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Chapter 1

Introduction

Context and history

Traffic congestion on urban road networks has increased substantially, since 1950 [Cav05]. Traf-
fic congestion is characterized by slow speeds, longer trip times, and increased vehicular queuing.
When vehicles are fully stopped for periods, this is known as a traffic jam [MAC12] [Dar90] or (in-
formally) a traffic snarl-up [FHSA93]. Traffic congestion has several negative impacts: reduction
of regional economic health, delays, more time to travel "just in case", increasing air pollution and
carbon dioxide emissions, more frequent repairs and replacements of vehicles, road rage and re-
duced health of motorists, interfering with the passage of emergency vehicles, and a higher chance
of collisions.

Traffic congestion resulting from traffic breakdown is an ubiquitous problem. Traffic break-
down usually arises from the combination of three ingredients: high traffic demand, bottlenecks,
and disturbances caused by individual drivers (see [TK12]). High traffic demand, which is the
inflow indicating the potential average traffic flow on the main road and exceeding the bottleneck
capacity, such as during rush hours, causes the slow velocity of the traffic stream. A bottleneck
is defined as a local reduction of the road capacity (see [TK12]). Most bottlenecks include flow-
conserving bottlenecks and non-flow-conserving bottlenecks with additional sources and sinks,
for example, on-ramp and off-ramp bottlenecks, or permanent and temporary types such as the
blocking effect resulting from accidents or traffic lights. The interaction of controlled autonomous
vehicles (as the moving bottlenecks) with the surrounding traffic and the possibility to reduce
congestion effect caused by some fixed bottlenecks downstream are studied in [Goa+21]. On the
basis of the Kerner–Klenov–Wolf (KKW) model of three-phase traffic flow theory, the traffic flow
model of expressway ramp system under the accident conditions is proposed in [Zen+21], and the
combined bottleneck effect of accidents on the traffic flow under the open boundary condition is
simulated and analyzed. Considering the LWR model, the optimal location problem is analyt-
ically identified, formulated, and solved for variable speed limit application areas inside a lane
drop bottleneck in [MJ20]. Traffic breakdown usually occurs, when there are disturbances caused
by individual drivers, such as abrupt lane changes, braking maneuvers, or other unanticipated
actions. The disturbances often lead to a platoon of vehicles following each other at small time
gaps which eventually becomes the first propagating upstream traffic wave of a triggered stop-and-
go state. Beyond the factors resulting in the traffic breakdown, high traffic demand is the most
effective ingredient. The disturbances caused by bottlenecks or individual drivers can not grow
and propagate on account of unconditional stability, if the traffic flux on the main road is low
enough. However, in spite of the absolute stability, traffic breakdown will take place with inflow
in excess of the capacity of bottlenecks. The local capacity reduction is the decisive attribute of
characterizing the obstructing effect of a bottleneck. Furthermore, we can not predict the time
and location of individual traffic breakdown due to the stochastic and single-vehicle natures of
disturbances caused by individual drivers. In this manuscript, we investigate the traffic congestion
problem on a main road with high traffic demand at the inlet and a bottleneck at the outlet.
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2 Chapter 1. Introduction

Aiming to understand and develop an optimal transport network with efficient movement of
vehicles and minimal traffic congestion problem, traffic flow is used to study the interactions
between travelers (drivers and their vehicles) and infrastructure (highways, signage, and traffic
control devices) in mathematics and transportation engineering. Attempts to produce a mathe-
matical theory of traffic flow date back to the 1920s, when Frank Knight first produced an analysis
of traffic equilibrium, which was refined into Wardrop’s first and second principles of equilibrium
in 1952. A point x = x∗ in the state space is said to be an equilibrium point of a system if
it has the property that whenever the state of the system starts at x∗, it will remain at x∗ for
all future time. An equilibrium point is stable if all solutions of a system starting at nearby
points stay nearby; otherwise, it is unstable. It is asymptotically stable if all solutions of a system
starting at nearby points not only stay nearby, but also tend to the equilibrium point as time
approaches infinity [KG02]. Nonetheless, even with the advent of significant computer processing
power, to date, there has been no satisfactory general theory that can be consistently applied
to real flow conditions. Current traffic models use a mixture of empirical and theoretical tech-
niques. These models are then developed into traffic forecasts, and take account of proposed local
or major changes, such as increased vehicle use, changes in land use, or changes in the mode of
transport (with people moving from bus to train or car, for example), and to identify areas of
congestion where the network needs to be adjusted. Nevertheless, calculations about congested
networks are more complex and rely more on empirical studies and extrapolations from actual
road counts. Because these are often urban or suburban in nature, other factors (such as road-
user safety and environmental considerations) also influence the optimum conditions. There are
common spatiotemporal empirical features of traffic congestion that are qualitatively the same for
different highways in different countries, measured during years of traffic observations. Some of
these common features of traffic congestion define the synchronized flow and wide moving jam
traffic phases of congested traffic in Kerner’s three-phase traffic theory of traffic flow (see also
Traffic congestion reconstruction with Kerner’s three-phase theory). In a free-flowing network,
traffic flow theory refers to the traffic stream variables of speed, flow, and concentration. These
relationships are mainly concerned with uninterrupted traffic flow, primarily found on freeways or
expressways. In this manuscript, we study the congested traffic flow on a freeway. Freeways are
defined as those facilities that afford uninterrupted flow of traffic, i.e., there is full access control.
Control of access refers to public access rights from properties along the freeway; access to freeway
facilities is allowed only through selected public roads, typically on- and off-ramps [Bla80]. Thus,
freeways typically operate at higher speeds and higher capacities than urban arterial streets or
local roadways [Ele14].

Traffic flow is generally constrained along a one-dimensional pathway. Vehicles following each
other along a given travel lane will have parallel trajectories, and trajectories will cross when one
vehicle passes another. There are three main variables to visualize a traffic stream: speed (v),
density (ρ, the number of vehicles per unit of space), and flow (q, the number of vehicles per unit
of time) [Ele14]. These fundamental traffic flow characteristics are related as follows:

flow = density × speed.

Speed is the distance covered per unit of time. In practice, the average speed is measured by
sampling vehicles in a given area over a period of time. In traffic flow, the two most important
densities are critical density (ρc) and jam density (ρm). The maximum density achievable under
free flow is critical density, while jam density is the maximum density achieved under congestion.
Flow is the number of vehicles passing a reference point per unit of time. In addition to pro-
viding information on the speed, flow, and density of traffic streams, Fig. 1.1 may illustrate the
propagation of congestion (shockwave) upstream from a traffic bottleneck. Congestion shockwave
will vary in propagation length, depending upon the upstream traffic flow and density. However,
shockwave will generally travel upstream at a rate of approximately 20 km/h. The triangular
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Critical Density (ρc)
Density (ρ)

Jam Density (ρm)

Flow (q)

Max Flow (Qmax)

Figure 1.1: Flow Density relationship.

curve consists of the free flow side created by placing the free flow velocity vector of a roadway at
the origin of the flow-density graph and the congested branch created by placing the vector of the
shock wave speed at zero flow and jam density. The congested branch has a negative slope, which
implies that the higher the density on the congested branch the lower the flow; therefore, even
though there are more cars on the road, the number of cars passing a single point is less than if
there were fewer cars on the road. The intersection of free flow and congested vectors is the apex
of the curve and is considered as the capacity of the roadway, which is the traffic condition at
which the maximum number of vehicles can pass by a point in a given time period. The flow and
capacity at this point are the optimum flow and optimum density, respectively. The term “capac-
ity” has been used to quantify the traffic-carrying ability of transportation facilities. The value of
capacity is used when designing or rehabilitating highway facilities to determine their geometric
design characteristics such as the desirable number of lanes, it is used to design the traffic signal-
ization schemes of intersections and arterial streets, it is used in evaluating whether an existing
facility can handle the traffic demand expected in the future, and it is also used in the operations
and management of traffic control systems (ramp metering algorithms, congestion pricing algo-
rithms, signal control optimization, incident management, etc.) [Ele14]. The first traffic stream
model was developed by Greenshields [BD+35], who developed a linear speed–density relationship
based on field data. Figure 1.2 provides a sketch of the Greenshields model, which consists of the
flow–speed, flow–density, and speed–density relationships. There are three main ways to study
traffic flow [KG18], corresponding to the three scales: microscopic scale, every vehicle is considered
as an individual. An equation can be written for each, usually an ordinary differential equation
(ODE); macroscopic scale, similar to models of fluid dynamics, it is considered useful to employ
a system of partial differential equations, which balance laws for some gross quantities of interest;
mesoscopic "kinetic" scale, intermediate possibility, following methods of statistical mechanics,
can be computed using an integrodifferential equation such as the Boltzmann equation. Beyond
three scales, macroscopic models typically described by partial differential equations (PDEs) are
more suitable to study congested traffic and disturbances in the traffic flow.

There are many macroscopic models. The first order Lighthill-Whitham-Richards (LWR)
model (see [LW55] and [Ric56]) represents density-velocity relation in equilibrium and fails
to model stop-and-go traffic. The second-order Payne-Whitham (PW) model (see [Pay71]
and [Whi99]) consists of momentum equation and conservation law, and it is a nonlinear second-
order deviation from density-velocity equilibrium. The second order Aw-Rascle-Zhang (ARZ)
model (see [AR00] and [Zha02]) is derived from the combination of these two models (LWR model
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Speed Density

CapacityFlow Flow

Speed

Speed

Density
Speed and Density at Capacity

Figure 1.2: Flow, speed, density relationships: the Greenshields model.

and PW model) through suitable definition and coefficients. There are also some new models
to solve some problems or to improve the model properties. A new car-following model is pre-
sented in [Tan+09]. The exact boundary controllability of a class of nonlocal conservation laws
modeling traffic flow is studied in [Bay+21]. In [GK07], the authors propose a new continuum
model with an additional anisotropic term that ensures the characteristic velocities can be less
than or equal to the macroscopic flow speed. In [LBCG20], a new macroscopic traffic flow model
is presented resulting from the physical realism of the boundedness of traffic acceleration. Except
the single road models, there are some models for networks. A macroscopic traffic flow model
is presented to deal with conservation laws on networks and coupled boundary conditions at the
junctions with buffers of fixed arbitrary size and time-dependent split ratios in [LB+20]. A two-
dimensional traffic dynamic model for large-scale traffic networks is introduced in [Mol+19]. In
this manuscript, the ARZ traffic model of hyperbolic PDEs is used to estimate the disturbance
rejection capacity and reject disturbances to stabilize the single lane traffic flow system. Comput-
ing the value of L2 gain from disturbance to output is a classical control method to measure the
disturbance rejection capacity (see the recent survey [MP20]). For linear systems with L2 distur-
bances, the problems of disturbance tolerance and rejection are formulated and solved in [FLH04].
In [HLM02b] and [HLM02a], under conditions written with linear matrix inequalities, L2 gain
is applied to characterize the ability to reject disturbance for linear systems in the presence of
actuator saturation and disturbance as in Chapter 5 of [LL18] and Chapter 3 of [Tar+11].

The complex and nonlinear way of traffic behavior is dependent on the interactions of massive
vehicles. Several equilibriums, frequent lane changes, overtaking, and platoon dispersion probably
happen in congested traffic on account of the interplay between different types of vehicles and
drivers [NL07]. Besides the homogeneous models as above, there are many macroscopic traffic
flow models for heterogeneous traffic. Paper [FW15] studies a two-type vehicle heterogeneous
traffic model to acquire overtaking and creeping traffic flows. In [MR17], the extended macroscopic
N -type Aw-Rascle (AR) traffic model is used for heterogeneous traffic by using area occupancy.
The concept of area occupancy is introduced for measuring heterogeneous traffic concentration
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in [MR06] and [AD08]. In [MR21], a continuum multi-type traffic model is introduced on the
basis of a three-dimensional flow–concentration surface. An n-population generalization of the
Lighthill–Whitham-Richards traffic flow model is presented in [BGC03]. For the mixed traffic,
some models have been presented. In [JW04], an extended speed gradient (SG) model is used to
study the mixed traffic flow system. In [Liu+21], the data-driven optimal controller is designed
for connected and autonomous vehicles (CAVs) in a mixed-traffic situation (specifically, including
heterogeneous human-driven vehicles). The interaction between CAV and human-driven vehicle
(HDV) dynamics is investigated, and a complete CAV control input and the feasible conditions of a
platoon formation are presented in [MM22] (see also [Tay+21]). In [Gar+20], a model is proposed
for mixed traffic composed of few CAVs in the bulk flow, relying on a multi-scale approach to couple
a PDE describing the entire traffic flow and ODEs describing CAV trajectories. About the traffic
networks, paper [TCL21] contributes to the boundary control design for multi-directional congested
traffic evolving on large-scale urban networks represented by a continuum of two-dimensional
planes, and in [AB22], a delay-robust stabilizing state feedback boundary control law is developed
for an underactuated network of two subsystems of heterodirectional linear first-order n + m

hyperbolic PDEs systems. For the study of multi-type traffic system in this manuscript, we
introduce the multi-type AR traffic flow hyperbolic model to design a controller for rejecting
disturbances and stabilizing the system.

In order to stabilize hyperbolic systems of highway traffic, it is natural to use a proportional-
integral (PI) boundary feedback control strategy on available control signals such as ramp metering
or variable speed limits on a road, due to its actual superiority in attenuating disturbances in
engineering. In control theory, the PI feedback control method is a fruitful paradigm for industrial
and real-life applications for infinite-dimensional systems (see e.g., [ACL05]). Indeed, dissipative
PI boundary conditions have been given for one-dimensional linear hyperbolic systems of balance
laws in [DBC12]. Lyapunov stability of hyperbolic systems of conservation laws is achieved for
boundary control law with integral action in [SM+08]. A PI controller only depending on one side
measurable angular velocity is used to analyze the stability of the inhomogeneous drilling model
in [TJ+20]. In [ZPQ19], a PI boundary feedback controller is designed to stabilize the oscillations
of the traffic parameters on a freeway segment by using on-ramp metering and variable speed
control. Paper [ZP17] proves the local stability of a positive hyperbolic system by designing a PI
boundary feedback controller to stabilize the oscillations of the traffic parameters on a freeway by
the Lyapunov method. For the stability of a cascaded network consisting of several 2 × 2 linear
hyperbolic systems, PI output feedback controllers are designed to reject disturbance and regulate
output to the desired points in [TAX18].

For the stability analysis in this manuscript, integral input-to-state stability (iISS) (a closely
related notion of input-to-state stability (ISS), that is known as one of the central notions in the
control theory of dynamical systems since the seminal paper [Son89]) is used to estimate the impact
of the integral of the disturbances to the state norm [MI15a]. Indeed it allows for the description of
the disturbance effect on the state of nonlinear finite-dimensional systems and provides some design
methods of dynamical output feedback laws (see the survey [Son08]). For infinite-dimensional
systems, the theory has been recently generalized in [KMZ21]. In this manuscript, we exploit such a
notion (iISS) in a quasi-linear infinite-dimensional system with boundary control and perturbation.
More precisely, by providing an iISS property, we design an observer of the homogeneous linearized
traffic flow model that guarantees the accurate estimation of the traffic state under the condition
that the initial estimation is not too far from the actual state.

In this research, we use the backstepping method to derive a boundary feedback controller
to alleviate traffic congestion. The backstepping approach is the extension of Volterra integral
transformations and can be used to systematically design controller and observers for linear PDEs.
For the infinite-dimensional system, the controllers and observers can be derived directly and all



6 Chapter 1. Introduction

analysis can be done without discretization before implementation on a computer. The rationale
behind the backstepping method in this manuscript is the following: through constructing an
appropriate Volterra integral transformation, the original PDE system is mapped to an integral
iISS target system. The original system inherits the stability property thanks to the invertibility
of backstepping transformation. The kernels derived from the backstepping transformation are
adopted as gains of the original system feedback controller.

The backstepping method for hyperbolic PDEs was initially introduced by [KS08], [Krs08]
and [SCK10]. For the backstepping boundary control design of hyperbolic systems, there are
some theoretical results obtained recently. The robust output regulation problem for boundary-
controlled linear 2× 2 hyperbolic systems is solved in [Deu17a]. By implementing the finite-time
state feedback regulator with disturbance observers, the finite-time output regulation problem
is solved in [Deu17b]. Two closely related state feedback adaptive control laws are designed for
the stabilization of linear hyperbolic systems with constant but uncertain in-domain and bound-
ary parameters in [AA18]. An output feedback control law is designed for a quasi-linear 2 × 2

system of first-order hyperbolic PDEs with actuation and measurement on only one end of the
domain, and the local H2 exponential stability of the closed-loop system is proved in [VKB12].
[Cor+13] uses a backstepping transformation to design a full-state feedback control law and derives
H2 exponential stability for a quasi-linear 2×2 system of first-order hyperbolic PDEs. An output
feedback controller is designed for the underactuated cascade network of interconnected PDEs
systems using backstepping in [Aur20]. Paper [BCH21] studies the sufficient conditions for local
input-to-state stability in the sup norm of general quasi-linear hyperbolic systems with bound-
ary input disturbances. [Vaz+19] uses the backstepping method to stabilize the low-frequency
parts of a 2-D reaction-diffusion system with Neumann-type boundary conditions. In considera-
tion of the limits of technology and cost, there have been works inspired by [VKC11], designing
an observer-based output feedback control law for the linearized ARZ traffic flow model by using
backstepping transformations (see also [YK19a]). On the basis of PDE backstepping, the solutions
to stabilization of homodirectional and General heterodirectional linear coupled hyperbolic PDEs
are yielded by both full-state and observer-based output feedback, and the trajectory tracking
problems are solved in [Hu+16]. Bilateral control and observation problems for a class of viscous
Hamilton–Jacobi PDEs are tackled by backstepping in [BLV19]. In [Yu+20], a boundary observer
for the nonlinear ARZ traffic flow model is designed to the information of traffic states using
the backstepping method. An observer-based output feedback control law is designed for the lin-
earized ARZ traffic flow model by using backstepping transformations in [YK19b]. In [VK19], the
problem of boundary control design and observation are dealt with for radially varying coefficients
reaction-diffusion equation under revolution symmetry conditions on a sphere by the backstepping
method. Paper [BYK21] uses the backstepping method to design an output feedback boundary
control for the stop-and-go traffic problem of a linearized two-class AR traffic flow system.

Instead of solving an identification problem for the traffic flow, we solve this problem for a
pandemic dynamic. Until now, COVID-19 has widely spread over the world and has resulted in
huge pressure on hospital capacity and massive death of the population in the world. Quarantine
and lockdown measures have effectively controlled the spread of the infection, in particular in
China (see [Kuc+20]). Quarantine is a rather old technique to prevent the spread of diseases. It
is used at the individual level to constrain the movement of the population and encourage them to
stay at home. Lockdown measures reduce the pandemic transmission by increasing social distance
and limiting the contacts and mobility of people, e.g. with the cancellation of public gatherings,
the closure of public transportation, and the closure of borders. But longstanding lockdown results
in inestimable financial costs, many job losses, and particularly psychological panic of people and
social instability. As declared by some governments (see [Gos+20]), testing is crucial to exit
lockdown, mitigate health harm and decrease economic expenses. In this manuscript, we consider
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two classes of active detection. The first one is the short-range test: molecular or Polymerase
Chain Reaction (PCR) test, which is used to detect whether one person has been infected in the
past. The second test is the long-range test: serology or immunity test, which allows determining
whether one person is immune to COVID-19 now. This test is used to identify the individuals
that cannot be infected again.

There have been many papers that focus on estimating the effect of lockdown strategies on
the spread of the pandemic (e.g. [BHM20] and [Roq+20]). In [Pra+20], the lockdown effect
is estimated using stochastic approximation, expectation maximization, and estimation of basic
reproductive numbers. In the last part of this manuscript, we aim at evaluating the dynamics of
the pandemic after the lockdown by looking at the transport effect. For our research on COVID-
19, we aim to evaluate the effect of lockdown within a given geographical scale in France, such
as the largest cities, urban agglomerations, French departments, or one of the 13 Metropolitan
Regions (to go from the finest geographical scale to the largest one). The estimations of effect are
also considered in different age classes, such as early childhood, scholar childhood, working-class
groups, or the elderly. Besides, we propose to understand the effect of partial lockdown or other
confinement strategies depending on some geographical perimeters or some age groups (as the one
that Lyon experienced very recently, see [Fra20]).



8 Chapter 1. Introduction

Contributions

The work presented in this manuscript lies in the domain of the control theory of traffic
flow dynamics. To be more specific, the objective is to seek an optimal tuning of control law
for alleviating the congested traffic and rejecting disturbances on a considered roadway with a
bottleneck at the downstream boundary. In this framework, we investigate the optimization
control problem of the homogeneous and heterogeneous traffic flow dynamics described by quasi-
linear hyperbolic PDEs. Our main contributions are as follows:

• For sake of consequently strengthening the robustness of the homogeneous traffic dynamics,
the first main contributions of our work are the design of a PI boundary feedback controller
maximizing the disturbance rejection and the design of an observer-based output boundary
control of traffic breakdown to remove or weaken the effect of high traffic demand, with the
fastest convergence rate.

• This manuscript states a new result on the controller design by using the backstepping
method for the linearized multi-type traffic flow hyperbolic system around a nonuniform
equilibrium to reject disturbances and then alleviate the congested traffic. Firstly, this work
presents the derivation of an extended multi-type AR traffic flow model in the characteristic
form. Secondly, we prove the integral input-to-state stability (iISS) of a target system that
has a source term of integral form and a proportional-integral (PI) boundary control for
rejecting disturbances. Moreover, a controller implemented by ramp metering is designed to
robustly stabilize the heterogeneous traffic system by applying the backstepping method to
the multi-type vehicle traffic model.

• In the study of the COVID-19 epidemic, one contribution is that an extension of the typical
SIRD pandemic model is presented for characterizing the regional spread of COVID-19 in
France before and after the lockdown strategies. In order to estimate the effect of lockdown
strategies and understand the evolution of the undetected compartments for each region
in France, an optimization algorithm is used to solve the following identification problem:
derive the optimal parameters for regions by fitting the extended model to real reported
data during the lockdown. Based on regional model analysis before and after the lockdown,
we present a network model to characterize the pandemic transmission between regions in
France after the lockdown and evaluate the transport effect of the COVID-19 pandemic, when
considering all age classes together. The most interesting point is the chosen exponential
transmission rate (time-dependent) function β, in order to incorporate the complex effect of
lockdown and unlock down strategies.
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Structure

This manuscript is organized as follows:

In Chapter 2, we succeed to design a PI controller computed on the linearized ARZ traffic
model. Computing the value of L2 gain from disturbance to output, that is to measure the distur-
bance rejection capacity (see the recent survey [MP20]), yields numerically tractable conditions
since convex conditions are derived for the PI controller design. Moreover, by means of numerical
simulations, the stability of the quasi-linear ARZ model in a closed-loop with this controller is
obtained.

In Chapter 3, the linearized ARZ traffic flow model with boundary disturbances is derived
by making use of coordinate transformation and linearization around the equilibrium. Using
backstepping transformation to map the linearized ARZ traffic flow model into an iISS target
system, we obtain a full-state feedback controller. We use the backstepping method to derive an
observer-based output feedback controller to alleviate the congested traffic resulting from traffic
breakdown. Finally, the optimization problem is discussed and the results of numerical simulations
are provided.

Chapter 4 presents the derivation of an extended multi-type AR traffic flow model in the
characteristic form and proves the iISS of the target system which has a source term of integral
form and a PI boundary control for rejecting disturbances. Moreover, a controller implemented
by ramp metering is designed to robustly stabilize the heterogeneous traffic system by applying
the backstepping method to the multi-type vehicle traffic model.

In Chapter 5, extending the control problem of the linearized multi-type traffic system in
Chapter 4, we solve the problem of the stabilization for a multi-type traffic flow system of quasi-
linear PDEs in the congested regime, with disturbances and actuation at the inlet boundary and
capacity drop in the downstream boundary of a considered road segment. The controller which is
designed for the linearized system by backstepping method is applied to locally stabilize the quasi-
linear system around a nonuniform equilibrium. The iISS of the quasi-linear system is derived by
making use of the Lyapunov method to analyze the iISS of the target system, which is mapped
into the quasi-linear system by a backstepping transformation.

In Chapter 6, considering the context of pandemic dynamics, an extended model is derived
from the classical pandemic SIRD model and the rationale behind the model is explained. We
present the parameters optimization problem and estimate the effect of lockdown strategies. From
the calibration of parameters for each region in France, we derive the pandemic start date of
regions. A network model of pandemic transmission between regions is introduced and the network
simulation is implemented. By using the same model as the pandemic network of regions in France,
we simulate the pandemic network of all cities in France.

Some conclusions and perspectives end this manuscript.

So far, there are several papers published and reviewed as follows:

• Lina Guan, Liguo Zhang, and Christophe Prieur. “Optimal PI controller rejecting distur-
bance for ARZ traffic model”. In: 59th IEEE Conference on Decision and Control (CDC).
2020, pp. 5665–5670;

• Lina Guan, Christophe Prieur, Liguo Zhang, Clémentine Prieur, Didier Georges, and Pascal
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Bellemain. “Transport effect of COVID-19 pandemic in France”. In: Annual Reviews in
Control 50 (2020), pp. 394–408;

• Lina Guan, Liguo Zhang, and Christophe Prieur. “Optimal observer-based output feedback
controller for traffic congestion with bottleneck”. In: International Journal of Robust and
Nonlinear Control 31 (15 2021), pp. 7087–7106;

• Lina Guan, Liguo Zhang, and Christophe Prieur. “Optimal Boundary ISS Controller for
Heterogeneous and Congested Traffic”. In: Automatica (2021), under review as a Regular
Paper;

• Lina Guan, Liguo Zhang, and Christophe Prieur. “Stabilization of Heterogeneous quasi-
linear Traffic Flow System with Disturbances”. In: IEEE Transactions on Automatic Control
(2022), under review;

• Lina Guan, Christophe Prieur, and Liguo Zhang. “State observation for Heterogeneous
quasi-linear Traffic Flow System with Disturbances”. In: Mathematics of Control, Signals,
and Systems (2022), under review;
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Notation

Let us conclude this chapter by providing the notation used in this manuscript. The set of positive
real numbers is represented by R>0.

C0 is the set of continuous functions, and C1 is the set of continuously differentiable functions.
A function belongs to the set C2 if the first and second derivatives of the function both exist and
are continuous. If the derivatives f (n) exist for all positive integers n, the function is smooth or
equivalently, belongs to the set C∞.

max(S) is the maximum value of all the elements in S if S is a set.

∂tf and ∂xf respectively denote the partial derivatives of a function f with respect to the
variables t and x. f ′ denotes the first derivative of a function f with respect to the variable x,
and ḟ denotes the first derivative of a function f with respect to the variable t.

For a function φ = [φ1, . . . , φn]
⊤ : [0, L] × [0,+∞) → Rn, we define the following norms, the

L1-norm

∥φ∥L1((0,L);Rn) =

∫ L

0

(|φ1(ξ, t)|+ · · ·+ |φn(ξ, t)|) dξ,

the L2-norm

∥φ∥L2((0,L);Rn) =

(∫ L

0

(φ2
1(ξ, t) + · · ·+ φ2

n(ξ, t)) dξ

) 1
2

,

the L∞-norm

∥φ∥L∞((0,L);Rn) = max
{
∥φ1∥L∞((0,L);R), . . . , ∥φn∥L∞((0,L);R)

}
,

the H1-norm

∥φ∥H1((0,L);Rn) =

(∫ L

0

(
∥φ∥2L2((0,L);Rn) + ∥φx∥2L2((0,L);Rn)

)
dx

) 1
2

,

and the H2-norm

∥φ∥H2((0,L);Rn) =

(∫ L

0

(
∥φ∥2L2((0,L);Rn) + ∥φx∥2L2((0,L);Rn) + ∥φxx∥2L2((0,L);Rn)

)
dx

) 1
2

.

Rn denotes the set of real n-dimensional column vectors. Rn×l denotes the set of real n × l

matrices. 0n×l denotes the n × l zero matrix. In is a n-dimensional identity matrix. Dn denotes
the set of n-dimensional diagonal matrix. D+

n denotes the set of n-dimensional diagonal matrix in
which the main diagonal entries are positive.

The n-dimensional column vector is represented as M =
[
M1 M2 · · · Mn

]⊤
, where the

argument Mi (i = 1, 2, . . . , n) is a scalar or a column vector. The diagonal matrix is represented
as M = diag{d1, d2, . . . , dn} with the diagonal entry di (i = 1, 2, . . . , n). The block diagonal
matrix is represented as M = diag{M1,M2, . . . ,Mn}, and the block matrix is represented as

M =


M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn

, where the main diagonal argument Mi (i = 1, 2, . . . , n) and the
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argument Mij (i, j = 1, 2, . . . , n) are matrices. [M ]i,j denotes the entry of matrix M in the i-th
row and the j-th column. {Mij}n1≤i≤n2,l1≤j≤l2

denotes a matrix consisting of the entries of matrix
M in the rows from n1-th to n2-th and the columns from l1-th to l2-th.

M−1 denotes the inverse matrix of a square matrix M . M⊤ denotes the transpose of a matrix
M . λ(M) is the set of all the eigenvalues of a matrix M , and |λ(M)| is the set of absolute values
of all the eigenvalues if M is a square matrix.

The symbol ∗ stands for a symmetric block in a matrix.
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A perturbed distributed parameter model is used, and a boundary control is designed to reject
the perturbations. More precisely an optimal tuning PI feedback control law is computed to
maximally reject the disturbances and stabilize the traffic in a congested regime. The disturbance
applies at the boundary of the linearized ARZ model. Therefore the disturbance operator is
unbounded, rendering the control problem very challenging. To analyze and design the optimal
tuning PI controller for this infinite-dimensional system, the L2 gain is computed to estimate
the disturbance rejection. Numerically tractable conditions are computed and written with linear
matrix inequalities (LMIs). As a result, the estimation of an upper bound of the L2 gain, from
the disturbance to the controlled output, can be formulated as an optimization problem with LMI
constraints. The validity of this method is checked on simulations of the nonlinear ARZ model in
a closed-loop with this optimal tuning PI controller.

This chapter has been published in [GZP20].

