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Titre  De l'interaction entre les supports d'exécution a taches HPC et les bibliotheques
de communications

Résumé Les supercalculateurs sont utilisés pour résoudre des problémes numériques
complexes demandant beaucoup de ressources de calcul (simulations, prévisions météo-
rologiques, modélisationsetc), impossibles a exécuter sur des ordinateurs classiques. Ces
supercalculateurs sont composés de nombreux puissants ordinateurs, connectés par un
réseau. Bien que la puissance de ces supercalculateurs ne cesse d'augmenter, le développe-
ment d'applications exploitant toute leur puissance de calcul est de plus en plus complexe.
En e et, de nombreux aspects doivent étre considérés : des unités de calculs hétérogenes
qui se programment di éremment, la hiérarchie mémoire et les transferts de données,
les communications réseau, I'ordonnancemer#tc. Pour parer a ces di cultés, lessup-

ports d'exécutions a tachesnt émergé : ils représentent les applications par des graphes
de taches. Les di érentes opérations exécutées par I'application et les dépendances entre
elles forment un graphe. Il su t alors de donner une implémentation de chaque tache pour

les unités de calcul ciblées, les dépendances entre les taches et le support d'exécution se
charge d'exécuter l'application : ordonnancer les taches sur les di érentes unités de calcul,
réaliser les transferts mémoire et les communications réseau nécessagtes,

Dans cette thése, nous explorons les di érentes interactions possibles entre les sup-
ports d'exécution a taches et la bibliotheque de communication utilisée pour réaliser les
transferts réseau. L'objectif est de faire plus collaborer ces deux couches logicielles, pour
améliorer la performances des applications exécutées. Pour analyser et comprendre les in-
teractions entre les supports d'exécution et les communications, tracer les applications est
une technique pertinente, malgré certaines limitations. C'est pourquoi nous commengons
par évaluer les surco(ts possibles en termes de performances induits par un systéeme de
traces. Nous proposons des techniques pour réduire ces surcodts et avons également évalué
I'impact de la précision de la synchronisation d'horloge pour les traces distribuées. Ensuite,
comme interaction positive entre un support d'exécution a taches et la bibliotheque de
communications, nous proposons une solution pour e cacement envoyer une méme don-
née a plusieurs destinataires, tout en respectant les contraintes du support d'exécution.
D'autre part, nous considérons également les éventuelles interactions négatives, en éva-
luant les di érentes sources d'interférences entre les calculs et les communications exécutés
en parallele, dégradant leurs performances respectives. Ayant observé que la contention
mémoire entre les calculs et les communications a le plus d'impact, nous proposons nale-
ment un modeéle prédisant la répartition de la bande-passante mémoire entre les calculs et
les communications. Ce modeéle permet de mieux comprendre le comportement du com-
posant mémoire en cas de contention et de prendre en compte ce phénomeéene dans les
décisions du support d'exécution. Les contributions présentées montrent qu'améliorer les
interactions entre les supports d'exécutions a taches et les bibliotheques de communica-
tions a du potentiel pour améliorer les performances des applications HPC.

Mots-clés  Calcul haute performance, programmation par taches, calcul distribué, sup-
ports d'exécution, bibliotheques de communication, MPI, traces, contention mémoire
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Title  On the Interactions between HPC Task-based Runtime Systems and Communi-
cation Libraries

Abstract  Supercomputers are used to solve complex and demanding computational
problems (simulations, climate and weather forecasting, modellingtc), impossible to
run on regular computers. These supercomputers are composed of many powerful com-
puters, interconnected through a network. While the power of these supercomputers
increases over time, it becomes more and more challenging to develop applications taking
bene t from all o ered computing power. Indeed, many aspects have to be considered by
the developer: heterogeneous computing units programmed in di erent manners, mem-
ory hierarchy and transfers, network communications, schedulingtc. To overcome these
challengestask-based runtime systembave emerged. They model applications by graph
of tasks: sub-computations and dependencies between them form a graph. The program-
mer has to provide the implementations of the tasks for each targeted computing unit,
express dependencies between the tasks and then the runtime system is in charge of the
application execution: scheduling tasks on di erent computing units, performing required
memory movements between memories and network transfeesc.

