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Supercomputers are used to solve complex and demanding computational problems (simulations, climate and weather forecasting, modelling, etc), impossible to run on regular computers. These supercomputers are composed of many powerful computers, interconnected through a network. While the power of these supercomputers increases over time, it becomes more and more challenging to develop applications taking benet from all oered computing power. Indeed, many aspects have to be considered by the developer: heterogeneous computing units programmed in dierent manners, memory hierarchy and transfers, network communications, scheduling, etc. To overcome these challenges, task-based runtime systems have emerged. They model applications by graph of tasks: sub-computations and dependencies between them form a graph. The programmer has to provide the implementations of the tasks for each targeted computing unit, express dependencies between the tasks and then the runtime system is in charge of the application execution: scheduling tasks on dierent computing units, performing required memory movements between memories and network transfers, etc.

In this thesis, we explore the possible interactions between a task-based runtime system and the communication library it relies on to perform network transfers. The goal is to make these two software layers more collaborate, to improve performance of executed applications. To understand and analyze the interactions between the runtime systems and communications, tracing applications is a powerful technique. However, it can have some limitations. Thus, we rst evaluate sources of performance overhead when tracing applications, propose solution to alleviate them and evaluate the impact of clock synchronization accuracy for distributed application tracing. Then, as a positive interaction between the task-based runtime system and the communication library, we propose a solution to eciently send the same piece of data to several nodes, coping with the constraints of the considered runtime system. On the other hand, we also consider possible negative interactions, by evaluating the dierent sources of interferences between computations and communications being executed in parallel, more or less degrading their respective performance. Since we observe memory contention between computations and communications have the most impact, we nally propose a model predicting the memory bandwidth share between computations and communications, to better understand the behaviour of the memory system in case of contention and be able to take into account this phenomenon into decisions of the runtime system. Contributions presented in this manuscript show that improving interactions and cooperations between task-based runtime systems and communication libraries has potential to increase performance of HPC applications.

Titre De l'interaction entre les supports d'exécution à tâches HPC et les bibliothèques de communications

Résumé Les supercalculateurs sont utilisés pour résoudre des problèmes numériques complexes demandant beaucoup de ressources de calcul (simulations, prévisions météorologiques, modélisations, etc), impossibles à exécuter sur des ordinateurs classiques. Ces supercalculateurs sont composés de nombreux puissants ordinateurs, connectés par un réseau. Bien que la puissance de ces supercalculateurs ne cesse d'augmenter, le développement d'applications exploitant toute leur puissance de calcul est de plus en plus complexe. En eet, de nombreux aspects doivent être considérés : des unités de calculs hétérogènes qui se programment diéremment, la hiérarchie mémoire et les transferts de données, les communications réseau, l'ordonnancement, etc. Pour parer à ces dicultés, les supports d'exécutions à tâches ont émergé : ils représentent les applications par des graphes de tâches. Les diérentes opérations exécutées par l'application et les dépendances entre elles forment un graphe. Il sut alors de donner une implémentation de chaque tâche pour les unités de calcul ciblées, les dépendances entre les tâches et le support d'exécution se charge d'exécuter l'application : ordonnancer les tâches sur les diérentes unités de calcul, réaliser les transferts mémoire et les communications réseau nécessaires, etc.

Dans cette thèse, nous explorons les diérentes interactions possibles entre les supports d'exécution à tâches et la bibliothèque de communication utilisée pour réaliser les transferts réseau. L'objectif est de faire plus collaborer ces deux couches logicielles, pour améliorer la performances des applications exécutées. Pour analyser et comprendre les interactions entre les supports d'exécution et les communications, tracer les applications est une technique pertinente, malgré certaines limitations. C'est pourquoi nous commençons par évaluer les surcoûts possibles en termes de performances induits par un système de traces. Nous proposons des techniques pour réduire ces surcoûts et avons également évalué l'impact de la précision de la synchronisation d'horloge pour les traces distribuées. Ensuite, comme interaction positive entre un support d'exécution à tâches et la bibliothèque de communications, nous proposons une solution pour ecacement envoyer une même donnée à plusieurs destinataires, tout en respectant les contraintes du support d'exécution. D'autre part, nous considérons également les éventuelles interactions négatives, en évaluant les diérentes sources d'interférences entre les calculs et les communications exécutés en parallèle, dégradant leurs performances respectives. Ayant observé que la contention mémoire entre les calculs et les communications a le plus d'impact, nous proposons nalement un modèle prédisant la répartition de la bande-passante mémoire entre les calculs et les communications. Ce modèle permet de mieux comprendre le comportement du composant mémoire en cas de contention et de prendre en compte ce phénomène dans les décisions du support d'exécution. Les contributions présentées montrent qu'améliorer les interactions entre les supports d'exécutions à tâches et les bibliothèques de communications a du potentiel pour améliorer les performances des applications HPC. T rois années de thèse sont passées, le manuscrit a été rédigé et la soutenance s'est clôturée par le fameux nous vous décernons le titre de Docteur en Informatique de l'Université de Bordeaux . Il semblerait bien qu'il ne reste plus qu'à rédiger les remerciements pour vraiment achever cette thèse. Tout d'abord, merci au jury. Merci à Arnaud et Didem pour avoir relu ce (long et dense) manuscrit. J'espère que vous avez pris autant de plaisir à le lire que j'en ai eu lors de l'écriture. Merci pour vos commentaires constructifs qui ont permis de l'améliorer. Merci à George pour avoir accepté d'être examinateur, avoir un développeur de PaRSEC dans le jury d'une thèse qui traite principalement de StarPU me semblait à la fois intéressant et audacieux ! Merci à Denis pour avoir présidé le jury. Les remerciements suivants s'adressent aux deux personnes qui ont permis à cette thèse d'être ce qu'elle est aujourd'hui : Alexandre et Emmanuel. Votre encadrement et votre soutien sans faille pendant ces trois années (voire plus pour Alexandre si on compte sa casquette de maître de stage) ont été très importants pour moi. Merci pour m'avoir transmis (une partie de) votre savoir, pour m'avoir fait découvrir le monde de la recherche ainsi que le raisonnement et la méthode scientiques en informatique. Je pense qu'on a aussi les mêmes exigences en terme de travail bien fait et pour aller au fond des choses ; je trouve toujours agréable de travailler avec des personnes qui ont les mêmes attentes que moi, j'espère que c'était pareil pour vous. Avoir deux encadrants peut parfois être déstabilisant quand l'un dit noir et l'autre dit blanc, mais ces divergences d'opinions (nalement peu nombreuses) ont su être masquées par votre complémentarité. Je me demande parfois quelle est la part des encadrants dans le travail et les résultats d'un doctorant, à quel point ma thèse est aussi la vôtre : je vous laisse répondre à cette question, et peut-être que le futur me donnera aussi la réponse ! Un merci plus collectif à toute l'équipe TADaaM, la meilleure équipe de l'Inria Bordeaux ! Merci à Brice, François, Guillaume, Guillaume et Francieli pour hwloc, le droit des logiciels, la théorie qui m'est imperméable, le standard MPI, les I/Os, le Brésil, les Ardennes, le baby-foot, le militantisme syndical, les râleries sur les étudiants, la médiation scientique, les fous-rires mais aussi le sérieux quand il s'agit de travailler (un petit jeu : saurez-vous relier chaque terme au permanent correspondant ?). Ensuite, merci à l'openspace, tout d'abord pour m'avoir supporté, merci à ceux que j'appelle mes grands-frères de thèse : Valentin, Andrès, Nicolas et Florian. Votre parcours durant la thèse m'a aidé d'une manière ou d'une autre dans ma thèse à moi. Après les grands-frères, les petits-frères de thèse : Alexis, Clément, Robin, Julien et Richard. J'espère (humblement) aussi avoir réussi à vous transmettre ce que mes grands-frères m'ont transmis. Bon courage pour la suite de vos thèses et protez bien, la n et l'après-thèse ne sont pas vraiment les périodes les plus agréables... Merci aux autres qui sont passés par l'open-space, quelque soit leur statut : Luan, Clément, Clément, Adrien, Valentin, Corentin et Amaury. Merci aux intrus de l'open-space, Luc et Romain, qui n'étaient pas de TADaaM et qui couvraient les tableaux de signes bizarres ! Un merci particulier à Alexis et Luan, comme dèles compagnons pour la découverte par deux fois des États-Unis. Pour nir avec les membres de l'équipe, un grand merci à Catherine, qui, avec une grande gentillesse et une patience à toute épreuve, a toujours su m'assister dans toutes mes démarches administratives.
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Résumé étendu en français

Les problèmes numériques complexes (comme les simulations, les prévisions météorologiques, la climatologie, la cosmologie, la biologie, la chimie, les phénomènes physiques, etc) font parties des applications ciblées par le calcul haute-performance (en anglais High Performance Computing HPC). Ces applications demandent généralement une puissance de calcul importante ainsi qu'une grande quantité de mémoire pour être exécutées, les rendant hors de portée des ordinateurs classiques. À la place, ces applications sont exécutées sur des supercalculateurs qui sont un ensemble d'ordinateurs (appelés n÷uds) individuellement très puissants, inter-connectés ensemble par un réseau rapide. Les programmes peuvent alors faire des calculs sur plusieurs n÷uds simultanément, permettant d'agréger la puissance de calcul de ces n÷uds. Dans ce cas, une bibliothèque logicielle de communication réseau s'occupe de déplacer les données entre les diérents n÷uds, par exemple lorsque le résultat d'un calcul intermédiaire eectué sur un certain n÷ud est nécessaire sur un autre n÷ud pour lancer un autre calcul. Concernant les n÷uds de calcul, leur conception ainsi que leur utilisation se sont complexiées au l du temps, en même temps que leur puissance de calcul augmentait. De nos jours, les n÷uds de calcul équipant les supercalculateurs ont chacun des unités de calcul de diérents types (CPU, GPU, FPGA, etc) qui ne se programment pas de la même manière et qui sont plus ou moins ecaces selon le type d'instructions qu'ils doivent exécuter. Cela rend la conception d'applications plus complexe, puisqu'il faut minutieusement choisir quelle unité de calcul va exécuter quelle opération. De plus, cette décision impacte également les transferts de données nécessaires entre les diérentes mémoires disponibles au sein d'un n÷ud. Mal gérés, ces transferts mémoires peuvent être très lents et devenir un facteur limitant de l'application. Pour résumer, l'hétérogénéité présente dans les n÷uds de calcul actuels rend dicile l'utilisation ecace de toute la puissance de calcul qu'un n÷ud est (théoriquement) capable de fournir.

Face à ces dicultés, les support d'exécutions à tâches (en anglais task-based runtime systems) connaissent un bel essor. Leur modèle de programmation repose sur la représentation des applications par un graphe de tâches : chaque opération de l'application est représentée par une tâche qui est un sommet du graphe. Chaque opération produit des données, qui peuvent être utilisées en entrée d'autres opérations. Ces dépendances entre tâches sont les arêtes du graphe de tâches. Pour chaque tâche, les instructions à eectuer sur chaque unité de calcul ciblée doivent être fournies, ainsi que les dépendances entre les tâches. Le support d'exécution se charge ensuite du reste : ordonnancer les tâches sur les unités de calcul, faire les transferts de données nécessaires, exécuter les tâches, ... L'écriture d'application parallèle est facilitée avec le modèle de programmation à tâches, puisque c'est le support d'exécution qui infère le parallélisme de l'application, à partir des dépendances entre tâches qui forment le graphe de tâches. Dans le cas d'applications distribuées (utilisant plusieurs n÷uds), le support d'exécution à tâches peut également découvrir et s'occuper des communications réseau nécessaires, mais en déléguant généralement la réalisation de ces communications à une bibliothèque tierce.

Habituellement, les supports d'exécution et les bibliothèques de communications sont deux briques logicielles bien distinctes. Le support d'exécution utilise l'interface de la bibliothèque de communication, et cette dernière se contente de traiter les requêtes qui lui sont adressées : elle n'a pas d'informations particulières sur l'application exécutée, ni sur l'état courant du support d'exécution. Cependant, le support d'exécution peut avoir des informations qui permettraient d'aider la bibliothèque de communication dans ses prises de décisions (les futures communications à exécuter, les priorités des tâches, le chemin critique de l'application, etc). De la même façon, la bibliothèque de communications possède une vision sur le réseau et les communications en cours, et certaines informations pourraient être utiles au support d'exécution (par exemple : les messages reçus incessamment sous peu, une estimation de la durée des communications).

Le but de cette thèse est d'explorer les interactions possibles entre les supports d'exécutions à tâches et les bibliothèques de communications, en échangeant plus d'informations entre ces deux couches logicielles, an d'améliorer les décisions de l'un et l'autre et nalement augmenter les performances des applications.

Ce manuscrit présente les contributions réalisées en ce sens pendant trois années de thèse. Tout d'abord, une évaluation et amélioration des outils de traces pour analyser l'exécution des applications à base de tâches (et ainsi mieux comprendre les interactions entre le support d'exécution et les communications) ont été réalisées. Une première interaction positive entre supports d'exécution à tâches et bibliothèque de communications a été proposée en implémentant une solution pour être capable d'envoyer ecacement une même donnée à plusieurs n÷uds diérents. Nous avons également étudié les interactions négatives, en évaluant les diérentes sources d'interférences possibles entre calculs et communications, lorsqu'ils sont exécutés en parallèle, comme c'est le cas dans de nombreux supports d'exécutions à tâches. Puisqu'il s'est avéré que la contention mémoire entre les accès mémoires pour les calculs et les communications est la plus grande source d'interférences pénalisant leurs performances respectives, nous avons proposé un modèle pour prédire la bande-passante mémoire accordée à chaque type de ux (calculs ou communications). Ce modèle nous a permis de mieux comprendre le fonctionnement de la mémoire en cas de contention et de pouvoir prédire les performances des calculs et des communications. La suite de ce résumé détaille ces diérentes contributions.

Évaluation et amélioration du système de traces

Pour comprendre les performances et le comportement des applications, tracer leurs exécutions et analyser les détails du déroulement de l'exécution peut être une méthode très ecace. Pour être susamment robustes, les systèmes de traces doivent avoir une préci-sion satisfaisante et interférer au minimum avec l'exécution de l'application tracée. Avoir un impact sur l'application tracée peut changer son comportement, ce qui signie que l'exécution décrite dans les traces est diérente de l'exécution standard (non tracée). Ce phénomène peut être gênant, puisque les traces servent généralement à comprendre ce qui se passe lorsqu'une application n'est pas tracée ! Un système de traces pas assez précis, avec des horloges mal synchronisées, produira des traces incohérentes, notamment concernant les exécutions distribuées (par exemple : un message peut apparaître comme reçu avant d'avoir été envoyé).

Nous avons évalué les diérentes sources possibles de surcoût en terme de performances de l'application, pouvant changer le comportement d'une application, lorsqu'une application utilisant un support d'exécution à tâches est tracée. Nous avons également proposé des solutions pour éviter (ou au moins réduire) ces surcoûts. De plus, nous avons implémenté dans le système de traces du support d'exécution des techniques de synchronisation d'horloges correspondant à l'état de l'art, et nous avons évalué l'amélioration de la précision des traces ainsi obtenues.

En plus de proposer des solutions aux problèmes causés par les systèmes de traces, notre travail avait aussi pour but de faire prendre conscience aux personnes utilisant ces systèmes de traces les potentiels problèmes qui peuvent survenir lors de la trace de programmes, potentiellement déformant la réalité.

Ce travail peut être perçu comme un pré-requis pour analyser sereinement les exécutions d'applications, tout en ayant en tête les possibles problèmes.

Broadcasts dynamiques

Les communications sont l'un des facteurs limitant pour faire passer les applications à l'échelle sur de nombreux n÷uds. Un motif de communications qui peut facilement s'optimiser à l'aide d'algorithmes de routages déjà présents dans la littérature, et qui se retrouve dans les graphes de tâches de certaines applications, est l'envoi de la même donnée à plusieurs n÷uds distincts. Ce motif s'appelle un broadcast.

Les bibliothèques de communications habituelles en HPC proposent des routines pour exécuter des broadcasts d'une façon optimale. Cependant, plusieurs critères doivent être remplis pour pouvoir utiliser ces fonctions : par exemple, tous les n÷uds impliqués dans le broadcast doivent faire appel à la même fonction avec les mêmes paramètres, en particulier la liste de tous les destinataires de la donnée. De plus, ce genre de fonction introduit une sorte de synchronisation, qui, pour des raisons de performances, doit être évitée autant que possible dans les supports d'exécution à tâches. Malheureusement, ces contraintes ne sont pas satisfaites dans le contexte du support d'exécution considéré : les broadcasts n'y sont pas explicites (ils doivent être inférés à partir du graphe de tâches) et seulement l'émetteur du broadcast connaît tous les destinataires. Les destinataires, quant à eux, ne savent même pas s'ils vont recevoir le message par un broadcast ou par une communication point-à-point classique (et donc ne savent pas quelle fonction appeler).

Pour pouvoir proter d'algorithmes de routages ecaces, tout en respectant les contraintes du support d'exécution à tâches, nous avons proposé des broadcasts dyna-Interférences entre calculs et communications miques. Le mécanisme pour détecter les broadcasts a une abilité satisfaisante, et une fois qu'une donnée à envoyer par un broadcast est disponible, l'interface que nous avons développée dans la bibliothèque de communication le prend en charge de façon transparente pour le support d'exécution : la donnée venant d'un broadcast est reçue comme si elle était reçue par une communication point-à-point.

Des microbenchmarks ont montré l'ecacité de notre implémentation. Les gains de performances pour les applications avec des broadcasts dans leurs graphes de tâches dépendent de plusieurs facteurs. Les broadcasts dynamiques ont permis d'améliorer les performances de 30 % sur des factorisations de Cholesky et de multiplier par 6 les performances de factorisations QR sur des matrices avec une forme et une distribution spéciques.

La pertinence des broadcasts dynamiques montre le potentiel des interactions entre les supports d'exécution à tâches et les bibliothèques de communications : à l'aide d'une interface simple et générique exposée par la bibliothèque de communications, le support d'exécution peut exécuter des broadcasts plus ecacement.

Interférences entre calculs et communications

La plupart des supports d'exécutions à tâches permettent d'exécuter en parallèle calculs et communications. Puisque cela signie exécuter simultanément des calculs et des communications qui partagent ressources matérielles communes, nous avons évalué les possibilités d'interférences entre calculs et communications, impactant leurs performances respectives.

Les variations de fréquences causées par les calculs n'ont pas d'impact majeur sur les performances des communications. Les communications lancées par le support d'exécution peuvent être pénalisées par un surcoût en latence important, à cause de la pile d'appel de fonctions à traverser avant d'atteindre la bibliothèque de communications. Mais la dégradation de performances la plus importante, lorsque calculs et communications sont exécutés en parallèle, provient de la contention mémoire entre les mouvements de données pour les calculs et pour les communications.

La contention mémoire peut être inuencée par plusieurs facteurs : le placement des données et des threads, la taille des messages et l'intensité arithmétique des calculs. Lorsque de la contention mémoire se produit, les performances des calculs peuvent être impactées, mais ce sont les communications qui sont le plus pénalisées.

Pour mieux comprendre la contention mémoire se produisant entre calculs et communications et être capable de la prédire, nous avons proposé un modèle de ce phénomène donnant le débit mémoire accordé aux calculs et aux communications, selon le nombre de c÷urs exécutant des calculs et le placement des données. La diculté de conception du modèle venait du fait que la gestion de la contention par les composants mémoire des processeurs est un secret bien gardé des fabriquants. L'évaluation de notre modèle sur une large gamme de machines aux caractéristiques diérentes ont conrmé nos hypothèses initiales : tant qu'il n'y a pas de contention, calculs et communications obtiennent la bande-passante mémoire qu'ils requièrent ; lorsque la capacité du bus mémoire est atteinte, la bande-passante pour les communications est d'abord réduite, pour préserver celle des c÷urs qui calculent ; une bande-passante minimale est tout de même toujours assurée pour les communications, pour éviter les famines ; nalement, si la demande en débit mémoire continue d'augmenter, alors les c÷urs de calcul sont également pénalisés.

Bien que ces interactions négatives entre calculs et communications apparaissent dans tout programme qui exécute simultanément des calculs et des communications, quel que soit le support d'exécution utilisé, les possibilités et l'abstraction oertes par les supports d'exécution à tâches devraient permettre de prendre en compte ces phénomènes et essayer de les éviter. Cette prise en compte de la contention entre calcul et communications par le support d'exécution serait un autre cas d'interaction positive.

Conclusion

Les supports d'exécution à tâches sont une solution pour tirer plus facilement prot de la puissance des supercalculateurs, en fournissant un haut niveau d'abstraction, allant jusqu'à inférer le parallélisme des applications et les communications réseaux nécessaires.

Cette thèse aura montré que les interactions entre les supports d'exécutions à tâches et les bibliothèques de communications, qu'elles soient positives ou négatives, ne doivent pas être négligées. Dans un cas, elles ouvrent la voie à de considérables améliorations des performances, mais dans l'autre, elles peuvent aussi pénaliser la vitesse d'exécution des applications. Il n'est donc pas possible d'ignorer les communications au niveau des supports d'exécutions à tâches.

Introduction

High Performance Computing B etween theoretical and experimental work, simulation can be considered as the third pillar of current scientic research. Indeed, simulations allow to verify theories and avoid real experiments, which can be costly and dangerous. Simulation can be used in many research areas: weather forecasting, climate prediction, uid dynamics, earthquakes, crash-tests for vehicles, rocket takeo, biology, genomics, epidemiology, nuclear phenomena, cosmology, etc. Many cars can be saved while perfecting the airbag, as well as many rockets while the engine is not nely tuned; phenomena hard to mimic at the human scale, from the atom to the universe scale; dangerous experiments about nuclear reactions or health can be performed; all thanks to simulation.

Simulations are usually performed with computer programs, solving numerous complex equations, tracking the progression of a phenomenon over time steps, handling huge amount of data. These specic programs often require lots of computing power and memory to achieve precise simulations in a reasonable amount of time. More powerful computers allow to increase simulation precision (more precise weather forecasting, for instance) and to treat bigger problems. Using powerful computers to execute simulation programs belong to the High Performance Computing (HPC) domain.

The computing power required for simulations is so important that specic computers are built for this purpose. The most powerful of them are listed twice a year by the Top500 ranking. In June 2022, the Frontier machine holds the rst position 1 , with a performance of 1.102 Eops: about 10 18 oating operations per second, while a regular laptop treats about 200 Gops (i.e. Frontier is equivalent to 5 million laptops!). Such powerful computers aimed at HPC are called supercomputers and are in fact composed of many inter-connected nodes: individual computers which can be compared to more regular servers. This connection of many nodes gives to the overall supercomputer an important computing power: Frontier is composed of 9 472 nodes. Moreover, each node has a processor with 64 cores and 4 GPUs. In the end, Frontier totals 8 730 112 computing units executing instructions in parallel.

These supercomputers can feature cutting-edge technology and the programming of applications dedicated to HPC machines can be quite challenging: applications have to be parallel (i.e. divided in smaller independent parts executed simultaneously) to reduce execution time and fully exploit the computing power of the machine, they have to support dierent computing units (CPUs and accelerators), correctly manage dierent memories, etc. With the increasing power and complexity of supercomputers, fully exploiting all the computing power becomes more and more dicult. Moreover, each supercomputer is dierently designed, which requires abstractions to have performance portability of applications.

To address these diculties, runtime systems are developed, to abstract part of the machine complexity: machine topology, scheduling, accelerator management, etc. Dierent kinds of runtime systems exist, with dierent features and abstraction levels, like abstracting the machine but letting the developer explicitly express the application parallelism. Runtime systems following the task-based programming model with data dependencies abstract even this level and ease the writing of parallel applications, by requiring only an implicit expression of the parallelism. With task-based runtime systems, the application is divided in small parts represented by tasks, and tasks are connected according to the dependencies between those tasks (i.e. order constraints based on data manipulated by each task). Tasks and dependencies form a graph, which, once given to the runtime system, can be eciently scheduled on parallel computing units. Specic software libraries (sometimes part of runtime systems) are also developed to communicate between the nodes, by using the high performance network interconnecting them. Exchanged data are mainly results produced by a node, required by another node to perform a computation. Combining several runtime systems and a third-party communication library is common for HPC applications.

Goals and contributions of this thesis

Usually runtime systems and communication libraries are two distinct and independent software. The runtime system uses the interface provided by the communication library to exchange messages on the network. The communication library is aware only of information related to network communications, and knows nothing about the application nor the status of the runtime system. However, a task-based runtime system may have information that could help the communication library in its decisions (future communications, priorities, application critical path, etc). Conversely, the communication library is aware of the status of communications and could also share its knowledge (incoming communications, estimated time of reception, etc) with the task-based runtime system. The goal of this thesis is to explore the possible interactions between task-based runtime systems and communication libraries, in order for these two software layers to better exchange their respective information about the application execution and increase each other knowledge to take better decisions.

The main two software libraries used in this work to implement prototypes and make experiments are StarPU and NewMadeleine, introduced in Chapter 1. This manuscript presents the following contributions, made during these last three Tracing systems. Recording application executions permits to later analyze the execution and understand the behaviour of the application, the decision taken by the runtime system, etc. However, tracing executions can add a performance overhead, potentially changing the behaviour of the application, making the behaviour represented in traces dierent than the behaviour in normal conditions, without traces. We evaluated the impact of dierent sources of overhead and proposed solutions to reduce them. Moreover, when tracing distributed applications, clocks used to timestamp events on each node have to be accurately synchronized to have consistent information recorded in traces, especially regarding communications. We evaluated the impact of clock synchronization on accuracy of communication duration.

Findings in this work are submitted to the journal Concurrency and Computation: Practice and Experience [START_REF] Denis | Tracing task-based runtime systems: feedbacks from the StarPU case[END_REF].

Dynamic broadcasts. Some task-based algorithms require to send the same data to dierent nodes. While common communication libraries provide routines for such usecase, with optimized communication scheme, these routines cannot be used within StarPU because of (among other things) a lack of information by all nodes receiving the data. We proposed a solution to use optimal routing algorithms for such communication patterns that ts with StarPU's constraints. The idea, its implementation and its evaluation were presented in an article published at the 26 th Euro-Par conference [START_REF] Denis | Using Dynamic Broadcasts to improve Task-Based Runtime Performances[END_REF].

Interferences between computations and communications. Many runtime systems allow to execute simultaneously computations and network communications. Since these two dierent operations share common resources, interferences between them can occur, impacting their respective performance. We evaluated several possible sources of interferences and measured the impact on performance of both computations and communications.

Results of this study were published in an article at the ICPP 2021 conference [128].

Model of memory contention. The major source of interferences between computations and communications is the possible memory contention generated by data movements to perform computations and communications. We proposed a model to better understand the contention and to be able to predict the share of memory bandwidth between computations and communications.

Our model and its evaluation got the best paper award of the APDCM 2022 workshop, in conjunction with the 36 th IPDPS conference [START_REF] Denis | Modeling Memory Contention between Communications and Computations in Distributed HPC Systems[END_REF]. A research report contains results on more machines [START_REF] Denis | Modeling Memory Contention between Communications and Computations in Distributed HPC Systems (Extended Version)[END_REF].

Organization of the document Chapters 1 and 2 present the context of this work by respectively introducing distributed task-based runtime systems and reviewing related work. Chapter 3 digs in the tracing Organization of the document system of StarPU, evaluates possible performance overheads when tracing applications and proposes solutions to reduce these overheads and to improve accuracy of distributed traces. Chapter 4 explains how we developed a broadcast system to t with StarPU's constraints while using an optimized communication pattern. Chapter 5 studies the possible interferences between computations and network communications, when they are executed in parallel. Chapter 6 focuses on the impact of memory contention on computations and communications, by proposing a model for memory bandwidth sharing. Finally, last chapter summarizes our work and discusses possible perspectives.

Appendix A explains in detail dierences between the communication backends of StarPU. Appendix B presents the followed methodology regarding reproducible experiments. Appendix C describes the characteristics of the clusters used for the experiments presented in this thesis. Appendices D and E provide respectively algorithmic versions of equations described in Chapter 6 and the parameter values obtained during the evaluation of the model.

Chapter 1

Distributed Task-based Runtime Systems T his rst chapter presents the context and the problematic of this thesis. First, it de- scribes the increasing complexity of HPC supercomputers, which makes them harder to program in the most ecient way. Then, we introduce task-based runtime systems, a solution to address these programming diculties. We explain how they work on a single node but also for distributed applications on several nodes. Finally, we announce the general problematic covered by this thesis and its main contributions.

1.1

The growing complexity of HPC machines

Although we reached some physical limits in the conception of processors, preventing from increasing always the same characteristics (e.g. processor frequency and Instructions Per Cycle (IPC)), performance of supercomputers did not stop to increase over time. Machine vendors keep innovating, in several directions, to provide always more and more computing power to their users. The diversity of solutions for real high performance computing has a cost: eciently exploiting the whole computing power oered by the machines is much more dicult, and, moreover, it is a challenge left to application developers.

1.1.1 More powerful machines...

At the core of computers, processors execute all the instructions. To oer better performances and better exploit their possibilities, they present many features, more or less complex to take into account by the application:

Multi-core processors. All available transistors in a processor can be used to split the processor into several processing units (called cores), independently executing dierent instructions at the same time. Nowadays, HPC processors feature several tens of such cores, each executing its own ow of instructions. From the operating system point of view, the dierent cores appear like dierent processors.

1.1. The growing complexity of HPC machines Simultaneous multithreading. Since some processor instructions require several clock cycles to complete (oatting-point instructions, memory accesses, etc), the progress of the instructions in the pipeline is not assured for each clock cycle. When such long instruction is executed, the core has to wait for the dedicated subsystem to handle the instruction, and thus waste clock cycles. These holes in the instruction pipeline are called stalls (or bubbles). With simultaneous multithreading, physical cores are split in several (usually two) logical cores: when a stall occurs in the instruction ow of a logical core, the physical core executes instructions from another logical core.

Intel implements this technique under the name of Hyper-Threading, which became a common term to designate this feature, as well as hyper-thread to talk about a logical core. From the operating system point of view, these logical cores appear as regular cores.

Many-core processors. Another way of exploiting the transistors of a processor is to split the processor into many cores. Like multi-core processors, each core manages its own instruction ow, but many-core processors feature much more cores: several hundreds of hyperthreads. This important number of cores is possible at the cost of simpler cores, with a reduced instruction set and less features. The main representative of this class of processors is the Intel Xeon Phi, launched in 2010 and installed for example in the Tianhe-2 supercomputer, rst in the Top500 ranking in 2013.

Heterogeneous processors. More recently, heterogeneous processors have been introduced, especially to reduce the power consumption: a set of cores requiring very few energy is used for generic purpose and another set of cores more powerful, yet consuming more power, is enabled only in case of more demanding computations. The main processor architectures in this family are the ARM's big.Little and the Intel's Alder Lake. However, these models have not landed yet on supercomputers.

Instruction set. The important number of available transistors can be used to create specic processor instructions, for instance implementing arithmetic operation directly as one processor instruction, instead of several instructions called by the software. This kind of optimization can save clock cycles and thus increase the computing power of the processor. Vectorized instructions are also improved over the years: they consist in executing the same operation on multiple registers at the same time (Single Instruction on Multiple Data (SIMD)). The vectorization of the code can be done implicitly by the compiler, or explicitly by the programmer by using the dedicated instructions.

The most famous SIMD instruction set is the Advanced Vector Extensions (AVX) from Intel. The last version, AVX-512, released in 2017 on the Skylake processors, handles 512-bit registers (which can be used as arrays of 16 floats, for instance).

GPUs. While CPUs (Central Processing Unit) are designed for a generic purpose (running the operating system, softwares) and have to support a wide range of instructions, including branchings and loops; GPUs (Graphics Processing Unit) implement mainly the SIMD architecture, thus they can exhibit a high level of parallelism, much higher than regular CPUs, but have very low performance in case of branching instructions. This specic kind of processor was originally designed for graphic processing such as image rendering, and then other applications with similar requirements (e.g. linear algebra and training of machine learning models) adopted it. FPGAs. Field-Programmable Gate Arrays are processors that can be entirely reprogrammed to execute a specic computation. This way, computations can be faster on an FGPA than on a regular CPU, since the circuit of the FGPA is reprogrammed specically to execute only the desired computation, while the genericity of the CPU can add important overhead. The main advantage of the FPGA is also its main drawback: the programming of the FPGA is made in a specic (low-level) language and the reconguration of the FPGA to execute a new program can be very long (several hundreds of milliseconds). Such processors also tend to cost more than CPUs and have a lower frequency.

