
HAL Id: tel-03989835
https://theses.hal.science/tel-03989835v1

Submitted on 15 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-integer Order Modelling and Signal Based Brain
Tissue Classification in Stereoelectroencephalography

Mariana Mulinari Pinheiro Machado

To cite this version:
Mariana Mulinari Pinheiro Machado. Non-integer Order Modelling and Signal Based Brain Tissue
Classification in Stereoelectroencephalography. Automatic. Université Grenoble Alpes [2020-..], 2022.
English. �NNT : 2022GRALT064�. �tel-03989835�

https://theses.hal.science/tel-03989835v1
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : SIGNAL IMAGE PAROLE TELECOMS
Arrêté ministériel : 25 mai 2016

Présentée par

Chhayarith HENG UY

Thèse dirigée par Sylvie CHARBONNIER , Université Grenoble
Alpes
et codirigée par Carolynn BERNIER, Commissariat à l'énergie
atomique et aux énergies alternatives

préparée au sein du Laboratoire Grenoble Images Parole Signal
Automatique
dans l'École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Analyse automatique du canal de
propagation pour l'adaptation des liens
radiofréquence ultra-faible consommation
dédiés aux applications à très grande
autonomie.

Automatic analysis of the propagation
channel for the adaptation of ultra-low power
radio frequency links dedicated to
applications at very high autonomy.

Thèse soutenue publiquement le 25 juin 2020,
devant le jury composé de :

Madame Sylvie CHARBONNIER
MCF, Université Grenoble Alpes, Directeur de thèse
Monsieur Jean-Marie GORCE
Professeur des Universités, L'institut national des sciences appliquées de
Lyon , Rapporteur
Monsieur Pierre BEAUSEROY
Professeur des Universités, Université de Technologie de Troyes,
Rapporteur
Madame Michèle ROMBAUT
Professeur des Universités, Université Grenoble Alpes, Examinateur
Monsieur Antoine PICOT
Maître de conférences, Institut national polytechnique de Toulouse,
Examinateur
Madame Carolynn BERNIER
Ingénieur de recherche, Commissariat à l'énergie atomique et aux
énergies alternatives, Examinateur

THÈSE

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ GRENOBLE ALPES

Spécialité : Automatique-Productique

Arrêté ministériel : 25 mai 2016

Présentée par
Mariana MULINARI PINHEIRO MACHADO

Thèse dirigée par Alina VODA, Université Grenoble Alpes
et co-encadrée par Gildas BESANÇON, Guillaume BECQ,
Olivier DAVID

préparée au sein du Laboratoire Grenoble Images Parole Signal
Automatique (GIPSA-Lab)
dans l'École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Non-integer Order Modelling and Signal Based
Brain Tissue Classi�cation in
Stereoelectroencephalography.

Thèse soutenue publiquement le 9 septembre 2022,
devant le jury composé de:

Mme. Alina VODA
Maître de conférences, Université Grenoble Alpes, Directrice de thèse
M. Olivier DAVID
Directeur de Recherche, Inserm, Co-encadrent de thèse, Co-directeure
de thèse
M. Laurent KOESSLER
Chargé de Recherche, CNRS, Rapporteur
M. Pierre MELCHIOR
Professeur, Bordeaux INP, Rapporteur
M. Dan STEFANOIU
Professeur, Univ. Polytechnique Bucarest, Examinateur
M. Philippe KAHANE
Professeur des Universités - Praticien Hospitalier, Université Grenoble
Alpes, Examinateur (Président du jury)
M. Guillaume BECQ
Ingénieur de Recherche, CNRS, Co-encadrent de thèse (invité)
M. Gildas BESANÇON
Professeur des Universités, Grenoble INP, (invité)





Acknowledgements

In the great scheme of things, three years might not seem like a signi�cant amount of time.

However, looking back to where I was in the begging of this thesis, I can not help but feel as

if these years will have an everlasting e�ect on who I am as a professional and most of all as

a person.

Being my �rst experience out of university, I had (and still have) a lot to learn, and what

a great experience it was to grow and navigate these uncharted waters with such a supportive

group of people, without whom I would most de�nitely not be where I am today. This section

is dedicated to them.

First and foremost, I would like to thank the members of the jury for taking the time to

asses my thesis, and for sharing your expertise with me.

Secondly, I would like to thank my supervisors Alina Voda, Gildas Besançon, Guillaume

Becq, and Olivier David. I really enjoyed our enlightening and stimulating discussions during

these three years, and the amount of knowledge they have passed on to me is immeasurable.

In addition, I would like to thank my family. My parents, my siblings, and my �ance

Patrick, for giving me stability and comfort during the most trying times, but also celebrating

with me achievements and peaceful times.

Finally, I consider myself very lucky to have crossed paths with so many great people

during my time at Gipsa-lab, whom I am very happy to call my friends. Being away from my

home country, I found in you the warmth of a family, thank you for receiving me so openly,

and for all the knowledge you shared with me, both scienti�c and personal.
�

i





Contents

Table of Acronymes and Symbols 1

Introduction 1

1 State of the art: Brain tissue classi�cation 5

1.1 Epileptogenic zone identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Magnetic resonance imaging (MRI) . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Electroencephalography (EEG) . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Stereoelectroencephalography (SEEG) . . . . . . . . . . . . . . . . . . . 7

1.2 Brain tissue classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Standard brain tissue classi�cation using imaging . . . . . . . . . . . . . 10

1.2.2 Brain tissue classi�cation using SEEG signals . . . . . . . . . . . . . . . 10

1.3 Brain tissue conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Conductivity and brain tissue classi�cation . . . . . . . . . . . . . . . . 12

1.4 Brain-electrode interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Electrode-electrolyte interface . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Peri-electrode layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Medium resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.4 Complete model and impedance measuring . . . . . . . . . . . . . . . . 17

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 State of the art: System identi�cation 19

2.1 Time invariant linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



iv Contents

2.1.1 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Bode and Nyquist plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Non-parametric frequency domain identi�cation . . . . . . . . . . . . . . . . . . 21

2.2.1 Empirical transfer function estimate . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Parametric system identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Equation error model structure or auto-regressive model (ARX) . . . . . 24

2.3.2 Auto-regressive moving average (ARMAX) . . . . . . . . . . . . . . . . 28

2.3.3 Output error (OE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Interior-point method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Non-integer order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Brain tissue classi�cation using raw SEEG signals 39

3.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Monopolar approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Time features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Frequency features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Classi�cation using linear discriminant analysis (LDA) . . . . . . . . . . 44

3.3 Frequency approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Frequency response identi�cation . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Tissue classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Analysis on tissue composition . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.5 Comparison with literature . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.6 E�ect of order of contacts . . . . . . . . . . . . . . . . . . . . . . . . . . 55



Contents v

3.3.7 E�ect of epileptic tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.8 Brain region e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Other possible features for brain tissue classi�cation . . . . . . . . . . . . . . . 58

3.4.1 Time and frequency domain features . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Classi�cation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Classi�cation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Brain tissue classi�cation from the modelling 65

4.1 Study of the electrode-electrolyte interface . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 phantom EEG setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 Previous modelling of the phantom EEG measurement chain . . . . . . 66

4.1.3 Physical-based approach for the model structure . . . . . . . . . . . . . 68

4.1.4 Identi�cation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.5 Identi�cation of non-integer order . . . . . . . . . . . . . . . . . . . . . . 76

4.1.6 Identi�cation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Brain-electrode interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Study of the frequency response . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.5 Identi�cation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.6 System identi�cation results . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Tissue conductivity analysis and classi�cation . . . . . . . . . . . . . . . . . . . 95

4.4 Discussion on the choice of the model . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



vi Contents

5 Combined brain tissue classi�cation 105

5.1 Classi�cation of contact trios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 First analysis considering the parametric model approach . . . . . . . . 105

5.1.2 Second analysis considering the non-parametric approach . . . . . . . . 107

5.1.3 Results combining both approaches . . . . . . . . . . . . . . . . . . . . . 108

5.2 Classi�cation of single contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Single Contact Classi�cation Using Separate Methods . . . . . . . . . . 111

5.2.2 Combination of Both Identi�cation Methods . . . . . . . . . . . . . . . . 112

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Conclusions and perspectives 117

Bibliographie 127



List of Figures

1.1 Methods for EZ identi�cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Example of the implantation of a SEEG electrode. . . . . . . . . . . . . . . . . 8

1.3 Example of monopolar and bipolar reference montages. . . . . . . . . . . . . . . 8

1.4 Representation of a neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Physical representation of the brain-electrode interface. . . . . . . . . . . . . . . 14

1.6 Electrode-electrolyte interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Peri-electrode interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Brain-electrode interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Dimensions of SEEG electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Examples of SEEG signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Example of consecutive contacts pairing. . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Mean frequency responses of G/G and W/W groups. . . . . . . . . . . . . . . . 48

3.5 Features from frequency responses. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Tissue classi�cation procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Confusion matrix of frequency response features. . . . . . . . . . . . . . . . . . 51

3.8 Posterior probability of each pair belonging to G/G and W/W groups. . . . . . 52

3.9 Contacts position in coordinates (x,y,z). . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Distribution of the features proposed by (Greene et al. 2021). . . . . . . . . . . 54

3.11 Di�erence in frequency response depending on the contact order. . . . . . . . . 55

3.12 Distribution of features considering pairs in normal tissue, and epileptic tissues. 56

3.13 Distribution of features depending on brain region. . . . . . . . . . . . . . . . . 57

4.1 Experimental setup for data acquisition of the phantom EEG . . . . . . . . . . . 67

4.2 Previous circuit models of the phantom EEG measurement chain. . . . . . . . . 67

vii



viii List of Figures

4.3 Block diagram of the di�erent parts of the phantom EEG measurement chain. . 68

4.4 Model proposed in (Robinson 1968) for EEG measurement chain. . . . . . . . . 69

4.5 Commonly used models for the electrode/electrolyte interface. . . . . . . . . . . 69

4.6 Proposed model of the phantom EEG measurement chain. . . . . . . . . . . . . 70

4.7 Flowchart representing the identi�cation algorithm of the phantom EEG. . . . . 75

4.8 Comparison between Nyquist plots for order selection (α). . . . . . . . . . . . . 76

4.9 Nyquist plots for all of the three distances between input and output electrodes. 79

4.10 Appropriate brain-electrode interface model for SEEG signals. . . . . . . . . . . 81

4.11 Schematic representing the SEEG data acquisition and processing. . . . . . . . 85

4.12 Mean Bode plots of frequency responses before and after �ltering. . . . . . . . . 86

4.13 Example of the power spectral density estimates. . . . . . . . . . . . . . . . . . 89

4.14 Flowchart representing the identi�cation algorithm of a trio of contacts. . . . . 90

4.15 Comparison between identi�ed models and the expected response. . . . . . . . . 92

4.16 Ratio between input signal energy and noise signal energy. . . . . . . . . . . . . 93

4.17 Ratio between the energy of the output of the model and the noise. . . . . . . . 94

4.18 Distribution of transfer function coe�cients, and of non-integer orders. . . . . . 95

4.19 Distribution of the values of B1/A1, of B2/A2, and of B3. . . . . . . . . . . . . 96

4.20 Simpli�ed circuit considering a simple gain. . . . . . . . . . . . . . . . . . . . . 98

4.21 Comparison between the complete and resistive models to the expected response. 99

4.22 Evolution in frequency of the real and imaginary parts of the transfer function. 100

4.23 Comparison of the distributions of the resistive model and (B1/A1). . . . . . . 101

5.1 Distribution of the values of (B1/A1) considering the heterogeneous groups. . . 106

5.2 Tissue classi�cation method using non-parametric and parametric approaches. . 108

5.3 Distribution of labels from new classi�cation method with regard to MRI labels. 109

5.4 Di�erences in tissue distribution between three consecutive contacts. . . . . . . 110

5.5 Comparison of P̂ (G/G|x) for heterogeneous groups in regard to MRI classi�cation.111



List of Figures ix

5.6 "Bad" contact elimination process. . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Correctly classi�ed �rst contacts in respect to MRI groups for di�erent classi�ers.115





List of Tables

3.1 Patient information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Study of classi�cation according to brain region. . . . . . . . . . . . . . . . . . . 58

3.3 Inter-patient performance of di�erent classi�ers. . . . . . . . . . . . . . . . . . . 62

4.1 Values of Rs as a function of the distance between electrodes. . . . . . . . . . . 72

4.2 Identi�ed coe�cients with RLS method for each of the di�erent distances. . . . 77

4.3 Identi�ed coe�cients with RLS method for each of the di�erent distances. . . . 78

4.4 Physical parameters recovered from the results of the black box identi�cation. . 79

4.5 Accuracies of heterogeneous group separation using a LDA classi�er. . . . . . . 97

5.1 Accuracies of identi�cation-based LDA classi�ers for 356 single contacts . . . . 112

5.2 Accuracies for Single Contact Classi�cation for Each Classi�er for 305 Contacts 114

xi





Introduction

Neurological disorders are diseases that a�ect the brain, nerves, spinal cord, neuromuscular

junction, and muscles. They can be caused by structural, biochemical or electrical abnormal-

ities, that can either be genetic, congenital or caused by infections. One of the most common

disorders of the nervous system is epilepsy, which makes people more susceptible to having

recurrent seizures.

Epilepsy can cause complications such as drowning, falling, and car accidents and should

therefore be treated. In most of the cases, epilepsy can be managed by medication. However,

a population of 30% of epileptic patients su�er from drug-resistant focal epilepsy. For these

speci�c cases a resective surgery might be considered as an option. The success of such a

surgery is highly dependent on the correct identi�cation of the epileptic zone (EZ) known to

be the focus source of the seizures, and the correct identi�cation of the eloquent cortex to be

avoided during surgery.

One of the possible pre-surgical examinations conducted is the stereoelectroencephalog-

raphy (SEEG), in which electrodes are placed directly into the brain. It is from the signals

measured by these electrodes that the EZ can be identi�ed. Given the fact that grey and

white matter react di�erently to stimulation, and that white matter can not be epileptogenic,

the correct classi�cation of the brain tissue in which measuring contacts are inserted in could

speed up the localisation of the EZ to be removed in surgery.

Thesis objective

Most of the brain tissue classi�cation done currently is based on imaging. This is why the main

focus of this thesis is to propose classi�cation techniques based solely on signals measured in

typical SEEG settings. In order to do so, two main approaches are proposed: A signal based

one, and a model based one.

The signal based approach consists in the extraction of features either directly from the

temporal signals, or their frequency representation, and specially from the non-parametric

frequency response of pairs of consecutive measuring contacts. Such features are then used

for supervised classi�cation with imaging classi�cation as the ground truth.

The model based approach consists in the physical modelling of the brain-electrode inter-

face. The idea here is to extract features directly from the identi�ed model, that can be used

for supervised classi�cation. Such model has been studied in literature for applications in

deep brain stimulation. An interesting characteristic of the proposed brain-electrode interface

is that it contains a constant phase element (CPE), which introduces a fractional order to

the system. The use of non-integer derivatives in engineering is becoming more and more

frequent as of recently, due to the fact that they can describe systems with "in�nite memory".
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2 Introduction

Thus, this approach combines the use of dynamical modelling techniques, and some underly-

ing electrical interpretation and parameter identi�cation, with the speci�city of dealing with

fractional order dynamics.

Manuscript outline

This manuscript consists of �ve main chapters. The �rst two are dedicated to the review of

literature on the theoretical concepts, and important methods:

In chapter 1, the general context of this thesis is presented, with a focus on the examina-

tions used for the identi�cation of the EZ, the existing methods for brain tissue classi�cation,

and the state of the art for brain-electrode modelling based on its physical properties.

The focus of chapter 2 is to introduce the basic concepts of system identi�cation. The

typical modelling structures are reviewed, as well as the non-parametric and parametric iden-

ti�cation methods, and how to validate them. It is also in this chapter that the theoretical

concept of non-integer derivatives is presented.

The last three chapters are dedicated to the contribution of this study in brain tissue

classi�cation using signals measured during SEEG investigations:

In chapter 3 the signal approach for tissue classi�cation is presented and applied to SEEG

signals of 19 epileptic patients. The main focus of the chapter is the extraction of features

from the non-parametric frequency response of pairs of contacts. Other features extracted

directly from the raw SEEG signals are also presented and compared with each other. The

results presented in this chapter were published in (M. Machado, Voda, Besançon, Becq, and

David 2021),(M. Machado, Voda, Besançon, Becq, Kahane, et al. 2022), and (Lopes et al.

2021).

Chapter 4 is dedicated to the model based approach for brain tissue classi�cation. At �rst,

the modelling of a phantom EEG measurement chain is presented with a focus on the physical

properties of the system. This �rst study is used as a starting point for the modelling of

the brain-electrode interface using SEEG signals, and was published in (M. Machado, Voda,

Besançon, Becq, and David 2020), (M. M. P. Machado et al. 2023), and (Pinheiro Machado et

al. 2022a). The proposed model and identi�cation methodology of the brain-electrode interface

are presented, as well as how the identi�ed models can be used for brain tissue classi�cation.

Finally, in chapter 5, both signal and model approaches are combined to create a general

classi�cation method of trios of consecutive contacts that is able to classify both homogeneous

and heterogeneous tissue combinations. The results are compared to previous imaging clas-

si�cation, and possible applications and limitations of the method are discussed. The results

were published in (Pinheiro Machado et al. 2022b).
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Chapter 1

State of the art: Brain tissue

classi�cation for epileptogenic zone

identi�cation

Epilepsy is a chronic neurological disorder characterised by frequent seizures that interrupt

normal brain function. Seizures are caused by abnormal excessive or synchronous neuronal

activity in the brain (Fisher et al. 2005). This abnormal activity is likely triggered by a

cortical imbalance between excitation and inhibition processes in the brain (David, Bastin,

et al. 2010) and (Carvallo et al. 2018). Over 15 million people are diagnosed with epilepsy

worldwide (Greene et al. 2021), 30% of which su�er from a type of focal drug-resistant epilepsy

(Carvallo et al. 2018).

In the cases when the persistence of drug-resistant seizures interferes with daily activities,

and in the case of children, with learning and development, resective surgery of epileptogenic

regions becomes an option (Brodie et al. 1997). Focal epilepsy is when seizures originate

from abnormal activity in a speci�c brain area. In this type of epilepsy cases (60% of patients

(Acharya et al. 2019)), the surgery consists in the removal or disconnection of the epileptogenic

zone (EZ), which is the source of seizures (Greene et al. 2021). The success of the resective

surgery depends largely on the correct identi�cation of the EZ. This can be done either with

invasive or non-invasive methods.

In the cases where the EZ is located via invasive methods, correct tissue classi�cation

becomes an initial discriminatory task necessary to focus on regions of interest. This is because

contacts in white matter are usually disregarded by doctors as they can not be epileptogenic.

Therefore, if a grey matter contact is wrongly classi�ed and ignored, a part of the EZ may be

missed (Greene et al. 2021). Moreover, in functional connectivity analysis, where brain tissues

are stimulated, correct classi�cation is important to better interpret the obtained responses

(Trebaul, Deman, et al. 2018).

The majority of tissue classi�cation done is based on Magnetic resonance imaging (MRI)

and Computer tomography (CT). Only recently the interest in classi�cation using recorded

brain signals (Greene et al. 2021) is being proposed. In this context, the study of the brain

electrode interface can play an important role, as it can be used to highlight some di�erences

between tissues as shown in (Carvallo et al. 2018).

In the following sections, methodologies for EZ identi�cation are presented, followed by

5
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the state of the art in brain tissue classi�cation. Next, models of the brain-electrode interface

based on its physical properties are presented.

1.1 Epileptogenic zone identi�cation

There are many methodologies that can be used for the de�nition of EZ, either invasive or non-

invasive. Among the most used non-invasive methods are the Magnetic Resonance Imaging

(MRI), Electroencephalography (EEG), and also nuclear medicine such as positron emission

tomography (PET) scan, and single-photon emission computed tomography (SPECT) scan.

When the EZ can not be detected with non-invasive methods, stereoelectroencephalography

(SEEG) is usually used.

Here the focus will be mainly given to MRI, EEG, and SEEG examinations as they are

directly related to the study presented in this thesis, their representations can be found in

Fig. 1.1. However, for the correct identi�cation of the EZ, PET and SPECT scans are needed

for multimodal exploration, as well as video-HD recordings, and human and clinical expertise.

(a) MRI (b) EEG (c) SEEG

Figure 1.1: Representation of common methods for EZ identi�cation.

1.1.1 Magnetic resonance imaging (MRI)

Magnetic Resonance Imaging (MRI) is a medical imaging evaluation that employs radio-

frequency non-ionising radiation in the presence of controlled magnetic �elds to create images

of the organs of the body in any plain (Katti et al. 2011).

In epilepsy, MRI is used to identify structural abnormalities that could be the cause of

seizures. This type of examination is most commonly used to identify hippocampal sclerosis,

malformations of cortical development, vascular malformations, tumours and acquired cortical

damage (Duncan 1997). If abnormalities are detected with MRI, the patient is classi�ed as

MRI positive, if not the patient is classi�ed as MRI negative. However, 18% to 43% of patients

candidate to surgery are MRI negative (Bien et al. 2009). In this case, either the sensitivity

of the MRI should be improved or patients need to be addressed to invasive EZ detection

techniques.

However, MRI alone is not su�cient for EZ identi�cation as epilepsy is de�ned by seizures
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which can be recorded only by EEG.

1.1.2 Electroencephalography (EEG)

Electroencephalography (EEG) consists in the recording of brain electrical potentials using

electrodes placed on the scalp of the patient (Nunez et al. 2006). The measured signals are

created from neuronal activity. This method is largely used in epilepsy diagnosis due to the

fact that it is non-invasive, low cost, and gives a more generalised view of epileptic episodes

as electrodes cover di�erent areas.

The diagnosis is done via the recognition of some epileptiform patterns in recorded signals

such as spikes, and sharp waves (Noachtar et al. 2009). For patients with focal epilepsy,

the EZ is determined with the precise location of the epileptiform discharges. In this case,

EEG information is often compared with MRI. The accuracy of the method depends on the

localisation of the EZ. Good results are obtained when the EZ is super�cial, as it is closer to

the measuring electrodes. However, for other cases, EEG might not be su�cient as it is largely

impacted by the mixing of signal sources, week signal to noise ratio due to skull conductivity,

and small spatial resolution.

1.1.3 Stereoelectroencephalography (SEEG)

In cases where non-invasive methods are not enough to locate the EZ, or in cases where the

EZ is too close to eloquent cortex, invasive methods are used (Noachtar et al. 2009). The

eloquent cortex are the functional areas of the brain that should be speared during surgery, as

damage to these parts induce neurological de�cits. One of the most common invasive methods

in epileptic patients is stereoelectroencephalography (SEEG).

This method of electrode implementation was �rst proposed by (Talairach et al. 1973). In

it, multiple stereotactic electrodes (typically 8 to 15 (Bartolomei, Lagarde, et al. 2017)) are

implanted directly in di�erent brain areas. Each electrode is composed by several contacts

measuring signals in di�erent locations. An example of electrode implantation and its mea-

sured signals is illustrated in Fig. 1.2. The chosen areas for electrode implantation are based

on hypothetical EZ location based on previous non-invasive examinations (such as MRI, and

EEG).

Measured voltages are usually referenced considering a point in distant white matter.

However, signals can be re-referenced to other montages. For instance, in bipolar montage the

signal from pairs of adjacent electrode contacts are subtracted. In the case of global average

reference, the signals from all contacts are averaged, and the resulting signal is subtracted

from all contacts. The choice of the reference montage has a great impact on the analysis of

SEEG signals (Mercier et al. 2017), and therefore should be made with caution. Two examples

of reference montages are illustrated in Fig. 1.3.

The greatest advantages in using this type of methods is the better signal-to-noise ratio
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Figure 1.2: Example of the implantation of a SEEG electrode and its typical measured signals.

Figure 1.3: Example of monopolar and bipolar reference montages.

compared to scalp EEG, and better signal localisation. They also allow for the measurement

of activity in sub-cortical regions.

The use of SEEG in epilepsy is either for direct mapping of the level of activation of

individual neurons or brain areas, or for connectivity analysis where the interest is to study

the functional interactions of di�erent parts of the brain (Kahane et al. 2014) and (Bartolomei,

Lagarde, et al. 2017).

In the �rst case, the idea is to detect the seizure-onset zone via analysis of SEEG recorded

signals. This is usually done with the measurement of the epileptogenicity index (EI) (Bar-

tolomei, Chauvel, et al. 2008). The EI is a quanti�cation of how epileptogenic is a brain region

based on the capability of a certain brain region to generate high-frequency oscillations, and

the delay of involvement of the region with respect to the onset of the seizure. Based on the

idea of the EI, epileptogenicity maps (EMs) were also proposed (David, Blauwblomme, et al.

2011) in which statistical parametric mapping is proposed by the comparison of mean activity

of the baseline and mean activity after seizure onset.

The use of SEEG in functional connectivity analysis is mostly to identify the eloquent

cortex, in other words, regions that should not be resected in surgery (David, Bastin, et al.

2010). In this types of examinations direct electrical stimulation (DES) of the brain is used

to understand the connectivity of brain regions. Two adjacent contacts are stimulated by a

bipolar current and the other contacts are used for voltage measurement. The connectivity

can be implied via the study of the amplitudes of cortico-cortical evoked potentials (CCEPs)

(David, Bastin, et al. 2010) and (David, Job, et al. 2013). DES can also be used for EZ
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identi�cation by comparing the response of electrical stimulation of di�erent tissues (David,

Wo¹niak, et al. 2008).

For both the EZ localisation problem and functional connectivity analysis, the correct

tissue classi�cation on which the contacts are inserted in is needed. In the functional connec-

tivity case, the type of stimulated tissue has an impact on the connectivity probability (being

higher if the stimulated contact is located in white matter) (Trebaul, Deman, et al. 2018).

Furthermore, the tuning of electrical stimulation parameters is di�erent in white matter than

in grey matter. In the EZ localisation case, white matter contacts are mostly ignored as

they can not be epileptogenic. If a disregarded contact in white matter is miss-labeled, the

EZ might not be fully characterised (Greene et al. 2021). Thus, correct brain classi�cation

becomes an important task.

1.2 Brain tissue classi�cation

Neurons and glial cells are the main components of the nervous tissues. Neurons are composed

of a soma which is the central cell body, dendrites relatively proximal to the soma that sum

information from distant neurons, and axon which is the stem that enables connection to

distant neurons. The latest is wrapped in a protective coat of myelin which is white. The

representation of a neuron can be found in Fig. 1.4.

Figure 1.4: Representation of a neuron.

When talking about the brain, and the nervous system in general, two di�erent tissues are

often taken into consideration which are the grey and white matter. Grey matter is mainly

composed of the neurons somas and is located in the outermost layer of the brain called

the cortex. It is responsible for the processing and release of information. White matter is

composed by the axons of such neurons and links di�erent parts of the cortex. It is responsible

for the propagation of information.

Given the nature of the di�erent brain tissues, epileptic activity originates in grey mat-

ter and is spread throughout the brain via white matter. Thus, only grey matter can be

epileptogenic.
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1.2.1 Standard brain tissue classi�cation using imaging

The state of the art of brain tissue classi�cation nowadays is heavily based on structural MRI

(Dora et al. 2017). The general idea of tissue classi�cation based on MRI is the comparison

between contrasts. The intensity in the image is di�erent for each of the two matters. There-

fore, di�erent regions can be identi�ed by looking at each voxel (image intensity at the spatial

location).

The standard approach for labelling brain tissues is the co-registration of MRIs with com-

puted tomography (CT) scans. CT scans as well as the MRIs produce images of internal

organs. However, contrary to the MRI, they use X-rays to do so. Electrodes are manually po-

sitioned in the co-registered image. In order to assign labels to the contacts, softwares such as

the one proposed in (Deman et al. 2018) are used. The software labels each contact according

to its position in anatomic atlases which are overlaid to the image. The most common label of

voxels in a sphere of 3 mm radius around the contact centre is assigned to the contact. This

co-registration process of the electrodes with MRI might introduce artefacts in the labelling

process.