In this thesis, we explore the possible interactions between a task-based runtime sys-
tem and the communication library it relies on to perform network transfers. The goal is
to make these two software layers more collaborate, to improve performance of executed
applications. To understand and analyze the interactions between the runtime systems
and communications, tracing applications is a powerful technique. However, it can have
some limitations. Thus, we rst evaluate sources of performance overhead when tracing
applications, propose solution to alleviate them and evaluate the impact of clock syn-
chronization accuracy for distributed application tracing. Then, as a positive interaction
between the task-based runtime system and the communication library, we propose a
solution to e ciently send the same piece of data to several nodes, coping with the con-
straints of the considered runtime system. On the other hand, we also consider possible
negative interactions, by evaluating the di erent sources of interferences between com-
putations and communications being executed in parallel, more or less degrading their
respective performance. Since we observe memory contention between computations and
communications have the most impact, we nally propose a model predicting the memory
bandwidth share between computations and communications, to better understand the
behaviour of the memory system in case of contention and be able to take into account
this phenomenon into decisions of the runtime system. Contributions presented in this
manuscript show that improving interactions and cooperations between task-based run-
time systems and communication libraries has potential to increase performance of HPC
applications.

Keywords  High performance computing, task-based programming, distributed com-
puting, runtime systems, communication libraries, MPI, traces, memory contention

Hosting Laboratory Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400
Talence
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Les probléemes numériques complexes (comme les simulations, les prévisions météorolo-
giques, la climatologie, la cosmologie, la biologie, la chimie, les phénomeénes physiques,
etc) font parties des applications ciblées par le calcul haute-performance (en angldigh
Performance Computing HPC). Ces applications demandent généralement une puis-
sance de calcul importante ainsi qu'une grande quantité de mémoire pour étre executées,
les rendant hors de portée des ordinateurs classiques. A la place, ces applications sont
exécutées sur desupercalculateursqui sont un ensemble d'ordinateurs (appelés+uds)
individuellement trés puissants, inter-connectés ensemble par un réseau rapide. Les pro-
grammes peuvent alors faire des calculs sur plusieurs n+uds simultanément, permettant
d'agréger la puissance de calcul de ces n+uds. Dans ce cas, une bibliotheque logicielle
de communication réseau s'occupe de déplacer les données entre les di érents n+uds,
par exemple lorsque le résultat d'un calcul intermédiaire e ectué sur un certain n+ud
est nécessaire sur un autre n+ud pour lancer un autre calcul. Concernant les n+uds de
calcul, leur conception ainsi que leur utilisation se sont complexi ées au | du temps, en
méme temps que leur puissance de calcul augmentait. De nos jours, les n+uds de calcul
équipant les supercalculateurs ont chacun des unités de calcul de di érents types (CPU,
GPU, FPGA, etc) qui ne se programment pas de la méme maniére et qui sont plus ou
moins e caces selon le type d'instructions qu'ils doivent exécuter. Cela rend la conception
d'applications plus complexe, puisqu'il faut minutieusement choisir quelle unité de calcul
va exécuter quelle opération. De plus, cette décision impacte eégalement les transferts de
données nécessaires entre les di érentes mémoires disponibles au sein d'un n+ud. Mal
gérés, ces transferts mémoires peuvent étre tres lents et devenir un facteur limitant de
I'application. Pour résumer, I'hétérogénéité présente dans les n+uds de calcul actuels rend
di cile I'utilisation e cace de toute la puissance de calcul qu'un n+ud est (théorique-
ment) capable de fournir.