2.1 Linearized ARZ traffic flow model

The Aw-Rascle-Zhang model is a typically local second-order macroscopic traffic flow model com-
posed of the following continuity and acceleration equations:

∂tρ(x, t) + ∂x(v(x, t)ρ(x, t)) = 0, (2.1)

∂tv(x, t) + (v(x, t)− ρ(x, t)p′(ρ(x, t))) ∂xv(x, t) =
Ve(ρ(x, t))− v(x, t)

τ
, (2.2)

with an independent space variable x in (0, L) on a road section of length L, and an independent
time variable t in [0,∞). As the locally aggregated quantities, the traffic density ρ(x, t) is defined
as the number of vehicles per unit length at time t, and the mean speed v(x, t) is the average speed
of the vehicles passing the location x for a fixed time interval. With the maximal free flow speed

13



14 Chapter 2. Control of homogeneous linearized traffic without bottleneck

vf and the maximum density ρm, the inequalities 0 < v ≤ vf and 0 < ρ ≤ ρm hold. The speed
adaptation time τ is a constant and corresponds to the inverse of agility. In the previous model,
the equilibrium speed Ve(ρ) is the speed-density relation given by Greenshield’s model in [BD+35]
as

Ve(ρ) = vf

(
1− ρ

ρm

)
. (2.3)

The speed adaptation term or relaxation term located on the right side of the equation (2.2) de-
scribes the mean acceleration of the vehicles in the local neighborhood for reaching the equilibrium
speed.

The traffic pressure p(ρ) is an increasing function of density defined as, with a positive constant
γ,

p(ρ) = vf − Ve(ρ) = vf

(
ρ

ρm

)γ

. (2.4)

The constant γ represents the reflection of the driver to the increasing density and can be tuned
to get the realistic traffic pressure p(ρ). For simplicity of analysis, γ = 1 is chosen. By defining
ω = v +

vf
ρm
ρ as a new variable representing the traffic "friction" or drivers’ property [FS13] and

transporting with the vehicle velocity in the traffic flow, the fully nonlinear system (2.1)-(2.2) is
changed into the following quasi-linear system, for all x ∈ [0, L], t ∈ [0,∞),

∂tω(x, t) + v(x, t)∂xω(x, t) =
vf − ω(x, t)

τ
, (2.5)

∂tv(x, t) + (2v(x, t)− ω(x, t))∂xv(x, t) =
vf − ω(x, t)

τ
. (2.6)

In (2.6), the propagation velocity 2v−ω > 0 stands for the weak interactions between the vehicles,
the traffic wave propagates with the traffic flow (downstream) at this characteristic velocity in free
traffic. Usually, the propagation velocity of the traffic wave is slightly less than the average free-
flow vehicle speed in free traffic. Reversely, the characteristic velocity 2v − ω < 0 represents the
traffic waves moving against the traffic flow (upstream) in congested traffic due to the reaction
of the drivers to their respective leading vehicles. In this study, we take into account the control
problem of perturbation in congested traffic situations.

Denote by (ω∗, v∗)
⊤ in C1([0, L];R2) a equilibrium of the system (2.5)-(2.6) such that 2v∗(x)−

ω∗(x) < 0 for all x ∈ [0, L] on a stable and inhomogeneous road (with speed and density gradients).
Note that it depends on the space variable x and the corresponding density is ρ∗ = ρm

vf
(ω∗ − v∗).

The deviations from the system states (ω, v)⊤ are defined as ω̃h = ω − ω∗, ṽh = v − v∗, then the
quasi-linear deviation system is obtained, for all x ∈ [0, L], t ∈ [0,∞),

∂tω̃
h(x, t) + Λh

1 (ω̃
h, ṽh, x)∂xω̃

h(x, t) + ṽh(x, t)ω∗′(x) +
ω̃h(x, t)

τ
= 0, (2.7)

∂tṽ
h(x, t) + Λh

2 (ω̃
h, ṽh, x)∂xṽ

h(x, t) +
(
2ṽh(x, t)− ω̃h(x, t)

)
v∗′(x) +

ω̃h(x, t)

τ
= 0, (2.8)

with two characteristic velocities

Λh
1 (ω̃

h, ṽh, x) = ṽh(x, t) + v∗(x),

Λh
2 (ω̃

h, ṽh, x) = 2ṽh(x, t)− ω̃h(x, t) + 2v∗(x)− ω∗(x),

where Λh
1 (ω̃

h, ṽh, x) > 0, Λh
2 (ω̃

h, ṽh, x) < 0.
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Figure 2.1: Traffic flow in a freeway segment.

An uniform equilibrium of the system (2.7)-(2.8) is considered in this chapter, define ω∗ = vf
and select the constant v∗ such that 2v∗ − ω∗ < 0, then the following linearized ARZ model can
be derived, for all x ∈ [0, L], t ∈ [0,∞),

∂t

[
ω̃h(x, t)

ṽh(x, t)

]
+

[
λh1 0

0 −λh2

]
∂x

[
ω̃h(x, t)

ṽh(x, t)

]
=

[
− 1

τ 0

− 1
τ 0

] [
ω̃h(x, t)

ṽh(x, t)

]
, (2.9)

where the constant characteristic velocities λh1 = v∗,−λh2 = 2v∗−ω∗. We want to maximize going
through traffic at the inlet as in [PG06], then, according to the flow conservation at the inlet (see
Figure 2.1), we have, for all t ∈ [0,∞),

Q∗
in + p̄(t) + r(t) = ρ(0, t)v(0, t) ≤ Qmax, (2.10)

where Q∗
in denotes the equilibrium inflow at the upstream boundary, p̄ → 0 is the unknown

disturbances of inflow serving as exogenous variable (externally given model input) depending on
time t and satisfying 0 ≤ Q∗

in + p̄(t) ≤ Qmax
in (Qmax

in is the flux limit of the incoming road), and
0 ≤ r ≤ Qmax

rmp (Qmax
rmp is the flux limit on the on-ramp) is on-ramp metering. Because of the

capping strategy in [MAC12] for ramp metering, if the total flow Q∗
in + p̄(t) + r(t) exceeds the

flow limit Qmax of the main road, it is capped to this value Qmax by the access traffic light, so a
queue of n waiting vehicles forms at the on-ramp. As long as 0 < n ≤ nmax, the ramp metering is
active restricting the ramp flow to r = max(0, Qmax − (Q∗

in + p̄(t))). The speed at the inlet v(0, ·)
and the density at the inlet ρ(0, ·) satisfy 0 < v(0, ·) ≤ vf and 0 < ρ(0, ·) ≤ ρm.

A system can be precisely controlled by only tuning the proportional gain, but PI control
strengthens the stability in the presence of disturbances. In control engineering, the PI controller
is mainly used to improve the stability property of the controlled system. The following PI
boundary feedback control law is introduced, for all t ∈ [0,∞),

r(t) = Q∗
rmp + kP1(ρ(L, t)− ρ∗) + kI1

∫ t

0

(ρ(L, σ)− ρ∗) dσ, (2.11)

v(L, t) = v∗ + kP2(v(0, t)− v∗) + kI2

∫ t

0

(v(0, σ)− v∗) dσ, (2.12)

where Q∗
rmp > 0 denotes the equilibrium on-ramp flow at the segment boundary upstream, and

it satisfies Q∗
in + Q∗

rmp = ρ∗v∗, here density ρ∗ is given by ρ∗ = ρm

vf
(ω∗ − v∗). The inflow speed

v(0, ·) and the outflow q(L, ·) are measurement outputs, so the outflow density ρ(L, ·) = q(L,·)
v(L,·) .

The inlet on-ramp metering r and the outlet variable speed 0 < v(L, ·) ≤ vf are boundary control
inputs. The coefficients kP1, kI1, kP2, kI2 are proportional and integral tuning gains.
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Let ρ̃ = ρ− ρ∗, then (2.11)-(2.12) can be rewritten as, for all t ∈ [0,∞),

r(t) = Q∗
rmp + kP1ρ̃(L, t) + kI1

∫ t

0

ρ̃(L, σ) dσ, (2.13)

ṽh(L, t) = kP2ṽ
h(0, t) + kI2

∫ t

0

ṽh(0, σ) dσ. (2.14)

Combining feedback control laws (2.13)-(2.14) with (2.10) and linearizing, the following boundary
condition can be attained, for all t ∈ [0,∞),

p̄(t) + kP1ρ̃(L, t) + kI1

∫ t

0

ρ̃(L, σ) dσ = v∗ρ̃(0, t) + ρ∗ṽh(0, t). (2.15)

Getting rid of the high order terms, we deduce from (2.13) and (2.15), for all t ∈ [0,∞),

ω̃h(0, t) =ṽh(0, t) +
vf
ρm

ρ̃(0, t)

=
vf p̄(t)

ρmv∗
+

(
1− vfρ

∗

ρmv∗

)
ṽh(0, t) +

vfkP1

ρmv∗
ρ̃(L, t) +

vfkI1
ρmv∗

∫ t

0

ρ̃(L, σ) dσ

=
vf p̄(t)

ρmv∗
+
kP1

v∗
ω̃h(L, t) +

kI1
v∗

∫ t

0

ω̃h(L, σ) dσ +

(
1− vfρ

∗

ρmv∗
− kP1kP2

v∗

)
ṽh(0, t)

−
(
kP1kI2
v∗

+
kI1kP2

v∗

)∫ t

0

ṽh(0, σ) dσ. (2.16)

Combining (2.14) and (2.16) together for the system (2.9), the following PI boundary feedback
controller can be derived, for all t ∈ [0,∞),[

ω̃h(0, t)

ṽh(L, t)

]
= Kh

P

[
ω̃h(L, t)

ṽh(0, t)

]
+Kh

I

∫ t

0

[
ω̃h(L, σ)

ṽh(0, σ)

]
dσ + θ(t), (2.17)

where

Kh
P =

[
kP1

v∗ 1− vfρ
∗

ρmv∗ − kP1kP2

v∗

0 kP2

]
, Kh

I =

[
kI1

v∗
−kP1kI2−kI1kP2

v∗

0 kI2

]

are respectively proportional and integral tuning matrices, and θ(t) =
[
vf p̄(t)
ρmv∗ 0

]⊤
. is an external

disturbance input vector. Assume the tuning parameters kI1 and kI2 are different from 0, so that
the matrix Kh

I is invertible.

Letting R(x, t) = (ω̃h(x, t), ṽh(x, t))⊤, for all t in [0,∞) and all x in [0, L], system (2.9) and
(2.17) can be rewritten as

∂tR(x, t) + Λh∂xR(x, t) =MR(x, t), (2.18)

Rin(t) = Kh
PRout(t) +Kh

I

∫ t

0

Rout(σ) dσ + θ(t), (2.19)

where

Λh = diag{λh1 ,−λh2}, M =

[
− 1

τ 0

− 1
τ 0

]
,

Rin(t) = (ω̃h(0, t), ṽh(L, t))⊤, Rout(t) = (ω̃h(L, t), ṽh(0, t))⊤.

The disturbance must be constrained by an upper limit of energy to avoid the boundlessness of
the state and output. As in [TPSJ05], assume that the energy of time-varying disturbance vector
θ is limited in L2 space by a constant positive value δh such that

∥θ(t)∥L2 + ∥θ̇(t)∥L2 =

(∫ t

0

θ⊤(σ)θ(σ)dσ

) 1
2

+

(∫ t

0

θ̇⊤(σ)θ̇(σ) dσ

) 1
2

≤ 1√
δh
, ∀t ≥ 0. (2.20)
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2.2 Finite-gain L2 stable and L2 gain

As stated in [KG02], the definition of finite-gain L2 stable and L2 gain are given as follows.

Definition 2.1
If there exist non-negative constants k and g such that

∥y∥L2
≤ k∥u∥L2

+ g, (2.21)

for all u in L2 space, where u and y are respectively the system disturbance input and controlled
output, and g is a function of the initial condition, then the system is said to be finite-gain L2

stable and has L2 gain less than or equal to k.

Let

X(t) =

∫ t

0

Rout(σ) dσ +K
(1)−1
I θ(t), (2.22)

where t in [0,∞), then

Ẋ(t) = Rout(t) +K
(1)−1
I θ̇(t), (2.23)

and (2.19) is rewritten as

Rin(t) = Kh
PRout(t) +Kh

IX(t). (2.24)

Consider the initial conditions

R(x, 0) =

[
ω̃h(x, 0)

ṽh(x, 0)

]
= R0(x), (2.25)

and

X(0) = K
(1)−1
I θ(0) = K

(1)−1
I θ0, (2.26)

where R0(x) in L2(0, L), x in (0, L) and θ0 in R2.

It is important to note the finite-gain L2 stability of the system and to compute the L2 gain
from (θ, θ̇)⊤ to Rin or an upper bound of it. The following theorem presents the theoretical
sufficient conditions for system (2.18), (2.23)-(2.24) to address this problem.

Theorem 2.1
Considering the system (2.18), (2.23)-(2.24), if there exist positive constants µ and η, a diagonal
matrix Ph

1 in R2×2, a symmetric matrix Ph
2 in R2×2 and a matrix Ph

3 in R2×2 such that for all x
in [0, L],

Ωh =


Ωh

11 Ωh
12 Ωh

13 Ωh
14

∗ Ωh
22 Ωh

23 O2

∗ ∗ Ωh
33 Ωh

34

∗ ∗ ∗ Ωh
44

 ≥ 0, (2.27)
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where

Ωh
11 = µ|Λh|Ph

1 (x)−M⊤Ph
1 (x)− Ph

1 (x)M,

Ωh
12 = Ωh

14 = −Ph
3 ,

Ωh
13 = −M⊤Ph

3 ,

Ωh
22 = − 1

L

(
eµLK

(1)⊤
P |Λh|Ph

1 K
h
P − |Λh|Ph

1 +
1

η
K

(1)⊤
P Kh

P

)
,

Ωh
23 = − 1

L

(
eµLK

(1)⊤
P |Λh|Ph

1 K
h
I +K

(1)⊤
P |Λh|Ph

3 − |Λh|Ph
3 +

1

η
K

(1)⊤
P Kh

I

)
− Ph

2 ,

Ωh
33 = − 1

L

(
eµLK

(1)⊤
I |Λh|Ph

1 K
h
I +K

(1)⊤
I |Λh|Ph

3 + P
(1)⊤
3 |Λh|Kh

I +
1

η
K

(1)⊤
I Kh

I

)
,

Ωh
34 = −Ph

2 ,

Ωh
44 =

1

L
I2,

with |Λh| = diag{λh1 , λh2}, Ph
1 (x) = Ph

1 diag{eµ(L−x), eµx}, null matrix O2 and identity matrix I2
are in R2×2, and [

Ph
1 Ph

3

∗ Ph
2

]
≥ 0, (2.28)

then for all initial conditions (2.25) and (2.26), and θ(t) satisfying (2.20), the system (2.18),
(2.23)-(2.24) is finite-gain L2 stable and the L2 gain from (θ, θ̇)⊤ to Rin is less than or equal to√
ηm for a positive constant m depending only on Kh

I .

Proof. The following candidate Lyapunov function is defined, for all x ∈ [0, L], t ∈ [0,∞),

V h(R(x, t), X(t)) =

∫ L

0

[
R(x, t)

X(t)

]⊤ [Ph
1 (x) Ph

3

∗ Ph
2

] [
R(x, t)

X(t)

]
dx

=

∫ L

0

R⊤(x, t)Ph
1 (x)R(x, t) dx+

∫ L

0

(
R⊤(x, t)Ph

3 X(t) +X⊤(t)P
(1)⊤
3 R(x, t)

)
dx

+ LX⊤(t)Ph
2 X(t). (2.29)

One can observe that from

λmin · ∥(R,X)⊤∥2L2
≤ V h(R,X) ≤ λmax · ∥(R,X)⊤∥2L2

(2.30)

with λmin (the minimal eigenvalue of matrix
[
Ph
1 Ph

3

∗ Ph
2

]
) and λmax (the maximal eigenvalue of

matrix
[
eµLPh

1 Ph
3

∗ Ph
2

]
), the positive semi-definiteness of V h is guaranteed by (2.28).

The time derivative of V h along the solutions to system (2.18), (2.23)-(2.24) is written as
follows, for all t ∈ [0,∞),

˙V h = ˙V h
1 + ˙V h

2 + ˙V h
3 , (2.31)
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with

˙V h
1 =

∫ L

0

(
(∂tR(x, t))

⊤Ph
1 (x)R(x, t) +R⊤(x, t)Ph

1 (x)∂tR(x, t)
)
dx, (2.32)

˙V h
2 =

∫ L

0

(
(∂tR(x, t))

⊤Ph
3 X(t) +R⊤(x, t)Ph

3 Ẋ(t) + Ẋ⊤(t)P
(1)⊤
3 R(x, t) +X⊤(t)P

(1)⊤
3 ∂tR(x, t)

)
dx,

(2.33)
˙V h
3 = LẊ⊤(t)Ph

2 X(t) + LX⊤(t)Ph
2 Ẋ(t). (2.34)

Using (2.18) and performing an integration by parts in (2.32), the following result is achieved, for
all t ∈ [0,∞),

˙V h
1 =−R⊤(x, t)ΛhPh

1 (x)R(x, t)

∣∣∣∣L
0

+

∫ L

0

R⊤(x, t)
(
ΛhP(1)′

1 (x) +M⊤Ph
1 (x) + Ph

1 (x)M
)
R(x, t) dx

=R⊤(0, t)ΛhPh
1 (0)R(0, t)−R⊤(L, t)ΛhPh

1 (L)R(L, t)

+

∫ L

0

R⊤(x, t)
(
−µ|Λh|Ph

1 (x) +M⊤Ph
1 (x) + Ph

1 (x)M
)
R(x, t) dx. (2.35)

Previous equation (2.35) can be rewritten as, for all t ∈ [0,∞),

˙V h
1 =R⊤

out(t)
(
eµLK

(1)⊤
P |Λh|Ph

1 K
h
P − |Λh|Ph

1

)
Rout(t) + eµLR⊤

out(t)K
(1)⊤
P |Λh|Ph

1 K
h
IX(t)

+ eµLX⊤(t)K
(1)⊤
I |Λh|Ph

1 K
h
PRout(t) + eµLX⊤(t)K

(1)⊤
I |Λh|Ph

1 K
h
IX(t)

+

∫ L

0

R⊤(x, t)
(
−µ|Λh|Ph

1 (x) +M⊤Ph
1 (x) + P1(x)M

)
R(x, t) dx. (2.36)

From (2.18) and (2.23), the following result can be derived from (2.33) by using an integration by
parts, for all t ∈ [0,∞),

˙V h
2 =

(
−R⊤(x, t)ΛhPh

3 X(t)−X⊤(t)P
(1)⊤
3 ΛhR(x, t)

) ∣∣∣∣L
0

+

∫ L

0

(
R⊤(x, t)Ph

3 Rout(t) +R⊤(x, t)Ph
3 (K

(1)−1
I θ̇(t))

+ (K
(1)−1
I θ̇(t))⊤P

(1)⊤
3 R(x, t) +R⊤

out(t)P
(1)⊤
3 R(x, t)

+R⊤(x, t)M⊤Ph
3 X(t) +X⊤(t)P

(1)⊤
3 MR(x, t)

)
dx

=
(
R⊤(0, t)−R⊤(L, t)

)
ΛhPh

3 X(t) +X⊤(t)P
(1)⊤
3 Λh (R(0, t)−R(L, t))

+

∫ L

0

(
R⊤(x, t)Ph

3 Rout(t) +R⊤(x, t)Ph
3 (K

(1)−1
I θ̇(t)) +R⊤

out(t)P
(1)⊤
3 R(x, t)

+ (K
(1)−1
I θ̇(t))⊤P

(1)⊤
3 R(x, t) +R⊤(x, t)M⊤Ph

3 X(t) +X⊤(t)P
(1)⊤
3 MR(x, t)

)
dx. (2.37)

Previous equation (2.37) can be rewritten as, for all t ∈ [0,∞),

˙V h
2 =

(
Kh

PRout(t) +Kh
IX(t)

)⊤ |Λh|Ph
3 X(t)−R⊤

out(t)|Λh|Ph
3 X(t)

+X⊤(t)P
(1)⊤
3 |Λh|(Kh

PRout(t) +Kh
IX(t))−X⊤(t)P

(1)⊤
3 |Λh|Rout(t)

+

∫ L

0

(
R⊤(x, t)Ph

3 Rout(t) +R⊤
out(t)P

(1)⊤
3 R(x, t) +R⊤(x, t)M⊤Ph

3 X(t) +X⊤(t)P
(1)⊤
3 MR(x, t)

+R⊤(x, t)Ph
3 (K

(1)−1
I θ̇(t)) + (K

(1)−1
I θ̇(t))⊤P

(1)⊤
3 R(x, t)

)
dx. (2.38)
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From (2.23), for all t ∈ [0,∞), we can convert (2.34) into

˙V h
3 = LR⊤

out(t)P
h
2 X(t) + L(K

(1)−1
I θ̇(t))⊤Ph

2 X(t) + LX⊤(t)Ph
2 Rout(t) + LX⊤(t)Ph

2 (K
(1)−1
I θ̇(t)).

(2.39)

Then from (2.36), (2.38) and (2.39), the following result can be derived, for all t ∈ [0,∞),

˙V h +
1

η
R⊤

in(t)Rin(t)− θ⊤(t)θ(t)− θ̇⊤(t)(K
(1)−1
I )⊤K

(1)−1
I θ̇(t)

≤ −
∫ L

0


R(x, t)

Rout(t)

X(t)

K
(1)−1
I θ̇(t)


⊤

Ωh


R(x, t)

Rout(t)

X(t)

K
(1)−1
I θ̇(t)

 dx, (2.40)

where Ωh satisfies (2.27). Thus, for any θ satisfying (2.20), for all t ∈ [0,∞),

˙V h ≤ −1

η
R⊤

in(t)Rin(t) + θ⊤(t)θ(t) + θ̇⊤(t)(K
(1)−1
I )⊤K

(1)−1
I θ̇(t). (2.41)

By integrating the both sides of the previous inequality (2.41) over the interval [0, t], one can
derive that, for all x ∈ [0, L], t ∈ [0,∞),∫ t

0

˙V h(R(x, σ), X(σ)) dσ

≤ −1

η

∫ t

0

R⊤
in(σ)Rin(σ) dσ +m

∫ t

0

θ⊤(σ)θ(σ) dσ +m

∫ t

0

θ̇⊤(σ)θ̇(σ) dσ, (2.42)

where m = max{1, λmax((K
(1)−1
I )⊤K

(1)−1
I )}. Then from V h(R,X) ≥ 0, for all x ∈ [0, L], t ∈

[0,∞),∫ t

0

R⊤
in(σ)Rin(σ) dσ ≤ ηV h(R0(x), X(0)) + ηm

∫ t

0

θ⊤(σ)θ(σ) dσ + ηm

∫ t

0

θ̇⊤(σ)θ̇(σ) dσ. (2.43)

Using the inequality α2 + β2 ≤ (α+ β)2 for non-negative numbers α and β and taking the square
roots, one obtain that from (2.20), for all x ∈ [0, L],

∥Rin∥L2
≤
√
ηV h(R0(x), X(0)) +

√
ηm(∥θ∥L2

+ ∥θ̇∥L2
) ≤

√
ηV h(R0(x), X(0)) +

√
ηm

δh
, (2.44)

where the bias term
√
ηV h(R0(x), X(0)) ≤

√
ηλmax∥(R0(x), X(0))⊤∥L2

depends on the coeffi-
cients η, λmax (depends on µ, see (2.30)), the initial conditions R0(x), and X(0). Therefore the
coefficients η and µ determine the attractive domain of the closed-loop system with respect to the
initial state. Note that from (2.20) and (2.44), if R0(x) = 0, x ∈ [0, L], and θ0 = 0,

∥Rin∥L2 ≤ √
ηm(∥θ∥L2 + ∥θ̇∥L2) ≤

√
ηm

δh
. (2.45)

Therefore, the system (2.18), (2.23)-(2.24) is finite-gain L2 stable and has L2 gain which is less
than or equal to √

ηm.

2.3 Numerical studies

2.3.1 Optimization

The smaller value of the L2 gain, the stronger the capacity of disturbance rejection is. In order to
maximize the capacity of rejecting disturbance, based on Theorem 2.1, the following optimization
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problem is considered to estimate L2 gain,

min
Ph

1 , Ph
2 , Ph

3 , µ
η

subject to relations (2.27) and (2.28). (2.46)

2.3.2 Simulations

In order to seek the optimal values of parameter matricesKh
P ,K

h
I through the numerical simulation

of optimization problem, we consider a road segment with parameters ρm = 213.3 veh./km, vf =

160 km/h, L = 1km, and τ = 60 s. The initial conditions are, for all x ∈ [0, L],

ρ(x, 0) = ρ∗ + 0.8 sin 4πx,

v(x, 0) = v∗ + 1.8 cos 4πx,

where the equilibrium (ρ∗, v∗)⊤ = (120, 70)⊤ satisfies the ARZ equations (2.1)-(2.2). With given
δh = 0.6 in (2.20), the disturbance p̄(t) is given as Figure 2.2.

During solving the optimization problem (2.46), given µ on the domain (0, 0.02] with a step
size 0.001, we search the minimal value (ηmin) of η satisfying (for a discretized version of x with
a step size L

30 ) the linear matrix inequalities (2.27)-(2.28) for each discrete quantity of µ by using
the "yalmip" package on Matlab. The used function "optimize" which is common for solving
optimization problems on Matlab consists of the chosen solver "sdpt3" (tried several solvers, only
this one can compute), the constraints (2.27)-(2.28), and the objective η. We derive the curve
of ηmin with respect to the coefficient µ on the domain (0, 0.02] in Figure 2.3. For the minimum
value of ηmin(= 1.002), µ = 0.003 should be selected from Figure 2.3. Moreover, we solve the
optimization problem by computing the best tuning parameters kP1, kP2, kI1, kI2, and we get
kP1 = −20, kP2 = −0.1, kI1 = −2, kI2 = −0.2, and m = 1337.4. So the corresponding parameter
matrices Kh

P and Kh
I of the PI boundary controller in (2.17) are

Kh
P =

[
−0.2857 −0.3143

0 −0.1

]
, Kh

I =

[
−0.0286 −0.06

0 −0.2

]
.

Under the minimum value of L2 gain η (= 1.002), the state (ω̃h, ṽh)⊤ of the linearized ARZ traffic
system (2.18) converges to the zero equilibrium in Figure 2.4. That is, the optimal values of the
parameters satisfying the conditions of Theorem 2.1 guarantee the stability of the linearized ARZ
traffic system (2.18). We observe in Figure 2.5 that the state (ρ, v)⊤ of the nonlinear ARZ system
(2.1)-(2.2) exponentially converges to the equilibrium (ρ∗, v∗)⊤. The obtained optimal values of
the parameters for the linearized system (2.18) locally stabilize the nonlinear system (2.1)-(2.2).

2.4 Conclusion

In this chapter, the ARZ model has been introduced and an optimal tuning PI boundary controller
has been computed for the homogeneous linearized traffic model without bottleneck. The condi-
tions for finite-gain L2 stability and the computation of the L2 gain were given for the linearized
ARZ system to reject disturbances. Moreover, numerical simulation emphasized the interest of
this controller for the nonlinear model.

In the next chapter, we consider the bottleneck case and we solve an observation problem.
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2.4. Conclusion 23

Figure 2.4: Evolutions of state variables of the linearized ARZ traffic system (ω̃h, ṽh)⊤ in (2.18)
with respect to spatial variable x and time variable t.
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Figure 2.5: Evolutions of state variables of nonlinear ARZ system (ρ, v)⊤ in (2.1)-(2.2) with respect
to spatial variable x and time variable t.
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This chapter designs an optimal tuning observer-based output feedback control for traffic break-
down to alleviate the congested traffic using the backstepping method and optimization. The
linearized Aw-Rascle-Zhang model is used to represent the congested traffic dynamics resulting
from traffic breakdown. Based on the factors leading to traffic breakdown, we take into account
the boundary conditions consisting of a boundary with a constant density and a speed drop at the
upstream inlet of a bottleneck, and a boundary with a disturbance of inflow (high traffic demand)
at the inlet of the road segment under consideration. To alleviate the congested traffic, a dynamic
feedback controller is designed at the upstream boundary. By using the backstepping approach,
an observer-based output feedback controller is computed to guarantee the integral input-to-state
stability of the closed-loop system. By establishing an optimization problem and solving it, the op-
timal value of the considered class controller is obtained. The performance of the output feedback
controller is also validated by numerical simulations.

This chapter has been published in [GZP21b].
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traffic with bottleneck

3.1 Traffic flow system and control problem

3.1.1 Coordinate transformation and linearization around equilibrium

In this section, we perform a change of variables and linearize the model (2.7)-(2.8) around the
nonuniform equilibrium. Define the coordinate transformation

ϵ1 = ψ1(x)ω̃
h, (3.1)

ϵ2 = ψ2(x)ṽ
h, (3.2)

with

ψ1(x) = exp

(∫ x

0

1

τv∗(s)
ds

)
,

ψ2(x) = exp

(∫ x

0

v∗′(s) · 2

2v∗(s)− ω∗(s)
ds

)
,

for all x in (0, L), then the system (2.7)-(2.8) is rewritten as follows, for all x ∈ [0, L], t ∈ [0,∞),

∂tϵ1(x, t) + Λh
1 (ϵ1, ϵ2, x)∂xϵ1(x, t) + c1(x)ϵ2(x, t)−

ψ−1
2 (x)

τv∗(x)
ϵ1(x, t)ϵ2(x, t) = 0, (3.3)

∂tϵ2(x, t) + Λh
2 (ϵ1, ϵ2, x)∂xϵ2(x, t) + c2(x)ϵ1(x, t)

+ v∗′(x) · 2ϵ2(x, t)

2v∗(x)− ω∗(x)

(
2ψ−1

2 (x)ϵ2(x, t)− ψ−1
1 (x)ϵ1(x, t)

)
= 0, (3.4)

with

Λh
1 (ϵ1, ϵ2, x) = ψ−1

2 (x)ϵ2 + v∗(x),

Λh
2 (ϵ1, ϵ2, x) = 2ψ−1

2 (x)ϵ2 − ψ−1
1 (x)ϵ1 + 2v∗(x)− ω∗(x),

c1(x) = ω∗′(x)ψ1(x)ψ
−1
2 (x),

c2(x) =

(
1

τ
− v∗′(x)

)
ψ−1
1 (x)ψ2(x).

From the linearization of the quasi-linear equation (3.3)-(3.4), we can derive, for all x ∈ [0, L],
t ∈ [0,∞),

∂tϵ1(x, t) + λh1 (x)∂xϵ1(x, t) + c1(x)ϵ2(x, t) = 0, (3.5)

∂tϵ2(x, t)− λh2 (x)∂xϵ2(x, t) + c2(x)ϵ1(x, t) = 0, (3.6)

with λh1 = v∗ > 0, λh2 = ω∗ − 2v∗ > 0.