The tissue classi�cation via imaging is limited by the �nite spacial resolution of the imag-

ing device, which makes it impossible to guarantee that every voxel represents only one type

of tissue. This phenomenon is called partial volume e�ect (PVE) (Tohka 2014). In addi-

tion, because of the fact that anatomic atlases are used, some deviations might occur due to

anatomical variability between patients. Corrections on tissue classi�cation can be done by

expert neurophysiologists by visual analysis.

The exploration of tissue classi�cation using methods di�erent from MRI would be help-

ful mainly when considering contacts in positions with PVE. Furthermore, accurate co-

registration procedures are time consuming and are not always available, therefore having

a classi�cation method that relies only on SEEG data could be useful.

1.2.2 Brain tissue classi�cation using SEEG signals

Di�erences in SEEG signals depending on contact localisation were already pointed out in

literature (Mercier et al. 2017), where the authors compared the power spectra and absolute

amplitude of spontaneous brain activity. Nevertheless, up until this point, only one study has

proposed brain tissue identi�cation directly from SEEG signals (Greene et al. 2021). In their

article, the authors propose a signal approach for tissue classi�cation using bipolar montage

and a Bayesian classi�er. They do so by considering two main features, the �rst one is the

average vertical shift in the power spectrum of a contact compared to the average power

spectrum over all contacts, and the second one is the distance between a contact and the most

peripheral contact of the electrode that was not outside of the brain. The results obtained

by the authors are promising with an average area under the receiver operating characteristic

(ROC) curve of 0.85± 0.079 across 29 patients.
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However, there is a lot more to be explored with tissue classi�cation using SEEG signals

in terms of di�erent features to be considered for classi�cation. Even more so due to the fact

that di�erent tissues have di�erent conductivities.

1.3 Brain tissue conductivity

The estimation of the conductivity of brain tissues is an important �eld of study in neuroscience

for source localisation. When working with EEG signals either to identify the origin of epileptic

seizures, or to map current pathways during electrical stimulation of the brain, it is important

to correctly de�ne the head model of a patient. Such a model depends on the geometry of the

head, and the conductivity of head tissues. Many studies discuss the in�uence of incorrect

head models in source connectivity problems. In (Cho et al. 2015), the authors show the

di�erences in reconstructed sources when neglecting grey and white matter distinctions. In

(Holdefer et al. 2006), the authors indicate the di�erences in current densities when considering

anisotropies in resistivity of white matter.

This is why, the study of brain tissue conductivity is very pertinent and largely discussed in

literature. Still, there seems to be a great discrepancy in conductivity values found in di�erent

studies depending on methodology used for impedance measurement, and demographics of

patients as pointed out in (McCann et al. 2019).

1.3.1 Methods

One of the used methods is directly applied current (DAC), which is an invasive method that

consists in applying current directly into tissue and measuring the potential di�erence between

a pair of electrodes. In these cases, either the impedance measurement is done in post-mortem

samples or excised tissues. However, if intracranial electrodes are implanted on the patient,

they can be used for in vivo impedance measurement.

An example of in vivo DAC impedance measurements performed in two epileptic patients

implanted with intra-cranial electrodes is given in (Carvallo et al. 2018). The obtained con-

ductivity values were close to 0.3 S/m for grey matter and 0.16 S/m for white matter.

As for non-invasive methods, there are electrical impedance tomography (EIT), magnetic

resonance EIT (MREIT), and difusion tensor imaging (DTI) for example. These methods

are performed in vivo. For EIT, an electrical current is applied to surface electrodes and

measured electrical potentials are used to construct a two-dimensional tomogram containning

tissues impedances. In the case of MREIT, not only electrical �elds are used to reconstruct the

conductivity of tissues with the EIT, but also magnectic �elds are measured via a magnetic

resonance imaging scanner to enrich the knowledge on tissue conductivity. Finally in the DTI

case, the di�usion of water molecules is used to generate contrasts in magnetic resonance

images, and conductivity maps are obtained exploiting the correlation of water di�usivity and

electrical conductivity (Ammari et al. 2017).
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The DTI has also been an important tool in white matter mapping, as it highlights the

anisotropy of the di�usion coe�cient and also of the conductivity in white matter (Basser et

al. 1994). This di�erence in white matter conductivity was also measured by (Logothetis et al.

2007) with the DACmethod performed in vivo in monkey primary visual cortex. In their study,

di�erent white matter resistances were found depending on the direction of measurement.

Measurements in the mediolateral direction revealed a decrease of impedance at the transition

between grey and white matter, and measurements in the anterior-posterior direction revealed

an increase of impedance. This di�erence in conductivity depending on the direction of the

measurement is justi�ed by the di�erence in the direction of �bers in white matter. In (Güllmar

et al. 2010) the di�erences in conductivity of white matter depending on �ber orientation were

of 0.439 S/m for transverse orientation, and 0.915 S/m for longitudinal orientation using the

direct transformation approach on DTI.

According to (McCann et al. 2019) the conductivity of grey matter can vary from 0.27

S/m to 0.75 S/m, and the conductivity of white matter can vary from 0.2 S/m to 0.4 S/m

comparing the EIT and MREIT methods.

1.3.2 Demographics

Other than the variation of methods used for the measurement of tissue impedance, the

subjects in which the impedance is measured also di�er. The �rst di�erence was already

mentioned in the previous section, where measurements are either done in vivo, or post-mortem

or in excised tissues. In (Opitz et al. 2017), the authors discuss the biological properties

di�erences in brain tissue that occur after death.

The conductivity of brain tissues has been measured in both animals and humans. Its

values are shown to vary depending on which of the animals the measurements have been

conducted in. This is discussed in (Geddes et al. 1967), with the conductivity of the cortex

varying from 0.45 S/m to 0.48 S/m, and the conductivity of white matter varying from 0.1

S/m to 0.29 S/m, considering an anaesthetised cat and rabbit.

Di�erences in brain conductivity are also observed considering di�erent diseases. In (Mc-

Cann et al. 2019), the conductivity of healthy grey matter is compared to the conductivity

of grey matter a�ected by epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and

stroke. While the conductivity of grey matter a�ected by AD, PD, and stroke are close to

healthy grey matter with values close to 0.52 S/m, the conductivity of grey matter a�ected

by epilepsy has values close 0.27 S/m.

1.3.3 Conductivity and brain tissue classi�cation

The exact values of conductivities of grey and white tissues vary depending on the measuring

method, and demographics. In addition, in some studies such as (Carvallo et al. 2018) the

obtained conductivity values of grey matter are higher than the conductivity of white mat-
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ter, whereas the opposite is obtained in (Satzer et al. 2015) for impedance measurements of

chronically implanted electrodes in patients su�ering from Parkinson's disease.

Nonetheless, in all previous studies mentioned in this section, the di�erence in conductivity

of grey and white matter is always perceptible. Thus, if one can get information on tissue

conductivity using SEEG signals, it could be a potential feature for tissue classi�cation. In

this scenario, the study of the brain-electrode interface can be used, as it is directly impacted

by tissue conductivity.

1.4 Brain-electrode interface

The topic of the modelling of the brain-electrode interface has been widely discussed in liter-

ature due to its great number of applications. Nevertheless, there is still work to be done in

perfecting the models, as they are di�cult to study on living systems.

In the cases of patients su�ering from movement disorders, the chronic implantation of

electrodes in the brain can be used for therapy via deep brain stimulation (DBS) and single-

unit neuronal recording. Over time the measured signals are degraded due to corrosion,

insulation delamination, and tissue encapsulation due to the foreign-body immune response.

These factors also a�ect the voltage distributions in DBS treatment making them less e�cient.

In order for improvements to be made to solve or at the very least decrease the e�ects of tissue

encapsulation, the study of the brain-electrode interface is done to quantify impedance changes

over time. In (Lempka, Miocinovic, et al. 2009), (Lempka, M. Johnson, et al. 2011), (Sankar

et al. 2014), (Otto et al. 2006), and (M. Johnson et al. 2005) the model of the interface

is identi�ed via electrode impedance spectroscopy (EIS) or impedance tester, using signals

recorded in animals chronically implanted with electrodes.

Contrary to DBS, in the cases of epileptic patients that undergo SEEG investigation,

the implanted electrodes are only kept for two weeks. Still, the study of the brain-electrode

interface can be used for diagnosis of brain tissue epileptogenicity (Koessler et al. 2017) and

(Carvallo et al. 2018). These studies are based on the fact that epileptogenic tissues have

di�erent conductivities when compared to healthy tissues. In such studies, the di�erence in

conductivity of grey and white matter are also highlighted which is the motivator of the use

of the brain-electrode interface for brain tissue classi�cation.

The brain-electrode model can also be used for artefact correction of electrical stimulation

in the cases where SEEG is used in functional connectivity analysis for the correct estimation

of CCEPs (Trebaul, Rudrauf, et al. 2016).

The interface is often characterised by an electronic circuit. The proposed circuits might

di�er from each other in some aspects, but in general they are formed by three main blocks:

An electrode-electrolyte interface, a peri-electrode layer (tissue encapsulation of the electrode

formed by the brain reaction to foreign bodies), and �nally the medium resistance. The

physical representation of the mentioned blocks is shown in Fig.1.5.
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Figure 1.5: Physical representation of the brain-electrode interface.

1.4.1 Electrode-electrolyte interface

The study of the electrode-electrolyte interface is of interest in many medical �elds, whenever

physiological signals are recorded using electrodes, either invasively or not. The choice of the

electrode type has a direct impact on the amplitude and dynamics of the measured signals.

Thus, the study of the electrode-electrolyte interface allows for the correction of artefacts,

which helps with signal interpretation (Besançon et al. 2019), and also helps with the choice

of electrode material (Robinson 1968).

One of the �rst authors to propose an electronic circuit representation of the EEG measure-

ment chain was (Robinson 1968). The author represented the electrode-electrolyte interface

as the parallel between a double layer capacitance Cdl and a charge transfer, or leakage resis-

tance Rct. The double layer capacitance receives such name because it represents the layers

of charge, one in the metal surface and the other in the electrolyte of opposite polarity. The

charge transfer resistance represents the charges leaked through the double layer from electro-

chemical reactions. The circuit is show in Fig. 1.6a.

However, it has been shown that the double layer capacitance Cdl does not behave as a

normal capacitor due to adsoprtion, surface roughness, and molecular forces (De Levie 1965).

Instead, it should be represented by a constant phase element (CPE) ZCPEdl
. This version of

the circuit is shown in Fig. 1.6b.

Considering s as the Laplace variable, the impedance ZCPE can be written as:

ZCPE =
1

Qsα
(1.1)

with 0 < α < 1, and Q the constant coe�cient of the CPE. The constant phase element

receives its name because it has a constant phase angle smaller than 90◦ of a true capacitance

(α = 1). The inverse Laplace transform of sα represents a fractional-order time derivative

(Liang et al. 2015), which will be discussed in more details in the following chapter. Typically

α ≃ 0.8 in biomedical systems (McAdams, Lackermeier, et al. 1995) and (Besançon et al.
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Cdl

Rct
(a) Interface with capacitor

  

ZCPEdl

Rct
(b) Interface with CPE

Figure 1.6: Most common representations of the electrode-electrolyte interface in literature.

In (a) the double layer capacitance Cdl is used in parallel with the charge transfer resistance

Rct. In (b) the double layer capacitance is substituted by a CPE ZCPEdl
in parallel with the

charge transfer resistance Rct.

2019).

In general both representations are still used in literature. The representation with the

CPE is physically more accurate, but it demands extra computation when compared to the

case with a normal capacitance.

Some studies on the electrode-electrolyte interface are done with the use of "phantom

EEG" devices (Besançon et al. 2019), in which the impedance is measured by the insertion of

electrodes in a saline solution (McAdams, Lackermeier, et al. 1995). The advantage of such

studies is that one has control over the electrical stimulation signals used for the identi�cation

of the interface, which guarantees very accurate models.

1.4.2 Peri-electrode layer

In the case where electrodes are in direct contact with brain tissue, the nervous system reacts

by creating an encapsulation layer around the implanted device called the peri-electrode region

(Grill et al. 1994). There are two stages after electrode implantation: the acute stage and the

chronic stage (Yousif et al. 2009). The acute stage occurs just after electrode implantation.

In it, the electrode is surrounded by cerebral spinal �uid and the impedance can be simply

characterised by the electrode-electrolyte interface. In the chronic stage, the peri-electrode

region is either �lled with giant cells or microglia. In the context of chronically implanted

electrodes, the time between the acute stage and the stabilisation of the impedance in the

chronic stage is of six to eight weeks (Yousif et al. 2009).

Even though the electrodes used in SEEG are not chronically implanted, the recordings

are typically done one week after electrode implantation. According to the measurements

done by (Lempka, Miocinovic, et al. 2009), the peri-electrode is already present and should

be considered as a part of the model.
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The standard electronic circuit that represents tissue encapsulation in literature (M. John-

son et al. 2005), (Sankar et al. 2014), and (Lempka, Miocinovic, et al. 2009) is formed by a

resistor representing the encapsulation tissue by extracellular matrix proteins (Ren) in series

with the parallel of a resistor and a capacitor representing the physical properties of the cell

membrane (Rcl, and Ccl). The circuit is show in Fig. 1.7a.

  

Ccl

Ren

Rcl
(a) Interface with capacitor

  

ZCPEcl

Rcl

Ren

(b) Interface with CPE

Figure 1.7: Most common representations of the peri-electrode interface in literature. In (a)

the encapsulation resistance Ren is in series with the parallel of a resistor Rcl and a capacitor

Ccl representing the physical properties of the cell membrane. In (b) the capacitance Ccl is

substituted by a CPE ZCPEcl
.

However, in (Lempka, Miocinovic, et al. 2009), the authors compared the �tted impedance

models considering the circuit as described, and substituting the Ccl capacitor by a CPE

(ZCPEcl
) to the impedance measured during in vivo impedance measurements in a monkey.

The circuit with the ZCPEcl
had a better �t. The adapted circuit is show in Fig. 1.7b.

1.4.3 Medium resistance

The medium resistance Rmed is represented in both electrode-electrolyte studies (Besançon

et al. 2019), and (McAdams, Lackermeier, et al. 1995), and brain-electrode interface studies

(M. Johnson et al. 2005), (Sankar et al. 2014), and (Lempka, Miocinovic, et al. 2009). It

represents the resistance of the propagation medium present between measuring contacts.

In the cases of "phantom EEG", where the electrodes are inserted in saline solutions, this

resistance represents the electrolyte resistance. In the cases where electrodes are implanted in

the brain, the medium resistance represents the resistance of the brain tissue in between two

measurement points.

Thus, in the scope of brain tissue classi�cation via brain-electrode interface modelling, the

medium resistance Rmed becomes a key element to be identi�ed as it is directly related to the

tissue type.
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1.4.4 Complete model and impedance measuring

By adding the three di�erent impedance blocks presented in the previous sections, the �nal

circuit between two measuring contacts is found in Fig. 1.8. The choice was made to keep the

CPEs instead of the capacitances as they represent more accurately the physical properties of

the brain-electrode interface and tend to produce the best results (Lempka, Miocinovic, et al.

2009).

  

ZCPEdl

Rct

ZCPEcl

Rcl

Ren Rmed

Figure 1.8: Electronic circuit model of the brain-electrode interface, based on physical prop-

erties.

In the majority of the cases where the interface model is identi�ed, electrode impedance

spectroscopy (EIS) is used (M. Johnson et al. 2005), and (Lempka, Miocinovic, et al. 2009).

In this type of measurement, a two contact con�guration is utilised. Multiple sine waves of

similar amplitude and varying frequencies are applied as electrical stimulation, and the current

output is measured. The impedance is calculated in the frequency domain by dividing the

voltage by the current considering the frequency of each sine wave. The model is �tted to the

impedance measurement by nonlinear regression, with the intent to minimise the di�erence

between the real and imaginary parts of the measured and model impedance, in which the

variables to be optimised are the electronic components of the circuit.

However, the current output is not always measured. In some applications, the only

information available are voltage measurements. In this case, the impedance can still be

measured, but it usually has to be done considering a voltage divider. An example of this can

be found in (Besançon et al. 2019) for the electrode-electrolyte interface study on a "phantom

EEG".

1.5 Conclusion

In this chapter, general concepts in pre-surgical investigation of drug-resistant epileptic pa-

tients were presented. The main focus being invasive SEEG examinations and their role in

epileptogenic zone identi�cation, and delimitation of the eloquent cortex to be avoided in

surgery.
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The importance of correct brain tissue classi�cation during SEEG was highlighted for the

success of the resective surgery, and the standard methods for tissue labelling were presented.

The lack of tissue classi�cation methods based on signal analysis rather than imaging was

discussed, and the idea of using brain-electrode interface models to do so was introduced

based on the di�erences of conductivity of brain tissues.

Following that, a recapitulation of the physically based models of the brain-electrode inter-

face was done, in which the concept of constant phase elements with fractional order deriva-

tives was presented. Finally, the standard model identi�cation method of the brain-electrode

interface was discussed.

In the following chapter, some general theoretical concepts will be recalled. The focus will

predominantly be on fractional order derivatives and system identi�cation methods.



Chapter 2

State of the art: System identi�cation

and non-integer order derivative

The aim of system identi�cation is to build mathematical models from the information con-

tained in data observed from dynamical systems. Usually signals are classi�ed in three types:

input u(t), output y(t), and noise ν(t). Input signals are the ones that are applied to the

system in order to get a response (output). The disturbances can either be directly measured

or are only observed through their in�uence on the output.

As introduced in the previous chapter, the hypothesis is made that the identi�cation of

the impedance of the brain-electrode interface should be helpful for brain tissue classi�cation.

The problem of identifying the electronic components of the model from collected data can

be described as a system identi�cation one. In the majority of cases where electronic circuits

are used for model characterisation, the relationship between the output and input is linear,

thus they can be characterised by impulse or step responses, or by their frequency functions.

In this chapter, the theoretical bases of system identi�cation are presented, as well as some

identi�cation methods based on (Ljung 1998), (Landau et al. 2006), and (Stoica et al. 1997).

Because of the presence of CPEs in the model, approximations of fractional order derivatives

are also discussed.

2.1 Time invariant linear systems

In time invariant linear systems, the output y(t) can be written as a linear combination of the

output and individual inputs u(t), and is written as follows considering g(τ) as the impulse

response of the system:

y(t) =

∫ ∞

τ=0
g(τ)u(t− τ)dτ (2.1)

In real life applications, the available signals are measured in the discrete form, considering

a sampling time Ts. In addition, disturbances also a�ect the system and need to be considered

by adding the term ν(t) to the output. A time instance is given by tk = kTs, the output can

be described as:

19
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y(t) =
∞∑
k=1

g(tk)u(t− tk) + ν(t) (2.2)

2.1.1 Transfer function

Transfer function is the name given to the z-transform of {g(tk)}∞1 :

G(z) =
∞∑
k=1

g(tk)z
−tk (2.3)

The transition between the time domain and z-domain is straightforward and can be

written as:

u(tk − 1) = z−1u(tk) (2.4)

Often times when describing dynamical systems, where di�erential equations are vastly

used, the model is described in a continuous time representation. In this case, the transfer

function is re-written using the Laplace transform of the impulse response and the input and

output signals:

Y (s) = G(s)U(s) (2.5)

with s = iω the Laplace variable.

In order to go from the continuous to the discrete form of the transfer function, the

Laplace variable s can be replaced by a di�erence approximation. There are many discrete

approximations available, in this work, the chosen one is the Tustin approximation:

s ≈ 2

Ts

1− z−1

1 + z−1
(2.6)

2.1.2 Bode and Nyquist plots

Considering the input as u(t) = cos(ωt) = ℜeiωt (ℜ denoting the real part), the output is

written as:

y(t) = ℜ

{
eiωt

∞∑
k=1

g(tk)e
−iωtk

}
= |G(eiω)|cos(ωt+ φ) (2.7)
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with,

φ = argG(eiω) (2.8)

The output is a cosine of same frequency as the input, with amplitude controlled by |G(eiω)|
and phase shift φ. From the relationship between the z-transform and the Fourier transform

z = eiω, each complex number G(eiω) of the transfer function contains the information of

what happens at the output when the input is a sinusoïd of frequency ω. In other words, the

transfer function describes the dynamics between the output and the input voltages expected

for each signal frequency ω, and can be described via its magnitude M and phase φ:

G(eiω) = M(ω)eiφ(ω) (2.9)

The graphical display of G(eiω) is either the Bode plot or the Nyquist plot. In the Bode

plot, |G(eiω)| is plotted in dB against logω, and φ is plotted against logω. In the Nyquist

plot, the imginary part of G(eiω) is plotted against the real part of G(eiω).

2.2 Non-parametric frequency domain identi�cation

As mentioned, time invariant linear systems, can be characterised by their impulse response

and transfer function. In cases of system identi�cation where the model is deduced from

measured data, non-parametric methods are used to get an idea of the curve shape of {g(tk)}∞1 ,

and G(eiω) (Bode plots and Nyquist plots) using only the available data. This procedure helps

to get an idea of the expected dynamics of the system as well as an idea of the order of the

model.

In the context of this study, the focus is given to methods of non parametric identi�cation of

the frequency response G(eiω). For that two main methods are presented: Empirical transfer

function estimation (ETFE), and spectral analysis (SPA).

2.2.1 Empirical transfer function estimate

The ETFE is an extension of the idea of using multiple sinusoidal inputs of di�erent frequencies

and estimating from the output the di�erences in magnitude and phase for each ω. This can

be done for the fact that the di�erent frequencies of the input signal are independent from

each other. The equation of the ETFE is given as follows:

ĜETFE(e
iω) =

YN (ω)

UN (ω)
(2.10)
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where YN and UN are the Fourier transforms of the output and input respectively using the

unitary notations used in (Ljung 1998) and Matlab:

UN (ω) =
1√
N

N∑
t=1

u(t)e−iωt (2.11)

YN (ω) =
1√
N

N∑
t=1

y(t)e−iωt (2.12)

with N the length of the signals.

The variance of the frequency response using ETFE for a non periodic input signal is equal

to the noise-to-signal ratio at the corresponding signal (Ljung 1998). Therefore, for frequencies

in which the measured signals are noisy, the resulting ETFE will also be so. Smoothed versions

of the ETFE can be obtained from spectral analysis (SPA) which is presented in the next

subsection.

2.2.2 Spectral analysis

The principle of obtaining the frequency response from spectral analysis (SPA) is based on the

assumption that the values of the true transfer function at di�erent frequencies are related.

Thus, the variance can be reduced by averaging over neighbouring frequency points:

ĜSPA(e
jω) =

∫ π
−π Wγ(ξ − ω)|UN (ξ)|2ĜETFE(e

iξ)dξ∫ π
−π Wγ(ξ − ω)|UN (ξ)|2dξ

(2.13)

with Wγ a window function of width γ, usually chosen as a Hamming window.

Another way of calculating the SPA, is with the ratio of the windowed periodograms of

the input and output signals:

ĜSPA(e
iω) =

Φ̂yu(ω)

Φ̂u(ω)
(2.14)

considering wγ(τ) the inverse Fourier transform of the frequency window Wγ(ω). Φ̂yu(ω) is

equivalent to:

Φ̂yu(ω) =

+∞∑
τ=−∞

wγ(τ)R̂yu(τ)e
−iωτ (2.15)

which is equivalent to the Fourier transform of the cross-correlation function:
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R̂yu(τ) =
1

N

N−1∑
t=0

y(t)u(t− τ) (2.16)

and Φ̂u(ω):

Φ̂u(ω) =

+∞∑
τ=−∞

wγ(τ)R̂u(τ)e
−iωτ (2.17)

which is equivalent to the Fourier transform of the auto-correlation function:

R̂u(τ) =
1

N

N−1∑
t=0

u(t)u(t− τ) (2.18)

The choice of the width γ of the window represents a compromise between making the

variance smaller but reducing some system dynamics such as resonance peaks.

As mentioned, ĜSPA(e
iω) is the estimation of G(eiω), thus it can also be written in the

polar form:

ĜSPA(e
iω) = M̂SPA(ω)e

iφ̂SPA(ω) (2.19)

2.3 Parametric system identi�cation

Even though the non-parametric models are very useful to get insight into the dynamics of

the systems, it is of great interest to describe them with mathematical equations that relate

the output with the input. In other words identify the coe�cients of the transfer function

G(z). This is called parametric identi�cation. With a parametric model, one can simulate

and predict outputs considering di�erent inputs, design controllers, and they also can be used

for diagnosis and fault detection.

Considering Ts as one time unit and using t to enumerate the sampling instants, getting

inspiration from equation (2.2) and considering e(t) as a white noise, for linear time-invariant

systems, an output can be described as follows:

y(t) = G(z)u(t) +H(z)e(t) (2.20)

with:
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G(z) =
∞∑
k=1

g(t)z−t (2.21)

H(z) = 1 +
∞∑
k=1

h(t)z−t (2.22)

Considering H(z) stable, invertible and monic, and θ the vector containing the parameters

of the transfer function, the one-step-ahead prediction is given by equation:

ŷ(t|θ) = H−1(z)G(z)u(t) + [1−H−1(z)]y(t) (2.23)

The main target of parametric identi�cation is to minimise the prediction error ε(t):

ε(t) = y(t)− ŷ(t|θ) (2.24)

In general, the model structure depends on the disturbance term H(z)e(t). In the fol-

lowing subsections, three di�erent model structures are presented together with their system

identi�cation methods.

2.3.1 Equation error model structure or auto-regressive model (ARX)

In the case of ARX models, the output of the system is written as:

y(t) =
B(z)

A(z)
u(t) +

1

A(z)
e(t) (2.25)

with:

A(z) = 1 +A1z
−1 + · · ·+Anaz

−na (2.26)

B(z) = B1z
−1 + · · ·+Bnb

z−nb (2.27)

The one-step-ahead prediction is given by:

ŷ(t|θ) = B(z)u(t) + [1−A(z)]y(t) = θTφ(t) = φT (t)θ (2.28)

with:
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θ = [A1, · · · , Ana , B1, · · · , Bnb
]T (2.29)

φ(t) = [−y(t− 1), · · · , −y(t− na), u(t− 1), · · · , u(t− nb)]
T (2.30)

From the linear relationship between the vector of unknowns θ and the predicted output

ŷ(t|θ), the model is a linear regression. The prediction error to be minimised becomes:

ε(t, θ) = y(t)− θTφ(t) (2.31)

In order to minimise the error, a convex cost function (cost function with an unique

minimum) VN (θ) should be proposed. In the case of ARX models, this can be easily done

with the following equation:

VN (θ) =
N∑
t=1

ε2(t, θ) (2.32)

which is known as the least-squares estimate (LSE). The minimum of the cost function can

be found via the gradient. The values of θ̂ for which the gradient of VN is equal to zero, are

the optimum coe�cients for the transfer function:

θ̂ = arg minVN (θ) =

[
t∑

i=1

φ(i)φT (i)

]−1 t∑
i=1

φ(i)y(i) (2.33)

In some applications, it might be useful to perform system identi�cation on-line in order to

make decisions about the system. On-line system identi�cation algorithms are called adaptive

or recursive. The general form of such methods is:

θ̂(t) = θ̂(t− 1) + αf(t) (2.34)

The search direction f(t) is based on information about the cost function, and α is a

constant that represents the compromise between fast conversion of the algorithm and precision

of the optimization. The search direction should be the one that minimizes the cost function.

As the gradient indicates the direction in which the cost function increases, f(t) should move

in the opposite direction of the gradient. In the case of recursive algorithms, the prediction

error ε can be either considered a priori ε0(t) = y(t) − θ̂T (t − 1)φ(t) or a posteriori ε(t) =

y(t)− θ̂T (t)φ(t).

Considering F = cI the adaptation matrix gain with c > 0 and I the identity matrix, and

considering f(t) = −∇[ε0(t)]2, equation (2.55) can be rewritten as:
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θ̂(t) = θ̂(t− 1) + Fφ(t)ε0(t) (2.35)

This equation can be unstable depending on the values of c in regards to the magnitude of

the signals. In order to avoid instability, the a posteriori prediction error is considered instead

of the a priori error used so far:

θ̂(t) = θ̂(t− 1) + Fφ(t)ε(t) (2.36)

One can write:

ε(t) = y(t)− θ̂T (t− 1)φ(t)− [θ̂(t)− θ̂T (t− 1)]φ(t) (2.37)

from equation (2.36):

θ̂(t)− θ̂(t− 1) = Fφ(t)ε(t) (2.38)

the a posteriori error can be written as a function of the a priori error:

ε(t) = ε0(t)− φT (t)Fφ(t)ε(t) (2.39)

ε(t) =
ε0(t)

1 + φT (t)Fφ(t)
(2.40)

with that equation (2.38), can be rewritten as:

θ̂(t) = θ̂(t− 1) +
Fφ(t)ε0(t)

1 + φT (t)Fφ(t)
(2.41)

It is important to note that the minimization of [ε(t)]2 at each step is not the same as the

minimization of VN (θ) in equation (2.32). For that the adaptation gain should vary.

