or a sufficiently large m. Numerical
results (see for example Fig. 2.16 which is also shown at the top of next page) also
validate this observation. In addition, we also utilize the Strong Law of Large Numbers
to simplify the analysis on the effective gain of MN coded caching that is here shown to
take the from

GMN
a.s.−→ G = Λγ + 1 as m→∞, (1.4)
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Fig. 2.16: Effective gains of MN (left) and ACC (right) schemes for G = 5 and γ = 5% as ρ → 0.

which then implies that the worst-user bottleneck in MN coded caching can be asymp-
totically resolved for m≫ 1 for any SNR (see also Fig. 2.16). This naturally comes in
direct contrast to the previous conclusion that when considering Rayleigh fading and a
single receive antenna, the effective gain of MN completely vanishes in the low SNR limit
(see also Fig. 1.3).

ACC Performance Over Ergodic Fading Channels

The worst-user effect in coded caching will become more detrimental when the users are
distributed across different locations at different distances from the BS. This will bring
about the well-known near-far problem, and it is in this setting that we will show major
ACC advantages, which will be rigorously described by analyzing its performance in the
ergodic single-cell cache-aided setting. For a scenario with an inner cell radius D1 and an
outer cell radius D2, we provide simple and accurate expressions, comparing the perfor-
mance of the MN and ACC schemes, under various realistic scenarios. Deviating from
the previous low-SNR assumptions, we now take a high-SNR approach that paradoxically
manages to tightly quantify the near-far bottleneck which is generally associated to low
or moderate SNR values. Specifically, employing Jensen’s inequality and a very basic and
robust high SNR channel capacity approximation, we parameterize (cf. Corollary 2.4)
the MN effective gain to take the form

GMN ≈
G ln ρ−G

[
ln

(
2G(D

η0+2
2 −Dη0+2

1 )

(η0+2)(D2
2−D2

1)

)
+ C

]
ln ρ− C + η0

2 − η0
D2

2 lnD2−D2
1 lnD1

D2
2−D2

1

, (1.5)

where η0 denotes the pathloss exponent, and where C = 0.5772 . . . denotes the Eu-
ler–Mascheroni constant. The above quantifies the impact of system parameters η0, D1

and D2 on the MN effective gain, revealing a bound on the transmit power required to
achieve a certain effective gain. Fig. 2.19 (also shown at the top of next page) validates
the tightness of (1.5), comparing to the actual performance, and does so under 3GPP
guidelines for an urban cell.
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Fig. 2.19: Performance in the Macro-Cell setting with γ = 10% and Pt = 40dBm. HG is computed
through GHQ with 10 terms.

Then we further analyze the ACC scheme by employing a large-B (large K) assump-
tion to simplify (2.56). Using the methodology corresponding to (1.1), we derive (cf.
Corollary 2.5) a very simple expression for the high-SNR ACC effective gain, that takes
the form

GACC ≈
G

ϱs

(
ϱs −HG

√
σ2s/B

)
, for B →∞, (1.6)

where ϱs denotes the rate of TDM averaged over channel fading and random user locations,
and where σs reflects the average channel fluctuation due to the small-scale fading and
the random user locations. As ϱs and σs are independent of B, we can conclude from
(1.6) that our ACC scheme recovers most of the nominal gain G for reasonable values of
B. This again reveals that the ACC scheme offers the equivalent of a spatial-averaging
effect, which helps overcome the near-far bottleneck. Fig. 2.19 — which also demonstrates
the tightness and accuracy of (1.6) — also clearly shows that ACC recovers over 93% of
the nominal gain for reasonable values of B, especially in urban settings.

Multi-Antenna ACC

We here combine the ACC idea with the multi-antenna MU multicasting idea (of using
multiple antennas to steer a coded caching stream), to show that the two work together
in a synergistic manner. To see this, let us recall that in the previous case of employing
a single-antenna transmitter, when we complete the delivery to all the users that share
the same cache state, then the degree of multicasting is reduced, and the overall delivery
rate generally decreases. What we now see though is that we can take advantage of this
‘freeing up’ of a cache state: Now, in the multi-antenna (rather than single-antenna)
ACC scenario, upon completion of the delivery to all the users that share the same cache
state, the multi-antenna transmitter can form narrower beams dedicated to a now smaller
number of cache state groups; this accelerates the delivery to those groups, thus avoiding
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Fig. 2.29: Delivery performance over mmWave channels with L = 32, G = 6, B = 5, Bw = 200 MHz,
Np = 2 and Fsub = 50 bytes.

the aforementioned dilution of the effect of removing cache-states from delivery. While
the multicasting gain may progressively decrease, the beamforming gain progressively
increases. As we will see, the above ACC-aided multicasting method with a simple
AG beamformer (one RF chain), not only significantly outperforms the optimized FD
multicasting beamformer in the conventional MU multicasting, but also comes close to
matching the performance of FD precoding (e.g., ZF) operating with L RF-chains and
does so under realistic scenarios such as the mmWave setting (see Fig. 2.29 above). This
performance is also illustrated in Fig. 2.23. In the extreme case of a large number of users
sharing the same cache content, and for a fixed theoretic DoF (nominal gain) of Λγ+1, we
can use a single transmit antenna to match (or even exceed) the performance of multiple
transmit antennas in the conventional MU multicasting. We note that this simple AG
beamformer has only a single RF chain and requires much lower hardware/software costs,
as well as lower power consumption, than the FD precoder. As we will see later, fully
exploiting multiplexing and beamforming gains (by employing PHY-optimized vector coded
caching) would yield a multiplicatively larger theoretic DoF than the DoF of the above
coded MU multicasting, but we recall that this performance boost would require a higher
resource consumption for operating the RF chains.

Some related publications include:

[51] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Wireless coded caching can
overcome the worst-user bottleneck by exploiting finite file sizes,” IEEE Transactions on
Wireless Communications, vol. 21, no. 7, pp. 5450–5466, Jul. 2022.

[52] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Resolving the worst-user
bottleneck of coded caching: Exploiting finite file sizes,” in Proc. IEEE Information
Theory Workshop (ITW), Apr. 2021, pp. 1–5

[53] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Wireless coded caching with
shared caches can overcome the near-far bottleneck,” in Proc. IEEE International Sympo-
sium on Information Theory (ISIT), Jul. 2021, pp. 350–355.

[54] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Coded caching gains at low
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SNR over Nakagami fading channels,” in Proc. 55th Asilomar Conference on Signals,
Systems, and Computers (ACSSC), Nov. 2021, pp. 1–7. (Best Student Paper Finalists)

1.3.2 Main Contributions in Vector Coded Caching

The recent introduction of vector coded caching in [12] has revealed that multi-rank
transmissions in the presence of receiver-side cache content can dramatically ameliorate
the file-size bottleneck of coded caching and substantially boost performance in error-free
wire-like multi-rank channels. Any attempt to establish the real impact of vector coded
caching — over realistic wireless channels — must answer a simple question: Under a
fixed set of antenna and SNR resources, what is the multiplicative throughput boost
obtained from being able to add receiver-side caches to downlink systems that would have
otherwise been able to enjoy an optimized exploitation of multiplexing and beamforming
gains. Indeed, spatial multiplexing and beamforming in multi-antenna downlink systems,
and its well-studied application in the large-antenna regime or massive MIMO [55–58],
is a key technology in current and future wireless networks that significantly enhances
spectral efficiency. Such enhancements have been recently proven in the aforementioned
field trials [48] which convincingly demonstrate that a sizeable fraction of the promising
theoretic gains brought about by spatial multiplexing approaches (naturally without
caches), can indeed be attained under practical constraints.

In the context of vector coded caching, which will enjoy caching gains and spatial-
multiplexing gains, our focus will be on the work-horses of spatial-multiplexing precoding
which are the optimized versions of linear precoding techniques such as Zero-Forcing
(ZF), Regularized ZF (RZF), and Matched Filtering (MF). These techniques maintain
low complexity and can provide very high spectral efficiency that often comes close to the
optimal performance of the non-linear Dirty-Paper Coding, especially when the number
of transmit antennas L is large [55]. Our focus will also incorporate power allocation
aspects (where we recall that the more symbols one transmits, the more power splitting
one encounters), as well as, as one would expect, aspects regarding the acquisition of CSI
which is another ingredient of crucial importance, even in the presence of Time Division
Duplexing (TDD) that partially reduces the CSI overhead as the dimensionality of the
problem becomes larger [59]. This same CSI overhead will naturally bring to the fore the
issue of channel hardening, which arises as the number of antennas increases, and which
partially alleviates the stringent CSI requirements [60].

Single-Antenna Receivers

In Chapter 3, we employ large-matrix analysis to explore the effect of vector coded caching
in realistic wireless multi-antenna downlink systems. For a given downlink MU-MISO
system already optimized to exploit both multiplexing and beamforming gains, and for a
fixed set of antenna and SNR resources, our analysis answers the aforementioned simple
question of what is the multiplicative increase in the throughput that we can obtain when
we can add simple and relatively small caches at the receivers?

The employed scheme that we optimize and analyze is indeed very simple (we simply
collapse precoding vectors into a single vector), and the recorded gains are notable. For
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Fig. 3.3: Effective gain G⋆ over optimized cacheless system for L ∈ {32, 64} and G = 6.
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Fig. 3.4: Hardening-constrained effective gain over a constrained classical downlink system. Q is fixed for
both systems at Q = 8, while G = 6.

example, as we witness in the above Fig. 3.3, for the case of 32 transmit antennas, a
received SNR of 20 dB, a coherence bandwidth of 300 kHz, a coherence period of 40 ms,
and under realistic file-size and cache-size constraints, vector coded caching is shown
to offer a multiplicative throughput boost of about 310% with ZF/RZF precoding and
a 430% boost in the performance of already optimized MF-based (cacheless) systems.
Interestingly, as we will clarify later on, vector coded caching also accelerates channel
hardening (which it self yields benefits with regards to feedback acquisition) because it
allows us — roughly speaking — to have a larger ratio between the number of antennas
and the number of interfering symbols that must be resolved by precoding. In this setting,
we see vector coded caching often surpassing 540% gains over traditional hardening-
constrained cacheless downlink systems (see above Fig. 3.4). To better understand the
presented gains in practice, we refer to Example 3 in Chapter 3 for more information.

The derived closed-form expressions capture the various aforementioned linear pre-
coders, capture a variety of practical considerations such as power dissemination across
signals, realistic SNR values, as well as capture feedback costs. For example, given a
multiplexing gain Q′ in the cacheless counterpart, and a transmit power Pt normalized
to AWGN noise, with the help of large random matrix theory, we derive the effective
gains (these are gains over the cacheless MU-MISO equivalent: see Definition 3) of vector
coded caching — for MF, ZF and RZF precoding respectively — and show them to take
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the form

GMF ≜
R̄MF(G,Q)

R̄MF(1, Q′)
= ξcsi

GQ

Q′

ln
(
1 + L

Q
Pt

Pt+G

)
ln
(
1 + L

Q′
Pt
Pt+1

) , (1.7)

GZF ≜
R̄ZF(G,Q)

R̄ZF(1, Q′)
= ξcsi

GQ

Q′

ln
(
1 + Pt

G

(
L
Q − 1

))
ln
(
1 + Pt

(
L
Q′ − 1

)) , (1.8)

GRZF ≜
R̄RZF(G,Q)

R̄RZF(1, Q′)

a.s.−→ ξcsi
R̊RZF(G, cL)

R̊RZF(1, c′L)
, (1.9)

where ξcsi accounts for the effective gain loss factor due to CSI costs, and R̊RZF is the
asymptotic deterministic equivalence of the sum-rate in RZF as L → ∞. We refer to
Corollary 3.3 for more details. We then employ the derived expressions with ZF and
MF precoding to optimize the number of simultaneously served users (Q⋆) in order to
maximize the overall throughput as a function of the transmit power Pt, the CSI cost
ζG,Q, the nominal gain G and the optimal ratio c⋆ = Q⋆/L. For some Ω ≜ Pt

Pt+G
, we can

see that the optimal ratio c⋆ = Q⋆/L under MF and ZF precoding schemes can be found
via numerically solving the identities: (cf. Theorems 3.4, 3.5 respectively)

(1− 2ζG,Qc
⋆) ln

(
1 +

Ω

c∗

)
− Ω(1− ζG,Qc∗)

Ω + c⋆
= 0, (1.10)(

1− 2ζG,Qc
⋆
)
ln

(
1 +

Pt
G

(
1

c⋆
− 1

))
− (1− ζG,Qc⋆)Pt/G

(1− Pt/G)c⋆ + Pt/G
= 0, (1.11)

which are utilized to generate the numerical results in Fig. 3.3 to show the effective gains
over the optimized cacheless counterparts. As mentioned, these gains exceed 300% and
400%, depending on the precoder. It is worth noting a novel proof in this thesis, which
rigorously provides the asymptotic sum-rate of the conventional (cacheless) MF-based
MIMO BC (cf. Corollary 3.1) which takes the form

R̄MF = Q′ ln

(
1 +

L

Q′
Pt

Pt + 1

)
+ o(1), as Q′, L→∞. (1.12)

It is worth noting that while there have been various works (cf. [61–64]) analyzing the
MF sum-rate in traditional massive MIMO systems, the result derived in this work here
entails less assumptions. For example, focusing on the large-L regime, the result in [61]
directly assumes a tight Jensen’s bound, while the result in [63] is under a so-called “near
deterministic” assumption in low/high SNRs. On the other hand, our method here draws
from the uplink analysis in [65], and only employs a large-L assumption to derive the
exact asymptotic optimality for any value of SNR.

The work presented in this chapter has resulted in the following publications:

[66] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Vector coded caching multi-
plicatively increases the throughput of realistic downlink systems,” IEEE Transactions on
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Wireless Communications, accepted for publication, doi: 10.1109/TWC.2022.3213475.

[67] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Vector coded caching greatly
enhances massive MIMO,” in Proc. IEEE 23rd International Workshop on Signal Pro-
cessing Advances in Wireless Communication (SPAWC), Jul. 2022, pp. 1–5.

Multi-Antenna Receivers in Various Scenarios with Additional Practical Considerations

In Chapter 4, we continue to investigate the impact that vector coded caching has in
various MU-MIMO scenarios6. In this particular part of our work, we consider again
various practical aspects such as channel fading, CSI costs, linear precoding, multi-
antenna receiver combining, and variable path-loss, as well as we consider max-min
fairness (MMF) where the minimum transmission rate among the simultaneously served
users is maximized via power allocation.

In addition to us considering multi-antenna receivers, we also consider block diagonal-
ization (BD) precoding at the BS which allows the BS to send multiple data streams to
each served multi-antenna user. We also consider MRC receivers, again in the context of
vector coded caching. To elaborate, let the q-th data symbol to user Uψ,k be denoted by
sψ,k,q, and let the number of data streams simultaneously sent to Uψ,k be denoted by
Jψ,k. Furthermore, let Hψ,k be the channel matrix from the BS to Uψ,k, and let Tψ,−k be
the null-space projection matrix for interference cancellation. Using the properties of the
projection matrix (e.g., Hermitian, positive semidefinite, and idempotent), we are able to
analytically derive the optimal precoding vector v⋆ψ,k,q for the data symbol sψ,k,q as

v⋆ψ,k,q =
Tψ,−kH

∗
ψ,ktψ,k,q

||Tψ,−kH
∗
ψ,ktψ,k,q||

, (1.13)

where tψ,k,q is the eigenvector associated to the q-th largest (non-zero) eigenvalue λψ,k,q
of HT

ψ,kTψ,−kH
∗
ψ,k. We note that the dimension size of HT

ψ,kTψ,−kH
∗
ψ,k depends on the

number of receive antennas at user Uψ,k which is in practice much lower than the number
of transmit antennas. This considerably reduces the implementation complexity of finding
tψ,k,q and λψ,k,q. Given the optimized BD precoder in (1.13) and of the MRC receiver,
the resulting SINR for decoding sψ,k,q at Uψ,k is shown to be

SINRBD-MRC
ψ,k,q =

Pψ,k,q
N0

λψ,k,q, (1.14)

where Pψ,k,q is the transmit power allocated to sψ,k,q. We refer to Lemma 4.1 for more
information.

Based on the SINR expression in (1.14) and recalling that ζG,Q accounts for the CSI
cost, we formulate the power allocation problem for MMF to maximize the minimum
effective rate among the simultaneously served users in vector coded caching as

max
PΨ

min
ψ∈Ψ

min
k∈[Q]

ζG,Q
∑Jψ,k

q=1
ln
(
1 +

Pψ,k,q
N0

λψ,k,q

)
6The work presented in this chapter will constitute a journal paper, which is currently under preparation.
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s.t. Pt = Tr{PΨ} =
∑

ψ∈Ψ

∑
k∈[Q]

Pψ,k ≤ Ptot, (1.15)

where Ptot denotes the allowable maximum transmit power at the BS. We present
Theorem 4.1 to solve this power allocation problem for MMF, as well as provide simplified
solutions in some special cases. Lemma 4.2 provides some further simplified results.
When the served users have the same number of receive antennas M , in the massive
MIMO regime, we can explicitly and tightly approximate the optimal sum-rate R∗

BD-MRC

by solving (1.15) over Rayleigh fading channels, to get

R⋆BD-MRC ≈ ζG,QGQM ln

(
1 +

Ptot(L− (Q− 1)M)

N0M
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
, (1.16)

where βψ,k accounts for the pathloss of user Uψ,k. We can see from (1.16) that the
sum-rate under this optimized BD-MRC scheme depends on the cumulative effect of
the inverse pathloss in all served users7. The numerical results in Fig. 4.2 also validate
the tightness of (1.16). Then approximately parameterize the effective gain over the
optimized cacheless counterpart as

G⋆BD-MRC ≈
maxQ∈[Qmax]R

⋆
BD-MRC(G,Q)

maxQ′∈[Q′
max]

R⋆BD-MRC(1, Q
′)
. (1.17)

In addition, in the same chapter, we will design a simple ZF precoder, and we will
formulate a similar MMF power allocation problem. For the case where the served users
have the same number of receive antennas M , we will derive (cf. Theorem 4.2) a tight
lower-bound R̃∗

ZF and a tight upper-bound R̂∗
ZF for the optimal sum-rate, that will take

the form

R̃⋆ZF = ζG,QGQM ln

(
1 +

Ptot(L−QM)

MN0
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
, (1.18)

R̂⋆ZF = ζG,QGQM ln

(
1 +

Ptot(L−QM + 1)

MN0
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
. (1.19)

After a quick comparison between (1.16) and (1.19), we will conclude that R⋆BD-MRC

is always greater than R̂⋆ZF (since QM −M ≤ QM − 1), which is also validated via
numerical results in Fig. 4.2. We will also note that the performance gap between BD
and ZF precoders is very small for modest values of M , e.g., M ≤ 4. By using the derived
lower and upper bounds, the effective gain in ZF precoding over the optimized cacheless
counterpart will be tightly lower bounded by

G̃⋆ZF ≥
maxQ∈[Qmax] R̃

⋆
ZF(G,Q)

maxQ′∈[Q′
max]

R̂⋆ZF(1, Q
′)
. (1.20)

7That is, if some users were to change their locations while keeping the inverse pathloss summation
intact, this would not affect R⋆BD-MRC. This can have practical considerations in scenarios with many
users.
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Fig 4.7: Delivery Performance of vector coded caching in a Micro-cell

In Fig. 4.6, for the case of having 64 transmit antennas, 4 receive antennas at each user,
a transmit power of 50 dBm, a coherence bandwidth of 300 kHz, a coherence period of
40 ms, under realistic file-size and cache-size constraints and in realistic pathloss settings,
vector coded caching will be here shown to offer a multiplicative throughput boost of
about 250% with ZF/BD precoding over the already optimized cacheless system in a
Macro-cell with an inner radius of D1 = 35 m and an outer radius of D2 = 500 m.
Moreover, this effective gain will be elevated to 450% in a Micro-cell with an inner radius
of D1 = 10 m and an outer radius of D2 = 100 m, even for a smaller antenna arrays (32
transmit antennas and 2 receive antenna each user), as shown in the above Fig 4.7.

Our preliminary research work for this topic is shown below, while other works are in
preparation.

[68] Hui Zhao, Eleftherios Lampiris, Giuseppe Caire, and Petros Elia, “Multi-antenna
coded caching analysis in finite SNR and finite subpacketization,” in Proc. 25th Interna-
tional ITG Workshop on Smart Antennas (WSA), Nov. 2021, pp. 433–438.

[69] Hui Zhao, and Petros Elia, “Vector coded caching substantially boosts MU-MIMO:
Pathloss, CSI and power-allocation considerations,” in Proc. 26th ITG International
Workshop on Smart Antennas (WSA) and 13th Conference on Systems, Communications,
and Coding (SCC), Feb. 2023.

1.3.3 Main Contributions in Land Mobile Satellite Systems

Motivated by the upcoming satellite integration in beyond-5G networks, our work in [70]
has explored land mobile satellite systems (LMSs) and the role coded caching can play in
such systems. In particular, our work has shown that even a basic MN implementation
of coded caching, can double the goodput of a basic LMS — generally operating at very
low SNR — despite the previously discussed worst-user drawback of such coded caching
approaches8. Motivated by this finding, in Chapter 5, in the downlink setting in an LMS
with a single-antenna transmitting satellite, we consider the use of coded caching and

8In the context of our previous observation that — in the presence of Rayleigh fading — the low-SNR
gains entirely vanish, we note that here the gain does not fully vanish because of the existence of
line-of-sight (LOS) components over the satellite-terrestrial channel.
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Fig. 5.3: Effective coded caching gain versus ρ for G = 6 and B = 20.

analyze the cache-aided delivery performance in terms of the achievable rate and the
effective coded caching gain.

As before, and motivated by the fact that the worst-user bottleneck may be particularly
detrimental because of the low SNR induced by the large distances between the satellite
and the terrestrial users, we here again consider the ACC scheme in order to overcome
this bottleneck. In particular, the work presented in this chapter and in the corresponding
paper under preparation, considers Rician-shadowed fading, where the lowpass-equivalent
complex signal envelope is composed9 by the scatter and the LOS components [71]. In
this LMS setting, we first derive the analytical expressions for the average achievable rate
of the ACC scheme over Rician-Shadowed fading channels. To then insightfully simplify
the derived double-integral analytical expression, we provide simple approximations in
the regimes of low SNR and/or large K. Specifically, a simple but tight approximation
for the effective coded caching gain in the low SNR and large B regime, will take the
form

GACC ≈ G−G
HG
√(

4b20 + 4b0ℵ+ ℵ2

m0

)
/B

2b0 + ℵ
, (1.21)

which is increasing in m0. Moreover, when B is sufficiently large, we have that

HG
√(

4b20 + 4b0ℵ+ ℵ2

m0

)
/B < 2b0 + ℵ, showing how GACC is increasing in the nomi-

nal gain G. In the above Fig. 5.3 for a realistic G = 6, we observe that a) even in the
‘optimistic’ scenario of infrequent light shadowing, the low-SNR MN gain is approximately
2, and b) that for approximately B = 20, ACC boosts MN by a factor of approximately
2.5. We will see that both the large-B approximation as well as the low-SNR approxima-
tion are all tight and are numerically validated to be very close to the real performance.
We consider Rayleigh/Rician-Shadowed fading channels, and we further consider the
mixture Gamma (MG) distribution as a very general fading model [72], which enables us
to provide a general performance analysis on the ACC-aided delivery over many common

9The setting is calibrated by the parameter 2b0 for the average power of the scatter component, the
parameter ℵ for the average power of the LOS component, and by the parameter m0 that reflects the
(average) obstruction of the LOS component (i.e., the blockage of the LOS by buildings, trees, hills, etc.)
(here m0 = 0 stands for complete obstruction, whereas m0 → ∞ corresponds to no obstruction [71]).
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practical fading channels such as Nakagami-q, Nakagami-n, and Nakagami-Lognormal
(NL) composite fading channels. With the help of the CLT, the extended generalized
bivariate Meijer’s G-function, and the low-SNR robust approximation, we are able to
parameterize the average rate and the effective gain of ACC respectively over this MG
channel in the large-B and/or the low-SNR case. We refer to Lemmas 5.5, 5.6 for more
information.

Our preliminary research work for this topic is shown below.

[70] Hui Zhao, Antonio Bazco-Nogueras, and Petros Elia, “Coded caching in land mobile
satellite systems,” in Proc. IEEE International Conference on Communications (ICC),
May 2022, pp. 4571–4576.
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Chapter 2

Aggregated Coded Caching: Design
and Analysis

In this chapter, we first develop a novel delivery scheme, which we will refer to as the
ACC scheme. This scheme is tailored for wireless coded caching, and what it does is that
it dramatically ameliorates (and asymptotically removes) the aforementioned worst-user
bottleneck that main appears in wireless channels (cf. Section 2.2). Then, in Section 2.3,
we rigorously analyze the ACC average rate and effective coded caching gain in the
presence of the quasi-static Rayleigh fading channels. To simplify the derived expressions
and get some valuable insights, we also consider some special but practical cases in
Section 2.3. We subsequently, in Section 2.4, analyze the delivery time of ACC and
validate the delivery boost effect of ACC over ergodic fading channels with different
pathloss in Section 2.5. We then, in Section 2.6, proceed to exploit the main idea behind
the ACC scheme, in the presence of a multi-antenna BS and in the coded multicasting
scenario. Finally, Section 2.7 concludes this chapter.

2.1 System Model and Problem Definition

We consider the quasi-static Rayleigh fading BC in which a single-antenna transmitter
serves a set of K users. As mentioned before, each user requests a file from a library
{Wn}Nn=1 of N files, and each user is assisted by a cache of normalized size γ ∈ [0, 1]. We
consider an arbitrary number Λ of allowable cache states, and we assume that K is an
integer multiple of Λ.

The received signal at user k ∈ [K] is given by yk = hkXts + zk, where hk denotes
the channel coefficient for user k, Xts denotes the transmit signal satisfying an average
power constraint E[|Xts|2] = Pt, and zk denotes the zero-mean, unit-power, additive
white Gaussian noise (AWGN) at user k. Each user k experiences an instantaneous SNR
of SNRk = Pt|hk|2, and an average SNR of ρ ≜ Eh {SNRk}. As is common in the coded
caching literature (cf. [31]), we will assume that hk remains fixed during a transmission
stage, but may change between different transmission stages. We will further assume
that the users experience statistically symmetric Rayleigh fading.
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As it is common in works that study coded caching under quasi-static fading [3,
31], we adopt the average rate1 as the metric of interest. Toward this, we define
the instantaneous rate R as the maximal sum-rate that can be transmitted to the
simultaneously served users for a instantaneous channel realization. Then, the average
rate Eh{R} is defined as the average (over fading statistics) of the above instantaneous rate.
It is important to not confuse this long-term average Eh{R} with the ergodic rate, since
the latter implies an ability to encode over several fading realizations (cf. [31]). Henceforth,
all the values for rate (bits/s) and time (s) are normalized to one Hz of bandwidth.

In this context, a coded caching scheme seeks to provide an effective coded-caching
gain, which represents the true (multiplicative) speed up factor, at finite SNR, that
the said scheme offers over the average rate obtained by TDM. This effective gain is
contrasted to the (ideal, or high-SNR) nominal coded-caching gain, which is the gain
G = Λγ+1 provided by file-size constrained coded caching in the error-free scenario with
fixed and identical link capacities.

The proposed scheme and the analysis are motivated by the fact that the effective gain
of the MN scheme collapses at low SNR, which will be proven in Section 2.3. This collapse
is irrespective of Λ and K, i.e., it happens even in the absence of file-size constraints.

2.2 Aggregated Coded-Caching Scheme

We now introduce a novel scheme, coined as the Aggregated Coded Caching ACC scheme,
which will be shown to overcome the previous collapse of the effective gains. The idea
behind the ACC scheme is to combine multi-rate transmission (in place of a basic XOR-
based transmission) together with cache replication (a necessity in our opinion, for any
realistic coded caching scenario). While the placement part of our scheme is presented
here for the so-called “the Λ-MN” scheme in [18, Section V-A] (which is simply the MN
placement but with cache replication), the ACC scheme can in fact be applied to various
coded caching schemes

In particular, the ACC scheme clusters the users into Λ groups of B = K/Λ users per
group, such that every member of the same group is assigned identical cache content (i.e.,
they share the same cache state). As we have seen, this is essentially inevitable under
realistic file-size constraints. The scheme also follows a standard clique-based approach [1],
such that the transmission is divided into transmission stages that experience a clique-side
information pattern. As in [1], this implies that any desired subfile of some served user
can be found in the cache of every other user involved in that same transmission stage.
Thus, this approach matches a side-information structure that was addressed in the
following well-known result from [49].

Proposition 2.1 ( [49, Thm. 6]). The capacity region of a t-user Gaussian BC, where each
user i ∈ [t] is endowed with SNR equal to SNRi and requests message W ′

i while having
access to side information Wi ={W ′

j}j ̸=i,j∈[t], is given by

C =
{
(R1, · · · , Rt) : 0 ≤ Ri ≤ log2(1 + SNRi), i ∈ [t]

}
.

1We recall that, for quasi-static Rayleigh fading, the typical metric of the worst-case delivery time
does not have an expectation [54].
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Proof. Proposition 2.1 is known as a special case of [49, Thm. 6], and this particular
form has been considered in [73,74]. More details on this, as well as on the association to
our setting, are described in Appendix A.1.

Proposition 2.1 implies that, under this particular configuration of side information,
each user can achieve its own point-to-point capacity, as if no other user was being served
at the same time. There are various optimal multi-rate transmission schemes for this
setting [73, 74], and the proposed ACC scheme can remain oblivious to the encoding
choice.2

Remark 2.1. We state in advance that the aforementioned multi-rate transmission must
indeed be combined with the method of shared caches in order to yield the desired gains.
While multi-rate transmission performs better than MN-based XORs, this rate improvement
appears only when we focus our attention on a single isolated delivery stage that serves
some fixed set of users Ψ. However, when considering the entire delivery problem over all
sets Ψ, we would see no gain, because the MN placement and multicast group generation
without shared caches would not allow for an additional subfile to be sent to a potentially
‘fast’ user in Ψ without generating interference to the remaining (slower) users. This
latter point, which is that the MN placement does not allow exploitation of fast users, is
presented below in the original context of XORs.

Example 1. Consider the delivery of XOR A2,3⊕B1,3⊕C1,2 meant for users Ψ = {1, 2, 3}
who respectively ask for files W1 = A,W2 = B,W3 = C. Even if user 1 decodes A2,3 very
quickly, she must wait for B1,3 and C1,2 to be decoded, because (by definition of the MN
placement) there exists only one subfile that is desired by user 1 and can be decoded by
users 2 and 3. An illustrative example is shown in Fig. 2.1a.

2.2.1 Aggregated Coded-Caching Design

We proceed with the description of the placement and delivery phases of the ACC scheme.
At the end, we will also present a small clarifying example.

Placement Phase

This phase begins by arbitrarily splitting the K users into Λ ordered groups of B = K
Λ

users each. Placement is exactly as in [18, 26], and thus it simply applies the MN
placement of the Λ-user problem, and then each user of the same group stores the same
cache content. In particular, each file Wn, n ∈ [N ], is partitioned into

(
Λ
Λγ

)
segments

as Wn→
{
W T
n : T ⊆ [Λ], |T | = Λγ

}
, and then each user in group g ∈ [Λ] stores all the

subfiles belonging to the set Zg ≜ {W T
n : T ⊆ [Λ], |T | = Λγ, T ∋ g, ∀n ∈ [N ]}.

2In terms of practicality, we know that very simplified schemes, such as nesting BPSK into M-QAM
constellations (cf. [3]), come extremely close to achieving the above capacity region, and in fact achieve
the single-user capacity when we restrict ourselves to QAM modulations [75]. Such practical codes can
be directly applied in our cache-aided setting with minor performance losses.
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(a) Dedicated caches: Delay depends on the worst-user capacity at each transmission stage. Xabc denotes
the signal encoded for users a, b, and c.
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Encoded
signal X111 X211 X212 X323 X333

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

U3,1 U3,2 U3,3

(b) ACC scheme: Delay depends on the worst group sum rate. Xabc denotes the encoded signal for users
a, b, and c of groups 1, 2, and 3, respectively.

Figure 2.1: Comparison of MN and ACC for a nominal coded-caching gain of 3.

Delivery Phase

The delivery phase is split into
(

Λ
Λγ+1

)
transmission stages, where each stage involves a set

Ψ ⊆ [Λ] of |Ψ| = G = Λγ + 1 groups. During each stage, the transmitter simultaneously
delivers to as many as Λγ+1 users, each from a different group in set Ψ. The users within
each group are served one after the other in a round-robin manner. For a given set Ψ,
the transmitter employs a multi-rate code that achieves the capacity in Proposition 2.1,
which implies that the channel state information should be available at the transmitter
only for the |Ψ| served users. We emphasize that the multi-rate transmission in the
ACC delivery does not require power-splitting and guarantees the successful information
decoding in each served user due to the rate adaptation.

Let Ψ(i) denote the i-th group in Ψ, i ∈ [|Ψ|] (recall the group-set Ψ is ordered). We
represent the set of users that are being served at a particular time by the vector v ∈ Z|Ψ|.3

Consistently, v(i) ∈ [B] tells us which user of the i-th group in Ψ is currently being served,
and dv(i) ∈ [N ] denotes the file index requested by user v(i). Hence, the transmitter
serves the users v of the groups in Ψ by transmitting

XΨ,v = X
({
W

Ψ\{Ψ(i)}
dv(i)

}
i∈[|Ψ|]

)
, (2.1)

3Please note here that the dependence of v on the time index and on Ψ is assumed but omitted for
simplicity.
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where, for any set of messagesM, X (M) denotes the transmitted signal obtained from
encoding the messages in M with a coding scheme achieving the capacity region in
Proposition 2.1. We recall that the ACC scheme is oblivious to the selected coding
scheme, as long as it achieves the capacity region. As usual in coded caching schemes,

W
Ψ\{Ψ(i)}
dv(i)

represents the subfile intended by user v(i) that is stored in the cache of all

groups in Ψ except group Ψ(i).

Algorithm 1 presents the transmission for a specific group set Ψ. Every time the
user of some group Ψ(i′) obtains its subfile, v(i′) is updated4 as v(i′)← v(i′) + 1. This
process is repeated until all users in all groups in Ψ are served. If every user of a group
has obtained its subfile, the transmission is composed only of the remaining groups.
Algorithm 1 is iterated over all possible

(
Λ

Λγ+1

)
sets Ψ. After this, the K users obtain

their requested files. We reemphasize that the ACC scheme does not apply user selection.
Let us proceed with a simple clarifying example.

Example 2. Consider a transmission stage serving groups {1, 2, 3} = Ψ, where each group
is composed of B = 3 users. To simplify the explanation of this example, let us denote the
b-th user of group g as Ug,b and the subfile intended for this user as W ′

g,b. Let us further
assume that the normalized capacity of each user (expressed in transmitted subfiles per
time slot) is as follows:

User 1 User 2 User 3

Group 1 1 0.25 0.2
Group 2 0.2 1 0.25
Group 3 0.25 1 0.2

which simply implies that the point-to-point capacity of users U1,1, U2,2, and U3,2 is four
times the capacity of users U1,2, U2,3, and U3,1, and five times the capacity of U1,3, U2,1,
and U3,3. The encoded signal for this example is illustrated in Fig. 2.1b. Initially, the first
user of each group is selected to be served, and the transmitter sends X

(
W ′

1,1,W
′
2,1,W

′
3,1

)
.

Following the result of Proposition 2.1, each user can decode its own subfile at a rate
matching its single-user capacity (log2(1 + SNRg,b)) because each user knows the subfiles
of the other two served users.

After the first slot, user U1,1 has successfully decoded its subfile. Hence, U1,1 is
substituted by U1,2, and the transmitter sends X

(
W ′

1,2,W
′
2,1,W

′
3,1

)
. The key is that we

can serve any of the users storing the same cache state because all of them can cache out
the subfiles intended by the users of the other groups in Ψ, and vice versa. Thus, every
time a user obtains its subfile, a new member of the same group substitutes this user,
while the other served users can continue decoding their subfile. In the same way, U3,1

obtains its subfile after the fourth time slot, it is replaced by U3,2, and the transmitter
then sends X

(
W ′

1,2,W
′
2,1,W

′
3,2

)
. After the fifth slot, the three users obtain their subfile

and the transmitter starts sending X
(
W ′

1,3,W
′
2,2,W

′
3,3

)
, and so on.

4We are actually incurring an abuse of notation in (2.1) and Algorithm 1. Specifically, when a group
updates its served user, the transmitter continues encoding the partially-decoded subfiles taking into
account that there remains only a part of such subfiles to be transmitted. This is intuitive from Fig. 2.1b.
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Algorithm 1: Transmission stage for a set of groups Ψ

1 Initialize v ∈ Z|Ψ| as v(i)←− 1 for any i ∈ [|Ψ|]
2 Initialize Number of finished groups←− 0
3 while Number of finished groups ̸= |Ψ| do
4 Transmit

5 XΨ,v ←− X
({
W

Ψ\{Ψ(i)}
dv(i)

∣∣∣i ∈ [|Ψ|] and v(i) ≤ B
})

6 until A served user v(i), i ∈ [|Ψ|], fully obtains its subfile
7 Set i⋆ as the index of the group Ψ(i⋆) whose user has decoded its subfile
8 if v(i⋆) = B then
9 Number of finished groups←− Number of finished groups + 1

10 v(i⋆)←− v(i⋆) + 1

2.3 Average Rate Analysis

In this section, we analyze the long-term average rate of the Λ-MN and ACC schemes.
First, we will derive the exact expression of the average rate for both schemes. Afterward,
we will approximate this rate at low SNR, and we will also derive the limit in the regime of
many users. It will turn out, as we will see in the following, that these two approximations
are very robust in realistic scenarios. Furthermore, we obtain the effective gain of this
scheme with respect to TDM as well as its improvement with respect to the Λ-MN
scheme, and we show that while the effective gain of the Λ-MN scheme vanishes at low
SNR, the ACC scheme recovers — at any SNR value — the nominal (high-SNR) gain as
the number of users per cache increases.

We recall that, under Rayleigh fading, the SNR follows an exponential distribution.
Hence, for user k ∈ [K], the probability density function (PDF) and cumulative distri-

bution function (CDF) of SNRk are given respectively by fSNRk(x) =
1
ρ exp

(
−x
ρ

)
and

FSNRk(x) = 1 − exp
(
−x
ρ

)
, for any x ≥ 0, where ρ = Eh{SNRk} denotes the average

SNR with respect to channel states. We recall that the user channels are statistically
symmetric. As for the ACC scheme, we will use SNRg,b, fSNRg,b(x), and FSNRg,b(x) to
refer to the SNR, PDF, and CDF corresponding to the b-th user of the group g, where
b ∈ [B] and g ∈ [Λ].

2.3.1 Average Rate of the Λ-MN and ACC Schemes

Average Rate of the Λ-MN Scheme

We first note that the Λ-MN is an adaptation for finite-file sizes settings from [18] of the
standard MN scheme of [1]. Placement is analogous to the one of the ACC scheme, and
the transmission consists of repeating B times the transmission of the dedicated caches
setting. Consequently, the Λ-MN scheme consists of B

(
Λ

Λγ+1

)
transmission stages, each

of them employed to deliver an XOR to a group of users of size |Ψ| = G = Λγ + 1.
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Consider the delivery to a particular set Ψ of Λγ+1 users. We know from the multicast
capacity theorem in [23] that the maximum instantaneous rate for any user i ∈ Ψ takes
the form

RMN
i,Ψ = log2

(
1 + min

k∈Ψ
SNRk

)
bits/s, (2.2)

where the minimum operator guarantees the successful information decoding at all the
users in Ψ. Note that the delay (or delivery time) required to transmit one sub-file to
every user in Ψ at this transmission stage is given by

TMN,Ψ =
F(
Λ
Λγ

) [log2(1 + min
k∈Ψ

SNRk

)]−1

s, (2.3)

where F is the total information bits of a file, and F/
(
Λ
Λγ

)
is the size of the subfiles

generated from subpacketization. Since mink∈Ψ SNRk follows an exponential distribution
with rate |Ψ|/ρ, the expectation of TMN,Ψ diverges. For this reason, we consider the
average rate as a main metric of interest, which crisply reflects the worst-user effect.

The instantaneous sum rate is given by
∑

i∈ΨR
MN
i,Ψ , since we are simultaneously

serving all the |Ψ| users. Consequently, the average (sum) rate for that specific set Ψ
takes the form

R̄MN
Ψ ≜ Eh

{∑
i∈Ψ

RMN
i,Ψ

}
=

G

ln 2
Eh
{
ln(1 + min

k∈Ψ
SNRk)

}
(2.4)

which follows because the users are statistically equivalent, which in turn also implies
that the average sum rate R̄MN remains the same for any set Ψ, i.e., it implies that
R̄MN = R̄MN

Ψ′ ∀Ψ′ ⊆ [Λ], |Ψ′| = Λγ + 1.
Naturally, the average rate under the TDM scheme, which we denote as R̄TDM, is

a special case of R̄MN obtained by setting G = 1. The variable mink∈Ψ{SNRk} is the
minimum of G i.i.d. exponential variables of rate 1

ρ (i.e., mean ρ), and, consequently,
it follows an exponential distribution with rate G/ρ (or mean ρ/G). Thus, it follows
from [50, Eq. (15.26)] that

R̄MN = − G

ln 2
exp

(
G

ρ

)
· Ei

(
−G
ρ

)
, (2.5)

where Ei(·) represents the exponential integral function [76]. Note that G = 1 in (2.5)
yields the closed-form expression for R̄TDM.