3.1.2 Problem statement

As described in [MAC12], beyond the deterministic factors causing traffic breakdown, high traffic
demand is the most effective ingredient. The disturbances caused by bottlenecks or individual
drivers can not grow and propagate on account of unconditional stability if the traffic load is low
enough. However, in spite of the absolute stability, traffic breakdown will take place with inflow in
excess of the capacity of bottlenecks on the considered road segment. The local capacity reduction
is the decisive attribute in characterizing the obstructing effect of a bottleneck. Furthermore, we
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0 L

Uh(t)Q∗h
rmp

Q∗h
in

p̄h(t)

ρ(0, t)v(0, t) ρ∗(L)

BottleneckInterface

Figure 3.1: Traffic flow on a road segment with an downstream on-ramp bottleneck.

can not predict the time and location of individual traffic breakdown due to the stochastic and
single-vehicle nature of disturbances caused by individual drivers.

In order to increase the efficiency and stability of traffic flow, we solve the control problem
(in an optimal way that is introduced late precisely) of high traffic demand by ramp metering in
the presence of a bottleneck and disturbances on the road. Considering a road segment with a
constant density at the inlet of the bottleneck, the diagram of the control model is illustrated in
Figure 3.1. To be more specific, the boundary condition at x = L is, for all t ≥ 0,

ρ(L, t) = ρ∗(L). (3.7)

As described in [PG06], the interface at the bottleneck plays a key role in the analysis of the
boundary condition at the inlet of a bottleneck. It is a buffer zone for velocity drop (the velocity
in the interface is continuously decreasing from the left boundary of interface to x = L). The
value of the velocity limit v(L, ·) is derived from the constant density ρ∗(L) and the measurement
of the flux q(L, ·) at the inlet of a bottleneck.

We want to maximize going through traffic at the inlet as in [PG06], so on the basis of the
conservation of vehicle flows, the boundary condition with disturbances caused by high traffic
demand at the upstream inlet x = 0 can be derived, for all t ∈ [0,∞),

Q∗h
in +Q∗h

rmp + Uh(t) + p̄h(t) = ρ(0, t)v(0, t) ≤ Qh
max, (3.8)

where Q∗h
rmp, Q∗h

in and p̄h are same as in Chapter 2, and the control is defined as Uh(t) and
would depend only on t. The total inflow at the inlet consisting of the total inflow at the ramp
0 ≤ Q∗h

rmp+U
h(t) ≤ Qmax

1h (Qmax
1h is the flux limit of the incoming road) and the total inflow at the

inlet 0 ≤ Q∗h
in + p̄h(t) ≤ Qmax

2h (Qmax
2h is the flux limit on the on-ramp) is limited to Qh

max, and the
referenced inflow satisfies Q∗h

in +Q∗h
rmp = ρ∗(0)v∗(0). Because of the capping strategy in [MAC12]

for ramp metering, if the total flow Q∗h
in +Q∗h

rmp +Uh(t) + p̄h(t) exceeds the flow limit Qh
max, it is

capped to this value Qh
max by the access traffic light, so a queue of nh waiting vehicles forms at the

on-ramp. As long as 0 < nh ≤ nhmax (nhmax is the limit number of vehicles at the on-ramp), the
ramp metering is active restricting the ramp flow to Q∗h

rmp+U
h(t) = max(0, Qh

max−(Q∗h
in + p̄h(t))).

The speed at the inlet v(0, ·) and the density at the inlet ρ(0, ·) satisfy 0 < v(0, ·) ≤ vf and 0 <

ρ(0, ·) ≤ ρm. The difference between the measured speed at the inlet v(0, t) and the corresponding
equilibrium v∗(0) ≥ 0 acts as the model output, i.e., for all t ∈ [0,∞),

yh(t) = v(0, t)− v∗(0), (3.9)

and the control law Uh is implemented by the on-ramp metering at the upstream boundary of
the main road. Ramp metering temporarily reduces the traffic throughput and delays to increase
it to prevent a traffic breakdown and the associated capacity drop. We compute the optimal
gains of controller Uh depending on the output yh only, so that the system states converge to the
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System (ρ, v)⊤

Uh

Q∗h
in +Q∗h

rmp

p̄h

yh
+

Figure 3.2: Block diagram of closed-loop control system

equilibrium at the fastest speed, up to a constant depending on the size of the disturbance p̄h. See
the block diagram of the closed-loop control system in Figure 3.2.

Therefore, from (3.7) and (3.1)-(3.2), the boundary condition at x = L may be achieved as,
for all t ≥ 0,

ϵ2(L, t) =
1

κ
ϵ1(L, t), (3.10)

with κ = ψ1(L)ψ
−1
2 (L). The following linearized boundary condition at x = 0 is derived from

(3.8), for all t ∈ [0,∞),

ϵ1(0, t) = q1ϵ2(0, t) + q2
(
Uh(t) + p̄h(t)

)
, (3.11)

with q1 = 2v∗(0)−ω∗(0)
v∗(0) , q2 =

vf
ρmv∗(0) .

We reformulate the previous control problem as follows. We seek the optimal parameters of
an observer-based output feedback control law upstream of a considerate road section in order to
remove or weaken the effect of high traffic demand and stabilize the linearized ARZ traffic flow
model. Inspired by [VKC11], [Cor+13], but using different backstepping transformations due to
different boundary conditions, we can design a new observer-based output feedback control law.
Firstly, we derive a full-state feedback control law with kernels from the backstepping transfor-
mation mapping the original system to an integral Input-to-State Stable (iISS) target system.
Roughly speaking, a system is said to be iISS if there is an estimation of the impact of the integral
of the input (in our case, the disturbance p̄h) to the state, and to prove that this input-to-state
map is stable. An observer is designed to observe the states of the linearized ARZ traffic flow
system. The precise observation to the states of the original system is guaranteed by the analytic
expressions of injection gains which are obtained by the backstepping transformation mapping
the error system (derived by subtracting the state-observer system from the original system) to
the same target system. Finally, the optimal parameters of the observer-based output feedback
controller are derived by solving the optimization problem with the objective function, defined as
the highest rate of exponential convergence.
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3.2 Full-state feedback controller

The main results of this chapter are the iISS of a target system with PI boundary conditions and
the design of a full-state feedback controller through backstepping transformation.

3.2.1 Target system

Firstly, we introduce a target system, for all x ∈ [0, L], t ∈ [0,∞),

∂tα(x, t) + λh1 (x)∂xα(x, t) = 0, (3.12)

∂tβ(x, t)− λh2 (x)∂xβ(x, t) = 0, (3.13)

α(0, t) = q1β(0, t) + khi η(t), (3.14)

β(L, t) =
1

κ
α(L, t), (3.15)

where khi ∈ R \ {0} is an integral tuning parameter, and

η(t) =

∫ t

0

(β(0, s)− α(0, s)) ds+
1

khi
q2p̄

h(t). (3.16)

According to the following theorem, the target system (3.12)-(3.16) is integral input-to-state stable
for L2-norm.

Theorem 3.1
Assume there exist positive constants µ, θ, p1, p2, p4, q3, q4 and constant p3 such that for all x
in [0, L],

M1 =

M11
1 M12

1 M13
1

∗ M22
1 M23

1

∗ ∗ M33
1

 ≥ 0 (3.17)

with

M11
1 = p1e

−µL − p2
κ2
eµL,

M12
1 = 0,

M13
1 = − p3

2κ
e

µ
2 L,

M22
1 = −p1q21 + p2 −

3q4L

2
|p3|(1− q1)

2,

M23
1 = −p1q1khi +

p3
2

− 1

2
p4L(1− q1),

M33
1 = −p1khi khi − 3q4L

2
|p3|khi khi + (1−m)L

(
p4k

h
i − q3

2

∣∣∣∣ 1khi
∣∣∣∣ q2p4) ,

[
p2

λh
2 (x)

p3

2λh
2 (x)

p3

2λh
2 (x)

p4

2

]
> 0, (3.18)

m

(
khi − q3

2

∣∣∣∣ 1khi
∣∣∣∣ q2) >

θ

2
, (3.19)
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µ >
θ

λh1 (x)
, (3.20)

and µp2 − |p3|
2q4λh

2 (x)
2 − θp2

λh
2 (x)

µp3

4 − θp3

2λh
2 (x)

µp3

4 − θp3

2λh
2 (x)

m
(
p4k

h
i − q3

2

∣∣∣ 1
kh
i

∣∣∣ q2p4)− θp4

2

 > 0. (3.21)

Then there exists positive constants Ω1, b1 such that, for any z0 = (α(·, 0), β(·, 0), η(0))⊤ in
L2((0, L);R3), and for any p̄h such that ˙̄ph ∈ C0[0,∞), the solution z = (α, β, η)⊤ to the sys-
tem (3.12)-(3.16) satisfies, for all t ≥ 0,

∥z(·, t)∥2L2 ≤ Ω1e
−θt∥z0∥2L2 + b1

∫ t

0

˙̄p2(s) ds. (3.22)

Remark 3.1
Some observations follow

• From the inequality condition (3.19) in Theorem 3.1, it follows that the parameters m and
khi have the identical sign, i.e., mkhi > 0.

• Note that the first term at the right-hand side of inequality (3.22) is continuous, decreasing
with respect to t and converging to zero as t goes to infinity. Since b1 > 0, the second term
is increasing and tends to the L2 norm of ˙̄ph. That is, the integral input-to-state stability of
system (3.12)-(3.16) holds, by following the terminology of [DEY00] and [MI15b].

Proof. The following candidate Lyapunov function is proposed for the purpose of analyzing the
stability of the homogeneous system (3.12)-(3.16),

Wh =

∫ L

0

α(x, ·)β(x, ·)
η(·)

⊤

P (x)

α(x, ·)β(x, ·)
η(·)

 dx =Wh
1 +Wh

2 +Wh
3 +Wh

4 , (3.23)

with

P (x) =


p1

λh
1 (x)

e−µx 0 0

∗ p2

λh
2 (x)

eµx p3

2λh
2 (x)

e
µx
2

∗ ∗ p4

2

 , for allx ∈ [0, L],

where

Wh
1 = p1

∫ L

0

e−µx

λh1 (x)
α2(x, ·) dx, (3.24)

Wh
2 = p2

∫ L

0

eµx

λh2 (x)
β2(x, ·) dx, (3.25)

Wh
3 = p3η(·)

∫ L

0

e
µx
2

λh2 (x)
β(x, ·) dx, (3.26)

Wh
4 =

p4L

2
η2(·). (3.27)

Taking account of inequality (3.18) with p1 > 0, λh1 (x) > 0, for all x ∈ [0, L], the following
inequality holds for all x in [0, L], p1

λh
1 (x)

e−µx 0

∗
(

p2

λh
2 (x)

− p2
3p

−1
4

2λh
2 (x)

2

)
eµx

 > 0. (3.28)
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Using Schur complement with p4 > 0, P (x) is symmetric positive definite for all x in [0, L].
Therefore,

λmin ·

(∫ L

0

(
α2(x, ·) + β2(x, ·)

)
dx+ Lη2(·)

)
≤Wh

≤ λmax ·

(∫ L

0

(
α2(x, ·) + β2(x, ·)

)
dx+ Lη2(·)

)
, (3.29)

where λmin = minx∈[0,L] λ(P (x)), λmax = maxx∈[0,L] λ(P (x)). In the previous equation, λ(P (x))
is the eigenvalue of P (x) and λmin > 0, λmax > 0. From (3.16), one can derive, for all t ∈ [0,∞),
η̇(t) = β(0, t)− α(0, t) + 1

kh
i

q2ḋ(t). The time derivatives of (3.24)-(3.27) along the solutions to the
system (3.12)-(3.16) are computed using integration by parts in (3.24)-(3.26), Young’s inequality
in (3.26), for all t ≥ 0,

Ẇh
1 = 2p1

∫ L

0

e−µx

λh1 (x)
α(x, t)∂tα(x, t) dx

= −p1α2(x, t)e−µx
∣∣L
0
− µp1

∫ L

0

α2(x, t)e−µx dx

= p1
(
q1β(0, t) + khi η(t)

)2 − p1e
−µLα2(L, t)− µp1

∫ L

0

α2(x, t)e−µx dx, (3.30)

Ẇh
2 = 2p2

∫ L

0

eµx

λh2 (x)
β(x, t)∂tβ(x, t) dx

= p2β
2(x, t)eµx

∣∣L
0
− µp2

∫ L

0

β2(x, t)eµx dx

=
p2
κ2
eµLα2(L, t)− p2β

2(0, t)− µp2

∫ L

0

β2(x, t)eµx dx, (3.31)

Ẇh
3 = p3η̇(t)

∫ L

0

e
µx
2

λh2 (x)
β(x, t) dx+ p3η(t)

∫ L

0

e
µx
2

λh2 (x)
∂tβ(x, t) dx

= p3

(
β(0, t)− α(0, t) +

1

khi
q2 ˙̄p

h(t)

)∫ L

0

e
µx
2

λh2 (x)
β(x, t) dx+ p3η(t)β(x, t)e

µx
2

∣∣∣L
0

− µ

2
p3η(t)

∫ L

0

β(x, t)e
µx
2 dx

≤ q4L

2
|p3|

(
(1− q1)β(0, t)− khi η(t) +

1

khi
q2 ˙̄p

h(t)

)2

+
1

2q4
|p3|

∫ L

0

eµx

λh2 (x)
2
β2(x, t) dx

+ p3
e

µL
2

κ
η(t)α(L, t)− p3η(t)β(0, t)−

µ

2
p3η(t)

∫ L

0

β(x, t)e
µx
2 dx,

≤ 3q4L

2
|p3|

(
(1− q1)

2β2(0, t) + khi k
h
i η

2(t) +
1

khi k
h
i

q22 ˙̄p
h2(t)

)
+

1

2q4
|p3|

∫ L

0

eµx

λh2 (x)
2
β2(x, t) dx

+ p3
e

µL
2

κ
η(t)α(L, t)− p3η(t)β(0, t)−

µ

2
p3η(t)

∫ L

0

β(x, t)e
µx
2 dx, (3.32)

Ẇh
4 = (1− q1)p4Lη(t)β(0, t)− khi p4Lη

2(t) +
1

khi
q2p4Lη(t) ˙̄p

h(t)

≤ (1− q1)p4Lη(t)β(0, t)− khi p4Lη
2(t) +

q3
2

∣∣∣∣ 1khi
∣∣∣∣ q2p4Lη2(t) + 1

2q3

∣∣∣∣ 1khi
∣∣∣∣ q2p4L ˙̄ph2(t). (3.33)
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Using (3.30)-(3.33), for all t ≥ 0,

Ẇh ≤− θWh −

α(L, ·)β(0, ·)
η(·)

⊤

M1

α(L, ·)β(0, ·)
η(·)

−
∫ L

0

α(x, ·)β(x, ·)
η(·)

⊤

M (1)(x)

α(x, ·)β(x, ·)
η(·)

 dx

+

(
3q4L

2
|p3|k(2)−2

i q22 +
1

2q3

∣∣∣∣ 1khi
∣∣∣∣ q2p4L) ˙̄ph2(·), (3.34)

where M1 is given by (3.17) and for all x ∈ [0, L],

M (1)(x) =

[
A(x) B⊤(x)

B(x) C

]
, (3.35)

with

A(x) =

(µp1 − θp1

λh
1 (x)

)
e−µx 0

0
(
µp2 − |p3|

2q4λh
2 (x)

2 − θp2

λh
2 (x)

)
eµx

 ,
B(x) =

[
0
(

µp3

4 − θp3

2λh
2 (x)

)
e

µx
2

]
,

C = m

(
p4k

h
i − q3

2

∣∣∣∣ 1khi
∣∣∣∣ q2p4)− θp4

2
.

Therefore, using the Schur complement of C in M (1)(x) and (3.19), for all x in [0, L], M (1)(x) > 0

holds if and only if

A(x)−B⊤(x)C−1B(x) =

[
M11(x) M12(x)

∗ M22(x)

]
> 0 (3.36)

with

M11(x) =

(
µ− θ

λh1 (x)

)
p1e

−µx,

M12(x) = 0,

M22(x) =

(
µp2 −

|p3|
2q4λh2 (x)

2
− θp2
λh2 (x)

)
eµx

−
(
m(p4k

h
i − q3

2
| 1
khi

|q2p4)−
θp4
2

)−1(
µp3
4

− θp3
2λh2 (x)

)2

eµx.

Inequality (3.36) holds if and only if the conditions (3.19)-(3.21) are satisfied. Thus using (3.17),
if M (1)(x) > 0, for all x ∈ [0, L], holds,

Ẇh ≤ −θWh + a1 ˙̄p
h2(·), (3.37)

with a1 = 3q4L
2 |p3|k(2)−2

i q22 +
1

2q3
| 1
kh
i

|q2p4L > 0, and thus along the solutions to the system (3.12)-
(3.16), for all t ∈ [0,∞),

Wh ≤ e−θtWh(z0) + a1e
−θt

∫ t

0

˙̄ph2(s)eθs ds ≤ e−θtWh(z0) + a1

∫ t

0

˙̄ph2(s) ds. (3.38)

Combining this relation with (3.29), there exists positive constants Ω1 ≥ λmax

λmin
, b1 ≥ a1

λmin
such
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that, for all t ∈ [0,∞),

∫ L

0

(
α2(x, t) + β2(x, t)

)
dx+ Lη2(t)

≤ 1

λmin
Wh

≤ 1

λmin

(
e−θtWh(z0) + a1

∫ t

0

˙̄ph2(s) ds

)
≤ 1

λmin

(
e−θt · λmax ·

(∫ L

0

(
α2(x, 0) + β2(x, 0)

)
dx+ Lη2(0)

)
+ a1

∫ t

0

˙̄ph2(s) ds

)

≤ Ω1e
−θt

(∫ L

0

(
α2(x, 0) + β2(x, 0)

)
dx+ Lη2(0)

)
+ b1

∫ t

0

˙̄ph2(s) ds, (3.39)

completing the proof of Theorem 3.1.

3.2.2 Backstepping transformation and control law

In this section, a backstepping transformation is introduced to map the original system (3.5)-
(3.6) into the target system (3.12)-(3.16). Consequently, we obtain the kernels in the introduced
transformation by the kernel equations and the control law stabilizing the original system (3.5)-
(3.6) by the mathematical expression involving these kernels.

As in [Cor+13], consider the backstepping transformation, for all x ∈ [0, L], t ∈ [0,∞),

α(x, t) = ϵ1(x, t)−
∫ L

x

G11(x, ξ)ϵ1(ξ, t) dξ −
∫ L

x

G12(x, ξ)ϵ2(ξ, t) dξ, (3.40)

β(x, t) = ϵ2(x, t)−
∫ L

x

G21(x, ξ)ϵ1(ξ, t) dξ −
∫ L

x

G22(x, ξ)ϵ2(ξ, t) dξ, (3.41)

where G11(x, ξ), G12(x, ξ), G21(x, ξ) and G22(x, ξ) in L2((0, L)2;R) are kernels in the triangular
domain T1 =

{
(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L

}
.

Take time derivative and spatial derivative on the backstepping transformation (3.40) and
(3.41), and substitute them into the target system (3.12)-(3.16) to get the following equations and
boundary conditions of the kernels G11, G12, G21 and G22 from the original system (3.5)-(3.6) in
the triangular domain T1. The kernels G11, G12, G21 and G22 should satisfy the following kernel
equations, for (x, ξ) ∈ T1,

λh1 (x)∂xG
11(x, ξ) + λh1 (ξ)∂ξG

11(x, ξ) = −λh′1 (ξ)G11(x, ξ) + c2(ξ)G
12(x, ξ), (3.42)

λh1 (x)∂xG
12(x, ξ)− λh2 (ξ)∂ξG

12(x, ξ) = λh′2 (ξ)G12(x, ξ) + c1(ξ)G
11(x, ξ), (3.43)

λh2 (x)∂xG
21(x, ξ)− λh1 (ξ)∂ξG

21(x, ξ) = λh′1 (ξ)G21(x, ξ)− c2(ξ)G
22(x, ξ), (3.44)

λh2 (x)∂xG
22(x, ξ) + λh2 (ξ)∂ξG

22(x, ξ) = −λh′2 (ξ)G22(x, ξ)− c1(ξ)G
21(x, ξ), (3.45)
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and the boundary conditions

G11(x, L) =
λh2 (L)

κλh1 (L)
G12(x, L), (3.46)

G12(x, x) =
c1(x)

λh1 (x) + λh2 (x)
, (3.47)

G21(x, x) = − c2(x)

λh1 (x) + λh2 (x)
, (3.48)

G22(x, L) =
κλh1 (L)

λh2 (L)
G21(x, L). (3.49)

The well-posedness of the kernel equations (3.42)-(3.49) and the boundedness of kernel vari-
ables follow from a coordinate change (x, ξ) 7→ (L− ξ, L− x) and an application of Theorem A.1
in [Cor+13] in the triangular domain T2 =

{
(L− ξ, L− x) ∈ R2| 0 ≤ L− ξ ≤ L− x ≤ L

}
. There-

fore, for system (3.5)-(3.6), the following control law can be deduced, for all t ∈ [0,∞),

Uh(t) =
khi
q2

∫ t

0

(ϵ2(0, s)− ϵ1(0, s)) ds

+
khi
q2

∫ t

0

∫ L

0

( (
G11(0, ξ)−G21(0, ξ)

)
ϵ1(ξ, s) +

(
G12(0, ξ)−G22(0, ξ)

)
ϵ2(ξ, s)

)
dξ ds

+
1

q2

∫ L

0

( (
G11(0, ξ)− q1G

21(0, ξ)
)
ϵ1(ξ, t) +

(
G12(0, ξ)− q1G

22(0, ξ)
)
ϵ2(ξ, t)

)
dξ.

(3.50)

Under the assumptions in the Theorem 3.1, the target system (3.12)-(3.16) is integral input-to-
state stable. Thus, using the invertibility of backstepping transformation, the original system
(3.5)-(3.6) is iISS in the L2-norm with the control law (3.50).

Obviously, from (3.50), the practical implementation of the feedback control law needs the
knowledge of the full state (ϵ1, ϵ2)

⊤ over the whole spatial domain [0, L]. From (3.9), the output
under coordinate transformation is, for all t ∈ [0,∞),

yh(t) = ϵ2(0, t). (3.51)

In the next section, the knowledge of the full state (ϵ1, ϵ2)
⊤ in the control law Uh can be provided

by a boundary state observer that uses the output yh in (3.51) with a boundary measurement of
v(0, ·) only. The kernels G11(0, ξ), G12(0, ξ), G21(0, ξ) and G22(0, ξ), ξ ∈ (0, L) can be derived by
solving the kernel equations (3.42)-(3.49). Through choosing an appropriate value of khi , the iISS
of original system (3.5)-(3.6) is guaranteed with the control law (3.50).

3.3 Observer design and output feedback controller

From (3.9), we note that the output yh can be obtained by the measurement of inlet speed v(0, ·)
of the considered road segment. In order to observe the state (ϵ1, ϵ2)

⊤, a boundary observer
is designed as in [VKC11] by constructing the system with the output injection terms: for all
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x ∈ [0, L], t ∈ [0,∞),

∂tϵ̂1(x, t) + λh1 (x)∂xϵ̂1(x, t) + c1(x)ϵ̂2(x, t) = r(x)
(
yh(t)− ϵ̂2(0, t)

)
, (3.52)

∂tϵ̂2(x, t)− λh2 (x)∂̂xϵ2(x, t) + c2(x)ϵ̂1(x, t) = s(x)
(
yh(t)− ϵ̂2(0, t)

)
, (3.53)

ϵ̂1(0, t) = q1ϵ̂2(0, t)− Li

∫ t

0

(
yh(τ)− ϵ̂2(0, τ)

)
dτ + q2U

h(t), (3.54)

ϵ̂2(L, t) =
1

κ
ϵ̂1(L, t). (3.55)

In the previous equations, ϵ̂1 and ϵ̂2 are the observation of the state variables ϵ1 and ϵ2, the terms
r and s are the output injection gains, and Li ∈ R \ {0} is an integral tuning parameter. To reject
perturbation to guarantee the convergence of the observed state to the real state, an integral term
is added to a boundary condition of the observer. We design the boundary conditions of the
observer system (3.52)-(3.55) such that the mathematical expression of injection gains r and s are
as simple as possible.

The objective is to use the backstepping transformation to find r and s such that (ϵ̂1, ϵ̂2)
⊤

converges to (ϵ1, ϵ2)
⊤. The error system can be obtained by subtracting the observer system

(3.52)-(3.55) from the original system (3.5)-(3.6) and (3.10), (3.11), for all x ∈ [0, L], t ∈ [0,∞),

∂tϵ̃1(x, t) + λh1 (x)∂xϵ̃1(x, t) + c1(x)ϵ̃2(x, t) = −r(x)ϵ̃2(0, t), (3.56)

∂tϵ̃2(x, t)− λh2 (x)∂xϵ̃2(x, t) + c2(x)ϵ̃1(x, t) = −s(x)ϵ̃2(0, t), (3.57)

ϵ̃1(0, t) = q1ϵ̃2(0, t) + Li

∫ t

0

ϵ̃2(0, τ) dτ + q2p̄
h(t), (3.58)

ϵ̃2(L, t) =
1

κ
ϵ̃1(L, t), (3.59)

where ϵ̃1(x, t) = ϵ1(x, t)− ϵ̂1(x, t), and ϵ̃2(x, t) = ϵ2(x, t)− ϵ̂2(x, t).

In order to guarantee the iISS of the error system (3.56)-(3.59), the target system (3.12)-(3.16)
is mapped into the error system by using the backstepping transformation, for all x ∈ [0, L],
t ∈ [0,∞),

ϵ̃1(x, t) = α(x, t) +

∫ x

0

F 11(x, ξ)α(ξ, t) dξ +

∫ x

0

F 12(x, ξ)β(ξ, t) dξ, (3.60)

ϵ̃2(x, t) = β(x, t) +

∫ x

0

F 21(x, ξ)α(ξ, t) dξ +

∫ x

0

F 22(x, ξ)β(ξ, t) dξ, (3.61)

where the functions F ij(x, ξ) in L2((0, L)2;R), i, j = 1, 2 have to be determined in the triangular
domain T =

{
(x, ξ) ∈ R2| 0 ≤ ξ ≤ x ≤ L

}
.

Differentiating the transformation (3.60) and (3.61) with respect to t and x, substituting the
results into the error system (3.56)-(3.59) and using the equations of the target system (3.12)-
(3.16), the following kernel equations and boundary conditions of the kernels F 11, F 12, F 21 and
F 22 can be derived in the triangular domain T, for (x, ξ) ∈ T,

λh1 (x)∂xF
11(x, ξ) + λh1 (ξ)∂ξF

11(x, ξ) = −λh1 (ξ)′F 11(x, ξ)− c1(x)F
21(x, ξ), (3.62)

λh1 (x)∂xF
12(x, ξ)− λh2 (ξ)∂ξF

12(x, ξ) = λh2 (ξ)
′F 12(x, ξ)− c1(x)F

22(x, ξ), (3.63)

λh2 (x)∂xF
21(x, ξ)− λh1 (ξ)∂ξF

21(x, ξ) = λh1 (ξ)
′F 21(x, ξ) + c2(x)F

11(x, ξ), (3.64)

λh2 (x)∂xF
22(x, ξ) + λh2 (ξ)∂ξF

22(x, ξ) = −λh2 (ξ)′F 22(x, ξ) + c2(x)F
12(x, ξ), (3.65)
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with the boundary conditions

F 11(L, ξ) = κF 21(L, ξ), (3.66)

F 12(x, x) = − c1(x)

λh1 (x) + λh2 (x)
, (3.67)

F 21(x, x) =
c2(x)

λh1 (x) + λh2 (x)
, (3.68)

F 22(L, ξ) =
1

κ
F 12(L, ξ). (3.69)

The injection gains are, for all x in [0, L],

r(x) = λh2 (0)F
12(x, 0)−

(
1− Li

khi

)
λh1 (0)F

11(x, 0), (3.70)

s(x) = λh2 (0)F
22(x, 0)−

(
1− Li

khi

)
λh1 (0)F

21(x, 0), (3.71)

where the kernels F 11(x, 0), F 12(x, 0), F 21(x, 0) and F 22(x, 0) are the solutions to the kernel equa-
tions (3.62)-(3.69). The well-posedness of the solutions to kernel equations (3.62)-(3.69) is guaran-
teed by the Theorem A.1 in [Cor+13] in the triangular domain T2 following a coordinate change
(x, ξ) 7→ (L− ξ, L− x).

Based on the reversibility of the backstepping transformation, it is straightforward to prove
the iISS of the error system (3.56)-(3.59) in the L2 sense through studying the stability of the
target system (3.12)-(3.16). To be more specific the following result proves, under appropriate
assumptions, that adding an exponentially decreasing function of the initial condition, and the
integral of the disturbance p̄h provides an overbound of the L2-norm of the state. See (3.73) below.
This is a way to describe the impact of the integral of the disturbance p̄h on the state. To derive
such result, let for all t ∈ [0,∞),

η̃(t) =

∫ t

0

ϵ̃2(0, τ) dτ + L−1
i q2p̄

h(t). (3.72)

Theorem 3.2
Under the assumptions of Theorem 3.1, consider the system (3.56)-(3.59), and the functions r and
s respectively determined by (3.70) and (3.71), where F 11(x, 0), F 12(x, 0), F 21(x, 0) and F 22(x, 0)

(x ∈ [0, L]) are obtained from (3.62)-(3.69), the equilibrium ϵ̃1 ≡ ϵ̃2 ≡ 0 is iISS in the L2 sense,
that is there exists positive constants Ω2, b2 such that, for any (ϵ̃1(·, 0), ϵ̃2(·, 0))⊤ in L2((0, L);R2),
and for any p̄h such that ˙̄ph ∈ L2[0,∞), the solution (ϵ̃1, ϵ̃2, η̃)

⊤ to the system (3.56)-(3.59) and
(3.72) satisfies∫ L

0

(
ϵ̃21(x, t) + ϵ̃22(x, t)

)
dx+ Lη̃2(t)

≤ Ω2e
−θt

(∫ L

0

(
ϵ̃21(x, 0) + ϵ̃22(x, 0)

)
dx+ Lη̃2(0)

)
+ b2

∫ t

0

˙̄ph2(s) ds, (3.73)

for all t ≥ 0.