Face a ces di cultés, lessupport d'exécutions a tachegen anglaistask-based runtime
systemg connaissent un bel essor. Leur modele de programmation repose sur la repré-
sentation des applications par un graphe de taches : chaque opération de I'application est
représentée par une tache qui est un sommet du graphe. Chaque opération produit des
données, qui peuvent étre utilisées en entrée d'autres opérations. Ces dépendances entre
taches sont les arétes du graphe de taches. Pour chaque tache, les instructions a e ectuer
sur chaque unité de calcul ciblée doivent étre fournies, ainsi que les dépendances entre
les taches. Le support d'exécution se charge ensuite du reste : ordonnancer les taches



Evaluation et amélioration du systéme de traces

sur les unités de calcul, faire les transferts de données nécessaires, exécuter les taches, ...
L'écriture d'application paralléle est facilitée avec le modéle de programmation a taches,
puisque c'est le support d'exécution qui infere le parallélisme de l'application, a partir
des dépendances entre taches qui forment le graphe de taches. Dans le cas d'applications
distribuées (utilisant plusieurs n+uds), le support d'exécution a taches peut également
découvrir et s'occuper des communications réseau nécessaires, mais en déléguant généra-
lement la réalisation de ces communications a une bibliotheque tierce.

Habituellement, les supports d'exécution et les bibliothéques de communications sont
deux briques logicielles bien distinctes. Le support d'exécution utilise l'interface de la bi-
bliotheque de communication, et cette derniére se contente de traiter les requétes qui lui
sont adressées : elle n'a pas d'informations particulieres sur l'application exécutée, ni sur
I'état courant du support d'exécution. Cependant, le support d'exécution peut avoir des
informations qui permettraient d'aider la bibliothéque de communication dans ses prises
de décisions (les futures communications a exécuter, les priorités des taches, le chemin cri-
tique de 'application, etc). De la méme facgon, la bibliothéque de communications possede
une vision sur le réseau et les communications en cours, et certaines informations pour-
raient étre utiles au support d'exécution (par exemple : les messages recus incessamment
sous peu, une estimation de la durée des communications).

Le but de cette thése est dxplorer les interactions possibles entre les supports
d'exécutions a taches et les bibliotheques de communications , en échangeant plus
d'informations entre ces deux couches logicielles, a n d'améliorer les décisions de I'un et
I'autre et nalement augmenter les performances des applications.

Ce manuscrit présente les contributions réalisées en ce sens pendant trois années de
these. Tout d'abord, une évaluation et amélioration des outils de traces pour analyser
I'exécution des applications a base de taches (et ainsi mieux comprendre les interactions
entre le support d'exécution et les communications) ont été réalisées. Une premiere in-
teraction positive entre supports d'exécution a taches et bibliotheque de communications
a été proposée en implémentant une solution pour étre capable d'envoyer e cacement
une méme donnée a plusieurs n+uds di érents. Nous avons également étudié les interac-
tions négatives, en évaluant les di érentes sources d'interférences possibles entre calculs
et communications, lorsqu'ils sont exécutés en paralléle, comme c'est le cas dans de nom-
breux supports d'exécutions a taches. Puisqu'il s'est avéré que la contention mémoire
entre les acces mémoires pour les calculs et les communications est la plus grande source
d'interférences pénalisant leurs performances respectives, nous avons proposé un modele
pour prédire la bande-passante mémoire accordée a chaque type de ux (calculs ou com-
munications). Ce modéle nous a permis de mieux comprendre le fonctionnement de la
mémoire en cas de contention et de pouvoir prédire les performances des calculs et des
communications. La suite de ce résumé détaille ces di érentes contributions.

Evaluation et amélioration du systéme de traces

Pour comprendre les performances et le comportement des applications, tracer leurs exé-
cutions et analyser les détails du déroulement de I'exécution peut étre une méthode tres
e cace. Pour étre su samment robustes, les systemes de traces doivent avoir une préci-
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sion satisfaisante et interférer au minimum avec I'exécution de I'application tracée. Avoir

un impact sur l'application tracée peut changer son comportement, ce qui signie que
I'exécution décrite dans les traces est di érente de I'exécution standard (non tracée). Ce
phénomeéne peut étre génant, puisque les traces servent généralement a comprendre ce qui
se passe lorsqu'une application n'est pas tracée! Un systéme de traces pas assez précis,
avec des horloges mal synchronisées, produira des traces incohérentes, notamment concer-
nant les exécutions distribuées (par exemple : un message peut apparaitre comme regu
avant d'avoir été envoye).