Average Rate of the ACC Scheme

Due to the symmetry of the ACC scheme and the statistical symmetry of the channel,
we now focus on a particular set Ψ of |Ψ| = G = Λγ + 1 user groups, where we recall
that each group is composed of B users.

As explained in Section 2.2, the ACC scheme allows us to serve some user b of group g
at its own point-to-point capacity, and it allows us to immediately start serving another
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user of the same group as soon as the said user b has completed the decoding of its subfile.
Furthermore, in the ACC scheme, the delivery to a group-set Ψ is completed when every
user belonging to one of these groups has obtained its subfile. Consequently, the resulted
delay (or delivery time) to serve all user-groups in Ψ (which include |Ψ| ·B users) is given
by

TACC,Ψ =
F(
Λ
Λγ

) max
g∈Ψ

B∑
b=1

[
log2 (1 + SNRg,b)

]−1
s, (2.6)

which will become (2.3) for B = 1. As for (2.3), the expectation of (2.6) diverges. Then,
as explained for the Λ-MN scheme, we consider the average rate. The (per-user average)
rate with which any group j in the set Ψ is served is here captured by

RACC
j,Ψ = min

g∈Ψ

1

B

∑B

b=1
log2(1 + SNRg,b) bits/s (2.7)

for all j ∈ Ψ. By applying the same reasoning as in (2.2)–(2.4), we obtain that the
average rate with which the transmitter delivers data across the users is given by

R̄ACC=
G

ln 2
Eh
{
min
g∈Ψ

1

B

B∑
b=1

ln(1 + SNRg,b)
}

bits/s. (2.8)

We quickly note that, by comparing (2.8) with (2.4), we can see how the worst-user
effect is essentially averaged out into a cumulative “worst-group” effect. By considering
dedicated caches (i.e., B = 1), we obtain the same average rate as that of the Λ-MN
scheme in (2.4) despite having a different (not XOR-based) coding scheme, which is
consistent with Remark 2.1.

In the following, ȷ ≜
√
−1 denotes the imaginary unit, Im{·} denotes the imaginary

part of a complex number, and E−ȷt(·) denotes the exponential integral function of the
(−ȷt)-th order [76]. Next, we present our first main result.

Lemma 2.1. The exact average rate of the ACC scheme over symmetric quasi-static
Rayleigh fading can be derived in a double-integral form, which takes the form

R̄ACC =
G

B ln 2

∞∫
0

1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB
EB−ȷt

(
1
ρ

)}
t

dt

Gdy.
Proof. The proof is relegated to Appendix A.2.

The numerical implementation of the above expression is very complex and it provides
little insight. In the following, we obtain the effective gains in both the low-SNR
limit and the large-B limit for the Λ-MN scheme and the ACC scheme, and we derive
approximations of their rates, from which some meaningful insights can be easily drawn.
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2.3.2 Rate Approximations and Effective Gains at Low SNR

Λ-MN Scheme analysis

First, we present a low-SNR approximation for the average rate of the Λ-MN scheme,
which is in fact a special case of the ACC scheme with B = 1. Although the exact form
has been derived in (2.5), we can provide a simple but tight approximation which allows
us to remove the special function Ei(·) from the expression.

Lemma 2.2. In the low-SNR region, the average rate of the Λ-MN scheme can be approxi-
mated by

R̄MN≈ G

ln 2

(
ln
(
1 +

ρ

G

)
− ρ2

2G2 (1 + ρ/G)2

)
. (2.9)

Proof. See Appendix A.3.1.

In the numerical evaluation section (cf. Fig. 2.5), it will be shown that this computa-
tionally efficient second-order approximation can in fact provide us with an extremely
reliable estimation of the performance even in the medium-SNR region.

Let us now consider the exact effective gain of the Λ-MN scheme, which, directly
from (2.5), takes the form

R̄MN

R̄TDM
=
G exp

(
G
ρ

)
· Ei

(
−G
ρ

)
exp

(
1
ρ

)
· Ei

(
−1
ρ

) . (2.10)

As expected, the effective gain converges to the nominal gain G at high SNR, since the
limit of (2.10) as ρ→∞ is G. On the other hand, in the low-SNR region, this effective
gain entirely vanishes, as stated in the following proposition.

Proposition 2.2. For any value of K and Λ, the effective gain of the Λ-MN scheme
converges to

lim
ρ→0

R̄MN

R̄TDM
= 1 (2.11)

meaning that this effective coded-caching gain entirely vanishes at low SNR.

Proof. See Appendix A.3.2.

As noted before, Proposition 2.2 holds for any scheme which requires decoding of
single XORs.
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ACC Scheme Analysis

After presenting the previous result for the Λ-MN scheme, let us now consider the ACC
scheme. In the following, for any integer vector b ≜ [b1, b2, · · · , bB] ∈ ZB composed of B
non-negative elements, we will use(

n

b

)
≜

n!

b1!b2! · · · bB!
(2.12)

to denote the multinomial coefficient. We can now state our following result, which
presents an expression of the rate of the ACC scheme for the low-SNR regime.

Lemma 2.3. In the low-SNR region, the average rate of the ACC scheme can be approxi-
mated by R̄ACC ≈ ρG

B ln 2 LG, since it holds that

R̄ACC =
ρG

B ln 2
LG + o(ρ), (2.13)

where LG is defined as

LG ≜
∑

||b||1=G

(
G

b

)
G−1−

∑B
t=1(t−1)bt∏B

t=1((t− 1)!)bt

( B∑
t=1

(t− 1)bt

)
! ,

and where the sum is over all the vectors composed of B non-negative integer elements
and whose norm-1 equals G.

Proof. The proof is relegated to Appendix A.3.3.

From Lemma 2.3 and Proposition 2.2, we obtain a corollary on the gain of the ACC
scheme over the Λ-MN scheme.

Corollary 2.1. In the limit of low SNR, the ratio of R̄ACC over R̄MN converges to the
constant

lim
ρ→0

R̄ACC

R̄MN
=

G

B
LG (2.14)

where we recall that G = K
B γ + 1.

Proof. The proof is relegated to Appendix A.3.4.

The expression in Corollary 2.1 is illustrated in Fig. 2.2 for different values of B and
G.

Remark 2.2. In Fig. 2.2, we can see that R̄ACC

R̄MN is concave with respect to B, and that this
concavity increases with G. This signals that, for large G, most of the gain from having
B > 1 is obtained quickly, at relatively small values of B. For example, when G = 100
(which is unrealistic), we see that the ACC rate for B = 2 is up to 20 times higher than
the Λ-MN rate (B = 1).
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Figure 2.2: The ACC improvement
(
R̄ACC

R̄MN

)
over the MN scheme in Corollary 2.1 for

different B and G.

2.3.3 Effective Gain in the Large-B Region

We now move away from the low-SNR regime, and we consider instead the limit of many
users. This regime is nicely motivated by the ever increasing density of users in wireless
networks. Therefore, we consider that Λ remains fixed and K can grow unboundedly,
which also implies that B →∞ since B = K/Λ. The following shows that, in the limit
of many users, the effective gain of the ACC scheme matches — for any SNR value —
the nominal gain.

Lemma 2.4. For any average SNR ρ, the ACC scheme guarantees

lim
B→∞

R̄ACC

R̄TDM
= Λγ + 1, (2.15)

and, thus, its effective gain matches the nominal gain for any value of SNR.

Proof. The proof is relegated to Appendix A.3.5.

We now proceed to compare the ACC scheme with the Λ-MN scheme, again in the
limit of large B. We will also obtain the low-SNR approximation of this comparison,
which nicely captures scenarios such as cell-free or satellite networks, where the majority
of the users is distributed in the edge area and/or suffers from heavy path-loss or heavy
shadowing.

Lemma 2.5. In a setting with Λ cache states and K = ΛB users, and for any average
SNR ρ, the ratio R̄ACC

R̄MN satisfies

lim
B→∞

R̄ACC

R̄MN
= exp

(
1−G
ρ

) Ei
(
−1
ρ

)
Ei
(
−G
ρ

) . (2.16)
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Furthermore, it holds that

lim
ρ→0

lim
B→∞

R̄ACC

R̄MN
= Λγ + 1. (2.17)

Proof. The proof is relegated to Appendix A.3.6. Note that (2.17) follows from (2.16), but
the same conclusion can be seen directly by combining Proposition 2.2 and Lemma 2.4.

Remark 2.3. The key for recovering the nominal gain is that a larger B implies a smaller
fluctuation around the average transmission rate within a user group, which inherently
reduces the impact of the worst-user (or worst-group) bottleneck.

Remark 2.4. As previously mentioned, the preservation of the nominal gains in Lemma 2.5
would also hold for other coded caching schemes. Indeed, works that focus on the finite
file-size constraint are normally based on XOR transmissions, and thus they are not
robust to the worst-user effect. Consequently, we can improve the low-SNR performance
in scenarios such as those found in [20,21,26] by incorporating our approach of multi-rate
transmission and cache replication into these schemes. This is shown in Fig. 2.11 and
the corresponding text for the setting of [20].

2.3.4 High-Fidelity Approximation of R̄ACC for Any SNR Value

The previous subsections offered crisp and insightful approximations of the performance
of the ACC scheme. We now take a step back and seek to provide high-accuracy
approximations that can be evaluated very easily.

Indeed, both the exact value of R̄ACC in Lemma 2.1 and the approximation at low
SNR in Lemma 2.3 have time-consuming implementations when B is large. To counter
this, we now provide a simple but very precise large-B approximation of R̄ACC, which
accurately approximates the average rate even if B is relatively small. This expression
involves the well-known Q-function Q(·), i.e., the tail distribution function of the standard
normal distribution, and the Meijer’s G-function G·,·

·,·(·) defined in [76, Eq. (9.301)].
Before presenting the new approximation, let us denote the expectation of the

maximum of G i.i.d. standard normal random variables by HG. Consequently, the
expectation of the minimum of such set of variables is given by −HG. We can now present
our next result.

Lemma 2.6. In the large-B regime, the average rate of the ACC scheme can be approxi-
mated by

R̄ACC ≈ G

ln 2

(
ϱ− σ√

B
×HG

)
, (2.18)

where ϱ and σ respectively represent the average and the standard deviation of ln(1 +
SNRg,b) for g ∈ [Λ] and b ∈ [B], which are given by

ϱ = − exp

(
1

ρ

)
· Ei

(
−1

ρ

)
, (2.19)
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σ =

√
2 exp

(
1

ρ

)
G3,0

2,3

(
1

ρ

∣∣∣1,10,0,0

)
− ϱ2. (2.20)

Proof. See Appendix A.4.

The term HG is given by the following integral form,

HG =
−G√
2π

∫ +∞

−∞
y
(
Q(y)

)G−1
exp

(
−y

2

2

)
dy, (2.21)

and the proof of (2.21) is relegated to Appendix A.4.
At this point, we note that the value of HG for G = 1, 2, 3, 4, 5 is known (cf. [77, Sec.

5.16]) and it is given in the following table.

Table 2.1: Exact Value of HG for G ≤ 5

G 1 2 3 4 5

HG 0 π−1/2 3
2π

−1/2 3π−3/2 cos−1
(
−1

3

)
5
2π

−3/2 cos−1
(
−23

27

)
For larger values of G, there are not known closed-form expressions, but it is known

(cf. [78]) that one can have a simple approximation by substituting HG by
√
2 ln(G).

This approximation is based on the fact that HG is bounded as 1√
π ln 2

√
ln(G) ≤ HG ≤√

2 ln(G), and the fact that limG→∞
HG√
ln(G)

=
√
2 (cf. [78]).

In order to obtain a better approximation of HG than
√

2 ln(G), which is simple but
only accurate for large values of G, a very interesting approximation is to adopt the
Gauss-Hermite quadrature (GHQ) [79, Ch. 9], which nicely balances high accuracy and
low complexity. Applying this method to the specific integral form in (2.21) yields

HG ≈
−
√
2G√
π

∑V

v=1
ωvxv

(
Q
(√

2xv
))G−1

, (2.22)

where V , xv, and ωv are the summation terms, sample points and weights in the GHQ,
respectively. Generally speaking, we can get an approximate result with high accuracy
by summing up several terms in the GHQ.

2.3.5 Numerical Results for the ACC scheme

In this subsection, we illustrate through numerical analysis both the exact results and the
previously obtained approximations5. The derived approximations on the average rate
are computationally efficient, can handle large-dimensional problems, and, as we will show
via Monte-Carlo simulations, tightly approximate the true performance of the algorithms.
In the following, we characterize the different considered scenarios in the simulations by

5For the convenience of annotation in the simulation figures, we omit the chapter labels of theorems,
lemmas, corollaries, propositions and equations. As the numerical results are independent across different
chapters, this kind of omission does not bring about any confusion.
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Figure 2.3: Effective gain versus ρ for G = 10. Right-side plot focuses on realistic SNR
values.
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Figure 2.4: Effective gain versus ρ for B = 6. Right-side plot focuses on realistic SNR
values.

the parameters B and G. Note that the use of these two parameters can apply to various
K,Λ, γ scenarios, where the relation follows from the fact that G = Λγ + 1 = K

B γ + 1.

To motivate the values of B that we use, let us consider a scenario with γ = 10%
and a realistic subpacketization limit of 105. For a file size of 108 bytes, this implies an
atomic sub-file size of about 1000 bytes. This gives Λ = argmaxx∈Z

{(
x

0.1x

)
< 105

}
≈ 40,

which means that having K = 800 users reasonably allows for B up to 20. Such (or
even higher) values of K are motivated by several different scenarios [80, 81]. In order to
obtain the simulation results with high accuracy, 106 channel states are generated and
averaged over Rayleigh fading.
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ACC and MN Effective Gains With Respect to TDM

In Figs. 2.3–2.4, we present the effective coded-caching gains of the ACC and MN schemes
versus ρ, for different values of B and different nominal gains (G). As expected, the
effective gains of both the ACC scheme and the MN scheme converge to the nominal
gain as ρ increases. However, the convergence of the ACC scheme is much faster than
that of the MN scheme and, furthermore, the convergence of the ACC scheme becomes
faster as B grows.

From the same figures, it is also worth noting that, when ρ is relatively small, the
effective coded-caching gains of both schemes arrive to a flat lower bound. The lower
bound for the ACC scheme is notably greater and improves as either B or G become
bigger. However, this behavior does not extend to the MN scheme, which is consistent
with the result of Proposition 2.2 stating that the effective gain of the MN scheme
collapses at low SNR regardless of the value of the high-SNR caching gain G. Moreover,
in Fig. 2.4, we can see that for the MN scheme the worst-user effect is amplified as G
increases. Therefore, Figs. 2.3–2.4 show that the advantages of the ACC scheme in terms
of average rate are still significant even for a small group size (B = 4, 6).

-10 -5 0 5 10 15 20

ρ [dB]

10
-1

10
0

10
1

A
ve
ra
ge

R
at
e
[b
it
s/
s/
H
z]

ACC, Simulation
MN, Simulation
Lemma 1: Exact Result for ACC
Lemma 3: Multinomial low-SNR Approx. for ACC
Lemma 2: 2nd-order low-SNR Approx. for MN

B = 2, 4

Figure 2.5: R̄ACC versus ρ for G = 4.

Approximations on the Average Rate R̄ACC

In Figs. 2.5–2.8, we validate the derived analytical approximations and highlight some
interesting trends and comparisons. First, Fig. 2.5 shows the average rate R̄ACC versus ρ
for different values of B. Note that, for B = 1, R̄ACC = R̄MN. For comparison, Fig. 2.5
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Figure 2.6: R̄ACC versus ρ for B = 3.

displays the simulated result (circle and asterisk symbols), the exact derived average rate
R̄ACC in Lemma 2.1 (solid line), the low-SNR multinomial approximation in Lemma 2.3
(dashed line), and the low-SNR second-order approximation for R̄MN in Lemma 2.2
(dotted line). The rate enhancement due to the ACC scheme is exhibited by comparing
the results of Lemma 2.1 and Lemma 2.2 (solid and dotted lines, respectively). Fig. 2.5
shows that the accuracy of the approximation for R̄MN in Lemma 2.2 is better than the
approximation for R̄ACC in Lemma 2.3, mainly because Lemma 2.3 considers a first-order
approximation. Fig. 2.6 reveals that the approximation derived in Lemma 2.3 becomes
more accurate as G increases, which indicates that the value of ρ at which the nonlinear
part of the average rate becomes significant increases as G increases.

The large-B approximation of R̄ACC from Lemma 2.6 is validated in Fig. 2.7, where
the average rate is plotted for different G. The values of HG are taken from Table 2.1.
This large-B approximation tightly approximates the simulation results, even for a small
B. In fact, this approximation is extremely tight for any value of B bigger than 1. To
further demonstrate the accuracy of Lemma 2.6, we show in Fig. 2.8 the results derived
by using i) the integral calculation in (2.21), ii) the GHQ method in (2.22), and iii) the√
2 ln(G) approximation of HG for G > 5.

After verifying the high accuracy of the approximation in Lemma 2.6, we exploit it
to present some interesting comparisons between the ACC scheme and the MN scheme
in Figs. 2.9–2.10. In Fig. 2.9, we can see through the ratio R̄ACC

R̄MN that R̄ACC provides
significant boost for realistic SNR values. In order to illustrate the extent to which this
ratio approaches the theoretical gain in the low-SNR regime, we show in Fig. 2.10 the
different ratios/improvements achieved by varying B.
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Figure 2.7: R̄ACC versus B for ρ = 0 dB.

Analysis of Delivery Time with Decentralized-Placement

In order to show the generality of the key ideas underlying the ACC scheme, we provide
an example of its application in a decentralized coded caching setting with finite file-size
constraints. We then compare our new decentralized scheme with the state-of-the-art
scheme from [20].

In the decentralized scenario of [20], the subpacketization constraint induces a certain
number Λ of cache states. The main difference with our previous setting is that, during
placement, each user independently selects one of the Λ cache states uniformly at random
and stores it in its cache, such that each of the Λ cache states will be stored at a different
number of users. Let Bg denote the number of users storing the g-th cache state, and

note that
∑Λ

g=1Bg = K.

During the delivery phase, the scheme in [20] first serves one user from each cache
state by implementing sequential XOR transmissions as if we applied the standard MN
scheme for Λ users. After that, the transmission procedure is repeated for the next user
of each cache state for the cache states still including some not-served users. We refer
to [20] for more details.

We recall that, in contrast to the scheme from [20], the proposed ACC scheme
sequentially serves all users in a set of cache states Ψ of G = Λγ + 1 cache states (i.e.,∑

g∈ΨBg users). Once all these users have received their subfile, the transmitter starts
to serve another cache-state set Ψ′. As mentioned in Remark 2.4, the ACC scheme can
be directly applied to the case in which each cache state is stored at a different number
of users.
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Let us now analyze the benefits of using the ideas from the ACC scheme in this
setting. Since now the number of users per cache state may (and probably will) differ,
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we need to consider the average delivery time instead of the average rate. Note, however,
that the delivery time over Rayleigh fading channels does not converge, as previously
mentioned. Hence, for comparative purposes, we consider Nakagami-m fading to model
the wireless propagation [50]. The delivery time of the centralized ACC scheme over
Nakagami-m fading channels has been recently analyzed in [54].

We can obtain from (2.6) the total delivery time of the decentralized ACC scheme as

TACC =
F(
Λ
Λγ

) ∑
Ψ⊆[Λ]

|Ψ|=Λγ+1

max
g∈Ψ

{ Bg∑
b=1

[
ln (1 + SNRg,b)

]−1

}
s.

Upon defining Bmax ≜ maxg∈[Λ]{Bg} and considering the same assumption of quasi-static
fading as for the ACC scheme, the total delivery time in the coded caching scheme of [20]
is

TDec =
F(
Λ
Λγ

) Bmax∑
b=1

∑
Ψ⊆[Λ]

|Ψ|=Λγ+1

max
g∈Ψ
Bg≥b

{[
ln (1 + SNRg,b)

]−1
}

s,

where SNRg,b is the SNR of the b-th (b ∈ [Bg]) user of the g-th cache state.

For comparison, we also consider the performance of uncoded caching. When users
request different files, the total delivery time is TunCC =

∑K
k=1

(1−γ)F
ln(1+SNRk)

s.
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Next, we numerically evaluate the ratios TunCC/TACC and TunCC/TDec, averaged over
channel states and cache-state allocations, to compare the delivery time boost of the
proposed approach over Nakagami-m fading channels. We consider that the distribution
of users in cache states follows a Multinomial distribution with Λ equally probable
outcomes (cf. [20]).

We can observe in Fig. 2.11 how the decentralized ACC scheme considerably improves
the performance of coded caching, and this enhancement is more acute in the low-to-
moderate SNR region. As previously pointed out, the main reason for this improvement
is the amelioration of the worst-user bottleneck, where this amelioration is again the
result of using shared caches as a leverage to reduce delay variability. The fact that
this reduction of the worst-user bottleneck is improved as the total number of users K
increases (cf. Lemma 2.4) is exemplified by comparing the K = 600 case in Fig. 2.11
with the K = 300 case.
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Figure 2.11: Comparison of Delivery Time versus ρ for m = 2 in the decentralized-
placement scenario.

2.4 Extension A: Delivery Time Analysis of the ACC scheme

In this section, we analyze the MN and ACC delivery time performance at finite SNR
values. Motivated by the fact that the delivery time under Rayleigh fading does not have
an expectation, Nakagami-m fading is assumed to model the PHY channel. We derive
the analytical expression of the delivery time at lower SNR, and we also consider the
regime of large number of users in order to draw some valuable insights.

Let us recall that in ACC, the delivery time for serving a specific set Ψ of user groups,
indeed depends on the worst (slowest) group, and not on the worst user. Let us now
present our metric of interest.
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Delivery time Consider the ℓ-th group set Ψℓ, ℓ∈
[(

Λ
Λγ+1

)]
. From the previous description

of the ACC scheme, the delivery time to Ψℓ is given by (cf. [51])

Tℓ =
F

Bw
(
Λ
Λγ

) max
g∈Ψℓ

{
B∑
b=1

1

log2 (1 + SNRg,b)

}
= ρ−1 F ln 2

Bw
(
Λ
Λγ

) max
g∈Ψℓ

{
B∑
b=1

1

|hg,b|2

}
+ o(1),

(2.23)

where limρ→0 o(1) = 0, where hg,b denotes the channel coefficient between the transmitter
and user Ug,b, where SNRg,b = ρ|hg,b|2 denotes the instantaneous SNR at user Ug,b, where
Bw refers to the transmission bandwidth, and where ρ denotes the normalized transmit
power. Since we assume Nakagami-m fading, |hg,b|2 follows a Gamma distribution with
shape parameter m and unitary scale parameter (i.e., |hg,b|2 ∼ Gamma(m, 1)). Since

there are
(

Λ
Λγ+1

)
transmission stages, the total delay, averaged over the channel state, is

Eh{TACC} = Eh
{∑( Λ

Λγ+1)

ℓ=1
Tℓ

}
=
∑( Λ

Λγ+1)

ℓ=1
Eh{Tℓ} = ρ−1Λ(1− γ)F ln 2

Bw(1 + Λγ)
Eh{TΨ}+ o(1),

(2.24)

where TΨ ≜ maxg∈Ψ

{∑B
b=1

1
|hg,b|2

}
focuses on a specific user-group set Ψ during the

ACC delivery phase. In this section, we focus on the delivery time at low SNR, and thus
we define the following approximation

T̊ACC ≜ ρ−1Λ(1− γ)F ln 2

Bw(1 + Λγ)
Eh{TΨ} (2.25)

by omitting the term o(1) in (2.24).
To show the extent to which the delivery performance is enhanced at reasonable

values of the SNR, we define the effective coded caching gain, now in terms of delivery
time6. First, we will consider the performance of simple Time-Division Multiplexing
(TDM) transmission without coded caching, in the sense that the local memory at the
users is only useful to provide local caching gains that stem from the fact that γF bits of
the requested file are already stored at the user. This scheme allows us to characterize
the net gain generated by coded caching. Henceforth, we will refer to this scheme as the
uncoded TDM scheme.

Definition 1 (Effective coded caching gain). The effective coded caching gain of a particular
coded caching scheme is the ratio of the average delivery time of the uncoded TDM scheme
over the average delivery time of the said particular scheme (here, of the MN or ACC
schemes), where the average is with respect to the quasi-static channel fading state.

2.4.1 Delivery Time of the MN Scheme at Low SNR

In this subsection, we analyze the average delivery time of the MN scheme in order to
present some insights about its performance at practical SNR values and to provide a
benchmark for the ACC scheme.

6The effective gain of a coded caching scheme is actually a generic metric to reflect the real performance
boost over the uncoded TDM scheme.
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In order to serve the K users by means of the MN scheme in the scenario where the
subpacketization constraint induces a maximum number of cache states Λ < K, we need
to consider the MN transmission only over Λ users (one from each group), and then
repeat the same process B = K/Λ times, in order to serve all the K users (cf. [51], [18]).
In this setting, the delivery time required by the MN scheme to serve Λ users, matches
the ACC delivery time when B = 1 [51] and thus this MN average delivery time at low
SNR follows from (2.25) as

T̊MN ≜ ρ−1B
Λ(1− γ)F ln 2

Bw(1 + Λγ)
E{TΨ}, (2.26)

where TΨ ≜ maxg∈Ψ
{

1
|hg |2

}
, and hg denotes the channel coefficient between the transmit-

ter and user Ug (we omit the subscript b because here B = 1). In (2.26), the introduction
of the factor B reflects the fact that we repeat the MN scheme B = K/Λ times in order
to serve all K users. In the next lemma, we provide the analytical expression of T̊MN.
We recall that G = 1 + Λγ.

Lemma 2.7. The approximate average delivery time of the MN scheme at low SNR over
quasi-static Nakagami-m fading is given by

T̊MN =
K(1− γ)F ln 2

ρBwG

∫ ∞

0
1−
(
Γ (m, 1/x)

Γ(m)

)G
dx, (2.27)

where Γ(·) and Γ(·, ·) denote the Gamma function and the upper incomplete Gamma
function [76], respectively.

Proof. Under the assumption of Nakagami-m fading, it follows that |hg|2 ∼ Gamma(m, 1).
Then, we have that 1

|hg |2 follows an inverse Gamma distribution with shape parameter m

and scale parameter equal to 1. Therefore, the CDF of 1
|hg |2 is (cf. [82])

F1/|hg |2(x) =
1

Γ(m)
Γ (m, 1/x) , x ≥ 0. (2.28)

Hence, the CDF of TΨ ≜ maxg∈Ψ
{

1
|hg |2

}
in (2.26) writes as

FTΨ(x)=
(
F1/|hg |2(x)

)G
=

(
1

Γ(m)
Γ (m, 1/x)

)G
. (2.29)

Since TΨ has a non-negative support, Eh{TΨ} can be obtained by integrating 1− FTΨ(x)
from 0 to infinity. Substituting Eh{TΨ} by this integral in (2.26) yields (2.27).

The integral in Lemma 2.7 does not have a closed-form solution. Yet, we can obtain
a closed-form expression for T̊MN when m is a positive integer bigger than 1, as will be
stated further down, in the subsequent corollary. Before presenting this result though,
let us introduce some useful notations; Let k ≜ [k1, k2, · · · , km] be a non-negative integer

vector and
(
G−1
k

)
≜ (G−1)!

k1!k2!···km! be the multinomial coefficient, and let us use ||k||1 to
denote the norm-1 operator of any vector k. We can present now the following result.
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Corollary 2.2. For any positive integer m ≥ 2, the approximate delivery time of the MN
scheme becomes

T̊MN =ρ−1K(1− γ)F ln 2

Bw(m− 1)!

∑
||k||1=G−1

(
G− 1

k

)
× G1−m−

∑m
j=1(j−1)kj∏m

j=1((j − 1)!)kj

(
m− 2 +

m∑
j=1

(j − 1)kj

)
!. (2.30)

Proof. We first obtain the PDF of TΨ by differentiating the CDF of TΨ given in (2.29).

fTΨ(x) =
Ge−1/x

(Γ(m))Gxm+1

(
Γ
(
m, 1/x

) )G−1
. (2.31)

By applying [76, Eq. (8.352.2)], we can rewrite fTΨ(x) for any positive integer m as

fTΨ(x) =
Ge−1/x

(Γ(m))Gxm+1

(
Γ(m)e

−1/x
∑m−1

j=0

x−j

j!

)G−1

=
Ge−G/x

Γ(m)

∑
||k||1=G−1

(
G− 1

k

)
x−m−1−

∑m
j=1(j−1)kj∏m

j=1((j − 1)!)kj
. (2.32)

Since Eh{TΨ} =
∫∞
0 xfTΨ(x)dx, we obtain Eh{TΨ} by considering the expression

of fTΨ(x) in (2.32). Finally, substituting Eh{TΨ} in (2.26) yields (2.30).

Next, we also consider the performance of simple TDM without coded caching.

Corollary 2.3. The low SNR approximate delivery time with uncoded TDM is

T̊TDM = ρ−1K(1− γ)F ln 2

Bw(m− 1)
∀m > 1. (2.33)

Proof. This result follows directly from Lemma 2.7 after fixing the number of simultane-
ously served users to correspond to G = 1. Then, it follows that Eh{TΨ} = Eh{ 1

|hi|2 } for
i ∈ K, which yields (2.33) after substituting Eh{TΨ} = 1/(m− 1) in (2.26). The factor
1− γ in (2.33) is naturally due to the fact that every user has stored γF bits of each file
in the library F , and the server only needs to deliver the remaining (1− γ)F bits of each
requested file.

Remark 2.5. The expectation of the delivery time does not exist for m ≤ 1, where m = 1
corresponds to Rayleigh fading. This can also be inferred from Corollaries 2.2 and 2.3.
Accordingly, hereon we only consider m > 1 unless otherwise stated.

From the previous results, we can analyze the effective coded caching gain of the MN
scheme in the considered scenario, which leads to the following lemma.

Lemma 2.8. The effective coded caching gain of the MN scheme in the low-SNR limit of
ρ→ 0, takes the form

GMN=
G

(m− 1)

(∫ ∞

0
1−

(
Γ (m, 1/x)

Γ(m)

)G
dx

)−1

.
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Proof. This result is directly obtained by applying Definition 1 of the gain as the ratio of
T̊TDM in (2.33) over T̊MN in (2.27).

When m is a positive integer, we can treat |hg|2 (which is Gamma distributed) as the
summation over m i.i.d. exponential random variables with unit-mean. As m→∞, the
Strong Law of Large Numbers implies that 1

m |hg|2
a.s.−→ 1, where

a.s.−→ stands for almost

sure convergence. Substituting 1
m |hg|2

a.s.−→ 1 into (2.26) yields

T̊MN
a.s.−→ ρ−1B

Λ(1− γ)F ln 2

Bw(1 + Λγ)m
, as m→∞, (2.34)

and thus the effective gain at low SNR satisfies that

GMN
a.s.−→ G = Λγ + 1 as m→∞, (2.35)

which shows how the worst-user effect, even in the case of applying the MN scheme, can
be mitigated as m increases.

2.4.2 Delivery Time of the ACC Scheme at Low SNR

Next, we analyze the delivery time of the ACC scheme in the low-SNR regime, again
considering quasi-static Nakagami-m fading. First, we present the exact expression of
T̊ACC, which is obtained through the Characteristic Function (CF) method. To simplify
the derived complex expressions, we will then consider the large K regime to derive
approximations that are robust even when K is modestly values.

Low SNR Characterization

Before presenting our next result, let us introduce some useful notation. In the following,
ȷ ≜
√
−1 denotes the imaginary unit, Im{·} refers to the imaginary part of a complex

number, and Kn(·) denotes the modified Bessel function of the second kind [76].
We present now the exact expression of the approximated delivery time T̊ACC. We

recall that T̊ACC is the delivery time obtained after applying the very basic low-SNR
capacity approximation corresponding to ln(1 + x) = x+ o(1) ≈ x when x→ 0.

Lemma 2.9. Under quasi-static Nakagami-m fading (and m > 1), the low SNR approxi-
mated ACC delivery time takes the form

T̊ACC =ρ−1Λ (1− γ)F ln 2

GBw

×
∫ ∞

0
1−

(
1

2
− 1

π

∫ ∞

0
Im

{
e−ȷtz

t

(
2(−ȷt)m2
Γ (m)

Km

(√
−4ȷt

))B }
dt

)G
dz. (2.36)

Proof. See Appendix A.5.

To further simplify the above, we now consider the large K regime where Λ remains
fixed but where B →∞.
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Large K Performance in the Low SNR Regime

In the following, we consider a large number B of users per group (i.e., that B → ∞)
while we consider a fixed number Λ = K

B of cache states. This in turn implies a nominal
(high-SNR) coded-caching gain (under of course the subpacketization constraint that
forced our Λ) to be fixed at G = 1 + Λγ.

Let us first introduce some useful notations. We use ϱt and σ
2
t to denote the expectation

and variance of 1/SNRg,b, respectively. We also use HG to denote the expectation of the
maximum of G i.i.d. Gaussian random variables with zero-mean and unit-variance.

With these notations in place, let us present, in the following lemma, the approximation
of T̊ACC in the regime of large B.

Lemma 2.10. For a sufficiently large number of users, the expectation of the delivery time
over quasi-static Nakagami-m fading channels with m > 2, can be tightly approximated
in the low SNR regime, as

T̊ACC ≈
Λ(1− γ)F ln 2

BwG

(
Bϱt +HG

√
Bσ2t

)
, (2.37)

where ϱt and σ
2
t are given respectively by

ϱt =
1

ρ(m− 1)
, σ2t =

1

ρ2(m− 1)2(m− 2)
. (2.38)

Proof. We first note that the condition m > 2 allows us to conclude that 1/SNRg,b has
finite variance, which in turn will allow us to employ the Central Limit Theorem (CLT).

As 1/SNRg,b = ρ−1|hg,b|−2 is drawn from an inverse Gamma distribution of mean
and variance given respectively by ϱt and σ

2
t in (2.38), we can apply the CLT to obtain

that ∑B

b=1

1

SNRg,b

d.−→ N
(
Bϱt, Bσ

2
t

)
, (2.39)

where d. denotes the convergence in distribution and N denotes the normal distribution.
Therefore, TΨ/ρ = maxg∈Ψ{

∑B
b=1 ρ

−1|hg,b|−2} converges in distribution to the maximum
of G i.i.d. normal random variables with mean Bϱt and variance Bσ2t . Upon defining

{Xg}g∈Ψ as a set of G i.i.d. variables distributed as N (0, 1), we can write that TΨ/ρ
d.→

Bϱt+
√
Bσtmaxg∈ΨXg. Since we have defined HG as the expectation of maxg∈ΨXg, we

obtain (2.37) from the definition of T̊ACC in (2.25).

Regarding HG in (2.37), we refer to Lemma 2.6 for more information. Summing up as
less as 5 terms in the GHQ method provides a very accurate approximation of HG [51].

We also have the following.

Lemma 2.11. In the large K regime and for m > 2, we can approximate the effective
coded caching gain of the ACC scheme at low SNR by

GACC ≈
G

1 +HG/
√
B(m− 2)

. (2.40)
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Proof. The result follows by considering Definition 1 and the expressions of T̊TDM in
(2.33) and T̊ACC in (2.37).

It is direct to see that, when B →∞ or m→∞, then GACC converges to G, which is
the optimal gain at high SNR. This means that we recover the nominal gains of coded
caching even at low SNR, provided that there are enough users or — as one would expect
— a big enough m (corresponding to, for example, having many receiving antennas).

Extension — Large Number of Users at any SNR

In the above, we employed the basic low-SNR approximation ln(1 + SNR) ≈ SNR. To
remove this approximation, let us employ analysis in the large K regime. Towards this,
we first note that Eq. (2.37) in Lemma 2.10 holds but now ϱt and σ

2
t will respectively

denote the mean and variance of 1/ ln(1 + SNRg,b), instead of 1/SNRg,b. From the PDF
of SNRg,b corresponding to Nakagami-m fading, we obtain the following integral forms
for ϱt and σ

2
t ,

ϱt =
1

ρmΓ(m)

∫ ∞

0

xm−1e
−x
ρ

ln(1 + x)
dx, (2.41)

σ2t =
1

ρmΓ(m)

∫ ∞

0

(
1

ln(1 + x)
− ϱt

)2

xm−1e
−x
ρ dx. (2.42)

As there are no closed-form solutions for these integrals, we adopt the Gauss-Laguerre
quadrature (GLQ) [83], from which the integrals are respectively approximated as

ϱt ≈
1

Γ(m)

∑V

v=1
χv

ym−1
v

ln(1 + ρyv)
, (2.43)

σ2t ≈
1

Γ(m)

∑V

v=1
χvy

m−1
v

(
1

ln(1 + ρyv)
− ϱt

)2

, (2.44)

where V , yv and χv are the summation terms, sample points and weights of the GLQ,
respectively. As for the GHQ, the accuracy of the GLQ is typically very good after
summing up a few terms.

2.4.3 Numerical Results

In this subsection, we demonstrate the accuracy of the derived expressions through
Monte-Carlo simulations. Hereinafter, we assume that the file size is F = 8× 109 bits
(i.e., 1 Gigabyte), and that the bandwidth for each user is 20 MHz (as in 4G standard).
In order to implement the Monte-Carlo simulations, 106 channel states are generated and
averaged over Nakagami-m fading channels.

In Fig. 2.12, we plot the delivery time of the MN and ACC schemes versus ρ for
different values of m. We can observe that the delivery time decreases as m increases.
This happens because a bigger m allow for enjoying a richer multi-path environment,
thereby enhancing the spatial diversity. Indeed, as it is known, if an m-antenna receiver
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Figure 2.12: Average delivery time of the MN (left) and ACC (right) schemes versus ρ
for K = 300, B = 5, γ = 5% and V = 7 in the GHQ and GLQ.

applies MRC over Rayleigh fading, the magnitude of the equivalent channel coefficient
after MRC follows a Nakagami-m fading distribution.

Fig. 2.12 also shows the high accuracy of the derived approximations at low SNR.
We observe that the SNR regime in which we obtain high accuracy for the low-SNR
approximations is reduced as m increases. This is due to the fact that the bigger the m,
the higher is the effective SNR received at the user for the same ρ. However, it is worth
noting that the large K approximation (without the additional low-SNR approximation
corresponding to (2.43) and (2.44)) tightly approximates the delivery time even for very
small values of B (as low as, for example, B = 5), for m > 2 and for any SNR.

We plot the effective coded caching gains of the ACC and MN schemes in Fig. 2.13 with
the same system settings of Fig. 2.12. Besides validating the correctness of Lemmas 2.8
and 2.11, Fig. 2.13 also shows that the gains of both schemes reach a plateau at very low
SNR, but also that the infimum for the ACC scheme (which becomes bigger as B grows)
is larger than the one for the MN scheme. Moreover, the effective gains of both schemes
increase as m increases. Indeed, as stated before, both gains GACC and GMN converge to
the nominal G as m increases.

Fig. 2.14 represents the delivery time improvement of the ACC scheme over the MN
scheme (plotted against ρ) for different values of B. As expected, the delivery times of
both schemes converge as ρ increases, while the boost effect of the ACC scheme becomes
significant in the low SNR region. It is also obvious that the larger the B, the better the
performance that the ACC scheme can achieve.

Fig. 2.15 illustrates the effective coded caching gains of the MN scheme and of the
ACC scheme when B = 10 and for different values of m and G as ρ → 0. Naturally
the effective gain increases with m, since a larger m implies more spatial diversity that
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Figure 2.13: Effective coded caching gains of the ACC and MN schemes for K = 300,
B = 5, γ = 5%, and m = 3, 4.

alleviates the worst-user effect.

To further show the impact of B on the effective gain, we plot in Fig. 2.16 the effective
gains of the MN (left) and ACC (right) schemes versus m and B for G = 5, and do
so in the low-SNR regime. Naturally the effective gain of the ACC scheme increases
as B increases, and the increasing trend becomes more obvious in the small m region.
Indeed, the symmetry of the plot implies a certain equivalence of B and m, in the sense
that having B single-antenna users per cache group achieves approximately the same
performance as a setting with K m-antenna receivers that apply MRC.

2.5 Extension B: ACC Performance in Ergodic-Fading Scenario
With Different Pathloss

In this section, we investigate the use of coded caching in the single-cell downlink scenario
where the receiving users are randomly located inside the cell. We first show that, as a
result of having users that experience very different path-loss, the real gain of the original
(MN) coded caching scheme is severely reduced. We then prove that the use of shared
caches — which, we stress, is a compulsory feature brought about by the subpacketization
constraint in nearly every practical setting — introduces a powerful spatial-averaging
effect that allows us to recover most of the nominal (subpacketization-constrained) gains
that coded caching would have yielded in the error-free identical-link setting. For the
ergodic-fading scenario with different pathloss, we derive tight approximations of the
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Figure 2.15: Effective coded caching gains of MN (left) and ACC (right) schemes for
B = 10 and γ = 10% as ρ→ 0.

average (over the users) rate and of the coded caching gain by means of a basic high-SNR
approximation on the point-to-point capacity. These derived expressions prove very
accurate even for low SNR. We also provide a result based on the regime of large number
of users which is nonetheless also valid for settings with few users.

51



Chapter 2. Aggregated Coded Caching: Design and Analysis

1

20

2

15 30

3

E
ff
e
c
t
iv
e
G
a
in

o
f
M
N

S
c
h
e
m
e

4

m

10 20

B

5

5 10

0 0

1

20

2

15 30

3

E
ff
e
c
t
iv
e
G
a
in

o
f
A
C
C

S
c
h
e
m
e

4

m

10 20

B

5

5 10

0 0

Figure 2.16: Effective coded caching gains of MN (left) and ACC (right) schemes for
G = 5 and γ = 5% as ρ→ 0.