Since the transformation (3.60)-(3.61) is invertible, the dynamical behavior of (3.56)-(3.59) is
the same as the behavior of the target system (3.12)-(3.16). Under the assumptions of Theorem 3.1,
the target system (3.12)-(3.16) is integral input-to-state stable in the L2 sense. Thus the iISS of
(3.56)-(3.59) is obtained from the invertibility and linearity of the backstepping transformation,
in other words, (3.73) holds.
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Moreover, on the basis of Theorem 3.2, as time t goes on, without disturbance p̄h, the state
components ϵ̂1 and ϵ̂2 of the solutions to the observer (3.52)-(3.55) go to the real values ϵ1 and ϵ2.
Therefore, the following observer-based output feedback controller is proposed by combining the
full state feedback law (3.50) with the observer (3.52)-(3.55), for all t ∈ [0,∞),

Uh(t) =
khi
q2

∫ t

0

(
yh(s)− ϵ̂1(0, s)

)
ds

+
khi
q2

∫ t

0

∫ L

0

( (
G11(0, ξ)−G21(0, ξ)

)
ϵ̂1(ξ, s) +

(
G12(0, ξ)−G22(0, ξ)

)
ϵ̂2(ξ, s)

)
dξ ds

+
1

q2

∫ L

0

( (
G11(0, ξ)− q1G

21(0, ξ)
)
ϵ̂1(ξ, t) +

(
G12(0, ξ)− q1G

22(0, ξ)
)
ϵ̂2(ξ, t)

)
dξ,

(3.74)

where ϵ̂1 and ϵ̂2 are computed from (3.52)-(3.55), the kernels G11(0, ξ), G12(0, ξ), G21(0, ξ) and
G22(0, ξ), ξ ∈ (0, L) are computed from the kernel equations (3.42)-(3.49).
Combining Theorem 3.1 and Theorem 3.2, the following result can be derived, when closing the
loop with the output feedback controller (3.74). The separation principle is used to prove the iISS
of this closed-loop system.

Theorem 3.3
Under the assumptions of Theorem 3.1, for any (ϵ1(·, 0), ϵ2(·, 0), ϵ̃1(·, 0), ϵ̃2(·, 0))⊤ in L2((0, L);R4)

in R, the observer-based output feedback controller (3.74) makes the equilibrium of the system
(3.5)-(3.6) and (3.10), (3.11) and the error system (3.56)-(3.59) iISS in the L2 sense, that is
there exists positive constants Ω3, b3 such that along the solution to (3.5)-(3.6), for any p̄h such
that ˙̄ph ∈ L2[0,∞), it holds, for all t in [0,∞),∫ L

0

(
ϵ21(x, t) + ϵ22(x, t)

)
dx+ Lη2(t) +

∫ L

0

(
ϵ̃21(x, t) + ϵ̃22(x, t)

)
dx+ Lη̃2(t)

≤ Ω3e
−θt

(∫ L

0

(
ϵ21(x, 0) + ϵ22(x, 0)

)
dx+ Lη2(0) +

∫ L

0

(
ϵ̃21(x, 0) + ϵ̃22(x, 0)

)
dx+ Lη̃2(0)

)

+ b3

∫ t

0

˙̄ph2(s) ds. (3.75)

Proof. The following candidate Lyapunov function is proposed, for all x ∈ [0, L], t ∈ [0,∞),

W =W1 +W2, (3.76)

where

W1 =

∫ L

0

ϵ1(x, t)ϵ2(x, t)

η(t)

⊤

P1(x)

ϵ1(x, t)ϵ2(x, t)

η(t)

 dx, (3.77)

W2 =

∫ L

0

ϵ̃1(x, t)ϵ̃2(x, t)

η̃(t)

⊤

P2(x)

ϵ̃1(x, t)ϵ̃2(x, t)

η̃(t)

 dx, (3.78)

with

Pj(x) =


pj1

λh
1 (x)

e−µx 0 0

∗ pj2

λh
2 (x)

eµx
pj3

2λh
2 (x)

e
µx
2

∗ ∗ pj4

2

 , j = 1, 2, for allx ∈ (0, L).



38
Chapter 3. Observer-based output feedback control of homogeneous linearized

traffic with bottleneck

From Theorem 3.1 and the invertibility and linearity of the backstepping transformation, for
the system (3.5)-(3.6) and (3.10), (3.11), there exist positive constants p11, p12, p14, C, a1, b and a
constant p13 such that for all t ∈ [0,∞),

Ẇ1 ≤ −θW1 + a1 ˙̄p
h2, (3.79)

and ∫ L

0

(
ϵ21(x, t) + ϵ22(x, t)

)
dx+ Lη2(t)

≤ Ce−θt

(∫ L

0

(
ϵ21(x, 0) + ϵ22(x, 0)

)
dx+ Lη2(0)

)
+ b

∫ t

0

˙̄ph2(s) ds. (3.80)

From Theorem 3.2, the iISS of the error system (3.56)-(3.59) guarantees exact observation of the
state ϵ1 and ϵ2 of the system (3.5)-(3.6) under the assumptions of Theorem 3.1, i.e., there exist
positive constants p21, p22, p24, a2 and a constant p23 such that

Ẇ2 ≤ −θW2 + a2 ˙̄p
h2. (3.81)

and (3.73) hold.
According to the separation principle, and the inequalities (3.79)-(3.81), the Lyapunov function
W for the output feedback closed-loop system consisting of the original system (3.5)-(3.6) and
(3.10), (3.11) and the error system (3.56)-(3.59) satisfies

Ẇ = Ẇ1 + Ẇ2 ≤ −θW + (a1 + a2) ˙̄p
h2, (3.82)

Then for Ω3 ≥ max{Ω2, C}, b3 = b+ b2, one can derive the following result from (3.73) and (3.80),
for all t ∈ [0,∞),∫ L

0

(
ϵ21(x, t) + ϵ22(x, t)

)
dx+ Lη2(t) +

∫ L

0

(
ϵ̃21(x, t) + ϵ̃22(x, t)

)
dx+ Lη̃2(t)

≤ Ω3e
−θt

(∫ L

0

(
ϵ21(x, 0) + ϵ22(x, 0)

)
dx+ Lη2(0) +

∫ L

0

(
ϵ̃21(x, 0) + ϵ̃22(x, 0)

)
dx+ Lη̃2(0)

)

+ b3

∫ t

0

˙̄ph2(s) ds. (3.83)

Therefore, it is proved that with the control law (3.74), the equilibrium ϵ1 ≡ ϵ2 ≡ 0 of the system
(3.5)-(3.6) and (3.10), (3.11) is iISS in the L2 sense.

3.4 Optimal tuning controller and numerical studies

3.4.1 Optimal tuning controller

In order to seek the optimal tuning control law Uh in (3.74), the following optimization problem
for the maximal θ can be considered to derive the optimal value of khi :

max θ

subject toµ, θ, p1, p2, p4, q3, q4 > 0, and (3.17)-(3.21) for all x ∈ [0, L]. (3.84)

Checking the constraints above requires dealing with the matrix inequalities that are not directly
numerically tackled due to the products between unknown parameters. The parameters khi , µ, θ,m
can be given through line search methods, and the other variables p1, p2, p3, p4 can be derived by
solving LMIs. We discretize the spatial variable x on the domain [0, L] to solve finite LMIs.
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Remark 3.2
The parameters khi , µ and θ have effects on the iISS of the target system (3.12)-(3.16) in terms of
the matrix inequalities. The parameter khi serves as the integral tuning parameter at the boundary
x = 0 of the target system (3.12)-(3.16), and it is the key parameter to determine the iISS property
in the L2 sense. The positive constant µ is involved in the exponent or power of the exponential
terms of the Lyapunov function that is proposed to analyze the stability of the target system (3.12)-
(3.16). It has also an effect on the condition number of the matrix M1 in (3.17). The parameter θ
is the exponential rate of convergence of the target system (3.12)-(3.16), the error system (3.56)-
(3.59) and the closed-loop system (3.5)-(3.6). The higher θ is, the faster the closed-loop system
(3.5)-(3.6) converges. Selecting the fitting parameters khi , µ, and θ is done by three independent
line searches and three different loops.

3.4.2 Simulations

In order to illustrate the performance of the proposed controller (3.74) in stabilizing the system
(3.5)-(3.6) around the equilibrium, numerical simulations are done in this section. Given p̄h, ω∗, v∗,
compute controller for the linearized system (3.5)-(3.6) and simulate the nonlinear model. For
simulations, we illustrate by rush hour the traffic demand p̄h serving as an exogenous variable for
the traffic flow model that varies on time scales.

25 30 35 40 45 50

ki
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10
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Figure 3.3: The curve of maximal θ with respect to the coefficient khi on the domain [25, 50].

For numerical simulations, the traffic parameters of a local road section under considera-
tion are chosen as in [ZPQ19]: L = 1km, vf = 150 km/h, ρm = 200 veh./km, τ = 60 s,
p̄h(t) = 420e−10t (veh./h), t ∈ [0,∞). The update for each time step is computed in a two-
stage Lax–Wendroff scheme (LeVeque, 1992). More details on applying the scheme to AR-type
traffic models can be found in Yu, Gan, Bayen, and Krstic (2020). The equilibrium is chosen as
ρ∗(x) = 120−0.5x (veh./km), v∗(x) = 70−0.5x (km/h), x ∈ [0, L] which leads to the characteristic
speeds λh1 = 70− 0.5x, and λh2 = 20 + 0.125x, x ∈ [0, L], then q1 = −0.2857, q2 = 0.0107, q3 = 1,
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Figure 3.4: Evolutions of state variables of error system (ϵ̃1, ϵ̃2, η̃)
⊤ in (3.56)-(3.59) with respect

to spatial variable x and time variable t.

q4 = 1, κ = 2.2487. The initial conditions are defined as, for all x ∈ [0, L],

ρ(x, 0) = ρ∗(x) + 0.5 sin 4πx,

v(x, 0) = v∗(x) + 1.8 cos 4πx.

During solving the optimization problem (3.84), given khi on the domain [25, 50] with a step length
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Figure 3.5: Observer-based output feedback controller Uh(t).

1, we search the maximal value (θmax) of θ satisfying (for all discrete quality of x with a step size L
20 )

the linear matrix inequalities (3.17)-(3.21) for each discrete quantity of khi by using the "yalmip"
programme on Matlab. The used function "optimize" which is common for solving optimization
problems on Matlab consists of the chosen solver "sdpt3", the constraints (3.17)-(3.21), and the
objective θ. We derive the curve of maximal θ with respect to the coefficient khi on the domain
[25, 50] in Figure 3.3. It is checked in this figure that the larger khi is, the larger is θmax given by
(3.84). This figure can be used to compute the best performance, given an amplitude constraint
on khi . Choosing the control gain khi = 35 in (3.50) and (3.74), µ = 0.6, and m = 0.1, we get
θ = 7, p1 = 10.6524, p2 = 15.966, p3 = 0.0059, p4 = 564.0186, so that (3.17)-(3.21) hold. The
integral tuning parameter is set Li = 5 in (3.59), and using the method described and the code
attached in Appendix F.2 of [AA19], the values of kernels G11, G12, G21, G22 are derived from
numerical computation of the kernel equations (3.42)-(3.49) and the values of F 11, F 12, F 21, F 22

are obtained from the numerical computation of (3.62)-(3.69). Different from the previous research
giving the explicit formula of backstepping transformations that can be used to deduce the explicit
solutions of kernels, the numerical solutions of kernels in the general formation of backstepping
transformations can be derived using [AA19].

The iISS of the error system (3.56)-(3.59) can be seen in Figure 3.4. The evolution of the
output feedback controller Uh given by (3.74) is given in Figure 3.5. From Figure 3.5, we notice
that the value of control input Uh could be negative and converge to zero because the physical
control input Q∗h

rmp+U
h locally stabilizes the system and is "close" to the equilibrium control input

Q∗h
rmp. Thus the physical control input satisfies the positive constraint. In Figure 3.6, the state of

the closed-loop system (2.1)-(2.2) with the output feedback control converges to zero equilibrium.
This numerical result is consistent with Theorem 3.3. By comparing Figure 3.6 and Figure 3.7,
it is obvious that the observer maintains the exponential convergence performance of the closed-
loop system (2.1)-(2.2), and it is also capable of observing the full states of the system only by
one boundary measurement as described earlier. Figure 3.8 gives the numerical simulations of
the nonlinear ARZ traffic model in a closed-loop with the controller that is computed with the
linearized model. It is obvious that the designed observer-based output feedback controller for
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Figure 3.6: Evolutions of state variables of original system (ϵ1, ϵ2)
⊤ in (3.5)-(3.6) with respect to

spatial variable x and time variable t.

the linearized ARZ traffic system stabilizes the nonlinear system in the same way. Moreover,
comparing the convergence speeds in open loop (nearly 0.4 hours in Figure 3.9) and in closed-loop
with the optimal tuning controller (nearly 0.2 hours in Figure 3.8), we check that the system
(2.1)-(2.2) converges to the equilibrium with the fastest speed using the designed optimal tuning
controller.
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Figure 3.7: Evolutions of state variables of original system (ϵ1, ϵ2)
⊤ in (3.5)-(3.6) with respect to

spatial variable x and time variable t.

3.5 Conclusion

The stabilization of the homogeneous linearized Aw-Rascle-Zhang (ARZ) congestion traffic flow
model with an unknown perturbation at the upstream boundary and a bottleneck at the down-
stream boundary was considered in this chapter. A full-state feedback controller was designed
to stabilize the linear part of the nonlinear ARZ model. By designing an exponentially conver-
gent observer that only needs to measure the upstream boundary state, an output state feedback
controller and the iISS were achieved. Only the upstream inlet vehicle velocity was measured for
the design of the control law and the unpredicted perturbation was rejected by designing proper
injection gains for the observer.
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Figure 3.8: Spatial and time evolutions of state variables of plant system (ρ, v)⊤ in (2.1)-(2.2) in
closed-loop with the optimal tuning controller computed for the linearized model (3.5)-(3.6).

In the next chapter, we design a controller to reject disturbance for the heterogeneous linearized
traffic flow system with a bottleneck at the outlet boundary.
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Figure 3.9: Spatial and time evolutions of state variables of plant system (ρ, v)⊤ in (2.1)-(2.2) in
open loop.
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This chapter studies an optimal tuning boundary control law for a heterogeneous traffic flow
model with disturbances to alleviate the congested traffic. The macroscopic first-order N-class
Aw-Rascle traffic model consists of 2N hyperbolic partial differential equations. The vehicle size
and the driver’s behavior characterize the type of vehicle. There are m positive characteristic
velocities and 2N −m negative characteristic velocities in the congested traffic after linearizing
the model equations around the equilibrium depending on the spatial variable. By using the
backstepping method, a controller implemented by a ramp metering at the inlet boundary is
designed for rejecting the disturbances to stabilize the 2N × 2N heterogeneous traffic system.
The developed controller written as a proportional integral control is derived from mapping the
original system to a target system with a proportional integral boundary control rejecting the
disturbances. The integral input-to-state stability of the target system is proved by using the
Lyapunov method.

This chapter has been submitted for publication in [GZP21a].

4.1 Traffic flow system and control problem

In this section, the multi-type AR traffic flow model and the interpretation of crucial parameters
are presented. The preparations for designing the controller are also done including the trans-
formations of states and the linearization around a nonuniform equilibrium. On the basis of the
control problem to be solved, the corresponding boundary conditions are derived.

47
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4.1.1 Multi-type AR traffic flow model

Extending the homogeneous traffic model in (2.1)-(2.2), we investigate the multi-type AR traffic
flow model in [MR17] that describes the dynamics of heterogeneous traffic consisting of N vehicle
types on a road segment with the length L,

∂tρi(x, t) + ∂x

(
ρi(x, t)vi(x, t)

)
= 0, (4.1)

∂t

(
vi(x, t) + pi(Ao(ρ))

)
+ vi(x, t)∂x

(
vi(x, t) + pi(Ao(ρ))

)
=
Ve,i(Ao)− vi(x, t)

τi
, (4.2)

with the independent space variable x ∈ (0, L) and the independent time variable t ∈ [0,∞),
where i is the index of vehicle type with i = 1, 2, . . . , N , ρi(x, t) and vi(x, t) are respectively the
density and velocity of vehicle type i. Additionally, the density ρi(x, t) is defined as the number of
vehicles passing the road section per unit length, and the velocity vi(x, t) is defined as the average
speed of vehicles passing location x in unit time. The relaxation time τi of vehicle type i is subject
to the driving behavior, the variable Ao(ρ) is the area occupancy, the area occupancy Ao(ρ) is
formulated as

Ao(ρ) =
a⊤ρ

W
, (4.3)

where a = (a1, a2, . . . , aN )⊤ (ai is the occupied surface per vehicle for type i), ρ =

(ρ1, ρ2, . . . , ρN )⊤, and W is the width of the road segment. Area occupancy Ao(ρ) describes
the percentage of road space that is occupied by all the vehicle classes on the considered road
section. In the physical sense, 0 < Ao(ρ) ≤ 1.

For the heterogeneous traffic, the traffic pressure function pi(Ao(ρ)) of vehicle type i is an
increasing function of the area occupancy Ao(ρ) as follows (see [BYK21]),

pi(Ao(ρ)) = vMi

(
Ao(ρ)

AoMi

)γi

, i = 1, 2, . . . , N, (4.4)

where the free-flow velocity vMi and the maximum area occupancy 0 < AoMi ≤ 1 of vehicle type
i respectively describe the maximal velocity in the free regime and the maximum percentage of
occupied surface in the congested regime, if there is only vehicle class i on the road. With the
free flow speed vMi and the maximal density ρMi , 0 < vi ≤ vMi , 0 < ρi ≤ ρMi hold. As described
in the paper [BYK21], the constant γi > 1 is the pressure exponent of the vehicle type i that can
be tuned to get realistic traffic pressure pi(Ao(ρ)).

The equilibrium speed-Ao relationship of vehicle class i (= 1, 2, . . . , N) is given by Greenshield’s
model in [BD+35] as

Ve,i(Ao(ρ)) = vMi − pi(Ao(ρ)) = vMi

(
1−

(
Ao(ρ)

AoMi

)γi
)
. (4.5)

There is a negative connection from the decreasing function Ve,i(Ao(ρ)) describing the desired
velocity of the drivers to the crowded degree.

4.1.2 Linearization of multi-type AR traffic flow model

Inspired by the case "2 vehicle classes" in [BYK21], the multi-type AR traffic model (4.1)-(4.2) is
linearized around a nonuniform equilibrium

u∗ = (ρ∗1, v
∗
1 , ρ

∗
2, v

∗
2 , . . . , ρ

∗
N , v

∗
N )⊤ ∈ C1([0, L];R2N ),
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where ρ∗i , v∗i satisfy, for i = 1, 2, . . . , N ,

v∗i ρ
∗
i
′ + ρ∗i v

∗
i
′ = 0, (4.6)

v∗i v
∗
i
′ + v∗i p

′
i =

Ve,i(Ao(ρ
∗))− v∗i

τi
, (4.7)

with ρ∗ = (ρ∗1, ρ
∗
2, . . . , ρ

∗
N )⊤. From (4.6), note that ρ∗i v∗i = di with the given constant di and the

given value for ρ∗i (0), i = 1, 2 . . . , N . Assume that there exists a physical case ρ∗i > 0, v∗i > 0, for
all x ∈ [0, L] satisfying the above equations (4.6)-(4.7) as in [BC17] for a class of physical 2 × 2

hyperbolic systems.

Denoting ũe = (ρ̃1, ṽ1, ρ̃2, ṽ2, . . . , ρ̃N , ṽN )⊤ ∈ H1([0, L] × [0,∞);R2N ) with ρ̃i = ρi − ρ∗i , ṽi =

vi − v∗i , i = 1, 2, . . . , N , the system (4.1)-(4.2) is transformed to the following equation, for all
x ∈ [0, L], t ∈ [0,∞),

A(ũe)∂tũ
e(x, t) +B(ũe)∂xũ

e(x, t) + C(ũe)ũe(x, t) = 0, (4.8)

where, for i, j = 1, 2, . . . , N ,

A(ũe) =


A11(ũ

e) A12(ũ
e) · · · A1N (ũe)

A21(ũ
e) A22(ũ

e) · · · A2N (ũe)
...

...
. . .

...
AN1(ũ

e) AN2(ũ
e) · · · ANN (ũe)

 ,
with

Aij(ũ
e) =



[
1 0

δii(ρ) 1

]
, if j = i,[

0 0

δij(ρ) 0

]
, if j ̸= i,

B(ũe) =


B11(ũ

e) B12(ũ
e) · · · B1N (ũe)

B21(ũ
e) B22(ũ

e) · · · B2N (ũe)
...

...
. . .

...
BN1(ũ

e) BN2(ũ
e) · · · BNN (ũe)

 ,
with

Bij(ũ
e) =



[
ṽi + v∗i ρ̃i + ρ∗i

(ṽi + v∗i )δii(ρ) ṽi + v∗i

]
, if j = i,[

0 0

(ṽi + v∗i )δij(ρ) 0

]
, if j ̸= i,

and

C(ũe) =


C11(ũ

e) C12(ũ
e) · · · C1N (ũe)

C21(ũ
e) C22(ũ

e) · · · C2N (ũe)
...

...
. . .

...
CN1(ũ

e) CN2(ũ
e) · · · CNN (ũe)

 ,
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with

Cij(ũ
e) =



[
v∗i

′ ρ∗i
′

1
τi
δii(ρ) + v∗i σii(ρ)ρ

∗
i
′ 1

τi
+ v∗i

′ +
∑N

k=1 δik(ρ)ρ
∗
k
′

]
, if j = i,[

0 0
1
τi
δij(ρ) + v∗i σij(ρ)ρ

∗
j
′ 0

]
, if j ̸= i.

Therein, for i, j, k = 1, 2, . . . , N ,

δij(ρ) = ∂ρj
pi (Ao(ρ)) =

vMi γiaj
AoMi W

(
Ao(ρ)

AoMi

)γi−1

,

δij(ρ
∗) = ∂ρjpi (Ao(ρ

∗)) =
vMi γiaj
AoMi W

(
Ao(ρ∗)

AoMi

)γi−1

,

σikj(ρ
∗) = ∂ρk

δij(ρ
∗) =

vMi γi(γi − 1)akaj
(AoMi W )2

(
Ao(ρ∗)

AoMi

)γi−2

.

Because of the invertibility of A(ũe), i.e., |A(ũe)| ≠ 0, we transform and linearize the system (4.8)
around the nonuniform equilibrium u∗, then for all t ∈ [0,∞), x ∈ (0, L), the linearized system is
derived with ρ∗ = (ρ∗1, ρ

∗
2, . . . , ρ

∗
N )⊤ as follows, for all x ∈ [0, L], t ∈ [0,∞),

∂tũ
e(x, t) + F (u∗)∂xũ

e(x, t) = G(u∗)ũe(x, t), (4.9)

where, for i, j = 1, 2, . . . , N ,

F (u∗) =


F11(u

∗) F12(u
∗) · · · F1N (u∗)

F21(u
∗) F22(u

∗) · · · F2N (u∗)
...

...
. . .

...
FN1(u

∗) FN2(u
∗) · · · FNN (u∗)

 ,
with

Fij(u
∗) =



[
v∗i ρ∗i

0 v∗i − ρ∗i δii(ρ
∗)

]
, if j = i,[

0 0

(v∗i − v∗j )δij(ρ
∗) −ρ∗jδij(ρ∗)

]
, if j ̸= i,

and

G(u∗) =


G11(u

∗) G12(u
∗) · · · G1N (u∗)

G21(u
∗) G22(u

∗) · · · G2N (u∗)
...

...
. . .

...
GN1(u

∗) GN2(u
∗) · · · GNN (u∗)

 ,
with

Gij(u
∗) =



[
v∗i

′ ρ∗i
′

1
τi
δii(ρ

∗) + v∗i σii(ρ
∗)ρ∗i

′ − δii(ρ
∗)v∗i

′ 1
τi

+ v∗i
′ +
∑N

k=1,k ̸=i δik(ρ
∗)ρ∗k

′

]
,

if j = i,

[
0 0

1
τi
δij(ρ

∗) + v∗i σij(ρ
∗)ρ∗j

′ − δij(ρ
∗)v∗j

′ −δij(ρ∗)ρ∗j
′

]
, if j ̸= i.
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Inspired by [Zha+06], the characteristic polynomial P2N (characteristic variable λ) in this chapter
is analyzed as follows,

P2N (λ) = |λI2N − F (u∗)|
= (λ− ϕ1)(λ− ϕ2) · · · (λ− ϕ2N−1)(λ− ϕ2N )

×

(
1 +

(
1

λ− ϕ1
− 1

λ− ϕ2

)
· · ·
(

1

λ− ϕ2N−1
− 1

λ− ϕ2N

)

(ϕ1 − ϕ3)(ϕ3 − ϕ5) · · · (ϕ2N−3 − ϕ2N−1)(ϕ2N−1 − ϕ1)

)
, (4.10)

with ϕ1 = v∗1 , ϕ2 = v∗1 − ρ∗1δ11(ρ
∗), ϕ3 = v∗2 , ϕ4 = v∗2 − ρ∗2δ22(ρ

∗), . . ., ϕ2N−1 = v∗N , ϕ2N =

v∗N − ρ∗NδNN (ρ∗). Assume that ϕ1 > ϕ2 > ϕ3 > ϕ4 > · · · > ϕ2N−1 > ϕ2N , then

P2N (ϕi) < 0, i = 1, 2, . . . , 2N, (4.11)
P2N (ϕ1 + ϕ3 + · · ·+ ϕ2N−1) > 0, (4.12)

and there is a constant ai, i = 1, 2, 3, . . . , N − 1, on the domain ϕ2i > ai > ϕ2i+1 such that

P2N (ai) > 0. (4.13)

By using the intermediate value theorem, (4.11), (4.12), (4.13) imply that the polynomial P2N (λ)

has 2N − 1 distinct positive eigenvalues λ1, λ2, λ3, λ4, . . ., λ2N−1 such that

ϕ1 + ϕ3 + · · ·+ ϕ2N−1 > λ1 > ϕ1 > ϕ2 > λ2 > a1 > λ3 > ϕ3 > ϕ4 > λ4 > a2 > λ5 > ϕ5

> · · · > λ2N−3 > ϕ2N−3 > ϕ2N−2 > λ2N−2 > aN−1 > λ2N−1 > ϕ2N−1 > 0. (4.14)

From (4.10), note that if λ < min{2ϕ3 − ϕ1, 2ϕ5 − ϕ3, . . . , 2ϕ2N−1 − ϕ2N−3, 2ϕ2N − ϕ2N−1}, then
it holds

P2N (λ) > 0. (4.15)

Therefore, if ϕ2N < 0, there is a negative eigenvalue −λ2N on the domain 0 > ϕ2N > −λ2N >

min{2ϕ3 − ϕ1, 2ϕ5 − ϕ3, . . . , 2ϕ2N−1 − ϕ2N−3, 2ϕ2N − ϕ2N−1}; if ϕ2N > 0, there is a negative
eigenvalue −λ2N on the domain 0 > −λ2N > min{2ϕ3−ϕ1, 2ϕ5−ϕ3, . . . , 2ϕ2N−1−ϕ2N−3, 2ϕ2N −
ϕ2N−1} under the following conditions

P2N (0) =ϕ1ϕ2 · · ·ϕ2N−1ϕ2N + (ϕ1 − ϕ2)(ϕ3 − ϕ4)

· · · (ϕ2N−1 − ϕ2N )(ϕ1 − ϕ3)(ϕ3 − ϕ5)

· · · (ϕ2N−3 − ϕ2N−1)(ϕ2N−1 − ϕ1) < 0. (4.16)

By the analysis of (4.15), we note that under the condition (4.16), there is not less than one negative
eigenvalue (congested traffic), if 0 > min{2ϕ3−ϕ1, 2ϕ5−ϕ3, . . . , 2ϕ2N−1−ϕ2N−3, 2ϕ2N −ϕ2N−1}.
If 0 < min{2ϕ3−ϕ1, 2ϕ5−ϕ3, . . . , 2ϕ2N−1−ϕ2N−3, 2ϕ2N −ϕ2N−1}, all the eigenvalues are positive
(free traffic). The analysis of eigenvalues in this chapter is the generalization of the case N = 2

in [BYK21].

The hyperbolicity of the system (4.9) is clearly discussed as above, i.e., for all u∗ ∈
C1([0, L];R2N ), the matrix F (u∗) has 2N real distinct eigenvalues different to zero. Given 2N

eigenvalues

λe1 > λe2 > · · · > λem > 0 > −λem+1 > · · · > −λe2N , (4.17)
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of F (u∗), λei ∈ C1([0, L];R>0), i = 1, . . . , 2N , that does not depend on t, and assuming that the
congestion mode is kept along the trajectory, we denote by m the number of positive eigenvalues.
We get that 2N −m is the number of waves against the traffic flow (upstream) in the congested
traffic due to the reaction of the drivers to their respective leading vehicles, and due to the high
value of Ao(ρ). In order to alleviate the traffic congestion, we thus compute the 2N −m boundary
conditions reducing ∥Ao(ρ)∥L∞((0,L);R). Due to (4.3), it’s done by controlling the sum of the
states. Because of ∥Ao(ρ)∥L∞ ≤ C∥Ao(ρ)∥H1 with a positive constant C, we will study the
scenarios 2N −m ≥ 1 in the H1 sense in this chapter. The two-type vehicle case is investigated
in the paper [BYK21], where m = 3, N = 2. With an invertible transformation matrix T ∈
C1([0, L];R2N×2N ) whose columns are the corresponding right eigenvectors of 2N eigenvalues,
by using the transformation ω = T−1ũ ∈ H1([0, L]× [0,+∞);R2N ), the linearized system (4.9) is
rewritten as, for all x ∈ (0, L), t ∈ [0,+∞),

∂tω(x, t) + Λe(x)∂xω(x, t) =Me(x)ω(x, t), (4.18)

where

Λe = diag{Λ+,−Λ−} ∈ C1([0, L];D2N ),

Λ+ = diag{λe1, λe2, . . . , λem} ∈ C1([0, L];D+
m),

Λ− = diag{λem+1, λ
e
m+2, . . . , λ

e
2N} ∈ C1([0, L];D+

2N−m),

Me = T−1G(u∗)T ∈ C1([0, L];R2N×2N ).