From equation (2.33), if one considers:

F (t)−1 =
t∑

i=1

φ(i)φT (i) (2.42)

then,
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θ̂(t) = F (t)

t∑
i=1

φ(i)y(i) (2.43)

F (t)−1 =

t∑
i=1

φ(i)φT (i) = F (t− 1)−1 + φ(t)φT (t) (2.44)

Given that:

t∑
i=1

φ(i)y(i) =

t−1∑
i=1

φ(i)y(i) + φ(t)y(t) + φ(t)φT (t)θ̂(t− 1)− φ(t)φT (t)θ̂(t− 1) (2.45)

one can write:

t∑
i=1

φ(i)y(i) = F (t)−1θ̂(t) = F (t− 1)−1θ̂(t− 1)+φ(t)φT (t)θ̂(t− 1)+φ(t)[y(t)− θ̂T (t− 1)φ(t)]

(2.46)

which results in:

F (t)−1θ̂(t) = F (t)−1θ̂(t− 1) + φ(t)ε0(t) (2.47)

The recursive equation is obtained by multiplying both sides by F (t):

θ̂(t) = θ̂(t− 1) + F (t)φ(t)ε0(t) (2.48)

In this case, the gain matrix F (t) is time varying, and can also be estimated recursively

by inverting equation (2.44). Thus, the recursive least squares algorithm is given as:


θ̂(t) = θ̂(t− 1) + F (t)φ(t)ε0(t)

F (t) =
[
F (t− 1)− F (t−1)φ(t)φT (t)F (t−1)

1+φT (t)F (t−1)φ(t)

]
ε0(t) = y(t)− θ̂T (t− 1)φ(t)

(2.49)

If the recursive equation of F (t) in (2.49) is re-written, one can obtain:

θ̂(t)− θ̂(t− 1) = F (t)φ(t)ε0(t) = F (t− 1)φ(t)
ε0(t)

1 + φT (t)F (t− 1)φ(t)
(2.50)
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From equation (2.40), the RLS algorithm can be re-written using the a posteriori error as

follows:


θ̂(t) = θ̂(t− 1) + F (t− 1)φ(t)ε(t)

F (t) =
[
F (t− 1)− F (t−1)φ(t)φT (t)F (t−1)

1+φT (t)F (t−1)φ(t)

]
ε(t) = y(t)−θ̂T (t−1)φ(t)

1+φT (t)F (t−1)φ(t)

(2.51)

The initialization of F can be given as F (0) = (1/δ)I, with 0 < δ << 1.

2.3.2 Auto-regressive moving average (ARMAX)

In the ARMAX structure, the equation error is equivalent to the moving average of the white

noise, in which the output is written as:

y(t) =
B(z)

A(z)
u(t) +

C(z)

A(z)
e(t) (2.52)

the only di�erence to the ARX case is the C(z) numerator multiplying the disturbance:

C(z) = 1 + C1z
−1 + · · ·+ Cncz

−nc (2.53)

The one-step-ahead prediction is given by:

ŷ(t|θ) = B(z)u(t) + [1−A(z)]y(t) + [C(z)− 1][y(t)− ŷ(t|θ)] = θTφ(t, θ) (2.54)

with:

θ = [A1, · · · , Ana , B1, · · · , Bnb
, C1, · · · , Cnc ]

T (2.55)

φ(t, θ) = [−y(t− 1), · · · ,−y(t− na), u(t− 1), · · · , u(t− nb), ε(t− 1, θ), · · · , ε(t− nc, θ)]
T

(2.56)

where:

ε(t, θ) = y(t)− ŷ(t|θ) (2.57)

The aim is still minimising ε(t, θ) by choosing the optimum θ̂. However, the relationship

between the output of the model ŷ(t|θ) and θ̂ is non-linear, as φ(t, θ) is dependent on θ. Thus,
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the cost function of equation (2.32) is not convex, meaning that the optimisation problem

contains local minima, and therefore the gradient is equal to zero for several θ̂. Moreover, the

gradient of the cost function is non-linear in θ̂, making it hard for it to be estimated. This is

why for this case, θ̂ is estimated via iterative methods.

One of the possible iterative methods that can be used to solve the identi�cation problem

is the extended least squares (ELS). The algorithm itself is similar to the RLS summarized by

equation (2.66), the only di�erence are vectors θ, and φ given by equations (2.55), and (2.56),

that depend on the disturbance model.

2.3.3 Output error (OE)

For the output error case, the disturbance is considered as a white noise directly added to the

output:

y(t) =
B(z)

A(z)
u(t) + e(t) (2.58)

The one-step-ahead prediction is given by:

ŷ(t|θ) = B(z)

A(z)
u(t) = θTφ(t, θ) (2.59)

with:

θ = [A1, · · · , Ana , B1, · · · , Bnb
]T (2.60)

φ(t, θ) = [−ŷ(t− 1|θ), · · · , −ŷ(t− na|θ), u(t− 1), · · · , u(t− nb)]
T (2.61)

As for the ARMAX case, φ(t, θ) is dependent on θ̂, which makes the cost function VN (θ)

non-convex. Once again, for this type of problem, θ̂ has to be estimated iteratively. In the

case of OE systems, instrumental variable techniques are used.

Instrumental variable (IV) methods are often used in statistics, but can also be used for

system identi�cation (Young 1970). It consists of introducing an instrumental variable ζ on

equation (2.33) of the least squares method:

θ̂ = arg minVN (θ) =

[
t∑

i=1

ζ(i)φT (i)

]−1 t∑
i=1

ζ(i)y(i) (2.62)

Here, φT (t) is the predictor regressor vector, and ζ is the observation vector:
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φ(t) = [−y(t− 1), · · · , −y(t− na), u(t− 1), · · · , u(t− nb)]
T (2.63)

ζ(t) = [−yIV (t− 1), · · · , −yIV (t− na), u(t− 1), · · · , u(t− nb)]
T (2.64)

with:

yIV = θ̂(t)ζ(t) (2.65)

As ζ depends on yIV that depends on θ̂ at each instant, it needs to be estimated recursively.

The recursive estimation of the IV method is quite similar to the RLS:


θ̂(t) = θ̂(t− 1) + F (t− 1)ζ(t)ε(t)

F (t) = [F (t− 1)− F (t−1)ζ(t)φT (t)F (t−1)
1+φT (t)F (t−1)ζ(t)

]

ε(t) = y(t)−θ̂T (t−1)φ(t)
1+φT (t)F (t−1)ζ(t)

(2.66)

2.4 Interior-point method

The methods presented in the previous section for system identi�cation are very e�cient and

largely used for control applications. However, none of them allow constraints to be set on

the variable being optimized. As the identi�cation methods will be used to identify transfer

function coe�cients that are a combination of electronic components, positivity constraints

can be useful. The interior point method (Waltz et al. 2006) and (Wächter et al. 2006) is

often used in this case.

A constrained optimisation problem can be written as:

minimize
x∈R

f(x)

subject to ceq(x) = 0

c(x) ≤ 0

(2.67)

in which the variable x needs to be optimised in order to minimise the cost function f(x)

subject to some equality constraints (ceq(x) = 0), and some inequality constraints (c(x) ≤ 0).

The �rst step is to incorporate the equality and inequality constraints into the cost func-

tion. In order to do so, the Lagrangian and the barrier function are used respectively.

The Lagrangian rewrites the cost function f(t) into a new one g(t) taking into account the

equality constraint ceq(x) = 0.

If there are i equality constraints, the cost function will be written as:
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g(t) = f(x) + λ1ceq1(x) + λ2ceq2(x) + · · ·+ λiceqi(x) (2.68)

with λ being the Lagrange multipliers which are positive.

For the case of the inequality constraints, �rst they are transformed into equality con-

straints with the use of slack variables c(x) + s = 0, in which s represents slack variables that

are added to vector x to be optimised subject to s > 0. There are as many slack variables as

there are non equality constraints.

For the simple constraints s > 0, a smooth solution would be the logarithmic function, as

it tends to in�nity as we approach the boundary (0). This is known as the barrier function.

With that, rewriting the cost function considering j inequality constraints will result in:

g(t) = f(x) + λceqceq(x) + λc(c(x) + s)− µ

j∑
k=1

ln(sk) (2.69)

The term µ is the duality measure, when it is zero the optimal is achieved and the minimi-

sation problem is similar to an unconstrained one. Sometimes the optimum is located outside

of the barrier so µ can be small but never zero. Usually µ is started o� with an initial value

and changes with iterations.

Considering the new cost function in equation (2.69), its minimum can be found when

its gradient is approximated to zero. Applying the gradient in respect to the variable x, one

obtains:

▽f(x) + λceq ▽ ceq(x) + λc ▽ (c(x) + s)− µ

j∑
k=1

1

sk
= 0 (2.70)

The term µ/sk is non linear, so it will be replaced by a term z ( for which zk = µ/sk).

From this point forward the equality conditions c(s)+s will be included in the ceq conditions.

With that the Karush-Kuhn-Tucker (KKT) optimal conditions can be rewritten as:


▽f(x) + λceq ▽ ceq(x) + λc ▽ (c(x) + s)− z = 0

ceq(x) = 0

XZe− µe = 0

(2.71)

with X and Z diagonal matrices with the values of x and z respectively, and e a vector of ones

added to the equation to make the dimensions right. In these new optimal conditions, the

third equation describes the duality gap that for a non constrained problem should be equal

to zero.
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In order to solve the system of equations (2.71) the Newton-Raphson method can be used.

It consists in an iterative method that transforms the non linear equation (the cost function)

into a second order equation approximated by the Taylor transformation as follows:

g(xk +∆xk) ∼ g(xk) +▽g(xk)
T∆xk +

1

2
∆xk

T ▽2 g(xk)∆xk (2.72)

in which the operator ▽2g(xk) is called the Hessian.

With that in mind, the �rst thing to do would be to determine the step size between

one iteration and the next one for each of the changing variables (x, λ and z because of the

changes in µ and x). From the KKT conditions and the second order approximation of the

cost function, the following system of equations can be written in order to �nd the needed

step sizes (dxk, d
λ
k and dzk):

 Wk ▽ceq(xk) −I

▽ceq(xk)
T 0 0

Zk 0 xk

dxk
dλk
dzk

 = −

▽f(xk) +▽ceq(xk)λk − zk
ceq(xk)

XkZke− µje

 (2.73)

with:

Wk = ▽2
xx(f(x) + ceq(xk)

Tλk − zk) (2.74)

Xk =


x1 0 · · · 0

0 x2 · · · 0

· · · · · · · · · · · ·
0 · · · 0 xn

 (2.75)

Zk =


z1 0 · · · 0

0 z2 · · · 0

· · · · · · · · · · · ·
0 · · · 0 zn

 (2.76)

To solve equation (2.73), it needs to be rearranged into a symmetric linear system of the

following form:

[
Wk +Σk ▽ceq(xk)

▽ceq(xk)
T 0

](
dxk
dλk

)
= −

(
▽f(xk) +▽ceq(xk)λk

ceq(xk)

)
(2.77)

with:
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Σk = X−1
k Zk (2.78)

and with that the last step size is given by:

dzk = µkX
−1
k e− zk − Σkd

x
k (2.79)

With that, each of the next iterations are given by the following equations:

xk+1 = xk + αkd
x
k (2.80)

λk+1 = λk + αkd
λ
k (2.81)

zk+1 = zk + αkd
z
k (2.82)

The value of α can be either chosen with a decrease of a merit function or with �lter

methods. The iterations stop when a convergence criteria is reached. Based on the KKT

conditions, the iterations can be stopped when the three equations in (2.71) are less or equal

to a tolerance threshold ϵtol:


max| ▽ f(x) + λ▽ c(x)− z| ≤ ϵtol

max|c(x)| ≤ ϵtol

max|XZe− µe| ≤ ϵtol

(2.83)

With all these equations, the iterative algorithm to solve the optimization problem goes as

follows: First, initial values are set for the variables x, λ and z, convergence is checked for

these values with the system of equations (2.83) , if it does not converge equations (2.77) to

(2.82) need to be solved in order to �nd the new values for the variables x, λ and z. This is

repeated until equations in (2.83) are satis�ed.

In the cases for which the interior point method is used with non linear cost functions such

as the ones for ARMAX and OE systems, there is a chance that the solution might be a local

minimum. Therefore the choice of the initial point is very important to assure good results.

2.5 Model validation

In many real life applications little is known about the real structure of the system. Thus, a

model needs to be validated through some tests. The �rst analysis to be done is that of the
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�t of the model output compared to the real output. Quantitatively this is represented by the

normalised root mean squared error in percentage:

fit = 100

(
1− ||y(t)− ŷ(t|θ)||

||y(t)− y(t)||

)
(2.84)

with y(t) the mean of y(t).

The next thing that can be done, is the visual analysis of the �t in the frequency domain.

That is done by comparing Bode and Nyquist plots obtained from the identi�ed model to the

Bode and Nyquist plots obtained from the data via the ETFE or the SPA. Considering that

data is a�ected by noise, it is hard to compute this �t quantitatively, therefore it is usually

done visually.

Apart from the �t analysis, other tests can be done based on the prediction error ε. For

structures of the type ARX and ARMAX, ε is a white noise. The validation in this case

should test the whiteness of the noise. In order to do so, one has to compute the normalised

auto-correlation RNε(i) of ε for i = 0, 1, · · · , imax, with imax the maximum number of lags:

RNε(i) =
1

N+1

∑N+1
t=1 ε(t)ε(t− i)

1
N+1

∑N+1
t=1 ε2(t)

(2.85)

if ε is a white noise, than RNε(i) ∼ 0 ∀ i ̸= 0.

The second test to be performed is the cross-correlation test between output estimation er-

ror ε and the input V1, in order to check their independence. The normalised cross-correlation

of signals RNε,u(i) considering a lag i = 0, 1, 2...imax is given by:

RNε,u(i) =
1

N+1

∑N+1
t=1 ε(t)u(t− 1)[(

1
N+1

∑N+1
t=1 u2(t)

)(
1

N+1

∑N+1
t=1 ε22(t)

)] (2.86)

the signals can be considered as independent if RNε,u(i) ∼ 0∀ i.

For the OE case, the resulting prediction error is a coloured noise, therefore it can not

be validated by the whiteness test. However, for an OE model to be validated the prediction

error has to be uncorrelated with the input, and the cross-correlation test must be used.

The general rule for validation given in (Landau et al. 2006) for a 97% con�dance level is:

RNε(i) <
2.17√
N

∀ i ̸= 0 (2.87)

RNε,u(i) <
2.17√
N

∀ i (2.88)
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2.6 Non-integer order derivatives

The use of non-integer derivatives in engineering is becoming more and more frequent as

of recently. Even with the lack of physical or geometrical meaning, fractional calculus has

a very interesting memory property. They are not local as the non-integer derivative of

a function in a given time takes into account the whole past of the function. Thus, such

systems have attracted some attention in the control community (see (Oustaloup 1995a) and

(Podlubny 1998)) with a focus on non-integer order identi�cation (see (Malti et al. 2006)

and (Trigeassou et al. 1999)). The applications of non-integer order identi�cation are very

large on the biomedical �eld. In (Magin et al. 2008), it is used for modelling of the cardiac

tissue electrode interface, and in (Sommacal et al. 2008) it is used to model the gastrocnemius

muscle of the frog. In addition, they have also sparked some interest in di�erent �elds such as

modelling of lithium-ion batteries (see (Zou et al. 2017)), and even for the design of controllers

(see (Bohannan 2008)).

The �rst references of half-order derivatives are associated with Leibniz and L'Hôpital in

1695. To de�ne a non-integer order derivative one has to �rst de�ne the non-integer order

integral. Considering a continuous function f(t), its integral of order α known as the Riemann-

Liouville integral is:

Iαc f(t) ≜
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ (2.89)

with Γ the the Euler Gamma function given by:

Γ(ξ) =

∫ ∞

0
xξ−1e−xdx (2.90)

The notion of non-integer order integral is used as a basis for the de�nition of the non-

integer order derivative (see (Samko et al. 1993)), which can be de�ned as an integer derivative

of order m = ⌊α⌋+1 (with ⌊.⌋ the �oor operator) of a non-integer integral of order 1−(m−α):

Dαf(t) = Dm(Im−αf(t)) ≜
1

Γ(m− α)

(
d

dt

)m ∫ t

0

f(τ)

(t− τ)1−(m−α)
dτ (2.91)

The Laplace transform of a non-integer order derivative is given as (see (Oldham et al.

1974)):

L{Dαf(t)} = sαF (s) (2.92)

With this de�nition, a transfer function of the form:



36 Chapter 2. State of the art: System identi�cation

H(s) =
Y (s)

U(s)
=

∑nb
i=0 bis

βi

1 +
∑na

j=1 ajs
αj

(2.93)

can be written in time as:

y(t) + a1D
α1y(t) + · · ·+ anaD

αnay(t) = b0D
β0u(t) + b1D

β1u(t) + · · ·+ bnb
Dβnbu(t) (2.94)

Considering the representation in equation (2.94), there is a great interest in studying the

�nite di�erence approximations for fractional di�erential equations.

The Grünwald-Letnikov equation for a discrete approximation of the non-integer derivative

was proposed by (Grunwald 1867) and (Letnikov 1868), based on the integer order derivative

de�nition, and it can be written in the following form for a discrete time k:

Dα
GLf(k) ≃

1

hα

N∑
i=0

(−1)i
(
α

i

)
f(k − i) (2.95)

in which h denotes the sampling time, N + 1 the number of samples, and
(
α
i

)
represents the

generalized Newton binomial:

(
α

i

)
=

Γ(α+ 1)

Γ(i+ 1)Γ(α− i+ 1)
(2.96)

This discretisation method is one of the most popular ones when it comes to system

identi�cation (see (Malti et al. 2006)). One can �nd the Matlab code for this approximation

in (Jonathan 2022).

In the cases of system identi�cation for which recursive algorithms are used (ARMAX and

OE models), the discretisation of the non-integer order derivative via the Grünwald-Letnikov

method can be very time consuming due to its "in�nite memory". In such cases, it might be

a better option to approximate the non-integer order derivative to a simple IIR �lter. Many

authors have proposed methods for the rational approximations of fractional derivatives (see

(Carlson et al. 1964), (Matsuda et al. 1993), and (Oustaloup 1995b)). Here the chosen one

was proposed by (Petrás 2011), as it was already implemented in Matlab (see (Petrá² 2003)).

In (Petrás 2011), the author proposes a continued fraction expansion (CFE) of the Al-

Alaoui discretization of the fractional derivative described in (Al-Alaoui 1993).

In this procedure a generating function ω is chosen as the digital approximation of sα

(sα ≈ ω(z−1)), based for example in the Tustin approximation of the Laplace variable s. In

(Petrás 2011) the generating function is chosen as in equation (2.97) below, in which a is a

ratio term chosen as a = 1/7 as the Al-Alaoui rule for the discretization of Dα.
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(ω(z−1))±α =

(
1 + a

h

1− z−1

1 + az−1

)±α

(2.97)

Applying the continued fraction expansion (CFE) in the generating function (2.97) one

obtains equation (2.98) which ultimately results in equation (2.99) by truncation:

(ω(z−1))±α ≈
(
1 + a

h

)±α

CFE

{(
1− z−1

1 + az−1

)±α
}

m,n

(2.98)

(ω(z−1))±α ≈
(
1 + a

h

)±α c0 + c1z
−1 + · · ·+ cmz−m

d0 + d1z−1 + · · ·+ dnz−n
(2.99)

where ci and di are the transfer function's coe�cients of the IIR �lter and m and n are the

respective nominator and denominator orders which are usually chosen to be the same. The

values of ci and di obtained from the CFE are shown in (Vinagre et al. 2003) for di�erent

orders n.

2.7 Conclusion

In the context of modelling the brain-electrode interface, this chapter introduces the state of

the art in system identi�cation. The concept of transfer function as a representation of a time

invariant linear system is introduced, and time and frequency representations of such systems

are discussed.

After the general context on system representation, non-parametric and parametric meth-

ods for the identi�cation of these linear systems using input and output data are presented.

For the parametric case, types of model structure are discussed depending on the type of

disturbance added to the output. Once the parameters of a system are identi�ed, methods

for validating the model are presented both based on qualitative and quantitative analysis.

Lastly, because of the use of CPEs in the brain-tissue interface models, the concept of

non-integer order derivatives is presented, as well as how they can be integrated with system

identi�cation methods.

Now that the general concepts of the state of the art that constitute the base of this thesis

were introduced, in the next chapters we propose new methods for brain tissue classi�cation

using SEEG signals. The di�erent approaches are based on signal analysis and the modelling

of the brain-electrode interface.





Chapter 3

Brain tissue classi�cation using raw

SEEG signals

As previously discussed in chapter 1, the classi�cation of the brain tissue in which the SEEG

contacts are inserted in is an important step in the pre-surgical evaluation of drug-resistant

epileptic patients. From the fact that only grey tissues can be epileptogenic, white matter

contacts are usually not taken into account when it comes to the identi�cation of the EZ.

Hence, the miss-classi�cation of SEEG contacts can result in incorrect identi�cation of the

area of the brain to be removed in surgery. Moreover, correct tissue classi�cation also has an

impact in the case of direct brain stimulation, as stimulating white matter involves di�erent

biological processes from the case when stimulating the grey matter.

The vast majority of methods used for brain tissue classi�cation are based on the intensity

of the voxels of the co-registration of the MRI and CT scan of a patient. For this, electrodes are

manually positioned in the image and labelled with the use of softwares. Alternatively, classi-

�cation from the MRI can be done visually by the medical team, which is a time-consuming

process. Even though these methods are highly e�cient and yield good results, there are some

disadvantages. The �rst one is that accurate co-registration procedures may not always be

available and thus performed. Additionally, this method depends on the quality of the image,

and the correct manual placement of electrodes in it.

There is no way of knowing exactly the accuracy of image based tissue classi�cation meth-

ods, from the fact that the ground truth is not available, as there is no way of having a clear

inside view of the brain. Therefore, methods for brain tissue classi�cation that do not rely on

imaging are of great interest, for the fact that they can be used as a support for the existing

imaging methods, in the sense that they o�er a di�erent input to be taken into considera-

tion in di�cult classi�cation cases. Furthermore, a tissue classi�cation method from typical

SEEG signals, could help neurologists with the quick classi�cation of tissues during SEEG

procedures.

The �eld of brain tissue classi�cation using SEEG signals has just now started to be

explored. In (Mercier et al. 2017), features such as the power spectra and absolute amplitude

of spontaneous brain activity in SEEG are used to characterise di�erences in white and grey

matter signals. However, the authors did not go as far as performing tissue classi�cation. It is

only in a more recent study (Greene et al. 2021), that SEEG signals are used directly for tissue

classi�cation. In their article, the authors propose a signal approach for tissue classi�cation

using bipolar montage and a Bayesian classi�er.

39
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In this context, new features to be extracted directly from SEEG signals are proposed in

this chapter using both signal analysis and non-parametric frequency domain identi�cation

techniques. The power of discrimination between groups of these new proposed features will

be compared to the ones proposed in (Greene et al. 2021) considering data recorded from 19

epileptic patients. Prior to this work, the brain tissues for each of the contacts were classi�ed

using the MRI of the patients. These previous labels are considered as the ground truth for

supervised classi�cation in order to evaluate quantitatively the classi�cation capabilities of

the new features.

The results presented in this chapter were published in (M. Machado, Voda, Besançon,

Becq, and David 2021), and (M. Machado, Voda, Besançon, Becq, Kahane, et al. 2022).

3.1 Data sets

The SEEG signals used in this study were recorded from 19 epileptic patients during stan-

dard presurgical evaluation procedures at Grenoble-Alpes University Hospital. The processed

patients were adults and su�ered from temporal (n=9), frontal (n=6), insular (n=2), tempo-

ral/insular (n=1) and temporal/insular/frontal (n=1) epilepsies. The speci�c information for

each patient can be found in Table 3.1. All the patients gave their consent for their data to

be re-used by the research protocol F-TRACT (INSERM IRB 14-140).

Patient Gender Age at SEEG Epilepsy type Lesion

1 F 15 Left temporal Left hippocampus malrotation

2 F 12 Left frontal Left frontal dysplasia

3 M 29 Right frontal Right frontal tumor leftover and gliosis

4 M 28 Left temporal Left ventricular heterotopia

5 M 28 Right frontal Right frontal oligodendroglioma

6 M 33 Left temporal Left temporal, periventricular nodular heterotopia

7 F 42 Left temporal None

8 F 30 Right frontal Right parietal dysembryoplastic neuroepithelial tumor

9 M 14 Right insula None

10 F 39 Left temporal Left cortical dysplasia, hippocampal gliosis

11 M 33 Right frontal Right frontal dysplasia

12 M 48 Right temporal Right hippocampus atrophy and hypersignal

13 F 42 Right frontal Cortical dysplasia

14 M 49 Left temporal Left external temporal post-operatory gliosis

15 M 46 Left insula Left frontal basal cavernoma

16 M 46 Left temporal and insula Right hippocampal sclerosis

17 F 16 Right frontal/insula/temporal Right fronto-parieto-temporal lesions

18 F 32 Right temporal Right hippocampal sclerosis

19 M 34 Left temporal Left hippocampal sclerosis

Table 3.1: Patient information.

For each patient, 6 to 15 electrodes containing each one 5 to 18 contacts have been im-

planted a week prior to the recordings. The electrodes were manufactured by Dixi Medical

(Besançon, France). Each contact was of 0.8 mm diameter and of 1.5 mm long, separated by

3.5 mm (center to center) from the next one (see Fig. 3.1).

SEEG signals have been recorded using a Micromed (Micromed, Treviso, Italy)



3.2. Monopolar approach 41

0.8mm

1.5mm

3.5mm

Figure 3.1: Dimensions of SEEG electrodes.

SEEG/video system, coupled to a Micromed programmable stimulator, with a sampling fre-

quency (fs) of either 1024 Hz (for 7 patients) or 512 Hz (for 12 patients) and an acquisition

band-pass �lter between 0.1 and 200 Hz. Data were acquired using a referential montage, with

a reference contact chosen in the white matter, also known as the monopolar montage.

During the SEEG procedure, the contacts can be recorded multiple times at di�erent

instances (around 60 di�erent recordings). For each of these, baseline recordings have been

selected as 40 s periods of time while the patient was resting, as described in (David, Job,

et al. 2013). An example of baseline signals recorded for one of the patients in four consecutive

adjacent contacts located in the frontal lobe (the �rst two in grey matter and the last two in

white matter) can be found in Fig.3.2.

For each patient, the brain tissue in which each contact was inserted, was classi�ed us-

ing the MRI of the patient, following the labelling procedure described in (Deman et al.

2018) which is based on segmentation methods implemented in the FreeSurfer software. Pre-

operative and post-operative MRI were acquired at the isotropic resolution of 1 mm. Post-

operative CT-scans were reconstructed at the isotropic resolution of 0.45 mm. Contacts la-

belling was also visually checked and corrected if necessary. An average of 9 % of the contacts

were corrected per patient. The majority of the corrections were from white to grey matter

(average of 76 %). Contacts in grey matter were measured in both healthy and pathological

tissues.

The signals of disconnected and noisy contacts were classi�ed as bad channels by neurol-

ogists following the procedure described in (Tuyisenge et al. 2018) and are eliminated in this

study.