2.5.1 System Model

We analyze a single-cell setting in which a single-antenna transmitter has, as is common,
full access to a library F = {Wn}Nn=1 of N files W1, . . . ,WN , each of size F bits. The
transmitter serves K cache-aided single-antenna users who are uniformly distributed
throughout a ring with inner radius D1 and outer radius D2 surrounding the transmit-
ter. Each user benefits from a local cache that can store a fraction γ ∈ [0, 1] of the
library content. We consider the instantaneous SNR at an arbitrary user Ui to be given
by7

SNRi =
Pt

N0BwNfβfLc
|hi|2r−η0i , (2.45)

where Pt, N0, Bw, and η0 are the transmit power, the noise density, the bandwidth, and
the path-loss exponent, respectively. In the above, hi corresponds to the fast-fading
channel coefficient, drawn from a zero-mean unit-variance complex Gaussian distribution,
and ri is the distance in meters from user i to the transmitter. In (2.45), βf is a path-loss
component that depends only on the carrier frequency (fGHz), while Nf denotes the
noise figure that measures the practical imperfections of the receiver, and Lc represents a
constant loss term accounting for slow fading and other practical factors (rain, foliage,
etc.). To facilitate notation, we define ρ ≜ Pt

N0BwNfβfLc
to incorporate all the terms

in SNRi other than the distance and the effect of fast fading. As the users are uniformly
distributed within a ring, the PDF of ri is (cf. [85])

fri(r) =
2r

D2
2 −D2

1

, D1 ≤ r ≤ D2. (2.46)

Under basic Gaussian signalling assumptions, we consider that single-user transmission
through a channel with instantaneous SNR denoted by X can attain an ergodic rate of

7The channel model follows the propagation models defined by the Third Generation Partnership
Project (3GPP) [84].
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Eh{ln(1 +X)} when averaged over the fast-fading channel coefficients. We will consider
the average of such ergodic rate, averaged over the users, or, more precisely, over the
random user locations. In this context, we will use Eh|r to denote the expectation over
fast-fading channels for a given location realization r which remains fixed for the entire
transmission, and we will use Er to denote averaging over the user locations r. Hence,
our average rate metric corresponds to averaging as Eh,r{·} ≜ Er{Eh|r{·}}, i.e., averaging
the ergodic capacities across user locations.

We consider the basic linear (with respect to ln ρ) approximation ln(1+x) ≈ lnx
on the capacity, obtained from the fact that ln(1+x) = lnx + o(1), where as before
limx→∞ o(1) = 0.

Definition 2 (Affine approximation of average rate). The average-rate affine approximation
R̃ is defined as the maximum long-term average achievable rate, averaged first over the fast-
fading coefficients and then over user locations, after applying the linear8 approximation
(with respect to lnx) ln(1 + x) ≈ lnx.

In the case of the ACC scheme (cf. Section 2.2), for a given transmission stage, the
average rate achieved by group g ∈ Ψ is given by 1

B

∑B
b=1 ln (1 + SNRg,b), since the users

are served sequentially within a group. Then, the transmission stage ends when all user
groups have decoded their intended subfiles. Thus, the (affine-approximated) achievable
rate in a given transmission stage takes the form (cf. (2.8))

RΨ ≜ Gmin
g∈Ψ

{
1

B

∑B

b=1
ln (SNRg,b)

}
nats/s/Hz, (2.47)

where the factor G = Λγ +1 is due to the fact that the transmitter simultaneously serves
a set of G users.

2.5.2 MN Scheme in the Single-Cell Scenario

We first derive the affine-approximated average rate of TDM. We then provide a tight
lower bound on the affine-approximated MN rate and a corresponding bound on the
approximated MN effective gain.9 We quickly recall that the affine-approximated rate is
simply the sought average rate after substituting ln(1 + SNRk) by ln SNRk.

Lemma 2.12. The affine-approximated rate for TDM is

R̃TDM = ln ρ− C +
η0
2
− η0

D2
2 lnD2 −D2

1 lnD1

D2
2 −D2

1

(2.48)

where C = 0.5772 . . . is the Euler-Mascheroni constant.

8As we will see below, this linear approximation will provide affine expressions of the average rate,
such that it can be written as A ln ρ+B, where A and B are independent of ρ. Such affine approximations
have been shown to accurately represent the rate in several scenarios [86,87].

9In a small deviation of notation, and only for this section, we will use SNRk, ∀k ∈ [K], to denote the
SNR of User k in both TDM and MN schemes.
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Proof. The affine-approximated average rate can be written as

R̃TDM = Er
{
Eh|r

{
ln
(
ρr−η0k |hk|2

)}}
, (2.49)

where ρr−η0k is naturally constant with respect to the inner expectation, and where |hk|2
follows a unit-mean exponential distribution. It then follows that

R̃TDM (a)
= Er

{
ln(ρr−η0k )− C

}
= ln ρ− C − η0Er{ln rk}, (2.50)

where (a) holds because, for any X drawn from a unit-mean exponential distribution,
– ln(X) follows a standard Gumbel distribution, whose mean equals C [86]. We then
obtain (2.48) from (2.50) by deriving Er{ln rk} from the PDF of rk in (2.46).

We present a lower bound on the affine approximation of the MN scheme in the
following lemma, which is derived by means of Jensen’s inequality. As we will see in
Section 2.5.4, this simple bound offers a tight approximation of the actual rate.

Lemma 2.13. The affine-approximated average rate of the MN scheme is lower bounded
by

R̃MN ≥ G ln ρ−G
[
ln

(
2G(Dη0+2

2 −Dη0+2
1 )

(η0 + 2)(D2
2 −D2

1)

)
+ C

]
. (2.51)

Proof. Since the expression of the average rate of the MN scheme coincides with the one
of the ACC scheme for B = 1 (i.e., with dedicated caches) [52], it follows from (2.47) that

R̃MN = G ln ρ+GEh,r
{
ln
(
mink∈Ψ

{
|hk|2r−η0k

})}
, (2.52)

where we have applied the approximation ln(1 + x) ≈ lnx. Since |hk|2r−η0k follows an ex-

ponential distribution with mean r−η0k for a fixed location realization, mink∈Ψ

{
|hk|2r−η0k

}
follows an exponential distribution with mean 1/

(∑
k∈Ψ r

η0
k

)
. Hence, applying the same

step as for (a) in (2.50), the expectation of ln
(
mink∈Ψ

{
|hk|2r−η0k

})
conditioned on the

user locations is

Eh|r
{
ln
(
min
k∈Ψ

{
|hk|2r−η0k

})}
= − ln

(∑
k∈Ψ

rη0k

)
− C. (2.53)

Since − lnx is a convex function over (0,∞), we can apply Jensen’s inequality to obtain

Eh,r
{
ln
(
mink∈Ψ

{
|hk|2r−η0k

})}
= Er

{
− ln

(∑
k∈Ψ

rη0k

)}
− C ≥ − ln

(
GEr

{
rη0k
} )
− C.

(2.54)

Finally, we obtain (2.51) by using the PDF of rk to derive the closed-form expression for
Er{rη0k } in (2.54).
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Let us now approximate the effective coded caching gain of the MN scheme (which
was introduced in Chapter 2) by the ratio G̃MN of the corresponding average-rate affine
approximations. The following is direct from Lemmas 2.12 and 2.13.

Corollary 2.4. The approximate effective coded caching gain for the MN scheme is bounded
as

G̃MN ≥
G ln ρ−G

[
ln

(
2G(D

η0+2
2 −Dη0+2

1 )

(η0+2)(D2
2−D2

1)

)
+ C

]
ln ρ− C + η0

2 − η0
D2

2 lnD2−D2
1 lnD1

D2
2−D2

1

. (2.55)

In the above, the approximation steps only include the use of Jensen’s inequality and
the use of the basic approximation on capacity. Consequently, as we will show, the above
results offer a very accurate evaluation of the actual performance.

2.5.3 ACC Scheme in the Single-Cell Scenario

In this subsection, we first derive the analytical expression for the affine-approximated
average rate of the ACC scheme. Then, we provide a large-B approximation that precisely
characterizes the actual performance even if B is as low as 2.

Affine-Approximated Average Rate

Before presenting the lemma describing the performance of the ACC scheme, let us
introduce the notation ȷ ≜

√
−1 and let Im{·} denote the imaginary part of a complex

number.

Lemma 2.14. The affine-approximated average rate of the ACC scheme is given by

R̃ACC =G ln ρ

−G
B

∞∫
0

1−

1
2
+
1

π

∞∫
0

Im

exp(ȷtx)

t

[
Γ(1 + ȷt)

ȷ2(D2−ȷη0t
2 −D2−ȷη0t

1 )

(η0t+ ȷ2)(D2
2 −D2

1)

]Bdt

G

dx

(2.56)

where Γ(·) denotes the Gamma function [76] and G = Λγ + 1.

Proof. See Appendix A.6.

Remark 2.6. We note that (2.56) provides an affine approximation of the rate, where
G = Λγ + 1 in the first term defines the DoF for both the MN and the ACC scheme.
The second term, which does not depend on the transmit power, defines the rate-offset in
the affine approximation, and it explains the improved performance of the ACC scheme.
This type of affine approximations have been considered at high-SNR [86], but it will be
shown later that, for this setting, it also offers an accurate characterization at practical
SNR ranges.
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Large B Approximation

We derive now an approximation based on assuming a large number of users, which is
meant to simplify the previous results. This assumption is well justified by current trends
in practical dense scenarios, where K is expected to be as large as 800 in dense urban
Micro-cell settings, and up to 4000 in dense urban Macro-cell settings [88, 89]. Then,
in addition to the linear approximation on the capacity, we will also apply the Central
Limit Theory after assuming that B is large10.

Let us define Sg,b ≜ ρ|hg,b|2r−η0g,b , and let ϱs and σ
2
s denote respectively the mean and

the variance of ln(Sg,b). Furthermore, let −HG denote the expectation of the minimum
of G i.i.d. Gaussian random variables with zero-mean and unit-variance (cf. (2.21)).

Lemma 2.15. For B → ∞, the affine-approximated average rate of the ACC scheme
satisfies

R̃ACC ≈ G
(
ϱs −HG

√
σ2s/B

)
, (2.57)

where X ≈ Y means that X can be approximated by Y with vanishing error as B →∞,
and where ϱs and σ2s are given by

ϱs = ln ρ− C +
η0
2
− η0

D2
2 lnD2 −D2

1 lnD1

D2
2 −D2

1

, (2.58)

σ2s =
π2

6
+
η20
4
− η20

D2
1D

2
2 (lnD2 − lnD1)

2

(D2
2 −D2

1)
2

. (2.59)

Proof. See Appendix A.7.

Now, Lemma 2.15 and the definition of ϱs directly yield the next corollary, which
approximates the effective coded caching gain of the ACC scheme by the ratio G̃ACC of
the affine-approximated average rates of the ACC scheme and TDM.

Corollary 2.5. The approximate effective coded caching gain of the ACC scheme takes the
form

G̃ACC ≈
G

ϱs

(
ϱs −HG

√
σ2s/B

)
, for B →∞, (2.60)

where ϱs is given by (2.58) and σ2s by (2.59).

A quick note here is that the ACC scheme can be extended to the case where Λ does
not divide K with minor impact in the performance, and such performance will converge
to the result in (2.60) as K

Λ increases.

10Numerical results in Fig. 2.19 will clearly illustrate the range of B for which this large-B approximation
holds reasonably well.
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Figure 2.17: Performance in a dense urban Micro-Cell, for the case of K = 800, γ = 5%,
and Λ = 80 (edge SNR: 15→ 35dB).

2.5.4 Numerical Results

We validate our analytical results through Monte-Carlo simulations for two main 3GPP
scenarios: the dense urban Micro-cell setting and the dense urban Macro-cell setting.
In accordance to 5G standards [84, 90], we consider fGHz = 3.5GHz, Bw = 20MHz,
N0 = −174 dbm

Hz , and Nf = Lc = 10dB; following the 3GPP proposition in [84], we
consider βf (dB) = 32.4 + 20 log10 fGHz and η0 = 2.1 for the Micro-cell scenario, and
βf (dB) = 28 + 20 log10 fGHz and η0 = 2.2 for the Macro-cell scenario. Following the
guidelines in [88,90] for cell sizes, and recalling that users are located in a ring around the
transmitter, we consider a distance range of [D1 = 10, D2 = 100] meters in the Micro-cell
setting and of [D1 = 35, D2 = 300] meters in the Macro-cell setting.

Regarding the SNR operation range, we note the following: In the Macro-cell setting,
a power level of Pt = 20 dBm entails an average SNR at the users on the cell edge
(D2=300) of 7 dB, while Pt = 50 dBm corresponds to 35 dB of SNR at the edge users.
Typical values of transmit power are commonly considered to be Pt = 33 dBm and
Pt = 40 dBm for Micro-cell and Macro-cell, respectively [84, 88]. We have broadened the
range of power values to provide a wider perspective.

Following [88, 89], we consider K = 800 in the Micro-cell case and K = 2000 in
the Macro-cell case. We plot in Figs. 2.17–2.18 the results from Lemmas 2.12–2.14
(dashed lines with markers), and validate these by also presenting the corresponding exact
performance computed from Monte-Carlo simulations (solid lines) in Figs. 2.17–2.18. As
we can see, the high-SNR analysis closely characterizes the realistic dense Micro-cell and
Macro-cell settings for practical Pt values. As we can see, the ACC scheme considerably
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Figure 2.18: Performance in a dense urban Macro-Cell for the case of K = 2000, γ = 5%,
and Λ = 80 (edge SNR: 7→ 35dB).

outperforms the MN scheme, covering most of the nominal (ideal) gains. As Pt decreases,
the performance boost of ACC over MN increases, and the ACC gain approaches the
nominal gain of Λγ + 1, much earlier, in terms of SNR, than the MN scheme does.

In Fig. 2.19, we plot the average rate and effective gain versus the number of users per
cache state (B) for the dense urban Macro-cell scenario. Although the rate approximation
in Lemma 2.15 is based on the assumption of large B, Fig. 2.19 (left) shows that the
approximation is very accurate even when B is as low as B = 2. As expected, the ACC
effective gain increases as B increases, since B offers a spatial averaging effect. Finally,
Fig. 2.19 (right) reveals a performance gap, between the ACC and MN schemes, that is
proportional to Λ.

2.6 Extension C: Multi-Antenna ACC

In the previous sections, we have witnessed some of the ACC gains, focusing on the case
where the transmitter is equipped with a single antenna. As one would expect, we must
now incorporate the ACC idea into the multi-antenna transmitter setting. In this section,
we will investigate the ACC performance in the multi-user (MU) multicasting scenario
when a multi-antenna transmitter delivers a common message to a set of users. A central
point of this section is to describe the ability of a properly modified ACC variant to
achieve high performance with a small number of radio frequency (RF) chains. Reducing
the number of RF chains is a crucial ingredient in designing modern algorithms, because
having many RF chains can be expensive and power consuming.
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Figure 2.19: Performance in the Macro-Cell setting with γ = 10% and Pt=40dBm. HG
is computed through GHQ with 10 terms.

2.6.1 Introduction

Consider a BS equipped with L antennas, serving K single-antenna users, each requesting
a different file from the library F . Let us assume that the BS serves G users at a
time (i.e., G users over the same time-frequency resource). To achieve this multiplexing
capability, in the conventional (cacheless) full-digital (FD) MU-MIMO system, the BS
would typically need L RF chains for unicasting the required G messages, where these
RF chains enable FD precoding techniques such as the widely used zero-forcing (ZF)
precoding method. On the other hand, in the cacheless hybrid-precoding MU-MIMO
systems, the BS still needs (at least) G RF chains to deliver G interference-free signal
symbols at a time via a baseband precoder, after which it would employ L phase shifters
for beamforming (RF precoding11) [37].

Now, let us consider caching. Assuming that every user has a local cache of normalized
size γ ∈ [0, 1], then the BS can easily employ a single RF chain to multicast — via
coded caching — a common message to G users at a time, allowing for considerable
power-efficiency. As we recall though, the worst-user effect will cause serious performance
degradation in this coded multicasting approach. Although there are some works on
designing time-efficient and low-complexity transmit beamforming algorithms to boost
the delivery rate in a single RF-chain multicasting scenario (cf. [91]) or in an L RF-chain
(FD) scenario (e.g., [92]), these approaches do not explicitly exploit caching, as well as

11We note that the RF precoder can only change the phase of the incoming signal, while the baseband
precoder can change both the magnitude and phase.
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require prohibitively expensive optimization in every transmission.
What we will see below, numerically, is that the ACC idea can in fact compete, with

minimal costs, with some of the most expensive existing solutions. Some of the findings
are briefly described below.

1. We will show that a cheap hybrid adaptation of ACC can effectively match —
over practical SNR values and over symmetric Rayleigh fading channels — the
performance of XOR-based (MN) coded caching having a fully optimized FD
beamformer. While both approaches multicast to the same number of G users at
a time, and while the FD beamforming approach would require L RF chains and
would need to perform an NP-hard non-convex optimization in every transmission
round (cf. [92]), our ACC approach employs a very simple AG beamformer with a
single RF chain and no optimization. When the same above comparison is carried
over to the case where the G simultaneously served users experience a different
pathloss, then we show that the new ACC scheme (needing a single RF chain) far
outperforms the aforementioned XOR-based coded caching approach (that enjoys a
fully optimized FD beamformer).

2. We also show that the above same simple ACC-based approach with a single RF
chain, can asymptotically (for many users, but for practical SNR values in a realistic,
3GPP proposed, sub-6GHz Macro-cell) matches the performance of the (cacheless)
ZF precoder. Here we clarify that both compared methods simultaneously serve
the same number of G users at a time. We also note that the ZF approach would
require an inverse of a G×G complex-valued matrix in every transmission round.

3. In the setting of multi-antenna BS with a limited number of G RF chains, it is known
that Phased-ZF unicasting to G users at a time, constitutes a low-complexity hybrid
precoder that is also near-optimal [93]. In this work — for typical BS transmit
power values, and typical uniformly distributed users in a realistic sub-6GHz Micro-
cell — we show that the ACC-aided single-antenna scheme can achieve 80% of the
performance provided by the aforementioned near-optimal Phased-ZF (unicasting to
these G users) precoder. Then the performance of this single-antenna ACC variant
is validated over realistic mmWave channels. Furthermore, a basic multi-access
(NOMA) technique is shown to help this single-antenna ACC effectively accelerate
the performance convergence to the ZF/Phased-ZF precoding.

In the following, we first analyze the traditional (MN) cache-aided coded multicasting
in the context of a multi-antenna BS with AG/FD beamforming. Then, we design the
ACC-aided multicasting, again for the multi-antenna setting, and, as suggested above,
we also compare these to the conventional (cacheless) ZF precoding. In the end, some
interesting performance comparisons are presented in terms of numerical results.

2.6.2 Multi-antenna Cache-aided Coded Multicasting (Multi-antenna MN)

Let s ∈ C with zero-mean and unit-variance be the multicasting data signal (MN XOR)
for the simultaneously served G users in this cache-aided multicasting scenario. Let
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Figure 2.20: Multicasting using a single-RF-chain analog (AG) beamformer (left), and
multicasting using an L-RF-chain full digital (FD) beamformer (right).

f ≜ CL×1 with ||f || = 1 be the beamformer. Let x =
√
Ptfs ∈ CL×1 be the transmitted

signal at the BS, where Pt is the transmit power at the BS. Let Ψ, with |Ψ| = G, be
the index set indicating the simultaneously served users during a specific multicasting
transmission (i.e., during the delivery of a single XOR). Then, the received signal at user
Uψ for ψ ∈ Ψ takes the form

yψ =
√
Pth

T
ψfs+ zψ, (2.61)

where hψ ∈ CL×1 is the channel vector from the BS to Uψ, and where zψ is the AWGN
with power N0. For ρ = Pt/N0 denoting the transmit SNR, then the corresponding
received SNR at Uψ takes the form

SNRψ =
Pt
∣∣hTψf ∣∣2
N0

= ρ
∣∣hTψf ∣∣2. (2.62)

As the multicasting rate is always limited by the worst-user, we here aim to separately
design the AG and the FD beamformers (cf. Fig. 2.20) that maximize the minimum SNR
among the simultaneously served users. The max-min fairness (MMF) optimizations are
formulated respectively as

AG Beamformer: f⋆AG = argmax
f

min
ψ∈Ψ

{∣∣hTψf ∣∣2}, s. t. |f(ℓ)|2 = 1/L, for any ℓ ∈ [L]

(2.63)

FD Beamformer: f⋆FD = argmax
f

min
ψ∈Ψ

{∣∣hTψf ∣∣2}, s. t. ||f || = 1, (2.64)

where f(ℓ) denotes the ℓ-th element of f . It is worth noting that both (2.63) and (2.64)
are non-convex NP-hard problems [91,92]. After numerically solving the MMF problems,
given the spectrum bandwidth Bw, the sum rate in this cache-aided multicasting scenario
is

Rısum = Gmin
ψ∈Ψ

{
Bw log2

(
1 + ρ

∣∣hTψf⋆ı ∣∣2)}bits/sec, (2.65)
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where ı ∈ {AG,FD}. As explained before, it is reasonable to assume that the channel
remains constant during a packet transmission12. At this point, we can write the delivery
time for sending a packet to these G users in the form

Tı =
Fsub

minψ∈Ψ

{
Bw log2

(
1 + ρ

∣∣hTψf⋆ı ∣∣2)} sec, for ı ∈ {AG,FD} (2.66)

where Fsub denotes the packet (subfile) size in bits. This is for the MN-based approach.

2.6.3 ACC-Aided Multicasting

We recall from Section 2.2 that the key idea of the ACC approach is to leverage the
need to repeat cache-states across users, in order to achieve a continuous multi-rate
transmission and to alleviate the worst-user effect. This also involved the use of nested
modulation [94] to achieve multi-rate transmissions to different users, where each user
can decode the received (common) signal at its own link’s capacity (as if no other user
is involved in this transmission). This ability was also based on the fact that each user
knows the messages intended for other simultaneously served users (cf. Proposition 2.1).
We also recall that when a user completes decoding, another user having the same cache
content will replace it automatically, and the BS will generate new multicasting messages
that also involves the message for that new user, and thus the number of users served
at a time generally does not reduce. We refer to Section 2.2 for more details about the
ACC.

We here explore ACC in the presence of a very simple AG (conjugate) beamformer
without any optimization13. This beamformed ACC approach is represented by

fACC = r ◦
(∑

ψ∈Ψ
h∗
ψ

)
, (2.67)

where r is the normalization vector such that |fACC(ℓ)|2 = 1/L for any ℓ ∈ [L], and where

the operator ◦ denotes the Hadamard product. Specifically, r(ℓ) =
(√

L
∣∣∑

ψ∈Ψ h∗
ψ(ℓ)

∣∣)−1
.

Also the single-link channel capacity to the served user in the cache state ψ ∈ Ψ is

Rψ = Bw log2

(
1 + ρ|hψfACC|2

)
bits/sec. (2.68)

Let us also recall that we must serve B users per cache state, thus we are interested in
reducing the delivery time when serving GB users in the selected (cache-state) set Ψ,
where this delivery is outlined in Algorithm 2, where the value of the i-th element in
v ∈ Z|Ψ| denotes the number of users that have been served in the i-th cache-state in Ψ,

and whereW
Ψ\Ψ(i)
dv(i)

denotes14 the subfile intended for user v(i). Specifically, when a group

12Recall that in coded caching, packets are expected to be relatively small, due to the subpacketization
requirement.

13Interestingly, the impact of the beamformer optimization can be marginal in the ACC-aided delivery,
as shown in the numerical results in Fig. 2.26.

14Below we will slightly abuse notation when considering the input parameters of encoding function X
(which is responsible for achieving the performance described in Proposition 2.1) in Algorithm 2.
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Algorithm 2: Delivery time (TACC) for a cache-state set Ψ with GB users

1 Initialize TACC ←− 0; v ∈ Z|Ψ| as v(i)←− 1 for any i ∈ [|Ψ|];
2 Initialize Number of finished groups←− 0;

Packet←− [Fsub, Fsub, · · · , Fsub] ∈ Z|Ψ|

3 while Number of finished groups ̸= |Ψ| do
4 Transmit

5 XΨ,v ←− X
({
W

Ψ\{Ψ(i)}
dv(i)

∣∣∣i ∈ [|Ψ|] and v(i) ≤ B
})

6 Transmit Beamformer: x←− fACCXΨ,v, where

fACC ←− r ◦
( ∑
i∈[|Ψ|],v(i)≤B

h∗
Ψ(i)

)
7 until A served user v(i), i ∈ [|Ψ|], fully obtains its subfile
8 Set i⋆ as the index of the group Ψ(i⋆) whose user has decoded its subfile
9 Calculate

10 Ti⋆ ←− min
j∈[|Ψ|]

Packet(j)

Bw log2

(
1+ρ|hT

Ψ(j)
fACC|2

) ; TACC ←− TACC + Ti⋆ ;

11 Packet(i)←− Packet(i)− Ti⋆Bw log2
(
1 + ρ|hTΨ(i)fACC|2

)
for any i ̸= i⋆;

12 Packet(i⋆)←− Fsub

13 end
14 if v(i⋆) = B then
15 Number of finished groups←− Number of finished groups + 1
16 Packet(i⋆)←− +∞
17 hΨ(i⋆) ←− New Channel Vector

18 v(i⋆)←− v(i⋆) + 1

updates its served user, the transmitter continues encoding the partially-decoded subfiles,
taking into account that there remains only a part of such subfiles to be transmitted.
Fig. 2.1 illustrates this.

At this point, we quickly point out an interesting connection between ACC and
the desired ability to perform more precise beamforming. In particular, we note that
when the users in a cache state ψ ∈ Ψ are all served, these users are removed from the
transmit beamforming process, and thus with fewer users, we will be able to create a
much more focused transmit beam toward the other simultaneously served users, thereby
accelerating the delivery to them. Thus even when the degree of multicasting is reduced,
the beamforming efficiency is increased.

2.6.4 Cacheless Full-Digital Precoding

A traditional cacheless approach involves the BS employing a hybrid/FD precoder to
simultaneously transmit multiple symbols to a set of users (still denoted by Ψ - which
now has nothing to do with multicasting, and which rather simply denotes the set of users
served at a given time). This corresponds to conventional (cacheless) MU-MIMO systems,
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where indeed each delivered symbol is intended by a single dedicated user. Under the
linear precoding scheme, the transmit signal at the BS takes the form x =

√
ρWs, where

W ∈ CL×G is the linear precoder, s ∈ CG is the data vector for the G users served at
a time, and ρ = Pt

Tr{WHW} regulates the transmit power Pt. The received signal at a

typical user Uψ takes the form

yψ =
√
ρhTψWs+ zψ =

√
ρhTψwψsψ +

√
ρ
∑

ϕ∈Ψ\ψ
hTψwϕsϕ + zψ, (2.69)

where wψ denotes the ψ-th column of W, and where zψ is the AWGN with power N0.
Also the achievable rate for Uψ takes the form

Rψ = Bw log2

(
1 +

ρ|hTψwψ|2
N0 + ρ

∑
ϕ∈Ψ\ψ |hTψwϕ|2

)
bits/s. (2.70)

Therefore, for a linear precoder W, the transmission time for serving the G users in Ψ,
where each user requires a packet of Fsub bits, takes the form

TW =
Fsub

minψ∈ΨBw log2

(
1 +

ρ|hTψwψ |2

N0+ρ
∑
ϕ∈Ψ\ψ |hTψwϕ|2

) sec. (2.71)

2.6.5 Performance Metric

To compare the performance boost, we define the effective gain as the ratio of two delivery
times for serving GB users; the numerator is for serving with uncoded TDM transmission
(the gain does not take credit for local caching gains), and the denominator corresponds
to combining a beamformer with the coded caching scheme of choice. Naturally we
average over channel states. Specifically we consider three different gains: the gain of the
ACC-aided simple AG beamformer, the gain for the optimal FD beamformer with XOR-
based multicasting, and for the optimal AG beamformer for XOR-based multicasting.
These gains respectively take the form

GACC ≜
Eh{TTDM}
Eh{TACC}

, GFD ≜
Eh{TTDM}
Eh{TFD}

, GAG ≜
Eh{TTDM}
Eh{TAG}

, (2.72)

where TACC is given in Algorithm 2, while TAG and TFD can be found via numerically
solving (2.63) and (2.64) respectively (e.g., using the built-in function “fminimax” in
MATLAB).

For the cacheless FD linear precoding, we consider the ZF precoder as a performance
benchmark, which is commonly used in practical MU-MIMO systems, and which takes
the form

W = HH
Ψ

(
HΨH

H
Ψ

)−1
, (2.73)

where HΨ ∈ CG×L is the channel matrix from the BS to the users in Ψ. We also define
the effective gain provided by ZF precoding as the ratio of, in the numerator, the delivery
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time for serving GB users using uncoded TDM transmission with a simple (conjugate) AG
beamformer (no coded caching), and, in the denominator, the delivery time corresponding
to ZF precoding. This gain takes the form

GZF ≜
Eh{TTDM}
Eh{TZF}

. (2.74)

We refer to Section 2.6.6 for numerical comparisons of GACC, GFD, GAG, and GZF.

2.6.6 Numerical Results

In what follows, we assume i.i.d. complex Gaussian fading with zero-mean and unit-
variance, as well as assume an atomic communication packet size of Fsub = 50 bytes.
Let us consider Figs. 2.21–2.22. In Fig. 2.21, we can see that the delivery time of the
ACC-aided simple AG beamformer converges, in the high SNR region, to the delivery
time of the fully optimized FD/AG beamformer with XOR-based multicasting. On the
other hand, the performance significantly differs in the low-to-moderate SNR region.
This advantage of the fully optimized FD beamformer with XOR-based multicasting is
partly due to its ability to employ L RF chains, albeit at a cost (not recorded here) of
a much larger power consumption and a much larger computational complexity from
having to continuously solve an NP-hard non-convex optimization problem. It is also
worth noting that the ACC-aided delivery with a simple AG beamformer, almost matches
the performance of the aforementioned fully optimized FD beamformer, especially in low
and high SNRs, especially when we increase the number B of users per cache state (from
B = 1 to B = 5, in Fig. 2.22).

Then, in Figs. 2.23–2.27, we consider that the users are uniformly distributed within
a Macro-cell with an inner radius of D1 = 35 meters and an outer radius of D2 = 500
meters. When the carrier frequency is 2 GHz, we have the pathloss factor as l0r

−η0 ,
where l0 = 10−3.53 regulates the pathloss at 35 meters, where r is the distance between
the BS and the user, and where η0 = 3.76 is the pathloss exponent (cf. [95]). We also
assume that the AWGN density is −174 dBm/Hz. The transmit power at the BS is
chosen to lie in [20, 60] dBm, and the spectrum bandwidth for each user (Bw) is chosen
at 20 MHz [53,84,88].

In particular, Fig. 2.23 plots the delivery time of the ACC-aided simple AG beam-
former, the fully optimized AG beamformer with XOR-based multicasting15, and the
TDM transmission with a conjugate beamformer respectively. We also present the results
of the (cacheless) ZF precoding where the BS needs to send G different data symbols
simultaneously over the same time-frequency resource (cf. Section 2.6.4). It is obvious
that the ZF precoder has the best performance due to having L RF chains (FD), de-
spite the largest hardware/software overheads. We also see that the performance of the
ACC-aided delivery with a simple AG beamformer is close to that of the ZF precoder,
and that the performance converges as B increases. Fig. 2.24 plots the CDFs of the

15As the performance of the fully optimized FD beamformer with XOR-based multicasting are known
to be very close to that of the fully optimized AG beamformer (for the same number of served users), we
omit the results of this FD beamformer.
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Figure 2.21: Delivery performance over symmetric Rayleigh fading channels.

delivery time of the schemes whose performance is plotted in Fig. 2.23. As shown in
Fig. 2.24, for a typical BS transmit power of Pt = 40 dBm in a Macro-cell, compared to
the large variance of the fully optimized AG beamformer for XOR-based multicasting, the
ACC-aided simple AG beamformer has a much smaller fluctuation around the average
delivery time, mainly due to the so-called spatial-averaging effect (cf. Section 2.5), which
effectively mitigates and reduces the randomness of channel fading and from the user
locations.

In Figs. 2.25–2.26, we see the marginal performance gap between the 4-bit finite
resolution phase shifter and the infinite resolution phase shifter, as well as show the
negligible gap between the fully optimized FD and AG beamformers in both the (conven-
tional) XOR-based and ACC-aided multicasting scenarios under a realistic Macro-cell
setting. In the context of the ACC-aided multicasting, we can also observe that the
simple AG beamformer with a 4-bit resolution almost matches the delivery performance
of the fully optimized AG beamformer with an infinite resolution. To conclude, the simple
AG beamformer with a 4-bit resolution is recommended when practically performing the
ACC-aided delivery in this realistic Macro-cell setting.

Fig. 2.27 plots the average rates for the ACC-aided single-antenna BS (referred to
as SISO ACC) and for the multi-antenna case with a fully optimized AG beamformer
with XOR-based multicasting; both serving G users at a time. The average rate for
a multi-antenna BS with a simple AG beamformer to serve the users one-by-one (i.e.,
TDM) is here presented as a performance benchmark.
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Figure 2.22: Delivery performance over symmetric Rayleigh fading channels.
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Figure 2.23: Delivery performance over non-symmetric Rayleigh fading channels with
D1 = 35, D2 = 500, L = 128, G = 6, η0 = 3.76, and l0 = 10−3.53.

We can observe that the fully optimized AG beamformer outperforms the SISO ACC
when B = 2, but this trend is inverted after B increases beyond 2, which can imply
considerable potential savings in hardware and CSI.

We now seek to further explore SISO ACC and proceed to compare it to the cacheless
system where we precode in order to serve the same number of G users at a time. Toward
this, Figs. 2.28–2.29 present the delivery performance of the SISO ACC, the (cacheless)
Phased-ZF (PZF) precoder and the (cacheless) ZF precoder. We here select the hybrid
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Figure 2.24: Delivery performance over non-symmetric Rayleigh fading channels with
Pt = 40 dBm, D1 = 35, D2 = 500, L = 128, G = 6, η0 = 3.76, and l0 = 10−3.53.
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Figure 2.25: Delivery performance over non-symmetric Rayleigh fading channels with
D1 = 35, D2 = 500, η0 = 3.76, and l0 = 10−3.53.

PZF precoder proposed in [93] due to its low-complexity and its ability to maintain
performance very close to that of the ZF (FD) precoder. The PZF precoder (with G
RF chains) is composed of two cascaded sub-precoders where the first one is responsible
for the baseband precoding in order to realize the interference-free transmission to the
simultaneously served G users, while the other one is the RF precoder responsible for
analog beamforming. We refer to [93] for more details. Fig. 2.28 plots the delivery
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Figure 2.26: Delivery performance over non-symmetric Rayleigh fading channels with
D1 = 35, D2 = 500, η0 = 3.76, and l0 = 10−3.53.
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Figure 2.27: Delivery performance over non-symmetric Rayleigh fading channels with
D1 = 35, D2 = 500, L = 128, G = 6, η0 = 3.76, and l0 = 10−3.53.

performance of the SISO ACC, the PZF and the ZF schemes in a realistic Micro-cell
setting. As B increases, the SISO ACC performance improves, and the recorded gain is
notable. For example, for a typical BS transmit power of Pt = 33 dBm and for B = 10,
the effective gain of the SISO ACC is here shown to achieve 80% of the (cacheless) PZF
gain (Λ = 50, γ = 0.1 and K = 500). To cover the remaining gap, we also consider briefly
the use of Non-Orthgonal Multiple Access (NOMA) as a boost to the SISO ACC approach.
This NOMA-aided ACC brings about some additional gain compared to the original
SISO ACC16. Fig. 2.28 plots the performance of NOMA-aided SISO ACC, revealing a
marginal performance gap between this SISO ACC approach and the (cacheless) ZF/PZF
precoder.

16We note that the total CSI overheads in the NOMA-aided ACC and in the original ACC should be
approximately the same; both approaches use CSI for rate adaptation to GB users. The only additional
complexity brought about by NOMA is that each user has to perform successive interference cancellation
(SIC) to decode its own message [96].
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Fig. 2.29 validates the advantage of the SISO ACC over mmWave channels, where
the channel gain vector hψ ∈ CL×1 of a uniform linear array (ULA) from the BS to Uψ
is given by [97]

hψ =

√
L

Np

Np∑
ℓ=1

h
(ψ)
ℓ a(ε

(ψ)
ℓ ), (2.75)

where Np is the number of propagation paths, where h
(ψ)
ℓ ∼ CN (0, 1) is the complex

gain of the ℓ-th propagation path, where ε
(ψ)
ℓ is the the angle of departure (AoD) which

is uniformly distributed over [−π
2 ,

π
2 ], and where a(ε

(ψ)
ℓ ) is the array response vector

depending only on array structures. When the array structure is the ULA and the

transmit antennas are spaced at half wavelength, we can write a(ε
(ψ)
ℓ ) as [97]

a(ε
(ψ)
ℓ ) =

1√
L

[
1, exp

(
ȷπ sin(ε

(ψ)
ℓ )
)
, · · · , exp

(
ȷπ(L− 1) sin(ε

(ψ)
ℓ )
)]T

. (2.76)

In Fig. 2.29, we then assume that there are two LOS paths (i.e., Np = 2). We note
that for the typical far-field LOS propagation, Np = 1 is recommended [91]. In this
case, the channel matrix HΨ ∈ CG×L does not always have full row rank, which brings
substantial additional complexity to the ZF/PZF precoder. We also note that it is
practically infeasible to implement the ZF precoding due to the requirement of L costly
RF chains over mmWave channels. In Fig. 2.29, we use SNR ≜ Pt

N0
LPL in dB as the

reference value for simplification in the horizontal axis, which includes the BS transmit
power Pt, the AWGN power N0 and the pathloss LPL. As we can see, the SISO ACC
achieves 64% of the (cacheless) PZF effective gain for SNR = 10 dB (medium SNR), while
this figure grows to 87% for SNR = 30 dB (high SNR). The effective gain of the SISO
ACC can be further improved by adopting the NOMA technique (previously shown in
Fig. 2.28) over mmWave channels; this is left for future work. It is also worth noting that
for 32 transmit antennas, the ACC-aided multicasting with a simple AG beamformer17

(one RF chain and no optimization) outperforms the (cacheless) PZF precoder (G RF
chains) over the entire SNR region (see Fig. 2.29).

2.7 Conclusions

This part of the thesis was motivated by the fact that any attempt to successfully
adopt wireless coded caching in large-scale settings, must account for the effects of
low-to-moderate SNR fading channels. Our work first revealed that dedicated caches and
XOR-based transmissions may no longer be suitable for various realistic SNR regimes.
As we have seen, as the SNR becomes smaller, the effective gains of XOR-based schemes
collapse, irrespective of the nominal gain or the number of users. We have then proposed
a novel dual idea that combines the use of cache replication and a multi-rate transmission

17The average (sum) rate of this ACC-aided simple AG beamforming is derived by numerically evaluating
the expectation of GBFsub

TACC
over channel states, where TACC is obtained via Algorithm 2.
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Figure 2.28: Delivery performance over non-symmetric Rayleigh fading channels with
D1 = 10, D2 = 100, L = 32, G = 6, η0 = 3, and l0 = 10−3.7.
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Figure 2.29: Delivery performance over mmWave channels with L = 32, G = 6, B = 5,
Bw = 200 MHz, Np = 2 and Fsub = 50 bytes.

scheme. This approach recovers a big fraction of the lost gains and does so for any SNR
value. These gains are fully recovered in the regime of many users, again for any SNR
value, thus essentially resolving the worst-user bottleneck. The use of cache replication
or shared cache states (which, again, is effectively enforced in practical coded caching
settings due to the file-size constraint) is particularly beneficial in lower SNR regimes.
We have also shown how having as few as 2 users per cache state allows the proposed
scheme to approximately double the effective coded caching gain over symmetric Rayleigh
fading channels. As stated before, these gains do not involve user selection, and the
corresponding user-grouping is done prior to cache-placement and is oblivious to the
demands and of course oblivious to the channel. Subsequently, we have validated the
stated gain recovery ability brought about by the ACC scheme in terms of delivery time
over symmetric Nakagami-m fading channels, as well as extensively validated it with
different pathloss among the served users where the corresponding system parameters
adhere to 3GPP recommendations for an urban propagation environment. In the end, the
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presented ACC idea applies toward showing that properly designed coded caching has the
ability to substantially speed up delivery of multimedia content even in the challenging
environment of low-to-moderate SNR fading channels.

In the last section of this chapter, we have modified the ACC scheme to work in
conjunction with a multi-antenna transmitter which has been widely considered in current
and future wireless networks. In the context of MU multicasting, the ACC-aided simple
AG beamformer is shown to be as powerful as the fully optimized FD beamformer for
XOR-based multicasting over symmetric Rayleigh fading channels, and to far outperform
this FD beamformer when the users are uniformly distributed in a 3GPP proposed sub-
6GHz Macro-cell. Interesting, this ACC-aided simple AG beamformer can asymptotically
match the performance of the (cacheless) ZF precoder for practical SNR values as the
number of users increases in the aforementioned sub-6GHz Macro-cell. To further explore
the brilliant advantage brought about by the ACC idea, we have also demonstrated the
marginal performance gap in terms of average (sum) rate between the ACC-aided single-
antenna BS and the (cacheless) multi-antenna BS employing ZF/PZF precoding in a
realistic sub-6GHz Micro-cell and in mmWave channels, which is considerably meaningful
in saving hardware/software overheads and CSI costs. These results reveal the fact that
with the help of caching, we can use much fewer PHY resources (e.g., RF chains, antenna
elements, power consumption, CSI costs and computational complexity) to achieve the
same spectral efficiency of the cacheless system.