Then, the following definitions are given for the subsequent analysis and investigation,

|Λe| = diag
{
Λ+,Λ−} ∈ C1([0, L];D+

2N ),

Λe′ = diag
{
λe′1 , . . . , λ

e′
m,−λe′m+1, . . . ,−λe′2N

}
∈ C0([0, L];D2N ),

(Λ+)′ = diag{λe′1 , λe′2 , . . . , λe′m} ∈ C0([0, L];D+
m),

(Λ−)′ = diag{λe′m+1, λ
e′
m+2, . . . , λ

e′
2N} ∈ C0([0, L];D+

2N−m),

where λe′i (i = 1, 2, . . . , 2N) is the derivative of λei with respect to the spatial variable x.

4.1.3 Problem statement

The control problem is motivated by alleviating the congestion on a road segment with the distur-
bances at the inlet boundary and the flow restriction at the downstream boundary. For example,
the occurrence of traffic congestion is attributed to the excess capacity of a bottleneck at the
downstream outlet and the high traffic demand (modeled as the disturbances) at the upstream
inlet of the considered road section.

In order to alleviate the traffic congestion, we design a boundary control law to reject distur-
bances for an investigated road segment, on which a ramp metering is installed at the inlet x = 0

and a constant density is kept at the outlet x = L,

ρi(L, t) = ρ∗i (L), ∀t ∈ [0,+∞), (4.19)

for i = 1, 2, . . . , N . As described in Chapter 3, the constant equilibrium density ρ∗i (L) at the outlet
for each vehicle class i is guaranteed by the measurement of flux at the outlet of the considered
road section and the implementation of the speed limit signs in the interface. The diagram of the
control model is illustrated in Figure 4.1.
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0 L

Ue(t)Q∗e
rmp

Q∗e
in

p̄e(t)

ρi(0, t)vi(0, t) ρ∗i (L)

Flow RestrictionInterface

Figure 4.1: Multi-type vehicles traffic on a road with disturbances and flow restriction.

We can derive the following equation based on the flow conservation at the upstream inlet
x = 0, for all t ∈ [0,∞),

Q∗e
in + p̄e(t) +Q∗e

rmp +ΘUe(t) =


ρ1(0, t)v1(0, t)

ρ2(0, t)v2(0, t)
...

ρN (0, t)vN (0, t)

 , (4.20)

where Q∗e
in ∈ RN is a vector whose entries are the constant inflow of each vehicle class, and

p̄e ∈ C1([0,∞);RN ) is a vector whose entries are the unknown disturbances of flow rate of each
vehicle class and serves as an exogenous variable depending on the time variable t. The actuation
signal vector Ue ∈ C0([0,∞);R2N−m) with a coefficient matrix Θ ∈ RN×2N−m(R) is implemented
by the on-ramp metering at the upstream boundary of the considered road segment. The matrix
Θ is the control matrix describing the impact of the control input to the flow of each vehicle class.
We want to maximize going through traffic at the inlet as in [PG06], then the total inflow at the
inlet consisting of the total inflow at the ramp 0 ≤

[
1 1 . . . 1

]
(Q∗e

rmp +Ue(t)) ≤ Qmax
1e (Qmax

1e

is the flux limit of the incoming road) and the total inflow at the inlet 0 ≤
[
1 1 . . . 1

]
(Q∗e

in +

p̄e(t)) ≤ Qmax
2e (Qmax

2e is the flux limit on the on-ramp) is limited to the maximum flow Qe
max ≥[

1 1 . . . 1
]
(Q∗e

in + p̄e(t) + Q∗e
rmp + ΘUe(t)) ≥ 0, and 0 < vi(0, ·) ≤ vMi , 0 < Ao(ρ(0, ·)) ≤

max{AoM1 , AoM2 , . . . , AoMN }. From (4.6), the nominal on-ramp flux rate Q∗e
rmp ∈ RN satisfies the

relation

Q∗e
in +Q∗e

rmp =


ρ∗1(0)v

∗
1(0)

ρ∗2(0)v
∗
2(0)

...
ρ∗N (0)v∗N (0)

 =


ρ∗1(L)v

∗
1(L)

ρ∗2(L)v
∗
2(L)

...
ρ∗N (L)v∗N (L)

 =


d1
d2
...
dN

 . (4.21)

The equation (4.21) represents the sum of the inflow Q∗e
in and the referenced input on-ramp flux

rate Q∗e
rmp, as the referenced input, is equivalent to the equilibrium flow at the inlet and outlet

boundaries of the considered road segment as in [BC11]. Then, (4.20) shows that the control
input is implemented to reject the disturbances p̄e. From the physical control input Q∗e

rmp +

ΘUe(t) = Q∗e
rmp

(
1 + ΘUe(t)

Q∗e
rmp

)
, we note that because of Q∗e

rmp + ΘUe(t) fluctuating around Q∗e
rmp,

0 < 1 + ΘUe(t)
Q∗e

rmp
< 2 is around 1, so the control of the multiplicity 1 + ΘUe(t)

Q∗e
rmp

is more precise for
data processing in the engineering application, see the block diagram of the closed-loop control
system in Figure 3.2.

From the boundary condition at x = L, by combining control laws (4.20) with (4.21) and
linearizing, the boundary conditions are derived, for all t ≥ 0,

A1ũ
e(0, t) = p̄e(t) + ΘUe(t), (4.22)

B1ũ
e(L, t) = 0, (4.23)
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System

Ue

Q∗e
in +Q∗e

rmp

p̄e

+

Figure 4.2: Block diagram of closed-loop control system

with

A1 = diag{[v∗1(0), ρ∗1(0)], . . . , [v∗N (0), ρ∗N (0)]} ∈ RN×2N ,

B1 = diag{
[
1 0

0 0

]
, . . . ,

[
1 0

0 0

]
} ∈ R2N×2N .

For the sake of alleviating the congested traffic and preventing the capacity drop, a controller is
designed by using the backstepping approach in this chapter. In the next subsection, a Riemann
coordinate transformation of the state ω̃e is dealt to make the development and analysis of the
controller easier.

4.1.4 Riemann coordinates transformation

By the transformation

R =

[
R+

R−

]
= Ψ(x)ω̃e, x ∈ [0, L], (4.24)

with Ψ(x) = diag {Ψ+(x),Ψ−(x)} ,

Ψ+(x) = diag

e
−
∫ x

0

[M(s)]1,1
λe1(s)

ds
, e
−
∫ x

0

[M(s)]2,2
λe2(s)

ds
, . . . , e

−
∫ x

0

[M(s)]m,m

λem(s)
ds

 ,

Ψ−(x) = diag

e
∫ x

0

[M(s)]m+1,m+1

λem+1(s)
ds
, e

∫ x

0

[M(s)]m+2,m+2

λem+2(s)
ds
, . . . , e

∫ x

0

[M(s)]2N,2N

λe2N (s)
ds

 ,

from ω̃e to the new variable R with R+ : [0, L]× [0,∞) → Rm, R− : [0, L]× [0,∞) → R2N−m, we
can derive the following system with a simpler source term in which all the diagonal entries of the
coefficient matrix are zero, for all x ∈ [0, L], t ∈ [0,∞),

∂tR(x, t) + Λe(x)∂xR(x, t) = Σ(x)R(x, t), (4.25)
Rin(t) = Ke

PRout(t) + Γ0(p̄
e(t) + ΘUe(t)), (4.26)
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where

Σ =

[
Σ++ Σ+−

Σ−+ Σ−−

]
∈ C1([0, L];R2N×2N ),

Rin =

[
R+(0, ·)
R−(L, ·)

]
∈ L∞([0,+∞);R2N ),

Rout =

[
R+(L, ·)
R−(0, ·)

]
∈ L∞([0,+∞);R2N ),

Ke
P =

[
0m×m Γ1

Γ3 02N−m×2N−m

]
∈ R2N×2N ,

Γ0 =

[
Γ2

02N−m×N

]
∈ R2N×N ,

with

Σ++ = {ϵij}1≤i,j≤m ∈ C1([0, L];Rm×m),

Σ+− = {ϵij}1≤i≤m,m+1≤j≤2N ∈ C1([0, L];Rm×2N−m),

Σ−+ = {ϵij}m+1≤i≤2N,1≤j≤m ∈ C1([0, L];R2N−m×m),

Σ−− = {ϵij}m+1≤i≤2N,m+1≤j≤2N ∈ C1([0, L];R2N−m×2N−m),

and ϵij ∈ C1([0, L]),

ϵij =

{
0, if j = i,

[Ψ]i,i · [M ]i,j · [Ψ]−1
j,j , if j ̸= i.

There are matrices Υ1 ∈ Rm×N (R) and Υ2 ∈ R2N−m×N (R) such that Υ1A1T
+(0) ∈ Rm×m(R)

and Υ2A2T
−(L) ∈ R2N−m×2N−m(R) are invertible, we obtain

Γ1 = −(Υ1A1T
+(0))−1Υ1A1T

−(0), Γ2 = (Υ1A1T
+(0))−1Υ1,

Γ3 = −Ψ−(L)(Υ2A2T
−(L))−1Υ2A2T

+(L)(Ψ+(L))−1,

with A2 = diag {[1, 0], . . . , [1, 0]} ∈ RN×2N ,

T+(0) =
{
T 0
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(0) =
{
T 0
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

T+(L) =
{
TL
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(L) =
{
TL
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

and

T 0
ij = [T (0)]i,j , TL

ij = [T (L)]i,j .

Since the transformation (4.24) is invertible, the linearized system in density and velocity has the
same stability property as the system (4.25)-(4.26).
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4.2 Controller design

4.2.1 Target system

Consider the backstepping transformations, for all x ∈ [0, L], t ∈ [0,∞),

Z+(x, t) = R+(x, t), (4.27)

Z−(x, t) = R−(x, t)−
∫ L

x

G1(x, ξ)R+(ξ, t) dξ −
∫ L

x

G2(x, ξ)R−(ξ, t) dξ, (4.28)

where G1, G2 are piecewise differentiable kernels defined on the triangular domain T ={
(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L

}
, that will be defined in Section 4.2.2.

In many papers, the proportional controllers are computed, but in this manuscript, since there
are some perturbation, integral action is needed and thus PI control laws are designed. Inspired
by [Hu+16], the following target system is introduced, for all x ∈ (0, L), t ∈ [0,+∞),

∂tZ(x, t) + Λe(x)∂xZ(x, t) = Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(t), (4.29)

Ẋ(t) = Ke
IZout(t) + Γ0 ˙̄p

e(t), (4.30)
Zin(t) = Ke

PZout(t) +X(t), (4.31)

X(t) = Ke
I

∫ t

0

Zout(σ) dσ + Γ0p̄
e(t), (4.32)

where

Z(x, t) =

[
Z+(x, t)

Z−(x, t)

]
, Σ1(x) =

[
Σ++(x) Σ+−(x)

0 0

]
,

k1 =

[
0m×m 0m×2N−m

K1 02N−m×2N−m

]
∈ C1([0, L];R2N×2N ),

Zin(t) =

[
Z+(0, t)

Z−(L, t)

]
, Zout(t) =

[
Z+(L, t)

Z−(0, t)

]
,

C1(x, ξ) =

[
C+(x, ξ) C−(x, ξ)

0 0

]
, Ke

I =

[
KI

e
11 KI

e
12

0(2N−m)×m 0(2N−m)×(2N−m)

]
,

with K11
I ∈ Rm×m,K12

I ∈ Rm×2N−m. Here k1 is a strictly upper triangular matrix, and C+, C−

are given as the solutions to the Volterra integral equations, for all (x, ξ) in T,

C+(x, ξ) = Σ+−(x)G1(x, ξ) +

∫ ξ

x

C−(x, s)G1(s, ξ) ds, (4.33)

C−(x, ξ) = Σ+−(x)G2(x, ξ) +

∫ ξ

x

C−(x, s)G2(s, ξ) ds. (4.34)

The system (4.29)-(4.32) is considered under the initial conditions,

Z(·, 0) = Z0(·) =
[
Z+
0 (·)

Z−
0 (·)

]
, (4.35)

X(0) = X0 = Γ0p̄
e(0) ∈ R2N . (4.36)

The exponential stability for the H1-norm of target system (4.29)-(4.32) is as follows.
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Theorem 4.1
The equilibrium Z(x, t) ≡ 0 of the system (4.29)-(4.32) is integral input-to-state stable for the
H1-norm if there exist positive constants α, q1, q2, q3, q4, diagonal positive-definite matrices
P1, P4 ∈ R2N×2N , a symmetric positive-definite matrix P2 ∈ R2N×2N and a matrix P3 ∈ R2N×2N

such that the following matrix inequalities hold, for all x ∈ [0, L],

(i)

Ωe(x) =


Ωe

11(x) Ωe
12(x) Ωe

13(x) Ωe
14

∗ Ωe
22 Ωe

23(x) Ωe
24

∗ ∗ Ωe
33 Ωe

34

∗ ∗ ∗ Ωe
44(x)

 ≥ 0, (4.37)

where

Ωe
11(x) = −Λe′(x)P1 − αP1 −

(
Σ⊤

1 (x)P1 + P1Σ1(x) + q1Lν
2
1I2N +

(
L

q1
+
L

q2

)
C⊤

1 (0, x)C1(0, x)

)
,

Ωe
12(x) = −P3K

e
I−P1k1(x),

Ωe
13(x) = −Λe′(x)P3 − αP3 − Σ⊤

1 (x)P3,

Ωe
14 = 0,

Ωe
22 =

1

L
E2P1 −

1

L
Ke⊤

P E1P1K
e
P − 1

L
Ke⊤

I E1P4K
e
I ,

Ωe
23(x) = − 1

L
Ke⊤

P E1P1 −
1

L

(
Ke⊤

P M1 +M2

)
−Ke⊤

I P2−k⊤1 (x)P3,

Ωe
24 = − 1

L
Ke⊤

I E1P4K
e
P ,

Ωe
33 = − 1

L
E1P1 −

1

L

(
M1 +M⊤

1

)
− αP3 − q2Lν

2
2I2N ,

Ωe
34 = 0,

Ωe
44(x) =

1

L
E2P4 −

1

L
Ke⊤

P E1P4K
e
P − 1

q4
k⊤1 (x)k1(x),

with

M1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−Λ−(L)P−+
3 −Λ−(L)P−−

3

]
, M2 =

[
−Λ+(L)P++

3 −Λ+(L)P+−
3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
,

P++
3 = {P3}1≤i,j≤m, P+−

3 = {P3}1≤i≤m,m+1≤j≤2N ,

P−+
3 = {P3}m+1≤i≤2N,1≤j≤m, P−−

3 = {P3}m+1≤i≤2N,m+1≤j≤2N ,

E1 = diag{Λ+(0),Λ−(L)}, E2 = diag{Λ+(L),Λ−(0)},
ν1 = max (λ(P1)) , ν2 = max (|λ(P3)|) ,

(ii)

Me(x) = (−Λe′(x)− αI2N )P4 −
(
Σ⊤

1 (x)P4 + P4Σ1(x) + (q3L+ q4)ν
2
3I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
)
≥ 0,

(4.38)

with ν3 = max (λ(P4)) .

In other words, there exist positive constants b1, c1 such that, for every Z0 ∈ H1((0, L);R2N ),
X0 ∈ R2N , and for any p̄e such that ˙̄pe ∈ C0[0,∞), the solution Z ∈ C0([0,∞);H1((0, L);R2N ),
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X ∈ C0([0,∞);R2N ) to the Cauchy problem (4.29)-(4.32), (4.35)-(4.36) is defined on [0,∞)×[0, L]

and satisfies

∥Z(·, t)∥2H1 + |X(t)|2 ≤ c1e
−αt

(
∥Z0∥2H1 + |X0|2

)
+ b1

∫ t

0

˙̄pe
⊤
(s) ˙̄pe(s) ds, ∀t ∈ [0,∞). (4.39)

Proof. The following H1 Lyapunov function candidate is introduced for the stability analysis of
the heterogeneous system (4.29)-(4.32), for all x ∈ [0, L], t ∈ [0,∞),

V e (Z(x, t), X(t), Zt(x, t)) = V e
1 + V e

2 + V e
3 + V e

4 , (4.40)

where

V e
1 =

∫ L

0

Z⊤(x, ·)P1(x)Z(x, ·) dx, (4.41)

V e
2 =

∫ L

0

(
Z⊤(x, ·)P3(x)X(·) +X⊤(·)P⊤

3 (x)Z(x, ·)
)
dx, (4.42)

V e
3 = LX⊤(·)P2X(·), (4.43)

V e
4 =

∫ L

0

Z⊤
t (x, ·)P4(x)Zt(x, ·) dx, (4.44)

and

P1(x) ≜ P1diag
{
e−µxIm, e

µxI2N−m

}
,

P3(x) ≜ P3diag
{
e−

µ
2 xIm, e

µ
2 xI2N−m

}
,

P4(x) ≜ P4diag
{
e−µxIm, e

µxI2N−m

}
,

where, by definition, the notation Zt must be understood as, for all x ∈ [0, L], t ∈ [0,∞),

∂tZ(x, t) ≜− Λe(x)∂xZ(x, t) + Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(t).

Under the definition of V e and straightforward observations, there exists a positive real constant
β such that, for every Z, we can obtain the following inequality,

1

β

∫ L

0

(
∥Z(x, ·)∥2L2 + |X(·)|2 + ∥∂xZ(x, ·)∥2L2

)
dx

≤ V e ≤ β

∫ L

0

(
∥Z(x, ·)∥2L2 + |X(·)|2 + ∥∂xZ(x, ·)∥2L2

)
dx. (4.45)

By time differentiation of (4.29) and (4.31), Zt can be shown to satisfy the following equations,
for all x ∈ [0, L], t ∈ [0,∞),

∂ttZ(x, t) = −Λe(x)∂txZ(x, t) + Σ1(x)∂tZ(x, t) +

∫ L

x

C1(x, ξ)∂tZ(ξ, t) dξ+k1(x)Żout(·), (4.46)

Żin(t) = Ke
P Żout(t) + Ẋ(t). (4.47)

Taking time derivative of V e
1 along the solutions to (4.29)-(4.32) and using integration by parts,
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the following result is achieved, for all t ∈ [0,∞),

V̇1
e ≤Z⊤

out(t)
(
Ke⊤

P Ē1P1K
e
P − e−µLĒ2P1

)
Zout(t) + Z⊤

out(t)K
e⊤
P Ē1P1X(t)

+X⊤(t)P1Ē1K
e
PZout(t) +X⊤(t)Ē1P1X(t)

+

∫ L

0

Z⊤(x, t) (Λe′(x)P1(x)− µ|Λe(x)|P1(x))Z(x, t) dx.

+

∫ L

0

((
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

)⊤

P1(x)Z(x, t)

+ Z⊤(x, t)P1(x)

(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

))
dx, (4.48)

with

Ē1 = diag
{
Λ+(0), eµLΛ−(L)

}
, Ē2 = diag

{
Λ+(L), eµLΛ−(0)

}
.

By taking time derivative of V e
2 along the solutions to (4.29)-(4.32) and using integration by parts,

we get for all t ∈ [0,∞),

V̇2
e ≤Z⊤

out(t)
(
Ke⊤

P M̄1 + M̄2

)
X(t) +X⊤(t)M̄1X(t) +X⊤(t)

(
M̄⊤

1 K
e
P + M̄⊤

2

)
Zout(t)

+X⊤(t)M̄⊤
1 X(t) +

∫ L

0

Z⊤(x, t)
(
Λe′(x)P3(x)−

µ

2
|Λe(x)|P3(x)

)
X(t) dx

+

∫ L

0

X⊤(t)
(
−µ
2
P⊤
3 (x)|Λe(x)|+ P⊤

3 (x)Λe′(x)
)
Z(x, t) dx

+

∫ L

0

(
Z⊤(x, t)P3(x)K

e
IZout(t) + Z⊤

out(t)K
e⊤
I P⊤

3 (x)Z(x, t)
)
dx

+ κ1

∫ L

0

Z⊤(x, t)P3(x)Γ0

(
Z⊤(x, t)P3(x)Γ0

)⊤
dx+

L

κ1
˙̄pe

⊤
(t) ˙̄pe(t)

+

∫ L

0

((
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

)⊤

P3(x)X(t)

+X⊤(t)P⊤
3 (x)

(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

))
dx, (4.49)

with a positive constant κ1 and

M̄1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−e−
µ
2 LΛ−(L)P−+

3 −e
µ
2 LΛ−(L)P−−

3

]
,

M̄2 =

[
−e−

µ
2 LΛ+(L)P++

3 −e
µ
2 LΛ+(L)P+−

3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
.

By taking time derivative of V e
3 along the solutions to (4.30), we can derive the following result

with a positive constant κ2, for all t ∈ [0,∞),

V̇3
e ≤LZ⊤

out(t)K
e⊤
I P2X(t) + LX⊤(t)P2K

e
IZout(t)

+ Lκ2X
⊤(t)P2Γ0

(
X⊤(t)P2Γ0

)⊤
+
L

κ2
˙̄pe

⊤
(t) ˙̄pe(t). (4.50)

Taking time derivative of V e
4 along the solutions to (4.29)-(4.32), (4.46) and using integration by
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parts, we get for all t ∈ [0,∞),

V̇4
e ≤ Ż⊤

out(t)
(
Ke⊤

P Ē1P4K
e
P − e−µLĒ2P4

)
Żout(t) + Ż⊤

out(t)K
e⊤
P P4Ē1K

e
IZout(t)

+ Z⊤
out(t)K

e⊤
I Ē1P4K

e
P Żout(t) + Z⊤

out(t)K
e⊤
I Ē1P4K

e
IZout(t) +

1

κ3
˙̄pe

⊤
(t) ˙̄pe(t)

+ κ3Ż
⊤
out(t)K

e⊤
P Ē1P4Γ0

(
Ke⊤

P Ē1P4Γ0

)⊤
Żout(t)

+ κ4Z
⊤
out(t)K

e⊤
I Ē1P4Γ0

(
Ke⊤

I Ē1P4Γ0

)⊤
Zout(t) +

1

κ4
˙̄pe

⊤
(t) ˙̄pe(t)

+ ˙̄pe(t)⊤Γ⊤
0 Ē1P4Γ0 ˙̄p

e(t) +

∫ L

0

∂tZ
⊤(x, t) (Λe′(x)P4(x)− µ|Λe(x)|P4(x)) ∂tZ(x, t) dx

+

∫ L

0

((
Σ1(x)∂tZ(x, t) +

∫ L

x

C1(x, ξ)∂tZ(ξ, t) dξ+k1(x)Żout(·)

)⊤

P4(x)∂tZ(x, t)

+ ∂tZ
⊤(x, t)P4(x)

(
Σ1(x)∂tZ(x, t) +

∫ L

x

C1(x, ξ)∂tZ(ξ, t) dξ+k1(x)Żout(·)

))
dx, (4.51)

with positive constants κ3 and κ4.

The three rightmost integrals in (4.48), (4.49) and (4.51) are considered individually, for all
t ∈ [0,∞),

∫ L

0

((
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)
)⊤

P1(x)Z(x, t)

+ Z⊤(x, t)P1(x)
(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)
))

dx

≤
∫ L

0

(
(Σ1(x)Z(x, t)+k1(x)Zout(·))⊤ P1(x)Z(x, t) + Z⊤(x, t)P1(x) (Σ1(x)Z(x, t)+k1(x)Zout(·))

)
dx

+ q1Le
2µLν21

∫ L

0

Z⊤(x, t)Z(x, t) dx+
L

q1

∫ L

0

(C1(0, x)Z(x, t))
⊤(C1(0, x)Z(x, t)) dx. (4.52)

Similarly, we derive the inequalities for the other two integrals, for all t ∈ [0,∞),

∫ L

0

((
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

)⊤

P3(x)X(t)

+X⊤(t)P⊤
3 (x)

(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(·)

))
dx

≤
∫ L

0

(
(Σ1(x)Z(x, t)+k1(x)Zout(·))⊤ P3(x)X(t) +X⊤(t)P⊤

3 (x) (Σ1(x)Z(x, t)+k1(x)Zout(·))
)
dx

+ q2Le
µLν22

∫ L

0

X⊤(t)X(t) dx+
L

q2

∫ L

0

(C1(0, x)Z(x, t))
⊤(C1(0, x)Z(x, t)) dx, (4.53)
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∫ L

0

((
Σ1(x)∂tZ(x, t) +

∫ L

x

C1(x, ξ)∂tZ(ξ, t) dξ+k1(x)Żout(·)

)⊤

P4(x)∂tZ(x, t)

+ ∂tZ
⊤(x, t)P4(x)

(
Σ1(x)∂tZ(x, t) +

∫ L

x

C1(x, ξ)∂tZ(ξ, t) dξ+k1(x)Żout(·)

))
dx

≤
∫ L

0

(
(Σ1(x)∂tZ(x, t)+k1(x)Żout(·))⊤P4(x)∂tZ(x, t) + ∂tZ

⊤(x, t)P4(x)(Σ1(x)∂tZ(x, t)+k1(x)Żout(·))
)
dx

+ q3Le
2µLν23

∫ L

0

∂tZ
⊤(x, t)∂tZ(x, t) dx+

L

q3

∫ L

0

(C1(0, x)∂tZ(x, t))
⊤(C1(0, x)∂tZ(x, t)) dx

≤
∫ L

0

(
(Σ1(x)Zt(x, ·))⊤P4(x)Zt(x, ·) + Z⊤

t (x, ·)P4(x)Σ1(x)Zt(x, ·)
)
dx

+ (q3L+ q4)e
2µLν23

∫ L

0

Z⊤
t (x, ·)Zt(x, ·) dx+

L

q3

∫ L

0

(C1(0, x)Zt(x, ·))⊤(C1(0, x)Zt(x, ·)) dx

+
1

q4

∫ L

0

(k1(x)Żout(·))⊤(k1(x)Żout(·)) dx. (4.54)

Using (4.48)-(4.54), there exists a constant α > 0 such that, for all t ∈ [0,∞),

V̇ e = V̇1
e
+ V̇2

e
+ V̇3

e
+ V̇4

e

≤ −αV e −
∫ L

0


Z(x, ·)
Zout(·)
X(·)
Żout(·)


⊤

Ω̄e(x)


Z(x, ·)
Zout(·)
X(·)
Żout(·)

 dx−
∫ L

0

∂tZ
⊤(x, t)M̄e(x)∂tZ(x, t) dx

+ ˙̄pe
⊤
(t)

[(
L

κ1
+
L

κ2
+

1

κ3
+

1

κ4

)
I2N + Γ⊤

0 Ē1P4Γ0

]
˙̄pe(t), (4.55)

where, for all x ∈ [0, L],

Ω̄e(x) =


Ω̄e

11(x) Ω̄e
12(x) Ω̄e

13(x) Ω̄e
14

∗ Ω̄e
22 Ω̄e

23(x) Ω̄e
24

∗ ∗ Ω̄e
33 Ω̄e

34

∗ ∗ ∗ Ω̄e
44(x)

 (4.56)
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with

Ω̄e
11(x) = µ|Λe(x)|P1(x)− Λe′(x)P1(x)− αP1(x)− κ1P3(x)Γ0(P3(x)Γ0)

⊤

−
(
Σ⊤

1 (x)P1(x) + P1(x)Σ1(x) + q1Le
2µLν21I2N +

(
L

q1
+
L

q2

)
C⊤

1 (0, x)C1(0, x)

)
,

Ω̄e
12(x) = −P3(x)K

e
I−P1(x)k1(x),

Ω̄e
13(x) =

µ

2
|Λe(x)|P3(x)− Λe′(x)P3(x)− αP3(x)− Σ⊤

1 (x)P3(x),

Ω̄e
14 = 0,

Ω̄e
22 =

e−µL

L
Ē2P1 −

1

L
Ke⊤

P Ē1P1K
e
P − 1

L
Ke⊤

I Ē1P4K
e
I − κ4

L
Ke⊤

I Ē1P4Γ0(K
e⊤
I Ē1P4Γ0)

⊤,

Ω̄e
23(x) = − 1

L
Ke⊤

P Ē1P1 −
1

L

(
Ke⊤

P M̄1 + M̄2

)
−Ke⊤

I P2−k⊤1 (x)P3(x),

Ω̄e
24 = − 1

L
Ke⊤

I Ē1P4K
e
P ,

Ω̄e
33 = − 1

L
Ē1P1 −

1

L

(
M̄1 + M̄⊤

1

)
− κ2P2Γ0(P2Γ0)

⊤ − αP2 − q2Le
µLν22I2N ,

Ω̄e
34 = 0,

Ω̄e
44(x) =

e−µL

L
Ē2P4 −

1

L
Ke⊤

P Ē1P4K
e
P − κ3

L
Ke⊤

P Ē1P4Γ0

(
Ke⊤

P Ē1P4Γ0

)⊤ − 1

q4
k⊤1 (x)k1(x),

and

M̄e(x) = (−Λe′(x) + µ|Λe(x)| − αI2N )P4(x)

−
(
Σ⊤

1 (x)P4(x) + P4(x)Σ1(x) + (q3L+ q4)e
2µLν23I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
)
. (4.57)

Under the conditions (4.37), (4.38), ∃µ,κ1,κ2,κ3,κ4 > 0 small enough, such that Ω̄e(x) ≥ 0 and
M̄e(x) ≥ 0, for all x ∈ [0, L], thus for all t ∈ [0,∞),

V̇ e ≤ −αV e + α1 ˙̄p
e⊤(t) ˙̄pe(t), (4.58)

with α1 = max
(
λ
((

L
κ1

+ L
κ2

+ 1
κ3

+ 1
κ4

)
I2N + Γ⊤

0 P4Ē1Γ0

))
. Thus along the solutions to the

system (4.29)-(4.32), for all t ∈ [0,∞),

V e ≤ V e(0)e−αt + α1

∫ t

0

˙̄pe
⊤
(s) ˙̄pe(s) ds. (4.59)

Combining this relation with (4.45), there exist positive constants c1 = β2, b1 = βα1 such that,
for all t ∈ [0,∞),∫ L

0

(
∥Z(x, t)∥2L2 + |X(t)|2 + ∥Zx(x, t)∥2L2

)
dx

≤ c1e
−αt

(∫ L

0

(
∥Z0(x)∥2L2 + |X0|2 + ∥∂xZ(x, 0)∥2L2

)
dx

)
+ b1

∫ t

0

˙̄pe
⊤
(s) ˙̄pe(s) ds, (4.60)

completing the proof of Theorem 4.1.