3.2 Brain tissue classi�cation using SEEG signals in monopolar

montage

At �rst, the most commonly used time and frequency domain features for classi�cation are

considered. In this �rst approach, SEEG signals are used in their original form, in monopo-

lar montage. With this simple study we aim to have a �rst idea of the complexity of tissue

separation task considering SEEG signals. In order to test quantitatively the power of group

separation of a feature, a simple classi�cation method considering a linear frontier is consid-
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Figure 3.2: Examples of signals measured in four consecutive contacts in the same electrode

shank located in the frontal lobe. The �rst two in grey matter and the last two in white

matter. a) Signal measured in the �rst contact in grey matter. c) Signal measured in the

second contact in grey matter. e) Correlation between the grey matter signals. b) Signal

measured in the �rst contact in white matter. d) Signal measured in the second contact in

white matter. f) Correlation between the white matter signals.
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ered.

3.2.1 Time features

The �rst features to be extracted from the SEEG signals measured in monopolar montage

are the �rst four moments that describe a statistical distribution, which are mean, variance,

skewness, and kurtosis (C. Lee et al. 2000).

The mean of a discrete signal x(k) for k = 1 · · ·N withN the length of the signal, represents

the central tendency of a distribution and is calculated as:

µ =
1

N

N∑
k=1

x(k) (3.1)

the mean of a normal distribution is zero.

The variance of a distribution, also known as the second statistical moment, represents

the dispersion from the mean:

σ2 =
1

N − 1

N∑
k=1

|x(k)− µ|2 (3.2)

the variance of a normal distribution is one.

The skewness of a signal x(k) measures the asymmetry of the data around the mean, in

other words it measures if the distribution leans to the right or to the left. The skewness value

of a normal distribution is zero. It can be calculated as:

Skew =
1

N

N∑
k=1

[
x(k)− µ

σ

]3
(3.3)

The fourth moment is called the kurtosis and is related to the outer tails of a distribution.

It measures how outlier-prone a distribution is. The value of kurtosis for a normal distribution

is 3, if the value is higher than 3 the signal is more outlier-prone. Its equation is given by:

Kurt =
1

N

N∑
k=1

[
x(k)− µ

σ

]4
(3.4)
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3.2.2 Frequency features

The frequency features that are going to be used in this �rst analysis are based on (Becq,

Bonnet, et al. 2011) and (Becq, Kahane, et al. 2013). For each signal, the one-sided power

spectral density is calculated using the periodogram method with a rectangular window and

zero padding on N = 10000 points. It represents the Fourier transform of the biased estimate

of the auto-correlation sequence. For a signal x(k), sampled at fs, with h the sampling interval,

its periodogram is given by:

Ŝ =
h

N

∣∣∣∣∣
N∑
k=1

x(k)e−j2πfhk

∣∣∣∣∣
2

(3.5)

for 0 < f < fs/2. As the one-sided periodogram is considered, the values are multiplied by

two except for 0 Hz and the Nyquist frequency. In Matlab function periodogram is used.

Common features to be extracted from power spectral densities (Ŝ) are the spectral powers

of the signals for speci�c frequency bands:

Pb = (f2 − f1)
∑

f∈[f1,f2]

Ŝ(f) (3.6)

where Pb is the spectral power of the signal in band b for f ∈ [f1, f2].

The chosen bands for this analysis are �ve of the typical frequency bands of brain signals

(see (Frauscher et al. 2018)): δ (0.5 - 4 Hz), θ (4 - 8 Hz), α (8 - 13 Hz), β (13 - 30 Hz) and γ

(30 - 80 Hz).

3.2.3 Classi�cation using linear discriminant analysis (LDA)

Di�erent types of classi�ers compute di�erent frontier shapes to separate features belonging

to each group (Hastie, Tibshirani, and Friedman 2001). Linear and quadratic frontiers can be

found with a linear discriminant analysis (LDA), and a quadratic discriminant analysis (QDA)

respectively. The support vector machine (SVM) classi�er �nds a combination of hyperplane

frontiers between groups. Other methods such as K-nearest neighbours (KNN), and decision

trees de�ne more complex frontiers that are heavily based on data.

Complex methods tend to have the problem of over�tting as they are very data dependent.

This is why we chose the simplest method (LDA), as well as for the advantage of a high

interpretability.

The LDA method consists in determining a linear frontier for group separation according to

the feature values. Assuming normal distribution, the LDA predictor computes the posterior
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probability (P̂ (k|x)) of an element x being a part of a group k (grey or white matter) using

Bayes rule with Gaussian distribution density P (x|k) given by:

P (x|k) = 1

((2π)d|Σk|)
1
2

exp

(
−1

2
(x− µk)Σ

−1
k (x− µk)

T

)
(3.7)

with d the number of features, and Σk and µk respectively the covariance and the mean of

the features of group k. Considering the prior probability Pk = nk/n of a class k as the

number of samples in the class nk divided by the total number of samples in all classes n,

and a normalization constant P (x) =
∑nc

k=1 P (x|k)P (k) with nc the number of classes, the

posterior probability is given by:

P̂ (k|x) = P (x|k)P (k)

P (x)
(3.8)

The classi�cation of an element is done by choosing the group with the highest posterior

probability. The linear frontier between the groups represents equal probabilities of a sample

being a part of each class P̂ (grey|x) = P̂ (white|x).

In order to quantify the classi�cation performance, the accuracy rate (ACC) is calculated

taking into account the previous classi�cation using the co-registration of MRI with CT-scan:

ACC =
TP + TN

TP + TN + FP + FN
(3.9)

where TP and TN represent the true positives and true negatives for which the label

according to the LDA classi�er is the same as the MRI one, and where FP and FN represent

the false positives and false negatives for which the labels di�er.

All 9 proposed time and frequency domain features were extracted from the signals of

the 19 patients (1100 contacts localised in grey matter and 968 in contacts localised in white

matter) are used for classi�cation. As the contacts were recorded at several di�erent times,

generating several di�erent signals, the features were extracted from each of them, and the

�nal value is given as the average across all signals.

The data set is divided randomly into training (90% of the data) and validation (10%

of the data). Once the LDA classi�er is trained with the training set, it is used to classify

the validation set. The accuracy is obtained by the comparison of the classi�cation of the

validation data using the trained classi�er, and the original MRI classi�cation. This procedure

is repeated 50 times in order to have di�erent combinations of training and validation data.

The mean accuracy obtained using the proposed features is 54 ± 3%. This accuracy is small

and indicates that the preliminary features proposed are not discriminant enough to separate

grey and white groups. Other types of features will be proposed in the sections that follow

and their discriminant power is discussed.
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3.3 Brain tissue classi�cation using non-parametric frequency

domain identi�cation

The preliminary study using signals in monopolar montage resulted in bad group separation

between tissues. Indeed, in (Greene et al. 2021) the authors conclude that bipolar montage,

where the signal of a contact is subtracted from the signal in the adjacent contact, has better

results in tissue separation than the common reference montage.

Here, the proposition is to use pairs of adjacent contacts, however not in a bipolar montage.

Considering the �rst contact as the input and the second contact as the output (both in

monopolar montage), the non-parametric frequency response can be used to compare gains in

di�erent frequencies for di�erent brain tissues. This idea is based on the fact that grey and

white matters have di�erent electrical conductivities (see (Geddes et al. 1967), (McCann et al.

2019), (Carvallo et al. 2018), and (Logothetis et al. 2007)). We expect that this di�erence in

resistance should impact at least the gain in small frequencies, and therefore be perceived in

the frequency response.

The pairs of adjacent electrodes are formed in the ascending order. This means that the

�rst contact of the pair is the shallower one and the second contact is the deeper one on the

brain. We call it ascending order because the contact number gets higher the deeper it is

located. Contact pairing and order is exempli�ed in Fig. 3.3.

  

Recorder

T01 T02 T03 T04

X01

X02

X03

X04

Pair 2Pair 1 Pair 3

Pair 4

Pair 5

Pair 6

(a) Contacts pairing

Input

Output

(b) Contacts order

Figure 3.3: (a) Example of consecutive contacts pairing. (b) Representation of the ascending

order of contacts

As the contacts are considered by pairs, the anatomical labels de�ned visually are no longer

just "grey" (G) or "white" (W) matter, they are "G/G" for contacts inserted in homogeneous

grey matter, "W/W" for contacts in homogeneous white matter, and "G/W" and "W/G" for

contacts in heterogeneous brain matter. For the purpose of tissue classi�cation, only pairs of

contacts in homogeneous tissues are considered. Contact pairs in heterogeneous tissues are

harder to separate from other groups as the amount of each tissue is variable from pair to

pair.
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3.3.1 Frequency response identi�cation

In this work, the frequency responses are estimated using Spectral Analysis (SPA). This non-

parametric method was presented in section 2.2, and it is re-stated here:

ĜSPA(e
iω) =

Φ̂yu(ω)

Φ̂u(ω)
(3.10)

with Φ̂V2V1(ω) the Fourier transform of the cross-covariance, and Φ̂V1(ω) the Fourier transform

of the covariance.

The frequency responses of the contact pairs of all 19 patients are calculated with Matlab,

using the spa function, and a Hanning window of size 18 s for sampling frequency 1024 Hz,

or 36 s to the sampling frequency 512 Hz, and a frequency resolution of 1 Hz, corresponding

to frequency points which are equally spaced between 0 Hz and the Nyquist frequency fs/2

(with fs either 1024 Hz or 512 Hz).

Since data from several recordings are available (around 60 recordings for most patients),

in which, for each of them, the same contacts were used to measure brain activity at di�erent

times, one can obtain a smoother frequency response of a contact pair by taking the mean of

the frequency responses over di�erent recordings (see chapter 6 of (Ljung 1998)).

The mean of the identi�ed frequency responses of contact pairs for each homogeneous group

considering the patients with fs = 1024 Hz is shown in Fig. 3.4. The frequency responses of

baseline signals have been obtained from 1284 contact pairs (486 with fs = 1024Hz, and 798

with fs = 512Hz). The distribution of pairs per patient is 35±12 for the G/G group and

32±14 for the W/W group. The trend of the data was removed via the substraction of a

polynomial straight-�t line approximation via the Matlab function detrend.

From a visual inspection, the magnitude of the two di�erent groups are clearly separated,

specially for frequencies from 1 Hz to 100 Hz.

The phase is not discriminating between grey and white matters for low frequencies, and

high frequencies are a�ected by noise. Therefore, the magnitude is a more robust measure

and will be considered for the remainder of our study.

The next step here would be to determine which features should be extracted from the

magnitude of the frequency responses in order to perform tissue classi�cation.

3.3.2 Feature extraction

In order to classify the brain tissue from the identi�ed frequency responses, information must

be extracted in the form of features. Here, two di�erent types of features are chosen that

quantify the magnitude of the frequency responses in speci�c frequency bands.
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Figure 3.4: Mean frequency response obtained for each group (G/G in black and W/W in

cyan). The discontinuous lines correspond to the standard error of the mean for each group.

The �rst type of feature to be used is the mean square of a speci�c frequency band. In

a band i (f i
1 ≤ bi ≤ f i

2), the mean square (MS) magnitude can be given as the sum of the

squared magnitude values M̂SPA(fj) (see equation (2.19)) for every frequency fj ∈ [f i
1, f

i
2]

according to the sampling time Ts, divided by the number of points (Ni) in the frequency

band bi:

MS bi =
1

Ni

∑
fj∈[f i

1,f
i
2]

M̂2
SPA(fj) (3.11)

The second type of feature chosen here is the relative mean square of a speci�c frequency

band. Once again, given the magnitude of a speci�c frequency band (f i
1 ≤ bi ≤ f i

2), the

relative mean square (MSr) is equivalent to the MS of the considered band bi divided by the

MS of the total frequency band (0Hz ≤ b ≤ fs/2Hz):

MSr bi =
MS bi
MS b

(3.12)

Looking at the frequency responses in Fig. 3.4, there are two main frequency bands for

which the magnitudes have more or less the same behaviour (0Hz ≤ b1 < 30Hz, and 30Hz ≤
b2 ≤ 200Hz). Thus, the four features used for tissue classi�cation using only baseline signals

are the MS and MSr for these two bands (MS b1, MS b2, MSr b1, and MSr b2).
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3.3.3 Tissue classi�cation

The proposed features were extracted from the 1284 pairs across all 19 patients. All contact

pairs with at least one feature with value higher than three scaled median absolute deviations

of the feature across all pairs, is considered an outlier and is eliminated. The observed outliers

are due to noise commonly observed in electronic measurements. This results in 1058 pairs

to be used for classi�cation. The combination of features can be seen in Fig.3.5. From the

histograms of each feature, MS b1 and MS b2 seem to be the most discriminant ones.
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Figure 3.5: Features extracted from the frequency responses proposed in this study. MSbi,

and MSrbi indicate the mean square maginitude and the relative mean square magnitude at

band bi respectively.

Similar to the case of tissue classi�cation using features from monopolar signals, the clas-

si�er of choice here is the LDA. This choice is made not only from the fact that this classi�er

is easy to interpret, but also it seems like a good �t giving the feature distribution in Fig. 3.5.

Moreover, the posterior probabilities of equation (3.8) might allow us to create a probability

map that gives an idea of the percentage of each brain matter between two consecutive contacts

(the percentage of grey matter is represented by the posterior probability of G/G, and the

percentage of white matter is represented by the posterior probability of W/W). This solution

is close to the idea of proximal tissue density proposed by (Mercier et al. 2017), in which the

author used the MRI of patients to quantify the amount of each brain tissue present in a given

region using the number of grey and white matter voxels in the contact proximity. In our case

this would be done using the posterior probabilities from the prediction using the classi�er.
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The overall procedure for tissue classi�cation is shown in Fig. 3.6. For the classi�er train-

ing, only the contacts in homogeneous matter have been considered. Once the classi�er is

trained, all possible contact pairs (homogeneous and heterogeneous) are classi�ed and poste-

rior probabilities are calculated with equation (3.8). This posterior probabilities are studied

for each group previously classi�ed (G/G, W/W, G/W, and W/G according to MRI) as they

might provide some insight into the tissue composition between contact pairs. We expect

higher posterior probabilities for the previously classi�ed homogeneous groups than for the

heterogeneous groups.

LDA classifier training

Classification using
LDA classifier

Good Channel
selection

Frequency
identification of
electrode pair

Feature extraction
Baseline

Homogeneous pairs
selection

All possible pairs
selection

Posterior probability
calculation

Classifier training

Classification of each pair

Figure 3.6: Tissue classi�cation procedure from the classi�er training to tissue classi�cation.

The LDA classi�er is trained with 90 % of data. This procedure was repeated �fty times,

changing the training set each time, in order to guarantee robustness. After each classi�er has

been trained, the remaining 10 % of data are used for prediction. The labels from the LDA

classi�er are compared to the original labels given from the MRI of the patient in order to

calculate the classi�cation accuracy, using equation (3.9).

The overall accuracy using only baseline signals is 72 ± 3% for the separation of homo-

geneous groups. The confusion matrix obtained comparing the predicted classes to the MRI

classi�cation, is presented in Fig. 3.7. The distribution of G/G and W/W pairs is almost

uniform (52 % of G/G pairs and 48 % of W/W pairs). Classi�er sensitivity, also known as

the ability of the classi�er to correctly classify G/G pairs is 0.726. The classi�er speci�city,

or the ability to correctly classify W/W pairs is 0.718. Therefore, the classi�er has the ability

of classifying both true positives and true negatives.

3.3.4 Analysis on tissue composition

Considering all pairs (homogeneous and heterogeneous ones), an analysis can be done using

posterior probabilities as an indicator of tissue composition. The posterior probability value
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Figure 3.7: Confusion matrix comparing the predicted class obtained via the LDA classi�cation

with the true class obtained with the MRI. The matrix in the right contains the row summary,

which represents the percentage of the samples of each of the two true classes that were

correctly classi�ed in blue and wrongly classi�ed in red. The matrix in the bottom contains

the column summary, which represents the percentage of samples of each of the two predicted

classes that were correctly classi�ed in blue and wrongly classi�ed in red.

indicates how likely a pair is of being part of the �rst group (G/G) or the second group (W/W).

The higher the probability of a pair belonging to G/G should indicate that there should be

more grey matter between the contacts of the pair, so on and so forth. Here, the probabilities

of each pair belonging to G/G and W/W according to the new classi�er are compared with

their previous MRI classi�cation. The results are shown in Fig. 3.8.

As expected, looking at Fig. 3.8a, the contact pairs previously classi�ed as G/G by the

MRI have the highest posterior probabilities of belonging to the G/G group (P̂ (G/G|x)), and
the smallest posterior probabilities of belonging to the W/W group (P̂ (W/W |x)). Exactly the
same behaviour can be noticed for the pairs previously classi�ed as W/W by the MRI. For the

previously classi�ed heterogeneous pairs G/W, and W/G, both P̂ (G/G|x), and P̂ (W/W |x)
have values in between the posterior probabilities observed for the homogeneous groups.

In Fig. 3.8b it can be seen that approximately 74% of the contact pairs previously classi�ed

as G/G by the MRI have larger values of P̂ (G/G|x) than P̂ (W/W |x). For the previously

classi�ed W/W pairs by the MRI, 71 % have higher P̂ (W/W |x) than P̂ (G/G|x). For both

cases the majority of pairs have probabilities between 60 % and 80 %. For the heterogeneous

pairs previously classi�ed as G/W, there is in general higher P̂ (G/G|x) than P̂ (W/W |x) (58
% of pairs with higher P̂ (G/G|x) against 45 % with higher P̂ (W/W |x)). For the W/G case
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Figure 3.8: Posterior probability study of each contact pair belonging to the homogeneous

groups G/G and W/W (according to the baseline LDA classi�er), depending on their label

from the MRI tissue classi�cation. (a) on top posterior probabilities of a pair belonging to

the G/G group are shown as a function of the MRI classi�cation of the pair. On bottom,

the same analysis for the posterior probabilities of being in the W/W group. (b) represents

the distribution of each of the previously classi�ed groups according to MRI in therms of the

posterior probabilities for both G/G and W/W groups.

both P̂ (G/G|x) and P̂ (W/W |x) have a similar distribution (50 % of pairs classi�ed as G/G

and 50 % classi�ed as W/W).

In general, the results show that the contact pairs have a higher probability of being in

grey matter than white matter (51 % of all possible contact pairs were classi�ed as being a

part of the G/G group as opposed to 49 % of the W/W group). This is consistent with the

reality, where 52 % of the measured contacts are in grey matter as opposed to 48 % in white

matter.

In Fig.3.9 an example of the implanted contacts positions for one patient is shown. The

dark blue contacts are inserted in grey matter, the light blue contacts are inserted in white

matter, and the yellow contacts are not in brain matter. What can be seen in the plot on the

right is that the measured contacts (in red) are all located closer to grey matter. The vast

majority of consecutive contacts in white matter is actually not recorded. Contacts recorded

in white matter on the centre of the brain are easy to classify in MRI images, and are the ones

for which the certitude of classi�cation is higher. Unfortunately, most of the white matter

contacts used in this study are not the ones located with the higher certainty, most of them

being close to grey matter. Thus, even though the fact that most contacts are located in

the boarders of grey and white matter could justify the miss-classi�cations, we have limited
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information on the possible use of the posterior probabilities as a direct measurement of the

amount of each tissue in between two contacts. For that, more data in distant white matter

should be considered.
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Figure 3.9: Contacts position in coordinates (x,y,z). The dark blue represent contacts in grey

matter, the light blue represent contacts in white matter, and the yellow represent contacts not

in brain matter. On the right the red colour refers to the recorded contacts in one measuring

session.

The classi�er as it is in this study, is more appropriate for support decision to coregistration

of CT scan (with implanted SEEG electrodes) with preoperative MRI. The method can be

implemented in routine SEEG software, to do a �rst pass of contact classi�cation.

3.3.5 Comparison with literature

As mentioned before, brain tissue classi�cation using SEEG signals has only been done before

in one other study ( see (Greene et al. 2021)). In it, the authors propose two di�erent features

to be extracted from SEEG signals in bipolar montage and the position of the contacts.

The �rst of them is the average shift in the power spectrum compared to the average power

spectrum over all contacts (in log scale) in the band [1, 150] Hz. The second feature is the

normalised distance between the contact in question and the most peripheral contact on the

shaft. However, the classi�cation method used by the authors is di�erent from the one used

in this study. If one wants to compare the discrimination abilities of the features proposed
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here with the ones proposed in (Greene et al. 2021), the same classi�cation method needs to

be applied and the accuracy must be calculated considering the same patients.

Hence, the two features proposed in (Greene et al. 2021) are calculated with the signals

from the 19 patients of this study using the bipolar montage, where the same adjacent contact

pairs are used, but in this case, the signal of the second contact is subtracted from the �rst

one. As the bipolar montage is used, the resulting label should also be a combination of the

two contacts. As in our study, only homogeneous combinations were considered and outliers

were removed.

The resulting accuracy using the features proposed by (Greene et al. 2021) with the LDA

classi�er is 60 ± 4%. The distributions of the features proposed in (Greene et al. 2021) are

shown in Fig. 3.10.
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Figure 3.10: Distribution of the features extracted from signals in bipolar montage as proposed

by (Greene et al. 2021).

From the accuracy obtained with the LDA classi�er and looking at the histograms of

the features proposed by (Greene et al. 2021), the ones proposed in this study considering

frequency responses seem to be the most discriminant. However, the Bayesian classi�cation

method proposed by (Greene et al. 2021) in which the brain structure and uncertainties of

parameters are considered, is more complete than the LDA one. It would be interesting as

a perspective to test the accuracy of the features proposed here considering the Bayesian

classi�cation method proposed by (Greene et al. 2021).
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3.3.6 E�ect of order of contacts

As mentioned, in order to calculate the frequency response of a pair of contacts, one of the

contacts is considered as the input and the other is considered as the output. The choice was

made to consider contacts in an ascending order, in which the �rst contact is the shallower

one, and the second is the deeper one on the shaft. To see the e�ect of choosing the descending

order, Fig. 3.11 shows the di�erence on the frequency responses depending on the order the

contacts are considered for two pairs (one in homogeneous grey matter and one in homogeneous

white matter).
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Figure 3.11: Di�erence in frequency response depending on the contact order for one mea-

surement session considering two di�erent pairs of contacts (one G/G and the other W/W).

Grey matter frequency responses are represented in black, and white matter ones are in cyan.

The discontinuous lines represent the responses inverting the order of the contacts.

It can be seen that the gain in white matter remains close to zero in small frequencies

independently on the order of contacts. The static gain in grey matter however, goes from

negative dB values to positive dB values. The gain is the ratio of the Fourier transforms of

the cross-covariance and covariance of the voltage of the two contacts. Thus, the fact that

the gain in white matter is close to 0 dB (or 1) for both ascending and descending orders,

suggests that signals of the W/W group are more correlated than the signals in G/G. This

can be con�rmed by looking at Fig. 3.2e and Fig. 3.2f.

For the ascending order, the gain for the G/G group is smaller than 1 (0 dB) it means that

the second voltage is smaller in amplitude than the �rst one. For the descending order, where

the deeper contacts are considered �rst, the static gain for the G/G pair is higher than than

1 (0 dB), thus the voltage of the second electrode is bigger than the �rst one. This indicates

that the deeper into the brain the contact is, the smaller the voltage in grey matter.
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3.3.7 E�ect of epileptic tissue

In literature (McCann et al. 2019), and (Akhtari et al. 2006), it has been shown that the

conductivity of epileptic tissues di�ers from healthy grey and white matter. This fact might

a�ect the frequency responses and induce bias in the classi�cation.

To see the e�ects of epileptic tissue in the classi�cation method proposed here, the pairs

located in epileptic networks are taken into consideration. In order to do so, a spike detector

(Roehri et al. 2019) was used with default parameters to obtain a spike rate for each channel

in the bipolar montage. The spike rate was normalised for each patient, which is equivalent

to subtracting the average and dividing by the standard deviation of all pairs. Contact pairs

with a normalised spike rate greater than three times the median of spike rates across all

patients were considered to be in an epileptic network. A total of 59 G/G pairs (9 %), and 80

W/W pairs (13 %) were considered as being in epileptic networks across all patients.

In Fig. 3.12, the distribution of features is shown superposed by features obtained by pairs

of contacts in epileptic networks.
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Figure 3.12: Distribution of features depending on the pair classi�cation considering pairs in

normal tissue: G/G in blue and W/W in green, and epileptic tissues (with higher spike rates):

G/G ep in red and W/W ep in black. MSbi, and MSrbi indicate the mean square maginitude

and the relative mean square magnitude at band bi respectively.

For both the G/G and W/W pairs, the distribution is similar considering the healthy

tissues and tissues with a high spike rate. It is also important to note that pairs with high

spike rate account for only 22 % of the outliers. In order to quantify the e�ect of these

contact pairs in the brain tissue classi�cation, a new LDA classi�er is trained considering only
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electrodes in healthy tissue. The accuracy obtained for the classi�er is 72± 1%. This means

that the areas with high spike rates do not a�ect the classi�cation.

3.3.8 Brain region e�ect

In SEEG, the electrodes are not always placed in the same brain regions. Their implantation

is done considering prior knowledge of where the epileptic zones should be located. Thus, it

would be interesting to see if the distribution of features would change depending on the brain

region the pair of contacts is inserted in. In order to do so, the contact pairs are grouped by

brain regions according to MarsAtlas (Auzias et al. 2016) (cingular, frontal, insula, occipital,

orbito-frontal, parietal, temporal). Each of these groups are separated between G/G and

W/W pairs according to the MRI classi�cation. Finally, the median value of each feature is

calculated for each sub-group, and is plotted against the feature distribution map in Fig. 3.13.
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Figure 3.13: Distribution of features for each pair depending on its MRI classi�cation: G/G

in blue and W/W in green. Considering the G/G and W/W groups separately, the contact

pairs that belong to the same brain region are grouped, and the median of each feature is

calculated for each brain region. The superimposed crosses represent the median values of

features classi�ed as G/G in red or W/W in black depending on which of the 7 brain regions

the contact pairs were inserted in. MSbi, and MSrbi indicate the mean square maginitude

and the relative mean square magnitude at band bi respectively.

When looking at the �rst feature MSb1, the median values for the G/G and W/W contact

pairs are well separated for all of the regions. Thus, the features are discriminant independently

of the brain region the signals are measured on.
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In order to have a better idea of the impact of the brain regions in tissue separation, the

classi�er obtained considering all pairs is used in each of the regions separately. The results

considering the G/G classi�cation as the positives and the W/W classi�cation as the negatives

are given in Table 3.2.

TP TN FP FN Accuracy (%)

Cingular 24 21 5 6 80%

Frontal 76 52 19 32 72%

Insula 5 3 1 1 80%

Occipital 37 28 3 11 82%

Orbito-frontal 19 18 7 4 77%

Parietal 6 17 2 4 79%

Temporal 103 67 36 44 68%

Table 3.2: Study of classi�cation according to brain region. The positives correspond to the

G/G group, and the negatives to the W/W group.

It can be seen that the accuracies obtained for each brain region are high, proving once

again that the classi�cation can be used independently of the region. However, the accuracies

obtained for the frontal and temporal regions of the cortex, even though high, are smaller

than the accuracies of the other ones. There is no evident reason as to why this di�erence

occurs. It could indicate a higher miss-classi�cation rate on these speci�c regions of both grey

and white tissues (in both cases about 30% of G/G and W/W samples were miss-classi�ed).

In order to verify that, more data needs to be gathered from other patients.

3.4 Other possible features for brain tissue classi�cation

The �rst approach for tissue classi�cation using SEEG signals presented in section 3.2 used

only simple time and frequency domain features. Even though the features based on frequency

responses proposed in section 3.3 achieve good results for brain tissue classi�cation, there are

still many other features that could be explored using monopolar referenced signals.

In this context, I supervised the work of Pedro Lopes to study other time and frequency

domain features for tissue classi�cation using monopolar signals commonly used when studying

epileptic signals (see (Boonyakitanont et al. 2020), and (Sharmila et al. 2018)) as a part of

an internship from January 2021 to June 2021. The results were published in (Lopes et al.