72



Chapter 3

Vector Coded Caching: Design and
Analysis

We introduce the system model and the considered framework in Section 3.1. Subsequently,
in Section 3.2, we first adapt the vector coded caching to realistic SNR values, while
considering three different linear precoding schemes: ZF, RZF and MF. After doing
so, we proceed to employ random matrix theory to analyze (in Theorem 3.1 for MF,
Theorem 3.2 for ZF, and Theorem 3.3 for RZF) the achievable throughput of vector
coded caching for the three aforementioned precoders.

Subsequently, based on the derived asymptotic performance, in Section 3.3 we optimize
both the cacheless as well as the cache-aided algorithms by accounting for the CSI
acquisition costs, and by optimizing over the total number of simultaneously served
streams (users). This optimization, which is performed as a function of SNR, of L and of
the CSI acquisition costs, can be found in Theorems 3.4, 3.5. The same optimization
yields systems that are separately calibrated to better balance multiplexing gains with
beamforming gains, in the presence or absence of caching. In this same section we also
derive the ratio between the throughputs of the (independently) optimized cache-aided
and cacheless systems. This ratio represents the multiplicative throughput boost offered
by caching, over optimized cacheless downlink systems with the same power and antenna
resources. Subsequently, in Section 3.4 we numerically verify the accuracy of the derived
expressions, showing that they characterize very precisely the actual performance. This
evaluation allows us to demonstrate the substantial gains from using caching, highlighting
realistic regimes of SNR, L, CSI costs, file sizes and cache sizes. In Section 3.5 we present
the main conclusions.

3.1 System Model and Problem Description

3.1.1 System Model

We consider a downlink MISO scenario where an L-antenna base station (BS) serves K
single-antenna cache-aided users. The BS has access to a library of N equally-sized files,
and each user is endowed with a local memory (or cache) such that each user can store a
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fraction γ ∈ [0, 1) of the library content. We denote the library content by F and the
n-th file by Wn, such that F ≜ {Wn}Nn=1.

We consider the wireless channel to be modeled as a symmetric Rayleigh fading
channel, where all channel coefficients are assumed to be independent and identically
distributed (i.i.d.). When describing a general transmission, our notation will often
incorporate the subset K ⊆ [K] of users that are simultaneously served during that
transmission. Consequently, in our communication model, the received signal at the k-th
user in K is given by

yK(k) = hTK(k)xK + zK(k), (3.1)

where k ∈ [|K|], where zK(k) ∈ C represents the corresponding AWGN with zero-mean and

unit-variance, where xK ∈ CL×1 denotes the transmitted signal vector that simultaneously
serves the users in K, and where hK(k) ∈ CL×1 represents the channel vector for the
channel from the BS to the k-th user in K. As mentioned, hK(k) is assumed to be an
i.i.d. Gaussian random vector with mean 0L and covariance matrix IL. Finally, xK is
obtained by applying a specific precoding scheme (which we will detail later on) to the
information vector sK ∈ C|K|×1 intended for the users in K, where sK has mean 0|K| and
covariance matrix I|K|.

We consider an average power normalization, where the power is averaged over both
transmit symbols and channel realizations, i.e., E{||xK||2} ≤ Pt, where Pt is the average
power constraint.

As is common in practical downlink settings, we assume TDD uplink-downlink
transmissions, such that the BS estimates the downlink channels through uplink pilot
transmissions by applying channel reciprocity.

We proceed to describe the main structure of the scheme, first doing so without
specifying the linear precoding class that is used. We will also formally define the main
performance metrics investigated in this paper.

3.1.2 Signal-Level Vector Coded Caching for Finite SNR

Building on the general vector-clique structure in [98], we are here free to choose the
precoding schemes, as well as calibrate at will the dimensionality of each vector clique.
This freedom is essential in controlling the impact of CSI costs and of power-splitting
across users, both of which directly affect the performance in practical SNR regimes.

We proceed to describe the cache placement phase and the subsequent delivery phase.

Placement Phase

The first step involves the partition of each library file Wn into
(
Λ
Λγ

)
non-overlapping

equally-sized subfiles
{
W T
n : T ⊆ [Λ], |T | = Λγ

}
, each labeled by some Λγ-tuple T ⊆ [Λ].

As discussed in Chapter 1, the number of cache states Λ is chosen to satisfy the file-size
constraint; in our case, the subpacketization is

(
Λ
Λγ

)
, which naturally serves as a lower

bound on the file sizes. Subsequently the K users are arbitrarily separated into Λ disjoint
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groups D1,D2, . . . ,DΛ, where the g-th group, which consists of B = K
Λ users1, is given

by Dg ≜
{
bΛ + g

}B−1

b=0
⊆ [K]. The ϑ-th user of this g-th group is denoted by Ug,ϑ.

At this point, all the users belonging to the same group are assigned the same cache
state and thus proceed to cache identical content. In particular, for those in the g-th
group, this content takes the form ZGg =

{
W T
n : T ∋ g, ∀n ∈ [N ]

}
. This grouping as

well as the entire placement phase, are naturally done before the users’ requests take
place, and of course well before the channel states are known to the BS.

Delivery Phase

This phase starts when each user κ ∈ [K] simultaneously asks for its intended file, denoted
here by Wdκ , dκ ∈ [N ]. The BS selects Q users from each group, where Q ≤ B is a
variable that will be optimized afterwards and which is the equivalent of the multiplexing
gain. By doing so, the BS decides to first ‘encode’ over the first ΛQ users, and to repeat
the encoding process B/Q times2. To deliver to the ΛQ users, the transmitter employs(

Λ
Λγ+1

)
sequential transmission stages. During each such stage, the BS simultaneously

serves a unique set Ψ of |Ψ| = Λγ + 1 groups, corresponding to a total of Q(Λγ + 1)
users served at a time (i.e., per stage). At the end of the

(
Λ

Λγ+1

)
transmission stages,

all the ΛQ users obtain their intended files. By repeating this process
⌈
B
Q

⌉
times, all

the K users obtain their intended files. As suggested above, the factor G ≜ Λγ + 1
describes the number of user groups that are simultaneously served. Another crucial
parameter includes the multiplexing gain Q which, unlike in [12], will be here subject to
optimization.

For example, let us consider a setting with G = 3, B = 4, and Λ = 40, and a choice
of Q = 2. The delivery will be split into B

Q = 2 encoding processes, and each process is

split into
(
Λ
G

)
so-called stages. Each stage will involve the transmission to a different set

(triplet in this case) of cache groups Ψ′ ⊆ [Λ] where |Ψ′| = G = 3. In each such stage,
the BS serves Q = 2 users from each of the above three cache groups, which allows for
serving GQ = 6 users at a time. For example, the first stage can correspond to the set
Ψ = {D1,D2,D3}. The difference between the two processes is that in the first delivery
process, the BS serves the first Q = 2 users in each cache-group, while in the second
process, the BS serves the last Q = 2 users in each cache-group (cf. Fig. 3.1). We refer
to the users currently served in a delivery process as active users and to all the other
users as passive users in Fig. 3.1.

Let us now focus on a single transmission stage. As mentioned above, at each such
stage, we pick a set Ψ ⊆ Λ of G = Λγ+1 groups that will be served simultaneously. From

1For clarity of exposition, and without limiting the scope of the results, we will consider K to be a
multiple of Λ. The general case can be readily handled (cf. [98]), and in Section 3.4 we provide a related
example.

2To clarify, what the above says is the following. If there are, e.g., B = 2Q users per group and thus
K = 2ΛQ users in total, then the algorithm that we describe here will be first applied to the first ΛQ
users, and then, after this delivery is done, the same algorithm will apply to the remaining ΛQ users,
thus eventually satisfying all K users. Also note that a small amount of additional subpacketization can
easily resolve the case where B/Q may not be an integer.
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Figure 3.1: An example of vector coded caching with G = 3, Λ = 40, B = 4 and Q = 2.

within these chosen groups, we will serve Q ≤ B users per group. In particular, for each
user Uψ,ϑ of some group ψ ∈ Ψ, this stage will deliver all subfiles3 sψ,ϑ by transmitting

xΨ =
1√
G

∑
ψ∈Ψ

ρψ
∑Q

ϑ=1
vψ,ϑsψ,ϑ, (3.2)

where vψ,ϑ ∈ CL×1 denotes the precoder applied to the subfile intended by user Uψ,ϑ,
and where ρψ denotes the power normalization factor for group ψ ∈ Ψ, applied under
a total power constraint Pt. Upon defining Vψ ∈ CL×Q as Vψ ≜ [vψ,1

∣∣ . . . ∣∣vψ,Q] and
sψ ∈ CQ as sψ ≜ [sψ,1, . . . , sψ,Q]

T , the above takes the simple form

xΨ =
1√
G

∑
ψ∈Ψ

ρψVψsψ. (3.3)

Remark 3.1. It is easy to see that the described scheme simply involves a carefully selected
linear combination of G linear-precoding vectors that are now to be sent simultaneously.
It is also easy to see that the above scheme also incorporates the traditional cacheless
downlink scenario corresponding to γ = 0 which itself corresponds to G = |Ψ| = 1. In such
case, the transmit signal expression reverts to the simpler common expression x = ρVs.

For decoding to work, the subfiles must be chosen carefully. This choice follows
the principles of coded caching, and in particular of vector coded caching. Thus, when
considering the transmission stage which serves the G = Λγ + 1 groups in Ψ, the subfile

transmitted to user Uψ,ϑ is here selected to be W
Ψ\{ψ}
dψ,ϑ

, simply because this subfile is

stored in the cache of each user of every other group in Ψ except ψ. Because of this
structure, the users of a particular group can remove the inter-group interference from
the other Λγ groups by using their cached content. On the other hand, following the
principles of vector coded caching, the intra-group interference is handled with linear
precoding that ‘separates’ the signals of the users from the same group. Naturally one can
imagine that cache-aided removal of interference as well as ‘nulling out’ of interference,
both require knowledge of the composite precoder-channel coefficients (cf. (3.5)). These
so-called composite CSI costs will be explicitly accounted for in our analysis. We proceed
to elaborate on the precoders and the transmissions.

3In a slight abuse of notation, we use the term “subfile” to refer both to the actual subfile generated
after file-splitting, as well as to the corresponding complex-valued information symbol sψ,ϑ.
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3.1.3 Vector Coded Caching for the Physical Layer

We now emphasize on the physical layer details of the communication scheme. Our
description will focus on the transmission that serves a specific set Ψ of user-groups. First
let us recall that Vψ ∈ CL×Q denotes the precoding matrix for the symbols of users in
group ψ ∈ Ψ. We note that, as is common, our analysis will assume Gaussian signaling.
Then let us note that for an average power constraint Pt, the power normalization
factor ρψ from (3.3), takes the form ρψ =

√
Pt

E{sHψVH
ψVψsψ}

=
√

Pt
E{Tr{VH

ψVψ}}
. Then the

subsequent corresponding received signal at user Uψ,k (i.e., at the k-th user of group
ψ ∈ Ψ), will take the form

yψ,k = hTψ,kxΨ + zψ,k =
hTψ,k√
G
ρψVψsψ +

hTψ,k√
G

∑
ϕ∈Ψ,ϕ ̸=ψ

ρϕVϕsϕ︸ ︷︷ ︸
inter-group interference

+zψ,k. (3.4)

As previously mentioned, the inter-group interference4 experienced by user Uψ,k, can
be removed from yψ,k by exploiting that same user’s cached content and that user’s
composite CSI {hTψ,kvϕ,k′ρϕ}ϕ∈{Ψ\ψ}, k′∈[Q]. Then, after the cache-aided removal of this
inter-group interference, the equivalent received signal at Uψ,k is given by

y′ψ,k =
ρψ√
G
hTψ,kvψ,ksψ,k +

ρψ√
G

∑Q

ϑ=1,ϑ ̸=k
hTψ,kvψ,ϑsψ,ϑ︸ ︷︷ ︸

intra-group interference

+ zψ,k. (3.5)

Consequently, the corresponding SINR for information decoding at Uψ,k, is given by

SINRψ,k =

ρ2ψ
G |hTψ,kvψ,k|2

1 +
ρ2ψ
G

∑Q
ϑ=1,ϑ ̸=k |hTψ,kvψ,ϑ|2

. (3.6)

On the other hand, in the cacheless case of γ = 0, the received signal yk = ρhTk vksk +

ρ
∑Q

ϑ=1,ϑ ̸=k h
T
k vϑsϑ + zk at some user k naturally carries no inter-group interference (as

there are no other groups to simultaneously serve), and the SINR takes the standard

form SINRk =
ρ2|hTk vk|

2

1+ρ2
∑Q
ϑ=1,ϑ ̸=k |h

T
k vϑ|2

. Therefore, the instantaneous rate

Rψ,k = ln
(
1 + SINRψ,k

)
nats/s/Hz (3.7)

for user Uψ,k is obtained by evaluating the above, at the SINR value in (3.6).
We will consider the MF, ZF and RZF linear precoding schemes, selected here for

being very common, simple, as well as competitive in terms of rate performance [100,101].
As is known, the corresponding precoding matrices Vψ take the form:

Vψ =


HH
ψ , MF Precoder

HH
ψ

(
HψH

H
ψ

)−1
, ZF Precoder

HH
ψ

(
HψH

H
ψ + αIQ

)−1
, RZF Precoder,

(3.8)

4As a reminder, the term inter-group interference refers to the received signal component whose power
is due to the information meant for users originating from other groups.
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where Hψ ≜
[
hψ,1|hψ,2| · · · |hψ,Q

]T ∈ CQ×L denotes the channel matrix for the channel
from the BS to the Q chosen users belonging to group ψ ∈ Ψ, and where α is the
regularization factor of the RZF precoder [100]. It is worth recalling that the RZF
precoder reverts to the ZF precoder when α = 0, and to the MF precoder when α→∞,
and also that Q is bounded above by B and, in the case of the ZF/RZF precoding, it is
also bounded as Q ≤ L. For simplicity we assume that α = L/Pt, which is a commonly
used assumption throughout the literature [62,100,102].

We will henceforth use the term (G,Q)-vector coded caching, to refer to the vector
coded caching scheme when it serves G groups with Q users per group. We will also use
the term MF-based (G,Q)-vector coded caching to refer to the same scheme when the
underlying precoder is MF, and similarly we will use ZF-based or RZF-based (G,Q)-vector
coded caching, for the other two precoders. Let us now formally define some important
metrics of interest.

Definition 3. (Average sum-rate and effective sum-rate). For a (G,Q)-vector coded caching
scheme, its average sum-rate is denoted by R̄(G,Q) and is defined as the total data-
transmission rate (before accounting for CSI costs) summed over the GQ simultaneously
served users, and averaged over the fading. Similarly, the effective average sum-rate
R̄(G,Q) will represent the corresponding average rate after through all CSI costs are duly
accounted for.

Definition 4. (Effective gain over MISO). For a given set of L and SNR resources, and a
fixed underlying precoder class, the effective gain, after accounting for CSI costs, of the
(G,Q)-vector coded caching over the cacheless scenario (corresponding to G = 1, and an

operating multiplexing gain Q′), will be denoted as G(G,Q; 1, Q′) ≜ R̄(G,Q)
R̄(1,Q′)

in the form

of the ratios of the effective rates.

3.2 Analysis of the Average Rate and of the Effective Gain over

MISO

In this section, we analyze the average sum-rates and the corresponding effective rates
achieved by the cache-aided downlink schemes of Section 3.1.2 for the MF, ZF and RZF
linear precoders of interest. After doing so, we also report the effective gains offered by
these (G,Q)-vector coded caching schemes, over the (G = 1, Q′) cacheless equivalents.

We will henceforth consider the ratio c ≜ Q/L, while we will often use the notation
c′ ≜ Q′/L when referring explicitly to the cacheless equivalent. The two ratios can be
chosen independently. When applying large matrix analysis, we will be assuming a fixed
c > 0 and a fixed c′ > 0.

3.2.1 MF Precoding

To derive the average sum-rate of vector coded caching with MF precoding, we first
recall that the elements of Hψ are i.i.d. Gaussian random variables with zero mean and

unit variance, which implies that E
{
Tr
{
HψH

H
ψ

}}
= LQ (cf. [103]), which then implies

that the power normalization factor ρψ takes the form ρψ =
√

Pt
E{Tr{HψH

H
ψ }} =

√
Pt
QL
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(cf. [64]). This in turn yields (cf. (3.8), (3.3)) a transmitted signal of the form

xΨ =

√
Pt
GQL

∑
ψ∈Ψ

HH
ψ sψ =

√
Pt
GQL

∑
ψ∈Ψ

Q∑
ϑ=1

h∗
ψ,ϑsψ,ϑ. (3.9)

The corresponding average sum-rate is presented below. We note that Theorem 3.1
focuses on the case of Q > 1. However, the analysis for Q = 1 is straightforward and
follows the same large-matrix properties and principles. The only difference is that for
the single-stream scenario, one can deviate from the current scheme, and employ XORs
rather than linear combinations over the complex numbers. This is not covered in our
work here.

Theorem 3.1. For any given Pt and c = Q/L, the average sum-rate R̄MF of the MF-based
(G, cL)-vector coded caching scheme in the large L regime satisfies

R̄MF(G, cL)
.
= c GL ln

(
1 +

1

c

Pt
Pt +G

)
. (3.10)

Proof. The proof can be found in Appendix B.1.

The following directly distills the above result to the cacheless case.5

Corollary 3.1. In the limit of large L, and for any fixed Pt and c
′, the average sum-rate

of the (traditional, cacheless) MF-based MISO BC with c′L streams satisfies

R̄MF(1, c′L)
.
= c′ L ln

(
1 +

1

c′
Pt

Pt + 1

)
. (3.11)

3.2.2 ZF Precoding

Moving now to the case of ZF-based vector coded caching, and focusing again on a set
of groups Ψ and on the transmission stage corresponding to some group ψ ∈ Ψ, the
power control factor takes the form ρ2ψ = Pt

E{Tr{(HψH
H
ψ )−1}} , while the transmitted signal

from (3.3) becomes

xΨ =
1√
G

∑
ψ∈Ψ

ρψH
H
ψ

(
HψH

H
ψ

)−1
sψ. (3.12)

This in turn yields a received signal at user Uψ,k which — after the cache-aided removal
of the inter-group interference (cf. (3.4)) — takes the form

y′ψ,k =
1√
G
ρψh

T
ψ,kH

H
ψ

(
HψH

H
ψ

)−1
sψ + zψ,k

5It is worth noting that while there have been various works (cf. [61–64]) analyzing the MF sum-rate
in traditional massive MIMO systems, the result derived in this work here entails less assumptions. For
example, focusing on the large-L regime, the result in [61] directly assumes a tight Jensen’s bound, while
the result in [63] is under a so-called “near deterministic” assumption in low/high SNRs. On the other
hand, our method here draws from the uplink analysis in [65], and only employs a large-L assumption to
derive the exact asymptotic optimality for any value of SNR.
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=
1√
G
ρψ
(
1TkHψ

)
HH
ψ

(
HψH

H
ψ

)−1
sψ + zψ,k =

1√
G
ρψsψ,k + zψ,k, (3.13)

where 1k ∈ CQ×1 denotes the vector whose components are all zero except for the k-th
element, which equals 1. After then considering that all intra-group interference is
canceled by means of ZF precoding, we can write the SINR at user Uψ,k as

SINRZF
ψ,k =

Pt

GE
{
Tr
{(

HψH
H
ψ

)−1 }} . (3.14)

With this in place, we proceed with the following theorem.

Theorem 3.2. For c = Q
L ∈ (0, 1), the average sum-rate R̄ZF

sum of the ZF-based (G,Q)-vector
coded caching scheme, takes the form

R̄ZF(G,Q) = QG ln

(
1 +

Pt
G

(
1

c
− 1

))
. (3.15)

Proof. Directly from [104], and from the fact that HψH
H
ψ is a Wishart matrix with L

degrees of freedom, we know that E
{
Tr
{(

HψH
H
ψ

)−1}}
= Q

L−Q for L > Q. Naturally,

SINRZF
ψ,k is deterministic and constant across all simultaneously served users. By summing

the average rate of each of the GQ served users, we obtain (3.15).

3.2.3 RZF Precoding

We finally consider our third precoder, and do so in the asymptotic regime of large L
and fixed c. We first note that the received signal at Uψ,k — after cache-aided removal
of the inter-group interference — takes the form

y′ψ,k =
ρψ√
G

Q∑
ϑ=1

hTψ,k
(
αIL +HH

ψHψ

)−1
h∗
ψ,ϑsψ,ϑ + zψ,k. (3.16)

For Hψ,−k denoting the matrix resulting from Hψ after removing its k-th row, we can
define

Aψ,k ≜ hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
h∗
ψ,k, (3.17)

Bψ,k ≜ hTψ,k
(
αIL +HH

ψ,−kHψ,−k
)−1

HH
ψ,−kHψ,−k

(
αIL +HH

ψ,−kHψ,−k
)−1

h∗
ψ,k. (3.18)

With these in place, we can now derive the SINR at user Uψ,k to be

SINRRZF
ψ,k =

A2
ψ,k

ρ2ψ
G(

1 +Aψ,k
)2

+
ρ2ψ
G Bψ,k

, (3.19)

where the proof of (3.19) is relegated to Appendix B.2.
We can now present the asymptotic deterministic equivalent of the sum-rate of

our proposed scheme when RZF is applied. We recall that in the limit of large L, the
deterministic value X̊ represents the asymptotic deterministic equivalent of X if X

a.s.−→ X̊.
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Theorem 3.3. In the large-L regime with fixed c = Q/L, the average sum-rate R̄RZF of
RZF-based (G,Q)-vector coded caching, takes the form

R̄RZF(G,Q)
.
= R̊RZF(G, cL) ≜ cGL ln

(
1 +

a2ψ,kp
2
ψ/G(

1 + aψ,k
)2

+ Pt/G

)
, (3.20)

where R̊RZF is the deterministic equivalent of R̄RZF,6 and where

aψ,k ≜
1

2

[√
(1− c)2P 2

t + 2(1 + c)Pt + 1 + (1− c)Pt − 1

]
, (3.21)

p2ψ ≜
Pt

aψ,k − Pt
2

(
Pt(c−1)2+c+1√

P 2
t (c−1)2+2(c+1)Pt+1

+ 1− c
) . (3.22)

Proof. The proof is based on the derivation of the asymptotic deterministic equivalent of
the SINR, and it is presented in Appendix B.2.

3.2.4 Accounting for the CSI Costs

To account for the cost of CSI acquisition under TDD, we consider a basic CSI-acquisition
effort where at the beginning of each transmission stage, the GQ served users send uplink
orthogonal pilot symbols, from which the BS can estimate the downlink channel matrix,
under the assumption of channel reciprocity. Then the CSI-acquisition process engages
downlink training, of similar complexity, in order to communicate the composite CSI
that here allows our receivers to perform cache-aided cancellation of the inter-group
interference (cf. (3.4)) from their signal. This acquisition process for gathering composite
CSI, with the same aforementioned complexity per served user, is standard in a variety
of traditional communications techniques such as SIC-based approaches. For additional
details, please refer to [105]. To account for this CSI-acquisition overhead, we directly
extend the commonly-used approach in [106–109], that easily allows us to calculate the
effective average sum-rate (cf. Definition 3) for each precoder i ∈ {MF, ZF, RZF}, to be

R̄i =
(
1− βtotGQ

TcWc

)
R̄i = (1− c ζG,Q) R̄i, (3.23)

where βtot is the number of resources per user and per block used for pilot transmission,
R̄i is the previously calculated average sum-rate before accounting for CSI costs, where Tc
and Wc are the coherence time and coherence bandwidth, respectively, and where ζG,Q ≜
βtotGL
TcWc

. For completeness we report the effective rates in the following corollary. The proof
is direct as it merely involves applying (3.23) in the expressions from Theorems 3.1-3.3.
We recall that aψ,k and pψ are defined in Theorem 3.3.

6This entails a small abuse of terminology, as it is R̊RZF/L that is the deterministic equivalent of
R̄RZF/L.
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Corollary 3.2. The effective rates of the proposed vector coded caching schemes under
MF, ZF and RZF precoding, respectively take the form

R̄MF(G,Q)
.
= (1− cζG,Q) c GL ln

(
1 +

1

c

Pt
Pt +G

)
, (3.24)

R̄ZF(G,Q) = (1− cζG,Q)QG ln

(
1 +

Pt
G

(
1

c
− 1

))
, (3.25)

R̄RZF(G,Q)
.
= (1− cζG,Q) cGL ln

(
1 +

a2ψ,kp
2
ψ/G(

1 + aψ,k
)2

+ Pt/G

)
. (3.26)

3.2.5 Effective Gains over Cacheless MISO Systems

At this point, with Theorems 3.1, 3.2, 3.3 in place, and in conjunction with Corollary 3.2,
we can directly report the effective gains over cacheless MISO. For each of the three
precoder classes, MF, ZF, and RZF, and for a fixed set of antenna and SNR resources,

we will be reporting the effective gain G(G,Q; 1, Q′) = R̄(G,Q)
R̄(1,Q′)

(cf. Definition 4) of the

(G,Q)-vector coded caching schemes, over the cacheless scenario (G = 1) with some
chosen number of streams Q′. These effective gains are collected together in the following
corollary.

Corollary 3.3. The effective gains of the proposed vector coded caching schemes under
MF, ZF and RZF precoding, respectively take the form

GMF

(
G,Q; 1, Q′) ≜ R̄MF(G,Q)

R̄MF(1, Q′)

.
= ξcsi

GQ

Q′

ln
(
1 + L

Q
Pt

Pt+G

)
ln
(
1 + L

Q′
Pt
Pt+1

) , (3.27)

GZF
(
G,Q; 1, Q′) ≜ R̄ZF(G,Q)

R̄ZF(1, Q′)
= ξcsi

GQ

Q′

ln
(
1 + Pt

G

(
L
Q − 1

))
ln
(
1 + Pt

(
L
Q′ − 1

)) , (3.28)

GRZF

(
G,Q; 1, Q′) ≜ R̄RZF(G,Q)

R̄RZF(1, Q′)

a.s.−→ ξcsi
R̊RZF(G, cL)

R̊RZF(1, c′L)
, (3.29)

where R̊RZF(·, ·) is defined in (3.20), and where ξcsi ≜
(L−QζG,Q)
(L−Q′ζ1,Q′)

.

3.3 Optimizing Physical Layer Vector Coded Caching

Theorems 3.1-3.3 reveal the important dependence of vector coded caching on the number
of streams, Q, that we choose to activate. This dependence strikes at the very core of the
problems stemming from power-splitting and CSI overheads. Indeed, while an increased
Q ≤ L allows for a higher DoF at lower subpacketization, this increase in the number of
streams may not be beneficial in practice as it entails less power per stream as well as
more CSI to be communicated.
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For this reason, we here proceed to analytically optimize our schemes over the choices
of Q. This optimization is tractable partly due to the simplicity of the achievable-rate
expressions derived in the previous theorems7, and while some of these expressions involve
asymptotic approximations, they will, as we will verify numerically, be very precise (see
for example Fig. 3.2). Our analysis of the optimal c⋆ will assume a variable c = Q/L that
is continuous and unbounded. As noted before, the optimization takes into account the
impact of CSI acquisition under TDD.

Let us first focus on deriving the optimal c⋆ for MF, where c ∈ (0,∞) and Ω ≜ Pt
Pt+G

.

Theorem 3.4. In the MF-based (G,Q)-vector coded caching with non-negligible CSI costs,
the optimal c⋆ that maximizes R̄MF in the asymptotic sense, is given by the solution to
the following:

(1− 2ζG,Qc
⋆) ln

(
1 +

Ω

c⋆

)
− Ω(1− ζG,Qc⋆)

Ω + c⋆
= 0. (3.30)

Proof. See Appendix B.3.

Next, we consider ZF-based cache-aided precoding, for which we have the following.

Theorem 3.5. In the ZF-based (G,Q)-vector coded caching with non-negligible CSI costs,
the optimal c⋆ that maximizes R̄ZF, is given by the solution to the following equation:(

1− 2ζG,Qc
⋆
)
ln

(
1 +

Pt
G

(
1

c⋆
− 1

))
− (1− ζG,Qc⋆)Pt/G

(1− Pt/G)c⋆ + Pt/G
= 0. (3.31)

Proof. See Appendix B.4.

Remark 3.2. As Pt →∞, we can write (B.28) as ∂R̄ZF

∂c = GL
[
ln
(
Pt
G

)
+ ln

(
1−c
c

)
− 1

1−c

]
+

o(1), where limPt→∞ o(1) = 0. Therefore, in the high-SNR regime and without taking
CSI costs into account, the optimal value of c that maximizes R̄ZF (and thus R̄RZF, since

both converge at high-SNR) is given by c⋆ =
(
1 + 1

W(Pt/(eG))

)−1
, upon omitting an o(1)

additive term, and upon using W(·) to denote the Lambert W-Function. This expression
can serve as a good approximation in those moderate-to-high SNR scenarios where the
dimensionality of the problem implies a relatively small CSI cost. As one can see, as
the SNR becomes very large, the above c⋆ converges, as is known, to 1, corresponding to
Q ≈ L.

Having derived the above optimal c⋆, we can now consider the ratio

G⋆ ≜ maxQ∈Z+ R̄i(G,Q)

maxQ′∈Z+ R̄i(G = 1, Q′)
, (3.32)

which describes the performance boost due to caching, over (independently) optimized
downlink cacheless systems, after accounting for CSI costs. These gains G⋆MF,G⋆ZF,G⋆RZF are

7The derivation of the optimal point for RZF is omitted due to the fact that, although we can obtain
the derivative of the sum-rate, the equation to find the optimal Q provides little insight and we would
need to obtain the solution numerically (cf. Appendix III in [110]).
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Table 3.1: Derived Theorems (Thms.) and Corollaries (Cors.) in Chapter 3

Thm. 3.1 Thm. 3.2 Thm. 3.3 Thm. 3.4 Thm. 3.5 Cor. 3.1 Cor. 3.2 Cor. 3.3

Average
sum-rate MF

Average
sum-rate ZF

Average
sum-rate RZF

Optimal Q
for MF

Optimal Q
for ZF

Average sum-rate
in cacheless MF

Effective rates
in MF/ZF/RZF

Effective gains
in MF/ZF/RZF

reported for the three precoders of interest. As one would expect, this comparison is done
under a fixed set of SNR and antenna resources. The transition from the continuous c to
the operating Q, will follow by simply considering Q⋆ = argmaxQ∈{⌊c⋆L⌋,⌊c⋆L⌋+1}

{
R̄
(
Q
)}

,
where ⌊·⌋ denotes the nearest integer less than or equal to the argument.

3.4 Numerical Results

We proceed to numerically demonstrate the achieved effective rates as well as the effective
gains that an optimized vector coded caching scheme provides over the independently
optimized cacheless downlink solution8. We note that the simulated results employ no
approximations (for example, the corresponding SINR is taken directly from (3.6)). For
ease of exposition, we list in Table 3.1 the derived theorems and corollaries.

The following figures build on the analysis of the effective sum rates and effective gains
of Section 3.2, as well as on the analysis of the optimized gains of Section 3.3. These figures
incorporate the CSI costs in the realistic scenario of having βtot = 10, Tc = 0.04 seconds
and Wc = 300 kHz (cf. (3.23)), which captures the common scenario of low-mobility users
consuming videos9. We note that βtot = 10 is high enough to allow us to neglect the
impact of CSI estimation noise [108,109]. Fig. 3.2 (left) describes the effective rate of the
different cache-aided schemes, for different values of Q. The plot highlights the tightness
of the results of Theorems 3.1-3.3 (after accounting for CSI costs: see Corollary 3.2),
where we see that indeed the derived asymptotically-approximate expressions have no
discernible distance from the actual (simulated) performance. The vertical lines indicate
the optimal Q derived in Theorems 3.4-3.5. These optimal points indeed match the
actual maximum point of the curves. Fig. 3.2 (right) extends this illustration of the
tightness of the results, to Theorems 3.4-3.5, by illustrating the optimized (over all Q
choices) effective rate performance of the three precoders, comparing the derived results
to the actual performance. We note that, for the case of RZF precoding, we represent
the result of Theorem 3.3 (Corollary 3.2) by considering a c⋆ value that is obtained from
an exhaustive search based on these derived expressions.

Fig. 3.3 focuses on the effective gains over optimized cacheless downlink systems. As
before, the theoretical and simulated results match fully. Here the theoretical results
reflect the effective gain ratio G⋆ in (3.32), where the derived effective-rate expressions are
from Corollary 3.2 (and the corresponding Theorems 3.1–3.3), and where the optimized
c⋆ are directly from10 Theorems 3.4–3.5.

8For the convenience of annotation in the simulation figures, we omit the chapter labels of theorems,
lemmas, corollaries, propositions and equations. As the numerical results are independent across different
chapters, this kind of omission does not bring about any confusion.

9We note that βtot could be decreased down to 2 at high SNR, hence reducing the CSI overhead.
10We recall that, for the RZF case, in Fig. 3.3 we numerically evaluate c⋆ from Theorem 3.3.
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Figure 3.2: Effective rate R̄ and optimized effective rate for Pt = 10 dB and G = 5.
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Figure 3.3: Effective gain G⋆ over optimized cacheless system for L ∈ {32, 64} and G = 6.

It is notable that, despite the fact that Theorem 3.1 and Theorem 3.3 are obtained
from asymptotic analysis, they closely characterize the real performance obtained from
simulations. This is also reflected in Fig. 3.4.

Under the above realistic coherence periods and coherence bandwidths, realistic
CSI costs, as well as realistic values of SNR and L, the multiplicative boosts over the
achievable rates of optimized downlink systems are quite notable. For example, for 64
transmit antennas, a receiver-side SNR of 20 dB, the same Wc = 300 kHz and Tc = 40
ms, and under realistic file-size and cache-size constraints that allow us to assume G = 6,
vector coded caching is here shown to offer a multiplicative boost of about 280% in
ZF/RZF precoding and 380% over MF-based cacheless systems, whereas for the case of
32 antennas the gain elevates to 310% for ZF and to a 430% multiplicative boost in the
performance of already optimized MF-based cacheless systems11. As one would expect,
this same figure reveals that the gains G⋆ grow monotonically with the SNR, and often
come very close to the theoretical upper bound of G.

11In addition to the speedup factor reported here, the use of caches can also lead to additional — albeit
marginal — reductions in delivery-time, complements of the so-called local caching gain, which is though
of no particular interest to this study.
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Figure 3.4: Hardening-constrained effective gain over a constrained classical downlink
system. Q is fixed for both systems at Q = 8, while G = 6.
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Figure 3.5: Effective gain versus Γ in medium SNR (10 dB) and high SNR (30 dB).

Another interesting comparison is shown in Fig. 3.4, where we ask that the cache-aided
and cacheless scenarios share the same exact multiplexing gain Q. The motivation for
this comparison traces back to the idea of channel hardening, which refers to the fact
that as long as L is sufficiently large, and as long as Q/L is sufficiently small, the channel
converges to a deterministic value, thus making CSI acquisition easier. While this paper
is not about the channel hardening properties of the cache-aided downlink, this Fig. 3.4 —
which plots the effective gain G(G,Q; 1, Q) = R̄(G,Q)/R̄(1, Q) — offers a first indication
of yet another benefit of vector coded caching, which now allows us to serve more users at
a time, but do so with a controlled ratio Q/L that guarantees certain channel hardening
conditions. Focusing on the case of a fixed Q = 8 for both the cache-aided (G = 6),
as well as the cacheless case (G = 1), Fig. 3.4 reveals that under the same Wc, Tc and
under realistic SNR values of, for example, approximately 15 dB, the effective gains
(over cacheless equivalent systems with the same Q/L) approach 400% for the ZF-based
precoders, and even go beyond 540% when using MF-based precoding. Similar gains are
recorded in the larger scenario with L = 128 transmit antennas.
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So far, for the sake of clarity of exposition, we have considered the case where K is a
multiple of Λ. The impact of deviating from this assumption is indeed very small. Let us
briefly discuss this. Let B ≜ ⌊K/Λ⌋, in which case K − ΛB cache groups will have B + 1
users each, while the remaining Λ(B + 1)−K cache groups will have B users. Then for

the first B+1
Q − 1 delivery processes, the effective gain will be the same as before, while

for the remaining processes this will be slightly reduced. Let us consider the worst case
where there are only B users in each cache group in a specific cache-group set Ψ. In this
case, we can have that the number of users in each cache group in Ψ is ΓQ+ (Q − 1)

where Γ = B+1
Q − 1. The corresponding effective gain averaged over the entire Γ + 1

delivery processes for serving the cache-group set Ψ is then

G(G,Q; 1, Q′) =
1

Γ + 1

(
Γ · R̄(G,Q)

R̄(1, Q′)
+
R̄(G,Q− 1)

R̄(1, Q′)

)
, (3.33)

where R̄(·) was introduced in Definition 3. We illustrate this result in Fig. 3.5, which plots
this effective gain in (3.33), comparing it to the corresponding gain under the assumption
that Λ divides K (denoted by Λ|K in Fig. 3.5). We can easily see that the effective gain
gap decreases as Γ increases, and eventually becomes negligible for a reasonable value of
Γ, e.g., gap ≤ 2% for Γ = 4 in both the medium and the high SNR regimes.

The above numerical illustrations refer to theoretical gains of G = 5 and G = 6.
To better understand the implications that such values entail, we provide the following
simplifying example scenario in which we explain how the considered values are obtained
in some realistic use cases.

Example 3. Let us consider the Netflix library, focusing on movies, and let us make
the educated speculation that the popularity distribution of the library content follows
a Zipf distribution with exponent parameter 1.4 (cf. [111]). Assume that we choose to
apply coded caching on the part of the library that captures 90% of the traffic, such that
on average 90% of the Netflix traffic will experience a streaming volume reduction by a
(theoretical) factor of G. Thus in a Netflix library of approximately 3700 movies, coded
caching is applied to the 100 most popular ones. The remaining 10% of the traffic is sent
in an uncoded manner.

The subpacketization constraint will be largely defined by the latency requirements,
which will ask from us, before subpacketization, to first split each movie into files that
— in order to guarantee smooth streaming — will have to be sufficiently small. Assume
a latency of two minutes, which can be seamlessly handled with a small buffer. This,
with the extra assumption that movies last around 90 minutes, implies file (sub-movie)
sizes of approximately 2min

90min = 1/45 of the movie size. Let us now consider several possible
scenarios that we can encounter in practice.

First setting Let us assume that the receiving devices are each endowed with a cache
of size equal to 25GB, and let us assume that they stream HD movies whose size is
approximately 1.3GB. From this, we obtain a file size of approximately 1.3GB

45 = 28.8MB.
Under the assumption of atomic (indivisible) communication packets of size equal

to 50 bytes, this brings us to a subpacketization of 28.8MB
50B ≈ 6 · 105. This level of
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subpacketization, together with the corresponding γ = 25GB
100·1.3GB ≈ 0.19, allows for a

theoretical gain of G = 7 (since
(

Λ
0.19Λ

)
≤ 6 · 105 and G = Λγ + 1). Recalling our example

of the hardening-constrained setting with Q = 8 (cf. Fig. 3.4), to attain the promised gain
of G = 7, we require at least QΛ ≈ 240 receiving nodes/antennas, which could represent
60 users with 4 receive antennas each.

Second setting Under approximately the same conditions, but for Full-HD movies of size
2.47GB, the corresponding scenario implies γ < 0.10 and can allow for a gain close to
G = 6. Recalling the same setting with Q = 8 of Fig. 3.4, under the Full-HD assumption,
we see that attaining the promised gain of G = 6 requires a network with at least QΛ ≈ 400
receiving nodes/antennas, which could represent K = 100 users with 4 receive antennas
each.

Third setting Let us now assume that each cache has a size equal to 5GB, and let us
consider Standard Definition (SD-480p) streaming. Hence, the file (sub-movie) sizes
become 400.5MB

45 = 8.9MB and γ = 5GB
100·400.5GB ≈ 0.125. With an atomic communication

packet size of 200 bytes, we have subpacketization 4.5 · 104, with a theoretical gain of
G = 5. In this SD small-cache scenario, considering Q = 8 corresponds to K = 256
single antenna users, or 128 users with 2 antennas each.

3.5 Conclusions

In this chapter, we have investigated the performance of vector coded caching in MU-
MISO systems, where three different linear precoding schemes (i.e., MF/ZF/RZF) that
can be applied to vector coded caching are considered. We have derived simple but very
tight closed-form expressions for the average sum-rates in MF, ZF and RZF based vector
coded caching schemes respectively with the aid of random matrix theory. These derived
expressions allow us to investigate the corresponding effective coded caching gain over
the standard (without coded caching) MIMO system with the same system parameters.
We have also provided the optimal number of users that must be served simultaneously
to maximize the average sum-rate as a function of the number of transmit antennas,
taking into account the impact of CSI acquisition at the BS.