All these dierent uses of transistors rely on the parallel paradigm: applications are divided in smaller independent instructions ows, each being executed simultaneously by dierent sets of transistors (e.g. several cores or hyper-threads). Parallel applications are the most common in HPC area, since this programming model is required to exploit current powerful computers, featuring these parallel computing units.

Many-core processors, GPUs and FPGAs are examples of accelerators: they are installed in addition to a CPU, to accelerate only the kind of computations they are specialized in. While CPUs have direct access to the main memory (RAM) of the computer, accelerators have their own memory. Some accelerators can access the CPU RAM, but with a potential performance overhead if used improperly1 ; a technique to counterbalance this overhead is to explicitly copy data to the accelerator memory, perform the maximum computations on the accelerator manipulating the copied data (now located in the accelerator memory, with quick access) and then copy back the data on the CPU memory. [START_REF] Rubio | Data Placement Strategies for Heterogeneous and Non-Volatile Memories Theses[END_REF].

Speaking of memory, memories accessible by a CPU bring also their set of complexity.

Computers feature a so-called memory hierarchy, as illustrated by Figure 1.1. Indeed, processors can access several kinds of memory, more or less close to each core. The further the memory is located (from an architectural point of view), the longer it will take to access this memory (to read or write), however, the higher the memory capacity. This hierarchy comes from the complexity (or even impossibility!) to design the perfect memory: fast, with high capacity and cheap: thus faster memories are smaller and closer to computing units, to take benet from an increased speed.

We can distinguish memory inside and outside the processor. Memory inside the processor are caches, organized in several levels: rst levels are private to each core and last levels are shared between cores. The most common memory outside processors is Dynamic Random Access Memory (DRAM). Processors fetch memory from the DRAM in caches and cache lines are evicted and stored back in the DRAM. DRAM memories provide good trade-o in terms of capacity, bandwidth and latency. Again, since there is no perfect memory with outstanding values in all performance metrics, other types of memories exist, each type being better regarding one characteristic, as illustrated by Figure 1.2: Non-Volatile Dual Inline Memory Module (NVDIMM) has a higher capacity and High Bandwidth Memory (HBM) a higher bandwidth.

With the current important number of cores per processor, and given the fact that HPC nodes can have several processors (usually two), the memory system cannot serve the memory requests of all cores and exhibit correct performance. To tackle this issue, a Non-Uniform Memory Access (NUMA) architecture is used: the whole memory is segmented and each segment is dedicated to a set of cores, as illustrated by Figure 1.3. A NUMA node is the name of the set composed of several cores and their dedicated segment of memory. Cores can normally access memory located on a NUMA node dierent from their NUMA node, but this kind of memory request will take longer to achieve. Current supercomputers feature several multi-core processors, NUMA architecture and GPUs. Since they have dierent kinds of processing units, they are qualied as heterogeneous. Many-core processors such as the Xeon Phi are less present in current supercomputers, while FPGAs and heterogeneous processors will probably be part of the future of HPC. Increasing performance of supercomputers will continue, by increasing also the complexity of their components. Unfortunately, this evolution is not transparent anymore for application developer...

... but more complex to program!

The application developer has now access to powerful machines, with dierent kinds of computing units. The drawback of such wide panel of technologies is the diculty of eciently programming these platforms. Indeed, the challenges are numerous.

Computing unit programming. A CPU, a GPU or an FPGA are not programmed with the same source code, and the programming paradigms can be quite dierent.

Programs can be parallelized on CPU cores with several methods: processes, threads, a runtime system, etc. Programming application for CPUs can look simpler than for accelerators, since it does not require a specic language and the use of the standard library provided by the language can be enough. However, some points require particular attention, for instance: one core should not execute several threads, the load balancing between the cores as well as memory access patterns should be optimized (to eciently use the cache, for instance), etc. In HPC applications, a popular method to easily parallelize code is the use of OpenMP pragmas: by annotating the source code, the developer can explain how the application should be parallelized. Programming GPUs (and other accelerators) can be more complicated. Interacting with GPUs is made with specic APIs (Cuda for Nvidia, Hip for AMD) or even specic languages: Cuda programs are written in a C-like language and are compiled with a specic compiler. Moreover, since the GPU has its own memory, the application developer has to manage the GPU access to application data. One problem here is the portability: the application written to be executed on a CPU has to be adapted to use a GPU (and the changes will be dierent according to which GPU vendor is targeted).

To ease the writing of applications targeting heterogeneous systems, several frameworks implement a write once, run everywhere model: the program is written in one language (usually close to C) and the framework translates it to instructions for all required computing units. OpenCL [START_REF]OpenCL Overview[END_REF], OpenACC [5] or SYCL [START_REF] Sycl Overview | [END_REF] are examples of such frameworks.

Memory management. When using accelerators, memory transfers between the host and the device are explicit. These data transfers can be long compared to computations (limited by the throughput of the PCIe bus where they are plugged: 12 GB/s vs 20 GB/s for throughput between CPUs and RAM memory) and since the memory capacity is limited, data moved on accelerators have to be carefully chosen to then be able to execute as much computations as possible on this data without requiring additional data movements. NUMA architectures has also to be taken into account for high performance. Since each core can access a close memory faster than a remote memory, cores should rather only access their local memory and minimize access to remote NUMA nodes. Accelerators are also aected by NUMA congurations: in the memory hierarchy of a machine, they are plugged into a specic NUMA node, hence the same performance consideration for CPU cores apply. The organization of heterogeneous machines forces application developers to be careful about the data locality: on which memory node (NUMA or accelerator) data has to be allocated and then potentially moved. The decision is taken according to which computing unit will work with this data, but also according to memory performance and application requirements, when less standard memories (NVDIMM or HBM) are available. Data management involving an accelerator with its own memory is explicit and has to be programmed by the application developer. Memory management on NUMA architectures can also be made explicitly by the developer, but it is not mandatory since all cores can access all the NUMA memory. Still, optimizing it can improve application performance. Some runtime systems can relieve developer's work by abstracting the memory management and handling all data transfers implicitly.

Exploiting accelerator anities. Accelerators are usually ecient to execute a limited types of computations, not all possible kinds of computations. For instance, GPUs are very ecient for matrix multiplications (30 times faster than on a CPU core), but have more diculties for matrix factorizations (only 3 times faster than on a CPU core). Thus, the choice of which computing unit (a CPU core or an accelerator) has to execute a computation is based also on the performance of computing units on the kind of the computation.

To help taking this kind of decision, performance calibrations and models can be used: computation kernels are executed on all possible computing unit to build a performance model and be able to decide where to execute which computation.

Scheduling. Executing applications ends by raising the question: on which computing unit execute which computations? In other words: how to schedule the computation tasks? All the diculty of scheduling is to optimize the use of all computing units, to reduce the application execution time. The elements of the answer are, among other, the performance of computing units and the data locality. Many trade-os appear, for instance: is it worth to spend time moving data to the GPU, even if computations will take less time on the GPU? Can CPU cores execute computations at the same time as the GPU? In which order execute computations to expand as much parallelism as possible, to always feed computing units with work? This problem is actually NP-hard [START_REF] Ullman | NP-complete scheduling problems[END_REF] and consists in a whole research eld. Heuristics and algorithms are developed to minimize the application makespan.

In the end, the application developer has to consider many factors to eciently exploit the whole computing power theoretically available in a machine. All these constraints make it dicult to manually optimize the code of an application and require often expert knowledge in dierent areas (programming, architecture, scheduling, the application domain, etc). Even if applications are successfully optimized for a supercomputer, the next question is the portability: manually optimized applications are usually tuned for a specic computer, with a specic conguration. What is the necessary eort to optimally execute the same application on a dierent conguration (e.g. change of GPU; instead of one GPU, now two GPUs are available)? Ideally, it should be free, to let the scientist focus on their research eld instead of software development.

One solution to tackle these problems is to add an abstraction layer to represent the memory and the computing units, thus getting rid for the application developer of the hardware specicities. These abstractions are usually oered by runtime systems: the application developer interacts with the runtime system, and the runtime system takes all the burden of interacting with the hardware.

Unfortunately, the complexity of HPC systems is not restricted inside one HPC node: these nodes are linked together to be used together for distributed applications.

Distributed systems

Current supercomputers are composed of thousands of HPC nodes, linked together with a high-performance network. The individual nodes are not really dierent from regular servers dedicated to other purposes than HPC: they are optimized for computing performance and scientic applications, which are programmed to exploit the computing power:

numerous CPU cores, accelerators, high memory capacity, accelerators, etc. (inputs and outputs of computations, results of intermediary computations, etc) between the cluster computers with the network. In addition to using a shared memory programming model (several cores share the same memory), applications use a distributed memory model: the total memory available for the whole application is distributed among several computers.

Moreover, distributed computing allows to speed overall application duration up, since more computing cores are available. The distributed memory provides more memory to the application, to work simultaneously on more data, thus making applications able to work on bigger problems, whose limiting factor is the memory capacity.

However, distributed computing comes with few drawbacks. First, network communications are much longer than local memory accesses (∼ 1 µs vs ∼ 100 ns). Hence the gain of having more computing cores can be oset by the communication overhead. Nowadays, communications are considered as one of the major performance bottleneck, especially when it comes to application scalability on many nodes. Then, applications (and even algorithms) have to be redesigned to deal with the distributed memory: how to distribute data and computations among the nodes, how and when to communicate between nodes, etc.

These diculties can prevent perfect scaling: doubling the number of nodes used by an application may not exactly double its performance, it depends on the application behaviour.

Environment for distributed systems

From the hardware side, high performance network systems are composed of special network adapters, plugged as a PCIe extension card.

The major manufacturers of such network interfaces are Mellanox, bought by Nvidia in 2020, implementing the InifiniBand standard; Cornelis Networks, a spin-o company from Intel, providing Omni-Path networks; Atos with the BXI interconnect; and Cray, bought in 2019 by HPE, with the Slingshot network. All these network devices exhibit low latency (∼ 1 µs vs O(10) µs for Ethernet networks) and high bandwidth (O(100) Gb/s vs usually 1 Gb/s or 10 Gb/s for Ethernet). Some HPC clusters are also equipped with RDMA over Converged Ethernet (RoCE) networks. Even if it is usually possible to use this kind of network interfaces with the IP protocol, these interfaces are programmed from the user-space, i.e. the user can directly send instructions to the device, without involving the OS kernel. This allows to save the cost of user/kernel mode switch, which leads to a better latency. For bigger message sizes, transfers are made with zero-copy: network interfaces directly access the memory location where communication payload is stored (for send operations) or will be stored (for reception operations), without involving a processor to actually make the data transfer between the network interface and the RAM memory. This allows higher network bandwidth.

The programming of these network interfaces can be very low-level and specic to each vendor. To simplify the writing of distributed HPC applications, the de facto standard that emerged is Message Passing Interface (MPI) [START_REF]MPI: A Message-Passing Interface Standard[END_REF]. As its title states, this standard denes a set of functions to exchange messages between processes. The rst version was released in 1994 and the current version 4 was released in 2021. In an MPI program, each process has a rank and each process decides which instructions to execute based on its rank2 . There is at least one MPI process per node. More processes per node can be used to exploit the machine architecture: for instance, one MPI process per NUMA node. Then simple functions are available to send and receive messages between processes, by providing the memory buer to send / to receive in, the size of this buer and the ranks of sender and receiver processes. The following code snippet executes a ring: a value is passed from a process to another, and each process increments the value before sending it to the MPI process with immediate higher rank value. The interface proposed by the MPI standard is implemented in several available libraries. OpenMPI [START_REF] Gabriel | Open MPI: Goals, concept, and design of a next generation MPI implementation[END_REF] is the most popular one. Other implementations exist, such as MPICH [3], MVAPICH [4], Intel MPI [2] or MPC [START_REF] Pérache | MPC: A Unied Parallel Runtime for Clusters of NUMA Machines[END_REF].

An HPC communication library: NewMadeleine

NewMadeleine [START_REF] Olivier Aumage | NewMadeleine: a Fast Communication Scheduling Engine for High Performance Networks[END_REF] is a small HPC communication library, used as a research project to implement prototypes and experiments. NewMadeleine has its own end-user interface, but to support MPI applications, NewMadeleine exhibits also an interface called MadMPI, implementing the MPI standard.

In the interfaces presented to the end-user, primitives to perform communications manipulate messages. While mainstream MPI libraries watch and manage the network activity when the API is called from the user code, NewMadeleine decouples the network activity from the calls to the API by the user. This separation allows to add a layer applying an optimizing strategy before forming packets ready to be sent to the network. A packet may contain multiple messages (aggregation), a message may be split across multiple packets (multi-rail), and messages may be actually sent on the wire out-of-order depending on packet scheduler decision and priorities.

Moreover, the separation between network and application activities permits to make network communications progress, without any specic action form the application (such as loops over MPI_Test functions). This ecient background progression is achieved thanks to the PIOMan sub-project [START_REF] Denis | pioman: a pthread-based Multithreaded Communication Engine[END_REF]. PIOMan allows also New-Madeleine to provide a native and ecient support for multi-threaded applications (the MPI_THREAD_MULTIPLE threading support level dened in the MPI standard; see section V.C of [START_REF] Denis | pioman: a pthread-based Multithreaded Communication Engine[END_REF]), to be able to make calls to the library from dierent threads at the same time.

NewMadeleine is designed with an event-driven paradigm, especially, its core activity is triggered by the network. When the network is busy, messages to be sent are simply enqueued; when the network becomes ready, the optimization strategy is called to form a new packet from the pending messages. A receive is always posted to the driver, and all the activity is made of up-calls (event notiers) triggered from the lowest layer when different events occur: rst byte received, message fully received, completed reception, etc.

These events can be hooked to execute a callback function dened by the application. This programming model makes NewMadeleine a library well-suited to program with the Remote Procedure Call (RPC) model (used later in this thesis): a node can execute a function on another node with parameters from the caller node.

Task-based runtime systems

Runtime systems are software layers abstracting the complexity of machines, developed to ease the writing of applications executed on these machines. There are many runtime systems, with dierent features, dierent levels of abstraction and based on dierent programming paradigms. In this thesis, we focus on the programming based on tasks.

Other paradigms are mentioned in the next chapter.

General concepts

The task-based programming model consists in decomposing applications into small tasks and describing the dependencies between those tasks. Tasks are pure functions that are sub-parts of the whole applications. Dependencies between tasks represent the constraints in the execution order of tasks, and are determined with the data manipulated by the tasks, e.g. a task B which works on a result generated by a previous task A will impose a dependency from the task A to the task B. The set of tasks and their dependencies form a Directed Acyclic Graph (DAG): tasks are the graph nodes and dependencies between tasks are the edges. From this task graph, the runtime system can infer which tasks can be executed as soon as their dependencies have been satised (i.e. parent tasks in the task graph have already been executed), as well as which tasks can be executed in parallel, since they write in dierent data. If the runtime system knows the whole task graph, it is aware of the future tasks to execute and can optimize its scheduling decisions.

This programming paradigm based on a DAG allows to schedule computations (i.e. task executions) in a asynchronous manner: since the dependencies are known from the task-graph, the runtime system knows when tasks can be executed and does not require synchronizations (or barriers) to wait for the termination of tasks, potentially source of idle time of computing units, increasing the application duration. The knowledge of the DAG of the application also permits to apply scheduling algorithms to optimize the execution time.

To use a task-based runtime system, the application developer has to provide the task graph to the runtime system: the task themselves and the dependencies between them. A task is a structure describing the small piece of computation it executes. It contains a function actually executing the computations for each targeted architecture, with the specic instructions for each architecture: a function to be executed by a CPU, a function to be executed by a GPU, etc. Computations being made on data (at least, on memory buers), a task describes also which memory buers it manipulates, with which accesses: read-only, write-only or read-and-write. This information will later be useful to build the task graph: read buers will create in-going edges and written buers will create out-going edges.

Several programming models exist to instantiate the task graph of an application, to tell the runtime system which tasks have to be executed on which data. StarPU relies on the Sequential Task Flow (STF): by sequentially describing which tasks have to be executed with which data, the runtime system can infer the DAG. Indeed, for each submitted task, the runtime system knows which data will be manipulated by the task and by comparing with the data used (and their access mode) by the previously submitted tasks, it can detect if a data-dependency exists between the task and the previous tasks.

Once the application developer provided to the runtime system the task descriptions and the dependencies between them, the runtime systems is in charge of all the remaining work to actually execute the application. The main jobs (yet the more complex) are scheduling and executing tasks on computing units, and managing data transfers between memories. Basically, such a task-based runtime system does all the complicated work the application developer has to previously do manually to eciently use their whole machine. The programmer can focus on the application side, and ignore the hardware problematic managed by the runtime system3 .

Task-based runtime systems are widely used for linear algebra applications. One of the most common operation to illustrate working and performance of task-based runtime systems is the Cholesky factorization (or decomposition). For a given symmetric denite positive matrix A, the Cholesky algorithm computes a lower triangular matrix L, such that A = LL T . Its main purpose is to solve linear systems. To easily parallelize this algorithm, the tiled avour is used: the matrix is decomposed in N × N (usually square) tiles (sub-matrices, also called blocks) where A[i][j] is the tile of row i and column j.

The data manipulated by the tasks of the Cholesky factorization are the matrix tiles. Algorithm 1 depicts the tiled version of the Cholesky algorithm: at each step k, it performs a Cholesky factorization of the tile on the diagonal of panel k (POTRF kernel) then it updates the remaining of the tiles of the panel using triangular solve (TRSM kernel). The trailing sub-matrix is updated using the SYRK kernel for tiles on the diagonal and matrix multiply (GEMM kernel) for the remaining tiles.

Algorithm 1 Tiled version of the Cholesky factorization.

1: for k = 0 to N -1 do 2:

A[k][k] ← POTRF(A[k][k]) 3: for m = k + 1 to N -1 do 4: A[m][k] ← TRSM(A[m][k], A[k][k]) 5:
end for 6:

for n = k + 1 to N -1 do 7: A[n][n] ← SYRK(A[n][n], A[n][k]) 8:
for m = n + 1 to N -1 do 9:

A[m][n] ← GEMM(A[m][n], A[m][k], A[n][k]) 10:
end for 11:

end for 12: end for Each task is inserted in the DAG during the execution of the nested loops. Each task indicates which tiles it requires. This presentation with a pseudo-language is not so far from what needs to be written in C when using StarPU, as will be seen later. For this algorithm, the application developer needs to provide the description of four tasks: POTRF, TRSM, SYRK and GEMM. 

StarPU

StarPU is the task-based runtime system used in this thesis. Other task-based runtime systems exist, they are covered in the next chapter.

StarPU [START_REF] Augonnet | StarPU: A Unied Platform for Task Scheduling on Heterogeneous Multicore Architectures[END_REF] is a task-based runtime system developed in Inria Bordeaux, by the Storm team. This C library was born as a proof-of-concept for the PhD thesis of Cédric Augonnet about dynamic task scheduling on heterogeneous machines. The original goal was to execute tasks simultaneously on CPU cores and GPUs, in a portable manner, with the minimum of pain for the application developer. From the beginning of the development in September 2008, the project gained maturity over time to be used by several scientic applications 4 but also as a playground for research ideas and experimentation about scheduling policies, performance model and prediction, programming models, etc.

StarPU supports CPUs, GPUs (Nvidia and AMD), Intel Xeon Phi and FPGA 5 . Supporting additional architectures consists of implementing a dened interface, with mainly instructions to launch computations on the device and make memory transfers. In the StarPU's jargon, each device being able to execute tasks (a CPU core, a GPU, etc) is called a worker.

The default scheduling policy of StarPU is local work-stealing, based on a listscheduling policy: each worker has its own queue of tasks ready to be executed. When a worker nishes the execution of a task, it executes the next task in its queue. If its queue is empty, it tries to steal a task from another worker, but by respecting the machine hierarchy (local work-stealing): to eciently take benet from the caches, it rst looks for tasks in the queues of other workers in its NUMA node, and only if it is unsuccessful it looks in the task queues of further workers. Other scheduling policies, used especially with accelerators, are based on performance models and implement a Minimum Completion Time (MCT) policy: StarPU can predict the duration of tasks and data transfers and takes this information into account for scheduling decisions to minimize the application duration.

StarPU abstracts data pointers by using data handles: each piece of data manipulated by a task is rst registered by the user as a data handle: the user precises the size of the data, its structure (a simple variable, an array, a matrix, etc), its type (float, double, etc), and optionally an already allocated buer (otherwise StarPU can allocate the buer on-the-y when required). Then, StarPU is free to manage the location(s) of the object referred to by this data handle: track its locality, duplicate the buer on several NUMA node (thus the data is closer to more workers), move the data to accelerator memory, synchronize all replicates when one buer is modied by a task, etc.

StarPU's tasks are instantiations of codelets. A codelet is a structure factorizing all properties common to all tasks executing the same computation: the functions to execute on workers (several functions can be provided for a same type of worker: in this case, the scheduler can chose the best function based on performance models), the number of data handles manipulated by the functions and their access modes, specic options, attributes to ease debugging (name, color, ...), etc. A task is an instantiation of a codelet: it references a codelet and stores information specic to this task, which will be executed only once: data handles which will provide data for the codelet functions, priority, callback functions to be executed before or after the task execution, etc. 

for ( m = n +1; m < N ; m ++) { starpu_task_insert (& gemm_cl , R , A_handles [ m ][ k ] , R , A_handles [ n ][ k ] , RW , A_handles [ m ][ n ] , 0) ; } } } starpu_task_wait_for_all () ;
The variables portrf_cl, trsm_cl, syrk_cl and gemm_cl are the codelets corresponding to the computation kernels. The data handles used for the tasks are in this example blocks of the matrix A.

Finally, StarPU users and developers can rely on a large set of tools to analyze application performance, which is important to understand the behaviour of the runtime 1. Distributed Task-based Runtime Systems system, scheduling decisions, etc.

Distributed StarPU

General concepts

The StarPU runtime system has been extended to support distributed applications [START_REF] Agullo | Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model[END_REF]. When distributed applications are executed, each process executes the same program, the same instructions, but parts of the program are conditioned by the rank of the process.

The starting point to write distributed applications with StarPU is the data distribution: how the data manipulated by tasks are spread over the available nodes. The data handles are created by specifying on which node they are actually allocated.

StarPU by default executes tasks where the data is located: the node which owns data to execute a task will execute this task. Since all StarPU processes execute the same program, all processes handle the same instructions to create tasks, and thus unroll the same DAG. By analyzing the data required to execute each task, and their access mode, StarPU knows which node has to execute which task: each node will execute the tasks which write in the buers it owns. If this node does not own buers it needs to read to execute this task, the node which owns the data will send it. If a task needs to write several data handles that are not all owned by a common node, the default policy is to select the node which will require the smallest total of transferred amount of data.

With such working, data exchanges between nodes are inferred by the runtime system from the task graph and are not explicitly written by the application developer, which simplies a lot the development of distributed applications.

The DAG of the distributed version of the Cholesky factorization depicted in Algorithm 1 is the same, but mapped on the set of available nodes, as illustrated by Figure 1.5. Internal data dependencies in a node are represented by gray arrows and required network communications between nodes to exchange data handles are represented by black arrows.

Communication engine

StarPU-MPI, the name of the StarPU extension for distributed executions, provides an API to the user to manage distributed executions. Internally, it uses by default the MPI interface to make network communications, thus it can work on top of any MPI library. A StarPU thread is dedicated to manage the communications: this thread makes communications progress and watches their termination. Indeed, all MPI communications posted by StarPU are non-blocking (i.e. the function call does not block the thread until the completion of the communication) and the status of these communications has to be watched to know when a communication is over, which can unblock tasks waiting for a data handle from another node or waiting to write in a data handle being sent to another node. Only this thread makes MPI calls, to avoid the need for MPI_THREAD_MULTIPLE, required to make MPI calls simultaneously from dierent threads. Actually, the MPI interface is not well-suited for distributed task-based runtime systems. The MPI API ts with (and was designed for) Bulk Synchronous Parallel (BSP) applications, which alternates phases of computations and communications: all workers execute computations, then only one worker is in charge of communications and then circling back to computations (this is called the fork-join model). Task-based applications are more irregular: each task is scheduled and executed independently from each other (except the respect for dependencies), and any type of synchronization is avoided. Thus communications can be triggered as soon as a task ends, and conversely, tasks can be executed as soon as a data is received, without any synchronization at node or application level.

The use of non-blocking functions and a dedicated communication thread allows to

In this context, the main missing feature from MPI for task-based runtime systems is event notications: being able to register a callback function to execute when an event occurs: for instance, telling StarPU expected data handles have just been received, which fulls the dependency requirements of a task and allows to schedule this task for execution. As well as communications could be issued directly from the task prolog, executed by the same worker which just executed this task, to avoid the extra cost of passing through the communication thread. This means the multi-threading support of the communication library has to exist and be ecient. Moreover, task-based runtime systems can issue bursts of communications requests (at the beginning of an application, when the result of a task is required by many nodes, etc), which have to be eciently handled by the communication library. First of all, the communication library has to scale well regarding the number of issued requests. Then, hints can be given to the communication library about the communication priorities, to help the communication scheduling: the developer of a StarPU application can dene priorities to submitted tasks, and these task priorities can be used by StarPU to determine communication priority. Unfortunately, the MPI standard does not support communication priorities.

All these wished features are actually provided by NewMadeleine. This is why StarPU-MPI has been ported to use the native interface of NewMadeleine [START_REF] Beauchamp | Portage de StarPU sur la bibliothèque de communication NewMadeleine[END_REF], and takes benet from the multi-threading support, event notications, priority support, etc.

When this back-end is used (enabled at compile time), much part of the communication engine logic is delegated to NewMadeleine: communication priorities, monitoring of running requests, communication progress, etc. Send operations are issued directly from workers and a thread managed by NewMadeleine executes callback functions.

Dierences between the NewMadeleine and the MPI backends of StarPU are further discussed in Appendix A. 1.4 Goals and contributions of this thesis Optimizing HPC applications pursues usually one general objective: saving resources. These resources can be temporal: reduce the duration of an application execution; and/or spatial: require less memory capacity or less hardware resources (e.g. less nodes) to run the same application.

To achieve this goal, optimizations can be made in several layers of our software stack: improving the application algorithm in the user application (better initial data distribution, communication-avoiding algorithms, etc), improving the runtime system behaviour to better exploit the resources (ecient schedulers, correct performance prediction models, low overhead, etc), and improving performance of communication libraries (good scalability of the number of request, low matching duration, etc).

Even if these software layers are dependent on each other (i.e. an application needs a runtime system, but runtime systems are developed for applications) and performance issues are found when using the whole stack, applications, runtime systems and communication libraries can be optimized independently. Indeed, changing the application algorithm does not require interaction with runtime system developers and improving scheduling policies can stay opaque to the end-user of runtime systems, for instance.

The proposal of this thesis is to do the opposite: optimize task-based runtime systems and communication libraries together, by improving their interactions. Both the runtime system and the communication library have information about their activities: the runtime system can know future communications to be issued, the estimated end of a task execution, the location of data handles, task priorities, etc; while the com-munication library knows the state of the network, which communications are incoming, performance of the network and its possible optimizations, etc. These two software layers should be able to exchange information about their respective state in order to provide more hints for their decision-makings.

Although, in this thesis, the ideas to increase interactions between task-based runtime systems and communication libraries are implemented in StarPU and NewMadeleine, the coupling between the runtime system and the communication library should remain loose. Rather, we propose interfaces to exploit the ideas. These interfaces should be portable enough to be implemented in any task-based runtime system and communication libraries with similar constraints as the ones we are dealing with. Implementations made in StarPU and NewMadeleine can be seen as prototypes: they aim at proving the feasibility of the interface and evaluating the performance gain. Three kinds of opportunities for better collaboration between task-based runtime systems and communication libraries have been explored during this thesis:

Tracing systems. Being able to precisely and eciently trace application executions is paramount in order to understand the behaviour and performance of applications.

Recording execution events can add an execution overhead, reduce application performance, and more important: change the behaviour of the applications. For distributed applications, the traces gathered on each node have to be synchronized to keep coherency in the timeline of events. However, this requires distributed synchronized clocks, which is not straightforward to provide.

In Chapter 3, we rst describe the tracing system used with StarPU. Then, we present few sources of performance overhead when using tracing systems and give hints to reduce them. We evaluate dierent methods of clock synchronization and evaluate their accuracy for analysis of distributed traces. Finally we discuss requirements all tracing system should fulll to be competitive enough.

Dynamic broadcasts. Some task-based algorithms need to send the same data to multiple nodes, i.e. broadcast patterns appear in their task graph. Plain MPI applications can take advantage of routines dedicated to such situation, which will optimize the broadcast by using the most suitable routing algorithm. However, broadcasting routines provided by the MPI standard does not t with the constraints of StarPU.

We propose in Chapter 4 a new approach to overcome these constraints, while using optimized broadcasting trees and improve application performance.

Interferences between computations and communications. Runtime systems such as StarPU naturally overlap communications by computations. This means computations and communications are executed simultaneously. Since these two activities share the same resources (processor, memory system, etc), interferences between computations and communications can happen, impacting their respective performance. We present in Chapter 5 the impact of computations and communications on the performance of each other, when they are executed side-by-side. We study especially the eects of processor frequency variations and memory contention. Chapter 6 focuses on the impact of memory contention between computations and communications. We propose a model to predict memory bandwidth for computations and communications, when they are executed simultaneously, according to the number of computing cores and the data locality. This model helps to better understand how the system deals with memory contention and where are the bottlenecks in the memory system.

Chapter 2

Related Work

T his chapter presents the work related to topics covered in this thesis. First sections describe programming models used in HPC applications and present existing taskbased runtime systems. Then, we explain how distributed models are integrated in other task-based runtime systems, and how communications can be optimized by the runtime system. The rest of the chapter browses the literature related to the contributions of this thesis.

2.1

Programming models

The general problematic about programming HPC machines is how to express parallelism when writing application code. Several methods exist, providing more or less abstraction of the machine and requiring instructions from the programmer more or less implicit or explicit. Task-based model (presented in section 1.3.1) makes programmer implicitly express the parallelism of its application and provides a high level of abstraction of the machine to ease the writing and portability of applications.

Fork-join model

The most common parallel programming model is the fork-join model (or BSP) where the program is a sequence of parallel regions interleaved by sequential sections, as illustrated by Figure 2.1. Many applications use this model to make computations in parallel sections: each thread works on its dedicated set of data; then in the sequential section, only one thread does a specic task, for instance communication instructions.

Fork-join applications can be written in several manners, the most common being with OpenMP. OpenMP [START_REF]OpenMP Application Programming Interface[END_REF] is a runtime system, driven by annotations in the application code (called pragmas) to explain how the code should be parallelized. An example is given in the following code snippet, which parallelizes the sum cell-by-cell of two arrays in a third array: 

( i = 0; i < n ; i ++) { c [ i ] = a [ i ] + b [ i ]; }
Compared to task-based programming paradigm, this model is simpler, yet more limited: since there is no mechanism to nely manage dependencies in the whole application (at least in the rst versions of the OpenMP standard), the parallel sections (fork) are almost limited to embarrassingly parallel sections of the program. To start the next part of the program, if the previous part has to be nished to keep data coherency (e.g. not reading data that is not completely computed (written) yet), a synchronization is required: wait (join) for the end of all threads in the previous parallel section. In case of load-imbalance, this can lead to idle time (some threads do nothing, waiting for the other threads), which represents wasted resources. In the same vein, it can be dicult to overlap several steps of the program when data dependencies have to considered or overlap communications with computations [START_REF] Sergent | Ecient Communication/Computation Overlap with MPI+OpenMP Runtimes Collaboration[END_REF][START_REF] Timothy | Overlapping communication and computation with OpenMP and MPI[END_REF].