Nous avons évalué les di érentes sources possibles de surcodt en terme de perfor-
mances de I'application, pouvant changer le comportement d'une application, lorsqu'une
application utilisant un support d'exécution a taches est tracée. Nous avons également
proposé des solutions pour éviter (ou au moins réduire) ces surco(ts. De plus, nous avons
implémenté dans le systeme de traces du support d'exécution des techniques de synchro-
nisation d'horloges correspondant a I'état de I'art, et nous avons évaluée I'amélioration de
la précision des traces ainsi obtenues.

En plus de proposer des solutions aux problémes causés par les systemes de traces,
notre travail avait aussi pour but de faire prendre conscience aux personnes utilisant
ces systémes de traces les potentiels problemes qui peuvent survenir lors de la trace de
programmes, potentiellement déformant la réalité.

Ce travail peut étre percu comme un pré-requis pour analyser sereinement les exécu-
tions d'applications, tout en ayant en téte les possibles problémes.

Broadcasts dynamiques

Les communications sont I'un des facteurs limitant pour faire passer les applications a
I'échelle sur de nombreux n+uds. Un motif de communications qui peut facilement s'opti-
miser a l'aide d'algorithmes de routages déja présents dans la littérature, et qui se retrouve
dans les graphes de taches de certaines applications, est I'envoi de la méme donnée a plu-
sieurs n+uds distincts. Ce motif s'appelle urbroadcast

Les bibliothéeques de communications habituelles en HPC proposent des routines pour
exécuter des broadcasts d'une facon optimale. Cependant, plusieurs critéres doivent étre
remplis pour pouvoir utiliser ces fonctions : par exemple, tous les n+uds impliqués dans le
broadcast doivent faire appel a la méme fonction avec les mémes paramétres, en particulier
la liste de tous les destinataires de la donnée. De plus, ce genre de fonction introduit une
sorte de synchronisation, qui, pour des raisons de performances, doit étre évitée autant
gue possible dans les supports d'exécution a taches. Malheureusement, ces contraintes ne
sont pas satisfaites dans le contexte du support d'exécution considéré : les broadcasts n'y
sont pas explicites (ils doivent étre inférés a partir du graphe de taches) et seulement
I'émetteur du broadcast connait tous les destinataires. Les destinataires, quant a eux, ne
savent méme pas s'ils vont recevoir le message par un broadcast ou par une communication
point-a-point classique (et donc ne savent pas quelle fonction appeler).

Pour pouvoir proter d'algorithmes de routages e caces, tout en respectant les
contraintes du support d'exécution a taches, nous avons proposé deeadcasts dyna-
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miques Le mécanisme pour détecter les broadcasts a une abilité satisfaisante, et une

fois qu'une donnée a envoyer par un broadcast est disponible, l'interface que nous avons
développée dans la bibliotheque de communication le prend en charge de facon transpa-
rente pour le support d'exécution : la donnée venant d'un broadcast est recue comme si

elle était regcue par une communication point-a-point.

Des microbenchmarks ont montré I'e cacité de notre implémentation. Les gains de
performances pour les applications avec des broadcasts dans leurs graphes de taches dé-
pendent de plusieurs facteurs. Les broadcasts dynamiques ont permis d'améliorer les
performances de 30% sur des factorisations @holesky et de multiplier par 6 les
performances de factorisation®R sur des matrices avec une forme et une distribution
Spéci ques.

La pertinence des broadcasts dynamiques montre le potentiel des interactions entre
les supports d'exécution a taches et les bibliotheques de communications : a l'aide d'une
interface simple et générique exposée par la bibliothéque de communications, le support
d'exécution peut exécuter des broadcasts plus e cacement.

Interférences entre calculs et communications

La plupart des supports d'exécutions a taches permettent d'exécuter en paralléle calculs et
communications. Puisque cela signi e exécuter simultanément des calculs et des communi-
cations qui partagent ressources matérielles communes, nous avons évalué les possibilités
d'interférences entre calculs et communications, impactant leurs performances respectives.