Numerical results have shown a very substantial effective gain in the average sum-rate,
for a class of precoders, which generally is expected to hold for an even larger class of
precoders. The idea is simple: instead of sending precoded vectors, one after the other,
we have now the ability to linearly combine G such vectors. In practice, such G should
range between 4 and 6, and perhaps if γ is larger maybe 7. This G is bounded by the
well-known subpacketization constraint. Numerical results have showed that the derived
expressions hold tight in realistic (non-asymptotic) scenarios. It is also worth noting that
MF/ZF/RZF precoding can recover most of the nominal gain in realistic SNR values,
where we consider a variety of practical issues such as power dissemination across signals,
realistic SNR values, as well as CSI costs. This work provides another example of how
coded caching techniques can provide actual gains in realistic scenarios, and motivates the
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analysis of other aspects such as the impact of multiple receive antennas, non-symmetric
users and power allocation.
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Chapter 4

More Practical Considerations in
Vector Coded Caching

Chapter 3 showed how vector coded caching could provide a multiplicative boost in
the throughput of MU-MISO systems over symmetric Rayleigh fading channels. In this
chapter, we further investigate the performance of vector coded caching in MU-MIMO
systems under various additional realistic considerations, that include path-loss, max-min
fairness (MMF) and multi-antenna receivers. Specifically, in Section 4.1, we will consider
vector coded caching in the presence of multi-antenna receivers, users with different path-
loss, and block-diagonalization (BD) precoding with maximal ratio combining (MRC).
In Section 4.2, we will derive the analytical expression for the overall throughput and
for the effective coded caching gain, accounting for CSI costs and considering optimal
power allocation for MMF. Moreover, some closed-form expressions are derived in some
special cases of interest, that include massive MIMO. Subsequently, in Section 4.3, we
consider a simple ZF precoder and derive lower and upper bounds on the downlink overall
throughput. These bounds are numerically shown to be excellent approximations to
the actual performance. Then in Section 4.4 we present additional numerical results
and various comparisons that reveal the significant performance boost that vector coded
caching offers to existing cacheless MU-MIMO systems, and finally in Section 4.5 we
conclude this chapter.

Before the main content, let us define two new notations. For a set of matrices
{Aa1,a2 : a1 ∈ A1, a2 ∈ A2} where each matrix Aa1,a2 with the same number of rows
(Ar) is labeled by an unique two-tuple subscript (a1, a2) for some a1 ∈ A1 and a2 ∈ A2,
we use {Aa1.a2}a1∈A1,a2∈A2 to denote a matrix with Ar rows, which is composed by

{Aa1.a2}a1∈A1,a2∈A2 ≜
[
AA1(1),A2(1)|AA1(1),A2(2)| · · · |AA1(1),A2(|A2|)

|AA1(2),A2(1)|AA1(2),A2(2)| · · · |AA1(2),A2(|A2|)| · · · | · · · | · · ·
|AA1(|A1|),A2(1)|AA1(|A1|),A2(2)| · · · |AA1(|A1|),A2(|A2|)

]
.

In the above, A1(i) denotes the i-th element of A1, and similarly for A2(i). We note
that the elements in A1 and A2 are both ordered, and that the matrices in the set
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{Aa1,a2 : a1 ∈ A1, a2 ∈ A2} may have different number of columns. We also use
Diag{a1}a1∈A1 to denote a diagonal matrix whose main diagonal is composed by the
elements in the ordered set A1.

4.1 System Model and Problem Description

In a cache-aided downlink MU-MIMO system, a BS equipped with L antennas serves
K cache-aided multi-antenna users where the users requests, as always in this thesis,
different files (i.e., the worst-case) from a library F of N (N ≫ K) equal-sized files in
total. The BS has full access to the library F while each user can only cache a fraction
γ ∈ [0, 1] of library content. To accelerate delivery, we slightly modify the vector coded
caching scheme originally proposed in [12], which has been illustrated in Section 3.1.2.
Due to the finite file-size constraint, there are only Λ (Λ≪ K) different cache states in
vector coded caching, which leads to having B = K

Λ users sharing the same cache state
and thus caching the corresponding content during the placement phase. During the
delivery phase of vector coded caching, there are G ≜ Λγ + 1 user groups (each group
with their own cache state) selected for simultaneous service in each transmission stage,
where Q ∈ [B] users in each selected cache state are active for receiving messages, which
in turn implies that there are as many as GQ users served at a time (see Fig. 3.1 for a
simple illustration).

We use Ψ to denote the selected G user groups chosen for simultaneous service,
and we use Uψ,k to denote the k-th (k ∈ [Q]) active user from user group ψ ∈ Ψ.
We assume that each served user Uψ,k is equipped with Mψ,k receiving antennas. We
use Mψ =

∑
k∈[Q]Mψ,k to denote the total number of active receive antennas in the

user group ψ ∈ Ψ. Thanks to multi-antenna receivers, the BS can send Jψ,k symbols
to Uψ,k simultaneously, thereby enhancing the throughput toward Uψ,k, where the
maximum achievable value of Jψ,k naturally depends on the number of transmit and
receive antennas, the number of users per cache, and of course the precoding scheme.
We use sTψ,k ≜ {sψ,k,q}q∈[Jψ,k] ∈ CJψ,k and Pψ,k ≜ Diag{

√
Pψ,k,q}q∈[Jψ,k] ∈ CJψ,k×Jψ,k to

denote the data vector to Uψ,k and the corresponding power allocation matrix respectively,
where the independent variables {sψ,k,q : q ∈ [Jψ,k]} have zero-mean and unit-power. We
also use the precoding matrix Vψ,k ≜ {vψ,k,q}q∈[Jψ,k] ∈ CL×Jψ,k to split different signal
streams to Uψ,k (which is mathematically written as Vψ,ksψ,k), where the unit-norm
vector vψ,k,q ∈ CL precodes sψ,k,q. The transmitted signal xΨ ∈ CL for the selected
user-group set Ψ at the BS is designed as

xΨ =
∑

ψ∈Ψ

∑
k∈[Q]

Vψ,kPψ,ksψ,k. (4.1)

Given xΨ in (4.1), the received signal vector yψ,k ∈ CMψ,k at the typical user Uψ,k

takes the form

yψ,k = HT
ψ,kxΨ + zψ,k = HT

ψ,kVψ,kPψ,ksψ,k + zψ,k
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+HT
ψ,k

∑
k′∈[Q]\k

Vψ,k′Pψ,k′sψ,k′︸ ︷︷ ︸
intra-group interference

+HT
ψ,k

∑
ϕ∈Ψ\ψ

∑
ϑ∈[Q]

Vϕ,ϑPϕ,ϑsϕ,ϑ︸ ︷︷ ︸
inter-group interference

,

(4.2)

where zψ,k ∼ CN (0L, N0IL) denotes the AWGN, and where Hψ,k ∈ CL×Mψ,k denotes the
channel matrix from the BS to Uψ,k. The elements of Hψ,k will be i.i.d. complex Gaussian
random variables with zero-mean and variance βψ,k if we consider Rayleigh fading channels.
We note that βψ,k here accounts for the large-scale shadowing and/or pathloss. Let
Rψ,k ≜ {rψ,k,q}q∈[Mψ,k] ∈ CMψ,k×Mψ,k with each unit-norm column rψ,k,q ∈ CMψ,k be
the channel-dependent decoding matrix at Uψ,k. As Uψ,k knows (has access to, from
their cache; as we can recall from Section 3.1.2) the messages {sϕ,ϑ : ϕ ∈ Ψ \ ψ, ϑ ∈ [Q]}
intended by the active users of other user groups in Ψ, then the inter-group interference
in (4.2) can be removed by using the cached content in Uψ,k and the composite CSI
{HT

ψ,kVϕ,ϑPϕ,ϑ : ϕ ∈ Ψ \ ψ, ϑ ∈ [Q]}, the cost of which we will account for in our analysis.
After removing the inter-group interference via vector coded caching and using the
decoding matrix Rψ,k, the signal vector for decoding at Uψ,k is

y′
ψ,k = RH

ψ,kH
T
ψ,kVψ,kPψ,ksψ,k +RH

ψ,k

∑
k′∈[Q]\k

HT
ψ,kVψ,k′Pψ,k′sψ,k′ + z′ψ,k, (4.3)

where z′ψ,k ≜ RH
ψ,kzψ,k ∼ CN (0L, N0IL) in view of the property of multi-variate Gaussian

distribution.
Building on the general vector-clique structure in [12], we are here free to choose the

precoding schemes, as well as calibrate at will the dimensionality of each vector clique.
This freedom is essential in controlling the impact of CSI costs and of power-splitting across
users, both of which directly affect the performance in practical SNR regimes [66–68]. We
refer to Section 3.1.2 for the cache placement phase and the subsequent delivery phase in
vector coded caching.

4.1.1 BD Precoding and MRC Combining

As pointed out in [112], complete channel diagonalization (e.g., ZF) at the BS is suboptimal
since each multi-antenna user is able to coordinate the processing of its own receiver
outputs. We thus alternatively consider the well-known BD precoding method [112].
Toward this, we first define the matrix Hψ,−k ≜ {Hψ,ι}ι∈[Q]\k ∈ CL×(Mψ−Mψ,k). To
cancel the intra-group interference in (4.2), Vψ,k must lie in the null-space of H∗

ψ,−k such

that the product of HT
ψ,−k and Vψ,k is a matrix with all elements equaling zero for any

k ∈ [Q]. Furthermore, to successfully eliminate the inter-symbol interference in Uψ,k, we
must have that

Jψ,k ≜ min
{
Rank(H∗

ψ,−k), Rank(Hψ,k)
}

(4.4)

where Jψ,k denotes the maximum allowable number of symbols that can be simultaneously
transmitted to Uψ,k. For independent Rayleigh fading channels, then Jψ,k = min

{
L−

(Mψ −Mψ,k),Mψ,k

}
. We use Qψ,max to denote the maximum Q in the user-group ψ,
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which equals ⌊M+L−1
M ⌋ if all the served users have the same number of receive antennas

M . If the users are equipped with different numbers of antennas, we can determine

Qψ,max via solving
∑
k∈[Q]Mψ,k

1−L+
∑
k∈[Q]Mψ,k

−Q = 0, which implies that Qψ,max depends on how

we select the users. As we consider an equal Q for each group, the aforementioned
maximum allowable Q takes the form Qmax = minψ∈ΨQψ,max.

LetTψ,−k ≜ IL−H∗
ψ,−k

(
HT
ψ,−kH

∗
ψ,−k

)−1
HT
ψ,−k be the projection matrix which maps

any vector m ∈ CL into the null-space of H∗
ψ,−k. We note that T2

ψ,−k = Tψ,−k = TH
ψ,−k

according to the projection matrix properties. The BD precoding matrix dedicated to
Uψ,k can be written as

Vψ,k =

{
Tψ,−kmψ,k,q

||Tψ,−kmψ,k,q||

}
q∈[Jψ,k]

∈ CL×Jψ,k . (4.5)

By using this BD precoding, the signal vector at Uψ,k in (4.3) becomes

y′
ψ,k = RH

ψ,kH
T
ψ,kVψ,kPψ,ksψ,k + z′ψ,k

=
[
rHψ,k,1H

T
ψ,kvψ,k,1

√
Pψ,k,1sψ,k,1, · · · , rHψ,k,Jψ,kH

T
ψ,kvψ,k,Jψ,k

√
Pψ,k,Jψ,ksψ,k,Jψ,k

]T
+ z′ψ,k.

(4.6)

We have that |rHψ,k,qHT
ψ,kvψ,k,q|2 ≤ ||HT

ψ,k,qvψ,k,q||2, where equality is achieved only if

rψ,k,q = θHT
ψ,kvψ,k,q for a constant θ ≠ 0 according to the well-known Cauchy–Schwarz

inequality. Here, we set θ = 1/||HT
ψ,kvψ,k,q|| to normalize rψ,k,q, which corresponds to the

MRC receiver. Therefore, under the common Gaussian signaling, the signal-to-interference
plus noise ratio (SINR) for decoding sψ,k,q at Uψ,k is

SINRψ,k,q =
Pψ,k,q
N0

∣∣rHψ,k,qHT
ψ,kvψ,k,q

∣∣2
MRC
≤ Pψ,k,q

N0
||HT

ψ,kvψ,k,q||2 =
Pψ,k,q
N0

vHψ,k,qH
∗
ψ,kH

T
ψ,kvψ,k,q

=
Pψ,k,q
N0

mH
ψ,k,qTψ,−kH

∗
ψ,kH

T
ψ,kTψ,−kmψ,k,q

||Tψ,−kmψ,k,q||2
. (4.7)

Toward providing CSI estimates to the BS and the users, we will consider the common
TDD uplink-downlink pilot transmission, as this applies to MU-MIMO systems. Let Tc
be the coherence block time (in symbols), and let βtot be the number of resources per
user’s antenna and per block used for pilot transmission. The corresponding effective
rate for Uψ,k is then

Rψ,k = ξG,Q
∑Jψ,k

q=1
ln
(
1 + SINRψ,k,q

)
nats/s/Hz, (4.8)

where ξG,Q ≜ 1 − βtot
(∑

ψ∈Ψ
∑

k∈[Q]Mψ,k

)
/Tc accounts for CSI costs [109]. Without

loss of generality, we sort {sψ,k,q : q ∈ [Jψ,k]} in descending order according to the
corresponding {SINRψ,k,q : q ∈ [Jψ,k]} at Uψ,k. In the following, we optimize the BD
precoder {vψ,k,q : ψ ∈ Ψ, k ∈ [Q], q ∈ [Jψ,k]} in order to yield the maximum effective rate
for each served user.
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Lemma 4.1. The optimal precoding vector vψ,k,q for Uψ,k to decode sψ,k,q under the
BD-MRC scheme is

v⋆ψ,k,q =
Tψ,−kH

∗
ψ,ktψ,k,q

||Tψ,−kH
∗
ψ,ktψ,k,q||

, (4.9)

where tψ,k,q ∈ CMψ,k is the eigenvector associated with the q-th largest (non-zero) eigen-
value λψ,k,q of HT

ψ,kTψ,−kH
∗
ψ,k ∈ CMψ,k×Mψ,k . The corresponding SINR when decoding

sψ,k,q takes the form

SINRBD-MRC
ψ,k,q =

Pψ,k,q
N0

λψ,k,q, (4.10)

and the resulting effective rate for Uψ,k then takes the form

Rψ,k = ξG,Q
∑Jψ,k

q=1
ln

(
1 +

Pψ,k,q
N0

λψ,k,q

)
. (4.11)

Proof. The proof is relegated to Appendix C.1.

Let Pψ,k =
∑Jψ,k

q=1 Pψ,k,q be the transmit power allocated to Uψ,k. From (4.11), we
know that when Pψ,k is fixed, adjusting power allocation among the symbols intended by
Uψ,k, does not affect the effective rates for other users. Let us define (x)+ ≜ max(x, 0).
The following corollary considers the use of water filling when assigning power to the
symbols intended by Uψ,k, under the power constraint Pψ,k, in order to maximize the
effective rate in (4.11).

Corollary 4.1. The optimal power allocated to each symbol sψ,k,q for maximizing the
effective rate in (4.11), takes the form

Pψ,k,q =
( 1

αψ,k
− N0

λψ,k,q

)+
, (4.12)

where, under a power constraint Pψ,k, the Lagrange multiplier αψ,k is the solution to∑Jψ,k

q=1

( 1

αψ,k
− N0

λψ,k,q

)+
= Pψ,k. (4.13)

Then, the corresponding optimal effective rate for Uψ,k, takes the form

R⋆ψ,k(Pψ,k) = ξG,Q
∑Jψ,k

q=1
ln

(
1 +

( λψ,k,q
N0αψ,k

− 1
)+)

. (4.14)

Proof. The proof is direct from the water-filling algorithm (cf. [113, Ch. 10]).

Let us now consider max-min fairness, where the minimum effective rate among the
simultaneously served users is maximized via power allocation under a specific precoding
scheme. The MMF problem for serving the users {Uψ,k : ψ ∈ Ψ, k ∈ [Q]} can be
formulated as

S1 :

{
maxPΨ

minψ∈Ψmink∈[Q] ξG,Q
∑Jψ,k

q=1 ln
(
1 + SINRψ,k,q

)
s.t. P = Tr{PΨ} =

∑
ψ∈Ψ

∑
k∈[Q] Pψ,k ≤ Ptot,

(4.15)

where the diagonal matrix PΨ ∈ CGQ×GQ collects the power values allocated to the
served GQ users, and where Ptot is the maximum allowable transmit power at the BS.
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4.1.2 Main Performance Metrics

We will henceforth use the term (G,Q)-vector coded caching, to refer to the vector coded
caching scheme when it serves G groups with Q users per group. We will also use the term
BD-based (G,Q)-vector coded caching to refer to the same scheme when the underlying
precoder is the BD precoder, and similarly we will use ZF-based (G,Q)-vector coded
caching, when considering the ZF precoder. Let us now formally define some important
metrics of interest.

Definition 5. (Effective sum-rate). For a (G,Q)-vector coded caching scheme, its effective
(instantaneous) sum-rate is denoted by R(G,Q) and is defined as the total effective
rate (after accounting for CSI costs) summed over the GQ simultaneously served users.
Moreover, R̄(G,Q) represents R(G,Q) averaged over channel fading.

Definition 6. (Effective gain over MIMO). For a given set of SNR and L resources, and
a fixed underlying precoder class, the effective gain, after accounting for CSI costs, of
the (G,Q)-vector coded caching scheme over the cacheless scenario (corresponding to

G = 1, and an operating multiplexing gain Q′), will be denoted as G ≜ R̄⋆(G,Q)
R̄⋆(1,Q′)

, where

R̄⋆(G,Q) describes the rate R(G,Q) that is first optimized via power allocation under
the MMF criterion (cf. (4.15)), and then averaged over channel fading. We also call

G⋆ ≜ maxQ R̄
⋆(G,Q)

maxQ′ R̄⋆(1,Q′)
as the effective gain of optimized rates, where Q and Q′ are also

independently optimized.

4.2 BD-MRC Analysis for Multi-Antenna Receivers

4.2.1 Effective Sum-Rate and Effective Gain: the case of BD-MRC

We first note that the set {λψ,k,q : ψ ∈ Ψ, k ∈ [Q], q ∈ [Jψ,k]} is a function of the channel
gains but not of the power allocation policy. By using the effective rate expression in
(4.11), the MMF optimization problem in (4.15), under the BD-MRC scheme for downlink
power allocation, can be transformed into

S2 :

 maxPΨ
minψ∈Ψmink∈[Q] ξG,Q

∑Jψ,k
q=1 ln

(
1 +

Pψ,k,q
N0

λψ,k,q

)
s.t. Pt =

∑
ψ∈Ψ

∑
k∈[Q]

∑
q∈[Jψ,k] Pψ,k,q = Ptot.

(4.16)

The following theorem addresses the optimization problem in (4.16) and derives the
effective instantaneous sum-rate R∗

BD-MRC and the effective gain of optimized rates (cf.
Definition 6). In the following, f−1

ψ,k(·) will denote the inverse function of R⋆ψ,k(Pψ,k)
in (4.14) (which is a monotonically increasing function w.r.t. Pψ,k).

Theorem 4.1. The effective instantaneous sum-rate R∗
BD-MRC under optimal power allo-

cation for the MMF problem in (4.16) is the solution to

∑
ψ∈Ψ

∑
k∈[Q]

f−1
ψ,k

(R⋆BD-MRC

GQ

)
= Ptot, (4.17)
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and then the corresponding effective gain of optimized rates under the BD-MRC scheme,
takes the form

G∗BD-MRC =
maxQ∈[Qmax] Eh{R∗

BD-MRC(G,Q)}
maxQ′∈[Qmax] Eh{R∗

BD-MRC(1, Q
′)} . (4.18)

Furthermore, the optimal rate is bounded as

R̃∗
BD-MRC ≤ R∗

BD-MRC ≤ R̂∗
BD-MRC

where R̃∗
BD-MRC and R̂∗

BD-MRC are respectively the solutions to

∑
ψ∈Ψ

∑
k∈[Q]

Jψ,kN0(
minq∈[Jψ,k] λψ,k,q

) (exp( R̃∗
BD-MRC

ξG,QJψ,kGQ

)
− 1

)
= Ptot, (4.19)

∑
ψ∈Ψ

∑
k∈[Q]

Jψ,kN0(
maxq∈[Jψ,k] λψ,k,q

) (exp( R̂∗
BD-MRC

ξG,QJψ,kGQ

)
− 1

)
= Ptot. (4.20)

Proof. As the power allocation among the symbols intended by Uψ,k does not affect
the power allocation to other served users, the effective rate for Uψ,k must reach its
optimal bound under the power constraint P ⋆ψ,k (optimal power allocated to Uψ,k for
MMF), which has been solved in Corollary 4.1. Then it is easy to see that R⋆ψ,k(Pψ,k) in
(4.14) is a monotonically increasing function w.r.t. Pψ,k. When the optimum for (4.16)
is achieved, if there exists one user whose effective rate is higher than the smallest rate,
this user can “borrow” some power to the user with the smallest rate until their rates
are the same, without affecting the rates for other users, which enhances the smallest
effective rates, and which is contradictory to the optimal power allocation assumption.
Therefore, the users must have the same effective rate (equalling R⋆BD-MRC/G/Q) under
the optimal power allocation in (4.16). Considering

∑
ψ∈Ψ

∑
k∈[Q] P

⋆
ψ,k = Ptot and the

inverse function of R⋆ψ,k(Pψ,k), we can obtain (4.17).

To derive the lower-bound R̃∗
BD-MRC, we first consider that

Rψ,k = ξG,Q
∑Jψ,k

q=1
ln

(
1 +

Pψ,k,q
N0

λψ,k,q

)
≥ ξG,QJψ,k ln

(
1 +

Pψ,k,q
N0

(
min

q∈[Jψ,k]
λψ,k,q

))
,

(4.21)

which is substituted into (4.16) as the objective function. Using similar analysis as that
leading to (4.17), we can easily obtain (4.19). The upper-bound R̂∗

BD-MRC follows the

same procedure as R̃∗
BD-MRC, with a difference being that upper bounding Rψ,k now uses

maxq∈[Jψ,k] λψ,k,q.

We also have the following, which considers the commonly-assumed symmetric case
where each user receives an equal number of symbols.
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Corollary 4.2. In the symmetric case where Jψ,k = J for any ψ ∈ Ψ and k ∈ [Q], the
lower and upper bounds to the optimal rate R∗

BD-MRC take the form

R̃∗
BD-MRC ≜ ξG,QGQJ ln

(
1 +

Ptot

N0J
∑

ψ∈Ψ
∑

k∈[Q]

(
minq∈[Jψ,k]{λψ,k,q}

)−1

)
, (4.22)

R̂∗
BD-MRC ≜ ξG,QGQJ ln

(
1 +

Ptot

N0J
∑

ψ∈Ψ
∑

k∈[Q]

(
maxq∈[Jψ,k]{λψ,k,q}

)−1

)
. (4.23)

Proof. We can easily derive the expressions of R̃∗
BD-MRC and R̂∗

BD-MRC from (4.19) and
(4.20) respectively, after setting Jψ,k = J, ∀ψ ∈ Ψ, k ∈ [Q].

Remark 4.1. We note that Lemma 4.1, Corollary 4.1, Theorem 4.1 and Corollary 4.2,
are all valid for any propagation channel model, including of course Rayleigh fading,
Rician-K fading, and Keyhole channels. The same results also hold for scenarios that
involve non full-rank channel matrix product HT

ψ,kH
∗
ψ,k for any ψ ∈ Ψ and k ∈ [Q], in

which case we apply the pseudo-inverse of HT
ψ,−kH

∗
ψ,−k in the projection matrix Tψ,−k.

4.2.2 Special Case (i): Massive MIMO Regime Over Rayleigh Fading Channels

In this subsection, we consider a very large number of antennas L and a relatively small
Mψ,k. This will allow us to simplify our analysis on the eigenvalues of HT

ψ,kTψ,−kH
∗
ψ,k ∈

CMψ,k×Mψ,k . When L≫∑
k∈[Q]Mψ,k for ∀ψ ∈ Ψ, we can reasonably assume that Jψ,k

in (4.4) is always Mψ,k (for Rayleigh fading channels). Lemma 4.2 shows the simplified
results of Theorem 4.1.

Lemma 4.2. In the massive MIMO regime, the effective instantaneous sum-rate R⋆BD-MRC

with CSI costs considerations, and under the BD-MRC scheme and optimal power
allocation for MMF over Rayleigh fading channels, can be obtained via numerically solving∑

ψ∈Ψ

∑
k∈[Q]

N0Mψ,k

βψ,k
(
L−∑k′∈[Q]\kMψ,k′

) (exp( R⋆BD-MRC

ξG,QMψ,kGQ

)
− 1

)
= Ptot. (4.24)

The corresponding optimal power allocation policy that yields R⋆BD-MRC takes the form

Pψ,k,q =
N0Mψ,k

βψ,k
(
L−∑k′∈[Q]\kMψ,k′

) (exp( R⋆ψ,k
ξG,QMψ,kGQ

)
− 1

)
, for ∀ψ ∈ Ψ, k ∈ [Q],

(4.25)

When Mψ,k =M for ∀ψ ∈ Ψ, k ∈ [Q], then

R⋆BD-MRC(G,Q) = ξG,QGQM ln

(
1 +

Ptot(L− (Q− 1)M)

N0M
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
. (4.26)

Note that (4.24), (4.25) and (4.26) are independent of channel fading.

Proof. The proof is relegated to Appendix C.2.
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4.2.3 Special Case (ii): Single-Antenna Receivers in BD

We here consider BD precoding with optimal beamforming for each single-antenna receiver.
Let us first define J ′ ≜ L−Q+ 1, ν ≜ GQJ ′, as well as

∆(1)
ν ≜

{(
1 +

J ′

βψ,k

)
J ′

: ψ ∈ Ψ, k ∈ [Q]
}

(4.27)

∆(2)
ν ≜

{( J ′

βψ,k

)
J ′

: ψ ∈ Ψ, k ∈ [Q]
}
, (4.28)

where (·)J stands for repeating J ′ times the enclosed argument. We also use G·,·
·,·(·) to

denote the Meijer’s G-function (cf. [76, Eq. (9.301)]), and naturally define ρ as ρ ≜ Ptot
N0

.
We proceed with the following lemma.

Lemma 4.3. The optimal effective sum-rate of BD precoding for single-antenna users
under the power allocation for MMF over Rayleigh fading channels takes the form

R̄⋆BD(G,Q) = GQξG,Q

[∏
ψ∈Ψ,k∈[Q]

( J ′

βψ,k

)J ′] ∫ ∞

0
ln
(
1 +

ρ

x

)
Gν,0
ν,ν

(
exp(−x)

∣∣∣∆(1)
ν

∆
(2)
ν

)
dx.

(4.29)

When all the served GQ users have the same path-loss βPL, the effective sum-rate in
(4.29) can be simplified as

R̄⋆BD(G,Q) =
ρGQξG,Q
βPL(ν − 1)!

G2,2
2,3

(
ρ

βPL

∣∣∣0,0
0,ν−1,−1

)
. (4.30)

In the high-SNR regime of ρ→∞, this takes the form

R̄⋆BD(G,Q) = GQξG,Q ln ρ−GQξG,Q
(
lnβPL − C +

∑ν−1

ℓ=1

1

ℓ

)
+ o(1), (4.31)

where C = 0.5772 . . . denotes the Euler-Mascheroni constant, and where
∑ν−1

ℓ=1
1
ℓ = 0 if

ν = 1. The second term L∞ ≜ −GQξG,Q
(
lnβPL − C +

∑ν−1
ℓ=1

1
ℓ

)
in (4.31), represents

the high SNR power offset due to path-loss and fading [86].

Proof. The proof is relegated to Appendix C.3.

4.3 ZF Precoding Analysis for Multi-Antenna Receivers

In this section, we analyze the effective sum-rate achieved by the cache-aided downlink
schemes of Section 3.1.2 (over independent Rayleigh fading channels) for the case of
the ZF linear precoder. After doing so, we also report the effective gains offered by the
ZF-based (G,Q)-vector coded caching scheme, where the gains are over the (G = 1, Q′)
cacheless equivalent. In contrast to BD precoding where both the precoding matrix
optimization and power allocation should be adjusted according to the instantaneous
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channel fading (recall Theorem 4.1), we here in (cf. Theorem 4.2) simply perform channel
matrix inversion without any precoder optimization, and we simply calibrate the power
allocation as a function of the (large-scale) path-loss which of course changes much slower
than fading does. Our numerical results show that the performance gap between the
simpler BD precoder and the fully optimized ZF precoder is negligible for practical values
of receive antennas (e.g., Mψ,k ≤ 4).

Following the conventional ZF precoding for single-antenna receivers (cf. [114]),
we completely separate the transmitted Mψ =

∑
k∈[Q]Mψ,k symbol streams such that

there is no intra-group and inter-group interference. Therefore, the Mψ,k symbols
simultaneously sent to Uψ,k, are fully separated (using complete channel diagonalization
at the BS), and user Uψ,k independently decodes the intended Mψ,k symbols without
interference from other users in its cache-group ψ. This corresponds to a decoding
matrix Rψ,k = IMψ,k

at user Uψ,k. Specifically, after defining the channel matrix

Hψ ≜ {Hψ,k}k∈[Q] ∈ CL×
∑
k∈[Q]Mψ,k representing the channel between the BS and the

active users in cache-group ψ, the ZF variant for multi-antenna receivers is designed as

VΨ =
{
H∗
ψ

(
HT
ψH

∗
ψ

)−1 ◦DZF,ψ

}
ψ∈Ψ
∈ CL×

∑
ψ∈Ψ

∑
k∈[Q]Mψ,k , (4.32)

where {DZF,ψ : ψ ∈ Ψ} are the normalization matrices which guarantee that the norm-2
of each column in VΨ is equal to 1, and where each of these matrices is given by

DZF,ψ ≜
{√([(

HT
ψH

∗
ψ

)−1]
k(q),k(q)

)−1
1L

}
k∈[Q],q∈[Mψ,k]

∈ CL×
∑
k∈[Q]Mψ,k , (4.33)

where k(q) ≜ q + I{k > 1}∑k−1
k′=1Mψ,k′ which varies with ψ. In the above, I{·} denotes

the indicator function.
We first present the upper and lower bounds for the effective rate at any given

user, averaged over channel fading, under ZF precoding. In what follows, we use
Mψ ≜

∑
k∈[Q]Mψ,k.

Proposition 4.1. The effective average rate at a typical user Uψ,k, ψ ∈ Ψ, k ∈ [Q] under

ZF-based precoding, is bounded as R̃ZF
ψ,k ≤ R̄ZF

ψ,k ≤ R̂ZF
ψ,k, where

R̃ZF
ψ,k ≜ ξG,Q

∑Mψ,k

q=1
ln

(
1 +

Pψ,k,q(L−Mψ)βψ,k
N0

)
, (4.34)

R̂ZF
ψ,k ≜ ξG,Q

∑Mψ,k

q=1
ln

(
1 +

Pψ,k,q(L−Mψ + 1)βψ,k
N0

)
. (4.35)

Proof. The proof is relegated to Appendix C.4.

In the following, we separately optimize the bounds in Proposition 4.1. The MMF
optimization problems are respectively of the form

S3 :

 maxPΨ
minψ∈Ψmink∈[Q] ξG,Q

∑Mψ,k

q=1 ln
(
1 +

Pψ,k,q(L−Mψ)βψ,k
N0

)
s. t. Pt = Tr{PΨ} =

∑
ψ∈Ψ

∑
k∈[Q]

∑
q∈[Mψ,k]

Pψ,k,q ≤ Ptot.
(4.36)
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S4 :

 maxPΨ
minψ∈Ψmink∈[Q] ξG,Q

∑Mψ,k

q=1 ln
(
1 +

Pψ,k,q(L−Mψ+1)βψ,k
N0

)
s. t. Pt = Tr{PΨ} =

∑
ψ∈Ψ

∑
k∈[Q]

∑
q∈[Mψ,k]

Pψ,k,q ≤ Ptot.
(4.37)

Obviously, Pt should reach its upper-bound Ptot when the optimum in (4.36) and (4.37)
is achieved. In accordance with the water-filling algorithm, it is easy to see that equal
power allocation among {sψ,k,q : q ∈ [Mψ,k]} for ∀ψ ∈ Ψ and k ∈ [Q] is optimal, which
means that we get Pψ,k,q = Pψ,k/Mψ,k. To solve the MMF problems in (4.36) and (4.37),
we have the following theorem.

Theorem 4.2. The optimal MMF-constrained optimal effective sum-rate R̄⋆ZF is bounded

as R̃⋆ZF ≤ R̄⋆ZF ≤ R̂⋆ZF, where R̃⋆ZF, R̂⋆ZF are respectively the solutions to∑
ψ∈Ψ

∑
k∈[Q]

N0Mψ,k

βψ,k(L−Mψ)

(
exp

(
R̃⋆ZF

ξG,QGQMψ,k

)
− 1

)
= Ptot (4.38)

∑
ψ∈Ψ

∑
k∈[Q]

N0Mψ,k

βψ,k(L−Mψ + 1)

(
exp

(
R̂⋆ZF

ξG,QGQMψ,k

)
− 1

)
= Ptot. (4.39)

In the symmetric case of Mψ,k = M, ∀ψ ∈ Ψ, k ∈ [Q], the optimal effective sum-rate is
lower and upper bounded respectively by

R̃⋆ZF = ξG,QGQM ln

(
1 +

Ptot(L−QM)

MN0
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
(4.40)

R̂⋆ZF = ξG,QGQM ln

(
1 +

Ptot(L−QM + 1)

MN0
∑

ψ∈Ψ
∑

k∈[Q] β
−1
ψ,k

)
. (4.41)

Proof. As was the case in Theorem 4.1, here also all GQ users accept the same lower-
bound on their effective rate under the optimal power allocation in (4.36). Considering
that

∑
ψ∈Ψ

∑
k∈[Q] Pψ,k = Ptot and also considering Proposition 4.1, we can easily obtain

(4.38). The derivation of (4.39) follows in similar steps.

Corollary 4.3. Given ZF-based precoding at the BS and given M-antenna receivers,
the optimal effective gain G⋆ZF of our ZF-based vector coded caching, is bounded by

G̃⋆ZF ≤ G⋆ZF ≤ Ĝ⋆ZF, where

G̃⋆ZF ≜
maxQ∈[Qmax] R̃

⋆
ZF(G,Q)

maxQ′∈[Qmax] R̂
⋆
ZF(1, Q

′)
=

maxQ∈[Qmax] ξG,QGQM ln

(
1 + Ptot(L−QM)

MN0
∑
ψ∈Ψ

∑
k∈[Q] β

−1
ψ,k

)
maxQ′∈[Qmax] ξ1,Q′Q′M ln

(
1 + Ptot(L−Q′M+1)

MN0
∑
k′∈[Q′] β

−1
k′

)
(4.42)

Ĝ⋆ZF ≜
maxQ∈[Qmax] R̂

⋆
ZF(G,Q)

maxQ′∈[Qmax] R̃
⋆
ZF(1, Q

′)
=

maxQ∈[Qmax] ξG,QGQM ln

(
1 + Ptot(L−QM+1)

MN0
∑
ψ∈Ψ

∑
k∈[Q] β

−1
ψ,k

)
maxQ′∈[Qmax] ξ1,Q′Q′M ln

(
1 + Ptot(L−Q′M)

MN0
∑
k′∈[Q′] β

−1
k′

) ,

(4.43)
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and where Qmax = L−1
M .

Proof. We can derive Corollary 4.3 directly from Theorem 4.2.

4.4 Numerical Results

This section presents various numerical results that validate our analysis as well as
provide insightful comparisons. We here consider relatively low mobility users, and
assume a coherence time of 0.05 s and a coherence bandwidth of 300 kHz, corresponding
to a coherence block of 15000 symbols. We consider CSI pilot length of βtot = 10,
which is expected to be sufficient for providing near-perfect CSI at both the BS and the
users [109]. The AWGN spectral density is considered to be −174 dBm/Hz, and the
spectrum bandwidth for each user is 20 MHz. We generate 1000 realizations of users’
locations, based on the assumption of uniformly-distributed users across the cell. We
consider the Macro-cell scenario with an inner radius of 35 meters and an outer radius of
500 meters, as well as consider the Micro-cell case with an inner radius of 10 meters and
an outer radius of 100 meters. Assuming a carrier frequency of 2 GHz, in the Macro-cell
case, the pathloss is modeled as βψ,k = l0r

−η0
ψ,k [84], where rψ,k is the distance between

the BS and Uψ,k, where η0 = 3.76 is the path-loss exponent, and where l0 = 10−3.53

regulates the channel attenuation at 35 meters. For the Micro-cell scenario, we note that
the pathloss model can often differ when considering delivery distance between 10 and
40 meters, compared to when considering a distance in the [40, 100] meters range. For
simplicity though, we here use the pathloss model for [10, 40] meters over the entire
delivery range in the Micro-cell, and thus consider l0 = 10−3.7 and η0 = 3 (cf. [115, Table
II]).

Fig. 4.1 plots the effective rate for a typical user versus Ptot for different numbers
of receiver antennas, where both simulated and analytical results are presented side by
side in order to validate the accuracy of derived expressions. In Fig. 4.1, the analytical
result for the BD-MRC is derived based on Lemma 4.1, while we derive the BD-MRC
approximation by substituting the approximation in (C.9) into Lemma 4.1. It is obvious
that the effective rate increases asM grows under both ZF and BD-MRC schemes because
the BS can send more symbols at a time. It is also worth noting that the performance gap
between ZF and BD-MRC schemes decreases with decreasing M , and almost vanishes
for M = 2 (a practical receiver-antenna numbers). Fig. 4.2 shows the effective sum-rate
versus Ptot, where the setting is the same as in Fig. 4.1, with the exception though
that we consider MMF power allocation. In Fig. 4.2, we plot the analytical result for
the BD-MRC from Lemma 4.1 and after using the one-dimensional dichotomous search
for R⋆BD-MRC, while the BD-MRC approximation plotted is from Lemma 4.2. In the
simulation results, we use the built-in function “fminmax” in MATLAB to numerically
solve the MMF optimization in (4.16). We can see that the effective coded caching gain
is an increasing function w.r.t. Ptot, while it is a decreasing function w.r.t. M . It is also
obvious that the ZF variant precoding always provides lower bounds for both effective
sum-rate and gain.
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Figure 4.1: Effective rate versus Ptot in the Macro-cell setting for J =M with equal-power
allocation.

Fig. 4.3 shows both the effective sum-rate and the corresponding gain versus Ptot for
L = 128 and M = 4. Compared to the performance of M = 4 in Fig. 4.2, we observe
modest increases in both the effective sum-rate and gain when we increase the number of
transmit antennas from 64 to 128. The delivery performance with the same DoF (i.e.,
Q′ = GQ) in vector coded caching and in the cacheless scenario is plotted in Fig. 4.4;
this corresponds to the same setting (except for the values of Q and Q′) as in Fig. 4.3.
In contrast to the increasing effective gain w.r.t. Ptot that we experience in Fig. 4.3,
the effective gain in Fig. 4.4 decreases with Ptot, and eventually approaches 1 (all gains
disappear) as Ptot increases.

We then plot the optimal effective gain versus Ptot, where in Fig. 4.5 we do so for
G = 4 and in Fig. 4.6 we do so for G = 6. In both cases, we do so for L = 128 and
M = 4.

One note is that while the gain from vector coded caching (over the corresponding
traditional (cacheless) MU-MIMO scenario, is very substantial, it is indeed less than
in the symmetric case (same pathloss) that we have seen in Chapter 3. This is mainly
due to the heavy worst-user effect (or the near-far effect) which considerably limits the
effective sum-rate, especially in a large cell (e.g., a Macro-cell), even after optimal power
allocation. What makes things worse is that the users are uniformly distributed within
this Macro-cell, which implies that most of the users tend to locate on the cell edge. For
example, again for the Macro-cell case, we see that 64.32% of the users are more than
300 meters away from the BS. For the typical BS transmit power of Pt = 40 dBm in a
Macro-cell, the received (average) SNR at these users is below 12.55 dB (cf. Table 4.1).
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Figure 4.2: Effective rate versus Ptot in the Macro-cell setting under MMF.

Table 4.1: User Percentage and Receiver SNR Range in a Macro Cell with D1 = 35,
D2 = 500, η = 3.76, and l0 = 10−3.53

Delivery distance ≥ 50 m ≥ 100 m ≥ 200 m ≥ 300 m ≥ 400 m ≥ 450 m

Percentage in total users 99.49% 96.47% 84.41% 64.32% 36.18% 19.09%

Received SNR = Pt
N0
l0r

−η ≤ Pt [dB] + 31.81 ≤ Pt [dB] + 20.49 ≤ Pt [dB] + 9.17 ≤ Pt [dB] + 2.55 ≤ Pt [dB]− 2.15 ≤ Pt [dB]− 4.07

Things are very different in the Micro-cell setting (cf. Fig. 4.7) where the effective gain
of the ZF-based vector coded caching is again very notable. For example, the recorded
gain is 410% for the reasonable BS transmit power of Ptot = 33 dBm in a Micro-cell.