With task-based programs, the knowledge of data dependencies allows an implicit parallelism handled by the runtime system. As long as dependencies are satised, tasks can be executed without having to wait for other threads, which are maybe working on independent data (thus waiting for them is useless). Overlapping program phases or communications and computations is implicit and thus straightforward with task-based runtime systems.

Plain MPI

Distributed systems with multicore processors can be programmed with only MPI instructions to parallelize the application. In this case, one MPI process can be launched per processor core. The parallelization is driven by selecting the computations to execute and the data to use according to the rank of the MPI process. Synchronization points consist in exchanging messages between MPI processes: it can be between processes running on the same node (intra-node communication) or on dierent nodes (inter-node communication).

While this solution is simple to use, it has several drawbacks. With one MPI process per core, it can be more dicult to take into account the machine topology to optimize applications. The point-to-point communications are more numerous and collective communications involve more MPI processes, whereas several MPI processes in a collective can be on the same node. The memory consumption can be much higher with plain MPI programs: data being replicated on several MPI processes can in fact be replicated in the memory of a single node: if processes knew the topology, maybe one copy of the data on the node would be enough. More communications implies also more memory allocated for reception buers.

On heterogeneous systems, MPI processes running on a same node have to nd a consensus on which process will use the accelerators, and then eciently balance the workload between processes computing with an accelerator and other processes.

MPI+X

MPI+X is a programming model with MPI associated with another runtime system handling the program parallelization. In such case, usually MPI manages distributed memory and X shared memory. A common mix is MPI and OpenMP: there is one MPI process per node, MPI handles the distributed memory by exchanging messages between nodes; and each MPI process uses OpenMP to express the possible parallelism on each node, using shared memory. This way each MPI process can exploit the topology of nodes, especially regarding the memory organization.

Other than OpenMP, the companion of MPI can be any programming model running on a single node, exploiting shared memory. It can be, for instance, simple threads, or even... MPI [START_REF] Hoeer | MPI + MPI: A new hybrid approach to parallel programming with MPI plus shared memory[END_REF]! A trade-o between one MPI process per core and one MPI process per node (with another runtime system for parallelization inside a node) is to use one MPI process per memory group in the memory topology, especially per processor or per NUMA node. This can be a good approach if the runtime system X ignores the memory topology.

StarPU can be used in a MPI+StarPU model: in this case, StarPU would not see the distributed side of the program, would only be used for parallelism inside nodes and would let the application developer manually manage the distributed aspect of their application. Such use-cases can appear, for instance, when progressively transforming an MPI+X application into a StarPU application.

The distributed extension of StarPU can be considered as an implementation encompassing an MPI+threads model.

PGAS

The MPI standard is based on explicitly exchanging messages between MPI processes. Another communication model is the Partitioned Global Address Space (PGAS) model: a global memory address space is split across all the nodes, and each process can access memory regions exposed by other processes, without any specic instruction from the target process for this specic access. In other words, this model allows to access remote memory regions without requiring synchronization between the sender and the receiver process.

Several libraries and runtime systems implement this communication model: UPC [START_REF] El-Ghazawi | UPC performance and potential: A NPB experimental study[END_REF], UPC++ [START_REF] Zheng | UPC++: A PGAS Extension for C++[END_REF], Chapel [START_REF] Chamberlain | Parallel Programmability and the Chapel Language[END_REF], etc. PGAS is now part of the Fortran 2008 standard with coarrays. The MPI standard supports a PGAS model (also called one-sided operations) with its set of Remote Memory Access (RMA) routines.

The PGAS programming model does not t with StarPU's design. One of the principles in the StarPU's working is a process can work by ignoring the current state of other processes. When communications are necessary, the sender sends a message when it is ready to send the data and the receiver explicitly (internally by StarPU) posts a receive request when it is ready to receive the message (e.g. it does not use the buer anymore for other purposes). By requiring explicit actions from nodes involved in a communication, the data coherency is guaranteed. With PGAS systems, only one of the process takes the initiative to access remote memory of another node. However, without any additional synchronisation mechanism, the active node cannot know if the data located in the remote memory of the passive node is already in the state the active node wants to get the data. In the same fashion, it is important for StarPU to know when a data is completely received or sent, since it can unlock tasks to execute, which requires a notication mechanism.

To summarize, the PGAS model would need synchronization and notication features to properly work with StarPU. Implementing them would mimic the working of MPI backend of StarPU...

Conclusion

Presented parallel programming models require to explicitly express parallelism in the application and to use synchronization points to ensure application coherency. Such work can be tedious for the application developer and the resulting program may not be portable on other clusters. Moreover, the developer has to know several runtime systems: usually at least two, for both inter-and intra-node parallelization. The task-based model allows to implicitly express parallelism (at a node or cluster level) of applications and the role of the runtime system ensures a good portability across dierent machines.

Task-based runtime systems

StarPU (already presented in section 1.3.2) is not the only distributed task-based runtime system. Others exist, and they all have their own specicities.

PaRSEC

PaRSEC [START_REF] Bosilca | PaRSEC: A programming paradigm exploiting heterogeneity for enhancing scalability[END_REF], the successor of DAGuE [START_REF] Bosilca | DAGuE: A generic distributed DAG engine for High Performance Computing[END_REF], is a runtime system similar to StarPU, except it supports more input formats to describe programs. It is originally focused on the PTG representation, but it can also be used with the STF model.

Parametrized Task Graph (PTG) is a algebraic representation of a task-based program [START_REF] Cosnard | Automatic task graph generation techniques[END_REF]: each task is described by its code (usually calls to C functions) and dependencies between tasks are represented with algebraic conditions on input and output data of each task. The following code snippet is the TRSM part of the PTG version of the tiled Cholesky factorization:

TRSM (k , m ) // Execution space k = 0 .. NT -1 m = k +1 .. NT -1 // Task Mapping : A [ m ][ k ] // Flows & their dependencies READ A <-A POTRF ( k ) RW C <-( k == 0) ? A [ m ][ k ] <-( k != 0) ? C GEMM (k -1 , m , k ) -> A SYRK (k , m ) -> A GEMM (k , m , k +1.. m -1) -> B GEMM (k , m +1.. NT -1 , m ) -> A [ m ][ k ] BODY trsm ( A /* A [ k ][ k ] */ , C /* A [ m ][ k ] */ ) ; END
The main advantage of such model is the lightweight representation of the DAG for the runtime system: each task composing the whole task graph of an application does not need to be instantiated ahead of time, instead the algebraic representation of the task graph indicates to the runtime system, from the current application state, which kind of task has to be executed after the end of a task. While the memory used for the DAG representation of StarPU applications is linear with the number of tasks; with the PTG representation of PaRSEC applications, it is linear with the number of types of tasks.

Unlike StarPU, each PaRSEC's thread can change its purpose during program execution: during a phase without communications, all threads can execute tasks and no thread will be in charge of communications. When a phase with communication will start later, any thread can take the bullet to deal with communications. The same goes for threads driving GPUs. This mechanism allows to better adapt the runtime system behaviour to application phases.

By default PaRSEC relies on the MPI interface for network communications. Nevertheless PaRSEC supports other communication systems, such as directly UCX (Unied Communication X [START_REF] Shamis | UCX: an open source framework for HPC network APIs and beyond[END_REF]), a low-level communication library, abstracting the access to dierent types of network interfaces; or LCI [START_REF] Dang | A lightweight communication runtime for distributed graph analytics[END_REF], which is a lightweight communication library designed originally for graph analytic, avoiding the pitfalls of MPI mismatching with requirements of graph applications and supports multithreading (in a word: a library with features similar to NewMadeleine).

OmpSs

The OmpSs programming model [START_REF] Duran | OmpSs: a proposal for programming heterogeneous multi-core architectures[END_REF] is similar to OpenMP (annotations, fork-join model, etc) and is used as research platform to experiment and implement research ideas, which could end in the OpenMP standard. Its distributed implementations [START_REF] Bueno | Productive Programming of GPU Clusters with OmpSs[END_REF][START_REF] Tejedor | A high-productivity task-based programming model for clusters[END_REF] rely on the PGAS communication model and a master/slave design: the master process analyzes the task graph and sends to slave processes tasks to execute.

The master/slave model is known to have scalability issues: when the number of slave processes increases, the bottleneck is the single master process which has to supervise the activity of more slave processes. To mitigate this issue, several levels of hierarchy can be introduced in the master/slave model: the main master process distributes coarse-grain work to submasters and these submasters manage a set of slave processes.

With StarPU, each node unrolls the same task graph of the application and keep only the task it will execute. This method avoids the need for a centralized approach and monitoring the state of each node or exchange status messages between nodes. However, it cannot dynamically handle load unbalance if the original data (or task) distribution is not optimized.

OpenMP

Version 3 of the OpenMP standard introduces the task keyword and the version 4 adds the support of dependencies between tasks. The conception of task-based applications with OpenMP is dierent from just using a fork-join model: the application has to be taskied and dependencies have to be expressed. The pragma instructions can become quite long and complex... Regarding distributed applications, OpenMP can be used along with MPI with the fork-join model. Calling MPI routines directly from OpenMP threads allows to avoid the need to wait the end of a parallel section to launch communications, but it adds a complexity level to the program and can be tedious to master. Moreover, it requires a correct support of MPI_THREAD_MULTIPLE from the MPI implementation. To ease this usecase, the version 4 of the MPI standard introduced partitioned communications: each thread can bring its contribution to a single message, without requiring to initialize the MPI library with the MPI_THREAD_MULTIPLE threading support.

Actually StarPU provides an implementation of the OpenMP interface, to be used as the runtime system executing OpenMP instructions [START_REF] Agullo | Bridging the gap between OpenMP and task-based runtime systems for the fast multipole method[END_REF].

And many others

Quark (QUeing And Runtime for Kernels) [START_REF] Yarkhan | QUARK users' guide: Queuing and runtime for kernels, version 1.0[END_REF] is a task-based runtime system for multi-core systems with shared memory, especially targeting linear algebra applications. It uses the STF model and inspired a lot the design of StarPU, especially the task_insert semantic. However, the project does not seem active anymore. YarKhan showed in his PhD thesis [START_REF] Yarkhan | Dynamic Task Execution on Shared and Distributed Memory Architectures[END_REF] some concerns about the distributed extension of Quark, QuarkD: unrolling the whole DAG on all nodes might become a bottleneck when the number of task increases, and can be partially unnecessary for specic applications, for instance, coupling applications described by task graphs with several components connected with only few dependency edges.

Legion [START_REF] Bauer | Legion: Expressing locality and independence with logical regions[END_REF], introduced in Bauer's PhD thesis [START_REF] Bauer | Legion: Programming Distributed Heterogeneous Architectures with Logical Regi PhD thesis[END_REF], is a task-based runtime system focused on data locality.

Other task-based runtime systems exist, among them: OneAPI (now encompassing Intel's Threading Building Block), SuperGlue [START_REF] Tillenius | SuperGlue: A Shared Memory Framework Using Data Versioning for Dependency-Aware Task-Based[END_REF], Charm++ [START_REF] Bilge Acun | Parallel programming with migratable objects: Charm++ in practice[END_REF], HPX [START_REF] Kaiser | ParalleX An Advanced Parallel Execution Model for Scaling-Impaired Applications[END_REF], etc. More detailed comparisons between task-based runtime systems about their dierent working, features and performance can be found in the literature [START_REF] Peter Thoman | A taxonomy of task-based parallel programming technologies for high-performance computing[END_REF][START_REF] Slaughter | Task bench: A parameterized benchmark for evaluating parallel runtime performance[END_REF][START_REF] Hoque | Distributed task-based runtime systems -current state and micro-benchmark performance[END_REF].

Communications with task-based runtime systems

As discussed in the previous chapter (in page 28), MPI is not the most well-suited to be integrated with task-based runtime systems. MPI was not designed for irregular applications requiring asynchronous mechanisms and high reactivity.

Integrating communications in task-based runtime systems

Dierent techniques can be applied to use a communication library in a task-based programming context. Each task-based runtime system proposed its solution to integrate a communication library and support distributed executions.

HCMPI [START_REF] Chatterjee | Integrating Asynchronous Task Parallelism with MPI[END_REF] is an extension of the Habanero-C task-based programming model to support distributed executions. One major goal of HCMPI is to avoid the synchronizations imposed by the fork-join model, where communications are made by a single worker after waiting for all workers to nish their computations. The design of the distributed extension is positioned between the MPI+OpenMP model and a PGAS model: to handle the asynchronicity of the task-based model and be able to easily overlap communications by computations, communications are non-blocking, can be launched from tasks and are handled by specic workers, dierent from those executing computation tasks.

In the OmpSs programming model, MPI communications can also be made inside tasks. To prevent blocking communication operations from wasting worker time to wait for a communication inside a task, Sala et al. proposed [START_REF] Sala | Integrating blocking and non-blocking MPI primitives with taskbased programming models[END_REF] mechanisms to pause tasks 2.3. Communications with task-based runtime systems and exclude them from the ones being ready to be executed, when they start a blocking MPI communication, and release them when the MPI communication is nished. This way, the worker which was executing the task can execute other tasks while the blocking MPI operations are not completed. Another thread is dedicated to poll the completion status of the MPI operations.

One-sided communications can also be used in OmpSs [START_REF] Sala | Combining One-Sided Communications with Task-Based Programming Models[END_REF]. Both the runtime system and the PGAS library needed proper changes, especially to be able to notify receivers when data arrived and to wait for specic communication operations, and not a set of communications. Some attempts were made to try to extend the MPI interface to include a notication system. For instance, Schuchart et al. proposed [START_REF] Schuchart | Callback-based completion notication using MPI Continuations[END_REF] an extension to register callback functions to be executed when an MPI request is nished. Their solution still requires a progress thread to make MPI check the status of current requests, but their evaluations on several applications (including PaRSEC ones) show performance gains. Similar proposal was made by Protze et al. [START_REF] Protze | MPI Detach -Asynchronous Local Completion[END_REF].

To the best of author knowledge, a combination of a task-based runtime system with a natively event-driven HPC communication library has not been proposed nor evaluated. This thesis might in a sense ll this lack, by exploring the possibilities of the couple StarPU and NewMadeleine.

Considering communications from a runtime system point of view

After integrating communications into the working of a task-based runtime system, the runtime system can also optimize their use and take them into account to make smart decisions.

Castillo et al. expose [START_REF] Castillo | Optimizing computationcommunication overlap in asynchronous task-based programs[END_REF] internal events of MVAPICH and implement mechanisms in OmpSs to listen to them and react accordingly. The knowledge of the communication library internal states now available to the runtime system allows them a better reactivity to network events and especially an optimization of collective operations which collect data from several peers (e.g. MPI_Gather or MPI_Alltoall): when data from a collective operation is only partially received (i.e. only a subset of involved nodes already sent their contribution), tasks that require only the received portion of data can immediately be launched, without waiting the end of the whole collective operation. This permits a better overlap of collective communications with computations.

Pereira et al. propose [START_REF] Pereira | Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Applications[END_REF] to prioritize OpenMP tasks containing MPI send instructions (and their parent tasks), to reduce the idle time waiting to receive data. They study dierent techniques: manually setting the priority of OpenMP tasks, with a higher value for those containing send instructions; a semi-automatic approach annotating OpenMP tasks which contains send instructions to inform the runtime system and let it manage the priorities; and an automatic approach based on building proles of tasks which contained MPI operations, to be able to set suitable task priority to future tasks matching the same prole. The main goal in this work was to reduce the time a task blocks a thread because of a blocking MPI operation inside. This situation cannot appear in StarPU, since communications are not executed inside tasks and are non-blocking; a lengthy MPI communication will only delay the execution of tasks waiting to receive this data; during the time, workers can execute other ready tasks.

Again, presented work is close to the problematic of this thesis (better collaborating between communications and task-based runtime systems), but does not consider a runtime system with an STF model and event-based communication library.

In StarPU

In the second chapter of his PhD thesis [START_REF] Sergent | Passage à l'echelle d'un support d'exécution à base de tâches pour l'algèbre linéair Theses[END_REF], Marc Sergent improves the scalability of StarPU-MPI in three ways, detailed in the remaining of this section.

In StarPU-MPI applications, by default all nodes unroll the same task graph. This is required by the STF model to avoid synchronizations and/or control messages between StarPU processes. This means each node analyzes all tasks of the program, and keeps only the tasks it is involved in. Sergent showed the time required to analyze the whole task graph (the submission time) can become a bottleneck when the number of tasks and nodes increase. To address this issue, the task graph can be pruned from the application level: each node will submit only tasks, which the runtime system needs to be aware of on this node: none of the submitted task will be useless for the local StarPU process. This reduces the number of task each node has to discover and improves scalability.

Another factor limiting the scalability is the memory consumption by both the runtime system itself and the application. A cache mechanism was introduced in the memory management of StarPU to avoid heap fragmentation and memory waste. This is mainly dedicated to memory allocations for MPI receptions.

Unrolling the whole DAG at the beginning of application execution allows for the runtime system to have visibility about all the data dependencies and future tasks, which allows to optimize scheduling decisions. However, it requires to allocate more memory at the beginning of the execution for the internal task structures but also for buers receiving data from MPI communications. These early allocations can lead to consume too much memory. To tackle this issue, Sergent introduces a mechanism to control the task submission ow by blocking the submission of tasks, based on two possible criteria: the number of submitted tasks not executed yet, or the amount of memory allocated for the submitted tasks.

To prevent duplicated communications, e.g. when the same data has to be sent to another node for several dierent tasks, the data is sent only once, and not independently for each task that requires it [START_REF] Agullo | Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model[END_REF]. This reduces the number of communications and save memory consumption used by reception buers. This work improves performance of the distributed extension of StarPU, but at the StarPU level: the communication library is not aware of the optimizations made in the runtime system.

Work related to our contributions

This section presents work related more specically to our dierent contributions.

Broadcasts in task-based runtime systems

The main question addressed in Chapter 4 is how to use optimized routing algorithms for broadcast communication patterns between nodes, while these broadcasts are not explicit and no StarPU process has a whole vision of the application DAG. The two challenges are the detection of the broadcast and the participation to the broadcast of nodes that do not know ahead of time the data they will receive is actually part of a broadcast.

Ecient broadcasting routing schemes have already been discussed a lot [START_REF] Wickramasinghe | A survey of methods for collective communication optimization and tuning[END_REF][START_REF] Pje²ivac-Grbovi¢ | Performance analysis of MPI collective operations[END_REF][START_REF] Jesper | Optimal broadcast for fully connected processor-node networks[END_REF][START_REF] Sanders | Two-tree algorithms for full bandwidth broadcast, reduction and scan[END_REF]. The presented work relies on these existing algorithms and can use any tree-based broadcasting algorithm.

With the PTG representation used by PaRSEC, all nodes know the full task graph, they can easily know all nodes involved in a broadcast and the entire graph being known at the beginning of the execution, explicit call to broadcast routines can be made. In practice, PaRSEC uses binomial or chained trees, on the top of MPI point-to-point requests. Broadcasts are identied directly from the algebraic representation of the task graph, which the application programmer thus has to provide, while our approach can be introduced in most task-based runtime systems, which use a dynamic task submission API.

With the master/slave model of OmpSs, only the master node knows the whole task graph and distributes tasks to slave nodes. Thus, the master node can easily detect broadcasts and tells slave nodes how to handle them. However, no information is published about the optimization of broadcasts.

Charm++ comes with the TRAM subsystem for collective communications, but it is supposed to be used explicitly by the application, which makes its constraints dierent from our use case.

HPX executes task on remote nodes via active messages. Its API contains routines to explicitly invoke a broadcast involving several nodes. All in all, other task-based runtime systems either do not optimize broadcasts, or have an API or a DAG representation that allows for explicit use of broadcasts, which are dierent constraints than dynamic task submission.

Interferences between computations and communications

Chapters 5 and 6 explore the possible negative interferences between computations and communications when they are executed simultaneously, since task-based runtime systems usually provide this feature. We mainly study the impact of processor frequency and the impact of memory contention, of which we propose a memory bandwidth sharing model. Unlike many studies which tend to neglect performance of communications in favour of computations, our work consider equally performance of computations and communications.

Impact of frequencies

A lot of research is done about the impact of CPU frequency scaling, mostly to save energy. However, most of these works consider communication phases as a good opportunity to reduce CPU frequency, because communications would be less CPU-intensive. In our work, we want to reach maximal performance of both communications and computations.

Liu et al. studied [START_REF] Liu | Evaluating High Performance Communication: a Power Perspective[END_REF] power consumption of Remote Direct Memory Access (RDMA) communications. They noticed that RDMA consumes less CPU cycles and memory bandwidth than TCP/IP. Moreover, CPU frequency has almost no eect on RDMA performance, unlike TCP/IP. Their work focuses on power consumption and only on communications.

In order to save energy, Lim et al. proposed [START_REF] Lim | Adaptive, Transparent Frequency and Voltage Scaling of Communication Phases in MPI Programs[END_REF] to decrease CPU frequency in communication phases of executed programs. They observed that reducing frequency does almost not degrade communications. However they only use Ethernet-100, which does not behave the same as high-performance networks.

Sundriyal et al. applied [START_REF] Sundriyal | Achieving Energy Eciency during Collective Communications[END_REF] Dynamic Voltage and Frequency Scaling (DVFS) and CPU throttling techniques during collective communications to reduce energy consumption. They accepted a communication performance loss of 10 % and only changed the behavior of the communication core, not of the whole machine.

Memory contention between computations and communications

Regarding memory contention, previous works focus mainly on impact of memory contention on computation and tend to neglect performance of communications.

Memory contention caused by communications and computations is observed by Chai et al. [START_REF] Chai | Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System[END_REF]. They did not evaluate the impact of this contention.

Balaji et al. studied [START_REF] Balaji | Sockets vs RDMA Interface over 10Gigabit Networks: An In-depth analysis of the Memory Trac Bottleneck[END_REF] CPU load and memory trac caused by communications with TCP/IP over 10 Gbps Ethernet and with RDMA over 10 Gbps InfiniBand. They did not discuss the interaction with simultaneous memory-bound computations.

NiMC (Network-induced Memory Contention) is introduced by Groves et al. [START_REF] Groves | NiMC: Characterizing and Eliminating Network-Induced Memory Contention[END_REF]: they studied the memory contention generated by network communications on a set of applications with and without RDMA. However, they only considered the performance of computation, not the performance of the network communications. The solutions they proposed are already implemented in our software stack (using a dedicated core, ooading RDMA transfers) or penalize communications (reducing network bandwidth to reduce memory bandwidth for communications and save it for computations).

Work related to our contributions

Modeling memory contention

Gropp et al. proposed [START_REF] Gropp | Modeling MPI Communication Performance on SMP Nodes: Is It Time to Retire the Ping Pong Test[END_REF] to improve the postal model, commonly used to model the performance of ping-pong exchanges, by taking into account the number of MPI processes accessing the Network Interface Card (NIC) at the same time. It is not applicable to our work since in our context only one thread handles all communications done by a host.

A theoretical model of the memory bandwidth sharing between computing and communicating threads was made by Langguth et al. [START_REF] Langguth | Memory Bandwidth Contention: Communication vs Computation Tradeos in Supercomputers with Multicore Architectures[END_REF]. Although they considered communications and computations are executed simultaneously, in their model, when communications end before computation, computation gets again all the available bandwidth and vice-versa when computation ends before communications. We rather focus on the steady state when there are always computations and communications in parallel (as in many StarPU applications), by considering bandwidths instead of durations. Moreover our model is more low-level, by considering the data placement on the machine topology and the number of computing cores.

Work presented in the rest of this section did not consider communications, but was helpful to better understand the memory system, and the possibilities to model its behaviour, especially under contention.

Queuing theory is often used [START_REF] Cho | Performance modeling of parallel loops on multi-socket platforms using queueing systems[END_REF][START_REF] Marius | Understanding o-chip memory contention of parallel programs in multicore systems[END_REF] to model memory contention. Each queue can represent one contention point, and assembling them can describe the general behaviour of the whole memory system. Model parameters are derived from hardware counters, read while executing applications. This kind of model ts well with homogeneous queue consumers (computing cores, caches, memory controllers), but is more dicult to use in our context, because of the heterogeneity of data streams to consider.

Wang et al. presented [START_REF] Wang | Predicting the memory bandwidth and optimal core allocations for multi-threaded applications on large-scale NUMA machines[END_REF] the possible bottlenecks in the memory system to model them with Integer Programming, to nd the optimal number of cores to execute memorybound applications, especially on NUMA systems.

Majo and Gross studied [START_REF] Majo | Memory System Performance in a NUMA Multicore Multiprocessor[END_REF] the behaviour of memory controllers in charge of serving local and remote memory accesses. They distinguished the local memory bandwidth (of the local memory controller) and the remote memory bandwidth (of the QPI bus) and modeled the maximum available bandwidth as a pondered sum of the two bandwidths, by introducing a sharing-factor. The evolution of this factor depending on the number of computing cores helps to understand how the memory controller manages its queuing fairness between dierent types of memory requests.

Goodman et al. presented [START_REF] Goodman | Pandia: Comprehensive contention-sensitive thread placement[END_REF] Pandia, a framework to predict performance of other congurations (number of threads and their placement) of parallel applications. From a machine description and 6 well-chosen application runs, they have all required information to make accurate predictions, by knowing the bandwidth capacity of the dierent memory buses. They take into account parallel fraction, memory accesses, load balancing and computing resource demands of applications, and rely on hardware counters to get these information.

Tracing systems

To better understand interactions between runtime systems and communication libraries, tracing application executions can be very helpful. Tracing applications consists in recording the behaviour of an application execution to analyze it latter in depth and try to understand the performance. Many articles start from observations of trace executions to explain their ndings and improvements, for instance [START_REF] Vinícius | A visual performance analysis framework for task-based parallel applications running on hybrid clusters[END_REF][START_REF] Cao | Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools[END_REF][START_REF] Lucas | Detection, Evaluation and Mitigation of Resource Anity and Communication Contention Problems in a Task-Based Runtime over Heterogeneous Clusters[END_REF]. Two main steps form the tracing process: telling the application what to record and then analyze the execution traces.

Tracing solutions

A large set of tools dedicated to the tracing workow is available. Some tools focus only on a subset of the steps composing the whole tracing process, while others take care of the whole workow. As examples, FxT [START_REF] Danjean | An ecient multi-level trace toolkit for multi-threaded applications[END_REF] and LiTL [START_REF] Iakymchuk | LiTL: Lightweight Trace Library[END_REF] are libraries handling event probes and their storage; EZtrace [START_REF] Trahay | EZTrace: a generic framework for performance analysis[END_REF] is a library to easily wrap function calls: it stores events when the functions are entered and left. More complex tools such as Tau [START_REF] Shende | The Tau Parallel Performance System[END_REF] and OpenSpeedShop [START_REF] Schulz | OpenSpeedShop: An Open Source Infrastructure for Parallel Performance Analysis[END_REF] execute the application to trace, process all the collected data and give information back to the user about the execution.

Trace le formats resulting from a traced execution are usually a raw format, understandable only by the library which generated the le. However, once converted, the les depicting the execution can be in more common le formats, like Pajé [START_REF] De | Pajé trace le format[END_REF] or OTF2 [START_REF] Eschweiler | Open Trace Format 2: The Next Generation of Scalable Trace Formats and Support Libraries[END_REF], to be read by tools to view and analyze the trace, like Vampir [START_REF] Nagel | VAMPIR: Visualization and Analysis of MPI Resources[END_REF], Paraver [START_REF] Pillet | PARAVER: A Tool to Visualize and Analyze Parallel Code[END_REF], Scalasca [START_REF] Geimer | The Scalasca Performance Toolset Architecture[END_REF] or ViTE [START_REF] Coulomb | An open source tool chain for performance analysis[END_REF]. Usually, tools focusing on a particular step of the tracing workow are linked to specic tools focused on other steps. Some collaborations tend to reinforce these anities, like Score-P [START_REF] Knüpfer | Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TA[END_REF], a joint performance measurement environment gathering, among others, Tau, Scalasca and Vampir. All these tools can be used to trace any kind of application, even if they tend to focus on parallel applications.

An overview of the characteristics of traces representing executions of task-based applications is given in [START_REF] Haugen | Visualizing execution traces with task dependencies[END_REF], along with propositions to ease the trace analysis. The beginning of Chapter 3 explains in detail the specicities of task-based applications when it comes to tracing their executions and how tracing process works within StarPU.

Regarding other task-based runtime systems, OmpSs [START_REF] Duran | OmpSs: a proposal for programming heterogeneous multi-core architectures[END_REF] relies on the Extrae [START_REF] Extrae | [END_REF] library to generate traces, browsable by the Paraver trace explorer, and PaRSEC [START_REF] Bosilca | PaRSEC: A programming paradigm exploiting heterogeneity for enhancing scalability[END_REF] uses an internal system to record events [START_REF] Cao | Performance Analysis of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools[END_REF] and provides a set of tools to convert resulting trace les in more convenient le formats, such as Pajé.

Distributed clock synchronization

When benchmarking or tracing distributed applications, getting the current time to timestamp events, and thus be able to locate them in the time, is usually done by relying on the local clock of each node. However, each node can have a dierent time origin and, even worse, clocks can have dierent drifts. Therefore, clocks have to be synchronized between nodes to be accurate enough.

The problem of distributed synchronized clocks, applied to tracing systems or other, has already been covered in the literature, to explain the origin of clock dierences in distributed systems, to propose algorithmic solutions, and to present solutions used by applications. Among many work, Becker et al. explain [START_REF] Becker | Implications of non-constant clock drifts for the timestamps of concurrent events[END_REF] how non-constant clock drifts, caused for instance by processor frequency variations, can have a severe impact on distributed clock synchronization. They show that post-mortem linear interpolation of clock drift based on clock synchronizations before and after application execution is not enough to compensate for these clock variations, especially on long runs (after several minutes). Jones et al. statistically evaluate [START_REF] Jones | An evaluation of the state of time synchronization on leadership class supercomputers[END_REF] the accuracy of time synchronization on several leadership class supercomputers in 2016, and report their clock synchronization is not as good as expected, for such top-world supercomputers.

The problem of clock synchronization is not only present in the HPC area. For commodity computers, the Network Time Protocol (NTP) [START_REF]Network Time Protocol (Version 3) Specication, Implementation and Analysis[END_REF] is used by operating systems to have a correct clock, but with a coarse-grain precision: only around 200 µs on local networks. In research about distributed systems, for instance, Clément and Dagenais synchronize [START_REF] Clément | Traces synchronization in distributed networks[END_REF] event timestamps to trace events in OS kernel during distributed executions.

In the HPC area, there are two main features requiring accurate synchronized distributed clocks: correctly timestamping events to trace distributed executions and benchmarking inter-node communications. Both suer from the same problems and can usually be solved by similar solutions, but there are still some dierences.

In tracing systems, one of the most important requirements is to keep sequential consistency in the traces, for instance to avoid communications appearing as received before they are sent (this kind of artifacts are sometimes called tachyons). In addition to correctly synchronizing clocks in order to accurately compute the clock oset during post-processing, some tools also rely on logical clocks: they look for timing inconsistencies and try to correct them by changing their timestamp to preserve the correct chronological event order [START_REF] Ellwood | A Tracing Environment for MPI[END_REF]. With Vampir, two barriers are used before and after the application execution, and then the event timestamps are corrected by interpolating the clock oset [START_REF] Knüpfer | The Vampir Performance Analysis Tool-Set[END_REF]; Scalasca use additional logical clocks to x remaining inaccuracies [START_REF] Becker | Timestamp synchronization for event traces of large-scale message-passing applications[END_REF][START_REF] Becker | Replay-based synchronization of timestamps in event traces of massively parallel applications[END_REF].