Les variations de fréquences causées par les calculs n‘ont pas d'impact majeur sur les
performances des communications. Les communications lancées par le support d'exécution
peuvent étre pénalisées par un surcolt en latence important, a cause de la pile d'appel
de fonctions a traverser avant d'atteindre la bibliotheque de communications. Mais la
dégradation de performances la plus importante, lorsque calculs et communications sont
exécutés en parallele, provient de la contention mémoire entre les mouvements de données
pour les calculs et pour les communications.

La contention mémoire peut étre in uencée par plusieurs facteurs : le placement des
données et des threads, la taille des messages et lintensité arithmétique des calculs.
Lorsque de la contention mémoire se produit, les performances des calculs peuvent étre
impactées, mais ce sont les communications qui sont le plus pénalisées.

Pour mieux comprendre la contention mémoire se produisant entre calculs et commu-
nications et étre capable de la prédire, nous avons proposé un modele de ce phénomeéne
donnant le débit mémoire accordé aux calculs et aux communications, selon le nombre
de c+urs exécutant des calculs et le placement des données. La di culté de conception
du modeéle venait du fait que la gestion de la contention par les composants mémoire
des processeurs est un secret bien gardé des fabriquants. L'évaluation de notre modéle
sur une large gamme de machines aux caractéristiques di érentes ont con rmé nos hypo-
theses initiales : tant qu'il n'y a pas de contention, calculs et communications obtiennent
la bande-passante mémoire qu'ils requiérent; lorsque la capacité du bus mémoire est at-
teinte, la bande-passante pour les communications est d'abord réduite, pour préserver
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celle des c+urs qui calculent; une bande-passante minimale est tout de méme toujours
assurée pour les communications, pour éviter les famines; nalement, si la demande en
débit mémoire continue d'augmenter, alors les c+urs de calcul sont également pénalisés.

Bien que ces interactions négatives entre calculs et communications apparaissent dans
tout programme qui exécute simultanément des calculs et des communications, quel que
soit le support d'exécution utilisé, les possibilités et I'abstraction o ertes par les supports
d'exécution a taches devraient permettre de prendre en compte ces phénomenes et essayer
de les éviter. Cette prise en compte de la contention entre calcul et communications par
le support d'exécution serait un autre cas d'interaction positive.

Conclusion

Les supports d'exécution a taches sont une solution pour tirer plus facilement prot de
la puissance des supercalculateurs, en fournissant un haut niveau d'abstraction, allant
jusqu'a inférer le parallélisme des applications et les communications réseaux nécessaires.

Cette thése aura montré que les interactions entre les supports d'exécutions a taches
et les bibliothéques de communications, qu'elles soient positives ou négatives, ne doivent
pas étre négligées. Dans un cas, elles ouvrent la voie a de considérables améliorations
des performances, mais dans l'autre, elles peuvent aussi pénaliser la vitesse d'exécution
des applications. Il n'est donc pas possible d'ignorer les communications au niveau des
supports d'exécutions a taches.
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Introduction

High Performance Computing

etween theoretical and experimental work, simulation can be considered as the third
B pillar of current scienti c research. Indeed, simulations allow to verify theories and
avoid real experiments, which can be costly and dangerous. Simulation can be used
in many research areas: weather forecasting, climate prediction, uid dynamics, earth-
quakes, crash-tests for vehicles, rocket takeo , biology, genomics, epidemiology, nuclear
phenomena, cosmologygtc. Many cars can be saved while perfecting the airbag, as well
as many rockets while the engine is not nely tuned; phenomena hard to mimic at the
human scale, from the atom to the universe scale; dangerous experiments about nuclear
reactions or health can be performed; all thanks to simulation.

Simulations are usually performed with computer programs, solving numerous com-
plex equations, tracking the progression of a phenomenon over time steps, handling huge
amount of data. These specic programs often require lots of computing power and
memory to achieve precise simulations in a reasonable amount of time. More powerful
computers allow to increase simulation precision (more precise weather forecasting, for
instance) and to treat bigger problems. Using powerful computers to execute simulation
programs belong to the High Performance Computing (HPC) domain.