4.5 Conclusions

We have investigated vector coded caching under various realistic considerations such
as having variable path-loss, multi-antenna receivers, practical decoders, and MMF.
Specifically, we have derived analytical expressions of the effective sum-rate and the
effective gain under BD-MRC and ZF schemes respectively, as well as we have provided
various closed-form expressions under various simplifying assumptions. Numerical results
validate very clearly the tightness of the derived expressions, revealing again notable
effective gains that vector coded caching can provide in realistic scenarios. These gains are
particularly high in Micro-cell environments. For example, we have seen that vector coded
caching can offer more than a 410% boost in the overall throughput over the conventional
(cacheless) MU-MIMO system, under the aforementioned realistic assumptions. We
note that all recorded gains attributed to vector coded caching, are taken to reflect the
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Figure 4.3: Effective rate versus Ptot in a Macro-cell under MMF.

improvement over optimized traditional MU-MIMO systems (where for example, such
traditional MU-MIMO system is optimized w.r.t. the operational multiplexing gain).
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Figure 4.6: Optimal effective gain versus Ptot in a Macro-cell under MMF.
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Chapter 5

ACC-aided Land Mobile Satellite
System

In this chapter, we investigate the performance of coded caching in land mobile-satellite
(LMS) systems, where a satellite station with full access to a content library, serves K
cache-aided land users. As is known, LMS systems experience low-to-moderate SNR due
to their long propagation distances, and thus the traditional coded caching gains may
suffer in these more realistic SNR regimes. In this thesis, these gains are first analyzed for
the traditional MN solution, and then for the new ACC solution. In particular, we first
analyze the extent to which the MN coded caching gains are preserved in LMS systems.
We model the satellite-terrestrial channels through the widely adopted Shadowed-Rician
fading model, and we show that — interestingly, and unlike what we saw before in the
Rayleigh fading scenario — the coded caching gains are partially preserved even in the
low-SNR limit due to the existence of line-of-sight (LOS) components. In particular,
here MN coded caching will allow us — under realistic assumptions — to double the
throughput even at low SNR. These results illustrate the potential of MN coded caching
in LMS systems but also motivate us to further investigate the delivery performance of our
new ACC scheme, which will be here shown to boost the effective MN gain, under realistic
assumptions, by a multiplicative factor of approximately 2.5. For the two considered
coded caching schemes, MN and ACC, we derive the corresponding analytical expressions
for the average rate and for the effective gain, as well as simplify these results in the
low SNR regime. For ACC, we also provide a result in the regime of large K, which is
nonetheless shown to be robust even when K is moderate to small. To provide a general
analysis of the ACC performance, we further consider a mixture Gamma (MG) channel
model which is known to include most of existing and practical channel models. Finally,
these derived expressions are extensively validated using Monte-Carlo simulations.

5.1 Introduction

The use of LMS systems has been rapidly growing in recent years [116], as they provide
persistent and now lower-cost services, while being able to benefit from an enormous
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coverage area. Despite this progress, satellite is still somewhat limited compared to
fiber-based content delivery services, and for this reason we here seek to explore how
such systems can benefit from coded caching. Some works that jointly consider satellite
and cache-aided terrestrial networks can be found in [117–122]. As we have discussed,
coded caching is an attractive method to exploit caches on the ground, as it is able to
provide, in theory, a considerable multiplicative performance boost [1] which cannot be
found in uncoded caching approaches.

Worst-User Bottleneck:
However, the satellite communications setting exacerbates the worst-user bottleneck

that results from the fact that the achievable rate in multicast transmissions is constrained
by the user with the worst channel state among theKγ+1 simultaneously served users [23].
This bottleneck is, as mentioned above, unfortunately exacerbated in satellite setting where
the SNR is decreased. For such SNR regimes, under some channel assumptions, we have
seen the gain from XOR-based (MN) coded multicasting to vanish [31, 51, 52]. In our
context here, we note that, for example, the received SNR at a terrestrial user is typically
below 10 dB in home TV broadcasts from geosynchronous (GEO) satellites with 36 MHz
of bandwidth and several hundred of watts of power [123]. Our aim here is to explore this
bottleneck, in the satellite setting which naturally accepts different channel statistics [71]
that reflect the existence of LOS components and shadowing.

The remainder of this chapter is organized as follows: Section 5.2 defines the system
model and the studied problem. The average rates and effective gains of MN and ACC
are investigated respectively in Sections 5.3 and 5.4, where we also derive several tight
approximations. Some numerical results and comparisons are presented in Section 5.5,
and finally Section 5.6 concludes the chapter.

5.2 System Model

We consider a scenario in which a satellite, such as a GEO satellite used for transmitting
video on demand, having full access to a library F with N equal-size files1, serves a set
of K cache-aided land users, where each user requests a different file from the intended
library F . To speed up delivery, these K users pre-store a fraction γ of the library during
off-peak hours. As discussed in Chapter 2, due to the finite file size constraint, we expect
to have only some Λ≪ K different cache states when implementing coded caching, which
effectively forces B = K/Λ users to share the cache state, i.e., to store identical content.

We recall that coded caching typically follows a clique-based approach such that
the transmission is divided into transmission stages that experience a clique-based side
information pattern. This implies that any desired subfile of some served user can be
found in the cache of every other user involved in that same transmission stage2. We
also recall that for a transmission stage to a specific user-group set Ψ, the received signal

1This access is probably maintained due to the fact that the satellite is connected to a terrestrial
satellite gateway via a feeder link which can often sustain extremely high rates. This satellite gateway
has a wired connection to the core network and thus access to the library [70] is expected to be seamless.

2We refer to Section 2.2.1 for more details about the clique-based cache placement and content delivery
in ACC and MN.
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at the b-th user of group g ∈ Ψ (i.e., to user Ug,b) takes the form

yg,b = hg,bXts + zg,b, (5.1)

where Xts is the transmitted signal symbol, satisfying an average power constraint
E{|Xts|2} = ρ, where zg,b is the unit-power AWGN, and where hg,b is the channel gain
between S and Ug,b. Obviously, SNRg,b = ρ|hg,b|2 is the instantaneous SNR at Ug,b.

5.2.1 LMS Channel Model

In order to accurately describe the fluctuation of the signal envelope, we consider the
widely adopted Rician-Shadowed fading [71] to model the satellite-terrestrial channel.
This very general model can be nicely calibrated to capture both fixed and mobile land
terminals, and it can be applied for all types of orbits and for a variety of frequency
bands including S-band, L-band, Ku-band, and Ka-band [71]. In Rician-Shadowed fading,
the instantaneous lowpass-equivalent complex signal envelope is written as

S = E exp(ȷς) + V exp(ȷς0), (5.2)

where ȷ ≜
√
−1 is the imaginary unit, ς and ς0 are the stationary random phase with

uniform distribution over [0, 2π) and the deterministic phase of the LOS component,
respectively. In (5.2), E and V are the amplitudes of the scatter and the LOS component,
respectively. Specifically, E is modeled by a Rayleigh distribution, while V follows a
Nakagami-m distribution. Therefore, the PDFs of E and V are respectively

fE(x) =
x

b0
exp

(
− x2

2b0

)
, fV(x) =

2mm0
0

Γ(m0)ℵm0
x2m0−1 exp

(
−m0x

2

ℵ

)
,

where 2b0 and ℵ are the means of E2 and V2 respectively, and where m0 ≜ E2{V2}
Var{V2}

reflects the (average) obstruction of the LOS component (i.e., the blockage of the LOS
by buildings, trees, hills, etc.). We refer to [71] for more details.

Although the arbitrary moment of |S| has been derived in [71, Eq. (5)], we here
present more concise closed-form expressions for the average and the variance of |S|2 in
Proposition 5.1 to facilitate the analysis in Sections 5.3 and 5.4.

Proposition 5.1. The mean and variance of the channel power gain |S|2 in Rician-
Shadowed fading channels, are respectively of the form

E{|S|2} = 2b0 + ℵ, (5.3)

Var{|S|2} = 4b20 + 4bℵ+ ℵ
2

m0
. (5.4)

Proof. See Appendix D.1
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5.2.2 Adopted Assumptions and Preliminaries

To facilitate the analysis, we assume the same channel statistics (i.e., same m0, b0 and
ℵ) among the K users, which is reasonable when the users are uniformly distributed
within a disk [124]. We consider that the users are located within a disk of radius equal
to several kilometers [53]. As the radius is negligible compared to the height of the GEO
satellite, we assume that all the users have the same pathloss. Therefore, we consider
statistically symmetric users. Furthermore, as a small difference in m0 reflects a similar
(average) obstruction of the LOS component, we consider that m0 is a positive integer
for mathematical tractability, which is a simplifying assumption that is widely adopted
in many existing works [120,125].

GEO satellites are static with respect to an observer from Earth, which makes the
Doppler spread negligible for static terrestrial users [125]. Thus, we assume that the
coherence time is large, and we do not consider an ergodic channel. Instead, we assume
that the channel experiences quasi-static fading, which generally comes about in the
presence of longer coherence periods and shorter latency constraints, and which nicely
models low-mobility scenarios which nicely capture coded-caching use-cases where slowly
moving or stationary users are consuming video content.

In the following, let us present the PDF of SNRg,b for a positive integer m0. Upon

defining Ξ(i) ≜
(
m0−1
i

) δi0
i! , α0 ≜

(
2b0m0

2b0m0+ℵ

)m0

, φ0 ≜ 1
2b0

, and δ0 ≜ ℵ
2b0(2b0m0+ℵ) , we have

the following proposition.

Proposition 5.2. For any integer m0 ≥ 1, the PDF of the SNR at Ug,b over Rician-
Shadowed fading channels can be simplified as

fSNRg,b(x) = α0

m0−1∑
i=0

Ξ(i)

ρi+1
xi exp

(
−φ0 − δ0

ρ
x

)
, x ≥ 0. (5.5)

Proof. To see this, we simply note that in Rician-Shadowed fading, the PDF of SNRg,b
is given by [71, Eq. (6)]

fSNRg,b(x) =
α0

ρ
exp

(
−φ0

ρ
x

)
· 1F1

(
m0; 1;

δ0
ρ
x

)
, x ≥ 0, (5.6)

where 1F1(·; ·; ·) denotes the generalized hypergeometric function [76]. For m0 = 1, 2, · · · ,
by using [126, Eq. (24)], the PDF of SNRg,b can be simplified as (5.5).

By integrating the PDF expression in (5.5), we can easily obtain the corresponding
CDF of SNRg,b as [125, Eq. (13)]

FSNRg,b(x) = 1− α0

m0−1∑
i=0

Ξ(i)

ρi+1

i∑
j=0

i!

j!

(
ρ

φ0 − δ0

)i+1−j
xj exp

(
−φ0 − δ0

ρ
x

)
. (5.7)

To facilitate the analysis in Sections 5.3 and 5.4, we present a simplified CDF of SNRg,b
(or equivalently, the outage probability) in Proposition 5.3 that follows.
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Proposition 5.3. The CDF of SNRg,b, or equivalently the outage probability at Ud,b, over
Rician-Shadowed fading channels, can be simplified as

FSNRg,b(x) = 1− α0 exp

(
−φ0 − δ0

ρ
x

)m−1∑
j=0

m−1∑
ℓ=j

Ξ(ℓ)ℓ!

j!

ρ−j

(φ0 − δ0)ℓ−j+1

xj . (5.8)

Proof. By exchanging the summation orders of i and j in (5.7) and after some simple
mathematical manipulations, we can easily derive (5.8).

5.3 Average Rate and Effective Gain of the MN Scheme

In this section, we analyze the average rate of the MN scheme in order to present some
insights about its performance in LMS systems, as well as to provide a benchmark for
the ACC scheme.

As B = 1 in the ACC algorithm yields Λ-MN (cf. Chapter 2), the achievable rate in
this case is (cf. Section 2.3.1)

RMN = G ln
(
1 + ming∈Ψ

{
SNRg

})
= G ln (1 + SNRMN) nats/s/Hz, (5.9)

where we simplify the subscript of SNR because B = 1, and SNRMN ≜ ming∈Ψ
{
SNRg

}
reflects the worst-user effect in multi-user multicasting..

Before presenting the average rate of the MN scheme, let us use Γ(·, ·) to denote
the upper incomplete Gamma function [76] and

(
G

ℏ1.ℏ2,··· ,ℏm0

)
≜ G!

ℏ1!ℏ2!···ℏm0 !
to denote the

multinomial coefficient for m0 non-negative integers ℏ1, ℏ2, · · · , ℏm0 .

Lemma 5.1. The closed-form expression for the average rate of the MN scheme over
Rician-Shadowed fading channels is

R̄MN =GαG0
∑

ℏ1+···+ℏm0=G

(
G

ℏ1, · · · , ℏm0

)m0−1∏
t=0

(
m0−1∑
ℓ=t

Ξ(ℓ)ℓ!

t!

ρ−t

(φ0 − δ0)ℓ−t+1

)ℏt+1


× exp

(
G(φ0 − δ0)

ρ

)(m0−1∑
t=0

tℏt+1

)
! · Γ

(
−
m0−1∑
t=0

tℏt+1,
G(φ0 − δ0)

ρ

)
, (5.10)

where the summation is over all possible m non-negative integer combinations (ℏ1, · · · , ℏm)
that satisfies ℏ1 + · · ·+ ℏm = G.

Proof. See Appendix D.2.

Next in Corollary 5.1 we present the average rate of simple TDM transmission (no
coded caching), corresponding to the average rate of the MN scheme when G = 1 (cf.
Section 2.3.1).
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Corollary 5.1. The average rate of the uncoded TDM scheme over Rician-Shadowed fading
channels is

R̄TDM = α0 exp

(
φ0 − δ0

ρ

)m0−1∑
j=0

m0−1∑
ℓ=j

Ξ(ℓ)ℓ!ρ−j

(φ0 − δ0)ℓ−j+1

Γ

(
−j, φ0 − δ0

ρ

)
. (5.11)

Proof. This result can be easily derived by setting G = 1 in (5.10).

To obtain insights on the performance of the MN scheme, we further simplify the
average rate expression from Lemma 5.1 by exploring the limit of ρ→ 0.

Corollary 5.2. The low SNR approximation of the average rate of the MN scheme takes
the form

R̄MN = ρ
αG0

φ0 − δ0
∑

ℏ1+···+ℏm=G

(
G

ℏ1, · · · , ℏm

)m−1∏
t=0

(
m−1∑
ℓ=t

Ξ(ℓ)ℓ!

t!

(
1

φ0 − δ0

)ℓ+1
)ℏt+1


×
(∑m0−1

t=0
tℏt+1

)
!G−

∑m0−1
t=0 tℏt+1 + o(ρ). (5.12)

Proof. For ρ → 0, by using Γ(s, x) → xs−1 exp(−x) as x → ∞ in (5.10), we can easily
derive this result after some simple mathematical manipulations.

For the low-SNR approximation of the uncoded TDM scheme, in view of ln(1 + x) =
x+ o(x) as x→ 0 and given Proposition 5.1, we can have that

R̄TDM = E
{
ln
(
1 + SNRg

)}
= E {SNRg}+ o(ρ) =

(
2b0 + ℵ

)
ρ+ o(ρ), as ρ→ 0. (5.13)

Combining (5.12) and (5.13), we derive the effective gain of the MN scheme in the
low-SNR limit as

lim
ρ→0
GMN = lim

ρ→0

R̄MN

R̄TDM

=
αG0

(φ0 − δ0)(2b0 + ℵ)
∑

ℏ1+···+ℏm0=G

(
G

ℏ1, · · · , ℏm0

)

×

m0−1∏
t=0

(
m−1∑
ℓ=t

Ξ(ℓ)ℓ!

t!(φ0 − δ0)ℓ+1

)ℏt+1
(∑m0−1

t=0
tℏt+1

)
!G−

∑m0−1
t=0 tℏt+1 .

(5.14)

Fig. 5.1 plots, in the limit of low SNR, the effective gain of the MN scheme (i.e.,
(5.14)) versus the nominal gain G (from 2 to 10) in four typical LMS fading scenarios
listed in Table 5.4. We can see how the effective gain increases for every scenario except
for the frequent heavy shadowing case. Let us recall that this is in contrast to the case
with Rayleigh fading, where the effective gain of the MN scheme entirely vanished in
the low-SNR limit (cf. Proposition 2.2). The steeper gain boost for the infrequent light
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shadowing and the average shadowing cases shows that the MN scheme (and XOR-based
coded caching) is advantageous mainly when the LOS component is not heavily obstructed.
However, we can also observe that even for the best LMS channel statistics corresponding
to infrequent light shadowing, the effective MN gain in the low-SNR limit is just close
to 2 when G = 6 and stays below 2.5 when for (the rather unrealistic case of) G = 10.
We can readily conclude thsu, that even though MN remains pertinent in such lower
SNR settings, indeed the MN scheme loses most of the (high-SNR) nominal gain in the
low-SNR governed LMS systems.

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

3

Figure 5.1: Effective gain of MN coded caching versus G in low-SNR limit.

5.4 Average Rate and Effective Gain of the ACC Scheme

In this section, we analyze the average rate and the effective gain of the ACC scheme in
LMS systems. We first derive the analytical expression for the average rate, and then
perform a large-K approximation to facilitate the analysis on the effective gain. In the
end, we extend the large-K approximation to more general fading scenarios.

5.4.1 Exact Analytical Expression

In the following, ȷ =
√
−1 denotes the imaginary unit, Im{·} is the operator of taking the

imaginary part of a complex number, and U(·, ·, ·) represents the confluent hypergeometric
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function of the second kind [76]. We have the following lemma for the average rate of the
ACC scheme.

Lemma 5.2. The exact average rate of the ACC scheme over Rician-Shadowed fading
channels takes the form

R̄ACC

=
G

B

∞∫
0

1

2
+

1

π

∞∫
0

Im

exp(−ȷxt)
t

[
α0

m0−1∑
i=0

Ξ(i)

ρi+1
i! · U

(
i+ 1, 2 + i+ ȷt,

φ0 − δ0
ρ

)]Bdt

G

dx.

(5.15)

Proof. See Appendix D.3.

Lemma 5.2 presents a general result for the average rate of the ACC algorithm, but
the result includes a double-integral and a confluent hypergeometric function, which is
hard to evaluate numerically or to draw insights from. For this reason, in the following,
we explore the limiting behavior of the above expression, in the limit of large K.

5.4.2 Large-User Approximation

The large-K approximation is well justified by the fact that a satellite usually serves a
huge number of users due to its large coverage area [127]. When the number Λ of cache
states is fixed, this large K assumption also implies a large number B of users sharing
the same cache state. To imagine how big B is in practice, let us consider a cache-aided
communication system with γ = 10% and 108 bytes in each library file. When the sub-file
size is no smaller than 1000 bytes, there are about 40 dedicated caches. In this system
setting, we have B = 20 for K = 800 and B = 50 for K = 2000.

The derived result in Lemma 5.3 for approximating the average rate of the ACC
algorithm involves the well-known Q-function Q(·) appearing in the CDF of the normal
distribution, and the extended generalized bivariate Meijer’s G-function (EGBMGF)
G·,·:·,·:·,·

·,·:·,·:·,· (·, ·) defined in [128]. We also define HG as the expectation of the maximum of
G i.i.d. standard normal random variables. We refer to Lemma 2.6 for more information
about HG.

Lemma 5.3. When B is sufficiently large, the average rate of the ACC scheme in this
considered cached-aided LMS system can be approximated as

R̄ACC ≈ G

ϱl −
√
σ2l
B
×HG

 , (5.16)

where ϱl and σ
2
l are the mean and the variance of ln(1+SNRg,b) respectively. Specifically,

we can express ϱl and σ
2
l respectively as

ϱl = α0 exp

(
φ0 − δ0

ρ

)m0−1∑
j=0

m0−1∑
ℓ=j

Ξ(ℓ)ℓ!ρ−j

(φ0 − δ0)ℓ−j+1

Γ

(
−j, φ0 − δ0

ρ

)
, (5.17)
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σ2l = α0

m0−1∑
i=0

Ξ(i)

(φ0 − δ0)i+1
G0,1:1,2:1,2

1,0:2,2:2,2

(
ρ

φ0 − δ0
,

ρ

φ0 − δ0

∣∣∣−i
−

∣∣∣1,1
1,0

∣∣∣1,1
1,0

)
− ϱ2l . (5.18)

Proof. See Appendix D.4.

When computing the mean and the variance of ln(1+SNRg,b) in Lemma 5.3, we need
to implement the incomplete Gamma function and the EGBMGF, which can be indeed
a very time-consuming implementation. Here, with respect to the result in Lemma 5.4,
we propose a low-SNR approximation for the mean and the variance of ln(1 + SNRg,b)
based on the method proposed in [129–131], which has been also considered in Chapter 2
as a robust approximation for the average rate of the MN scheme over Rayleigh fading
channels (cf. Lemma 2.2).

Lemma 5.4. In the low SNR limit of ρ→ 0, we can robustly approximate the mean and
the variance of ln(1 + SNRg,b) over Rician-Shadowed fading channels respectively as

ϱl ≈ ln
(
1 + (2b0 + ℵ)ρ

)
−

(
4b20 + 4b0ℵ+ ℵ2

m0

)
ρ2

2
(
1 + (2b0 + ℵ)ρ

)2 , (5.19)

σ2l ≈

(
4b20 + 4b0ℵ+ ℵ2

m0

)
ρ2

(1 + (2b0 + ℵ)ρ)2

1−

(
4b20 + 4b0ℵ+ ℵ2

m0

)
ρ2

4(1 + (2b0 + ℵ)ρ)2

 . (5.20)

Proof. See Appendix D.5.

Remark 5.1. In fact, (5.19) presents a robust low-SNR approximation for the average
rate of the uncoded TDM transmission over Rician-Shadowed fading channels. Compared
to the exact result in (5.11), this low-SNR approximation in (5.19) is very concise and
much easier to implement because it entails no special/advanced function. Numerical
results in Fig. 5.5 show that the accuracy of (5.19) to the exact result is very high (with
an almost non-discernible gap) even in the medium-to-high SNR region.

With the help of Lemma 5.3, we are enable to analyze the effective coded caching. In
the large-B case, the effective gain of the ACC scheme can be approximated by

GACC =
R̄ACC

R̄TDM
≈ G−G

HG
√
σ2l /B

ϱl
, (5.21)

where the second part represents the gain loss due to fading and shadowing. Moreover,

for a sufficiently large B, we will always have that
HG

√
σ2
l /B

ϱl
< 1 in (5.21), which means

that GACC is increasing as the nominal gain G increases.
For low SNR, we have ϱ ≈ E{SNRg} =

(
2b0 + ℵ

)
ρ and σ2l ≈ Var{SNRg} =

(
4b20 +

4b0ℵ+ ℵ2

m0

)
ρ2. The effective ACC gain in the low SNR and large B regime will then take

the form

GACC ≈ G−G
HG
√(

4b20 + 4b0ℵ+ ℵ2

m0

)
/B

2b0 + ℵ
, (5.22)
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which shows that GACC is an increasing function with m0, which is a parameter that
reflects how severe the obstruction of LOS components is in the LMS channel. Specifically,
m0 = 0 stands for complete obstruction of LOS components (as this might occur in
dense urban areas), while m0 → ∞ corresponds to open areas with no obstruction of
LOS components. Having an intermediate positive finite m0 <∞ represents the partial
obstruction that is usually encountered in suburban and rural areas.

5.4.3 Extension to General Fading Channels

Lemma 5.3 shows that ϱl and σ
2
l depend on the fading scenarios. To make the large-B

approximation more general, let us extend the result in Lemma 5.3 to include most of
common wireless channels. To facilitate the analysis, we consider the MG distribution to
model the fading channel proposed in [72], which has a high accuracy for modeling most
of fading channels, such as Nakagami-lognormal (NL) composite fading, η − µ fading,
Nakagami-q (Hoyt) fading, κ− µ fading, and Nakagami-n (Rician) fading3. We outline
these common fading models in Table 5.1. We also list the calibration parameters for
those aforementioned fading models in Table 5.2. Note that there are two formats of the
meaning of η in the η−µ fading model [136], but we, for simplicity, only present Format 1
in Table 5.2. We refer to [72] and [50, Ch. 2] for more details about these fading models.

From [72, Eq. (1)] we know that the PDF of the instantaneous SNR at Ug,b over MG
channels takes the form

fSNRg,b(x) =

V∑
v=1

αvx
φv−1 exp(−ξvx), x ≥ 0, (5.23)

where αv, φv and ξv are the parameters of MG distribution. It is easy to see that when
V = 1, the MG distribution becomes the Nakagami-m fading model. Further, for V = 1
and φv = 1, we will obtain the Rayleigh fading model. In (5.23), V is the number of
summation terms needed to reach a satisfied accuracy for modeling a specific wireless
channel. In view of the PDF in (5.23), it is easy to derive the average SNR (Υ) and the
variance over MG fading channels, which are respectively given by

Υ = E{SNRg,b} =
V∑
v=1

αvΓ(φv + 1)ξ−(φv+1)
v , (5.24)

Var{SNRg,b} =
V∑
v=1

αvΓ(φv + 2)ξ−(φv+2)
v −Υ2. (5.25)

As pointed out in [72], the definition of αv over NL composite fading, η − µ fading,
Nakagami-q (Hoyt) fading, κ − µ fading and Nakagami-n (Rician) fading channels, is
identical, and given by

αv =
θv∑V

v′=1 θv′Γ(φv′)ξ
−φv′
v′

. (5.26)

3As pointed out in [132–134], the fluctuating two-ray (FTR) fading — which accurately models the
small-scale fading in mmWave channels (especially in 28GHz outdoor mmWave channels) [135] — can be
also expressed as a MG distribution.
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Table 5.3 outlines how the remaining parameters of the general MG model are calibrated
to fit each aforementioned channel. We here ignore Nakagami-m and Rayleigh models, as
this calibration is a straightforward reason. For the MG parameters calibrated to fit the
NL composite channel in Table 5.3, we recall that ωv and xv are the weights and sample
points of GHQ, respectively.

Table 5.1: Common Fading Models in Wireless Channels

Channel Models Fitting Scenarios

NL Composite Channel Composite multipath/shadowing channels

η − µ Channel Non-line of sight small-scale fading

Nakagami-q (Hoyt) Channel Satellite links with strong ionospheric scintillation

κ− µ Channel Having line-of-sight components

Nakagami-n (Rician) Channel Having a strong line-of-sight component

Table 5.2: Parameters of Fading Models Listed in Table 5.1

Channel Models Parameters

NL Composite
m: fading parameter in Nakagami-m fading; ρ: unfaded SNR;

µ and λ: mean and standard deviation of the lognormal distribution

η − µ

µ: number of multipath clusters;
η: power ratio of the in-phase component to the quadrature component;

h = 2+η−1+η
4

; H = η−1−η
4

Nakagami-q (Hoyt) q ∈ [0, 1]: ratio of standard deviations of real and imaginary components

κ− µ
κ: power ratio of dominant components to scattered components of signal;

µ = (1 + 2κ)E2{SNR}/((1 + κ)2Var{SNR})
Nakagami-n (Rician) n ∈ [0,+∞): arithmetic square root of Rician factor K

Let us use G·,·
·,·(·) to denote the Meijer’s G-function [76]. We now state the following

result to make Lemma 5.3 valid for a general fading channel.

Lemma 5.5. In the general MG fading model, when applying the large-B approximation
in Lemma 5.3, the mean and the variance of ln(1 + SNRg,b) becomes respectively,

ϱl =

V∑
v=1

αvξ
−φv
v G1,3

3,2

(
1

ξv

∣∣∣1−φv ,1,1
1,0

)
, (5.27)

σ2l =
V∑
v=1

αvξ
−φv
v G0,1:1,2:1,2

1,0:2,2:2,2

(
1

ξv
,
1

ξv

∣∣∣1−φv
−

∣∣∣1,1
1,0

∣∣∣1,1
1,0

)
− ϱ2l . (5.28)

Proof. See Appendix D.6.

To simplify Lemma 5.5, similar to Lemma 5.4, we have the following robust approxi-
mations in low SNR over MG fading channels.

Lemma 5.6. In the MG fading model, when the variance of SNRg,b is small, we can
robustly approximate the mean and the variance of ln(1 + SNRg,b) respectively as

ϱl ≈ ln (1 + Υ)−
∑V

v=1 αvΓ(φv + 2)ξ
−(φv+2)
v −Υ2

2 (1 + Υ)2
, (5.29)
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σ2l ≈
∑V

v=1 αvΓ(φv + 2)ξ
−(φv+2)
v −Υ2

(1 + Υ)2
−

(∑V
v=1 αvΓ(φv + 2)ξ

−(φv+2)
v −Υ2

)2
4(1 + Υ)4

. (5.30)

Proof. This approximation for ϱl (or σ
2
l ) can be easily obtained by substituting the

average and variance of SNRg,b (from (5.24) and (5.25)), into (D.20) (or (D.23)).

5.5 Numerical Results

We here provide numerical results to validate the correctness of derived expressions. In
the numerical results, referring to [71, Table III], we consider four typical LMS channel
fading scenarios listed in Table 5.4. When implementing the EGBMGF function, one can
refer to [137] for MATLAB code or to [138] for MATHEMATICA code.

Table 5.4: Typical Fading Scenarios in LMS Channel

Fading Scenarios m0 b0 ℵ
Frequent Heavy Shadowing 1 0.063 8.97× 10−4

Overall Results 5 0.251 0.278
Average Shadowing 10 0.126 0.835

Infrequent Light Shadowing 20 0.158 1.29

In Fig. 5.2, for an average shadowing case we plot the effective coded caching gain
of the ACC algorithm versus ρ for different values of B. We also plot the effective gain
of the MN scheme as a performance benchmark. As expected, both the effective gains
of the ACC and MN schemes converge to the nominal gain G as the SNR increases,
where clearly the ACC converges much faster and thus enjoys a much better performance.
Moreover, the convergence of the effective ACC gain is significantly accelerated with
increasing B. As ρ decreases, both the effective gains of the ACC and of the MN schemes
converge to their lower bounds, but the effective gain of the ACC scheme has a much
larger lower-bound and approaches to the nominal gain very fast as B increases. For
example, the ACC scheme with B = 20 recovers over 80% of the nominal gain, even in
this low SNR limit.

In Fig. 5.3, we present both the effective coded caching gains of the ACC and the MN
schemes in four typical LMS channels fading scenarios listed in Table 5.4. We can easily
see that the effective gain in the infrequent light shadowing case is the largest in both
ACC and MN schemes. The average shadowing case has the second largest effective gain,
while the effective gain in the frequent heavy shadowing case is the smallest (and is equal
to 1 in the MN case). For a realistic G = 6, we observe that a) even in the ‘optimistic’
scenario of infrequent light shadowing, the low-SNR MN gain is approximately 2, and b)
that for approximately B = 20, ACC boosts MN by a factor of approximately 2.5.

In Figs. 5.4–5.5, we present some numerical results to validate the correctness of the
derived expressions for the average rates of the MN and the uncoded TDM schemes.
In Figs. 5.4–5.5, the analytical result is derived based on Lemma 5.1 for the MN case,
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Figure 5.2: Effective coded caching gain versus ρ for G = 5 in the average shadowing
case.

and on Corollary 5.1 for the TDM case, while we use the low-SNR approximation from
Corollary 5.2 for the MN and from Lemma 5.4 for the TDM. As expected, the average
rate improves as the statistics of LMS channels becomes better. In Fig. 5.4, the value of
ρ at which the nonlinear part of the average rate becomes significant as the LMS channel
statistics improves4. This explains why the matching performance between the low-SNR
approximation in Corollary 5.2 and the exact result becomes worse with improving the
LMS channel statistics. In contrast, the low-SNR approximation of the TDM scheme in
Lemma 5.4 not only matches the exact result very well in the low-to-medium ρ region,
but also has a very high accuracy when ρ is as high as 30 dB, as shown in Fig. 5.5. This
is because we actually consider a second-order approximation in Lemma 5.4, while the
low-SNR approximation for the MN rate in Corollary 5.2 is based just on the first-order
truncation from the expanded Taylor series.

In Figs. 5.6–5.8, we demonstrate the accuracy of the derived expressions for the
average rate of the ACC algorithm, where the large-B approximation refers to Lemma 5.3,
while the large-B and low-SNR approximation is derived by substituting the low-SNR
approximations for ϱl and σ

2
l (as shown in Lemma 5.4) into Lemma 5.3. Fig. 5.6 shows

the accuracy of the derived expressions in four typical fading scenarios listed in Table 5.4.

4We note that the infrequent light shadowing case has the best channel statistics, followed by the
average shadowing and overall results cases, while the channel statistics is the worst in the frequent heavy
shadowing case
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Figure 5.3: Effective coded caching gain versus ρ for G = 6 and B = 20.

Obviously, there is no discernible gap between the large-B approximation in Lemma 5.3
and the exact (simulated) result in the four typical fading scenarios even for a not-so-large
B (e.g., B = 20). It is also worth noting that the large-B and low-SNR approximation
matches the exact result very well over the entire ρ region from -10 dB to 30 dB. In Figs.
5.7–5.8, we select the average shadowing case to represent the LMS channel statistics.
Under this assumption, Fig. 5.7 plots the average rate of the ACC scheme versus B
(from 2 to 50), revealing that the large-B approximation in Lemma 5.3 is robust even for
values of B as low as 2. In Fig. 5.7, the average rate is improved as B increases. In Fig.
5.8, we plot the average rate versus G.

In the end, in Fig. 5.9 we plot the effective coded caching gain of the ACC scheme
versus ρ for different values of B. The result of the large-B approximation is derived
by using the average rate of the TDM scheme in Corollary 5.1 and dividing this by the
approximate average rate in Lemma 5.3.

5.6 Conclusions

We have investigated the delivery performance of the ACC scheme in LMS systems by
analyzing the average rate and the effective coded caching gain. Specifically, we have
derived the closed-form expression for the exact average rate of the MN scheme, as well
as derived a low-SNR approximation. The analytical expression for the average rate
of the ACC algorithm has been also derived in terms of a double-integral form. To
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Figure 5.4: Average rate of the MN scheme versus ρ for G = 4.

simplify the complicated expression for the ACC average rate, we have presented a tight
approximation with the assumption of a large number of users. From numerical results,
we can observe the significant improvement of the effective coded caching gain brought
about from the ACC algorithm. Apart from providing some interesting comparisons,
numerical results have validated the accuracy of our derived expressions. We can also see
that the large-B approximation has a robust accuracy even for a small value of B. Our
analysis shows that the ACC scheme can recover most of the high-SNR nominal gain
with a reasonble value of B (number of users per cache) to asymptotically overcome the
worst-user bottleneck. This implies that coded caching has the ability to operate in such
(low-SNR governed) LMS systems.
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Figure 5.5: Average rate of the uncoded TDM scheme versus ρ.
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Figure 5.6: Average rate of the ACC scheme versus ρ for G = 6 and B = 20.
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Figure 5.7: Average rate of the ACC versus ρ for G = 5 in the average shadowing case.

-10 -5 0 5 10 15 20 25 30

ρ [dB]

0

10

20

30

40

50

60

A
ve
ra
ge

R
a
te

[n
a
ts
/s
/H

z]

Simulation
Large-B Approx.
Large-B and Low-SNR Approx.

-10 -5 0 5

10
0

G = 8, 6, 4, 2
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Figure 5.9: Effective gain of the ACC versus ρ for G = 6 in the average shadowing case.
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Chapter 6

Conclusions and Perspectives

This thesis explores the true effect of coded caching when it is applied in various realistic
wireless communications settings. Our emphasis is on the use of caching both on single
stream (rank 1) settings, as well as when caching is used to boost advanced state-of-art
multi-antenna systems that are now at the cutting edge of technology. We believe that
the thesis has made some considerable contributions in both cases.

In the single-stream scenario, we have first shown that traditional coded caching
approaches provide massively diminished effective gains as the SNR becomes smaller. In
this context, we have invented the novel ACC approach, which yields gains that are close
to the nominal (infinite SNR) gains, and does so with very little overhead. ACC was
explored in a variety of settings that include basic cellular settings with quasi-static or
ergodic fading, satellite settings, and settings with reduced allowable hardware complexity,
in particular with a reduced number of RF chains. What we show is that if the number
of RF chains is modest, then a basic single-RF-chain ACC solution can compete with the
state of art of solutions that require multiple transmit antennas, multiple RF chains and
considerably larger CSI overheads. This naturally may also apply in mm-Wave scenarios,
where maintaining a reduced number of RF chains is crucial.

Then the thesis explored the actual impact that coded caching can have in improving
advanced MU-MIMO systems, where such systems are known to build heavily on multi-
antenna arrays and on an optimized exploitation of beamforming and spatial-multiplexing
techniques. As one can imagine, it is imperative that any impactful cache-aided tech-
nique must be able to work in tandem with these multi-antenna systems, and it would
be inconceivable to expect an operator to substitute their multi-antenna multiplexing
gains with cache-aided multicasting gains that will remain modest under most realistic
assumptions on file sizes and cache sizes. While prior attempts to incorporate coded
caching with multi-antenna arrays, had provided — under practical considerations —
minimal, if any at all, improvements over multiplexing gain techniques, it is vector coded
caching that managed to provide dramatic gains, at least in theory, over non-optimized
MU-MISO systems. The work in this thesis focuses on optimizing vector coded caching
and most importantly, focuses on answering a simple question: Under a fixed set of
antenna and SNR resources, and under various practical considerations, what is the
multiplicative throughput boost obtained from being able to add receiver-side caches to
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downlink systems that would have otherwise been able to enjoy an optimized exploitation
of multiplexing and beamforming gains. This is done in this thesis for a variety of settings,
that include the symmetric MU-MISO setting, as well as the non symmetric (variable
pathloss) MU-MISO and MU-MIMO settings, in the presence of various high-performance
precoders. In various scenarios, such as for example in the symmetric MU-MISO case, or
the small cell MU-MISO and MU-MIMO settings, the gains are indeed very notable and
can exceed 300-400% boost in achievable rates (over the optimized cacheless counterparts)
under a variety of practical considerations such as CSI costs, variable pathless, various
propagation models, etc.

The work has provided a resolution of the infamous worst-user bottleneck of wireless
coded caching, which was thought to severely diminish cache-aided multicasting gains —
which is irrespective of either the (high-SNR) nominal gain or the number of users — due
to the fundamental worst-channel limitation of multicasting. The novel ACC algorithm
solves this problem and we now know that this bottleneck is not a fundamental one.
Key to the ACC algorithm is a dual idea: users share cache states (which is effectively
unavoidable due to the finite file sizes), and multi-rate transmissions to match each
single-link capacity in the presence of side information. Together these two aspects allow
ACC to covert the worst-user effect to a dramatically ameliorated worst-group-of-users
effect, allowing for a near-complete recovery of the nominal gains.

Another contribution of this thesis is the extensive analysis that it has provided. Our
analysis includes channels with Rayleigh fading, Nakagami-m fading, Shadowed-Rician
fading (for LMS channels) and a more generalized MG fading, various ergodic settings
with different pathloss among the served users, and incorporation of 3GPP-proposed
urban macro/micro cell specifications. The thesis has also developed general but simple
methods to analyze various schemes based on the central limit theorem, and various
other techniques. The thesis has also provided substantial validation of the analytical
results, which are almost always shown to hold very tight for a practical and not-so-large
number of users.

Another aspect that comes out of this thesis, is the optimization of vector coded
caching. This optimization was provided here analytically, and validated numerically.
The optimized cache-aided linear precoding schemes are very simple to implement, as they
simply exploit cached content in order to be able to simultaneously transmit carefully
selected precoded vectors that would have otherwise been sent one after the other. Because
of the simplicity of this idea, it is conceivable to expect the gains to persist for a broader
class of precoders. Our performance analysis derives some simple expressions based on
realistic assumptions that reveal significant multiplicative gains from applying caching
over already optimized downlink systems, where these gains persist for various well-known
precoding classes. This same analysis and optimization are here shown to hold very tight
in realistic wireless network settings, while also incorporating the aforementioned variety
of practical considerations such as power dissemination across signals, realistic SNR
values, statistically asymmetric channels, MMF, as well as CSI costs. The comparisons
of optimized cache-aided vs. optimized cacheless downlink systems reveal that vector
coded caching can recover a sizeable portion of its theoretic (high-SNR) gain G = Λγ +1,
even in realistic wireless settings operating at realistic SNR values. For example, for 32
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transmit antennas and 2 receive antennas each user and for a typical BS transmit power
of 33 dBm in a Micro-cell, under the assumption of uniformly distributed users, vector
coded caching is shown to offer a 410% boost in overall throughput over the cacheless
MU-MIMO system, where both their multiplexing gains are independently optimized for
ZF precoding, and both them implement optimal power allocation for the MMF criterion.

In terms of challenges, indeed G remains, under current practices, bounded in the
range of single digits. Any improvement beyond this range would require either a dramatic
increase in the storage capability of nodes (γ), or a research breakthrough in the area
of subpacketization-constrained coded caching. Further improving the subpacketization-
constrained performance of coded caching primitives (thus effectively allowing for a
larger Λ) remains to date the big challenge in coded caching, and any progress in that
direction would undoubtedly have a profound impact on the performance of cache-aided
multi-antenna systems.

Another practical problem is that this vector coded caching scheme requires very high
hardware/software overheads and energy consumption especially on the fully connected RF
chains. Although this implementation cost may be affordable in conventional sub-6GHz
MU-MIMO communications, we still need to design a much more energy-efficient vector
coded caching scheme which will rely on less RF chains and perform hybrid precoding at
only a slight performance loss to the fully connected RF chains. Furthermore, vector coded
caching with fully connected RF chains may not be possible in mmWave communications
because of 1) the extremely high energy consumption on the RF chains, 2) very small SNR
before beamforming during CSI feedback, and 3) a huge training overhead brought about
by the large number of antennas. It is also worth noting that the spectrum bandwidth
in mmWave is dozens of times that of a sub-6GHz system, which implies that a very
high spectral efficiency may not be necessary. This in turn motivates the investigation of
vector coded caching with much less RF chains and limited CSI feedback in multi-user
mmWave systems.

The reported gains here will naturally come under pressure from additional realistic
considerations such as having statistically asymmetric channels, although this problem
can be partially ameliorated with power control, with rate-splitting approaches [139,140],
with smaller cell sizes (see Fig. 4.7), or with the novel ACC approach in Chapter 2. These
same reported gains may also come under pressure from the additional CSI costs that
would arise in the event where multi-antenna coded caching algorithms start serving
more and more users. Remedies for this can be found in the novel clique structures
recently reported in [105]. A big associated open problem is the simultaneous reduction
of both the subpacketization and CSI costs (see [141] for some early efforts). Naturally
the system performance also remains subject to the need for cacheable and live-streamed
data to co-exist (cf. [140]), the need for cache-aided and cacheless users to coexist,1 as
well as will depend on the stochastic nature of the network topology and user behavior
(for some early remedies, the reader can refer to [99,142]).