For communication benchmarks, especially collective communications (involving several processes), the accuracy of a synchronized clock is of paramount importance to have precise measurements and to be able to correctly analyze the results. The problem lies more in being able to start an MPI operation at the exact same time on all nodes, rather than measuring the duration of an action taking place over several nodes. If all processes are able to start at the exact same time, we can use local clocks to measure the duration of the local action, and then aggregate the duration of all local events to get an overview of the global duration. Many articles [START_REF] Nor | Comparison of MPI Benchmark Programs on Shared Memory and Distributed Memory Machines (Point-to-Point Communication)[END_REF][START_REF] Asilah | Comparison of MPI benchmark programs on an SGI Altix ccNUMA shared memory machine[END_REF][START_REF] Hoeer | Accurately measuring overhead, communication time and progression of blocking and nonblocking collective operations at massive scale[END_REF][START_REF] Lastovetsky | MPIBlib: Benchmarking MPI Communications for Parallel Computing on Homogeneous and Heterogeneous Clusters[END_REF][START_REF] Hunold | On the Impact of Synchronizing Clocks and Processes on Benchmarking MPI Collectives[END_REF][START_REF] Hunold | MPI benchmarking revisited: Experimental design and reproducibility[END_REF] explore what dierent methods are used in MPI benchmark sets to synchronize clocks. Lots of tools just use MPI barriers in each loop iteration to start the MPI function at the same time on all processes, despite the inaccuracy MPI barriers can suer from, as pointed out in several papers [START_REF] Hunold | On the Impact of Synchronizing Clocks and Processes on Benchmarking MPI Collectives[END_REF][START_REF] Hoeer | Accurately measuring overhead, communication time and progression of blocking and nonblocking collective operations at massive scale[END_REF]. A common practice is also to use the same process (and thus the same clock, not requiring distributed synchronization) to collect the start and end time of the routine execution to be benchmarked. SKaMPI was the rst MPI benchmark [START_REF] Worsch | On Benchmarking Collective MPI Operations[END_REF] to implement the most ecient technique to start a function on several distributed processes at the exact same time, with a so-called window-based synchronization.

In both cases, tracing or benchmarking, synchronizing clocks requires ecient algorithms, to compute clock oset as fast as possible. The literature contains some work about the communication patterns to use to synchronize clocks [START_REF] Doleschal | Internal timer synchronization for parallel event tracing[END_REF][START_REF] Hunold | On the Impact of Synchronizing Clocks and Processes on Benchmarking MPI Collectives[END_REF][START_REF] Hunold | Hierarchical Clock Synchronization in MPI[END_REF][START_REF] Hunold | MPI benchmarking revisited: Experimental design and reproducibility[END_REF][START_REF] Hoeer | Accurately measuring overhead, communication time and progression of blocking and nonblocking collective operations at massive scale[END_REF], implementation techniques [START_REF] Jones | Clock synchronization in high-end computing environments: a strategy for minimizing clock variance at runtime[END_REF] or statistical approaches [START_REF] Maillet | On eciently implementing global time for performance evaluation on multiprocessor systems[END_REF][START_REF] Cristian | Probabilistic clock synchronization[END_REF].

In the MPI standard, the function MPI_Wtime returns the time in seconds since an arbitrary time in the past. The origin of the clock used by MPI_Wtime is guaranteed not to change during the life of the process. However, the used clock does not have to be necessarily synchronized with other processes in the MPI job. In other words, having a global synchronized clock is left to the appreciation of MPI library developers, which is currently not the case in OpenMPI, MVAPICH or Intel MPI.

We explain in Chapter 3 how clocks are synchronized to trace distributed executions of StarPU applications, and we empirically evaluate the accuracy of our implementation.

Conclusion

Task-based paradigm is an emerging programming model for HPC applications, to easily abstract the complexity of supercomputers. Nonetheless, there is a lot of room for improvements regarding the distributed mechanisms of current task-based runtime systems: the MPI standard does not t well with the desynchronized aspect of task-based runtime systems, which leads to more or less complex solutions, presented above. Moreover, network communications could be more taken into account by runtime systems to make smarter decisions about scheduling, data placement, etc.

Two steps are required to achieve correct performance with distributed task-based runtime systems: the use of a communication library in the runtime system to execute distributed applications and then, optimizing communications from the runtime system, by improving interactions between task-based runtime systems and communication libraries. This thesis focuses on the second step, by exploring which information have to be shared between the task-based runtime system and the communication library.

Most of the reviewed related work does not consider the use of an event-based communication library, more suitable to requirements to task-based runtime systems. Thus, we try to improve the possible interactions between them and more suitable communication libraries, like NewMadeleine.

Chapter 3

Tracing Task-based Runtime Systems W orking on the interactions between runtime systems and communication libraries requires to rst understand the existing interactions and then observe and analyze the implemented improvements. Tracing systems can be a handy tool here: they are usually used to record details of an application execution, to then be able to precisely analyze and understand the execution. However, these tracing systems have a cost: some of them require code instrumentation (i.e. modication in the application code) and they can add an important performance overhead, sometimes changing the application behaviour when tracing is enabled, which can be dramatic if tracing the execution makes the developer actually observes dierent behaviours from the ones he wanted to understand originally. Challenges for tracing systems are thus to be as light as possible, as well as being able to bring insightful information to the application user or developer.

Since with task-based runtime systems, application performance can depend as well on the runtime system behaviour as the application behaviour itself, it is important to be able to understand how each component of the runtime system (scheduling, memory management, communications, etc) works, and thus have a well-integrated tracing system in the chosen runtime system. Some of them use their own tracing systems, while others rely on existing ones.

In this chapter, we present the challenges we faced to eciently use and improve the tracing layer in the StarPU task-based runtime system. We explain how the tracing system works within StarPU and focus on two aspects: the dierent sources of performance overhead coming from the tracing system, and the clock synchronization issue for precise traces of distributed executions. 

Generic tracing systems

Development of runtime systems and applications includes being able to trace their executions, to x bugs, improve performance, etc, by having an overview of what is precisely happening during executions. Here, we focus on oine (or post-mortem) analysis: execute the application by recording a set of events describing the application behaviour.

When the application terminates, les containing the execution trace are saved and can be exploited by tools dedicated to trace analysis.

The tracing workow can be decomposed in several steps, each coming with their set of problematic and solutions:

1. Collecting information from application executions. This can be achieved mainly by manually putting probes into the code of the component to be traced (method called instrumentation) or by wrapping function calls to let the trace system catch them;

2. Storing collected information. Trace systems have to timestamp all events and save all collected data in a persistent format to make the trace data available to the user for the post-mortem analysis. Data has to be stored in a coherent format (keeping the chronological order of events, storing all possible kinds of additional data for each event, etc), preferably minimizing the size of the trace les;

3. Converting raw trace les to more practical le formats. Because of the constraints on the previous step, the raw trace les are usually not directly exploitable, and need some processing to be read by other tools;

4. Analyzing the trace les. The converted les during the previous step can be read by tools to visualize the execution timeline and to highlight the performance bottlenecks and hotspots, for instance.

Tracing distributed applications: synchronizing clocks

With distributed executions, usually each process is traced locally, generating one trace le per process. A subsequent conversion step is then in charge of merging the trace les to generate a single exploitable trace le describing the behaviour of the whole application execution.

The main concern with distributed traces is the clock synchronization between nodes: each node usually has a dierent clock origin. Since each process uses its local clock to timestamp events stored in the trace le, clocks have to be synchronized between the dierent nodes. Even worse, clocks of dierent nodes can have dierent drifts, causing a single clock synchronization not to be accurate enough after some elapsed time.

In practice, badly synchronized clocks can break temporal order of events (the best example is a communication between two nodes appearing in the trace as being received before it was sent) and/or distort the durations of actions involving several nodes (a communication can for instance look faster than in the reality).

There is no straightforward solution to synchronize distributed clocks, which satises all requirements: accurate, fast to initialize and to access, scalable with the number of processes, precise enough for a dened amount of time and without overhead for the application using this kind of clock. Moreover, many factors may inuence the accuracy of synchronized clocks, from hardware characteristics (processor frequencies, network performance, computing load, etc) to software features (algorithmic complexity, for instance).

The distributed clock synchronization problem is discussed in detail in section 3.4.

Tracing systems and task-based runtime systems

Even if task-based runtime systems can be traced and analyzed with existing tools, these tools are widely used for more classic applications, which are usually more regular (or even based on the BSP model), and can miss some important information related to the working of task-based runtime systems. For instance, one of the key components of such runtime systems is the scheduler, orchestrating the DAG execution onto the computing units: tracing its behaviour to control and understand its decisions requires to collect and visualize particular information, such as the number and types of tasks ready to be executed, which memory node the data buers these tasks will use are on, what the current status of each computing unit is, etc. Moreover, since all the program execution relies on a DAG, saving this graph, e.g. all information about the tasks and the dependencies between them, is also important to understand the application structure and how the runtime system deals with it.

Contributions

Within the context of StarPU, this chapter presents some challenges and solutions while integrating and using a tracing systems. It makes the following contributions:

1. A presentation of three sources of performance overhead caused by tracing systems.

For each source of overhead, we measure the performance penalty and propose solutions to reduce it;

2. An empirical evaluation of dierent distributed clock synchronization methods, along with implementation details to compute clock osets between nodes;

3. A discussion from the dierent elements learned in the following sections about the method to eciently trace applications and which requirements has to t a generic competitive tracing system.

Tracing StarPU's behaviour

The large number of concepts specic to task-based runtime systems (tasks, dependencies, memory transfer, scheduling, etc) shows how complex the work of such runtime systems 3.2. Tracing StarPU's behaviour can be. Thus, it is important to be able to precisely analyze the runtime system behaviour, to check if it works as expected, to detect and investigate performance issues, etc. Each previously enumerated concept can give valuable and ample information about application execution. A method to retrieve all this information is to record them during the application execution and exploit them later, in a post-mortem analysis.

To better understand following sections, this one explains more in depth how the trace gathering works within StarPU and how the collected data can then be exploited.

Trace gathering

The big picture to explain StarPU's tracing mechanism is that the internal code of StarPU is riddled with probes to describe what is happening. These probes are instructions to save an event with a timestamp and additional provided information. These events are then stored in a le, to be analyzed later. Let us consider the example of pushing a task to workers: all data dependencies of this task have been fullled, the task is ready to be executed by a worker. The function in charge of this action begins as follows:

int _starpu_push_task_to_workers ( struct starpu_task * task ) { _STARPU_TRACE_JOB_PUSH ( task , task -> priority ) ; // ... actually push the task to computing units _STARPU_TRACE_JOB_PUSH will generate an event representing the push of the task given as a parameter, with the given priority. In fact, it is a preprocessor macro that checks whether tracing is enabled and then calls the tracing library to store the event.

StarPU relies on a third-party library, FxT [START_REF] Danjean | An ecient multi-level trace toolkit for multi-threaded applications[END_REF], to record and store events. FxT is in charge of collecting events, possibly ltering them, timestamping them and saving them in a raw le. Then, FxT is also used to read the trace le and get all event information: timestamp, event type, thread ID and additional given information (in the previous example: the task and its priority).

Internally, FxT allocates a buer to temporarily store events, before ushing this buer to a disk, in the trace le. The buer is ushed when it is full or when the application terminates. During a ush, other threads can continue to record events, thanks to a double-buering system.

For distributed executions, a raw trace le per StarPU process is created.

In StarPU, all possible events belong to a category, for instance: TASK: task information: name, color, submission time, dependencies, number, throttling, etc; WORKER: computing unit activity: start and end of task execution, sleep, memory transfer to execute tasks, etc; At execution time, users can select which event categories they want to be recorded.

Trace exploitation

Once the application execution has been traced, a raw trace le per StarPU process is left to the user for post-mortem analysis. Since these les are understandable only for FxT, StarPU provides the tool starpu_fxt_tool which reads the trace les, and transforms them into les with a more convenient format, for instance: paje.trace: the Pajé format stores timestamped events to describe application behaviour;

Several rec les (a format similar to Comma-Separated Values) listing all communications, tasks, data buers, etc and their characteristics, dag.dot: a DOT le representing the task graph of the application, executed by StarPU.

These dierent processed les can be exploited in dierent ways:

The ViTE [START_REF] Coulomb | An open source tool chain for performance analysis[END_REF] software can be used to display the Gantt diagram described in the paje.trace le: it will statically represent along a timeline the activity driven by the runtime system: task executions by workers, memory and network data transfers, etc. An example of the representation of a StarPU application by ViTE is given by Figure 3.3 (page 55).

StarVZ [START_REF] Vinícius | A visual performance analysis framework for task-based parallel applications running on hybrid clusters[END_REF] is an R framework, useful to manipulate data from the trace and to easily make all sorts of plots about information stored in the trace le. Figure 3.1 is an example of basic visualization rendered with StarVZ, where the dierent plots represent: the parallelization of Cholesky iterations, the task executions by workers, the number of submitted tasks, the worker status, the number of ready tasks, a metric representing work imbalance and worker utilization.

Users can manually parse les generated by starpu_fxt_tool to produce their own analysis and plots to represent metrics they are interested in.

3.3

Reducing impact on performance

Tracing applications implies executing instructions for the original application processing, but also additional instructions to record the events. These additional instructions can add a performance overhead and thus reduce the application performance or, even worse, change the application behaviour. This section presents three sources of overhead caused by the trace recording and proposes solutions to reduce these overheads.

Avoid writing traces on the disk during execution

As mentioned earlier, FxT ushes its event buer on the disk when it is full. FxT will notice the buer is full when it will try to record a new event: if the buer is full, writing the buer in the le will increase the duration of the probe routine, as much as the necessary time to ush the buer. This can aect application performance, if it happens during application execution, on a critical path.

We made an experiment to evaluate this possible source of tracing overhead on performance of applications. To generate a lot of events and observe how trace buer ushes reect in application performance, we execute several times the same Cholesky decomposition of a matrix of size 24 000 × 24 000 and plot the performance of each run. At the end, the trace le size is 7.1 GB while the trace buer size is 1024 MB (i.e. ushes occurred during application execution). The trace le was recorded on a BeeGFS parallel lesystem. Results of this experiment are depicted on Figure 3.2: blue dots represent application performance in Gops and runs during which a ush of the trace buer occurred are highlighted with a vertical red line. When runs are not disturbed by a ush, application performance is around 3 Tops (small variations may be caused by processor frequency variations, to avoid overheating). When a ush occurs during application execution, performance can be severely reduced (1.1 Tops for runs 6 and 12, 1.8 Tops for runs 18, 30 and 36) or not (3 Tops for run 25). Indeed, the impact of a trace buer ush on the disk depends on when (and where in the StarPU's code) it happens. Figure 3.3 represents the Gantt chart of several executions of a Cholesky decomposition (here the size of the trace buer was 512 MB and the resulting trace le weights 1.7 GB). The dierent executions are separated by the vertical white dashed lines and red areas represent idle computing units. Trace buer ushes occurring at dierent times lead to dierent situations, highlighted in Figure 3.3: A: ush occurred during overhead (somewhere in StarPU's code, but not in a specic section): it did not disturb the application too much, because other workers were able to execute tasks and make the application progress; B: ush occurred during progressing (a memory transfer): in this situation, no computing unit was able to execute other tasks, because a lock was taken, preventing StarPU from launching tasks on other workers; C: the ush occurred during a task, other workers were able to work as long as the result of the blocked task was not necessary to process remaining tasks.

One way to avoid troubles caused by trace buer ushes during critical moments is to be able to set the size of the trace buer. When users execute the application a rst time, they are warned for each ush occurring during the execution; at the end of execution, the user can look at the size of the trace le to have a rough idea of the required size of the trace buer to avoid ushes during execution. Then, users execute the application again, but with specifying the size of the trace buer. Figure 3.4 presents performance with a trace buer of 8192 MB (as said previously, the trace le for this experiment has a size of 7.1 GB). There is no outliers and the remaining small variations are probably caused by processor frequency variations.

Another (not implemented) idea to avoid disturbing buer ushes is to dedicate a non-bound thread to ush the buer. Since FxT has a double-buering system, enabling to record events in a second buer while the rst one is being ushed, the thread could write the buer on the disk without disturbing other important threads. Moreover, this thread would be performing only I/O activities, requiring few CPU resources. This could avoid having to manually specify a buer size to avoid the problem.

Number of recorded events

The more events are recorded, the more time is spent in the tracing library and we can presume the overhead will be more important. By default, all available event types in StarPU are recorded. The resulting number of recorded events in the trace le can be considerable.

Figure 3.5 depicts the number of events according to their type, for one run of the Cholesky decomposition of a matrix of size of 24 000 × 24 000. The trace le weights 170 MB and contains 3 887 676 events. On the histogram, only events with more than 2000 occurrences are considered. We can notice some event types are more represented than others: for instance, TASK_DEPS (records dependencies between tasks), END_PROGRESS_ON_TID (records end of memory transfers), CODELET_DATA and CODELET_DATA_HANDLE (both record information about the data buers used by tasks) make the majority.

Recorded events also depict the potential dierent phases of the analyzed application. Thus, the number and type of recorded events can change during the application execution. Figure 3.6 represents the number of events generated during the application execution. Even without knowing in detail which events are recorded, we can notice four phases: (A) data and problem initialization, (B) task executions, (C) task graph submission, and (D) data release. There are more events during the phase C, because the task graph submission is overlapped by the task executions, which are two dierent StarPU's activities, each generating their own events. If we look at the same plot, but with details about which types of events are recorded (Figure 3.7), our hypothesis is conrmed: events corresponding to task graph submission occur only in phase C, while events about task execution occur during the whole phase B. trace le and thus which ones have to be ltered out in priority, if we want to lighten the tracing activity. The diculty in selecting which event types to drop during trace recording is nding the good trade-o between acceptable trace overhead (caused by an important number of events to collect) and enough events in the trace le to be able to do insightful post-mortem analysis.

If the user knows on which events to focus to analyze the trace of an execution, the set of recorded events can be reduced to keep only the interesting events, and thus reduce the tracing overhead. There are several possible approaches:

Using the environment variable STARPU_FXT_EVENTS to specify which event categories have to be recorded:

export STARPU_FXT_EVENTS = " TASK | DATA | WORKER "
Manually changing in the source code of StarPU which events will be recorded (by removing some tracing probes, for instance). This can be much more complicated than the previous solution, but it allows a more ne-grain selection of events than just ltering out whole categories. Figure 3.8 depicts the tracing overhead according to which events are recorded, which changes the number of recorded events (as reported by the red dots to be read on the right Y-axis). One can notice that building StarPU with the trace support, without enabling trace recording at the runtime, does not add an overhead. Then, as expected, the more there are recorded events, the more the impact on application performance is important. It should be noted that this seems to be relative to the runtime system behaviour: in this case, the task graph submission is longer than task execution, thus workers were actively waiting for new tasks to execute. In an execution with another conguration, where the task graph submission is shorter than task execution, the overhead of traces is almost negligible (see Figure 3.9). We can conclude that the trace overhead is mainly caused by events to record on the runtime system critical path, especially when this critical path is under pressure.

Scalability of the number of recording cores

The number of workers (threads bound on CPU cores, for instance) used by StarPU to execute tasks can be set by the user at execution time. The default conguration is to put one thread per processor core. All these threads produce events to be recorded.

By observing the performance of the strong scaling of the Cholesky decomposition, we can notice that the more there are threads recording events, the higher the impact seems to be on performance: Figure 3.10 shows the results on peabody, an Intel machine.

On AMD zonda nodes, when the MKL library (providing routines called by tasks to actually make the linear algebra computations) is used with its default settings, the maximal reached performance is 1 Tops, and there is no impact on performance when traces are enabled, regardless of the number of computing cores (see Figure 3.11). However, when the MKL is correctly set up to use all features of the AMD processor (Figure 3.12), the maximal reached performance is 3 Tops, and there is an impact on performance with enabled traces, starting from 53 computing cores (out of 64). This makes sense since faster execution of tasks means a higher throughput of events to record. We can notice here the tracing overhead also depends on performance of the analyzed application, and not only from the implementation of the tracing library or the runtime system.

The observed phenomenon comes from a lock that protects the single list of recorded events in the FxT library. This single list allows to easily keep the temporal order of recorded events in the trace le. With a list of events per core, there would be no lock (and thus no contention on waiting for this lock), but the events would then need to be correctly reordered before any possible exploitation: during the writing of the trace le on the disk or during the conversion of the trace le with starpu_fxt_tool. The reordering could be based on the timestamps of the events, which need proper synchronization even when running on a single node, as detailed in section 3.4.2.

Summary about the tracing impact on performance

The various experiments and results presented in this section explored three sources of disturbances caused by the tracing system, impacting application performance and behaviour. Writing on the disk the buer containing all recorded events can have a severe impact on the application performance, depending on where the ush occurs. Recording many events means an important intrusion in the runtime system behaviour, and an increased activity of the tracing library, which can increase the performance overhead caused by the tracing system. Similarly, many cores recording events can generate contention on getting access to the tracing library.

All these experiments were made on a single node. In distributed executions, the distributed aspect does not bring additional specic overhead coming from the tracing system. However, it has also its set of diculties, as explained in the next section.

3.4

Precise distributed traces

When distributed applications are traced, there is a need for precise synchronized clocks between nodes to keep a temporal coherency between events. If clocks are not synchronized, the event order can be wrong and, for instance, network data transfers can appear as being received before they are sent! A software adjustment is necessary to avoid these artifacts.

This section presents the problems requiring synchronized clocks, our implementation of precise distributed clocks to trace StarPU applications and its empirical evaluation.

Motivation for synchronized clocks

Usually, when tracing distributed applications, each process uses the local clock to timestamp events recorded in the trace le. To keep a correct temporal coherency between events (an event on a node occurring after another event on another node is presented as such in the post-processed trace les), clocks of all nodes have to be synchronized: all clocks need to have the same origin and the same speed.

Unfortunately, such perfectly synchronized clocks are usually not present on computing clusters. The local clocks have as origin the start of the node, which is hardly the same on all nodes (nodes are sometimes rebooted independently from each other, for maintenance tasks, for instance). They can also have dierent speeds, depending on dierences in crystal manufacturing, temperatures, and voltage variations.

Synchronization methods exist (such as NTP) to have the current time available on all nodes, but they are too much coarse-grain for the tracing requirements. If we need duration of communications reported in traces, the allowed error on the clock synchronization has to be lower than the minimum network latency (approximately 1 µs on InifiniBand networks).

All in all, if we want precise and coherent distributed traces, the problem of distributed clocks to be precisely synchronized has to be considered in tracing systems. The rest of this section presents how we addressed this issue in StarPU.

Synchronized clocks in StarPU

This section presents in detail how we implemented state-of-the-art techniques to have distributed traces with events precisely timestamped within StarPU. We also report how it improved the accuracy of event timestamps, by comparing the dierent solutions.

To evaluate the accuracy of several synchronized methods, we will execute several times a ring communication pattern between all nodes, with 4-byte-long messages.

Implementation overview

The general idea is to record events timestamped with the local clock; record an event at the exact same time on all nodes; and during trace le post-processing, use this event to compute clock osets and adjust the timestamps of all events.

A naive approach to execute an event at the exact same time on all nodes is to perform an MPI barrier, and record the event just after the exit of the barrier. An MPI barrier is a function, provided by the MPI standard, that blocks as long as not all processes called the function. However, an MPI barrier is not precise enough to synchronize clocks, because all nodes do not leave the barrier at the same time, as illustrated by Figure 3.13: the event recorded just after processes left the barrier will not happen at the exact same time (t 0 = t 1 = t 2 = t 3 ), while it will be considered as such (t 0 = t 1 = t 2 = t 3 ) to compute clock osets. In practice, this can actually make communications being received after they are sent, as shown by Figure 3.14: starpu_fxt_tool considered that all MPI processes have left the MPI barrier at the same time (as indicated by the four vertically aligned white circles). However, this was not true: the MPI process 2 left the barrier a moment after the other processes. Using a precise barrier To make all nodes leaving the barrier at the same time, we use a synchronized barrier, based on a window-based synchronization [START_REF] Worsch | On Benchmarking Collective MPI Operations[END_REF]. During application execution, after computing clock osets (see below), the node 0 (arbitrary choice) decides at which time all nodes will leave the barrier. This time is broadcasted to all nodes, each node applies the previously computed clock oset to get the decided time in its local clock and then waits in the barrier until the deadline. Thus, all nodes leave the barrier at the exact same time. The next instruction after the barrier is to record the event which will be used to compute clock osets during the trace post-processing.

Computing clock oset To compute the clock oset between nodes, for each node to convert the time received from the node 0 to its local clock, clocks of the two nodes are compared, with the following protocol, illustrated by Figure 3.15:

1. the node 0 saves the current time t start ; 2. the node 0 sends a message to the node n;

3. just after the node n receives the message from the node 0, it saves the current time t middle ;

4. the node n sends the time t middle to the node 0;

5. just after the node 0 receives the message from the node n, it saves the current time t end ;

6. the node 0 can now compute the clock oset δ between the nodes 0 and n: δ = tstart+t end 2 -t middle ;

7. the previous steps are repeated N times and we select the clock oset obtained with the minimal dierence t end -t start ;

8. the node 0 sends to the node n the selected oset δ.

Let's explain some details of the protocol. To compute the clock oset between the nodes 0 and n, we need to send the time given by the clock n to the node 0, so it can compare with its own local clock (step 4). However, the time required to send t middle to the node 0 has to be taken in account when comparing the two clocks. To do so, we need to know the duration of the communication transferring t middle . Since the only accurate way to achieve this is to use the same clock to read o the times before and after the communication, we measure on node 0 the necessary duration to send a dummy value with the same size of the transferred message from node 0 to n (step 2) and receive back t middle . Then, the average of t start and t end should be aligned with t middle , and the dierence between this average and t middle gives the clock oset between the nodes 0 and n. This is based on the assumption that the communications from the node 0 to the node n and inversely are exactly symmetric: this is why we send a dummy message from the node 0 to the node n (instead of an empty message), and we take the clock oset obtained with the minimum duration of the exchanges between the nodes 0 and n (the smallest duration is when the uctuation of network latency is minimal, thus a better symmetry of the two communications).

Taking into account clock drift With this synchronized barrier, we can have one reference point in the trace les to compute clock osets between nodes. However, due to clock drift being dierent on each node, the computed clock oset is valid only to adjust timestamps of events recorded a short time after the synchronized barrier. Then, clocks follow dierent drifts and the synchronization is not valid anymore.

A solution to take into account clock drifts is to perform two synchronized barriers, delimiting the period requiring precise well-synchronized timestamps and then, in the trace le conversion step, interpolate the clock oset to apply to each timestamp, with the events recorded after the two synchronized barriers as reference points. Figure 3.16 shows the dierence between using one (at the beginning of application execution) or two (at the beginning and at the end) synchronized barriers. This gure plots the duration of communications from the rings mentioned earlier: the send and receive times are taken from two dierent nodes (the sender and the receiver), thus having a precise synchronized clock is crucial here for a good estimation of communications duration. Since each communication has the same message size, communications duration should be constant. With only one synchronized barrier at the beginning of the execution (blue dots), measured durations are constant, but for less than one second. Then, the durations follow lines with non-zero slopes, coming from clock drifts. The dierent slopes come from the clock drift dierences between pairs of nodes (clock drift dierence between nodes 0 and 1 is dierent from the clock drift dierence between nodes 1 and 2). With two synchronized barriers (before and after the region of interest, orange dots), measured durations are, as in the reality, constant. Durations measured with a simple MPI barrier are not represented, because they are much higher, and the chart scale prevents from seeing the interesting dierences between one or two synchronized barriers.

However, linearly interpolating clock drift assumes the clock drift is linear, which in practice is not the case after several minutes. Thus, this method can be used to trace only short executions. ACPI_PM: this is the clock device from the ACPI Power Management specication [START_REF]Advanced Conguration and Power Interface Specication, version 6.4[END_REF]. The frequency is hardwired to 3.579545 MHz which makes it a better resolution than RTC but still poor to timestamp events in the range of the gigahertz. It is considered legacy as a clock source.

High Precision Event Timer (HPET) [START_REF]IA-PC HPET (High Precision Event Timers) Specication, revision 1.0a[END_REF]: this is a clock that was introduced especially to get a precise and steady clock source. It guarantees a resolution higher than 10 MHz. Its resolution is usually average and it costs a system call to be read. Time Stamp Counter (TSC): this high resolution timer was introduced [START_REF]Pentium ® Pro Family Developer's Manual[END_REF] in the Intel Pentium Pro family. It is synchronized with the instruction counter and thus has a resolution sucient for tracing. Moreover, it is very cheap to consult, using a single unprivileged instruction. However, it is not guaranteed to be synchronized between cores, and its frequency varies with the processor frequency (Turbo Boost, energy saving, etc), which makes it an unreliable source for timing.

Invariant TSC: more recent CPUs feature an invariant TSC, which is based on the Always Running Timer (ART), running at the crystal clock frequency. This avor of TSC is synchronized between cores and uses a constant frequency, even when the CPU changes its frequency for energy saving.

Hence, the most relevant clock to use for traces is invariant TSC, when available. It has a good resolution, is steady, and cheap to consult. When it is not available, the second-best choice is HPET, though the resolution is usually much lower.

To get access to the clocks, multiple interfaces are available. The old gettimeofday interface cannot express high resolution, and the clock it provides access to is aected by NTP adjustments, which makes it not steady. It is not suitable for our use case.

Then, there is the direct access to a hardware clock. However, direct reading from /dev/hpet is slow (involves a system call) and usually reserved to root. The direct read of TSC (with the rdtsc instruction) is fast but is non-portable and requires non-trivial code to check its properties (mostly whether it is invariant TSC or not).

The best solution is to use the POSIX.1-2001 function clock_gettime that gives access to various clocks of the system: CLOCK_REALTIME is actually the same clock as gettimeofday and should not be used for tracing; CLOCK_MONOTONIC is fast and monotonic, derived from the default system clock (usually TSC, sometimes HPET if TSC is not invariant) but aected by NTP (no jumps, but not steady); CLOCK_MONOTONIC_RAW is a direct portable way (although Linux-only) to get direct access to the default clock.

The main goal of NTP is to compensate for the drift between the local clock and the real time. It adjusts the rate of local clock to reach sync with the root clock, thus locally it causes small uctuations in the speed of the local clock. Therefore, to avoid those uctuations, it is relevant to use a raw clock when we compensate for the drift ourselves, since we do not need features from NTP and it would only add noise in the clock. However, in cases where we use a single barrier with oset, we need to use a regular clock (with NTP roughly compensating for the drift) since we do not compensate for the drift ourselves.

As a consequence, we use clock_gettime(CLOCK_MONOTONIC) when using a single oset, and clock_gettime(CLOCK_MONOTONIC_RAW) when interpolating between two synchronized barriers.

Protection from preemption between synchronized barrier and event probe

As mentioned earlier, one of the most ecient ways to have an event recorded at the exact same time on all nodes is to perform a synchronized barrier and then execute the probe corresponding to the synchronizing event. In the code, it can look like this: such problem, the solution is to get the local time the barrier is waiting to unblock, use this time as an additional data for the trace probe, and then use this time as the event timestamp, instead of the timestamp set by the tracing library to compute the clock oset:

1 mpi_sync_barrier (& local_sync_time ) ; 2 _STARPU_MPI_TRACE_BARRIER ( rank , local_sync_time ) ;

In fact, the interesting value to correctly synchronize distributed clocks is not the timestamp of the event indicating this synchronization, but the local time the barrier was waiting for.

Even if it can seem obvious, it is important to mention that the clock used for timestamping events and the one used for the time as additional data of the synchronized event have to come from the same clock and have the same origin. Since timestamping events is done by the tracing library and the synchronized barrier is done by another library, this might not be trivial, and requires proper support: either being able to specify the same clock to be used by the both libraries or to convert the time given by the synchronized barrier to the one used by the tracing library.

Compute clock osets to adjust event timestamps

A synchronized barrier followed by a recorded event is done in the StarPU initialization and release phases, thus delimiting the application execution requiring events with precise timestamps. In order to merge the distributed traces, starpu_fxt_tool, the tool in charge of converting raw trace les to exploitable ones, now has two tasks to achieve: computing the clock osets between the nodes from the events of the synchronized barriers, and then interpolating the clock osets to apply the timestamp adjustment on each event. Figure 3.17 describes how the clock osets corresponding to one synchronized barrier are computed:

Clock origins can be dierent on each node, because the clocks we are using have as origin the start of the node. Then, the application does not start at the exact same time on all nodes (the instruction to start the application is not synchronized to be executed at the exact same time on all nodes). In the runtime system initialization, once all distributed processes are launched, we execute a rst synchronized barrier to record the event used as reference point by all processes.