2021). We also tested di�erent classi�cation algorithms other than the LDA, that are presented

hereafter.
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3.4.1 Time and frequency domain features

For time domain features, other than the �rst four statistical moments already presented,

(Lopes et al. 2021) also proposed the use of the mean absolute value, and the coe�cient of

variation (CV ) for data dispersion:

CV = σ/µ (3.13)

The �rst (Q1) and third (Q3) quartiles were also proposed as features. A quartile is

obtained by ordering the data and separating it in four equal parts, Q1 corresponds to the

data value at 25 % of the ordered sample and Q3 corresponds to the data value at 75 % of

the ordered sample. With these values, the inter-quartile range can be calculated:

IQR = Q1 −Q3 (3.14)

In addition, considering x(t) as the SEEG signal of N samples the energy of the signal

was calculated as:

energy =
N∑
k=1

x2(k) (3.15)

its average power was calculated as:

avrpow = energy/N (3.16)

and the root mean square power was calculated as:

rmspow =
√
avrpow (3.17)

In the same line of features related to the energy of the signal, the nonlinear energy (NE)

can detect formant AM-FM modulations with the following equation:

NE =
N−2∑
i=1

x2(i)− x(i+ 1) · x(i− 1) (3.18)

Another feature largely used in epilepsy for seizure detection is line length (L) which

determines the fractal dimensionality of a signal:
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L =

N−1∑
i=1

|x(i)− x(i− 1)| (3.19)

Shannon entropy was also calculated, and represents the information or the uncertainty

of a signal. Considering pi the probability of occurrence of each value in the signal, Shannon

entropy is given as:

ShEn = −
∑
i

pilog(pi) (3.20)

Hurst Exponent (H) is related to the dependence of values in a time series, acting as a

long-term memory. For 0.5 < H < 1, consecutive values in time series are long-term related,

and 0 < H < 0.5 indicates a switch between high and small consecutive values. For self-

similar time-series, H is also related to fractal dimension. There are many ways to estimate

H, here the Matlab function wfbmesti is used, which calculates the linear regression of the

logarithmic plot of variance of detail versus level of wavelet signal decomposition, as proposed

by (Flandrin 1992).

The other two time features proposed are the number of zero crossings, and the number

of slope sign changes.

In addition, in (Lopes et al. 2021) frequency domain features were also proposed using

spectral density estimates of the signals via modi�ed periodograms:

P̂ (f) =
T

Nw

[
Nw−1∑
n=0

hnxne
−j2πfTn

]2
(3.21)

with T the sampling time, and hn a Hamming window of size Nw. These spectral density

values were used to calculate the RMS power of �ve typical frequency bands of brain signals

(see (Frauscher et al. 2018)): δ (0.5 - 4 Hz), θ (4 - 8 Hz), α (8 - 13 Hz), β (13 - 30 Hz) and γ

(30 - 80 Hz).

3.4.2 Classi�cation methods

In (Lopes et al. 2021) these features were used to train six di�erent classi�ers that are all

described in (Hastie, Tibshirani, Friedman, and Friedman 2009). The �rst proposed classi�er

was decision tree, which is composed by a starting node, that creates intermediate nodes from

binary partitions until terminal nodes are reached. For this case, the partitions are based on

the Gini Index. The assigned class to a sample is the one most present in the terminal nodes.

Using decision trees as a base, the second method for classi�cation tested in (Lopes et al.

2021) is the random forest. In it, n decision trees are bagged, each one of them is trained
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separately, the �nal class of a sample is the one with the largest number of votes across all

trees. The number of trees used was n = 150 out of trial and error.

The next classi�er tested was the K-Nearest Neighbour. Considering the labels of the

training data, in order to label a test sample, the K nearest training samples are selected and

the label most present between them is de�ned as the new sample label. For this case, the

K = 11 nearest neighbours were calculated using the euclidean distance.

Support Vector Machine (SVM) was the fourth method used for classi�cation. It consists

in the linear separation of groups in a feature space. The support vector is composed by

the closest samples to the frontier. In the case where features can not be separated linearly,

a kernel function is used to transform the feature space into a higher dimension one. From

di�erent performed tests, the linear kernel function was chosen.

For the �fth method, the Naive Bayes classi�er was used. This classi�er calculates the

posterior probabilities according to the Bayes rule. Considering the class index of an observa-

tion Y , π(Y = k) is the prior probability that a class index is k, and considering a vector of

p features feat = [f1, · · · , fp], the posterior probability according to Bayes rule is given as:

P (Y = k|f1, · · · , fp) =
π(Y = k)Πp

j=1P (fj |Y = k)∑K
k=1 π(Y = k)Πp

j=1P (fj |Y = k)
(3.22)

The class assigned to the new sample is the one with the highest posterior probability.

Finally, the last classi�cation method tested was the arti�cial neural network. A neural

network is formed by an input layer of as much neurons as the number of features, intermediate

hidden layers formed by one or more neurons, and a single output layer. The idea is to adjust

the weights at each node in order to minimise a cost function. For the case of binary classi-

�cation, the lost function of choice is the cross-entropy function and the chosen optimisation

algorithm is the stochastic gradient descent with momentum. The network con�guration used

in this case consists of a fully connected layer with 32 neurons (number obtained via trial and

error). The output layer has a softmax transfer function to assign a probability of a sample

belonging to each class.

3.4.3 Classi�cation results

The 6 di�erent classi�cation methods were trained using all of the 23 features. The data was

split into K = 4 di�erent subsets. K − 1 of such subsets were used for the classi�er training,

and the remaining one to validation. This process is repeated until all possible combinations

of test and training subsets are used. The �nal evaluation consists in the mean evaluation

over all combinations. This process is repeated 20 times to get a more robust estimation of

the classi�ers performance.

The chosen evaluation metrics in (Lopes et al. 2021) to quantify the performance of the
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classi�er were: Accuracy, area under curve (AUC) of the operating characteristics (ROC) and

F1-Score. Here, to compare with the previously proposed features, the emphasis will be given

to the accuracy values.

In (Lopes et al. 2021), only 3 patients were used in the analysis, which accounts for 275

contacts in grey matter and 223 contacts in white matter. The accuracies obtained for the

3 patients using the di�erent classi�cation methods are shown in Table 3.3. In order to

compare between the features proposed in (Lopes et al. 2021) and the features obtained from

the frequency responses, they need to be extracted from the same patients. Thus, the same

classi�cation procedures described in (Lopes et al. 2021) and presented in this section are

applied to the data of the 19 patients used for the non-parametric frequency response study.

For the 19 patients there are 1100 contacts in grey matter, and 968 contacts in white matter.

The results are also presented in Table 3.3.

Algorithm Accuracy for 3 patients (%) Accuracy for 19 patients (%)

Decision Tree 66.34 ± 2.11 60.02 ± 0.98

Random Forest 74.03 ± 1.02 66.9 ± 0.59

KNN 69.86 ± 1.12 63.26 ± 0.74

SVM 72.03 ± 0.68 60.5 ± 0.54

Naive Bayes 56.90 ± 0.81 48.78 ± 0.17

Neural Network 69.69 ± 1.70 56.36 ± 2.99

Table 3.3: Inter-patient performance of classi�ers for the three patients used in (Lopes et al.

2021) and the 19 patients used in this study

It can be seen from the results in Table 3.3, that the best performing classi�er for both 3

and 19 patients was the random forest one. For the 3 patients case the accuracy achieved is

74.03 ± 1.02% and for the 19 patients case it is 66.9 ± 0.59%. This results show that higher

accuracies can be obtained when considering features extracted from non-parametric frequency

domain identi�cation when compared to features extracted directly from monopolar signals.

3.5 Conclusion

In this chapter, the concept of brain tissue classi�cation using SEEG signals was introduced.

From the fact that the vast majority of the techniques for brain tissue classi�cation rely on

the co-registration of the MRI and CT scan of a patient, there is a lot of exploration that can

be done when it comes to alternative classi�cation methods.

Hence, in this chapter brain tissue classi�cation was proposed using features extracted ei-

ther from raw SEEG signals or from the non-parametric frequency response of paired contacts.

At �rst, a preliminary study was made considering simple time and frequency domain features

extracted from signals in monopolar montage (or common reference). An LDA classi�er was

trained with the features extracted from 19 epileptic patients and an accuracy of 54± 3% was

achieved. From the poor results obtained using the �rst proposed features, a new strategy
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was suggested for brain tissue classi�cation with the use of non-parametric frequency response

identi�cation of pairs of consecutive contacts. The idea was based on the di�erences of con-

ductivity between grey and white matter. This second study, resulted in a 72± 1% accuracy

for homogeneous group separation using the data from the 19 epileptic patients and an LDA

classi�er. Finally, in a parallel study that I supervised and conducted by Pedro Lopes, more

complex features were extracted from the monopolar SEEG signals based on previous studies

on epileptic signals (see (Boonyakitanont et al. 2020), and (Sharmila et al. 2018)). These

features were used to train six di�erent classi�ers. The maximum accuracy obtained using the

signals of the 19 epileptic patients was 66.9± 0.59% using a random forest classi�er.

There is only one other study in literature that proposes brain tissue classi�cation using

SEEG signals (see (Greene et al. 2021)). The authors proposed two features extracted from

signals in bipolar montage. The accuracy obtained using the features proposed by (Greene

et al. 2021) and an LDA classi�er is 60± 4% for the 19 patients of this study, which is lower

compared to the accuracy obtained with the features proposed here. However, the Bayesian

classi�cation method proposed by the authors in (Greene et al. 2021) could be more robust

as it considers prior knowledge in brain tissue distribution.

The approach with better results for brain tissue classi�cation is the one with features

extracted from the non-parametric frequency response identi�cation of pairs of consecutive

contacts. In addition, the results show that the method is robust to epileptic tissues, and

achieves the same accuracy for tissue classi�cation with and without considering the epileptic

networks. With this performance, the tissue classi�cation method could be used to support

brain tissue classi�cation via the coregistration of CT scan (with implanted SEEG electrodes)

with preoperative MRI, helping not only with signal interpretation, but also in the choice of

contacts to be recorded.

Moreover, the posterior probabilities obtained with the LDA classi�er for each pair could

give an idea of the tissue composition between a pair of contacts. To achieve this, more studies

need to be done with signals measured in distant white matter.

The fact that the non-parametric frequency response is a good discriminator between grey

and white matter, makes it interesting to study the parametric model that characterises the

brain-electrode interface. The parameters of the identi�ed model could be used for tissue

classi�cation, and give a physical insight into the di�erences between brain tissues. This

parametric approach will be discussed in the following chapter.





Chapter 4

Brain tissue classi�cation from the

modelling of the brain-electrode

interface

The di�erences in conductivity of grey and white matter have been largely studied in literature

as shown in section 1.3. Hence, if one has access to the resistance value between two measuring

contacts, it could be used as a metric for tissue classi�cation. Moreover, from the results of

chapter 3, where the features extracted from the non-parametric frequency response were the

most discriminant between brain matters, the next step would be to perform a parametric

system identi�cation of the brain-electrode interface. In addition, an appropriate interface

model helps with understanding the tissues response to stimulation which can also help with

artefact correction (Trebaul, Rudrauf, et al. 2016).

Previous studies have proposed electronic circuit models based on the physical properties

of the brain-electrode interface. In (Lempka, Miocinovic, et al. 2009), (Sankar et al. 2014) and

(M. Johnson et al. 2005) models were proposed based on (McAdams and Jossinet 1995) to

study the impedance measured by electrodes chronically implanted in brain of a monkey and

rats respectively. All of these previously mentioned models contain a constant phase element

that introduces a non-integer derivative to the system.

To our knowledge, the only study to measure the impedance of the brain-electrode interface

using in clinico signals obtained from SEEG electrodes is (Carvallo et al. 2018). The authors

propose a simpler impedance model with no non-integer derivatives which is identi�ed from

the measured potentials in pairs of adjacent electrode contacts stimulated by a known current

in two epileptic patients. Even though the results of the mentioned study are promising

for grey and white matter di�erentiation and brain-electrode interface modelling, it does not

use signals from typical clinical settings of SEEG recording sessions, which makes it hard

to reproduce. In other words, even though the authors use implanted SEEG electrodes, the

stimulated and measured signals used for identi�cation are not the ones typically recorded in

SEEG exploration. Despite the fact that direct brain stimulation might be performed during

SEEG investigation, the voltage in the stimulated contacts is not measured, therefore the

proposed analysis by the authors requires more information than usually available.

In the present study a new method for the brain-electrode interface identi�cation is pro-

posed using only baseline voltage signals recorded during typical clinical settings of SEEG

65
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before resective surgery. Prior to that, a study on the physical properties of the electrode-

electrolyte interface is performed in data collected on a phantom EEG device designed in

(Becq, Voda, et al. 2017), and previously studied in (Besancon et al. 2018) and (Besançon

et al. 2019). The aim is to re�ne the models proposed in (Besancon et al. 2018) and (Besançon

et al. 2019) by adding physical components described in the literature concerning EEG mea-

surements. The use of phantom EEG devices enables to identify the components precisely,

as one has control over stimulation signals and knowledge of the medium properties. This

preliminary study gives a good idea on what values can be expected when modelling the

brain-electrode interface.

4.1 Study of the electrode-electrolyte interface

In this section, the preliminary study on the modelling of the electrode-electrolyte interface

using the phantom EEG device is presented. As mentioned, the device was proposed in (Becq,

Voda, et al. 2017), and previously modelled in (Besancon et al. 2018) and (Besançon et al.

2019). Here, the goal is to retrieve the dynamical and physical properties of the electrode-

electrolyte interface and the values of the components that form it, to have a starting point for

the study of the brain-electrode interface. The results presented in this section were published

in (M. Machado, Voda, Besançon, Becq, and David 2020).

4.1.1 phantom EEG setup

The experimental setup proposed in (Becq, Voda, et al. 2017) can be represented as in Fig. 4.1.

The input signal is either a white noise or a sinusoid, generally used for electrochemical

impedance spectroscopy. The signals are generated in Python and are transmitted to the

input electrode via a digital to analog converter (National Instruments CRIO-9263 mounted

on a cDAQ-9181 Ethernet chassis). The input electrode is inserted into an electrolyte medium

which is a solution of phosphate bu�ered saline (PBS) obtained from a dissolution of half a

tablet of P4417 Sigma-Aldrich in 1 l of pure water (0.1 times concentration).

The output voltage is measured in three di�erent positions by output electrodes located at

1 cm, 3 cm, and 5 cm from the input electrode. The input and output electrodes are connected

to an EEG recorder (g.tec g.USBamp) with a selected sampling frequency of 4.8 kHz. The

electrodes are made out of pure platinum and have a cylindrical shape with a 0.5 mm diameter

and length of 1 cm. Only about 0.5 cm of the length of the electrodes are inserted into the

medium.

4.1.2 Previous modelling of the phantom EEG measurement chain

The modelling of the phantom EEG measurement chain, was already addressed in previous

works (Becq, Voda, et al. 2017), (Besancon et al. 2018), (Besançon et al. 2019). In all previous
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Figure 4.1: Experimental setup for data acquisition of the phantom EEG .

cases, the model was proposed based on the shape of the non-parametric frequency responses

obtained from data, as described in section 2.2. Two cases were studied, at �rst the medium

was composed by a sponge submerged in the electrolyte, in the second case the medium was

purely formed by electrolyte. The proposed model for the medium composed by the sponge

and electrolyte can be found in Fig. 4.2a. The model for electrolyte only mediums is shown

in Fig. 4.2b.

(a) First model (b) Re�ned model

Figure 4.2: Previous circuit models of the phantom EEG measurement chain proposed by

(Becq, Voda, et al. 2017), (Besancon et al. 2018), and (Besançon et al. 2019). In (a) the �rst

proposed model. In (b) the re�ned model considering purely electrolyte mediums.

As it was mentioned in section 1.4.1, for both models there is a CPE present of equation

(1.1), which introduces a non-integer derivative to the resulting transfer function. The focus

here is given to the second model of Fig. 4.2b, as the interest is to characterise a purely

electrolyte medium. The transfer function can be obtained from the model considering a

voltage divider, which gives:

H(s) =
Y (s)

U(s)
=

B0 +B1s
α

1 +A1sα
(4.1)



68 Chapter 4. Brain tissue classi�cation from the modelling

with:

B0 =
R2

R1 +R2 +R3
(4.2)

B1 =
R2R3Q

R1 +R2 +R3
(4.3)

A1 =
R3(R1 +R2)Q

R1 +R2 +R3
(4.4)

As there is a nonlinear relationship between the transfer function coe�cients (B0, B1, and

A1) and the electronic components, the latter can not be retrieved directly from the identi�ed

coe�cients, only the value of the ratio of resistances can be recovered:

ρ =
B1

A1
=

R2

R1 +R2
(4.5)

These �rst studies on the modelling of the phantom EEG measurement chain yield good �t

to the data. The drawback lies mainly on the physical interpretation of the model, and the fact

that the electronic circuit components cannot be directly retrieved from the transfer function

parameters. This is why in the next sections, a model based on the physical properties of

each stage in the phantom EEG measurement chain is proposed, and compared to the ones

presented in this section. In other words, the aim is to go beyond the direct transfer function

between input voltage Vin and output voltage Vout, as it was established in (Becq, Voda, et al.

2017), (Besancon et al. 2018), and (Besançon et al. 2019), and �nd a model that describes

separately the e�ects of input electrode, medium, output electrode and EEG recorder, as in

Fig. 4.3.

Input 

electrode/
Medium

Medium
 Medium/
Output

electrode
EEG recorder

Figure 4.3: Block diagram of the di�erent parts of the phantom EEG measurement chain.

4.1.3 Physical-based approach for the model structure

One of the �rst authors to propose an electronic circuit representation of the EEGmeasurement

chain was (Robinson 1968), with a form recalled in Fig. 4.4. The di�erence between the model

proposed by the author and the phantom EEG being analysed here is the input electrode that

does not appear in (Robinson 1968). The signal is considered to be generated directly from

neuronal activities. The author represents the solution by a resistance (Rs), the impedance

of the output electrode by a metallic resistance (Rm) in series with the parallel of the shunt
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capacitance of the system to the ground (Cs) and the input impedance of the ampli�er of the

recorder (Ra). Robinson also proposes a representation of the interface between the electrode

and the electrolyte solution as the parallel between a double layer capacitance (Cdl) and a

charge transfer resistance (RCT ).

Amplifier

Solution

Electrode-
electrolyte
interface

Output
electrode and
EEG recorder

Figure 4.4: Model proposed in (Robinson 1968) for EEG measurement chain with input from

neuronal activity.

Many authors have discussed fractional order representations of the electrode-electrolyte

interface. For instance (Magin et al. 2008) studied the interface between cardiac tissue and

electrodes and (McAdams, Lackermeier, et al. 1995) studied various di�erent aspects of what

happens when a metal is placed in an electrolyte. The most common circuit proposed for

modelling the interface is shown in Fig. 4.5a.

W
(a) First model (b) Re�ned model

Figure 4.5: Commonly used models for the electrode/electrolyte interface. (a) General model.

(b) Platinum electrode/electrolyte interface model.

The non-faradic processes in the interface are represented by the double layer capacitance

Cdl that corresponds to the layers of charge of opposite polarity located in the surface of the

electrode and in the electrolyte. The faradic processes are represented by the charge transfer

resistance RCT in series with the Warburg impedance ZW . The resistance RCT represents the

possible transfer of charge that occurs in the interface and ZW represents the di�usion, with

a transfer function as follows (where s stands for the Laplace variable):
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ZW =
1

Cws0.5
(4.6)

For the speci�c case of this study where platinum electrodes were chosen, for potentials

with absolute value under 0.5 V, the faradic processes are greatly reduced in the interface.

(McAdams, Lackermeier, et al. 1995) proposed a new circuit to represent speci�cally the case

of platinum electrodes in electrolyte medium (Fig. 4.5b). In this case, ZCPE is a constant

phase element of equation (1.1), for 0 < α < 1 that represents the non-faradic processes in the

interface instead of the capacitance Cdl. The choice to replace the double layer capacitance by

a constant phase element was made because the latter better represents the adsorption and

surface roughness e�ects. Even though the faradic processes are reduced, there might still be a

charge transfer in very small amounts between the electrode and the electrolyte, as explained

by (McAdams, Lackermeier, et al. 1995), that is why RCT is still present in the circuit.

With the preliminary study of the EEG measurement chain made by (Robinson 1968)

and the interface proposed by (McAdams, Lackermeier, et al. 1995), the complete circuit that

represens the phantom EEG setup under study is given in Fig. 4.6. Rmed1, ZCPE1, and RCT1

represent the metallic resistance and the electrode-electrolyte interface for the input electrode,

Rs represents the resistance of the solution (electrolyte), Rmed2, ZCPE2, and RCT2 represent

the metallic resistance and the electrode-electrolyte interface for the output electrode, and Cs

represents the shunt capacitance to the ground. Rr is a simpli�cation of the impedance of

the recorder viewed from the measurement chain considering that the signal is �ltered and

ampli�ed.

Input electrode impedance Output electrode impedance

Medium resistance Input impedance of the
amplifier

Figure 4.6: Proposed model of the phantom EEG measurement chain.

For the case studied here, the input and output electrodes will be considered to be the

same in terms of their physical properties (Rm1 = Rm2 = Rm, ZCPE1 = ZCPE2 = ZCPE , and

RCT1 = RCT2 = RCT ). This consideration is made in order to simplify the model of the EEG

measurement chain, as the identi�cation of more complex models tend to be more sensitive

to noise (as described in the results and discussion presented hereafter). This is not far from

reality as both electrodes have the same dimensions, are made of the same material and they

are in contact with the same electrolyte. With this assumption, and using equation (1.1) for
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ZCPE , the impedance of each electrode can be represented as follows:

Zelectrode =
RmRCTQsα +Rm +RCT

RCTQsα + 1
=

p1s
α + p2

x1sα + 1
(4.7)

From equation (4.7), the transfer function that describes the model is:

H(s) =
Vout

Vin
=

B1s
α +B2

A1sα+1 +A2s+A3sα + 1
(4.8)

with:

B1 =
Rrx1

Rr + 2p2 +Rs
(4.9)

B2 =
Rr

Rr + 2p2 +Rs
(4.10)

A1 =
2p1RrCs +RsRrCsx1

Rr + 2p2 +Rs
(4.11)

A2 =
2p2RrCs +RrCsRs

Rr + 2p2 +Rs
(4.12)

A3 =
Rrx1 + 2p1 + x1Rs

Rr + 2p2 +Rs
(4.13)

The aim now is to recover from the identi�cation of transfer function (4.8), the six physical

parameters of the circuit in Fig. 4.6 that are Rm, RCT , ZCPE , Rs, Cs, and Rr. The problem

is that there are only �ve coe�cients which are (structurally) identi�able (see (Walter et al.

1997)) from equations (4.9) to (4.13). Therefore, one of the six physical parameters has to

be estimated via other considerations. The chosen physical parameter to be calculated is the

medium resistance Rs, which can be calculated directly from the general resistance formula

given in equation (4.14) hereafter, in which σ ([S/cm]) is the electrical conductivity of the

solution, l ([cm]) the length of the material for which the resistance is going to be measured

and A ([cm2]) the transverse surface of the material:

R =
1

σ

l

A
(4.14)

In the case of the resistance of the solution, the length (l) is the distance between the

input and output electrodes. The area (A) is the transverse surface of electrolyte between the

input and output electrodes, which can be approximated to the lateral surface of the cylinder

of diameter 0.5 mm and height 0.5 cm. The electrical conductivity (σ) of the PBS presented

in section 2 was already estimated in (A. Johnson et al. 2004) as being σ = 0.00181 [S/cm].

The resulting values of the resistance of the solution as a function of distance are given in
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Distance between electrodes Rs

1 cm 7.03 kΩ

3 cm 21.10 kΩ

5 cm 35.17 kΩ

Table 4.1: Values of Rs as a function of the distance between electrodes.

Table 4.1. The found values of Rs are close in order to those calculated in (Robinson 1968)

and (A. Johnson et al. 2004).

With the resistance of the solution (Rs) known, the system of equations to recover the

physical parameters of the circuit shown in Fig. 4.6 is given by equation (4.15).



x1 =
B1
B2

Rr(B2 − 1) + 2p2B2 = −RsB2

2p1 − A1
B2

1
Cs

= −Rs
B1
B2

A2
B2

1
Cs

− 2p2 = Rs

Rr

(
B1
B2

−A3

)
+ 2p1 − 2p2A3 = Rs

(
A3 − B1

B2

)
(4.15)

4.1.4 Identi�cation methodology

The transfer function of the model to be identi�ed is given in equation (4.1). As for the noise

structure, the system is considered to be of the ARX form (see section 2.3). For such model,

the parameters can be directly estimated considering the input and output signals using the

least squares algorithm, since the relationship between the cost function and the parameters

is linear (see equation (2.33)). However, the choice is made to use the recursive version of

the previously mentioned algorithm, the recursive least squares (RLS) with the adaptation

gain version presented in (Landau et al. 2006). The ARX model is chosen because the RLS

algorithm is easily implemented when compared to others.

The system to be identi�ed has a non-integer order. Therefore, there are fractional order

derivatives that need to be approximated in order to guarantee the precision of the identi�-

cation. There are many ways in which one can approximate the non-integer order derivative,

most of them are presented in section 2.6. Here, the selected approximation method was pro-

posed by Ivo Petrà² in (Petrás 2011) for its small computational time and good precision. The

Matlab algorithm dfod1 proposed in (Petrá² 2003) is used. As an input, the function takes

the order of the equivalent transfer function to be found (n = 4) and the weighting factor for

the Al-Alaoui rule (a = 1/7). This values were chosen via trial and error by comparison of

the responses of the identi�ed models. Thus the non-integer derivative is approximated as:
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sβj ≈
∑n

i=0 cj,iz
−i∑n

i=0 dj,iz
−i

(4.16)

with j = [1, 2], β1 = α + 1, β2 = α, c and d the numerator and denominator coe�cients

respectively given by dfod1. The integer order derivatives are discretized using the Tustin

discretization method presented in equation (2.6).

Considering the general output of an ARX model given as:

ŷ(k + 1) = θ̂Tφ(k) (4.17)

with the regression vector θ̂T written as follows:

θ̂T = [b̂1, b̂2, â1, â2, â3] (4.18)

with:

b̂1 =
B̂1d1,0d2,0T

Td1,0d2,0 + Â1c1,0d2,0T + Â22d1,0d2,0 + Â3Tc2,0d1,0
(4.19)

b̂2 =
B̂2d1,0d2,0T

Td1,0d2,0 + Â1c1,0d2,0T + Â22d1,0d2,0 + Â3Tc2,0d1,0
(4.20)

â1 =
Â1d1,0d2,0T

Td1,0d2,0 + Â1c1,0d2,0T + Â22d1,0d2,0 + Â3Tc2,0d1,0
(4.21)

â2 =
Â2d1,0d2,0T

Td1,0d2,0 + Â1c1,0d2,0T + Â22d1,0d2,0 + Â3Tc2,0d1,0
(4.22)

â3 =
Â3d1,0d2,0T

Td1,0d2,0 + Â1c1,0d2,0T + Â22d1,0d2,0 + Â3Tc2,0d1,0
(4.23)

considering B̂1, B̂2, Â1, Â2, and Â3 as the estimations of the transfer function coe�cients,

and φ(k) the regression vector given as:

φ(k) = [U1(k), U2(k),−Y1(k),−Y2(k),−Y3(k)] (4.24)

with:
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U1(k) =
1

d2,0

[
n∑

i=0

c2,iVin(k − i)−
n∑

i=1

d2,iU1(k − i)

]
(4.25)

U2(k) = Vin(k) (4.26)

Y1(k) =
1

d1,0

[
n∑

i=0

c1,iVout(k − i)−
n∑

i=1

d1,iY1(k − i)

]
(4.27)

Y2(k) = − 2

T
Vout(k − 1)− Y2(k − 1) (4.28)

Y3(k) =
1

d2,0

[
n∑

i=0

c2,iVout(k − i)−
n∑

i=1

d2,iY3(k − i)

]
(4.29)

As mentioned, the choice is made to use the RLS algorithm (presented in section 2.3) to

identify θ̂. As a reminder, it consists of the system (4.30), with λ representing the forgetting

factor, meaning the given importance for past values in the current time estimation. In this

application, it is chosen as λ = 0.99 as it resulted in identi�ed coe�cients less sensitive to

noise.


θ̂(k + 1) = θ̂(k) + F (k)φ(k)ϵ(k + 1)

F (k + 1) = 1
λ [F (k)− F (k)φ(k)φT (k)F (k)

λ+φT (k)F (k)φ(k)
]

ϵ(k + 1) = y(k+1)−θ̂T (k)φ(k)
1+φT (k)F (k)φ(k)

(4.30)

Here, F (k) is initialised as F = gI, where I represents the identity matrix, and g = 105 (see

(Landau et al. 2006)).