The computing power required for simulations is so important that speci c computers
are built for this purpose. The most powerful of them are listed twice a year by the
Top500 ranking. In June 2022, theFrontier  machine holds the rst position', with
a performance of 1.102 E ops: about0*® oating operations per second, while a regular
laptop treats about 200 G ops (.e. Frontier is equivalent to 5 million laptops!). Such
powerful computers aimed at HPC are calledupercomputersand are in fact composed
of many inter-connectednodes individual computers which can be compared to more
regular servers. This connection of many nodes gives to the overall supercomputer an
important computing power: Frontier is composed of 9472 nodes. Moreover, each
node has a processor with 64 cores and 4 GPUs. In the ekdontier  totals 8730112
computing units executing instructions in parallel.

These supercomputers can feature cutting-edge technology and the programming of

Lhttps://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/
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Goals and contributions of this thesis

applications dedicated to HPC machines can be quite challenging: applications have to
be parallel (.e. divided in smaller independent parts executed simultaneously) to reduce
execution time and fully exploit the computing power of the machine, they have to support
di erent computing units (CPUs and accelerators), correctly manage di erent memories,
etc. With the increasing power and complexity of supercomputers, fully exploiting all
the computing power becomes more and more di cult. Moreover, each supercomputer
is di erently designed, which requires abstractions to have performance portability of
applications.

To address these di culties, runtime systemsare developed, to abstract part of the ma-
chine complexity: machine topology, scheduling, accelerator managemesi;. Di erent
kinds of runtime systems exist, with di erent features and abstraction levels, like abstract-
ing the machine but letting the developer explicitly express the application parallelism.
Runtime systems following the task-based programming model with data dependencies
abstract even this level and ease the writing of parallel applications, by requiring only
an implicit expression of the parallelism. With task-based runtime systems, the applica-
tion is divided in small parts represented by tasks, and tasks are connected according to
the dependencies between those taskise( order constraints based on data manipulated
by each task). Tasks and dependencies form a graph, which, once given to the runtime
system, can be e ciently scheduled on parallel computing units.

Speci ¢ software libraries (sometimes part of runtime systems) are also developed to
communicate between the nodes, by using the high performance network interconnect-
ing them. Exchanged data are mainly results produced by a node, required by another
node to perform a computation. Combining several runtime systems and a third-party
communication library is common for HPC applications.

Goals and contributions of this thesis

Usually runtime systems and communication libraries are two distinct and independent
software. The runtime system uses the interface provided by the communication library
to exchange messages on the network. The communication library is aware only of in-
formation related to network communications, and knows nothing about the application
nor the status of the runtime system. However, a task-based runtime system may have
information that could help the communication library in its decisions (future communi-
cations, priorities, application critical path, etc). Conversely, the communication library

is aware of the status of communications and could also share its knowledge (incoming
communications, estimated time of receptiongtc) with the task-based runtime system.

The goal of this thesis is to explore the possible interactions between task-based run-
time systems and communication libraries, in order for these two software layers to better
exchange their respective information about the application execution and increase each
other knowledge to take better decisions.

The main two software libraries used in this work to implement prototypes and make
experiments areStarPU and NewMadeleine , introduced in Chapter 1.

This manuscript presents the following contributions, made during these last three
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years:

Tracing systems. Recording application executions permits to later analyze the execu-
tion and understand the behaviour of the application, the decision taken by the runtime
system,etc. However, tracing executions can add a performance overhead, potentially
changing the behaviour of the application, making the behaviour represented in traces
di erent than the behaviour in normal conditions, without traces. We evaluated the
impact of di erent sources of overhead and proposed solutions to reduce them. More-
over, when tracing distributed applications, clocks used to timestamp events on each
node have to be accurately synchronized to have consistent information recorded in
traces, especially regarding communications. We evaluated the impact of clock syn-
chronization on accuracy of communication duration.