First step: we consider the event following the synchronized barrier as the local time origin. Thus, the synchronized time t i of an event on process i with a timestamp t i is:

t i = t i -t Barrier i
. This also allows having small timestamp values, easier to analyze, since the clock origin will now be the beginning of the application execution.

Second step: the previous step makes the events occurring before the barrier having a negative adjusted timestamp. To avoid this, we shift the time origin, to the rst application start, which is the maximum of the distances between application starts and synchronized barriers. Now the transformation to apply is: As one may notice, there is no one node designated as having the reference clock, before beginning computing clock osets.

t i = t i - t Barrier i + max j {t Barrier j -t Start
When two synchronized barriers are used, we follow the same steps: the two barriers give two sets of clock osets between nodes, and then the oset to apply to an event timestamp is linearly interpolated. Outside of the interval delimited by the two barriers, we cannot extrapolate the clock oset, because there is no guarantee a linear extrapolation will t the real clock drift. Thus, in some cases, applying the extrapolated oset can lead to negative timestamps. Figure 3.18 illustrates this phenomenon. The black vertical lines represent the rst and last events recorded in the trace. The synchronized barriers and the osets computed for each of them are represented by the blue dots on the upper plot. The time range between these two dots is the range where interpolating clock osets gives valid results, while extrapolating clock osets outside of this window can lead to negative timestamps, as illustrated by the orange curve on the lower plot, before local time of 0.45. If we only interpolate osets in the synchronized window and use the clock oset of the rst synchronized barrier for events before it and the clock oset of the second synchronized barrier for events after it, we get acceptable timestamps even outside the synchronized window, as illustrated by the green curve. The resulting inaccuracy is acceptable outside the synchronized window, because timestamp of events outside of the window do not have to be very precise, they are usually more descriptive than indicative of a state change.

3.5. Lessons learned

Conclusion on synchronizing distributed traces

In this section, we presented why we need clock synchronization to trace distributed executions and how we ended up with a working solution within StarPU.

The rst motivation for clock synchronization is the use of clocks having as origin the start of the node to timestamp events. A coarse-grain synchronization can be done with a classic MPI barrier. With a real use-case, the presented experiences show, and conrm what is reported in the literature, that a simple MPI barrier is not precise enough to synchronize clocks, and the clock drift has to be taken into account by interpolating the clock osets between two reference points. The given implementation details specify which clock we use, how we avoid thread preemption between synchronized barrier and event probe, and how we compute clock osets during post-processing to merge distributed traces.

The solution we implemented in StarPU is valid while the clock drift is linear, i.e. only for short executions. This is not limiting, since we usually only trace short executions, to ease their analysis. We do not use logical clocks, because it would require lots of development, and the correction of chronological order of events would not reach the precision we are looking for in distributed executions.

Lessons learned

This section summarizes the insights learned by exploring the issues previously described to deal with when tracing applications: it proposes a methodology to apply to eciently trace applications and a list of requirements for a satisfying tracing system.

Methodology to apply when tracing applications

As observed previously, the overhead caused by tracing systems can impact application performance, and even modify the behaviour we want to observe in the post-mortem analysis. Thus, the user has to be sure that the potential tracing overhead is acceptable regarding the purpose of the traces. To do so, the best way is to compare the application performance with and without tracing it. If the impact on performance is too important, the user can try to reduce it with several methods: Set a correct trace buer size to avoid applications being disturbed by the ushes on the disk;

Reduce the number of recorded events, by focusing only on important ones;

If it appears to be a source of overhead, reduce the number of workers. However, this can also change the application behaviour.

Reducing the number of events to record is also useful to reduce the size of trace les, making them much more convenient to manipulate (to transfer between clusters, to convert and exploit, for instance).

If the user is interested in precise timestamps of events occurring on several nodes, using a synchronized barrier to synchronize trace les is a good solution to trace fast executions (O(several seconds)). An easy way to verify the clock synchronization is correct is to compare the observed communication duration to the theoretical duration (for instance, on InifiniBand networks, a transfer of small data lasting less than 1 µs might be suspect).

Requirements for an ecient tracing system

All these highlighted possible problems appearing when tracing applications allow us to suggest a list of requirements for an ecient tracing system. Of course, such systems have to feature the lowest performance overhead and be precise enough, which can be possible with:

A good scalability of the number of cores recording events: this excludes all general locks protecting a resource accessed by all cores at the same time;

Accurate-enough timestamps of events, especially on distributed executions, but this is also true if each core records events in its own buer: at the end, events have to be presented ordered to exploit the trace;

A good control of trace buer ushes on the disk, to avoid them occurring in the traced region of interest;

A user-friendly system to easily lter which events have to be recorded, to reduce the tracing overhead and the trace le size;

A completely transparent tracing mechanism from the point of view of the user application: only the runtime system has to be aware whether tracing is enabled or not;

Regarding the integration of a tracing system in the runtime system, the runtime developer has to be careful about where to put the probes in the code, to avoid overloading critical paths. Also, if the tracing system allows it, it might be interesting to distinguish events requiring a timestamp (state changes, action which duration is an important information, etc) from others, usually more descriptive (for instance the dependencies of a task, which scheduling policy is selected, etc), since the latter do not require to be correctly ordered to keep a temporal coherency. Thus, it can reduce the contention of resources in charge of respecting the temporal order of events.

Extension to other runtime systems

We discussed previously the specicities of task-based runtime systems when it comes to tracing their executions: especially information about the application DAG and its scheduling has to be recorded in the trace. However, the majority of phenomenons covered in this chapter is also valid in the context of other runtime systems than task-based ones.

We took the occasion of improving the tracing system used by StarPU to evaluate its capabilities, but in the end, the reported issues are not specic to task-based runtime systems: performance overhead caused by buer ushes or the number of events to record has to be considered with every tracing system, the number of cores recording events has to be considered for parallel applications, while distributed synchronized clocks is a general problem when tracing distributed applications.

Conclusion

Tracing application executions helps to understand their behaviour and improve them, it is a valuable technique given the current complexity of supercomputers. We presented how we integrated a tracing layer in the StarPU task-based runtime system.

We evaluated the dierent sources of performance overhead coming from the tracing system: writing the event buer on the disk during the execution, the number of recorded events, and of recording cores, are all responsible for penalizing the application performance. The tracing overhead can depend of the application behaviour, but can also change it; thus the user should always try to minimize the overhead caused by the tracing system, or at least be aware of the performance dierence when traces are recorded.

We improved the clock synchronization mechanism in StarPU by implementing stateof-the-art techniques, and observed the dierent timestamp accuracy when dierent techniques are used to synchronize clocks. This work also conrms that using accurate synchronized clocks is necessary when dealing with distributed applications.

From the observations and conclusion we made, we proposed a methodology to follow when an application is traced, to minimize the phenomena we described; and we suggested a list of features a tracing system should implement to ease the application integration and user manipulation.

Finally, even if our feedback comes from experiments with StarPU and FxT, most of our observations and conclusions are valid also to trace applications that do not rely on a task-based runtime system.

Chapter 4

Dynamic Broadcasts W e have seen in Chapter 2 that most task-based runtime systems rely on the MPI standard for network communications, while MPI libraries and the MPI interface do not t with working of task-based runtime systems. Sending the same data to several recipients in a optimized manner is not as straightforward as it can be in BSP applications where calling the right MPI function at the right place is enough. Indeed, the requirements to be able to call the appropriate MPI function are not met in the StarPU programming model. Nonetheless, optimizing the broadcast of a data to several nodes is important for the scalability of the application when the number of nodes (thus the number of recipients) increases.

In this chapter, we propose an algorithm for a dynamic broadcasts, coping with StarPU's constraints: only the root knows the list of all recipients, and recipients do not have to know in advance whether data will arrive through a broadcast or a point-to-point operation, while still being able to leverage optimized tree-based broadcast algorithms. This chapter presents in detail the incompatibilities between task-based runtime systems featuring the STF model and the MPI interface, explains the working of dynamic broadcasts, and evaluates the performance improvements they bring.

Broadcasts in dynamic task-based runtime systems

In task-based applications, a given piece of data may be a dependency for multiple tasks (a vertex with several outgoing edges in the DAG). If the receiving tasks are located on dierent nodes, the same data will have to be sent to multiple nodes. This communication pattern is generally known as a multicast, or a broadcast in MPI speaking, which is a kind of collective communication.

The naive way to perform a broadcast is to send data from the root to each node using independent point-to-point transfers. With such an implementation, the duration of a broadcast is linear with the number of nodes. MPI libraries usually implement much better algorithms [START_REF] Pje²ivac-Grbovi¢ | Performance analysis of MPI collective operations[END_REF][START_REF] Jesper | Optimal broadcast for fully connected processor-node networks[END_REF][START_REF] Sanders | Two-tree algorithms for full bandwidth broadcast, reduction and scan[END_REF] for MPI_Bcast, such as binary trees, binomial trees, rings, pipelined trees, or 2-trees, which exhibit a logarithmic complexity with the number of nodes. It is thus strongly advised to use MPI_Bcast to broadcast data when possible.

However, for task-based runtime systems that dynamically build the DAG, such as StarPU, nodes do not have a global view of data location and do not synchronize their scheduling. This makes the use of MPI_Bcast or MPI_Ibcast dicult and inecient, for the following reasons: Detection. All the information the runtime system knows about data transfers is the DAG. A broadcast appears as a task whose result is needed by multiple other tasks. However, in general the whole DAG is not known statically but generated while the application is running. Therefore, the runtime system cannot know whether the list of recipient is complete or if another recipient will be added later.

Explicit. The MPI_Bcast function has to be called explicitly by the sender and all the receivers. Therefore, each receiver node has to know in advance whether a given piece of data will arrive through an MPI_Bcast or a point-to-point MPI_Recv communication. Application programmer cannot give any hint, since communications are driven by the DAG, and thus depends on where tasks are mapped during the execution.

Communicator. The MPI_Bcast function works on a communicator, a structure containing all nodes taking part in the broadcast (sender node and recipients). The construction of a communicator is also a collective operation: to build it, each node participating in a communicator must know the list of all nodes in the communicator. Thus, if we build a communicator containing a specic list of nodes for a given broadcast operation, all nodes have to know the list of all nodes participating in the broadcast. Yet, the runtime system on a node only has a local view of the task graph: receiver nodes know which node will send them the data, but they do not know all other nodes which will also receive the same data. Hence, building an MPI communicator is impossible without rst sending the list of nodes to all nodes, but that would mean we need a broadcast before being able to do a broadcast! In our case, communicators cannot be built before broadcast executions (for instance, during application initialization), because the broadcasts, and thus the nodes taking part in those broadcasts, are discovered dynamically, during the execution of the DAG. Moreover, each node can be involved in dierent broadcasts composed of dierent sets of recipients: this would require a communicator for each broadcast with dierent recipients.

Synchronization. Even if we use a non-blocking MPI_Ibcast instead of a blocking

MPI_Bcast, it works on a communicator. The creation of a communicator with the precise set of nodes has to be performed by all nodes at the same time. Moreover, a single communicator creation may take place at the same time. This means broadcasts, and their associated communicator creation, must nonetheless be executed in the same order by all nodes, which implies some kind of synchronization to agree on broadcast scheduling, thus hindering one of the most important feature of distributed task-based runtime system: its ability to scale by avoiding unnecessary synchronization.

As a consequence, the mechanisms needed to actually use the MPI_Bcast function to broadcast data in a task-based runtime system are likely to cost more than the benet brought by the use of an optimized broadcast.

Dynamic Broadcasts

The general problem is being able to use desynchronized and optimized broadcasting algorithms, without all nodes of the broadcast know each other, and even the root node cannot know when the list of recipients is complete. Next, we present the solution we developed to achieve this goal.

General concepts of dynamic broadcasts

Our algorithm for dynamic broadcasts is comprised of two parts: the detection of broadcasts by the task-based runtime system, and the broadcast itself in the communication library.

Broadcast detection

As explained previously, the detection of broadcast patterns is not straightforward since the DAG is dynamic.

From the dependency graph view, a broadcast is a set of outgoing edges from the same vertex and going to tasks executed on dierent nodes. During task graph submission, the runtime system creates a send request for each of these edges, even before the data to send is available. When the data becomes available, the requests are actually submitted to the communication library to actually execute the communication.

The detection of broadcast consists in noticing on creating a send request that one already exists for the same data, and aggregating them into a single request with a list of recipients. When the data becomes available (e.g. the task that generated this data is nished), if the list contains more than one recipient, a broadcast is submitted to the communication library. This method may miss some send requests if they are posted after the data became ready, i.e. if a task is submitted after the completion of the task that produces the data it depends on. This happens if the task graph submission takes longer than the task graph execution (which is not supposed to happen in general), or if the application delays submission of parts of the task graph for its own reasons, in which case the runtime system did not need to send this data sooner anyway. Code instrumentation showed that 98 % of broadcasts were detected with the correct number of recipients for the Cholesky decomposition (described latter). The 2 % missed broadcasts correspond only to communications performed during the very beginning of the application execution, when the application has only started submitting the task graph, and thus task execution has indeed caught up quickly and made some data available before the application could submit all inter-node edges for them. Quickly enough, tasks submission proceeds largely ahead of tasks execution, and all broadcasts are entirely detected.

To avoid redundant transfers of the same data between two nodes, a cache mechanism is used, as explained in Chapter 2. If two tasks scheduled on the same node need a piece of data from another node, only one communication will be executed. Hence, the recipient list does not contain duplicates. 

Dynamic broadcast algorithm

We propose here a broadcast algorithm, that we call dynamic broadcast, that fullls the requirements to be used by task-based runtime systems, namely: use optimized broadcast algorithms; all recipients of the broadcast do not have to know each other; have a seamless integration for the receiver who is expecting a point-to-point communication.

Optimized broadcast algorithm

Several optimized algorithms for broadcast exist [START_REF] Wickramasinghe | A survey of methods for collective communication optimization and tuning[END_REF]. The main idea of all these optimized algorithms is that after a node received data, it sends this data to other recipients, so that the root node has less communications to execute, which shortens the global execution time. For most algorithms, routing is organized as a tree: the source node sends to a set of nodes, each of these nodes then sends to a set of other nodes, and then recursively until all recipients get the data. Tree-based algorithms have usually a logarithmic complexity in the number of nodes. The choice of a broadcast algorithm depends mainly on the number of recipients and the size of data to transmit.

Figure 4.1 illustrates three routing algorithms for a broadcast to 6 recipients, initiated by the node 0. With a at tree (Figure 4.1a), the naive broadcast algorithm, the node 0 sends sequentially the message to one of the recipients. The complexity of this algorithm is linear with the number of recipients and involves the node 0 for the whole collective duration.

With a binary tree (Figure 4.1b), each node sends the message to at most two another nodes in a row: node 0 sends to nodes 2 and 4, and the job of 0 is done.

In the binomial tree algorithm, each node receiving data contributes to the diusion by sending data to next nodes, and keep sending data to other recipients until all nodes received the data. In the example depicted by Figure 4.1c, node 0 starts by sending to node 4, then 0 sends to 2 and at the same time 4 sends to 6 and nally while 0 is sending to 1, 2 is sending to 3 and 4 is sending to 5.

The binary tree has a worse complexity in the number of recipients (yet still logarithmic: in the example with 6 recipients, the binary tree as only one additional step compared to the binomial tree), but has the advantage to require less handling time from each forwarding node, and thus can make the received data available to the application faster. In the other hand, binomial trees are a good trade-o for a single all-purpose algorithm to get good performance on a wide range of data sizes and numbers of nodes. Other optimized algorithms [START_REF] Jesper | Optimal broadcast for fully connected processor-node networks[END_REF][START_REF] Sanders | Two-tree algorithms for full bandwidth broadcast, reduction and scan[END_REF][START_REF] Pje²ivac-Grbovi¢ | Performance analysis of MPI collective operations[END_REF] could be used in our dynamic broadcast, following the same approach.

Self-contained messages

Since nodes do not know in advance whether they will be participating in a broadcast, our algorithm is based on self-contained messages. They are processed upon reception, outside of the application ow, without requiring the application to call specic primitives in the communication library. The message contains all the information needed to unroll the collective algorithm.

Only the root of the broadcast knows the complete list of recipients. Recipients themselves only need to know to which nodes they will need to forward the data, i.e. the sub-tree below them. We send this list of nodes together with data, in the header of the message. When a node forwards data to other nodes, it trims the list of nodes so as to include only the nodes contained in the relevant sub-tree.

In the case depicted in Figure 4.1c, the list of nodes sent by node 0 to 4 is {5, 6}, the list sent to 2 is {3} and the list sent to 1 is empty.

The general idea behind this mechanism is that routing information are transmitted with the data itself, and are not assumed to be prior knowledge, as MPI_Bcast would otherwise require.

Transparent receive

When a request which is part of a broadcast is received, the data is rst forwarded to nodes contained in the list (following the chosen routing algorithm), and then delivered locally to the runtime system. Since nodes cannot predict whether data will arrive through point-to-point communication or through a broadcast, on the receiver side our algorithm injects data received by a broadcast in the path of point-to-point receive. The runtime system posts a regular point-to-point receive request, and when data arrives through a dynamic broadcast, it is actually received by this point-to-point request for a seamless integration.

Implementation

We called our algorithm dynamic broadcast because nodes realize they take part in a broadcast in a dynamic fashion, on the y at the same time as data arrives.

Implementation

Dynamic broadcasts were implemented as a new interface of NewMadeleine, and the NewMadeleine backend of StarPU was adapted to exploit this new interface.

Broadcast detection

The detection of broadcasts is implemented in StarPU. When the application submits a task B which depends on data produced by a task A mapped on a dierent node, an inter-node communication request is issued. If a previous request or collective was already detected for this data, the new request is merged in to get a bigger collective.

Most often, task submission proceeds quickly, and thus the submission front is largely ahead of the execution front. As a consequence, when task B is submitted, task A will probably not have been executed yet, and similarly for all tasks which depend on A. This is why our approach catches most potential for broadcasts. Once task A is completed and thus the data available for sending, the whole collective request is handed to NewMadeleine.

Once the broadcast has been triggered, if additional tasks which require the data produced by the task A are submitted and need data transfers, these communications will be executed as point-to-point communications. Our mechanism catches only pending transfers inferred while the data is not available.

Dynamic broadcast interface

The dynamic broadcast itself is implemented in NewMadeleine with a specic interface called mcast. It is using its non-blocking RPC interface to call functions on remote nodes, with arguments to express the remaining of the broadcast. They use a dedicated communication channel that is separate from the channel used for point-to-point communications. Thus, the library distinguishes broadcasts, which needs special processing, from regular point-to-point messages. The library is always listening for RPC requests and is thus able to always process dynamic broadcasts for all tags and from all nodes. When a broadcast is received, the matching point-to-point receive is searched and data is received in-place in the buer of the point-to-point request, forwarded to nodes in sub-trees, and the completion of the point-to-point request is notied. If the matching point-to-point receive was not posted yet, the broadcast request is locally postponed until the matching point-to-point receive is posted. To be able to match a message arriving through a broadcast with a point-to-point request, the original source node (root of the broadcast) is also part of the broadcast metadata. 

Enforcing communication priorities

StarPU sets a priority level for each communication request, depending on task priorities, dened by the application: during the submission of tasks, the user can dene the priority of each task, by specifying an integer. This information may be used by a communication library that is able to schedule packets by priority like NewMadeleine.

The dierent communication requests in a broadcast can have dierent priorities. To respect the communication priorities, we reorder the list of nodes of broadcasts so that higher-priority requests are closer to the root of the tree, for them to get data earlier. Indeed, the initial list of recipients may not respect the priority order, since the order of insertion in the list is the same of the task insertion order. Moreover, in addition to the list of nodes, we transmit the list of priorities within the broadcast metadata. This way, when inner nodes of the tree have to forward messages, they get inserted in their local packet ow, managed by NewMadeleine, with the right priority.

Figure 4.2 illustrates the dierence in reception order when priorities are set or not. Without priorities, there is no guarantee in the reception order: in Figure 4.2a the node 8 receives data rst and nodes 1, 3, 5 and 7 receive it in the last step. When priorities are provided and respected, (in Figure 4.2b, recipient nodes with higher ranks have higher priority), the node 11 receives data rst, and nodes 4, 3, 2 and 1 receive it in the last step, as indicated by the priorities.

Using just received data but still being forwarded

With point-to-point communications, as soon as data is received from the network by NewMadeleine, StarPU is notied the data is ready to be used, which can unlock tasks waiting for this data.

When a node receives a data which is part of a dynamic broadcast, this node may have to forward the data to other nodes, as stated by the routing tree. In such case, received data is available on the node, but the application cannot use it while NewMadeleine forwards it to other nodes, because immediately launching tasks unlocked by the data reception may modify the data being forwarded. Waiting for all forwards being nished adds a delay to make the data available to StarPU and unlock tasks, compared to a point-to-point communication.

A trade-o to reduce the waiting time while preserving the integrity of forwarded data is the following mechanism:

1. Unlock tasks which only need the data in a read-only mode as soon as the data is received on the node;

2. Let NewMadeleine forward the data to other nodes if required;

3. Notify StarPU NewMadeleine does not need the data anymore, it can also unlock tasks which need to write in this buer.

From the implementation point of view, these two states (data received but still forwarding and nished forwards) corresponds to two distinct events triggered by the communication library, on which are bound the action of unlocking tasks, which only read the data or also write it.

Evaluation

In this section, we present the performance results we obtain for mechanisms presented earlier. We executed microbenchmarks to ensure the broadcast performance is as expected and then we evaluated the impact on two real computing kernels, the Cholesky and QR factorizations. Other applications could take benet from dynamic broadcasts, such as matrix multiplications [START_REF] Agullo | Task-Based Parallel Programming for Scalable Algorithms: application to Matrix Multiplication[END_REF].

The majority of results depicts executions on the occigen machine, described in Appendix C.

Microbenchmarks

General performance

To be sure our algorithm and its implementation have the expected behaviour and performance, we conducted microbenchmarks of the dynamic broadcast and compared its performance to the one of MPI_Ibcast from MadMPI (the MPI interface of NewMadeleine), and a naive broadcast (a loop of point-to-point requests to the recipient nodes; at in the legends).

We considered the same metrics as NetPIPE [START_REF] Snell | NetPIPE: A Network Protocol Independent Performance Evaluator[END_REF]: the latency and the bandwidth of broadcasts. The latency of the broadcast is dened as the time dierence between the start on the root node and the last received data on the last node. With a constant message size (429 KB in the following experiments), we increase the number of recipient nodes in the broadcast. The bandwidth reached with a broadcast is the data size divided by its latency. With a constant number of recipient nodes (38 in the following experiments), we increase the size of the broadcasted data. Figure 4.3 depicts the performance results with only NewMadeleine, to rst evaluate its raw performance. The reported latencies on Figure 4.3a clearly show the dierent complexities of the used routing algorithms. The naive algorithm (at) is linear with the number of recipients, and both binary and binomial trees have a logarithmic complexity with the number of nodes (we can even notice the dierent plateau corresponding to the dierent heights of the routing trees). Broadcasts are faster with binomial or binary trees than with linear sequential point-to-point communications (less than 1000 µs vs more than 3000 µs). The same ranking of routing algorithms applies to the communication bandwidth (Figure 4.3b): at algorithm cannot reach 200 MB/s while binomial trees reach 1000 MB/s when broadcasting data to 38 recipients.

The performance dierence between dynamic broadcasts and regular MPI broadcasts is insignicant, which shows that the additional routing data and the treatment when receiving data is negligible. except for a small overhead coming from the StarPU management of communications.

Performance with priorities and reading data as soon as possible

To verify that the priorities attached to communication are correctly taken into account, we consider the time of data reception on each node, and not only the maximum used in the previous benchmarks to get the overall duration of the broadcast. Then, we plot this time according to the node rank. First nodes which have to receive data (with a higher priority) should have a smaller reception time.

To correctly represent the impact of priorities, reported times have to distinguish the time when data arrived on the node (inuenced by the priority of the incoming communication) and the time when all forwards are nished and data is not needed by the NewMadeleine anymore. Without this distinction, the forwarding duration would be included in the reported time, which could fake the representation of priority impact.

The described benchmark was rst conducted with only NewMadeleine executing a program where node 0 sends a broadcast to many nodes. The priorities of communications are equal to the rank of the recipient node (i.e. nodes with higher rank should receive data rst). Each recipient node records the time when data arrived and when it is released by NewMadeleine. This set of values can be plotted as an area: the X-axis corresponds to the node rank and reported times are read on the Y-axis. Times when data is received are the lower boundary of the area and times when data are completely released from NewMadeleine is the upper boundary. The lower boundary can be used to see impact of priorities and the height of the area is the duration NewMadeleine took to forward the data to other nodes. Figure 4.5 depicts such benchmark with 38 recipients in the broadcast and a data with a size of 409 KB. Three routing algorithms were evaluated. For the at tree (node 0 sends sequentially the data to each recipient), nodes receive the data in a reversed order of their rank, and since receiving nodes do not forward the data to other nodes in this algorithm, the data is immediately available to the application after it is received: the lower and upper lines of the area are superimposed. When using a binary tree, nodes receiving the data have to forward it to 2 other nodes. We easily see the dierence between forwarding nodes and the other leafs of the tree: the former spend time to forward the data, thus there is a delay between receiving the data and delivering it to the application; the latter do not have to forward to other nodes and thus can directly notify the application. Similar behaviour can be noticed for the binomial tree, except forwarding nodes are involved until the end of the collective operation. This is why the height of area is inversely proportional to the node rank (and thus the priority): the deeper a node appears for a rst time in the binomial tree, the less time it will spent forwarding to other nodes, since it will forward to fewer nodes, corresponding to fewer steps to reach the end of the collective. The observed small variations in latency of nodes belonging to the same levels in routing trees comes from the system noise and the fact that nodes of a same level are not synchronized: in reality, trees are a little bit distorted (e.g. a node can start communications from the next level quicker than a node which just received the data and has to initiate its participation in the broadcast).

In all cases, priority are respected: nodes with higher priority receive data before those with lower priority.

Similar benchmark was executed with StarPU (see Figure 4.6), but the dierence between just receiving the data and nishing forwarding is plugged to the task model: to trigger the broadcast tasks which only need to read the data are submitted on all recipient nodes and then tasks which also need to write the data are also submitted on all nodes. Actually these tasks only get the current time to know when they started to be executed. The interpretation of the areas can now be dierent: the lower border represents the start of the reading-only task and the upper border the start of the writing task.

We evaluated two cases: when StarPU is allowed to launch read-only tasks just when data is received (Unlock read) and when StarPU has to wait for NewMadeleine to completely release the received data (i.e. nish all the forwards) before launching any task accessing to the received data (Wait write). Three trees were tested: binary, binomial and at. An execution with disabled dynamic broadcasts in StarPU are also been performed (without broadcasts). With disabled broadcasts, the broadcasts are not detected and StarPU submits each communication request to NewMadeleine as soon as they are detected, NewMadeleine then performs the independent point-to-point communications. With the at tree, the broadcast is detected by StarPU and submitted as such to NewMadeleine, but NewMadeleine follows a at tree to execute the broadcast.

The results of this performance evaluation are depicted on Figure 4.6. The general shape of the curves are similar to those with plain NewMadeleine. The wait write areas are very thin: they represent the elapsed time between the end of a task (the read-only one) and the beginning of another task (the write one). Since both tasks on each node are unlocked when forwards are nished, these areas match with the top of their unlock read counterparts, where StarPU launches the read-only tasks as soon as the data is received and waits for the end of forwards to launch the write task. The sudden increase in the rst nodes when dynamic broadcasts are not enabled can be explained with the priority strategy followed by NewMadeleine. When dynamic broadcasts are disabled, StarPU submits send requests to NewMadeleine sequentially one-by-one. The order the send requests are submitted correspond to the order of task submission: here, in the order of node ranks, thus inversely proportional to the attached priorities. When NewMadeleine handles the rst submitted request (with the lowest priority), there is no other communication with higher priority waiting to be handled, thus NewMadeleine executes this rst low-priority communication. This works for the rst send requests, but after a short time, all send requests are submitted to NewMadeleine while only the rst send requests are nished. When NewMadeleine has to choose again which communication to handle, they are now all waiting, and NewMadeleine can pick the one with the higher priority. When dynamic broadcasts are enabled, New-Madeleine receives directly the whole list of communication requests and thus is aware of the communication with the highest priority.

To summarize, our implementation works as expected: routing algorithms with logarithmic complexities exhibit corresponding performance, priorities are correctly taken into account and unlocking tasks that only need to read the received data allows to launch them sooner.

Cholesky factorization Description

The Cholesky factorization, described previously in Algorithm 1 (page 24), is a good use-case for the dynamic broadcast problem. Indeed, as shown in (m < n < T ), green arrows).

In practice, as the matrix distribution on available nodes is 2D-block-cyclic with P rows and Q columns (with P × Q = the number of nodes), the maximum number of recipients of a broadcast in the Cholesky algorithm is P + Q -2. Figure 4.8 illustrates this formula: the result of a POTRF is broadcasted to all nodes of the same column: with a 2D-block-distribution, this means P -1 recipients in the broadcast. Results of TRSM kernels are broadcasted to nodes belonging to the same line (Q -1 recipients) and the column of the most-right recipient of the line (P -1 recipients since one recipient is already counted as a recipient in the line):

Q -1 + P -1 = P + Q -2.
We used the Cholesky factorization from the Chameleon library [START_REF] Agullo | Faster, Cheaper, Better a Hybridization Methodology to Develop Linear Algebra Software for GPUs[END_REF], which can use StarPU as task-based runtime system.

Results

Two sets of results will be presented. First results use a proof-of-concept implementation of the dynamic broadcasts and were collected on the inti machine from the CEA. inti nodes were dual Intel Xeon E5-2680 at 2.7 GHz, with 16 cores and 64 GB RAM, and equipped with InifiniBand Connect-IB QDR. inti was replaced by another machine before a more robust implementation was rewritten from scratch, with additional features (dierent routing trees, support of priorities and read-only use of received data). The second set of results uses this more recent implementation and comes from executions on occigen. Old results on inti are presented because they show performance improvements with dynamic broadcasts, more signicant than on occigen.

Results for machine inti on 64 and 100 nodes are shown in Figure 4.9. There is one MPI process per node and each point on graphs is the average of two runs. We compare the baseline NewMadeleine version without dynamic broadcast against NewMadeleine with dynamic broadcasts following binomial tree routing. At that time, recipients were not reordered according to priorities and NewMadeleine released the received data to StarPU only once all forwards were nished. For both number of nodes, using dynamic broadcasts improves performance, especially for medium-sized matrices: on 64 nodes the improvement is up to 20 % and on 100 nodes up to 30 %. Since the number of nodes in broadcasts increases with the total number of nodes, the more nodes are used, the more the broadcast takes time, thus dynamic broadcasts improve overall scalability with the number of nodes. For larger matrices, the hypothesis is that communications have less impact since there are always enough ready tasks to execute before having to wait for data coming from the network, hence it is not surprising to observe the best performance improvement for smaller matrices. 

QR factorization Description

The second application used to benchmark the dynamic broadcasts is the QR factorization. From a matrix A, the QR factorization computes an orthogonal matrix Q and an upper triangular matrix R, such as A = QR. One dierence compared to the Cholesky factorization is that the matrix A does not need to be square.

Algorithm 2 Tiled version of the QR factorization.

1:

for k = 0 to min(M, N ) -1 do 2: GEQRT(RW, A[k][k], W, T [k][k])
3:

for j = k + 1 to N -1 do 4: ORMQR(R, A[k][k], R, T [k][k], RW, A[k][j]) 5:
end for 6:

for i = k + 1 to M -1 do 7: TPQRT(RW, A[k][k], RW, A[i][k], W, T [i][k])
Executed on node (i, k)

8:

for j = k + 1 to N -1 do 9: TPMQRT(R, A[i][k], R, T [i][k], RW, A[k][j], RW, A[i][j]) Executed on node (i, j) 10:
end for 11:

end for 12: end for We used the version described in the Algorithm 1 of [START_REF] Hadri | Tile QR Factorization with Parallel Panel Processing for Multicore Architectures[END_REF], implemented in Chameleon, and summarized in Algorithm 2. Like the Cholesky factorization, at each step k, the k th tile of the diagonal is factorized (GEQRT kernel) and then the right panel is updated accordingly. As illustrated by the Figure 4.13, the two outputs of the GEQRT kernels are broadcasted to all ORMQR kernels of the same line, as well as two outputs of each TPQRT kernel to all TPMQRT kernels of the same line.