In order to determine if an identi�ed model is not biased, a validation test must be per-

formed. The recursive least squares method is based on the whitening of the prediction error

(see section 2.5). Therefore, in order to validate the identi�ed model, whiteness and cross-

correlation tests must be performed (see equations (2.85) and (2.86)). Once the values of θ̂

are identi�ed and the model is validated, one can retrieve the transfer function coe�cients

using the following equations:
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B̂1 =
−b̂1Td1,0d2,0

2â2d1,0d2,0 − Td1,0d2,0 + â1Tc1,0d2,0 + â3Tc2,0d1,0
(4.31)

B̂2 =
−b̂2Td1,0d2,0

2â2d1,0d2,0 − Td1,0d2,0 + â1Tc1,0d2,0 + â3Tc2,0d1,0
(4.32)

Â1 =
−â1Td1,0d2,0

2â2d1,0d2,0 − Td1,0d2,0 + â1Tc1,0d2,0 + â3Tc2,0d1,0
(4.33)

Â2 =
−â2Td1,0d2,0

2â2d1,0d2,0 − Td1,0d2,0 + â1Tc1,0d2,0 + â3Tc2,0d1,0
(4.34)

Â3 =
−â3Td1,0d2,0

2â2d1,0d2,0 − Td1,0d2,0 + â1Tc1,0d2,0 + â3Tc2,0d1,0
(4.35)

The overall identi�cation algorithm can be summarised by the following �owchart given

in Fig. 4.7.

Initialisation of θ(0) with zeros, and F (0)

Get cj,i and dj,i values from dfod1

Calculation of φ(k) = [U1(k), U2(k),−Y1(k),−Y2(k),−Y3(k)]

Calculation of ϵ(k + 1)

Calculation of θ̂(k + 1)

Calculation of F (k + 1)

k = N − 1?

θ̂(k + 1) is the �nal estimation of coe�cients

no

yes

Figure 4.7: Flowchart representing the identi�cation algorithm of the phantom EEG.
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4.1.5 Identi�cation of non-integer order α

In the identi�cation methodology presented in the previous subsection, a constant non-integer

order is assumed. In order to determine this value, a system is identi�ed for various di�erent

�xed non-integer orders in the interval 0 < α < 1. The chosen order is the one corresponding

to the best identi�ed system. The main criterion considered here for the comparison between

identi�ed systems is the best �tted Nyquist plot (when comparing model to data). An example

of Nyquist plots for a small interval of α values is given in Fig. 4.8 considering the distance of

1cm between electrodes.

Figure 4.8: Comparison between Nyquist plots for order selection (α).

This criterion is chosen for the fact that the Nyquist plots analysis is subject to the largest

variations under order changes, in comparison to time responses and Bode plots. The selected

non-integer order is α = 0.8. The same test was repeated considering the other distances and

α = 0.8 was selected as the optimal order for all of the cases.

4.1.6 Identi�cation results

After the selection of the non-integer order, the identi�cation methodology presented in sub-

section 4.1.4 is applied considering the signals measured at the three di�erent positions. The

identi�ed transfer function coe�cients can be found in Table 4.2.

The values of Â1 are negative for all of the distance cases, which is not expected as the

coe�cients describe electronic components. However, since the value of Â1 is really small

when compared to B̂1, B̂2 and Â3, it can be considered to be zero. With that, the system of
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1cm 3cm 5cm

B̂1 1.0160e-03 5.3042e-04 3.7735e-04

B̂2 1.4043e-02 5.3900e-02 7.4789e-02

Â1 -5.4077e-08 -8.1570e-08 -2.0437e-07

Â2 7.3782e-09 9.1186e-09 1.1944e-08

Â3 4.8536e-03 4.9977e-03 7.1832e-03

Table 4.2: Identi�ed coe�cients with RLS method for each of the di�erent distances.

equations given in (4.15) can be used to recover the physical parameters when Rs is considered

known with values in Table 4.1. However, the condition number of the matrix containing the

weights of each variable is too high (1.9586e+09), which means that small variations in the

results can imply big variations in the identi�ed coe�cients. In other words, the system is ill-

conditioned and is not trustworthy to recover the physical parameters. This was also observed

in simulation. As a remedy, a simpli�cation of the model given by equation (4.8) can be

considered. What can be seen from the obtained coe�cients shown in table 4.2 indeed, is

that not only Â1 can be approximated as zero, but also Â2. With these remarks, the transfer

function can be rewritten as:

H(s) =
B1s

α +B2

Asα + 1
(4.36)

Notice that the number of equations in the system is reduced, but Cs is no longer a variable

to be identi�ed, and, with Rs known there are only four physical parameters to be identi�ed:

Rm, RCT , ZCPE (that are combined to form p1, p2 and x1), and Rr. Even with a reduced

number of parameters there is still one more physical parameter than there are equations,

therefore Rm has to be calculated. The calculation can indeed be done in the same way as

that of Rs using equation (4.14). In this case σ is the electrical conductivity of platinum

that can be found in (Cantrell et al. 2007), l is the length of the electrode (1 cm) and A can

be approximated as the transverse surface of the electrode assuming that the current �ows

uniformly inside it. With that, the value of the metallic resistance of the electrode is given

by:

Rm =
1

9.4× 106
0.01

π(2.5× 10−4)2
= 0.0054 [Ω] (4.37)

The value of Rm is very small when compared to the other resistances, so it does not have

an impact in the �nal physical values. The problem is that Rm is not written explicitly in

the system of equations (4.15). But there is a way of expressing Rr as a function of Rs and

Rm. This can be achieved by dividing the coe�cient B1 of equation (4.9) by the coe�cient

A3 of equation (4.12), and by writing p1 and x1 as functions of the electronic components.

The system of equations (4.15) can be rewritten as (4.38):



78 Chapter 4. Brain tissue classi�cation from the modelling



Rr =
(
B1
A

)2Rm+(
B1
A

)Rs

1−B1
A

x1 =
B1
B2

2p2B2 = −RsB2 −Rr(B2 − 1)

2p1 − 2p2a = Rs

(
A− B1

B2

)
−Rr

(
B1
B2

−A
) (4.38)

As the data for 3 cm and 5 cm of distance were found to have important noise, a new

identi�cation is done, considering only three parameters for these two cases, resulting in

identi�ed coe�cients less sensitive to noise. The �nal coe�cients identi�ed for each of the

cases are given in table 4.3. The coe�cients were found not to be biased as they were validated

by the whiteness and cross-correlation tests.

1cm 3cm 5cm

B̂1 1.0160e-03 4.4200e-04 2.7536e-04

B̂2 1.4043e-02 1.2687e-02 5.7549e-03

Â 4.8536e-03 3.3536e-03 3.4787e-03

Table 4.3: Identi�ed coe�cients with RLS method for each of the di�erent distances.

From these identi�ed coe�cients, equation (4.14), and the solution of (4.38), the physical

parameters can be recovered directly from the following system of equations, with l being the

distance between input and output electrodes:



Rs = (2.2099× 104) l

Rm = 0.0054

Rr =
(
B1
A

)2Rm+(
B1
A

)Rs

1−B1
A

RCT = p2 −Rm

Q = x1
RCT

(4.39)

The solution of (4.39) gives the physical parameters summarized in table 4.4. The recovery

of the physical parameters gives an idea of the order of magnitude of the electronic components

that can be expected when it comes to the electrode-electrolyte interface. It can be seen that

not only the values of Rs change with the distance between input and output electrodes, but

also RCT , and Q values depend on the separation of electrodes. The values of Rr are not that

a�ected by the distance between electrodes. However, its values are considerably small when

compared to the expected input impedance of an ampli�er (∼ 1MΩ). This could be justi�ed

from the fact that the reference electrode is situated in the saline solution, thus the input

impedance of the ampli�er is in parallel with the resistance between the output electrode and

the reference electrode. As the resistance between electrodes on the saline solution is smaller

than the input impedance, the resulting resistance is dominated by the smaller one. This is

why the values of Rr are close in magnitude to Rs.
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1cm 3cm 5cm

Rs [kΩ] 7.03 21.10 35.17

Rm [Ω] 0.0054 0.0054 0.0054

RCT [kΩ] 61.86 114.10 243.58

Q [Fs−1+α] 1.17e-06 3.0534e-07 1.96e-07

Rr [kΩ] 1.86 3.20 3.02

Table 4.4: Physical parameters recovered from the results of the black box identi�cation.

As it was mentioned, the identi�ed models were validated by the whiteness and cross-

correlation tests. As a second validation method it can be seen in Fig. 4.9 that the Nyquist

plots generated from the identi�ed models �t well with the Nyquist plots obtained from the

ETFE of the data for every considered distance between input and output electrodes.
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Figure 4.9: Nyquist plots for all of the three distances between input and output electrodes.

The continuous lines represent the Nyquist plots obtained from the identi�ed models, and the

points represent the Nyquist plots obtained from the ETFE of the data.

4.2 Brain-electrode interface

In this section, the brain-electrode interface is modelled using the data from the 19 epileptic

patients previously presented in section 3.1. A review of the state of the art on the proposed

models of the brain-electrode interface was done in section 1.4. These previous models consist

in three distinct parts: The electrode-electrolyte interface, the peri-electrode region, and the

medium resistance. The model proposed in the previous section for the phantom EEG device,
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can be used as a starting point for the modelling of the brain-electrode interface. The only

part that is missing is the peri-electrode region.

As mentioned, even though the brain-electrode interface has been previously identi�ed in

literature for deep brain stimulation, to our knowledge, only one study (Carvallo et al. 2018)

up to now has succeeded in measuring the impedance and �tting a model to in clinico signals

obtained from SEEG electrodes in two epileptic patients. The proposed model in (Carvallo

et al. 2018) had no non-integer derivatives, and was identi�ed from the measured potentials

in pairs of adjacent contacts stimulated by a known current. The values of medium resistance

retrieved were dependent on the type of tissue the contacts were inserted in, which is promising

for grey and white matter di�erentiation. However, the brain-electrode interface modelling

proposed in (Carvallo et al. 2018) does not use signals from typical clinical settings of SEEG

recording sessions, which makes it hard to reproduce. Thus, in the present study, a new

method for the brain-electrode interface identi�cation is proposed using only baseline signals

recorded during typical clinical settings of SEEG. The aim is to use the information retrieved

from the identi�ed models to characterise di�erent brain tissues.

4.2.1 Modelling

In the case of this study, the brain-electrode interface between two consecutive contacts is

considered. In this context, the electrode-electrolyte interface and the peri-electrode layer

should be considered twice. In (Carvallo et al. 2018), when comparing the values of the

electrode-electrolyte electronic components obtained for grey and white matter, there does

not seem to be a lot of di�erences. This is why, for simpli�cation, Qint, and Rct are considered

as constant for all contacts. For the peri-electrode region, previous studies (Sankar et al.

2014; M. Johnson et al. 2005; Lempka, Miocinovic, et al. 2009) have not di�erentiated the

values of components according to the tissue type. Therefore, the values of Rcl, Qcl, and

Ren are also considered to be constant. In the literature (M. Johnson et al. 2005), (Lempka,

Miocinovic, et al. 2009), the brain-electrode model is usually �tted to the impedance measured

via electrochemical impedance spectroscopy (EIS) where both the current and voltages of two

contacts are known. Here, the only information available reduces to the voltages measured

during the SEEG procedure. Thus, a more complete circuit compared to the ones in literature

needs to be proposed considering a voltage divider.

As mentioned, all voltages are measured with respect to a contact located in distant white

matter (contact in a di�erent electrode). However, if the voltages of two consecutive contacts

are re-referenced with respect to the next adjacent contact after the second one, the circuit

between the second contact and the third one is similar to the circuit between the �rst and

second contacts. Therefore, the resulting model that will be identi�ed in this study is given

in Fig. 4.10.

The voltage measured by the �rst contact in regard to the third contact is considered to

be the input voltage (V1), and the one measured by the second contact in regard to the third

contact is considered as the output voltage (V2). As the distance between the �rst and the
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Figure 4.10: Circuit that represents the appropriate brain-electrode interface model for SEEG

signals to be identi�ed using voltages V1 and V2 considering three consecutive electrodes. In

(a) the electrode-electrolyte interface as well as the peri-electrode region are represented as an

impedance Z. In (b) the complete model of the brain-electrode interface is shown in respect

to the measured voltages.

second contacts is the same as the distance between the second contact and the reference, the

order of magnitude of the electronic components between U1 and U2 is the same as the ones

between U2 and U0.

In order to reduce the complexity of the model, the non-integer orders of both constant

phase elements are considered to be the same and equal to α, which is what is observed in

(Lempka, Miocinovic, et al. 2009) some days after electrode insertion. The transfer function

H of the model can be easily found considering it as a voltage divider:

H(s) =
VLT2(s)

VLT1(s)
=

B1s
2α +B2s

α +B3

A1s2α +A2sα + 1
(4.40)

with VLT1(s) and VLT2(s) the Laplace transforms of V1 and V2.

The coe�cients [B1, B2, B3, A1, A2] of the transfer function are expressed as a function of

the electronic components as follows:
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B1 =
QintQclRctRcl(Rmed2 + 2Ren)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.41)

B2 =
(QintRct +QclRcl)(2Ren +Rmed2) + 2RctRcl(Qcl +Qint)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.42)

B3 =
2Rct + 2Rcl + 2Ren +Rmed2

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.43)

A1 =
QintQclRctRcl(4Ren +Rmed1 +Rmed2)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.44)

A2 =
4RctRcl(Qint +Qcl) + (4Ren +Rmed1 +Rmed2)(RctQint +RclQcl)

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.45)

The relationship between the transfer function coe�cients and the electronic circuit com-

ponents is non-linear. Moreover, there are 5 identi�able transfer function coe�cients and 7

component values to be retrieved. Thus, it is not possible to recover Qint, Qcl, Rint, Rcl, Ren,

Rmed1, and Rmed2 directly. From the identi�ed coe�cients, it is possible nonetheless to get

an idea of the di�erence in the resistances Rmed1 and Rmed2 in regards to the tissue type. For

that, the transfer function coe�cients can be rearranged in the following manners:

(
B1

A1

)
=

2Ren +Rmed2

4Ren +Rmed1 +Rmed2
(4.46)(

B2

A2

)
=

c1(2Ren +Rmed2) + c2
(4Ren +Rmed1 +Rmed2)c1 + 2c2

(4.47)

B3 =
2Rct + 2Rcl + 2Ren +Rmed2

4Rct + 4Rcl + 4Ren +Rmed1 +Rmed2
(4.48)

with: c1 = QintRct +QclRcl, and c2 = 2RctRcl(Qcl +Qint).

For all cases, if Rmed1 = Rmed2 then (B1/A1) = 0.5, if Rmed1 < Rmed2 then (B1/A1) > 0.5,

and if Rmed1 > Rmed2 then (B1/A1) < 0.5.

As for the phantom EEG case, the noise model here is considered to be an ARX. This

choice was made for the fact that an ARX model does not need to be identi�ed using recursive

algorithms that can take a long time to run considering the size of the data (see section 2.3).

4.2.2 Linear regression

As the available data are time series, the model needs to be re-written. Based on (Liang et al.

2015), the following equation can be written:
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A1

(
d

dt

)2α

V2(t) +A2

(
d

dt

)α

V2(t) + V2(t) =

B1

(
d

dt

)2α

V1(t) +B2

(
d

dt

)α

V1(t) +B3V1(t) (4.49)

The approximation of the non-integer order derivative used here is the one proposed by

Grünwald�Letnikov (Grunwald 1867), (Letnikov 1868) as it was previously used in other

studies such as (Besançon et al. 2019). This approximation was chosen instead of the one

used in the phantom EEG because it can be used in non-recursive manner, reducing the

computation time. Considering a discrete signal V , with N + 1 samples and the sampling

time h, the fractional derivative of order α of the signal is given by equation (2.95), and is

re-stated here:

(
d

dt

)α

V (k) ≃ 1

hα

N∑
i=0

(−1)i
(
α

i

)
V (k − i) (4.50)

With this approximation, the output of the model at a discrete time k (V̂2(k)) is written

as:

V̂2(k) = θ̂φ (4.51)

with θ̂:

θ̂ = [b̂1, b̂2, b̂3, â1, â2] (4.52)

that represents the vector of regression coe�cients, as function of the estimated transfer

function coe�cients [B̂1, B̂2, B̂3, Â1, Â2]:

b̂1 =
B̂1h

2α

h2α + Â1 + Â2hα
(4.53)

b̂2 =
B̂2h

2α

h2α + Â1 + Â2hα
(4.54)

b̂3 =
B̂3h

2α

h2α + Â1 + Â2hα
(4.55)

â1 =
Â1h

2α

h2α + Â1 + Â2hα
(4.56)

â2 =
Â2h

2α

h2α + Â1 + Â2hα
(4.57)
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and φ:

φ = [V11(k), V12(k), V13(k),−V21(k),−V22(k)]
T (4.58)

that represents a matrix containing the modi�ed data vectors given by:

V11(k) =
1

h2α

k∑
i=0

(−1)i
(
2α

i

)
V1(k − i) (4.59)

V12(k) =
1

hα

k∑
i=0

(−1)i
(
α

i

)
V1(k − i) (4.60)

V13(k) = V1(k) (4.61)

V21(k) =
1

h2α

k∑
i=1

(−1)i
(
2α

i

)
V2(k − i) (4.62)

V22(k) =
1

hα

k∑
i=1

(−1)i
(
α

i

)
V2(k − i) (4.63)

where the creation of the data vectors is done based on (Jonathan 2022).

Equation (4.51) highlights the linear relationship between the output of the model V̂2 and

the regression coe�cients θ̂, which make them easy to identify. The transfer function coe�-

cients (B̂1, B̂2, B̂3, Â1, Â2) can be easily retrieved from the regression ones with the following

equations:

B̂1 =
−b̂1h

2α

â1 + hαâ2 − h2α
(4.64)

B̂2 =
−b̂2h

2α

â1 + hαâ2 − h2α
(4.65)

B̂3 =
−b̂3h

2α

â1 + hαâ2 − h2α
(4.66)

Â1 =
−â1h

2α

â1 + hαâ2 − h2α
(4.67)

Â2 =
−â2h

2α

â1 + hαâ2 − h2α
(4.68)

4.2.3 Data pre-processing

As previously stated, the data used here was recorded in SEEG investigations of 19 epileptic

patients. The data were sampled at either 1024 Hz (for 7 patients) or 512 Hz (for 12 pa-
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tients) and was �ltered by an acquisition band-pass �lter between 0.1 and 200 Hz to eliminate

noise. With the �ltering of high frequencies, the useful information is concentrated in smaller

frequencies, therefore the data are re-sampled at 256 Hz for all patients using the resample

function in Matlab (see chapter 14 of (Ljung 1998)). The function applies an antialiasing

lowpass �lter in the form of a Kaiser window with cuto� frequency π/4 or π/2, and order 80

or 40 for signals with fs = 1024 Hz and fs = 512 Hz respectively, and then down-samples the

�ltered data.

The general data acquisition and processing schematics from the measured signals to the

ones used for system identi�cation is shown in Fig. 4.11. The last Butterworth low-pass �lter

is explained in the following subsection.

  

Analog filter

Pass-band 
(0.1 – 200 Hz)

Digital filter

Re-sampling 
to 256 Hz

Re-
referencing

U10

U20

U00

U1f1

U2f1

U0f1

U1f2

U2f2

U0f2

V2=U2f2-U0f2

V1=U1f2-U0f2

Butterworth
Low-pass

filter
(0.1 – 40 Hz) V2f

V1f

Figure 4.11: Schematic representing the SEEG data acquisition and processing before the

identi�cation algorithm.

4.2.4 Study of the frequency response

In the previous chapter, the non-parametric frequency responses of consecutive pairs of con-

tacts were used for tissue classi�cation. Because of the fact that in this case signals are

re-referenced with respect to the consecutive contact after the second one of the pair, there

might be some changes in the obtained frequency responses, compared to the ones obtained

in the previous chapter.

Thus, the non-parametric frequency response is recalculated here to get more insight on the

dynamics between the two re-referenced contacts. For it, the corresponding Matlab function

spa is used, with a Hanning window of size 3.5 s. The size of the window is chosen as a high

one in order not to loose information during the estimation. The average frequency response

obtained from all combination of contacts over the 19 subjects considering 20s baseline signals

is found in Fig 4.12a.

From the frequency response, it can be seen that the dynamics between two re-referenced

contacts are frequency dependent, with a slight gain drop in higher frequencies. For a 50

Hz frequency, the gain and phase present a negative spike caused probably by a notch �lter,

which is repeated for 100 Hz, this indicates the presence of noise. Because of this, the signals

V1 and V2 are �ltered by a low pass Butterworth �lter of order 6 and cuto� frequency of 40

Hz before they are used for identi�cation (see Fig. 4.11). The resulting Bode diagram can be
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Figure 4.12: (a) Bode plot of the mean frequency response obtained from the SPA of the data.

(b) Bode plot obtained from the �ltered data.

found in Fig. 4.12b.

4.2.5 Identi�cation methodology

Given the number of coe�cients to be identi�ed, the nature of the signals used, as well

as the complexity brought by the non-integer order derivative, the choice is made to use

the interior point method instead of the RLS method used for the phantom EEG case. As

mentioned in section 2.4, the interior point method allows for the optimisation of transfer

function coe�cients considering constraints, such as the positivity constraint necessary in

this case as the transfer function coe�cients are formed by the sums and multiplications of

electronic components which are always positive.

As a reminder, the interior point optimisation problem can be described by the following:

minimize
x∈R

f(x)

subject to c(x) = 0

d(x) ≥ 0

(4.69)

The aim is to �nd the values of x that minimise the cost function f(x) with respect to the

equality and inequality constraints (c(x) and d(x)). In Matlab, fmincon is designed to solve

such a problem, and is used here. The details on the optimisation are given in the following

subsections.
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4.2.5.1 Cost function

The aim of the identi�cation problem is to �nd the regression coe�cients θ̂ that minimise the

di�erence between the output of the system V2 and the output of the model V̂2. From the

linear relationship between V̂2 and θ̂, a convex cost function can be easily written as the mean

squared error as follows, with N + 1 data samples:

f(θ̂) =
1

N + 1

N+1∑
k=1

(V2(k)− V̂2(k, θ̂))
2 (4.70)

As the magnitude of the signals is small, the error is also small and might make the solver

converge to a bad point. Therefore, the cost function is harmonised by multiplying it by the

inverse of the order of magnitude of the cost considering the initial point.

4.2.5.2 Constraints

The �rst constraint to be implied is the positivity of the transfer function coe�cients. This

condition is necessary because they are formed by the sum of the electronic components which

are always positive. In order to guarantee this positivity, the following constraints on the

regression coe�cients must be respected:

d1 : θ̂ > 0 (4.71)

d2 : â1 − h2α + â2h
α < 0 (4.72)

d1 is deduced from the discretised transfer function coe�cients of equations (4.53) - (4.57),

and d2 is deduced from equations (4.64) - (4.68). In addition, looking at the transfer function

coe�cients in equations (4.41) to (4.45), the following constraints have to be added:

d3 : b̂1 < â1 (4.73)

d4 : b̂2 < â2 (4.74)

Finally, one equality constraint is added inspired by the results obtained with the non

parametric frequency identi�cation between pairs of adjacent contacts for tissue classi�cation.

Looking at the model, the static gain corresponds to H(s → 0) = B3. Thus, the transfer

function coe�cient B3 can be directly identi�ed from the frequency response obtained with

equation (2.14). In order to impose the correct value of B3 from the identi�ed regression

coe�cients, the following constraint is written:

c1 : â1B3 − h2αB3 + â2B3h
α +B3h

2α = 0 (4.75)
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4.2.5.3 Initial point

Even though the cost function is convex, the de�ned constraints introduce some non-linearities

to the problem. Therefore, the results are dependent on the choice of the initial values of θ̂

(θ̂0). This is why all previous knowledge on the values of θ̂ should be used to construct θ̂0.

It is known that the coe�cients in θ̂ are a combination of the transfer function coe�cients,

which in turn are a combination of the electronic components. Based on (Lempka, Miocinovic,

et al. 2009), (Carvallo et al. 2018), (Robinson 1968), and the previous phantom EEG study,

the expected values should be as follows: 500Ω < Rmed1 < 20 kΩ, 500Ω < Rmed2 < 20 kΩ,

500Ω < Ren < 20 kΩ, 1 kΩ < Rc1 < 2000 kΩ, 1 kΩ < Rc2 < 2000 kΩ, 0.1µF < Qint < 15µF ,

and 0.1µF < Qcl < 15µF .

Considering the de�ned limits of the electronic components, the initial point θ̂0 will be

created by selecting random values of Rmed1, Ren, Rct, Rcl, Qint, and Qcl constrained by the

expected intervals. The values of Rmed1 and Rmed2 should be close in magnitude, considering

that the distance between two contacts is small and conductivities of white and grey matter

are known to be close to one another (Carvallo et al. 2018). Thus, the initial value of Rmed2

is chosen by randomly adding or subtracting 200Ω from Rmed1.

Because of the di�erent orders of magnitude of the electronic components, the resulting

transfer function coe�cients might also have the same problem. In optimisation, if the vari-

ables to be optimised have varying orders of magnitude, it is hard to guarantee a good �t for

all of them. This is why a harmonisation of θ̂ is done. In it, all the coe�cients are multi-

plied by the inverse of their orders of magnitude, and they are multiplied by their orders of

magnitude when they appear in the cost function.

4.2.5.4 Non-integer order

The optimisation problem is de�ned considering a �xed non-integer order value. However α

remains unknown. Getting inspiration from (Besançon et al. 2019), the identi�cation method

is performed for di�erent non-integer orders in the interval 0.6 < α < 0.85, and the α for

which the identi�ed model has the lowest cost is selected. The lower and upper bounds of

the non-integer order are de�ned based on results obtained in (Besançon et al. 2019), and the

results obtained on the phantom EEG .

4.2.5.5 Identi�cation using multiple recordings

During the SEEG procedure, the contacts can be recorded multiple di�erent times. These

di�erent measurements can be used to enhance model estimation. For each patient, ten

di�erent recordings are randomly selected, and for each of them the identi�cation method

is applied using 20s of the baseline signals measured by the contacts. This results in ten

identi�ed models for each combination of three contacts. The �nal model is obtained by

taking the average values of the coe�cients of the ten separate models. This strategy reduces
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errors induced by noisy signals. The number and duration of recordings is chosen as such to

reduce computation time that can become quite extensive when considering more data.

4.2.5.6 Model validation

As was mentioned in section 2.5, there are validation tests that need to be performed in order

to guarantee if the identi�ed coe�cients are not biased. Given the ARX structure used here,

to decide whether an identi�ed model is biased or not, there are two validation tests that need

to be performed. The chosen structure and identi�cation method are based on the whitening

of the prediction error ε = V2− V̂2. Therefore, the two tests to be performed are the whiteness

and cross-correlation tests. The �rst one is used to see if ε is a white noise. However, because

of the fact that signals V1 and V2 are �ltered, the resulting ε will also be �ltered, and therefore

it is not a white noise. Thus, only the second cross-correlation test can be performed. Only

the validated models are considered.

In addition, in order to properly guarantee identi�ability, the input voltage needs to be

su�ciently exciting. In other words, the signal should be su�ciently rich in frequencies. In

the speci�c case of this study, baseline signals corresponding to the brain activity of patients

at rest are used. In such conditions, the predominant brain waves observed are α (8-13 Hz),

and possibly β (13-30 Hz) depending on: a) brain region signals were recorded in, b) stress

level, or c) whether patients had their eyes opened or closed. Indeed, when looking at the

power spectral density estimate of one of the input signals in Fig. 4.13, the power is mostly

concentrated between 1-40 Hz with a peak close to the α, and β frequency ranges, even though

of low magnitude. To verify that the input signals were su�ciently rich, a model like the one

presented in this paper was simulated, and stimulated with the same input signals. Using the

identi�cation algorithm described in this paper, the estimated parameters exactly recovered

the model ones in absence of noise.
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Figure 4.13: Example of the power spectral density estimate of (a) input signal before low-pass

�lter at 40 Hz, and (b) input signal after 40 Hz low-pass �lter.
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The system identi�cation of a trio of contacts considering one recording is summarised in

Fig. 4.14.