Findings in this work are submitted to the journal Concurrency and Computation:
Practice and Experience[134].

Dynamic broadcasts. Some task-based algorithms require to send the same data to
di erent nodes. While common communication libraries provide routines for such use-
case, with optimized communication scheme, these routines cannot be used within
StarPU because of (among other things) a lack of information by all nodes receiving
the data. We proposed a solution to use optimal routing algorithms for such commu-
nication patterns that ts with StarPU 's constraints.

The idea, its implementation and its evaluation were presented in an article published
at the 26" Euro-Par conference [130].

Interferences between computations and communications. Many runtime sys-
tems allow to execute simultaneously computations and network communications.
Since these two di erent operations share common resources, interferences between
them can occur, impacting their respective performance. We evaluated several possible
sources of interferences and measured the impact on performance of both computations
and communications.

Results of this study were published in an article at theCPP 2021 conference [128].

Model of memory contention. The major source of interferences between computa-
tions and communications is the possible memory contention generated by data move-
ments to perform computations and communications. We proposed a model to better
understand the contention and to be able to predict the share of memory bandwidth
between computations and communications.

Our model and its evaluation got the best paper award of thAPDCM 2022 workshop,
in conjunction with the 36" IPDPS conference [129]. A research report contains results
on more machines [135].

Organization of the document

Chapters 1 and 2 present the context of this work by respectively introducing distributed
task-based runtime systems and reviewing related work. Chapter 3 digs in the tracing
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Organization of the document

system of StarPU , evaluates possible performance overheads when tracing applications
and proposes solutions to reduce these overheads and to improve accuracy of distributed
traces. Chapter 4 explains how we developed a broadcast system to t witarPU 's
constraints while using an optimized communication pattern. Chapter 5 studies the pos-
sible interferences between computations and network communications, when they are
executed in parallel. Chapter 6 focuses on the impact of memory contention on computa-
tions and communications, by proposing a model for memory bandwidth sharing. Finally,
last chapter summarizes our work and discusses possible perspectives.

Appendix A explains in detail di erences between the communication backends of
StarPU . Appendix B presents the followed methodology regarding reproducible experi-
ments. Appendix C describes the characteristics of the clusters used for the experiments
presented in this thesis. Appendices D and E provide respectively algorithmic versions of
equations described in Chapter 6 and the parameter values obtained during the evaluation
of the model.
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Chapter

Distributed Task-based Runtime
Systems

his rst chapter presents the context and the problematic of this thesis. First, it de-
T scribes the increasing complexity of HPC supercomputers, which makes them harder
to program in the most e cient way. Then, we introduce task-based runtime systems, a
solution to address these programming di culties. We explain how they work on a single
node but also for distributed applications on several nodes. Finally, we announce the
general problematic covered by this thesis and its main contributions.

1.1 The growing complexity of HPC machines

Although we reached some physical limits in the conception of processors, preventing from
increasing always the same characteristice.g. processor frequency and Instructions Per
Cycle (IPC)), performance of supercomputers did not stop to increase over time. Machine
vendors keep innovating, in several directions, to provide always more and more computing
power to their users. The diversity of solutions for real high performance computing has
a cost: e ciently exploiting the whole computing power o ered by the machines is much
more di cult, and, moreover, it is a challenge left to application developers.

1.1.1 More powerful machines...

At the core of computers, processors execute all the instructions. To o er better per-
formances and better exploit their possibilities, they present many features, more or less
complex to take into account by the application:

Multi-core processors.  All available transistors in a processor can be used to split the
processor into several processing units (calledres), independently executing di erent
instructions at the same time. Nowadays, HPC processors feature several tens of such
cores, each executing its own ow of instructions. From the operating system point of
view, the di erent cores appear like di erent processors.
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Simultaneous multithreading. Since some processor instructions require several clock
cycles to complete ( oatting-point instructions, memory accessesic), the progress of
the instructions in the pipeline is not assured for each clock cycle. When such long
instruction is executed, the core has to wait for the dedicated subsystem to handle
the instruction, and thus waste clock cycles. These holes in the instruction pipeline
are calledstalls (or bubble¥. With simultaneous multithreading physical cores are
split in several (usually two) logical cores: when a stall occurs in the instruction ow
of a logical core, the physical core executes instructions from another logical core.
Intel implements this technique under the name dflyper-Threading which became a
common term to designate this feature, as well ds/per-threadto talk about a logical
core. From the operating system point of view, these logical cores appear as regular
cores.