To push the dynamic broadcasts to their limits, we used on purpose large matrices (three times larger than their height), with a specic data distribution: all tiles of a column are on the same node (i.e. P = 1 and Q equals the number of nodes: a 1Dblock-cyclic distribution). This way the number of recipients in broadcasts are always the number of nodes minus one and all broadcasts have the same number of recipients. 

Results

The impact of dynamic broadcasts for the QR factorization on 196 nodes (with one MPI process per node) is plotted on Figure 4.14. For this application with such distribution, dynamic broadcasts considerably increase the performance: with binary trees it is 7 times higher than without broadcasts and 5 times with binomial trees.

The rst comment on these results is that the baseline (without broadcasts) is very low (20 Tops with 196 nodes is low, this performance should be reached with only some twenty nodes!), because of the suboptimal data distribution which requires lot of communications. Since communications are a bottleneck and broadcasts appear in the algorithm, improving the broadcasts execution increase performance, as conrmed by the curves for the two dierent trees. Even if the performance was not analyzed in detail, a hypothesis to explain the better performance of binary trees over binomial ones could be the following. With binary trees a node is involved in a broadcast for a short time (only to send to two other nodes): thus, network bandwidth is quickly available for other communications, from other broadcasts. The contrary applies to binomial trees. If this hypothesis is veried, it would mean for the QR algorithm that all recipients of a broadcast do not need to receive the data very fast, it is enough if a few of them receive it quickly, because binary trees are deeper than binomial ones.

Finally, performance is the same if tasks are unlocked as soon as possible or if the end of forwards to other recipients is awaited. Chameleon does not provide priorities for tasks of the QR algorithm, thus taking into account priorities in dynamic broadcasts is useless. The chosen size for the matrix tiles can inuence several aspects of the program execution: the number of tasks is dierent, therefore there is more or less parallelism, tiles may or not t in the dierent caches, causing potentially lot of cache evictions, etc. From a communication point-of-view, the number of messages transmitted through the network will be dierent and their size as well: 225 KB for 240 × 240 tiles, 409.6 KB for 320 × 320 tiles1 , or 3.6 MB for 960 × 960 tiles. As observed previously with the microbenchmarks (especially on Figure 4.3b), with bigger messages, it is even more attractive to use dynamic broadcasts, regarding the network bandwidth. Figure 4.15 shows the same curve order and dierences compared to Figure 4.14, but according to the tile size. The optimal tile size seems to be around 640×640: below this value there is too many communications and above the communication latency is too costly.

In the two previous experiments, the data distribution was on purpose suboptimal, to create broadcasts with many recipients. Figure 4.16 evaluates the performance of other 2D-block-cyclic data distributions, on a small matrix (28 800 × 86 400). The least intuitive data distributions for QR factorization (1D-block-cyclic or close to: 1 × 196, 2 × 98) appear to be those with best performance with dynamic broadcasts. With the 1×196 data distribution, binary trees allow the application to reach 30.7 Tops, while the version with disabled broadcasts does not even reach 5 Tops. Performance with dynamic broadcasts is never worse than without broadcasts. In all cases, the performance is very low, with regards to the number of nodes. This comes probably from the rectangular shape of the matrix and its small size which does not allow to reach the maximum of possible parallelism. 

Performance analyses

As mentioned when commenting the performance results, an in-depth analysis of the performance with dynamic broadcasts has not been performed. Indeed, it is not straightforward for several reasons: it requires a deep analysis of the runtime system and the communication library together, to understand how dynamic broadcasts inuence the application execution.

Since we use trees with a logarithmic number of steps with the number of recipients, the performance gain provided by dynamic broadcasts will be visible only for broadcasts with many recipients: to add one level in a tree, we need to double the number of recipients; according to the data distribution, this can require to at least double the number of nodes. Executing applications at a large scale (several hundreds of nodes) can be very costly in terms of resources and time. The suboptimal data distribution used for the QR algorithm allowed to see how our implementation behaves with larger broadcasts (a binomial tree with 195 recipients has 8 steps, a binary tree has 7 steps).

Introducing a theoretical model to predict the performance gain thanks to dynamic broadcasts is not easy, because of the natural overlap of communication by computations by the runtime system and the asynchronicity of the programming model: there are no synchronizations, no well-identied phases where only communications occur and whose duration would be easy to measure and compute.

Discussion

Despite these diculties, precisely understanding the performance of dynamic broadcasts would allow to explain why dynamic broadcasts improve performance on some machines (e.g. Cholesky on inti, Figure 4.9) but not on others (e.g. Cholesky on occigen, Figure 4.10a). First hypothesis suggest it has to do with the ratio of computation / communication performance and/or number of tasks and network communications.

Generalization and extensions of the concept Other types of collective operations

This work was focused on broadcasts. One may ask about similar techniques to improve other collective operations.

There was opportunity for performance improvement with the broadcast operation, since smart routing algorithms can be used to increase its performance. Main diculties to set up an ecient broadcast in the StarPU context was the lack of synchronization in the programming model and the dicult detection.

For operations which cannot benet in general from clever routing techniques, especially because each of their internal point-to-point communications transmits a dierent data, there is no trivial improvement to bring. This is the case for the gather (MPI_Gather, collect dierent portions of an array from dierent processes to a single process), or scatter (MPI_Scatter, distribute dierent portions of an array from a single process to several processes) operations. Moreover, using these operations within StarPU does not really make sense: each portion of the array should be represented by a dierent data handle and should be independently communicated, without waiting for all data portions to start the collective operation (a sort of synchronization!).

The reduction operation is more interesting because it may leverage optimized routing schemes and needs to execute computation at each step with received data. The reduction tree could be managed by the communication library and the computations could be tasks managed by StarPU. Actually, reductions can already be executed with StarPU, with specic ags attached to tasks to indicate the reduction. StarPU manages itself the reduction tree, submitting point-to-point communications following a tree scheme and corresponding tasks. In a word, the reduction is decomposed internally by StarPU in point-to-point communications and computation tasks, without any optimization directly from the communication library.

On top of problems mentioned for MPI_Gather and MPI_Scatter, the main diculty also for other collective operations such as MPI_AllGather (all processes get the nal whole array); MPI_AllReduce (all processes get the result of the reduction) MPI_AllToAll (a combination of MPI_Scatter and MPI_Gather), is the detection from the DAG. For a broadcast, the pattern is easy to recognize in the DAG: a node with several outgoing edges. Patterns corresponding to other collective communications are much harder to recognize in the tangle of dependencies between tasks. Even if the patterns are found in the task graph, it can be dicult to propose solutions using optimized collective operations, without synchronization, and which at the end improve performance.

Tree types

When a broadcast is initiated, the routing algorithm is executed to know to which nodes the direct recipients of the root node will need to forward the data. This list of nodes forming a subtree is included in the message header. When a node receives such a message, it executes the routing algorithm on the list of nodes included in the message header, to know to which nodes it has to forward. The process continues recursively while the leaf of the tree are not reached.

All kind of trees can be used with this technique: we showed binomial and binary trees, but it can be extended to chains, k-ary, k-nomial trees, etc.

We made experiments with what we called bitrees: the list of recipients of a broadcasts is split in two groups (one group can contains more items), the root node starts a rst broadcast with the rst group of recipients and when this broadcast is nished, the root node starts a second broadcast with the second group. The two broadcasts can follow dierent routing schemes. This pattern can be useful if a set of recipients needs the data very quickly but not the other set (e.g. communication priorities form two distant clusters): the rst broadcast can use a binomial tree and the second a binary one. First results show that mixing this way two dierent routing trees gives performance similar to performance obtained with only one tree with all recipients, following the routing algorithm of the tree with the highest number of recipients in the bitree version.

Another option is to delegate the broadcast execution to the rst recipient: the root node sends data to only the rst recipient, and the latter has to execute the remaining of the broadcast, as if it was the root node, with the selected tree type. This can be useful if the original root node has to send many broadcasts with independent recipient sets very quickly: therefore the dierent broadcasts can start to be executed simultaneously on dierent nodes.

An improvement (not implemented yet) is to take into account the network topology in the recipient reordering, in addition to communication priorities. This could load-balance the communications and reduce the general occupancy of the network links. However, gains should only be expected with broadcasts delivering big messages to many recipients.

Conclusion

In DAG of task-based applications, a situation may appear where a given piece of data needs to be sent to multiple nodes. The use of an optimized broadcast algorithm is desirable for scalability. However, the constraints of relaxed synchronization and asynchronous schedulers on nodes make the use of MPI_Bcast inappropriate: the cost of required mechanisms to be able to use this function would cost more than the gain of performance it could provide.

We have introduced a dynamic broadcast mechanism which makes it possible to use an optimized tree-based broadcast algorithm without needing all the participating nodes to know all the other nodes, and without even needing them to know at all they are involved in a broadcast. The integration is seamless and nodes receive data with a regular point-to-point receive function. We evaluated its performance on Cholesky and QR factorizations. Results show that our dynamic broadcast may improve overall performance and scalability.

Many applications are developed and optimized to reduce costly communications. Our system allows to be less concerned by communications which can be detected as broadcasts, since they will be automatically detected and optimized. This mechanism is also a good example of interaction between task-based runtime systems and communication libraries: the runtime system shares with the communication the recipient list of a broadcast, and the communication library is able to notify the runtime system as soon as data arrived from a broadcasts but forwards are not nished. Moreover, we extended the interface of the communication library to cope with StarPU's constraints.

Chapter 5

Interferences between Communications and Computations S tarPU naturally overlap communications with computations by executing ready tasks in parallel of communications. This means communications and computations are executed simultaneously. Using this technique with task-based runtime systems or just with non-blocking MPI calls is supposed to improve application performance, by masking the duration of communications. We have observed with execution traces that, in some applications, sometimes, when computations and communications are executed side by side, communications are slower than nominal performance and computations can also be degraded, which is consistent with the literature reviewed in Chapter 2.

Since possible interactions between communications and computations, and especially the impact on communication performance, are not well detailed in other studies (but only mentioned), we assess the possible causes of these interferences and measure their impact on performance of both communication and computing. We investigate the impact of processor frequencies, memory contention and the use of a task-based runtime system. This chapter presents the following study. We measure the impact of frequency scaling on communications. We also study the impact, in the case of CPU-bound applications and memory-bound ones, on communication bandwidth and latency. Moreover, we study the eect of data locality and thread mapping on the interference between computation and communication. Further, we introduce a benchmark with tunable arithmetic intensity to observe how the application memory pressure penalizes the performance of communications. We also study the communication performance degradation caused by the use of StarPU. For all possible presented interferences, we measure their impact on both communication and computing performance. Finally, we realize the same study on two important HPC kernels: conjugate gradient (CG) and matrix multiplication (GEMM). 

Methodology

Our goal is to measure performance of communications and computations when they are run side by side and evaluate the potential impact of interferences on performance of both communications and computations. To achieve this, we have designed a multithreaded and parallel benchmark using MPI+OpenMP1 . One thread is dedicated to communications (it submits communication instructions and ensures MPI progression) and other threads do computations. This communication benchmark performs ping-pongs to measure network latency and bandwidth.

We need to compare performance of communications and computations when they are executed alone and when they are executed together. Therefore, we decomposed our benchmark into the following steps: Computations and communications use dierent data and hence are completely independent. The majority of plots in this chapter compares performance of communications and computations when they are executed separately or simultaneously (see Figure 5.3 for instance). The former are represented by plain curves and the later by dashed curves. Curves represent median value of the results obtained with several runs and background areas are delimited by the rst and the last decile of these results.

Communications and computations are done in dedicated threads, all belonging to the same program. Each thread (computing ones and communicating one) is bound to a dierent core to stabilize performance and ensure reproducibility. In the remaining of this chapter, we will call computation cores the cores that execute the computation threads and communication core the core that executes the communication thread.

We use the same metrics as in the previous chapter: latency represents the duration of a communication (time elapsed between the beginning of MPI_Send and the end of MPI_Recv, i.e. half ping-pong) and bandwidth is the obtained network throughput by dividing the size of the transmitted data by this latency. When we do not mention data size, latency is measured on 4 bytes of data (one float), and bandwidth is the asymptotic value, evaluated for 64 MB message size. Buers used for ping-pongs are recycled to mimic standard applications that update internal data step by step and to take benet of registration cache mechanism [START_REF] Tezuka | Pin-down cache: A virtual memory management technique for zero-copy communication[END_REF]. Since our rst observations about possible interferences between computations and communications were made with StarPU-MPI applications, our benchmark mimics on purpose its working. We chose to measure communication performance with ping-pongs for their simplicity, they require only few parameters to be analyzed and StarPU uses mainly point-to-point communications; analyzing also collective communications would be beyond the scope of this work. In the same way, when many threads make MPI communications, it brings many other considerations we do not want to explore in this study.

We ran our own benchmark suite on several clusters with dierent characteristics: from small experimental clusters to large production ones. Since results are generally similar on all tested clusters, we present only results obtained on henri nodes (described in Appendix C) and mention noteworthy dierences on other clusters.

We show results obtained with MadMPI, the MPI interface of NewMadeleine; we observed similar results with other MPI implementations, such as OpenMPI 4.0.

Impact of frequencies

In this section, we study the impact of frequencies on communication performance. To avoid overheating and minimize energy consumption, processors change their frequencies depending on the processor load. This dynamic frequency scaling feature of modern processors has a direct impact on computing performance. Since computation may cause changes in processor frequencies, we assess, in this section, whether these frequency variations also have an impact on communications.

We consider two kinds of frequencies: core and uncore. The core frequency impacts computation units and L1 and L2 caches2 . The uncore frequency [START_REF] David | The Uncore: A Modular Approach To Feeding The High-Performance Cores[END_REF] concerns last level cache and the memory controller 3 . We measure the impact of these two frequencies independently by setting them to a constant value for all cores and sockets. We evaluate network performance for the two extremes of the permitted ranges of frequencies: 1000-2300 MHz for core frequency and 1200-2400 MHz for uncore frequency.

Impact of frequencies on only communications

We performed ping-pong benchmarks to measure network latency and bandwidth in function of core and uncore frequencies. Since we study only the impact of frequencies, the ping-pong benchmark relies only on an MPI library and no other runtime. No computation is done at the same time.

Concerning the core frequency, as seen on Figure 5.1a, the network latency is lower when the frequency is higher: 1.8 µs with 2300 MHz vs 3.1 µs with 1000 MHz. We explain this as follows. The network latency is comprised of hardware latency (time to move the data over the wire) and software overhead (time for software to process the communication operation, the o of the LogP model [START_REF] Culler | LogP: Towards a Realistic Model of Parallel Computation[END_REF]). Hence, with a lower core frequency, the software overhead is higher. Variations of the CPU frequency do not aect the network bandwidth (Figure 5.1b), except for the xed overhead of latency that impacts slightly the bandwidth for small messages. It is explained by the fact that large messages are transferred through DMA, without going through the CPU, thus their speed is unaected by CPU frequency.

Conversely, the uncore frequency has no impact on the latency (the dierence when changing only the uncore is negligible regarding the dierence when changing only the core frequency: +5 % vs +72 %) but has a small impact on the bandwidth (10.5 GB/s with 2400 MHz vs 10.1 GB/s with 1200 MHz).

Impact of frequency variations caused by computations

We now observe network performance when one core executes the communications (using the ping-pong benchmark) and other cores are executing CPU-bound computations: a computing benchmark counts in a very naive way the number of prime numbers in an interval. This forces the CPU to execute instructions which do not require any memory access (the algorithm uses only few integer variables).

In Figure 5.2, we plot the frequencies of the dierent cores when (A) only communication is performed, (B) all cores are idle and (C) communications are performed while 20 cores are executing the compute-bound benchmark. We see that all cores have a higher frequency when computations and communications are done at the same time than when communications are executed alone. We have also measured the bandwidth and the latency when communications and computations are done side by side: the network bandwidth is very slightly improved when computation is done at the same time (9097 MB/s vs 9063 MB/s), as well as the network latency (1.52 µs vs 1.7 µs). As the CPU frequency of communication core is the same in case (A) and (C) we conclude that the communication latency is not impacted only by the frequency of the core doing these communications: when other cores increase their frequency, it improves the communication latency.

However, these results seem to be hardware-dependent: on bora, the network bandwidth has a wide deviation 4 and computations are highly impacted by the communications when there are more than 15 computing cores. In Figure 5.3, we see the computing duration jumps from 183 ms to 236 ms: the computation is slowed down when it starts using the socket performing communication. Network latency is constant and duration of computations done along the latency benchmark is also constant regardless of the number of computing cores, exactly like on henri nodes (not displayed on Figure 5.3).

Impact of AVX instructions on frequencies

Computing cores can use wide vector instructions such as those from the AVX family [START_REF] Lento | Optimizing performance with Intel advanced vector extensions[END_REF]. Although these instructions allow reaching better computing performance, they force the cores executing them to reduce their frequency because these instructions consume more power [START_REF] Gottschlag | Reducing AVX-Induced Frequency Variation With Core Specialization[END_REF]. The core frequency is further reduced when there are more cores executing AVX instructions at the same time. On the other hand, with turbo-boost, if only few cores execute AVX instructions, these cores can increase their frequency.

We study here if computing cores doing AVX instructions can have an impact on the frequency of the core executing the communication thread and thus change the communication latency. In our experiment, each computing core does the same amount of computation: a set of multiple AVX512 oating instructions (weak scalability). Since the range of frequency variation is higher when turbo-boost is enabled, we show only this case here (results are similar when turbo-boost is disabled).

As expected, computations are faster with only few computing cores (Figure 5.4a). With only 4 computing cores (Figure 5.4b), computing cores work at 3 GHz and computations last 135 ms and with 20 computing cores (Figure 5.4c), their frequency is 2.3 GHz and computations last 210 ms (lowered core frequency increases computing duration). In both cases, the frequency of the communication core is stable at 2.5 GHz and is not negatively impacted by cores executing AVX instructions: no matter the number of computing cores, the network latency is always slightly better when computations are done at the same time (1.33 µs vs 1.49 µs) of computations. This is consistent with what we have observed with previous experiments (in section 5.2.2) on the same machine: the uncore frequency (constant regardless the number of computing cores) has no eect on network latency, while a higher core frequency can improves latency. On bora nodes, computation and communication performance with AVX instructions are the same as those observed without AVX instructions.

To summarize, cores executing AVX instructions do not impact the frequency of the core executing the communications and thus communication performance is not aected.

Conclusion on the impact of frequency variations

In conclusion, we have observed that the core CPU frequency impacts communication latency: the higher the frequency, the lower the latency. To a lesser extent, uncore frequency slightly impacts the communication bandwidth. Computations can change the frequency of the cores executing them, but do not change the frequency of the core executing communications, even with AVX instructions, and hence do not impact the communication performance. On the contrary, latency is slightly better when CPU-bound computations are made at the same time. Intel processors.

Memory contention

Data moving from memory to the CPU and data moving from memory to the NIC are actually using the same memory bus. Therefore, in this section, we study the interaction between memory accesses used for computations and communications over the network, to check whether there may be contention between the data streams for computations and for communications, as illustrated by Figure 5.5.

Benchmarking memory contention

To see what happens when memory contention occurs, we produce memory contention with the STREAM benchmark suite [START_REF] Mccalpin | Memory bandwidth and machine balance in high performance computers[END_REF], especially the following two STREAM kernels that perform simple arithmetic on large arrays:

COPY copy each element of an array to another one: b

[i] ← a[i]
TRIAD multiply each element of an array by a constant, add it to the element of another array and store the result in another one:

c[i] ← a[i] + C × b[i]
These kernels are memory-bound, causing high pressure on the memory bus. Moreover, to really produce memory contention, we allocate memory on a single NUMA node, to increase the trac on the memory bus between cores belonging to dierent NUMA nodes.

The loop iterating over these arrays is parallelized on available computing cores with OpenMP. The performance of the computing benchmark is measured using the memory bandwidth per core (hence higher is better). For communications, we execute a ping-pong benchmark (see section 5.1) in its own thread. Such communication benchmark is run alongside STREAM in a separate thread to measure the impact of interferences.

Impact of memory contention

In the execution reported in Figure 5.6, memory is allocated on the NUMA node where the NIC is also connected, communication thread is bound to the last core of the other NUMA node, and computing threads are bound to cores respecting the order of the logical core numbering. Figure 5.6a shows that network latency is impacted by the STREAM operations when there are at least 22 computing cores and this impact can double the regular latency when all available cores are computing. However, STREAM operations are not impacted by the ping-pong benchmark. The network bandwidth is impacted sooner, from 3 computing cores (Figure 5.6b). When all available cores are computing, the network bandwidth is reduced by almost two third from the regular network bandwidth. Memory bandwidth measured by the STREAM benchmark is lower when network bandwidth is measured at the same time as when network latency is measured, which is expected because one bandwidth ping-pong transfers more data than a latency ping-pong (64 MB vs 4 B). On bora nodes (Figure 5.7), the network bandwidth is impacted, but later: from 20 computing cores; latency gives similar results. Results on billy and pyxis nodes are similar to those observed on henri nodes.

Impact of thread and data placement

Here, we study the impact on the performance of the data locality and the communication thread mapping. To do so, we bind the communication thread to a core either on the same NUMA node where the NIC is plugged (near the NIC) or on the other NUMA node (far from the NIC). Similarly, we explicitly allocate the memory (used for computations and communication) either on one or the other NUMA node. It is known [START_REF] Moreaud | Impact of NUMA Eects on High-Speed Networking with Multi-Opteron Machines[END_REF] that placement may have an impact on communication performance; we check whether contention worsens this phenomenon.

On henri nodes, Figure 5.6 shows results for data near the NIC and communication thread far from the NIC and Figure 5.8 shows results for other placement schemes. Results on other clusters were similar. When the communication thread is bound near the NIC, the latency increases as soon as we use more than 6 computing cores, but then stays around 2 µs (even if the error range is higher). When the communication thread is far from the NIC, the latency increases considerably from 25 computing cores by doubling its nominal value and reaching more than 4 µs. Without computations at the same time, latency is slightly better when communication thread is bound near the NIC (1.39 µs vs 1.67 µs). As expected, because small messages are sent from the CPU to the NIC (using programmed I/O), thus if the communication thread is closer to the NIC, the latency is better.

Bandwidth curves have generally the same shape wherever the communication thread is bound. When data is located near the NIC, bandwidth decreases steadily when the number of cores increases. When data is located far from the NIC, bandwidth drops much more abruptly. Since large messages are sent through Direct Memory Access (DMA), the crucial factor is data placement; when data is closer to the NIC, we observe better overall bandwidth and less impact of memory contention than when data is far from the NIC. In all congurations, latency benchmarks do not impact the STREAM benchmark per- formance, but bandwidth benchmarks do: STREAM loses up to 25 % (with 5 computing cores) of its performance when executed side by side of communications.

To sum up, placement of communicating thread and locality of memory has an impact on network performance and on the memory contention. When the communication thread is far from the NIC, latency suers more from contention on the memory bus. When data is far from the NIC, network bandwidth suers more from contention. Moreover, in all congurations, transmitting large messages on the network increases the impact of contention on the computations.

Impact of transmitted data size on memory contention

In this section, we study the impact of message size on the contention on the memory bus. We have observed in the previous section that bandwidth benchmarks are more impacted by contention than latency benchmarks. Moreover, communication libraries can exhibit dierent behaviours according to the size of data to transmit (e.g. switch from eager to rendez-vous protocol). We measure STREAM and network performance with varying message size transmitted through the network, so as to know which message sizes cause a performance drop. We performed this benchmark with two dierent numbers of computation cores: 5 cores, which is the point where STREAM is the most impacted by communications; and 35 cores, where the network bandwidth is the most impacted by STREAM, as we saw on Figure 5.6b. With 5 computing cores (Figure 5.9a), communications begin to be degraded with a message size of 64 KB, but STREAM begins to be impacted sooner, from 4 KB transferred over the network. With 35 computing cores (Figure 5.9b), communications begin to be degraded sooner than with 5 computing cores: from 128 B and STREAM is impacted from 4 KB as well. Results were similar on other clusters, when there is a small computing cores or when all available cores are computing.

On the whole, a large number of computation cores causes a high memory pressure which impacts communication for a wide range of message sizes on the network. Conversely, large messages exchanged through the network cause enough trac on the memory bus to impact computation even with only 5 cores.

From CPU-to memory-bound applications

Real-world applications are usually not fully CPU-bound or completely memory-bound, but somewhere between these two extremes. Previous sections showed that CPU-bound applications have almost no impact on communications, but memory-bound ones do. Therefore, we modied the TRIAD algorithm in the STREAM benchmark to be able to tune the memory pressure, so as to see how the variation of this pressure degrades the network performance.

The memory pressure caused by computation is expressed as the arithmetic intensity, as used by the rooine model [START_REF] Williams | Rooine: an insightful visual performance model for multicore architectures[END_REF]: it is dened as the number of ops per byte of moved data.

In practice, to make the arithmetic intensity of our benchmark tunable, we added a simple loop in STREAM, repeating the operation on each item of the array, before moving to the next item. By changing the number of repetition on each item, the arithmetic intensity varies: with few repetitions the program moves rapidly from one item of the array to the next one (memory-bound) and with many repetitions, it spends more time before accessing the next item (CPU-bound). We call this number of iterations per item in the array a cursor: changing the cursor value thus makes the benchmark progressively moving from being memory-bound to CPU-bound.

Results of this benchmark on henri nodes are depicted in Figure 5.10. We observe that high levels of memory pressure cause a huge performance drop for the network. When the arithmetic intensity is lower than 6 op/B, the memory pressure has an impact: in the latency benchmark (Figure 5.10a), the network latency doubles and the computing duration is constant, which is the conrmation that it is actually memory-bound, and unaected by the small messages on the network. In the same interval in the bandwidth benchmark (Figure 5.10b), the network bandwidth drops by 60 % and the computation is slowed down by 10 % because of interference with network operations which use large packets in this benchmark.

For arithmetic intensity higher than 6 op/B, the program becomes CPU-bound, the memory pressure decreases: communication performance gets back to its nominal value and computation time is unaected by network interference. On billy (Figure 5.11), the boundary between memory-and compute-bound programs is at 20 op/B: it is also visible on both computation and communication performance, but the network bandwidth becomes not impacted by computations only when the arithmetic intensity is higher than 70 op/B.

Conclusion on memory contention

Contention on the memory bus, caused by data movement between main memory and cores or NIC, can have a strong impact on performance. We have shown that the impact depends on several factors: (1) the placement of the communication thread and the data locality, since contention amplies the impact of NUMA eects on the network; (2) the size of the messages transferred over the network, since larger messages cause a higher impact on computation performance; and (3) the arithmetic intensity of the code executed by computing cores, since code with low arithmetic intensity (thus high memory pressure) has a higher impact on network performance.

5.4

Runtime system impacts on communications

In this section, we study the impact of StarPU on communication performance, by executing a ping-pong benchmark, written with the StarPU API instead of plain MPI. 

Runtime system overhead

Using the StarPU API for the communications adds extra software layers on the path of messages that have to go through message lists, be processed by a worker and then by the communication thread. These mechanisms add an overhead to communication performance: in StarPU, the latency is increased by 38 µs on henri nodes, by 23 µs on billy nodes and by 45 µs on pyxis nodes. This latency dierence is also noticeable on network bandwidth benchmark for messages smaller than 64 MB.

MPI thread and data placement

Within StarPU, a thread is dedicated to communications and makes them progress. This thread is usually bound to a dedicated core (similarly to what we did in section 5.3.3). The issue of memory locality and communication thread placement is still present when memory is directly allocated by workers, namely by dierent cores. If there are workers on all available cores and memory allocation uses the rst-touch strategy, memory will be allocated on dierent NUMA nodes. Therefore, the performance of the transfer for those messages should depend on where the memory was allocated regarding the NIC, as observed previously.

Figure 5.12 shows the network latency overhead explained previously, but mainly that the most important for the network latency is that data to transfer and the communication thread are on the same NUMA node. That is expected, because for small messages, if the communication thread needs a remote NUMA access to get the data to send, it adds some delay to the latency. StarPU does not impact more the network bandwidth than previously observed.

Worker polling

StarPU's scheduler stores tasks submitted to the runtime system in a list. When a worker nishes a task execution, it consults this list to get the next task to execute. To be reactive enough, workers wait actively for tasks, this mechanism is called busy waiting or polling: if the list is empty, the worker waits a moment by executing a number of nop instructions, and then tries again to get a task. The number of nop is dened by an exponential backo algorithm: it is doubled after each unsuccessful poll until a maximum is reached. The number is reset to its minimum when the worker nally gets a task. The maximum number of nop instructions can be dened by the user. With a small number, workers will be very reactive when a new task is pushed to the list (the task will start sooner). However, it produces trac on the memory bus, because this list of tasks is shared among all workers. Worker polling can be interrupted by pausing workers.

To study the impact of polling done by workers on communications, we implement a benchmark with a ping-pong on network running without any task to execute, hence workers are constantly polling for new tasks. We executed the benchmark with default conguration (the default maximum number of nop instructions is 32), with a huge backo (10000: workers poll rarely), with a small backo (2: workers poll very frequently) and with paused workers (they are not polling at all). Figure 5.13 shows that polling workers have an impact on communication latency: the latency is higher when workers poll more often. A long period between two polls is equivalent to paused workers and does not impact the latency. We explain this result by the increased trac induced by workers accessing the list of tasks and locking mechanisms. However, polling workers have no impact on communication performance on billy and pyxis nodes.

Conclusion on runtime system impact

Our experiments show that task-based runtime system (here StarPU) can negatively impact the communication performance (especially latency) because of the longer software stack messages have to go through and due to aggressive worker polling.

5.5

Use-cases: computational kernels

To measure interferences between communications and computations in real computation codes, and especially the impact of computations on communications, we executed a dense conjugate gradient (CG) and a dense general matrix-matrix multiplication (GEMM), both built with StarPU, using the Intel MKL BLAS library and distributed on two henri nodes (2 MPI processes are enough to see the interferences and simplify the analysis).

Using the proling utility provided by NewMadeleine, we measured the time spent to send data over the network. This gives a sending network bandwidth: the network bandwidth as perceived by the sending node, not taking into account the time to receive data on the receiving node. We also used pmu-tools 5 , a tool built on the top of the Linux perf program to read CPU performance counters, to evaluate the memory pressure caused by the computations. Regardless of the number of computing cores, the execution parameters are the same: matrix sizes and/or number of iterations (strong scaling), hence the amount of network communications is also the same.

Figure 5.14 depicts measured values according to the number of computing cores. All curves are the average of values obtained on the two MPI processes. The top plot represents the normalized bandwidth for network sends and the bottom one plots the proportion of execution time when the CPU was stalled on accesses to memory. This gure shows that, the more there are computing cores, the more cores are spending time to access the memory and hence aects negatively the sending bandwidth, as observed previously with our microbenchmarks. CG is more aected by this eect than GEMM. This is because CG is more memory bound than GEMM: with the maximum number of workers, 70 % of stalls are caused by memory accesses, while it is only 20 % with GEMM. As seen previously, these dierent memory pressures aect dierently the network send bandwidth: with GEMM, communications lose at most 20 % of performance, while with CG, the loss is up to 90 %.

To sum up, common computational kernels, such as CG and GEMM, can have a signicant impact on communications executed at the same time as computations. This impact depends on the arithmetic intensity of the executed kernels. 