Based on the invertibility of backstepping transformation, it can be shown that the H1 norm
of the system (4.29)-(4.32) is equivalent to the H1 norm of the system (4.25)-(4.26). Thus, the
exponential stability of the H1 norm of the system (4.29)-(4.32) implies the corresponding one for
the H1 norm of the system (4.25)-(4.26).
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4.2.2 Control law

Take time derivative and spatial derivative on (4.27) and (4.28), and substitute them into (4.29)-
(4.32) to get the following equations of the kernels G1 and G2, for all (x, ξ) ∈ T,

Λ−(x)∂xG
1(x, ξ)− ∂ξG

1(x, ξ)Λ+(ξ) = G1(x, ξ)
(
(Λ+)′(ξ) + Σ++(ξ)

)
+G2(x, ξ)Σ−+(ξ), (4.61)

Λ−(x)∂xG
2(x, ξ) + ∂ξG

2(x, ξ)Λ−(ξ) = G2(x, ξ)
(
−(Λ−)′(ξ) + Σ−−(ξ)

)
+G1(x, ξ)Σ+−(ξ), (4.62)

with the boundary conditions

G1(x, x)Λ+(x) + Λ−(x)G1(x, x) = Σ−+(x), (4.63)
G2(x, x)Λ−(x)− Λ−(x)G2(x, x) = −Σ−−(x), (4.64)
G1(x, L)Λ+(L)−G2(x, L)Λ−(L)Γ3 = K1(x). (4.65)

These equations are under-determined, and to ensure well-posedness, the additional boundary
conditions are added,

G2
ij(0, ξ) = g2ij(ξ), 1 ≤ j < i ≤ 2N −m, (4.66)

for some arbitrary functions g2ij , 1 ≤ j < i ≤ 2N −m.

There is a matrix Θ ∈ R2N−m×m such that ΘΓ2Θ is invertible, then we deduce, from (4.26),
(4.27), (4.28), (4.31), (4.32), the following controller defined as, for all t ∈ [0,∞),

Ue(t) =(ΘΓ2Θ)−1Θ

∫ t

0

(
KI

e
11R

+(L, σ) +KI
e
12R

−(0, σ)
)
dσ

− (ΘΓ2Θ)−1ΘKI
e
12

∫ t

0

∫ L

0

(
G1(0, ξ)R+(ξ, σ) +G2(0, ξ)R−(ξ, σ)

)
dξ dσ

− (ΘΓ2Θ)−1ΘΓ1

∫ L

0

(
G1(0, ξ)R+(ξ, t) +G2(0, ξ)R−(ξ, t)

)
dξ. (4.67)

Due to the dependence of U on the parameter Γ2 and the inclusion of the parameter Γ2 in the
coefficient matrix Γ0, Γ0 has an effect on U , and thus has an impact on the iISS of the system
(4.25)-(4.26). Under the assumptions of Theorem 4.1, the target system (4.29)-(4.32) is integral
input-to-state stable. Thus, using the invertibility of backstepping transformation, the original
system (4.25), (4.26) is integral input-to-state stable in the H1-norm with the control law (4.67).

4.3 Conclusion

The robust control problem was studied to stabilize the heterogeneous linearized AR traffic flow
system with a bottleneck at the outlet boundary. A controller was designed to reject disturbance
by using backstepping.

Inspired by [Cor+13], the H2 locally iISS is studied for the heterogeneous quasi-linear AR
traffic flow system in the next chapter.
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In this chapter, we investigate the problem of boundary stabilization for a heterogeneous
2N × 2N quasilinear traffic flow system with disturbances in the congested regime. The H2

integral input-to-state stability of a multi-type traffic flow system described by 2N×2N first-order
quasilinear hyperbolic partial differential equations is obtained in a closed loop with a boundary
controller. The control input at the inlet boundary of the considered road section is designed
for the linearized system by using the backstepping method. Making use of the backstepping
transformation, the H2 integral input-to-state stability of the quasilinear system is derived by
mapping the transformed quasilinear system into anH2 integral input-to-state stable target system
for which a strict Lyapunov function is constructed.

This chapter has been submitted for publication in [GZP22].

5.1 Multi-type quasi-linear hyperbolic traffic flow system
and problem statement

5.1.1 Multi-type quasi-linear traffic model

The introduced multi-type traffic flow model (4.8) that represents the dynamics of a heterogeneous
traffic on a road segment with road length L and the number of vehicle types N is rewritten as
the following quasi-linear form, for all x ∈ [0, L], t ∈ [0,∞),

∂tũ
e(x, t) + F̃ (ũe, u∗)∂xũ

e(x, t) = G̃(ũe, u∗)ũe(x, t), (5.1)

65
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where

F̃ (ũe, u∗) =


F̃11(ũ

e, u∗) F̃12(ũ
e, u∗) · · · F̃1N (ũe, u∗)

F̃21(ũ
e, u∗) F̃22(ũ

e, u∗) · · · F̃2N (ũe, u∗)
...

...
. . .

...
F̃N1(ũ

e, u∗) F̃N2(ũ
e, u∗) · · · F̃NN (ũe, u∗)

 ,
with for i, j = 1, 2, · · · , N ,

F̃ij(ũ, u
∗) =



[
ṽi + v∗i ρ̃i + ρ∗i

0 ṽi + v∗i − (ρ̃i + ρ∗i )δii(ρ)

]
, if j = i,

[
0 0

((ṽi + v∗i )− (ṽj + v∗j ))δij(ρ) −(ρ̃j + ρ∗j )δij(ρ)

]
, if j ̸= i,

and

G̃(ũe, u∗) =


G̃11(ũ

e, u∗) G̃12(ũ
e, u∗) · · · G̃1N (ũe, u∗)

G̃21(ũ
e, u∗) G̃22(ũ

e, u∗) · · · G̃2N (ũe, u∗)
...

...
. . .

...
G̃N1(ũ

e, u∗) G̃N2(ũ
e, u∗) · · · G̃NN (ũe, u∗)

 ,

with for i, j = 1, 2, . . . , N , G̃ij is defined as

G̃ij(ũ
e, u∗) =



[
v∗i

′ ρ∗i
′

1
τi
δii(ρ

∗) + v∗i
∑N

k=1 σiki(ρ
∗)ρ∗k

′ − δii(ρ)v
∗
i
′ 1

τi
+ v∗i

′ +
∑N

k=1,k ̸=i δik(ρ
∗)ρ∗k

′

]
, if j = i,

[
0 0

1
τi
δij(ρ

∗) + v∗i
∑N

k=1 σikj(ρ
∗)ρ∗k

′ − δij(ρ)v
∗
j
′ −δij(ρ)ρ∗j

′

]
, if j ̸= i,

The hyperbolicity of the system (5.1) exists around zero equilibrium on the basis of the dis-
cussion in Chapter 4, because for all u∗ ∈ C2([0, L];R2N ), as ũ → 0, F (ũ, u∗) → F (0, u∗) which
has 2N real distinct nonzero eigenvalues λ1 > λ2 > · · · > λm > 0 > −λm+1 > · · · > −λ2N
(λi ∈ C2([0, L];R>0), i = 1, . . . , 2N , with the number of positive eigenvalues m (0 ≤ m < 2N)).
We will study the scenarios 2N −m ≥ 1 in the H2 sense in this chapter.

5.1.2 Problem statement

The motivation of control is to alleviate the congested traffic on a road segment, with disturbances
at the inlet boundary, in the presence of constant density and velocity drop in the downstream
boundary. The diagram of the control model is presented in Figure 4.1. The problem is equivalent
to computing the boundary control Ue in the space H2 such that system (5.1) converges to zero
equilibrium, with the following boundary conditions, for all t ∈ [0,∞),

A1ũ
e(0, t) = p̄e(t) + ΘUe(t)−ΠNL(ũ

e(0, t)), (5.2)
B1ũ

e(L, t) = 0, (5.3)

where
ΠNL(ũ

e(0, t)) =
[
ρ̃1(0, t)ṽ1(0, t), . . . , ρ̃N (0, t)ṽN (0, t)

]⊤ ∈ C2([0,∞);RN ).
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The well-posedness of the closed-loop system (5.1), (5.2)-(5.3) in the H2 space holds under a nec-
essary condition that the initial conditions ũe(·, 0) = ũe0(·) ∈ H2([0, L];R2N ) satisfy the following
second-order compatibility conditions,

A1ũ
e
0(0) = p̄e(0) + ΘUe(0)−ΠNL(ũ

e
0(0)), (5.4)

B1ũ
e
0(L) = 0, (5.5)

A1

(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)

= ˙̄pe(0) + ΘU̇e(0)− dΠNL

dũe

∣∣∣∣
t=0

(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)
, (5.6)

B1F̃ (ũ
e
0(L), u

∗(L))ũe′0 (L) = B1G̃(ũ
e
0(L), u

∗(L))ũe0(L). (5.7)

In the compatibility conditions, (5.5) and (5.7) naturally derived from the physical meaning,
but (5.4) and (5.6) are artificially derived from the designed feedback control law and they rig-
orously require the specific values of the initial conditions. Keeping the effect of stabilization of
the control law, a modification of the control law is done in the boundary conditions (5.2)-(5.3),
so that there is no requirement of any specific values on the initial conditions. More precisely,
inspired by [Cor+13], the modified boundary conditions extend the controller as follows: for all
t ∈ [0,∞),

A1ũ
e(0, t) = p̄e(t) + ΘUe(t) + w1(t) + w2(t)−ΠNL(ũ

e(0, t)), (5.8)
B1ũ

e(L, t) = 0, (5.9)

where w1, w2 ∈ C1([0,∞);RN ) are the solutions of the following system:

ẇ1 = −d1w1, ẇ2 = −d2w2, (5.10)

with the positive constants d1, d2 (d1 ̸= d2). Under the modification of the control law, we can
obtain the following compatibility conditions,

A1ũ
e
0(0) = p̄e(0) + ΘUe(0) + w1(0) + w2(0)−ΠNL(ũ

e
0(0)), (5.11)

B1ũ
e
0(L) = 0, (5.12)

A1

(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)

= ˙̄pe(0) + ΘU̇e(0) + (−d1w1(0)− d2w2(0))−
dΠNL

dũe

∣∣∣∣
t=0

×
(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)
, (5.13)

B1F̃ (ũ
e
0(L), u

∗(L))ũe′0 (L) = B1G̃(ũ
e
0(L), u

∗(L))ũe0(L). (5.14)

For the purpose of eliminating the compatibility conditions (5.4) and (5.6), the following initial
conditions of w1, w2 are selected,

w1(0) + w2(0) = g1(ũ
e
0), (5.15)

− (d1w1(0) + d2w2(0)) = g2(ũ
e
0), (5.16)

with

g1(ũ
e
0) = A1ũ

e
0(0)− p̄e(0)−ΘUe(0) + ΠNL(ũ

e
0(0)), (5.17)

g2(ũ
e
0) = A1

(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)

− ˙̄pe(0)−ΘU̇e(0) +
dΠNL

dũe

∣∣∣∣
t=0

(
−F̃ (ũe0(0), u∗(0))ũe′0 (0) + G̃(ũe0(0), u

∗(0))ũe0(0)
)
. (5.18)
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Select

w1(0) = −g2(ũ
e
0) + d2g1(ũ

e
0)

d1 − d2
, (5.19)

w2(0) =
d1g1(ũ

e
0) + g2(ũ

e
0)

d1 − d2
, (5.20)

to verify the compatibility conditions (5.4) and (5.6).

5.1.3 State transformations

For deriving the form of characteristic values of the quasi-linear system (5.1), (5.8)-(5.9), (5.10)
and making the analysis easier (the main diagonal elements in the matrix of source term are
all zero), we handle a transformation for the state ũe. Defining an invertible transformation
R̄(x, t) = Φ(x)ũe(x, t), Φ(x) = Ψ(x)T−1(x) with x ∈ [0, L], t ∈ [0,∞), from ũe to the new variables
R̄ = (R̄+, R̄−)⊤ : [0, L] × [0,∞) → R2N with R̄+ : [0, L] × [0,∞) → Rm, R̄− : [0, L] × [0,∞) →
R2N−m, R̄in(t) = (R̄+(0, t), R̄−(L, t))⊤, R̄out(t) = (R̄+(L, t), R̄−(0, t))⊤, the system (5.1), (5.8)-
(5.9), (5.10) is mapped into the following simplified system, for all x ∈ [0, L], t ∈ [0,∞),

∂tR̄(x, t) + Λe(x)∂xR̄(x, t)− Σ(x)R̄(x, t) + ΛNL(R̄, x)∂xR̄(x, t) = ΣNL(R̄, x)R̄(x, t), (5.21)

R̄in(t) = Ke
P R̄out(t) + Γ0

(
p̄e(t) + ΘUe(t)

)
+ Γ0(w1(t) + w2(t))− Γ0ΠNL(Φ

−1(0)R̄(0, t)), (5.22)

where
Λe(x) = Λ̄e(0, x), Σ(x) = Σ̄(0, x),

ΛNL(R̄, x) = Λ̄e(R̄, x)− Λe(x), ΣNL(R̄, x) = Σ̄(R̄, x)− Σ(x),

with

Λ̄e(R̄, x) = Φ(x)F̃
(
Φ−1(x)R̄, u∗

)
Φ−1(x),

Σ̄(R̄, x) = Φ(x)G̃
(
Φ−1(x)R̄, u∗

)
Φ−1(x)− Φ(x)F̃

(
Φ−1(x)R̄, u∗

)
Φ−1(x)′,

the main diagonal elements of matrix Σ ∈ C2([0, L];R2N×2N (R)) are zeros. The well-posedness of
the system (5.21)-(5.22) in the H2 space is under a necessary condition that the initial condition
R̄(·, 0) = R̄0(·) ∈ H2([0, L];R2N ) satisfies the following second-order compatibility condition,

R̄in(0) = Ke
P R̄out(0) + Γ0 (p̄

e(0) + ΘUe(0)) + Γ0(w1(0) + w2(0))− Γ0ΠNL(Φ
−1(0)R̄0(0)),

(5.23)(
M1

i ]1≤i≤m, [M
2
j ]m+1≤j≤2N

)⊤
=Ke

P

(
[M2

i ]1≤i≤m, [M
1
j ]m+1≤j≤2N

)⊤
+ Γ0

(
˙̄pe(0) + ΘU̇e(0)

)
+ Γ0(−d1w1(0)− d2w2(0))− Γ0

dΠNL

dũe
(Φ−1(0))

∣∣∣∣
t=0

× Φ−1(0)

(
−
(
Λe(0) + ΛNL(R̄0(0), 0)

)
R̄′

0(0) +
(
Σ(0) + ΣNL(R̄0(0), 0)

)
R̄0(0)

)
, (5.24)

with

M1 =−
(
Λe(0) + ΛNL(R̄0(0), 0)

)
R̄′

0(0) +
(
Σ(0) + ΣNL(R̄0(0), 0)

)
R̄0(0),

M2 =−
(
Λe(L) + ΛNL(R̄0(L), L)

)
R̄′

0(L) +
(
Σ(L) + ΣNL(R̄0(L), L)

)
R̄0(L).

Since for x ∈ [0, L], ΛNL(0, x) = 0, ΣNL(0, x) = 0 and ΠNL(0) = dΠNL

dũe (0) = 0, then 0 is a
equilibrium of the quasi-linear system (5.21)-(5.22). For the sake of conveniently analyzing the
applicability of the designed controller for the linearized system, the quasi-linear system (5.21)-
(5.22) is written as the linear part plus the nonlinear terms, done in the next section.
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5.2 Local iISS of quasi-linear model

Inspired by [Cor+13], the problem of local H2 iISS of the first-order hyperbolic quasi-linear system
(4.8) is studied in this section. We will show that the controller derived for the linearized system
by using the backstepping method locally stabilizes this quasi-linear system.

Concerning the linearized system (4.25), (4.26), the designed control law Ue is derived by using
the following backstepping transformation, for all x ∈ [0, L], t ∈ [0,∞),

Z(x, t) = R(x, t)−
∫ L

x

K(x, ξ)R(ξ, t) dξ = K[R], (5.25)

where K(x, ξ) =

[
0 0

G1(x, ξ) G2(x, ξ)

]
, with piecewise differentiable G1 and G2 defined on the

domain T =
{
(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L

}
as in Chapter 4.

The corresponding iISS target system is, for all x ∈ [0, L], t ∈ [0,∞),

∂tZ(x, t) + Λe(x)∂xZ(x, t) = Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ+k1(x)Zout(t), (5.26)

Zin(t) = Ke
PZout(t) +Ke

I

∫ t

0

Zout(σ) dσ + Γ0p̄
e(t), (5.27)

where Z = (Z+, Z−)⊤, with Z+ : [0, L] × [0,∞) → Rm, Z− : [0, L] × [0,∞) → R2N−m, Zin(t) =

(Z+(0, t), Z−(L, t))⊤, Zout(t) = (Z+(L, t), Z−(0, t))⊤, the matrices Σ1, C1 and Ke
I are given as

in Chapter 4. The controller for the linearized system (4.25), (4.26) is derived as follows, for all
t ∈ (0,∞),

Ue(R) = (ΘΓ2Θ)−1Θ

∫ t

0

(
KIe11R

+(L, σ) +KIe12R
−(0, σ)

)
dσ

− (ΘΓ2Θ)−1ΘKIe12

∫ t

0

∫ L

0

[
G1(0, ξ)R+(ξ, σ) +G2(0, ξ)R−(ξ, σ)

]
dξ dσ

− (ΘΓ2Θ)−1ΘΓ1

∫ L

0

[
G1(0, ξ)R+(ξ, t) +G2(0, ξ)R−(ξ, t)

]
dξ, (5.28)

where the coefficient matrices Γ1, Γ2 are given, and the matrix Θ is in R2N−m×m and such that
ΘΓ2Θ is invertible. So the controller in terms of the original variable ũe in (5.8) is, for all t ∈ (0,∞),

Ue(t) = (ΘΓ2Θ)−1Θ

∫ t

0

([
KIe11 0

]
Φ(L)ũe(L, σ) +

[
0 KIe12

]
Φ(0)ũe(0, σ)

)
dσ

− (ΘΓ2Θ)−1ΘKIe12

∫ t

0

∫ L

0

[
G1(0, ξ) G2(0, ξ)

]
Φ(ξ)ũe(ξ, σ) dξ dσ

− (ΘΓ2Θ)−1ΘΓ1

∫ L

0

[
G1(0, ξ) G2(0, ξ)

]
Φ(ξ)ũe(ξ, t) dξ. (5.29)

The formula of control law Ue in (5.28) for the linearized system (4.25), (4.26) is derived by
using backstepping method and the proof of iISS of the corresponding target system (5.26)-(5.27)
is obtained in Chapter 4. In this chapter, we derive the iISS of the quasi-linear system (5.1),
(5.8)-(5.9), (5.10) with the state feedback law (5.29) as follows:

Theorem 5.1
Considering the system (5.1), (5.10) with the extended boundary conditions (5.8)-(5.9), the initial
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conditions ũe0 ∈ H2([0, L];R2N ), w1(0), w2(0) ∈ RN verifying (5.19)-(5.20), and the control law
(5.29). Then, for every α > 0, there exist positive constants δ, c, b such that, for any p̄e satisfying
˙̄pe ∈ C1[0,∞), ¨̄pe ∈ C0[0,∞), if ∥ũe0∥H2 ≤ δ, it holds that for all t ∈ [0,∞),

∥ũe(·, t)∥2H2 + |w1(t)|2 + |w2(t)|2

≤ ce−αt
(
∥ũe0∥2H2 + |w1(0)|2 + |w2(0)|2

)
+ b

∫ t

0

(| ˙̄pe(s)|2 + | ¨̄pe(s)|2) ds. (5.30)

Proof. As a result of the invertible transformation Φ(x), x ∈ [0, L], the system (5.1), (5.8)-(5.9),
(5.10) has the same dynamical behavior as the system (5.21)-(5.22). Therefore, in order to prove
the iISS of the quasi-linear system (5.1), (5.8)-(5.9), (5.10), we firstly prove the iISS of the quasi-
linear system (5.21)-(5.22) after applying the control law Ue in (5.28), which is designed for the
linearized system (4.25), (4.26). The quasi-linear system (5.21)-(5.22) is mapped into a target
system Z̄ by using the direct transformation Z̄ = K[R̄] and the inverse transformation R̄ = L[Z̄]
with C2(T) kernel functions. Differentiating twice with respect to x in these transformations, it
is shown that the H2 norm of Z̄ is equivalent to the H2 norm of R̄. So local iISS of the system
(5.21)-(5.22) is the same as the local iISS of the target system. The equations of the target system
Z̄ is, for all x ∈ [0, L], t ∈ [0,∞),

∂tZ̄(x, t) + Λe(x)∂xZ̄(x, t) = Σ1(x)Z̄(x, t)

+

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ+k1(x)Z̄out(t) + F3[Z̄, ∂xZ̄] + F4[Z̄, Z̄out], (5.31)

Z̄in(t) = Ke
P Z̄out(t) + X̄(t) + Γ0(w1(t) + w2(t)), (5.32)

X̄(t) = Ke
I

∫ t

0

Z̄out(σ) dσ + Γ0

(
p̄e(t)− Π̄NL(Z̄(0, t))

)
, (5.33)

where

F3[Z̄, ∂xZ̄] = −K[
(
Λe(x) + F1[Z̄]

)
∂xZ̄] + Λe(x)∂xZ̄,

F4[Z̄, Z̄out] = −K12[Z̄, Z̄out]−K[
(
Λe(x) + F1[Z̄]

)
K1[L[Z̄]] + Σ(x)L[Z̄] + F2[Z̄]L[Z̄]],

Π̄NL(Z̄(0, t)) = ΠNL(Φ
−1(0)R̄(0, t)),

K12[Z̄, Z̄out] = Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ+k1(x)Z̄out(t),

K1[Z̄] =

∫ L

x

∂xK(x, ξ)Z̄(ξ, t) dξ −K(x, x)Z̄(x, t),

F1[Z̄] = ΛNL(L[Z̄], x),
F2[Z̄] = ΣNL(L[Z̄], x),

with Z̄ = (Z̄+, Z̄−)⊤, Z̄+ : [0, L] × [0,∞) → Rm, Z̄− : [0, L] × [0,∞) → R2N−m, Z̄in(t) =

(Z̄+(0, t), Z̄−(L, t))⊤, Z̄out(t) = (Z̄+(L, t), Z̄−(0, t))⊤. Next, the local stability of the system
(5.31)-(5.33) in the space H2 is analyzed by using the Lyapunov approach. It includes analyzing
the growth of ∥Z̄∥L2 , ∥η∥L2 and ∥ζ∥L2 (by definition η = ∂tZ̄ and ζ = ∂ttZ̄). Remark that in
order to directly use the iISS analysis results of the target system (4.46)-(4.47) in Chapter 4, the
equations of Z̄ and η are written as the same structure as the equations of the target system
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(4.46)-(4.47). From system (5.31)-(5.33), we derive, for all x ∈ [0, L], t ∈ [0,∞),

∂tη(x, t) = −Λe(x)∂xη(x, t) + Σ1(x)η(x, t)

+

∫ L

x

C1(x, ξ)η(ξ, t) dξ+k1(x)
˙̄Zout(t) + F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄,

˙̄Zout], (5.34)

ηin(t) = Ke
P ηout(t) +

˙̄X(t) + Γ0(−d1w1(t)− d2w2(t)), (5.35)

˙̄X(t) = Ke
I Z̄out(t) + Γ0

(
˙̄pe(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
, (5.36)

where

F5[Z̄, ∂xη] = K[(Λe(x) + F1[Z̄])∂xη] + Λe(x)∂xη,

F6[Z̄, η, ∂xZ̄,
˙̄Zout] = K[

(
Λe(x) + F1[Z̄]

)
K1[L[η]]− Σ(x)L[η]

− F2[Z̄]L[η] + F12[η](∂xZ̄ +K1[L[Z̄]])− F22[η]L[Z̄]]−K12[η,
˙̄Zout],

F12[η] = Ḟ1[Z̄],

F22[η] = Ḟ2[Z̄].

The following Lyapunov function candidate is introduced for the stability analysis of system
(5.31)-(5.33), for all x ∈ [0, L], t ∈ [0,∞), V̄ e

(
Z̄(x, t), X̄(t), η(x, t), ζ(x, t)

)
= V̄ e

1 + V̄ e
2 + V̄ e

3 , where

V̄ e
1 =

∫ L

0

(
Z̄⊤(x, ·)P̄11(x)Z̄(x, ·) + Z̄⊤(x, ·)P̄12(x)X̄(·)

+ X̄⊤(·)P̄⊤
12(x)Z̄(x, ·) + X̄⊤(·)P̄22X̄(·)

)
dx, (5.37)

V̄ e
2 =

∫ L

0

η⊤(x, ·)P̄3(x)η(x, ·) dx, (5.38)

V̄ e
3 =

∫ L

0

ζ⊤(x, ·)P̄4[Z̄](x)ζ(x, ·) dx, (5.39)

with

P̄11(x) ≜ P̄11diag
{
e−µxIm, e

µxI2N−m

}
,

P̄12(x) ≜ P̄12diag
{
e−

µ
2 xIm, e

µ
2 xI2N−m

}
,

P̄3(x) ≜ P̄3diag
{
e−µxIm, e

µxI2N−m

}
,

P̄4[Z̄](x) is defined in [Cor+13, Lemma 5.2], P̄11, P̄3 are 2N × 2N diagonal positive-definite
matrices, P̄22 is a 2N × 2N symmetric positive-definite matrix, and P̄12 is a 2N × 2N matrix.

Take the time derivative of V̄ e
1 along the solutions to (5.31)-(5.33), use integration by parts,

and define ˙̄V e
1 = ˙̄V e

1L+ ˙̄V e
1NL, where ˙̄V e

1L is the time derivative of V̄ e
1 along the linear target system
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(5.26)-(5.27), computed as follows

˙̄V e
1L = −Z̄⊤(x, t)Λe(x)P̄11(x)Z̄(x, t)

∣∣∣L
0
+

∫ L

0

Z̄⊤(x, t)
(
Λe(x)P̄11(x)

)
x
Z̄(x, t) dx

−
(
Z̄⊤(x, t)Λe(x)P̄12(x)X̄(t) + X̄⊤(t)P̄⊤

12(x)Λ
e(x)Z̄(x, t)

)∣∣∣L
0

+

∫ L

0

(
Z̄⊤(x, t)

(
Λe(x)P̄12(x)

)
x
X̄(t) + X̄⊤(t)

(
P̄⊤
12(x)Λ

e(x)
)
x
Z̄(x, t)

)
dx

+

∫ L

0

((
Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ+k1(x)Z̄out(t)
)⊤

(P̄11(x)Z̄(x, t) + P̄12(x)X̄(t))

+ (Z̄⊤(x, t)P̄11(x) + X̄⊤(t)P̄⊤
12(x))

(
Σ1(x)Z̄(x, t) +

∫ L

x

C1(x, ξ)Z̄(ξ, t) dξ+k1(x)Z̄out(t)
))

dx

+

∫ L

0

(
(Z̄⊤(x, t)P̄12(x) + X̄⊤(t)P̄22)

(
Ke

I Z̄out(t) + Γ0 ˙̄p
e(t)(t)

)
+
(
Ke

I Z̄out(t) + Γ0 ˙̄p
e(t)(t)

)⊤
(P̄⊤

12(x)Z̄(x, t) + P̄22X̄(t))

)
dx, (5.40)

and where ˙̄V e
1NL is defined as:

˙̄V e
1NL =

∫ L

0

((
F3[Z̄, ∂xZ̄] + F4[Z̄, Z̄out]

)⊤
P̄11(x)Z̄(x, t) + Z̄⊤(x, t)P̄11(x)

(
F3[Z̄, ∂xZ̄] + F4[Z̄, Z̄out]

))
dx

+

∫ L

0

(
Z̄⊤(x, t)P̄12(x)

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+
(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)⊤
P̄⊤
12(x)Z̄(x, t)

+
(
F3[Z̄, ∂xZ̄] + F4[Z̄, Z̄out]

)⊤
P̄12(x)X̄(t) + X̄⊤(t)P̄⊤

12(x)
(
F3[Z̄, ∂xZ̄] + F4[Z̄, Z̄out]

))
dx

+ L

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)⊤

P̄22X̄(t) + LX̄⊤(t)P̄22

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
. (5.41)

Take the time derivative of V̄ e
2 along the solutions to (5.31)-(5.33), use integration by parts, and

define ˙̄V e
2 = ˙̄V e

2L + ˙̄V e
2NL, where ˙̄V e

2L is the time derivative of V̄ e
2 along the linear target system

(5.26)-(5.27), for all t ∈ [0,∞),

˙̄V e
2L = −η⊤(x, t)Λe(x)P̄3(x)η(x, t)

∣∣∣L
0
+

∫ L

0

η⊤(x, t)
(
Λe(x)P̄3(x)

)
x
η(x, t) dx

+

∫ L

0

((
Σ1(x)η(x, t) +

∫ L

x

C1(x, ξ)η(ξ, t) dξ+k1(x)
˙̄Zout(t)

)⊤
P̄3(x)η(x, t)

+ η⊤(x, t)P̄3(x)
(
Σ1(x)η(x, t) +

∫ L

x

C1(x, ξ)η(ξ, t) dξ+k1(x)
˙̄Zout(t)

))
dx, (5.42)
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and where ˙̄V e
2NL is defined as: for all t ∈ [0,∞),

˙̄V e
2NL = (Ke

P
˙̄Zout(t))

⊤Ē1P̄3

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)⊤

P̄3Ē1(K
e
P
˙̄Zout(t))

+

(
Ke

I Z̄out(t) + Γ0

(
˙̄pe(t)(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
− Γ0(d1w1(t) + d2w2(t))

)⊤

Ē1P̄3

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)⊤

Ē1P̄3

(
Ke

I Z̄out(t) + Γ0

(
˙̄pe(t)(t)− dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
− Γ0(d1w1(t) + d2w2(t))

)
+

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)⊤

Ē1P̄3

(
− Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

)
+

∫ L

0

((
F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄,

˙̄Zout]
)⊤

P̄3(x)η(x, t)

+ η⊤(x, t)P̄3(x)
(
F5[Z̄, ∂xη] + F6[Z̄, η, ∂xZ̄,

˙̄Zout]
))

dx. (5.43)

Since the term ˙̄V e
1L + ˙̄V e

2L is analyzed in Theorem 4.1, which is for the iISS of the linear target
system (5.26)-(5.27), there exist positive constants c1, b1, a1, a2, a3, such that

˙̄V e
1L + ˙̄V e

2L ≤− c1(V̄
e
1 + V̄ e

2 ) + b1| ˙̄pe|2 + a1(|w1|2 + |w2|2)
+ a2∥Z̄∥∞(V̄ e

1 + V̄ e
2 ). (5.44)

Now analyze the remaining items ˙̄V e
1NL and ˙̄V e

2NL. There exist positive constants k1, k2, k3, k4,
k5, k6, k7 such that for all t ∈ [0,∞),

˙̄V e
1NL ≤ k1

∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+ ∣∣F4[Z̄, Z̄out]

∣∣) ∣∣Z̄∣∣ dx
+ k2

∫ L

0

( ∣∣Z̄∣∣ ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣+ (∣∣F3[Z̄, ∂xZ̄]
∣∣+ ∣∣F4[Z̄, Z̄out]

∣∣) ∣∣X̄(t)
∣∣ )dx

+ k3

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ∣∣X̄(t)
∣∣ ,

˙̄V e
2NL ≤ k4

∣∣∣ ˙̄Zout(t)
∣∣∣ ∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ k5

( ∣∣Ke
I Z̄out(t) + Γ0 ˙̄p

e(t)(t)
∣∣+ ∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ |Γ0(d1w1(t) + d2w2(t))|

) ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ k6

∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣2
+ k7

∫ L

0

( ∣∣F5[Z̄, ∂xη]
∣∣+ ∣∣∣F6[Z̄, η, ∂xZ̄,

˙̄Zout]
∣∣∣ ) |η| dx.
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Applying [Cor+13, Lemma B.2], there exists δ1 > 0, and positive constants k8, k9, k10, h1, h2,
h3, h4 such that for all Z̄ satisfying ∥Z̄∥∞ ≤ δ1, it holds for all t ∈ [0,∞),

∣∣Γ0Π̄NL(Z̄(0, t))
∣∣ ≤

k8|Z̄(0, t)|, ∥Z̄∥2L2 +
∣∣X̄(t)

∣∣2 ≤ k9V̄
e
1 , ∥η∥2L2 ≤ k10V̄

e
2 , and∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+ ∣∣F4[Z̄, Z̄out]

∣∣) ∣∣Z̄∣∣ dx ≤ h1k9(∥Z̄∥∞ + ∥η∥∞)V̄ e
1 ,∫ L

0

∣∣Z̄∣∣ ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ dx ≤ h2(k9∥Z̄∥∞V̄ e
1 + k10∥η∥∞V̄ e

2 ),∫ L

0

(∣∣F3[Z̄, ∂xZ̄]
∣∣+ ∣∣F4[Z̄, Z̄out]

∣∣) ∣∣X̄(t)
∣∣ dx ≤ h3k9(∥Z̄∥∞ + ∥η∥∞)V̄ e

1 ,∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ∣∣X̄(t)
∣∣ ≤ h4(k9∥Z̄∥∞V̄ e

1 + k10∥η∥∞V̄ e
2 ).