Selection of recording session

Pre-processed V1 and V2

Selection of �xed α

Creation V11, V12, V13, V21, V22

Initial point from random selection of electronic components values

Harmonisation of the cost function and coe�cients

Optimisation using fmincon

Validation?

Keep identi�ed coe�cients

Discard identi�ed coe�cients

All α tested?

Selection of model with smallest error

yes

no

yes

no

Figure 4.14: Flowchart representing the identi�cation algorithm of a trio of contacts.
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4.2.6 System identi�cation results

The identi�cation methodology is applied on data of the 19 epileptic patients. At each time,

three consecutive contacts are considered, and together they constitute one triplet. The �rst

contact is the shallower one, and the following two are located deeper in the brain. The signal

of the deeper contact of the triplet is subtracted from the �rst and second contacts to create

the input and output signals that are pre-processed using the procedure shown in Fig. 4.11.

These input and output signals are used for the identi�cation method.

A total of 356 triplets across all patients had validated models. In order to further see

how well the models �t the data, the time and frequency responses of the identi�ed models

are compared to the data.

Five groups are studied separately according to the tissue composition between the three

adjacent contacts following previous classi�cation from co-registration of MRI with CT-scan.

The group "Grey" (106 triplets) represents contacts combinations where the three contacts

are in grey matter. Group "White" (95 triplets) is made of cases in which all contacts are in

white matter. Groups "Grey/White" (73 triplets) and "White/Grey" (63 triplets) represent

respectively cases in which there is more grey matter between the �rst and second contacts

than between the second and reference contacts, and cases in which there is more white matter

between the �rst and second contacts than between the second and reference contacts. The

"mix" (19 triplets) group represents cases in which the quantity of grey and white matter is

similar between the �rst and second contacts and the second and reference contacts.

The mean of the frequency domain responses of identi�ed models and SEEG data are

shown in Fig. 4.15 separated by groups depending on the tissue composition in between the

three contacts. Only the �rst 40 Hz are shown because of the noise observed for higher

frequencies.

By a visual inspection of Fig. 4.15, the identi�ed models in red have similar dynamics to

the SEEG data. Some small di�erences can be perceived in the static gain for some groups,

even with the equality constraint given in equation (4.75). This can be justi�ed from the fact

that Bode plots are shown starting from 1 Hz, thus the gain value at 0 Hz is the same but it

quickly changes due to high values of B2 and A2 that start acting at small frequencies.

Looking at the Nyquist plots in Fig. 4.15, some limitations can be seen with the model not

covering all of the points, and for cases such as the "White" and "White/Grey" ones where

the model has a semi-circle shape. This di�erences could be justi�ed by the presence of noise

even in small frequencies.

The �t in time is calculated quantitatively with the following normalised root mean squared

error in percentage:

fit = 100

(
1− ||V2 − V̂2||

||V2 −mean(V2)||

)
(4.76)
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Figure 4.15: Comparison between the identi�ed models (in red), and the expected response

from the data (in blue). In (a) the Bode plot of the mean frequency responses of the model

of each tissue group is compared with their mean SPA frequency response. In (b) the cor-

responding Nyquist plots for the models in (a) are shown compared to the mean frequency

responses obtained with SPA.

The mean values of fit for each of the groups are: 94± 3% for the "Grey" group, 93± 4%

for the "White" group, 93± 4% for the "Grey/White" group, 92± 13% for the "White/Grey"

group, and 93 ± 4% for the "mix" group. These values represent a good �t of the identi�ed

model in time.
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In addition, in Fig. 4.16, the ratio between the input signal energy and noise energy are

shown for 32 identi�ed models for one of the 19 patients. The energy of the input signal u is

approximated by its auto-correlation at the origin:

Eu ≈ 1

N

N∑
k=1

[u(k)]2 (4.77)

As for the noise energy (Ev), it can be approximated to the prediction error energy (Ev ∼
Eε), with ε(k) = V2(k)− V̂2(k, θ̂), which is approximated to the estimated variance:

Ev ≈ 1

N − d

N∑
k=1

[ε(k)]2 (4.78)

with d the length of vector θ.
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Figure 4.16: Ratio between input signal energy and noise signal energy for 32 identi�ed models

of one patient.

As it can be seen in Fig. 4.16 the input signal has su�ciently more energy when compared

to the noise. This illustrates that the input has enough relevance for identi�cation.

One can also use the ratio between the energy of the output of the model EV̂2
, and the

energy of the noise Ev, to illustrate the boundedness of the prediction error, considering:

EV̂2
≈ 1

N

N∑
k=1

[V̂2(k)]
2 (4.79)

The report between EV̂2
, and Ev represents the signal to noise ratio of the output of the
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model, and can be found in Fig. 4.17 for 32 di�erent models of 1 patient. As it can be seen,

the di�erence in energy of the output of the model and the prediction error is signi�cant.
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Figure 4.17: Ratio between the energy of the output of the model and the noise for 32 identi�ed

models of one patient.

As in the case of integer order system identi�cation, the choice of the discretization method

(in this case discrete approximation of the non-integer order derivative) has an in�uence on

the identi�ed system, as it is used to create the regression vectors (given in equations (4.52)

and (4.58)). The same can be said for the sampling period h. In the case of this study where

the Grünwald�Letnikov approximation is used, the smaller the h the better the non-integer

approximation is to the non-integer order derivative (see (Scherer et al. 2011)).

The sampling frequency used here (256 Hz) is approximately eight times larger than the 30

Hz of the β brain activity, making it su�ciently large. However, if the method is also applied

to measured signals during brain stimulation in the future, the sampling frequency may be

higher, and the 40 Hz low-pass �lter may be removed from the pipeline.

The distribution of transfer function coe�cients as well as non-integer order is given in

Fig. 4.18. It can be seen that there is not a lot of discrepancy between the orders of magnitude

of the coe�cients, with B2 and A2 being higher in general. One can also verify that the

constraints given in equations (4.73) and (4.74) are respected, with the median value of A1

being higher than the median value of B1, and the median value of A2 being higher than B2.

It can also be seen that the positivity constraint is respected.

Furthermore, there is very little variance on the non-integer order α which is for most cases

equal to 0.8 which is an indicator that the non-integer orders do not depend on the tissue the

contacts are inserted in.
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Figure 4.18: Boxplot representing (a) the distribution of transfer function coe�cients, and (b)

the distribution of non-integer orders.

4.3 Tissue conductivity analysis and classi�cation

Due to the complexity of the proposed model and the type of data available, the values

of electronic components can not be directly retrieved from the identi�ed transfer function

coe�cients. However, equations (4.46), (4.47), and (4.48) can be used to get a comparison of

the resistance of di�erent tissues.

Fig. 4.19a shows a boxplot of the distribution of (B1/A1) according to the tissue in which

each of the contacts is inserted in following previous classi�cation, Fig. 4.19b shows a boxplot

of the distribution of (B2/A2), and Fig. 4.19c shows a boxplot of the distribution of (B3).

For the cases "Grey" and "White", as Rmed1 = Rmed2, the values of (B1/A1), (B2/A2),

and B3 are expected to be close to 0.5 for the homogeneous groups, which can be observed in

Fig. 4.19.

It can also be observed that the "Grey/White" group has values of (B1/A1), (B2/A2), and

B3 smaller than 0.5, which indicates Rmed1 > Rmed2. The exact opposite is observed for the

"White/Grey" case in which for all of the cases the values are bigger than 0.5, which suggests

Rmed1 < Rmed2.

In the "mix" group, as there is the same amount of grey and white tissue in between the

�rst and second contacts and the second and third contacts, Rmed1 = Rmed2, which means

that (B1/A1), (B2/A2), and B3 should be close to 0.5. This is what is seen in Fig. 4.19a,

Fig. 4.19b, and Fig. 4.19c.

The observed results are consistent with one another, and are in accordance with the fact

that the resistance in white matter is smaller than the resistance in grey matter. Notice

that in the literature there are opposing views as to the exact conductivity of di�erent brain
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Figure 4.19: Boxplot representing the distribution of the values of B1/A1 in (a), of B2/A2 in

(b), and of B3 in (c), in respect to the tissue classi�cation of the trio of contacts according to

the co-registration of the CT-scan and MRI.

tissues. The di�erences observed arise from the fact that the conductivity measurements are

not always performed under the same circumstances (varying methodologies of brain signal

acquisition, di�erent patient pathologies, etc.) as indicated in (McCann et al. 2019). In

the cases of (Carvallo et al. 2018), and (Geddes et al. 1967) for example, the resistance of

white matter is considered to be higher than the one in grey matter. In (Carvallo et al.

2018), the conductivities were measured in two di�erent patients via the stimulation of SEEG

contacts. In (Geddes et al. 1967) the values of tissue resistances measured in animals either

in vitro or in vivo are shown. On the other hand, (Satzer et al. 2015) reports higher measured

conductivities in white matter than grey matter when measuring the impedance of chronically

implanted electrodes in 73 patients su�ering with Parkinson's disease. In general, (Logothetis

et al. 2007), the conductivity of white matter depends in fact on �ber orientation and it can

take values that can be either greater or smaller than grey matter. Thus, the results of this

study, being consistent with each other, are also comparable to previous literature.

To test the discrimination power of (B1/A1), (B2/A2), and B3 for the heterogeneous cases
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(Grey/White and White/Grey), a simple linear discriminant analysis (LDA) classi�er is used

for each of the features separately. The data is split into K = 4 di�erent subsets. 3 of such

subsets were used for the training of the model, and the remaining ones for validation. This

process is repeated until all possible combinations of test and training subsets are used. For

each case the accuracy of the classi�cation is calculated, and the �nal value consists in the

mean accuracy over all combinations. This process is repeated 50 times to get a more robust

estimation of the classi�ers performance.

The accuracy of group separation of each of the combinations of transfer function coef-

�cients is shown in Table 4.5. (B1/A1) is the most discriminant when it comes to group

separation between Grey/White and White/Grey groups. The accuracy is not improved when

using features together.

Accuracy (%)

(B1/A1) 73± 6%

(B2/A2) 71± 7%

B3 68± 6%

Table 4.5: Accuracies of heterogeneous group separation of combinations of transfer function

coe�cients using a LDA classi�er.

The value of 73 ± 6% accuracy is very close to the one obtained in the previous study

of brain tissue classi�cation using the non-parametric frequency responses of SEEG signals

referenced in distant white matter. In that case, an accuracy of 72 ± 3% was obtained for

homogeneous tissue separation using an LDA classi�er for the same 19 patients from this

study.

Thus, the information obtained from the identi�cation of the proposed model is indeed

useful for classi�cation of brain tissues, with an additional insight in the di�erences in con-

ductivity of grey and white matter.

4.4 Discussion on the choice of the model

The proposed model in the form of an electronic circuit represents the physical properties

of the brain-electrode interface. It is based in previous literature (see (Sankar et al. 2014),

(Lempka, Miocinovic, et al. 2009), and (M. Johnson et al. 2005)), and yields good visual �ts

to the frequency response obtained from the SPA of the data as well as good quantitative �ts

in time when comparing the real output to the model output.

One might argue that the gain drop observed in higher frequencies as well as the phase

shift in Fig.4.12 are not very signi�cant, as if the system had no dynamics and could be

approximated by a simple gain. In this case, the circuit can be simpli�ed to a purely resistive

one, as seen in Fig. 4.20.
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Figure 4.20: Simpli�ed circuit based on the hypothesis of the model being represented by a

simple gain.

For which the transfer function is given as:

V2 =
R2

R1 +R2
V1 = gV1 (4.80)

One reason why the complex model could be confounded with a purely resistive one is that

the numerator and denominator of the transfer function of equation (4.40) are of the same

order. Moreover, the coe�cients B1 and A1 are very close in magnitude, the same can be said

about coe�cients B2, and A2 (see Fig. 4.18a), with A1 > B1, and A2 > B2. Thus, if the poles

and zeros act in the same frequencies with similar intensity, the gain remains almost constant.

In order to test the hypothesis that the model can be described by a simple gain, g is

identi�ed for each combination of three contacts, using the mean frequency response obtained

using SPA for 10 recording sessions ĜSPA. The resulting gain for a trio of consecutive contacts

i is given by:

gi =

∣∣∣∣∣∣ 1

Nf

∑
f∈[0,40]

ĜSPA(f)

∣∣∣∣∣∣ (4.81)

with Nf the number of frequency points on the band 0-40 Hz.

The frequency responses of the simple resistor model are compared to the ones obtained

from the SPA and the complete model presented in the previous subsections, and can be

found in Fig. 4.21. It can be seen that the purely resistive model �ts the frequency responses

obtained with SPA well, even if a part of the dynamics is not represented when comparing to

the complete model.
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Figure 4.21: Comparison between the identi�ed complete model (in red), the expected response

from the data (in blue), and the identi�ed gain for the purely resistive model (in black). In

(a) the Bode plots. In (b) the corresponding Nyquist plots for the models in (a).

As mentioned the hypothesis as to why the complex model presented in the previous

subsection can be simpli�ed to a purely resistive one lies on the fact that the orders of the nu-

merator and denominator of the transfer function are the same, with zeros and poles operating

in similar orders of magnitude.

In order to verify this hypothesis, one can analyse the variation of the real and imaginary
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parts of the transfer function of equation (4.40) in relation to the frequency:

Re(H(s)) =
A1B1ω

4α + (A1B2 +A2B1)ω
3αcos(πα/2) + (B1 +A1B3)ω

2αcos(πα)

A1ω4α +A1A2ω3α2cos(πα/2) + ω2α(A1cos(πα) +A2
2) +A2ωα2cos(πα/2) + 1

+
A2B2ω

2α + (B2 +A2B3)ω
αcos(πα/2) +B3

A1ω4α +A1A2ω3α2cos(πα/2) + ω2α(A1cos(πα) +A2
2) +A2ωα2cos(πα/2) + 1

(4.82)

Im(H(s)) =
(A2B1 −A1B2)ω

3αsin(πα/2) + (B1 −A1B3)ω
2αsin(πα)

A1ω4α +A1A2ω3α2cos(πα/2) + ω2α(A1cos(πα) +A2
2) +A2ωα2cos(πα/2) + 1

+
(B2 −A2B3)ω

αsin(πα/2)

A1ω4α +A1A2ω3α2cos(πα/2) + ω2α(A1cos(πα) +A2
2) +A2ωα2cos(πα/2) + 1

(4.83)

Considering the median values of the identi�ed transfer function coe�cients in Fig. 4.18a

[B1 = 0.35, B2 = 2.6, B3 = 0.53, A1 = 0.7, A2 = 5.8], and the median value of the non-

integer order in Fig. 4.18b α = 0.8, the evolution of the real and imaginary parts of the

transfer function in frequency can be seen in Fig. 4.22a and the corresponding Nyquist plot

can be found in Fig. 4.22b. It can be seen that the real part does not change a lot depending

on the frequency, and quickly assumes a �nal value.
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Figure 4.22: Evolution in frequency of the real and imaginary parts of the transfer function

considering the medians of the identi�ed values and non-integer order. In (a) the real and

imaginary parts are presented separately, and in (b) the resulting Nyquist is presented.

Looking at equation (4.82), when ω → ∞, the real part assumes a constant value:

Re(H(s → ∞)) =
A1B1ω

4α

A2
1ω

4α
=

B1

A1
(4.84)
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In Fig. 4.22a, the value of (B1/A1) is plotted together with the real part of the transfer

function, and indeed the value to which the real part converges is (B1/A1).

For the imaginary part of the transfer function, it can be seen that it also does not change

a lot depending on the frequency, and its values are in general close to zero. This can be

justi�ed from the fact that when looking at equation (4.83), considering that the transfer

function coe�cients are close in magnitude, the subtractions present in the numerator make

it close to zero.

In general, the value that dominates the transfer function of the model for most frequencies

is (B1/A1). Thus, the identi�ed gain values g of the purely resistive model should have similar

values to (B1/A1) of the complex model. To verify this they are plotted close to one another

in Fig. 4.23.
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Figure 4.23: Boxplot comparing the distributions of the gain g of the purely resistive model

and (B1/A1) of the complex model.

As it can be seen, the distribution of g and (B1/A1) is very similar for every group of

contact trios. Thus, one can make the following approximation: g = B1/A1, which leads to:

R1 = Rmed1 + 2Ren (4.85)

R2 = Rmed2 + 2Ren (4.86)

As for the discrimination power of g, using an LDA classi�er trained in the same way as

described in section 4.3, the obtained accuracy is 73± 6% which is exactly the same accuracy
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obtained for (B1/A1) of the complex model. For Rmed1 and Rmed2 to have such an impact in

the value of (B1/A1) and (1/B3), it means that the orders of magnitude of Rcl, Rct, and Ren

should either be close to the ones of Rmed1, and Rmed2, or smaller.

The results for tissue classi�cation of heterogeneous triplets of contacts considering the less

complicated resistive circuit are the same as for the more complete circuit. Nonetheless, the

most complex model accounts for some dynamics that can not be visualised for the resistive

circuit. It has been shown that one can go from the complex model of the brain-electrode

interface based in previous literature to the simple resistive circuit because of the fact that

the transfer function zeros and poles act in similar frequencies in similar intensities, being

dominated most of the time by (B1/A1).

In terms of identi�ability of the system, one can not retrieve the precise electronic compo-

nents values, only an idea of their order of magnitude, which seems to be close for all resistors.

However, the information from the identi�ed coe�cients can still be useful for tissue classi�-

cation. For simplicity reasons and for the sole purpose of tissue classi�cation, one might opt

to adopt the simple resistive model.

4.5 Conclusions

In this chapter, the modelling of the brain-electrode interface was discussed with the aim of

using it for brain tissue classi�cation. The main model proposed and discussed here consists

of an electronic circuit of non-integer order, and it is based on previous literature. However, to

our knowledge, such model has not yet been identi�ed using typical baseline signals measured

during SEEG investigation.

Before the study of the brain-electrode interface strictly speaking, a study was conducted

on the modelling of the electrode-electrolyte interface via a phantom EEG device. The setup

was previously presented in literature, and a model was proposed based on the shape of

the frequency response obtained from the data. In the case of this study, however, there is

an interest in modelling the phantom EEG measurement chain from the physical properties

stand point, in which the model is separated in electrode, electrode-electrolyte interface, and

propagation medium. The identi�cation methodology of such model was shown in this chapter,

and the resulting identi�ed coe�cients were used to recover the values of each of the physical

components of the measurement chain. These values served as a good starting point for the

modelling of the brain-electrode interface, mainly when it comes to the initial values considered

for the electrode-electrolyte interface.

After the study on the phantom EEG measurement chain, a strategy of model identi�ca-

tion of the brain-electrode interface using baseline SEEG signals of three consecutive contacts

was proposed. The model was based on the physical properties of the brain-electrode interface

discussed in literature. A total of 356 triplets of contacts had validated models with a good �t

in the time and frequency domains. Because the relationship between transfer function coef-

�cients and values of electronic components is not bijective, the latter could not be retrieved
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separately. Nonetheless, the ratio between transfer function coe�cients can be used for tissue

classi�cation with up to 73±6% accuracy in group separation when it comes to heterogeneous

tissue among the triplets of contacts. Such results in accuracy are very similar to the ones

obtained in the previous chapter for homogeneous group separation when using the frequency

response of two consecutive contacts.

Because of the similar order of magnitude of the numerator and denominator transfer

function coe�cients operating at similar frequencies, the model can be approximated to a

simply resistive one. With this simpli�cation, there is a loss in the system dynamics, however

the classi�cation results are the same.

The results reveal smaller electrical resistances in white matter compared to grey matter.

In literature, there are con�icting values of conductivities of di�erent brain tissues. Results de-

pend largely on �ber orientation in white matter, and measurements circumstances. Nonethe-

less, the results in this study are consistent with one another when considering di�erent tissue

compositions.

As mentioned, the �ts in the time and frequency domains of the complex model are good

compared to the expected responses from the data. However, when looking at the Nyquist

plots speci�cally, there is a part of the expected response from the data that is not represented

by the identi�ed models. It is unclear if this is because of the noise, or because of model or

identi�cation algorithm limitations. Thus, as a perspective of the work presented here, further

exploration should be done to improve the �t of the Nyquist plot of the model to the expected

one from data.

The system identi�cation methodology proposed here could be combined with the results of

the previous chapter, to estimate tissue distribution between three consecutive SEEG contacts.

This study is presented in the next chapter.





Chapter 5

Brain tissue classi�cation combining

non-parametric and parametric

approaches

In the previous chapters, two di�erent approaches for brain tissue classi�cation were proposed.

In chapter 3, the best classi�cation results were obtained for pairs of contacts in homogeneous

tissues considering their identi�ed non-parametric frequency responses. In chapter 4, classi�-

cation was performed for trios of contacts in heterogeneous matter with the use of identi�ed

models of the brain-electrode interface.

Here, the idea is to propose two ways of combining both methods in order to have a

classi�er that can be used for contacts both in homogeneous and heterogeneous combinations

of tissues. The �rst way of combining the methods is proposed for the classi�cation of trios

of consecutive contacts. The second way of combining the methods is used for single contact

classi�cation and elimination of bad cases. The analysis in the following sections are done

using data from the same 19 epileptic patients presented in chapter 3.

5.1 Classi�cation of contact trios

As mentioned the parametric method can be used for heterogeneous tissue classi�cation of con-

tact trios, and the non-parametric method can be used for homogeneous tissue classi�cation

of contact pairs. The idea here is to use the parametric approach for separating heteroge-

neous from homogeneous groups, then use the parametric approach for heterogeneous tissue

classi�cation, and the non-parametric approach for homogeneous tissue classi�cation. This

procedure is described in the following subsections for the 356 trios with validated models.

5.1.1 First analysis considering the parametric model approach

From the model identi�cation of trios of consecutive contacts proposed in chapter 4, the ratio

of transfer function coe�cients (B1/A1) is used to discriminate between trios of contacts

inserted heterogeneous tissues. If (B1/A1) = 0.5, the matter in which the trio of contacts are

inserted in is either homogeneous, or there is the same proportions of grey and white matter

105



106 Chapter 5. Combined brain tissue classi�cation

between the �rst and second contacts, and between the second and third contacts. If there is

more grey matter between the �rst and second contacts than between the second and third

contacts, (B1/A1) < 0.5. On the other hand, if there is more white matter between the �rst

and the second contacts than between the third and second contacts (B1/A1) > 0.5.

Thus, the model approach can be used at �rst to divide trios of electrodes into two clusters:

One composed of homogeneous groups "Grey" and "White", and the "Mix" group, and the

second composed by the heterogeneous groups "Grey/White" and "White/Grey".

The clusters can be de�ned by simple thresholds that can be chosen to be conservative or

not. Here, the choice was made considering the 25th and 75th percentiles of the distributions

of homogeneous "Grey" and and "White" groups in Fig. 4.23, and also by looking at the

distribution of the "Grey/White", and "White/Grey" groups in Fig. 5.1. The majority of

contact trios located in homogeneous tissue have 0.4 ≤ (B1/A1) ≤ 0.6. Moreover, the biggest

intersection between the heterogeneous groups also occur for 0.4 ≤ (B1/A1) ≤ 0.6, making

0.4 and 0.6 the lower and upper thresholds respectively.

Figure 5.1: Distribution of the values of (B1/A1) considering the heterogeneous groups

"Grey/White", and "White/Grey".

If 0.4 ≤ (B1/A1) ≤ 0.6 the tissue between the �rst and second contacts is assumed to

be of the same composition as the one between the second and third contacts, and the trio

is considered to be part of the �rst cluster. The remaining trios of contacts are considered

to be part of the second cluster, with heterogeneous tissue distribution between the �rst two

and the second two contacts. For the second cluster, the classi�cation can be done directly

from the values of (B1/A1). If (B1/A1) < 0.4, the trio of contacts can be classi�ed as being a

part of the "Grey/White" group, and if (B1/A1) > 0.6 the trio of contacts can be classi�ed

as being a part of the "White/Grey" group.
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5.1.2 Second analysis considering the non-parametric approach

In the previous section, the model based approach was used to separate trios of consecutive

contacts into two clusters, one where the tissue distribution between the �rst and second

contacts was the same as the distribution between the second and third contacts, and the

other where there is an heterogeneous mixture of tissues between the �rst and second contacts

and between the second and third contacts.

In the case of the second cluster the classi�cation can be directly done using the model

approach. However, for the �rst cluster, the values of (B1/A1) are similar, and one cannot

use them to classify homogeneous tissue combinations. This is why, for the classi�cation of

the �rst cluster, the non-parametric approach is used, more speci�cally the non-parametric

frequency domain identi�cation method, as it can di�erentiate between homogeneous tissue

groups.

For each of the trios of contacts in the �rst cluster, the non-parametric frequency response

of the �rst two contacts in monopolar reference is calculated following the procedure described

in section 3.3. The LDA classi�er presented in section 3.3.3 is used to classify the pairs

of contacts using features extracted from the identi�ed frequency responses. However, this

classi�cation method can only di�erentiate between homogeneous "Grey" and "White" groups,

and not the "Mix" group.

The solution in this case would be to look at the posterior probabilities (see equation (3.8))

of the pair of electrodes belonging to the "Grey" and "White" groups. If P̂ (G/G|x) > 60%

than the pair of contacts, and consequently the trio of contacts can be considered to be inserted

in homogeneous grey matter being a part of group "Grey". If P̂ (G/G|x) < 40% than the pair of

contacts, and consequently the trio of contacts can be considered to be inserted in homogeneous

white matter being a part of group "White". However, if 40% ≤ P̂ (G/G|x) ≤ 60%, the tissue

between the �rst and the second contacts is probably heterogeneous, and therefore the trio of

contacts can be considered to be a part of the "Mix" group. With this, all combinations of

tissues between a trio of consecutive contacts can be classi�ed.

In the case of the trios of contacts of the second cluster previously classi�ed by the model

approach method, the classi�cation via the non-parametric frequency identi�cation of the �rst

two contacts of the trio in monopolar montage could be used to have a better idea of the label

of each of the contacts. The heterogeneous group "Grey/White", for example, indicates that

there is more grey tissue in between the �rst and second contacts than in between the second

and third contacts. However, this could either mean that the �rst and second contacts are

located in grey matter and the third in white matter, or that the �rst contact is in grey matter

and the second and third contacts are in white matter. Thus, if one wishes to get a better idea

of the distributions of each tissue for each contact speci�cally, taking the �rst two contacts of

a trio in the second cluster, if P̂ (G/G|x) is high it means that the tissue between the �rst and

second contacts is likely to be homogeneous, and if P̂ (G/G|x) is close to 0.5, it means that

the tissue between the �rst and second contacts is likely to be heterogeneous.
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5.1.3 Results combining both approaches

From the two analysis described in the previous sections, the overall tissue classi�cation

method of trios of consecutive contacts can be summarised by the schematic presented in

Fig. 5.2.

Trio of contacts Model
Identification


Grey/White 

White/Grey

Non-parametric
frequency
response

First 2 contacts
in monopolar

montage

LDA
classification

Grey

White 

Mix

Figure 5.2: Complete tissue classi�cation method, considering both non-parametric and para-

metric approaches.

The classi�cation method is applied to the trios of consecutive contacts studied in chap-

ter 4. In Fig. 5.3 the previous labels obtained from the co-registration of MRI with the CT-scan

of patients are compared to the labels obtained using the classi�cation method proposed here.

For each of the previous labels, the distribution of new labels is show in percentage.

From Fig. 5.3 it can be seen that the groups for which there is a higher compatibility

between MRI labels and new labels are the heterogeneous "Grey/White" and "White/Grey"

groups. 56% of the trios previously classi�ed as "Grey/White" from the MRI were also

classi�ed as "Grey/White" with the new method, and 52% of the trios previously classi�ed

as "White/Grey" from the MRI were also classi�ed as "White/Grey". For the "Grey/White"

group according to MRI classi�cation, there is a larger number of trios classi�ed as being in

homogeneous grey matter, than homogeneous white matter. For the "White/Grey" group

according to MRI, the number of trios being classi�ed as being a part of homogeneous white

matter is larger than the number of trios being in homogeneous grey matter.