Conclusion

Doing parallel computation side by side with communications is one of the key features of task-based runtime systems and MPI libraries to achieve high-performance. However, such feature can have side eects that actually degrade performance. We studied in this chapter the possible eects and evaluated their impact on performance of both computations and communications. Frequency variations caused by computing cores have little impact on communications. However, memory contention caused by memory-bound computing programs and network transfers of big chunks of data has a strong impact on both computation and communication performance. This impact depends on the placement, the arithmetic intensity of the program executed by computing cores and the amount of data transferred across the network. Moreover, using StarPU can also penalize communications, just with the runtime system overhead, but also with internal mechanisms like polling on task queues. Communication thread placement, data locality and node topology (to which NUMA node the NIC is the closest) also impact performance. We observed the penalty on communications also in the execution of common HPC kernels such as conjugate gradient and matrix multiplication programs. These preliminary detailed results are necessary to be aware of these behaviours, and before being able to present solutions.

These phenomena are examples of negative interactions between runtime systems and communication libraries. The interferences do not appear only with task-based runtime systems, but because of their natural communications/computations overlap mechanisms, these kinds of runtime systems can also be victims of these interferences. Moreover, with all the features and abstractions provided by task-based runtime systems, it should be easier to avoid these negative interactions. Taking the interferences between computations and communications would then become a positive interaction between the two software layers. To do so, we present in the next chapter a model to predict bandwidth sharing between computations and communications.

Chapter 6

Modeling Memory Contention between Communications and Computations W e observed in the previous chapter that memory contention between computations and communications executed in parallel (illustrated by Figure 5.5 on page 106) is the most important interference impacting performance of both computations and communications, because when overlapping communications and computation, data movement for the computation and for the network may share parts of the path in the machine memory system. Several factors can inuence the contention: data placement, message size and arithmetic intensity of computing kernels. Performance is the most reduced when computing kernels are memory-intensive (putting important pressure on memory buses), big messages are exchanged (thus moving large amount of data through memory buses) and data to send to the network is located on a NUMA node dierent than the one where the network interface is plugged to.

In this chapter, we propose a model of this contention between computations and communications. Given a number of computing cores, the model can predict memory bandwidth available for computations and communications, when they are executed simultaneously, while taking into account the locality of data they manipulate. More than just predicting performance, the proposed model allows us to test our hypotheses about the internal working of processors' memory system, how they deal with contention between dierent kinds of streams.

Context and hypotheses

Since dierent kinds of data streams share the same memory bus, it is possible to sum the measured bandwidths of each data stream, to get the overall occupancy of the bus capacity, from a bandwidth point of view, like Majo and Gross did [START_REF] Majo | Memory System Performance in a NUMA Multicore Multiprocessor[END_REF]. Indeed, this assumption is the cornerstone of our model; once the bandwidth capacity of the bus is known, one has to distribute the available bandwidth between computations and communications.

However, it is important to note that behaviours of processors and memory controllers regarding contention are not publicly documented by processor manufacturers. Moreover, the values they use to characterize hardware features (the memory controller bandwidth or the SMP interconnect rate, for instance) can hardly be linked to experimental observations, nor directly used as parameters of the model.

Thus, we propose a model whose parameters are determined through experiments rather than theoretical capacity of hardware. We make our own set of hypotheses explaining memory bandwidth in case of contention, as well as our own set of benchmarks to get model parameters.

Contention behaviour

Memory buses have a nite bandwidth. When this capacity (or threshold) is reached, the bus capacity is shared between all components accessing it, reducing memory bandwidth available for each accessor. Memory requests issued by CPU cores may have a dierent (often higher) priority than requests coming from Peripheral Component Interconnect Express (PCIe) devices, e.g. from a network interface. However, a minimal memory bandwidth will always be available for these devices, to prevent starvations. We can also assume in some cases computing cores can generate contention with each other, even without communications in parallel.

If we put together these hypotheses: when communications and computations executed in parallel reach together the memory bus bandwidth threshold, communication bandwidth starts to decrease to avoid impacting computing cores. When the assured minimum bandwidth for communications is reached, the performance of computations decreases uniformly between computing cores to t the memory bus capacity; but the contention between the computing cores can already create contention penalizing computation performance too.

NUMA systems

Within NUMA systems, the performance of a memory access varies whether a core is accessing its own memory or the memory from another memory bank. Hence, we will use the terms local and remote to qualify whether computing cores use memory respectively close or far to them.

The main consequence of such NUMA systems is that memory bandwidth will vary whether cores or network interface are accessing local or remote memory. Moreover, depending on where is located memory used for computations or communications, the path taken by the data between the NUMA node and the computing core or the network interface will be dierent, changing the locations of contention. Thus, our model has to take into account on which NUMA node data manipulated by computations or communications are located.

To focus on the interferences between computations and communications, we will not mix local and remote accesses from computing cores. This means we will model performance of computations and communications when cores of only one socket are computing. Considering computing cores of all sockets accessing the same NUMA node (thus, some of them are doing local accesses and other ones remote accesses) is another problematic that is left for future work.

Last level caches

The last-level cache (L3 cache on most machines), between cores and RAM memory, tends to alleviate the number of memory transfers done by computations. Thus, we would overestimate the number of memory movements if we assumed that every memory access instruction would lead to an actual transfer through the whole memory system. It would lead to inaccurate results about contention since our model only takes as input actual memory transfers.

If the data of the streams we are predicting the bandwidth go through the last-level cache, our model has to describe two phenomena: the contention on memory bus and the behaviour of the cache. However, the behaviour of the cache is complex to model [START_REF] Chandra | Predicting interthread cache contention on a chip multi-processor architecture[END_REF][START_REF] Andrade | Accurate prediction of the behavior of multithreaded applications in shared caches[END_REF], implements undocumented strategies dierent for each processor manufacturer, and changes for each kind of application. All in all, modeling the cache is another topic, dierent from the one we are currently dealing with.

For all these reasons, we chose to ignore the last-level cache and make the data stream bypass it.

Modeling methods

A widespread model for contention is queuing theory [START_REF] Cho | Performance modeling of parallel loops on multi-socket platforms using queueing systems[END_REF][START_REF] Marius | Understanding o-chip memory contention of parallel programs in multicore systems[END_REF]: cores or network interfaces are customers; when they make a memory request, they enter in the queue: they leave the queue when the request is processed. Closed-form expressions exist for properties of such queues, especially the mean time spent in a queue. Unfortunately this kind of model is not relevant for our usecase. Since NUMA machines have a hierarchical organization of their memory, bottlenecks can appear on several places in the memory system (see Figure 5.5 on page 106). Each place where contention can occur has to be represented by a dedicated queue, and the dierent queues of all memory components have to be combined to model the behaviour of the whole memory system. Correctly assembling the queues requires to have a sharp understanding of how the memory system works (knowledge usually not available publicly and specic to each processor generation and manufacturer). Even if we succeed in proposing an assembly of queues, getting all parameters of all queues would require lot of execution samples to be precise enough. Moreover, obtained parameters characterizing the queue can lack physical meaning, making the parameter interpretation harder. Most queuing models are built with the assumption that all customers have the same request rate; it is not necessarily true in our case: one network interface can issue memory requests at a higher rate than one computing core (a single computing core can reach a memory bandwidth of 5 GB/s, while network bandwidth can be around 10 GB/s). In such situation, we lose the closed-form expressions, which were the main advantage of queuing theory.

We chose a simpler model, easier to manipulate, but accurate enough for our needs: a basic threshold. While the bandwidth required by all issuers of memory requests stays under the memory bus capacity, there is no contention, no impact on performance. When it does not t the memory bus anymore, only the bus capacity is available, and is split among computing cores and network interface. This model, described in detail below, has the advantages of requiring few application runs to calibrate the parameters and has understandable parameters with a physical meaning, well-known units, and coherent values regarding performed benchmarks and hardware features.

6.2

A model for memory bandwidth sharing

The model aims at giving the memory bandwidths available for computations and communications, and thus predicts the impact of the contention on their performance, using as parameters the number of computing cores, the memory location of data used by computations and communications and the topology of the machine.

Since memory bandwidth depends on which NUMA node is accessed, we need to instantiate our model once for local accesses, noted M local (e.g. memory for computations and communications located on the rst NUMA node of the rst socket), and once for remote accesses, noted M remote (e.g. memory for computations and communications located on the rst NUMA node of the second socket). Parameters of each model are dened with metrics collected on executions where data used for computations and communications are on the same NUMA node (case with the largest contention). Once parameters are collected, performance can be predicted according to these parameters. Performance with memory placement congurations other than the ones used to instantiate the model is predicted by combining the local and remote models. This section explains how model parameters are dened, then how the model predicts performance and nally how models for local and remote accesses are combined to predict performance of all possible data placements.

Model parameters

The model requires several parameters describing the behaviour of the machine when communications and computations are executed independently, to know nominal performance and predict them correctly when there is no contention, and in parallel, to know what can be the impact of contention.

A convenient way to understand how bandwidths which will be predicted by the model evolve is to sum memory bandwidths for computations and communications and visualize them by stacking them. Since both streams share parts of the same memory system, it allows to easily represent the share of the bus capacity among the two dierent streams. Figure 6.1 is an example of such representation: according to the number of computing cores, the orange area depicts memory bandwidth for all computing cores and blue area depicts memory bandwidth for communications, when they are both executed in parallel. We also show the graph of the memory bandwidth for computation executed alone, in green. computing cores higher than N max seq (precise values can be found in Appendix E). Introduced notations characterize behaviour of the memory system and compose the model parameters. To sum up, the model requires the following parameters to predict memory bandwidth for computations and communications: α: the ratio of the available bandwidth for communications in the worst case.

N max

Modeling memory bandwidth

The goal of our model is to predict the performance of computations and communications when they are executed in parallel, for every possible number n of computing cores on one socket. It also predicts performance when computations and communications are executed independently, to be able to predict performance of memory binding congurations without contention.

Memory bandwidths are predicted in two steps: rst, the total bandwidth T the memory system can support according to the number of computing cores is estimated, then this total bandwidth is split between communications and computations.

The maximum available bandwidth T (n) for computations and communication when n cores are computing is given by the following equation:

T (n) =    T max par if n ≤ N max par T max par -δ l × (n -N max par ) else if N max par < n ≤ N max seq T max2 par -δ r × (n -N max seq ) otherwise (6.1)
The dierent cases linearly approximate the maximum bandwidth: while there are less than N max par computing cores, the bandwidth is at its higher level T max par ; when there are more computing cores, contention starts to impact total bandwidth and for each additional core, δ l or δ r is subtracted, whether there are less or more than N max seq computing cores (corresponding to the left or the right of the inexion point • on Figure 6.1).

Bandwidth allocated to computations and communications follows dierent equations which depend if satisfying computing core requirements (n×B comp seq ) and assuring minimum bandwidth to communications (α × B comm seq ) is lower than the bus capacity or exceeds it. The bandwidth required to t into the bus, noted R(n), is given by the following formula:

R(n) = n × B comp seq + α × B comm seq (6.2)
The share of the total bandwidth allocated to computing cores is then described by the following equation:

B comp par (n) = n × B comp seq if R(n) < T (n) T (n) -B comm par (n) otherwise (6.3)
While all memory bandwidth requested by computing cores and minimal bandwidth assured for communications t in the total available bandwidth, computations on n computing cores will get the memory bandwidth B comp par (n), corresponding to their request (perfect scaling). When the threshold is reached, computations get the remaining bandwidth after communications got their share of the bandwidth.

The bandwidth for communications is allocated as stated by the following equation:

B comm par (n) = min(T (n) -B comp par (n), B comm seq ) if R(n) < T (n) α(n) × B comm seq otherwise (6.4)
While R(n) is lower than the bus capacity T (n), communications get the share of the total bandwidth unused by computing cores, but they cannot use more than the nominal performance of the network B comm seq (hence the min). When R(n) exceeds the bus capacity, the bandwidth for communications is impacted by a factor α(n):

α(n) =        B comm par (i) B comm seq - B comm par (i) B comm seq -α N max seq -i × (n -i) if N max seq -N max
par > 1 and n < N max seq , where i = max j ({j|R(j) < T (j)}) α otherwise (6.5) With N max seq or more computing cores, communications get their minimal assured bandwidth, thus α(n) = α. When there are less computing cores, more than one core between N max par and N max seq , and R(n) ≥ T (n) (i.e. the case when α(n) has to be computed), bandwidth for communication does not abruptly drop to α × B comm seq . Therefore, we linearly interpolate the factor, with a line passing by the points where the factor of impact on communications with the maximum number of computing cores where R(n) < T (n) is still valid (noted i in the equation), and α with N max seq computing cores. To predict performance on all memory placement congurations, the model needs in some congurations to predict performance of computations and communications executed alone, when there is no contention. The bandwidth for communications executed alone is simply the model parameter B comm seq . The bandwidth for computations executed alone is given by the following formula:

B comp seq (n) = min(n × B comp seq , T (n), T max seq ) (6.6)
The formula considers a perfect scaling of memory bandwidth allocated to computing cores, limited by the memory bus capacity T (n) and cannot neither exceed the maximum bandwidth T max seq when computations are executed alone.

on the same NUMA node as data for computations. In such case, bandwidth for computations is the one with communications in parallel B comp par , from the model corresponding to computation data location, local or remote. In the same fashion, when computations and communications do not use the same NUMA node for their data, computations get their nominal memory bandwidth B comp seq . Appendix D presents algorithms to predict memory bandwidth for computations and communications, implemented using equations described above.

Evaluation of the model

We want to measure the impact of memory contention on computations and communications, when they are executed in parallel, and to compare it with the predictions of our model. To know the impact, we need the performance of computations and communications executed alone and in parallel.

Experimental setup Benchmarking program

We used the same benchmarking program we presented in Chapter 5 to get performance of computations and communications, executed either alone or in parallel.

Performance is measured on a single node, but we still need two machines for network exchanges. We study the performance penalty caused by memory contention, therefore, to control and understand memory movements, all computing cores perform non-temporal memset instructions to move data from cores to memory, and communication performance is measured with the bandwidth observed to receive messages of 64 MB from the other machine. We use non-temporal instructions to bypass the last level cache, as explained in section 6.1.3: they tell the processor to store data directly in memory, bypassing the cache.

Data used for communications and computations are explicitly bound on selected NUMA nodes, to know the data location and consider it in the model. Unlike what we did in the previous chapter, buers for computations and communications are not necessarily allocated on the same NUMA node.

Memory bandwidth for computations is computed from the duration of the memset instructions, each computing core always work on the same amount of data (weak scaling). Memory bandwidth for communications is considered to be the same as the network bandwidth, i.e. the message size over the necessary time to receive data from the other machine, since this stream has also to go through the memory bus after arriving on the network interface.

Only samples collected during steady state are considered: all cores execute computation iterations for a dened amount of time, then we skip performance of rst and last iterations of each core, to get rid of the performance when not exactly all cores are computing.

To bind memory on a specic NUMA node, bind threads to cores and gather topology information, we use Hwloc [START_REF] Broquedis | hwloc: a Generic Framework for Managing Hardware Anities in HPC Applications[END_REF].

Modeling all placements

With NUMA machines, we need two model instantiations: one for local memory accesses and another one for remote accesses. On a machine with two sockets (processors) and two NUMA nodes per socket, we would execute our benchmarking program to get model parameters using memory for computations and communications both located on the rst NUMA node of the rst socket for the local model and using memory located on the rst NUMA node of the second socket for the remote model. Thus, we need to measure memory bandwidths of two placement congurations, to latter be able to predict performance of all other congurations (16 in this example, since there are 4 possibilities where to put data for computations and the same 4 possibilities for communication data), as explained in section 6.2.3.

The program to measure memory bandwidth of one placement conguration needs to be executed for all possible numbers of computing cores, in the range of the number of cores on the rst socket, as explained in section 6.2. Once the performance metrics (memory bandwidth for computations alone and in parallel of communications, network bandwidth for communications alone and in parallel of computations) are extracted from benchmark outputs, the evolution of the bandwidths over the number of computing cores is analyzed (it mostly looks for minimums and maximums) and the parameters of the model, listed in section 6.2.1, are computed.

Note that this process can be optimized: once the peaks of bandwidth T max par and T max seq are found, one can skip executions with number of computing cores greater than N max seq , except the execution with all cores of the rst socket, required to compute δ r . Here we still need to execute the program with all possible numbers of computing cores, to evaluate the accuracy of our model.

Testbed platforms

We evaluated our model for the bandwidth metrics obtained on several platforms with dierent characteristics: from small experimental platforms to large production ones, presented in Appendix C. Hyperthreading is only enabled on platforms dahu, grvingt, pyxis and occigen, however, on all platforms, threads are bound to physical cores (i.e. hyperthreads are not used).

Values of model parameters for each platform are presented in Appendix E. placement combination of data for computations and data for communications on available NUMA nodes. For instance, Figure 6.2 represents results on the henri platform, with 2 NUMA nodes. Data for communications can be located on 2 NUMA nodes, as well as data for computations, which leads to 4 placement combinations. Each line of plots represents one placement for communication data, while columns represent placements for computation data. Titles above each plot precise the placement of data. The two placement combinations used to instantiate the local and remote models are highlighted with a bold title and a thicker frame. Each subplot presents, according to the number of computing cores, network bandwidth (in blue, to be read on the left Y-axis) and memory bandwidth for computations (in orange, to be read on the right Y-axis), when they are executed alone (• markers) and in parallel ( markers). The blue and orange lines indicate our model predictions of the bandwidth for respectively communications and computations. Error bars are not shown to ease reading, but the run-to-run variability is very low. henri Figure 6.2 shows there is contention between computations and communications, impacting them both, more or less severely according to data placement. Our model is accurate when computations and communications perform both remote memory accesses. When computations and communications perform both local accesses, our model reects the correct impact on communications too late (the model predicts a decrease starting with 14 computing cores, while it is 10 in reality), because communications start to be impacted before the total bandwidth threshold T is reached. Other memory placement congurations, not used to instantiate the model, show the same aws.

Results

henrisubnuma The henri platform congured with 4 NUMA nodes allows 16 data placement combinations, described by Figure 6.3. The grey and white areas are used to distinguish the two NUMA nodes of the rst socket. With such numerous congurations, symmetries in performance appear, mimicking symmetries of the machine topology: for instance, when data for computations and communications are on dierent NUMA nodes of the second socket (right half of set of plots), performance is always the same, regardless of which NUMA nodes are used. These symmetries allow the predictions done by the model to be correct, with only two congurations used to predict all 16 combinations. All these congurations also show that the placement congurations the most disturbed by memory contention are the ones where data for computations and communications are on the same NUMA node (i.e. subplots on the diagonal of the gure), while computations are almost not impacted in other cases. Therefore, we can guess memory contention occurs the most on memory controllers (responsible of accesses to one dedicated NUMA node), rather that on the inter-socket connection bus. diablo Figure 6.4 shows results on the diablo platform, and illustrates especially the case when network performance is highly sensible to data locality: when data for communications is on the rst NUMA node, network bandwidth reaches only 12.1 GB/s whereas when data is on the second NUMA node (which the NIC is actually plugged to), network bandwidth can raise up to 22.4 GB/s. Our model succeeds in predicting performance, even if there is almost no contention on this platform. billy Figure 6.5 depicts results on the billy platform, similar to diablo. The network performance is still sensible to placement (we get stable 14 GB/s when data for communications is on the rst NUMA, up to 20 GB/s otherwise), but is more chaotic (when data for communications is on the second NUMA node, network bandwidth oscillates between 12 GB/s and 24 GB/s); the model fails to capture the variability, but follows the general trend of observations. occigen Figure 6.6 shows results on the only production platform of our testbed. On this ancient platform (2014-2022), only computations are impacted when computations and communications do both remote memory accesses. For instance, with 7 computing cores, memory bandwidth for computations decreases from 21.1 GB/s to 18.5 GB/s when communications are executed in parallel. Network bandwidth stays always constant at 6.2 GB/s. This platform is where our model is the most accurate, with the lowest prediction error (see further).

pyxis Figure 6.7 shows results on a platform with ARM processors. Our model predicts correctly performance of computations, although it does not catch that memory bandwidth for computations does not scale well when it gets closer to the threshold. For instance, with data for computations on the rst NUMA node and data for communications on the second node (bottom left plot), our model predicts a memory bandwidth of 62.5 GB/s for 19 computing cores, while in reality is 58.7 GB/s. Network performance is not correctly predicted for placement congurations which were not used to instantiate the model. On this architecture, the network performance seem to be harder to predict by just relying on the locality of the data. bora, dahu, grvingt Model predictions for platforms equipped with similar hardware (Intel processor and Omni-Path network) give as expected similar results, as can be seen on gures 6.8, 6.9 and 6.10. ), for predictions of computations and communications separately, by distinguishing also predictions made by the model on a placement conguration used to instantiate the model (samples) or not (non-samples). Regarding communications, the highest prediction error on all congurations is on billy (8.22 % on sample congurations, 10.84 % on others), explainable by the high variability of network performance, even when communications are executed alone, not taken into account by our model. The prediction error is also high on pyxis, especially on nonsample congurations (13.32 %), caused by the wrong appreciation of locality impact on this architecture, as discussed above. On other platforms, the average of prediction error of network bandwidth on all placement congurations is below 6 %. Performance of computations is better predicted, with an overall error lower than 4 %. Worst cases are on billy (3.69 %) and grvingt (3.46 %), where the model tends to over-estimate the bandwidth for computations because it assumes a perfect scaling when the number of computing cores increases, but in reality computing cores start to create contention before reaching the bandwidth threshold.

Discussion

Results presented above show our model is valid to predict memory bandwidth allocated to communications and to computations: from sample executions on two dierent placement congurations to instantiate the whole model, we are able to predict bandwidths with all possible placement congurations, with an overall prediction error lower than 4 %. Higher prediction errors come most often from unstable input data, nonetheless the model formulation allows us to better understand in which circumstances memory contention happens and how the hardware deals with it.

Model limits

Even though our model makes overall good predictions, there are some corner cases where it show its limits. It has diculties to accurately predict network bandwidth if network performance is not stable even without contention (see for instance results on billy, pyxis, bora or grvingt). On systems where data locality can highly inuence network performance (such as diablo, billy, pyxis or bora), the model can be wrong more often, especially on placement congurations not used to instantiate the model. These weaknesses are not related to modeling of contention, since the odd network performance is also hard to predict with communications executed alone. Being able to model network performance in all placement congurations, when communications are executed alone, would help improving our model, to predict network bandwidth in case of contention.

On machines with many NUMA nodes (more than 4; for instance, billy can be congured with 8 NUMA nodes 4 per processor), network performance under memory contention depends on data locality and the heuristic given by formula 6.7 is not sufciently accurate anymore. Moreover, when communications and computations use the same NUMA node for their data (i.e. when contention has the most impact), the distribution of memory bandwidth between computations and communications before the threshold is reached (rst cases of equations 6.3 and 6.4) is, in our model, more in favour of computations as in reality. Thus, these more complex system topologies would require more precise hypotheses about memory routing between NUMA nodes to model them accurately. Moreover, evaluating the model on all placement congurations (64 with 8 The model predictions are only valid for the parameters of the benchmarks used to instantiate the model: the computation kernels executed by computing cores and the message size used by communications. For dierent computation kernels and message sizes, memory contention can be dierent and thus model parameters as well. However, since the computation kernels and message size were chosen here to maximize the contention, other kernels or message size should produce less contention, but the insights provided by our model in the worst case should still be valid.

Lessons learned

Distinguishing location of data used for computations and for communications allows to change paths of the two dierent data streams in the memory system and thus better locate bottlenecks, where memory contention occurs. First hypotheses assume contention happens in memory controller (controlling the memory of a NUMA node) or in interprocessor link. Results on machines with 2 NUMA nodes show contention occurs when data for communications and computations are located on the same NUMA node, especially on the same remote NUMA node (i.e. data streams have to go through interprocessor link and memory controller). When communications and computations use each their own NUMA node for their data, memory contention is very low (when not null). Results on machines with 4 NUMA nodes (2 local and 2 remote nodes, for instance on henrisubnuma), rene the location of the bottleneck: when computations and communications do both remote accesses (data streams have to go through the inter-socket link), performance is the most impacted due to contention when they use the same remote NUMA node. Thus, the place where the most contention occurs is memory controller, and not the inter-socket link.

The hypotheses made to design the model, and validated with experiments, teach us memory bandwidth for network communications is the rst reduced in case of memory contention, to preserve memory bandwidth dedicated to computations. However, a minimum bandwidth is always assured for network, to prevent starvations. When this minimum bandwidth is reached, bandwidth for computations starts to decrease to t memory system capacity.

Conclusion

Computations and communications in parallel distributed HPC applications can be executed in parallel to save execution time. With memory-bound computations and network exchanges with large messages, contention can occur in the memory system, reducing performance of both computations and communications.

In this chapter, we proposed a model to predict memory bandwidth allocated for computations and communications when they are executed in parallel. Predictions are made from parameters describing behaviour of the memory system with two data place-ment congurations. From these parameters, the topology description of the machine and information about data locality, our model is able to predict memory bandwidth for computations and for communications, regardless on which NUMA node data are located, with an average prediction error lower than 4 %. Building this model allows to better understand that memory contention is the most severe when computations and communications use data located on the same NUMA node, bottleneck causing this contention is mainly located in the NUMA node controller, rather than in the inter-socket connection bus. In case of contention, the system rst degrades memory bandwidth allocated to communications, but ensures a minimum, and then reduces computation bandwidth if necessary. This knowledge about the system behaviour in case of memory contention could help the runtime system to optimize data placement and the scheduling of memory-bound computations and communications, in order to avoid (or at least minimize) possible memory contention impacting performance of the application.

Conclusion and Perspectives

T o address the increasing complexity of HPC machines, task-based runtime systems have emerged. The task-based paradigm decomposes applications into smaller parts with dependencies between the tasks, forming a DAG, scheduled and executed by the task-based runtime system. Task-based runtime systems ease the exploitation of the whole computing power oered by HPC machines and permit better application portability on dierent machines. Distributed applications can be handled by such runtime systems when they provide a component managing network communications. Network communications are usually delegated to a third-party library.

Task-based runtime systems have specic requirements in terms of communications, because of their asynchronous and dynamic behaviour. In this thesis, we explored the possible interactions between task-based runtime systems and communication libraries, especially between StarPU and NewMadeleine, in order that these two dierent and independent software layers exchange their respective knowledge to take more clever decisions.

Summary of contributions

We rst evaluated and improved the tracing system of StarPU to have precise execution traces describing behaviour of applications, to analyze interactions between StarPU and the communication library. We developed dynamic broadcasts, a positive interaction between StarPU and NewMadeleine to improve application performance. On the other hand, we also evaluated negative interactions between communications and computations when they are executed simultaneously.

Tracing systems

To understand performance and behaviour of application executions, tracing them and then analyzing the execution details is a rst-class citizen technique. To be robust enough, tracing systems have to disturb as less as possible the program execution and provide satisfactory precision. Impacting the application execution can change the application performance, but mainly the behaviour of the application: thus the execution described in the trace les is dierent than an execution not traced. This can be inconvenient, since we usually trace application to understand what is happening when the application is not traced! A bad precision can lead to inconsistent traces, especially for distributed executions, when the event causality can be broken (a message can appear as received before it was sent) if clocks are not accurately enough synchronized.

We evaluated possible sources of performance overhead when StarPU applications are traced and provided possible solutions when the overheads are too important. We improved the clock synchronization mechanism in StarPU to use state-of-the-art techniques and empirically evaluated the accuracy improvement.

More than providing robust and ecient solutions to some problems caused by tracing systems, our work aimed at making users of such systems aware of these possible aws, and the execution traces they are analyzing might reect a distorted regular execution. This work can be seen as a prerequisite to serenely analyze application executions with tracing systems, with all the possible problems in mind.

Dynamic broadcasts

Communications are one of the bottlenecks for application scalability over many computing nodes. One communication pattern which can be easily optimized is the broadcast, thanks to a tree routing of the required exchanges for all recipients nodes to get the data.

Regular MPI applications can use dedicated routines to perform optimized broadcasts. Unfortunately for task-based runtime systems such as StarPU, several criteria have to be met to use these routines: all nodes in the broadcast have to call the function with the same parameters, especially the list of recipients. Moreover, such call is a sort of synchronization we want to avoid. With the STF model of StarPU and the implicit communications, broadcasts are not explicit and only the sender node knows all the recipients. Recipient nodes do not even know that the data will come from a broadcast and not from a regular point-to-point communication.

We proposed what we called dynamic broadcasts to perform optimized broadcasts following tree routing, yet tting StarPU's constraints. The mechanism to detect broadcasts may miss only few of them, at the beginning of the application execution. Once the data to broadcast is ready to be sent, the interface we developed in NewMadeleine handles it and the StarPU recipient processes receive the data transparently as it came from a point-to-point communication.

Microbenchmarks showed the eciency of our implementation. Performance gain on applications exhibiting broadcasts in their DAG depends on several factors. Dynamic broadcasts bring up to 30 % performance improvement for the Cholesky factorization and can multiply by 6 the performance of QR factorizations with specic data distribution and matrix shape.

The relevance of dynamic broadcasts illustrates the potential for positive interactions between task-based runtime systems and the communication libraries: with a simple and generic interface, StarPU is able to better take prot from NewMadeleine and NewMadeleine can notify StarPU of dierent statuses of communications, in order for StarPU to use the data as soon as possible.

Interferences between computations and communications

While the original goal of the thesis was to develop positive interactions between taskbased runtime systems and communication libraries, this contribution evaluated the possible drawbacks of executing computations and communications in parallel, as done in many runtime systems.

We studied dierent source of negative interferences between runtime systems and communications. Frequency variations caused by computations do not have a major impact on communications. The communications launched by runtime abstractions can suer from an important overhead caused by the call stack to cross before reaching the communication library. But the most important performance degradation come from the memory contention between data moving for computations and data being moved for communications.

Memory contention can be inuenced by several factors: data and thread placements, message size and arithmetic intensity of computational tasks. When memory contention occurs, it can impact computations, but mostly performance of communications.

Despite the lack of information regarding contention management in processors and memory systems, we proposed a model to predict the memory bandwidth share between computations and communications, taking into account contention and data locality. The evaluation of our model on a wide range of machines with dierent architectures conrmed our initial hypotheses: as long as there is no contention, computations and communications get the memory bandwidth they require; when the memory bus capacity is reached, bandwidth of communications is rst decreased to preserve the computations as long as possible; a minimal bandwidth for communications is still assured, to avoid starvations; then if the memory bandwidth requirement from computations and communications keeps increasing, the memory bandwidth allocated to computations decreases uniformly across the cores.

Although these negative interactions between computations and communications appear in all programs overlapping communications by computations, the features and abstractions oered by task-based runtime systems would ease the implementations of solutions to avoid (or at least minimize) their impact.

Perspectives

We showed in this thesis interactions between task-based runtime systems and communication libraries can be strengthened to improve the collaboration of these two software layers and increase application performance. These rst results pave the way to other possible interactions.

Improve the interaction with other StarPU's features Some specic features in StarPU are good candidates to carefully consider their interplay with communications.

The distributed extension of StarPU features fault tolerance mechanisms [START_REF] Lion | From tasks graphs to asynchronous distributed checkpointing with local restart[END_REF] with checkpoint instructions inserted in the task graph. These instructions produce communications to save data and state of a StarPU process to another process, in case the former had a failure. These additional communications for check-pointing generate more trac on the network and thus can disturb initial communications required for the DAG execution. Priorities of the checkpointing communications can be reduced to favor initial application communications. However, the checkpointing communications cannot be performed too late, to avoid loosing too much data in case of failure. More than just priorities, mechanisms could be included in communication libraries to specically handle checkpoint messages: splitting (not to occupy the network for a long time), piggybacking, etc. Of course, it assumes a robust priority mechanism in the communication library, from both sender and receiver sides.

To tackle the problems of task graph submission time and task granularity (e.g. smaller tasks on CPUs and bigger tasks on GPUs), research on hierarchical tasks is conducted [START_REF] Mathieu Faverge | Programming Heterogeneous Architectures Using Hierarchical Tasks[END_REF]: a coarse-grain DAG is submitted and then according to which worker will execute a task, the task can issue a sub-DAG with smaller tasks leading to the same result as the bigger original task. Creating on-the-y smaller tasks requires to partition data buers: split them into smaller ones to feed the tasks of the sub-DAG. Although a distributed version of such mechanism is not implemented yet, it presents several challenges, especially to know the granularity of the received data: is the received data partitioned and has to be used with small tasks? Should we wait to receive all sub-data buers to reassemble a larger buer to execute a bigger task? Can we aggregate only available sub-buers to launch a medium-sized buer? The main possible problem involving the interaction between the runtime system and the communication library is that receiver process may not know beforehand in which state the data will arrive: partitioned or not.