The presented new results, as well as the aforementioned challenges, arrive at an
instance when bandwidth and antenna resources are asked to handle an aggressively

1See [47], which reveals the surprising conclusion that cacheless users can benefit from full coded
caching gains.
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increasing volume of data. At the same time though, the new results come at a time
when Moore’s law on storage capabilities remains intact and the ever-increasing majority
of communicated content is cacheable [143]. For these reasons, and given the powerful
gains reported here, we believe that the aforementioned techniques can further help
translate the abundance of Gbytes of storage space into much needed spectral efficiency
in sub-6GHz bands.
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Appendix A

Proofs in Chapter 2

A.1 Capacity Region of Proposition 2.1

This appendix is meant to orient the reader as to how the existing results in [49] on
multicasting with side information1 can be applied to our setting.

Using the notation of [49] and following the same derivation as in [73], we recover
Proposition 2.1 from [49, Thm. 6] by choosing Xn to be (X1, X2, · · · , Xt)

n, selecting
m = n in [49, Thm. 6], setting the side information Yi to be Yi = {Xℓ}ℓ∈[t]\i, and
applying invertible mappings between Xn

i and W ′
i for any i ∈ t. From the maximum

entropy theorem [145, Thm. 9.6.5], we obtain Proposition 2.1.

For the achievability part, we proceed as in [49] and consider a codebook of 2n(
∑t
ℓ=1Rℓ)

codewords. The codewords are denoted by xn(w1, w2, · · · , wt), with wℓ ∈ [2nRℓ ] for
any ℓ ∈ [t]. The letters of the codewords, denoted by xj(w1, w2, · · · , wt), j ∈ [n], are
i.i.d. distributed as N (0, P ). Each user can decode its intended message from the
received signal and from the (cached) side information using typical set decoding. The
intuition behind the successful decoding at a certain user i is that, after receiving one of
the 2n(

∑t
ℓ=1Rℓ) codewords and thanks to the cached information, user i applies typical

decoding over only 2nRi possible codewords.

A.2 Proof of Lemma 2.1

Let us start by introducing the notation Sg ≜
∑B

b=1 ln(1+SNRg,b), for any group g ∈ [Λ]
of users, such that we can write the average rate of the ACC scheme as

R̄ACC =
G

B ln 2
EH
{
min
g∈Ψ
{Sg}

}
. (A.1)

1Several works have considered this Gaussian setting after [49]. In [73], the capacity region was derived
for the 2-user case, the 3-user case was studied in [74, Group 8, case G18

⋃
G28], and the converse of

Prop. 2.1 can be also found in [144, Thm. 4].
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For t ∈ (−∞,+∞), the characteristic function (CF) in probability [146, Ch. 5] of Sg is
defined as

CFSg(t) = E {exp(ȷtSg)}=E
{
exp

(
ȷt

B∑
b=1

ln(1 + SNRg,b)
)}

=
[
E
{
(1 + SNRg,b)

ȷt
}]B

.

(A.2)

Substituting the PDF of SNRg,b into (A.2) yields

CFSg(t) =
1

ρB

[∫ ∞

0
(1 + x)ȷt exp

(
−x
ρ

)
dx

]B
(a)
=

1

ρB
exp

(
B

ρ

)
EB−ȷt

(
1

ρ

)
, (A.3)

where (a) follows from [76, Eq. (3.382.4)]. By considering the Gil-Pelaez Theorem [147],
the CDF of Sg is obtained as

FSg(x) =
1

2
− 1

π

∫ ∞

0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB
EB−ȷt

(
1
ρ

)}
t

dt.

Define Smin ≜ ming∈Ψ{Sg} = ming∈Ψ
{∑B

b=1 ln(1 + SNRg,b)
}
. The CDF of Smin can be

expressed by

FSmin(y) = Pr
{
min
g∈Ψ
{Sg} ≤ y

}
= 1− Pr

{
min
g∈Ψ
{Sg} > y

}
= 1− (Pr {Sg > y})G

= 1−
(
1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(

B
ρ
)

ρB
EB−ȷt

(
1
ρ

)}
t

dt

)G
. (A.4)

As Smin is a non-negative random variable, it holds that E {Smin} = E
{∫ Smin

0 dx
}
, and

furthermore,

E
{∫ Smin

0
dx

}
= E

{∫ ∞

0
I {x ≤ Smin} dx

}
=

∫ ∞

0
E {I {x ≤ Smin}}dx =

∫ ∞

0
[1− FSmin (y)] dy, (A.5)

where I{·} denotes the indicator function, which, for claim A , takes the value I{A } = 1
if A is true and I{A } = 0 otherwise. Combining (A.4) and (A.5) yields that the
expectation of Smin is

E{Smin} =
∞∫
0

(
1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB
EB−ȷt

(
1
ρ

)}
t

dt

)G
dy.

It follows from (A.1) that R̄ACC = G
B ln 2E{Smin}, which gives Lemma 2.1 by considering

the integral form of E{Smin}, and therefore Lemma 2.1 is proven.
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A.3 Proofs for Section 2.3.2 and Section 2.3.3

A.3.1 Proof of Lemma 2.2

The fact that SNRg is distributed as Exp(G/ρ) implies that Var(ming∈Ψ{SNRg}) =
ρ2/G2 = o(ρ). Thus, in a similar way as in [130, Eq. (4)], in the low-SNR region we can
approximate R̄MN by its robust approximation based on the Taylor series: Let P(X) be
a real-valued function with respect to a random variable X with mean µX and variance
σ2X . The expectation of P(X) can be tightly approximated in the low σ2X region as

E{P(X)} ≈ P(µX) +
σ2X
2

∂2P(X)

∂X2

∣∣∣∣
X=µX

(A.6)

where ∂2P(X)
∂X2 stands for the second derivative of P(X) with respect to X (cf. [129]).

Considering that P(X) = G
ln 2 ln (1 + ming∈Ψ {SNRg}) and that X = ming∈Ψ{SNRg}

and adopting the robust approximation of (A.6) yields that R̄MN can be tightly approxi-
mated at low SNR by (2.9).

A.3.2 Proof of Proposition 2.2

From the fact that Ei(−x) is bounded as (cf. [148])

−e−x ln
(
1 +

1

x

)
< Ei(−x) < −e

−x

2
ln
(
1 +

2

x

)
, (A.7)

we can upper bound the numerator and lower bound the denominator of the exact

expression of R̄
(MN)

R̄TDM in (2.10) to obtain that

lim
ρ→0

R̄(MN)

R̄TDM
≤ lim

ρ→0

G

2

ln
(
1 + 2ρ

G

)
ln(1 + ρ)

= 1. (A.8)

By interchanging the bounds to lower bound the ratio, we obtain that the limit is also
lower bounded by 1, which concludes the proof of Proposition 2.2.

A.3.3 Proof of Lemma 2.3

We start by proving that

E
{ B∑
b=1

ln(1 + SNRg,b)
}
= E

{ B∑
b=1

SNRg,b

}
+ o(ρ), (A.9)

which is obtained from the fact that E
{∑B

b=1 ln(1+SNRg,b)
}
= E

{∑B
b=1

(
ln(1+SNRg,b)−

SNRg,b
)}

+ E
{∑B

b=1 SNRg,b
}
. In the above, we obtain (A.9) from the Lebesgue’s

Dominated Convergence Theorem [149, Thm. 16.4] as follows: First, we know that
limx→0(ln(1 + x)− x)/x = 0, and hence ln(1 + x)− x = o(x) as x→ 0. In order to prove
that the expectation is also o(ρ) as ρ→ 0, we need to prove that | ln(1+x)−x| is bounded
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by some integrable function. For that, since ln(1 + x) ≤ x for any x > 0, it follows
that | ln(1 + SNRg,b)− SNRg,b | ≤ |SNRg,b |, which satisfies that E{|SNRg,b |} = ρ <∞.
Hence, we can apply the Dominated Convergence Theorem and obtain (A.9).

Since SNRg,b is distributed as Exp(1ρ),
∑B

b=1 SNRg,b follows a Gamma(B, ρ) distribu-

tion, with shape and scale parametersB and ρ. Then, the CDF of S′ ≜ min
g∈Ψ
{∑B

b=1 SNRg,b}
is given by

FS′(y) = 1−
(

1

Γ(B)
Γ

(
B,

y

ρ

))G
(a)
= 1−

(
exp

(
−y
ρ

)∑B−1

t=0

yt

t! ρt

)G
, (A.10)

where Γ(·, ·) denotes the upper incomplete Gamma function [76], and (a) follows from [76,
Eq. (8.352.2)] since B is a positive integer. For b ∈ ZB, let bt ≜ b(t) ≥ 0, t ∈ [B], denote
its t-th element. Recalling that

(
n
b

)
≜ n!

b1!b2!···bB ! , we apply the Multinomial theorem [150]
to get that

FS′(y) = 1− exp

(
−Gy
ρ

) ∑
||b||1=G

(
G

b

)
ρ−

∑B
t=1(t−1)bt∏B

t=1((t− 1)!)bt
y
∑B
t=1(t−1)bt .

In view of the relationship between the CDF and the expectation in (A.5), the average
rate of the ACC scheme can be approximated in the low-SNR region by

R̄ACC =
G

B ln 2

(
E{S′}+ o(ρ)

)
=

G

B ln 2

∫ ∞

0

[
1− FS′(y)

]
dy + o(ρ)

=
G

B ln 2

∑
||b||1=G

(
G

b

)
ρ−

∑B
t=1(t−1)bt∏B

t=1((t− 1)!)bt

∫ ∞

0
exp

(
−Gy
ρ

)
y
∑B
t=1(t−1)btdy+o(ρ),

(A.11)

which can be solved by using the definition of Gamma function [76, Eq. (8.312.2)].

A.3.4 Proof of Corollary 2.1

From Lemma 2.3 we have that R̄ACC = ρG
B ln 2 LG + o(ρ) and also that R̄TDM =

R̄ACC
∣∣
B=G=1

= ρ
ln 2 +o(ρ), whereas from Proposition 2.2 it follows that limρ→0

R̄MN

R̄TDM = 1.

These results yield the desired R̄MN = ρ
ln 2 + o(ρ) and

lim
ρ→0

R̄ACC

R̄MN
= lim

ρ→0

ρG
B ln 2LG + o(ρ)

ρ
ln 2 + o(ρ)

=
G

B
LG.

A.3.5 Proof of Lemma 2.4

We want to prove that limB→∞
R̄ACC

R̄TDM = Λγ + 1 for a fixed number of caches Λ and for
any ρ. Since E {| ln (1 + SNRg,b) |} <∞, the Strong Law of Large Numbers implies that

1

B

∑B

b=1
ln (1 + SNRg,b)

a.s.−→ E {ln (1 + SNRg,b)} (A.12)
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as B →∞, which implies that

lim
B→∞

1

B

B∑
b=1

ln (1 + SNRg,b) = E {ln (1 + SNRg,b)} , (A.13)

except for zero-probability events. Then since ln(1 + x) ≤ x ∀x > 0, we get that

EH
{
min
g∈G

1

B

∑B

b=1
ln(1 + SNRg,b)

}
≤ EH

{ 1

B

∑B

b=1
SNRg,b

}
(a)
= ρ <∞, (A.14)

where (a) comes from the fact that SNRg,b ∼ Exp(1ρ) and thus
∑B

b=1 SNRg,b ∼ Gamma(B, ρ).
From (A.13) and (A.14), we can apply Lebesgue’s Dominated Convergence Theorem

[149, Thm. 16.4] to interchange the order of expectation and limit and show that

limB→∞ R̄ACC/R̄TDM

(a)
=

lim
B→∞

G
ln 2EH

{
ming∈G

1
B

∑B
b=1 ln(1 + SNRg,b)

}
1

ln 2EH {ln (1 + SNRg,b)}
(A.15)

(b)
= G

EH
{
ming∈G limB→∞

1
B

∑B
b=1 ln(1 + SNRg,b)

}
EH {ln (1 + SNRg,b)}

(c)
= G = Λγ + 1, (A.16)

where (a) follows from substituting R̄ACC and R̄(TDM) by their respective expressions,
(b) comes from the Dominated Convergence Theorem and the fact that the minimum of
several continuous functions is a continuous function, and (c) is due to (A.13).

A.3.6 Proof of Lemma 2.5

From (A.12), and by applying the same steps as in (A.15)–(A.16), we obtain (2.16) as

lim
B→∞

R̄ACC

R̄MN
=

G
ln 2EH {ln (1 + SNRg,b)}

G
ln 2EH {ln (1 + ming∈Ψ {SNRg,b})}

(a)
= exp

(
1

ρ
− G

ρ

) Ei
(
−1
ρ

)
Ei
(
−G
ρ

) , (A.17)

where (a) follows from (2.5). To prove (2.17), we first obtain from (A.17) that

lim
ρ→0

lim
B→∞

R̄ACC

R̄MN
= lim

ρ→0
exp

(
1

ρ
− G

ρ

) Ei
(
−1
ρ

)
Ei
(
−G
ρ

) . (A.18)

Then, in a similar manner as for the proof of Proposition 2.2 in Appendix A.3.2, we can
apply the relations −e−x ln(1 + 1

x) < Ei(−x) < −e−x
2 ln(1 + 2

x) [148] in (A.18) to obtain
that

lim
ρ→0

lim
B→∞

R̄ACC

R̄MN
≤ lim

ρ→0
exp

(
1−G
ρ

) 1
2 exp

(
−1
ρ

)
ln(1 + 2ρ)

exp
(
−G
ρ

)
ln(1 + ρ

G)
= G, (A.19)
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lim
ρ→0

lim
B→∞

R̄ACC

R̄MN
≥ lim

ρ→0
exp

(
1−G
ρ

) 2 exp
(
−1
ρ

)
ln(1 + ρ)

exp
(
−G
ρ

)
ln(1 + 2ρ

G )
= G, (A.20)

which concludes the proof of Lemma 2.5.

A.4 Proof of Lemma 2.6

To prove Lemma 2.6, we first derive the approximation in (2.18). Afterward, we obtain
the values of µ and σ in (2.19) and (2.20), and finally we derive the integral expression
of HG in (2.21).

Let Ag ≜ 1
B

∑B
b=1 ln (1 + SNRg,b), for any g ∈ [Λ], represent the arithmetic mean of

the user capacity over the set of B users of group g, normalized by ln(2). Let us consider
the Central Limit Theorem (CLT) in the large B case. According to the Lindeberg-Lévy

CLT [151], we have that Ag
d.−→ N

(
µ, σ

2

B

)
as B →∞, where d. stands for convergence

in distribution, and where µ = E {ln (1 + SNRg,b)} and σ2 = Var {ln (1 + SNRg,b)}2. We
consider now the average rate for the ACC scheme when B →∞. Recall that A1, · · · , AG
are i.i.d. normal random variables with mean µ and variance σ2/B. Although convergence
in distribution does not generally imply convergence in mean, it was shown in [152]
that this indeed holds in the specific case of extreme values of i.i.d. random variables.
Consequently, R̄ACC is given by

lim
B→∞

R̄ACC =
G

ln 2
E {min {A1, · · · , AG}} . (A.21)

Deriving a simple closed-form expression for (A.21) is challenging. Consequently, we
propose a simple method to obtain an approximation to this expectation. Since B →∞
and A1, · · · , AG are i.i.d. normal random variables, we can write each Ai, i ∈ [G], as
Ai = µ+ σ√

B
A′
i, where A

′
i ∼ N (0, 1). Then, the minimum of A1, · · · , AG is re-written as

min
i∈[G]
{Ai} = µ+

σ√
B

min
i∈[G]

{
A′
i

}
. (A.22)

Then (2.18) is obtained by taking the expectation of both sides, multiplying (A.22) by
G
ln 2 , and recalling that HG ≜ −E

{
mini∈[G] {A′

i}
}
, as defined in Section 2.3.4.

We derive now the expressions for µ in (2.19) and σ in (2.20). Note that µ
ln(2)=

E {log2(1 + SNRg,b)} is exactly R̄TDM, so that we have (2.19) by considering (2.5) with
G = 1. Moreover, we have that

E
{
(ln(1 + SNRg,b))

2
}
=

1

ρ

∫ ∞

0
(ln(1 + x))2 exp

(
−x
ρ

)
dx.

2Note that, if we focused on the low-SNR region, we could apply the approximations µ ≈ E{SNRg,b}
and σ2 ≈ Var {SNRg,b}. We do not consider them here for sake of generality, and our approximation
holds for any value of SNR.
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To obtain a closed-form expression for the previous integral, we re-write both the
logarithmic function and the exponential function into their Meijer’s G-function forms [76,

Eq. (9.301)], given by ln(1+x) = G1,2
2,2

(
x
∣∣∣1,11,0

)
and exp

(
−x
ρ

)
= G1,0

0,1

(
x
ρ

∣∣−
0

)
, respectively.

Then, the previous integral becomes

E
{(

ln(1 + SNRg,b)
)2}

=
1

ρ

∫ ∞

0
G1,2

2,2

(
x
∣∣∣1,11,0

)
G1,2

2,2

(
x
∣∣∣1,11,0

)
G1,0

0,1

(
x

ρ

∣∣−
0

)
dx

(a)
= 2 exp

(
1

ρ

)
G3,0

2,3

(
1

ρ

∣∣∣1,10,0,0

)
where (a) follows from [153, Eq. (07.34.21.0081.01)] after basic simplifications. By combin-
ing this expression with the relationship σ2 = E

{
(ln(1 + SNRg,b))

2 }−(E {ln(1 + SNRg,b)})2,
we obtain (2.20).

To derive the integral form of HG, we calculate the CDF of A′
min ≜ min{A′

1, · · · , A′
G}

to be

FA′
min

(y) = 1− Pr
{
min

{
A′

1, · · · , A′
G

}
> y
}

= 1−
(
Pr
{
A′

1 > y
})G (a)

= 1− (Q(y))G , (A.23)

where (a) holds because the CDF of the standard normal distribution is FA′
i
(x) = 1−Q(x).

The corresponding PDF is then derived by

fA′
min

(y) =
∂FA′

min
(y)

∂y
= −G (Q(y))G−1 ∂Q(y)

∂y

(a)
=

1√
2π
G (Q(y))G−1 exp

(
−y

2

2

)
,

where (a) follows from the integral form of the Q-function and by applying the Leibniz’s
Rule for differentiation under the integral sign. The value of HG in (2.21) is then
obtained by writing the expectation of A′

min as an integral form by using the above PDF
of A′

min.

A.5 Proof of Lemma 2.9

In the following, we prove Lemma 2.9, i.e., we obtain the exact expression

T̊ACC ≜ ρ−1Λ(1− γ)F ln 2

Bw(1 + Λγ)
E{TΨ}. (A.24)

For that, we need to obtain E{TΨ}, and, since TΨ has non-negative support, it follows
that E {TΨ} =

∫∞
0 (1− FTΨ (z))dz. Consequently, we have to obtain FTΨ(z).

Let us define τg ≜
∑B

b=1 |hg,b|−2 for the sake of readability, such that we can write
TG as TΨ = maxg∈Ψ{τg}. Then, the CDF of TΨ can be obtained as

FTΨ (z) = Pr
{
max
g∈Ψ
{τg} ≤ z

}
=
[
Fτg (y)

]G
. (A.25)

141



Appendix A. Proofs in Chapter 2

Since |hg,b|2 ∼ Gamma(m, 1), 1/|hg,b|2 follows an inverse Gamma distribution, it follows
that (cf. [82])

CF1/|hg,b|2 (t) =
2(−ȷt)m2
Γ (m)

Km

(√
−4ȷt

)
. (A.26)

From (A.26), the CF of τg can be expressed as

CFτg (t) = E
{
exp

(
ȷt
∑B

b=1

1

|hg,b|2
)}

= E

{
B∏
b=1

exp

(
ȷt

|hg,b|2
)}

=

(
2(−ȷt)m2 Km

(√−4ȷt)
Γ (m)

)B
. (A.27)

We can apply the Gil-Pelaez Theorem [147] to obtain the CDF of τg from its CF, which
yields

Fτg (y) =
1

2
− 1

π

∫ ∞

0

Im
{
exp (−ȷty) CFτg (t)

}
t

dt

=
1

2
− 1

π

∫ ∞

0
Im

{
exp(−ȷty)

t

(
2(−ȷt)m2 Km

(√−4ȷt)
Γ (m)

)B}
dt. (A.28)

By plugging this expression in (A.25), we obtain FTΨ (z). Next, we apply the facts that

E {TΨ} =
∫∞
0 (1−FTΨ (z))dz and that T̊ACC ≜ ρ−1 Λ(1−γ)F ln 2

Bw(1+Λγ) E{TΨ} to obtain (2.36).

A.6 Proof of Lemma 2.14

From (2.47), we can write that

R̃ACC = G ln ρ+
G

B
Eh,r

{
min
g∈Ψ

{ B∑
b=1

ln
(
|hg,b|2r−η0g,b

)}}
. (A.29)

ForXg,b = ln
(
|hg,b|2r−η0g,b

)
, the characteristic function (CF) CFXg,b(t) = Eh,r{exp(ȷtXg,b)}

can be shown to be

CFXg,b(t) = Eh
{(
|hg,b|2

)ȷt}Er
{
r−ȷη0tg,b

}
. (A.30)

By substituting the PDFs of |hg,b|2 and rg,b into (A.30), we have

CFXg,b(t) = Γ(1 + ȷt)
ȷ2(D2−ȷη0t

2 −D2−ȷη0t
1 )

(η0t+ ȷ2)(D2
2 −D2

1)
. (A.31)

Let us define Xg ≜
∑B

b=1Xg,b. The CF of Xg takes the form CFXg(t) =
∏B
b=1CFXg,b(t).

By using the Gil-Pelaez Theorem [147], the CDF of Xg can be obtained as
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FXg(x) =
1

2
− 1

π

∫ ∞

0

Im{exp(−ȷtx)CFXg(t)}
t

dt

=
1

2
− 1

π

∫ ∞

0
ℑ

exp(−ȷtx)
t

[
Γ(1 + ȷt)

ȷ2(D2−ȷη0t
2 −D2−ȷη0t

1 )

(η0t+ ȷ2)(D2
2 −D2

1)

]Bdt. (A.32)

Let X ≜ ming∈Ψ{Xg}. The CDF of X is

FX(x) = 1− Pr
{
min
g∈G
{Xg} > x

}
= 1−

(
1− FXg(x)

)G
. (A.33)

As Dη0
1 ≫ 1 and |hg,b|2 ∼ Exp(1), the probability that ln(|hg,b|2r−η0g,b ) is bigger than zero

is negligible,3 so we can consider the variable X = ming∈G
{∑B

b=1 ln
(
|hg,b|2r−η0g,b

)}
to be

a non-positive random variable. Hence X ′ = −X satisfies

E{X ′} =
∫ ∞

0
FX(−x)dx =

∫ ∞

0
1−

(
1− FXg(−x)

)G
dx. (A.34)

Combining (A.29), (A.32) and (A.34), we obtain (2.56).

A.7 Proof of Lemma 2.15

It is clear that the variables {Sg,b}g∈Ψ,b∈[B] are i.i.d. variables, and thus we can apply
the CLT to get

1

B

B∑
b=1

ln
(
ρ|hg,b|2r−η0g,b

)
d.→ N

(
ϱs,

σ2s
B

)
, as B →∞, (A.35)

where d. stands for the convergence in distribution. Let Yg, g ∈ Ψ, be i.i.d. Gaussian
random variables with zero mean and unit variance. It then follows from (A.35) that
(cf. [51, App. IV])

min
g∈Ψ

1

B

B∑
b=1

ln
(
ρ|hg,b|2r−η0g,b

)
d.→ ϱs +

√
σ2s
B

min
g∈Ψ
{Yg}. (A.36)

By considering the definition of R̃ACC, (A.36) implies that

R̃ACC = Eh,r
{
|G|min

g∈G

{
1

B

∑B

b=1
ln (SNRg,b)

}}
(A.37)

→ G

(
ϱs +

√
σ2s/B Eh,r

{
ming∈Ψ{Yg}

})
(A.38)

3The minimum distance between the base station and a user is generally considered to be at least
10 meters [88,90]. Even considering that all the users were located in the inner border of the ring, the
probability Pr

{
|hg,b|2r−η0g,b > 1

}
is as small as exp(−100) = 3.72 ∗ 10−44 (for η0 = 2).
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as B → ∞, which together with the definition of −HG yields (2.57). Note that
ϱs ≜ Eh,r{ln(ρ|hg,b|2r−η0g,b )} is equivalent to R̃TDM (cf. (2.49)) and thus (2.58) follows

from (2.48). For σ2s , it holds that

σ2s = Var
{
ln ρ+ ln

(
|hg,b|2r−η0g,b

)}
= Var

{
ln
(
|hg,b|2r−η0g,b

)}
= Var

{
ln
(
|hg,b|2

)}
+ η20Var {ln rg,b} . (A.39)

We can then derive Var
{
ln
(
|hg,b|2

)}
and Var {ln rg,b} in (A.39) from the PDFs of |hg,b|2

and rg,b, which yields (2.59).
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Proofs in Chapter 3

B.1 Proof of Theorem 3.1

Similar to the proof of [65, Lemma 1], we define X ≜ Pt
GcL2

∣∣hTψ,kh∗
ψ,k

∣∣2 and Y ≜ 1 +
1
Q

∑Q
ϑ=1,ϑ ̸=k Yϑ, where Yϑ ≜ Pt

GL

∣∣hTψ,kh∗
ψ,ϑ

∣∣2. From [63, Lemma 1], we know that E{X} =
Pt
cG(1 + 1/L), Var{X} =

P 2
t

G2c2

(
4
L + 10

L2 + 6
L3

)
< ∞, E{Yϑ} = Pt/G and Var{Yϑ} =

P 2
t
G2 (1 + 2/L) <∞. We want to prove that

R̄MF(G, cL)

c GL
= E

{
ln

(
1 +

X

Y

)}
= ln

(
1 +

E{X}
E{Y }

)
+ o(1), as Q = cL→∞. (B.1)

By applying Jensen’s inequality on E {ln (X + Y )} and E {ln (Y )} separately, we can
get

ln
(

1
E{(X+Y )−1}

)
≤ E {ln (X + Y )} ≤ ln (E {X + Y }) (B.2)

− ln (E {Y }) ≤ −E {ln (Y )} ≤ − ln
(

1
E{Y −1}

)
, (B.3)

and after combining these two bounds, we get

ln
(

1
E{(X+Y )−1}

)
− ln (E {Y }) ≤ E

{
ln
(
1 + X

Y

)}
≤ ln (E {X + Y })− ln

(
1

E{Y −1}

)
.

(B.4)

On the other hand, Jensen’s inequality says that E{Y −1} ≥ 1/E{Y } and E
{
(X + Y )−1

}
≥

1/E {(X + Y )}, which yields

ln

(
1 +

E{X}
E{Y }

)
= ln (E {X + Y })− ln (E{Y }) ≤ ln (E {X + Y })− ln

(
1

E{Y −1}

)
,

(B.5)

ln

(
1 +

E{X}
E{Y }

)
=ln (E {X + Y })− ln (E{Y }) ≥ ln

(
1

E {(X + Y )−1}

)
− ln (E {Y }) .

(B.6)
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At this point, both E
{
ln
(
1 + X

Y

)}
and ln

(
1 + E{X}

E{Y }

)
are bounded above and below by

the same bounds (B.4)–(B.6). The gap between these bounds takes the form

∆ ≜

{
ln (E {X + Y })− ln

(
1

E{Y −1}

)}
−
{
ln

(
1

E {(X + Y )−1}

)
− ln (E {Y })

}
= ln

[(
E {X + Y }E

{
(X + Y )−1

})(
E {Y }E

{
Y −1

})]
. (B.7)

We want to show that this gap vanishes as Q = cL→∞. By expanding the Taylor series
of Y −1 at E{Y }, we can have that

lim
Q→∞

E {Y }E
{
Y −1

}
= lim

Q→∞
E {Y }E

{
1

E{Y } −
(Y − E{Y })

E2{Y } +
(Y − E{Y })2

E3{Y } + · · ·
}

= 1 + lim
Q→∞

E{g(Y )} (a)
= 1 + E

{
lim
Q→∞

g(Y )
}

(b)
= 1, (B.8)

where g(Y ) ≜
∞∑
n=2

(−1)n (Y−E{Y })n
En{Y } , where (a) follows from exchanging the order of the

limitation and expectation operators (validated via the Dominated Convergence Theorem
(DCT))1, and where (b) follows from using the DCT to exchange the limitation and infinite
summation operators in lim

Q→∞
g(Y ) (similar to the step (a)) and then by considering

that Y − E{Y } → 0 as Q → ∞ (due to the law of large numbers). By using similar
mathematical manipulations, we have that

lim
Q=cL→∞

E {X + Y }E
{
(X + Y )−1

}
= 1. (B.9)

Considering the two limits (B.8) and (B.9), we can directly conclude that lim
Q=cL→∞

∆ = 0,

and therefore prove (B.1).
Finally, substituting E{X} = Pt

cG(1 + 1
L) and E{Y } = 1 + Pt

G
Q−1
Q into (B.1) and

considering Q = cL→∞, completes the proof of Theorem 3.1.

B.2 Proof of Theorem 3.3

We split the proof in three parts. First, we present the proof of (3.19). Then, we provide
two useful lemmas, and we conclude by deriving the asymptotic deterministic equivalent
of the SINR.

We provide here the proof of the expression of SINRRZF
ψ,k in (3.19). Let us recall

that Hψ,−k represents the matrix Hψ after removing its k-th row. The useful signal
contribution to the received signal in (3.16) (omitting the term ρψ/

√
G for the sake of

conciseness) can be written as

hTψ,k
(
αIL +HH

ψHψ

)−1
h∗
ψ,ksψ,k = hTψ,k

(
αIL +HH

ψ,−kHψ,−k + h∗
ψ,kh

T
ψ,k

)−1
h∗
ψ,ksψ,k

1To see this, first define Z ≜ |Y − E{Y }| ≥ 0. As Q → ∞, Z → 0 (due to the law of large numbers),
there always exists a constant Q0 and ε < 1 such that Z < ε for any Q > Q0. For Z < ε, we have that∑∞
n=2 Z

n = Z2

1−Z < ε2

1−ε . Considering g(Y ) ≤
∑∞
n=2 Z

n and E{
∑∞
n=2 Z

n} < ε2

1−ε < ∞, which satisfies
the DCT condition, yields that limQ→∞ E{g(Y )} = E{limQ→∞ g(Y )}.
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(a)
=

hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
h∗
ψ,k

1 + hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
h∗
ψ,k

sψ,k
(b)
=

Aψ,k
1 +Aψ,k

sψ,k, (B.10)

where (a) follows from the relation(
A−BD−1C

)−1
BD−1 = A−1B

(
D−CA−1B

)−1
, (B.11)

and where (b) follows after applying the definition of Aψ,k from (3.17).
On the other hand, the power of the interference averaged over data signals in (3.16)

is given by

∣∣Iψ,k∣∣2 = ρ2ψ
G

L∑
ϑ=1
ϑ ̸=k

L∑
ϑ′=1
ϑ′ ̸=k

hTψ,ϑ
(
αIL +HH

ψHψ

)−1
h∗
ψ,kh

T
ψ,k

(
αIL +HH

ψHψ

)−1
h∗
ψ,ϑ′E{s∗ψ,ϑsψ,ϑ′}

=
ρ2ψ
G

hTψ,k
(
αIL +HH

ψHψ

)−1
HH
ψ,−kHψ,−k

(
αIL +HH

ψHψ

)−1
h∗
ψ,k. (B.12)

By applying again the matrix identity in (B.11) and by considering the definitions of
Aψ,k and Bψ,k in (3.17)-(3.18), we can obtain

∣∣Iψ,k∣∣2 = ρ2ψ
G

hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
HH
ψ,−kHψ,−k

(
αIL +HH

ψ,−kHψ,−k
)−1

h∗
ψ,k(

1 + hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
h∗
ψ,k

)2

=
Bψ,kρ

2
ψ/G

(1 +Aψ,k)2

which combined with (B.10) yields the expression of SINRRZF
ψ,k in (3.19). This concludes

the proof.

B.2.1 Two Useful Lemmas

In the following, we present two lemmas that are instrumental in the derivation of
Lemma 3.3.

Lemma B.1. For any fixed c, 0 < c <∞, the trace of 1
L

(
zIL + 1

LH
H
ψHψ

)−1
converges

to Sc(z) almost surely as L→∞, where Sc(z) is defined as

Sc(z) ≜
1

2

(√
(1− c)2
z2

+
2(1 + c)

z
+ 1 +

1− c
z
− 1

)
. (B.13)

Proof. This lemma can be obtained as a direct application of a known result from [154, Ch.
3] for the Stieltjes transform [155]. Hence, we omit the proof due to the page limitation
and refer the reader to [154, Ch. 3] for more details.
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Lemma B.2. For any fixed 0 < c <∞ and arbitrary 0 < θ <∞, we have that, as L→∞,

Tr

{
1

L

(
θI+

1

L
HH
ψ,−kHψ,−k

)−2
}

a.s.−→ Tr

{
1

L

(
θI+

1

L
HH
ψHψ

)−2
}
. (B.14)

Proof. Let us first define A ≜ θI+ 1
LH

H
ψ,−kHψ,−k, and let us also define

δ ≜
∣∣∣Tr{ 1

L

(
θI+

1

L
HH
ψ,−kHψ,−k

)−2
}
− Tr

{ 1

L

(
θI+

1

L
HH
ψHψ

)−2
}∣∣∣. (B.15)

By applying the Woodbury matrix identity [156], we can rewrite δ as

δ =
∣∣∣ 1
L
Tr
{ 2

L

hTkA
−3h∗

k

1 + 1
Lh

T
kA

−1h∗
k

− 1

L2

(hTkA
−2h∗

k)(h
T
kA

−2h∗
k)(

1 + 1
Lh

T
kA

−1h∗
k

)2 }∣∣∣, (B.16)

which can be further rewritten as δ =
∣∣Θ1 − Θ2

∣∣, where Θ1 ≜ 2
L2

hTkA
−3h∗

k

1+ 1
L
hTkA

−1h∗
k

, and

Θ2 ≜ 1
L3

(
hTkA

−2h∗
k

1+ 1
L
hTkA

−1h∗
k

)2
. Furthermore, we apply eigenvalue decomposition by factorizing

1
LH

H
ψ,−kHψ,−k as 1

LH
H
ψ,−kHψ,−k =QΛQH , which yields A−1 =Q (θI+Λ)−1QH , and

A−3 = Q (θI+Λ)−3QH . Thus, upon defining g ≜ Qh∗
k/
√
L, the term Θ1 can be

rewritten as

Θ1 =
2

L2

hTkQ (θI+Λ)−3QHh∗
k

1 + 1
Lh

T
kQ (θI+Λ)−1QHh∗

k

=
2

L

gH (θI+Λ)−3 g

1 + gH (θI+Λ)−1 g

=
2

L

∑L
ℓ=1 |gℓ|2 1

(θ+λℓ)3

1 +
∑L

ℓ=1 |gℓ|2 1
θ+λℓ

≤ 2

θ2L

∑L
ℓ=1 |gℓ|2 1

θ+λℓ

1 +
∑L

ℓ=1 |gℓ|2 1
θ+λℓ

≤ 2

θ2L
→ 0, as L→∞, (B.17)

where gℓ and λℓ are the ℓ-th element of g and the ℓ-th eigenvalue of 1
LH

H
ψ,kHψ,k, respec-

tively. Similarly, we have that

Θ2=
1

L

(
gH(θI+Λ)−2g

1 + gH(θI+Λ)−1g

)2

≤ 1

θ2L

( ∑L
ℓ=1 |gℓ|2 1

θ+λℓ

1 +
∑L

ℓ=1 |gℓ|2 1
θ+λℓ

)2

≤ 1

θ2L
→ 0, as L→∞.

(B.18)

Finally, from (B.17), (B.18), and from the fact that δ ≤
∣∣Θ1

∣∣ + ∣∣Θ2

∣∣, the difference δ
approaches zero almost surely as L→∞. This concludes the proof of Lemma B.2.

B.2.2 Proof of Theorem 3.3

We obtain Theorem 3.3 by deriving the asymptotic deterministic equivalent of SINRψ,k
in (3.19). For that, we first derive the asymptotic deterministic equivalent of Aψ,k and ρ2ψ.

Let us start by considering Aψ,k, defined in (3.17). By means of the Trace Lemma
and the Rank-1 Perturbation Lemma from [154], we can obtain that

Aψ,k = hTψ,k

(
αIL +HH

ψ,−kHψ,−k

)−1
h∗
ψ,k

a.s.−→ Tr

{(
αIL +HH

ψHψ

)−1
}

(B.19)
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as L→∞. From this, we can apply Lemma B.1 and the fact that α = L/Pt to obtain
the deterministic equivalent of Aψ,k, which we denote as aψ,k, and which is given by

aψ,k = Sc

(
1
Pt

)
, where Sc(z) =

1
2

[√
(1−c)2
z2

+ 2(1+c)
z + 1 + 1−c

z − 1
]
as defined in (B.13).

This yields the expression of aψ,k in (3.21).
Next, we focus on Bψ,k, introduced in (3.18), and we again apply the Trace Lemma

and the Rank-1 Perturbation Lemma from [154] in the limit of L→∞ to obtain that

Bψ,k
a.s.−→ 1

L
Tr
{ 1

L
HH
ψ,−kHψ,−k

( 1

Pt
IL +

1

L
HH
ψ,−kHψ,−k

)−2}
=

1

L
Tr
{( 1

Pt
IL +

1

L
HH
ψ,−kHψ,−k

)−1}
− 1

PtL
Tr
{( 1

Pt
IL +

1

L
HH
ψ,−kHψ,−k

)−2}
.

(B.20)

The first trace term of the R.H.S. of (B.20) matches (B.19), and thus its deterministic
equivalent is aψ,k. With respect to the second term of the R.H.S. of (B.20), applying
Lemmas B.1 and B.2 yields

1

PtL
Tr
{( 1

Pt
IL +

1

L
HH
ψ,−kHψ,−k

)−2} a.s.−→ 1

PtL
Tr
{( 1

Pt
IL +

1

L
HH
ψHψ

)−2}
=

1

PtL

∑L

ℓ=1

1

(λℓ + 1/Pt)2
= − 1

Pt

∂

∂z

( 1
L

∑L

ℓ=1

1

λℓ + z

)∣∣∣
z=1/Pt

= − 1

Pt

∂

∂z

(
Tr
{ 1

L

(
zIL +

1

L
HH
ψHψ

)−1})∣∣∣
z=1/Pt

a.s.−→ − 1

Pt

∂Sc(z)

∂z

∣∣∣
z=1/Pt

, (B.21)

as L → ∞, where {λℓ}Lℓ=1 are the eigenvalues of 1
LH

H
ψHψ and where ∂Sc(z)

∂z is the
derivative of Sc(z) with respect to z, which is given by

∂Sc(z)

∂z
=

1

2

[
−c2 − c(z − 2)− z − 1

z2
√
c2 + 2c(z − 1) + (z + 1)2

− 1− c
z2

]
. (B.22)

From (B.20) and (B.21) it holds that Bψ,k
a.s.−→ bψ,k ≜ aψ,k +

1
Pt

∂Sc(z)
∂z

∣∣∣
z=1/Pt

as L→∞.
Finally, we focus on the power control factor for the RZF precoder, which was given

by ρ2ψ = Pt
1
L
Tr{ 1

L
HH
ψHψ(

1
L
HH
ψHψ+

1
Pt

IL)−2} . From the derivation of Bψ,k and (B.20)–(B.21),

it follows that ρ2ψ
a.s.−→ Pt

bψ,k
. Thus, the asymptotic deterministic equivalent of ρ2ψ, denoted

by p2ψ, takes the form p2ψ = Pt
bψ,k

, which, upon substituting (B.22) in bψ,k, yields the

expression of p2ψ in (3.22).
Next, we obtain the asymptotic deterministic equivalent of SINRψ,k by substituting

the asymptotic deterministic equivalent of Aψ,k, Bψ,k and ρ2ψ into (3.19), which yields

SINRRZF
ψ,k

a.s.−→
a2ψ,kp

2
ψ/G(

1 + aψ,k
)2

+ Pt
G

. (B.23)

Finally, a direct application of the Continuous Mapping Theorem [157] yields (3.20),
which concludes the proof of Theorem 3.3.
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B.3 Proof of Theorem 3.4

We prove the theorem by demonstrating that R̄MF as derived in Corollary 3.2 is concave
over c ∈ (0,∞). Let us first note that the first derivative of R̄MF in (3.10) is given by

∂R̄MF

∂c
= GL

[
ln

(
Ω+ c

c

)
+

c

Ω+ c
− 1

]
, (B.24)

whereas the second derivative is then given by

∂2R̄MF

∂c2
= −GL Ω2

c(Ω + c)2
< 0. (B.25)

By differentiating R̄MF in (3.24) with respect to c, we have that

∂R̄MF

∂c = (1− ζG,Qc)∂R̄
MF

∂c − ζG,QR̄MF, ∂2R̄MF

∂c2
= (1− ζG,Qc)∂

2R̄MF

∂c2
− 2ζG,Q

∂R̄MF

∂c .
(B.26)

Let us know inspect the signs of these derivatives. First, note that Ω+c
c ≥ 1 for any

feasible Ω, c, simply because Ω = Pt
Pt+G

≥ 0. Let us also note that the function ln(x)+1/x
is decreasing when x ∈ (0, 1) and is increasing when x ∈ [1,∞), and also that its minimum
value (attained at x = 1) is equal to 1. Consequently, it follows that

∂R̄MF

∂c
= GL

[
ln

(
Ω+ c

c

)
+

c

Ω+ c
− 1

]
≥ 0, (B.27)

where the inequality is strict unless Ω+c
c = 1 corresponding to c → ∞. Therefore, we

conclude that R̄MF is monotonically increasing over c ∈ (0,∞).