For the previously classi�ed homogeneous groups "Grey" and "White", the majority of
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Figure 5.3: Distribution of labels from new classi�cation method with regard to the co-

registration of MRI with CT-scan labels.

the new labels were in fact not as expected from previous labelling from the MRI. For the

previously classi�ed "Grey" group, the majority of new labels were "Grey/White", and for

the previously classi�ed "White" group, the majority of new labels were "White/Grey". This

can be explained by the chosen thresholds for values of (B1/A1). The vast majority of trios

have values of (B1/A1) either lower than 0.4, or higher than 0.6. The fact that the majority

of (B1/A1) is not close to 0.5 even for the previously classi�ed homogeneous cases could be

justi�ed from the fact that the brain has a complex pattern when it comes to tissue distribution.

Even if contacts are inserted punctually in one tissue, the conductivity between two consecutive

contacts depends on the surrounding tissue as well. Therefore, even if both contacts of a pair

are in grey matter there might be some white matter in between them that will in�uence the

conductivity see Fig. 5.4a. Nevertheless, for the previously classi�ed "Grey" group, for the

remainder of trios for which 0.4 ≤ (B1/A1) ≤ 0.6, the majority were classi�ed as being a part

of the "Grey" group in the new classi�cation. However, for the previously classi�ed "White"

group, for the trios of contacts with 0.4 ≤ (B1/A1) ≤ 0.6, the majority of new labels were

equal to "Mix". This means that for the majority of cases 40% ≤ P̂ (G/G|x) ≤ 60%, which is

justi�able from the fact that most of the white matter contacts used are close to grey matter,

therefore there might be grey matter in�uences on the conductivity of such cases.

Finally, for the previously classi�ed "Mixed" group, there is a similar phenomenon that

can be observed for the previously classi�ed homogeneous groups, in which the majority of the

new labels are either "Grey/White", or "White/Grey". Once again, this is justi�ed from the

fact that the majority of cases have (B1/A1) either lower than 0.4, or higher than 0.6. In the

speci�c case of previously classi�ed "Mix" group, this is easily justi�ed from the fact that the

proportion of the "middle tissue" might not be the same between the �rst and second contacts
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(a) Three contacts in "Grey" group
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(b) Three contacts in "Mix" group

Figure 5.4: Di�erences in tissue distribution between three consecutive contacts in (a) grey

matter, and in (b) mixed tissues that result in di�erent conductivities between them.

compared to the second and third contacts, this can be seen in Fig. 5.4b. Nevertheless, for

the 0.4 ≤ (B1/A1) ≤ 0.6 cases, the majority of new labels were equal to "Mix".

As mentioned in section 5.1.2, the posterior probabilities obtained from the non-parametric

classi�cation approach of the �rst two contacts of a trio of heterogeneous tissue composition,

can be used to get insight into the label of each contact of the trio. For the "Grey/White"

trios, the higher P̂ (G/G|x) is, the more likely the �rst second contacts are to be in grey

matter. Also, the closest P̂ (G/G|x) is to 0.5, the more likely the �rst and second contacts

are to be in heterogeneous matter. For the "White/Grey" trios, the smaller P̂ (G/G|x) is,

the more likely the �rst and second contacts are to be in homogeneous white matter. Also,

the closest P̂ (G/G|x) is to 0.5, the more likely the �rst and second contacts are to be in

heterogeneous matter. This can be observed in Fig. 5.5, in which the posterior probabilities

P̂ (G/G|x) of heterogeneous groups as classi�ed by the co-registration of MRI with CT-scan

are plotted against (B1/A1) values, and are separated by group according to the classi�cation

of each contact on the trio.

By looking at Fig. 5.5 for the "Grey/White" group, it can be seen that higher values

of P̂ (G/G|x) are obtained for trios of contacts for which the �rst and second contacts were

labelled as being a part of grey matter, and smaller values of P̂ (G/G|x) were obtained when the
�rst contact of the trio was labelled grey matter and the second was labelled white matter. For

the "White/Grey" group, the separation is less clear but there is still a tendency of P̂ (G/G|x)
being smaller when the �rst and second contacts are labelled as white matter, and P̂ (G/G|x)
being close to 0.5 when �rst and second contacts are labelled as white and grey matters

respectively.

5.2 Classi�cation of single contacts

The aim of this section is to show how to combine the previously proposed methods to create

an automatic single contact classi�cation scheme. A total of 356 trios of contacts are used, as
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Figure 5.5: Comparison of P̂ (G/G|x) obtained for heterogeneous groups "Grey/White" in the

left, and "White/Grey" in the right, in regard to classi�cation of each contact according to

the co-registration of MRI with CT-scan.

they represent the trios for which the parametric models were validated. For each trio, the

non-parametric method is applied for the �rst two contacts, forming 356 pairs.

5.2.1 Single Contact Classi�cation Using Separate Methods

At �rst, the idea is to test how the existing identi�cation-based classi�cation methods perform

for the classi�cation of a single contact with no prior homogeneous and heterogeneous group

selection based on MRI. As in the case of the non-parametric method the classi�cation is done

considering pairs of contacts, and for the case of the parametric method the classi�cation is

done considering trios, the idea is to use the features to classify only the �rst contact of the

pair, which is equivalent to the �rst contact of the trio. Thus, the labels are simply going to

be "Grey", and "White" of the �rst contact as for the MRI classi�cation.

Two LDA classi�ers are trained considering the MRI classi�cation as the ground truth,

one considering the non-parametric features and only homogeneous pairs according to the

MRI (145 "Grey/Grey", and 124 "White/White"), and the other one considering the para-

metric feature and only heterogeneous trios according to the MRI (73 "Grey/White", and

63 "White/Grey"). It is important to note that an heterogeneous trio can be related to a

homogeneous pair, in the cases where the �rst two contacts of the trio are in the same tissue

and the third one in a di�erent tissue. For the pairs of contacts 76% are in homogeneous

tissue, and 24% is in heterogeneous tissue. For the trios of contacts 56% are in homogeneous

tissue, 38% in heterogeneous tissue, and 6% are in mixed tissue, in which the second contact
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is in a di�erent tissue than the other two (Grey/White/Grey or White/Grey/White).

The classi�ers were trained using the MRI labels of the �rst contact, with 75 % of the

data, and validated with the remaining 25 %. Once the two classi�ers were trained, they were

applied to pairs and trios of contacts in homogeneous and heterogeneous groups separately,

and also to all 356 �rst contacts of the considered pairs and trios. The accuracies of the

classi�ers for selected groups, as well as the accuracy of the classi�ers considering all contacts

are shown in Table 5.1.

LDA Classi�er
Accuracy

Only

homogeneous

Only

heterogeneous

All

contacts

Non-parametric 72% (76% of pairs) 55% (24% of pairs) 68%

Parametric 60% (56% of trios) 73% (38% of trios) 65%

Table 5.1: Accuracies of identi�cation-based LDA classi�ers for 356 single contacts

As expected, the non-parametric classi�er performs better for homogeneous groups, and

the parametric classi�er performs better for heterogeneous groups. The parametric classi�er

presents higher accuracy for homogeneous group separation than the non-parametric classi�er

for heterogeneous group separation. However, when it comes to overall accuracy considering

all groups, the non-parametric classi�er performs better than the parametric one. This is

because 76% of contact pairs are in homogeneous tissues.

5.2.2 Combination of Both Identi�cation Methods

As it can be seen from the previous section, each identi�cation-based classi�cation method

classi�es well the label of the �rst contact for di�erent types of tissue combinations. Here, the

idea is to combine information from both classi�ers using the posterior probabilities of each �rst

contact belonging to the "Grey" group according to each classi�er c ∈ [non-parametric (np),

parametric (p)]. Using Bayes rule with Gaussian distribution density given in equation (3.7)

and recalled below:

Pc(x|G) =
1

((2π)d|ΣG|)
1
2

exp

(
−1

2
(x− µG)Σ

−1
G (x− µG)

T

)
(5.1)

where x represents one contact, d the number of features (d = 4 for the non-parametric, and

d = 1 for the parametric), and ΣG and µGk the covariance and the mean of the features of

group "Grey" respectively. Considering PG as the prior probability of the "Grey" class, and

a normalization constant P (x) =
∑

k∈[G,W ] Pc(x|k)Pk, the normalised posterior probability is

given by:

P̂c(G|x) = Pc(x|G)PG

P (x)
(5.2)
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The values of P̂c(G|x) indicate how likely the contact x is of being a part of the "Grey"

group given the feature values of x. Each 356 combination of pairs and trios, are assigned

two values of normalised posterior probabilities P̂np(G|x), and P̂p(G|x) corresponding to the

non-parametric and parametric classi�ers respectively.

5.2.2.1 Bad contacts elimination

As a �rst step, one can use this information to eliminate contacts with "Bad" classi�cation.

This can be done by comparing the label attributed by each classi�er. From the 356 trios

ans pairs, the contacts that had the same attributed label using both non-parametric and

parametric classi�er can be considered as correct (72%). However, it does not mean that all

of the remaining 28% should be considered to be "badly" classi�ed. In fact, for the cases

where either non-parametric or parametric classi�ers have probabilities in the middle range

(0.4 < P̂c(G|x) < 0.6), it means that the chances for the contact being in grey or white matter

are close for the speci�c classi�er, so one should use the other classi�er to make a decision.

In this cases, there is no error of classi�cation. Thus, the only classi�cations that can be

considered as "Bad" when comparing labels attributed by the two classi�ers are the ones for

which when one of the normalised posterior probabilities is high the other is low.

With that, only 14% of contacts were considered as "badly" classi�ed, leaving 305 contacts

to be analysed in the following section. The graphical representation of the "Bad" contact

elimination according to the normalised posterior probabilities can be found in Fig. 5.6, to-

gether with the likely trio compositions expected for each combination of probabilities. The

reason for the existence of "Bad" classi�cations using the identi�cation methods is unclear.

One justi�cation might be the presence of important noise in the data of these speci�c contacts

that has an in�uence in the identi�ed models.
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Figure 5.6: Representation of the "Bad" contact elimination process according to the nor-

malised posterior probabilities.
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5.2.2.2 Combined classi�cation

Once the contacts of "Bad" classi�cation were eliminated by comparison of the normalised

posterior probabilities of the non-parametric and parametric classi�ers, what is left to do is

to combine the information of each classi�er. In order to do so, a uni�ed normalised posterior

probability is calculated by taking the mean of the normalised posterior probabilities of each

classi�er:

P̂ (G|x) = P̂np(G|x) + P̂p(G|x)
2

(5.3)

If P̂ (G|x) > 0.5 the contact is considered to be in "Grey" matter, and if P̂ (G|x) < 0.5

the contact is considered to be in "White" matter. With the combined classi�cation, and

considering only the 305 contacts previously selected, the obtained accuracy in respect to

the MRI classi�cation is 72%. In order to compare the combined classi�cation with each

classi�er separately, the same 305 selected pairs and trios of contacts are used. In Fig. 5.7

the percentage of correctly classi�ed �rst contacts considering the combined classi�cation is

compared to the percentage of correctly classi�ed �rst contacts of the separate classi�ers in

regard to the MRI classi�cation of the pairs and trios for the non-parametric and parametric

cases respectively. In Table 5.2, the overall accuracies for each classi�er considering all 305

contacts are presented.
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Figure 5.7: Comparison of correctly classi�ed �rst contacts in respect to MRI groups of (a)

non-parametric and combined classi�ers, and (b) parametric and combined classi�ers.

In general, it can be seen that the combined classi�er has very similar performance to the

non-parametric classi�er. The former is slightly less e�ective for classi�cation of "Grey/Grey"

cases, but more e�ective for classi�cation of "Grey/White" cases. However, the combined

classi�er has a better performance than the parametric one for most of the cases other than

"Grey/White/Grey", and "White/Grey/White" tissue compositions. Indeed, the improve-
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Accuracy

Combined 72%

Non-parametric 72%

Parametric 66%

Table 5.2: Accuracies for Single Contact Classi�cation for Each Classi�er for 305 Contacts

ment is from 66% alone to 72% with the combined classi�er. With the elimination of "Bad"

contacts, the performance of individual classi�ers was enhanced when compared to Table 5.1.

The results indicate that out of the two previously proposed classi�ers, the non-parametric

one is the most robust for single tissue classi�cation. This can be explained by the fact that

the parametric classi�cation method uses trios of contacts for feature extraction. The more

contacts are used, the more the conductivity of the medium is impacted by other surrounding

tissues, and the harder binary classi�cation is. Nevertheless, the parametric classi�er can still

be of help for the non-parametric classi�cation for eliminating uncertain contacts, and giving

an idea of the surrounding tissue composition.

5.3 Conclusions

In this chapter, both of the methods based on non-parametric and parametric identi�cation

proposed in the previous two chapters were combined in order to form two di�erent classi�ca-

tion methods. One able to classify trios of consecutive contacts inserted both in homogeneous

and heterogeneous tissues, and the other able to classify single contacts.

The �rst method consists in �rst using the modelling approach to create two clusters. The

�rst cluster is composed by trios of contacts for which the tissue between the �rst and second

contacts is of the same composition as the tissue between the second and third contacts. The

second cluster is composed by trios of contacts for which the distribution of di�erent tissues

between the �rst and second contacts is not the same as in between the second and third

contacts. The second cluster can be classi�ed straightforward using the values of (B1/A1)

into two heterogeneous groups "Grey/White" and "White/Grey". In order to classify the �rst

cluster as being a part of the homogeneous "Grey" and "White" groups or the "Mix" group,

the non-parametric approach with non-parametric frequency response method should be used

with the LDA classi�er for the �rst and second contacts of the trio in monopolar reference.

The labels are determined by looking at posterior probabilities P̂ (G/G|x). These probabilities
can also be used in the case of the heterogeneous groups in order to have a better insight as

to the labels of each of the contacts individually.

By applying the overall classi�cation method to the data from 19 epileptic patients, it

can be seen that most of the trios of contacts were classi�ed as being a part of heterogeneous

groups "Grey/White" and "White/Grey". The divergence from the classi�cation obtained

with the co-registration of MRI with CT-scan can be justi�ed from the fact that both the
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non-parametric and model approaches for classi�cation proposed in this study are based on

the fact that the conductivities of grey and white matter are di�erent from one another. The

conductivity between two contacts is not punctual, and does not depend only on the tissues

surrounding the contacts but also in the tissue between them.

The second method consists in training two separate LDA classi�ers, one using the non-

parametric method and homogeneous groups, the other using the parametric method and

heterogeneous groups. However, both methods are used for the classi�cation of only the

�rst contact of a pair or trio. By the combination of the posterior probabilities of the LDA

classi�ers, contacts with bad classi�cation were eliminated. The accuracy of the combined

classi�er with the elimination of bad contacts is similar to the non-parametric method, and

better than the parametric one. This can be explained by the fact that, as the parametric

classi�cation uses trios of contacts, it is more a�ected by surrounding tissues, thus it is worse

for binary classi�cation.

In general, the proposed classi�cation methods combining the non-parametric and para-

metric modelling approaches are sensitive to all tissue surrounding the trio of contacts and are

not necessarily useful for punctual tissue classi�cation, or classi�cation of tissue adjacent to

a contact. As was discussed in (Mercier et al. 2017), the signal measured by a single contact

is largely impacted by the surrounding tissues, thus a binary classi�cation might not be the

most appropriate. As they are, the combined tissue classi�cation methods serve as a com-

plement for MRI tissue classi�cation. Furthermore, once the non-parametric and parametric

classi�ers are trained, they can be helpful for doctors to decide which contacts are of interest

for the stimulation phase of the SEEG investigation. The second method for single contact

classi�cation also helps for elimination of bad classi�cations due to noisy signals recorded by

the contacts that a�ect identi�ed models.



Conclusion et perspectives

General conclusion

In the context of pre-surgical evaluation for drug-resistant epileptic patients, brain tissue

classi�cation plays an important role in the correct identi�cation of epileptic zones as well as

of the eloquent cortex. There is, however, not a lot of variety when it comes to classi�cation

methods. The vast majority of them are based on imaging, such as the co-registration of

MRI with CT-scan, in which the tissue in which a certain contact is inserted in is labelled

according to the intensity of the image voxel. The problematic of tissue classi�cation and EZ

identi�cation was reviewed in chapter 1.

The main goal of this study was to propose methods for brain tissue classi�cation using

only signals measured during typical SEEG examination. In order to do so, two di�erent

approaches were proposed, and tested on data of 19 epileptic patients.

In chapter 3, the signal based approach was presented in which features were either ex-

tracted directly from monopolar SEEG signals, or from the non-parametric frequency re-

sponses of pairs of consecutive electrodes. Such features were used for supervised classi�ca-

tion using mainly LDA classi�ers for the frequency response case, and six other classi�cation

methods for the monopolar signals case. From this approach, the highest accuracy obtained

was 72 ± 1% compared to the classi�cation from MRI of homogeneous tissue compositions,

and was achieved using features extracted from the frequency domain responses of paired

contacts and an LDA classi�er. Signals in monopolar reference have proven not to be very

discriminant between grey and white matter. When comparing to the only other study that

conducts tissue classi�cation from SEEG signals, features proposed in this study extracted

from the Bode plots of two consecutive electrodes are more discriminant when using the same

classi�cation algorithm and data. The classi�cation is robust to contacts located in epileptic

networks, and is region independent.

The model based approach for brain tissue identi�cation was presented in chapter 4 based

on the methods for system identi�cation presented in chapter 2. At �rst, the modelling of a

phantom EEG from a physical stand point was proposed in order to gather information on the

di�erent parts of the measurement chain, mainly the electrode-electrolyte interface. With the

proposed method, all separate components of the electronic circuit could be identi�ed. After

that, the modelling of the brain-electrode interface using triplets of adjacent SEEG contacts

was proposed based on the literature and adapted for the problem to solve. An identi�cation

method was proposed considering constraints and previous knowledge. Even though the iden-

ti�ed coe�cients of the models could not be used to recover the electronic circuit component

values, the ratios between them could still be used for brain tissue classi�cation. The accuracy

in group separation obtained using a simple LDA classi�er and one feature extracted from the

identi�ed models was 73± 6%. This value is close to the one obtained using features from the
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non-parametric frequency response of patients.

From the chosen referencing con�guration, the resulting transfer function of the brain-

electrode interface can be approximated to a purely resistive model. Although such model

does not represent all the dynamics of the interface, it can still achieve the same classi�cation

accuracy.

The features extracted from both approaches proposed in this study proved to be dis-

criminant for brain tissue separation, when compared to previously proposed ones. The signal

approach can be used for homogeneous tissue separation, and the model approach can be used

for heterogeneous tissue separation.

In chapter 5 both signal and model approaches were combined in order to propose a

general brain tissue classi�er for both homogeneous and heterogeneous tissue combinations

of trios of consecutive contacts. As both signal and model approaches rely on the di�erence

of conductivity between contacts, the general classi�cation method is sensitive to all tissues

surrounding the three contacts, not only the immediate tissue in contact with them. Thus,

apart from the highly probable homogeneous tissue cases, and some heterogeneous cases, one

can not use the method proposed here for individual contact classi�cation. In other words,

the classi�cation shows the distribution of brain tissue between two contacts of the trio and

not in a speci�c spot. Nevertheless, the information on the tissue distribution between three

contacts can be also useful during SEEG investigation.

As it is, the classi�cation method proposed in this study can be used as a support for the

existing classi�cation methods using the co-registration of MRI with CT-scan, and to help

doctors to choose contacts to be recorded during SEEG investigation.

Perspectives

As the vast majority of tissue classi�cation methods are image based, they are considered to

be the ground truth. However, one should consider that such methods are limited by image

resolution, and could also present miss-classi�cations. Yet, there is no way of knowing exactly

how accurate MRI based classi�cation is, when there are no other methods to compare it with.

Thus, in order to understand the true validity of the proposed methods in this study, more

tests need to be performed with di�erent data sets, focusing mainly in contacts located in

regions for which the probability of correct MRI classi�cation is high. If there are any other

methods to be proposed in the future for tissue classi�cation, they could also provide a greater

insight to how accurate the classi�cation methods of this study could be.

The choice of the voltage reference has a high impact on the di�erentiation of brain tis-

sues. This was previously discussed in literature, and can also be seen when comparing the

frequency responses obtained using contacts with monopolar reference, and contacts refer-

enced considering adjacent electrodes for both approaches of this study. As there are endless

possibilities for referencing signals, the same model and signal based features could be applied
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in re-referenced SEEG signals, in order to see in which con�guration the best accuracy can be

achieved. For di�erent references, however, the proposed electronic circuit model might need

some small modi�cations.

As mentioned, the proposed method has only been applied in baseline signals collected

during wakefulness while the patients were resting. Studies suggest di�erences in the power

spectrum of signals measured during sleep when compared to wakefulness ((De Gennaro et

al. 2003), and (Amzica et al. 1998)). These di�erences can be mainly perceived for smaller

frequencies and could be useful for tissue classi�cation. Other types of signals for which

the classi�cation methods could also be applied to are signals measured during direct brain

stimulation, for which grey and white matter react di�erently.

In addition, even though the proposed electronic circuit model �ts the expected response

from the data, and can be used for tissue classi�cation, the �t in the Nyquist plot could

still be improved. For that, adjustments to the model and identi�cation algorithm could be

considered.

Finally both classi�cation methods use consecutive SEEG contacts in a speci�c order. As

all combinations are considered, one contact can be considered as the input in one case, and

as the output in the other. This overlapping information could also be used to classify the

tissues in which each contact is inserted in individually.
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Résumé � L'épilepsie est un trouble neurologique qui touche plus de 15 millions de per-

sonnes dans le monde. Dans les cas où les patients sou�rent d'épilepsie focale résistante aux

médicaments, une chirurgie résective peut être envisagée. Pour qu'une telle chirurgie soit

réussie, il est impératif d'identi�er correctement la zone épileptique (ZE) à enlever, ainsi que

le cortex éloquent à éviter. L'un des examens préchirurgicaux qui peut être réalisé est la

stéréoélectroencéphalographie (SEEG), dans laquelle des électrodes sont placées directement

dans le cerveau du patient. Lors de cet examen, la classi�cation correcte des contacts est

cruciale pour l'identi�cation correcte des ZE. Non seulement cela aide à choisir les contacts à

enregistrer, mais aussi, en cas de stimulation cérébrale directe, il est important de savoir quel

type de tissu est stimulé car ils ont des dynamiques di�érentes.

Jusqu'à présent, la grande majorité de la classi�cation des tissus cérébraux se fait par

imagerie, le plus souvent avec le co-enregistrement de l'imagerie par résonance magnétique

(IRM) et de la tomographie par ordinateur (CT). Ce processus d'étiquetage n'est pas toujours

disponible. De plus, ces méthodes sont limitées par les résolutions d'imagerie, ce qui peut

parfois induire des erreurs de classi�cation. Il est donc intéressant d'explorer d'autres types

de classi�cation des tissus qui ne reposent pas sur l'imagerie.

Dans ce contexte, l'objectif de cette thèse est de proposer di�érentes méthodes de clas-

si�cation des tissus cérébraux en utilisant uniquement les signaux typiques mesurés lors des

examens SEEG avec le patient au repos. Dans cette étude, deux approches principales ont

été proposées pour y parvenir : Une approche basée sur le signal, et une approche basée

sur un modèle. Dans le premier cas, les signaux SEEG bruts ont été considérés, et les car-

actéristiques ont été extraites directement soit des domaines temporel et fréquentiel, soit de

la réponse fréquentielle non-paramétrique des contacts consécutifs appariés. Pour l'approche

basée sur un modèle, un circuit électronique est proposé prenant en compte des trios de con-

tacts consécutifs, sur la base des propriétés physiques de l'interface cerveau-électrode discutées

dans la littérature. Un algorithme d'identi�cation a été proposé pour identi�er un tel modèle

basé sur des techniques de modélisation dynamique, avec la spéci�cité de traiter la dynamique

d'ordre fractionnaire.

Les deux approches ont été testées avec des données enregistrées chez 19 patients épilep-

tiques. L'étiquetage préalable provenant du co-enregistrement de l'IRM et du CT scanner

des patients est utilisé pour la classi�cation supervisée. Dans l'approche par le signal, les

caractéristiques obtenues à partir de la réponse en fréquence non paramétrique se sont avérées

être les plus discriminantes, avec une précision allant jusqu'à 72±1% en considérant les paires

de contacts dans un tissu homogène avec une analyse discriminante linéaire (LDA). Pour la

seconde approche, la précision obtenue était de 73± 6% avec un classi�cateur LDA en consid-

érant des trios de contacts dans des tissus hétérogènes. Les caractéristiques proposées dans ce

travail se sont avérées plus discriminantes que celles proposées dans le seul autre travail qui

utilise les signaux SEEG pour la classi�cation des tissus cérébraux. En�n, les deux approches,

celle du signal et celle du modèle, ont été combinées pour créer un classi�cateur général des
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tissus cérébraux capable de classer les combinaisons de tissus homogènes et hétérogènes entre

des trios de contacts consécutifs.

En l'état, les méthodes de classi�cation proposées peuvent être utilisées comme support

aux méthodes existantes basées sur l'imagerie, et peuvent aider les médecins à prendre des

décisions pendant l'examen SEEG.

Mots clés : Classi�cation des tissus cérébraux, identi�cation d'ordre non entier,
modélisation de l'interface cerveau-électrode, stéréoélectroencéphalographie, estimation
de la fonction de transfert empirique, SEEG, EEG, interface électrode-électrolyte, élé-
ment à phase constante, système d'ordre fractionnaire, identi�cation, modélisation,
diagnostic.

Abstract � Epilepsy is a neurological disorder that a�ects over 15 million people
worldwide. In cases where the patients su�er from drug-resistant focal epilepsy, a
resective surgery might be considered. In order for such a surgery to be successful, it
is imperative to correctly identify the epileptic zone (EZ) to be removed, as well as
the eloquent cortex to be avoided. One of the pre-surgical examinations that can be
conducted is the stereoelectroencephalography (SEEG), in which electrodes are placed
directly into the brain of the patient. In this examination, the correct classi�cation of
contacts is crucial for the correct identi�cation of EZs. Not only it helps with choosing
contacts to be recorded, but also, in cases of direct brain stimulation, it is important
to know what type of tissue is being stimulated as they have di�erent dynamics.

So far, the vast majority of brain tissue classi�cation is done via imaging, most
commonly with the co-registration of magnetic resonance imaging (MRI) and computer
tomography (CT) scan. This labelling process is not always available. Moreover, such
methods are limited by imaging resolutions, which can sometimes induce classi�cation
errors. Thus, it is of interest to explore other types of tissue classi�cation that do not
rely on imaging.

In this context, the aim of this thesis is to propose di�erent brain tissue classi�ca-
tion methods using solely typical signals measured during SEEG examinations with the
patient at rest. In this study, two main approaches were proposed to do so: A signal
based approach, and a model based approach. For the �rst case, raw SEEG signals
where considered, and features were extracted directly either from the temporal and
frequency domains, or from the non-parametric frequency response of paired consec-
utive contacts. For the model based approach, an electronic model considering trios
of consecutive contacts was proposed, based on the physical properties of the brain-
electrode interface discussed in literature. An identi�cation algorithm was proposed to
identify such model based on dynamical modelling techniques, with the speci�city of
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dealing with fractional order dynamics.

The two approaches were tested with data recorded in 19 epileptic patients. Previous
labelling from the co-registration of MRI with CT scan of the patients is used for
supervised classi�cation. From the signal approach, the features obtained from the
non-parametric frequency response were proven to be the most discriminant ones, with
up to 72± 1% accuracy considering contact pairs in homogeneous tissue with a linear
discriminant analysis (LDA). For the second approach, the achieved accuracy was of
73±6% with a LDA classi�er considering trios of contacts in heterogeneous tissues. The
proposed features in this work proved to be more discriminant than the ones proposed in
the only other work that uses SEEG signals for brain tissue classi�cation. Finally, both
signal and model approaches were combined to create a general brain tissue classi�er
that can classify both homogeneous and heterogeneous tissue combinations between
trios of consecutive contacts.

As they are, the proposed classi�cation methods can be used as a support to the
existing ones based on imaging, and can help doctors to make decisions during SEEG
examination.

Keywords: Brain tissue classi�cation, non-integer order identi�cation, brain-electrode
interface modelling, stereoelectroencephalography, empirical transfer function estimate,
SEEG, EEG, electrode-electrolyte interface, constant phase element, fractional order
system, identi�cation, modelling, diagnosis.
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