What about GPUs?

GPUs can execute some types of tasks much faster than CPUs (e.g. GEMM kernels). Tasks executed faster can mean more communication requests to handle at the same time, very fast. Thus, it requires high reactivity and eciency from the communication library.

Executing tasks on GPUs implies explicit memory transfers from the RAM memory to the GPU memory. Like network communications, these movements take place on the memory bus, shared by other data streams as well. Our study on memory contention between computations on CPUs and network communications could be extended to consider also the impact of memory transfers with GPUs on CPU computations and communications. This would add a third dimension to the contention problem (memory bandwidth for computations, communications, and now GPU transfers), but on the other hand transfers between GPU memory and the host memory are explicit: the runtime system can decide when to perform these transfers and then computations on GPU will not disturb CPU computations and communications, as opposed to CPU computations, which generate implicit memory transfers by directly accessing to the RAM memory.

Moreover, GPUs improve their integration to distributed environments. Technologies such as GPUDirect [START_REF] Potluri | Ecient Inter-node MPI Communication Using GPUDirect RDMA for InniBand Clusters with NVIDIA GPUs[END_REF] allow to move the data directly between the GPU memory and the NIC, without requiring intermediate copies through the RAM memory. Besides, most recent supercomputers, such as Fugaku, Frontier or Lumi, have GPUs with embedded network interfaces. With such conguration, it is possible to transfer through the network data on the GPU memory, with good performance thanks to the optimum memory anity of the embedded NIC. These specic congurations increase the complexity of the machine: appropriate functions have to be called to drive the NIC of the GPU and the scheduler has to be clever enough to know data can be directly sent from the GPU, whether it can be received directly by the NIC of a GPU of the remote node or not, etc. Task-based runtime systems have been designed to hide such kind of diculties, hence eciently integrating mechanisms of `network-aware' GPUs in task-based runtime systems should be the next move.

GPUs have not been considered in this thesis, nevertheless, considering GPUs and their impact on communications within task-based runtime systems is denitely a relevant future work.

Performance model with communications

Most of the work done around performance models of whole applications is done by neglecting the performance of network communications. This assumption is usually justied by the overlap of communications by computations. When communications are considered, it is in fork-join models, where identied communications occur in specic application phases, without computations in parallel. In this case, it is much easier to model the cost of communications in the application execution.

With task-based runtime systems, the dynamic and asynchronous behaviour of the DAG execution makes the model of communication cost more complicated: one cannot know precisely when a communication will start, which communications are on the application critical path (and thus their performance is critical) and which communications are further from the critical path and/or actually overlapped by computations.

The majority of results presented in this thesis shows that changing only the behaviour of communications can have an impact of the whole application performance: communications have to be considered in performance models! Having such model would satisfy several needs. First, it could tell which performance improvement is expected if only communications are improved. For instance, it could explain the dierent performance improvements observed with dynamic broadcasts on dierent machines and predict the performance on other machines. Moreover, we only empirically observed performance improvement with dynamic broadcasts, but maybe the performance are far below the performance that would have predicted the model: the model could guide the improvement of communications and the location of bottlenecks. The second goal of the model would be to understand what are the important network metrics for distributed task-based programs: whether it is the latency or the bandwidth, or maybe it is not important at all? Such information would help predicting performance of task-based applications on machines with known characteristics and could answer whether the network performance is important or not for a specic application. The last possible use of such model is to provide information to simulators (such as SimGrid, already used by StarPU [START_REF] Stanisic | Faithful Performance Prediction of a Dynamic Task-Based Runtime System for Heterogeneous Multi-Core Architectures[END_REF]) for more accurate simulations, especially to simulate congurations hard to obtain in reality (many nodes to study scalability, many GPUs, specic accelerators, etc).

Towards a better integration to the scheduler Currently, network communications are totally ignored by StarPU's scheduler, while transfers between memories are considered in some scheduler policies.

The scheduler could take into account the number of communications and their durations to optimize the application makespan. Avoiding the memory contention between computations and communications observed in this thesis could be a motivation: the scheduler could avoid scheduling memory-bound tasks and communications at the same time.

The fact that intra-node memory transfers are already taken into account by scheduling policies could lead to try to consider all nodes of a StarPU execution as a single big node with inter-node communications becoming sort of intra-big-node memory transfers. However, this idea brings back the master-slave model to have one scheduler instance with a global overview of the task graph and required memory transfer. Unfortunately, this model has scalability issues one cannot ignore these days.

Costly inter-and intra-node movements of data involving communications could be minimized with heuristics in the runtime system. From the local point of view of a StarPU process, buers which will receive data from the network or buers containing data which will be sent to the network could be allocated directly (or opportunistically copied) on the NUMA node where the NIC is plugged. The risk is that this NUMA node becomes overloaded, hence a clever heuristic is required. Inter-node communications could be reduced with several mechanisms, for instance redistributing data on nodes for a better load-balancing or work-stealing between nodes. However, the integration of these techniques with the STF model and dynamic task-based runtime systems is not straightforward.

The scheduler might also help predicting the number of occurring communications in the near future. With this information, the polling thread can be suspended (or at least have a reduced activity) when no communications are planned and tasks can be executed on its core; conversely the number of computing cores could be reduced to dedicate more memory bandwidth to communications, when numerous important communications will occur. With the help of model performance of tasks, the scheduler is able to estimate the end time of a running task. If the end of this task releases a communication with high priority, other ready communications could be postponed if they could not be nished before the end of the task, to immediately be able to send the important communication.

Consider other types of applications

We studied mainly communications in task-based runtime systems with dense linear algebra applications. With only this kind of applications, we noticed dierent behaviours regarding communications which depend on applications: applications with or without broadcasts, memory-bound application causing contentions, etc. This means other types of applications could bring their specic challenges for communications. Possible other applications, among other, are sparse linear algebra, Fast Fourier Transform (FFT), stencils, graph algorithms, neural networks for machinelearning, etc. The main diculty is that these applications have to be compatible with the task model.

Final words

Task-based runtime systems are a solution proposed to tackle the increasing complexity of supercomputers, by providing an abstraction layer between the application and the machine. Dierent types of task-based runtime systems exist, with dierent features and dierent input formats. These runtime systems are usually dynamic and asynchronous, and they implicitly overlap communications by computations.

Most of distributed extensions of task-based runtime systems rely on the de facto communication standard MPI, which is not adapted to such usage. Communication libraries better suited to task-based runtime systems are event-based, to easily react on communication events; propose to attach priorities to communications; and support multithreading to be able to submit communication request from dierent threads. Active messages can be convenient to execute instructions according to incoming message.

There are many possible interactions between task-based runtime systems: positive, by improving their cooperation; as well as negative, coming from the simultaneous execution of both computations and communications. Regardless the type of interaction, the separation between the runtime system and the communication library has to be clearly dened, and the interface of communication library allowing these interactions has to be generic enough, to be usable outside of the scope of task-based runtime systems. In the end, this prevents from integrating the communication library in the runtime system, and ease benchmarking and debugging of the communication library alone.

This thesis showed such software design is possible to make task-based runtime systems and communication libraries better work together, thanks to the abstraction oered by the runtime system and the specic interface of the communication library. It paves the way to many ideas of possible positive interactions! The loop in the MPI thread of StarPU takes requests from lists of requests and calls the corresponding MPI function (e.g. MPI_Isend to send a data, MPI_Irecv for receptions). Each send operation is actually divided in two MPI communications: the rst contains the envelope to tell the receiver process the properties of the incoming message (e.g. its tag and its size). When the receiver node acknowledged this envelope, the real data is sent with a non-blocking call. To avoid over-loading the MPI library, only a nite number of send operations are issued simultaneously (10, by default). The rest of the loop handles reception instructions: it posts a MPI_Irecv to receive envelope messages and then tests the status of posted communications with MPI_Test. Once a communication is terminated, StarPU releases the used data handle, which can unlock tasks. Finally, if an envelope message has been received, it is handled dierently whether a matching receive request has already been submitted or not. In the rst case, the data handle provided by the application to receive the data is used, otherwise a buer is allocated to receive the data while the matching reception is not posted (early request).

The use of a unique and dedicated thread to perform MPI operations is to make sure communication progress (thanks to the MPI_Test calls in each loop iteration) and not having to use the MPI_THREAD_MULTIPLE threading support level, causing performance troubles to many MPI implementations. Moreover, two main missing features of the MPI standard are emulated in this communication backend: communication priorities by using sorted list of requests and communication completion notications by polling regularly on communications to get their status.

NewMadeleine backend

Since NewMadeleine supports multithreaded applications, communication priorities and is designed with an event-driven paradigm, the NewMadeleine backend is much simpler than the MPI one (1525 lines of C code vs 3195).

The thread to make communications progress is managed by NewMadeleine (more precisely PIOMan); StarPU only indicates on which core this thread can be bounded. When a send communication has to be issued at the end of a task, the core which executed the task calls in the end directly NewMadeleine functions. The same goes for reception instructions: they can be issued from any StarPU's thread.

When NewMadeleine is notied of the end of a communication, a function containing StarPU code is executed by the progression thread to release the data handle used for the nished communication.

Communication priorities can be directly passed as parameters to NewMadeleine functions to submit the communication request, thus there is no need for priority management made by StarPU. The information sent in envelopes of the MPI backend can be sent as message headers with NewMadeleine: the receiver can read the headers of a message before actually receiving the message content, which can be convenient to take decisions according to the header content (e.g. the size of the incoming data and where to store it). There is no early requests in the NewMadeleine backend: network transfers are performed only when both send and receive instructions are posted. It uses the versions described in the guix-channels.scm le, creates an isolated environment (--pure), but preserves environment variables starting with SLURM and populates the environment with the packages of Chameleon and the version 19 of Slurm. The dependency graph is modied to replace OpenMPI by NewMadeleine (OpenMPI is a dependency dened in the StarPU package, dependency of Chameleon), replace Open-BLAS by the Intel MKL and use the branch nmad-coop-mcast of the Git repository of StarPU used to get the sources. Once the environment is setup, chameleon_stesting is launched with mpirun, with software available in the Guix environment only.

With the guix-channels.scm and this command line backed-up, one is sure to reproduce the same environment at any time.

Making the experimental scripts publicly available is another step to achieve a reproducible experiments. It requires to clearly organize experiments, describe their goals and workings, and ensure the maximum independence from cluster specicities (or document which changes are necessary to launch the experiments on another cluster). When the repository describing the experiments is completed, archiving it on Software Heritage and providing the obtained ID to easily retrieve the scripts is eortless.

Scripts and instructions to reproduce experiments presented in Chapters 3 and 6 are available online and are archived on Software Heritage2 . Appendix D

Algorithms to Model Memory Contention between Computations and Communications

The following algorithms are the implementation of equations presented in Chapter 6, to model the memory bandwidth share between computations and communications. 
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 11 Figure 1.1: Typical memory hierarchy.

Figure 1

 1 Figure 1.3: A NUMA machine: each processor has its own memory (local), but can also access memory of other processors (remote).

  The task graph corresponding to the Cholesky factorization is depicted on Figure 1.4.
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 14 Figure 1.4: Task-graph of the Cholesky factorization for a matrix divided in 4 × 4 tiles.

The

  Cholesky algorithm implemented with StarPU can look like the following code snippet: /* Data registration and codelet definitions not shown . */ for ( k = 0; k < N ; k ++) { starpu_task_insert (& potrf_cl , RW , A_handles [ k ][ k ] , 0) ; for ( m = k +1; m < N ; m ++) { starpu_task_insert (& trsm_cl , R , A_handles [ k ][ k ] , RW , A_handles [ m ][ k ] , 0) ; } for ( n = k +1; n < N ; n ++) { starpu_task_insert (& syrk_cl , R , A_handles [ n ][ k ] , RW , A_handles [ n ][ n ] , 0) ;
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 15 Figure 1.5: Distribution of the Cholesky DAG on 3 nodes. Inter-node dependencies trigger network communications.
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 21 Figure 2.1: The fork-join model.
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 31 Background: tracing task-based runtime systems This section presents tracing systems, how they work, the problems they face, andnally what the special requirements of task-based runtime systems are regarding tracing systems.
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 31 Figure 3.1: Example of visualization of an execution of the Cholesky algorithm with the StarVZ framework.
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 3233 Figure 3.2: Impact of buer ush on application performance, on a bora node 1 .
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 34 Figure 3.4: Performance of several runs without interrupting buer ushes, on a bora node.
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 35 Figure 3.5: Number of events according to their type.
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 336 Figure 3.6: Number of events across time (see Figure 3.7 for details about the number of events).
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 37 Figure 3.7: Number of events across time, for each event type (detailed version of Figure 3.6).
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 38 Figure 3.8: Impact of the number of recorded events on the trace overhead. The 4 event types are the ones previously mentioned being the most numerous in the trace: TASK_DEPS, CODELET_DATA, CODELET_DATA_HANDLE and END_PROGRESS_ON_TID.

Figure 3 . 9 :

 39 Figure 3.9: Similar to Figure 3.8, but in this case the tasks took more time to complete, reducing the pressure on the runtime system, thus tracing had less impact on performance.
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 310 Figure 3.10: Impact of the number of cores on performance with traces on peabody, with Intel processor.
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 311 Figure 3.11: Impact of the number of cores on performance with traces on zonda, with AMD processor and badly congured MKL library.
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 312 Figure 3.12: Impact of the number of cores on performance with traces on zonda, with AMD processor and correctly congured MKL library.
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 33 Figure 3.13: MPI_Barrier: Not all processes leaves the barrier at the same time.
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 314315 Figure 3.14: The communication from node 1 to node 2 is received before it is sent!
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 316 Figure 3.16: Communications duration over time: two synchronized barriers are required to take into account clock drifts.
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 317 Figure 3.17: Clock oset computation.
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 318 Figure 3.18: Interpolating osets outside of the synchronized window can lead to negative timestamps.
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 41 Figure 4.1: Examples of routing trees for 6 recipients. Levels in the tree are steps in the algorithm.

  = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} Priorities: P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (b) With priorities: nodes with higher priority have to receive data rst
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 42 Figure 4.2: Tree reordering to take into account communication priorities. Message to recipient R[k] has a priority P [k].
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 43 Figure 4.3: Microbenchmarks of the dynamic broadcasts with NewMadeleine, on occigen.

  The same microbenchmarks are conducted with StarPU and NewMadeleine, to evaluate performance when StarPU triggers broadcasts. Results are depicted on Figure 4.4: Without dynamic broadcasts means that the detection of broadcasts is disabled in StarPU and point-to-point communications are submitted to NewMadeleine as soon as a communication is detected. Overall results are similar to NewMadeleine alone,
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 44 Figure 4.4: Microbenchmarks of the dynamic broadcasts with StarPU and New-Madeleine, on occigen.
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 45 Figure 4.5: Microbenchmark to check the respect of priorities in dynamic broadcasts with NewMadeleine, on occigen.
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 46 Figure 4.6: Microbenchmark to check the respect of priorities in dynamic broadcasts and impact of unlocking tasks as soon as data is received, with StarPU and NewMadeleine, on occigen.
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 474748 Figure 4.7: The two dierent types of broadcasts for the Cholesky factorization for N = 5 and k = 0. Blue arrows: from 1 POTRF to N -k -1 = 4 TRSM. Green and black arrows from 1 TRSM to N -k -2 = 3 GEMM and red arrows to 1 SYRK.
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 49 Figure 4.9: Performance of Cholesky factorization, on inti (old implementation).
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 4 Figure 4.10 shows the performance of the current implementation of dynamic broadcasts on the occigen machine, which has more recent processors than inti with more cores (28 vs 14). With 1 MPI process per node on 196 nodes (Figure4.10a), the use of dynamic broadcasts with binomial or binary trees does not improve performance. However, with 2 MPI processes per node (i.e. one per NUMA node) on 200 nodes 1 , dynamic broadcasts with binary trees improve performance up to 15 % again for medium-sized matrices. Using 2 MPI processes per node increases the total number of MPI processes and thus creates broadcasts with more recipients: up to 38 recipients 2 vs 26 for the case
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 411 Figure 4.11: Impact of priorities on Cholesky factorization, on occigen.
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 412413 Figure 4.12: Impact of reading data as soon as possible on Cholesky factorization, on occigen.
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 414 Figure 4.14: Performance of QR factorization, on occigen.
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 415 Figure 4.15: Impact of the tile size on QR factorization, on occigen. The run without broadcasts with a block size of 960 × 960 failed due to a deadlock.
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 416 Figure 4.16: Impact of the 2D-block-cyclic distribution parameters on QR factorization, with tile size of 320 × 320, on occigen.
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 1 Computation without communication; 2. Communication without computation; 3. Computation with side by side communication.
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 51 Figure 5.1: Impact of constant frequencies on network performance, on henri nodes.
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 52 Figure 5.2: Frequency variations during (A) only communications, (B) sleep and (C) communications and computations, with 20 computing cores, on henri nodes.

Figure 5 . 3 :

 53 Figure 5.3: CPU-bound computations and network bandwidth performance, on bora nodes.

  (a) Network latency (b) Frequency variation with 4 computing cores and communications (c) Frequency variation with 20 computing cores and communications

Figure 5 . 4 :Figure 5 . 5 :

 5455 Figure 5.4: Impact of AVX512 computations on network latency, on henri nodes with turbo-boost.
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 56 Figure 5.6: Memory-bound computations and network performance, on henri nodes.
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 57 Figure 5.7: Memory-bound computations and network bandwidth performance, on bora nodes.

  Figure 5.8: Impact of communication thread placement and data locality, on henri nodes. Legend is the same as in Figure 5.7.
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 59 Figure 5.9: Impact of size of communicated data, on henri nodes.
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 5 Figure 5.10: Impact of memory pressure on network performance, on henri nodes.
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 511 Figure 5.11: Impact of memory pressure on network performance, on billy nodes.
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 512 Figure 5.12: Impact of data locality and thread placement on network latency with StarPU, on henri nodes. close means on the same NUMA node as the NIC and far means on the other NUMA node.
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 513 Figure 5.13: Impact of polling workers on network latency, on henri nodes.
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 514 Figure 5.14: Network performance and hardware counter values of CG and GEMM executions, on henri nodes.
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 6 Figures 6.2 to 6.7 depict performance of computations and communications as well as the model predictions. Each gure is composed of several subplots, one per possible

Figure 6 . 2 :

 62 Figure 6.2: Performance of computations and communications along with our model prediction, on henri nodes (Intel, InifiniBand).
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 63 Figure 6.3: Performance of computations and communications along with our model prediction, on henrisubnuma nodes (Intel, InifiniBand).
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 64 Figure 6.4: Performance of computations and communications along with our model prediction, on diablo nodes (AMD, InifiniBand).
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 6 Figure 6.1 used previously to explain the model is the stacked version of the top left subplot of the Figure 6.3.
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 65 Figure 6.5: Performance of computations and communications along with our model prediction, on billy nodes (AMD, InifiniBand).
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 66 Figure 6.6: Performance of computations and communications along with our model prediction, on occigen nodes (Intel, InifiniBand).
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 67 Figure 6.7: Performance of computations and communications along with our model prediction, on pyxis nodes (ARM, InifiniBand).
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 68 Figure 6.8: Performance of computations and communications along with our model prediction, on bora nodes (Intel, Omni-Path).
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 69 Figure 6.9: Performance of computations and communications along with our model prediction, on dahu nodes (Intel, Omni-Path).
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 6 Modeling Memory Contention between Communications and ComputationsNUMA nodes!) is more dicult due to necessary time to execute benchmarks on all congurations (about one hour per conguration).

  guix time -machine --channels = guix -channels . scm --\ shell --pure --preserve =^SLURM \ chameleon slurm@19 \ --with -input = openmpi = nmad \ --with -input = openblas = mkl \ --with -branch = starpu = nmad -coop -mcast --\ mpirun chameleon_stesting -o potrf --n 4800:40000:3200
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 1 Figure C.1: billy's topology.

  Figure C.2: bora's topology.
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 3 Figure C.3: dahu's topology.
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 4 Figure C.4: diablo's topology.

  Figure C.6: henri's topology.
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 7 Figure C.7: henrisubnuma's topology.
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 8 Figure C.8: occigen's topology.
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 11 Figure C.11: zonda's topology.
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  Algorithm 3 Predict total memory bandwidth (implementation of equation 6.1) Inputs: N max par , T max par , N max seq , N max par , T max2 par , δ l , δ r Compute memory bandwidths available for computations and communications (implementation of equations 6.2, 6.3, 6.4, 6.5 and 6.6) Inputs: T , B comp seq , T max seq , N max seq , N max par , B comm . Algorithms to Model Memory Contention Algorithm 5 Predict communication performance according to memory placements (implementation of equation 6.7) Inputs: m comp , m comm , M local , M remote m comp == m comm and m comp ≥ #m then Predict computation performance according to memory placements (implementation of equation 6.8) Inputs: m comp , m comm , M local , M remote
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	10: 11:	B comp par , B comm par , B comp seq if m comp == m comm then ←PredictBandwidths(M remote )
	12: 13:	return B comp par else	
	14: 15:	return B comp seq end if	
	16:	end if		
	17: end function		

T [i] ← T max par -δ l × (i -N max par ) 5:

β v ← N one 6:

β i ← N one 7:

for i = 1 to number_cores do 8:

B comp seq [i] ← min(B comp seq × i, T [i], T max seq ) δ c ← (β v -α)/(N max seq -β i ) 18: α i ← β v -δ c × (i -β i ) Dif
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1.1. The growing complexity of HPC machines

Distributed Task-based Runtime Systems

More precisely, a process has a rank inside an MPI communicator (a group of processes), but the special communicator MPI_COMM_WORLD contains all the processes. Thus, each process can be identied by its rank in this global communicator. To ease the reading, rank of an MPI process will refer to its rank in the MPI_COMM_WORLD communicator.

1.3. Task-based runtime systems

Application developer still needs to give task functions for each targeted architecture. However, piloting the device to execute the function is left to the runtime system.

See for instance https://starpu.gitlabpages.inria.fr/#software or https://starpu.gitlabpages.inria.fr/publications.html#PublicationsOnApplications.

StarPU: *PU StarPU aims at supporting any kind of PU!

1.4. Goals and contributions of this thesis

Related Work

2.1. Programming models

2.2. Task-based runtime systems

2.4. Work related to our contributions

2.5. Conclusion

Tracing Task-based Runtime Systems

Machines used for experiments are described in Appendix C.

3.4. Precise distributed traces

mpi_sync_barrier () ;

_STARPU_MPI_TRACE_BARRIER ( rank ) ;Since the barrier is synchronized, we are sure each process will leave the barrier function call at the same time and should execute the next instruction (here: the trace probe to later compute clock osets) also at the same time. However, a thread preemption can happen between the end of the barrier call and the trace probe: this could prevent the event from being recorded at the exact same time on each distributed process. To avoid

P. Swartvagher 3. Tracing Task-based Runtime Systems

Dynamic Broadcasts

4.4. Evaluation

P. Swartvagher4. Dynamic Broadcasts

We slightly change the number of nodes to be able to always have a square

2D-block-cyclic distribution (i.e. the square root of number of MPI processes has to be an integer).2 This is why the microbenchmarks were made to have broadcasts with up to 38 recipients.

Interactions between Task-based Runtime Systems and Communications

320 × 320 is the default tile size in all other experiments.

Available on https://gitlab.inria.fr/pswartva/memory-contention

We use the userspace governor and the cpupower tool to set the constant core frequency we wish, otherwise the performance governor is used.

We use Likwid[START_REF] Treibig | LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments[END_REF] to get and set the uncore frequency.

We observed this behaviour on other clusters equipped with Intel Omni-Path networks.

https://github.com/andikleen/pmu-tools

Interferences between Communications and Computations

5.6. Conclusion

6.2. A model for memory bandwidth sharing

6.3. Evaluation of the model

6.4. Conclusion

In the ./configure step: by default, the MPI backend is selected if an MPI library is found; the NewMadeleine backend has to be explicitly enabled with ./configure --enable-nmad.

Chapter
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with one MPI process per node.

Priorities in the Cholesky factorization permits to prioritize tasks and communications on the critical path of the execution (especially POTRF kernels) which will unlock many tasks and exhibits wide parallelism. The importance of communication priorities is illustrated by the Figure 4.11. First when dynamic broadcasts are disabled, if New-Madeleine does not have priorities to order the communications, the general application performance is very poor: only 151 Tops compared to the plateau of 228 Tops reached when priorities are attached to communications. When dynamic broadcasts are used, reordering recipients according to their priorities improves the binary routing but not the binomial one. Probably because with a same number of recipients, binary trees are deeper than binomial trees, i.e. recipients may wait longer to receive the data, thus a correct recipient ordering is more important for the binary routing. Figure 4.12 depicts the impact of unlocking tasks that only read the received data as soon as it is received (Unlock read) or waiting the end of the node participation in the collective to unlock any task requiring the data (Wait write). Curve when dynamic broadcasts are disabled is not showed, since this feature aects only dynamic broadcasts. Unlocking tasks as soon as possible improves performance with the binomial but not for the binary tree. It was expected: with binary trees, the recipient node forwards the received data to only two other nodes: its participation in the collective is very quick and the delay between the reception of the data and the end of forwards to other nodes is small. On the contrary, when a node starts to contribute to a binomial tree, it is involved for all the next steps of the tree: in this case the delay can be much longer and unlocking tasks which only needs to read the data can be benecial. One can notice memory bandwidth for computations alone scales perfectly from B comp seq ( • on the plot, with one computing core) until T max seq with N max seq computing cores ( • on the plot). With more computing cores, the memory bandwidth slightly decreases almost linearly.

When computations and communications are executed in parallel, the maximum bandwidth is dierent (T max par , • on the plot) than when computations are executed alone, as well as the number of computing cores (N max par ) necessary to reach this maximum. With more computing cores, the total bandwidth decreases linearly too, but with a slope discontinuity when there are N max seq computing cores. Between N max par and N max seq computing cores, each additional computing core reduces the total bandwidth T max par by δ l . With more than N max seq computing cores, each additional computing core reduces the total bandwidth for computations and communications with N max seq computing cores (T max2 par , • on the plot) by δ r .

Other important parameters of the model are related to network performance. Network communications require a bandwidth B comm seq when they are executed alone (the nominal performance, not appearing in Figure 6.1). Although it is dicult to perceive on this gure, the memory bandwidth available for communications is reduced in the worst case by a factor α, computed as follow:

), where i represents the number of computing cores. On most machines we evaluated the model, the factor α has a value around 0.9 (i.e. the network bandwidth has 10 % of its nominal value) for a number of 6.2.3 Model NUMA eect NUMA systems present dierent memory bandwidths depending if accesses are made to a local or a remote NUMA node. Therefore, we need two model instantiations, each with its own set of parameter values. The set of parameters describing local accesses, when both computations and communications make memory accesses to the same local NUMA node (regarding to computing cores), is noted M local , and conversely, the set of parameters describing remote accesses, when they make memory accesses to the same NUMA node of a another socket, is noted M remote .

Using equations 6.1 to 6.5, we can model performance for the two memory binding congurations we used to calibrate the two models (data for computations and communications both on the same NUMA node than the NIC and on the other NUMA node) , by directly using the corresponding model. However, we need to combine these two models to predict performance on all other memory binding congurations. Predicting bandwidths of computations and communications requires now two additional parameters, to take into account data location: the index of the NUMA node where is located data used by computations (m comp ) and by communications (m comm ). These parameters, in addition to the number of NUMA nodes per socket (noted #m), allow to select the corresponding bandwidth according to placement.

In the rest of the section, the notation B(M) means the bandwidth B is given by using the model instantiation M.

Regarding communications, the model to apply is selected with the following equation:

If both computations and communications access to the same remote NUMA node, communication bandwidth is given by the remote model M remote . In all other cases, communications are less subject to contention and follow the local model M local . However, on some machines, the network performance is very sensible to the locality of exchanged data. Since M local is instantiated with communication bandwidth with data located on the local NUMA node, it may not t the network performance when data for communications are located on the remote NUMA node. Therefore, in this case, we use the local model, but with the nominal network performance when data is located on remote memory, i.e. The model for computation bandwidth is selected with the following equation:

Computations are impacted by contention only when data used for communications is 

NewMadeleine backends in StarPU

In its distributed extension, StarPU can use two dierent interfaces (backends): one using the MPI interface and another one using the NewMadeleine interface. The choice between these two backends is done before the compilation 1 . The MPI backend was implemented rst, before the NewMadeleine one. The MPI backend can work with any library implementing the MPI standard: OpenMPI, Intel MPI, etc, but also NewMadeleine trough its MPI implementation called MadMPI (in this case, the MPI backend of StarPU can use only functions from the MPI standard, and not the interfaces specic to NewMadeleine). The NewMadeleine backend uses the native interface of NewMadeleine.

Since the working and the features oered by MPI libraries and NewMadeleine are dierent, this appendix explains the dierences between the two StarPU backends for distributed computing.

MPI backend

With the MPI backend, each StarPU process (corresponding to an MPI process) launches a thread to manage communications, bound on a dedicated core. This thread executes an innite loop which performs all required MPI calls and makes communication progress.

When, at the end of a task, a buer written by the task has to be sent through the network (as dened in the application DAG), a communication request is issued by the core which executed the task. This request is inserted in a list of ready requests. This list is sorted by communication priorities.

When a reception from the network is detected in the DAG, the thread detecting it submits a reception request by inserting it in a list of reception requests.

Appendix B

Reproducible Experiments

Experiments presented in Chapters 3 and 6 were performed following a reproducible methodology.

The reproducibility of the software stack used for the experiments is assured thanks to the Guix software deployment tool. Guix is a functional package manager, with packages dened in the Guile Scheme language. Each package is installed in a dedicated directory, named after a cryptographic hash based on the denition of the package and its dependencies. This allows to install dierent versions (release version, but also other dependencies, for instance) of the same software without breaking the system. With a software stack like the one used in this thesis, such feature is very welcome: it is very easy to create an isolated environment with customized packages. Guix proposes several so-called package transformations to change on-the-y properties of a package: the commit or the branch of the source code of the software, replace a dependency by another, etc. Used with the isolated environments of Guix, these package transformations remove the burden of compiling the correct version of each software before each experiment.

To ensure reproducibility of experiments made with Guix, software versions have to be pinned and saved along with scripts to launch the experiments. The le describing pinned software versions can then be provided to Guix commands to use the specic version of Guix and have exactly the same packages as those available when the software versions were exported.

Guix provides many mainstream packages. The Guix-HPC eort 1 packages applications specic to the HPC environment and aims at easing the use of Guix in a HPC context. All packages directly used in this thesis (NewMadeleine, StarPU, Chameleon, FxT) are dened in the Guix-HPC channel.

The following command is an example of Guix usage: 

Software Contributions

This section presents the contributions made to softwares for the purposes of the experiments done in this thesis.

NewMadeleine

Implementation of the mcast interface for dynamic broadcasts, and related microbenchmarks.

FxT

Add support to record executions generating trace les bigger than 2 GB.

Add possibility to register a callback function to call when the event buer is ushed on the disk.

StarPU

Maintenance of the NewMadeleine backend.

Integration of dynamic broadcasts in the NewMadeleine backend to use the mcast interface.

Improvement of the tracing system:

Warn the user by printing a message when the event buer of FxT is ushed during application execution. Add option to lter the event to record in traces. Add support of the mpisyncclocks library to synchronize distributed traces. Save in traces the NUMA node on which are located data buers manipulated by StarPU (for tasks or communications).

Chameleon

Miscellaneous bug xes.

Memory contention

Development of a benchmark to evaluate interferences between computations and communications.

Development of scripts to analyze, plot and model the results of the benchmark.

Guix

Maintenance of the packages of the PM2 project (NewMadeleine, PIOMan, mpisyncclocks, and other sub-projects).

Miscellaneous bug reports.

ViTE

Miscellaneous bug xes.