From the fact that ∂R̄MF

∂c ≥ 0 (cf. (B.27)), the fact that ∂2R̄MF

∂c2
< 0 (cf. (B.25)), and

the fact that 1− ζG,Qc ≥ 0, we can conclude that ∂2R̄MF

∂c2
< 0 in (B.26). Therefore, R̄MF

is concave over c ∈ (0,∞), and thus the global maximum point of R̄MF is at the root c⋆

of ∂R̄
MF

∂c .

B.4 Proof of Theorem 3.5

The proof builds on the properties of the first and second derivatives of R̄ZF, in a
similar manner as in the proof of Theorem 3.4. These derivatives now take the form
∂R̄ZF

∂c = (1− ζG,Qc)∂R̄
ZF

∂c − ζG,QR̄ZF, and ∂2R̄ZF

∂c2
= (1− ζG,Qc)∂

2R̄ZF

∂c2
− 2ζG,Q

∂R̄ZF

∂c . After
applying (3.15), these derivatives take the form

∂R̄ZF

∂c
= GL

[
ln

(
1 +

Pt
G

(
1

c
− 1

))
− Pt/G

(1− Pt/G)c+ Pt/G

]
, (B.28)

∂2R̄ZF

∂c2
= −GL (Pt/G)

2

c
(
(1− Pt/G) c+ Pt/G

)2 < 0. (B.29)
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Since the second derivative ∂2R̄ZF

∂c2
in (B.29) is always negative, R̄ZF is a concave function

with respect to c. Therefore, the root of ∂R̄
ZF

∂c = 0, which we denote by c⋆R, is the global
maximum of R̄ZF over c ∈ (0,∞). Moreover, it follows from (3.15) that R̄ZF = 0 for c = 1
and that R̄ZF > 0 for 0 < c < 1, which implies that c⋆R belongs in the interval (0, 1).

Since ∂R̄ZF

∂c

∣∣
c=c⋆R

= 0 and since ∂2R̄ZF

∂c2
is always negative, we know that ∂R̄ZF

∂c is

monotonically decreasing and that this same ∂R̄ZF

∂c is negative for all c ∈ (c⋆R, 1).
Consequently, R̄ZF is monotonically decreasing in the interval c ∈ (c⋆R, 1). Thus

the maximum point of R̄ZF must belong in the interval (0, c⋆R) where we can see that
∂R̄ZF

∂c > 0 and ∂2R̄ZF

∂c2
< 0. Hence, R̄ZF is concave throughout c ∈ (0, c⋆R), and thus the

root of ∂R̄
ZF

∂c is the global maximum point of R̄ZF, where this point c⋆ must belong in

(0, c⋆R). Finally, substituting (3.15) and (B.28) into ∂R̄ZF

∂c yields (3.31) and proves the
theorem.
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Appendix C

Proofs in Chapter 4

C.1 Proof of Lemma 4.1

Let Ωψ,k ≜ Tψ,−kH
∗
ψ,kH

T
ψ,kTψ,−k ∈ CL×L, which can be easily seen to be Hermitian

semi-definite. Now let us consider the problem of maximizing SINRψ,k,q as seen below:

m⋆
ψ,k,q = argmax

mψ,k,q∈CL
mH
ψ,k,qΩψ,kmψ,k,q

s. t. ||Tψ,−kmψ,k,q||2 = mH
ψ,k,qTψ,−kmψ,k,q = 1, (C.1)

for which we can easily derive that m⋆
ψ,k,q = uψ,k,q/||Tψ,−kuψ,k,q||, where uψ,k,q is the

unit-norm eigenvector corresponding to the q-th largest eigenvalue λψ,k,q of Ωψ,k. We

can now also see that the maximum of mH
ψ,k,qΩψ,kmψ,k,q is

λψ,k,q
||Tψ,−kuψ,k,q ||2

, and thus the

optimized SINR takes the form

SINRψ,k,q =
λψ,k,qPψ,k,q/N0

||Tψ,−kuψ,k,q||2
. (C.2)

To ease the problem of computing λψ,k,q and uψ,k,q, we can alternatively decompose
HT
ψ,kTψ,−kH

∗
ψ,k ∈ CMψ,k×Mψ,k and then find the q-th largest eigenvalue and the corre-

sponding eigenvector tψ,k,q; this is directly from the property that for any two matrices
A,B, we have that AB and BA share the same non-zero eigenvalues. After deriving
λψ,k,q and tψ,k,q, we can have that

HT
ψ,kTψ,−kH

∗
ψ,ktψ,k,q = λψ,k,qtψ,k,q

which gives us

Tψ,−kH
∗
ψ,kH

T
ψ,kTψ,−k

(
Tψ,−kH

∗
ψ,ktψ,k,q

)
= λψ,k,q

(
Tψ,−kH

∗
ψ,ktψ,k,q

)
(C.3)

and we can have

Tψ,−kH
∗
ψ,kH

T
ψ,kTψ,−kuψ,k,q = λψ,k,quψ,k,q
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which gives us

Tψ,−kH
∗
ψ,kH

T
ψ,kTψ,−k

(
Tψ,−kuψ,k,q

)
= λψ,k,q

(
Tψ,−kuψ,k,q

)
,

where we use that TH
ψ,−k = Tψ,−k = T2

ψ,−k. This shows that both Tψ,−kH
∗
ψ,ktψ,k,q and

uψ,k,q are the eigenvectors associated to the q-th largest eigenvalue λψ,k,q of Ωψ,k =
Tψ,−kH

∗
ψ,kH

T
ψ,kTψ,−k. We can also see that both Tψ,−kuψ,k,q and uψ,k,q are the eigen-

vectors associated to λψ,k,q of Tψ,−kH
∗
ψ,kH

T
ψ,kTψ,−k. Therefore, the optimal precoding

vector vψ,k,q for Uψ,k can be rewritten as

v⋆ψ,k =
Tψ,−kH

∗
ψ,ktψ,k,q

||Tψ,−kH
∗
ψ,ktψ,k,q||

. (C.4)

Under the optimal precoding vector v⋆ψ,k,q and given an MRC receiver, SINRψ,k,q is
derived as

SINRψ,k,q =
Pψ,k,q
N0

tHψ,k,qH
T
ψ,kTψ,−kH

∗
ψ,kH

T
ψ,kTψ,−kH

∗
ψ,ktψ,k,q

||Tψ,−kH
∗
ψ,ktψ,k,q||2

=
Pψ,k,q
N0

(
tHψ,k,qH

T
ψ,kTψ,−k

)
Tψ,−kH

∗
ψ,kH

T
ψ,kTψ,−k

(
Tψ,−kH

∗
ψ,ktψ,k,q

)
||Tψ,−kH

∗
ψ,ktψ,k,q||2

(a)
=
Pψ,k,q
N0

λψ,k,q,

(C.5)

where (a) follows from (C.3), and where λψ,k,q is the q-th largest eigenvalue of both
Tψ,−kH

∗
ψ,kH

T
ψ,kTψ,−k ∈ CL×L and HT

ψ,kTψ,−kH
∗
ψ,k ∈ CMψ,k×Mψ,k .

C.2 Proof of Lemma 4.2

For L→∞ and finite Mψ,k, we can use the Trace Lemma to derive that

1

L

1

βψ,k

(
h
(ℓ)
ψ,k

)T
Tψ,−k

(
h
(ℓ)
ψ,k

)∗ a.s.−→ 1

L
Tr {Tψ,−k} = 1− 1

L

∑
k′∈[Q]\k

Mψ,k′ (C.6)

1

L

(
h
(ℓ)
ψ,k

)T
Tψ,−k

(
h
(ℓ′)
ψ,k

)∗ a.s.−→ 0, for ℓ′ ̸= ℓ, (C.7)

where h
(ℓ)
ψ,k denotes the ℓ-th column of Hψ,k. Therefore, we can derive that

1

L
HT
ψ,kTψ,−kH

∗
ψ,k

a.s.−→ βψ,k

(
1− 1

L

∑
k′∈[Q]\k

Mψ,k′

)
IMψ,k

, as L→∞, (C.8)

which reveals that all eigenvalues of 1
LH

T
ψ,kTψ,−kH

∗
ψ,k become identical as L→∞. This

in turn allows us to employ the following approximation

λψ,k,q ≈ βψ,k
(
L−

∑
k′∈[Q]\k

Mψ,k′

)
(C.9)
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which thus allows us to say that the effective rate in (4.11) can be approximated as

Rψ,k ≈ ξG,Q
∑Jψ,k

q=1
ln

(
1 +

Pψ,k,q
N0

βψ,k

(
L−

∑
k′∈[Q]\k

Mψ,k′

))
. (C.10)

According to the properties of the water-filling algorithm, we know that equal-power
allocation among {sψ,k,q : q ∈ [Jψ,k]} is optimal, which in turn tells us that

R⋆ψ,k(Pψ,k) ≈ ξG,QJψ,k ln
(
1 +

Pψ,k
N0Jψ,k

βψ,k

(
L−

∑
k′∈[Q]\k

Mψ,k′

))
. (C.11)

At this point we approximate the MMF optimization in (4.16) as

S5 :
{

maxPΨ
minψ∈Ψmink∈[Q] ξG,QJψ,k ln

(
1 +

Pψ,k
N0Jψ,k

βψ,k

(
L−∑k′∈[Q]\kMψ,k′

))
s. t. P =

∑
ψ∈Ψ

∑
k∈[Q] Pψ,k = Ptot

(C.12)

Finally, as all users have the same effective rate under optimal power allocation for (C.12),
we can use the total power constraint to derive (4.24) and (4.26) respectively.

C.3 Proof of Lemma 4.3

When considering the case of single-antenna users under BD precoding, the matrix form
HT
ψ,kTψ,−kH

∗
ψ,k becomes the scalar λψ,k ≜ hTψ,kTψ,−kh

∗
ψ,k ∈ C. The effective average

sum-rate under the BD precoding and the optimal MMF power allocation is

R̄⋆BD-MRC(G,Q) = GQξG,QE

{
ln

(
1 +

ρ∑
ψ∈Ψ

∑
k∈[Q] λ

−1
ψ,k

)}
, (C.13)

where the expectation is over channel fading. By using the eigendecomposition of
Tψ,−k = UΛUH , where Λ ∈ C(L−Q+1)×(L−Q+1) is an identity matrix and the columns
of U ∈ CL×(L−Q+1) constitutes the associated eigenvectors, we can rewrite λψ,k as
λψ,k = hTψ,kUΛUHh∗

ψ,k = ||UHh∗
ψ,k||2. As each column of U has unit-norm, we have

that UHh∗
ψ,k ∼ CN (0L−Q+1, βψ,kIL−Q+1). We can conclude that λψ,k = ||UHh∗

ψ,k||2 ∼
Gamma(L−Q+ 1, βψ,k). Define X ≜

∑
ψ∈Ψ,k∈[Q] λψ,k. The characteristic function (CF)

of X is

CFX(t) ≜ E {exp (ȷtX)} = E
{
exp

(
ȷt
∑

ψ∈Ψ,k∈[Q]
λψ,k

)}
=

∏
ψ∈Ψ,k∈[Q]

E {exp(ȷtλψ,k)}

(a)
=
∏

ψ∈Ψ,k∈[Q]
CFλψ,k(t) =

∏
ψ∈Ψ,k∈[Q]

(1− ȷβψ,kt)−J , (C.14)

where (a) follows from the well-known CF of Gamma distribution. Referring to [158, Thm.
1], we can rewrite (C.14) in terms of Gamma functions, and then take the inverse CF
transform, which is actually a kind of Mellin-Barnes contour integral. With the aid of
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Meijer’s G-function, we are enable to obtain a closed-form expression for the PDF of X,
as shown below

fX(x) =
[∏

ψ∈Ψ,k∈[Q]

( J

βψ,k

)J]
Gϖ,0
ϖ,ϖ

(
exp(−x)

∣∣∣∆(1)
ϖ

∆
(2)
ϖ

)
(C.15)

Substituting the PDF of X into (C.13), we obtain R̄⋆BD(G,Q) in (4.29).
When βψ,k = β for any ψ ∈ Ψ and k ∈ [Q], i.e., same path-loss in all users,

X =
∑

ψ∈Ψ,k∈[Q] λψ,k ∼ Gamma(ϖ,β). The effective sum-rate can be simplified as

R̄⋆sum(G,Q) = GQξG,Q

∫ ∞

0
ln
(
1 +

ρ

x

)
fX(x)dx

(a)
=

GQξG,Q
(ϖ − 1)!βϖ

∫ ∞

0
ln
(
1 +

ρ

x

)
xϖ−1 exp

(
−x
β

)
dx, (C.16)

where (a) follows from the PDF of Gamma(GQJ, β). Considering that exp(x) = G1,0
0,1

(
−

x
∣∣−
0

)
and ln(1 + x) = G1,2

2,2

(
x
∣∣1,1
1,0

)
, we can rewrite (C.16) as

R̄⋆sum(G,Q) =
GQξG,Q
(ϖ − 1)!β

∫ ∞

0
G1,2

2,2

(
ρ

x

∣∣∣1,1
1,0

)
xϖ−1

βϖ−1
G1,0

0,1

(
x

β

∣∣∣−
0

)
dx

(a)
=

GQξG,Q
(ϖ − 1)!β

∫ ∞

0
G2,1

2,2

(
x

ρ

∣∣∣0,1
0,0

)
G1,0

0,1

(
x

β

∣∣∣−
ϖ−1

)
dx, (C.17)

where (a) follows from [76, Eq. (9.31.2)] and [76, Eq. (9.31.5)]. By using [76, Eq.
(7.811.1)] in (C.17), we derive (4.30).

As ρ→∞, we can rewrite R̄⋆sum(G,Q) in (C.13) as

R̄⋆sum(G,Q) = GQξG,QE
{
ln
( ρ
X

)}
+ o(1)

= GQξG,Q ln ρ− GQξG,Q
(ϖ − 1)!βϖ

∫ ∞

0
ln (x)xϖ−1 exp

(
−x
β

)
dx+ o(1), (C.18)

which leads to (4.31) by using [76, Eq. (4.352.2)].

C.4 Proof of Proposition 4.1

Let eψ,k,q ∈ C
∑
k∈[Q]Mψ,k denote a vector with all zero elements except the (

∑
k′′∈[k−1]

Mψ,k′′+

q)-th element equalling 1. After removing the inter-group interference, the received signal
for decoding sψ,k,q in (4.3) under ZF precding designed in (4.32) is

y′ψ,k,q = eTψ,k,qH
T
ψH

∗
ψ

(
HT
ψH

∗
ψ

)−1
eψ,k,q

√([(
HT
ψH

∗
ψ

)−1]
k(q),k(q)

)−1√
Pψ,k,qsψ,k,q + z′ψ,k,q

+
∑

q′∈[Mψ,k]\q
eTψ,k,qH

T
ψH

∗
ψ

(
HT
ψH

∗
ψ

)−1
eψ,k,q′︸ ︷︷ ︸

=0

√([(
HT
ψH

∗
ψ

)−1]
k(q′),k(q′)

)−1√
Pψ,k,q′sψ,k,q′

156



Appendix C. Proofs in Chapter 4

+
∑

k′∈[Q]\k

∑
p∈[Mψ,k′ ]

eTψ,k,qH
T
ψH

∗
ψ

(
HT
ψH

∗
ψ

)−1
eψ,k′,p︸ ︷︷ ︸

=0

√([(
HT
ψH

∗
ψ

)−1]
k′(p),k′(p)

)−1√
Pψ,k′,psψ,k′,p

=

√([(
HT
ψH

∗
ψ

)−1]
k(q),k(q)

)−1√
Pψ,k,qsψ,k,q + z′ψ,k,q, (C.19)

where HT
ψH

∗
ψ

(
HT
ψH

∗
ψ

)−1
= I is considered, and the precoding vector for symbol sψ,k,q

is H∗
ψ

(
HT
ψH

∗
ψ

)−1
eψ,k,q

√([(
HT
ψH

∗
ψ

)−1]
k(q),k(q)

)−1
for any ψ ∈ Ψ and k ∈ [Q] (cf. VΨ

in (4.32)). Then, the effective average rate at Uψ,k is

R̄ZF
ψ,k = ξG,QE

{∑Mψ,k

q=1
ln

(
1 +

Pψ,k,q

N0

[(
HT
ψH

∗
ψ

)−1]
k(q),k(q)

)}
(C.20)

(a)

≥ ξG,Q
∑Mψ,k

q=1
ln

(
1 +

Pψ,k,q
N0

(
E
{[(

HT
ψH

∗
ψ

)−1]
k(q),k(q)

})−1
)
, (C.21)

where (a) follows from Jensen’s inequality on the convex function ln(1+x−1). Considering

that E
{[(

HT
ψH

∗
ψ

)−1]
k(q),k(q)

}
= 1

βψ,k(L−Mψ)
(cf. [104]), we obtain the lower-bound in

(4.34).
To obtain the upper-bound of R̄ZF

ψ,k, we use Jensen’s inequality for the convex function
ln(1 + x) in (C.20), which yields that

R̄ZF
ψ,k ≤ ξG,Q

∑Mψ,k

q=1
ln

(
1 +

Pψ,k,q
N0

E

{
1[(

HψH
H
ψ

)−1]
k(q),k(q)

})
, (C.22)

which induces the upper-bound in (4.35) by considering that E
{([(

HψH
H
ψ

)−1]
k(q),k(q)

)−1 }
=

βψ,k(L−Mψ + 1) (cf. [159]).
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Appendix D

Proofs in Chapter 5

D.1 Proof of Proposition 5.1

In view of the expression of S in (5.2), it is easy to derive the average of |S|2, i.e., the
channel power gain, as

E{|S|2} = E
{
A2 +AW exp(ȷ(ς − ς0)) +AW exp(ȷ(ς0 − ς)) +W2

}
(a)
= E{A2}+ E{W2} = 2b0 + ℵ, (D.1)

where (a) follows from E {exp(ȷς)} = E {exp(−ȷς)} = 0 because of ς uniformly distributed
over [0, 2π). The average of |S|4 is

E{|S|4} = E{|S|2|S|2}
= E

{(
A2 +AV exp(ȷ(ς − ς0)) +AV exp(ȷ(ς0 − ς)) + V2

)
×
(
A2 +AV exp(ȷ(ς − ς0)) +AV exp(ȷ(ς0 − ς)) + V2

)}
(a)
= E

{
A4 + 4A2V2 + V4

}
, (D.2)

where (a) follows from E{exp(ȷς)} = E{exp(−ȷς)} = E{exp(ȷ2ς)} = E{exp(−ȷ2ς)} = 0.

As A2 ∼ Exp
(

1
2b0

)
and V2 ∼ Gamma

(
m0,

ℵ
m0

)
, we have

E{A4} = 8b20, E{V4} =
(
1 +

1

m0

)
ℵ2.

Therefore, the average of |S|4 is derived as

E{|S|4} = 8b20 + 8b0ℵ+
(
1 +

1

m0

)
ℵ2 (D.3)

Combining (D.1) and (D.3), we can easily obtain the variance of |S|2 as

Var{|S|2} = E{|S|4} − E2{|S|2} = 4b20 + 4b0ℵ+
ℵ2
m0

, (D.4)

which concludes the proof.
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D.2 Proof of Lemma 5.1

The CDF of SNRMN in the MN scheme is

FSNRMN
(x) = Pr

{
min
g∈Ψ

{
SNRg

}
≤ x

}
= 1− Pr

{
min
g∈Ψ

{
SNRg

}
> x

}
= 1−

[
Pr{SNRg > x}

]G
(D.5)

By using the simplified CDF in Proposition 5.3, the CDF of SNRMN can be re-written as

FSNRMN
(x) = 1− αG0 exp

(
−G(φ0 − δ0)

ρ
x

)m0−1∑
j=0

m0−1∑
ℓ=j

Ξ(ℓ)ℓ!

j!

ρ−j

(φ0 − δ0)ℓ−j+1

xj

G .
(D.6)

Using Multinomial theorem [150], we can further write the CDF of SNRMN as

FSNRMN
(x) =1− αG0 exp

(
−G(φ0 − δ0)

ρ
x

) ∑
ℏ1+···+ℏm0=G

(
G

ℏ1, · · · , ℏm0

)

×

m0−1∏
t=0

(
m0−1∑
ℓ=t

Ξ(ℓ)ℓ!

t!

ρ−t

(φ0 − δ0)ℓ−t+1

)ℏt+1
x∑m0−1

t=0 tℏt+1 , (D.7)

where ℏ1, · · · , ℏm are non-negative integers.
The average rate in MN coded caching is

R̄MN = GE
{
ln(1 + SNRMN)

} (a)
= G

∫ ∞

0

1− FSNRMN
(x)

1 + x
dx

= GαG0
∑

ℏ1+···+ℏm0=G

(
G

ℏ1 · · · , ℏm0

)m0−1∏
t=0

(
m0−1∑
ℓ=t

Ξ(ℓ)ℓ!

t!

ρ−t

(φ0 − δ0)ℓ−t+1

)ht+1


×
∫ ∞

0

x
∑m0−1
t=0 tℏt+1

1 + x
exp

(
−G(φ0 − δ0)

ρ
x

)
dx, (D.8)

where (a) follows from [160, Eq. (48)]. By applying [76, Eq. (3.383.10)] in (D.8), we can
easily obtain (5.10).

D.3 Proof of Lemma 5.2

The characteristic function (CF) of of Sg =
∑B

b=1 ln(1 + SNRg,b) is defined as

CFSg(t) = E {exp(ȷtSg)} = E

{
exp

(
ȷt

B∑
b=1

ln(1 + SNRg,b)

)}
=
[
E
{
(1 + SNRg,b)

ȷt
}]B

.

(D.9)
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Substituting the PDF of SNRg,b into (D.9) yields

CFSg(t) =

[
α0

m0−1∑
i=0

Ξ(i)

ρi+1

∫ ∞

0
(1 + x)ȷtxi exp

(
−φ0 − δ0

ρ
x

)
dx

]B

=

[
α0

m0−1∑
i=0

Ξ(i)

ρi+1
i! · U

(
i+ 1, 2 + i+ ȷt,

φ0 − δ0
ρ

)]B
, (D.10)

By considering Gil-Pelaez Theorem, the CDF of Sg is obtained as

FSg(x) =
1

2
− 1

π

∞∫
0

Im

exp(−ȷxt)
t

[
α0

m0−1∑
i=0

Ξ(i)

ρi+1
i! · U

(
i+ 1, 2 + i+ ȷt,

φ0 − δ0
ρ

)]Bdt.

(D.11)

Define S = ming∈Ψ{Sg} = ming∈Ψ
{∑B

b=1 ln(1 + SNRg,b)
}
. The CDF of S can be

expressed by

FS(x) = Pr
{
min
g∈Ψ
{Sg} ≤ y

}
= 1− Pr

{
min
g∈Ψ
{Sg} > y

}
= 1− (Pr {Sg > y})G

= 1−

1

2
+

1

π

∞∫
0

Im

exp(−ȷxt)
t

[
α0

m0−1∑
i=0

Ξ(i)

ρi+1
i! · U

(
i+ 1, 2 + i+ ȷt,

φ0 − δ0
ρ

)]B dt

G

.

(D.12)

The average rate is finally derived as

R̄ACC =
G

B ln 2
E{S} = G

B ln 2

∫ ∞

0

[
1− FS(x)

]
dx, (D.13)

which yields Lemma 5.2 by substituting (D.12), and which concludes the proof.

D.4 Proof of Lemma 5.3

It is easy to see that ϱl = E{ln(1 + SNRg,b)} is actually the average rate in TDM. In
view of Corollary 5.1, the closed-form expression for ϱl is derived in (5.17). To derive the
closed-form expression for σ2l , we first consider the second moment of ln(1 + SNRg,b),

E
{
(ln(1 + SNRg,b))

2
}
=

∫ ∞

0

(
ln(1 + x)

)2
fSNRg,b(x)dx

= α0

m0−1∑
i=0

Ξ(i)

ρi+1

∫ ∞

0

(
ln(1 + x)

)2
xi exp

(
−φ0 − δ0

ρ
x

)
dx. (D.14)

To derive a closed-form expression for (D.14), we transfer ln(1+x) and xi exp
(
−φ0−δ0

ρ x
)

into their Meijer’s G-function forms,

ln(1 + x) = G1,2
2,2

(
x
∣∣1,1
1,0

)
, (D.15)
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xi exp

(
−φ0 − δ0

ρ
x

)
=

(
ρ

φ0 − δ0

)i
G1,0

0,1

(
φ0 − δ0

ρ
x
∣∣∣−
i

)
(D.16)

We can rewrite (D.14) as

E
{
(ln(1 + SNRg,b))

2
}

=
α0

ρ

m0−1∑
i=0

Ξ(i)

(φ0 − δ0)i

∞∫
0

G1,2
2,2

(
x
∣∣1,1
1,0

)
G1,2

2,2

(
x
∣∣1,1
1,0

)
G1,0

0,1

(
φ0 − δ0

ρ
x
∣∣∣−
i

)
dx

(a)
= α0

m0−1∑
i=0

Ξ(i)

(φ0 − δ0)i+1
G0,1:1,2:1,2

1,0:2,2:2,2

(
ρ

φ0 − δ0
,

ρ

φ0 − δ0

∣∣∣−i
−

∣∣∣1,1
1,0

∣∣∣1,1
1,0

)
, (D.17)

where (a) follows from [153, Eq. (07.34.21.0081.01)]. Considering

σ2l = E
{
(ln(1 + SNRg,b))

2
}
−
(
E
{
ln(1 + SNRg,b)

})2
, (D.18)

we can derive the closed-form expression for σ2l in (5.18), which concludes the proof.

D.5 Proof of Lemma 5.4

In [130], a real-function P (X) is defined by a positive random variable X with mean µX
and variance σ2X . The expectation of P (X) can be tightly approximated in the low-σ2X
region as

E{P (X)} ≈ P (µX) +
σ2X
2

(
∂2P (X)

∂X2

∣∣∣
X=µX

)
, (D.19)

where ∂2P (X)
∂X2 represents the second derivative of P (X) with respect toX. We refer to [129]

for the theoretical proof of this approximation method. By setting P (X) = ln(1 +X)
and P (X) = (ln(1 +X))2, where X = SNRg,b, we can derive the tight approximations
for the first and second moments of ln(1 + SNRg,b) respectively,

E {ln(1 + SNRg,b)} ≈ ln (1 + E {SNRg,b})−
Var {SNRg,b}

2

1

(1 + E {SNRg,b})2
, (D.20)

E
{(

ln(1 + SNRg,b)
)2}

≈
(
ln (1 + E {SNRg,b})

)2
+Var {SNRg,b}

1− ln (1 + E {SNRg,b})
(1 + E {SNRg,b})2

, (D.21)

Considering the closed-form expression for the average and variance of SNRg,b in Propo-
sition 5.1, we can further have the closed-form expression for ϱl in (5.19) and the second
moment of ln(1 + SNRg,b) as

E
{(

ln(1 + SNRg,b)
)2}

≈
(
ln (1 + (2b0 + ℵ)ρ)

)2
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+
1− ln (1 + (2b0 + ℵ)ρ)

(1 + (2b0 + ℵ)ρ)2
(
4b20 + 4b0ℵ+

ℵ2
m0

)
ρ2. (D.22)

By combining (D.20) and (D.21), the variance of ln(1 + SNRg,b) is derived as

σ2l = Var {ln(1 + SNRg,b)} = E
{(

ln(1 + SNRg,b)
)2}

− E2 {ln(1 + SNRg,b)}

≈ Var {SNRg,b}
(1 + E{SNRg,b})2

−

(
Var{SNRg,b}

)2
4(1 + E{SNRg,b})4

, (D.23)

which is derived as (5.20) by using Proposition 5.1. We complete the proof.

D.6 Proof of Lemma 5.5

By using the PDF of MG distribution in (5.23), we can obtain the average of ln(1+SNRg,b)
as

ϱl =
V∑
v=1

αv

∫ ∞

0
ln(1 + x)xφv−1 exp(−ξvx)dx

(a)
=

V∑
v=1

αvξ
−φv
v G1,3

3,2

(
1

ξv

∣∣∣1−φv ,1,1
1,0

)
, (D.24)

where (a) follows from [72, Eq. (24)].
The second moment of ln(1 + SNRg,b) in the MG fading model is

E
{(

ln(1 + SNRg,b)
)2}

=

V∑
v=1

αv

∫ ∞

0

(
ln(1 + x)

)2
xφv−1 exp(−ξvx)dx

(a)
=

V∑
v=1

αvξ
−(φv−1)
v

∫ ∞

0
G1,2

2,2

(
x
∣∣1,1
1,0

)
G1,2

2,2

(
x
∣∣1,1
1,0

)
G1,0

0,1

(
ξvx
∣∣−
φv−1

)
dx

(b)
=

V∑
v=1

αvξ
−φv
v G0,1:1,2:1,2

1,0:2,2:2,2

(
1

ξv
,
1

ξv

∣∣∣1−φv
−

∣∣∣1,1
1,0

∣∣∣1,1
1,0

)
, (D.25)

where (a) follows by transferring the exponential function and the logarithm function
into their Meijer’s G-function forms, and (b) follows from [153, Eq. (07.34.21.0081.01)].

Finally, combining (D.24) and (D.25), we obtain the variance of ln(1 + SNRg,b) in
(5.28), which concludes the proof.
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with asymmetric cache sizes and link qualities: The two-user case,” IEEE Trans.
Commun., vol. 67, no. 9, pp. 6112–6126, Sep. 2019.

[6] E. Lampiris et al., “Fundamental limits of wireless caching under uneven-capacity
channels,” in Int. Zurich Seminar, Feb. 2020.

[7] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless BC: Interplay of
coded-caching and CSIT feedback,” IEEE Trans. Inf. Theory, vol. 63, no. 5, pp.
3142–3160, May 2017.

[8] E. Piovano, H. Joudeh, and B. Clerckx, “Generalized degrees of freedom of the
symmetric cache-aided MISO broadcast channel with partial CSIT,” IEEE Trans.
Inf. Theory, vol. 65, no. 9, pp. 5799–5815, Sep. 2019.

[9] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feedback bottleneck
of multi-antenna coded caching,” IEEE Trans. Inf. Theory, vol. 68, no. 4, pp.
2331–2348, Apr. 2022.

[10] Z. Chen, J. Lee, T. Q. S. Quek, and M. Kountouris, “Cooperative caching and
transmission design in cluster-centric small cell networks,” IEEE Trans. Wireless
Commun., vol. 16, no. 5, pp. 3401–3415, May 2017.

165



Bibliography

[11] M. Bayat, R. K. Mungara, and G. Caire, “Achieving spatial scalability for coded
caching via coded multipoint multicasting,” IEEE Trans. Wireless Commun., vol. 18,
no. 1, pp. 227–240, Jan. 2019.

[12] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-caching
gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36, no. 6, pp. 1176–1188,
Jun. 2018.

[13] S. P. Shariatpanahi, G. Caire, and B. Hossein Khalaj, “Physical-layer schemes for
wireless coded caching,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2792–2807,
May 2019.

[14] S. Zhong and X. Wang,“Joint multicast and unicast beamforming for coded caching,”
IEEE Trans. Commun., vol. 66, no. 8, pp. 3354–3367, Aug. 2018.

[15] X. Xu and M. Tao, “Modeling, analysis, and optimization of coded caching in
small-cell networks,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3415–3428, Aug.
2017.

[16] Y. Cao, M. Tao, F. Xu, and K. Liu, “Fundamental storage-latency tradeoff in
cache-aided MIMO interference networks,” IEEE Trans. Wireless Commun., vol. 16,
no. 8, pp. 5061–5076, Aug. 2017.
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[45] M. Salehi and A. Tölli, “Diagonal multi-antenna coded caching for reduced sub-
packetization,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020.
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[104] A. M. Tulino and S. Verdú, “Random matrix theory and wireless communications,”
Foundations Trends Commun. Inf. Theory, vol. 1, no. 1, pp. 1–182, Jun. 2004.

[105] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feedback bottleneck
of multi-antenna coded caching,” IEEE Trans. Inf. Theory, vol. 68, no. 4, pp.
2331–2348, Apr. 2022.

[106] M. Kobayashi and G. Caire, “On the net DoF comparison between ZF and MAT
over time-varying MISO broadcast channels,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2012, pp. 2286–2290.

[107] M. Sadeghi, E. Björnson, E. G. Larsson, C. Yuen, and T. L. Marzetta, “Max–min
fair transmit precoding for multi-group multicasting in massive MIMO,” IEEE
Trans. Wireless Commun., vol. 17, no. 2, pp. 1358–1373, Feb. 2018.

[108] M. Kobayashi, G. Caire, and N. Jindal, “How much training and feedback are
needed in MIMO broadcast channels?” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2008, pp. 2663–2667.

[109] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO achievable
rates with downlink training and channel state feedback,” IEEE Trans. Inf. Theory,
vol. 56, no. 6, pp. 2845–2866, Jun. 2010.

[110] H. Zhao, A. Bazco-Nogueras, and P. Elia, “Vector coded caching multiplicatively
boosts the throughput of realistic downlink systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.07047

[111] S. Gupta and S. Moharir, “Request patterns and caching for VoD services with
recommendation systems,” in Proc. Int. Conf. on Commun. Syst. and Netw. (COM-
SNETS), Jan. 2017, pp. 31–38.

[112] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink
spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process.,
vol. 52, no. 2, pp. 461–471, Feb. 2004.

[113] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

173

https://arxiv.org/abs/2202.07047


Bibliography

[114] G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna Gaussian
broadcast channel,” IEEE Trans. Inf. Theory, vol. 43, no. 7, pp. 1691–1706, Jul.
2003.

[115] E. Björnson, M. Kountouris, and M. Debbah, “Massive MIMO and small cells:
Improving energy efficiency by optimal soft-cell coordination,” in Proc. Int. Conf.
Telecommun. (ICT), May 2013, pp. 1–5.

[116] P. Wang et al , “Convergence of satellite and terrestrial networks: A comprehensive
survey,” IEEE Access, vol. 8, pp. 5550–5588, 2020.

[117] H. Wu, J. Li, H. Lu, and P. Hong, “A two-layer caching model for content delivery
services in satellite-terrestrial networks,” in Proc. IEEE Glob. Commun. Conf.
(GLOBECOM), Dec. 2016, pp. 1–6.

[118] A. Kalantari et al., “Cache-assisted hybrid satellite-terrestrial backhauling for 5G
cellular networks,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Dec. 2017,
pp. 1–6.

[119] T. X. Vu et al., “Efficient 5G edge caching over satellite,” in Proc. 36th Int. Commun.
Satellite Syst. Conf. (ICSSC), Oct. 2018, pp. 1–5.

[120] K. An, Y. Li, X. Yan, and T. Liang, “On the performance of cache-enabled hybrid
satellite-terrestrial relay networks,” IEEE Wireless Commun. Lett., vol. 8, no. 5,
pp. 1506–1509, Oct. 2019.

[121] X. Zhang et al., “On the performance of hybrid satellite-terrestrial content delivery
networks with non-orthogonal multiple access,” IEEE Wireless Commun. Lett.,
vol. 10, no. 3, pp. 454–458, Mar. 2021.

[122] X. Wang, H. Li, T. Lan, and Q. Wu, “Overlay coded multicast for edge caching
in 5G-satellite integrated networks,” in Proc. IEEE Wireless Commun. and Netw.
Conf. (WCNC), May 2020, pp. 1–7.

[123] “Space communication calculations,” Australian Space Academy, 2019, accessed
on: 21/10/2021. [Online]. Available: http://www.spaceacademy.net.au/spacelink/
spcomcalc.htm

[124] G. Pan, J. Ye, Y. Tian, and M.-S. Alouini, “On harq schemes in satelliteterrestrial
transmissions,” IEEE Trans. Wireless Commun., vol. 19, no. 12, p. 7998–8010, Dec.
2020.

[125] P. K. Sharma et al., “Performance analysis of overlay spectrum sharing in hybrid
satellite-terrestrial systems with secondary network selection,” IEEE Trans. Wireless
Commun., vol. 16, no. 10, p. 6586–6601, Oct. 2017.

[126] A. Erdelyi, “Transformation of a certain series of products of confluent hypergeo-
metric functions. applications to laguerre and charlier polynomials,”Compos. Math.,
vol. 7, pp. 340–352, 1940.

174

http://www.spaceacademy.net.au/spacelink/spcomcalc.htm
http://www.spaceacademy.net.au/spacelink/spcomcalc.htm


Bibliography

[127] S. Ohmori, H. Wakana, and S. Kawase, Mobile Satellite Communications. Artech
House, 1997.

[128] M. Shah, “On generalization of some results and their applications,”Collectanea
Mathematica, vol. 24, no. 3, pp. 249–266, 1973.

[129] J. Holtzman, “A simple, accurate method to calculate spread-spectrum multiple-
access error probabilities,” IEEE Trans. Commun., vol. 40, no. 3, pp. 461–464, Mar.
1992.

[130] H. Zhao, Y. Liu, A. Sultan-Salem, and M.-S. Alouini, “A simple evaluation for the
secrecy outage probability over generalized-K fading channels,” IEEE Commun.
Lett., vol. 23, no. 9, pp. 1479–1483, Sep. 2019.

[131] H. Zhao and M.-S. Alouini, “On the transmission probabilities in quantum key
distribution systems over FSO links,” IEEE Trans. Commun., vol. 69, no. 1, pp.
429–442, Jan. 2021.

[132] J. Zhang, W. Zeng, X. Li, Q. Sun, and K. P. Peppas, “New results on the fluctuating
two-ray model with arbitrary fading parameters and its applications,” IEEE Trans.
Veh. Technol., vol. 67, no. 3, pp. 2766–2770, Mar. 2018.

[133] H. Zhao, Z. Liu, and M.-S. Alouini, “Different power adaption methods on fluctu-
ating two-ray fading channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp.
592–595, Apr. 2019.

[134] H. Zhao, J. Zhang, L. Yang, G. Pan, and M.-S. Alouini, “Secure mmWave commu-
nications in cognitive radio networks,” IEEE Wireless Commun. Lett., vol. 8, no. 4,
pp. 1171–1174, Aug. 2019.

[135] J. M. Romero-Jerez, F. J. Lopez-Martinez, J. F. Paris, and A. J. Goldsmith, “The
fluctuating two-ray fading model: Statistical characterization and performance
analysis,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4420–4432, Jul. 2017.

[136] M. D. Yacoub, “The κ−µ distribution and the η−µ distribution,” IEEE Antennas
Propagat. Mag., vol. 49, no. 1, pp. 68–81, Feb. 2007.

[137] H. Chergui, M. Benjillali, and S. Saoudi, “Performance analysis of project-and-
forward relaying in mixed MIMO-Pinhole and Rayleigh dual-hop channel,” IEEE
Commun. Lett., vol. 20, no. 3, pp. 610–613, Mar. 2016.

[138] I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, and H. Yanikomeroglu, “A
new formula for the BER of binary modulations with dual-branch selection over
generalized-K composite fading channels,” IEEE Trans. Commun., vol. 59, no. 10,
pp. 2654–2658, Oct. 2011.

[139] E. Lampiris, J. Zhang, O. Simeone, and P. Elia, “Fundamental limits of wireless
caching under uneven-capacity channels,” in Proc. Int. Zurich Seminar on Inf. and
Commun. (IZS), Feb. 2020, pp. 120–124.

175



Bibliography

[140] H. Joudeh, E. Lampiris, P. Elia, and G. Caire, “Fundamental limits of wireless
caching under mixed cacheable and uncacheable traffic,” IEEE Trans. Inf. Theory,
vol. 67, no. 7, pp. 4747–4767, Jul. 2021.

[141] E. Lampiris and P. Elia, “Bridging two extremes: Multi-antenna coded caching
with reduced subpacketization and CSIT,” in Proc. IEEE Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Jul. 2019.

[142] A. Malik, B. Serbetci, and P. Elia, “Coded caching in networks with heterogeneous
user activity,” Jan. 2022. [Online]. Available: https://arxiv.org/abs/2103.09156

[143] “Cisco visual networking index: Global mobile data traffic forecast update, 2017–
2022,”White Paper, Cisco, San Jose, CA, USA, Feb. 2019.

[144] J. W. Yoo, T. Liu, and F. Xue, “Gaussian broadcast channels with receiver message
side information,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun./Jul. 2009,
pp. 2472–2476.

[145] T. Cover and A. Thomas, Elements of information theory. Wiley-Interscience, Jul.
1991.

[146] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes,
4th ed. Tata McGraw-Hill Ed., 2001.

[147] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, no. 3-4, pp.
481–482, 1951.

[148] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables. US Government printing office, 1970, vol. 55.

[149] P. Billingsley, Probability and Measure, ser. Wiley Series in Probability and Statistics.
Wiley, 1995.

[150] K. Kataria, “A probabilistic proof of the multinomial theorem,” Amer. Math.
Monthly, vol. 123, no. 1, pp. 94–96, Jan. 2016.

[151] M. Inlow, “A moment generating function proof of the Lindeberg-Lévy central limit
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