We deduce, for all Z̄ satisfying ∥Z̄∥∞ ≤ δ1,

˙̄V e
1NL ≤ (h1 + h3)k9(∥Z̄∥∞ + ∥η∥∞)V̄ e

1 + (h2 + h4)(k9∥Z̄∥∞V̄ e
1 + k10∥η∥∞V̄ e

2 ). (5.45)

Applying [Cor+13, Lemma B.3], there exist positive constants δ2 ≤ δ1, h5, h6, h7, h8, h9, h10,
h11 such that for all Z̄ satisfying ∥Z̄∥∞ + ∥η∥∞ ≤ δ2, ∥ζ∥L2 ≤ k11V̄

e1/2
3 , k11 > 0, it holds for all

t ∈ [0,∞), ∣∣∣ ˙̄Zout(t)
∣∣∣ ∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣ ≤ h5∥η∥∞(V̄ e
2 + V̄ e

3 ),( ∣∣Ke
I Z̄out(t) + Γ0 ˙̄p

e(t)(t)
∣∣+ ∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
+ |Γ0(d1w1(t) + d2w2(t))|

) ∣∣∣∣Γ0
dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣
≤ h6∥Z̄∥∞V̄ e

2 + h6∥Z̄∥∞(V̄ e
1 + V̄ e

2 ) + h7 | ˙̄pe(t)(t)|
2
+ h8(|w1|2 + |w2|2),∣∣∣∣Γ0

dΠNL

dZ̄
(Z̄(0, t))η(0, t)

∣∣∣∣2 ≤ h9∥Z̄∥∞V̄ e
2 ,∫ L

0

( ∣∣F5[Z̄, ∂xη]
∣∣+ ∣∣∣F6[Z̄, η, ∂xZ̄,

˙̄Zout]
∣∣∣ ) |η| dx

≤ h10∥Z̄∥∞(V̄ e
2 + V̄ e

3 ) + h11∥Z̄∥∞V̄ e
2

(
∥Z̄∥∞ + ∥η∥∞ + 1

)
,

and therefore

˙̄V e
2NL ≤ k4h5∥η∥∞(V̄ e

2 + V̄ e
3 )

+ (k4h5 + k5h6 + k6h9 + k7h10 + k7h11)∥Z̄∥∞V̄ e
2

+ k5

(
h6∥Z̄∥∞(V̄ e

1 + V̄ e
2 ) + h7 | ˙̄pe(t)(t)|

2
+ h8(|w1|2 + |w2|2)

)
+ k7h10∥Z̄∥∞V̄ e

3 + k7h11V̄
e
2

(
∥Z̄∥∞ + ∥η∥∞

)
. (5.46)

Taking the time derivative in (5.34), we obtain the following equation for ζ, for all x ∈ [0, L],
t ∈ [0,∞),

∂tζ(x, t) = −(Λe(x)− F1[Z̄])∂xζ(x, t) + F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη] + +k1(x)ζout(·),
(5.47)

ζin(t) = Ke
P ζout(t) +

¨̄X(t) + Γ0(d
2
1w1(t) + d22w2(t)), (5.48)

¨̄X(t) = Ke
I
˙̄Zout(t) + Γ0

(
¨̄pe(t)− d2ΠNL

dZ̄2
(Z̄(0, t))η2(0, t)− dΠNL

dZ̄
(Z̄(0, t))ζ(0, t)

)
, (5.49)
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where

F7[Z̄, ζ, ∂xζ] = −K[(Λe(x) + F1[Z̄])(∂xζ +K1[L[ζ]])] + (Λe(x) + F1[Z̄])(∂xζ +K1[L[ζ]]),
F8[Z̄, η, ζ, ∂xZ̄, ∂xη] = −(Λe(x) + F1[Z̄])K1[L[ζ]] +K[(Σ(x) + F2[Z̄])L[ζ]

− 2F12[Z̄](∂xη +K1[L[η]]) + 2F22[Z̄]L[η] + F23L[Z̄]− F13(∂xZ̄ +K1[L[Z̄]])],
F13[Z̄, η, ζ] = F̈1[Z̄],

F23[Z̄, η, ζ] = F̈2[Z̄].

Take the time derivative of V̄ e
3 along the solutions to (5.31)-(5.33), apply [Cor+13, Lemma 5.2],

and define ˙̄V e
3 = ˙̄V e

3L+
˙̄V e
3NL, where ˙̄V e

3L is the time derivative of V̄ e
3L along the linear target system

(5.26)-(5.27), for all t ∈ [0,∞),

˙̄V e
3L = −ζ⊤(x, t)

(
P̄4[Z̄](x)(Λ

e(x) + F1[Z̄])
)
ζ(x, t)

∣∣∣L
0

+

∫ L

0

ζ⊤(x, t)
(
P̄4[Z̄](x)(Λ

e(x) + F1[Z̄])
)
x
ζ(x, t) dx+

∫ L

0

ζ⊤(x, ·)
(
P̄4[Z̄](x)

)
t
ζ(x, ·),

and

˙̄V e
3NL =

∫ L

0

((
F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη]+k1(x)ζout(·)

)⊤
P̄4[Z̄](x)ζ(x, t)

+ ζ⊤(x, t)P̄4[Z̄](x)
(
F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη]+k1(x)ζout(·)

))
dx.

According to [Cor+13, Proposition 5.4], there exist positive constants c2, h12, h13, h14, h15, h16,
h17, h18, h19, h20 such that for all t ∈ [0,∞),

− ζ⊤(x, t)
(
P̄4[Z̄](x)(Λ

e(x) + F1[Z̄])
)
ζ(x, t)

∣∣∣L
0

≤ h12∥ζ∥∞(V̄ e
1 + V̄ e

2 + V̄ e
3 ) + h13(|w1|2 + |w2|2) + h14∥η∥∞(V̄ e

2 + V̄ e
3 ) + h15|d̈|2 + h16∥ζ∥∞V̄ e

2 V̄
e
2 ,∫ L

0

ζ⊤(x, t)
(
P̄4[Z̄](x)

(
Λe(x) + F1[Z̄]

) )
x
ζ(x, t) dx ≤ −c2V̄ e

3 + h17(∥Z̄∥∞ + ∥η∥∞)V̄ e
3 ,∫ L

0

ζ⊤(x, ·)
(
P̄4[Z̄](x)

)
t
ζ(x, ·) dx ≤ h18V̄

e
3 ∥η∥∞,∫ L

0

ζ⊤(x, t)P̄4[Z̄](x)
(
F7[Z̄, ζ, ∂xζ] + F8[Z̄, η, ζ, ∂xZ̄, ∂xη] + +k1(x)ζout(·)

)
dx

≤ h19V̄
e
2 ∥ζ∥∞

(
∥Z̄∥∞ + ∥η∥∞

)
+ h20

(
∥η∥∞V̄ e

3 + ∥ζ∥∞V̄ e
2 + ∥Z̄∥∞V̄ e

3

)
.

Therefore there exist positive constants δ3 ≤ δ2, c3 and c4 satisfying c3 + c4 < c2 such that, for
all Z̄ satisfying ∥Z̄∥∞ + ∥η∥∞ + ∥ζ∥∞ ≤ δ3, it holds

˙̄V e
3L ≤ (−c2 + c3)(V̄

e
1 + V̄ e

2 + V̄ e
3 ) + h15| ¨̄pe|2 + h13(|w1|2 + |w2|2), (5.50)

˙̄V e
3NL ≤ c4(V̄

e
1 + V̄ e

2 + V̄ e
3 ). (5.51)

Combining (5.50), (5.51) with (5.44), (5.45), (5.46), and letting c = c3 + c4 − c2 − c1 and a =

a1 + k5h8 + h13, we get, for all ∥Z̄∥∞ + ∥η∥∞ + ∥ζ∥∞ ≤ δ2,

˙̄V e ≤− cV̄ e + (b1 + k5h7)| ˙̄pe|2 + h15| ¨̄pe|2 + a(|w1|2 + |w2|2). (5.52)

By defining W̄ e = V̄ e + b4
2 (

|w1|2
d1

+ |w2|2
d2

), we derive

˙̄W e ≤ −cV̄ e + (b1 + k5h7)| ˙̄pe(t)|2 + h15| ¨̄pe(t)|2 + (a− b4)(|w1|2 + |w2|2).
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Choosing a < b4, for some positive constant c5, we obtain

˙̄W e ≤− c5W̄
e + (b1 + k5h7)| ˙̄pe|2 + h15| ¨̄pe|2. (5.53)

For sufficiently small W̄ e(0), W̄ e exponentially converge to zero. If ∥Z̄∥L2 + ∥η∥L2 + ∥ζ∥L2 is suf-
ficiently small, V̄ e is equivalent to the H2 norm of Z̄. We deduce (5.30) by a standard application
of the comparison lemma. This concludes the proof of Theorem 5.1.

Furthermore, under the assumption of Theorem 5.1, we deduce that the quasilinear plant
system (4.1)-(4.2) is locally iISS around the nonuniform equilibrium u∗ in the H2 space.

Remark 5.1
The used methods in this paper can be extended to a general quasilinear hyperbolic system (5.1)
with general coefficients.

5.3 Conclusion

The problem of robust boundary stabilization of a heterogeneous quasi-linear traffic flow system
with a bottleneck was solved by actuation at the inlet boundary of the considered road segment.
The applicability of the control law, which was designed for the corresponding linearized sys-
tem by using the backstepping method in Chapter 4, has been proven for the local iISS of the
heterogeneous quasi-linear traffic system.

In the next chapter, we extend this result to design an observer and combine them to obtain
an observer-based output feedback controller for the heterogeneous quasi-linear traffic flow system
with a bottleneck.
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In this chapter, a parameter identification problem is solved for a distributed parameter system.
This problem is not motivated by a traffic control application but rather by the analysis of COVID
dynamics. More precisely, an extension of the classical pandemic SIRD model is considered for
the regional spread of COVID-19 in France under lockdown strategies. This compartment model
divides the infected and the recovered individuals into undetected and detected compartments
respectively. By fitting the extended model to the real detected data during the lockdown, an
optimization algorithm is used to derive the optimal parameters, the initial condition, and the
epidemics start date of regions in France. Considering all the age classes together, a network
model of the pandemic transport between regions in France is presented based on the regional
extended model and is simulated to reveal the transport effect of the COVID-19 pandemic after
lockdown. Using the measured values of displacement of people between cities, the pandemic
network of all cities in France is simulated by using the same model and method as the pandemic
network of regions. Finally, a discussion on an integrodifferential equation is given and a new
model for the network pandemic model of each age class is provided.

This chapter has been published in [Gua+20].

6.1 Pandemic model

In this chapter, the scenario we consider is a large safe population into which a low level of
infectious agents is introduced and a closed population with neither birth, natural death, nor
migration. There is one basic model of modeling pandemic transmission which is well known as the
susceptible-infected-recovered-dead (SIRD) model in [BCC12]. This mathematical compartmental
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model is described as follows,

Ṡ(t) = −βS(t)I(t), (6.1)

İ(t) = βS(t)I(t)− (α+ δ)I(t), (6.2)

Ṙ(t) = δI(t), (6.3)

Ḋ(t) = αI(t) (6.4)

where S(t) is the number of susceptible people at time t, I(t) is the number of infected people at
time t, R(t) is the number of recovered people at time t, D(t) is the number of deaths due to pan-
demic until time t, with constant parameters: β is transmission rate per infected, δ is the removal
or recovery rate, α is the disease mortality rate. The compartment variables S(t), I(t), R(t), D(t)

satisfy S(t)+I(t)+R(t)+D(t) = N at any time instant t, here N is the total number of population
of the considered area.

From the differential equations (6.1)-(6.4), it is obvious that at any time instant t, the total
rate βI(t) of transmission from the entire susceptible compartment to infected compartment is
proportional to the infected I; the infected individuals recover at a constant rate δ; the infected
go to death compartment at a constant rate α.

In fact, except for the detected well-known data, some undetected data cannot be measured but
are significantly important for the analysis of the evolution of COVID-19 in France under lockdown
policy. Moreover, they are useful to provide efficient social policies, such as optimal management
of limited healthcare resources, the ideal decision of the duration and level of lockdown or re-
lockdown, and so on.

Inspired by [Cha+20], the basic SIRD model is extended to a more sophisticated compartmental
model which includes several features of the recent COVID-19 outbreak, with flexibility with
respect to lockdown and test strategies. More sophisticated models could be considered, however
it is important that the model we consider can be calibrated with the available data for French
regions.

On the basis of the SIDUHR+/− model in [Cha+20], this model additionally considers that
the infected undetected individuals I− and the infected detected individuals I+ get sicker and
then go to intensive care U , and the hospitalized individuals H die (D) before attaining intensive
care U . In our model, the short-term tests transfer the positive individuals from compartment
I− to compartment I+. The detection using antibody tests allows transferring individuals from
compartment R− to compartment R+. The presence of antibodies indicates that one person has
recovered from the pandemic and is immune. The flow diagram of this model is sketched out in
Figure 6.1.
The evolution of each compartments is modelled by the following equations,

Ṡ(t) = −β(t)S(t)I−(t), (6.5)

İ−(t) = β(t)S(t)I−(t)− λ
(4)
1 I−(t)− (γIR + γIH + γIU )I

−(t), (6.6)

İ+(t) = λ
(4)
1 I−(t)− (γIR + γIH + γIU )I

+(t), (6.7)

Ṙ−(t) = γIRI
−(t)− λ

(4)
2 R−(t), (6.8)

Ṙ+(t) = γIRI
+(t) + λ

(4)
2 R−(t) + γHRH(t) + γURU(t), (6.9)

Ḣ(t) = γIH(I−(t) + I+(t))− (γHR + γHU + γHD)H(t), (6.10)

U̇(t) = γIU (I
−(t) + I+(t)) + γHUH(t)− (γUR + γUD)U(t), (6.11)

Ḋ(t) = γUDU(t) + γHDH(t), (6.12)
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Figure 6.1: Compartments and flow of pandemic model.

with
S(t) + I−(t) + I+(t) +R−(t) +R+(t) +H(t) + U(t) +D(t) = N,

and initial conditions

S(t0) = N, (6.13)
I−(t0) = I−0 > 0, (6.14)
I+(t0) = R−(t0) = R+(t0) = H(t0) = U(t0) = D(t0) = 0, (6.15)

where S(t) is the number of susceptible individuals at time t, I−(t) is the number of infected
undetected individuals at time t, I+(t) is the number of infected detected individuals at time
t, R−(t) is the number of recovered undetected individuals at time t, R+(t) is the number of
recovered detected individuals at time t, H(t) is the number of hospitalized individuals at time
t, U(t) is the number of individuals hospitalized in an intensive care unit at time t, D(t) is the
cumulative number of dead individuals from the hospital or intensive care at time t.

During the incubation period (time taken from infection to symptom exhibition) but after
the latent period (time from infection to infectiousness, this is the so-called exposed period), the
infected individuals can transmit the epidemic without any symptoms. Unfortunately, we do
not have any data on the exposed population, making it hard to identify the number of infected
individuals. Therefore we incorporate this class of infected individuals into the undetected infected
compartment I−.

The number of exposed individuals who travel internationally is neglected in this chapter,
since (at the time of the writing) only a few people travel internationally. We do not consider
here deaths from nursing homes for example, as in [Vei+20, Chapter 6], where a slight difference
is considered at the French national scale. The main reason for that is the lack of data. Indeed,
daily data on the total reported cases are unavailable in France on the regional scale. The initial
conditions (6.13)-(6.15) mean that infected people I−0 are introduced into a population consisting
of susceptible individuals S(t0) at time instant t0. Both I−0 and t0 are two unknown parameters
that need to be identified.

Two types of tests are taken into account in this model, one is a class of virological tests like
nasal ones that can detect new infectious cases from compartment I−. The rate of these tests is
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denoted by λ(4)1 ; another method is a class of serological tests that detect the individuals infected
and sequentially recovered from compartment R− applying blood or saliva samples, the rate of
these tests (for example, blood test) is denoted by λ(4)2 . This second type of test was not proposed
in France until very recently, thus we consider in this work that λ(4)2 = 0.

Remark 6.1
The second type of test is an antibody test that uses serological immunoassays to detect viral-specific
antibodies: Immunoglobin M (IgM) and G (IgG). The antibodies IgM that suggests infection have a
half-life of around five days, and they usually appear within five to seven days of infection and peak
at around 21 days. The antibodies IgG that indicates recovery and immunity can be detected around
10 to 14 days after infection. The immunity test allows verifying if one person is immune to the
epidemic. The identified immune person could obtain an immunity certificate to have normal social
activities and then be allowed to travel between regions thus impacting our model. Consequently,
the level of social interactions is raised, and then the social economy is recovered.

The other parameters in equation (6.5)-(6.12) are defined as follows:

• γIR is the daily individual transition rate from I to R, and γIR = (1−pa)(1−pH)/Ns+pa/Na,

• γIH is the daily individual transition rate from I to H, and γIH = (1− pa)pH(1− pU )/NIH ,

• γIU is the daily individual transition rate from I to U , and γIU = (1− pa)pHpU/NIH ,

• γHR is the daily individual transition rate from H to R, and γHR = (1− pHD)/NHR,

• γHD is the daily individual transition rate from H to D, and γHD = pHD/NHD,

• γHU is the daily individual transition rate from H to U , and γHU = pHU/NHU ,

• γUR is the daily individual transition rate from U to R, and γUR = (1− pUD)/NUR,

• γUD is the daily individual transition rate from U to D, and γUD = pUD/NUD,

with

• pa: the probability of having light symptoms or no symptoms for the infected individuals; pH :
the probability of needing hospitalization for mild or severely ill people; pU : the probability
of needing intensive care for mild or severely ill people; pHU : the probability of needing
intensive care under hospitalization without intensive care; pHD: the probability of death
under hospitalization without intensive care; pUD: the probability of death under intensive
care;

• Na: the number of days it takes for an asymptomatic case to recover; Ns: the number of days
it takes for a symptomatic case to recover without hospitalization; NIH : the number of days
a severely symptomatic case requires until hospitalization; NHD: the number of days before
death in the event of hospitalization; NHU : the number of days required for a hospitalized
case until intensive care is provided; NUD: the number of days before death in the event of
intensive care; NHR: the number of days it takes for a hospitalized case to recover; NUR:
the number of days it takes for a case under intensive care to recover.

The infection transmission rate β(t) is the rate of the pandemic transmission from an unde-
tected infected person to susceptible individuals at time instant t. As in [MW20], to combine the
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complex effects of lockdown strategy, a time-dependent exponentially decreasing function can be
used to model the transmission rate β(t),

β(t) = β0 exp(−µ(t− κ)+) =

{
β0 0 ≤ t ≤ κ,

β0 exp(−µ(t− κ)) t > κ,
(6.16)

with constant parameters β0, µ and κ. Note that β(t) is constant during the initial stage of
implementing effective lockdown strategies such as social distance, quarantine, healthcare, and
mask worn. The transmission rate exponentially decreases at rate µ after these lockdown strategies
take effect. The transmission rate β(t) can be illustrated in Figure 6.2. As one of the most

β0

κ

β(t)

t
0

Figure 6.2: Transmission rate β before and during lockdown.

critical epidemiological parameters, the basic reproductive ratio R0 defines the average number of
secondary cases an average primary case produces in a susceptible population (see [KR08]). As for
the model in [Cha+20], for the considered model in this chapter, only the I− individuals transmit
the disease to the susceptible individuals during the early phase of the outbreak. If R0 < 1 (i.e.,
İ−(t) < 0), the infection "dies out" over time; inversely, if R0 > 1 (i.e., İ−(t) > 0), the initial
number of susceptible individuals exceeds the critical threshold to allow the pandemic to spread.
Thus the initial basic reproductive rate is

R0 =
β0S(t0)

λ
(4)
1 + γIR + γIH + γIU

. (6.17)

When the transmission rate β(t) and the number of susceptible people S(t) evolve as time goes by, a
dynamic reproductive rate that depends on time is introduced and known as effective reproduction
number R(t) in [Til92]. In this model, it is defined as, for t ≥ 0,

R(t) =
β(t)S(t)

λ
(4)
1 + γIR + γIH + γIU

. (6.18)

Similarly, when R(t) < 1, the number of secondary cases infected by a primary undetected infected
case on the day t, dies out over time, leading to a delay in the number of infected individuals.
But when R(t) > 1, the number of undetected infected individuals grows over time. Therefore, by
the control of the transmission rate β(t) that can constrain R(t) to be less than 1, the number of
infected individuals grows slowly to ease the pressure on medical resources. When S(t) is below a
threshold, the epidemic goes to extinction (see e.g., [PB19]). The required level of vaccination to
eradicate the infection is also obtained from the effective reproduction number.

The compartmental model introduced in Figure 6.1 exhibits a large number of unknown pa-
rameters (20 if we consider λ(4)2 = 0). The uncertainty of these parameters can not be neglected.
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As an example, until the end of this section, let us propagate uncertainty at the scale of the region
Auvergne-Rhône-Alpes. The vector of unknown parameters is:

p = (pa, pH , pU , pHD, pUD, Na, Ns, NIH , NHD, NUD, NHR, NUR, R0, t0, µ, κ, λ
(4)
1 , pHU , NHU , I

−
0 )⊤.

(6.19)

We take into account the uncertainties on these parameters by considering that each parameter
is uniformly distributed with bounds consistent with typical reported values (see, e.g., [Cha+20]
and references therein). Lower and upper bounds for each parameter are reported in Table 6.1
hereafter.

parameters pa pH pU pHD pUD Na Ns NIH NHD NUD

lower bounds 0.5 0.15 0.15 0.15 0.2 5 8 8 15 8
upper bounds 0.9 0.2 0.2 0.25 0.3 12 15 12 20 12

parameters NHR NUR R0 t0 µ κ λ
(4)
1 pHU NHU I−

0
lower bounds 15 15 2.5 2020-02-06 0.03 20 1e-4 0.001 1 1
upper bounds 25 20 4.5 2020-02-12 0.1 50 1e-3 0.01 10 100

Table 6.1: Uncertainty bounds for all model parameters.

The parameter sampling approach is based on the generation of a low-discrepancy sequence
of 5000 points on the unit hypercube [0, 1]20. Low-discrepancy sequences have the property of
uniformly and regularly filling the unit hypercube, without the clustering issues encountered by
Monte Carlo samples. Sobol’ sequences [Sob67] are among the best low-discrepancy sequences
with solid theoretical properties and good numerical performance when dimension increases.

Figure 6.3 shows that the prior uncertainty is pretty high since for example the difference
between the 75 % and the 25 % quantiles for the number of people in hospital is more than 50000
at the end of the lockdown period. On images 6.4 and 6.5 we propagate the parameter uncertainty
on the maximum number of people in intensive care units, the date at which this maximum value
is attained, and the total number of reported cases. Note that the total number of reported cases is
obtained from the daily number of reported cases, DR, which is driven by the following equation:

ḊR(t) = (λ
(4)
1 + γIH + γIU )I

−(t)−DR(t).

The maximum number of people in intensive care is particularly important as it provides infor-
mation on the capacities the intensive care units should have to face the sanitary crisis. We show
for each of these three scalar quantities of interest the boxplot which visualizes five summary
statistics (the median, two hinges, and two whiskers) and all outlying points individually. The
lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).
The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from
the hinge (where IQR is the inter-quartile range or distance between the first and third quartiles).
The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge.
Data beyond the end of the whiskers are called "outlying" points and are plotted individually. We
see for example on these boxplots that the median for the maximum number of people in intensive
care is more than 8000 with the IQR greater than 20000.

Given the importance of uncertainties propagated from the model parameters to the quantities
of interest (e.g., the number of infected people at hospitals), it appears necessary to calibrate the
model. Our calibration procedure is described in the next section.



6.1. Pandemic model 83

Figure 6.3: Prior uncertainty quantification for compartments D (in red), H (in purple), R+ (in
blue) and U (in orange) for the region Auvergne-Rhône-Alpes. The bold lines are the pointwise
medians of each functional output, whereas the colored surface is the range between the pointwise
first and third quartiles.
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Figure 6.4: Prior uncertainty quantification for maximum value of U (top), and total number of
reported cases (bottom) for the region Auvergne-Rhône-Alpes.
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Figure 6.5: Prior uncertainty quantification for the day where the maximum value of U is reached
for the region Auvergne-Rhône-Alpes.
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6.2 Parameter identification

In this section, regional scales of France are considered and all age classes are summed to calibrate
the parameters of the pandemic model (6.5)-(6.12) during confinement on the basis of data about
the pandemic in France. Since all regions are not connected during the lockdown, it is sufficient
to identify separately all unknown parameters for each region. From the calibration of the model,
we can observe the effects of lockdown strategies on the unknown variables, in particular for
infected undetected populations and recovered undetected populations. The following weighted
least square cost function is minimized for parameters optimization:

J(p) =

n∑
i=1

(Z(p, ti)− Zmeas(ti))
2

Zmeas(ti)

where p is a vector which consists of calibrated parameters; Zmeas(ti) is the measured values of
the corresponding observed state vector Z(p, ti) at time ti, i = 1, . . . , n, with n the number of days
considered for calibration. This optimization problem is solved using the Levenberg-Marquardt
algorithm (see [Mor78]). Since it is a local algorithm, we adopt, as in [Vei+20, Chapter 6], a multi-
start approach where the initial values are obtained from a Latin Hypercube Sampling (LHS). LHS
was introduced in [MBC00] as space-filling designs on the unit hypercube. The LHS is built on
the unit hypercube [0, 1]20 and then rescaled with the upper and lower bounds given in Table 6.1.
The unknown parameter vector p defined in (6.19) is calibrated on daily data for H, U , D, and R+

on the lockdown period 2020-03-18 to 2020-05-11, for each region, from two data sources: the first
one is a public and governmental data source [Gou20] and the second one is a dedicated national
platform with a privileged access [Min20].

The time step is chosen as ten percent of one day for the numerical discretization. A general
solver "scipy.integrate.ode" on Python for ordinary differential equations is used to compute H,
U , D or R+ for each region for all time until the end of lockdown. The results of the calibration
are given in Tables 6.2 to 6.5. The results of parameter calibration for the 13 regions in France
are shown in images 6.6 and 6.7.

RegionsParameters pa pH pU pHD pUD Na Ns

Île-de-France 0.9 0.15 0.2 0.20 0.3 12.0 13.104
Centre-Val de Loire 0.9 0.2 0.2 0.21 0.3 9.674 8.0

Bourgogne-Franche-Comté 0.83 0.18 0.2 0.25 0.3 6.423 8.576
Normandie 0.9 0.2 0.2 0.25 0.3 6.527 15.0

Hauts-de-France 0.9 0.15 0.2 0.244 0.3 12.0 15.0
Grand Est 0.9 0.2 0.2 0.25 0.3 12.0 14.551

Pays de la Loire 0.9 0.189 0.2 0.193 0.3 7.608 9.191
Bretagne 0.9 0.2 0.2 0.151 0.3 12.0 8.153

Nouvelle-Aquitaine 0.9 0.150 0.2 0.15 0.3 6.883 15.0
Occitanie 0.9 0.15 0.2 0.15 0.3 6.803 9.767

Auvergne-Rhône-Alpes 0.9 0.2 0.2 0.176 0.3 7.820 15.0
Provence-Alpes-Côte d’Azur 0.852 0.192 0.192 0.15 0.2 9.446 15.0

Corse 0.9 0.15 0.179 0.222 0.3 6.433 13.62

Table 6.2: Optimal values of parameters pa, pH , pU , pHD, pUD, Na, Ns for each region.
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Figure 6.6: Minimap of regions in France, and result of the parameters calibration for the first 7
regions among 13.
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Figure 6.7: Result of parameters calibration for the last 6 regions among 13.
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RegionsParameters NIH NHD NUD NHR NUR µ

Île-de-France 12.0 20.0 9.724 25.0 20.0 0.10
Centre-Val de Loire 12.0 20.0 12.0 25.0 15.0 0.1

Bourgogne-Franche-Comté 12.0 20.0 8.391 25.0 20.0 0.043
Normandie 12.0 20.0 12.0 23.027 20.0 0.1

Hauts-de-France 12.0 20.0 9.303 24.331 20.0 0.1
Grand Est 11.221 20.0 8.0 25.0 20.0 0.0997

Pays de la Loire 12.0 20.0 12.0 25.0 20.0 0.1
Bretagne 12.0 15.225 12.0 25.0 15.096 0.1

Nouvelle-Aquitaine 12.0 20.0 12.0 25.0 20.0 0.1
Occitanie 12.0 20.0 12.0 25.0 20.0 0.1

Auvergne-Rhône-Alpes 12.0 20.0 12.0 25.00 20.0 0.1
Provence-Alpes-Côte d’Azur 8.867 20.0 12.0 25.0 20.0 0.084

Corse 12.0 20.0 12.0 25.0 20.0 0.1

Table 6.3: Optimal values of parameters NIH , NHD, NUD, NHR, NUR, µ for each region.

RegionsParameters κ λ
(4)
1 pHU NHU

Île-de-France 35.759 0.0001 0.001 3.071
Centre-Val de Loire 40.141 0.0001 0.01 10.0

Bourgogne-Franche-Comté 25.360 0.001 0.00291 1.564
Normandie 37.718 0.000152 0.01 10.0

Hauts-de-France 40.928 0.000193 0.01 10.0
Grand Est 33.745 0.000261 0.0011 4.588

Pays de la Loire 43.524 0.000296 0.001 8.917
Bretagne 44.838 0.000259 0.01 10.0

Nouvelle-Aquitaine 36.702 0.000194 0.0064 2.277
Occitanie 36.056 0.000330 0.01 2.094

Auvergne-Rhône-Alpes 37.142 0.000247 0.001 3.238
Provence-Alpes-Côte d’Azur 42.813 0.001 0.01 10.0

Corse 29.198 0.000271 0.01 10.0

Table 6.4: Optimal values of parameters κ, λ(4)1 , pHU , NHU for each region.

6.3 Network simulation

In order to characterize the dynamics of the pandemic transmission processes during the con-
finement, the epidemiological model (6.5)-(6.12) was described in the previous section. We now
consider the government action of unlocking down after confinement, there is a pandemic trans-
mission effect between each region in France. The following pandemic network model of N regions
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RegionsParameters I−0 t0 R0

Île-de-France 30.454 11/02/2020 4.120
Centre-Val de Loire 1.025 11/02/2020 3.347

Bourgogne-Franche-Comté 1.0 11/02/2020 3.008
Normandie 1.131 12/02/2020 2.774

Hauts-de-France 200.0 10/02/2020 2.883
Grand Est 3.508 08/02/2020 4.5

Pays de la Loire 1.022 06/02/2020 2.772
Bretagne 50.582 06/02/2020 2.5

Nouvelle-Aquitaine 1.282 11/02/2020 2.950
Occitanie 14.708 12/02/2020 2.548

Auvergne-Rhône-Alpes 15.620 11/02/2020 2.884
Provence-Alpes-Côte d’Azur 25.299 06/02/2020 2.583

Corse 1.0 12/02/2020 2.859

Table 6.5: Optimal values of initial conditions I−0 , start time of infection t0 and basic reproduction
rate R0.

is introduced, for i = 1, ..., N

Ṡi(t) = −βi(t)I−i (t)Si(t) +
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
Sk(t)−

Lik

Ni
Si(t)

)
, (6.20)

İ−i (t) = βi(t)I
−
i (t)Si(t)− λ

(4i)
1 I−i (t)− (γiIR + γiIH + γiIU )I

−
i (t)

+
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
I−k (t)− Lik

Ni
I−i (t)

)
, (6.21)

İ+i (t) = λ
(4i)
1 I−i (t)− (γiIR + γiIH + γiIU )I

+
i (t), (6.22)

Ṙ−
i (t) = γiIRI

−
i (t)− λ

(4i)
2 R−

i (t) +
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
R−

k (t)−
Lik

Ni
R−

i (t)

)
, (6.23)

Ṙ+
i (t) = γiIRI

+
i (t) + λ

(4i)
2 R−

i (t) + γiHRHi(t) + γiURUi(t), (6.24)

Ḣi(t) = γiIH(I−i (t) + I+i (t))− (γiHR + γiHU + γiHD)Hi(t), (6.25)

U̇i(t) = γiIU (I
−
i (t) + I+i (t)) + γiHUHi(t)− (γiUR + γiUD)Ui(t), (6.26)

Ḋi(t) = γiUDUi(t) + γiHDHi(t), (6.27)

where

• the transmission rate t 7→ βi(t) of region i is a continuous function depending on the scenario
(lockdown or no-lockdown), depending on the time t;

• Lik is the number of individuals moving from region i to region k for a given time length
Tik depending on the pair (i, k);

• the function σ(i, k, t) is a weighting function that determines the mobility between the region
i and the region k at time t. It is assumed to be time-periodic with the period Tik, satisfies∫ Tik

0
σ(i, k, t)dt = 0, and takes value in the interval [−1, 1];

• Nk is the population of region k; the other parameters λ(4i)1 , γiIR... depend on the location
i;

• Ci is the set of all regions that have a pandemic transmission with region i.
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As the fast periodic switching policy in [Bin+20], we consider the inverse of the (same) exponential
function of infection transmission rate β(t) in (6.16) to denote βi(t). Even though the end of
confinement, the social strategies still go on, so a continuous function β(t) is used for the whole
transmission process of COVID-19 from the start date of infection,

β(t) =

{
β0 exp(−µ(t− κ)+), during lockdown,
(β0 exp(−µ(tend − κ)+)− β0) exp(−µ(t− tend − κ)+) + β0,

(6.28)

after lockdown, with the end time of lockdown tend.
The transmission rate β(t) for the whole transmission process is illustrated in Figure 6.8. For the

β0

κ

β(t)

t0
tend tend + κ

Figure 6.8: Transmission rate β for network model.

mobility analysis after lockdown, we compute the mobility matrix {Lki

Nk
}N×N using data of the

displacement of population in France as measured by the Institut national de la statistique et des
études économiques (INSEE). To be more specific, the professional displacements and the scholar
displacements are given for each French city in [INS20] for some age classes. This information
allows us to compute, for each k = 1, . . . , N , i = 1, . . . , N , Lki

Nk
as the fraction of people (with

respect to the total population in region k) travelling from the region k to the region i. For the
numerical simulation, we assume that the mobility matrix is computed for a time length of one
day (that is Tik = 1 day) for any pair of regions (i, k). The components of the matrix {Lki

Nk
}N×N

are shown in Tables 6.6-6.8.

Region kRegion i Île-de-France Centre-Val de Loire Bourgogne-Franche-Comté Normandie
Île-de-France 0.000e+00 3.662e-04 1.870e-04 3.828e-04

Centre-Val de Loire 5.485e-03 0.000e+00 8.279e-04 5.642e-04
Bourgogne-Franche-Comté 1.136e-03 4.346e-04 0.000e+00 5.651e-05

Normandie 2.803e-03 6.993e-04 5.574e-05 0.000e+00
Hauts-de-France 4.077e-03 6.803e-05 8.013e-05 5.169e-04

Grand Est 7.146e-04 5.116e-05 5.833e-04 6.038e-05
Pays de la Loire 7.411e-04 6.476e-04 5.488e-05 8.895e-04

Bretagne 6.099e-04 1.103e-04 4.689e-05 4.358e-04
Nouvelle-Aquitaine 6.153e-04 3.345e-04 6.910e-05 7.362e-05

Occitanie 4.616e-04 5.165e-05 7.992e-05 5.219e-05
Auvergne-Rhône-Alpes 4.855e-04 1.066e-04 8.104e-04 5.503e-05

Provence-Alpes-Côte d’Azur 5.062e-04 4.511e-05 8.287e-05 5.736e-05
Corse 8.718e-04 1.388e-04 1.388e-04 9.041e-05

Table 6.6: First part of components of mobility matrix {Lki

Nk
}N×N .

For the numerical simulation, we choose 1 hour as the time step. As far as the function σ is
concerned, for any regions i and k, σ(i, k, t) is constant and negative between time t =7am and



92 Chapter 6. Parameter identification: analysis of COVID

Region kRegion i Hauts-de-France Grand Est Pays de la Loire Bretagne Nouvelle-Aquitaine
Île-de-France 7.848e-04 3.485e-04 2.200e-04 1.412e-04 2.667e-04

Centre-Val de Loire 1.475e-04 1.452e-04 7.035e-04 1.668e-04 7.710e-04
Bourgogne-Franche-Comté 1.020e-04 1.203e-03 6.397e-05 5.295e-05 1.091e-04

Normandie 8.391e-04 1.043e-04 6.113e-04 4.062e-04 1.193e-04
Hauts-de-France 0.000e+00 6.536e-04 6.719e-05 7.274e-05 8.853e-05

Grand Est 3.738e-04 0.000e+00 7.719e-05 7.086e-05 8.116e-05
Pays de la Loire 1.112e-04 8.988e-05 0.000e+00 1.470e-03 1.013e-03

Bretagne 1.175e-04 9.190e-05 1.661e-03 0.000e+00 1.835e-04
Nouvelle-Aquitaine 1.229e-04 8.998e-05 6.295e-04 9.172e-05 0.000e+00

Occitanie 1.169e-04 9.261e-05 7.412e-05 6.760e-05 1.044e-03
Auvergne-Rhône-Alpes 1.262e-04 1.512e-04 6.770e-05 6.426e-05 2.210e-04

Provence-Alpes-Côte d’Azur 1.212e-04 1.117e-04 5.164e-05 6.124e-05 1.312e-04
Corse 1.970e-04 1.647e-04 6.781e-05 1.292e-04 4.036e-04

Table 6.7: Second part of components of mobility matrix {Lki

Nk
}N×N .

Region kRegion i Occitanie Auvergne-Rhône-Alpes Provence-Alpes-Côte d’Azur Corse
Île-de-France 2.133e-04 3.019e-04 1.429e-04 1.001e-05

Centre-Val de Loire 1.209e-04 3.582e-04 6.160e-05 2.747e-06
Bourgogne-Franche-Comté 1.009e-04 1.918e-03 1.084e-04 3.198e-06

Normandie 8.647e-05 1.681e-04 6.719e-05 2.712e-06
Hauts-de-France 8.618e-05 1.409e-04 5.090e-05 1.008e-06

Grand Est 7.556e-05 1.791e-04 1.106e-04 1.808e-06
Pays de la Loire 9.884e-05 2.159e-04 5.404e-05 2.520e-06

Bretagne 1.097e-04 1.638e-04 6.189e-05 6.252e-06
Nouvelle-Aquitaine 9.997e-04 3.356e-04 9.190e-05 4.873e-06

Occitanie 0.000e+00 6.060e-04 1.626e-03 7.430e-06
Auvergne-Rhône-Alpes 3.787e-04 0.000e+00 4.293e-04 6.202e-06

Provence-Alpes-Côte d’Azur 1.115e-03 8.193e-04 0.000e+00 2.613e-05
Corse 5.199e-04 3.487e-04 1.698e-03 0.000e+00

Table 6.8: Third part of components of mobility matrix {Lki

Nk
}N×N .
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Figure 6.9: Weighting function σ(i, k, .) for mobility matrix, for any pair of regions (i, k).

t =10am and σ(i, k, t) is constant and positive between t =5pm and t =8pm, zero otherwise and
satisfies

∫
day

σ(i, k, t)dt = 0. See Figure 6.9 for the discretized version of the function t 7→ σ(i, k, t).
Physically, it corresponds to constant traffic of people in the morning from region i to region k and
constant traffic of people back in the afternoon. The simulation results of the considered network
model for 13 regions in France are shown in images 6.10 and 6.11, all parameters and the values
of all states at the starting date of lockdown have been identified during the lockdown, and the
end date of confinement is 11th of May in France. Note that the end of the simulation horizon
on images 6.10 and 6.11 is the beginning of August, thus the calibrated parameters appear to fit
very well to the data during 2.5 months, which is very positive.

6.4 Network of cities

In this section, we use the parameter identification method developed in Section 6.2 to simulate
another network of areas. Instead of considering the network of the 13 metropolitan regions as
in Section 6.3, we consider the network of all French cities. There are around 36.000 cities in
France, and INSEE measures the displacement of people between each couple of cities [INS20].
To simulate the transport effect on the pandemic dynamics, we follow the same approach as in
Section 6.3. To be more specific, we use the same model as (6.20)-(6.27) but instead of considering
N = 13 regions, we consider N = 36.000 cities:

Ṡi(t) = −βi(t)I−i (t)Si(t) +
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
Sk(t)−

Lik

Ni
Si(t)

)
, (6.29)

İ−i (t) = βi(t)I
−
i (t)Si(t)− λ

(4i)
1 I−i (t)− (γiIR + γiIH + γiIU )I

−
i (t)

+
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
I−k (t)− Lik

Ni
I−i (t)

)
, (6.30)

İ+i (t) = λ
(4i)
1 I−i (t)− (γiIR + γiIH + γiIU )I

+
i (t), (6.31)

Ṙ−
i (t) = γiIRI

−
i (t)− λ

(4i)
2 R−

i (t) +
∑
k∈Ci

σ(i, k, t)

(
Lki

Nk
R−

k (t)−
Lik

Ni
R−

i (t)

)
, (6.32)

Ṙ+
i (t) = γiIRI

+
i (t) + λ

(4i)
2 R−

i (t) + γiHRHi(t) + γiURUi(t), (6.33)

Ḣi(t) = γiIH(I−i (t) + I+i (t))− (γiHR + γiHU + γiHD)Hi(t), (6.34)

U̇i(t) = γiIU (I
−
i (t) + I+i (t)) + γiHUHi(t)− (γiUR + γiUD)Ui(t), (6.35)

Ḋi(t) = γiUDUi(t) + γiHDHi(t), i = 1, ..., N, (6.36)
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Figure 6.10: Minimap of regions in France, and simulation of pandemic network model for first 7
regions among 13.
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Figure 6.11: Simulation of pandemic network model for the last 6 regions among 13.
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where Lki is the number of individuals moving from city k to the city i and is derived from the
real data of INSEE, and Ci is the set of all cities that have a pandemic transmission with city i.
All the other parameters are chosen as the ones of the region to which each city belongs.

To simulate this system of 8 ∗ 36.000 differential equations, we now specify initial conditions.
To simplify, the epidemic start date of each city is taken as the same as the epidemic start date
of the region to which it belongs, and the initial condition for the undetected infected individuals
I−0 for the capital of each region is one of the regions, while it is set to 0 for all other cities in the
region. It is equivalent to saying that the pandemic dynamics start at the capital of each region.
The population of each French city is used as the initial condition for the susceptible individuals.

The transport effect between cities is seen on images 6.12-6.14.

In these images, we observe the spatial evolution of the pandemics between 2020-03-17 and
2020-08-01. At an early date, the results are impacted by the initial conditions. During the
lockdown, the pandemic is just located in the regional capitals because no infected people can go
out of the capitals (compare the left and right parts of Figure 6.12 with the left part of Figure 6.13)
and recall that the end of the lockdown in France in the 11th of May. Then the effect of transport
between cities is seen after lockdown when other cities than capitals are affected see Figure 6.13
(right) and Figure 6.14. Using Figure 6.13 (right) and Figure 6.14 allows to conclude that the
number of undetected infected are decreasing until the 1st of August. Note that we did not model
the wearing of cloth face coverings in public settings, which could be included in the modeling of
the transmission rate β(t).

6.5 Discussion and a new integro-differential model

In this section, the general form of an integrodifferential model capable of integrating different age
classes and areas is introduced to discuss the transport effect of COVID-19 in France after the
lockdown. By "areas" we mean a given geographical scale as the set of 13 Metropolitan regions
(as considered in Section 6.3), or the set or all 101 French departments, or all cities (as considered
in Section 6.4), or other geographical areas. For each age class a ∈ ages in area x ∈ areas, we
consider the following integrodifferential equations, for any time t ≥ 0 after confinement,

∂tX(a, x, t) =fa(X(., x, t)) +

∫
areas

σ(a, x, y, t)
(
Λin(a, x, y, t)X(a, y, t)

− Λout(a, x, y, t)X(a, x, t)
)
dy + Fext(a, x, t), (6.37)

with

• ages, the set of different age classes of the population, depending on the age scale under
study. As an example, we can consider all scholar age classes, or elderly ages, or a mix of
such age classes as the set

ages = {−15, 15− 44, 44− 64, 65− 74, 75−} ;

• areas, the set of different areas of the population under study, depending on the considered
geographical scale. As an example, considering all metropolitan regions, as considered in
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Figure 6.12: The maps of the transport effect between cities in France (undetected infected plus
detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the date
for the map on the top is 2020-03-17 (start date of the lockdown in France) and the one for the
map on the bottom is 2020-04-01.
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Figure 6.13: The maps of the transport effect between cities in France (undetected infected plus
detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the date
for the map on the left is 2020-05-01 and the one for the map on the right is 2020-06-01.
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Figure 6.14: The maps of the transport effect between cities in France(undetected infected plus
detected infected from 0% (blue) to 2% (magenta) of the population for each commune): the date
for the map on the left is 2020-07-01 and the one for the map on the right is 2020-08-01.
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Section 6.3, yields the set

areas ={Île - de - France, Centre-Val de Loire, Bourgogne - Franche - Comté,
Normandie,Hauts - de - France, Grand Est, Pays de la Loire,
Bretagne, Nouvelle - Aquitaine, Occitanie, Auvergne - Rhône - Alpes,
Corse, Provence - Alpes - Côte d’Azur},

As another example, considering all French departments give a set of 101 areas, or considering
the geographical scale of French cities yields a set of around 36.000 areas, as considered in
Section 6.4 and so on... We can even consider the set of countries to model the international
transport effect when international activities become more frequent.

• X(a, x, t) ∈ R8 is the 8-vector consisting of compartments of the age class a, in the area x,
at time t;

• For all age class a, fa(X(., x, t)) is the pandemic transmission dynamics for age class a from all
other age classes in the area x at time t. Without considering the age effect, it is given by the
right-hand side of systems (6.5)-(6.12). Inspired by the contact matrix approach developed
in e.g. [KR08, Chapter 3, Page 76], by considering multiple age classes, the transmission
term is the following integral∫

ages

βa,b,x(t)I
−(b, x, t) db S(a, x, t)

instead of
β(t)I−(t)S(t) ,

where βa,b,x(t) is the contact function between age classes a and b, in the area x, and at time
t. Therefore the function fa is given by

fa(X(., x, t)) =

−
∫
ages

βa,b,x(t)I
−(b, x, t) db S(a, x, t),∫

ages
βa,b,x(t)I

−(b, x, t) db S(a, x, t)− λ
(4)
1 I−(a, x, t)− (γIR + γIH + γIU )I

−(a, x, t),

λ
(4)
1 I−(a, x, t)− (γIR + γIH + γIU )I

+(a, x, t),

γIRI
−(a, x, t)− λ

(4)
2 R−(a, x, t),

γIRI
+(a, x, t) + λ

(4)
2 R−(a, x, t) + γHRH(a, x, t) + γURU(a, x, t),

γIH(I−(a, x, t) + I+(a, x, t)− (γHR + γHU + γHD)H(a, x, t),

γIU (I
−(a, x, t) + I+(a, x, t) + γHUH(a, x, t)− (γUR + γUD)U(a, x, t),

γUDU(a, x, t) + γHDH(a, x, t)



⊤

where all parameters depend on the age class a and the area x;

• Λin(a, x, y, t) ∈ R is the density of people coming (in) area x from area y ∈ areas at time t,
for age class a;

• Λout(a, x, y, t) ∈ R is the density of people going to (out) area y ∈ areas from area x at time
t, for age class a;

• Fext(a, x, t) ∈ R8 is the external flux coming into location x at time t in the age class a. As an
example for the simulations of Section 6.3 (where the metropolitan regions are considered)
and of Section 6.4 (where all French cities are considered), it is 0 because the boundary of
France is close (at the time of the simulation);
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• σ(a, x, y, t) is a weighting function that determines the mobility between area x and area y,
at time time t for the age class a. It stands for a (lockdown or no-lockdown) function for the
age class a, between the areas x and y at time t. As an example, before the 11th of May, it
was forbidden to travel for more than 100km in France. Such a policy could depend on the
age classes and on the areas, e.g., to control so-called "clusters" of COVID-19;

•
∫
areas

σ(a, x, y, t)Λin(a, x, y, t)X(a, y, t) dy provides the total number of people coming into
area x from all the other areas;

•
∫
areas

σ(a, x, y, t)Λout(a, x, y, t) dy X(a, x, t) provides the total number of people coming from
area x into any of the other areas.

Equation (6.37) describes the network dynamics of the COVID-19 pandemic after lockdown
and the transport effect on different age classes on the basis of the regional pandemic transmission
dynamics during the lockdown. The interest of this model is that it could be adapted to any
geographical scale, and to all age classes. From a control point of view, the most important
term is σ(a, x, y, t) which defines the lockdown policy that defines the mobility between areas x
and y at time t for the age class a. Many control problems could be studied for this model, as
optimal control to reduce the pandemic effect, or to minimize mortality in particular. It is of great
importance for the mobility dynamics of the pandemic.

Beyond that, inspired by advection-diffusion modeling of population dynamics (as consid-
ered in [FM07]), it is natural to model the displacement inside a given area by a diffusion term
(see [Cra80]). The corresponding model is formulated as follows:

∂tX(a, x, t) =fa(X(., x, t)) + d(a, x, t)∂xxX(a, x, t) +

∫
areas

σ(a, x, y, t)
(
Λin(a, x, y, t)X(a, y, t)

− Λout(a, x, y, t)X(a, x, t)
)
dy + Fext(a, x, t), (6.38)

where the diffusion coefficient d(a, x, t) is a function that depends on age class a, areas x and time
t.

This 2nd order partial differential equation predicts, for age class a in the area x, how diffu-
sion and displacement cause the number of individuals in the different compartments, especially
undetected infectives and deaths. As long as one susceptible person is infected after directly or
indirectly contacting disease carriers in the area x, diffusion takes place. When the number of
infectious individuals in a local area is low compared to the surrounding areas, the pandemic will
diffuse from the surroundings, so the number of infections in this area will increase. Conversely,
the pandemic will diffuse and the number of infections will increase in the surrounding areas.

Finally, gender differentiation or other properties may be taken into account to characterize
types of populations and to study the optimal lockdown control of pandemic dynamics based on
our previous work. It is worth stressing that, in the long run, optimal lockdown strategies should
consider the balance between the lower number of deaths and minimum healthcare and social
costs.

6.6 Conclusion

In this chapter, we investigated an extended model of the classical SIRD pandemic model to
characterize the regional transmission of COVID-19 after the lockdown in France. Incorporating
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the time delays arising from incubation, testing, and the complex effects of government measures,
an exponential function of the transmission rate β was presented for the regional model. By fitting
the regional model to the real data, the optimal parameters of this regional model for each region
in France were derived. Based on the previous results of the extended model, we introduced and
simulated a network model of pandemic transmission between regions after confinement in France
while considering age classes. Regarding the transmission rate β for the network model, we selected
a continuous function related to the reciprocal function of β during lockdown to contribute to the
transport effect after lockdown. By using the same model and method, we simulated the pandemic
network for all cities in France to visualize the transport effects of the pandemic between cities.
Considering age classes, we discussed an integrodifferential equation for modeling the network of
infectious diseases in the discussion part.

In future works, we will formulate and study optimal control problems in order to balance the
induced sanitary and economic costs. The lockdown strategies implemented in France should be
evaluated and compared to the proposed optimal strategies.



Chapter 7

Conclusion and perspectives

The analysis of stability and rejection of disturbances for homogeneous and heterogeneous hyper-
bolic PDEs traffic flow systems has been addressed in this thesis. The motivation is to optimally
solve the traffic congestion problem with the high traffic demand at the left inlet and a bottleneck
in the downstream boundary of the considered road segment. Inspired by the research of traffic
flow systems, by using the optimization method to fit the extended regional ODEs model and
network model to the real data, parameters of pandemic models are identified, and then the pan-
demic network for all cities in France is simulated to visualize the transport effects of the pandemic
between cities.

For homogeneous traffic flow systems, this research addressed the problem of seeking the op-
timal tuning PI boundary feedback controller and designing an observer-based output feedback
control law for the linearized ARZ system. The conditions for finite-gain L2 stability and the com-
putation of the L2 gain were given in Chapter 2. Based on these conditions, we formulated and
solved an optimization problem to derive the optimal tuning PI controller. Moreover, numerical
simulation emphasizes the interest of this optimal tuning controller for the nonlinear model. In
Chapter 3, a full-state feedback controller was designed to stabilize the linearized ARZ model. And
designing an exponentially convergent observer with proper injection gains, an output feedback
controller, and the iISS of a closed-loop system were achieved by only measuring the upstream
inlet vehicles’ velocity.

For heterogeneous traffic flow systems, the robust control problem was studied to stabilize
the multi-type linearized AR traffic flow system in Chapter 4. A controller was designed by
using backstepping and the existence of an optimal tuning controller was validated by solving the
optimization problem. Then, in Chapter 5, applying the control law which was designed for the
linearized system to the quasi-linear system to solve the problem of boundary stabilization by
actuation at the inlet boundary of the considered road segment.

In Chapter 6, an extended model of the classical SIRD pandemic model is studied to char-
acterize the regional transmission of COVID-19 after the lockdown in France. Incorporating the
time delays arising from incubation, testing, and the complex effects of government measures and
fitting the regional model to the real data, the parameters of the regional model are identified for
each region in France. Based on the previous results of the extended model, we introduced and
simulated a network model of pandemic transmission between regions after confinement in France
while considering age classes. By using the same model and method, we simulated the pandemic
network for all cities in France to visualize the transport effects of the pandemic between cities.
Considering age classes, we discussed an integrodifferential equation for modeling the network of
infectious diseases in the discussion part.

The main challenges in the future are:

• optimization problems of traffic flow systems with respect to other control objectives such
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as the minimum fuel consumption, CO2 emissions, total travel time and the maximum
throughput, driving comfort;

• studying the class of nonlinear traffic flow systems with L2 disturbance or other disturbance
measurement methods to maximize the disturbance rejection capacity, generalizing what is
done in Chapter 2;

• the extension of the optimization problem to the network of roads with consecutive bottle-
necks;

• introducing some new technologies, such as the event-triggered communication technique
(working with Nicolas Espitia and Ying Tang on a joint paper of robust event-triggered
control for the ARZ traffic flow system by using small-gain method).
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Résumé — Dans mes recherches, le contrôle optimal tuning du trafic des régimes de congestion
est étudié pour rejeter les perturbations et stabiliser le trafic. La perturbation s’applique à la limite
du modèle de flux de trafic. Afin d’analyser et de concevoir le contrôleur PI optimal tuning pour
le modèle Aw-Rascle-Zhang linéarisé, le gain L2 est calculé pour estimer le rejet de perturbation.
L’estimation d’une borne supérieure du gain L2, de la perturbation à la sortie contrôlée, peut être
formulée comme un problème d’optimisation avec des inégalités matricielles linéaires pour calculer
des conditions traitables numériquement. Un contrôle de rétroaction de sortie optimal tuning
basé sur un observateur est conçu pour la répartition du trafic afin de dissoudre la congestion
du trafic à l’aide de la méthode de retour en arrière et de l’optimisation. Le modèle Aw-Rascle-
Zhang linéarisé est pris en compte avec les conditions aux limites constituées d’une frontière à
densité constante et d’une chute de vitesse à l’entrée amont d’un goulot d’étranglement, et d’une
frontière à perturbation d’afflux (forte demande de trafic) à l’entrée du tronçon routier considéré.
A propos d’une loi de contrôle aux frontières optimale pour un modèle de trafic Aw-Rascle (AR)
hétérogène de classe N, après linéarisation des équations du modèle autour des états stationnaires
en fonction de la variable spatiale et en utilisant la méthode de backstepping, un contrôleur mis
en œuvre par une mesure de rampe à la limite d’entrée est conçue pour rejeter les perturbations
afin de stabiliser le système de trafic hétérodirectionnel. La stabilité entrée-état intégrale H2

d’un système de trafic multi-type décrit par des équations aux dérivées partielles hyperboliques
quasi-linéaires du premier ordre est obtenue en boucle fermée avec un contrôleur de frontière à
la frontière d’entrée de la section de route considérée. En utilisant la transformation de retour
en arrière, la stabilité intégrale entrée-état du système quasi-linéaire est dérivée en mappant le
système quasi-linéaire transformé en un système cible stable entrée-état intégral pour lequel une
fonction de Lyapunov stricte est construite.

Mots clés : Modèle de trafic, Congestion du trafic, Perturbations, Backstepping, Contrôleur
optimal tuning.

Abstract — In my research, optimal tuning traffic control of congestion regimes is investigated
to reject the disturbances and stabilize the traffic. The disturbance applies at the boundary of
the traffic flow model. To analyze and design the optimal tuning PI controller for the linearized
Aw-Rascle-Zhang model, the L2 gain is computed to estimate the disturbance rejection. The es-
timation of an upper bound of the L2 gain, from the disturbance to the controlled output, can
be formulated as an optimization problem with linear matrix inequalities to compute numerically
tractable conditions. An optimal tuning observer-based output feedback control is designed for
traffic breakdown to dissolve traffic congestion using the backstepping method and optimization.
The linearized Aw-Rascle-Zhang model is taken into account with the boundary conditions consist-
ing of a boundary with a constant density and a speed drop at the upstream inlet of a bottleneck,
and a boundary with a disturbance of inflow (high traffic demand) at the inlet of the road segment
under consideration. About an optimal tuning boundary control law for a heterogeneous N-class
Aw-Rascle (AR) traffic model, after linearizing the model equations around the equilibrium de-
pending on the spacial variable and using the backstepping method, a controller implemented by
a ramp metering at the inlet boundary is designed for rejecting the disturbances to stabilize the
hetero-directional traffic system. The H2 integral input-to-state stability of a multi-type traffic
system described by first-order quasi-linear hyperbolic partial differential equations is obtained
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in a closed loop with a boundary controller at the inlet boundary of the considered road sec-
tion. Making use of the backstepping transformation, the integral input-to-state stability of the
quasi-linear system is derived by mapping the transformed quasi-linear system into an integral
input-to-state stable target system for which a strict Lyapunov function is constructed.

Keywords: Traffic model, Traffic congestion, Distubances, Backstepping, Optimal tuning
controller.
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