Many-core processors. Another way of exploiting the transistors of a processor is to
split the processor intomany cores Like multi-core processors, each core manages
its own instruction ow, but many-core processors feature much more cores: several
hundreds of hyperthreads. This important number of cores is possible at the cost of
simpler cores, with a reduced instruction set and less features. The main representative
of this class of processors is thiatel Xeon Phi , launched in 2010 and installed for
example in theTianhe-2 supercomputer, rst in the Top500 ranking in 2013.

Heterogeneous processors. More recently, heterogeneougprocessors have been intro-
duced, especially to reduce the power consumption: a set of cores requiring very few
energy is used for generic purpose and another set of cores more powerful, yet con-
suming more power, is enabled only in case of more demanding computations. The
main processor architectures in this family are th&RM 's big.Little  and thelntel 's
Alder Lake . However, these models have not landed yet on supercomputers.

Instruction set. The important number of available transistors can be used to create
speci ¢ processor instructions, for instance implementing arithmetic operation directly
as one processor instruction, instead of several instructions called by the software. This
kind of optimization can save clock cycles and thus increase the computing power of
the processor. Vectorized instructions are also improved over the years: they consist in
executing the same operation on multiple registers at the same time (Single Instruction
on Multiple Data (SIMD)). The vectorization of the code can be done implicitly by
the compiler, or explicitly by the programmer by using the dedicated instructions.
The most famous SIMD instruction set is the Advanced Vector Extensions (AVX)
from Intel . The last version, AVX-512, released in 2017 on thekylake processors,
handles 512-bit registers (which can be used as arrays offld&t s, for instance).

GPUs. While CPUs (Central Processing Uni) are designed for a generic purpose (run-
ning the operating system, softwares) and have to support a wide range of instructions,
including branchings and loops; GPUsGraphics Processing Uni} implement mainly
the SIMD architecture, thus they can exhibit a high level of parallelism, much higher
than regular CPUSs, but have very low performance in case of branching instructions.
This speci ¢ kind of processor was originally designed for graphic processing such as
image rendering, and then other applications with similar requirementse(g. linear
algebra and training of machine learning models) adopted it.
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Figure 1.1: Typical memory hierarchy.

FPGAs. Field-Programmable Gate Arraysare processors that can be entirely repro-
grammed to execute a speci ¢ computation. This way, computations can be faster
on an FGPA than on a regular CPU, since the circuit of the FGPA is reprogrammed
speci cally to execute only the desired computation, while the genericity of the CPU
can add important overhead. The main advantage of the FPGA is also its main draw-
back: the programming of the FPGA is made in a specic (low-level) language and
the recon guration of the FPGA to execute a new program can be very long (several
hundreds of milliseconds). Such processors also tend to cost more than CPUs and have
a lower frequency.

All these di erent uses of transistors rely on theparallel paradigm: applications are
divided in smaller independent instructions ows, each being executed simultaneously by
di erent sets of transistors (e.g. several cores or hyper-threads). Parallel applications
are the most common in HPC area, since this programming model is required to exploit
current powerful computers, featuring these parallel computing units.

Many-core processors, GPUs and FPGAs are examplesaatelerators they are in-
stalled in addition to a CPU, to accelerate only the kind of computations they are spe-
cialized in. While CPUs have direct access to the main memory (RAM) of the computer,
accelerators have their own memory. Some accelerators can access the CPU RAM, but
with a potential performance overhead if used improperly a technique to counterbalance
this overhead is to explicitly copy data to the accelerator memory, perform the maxi-
mum computations on the accelerator manipulating the copied data (now located in the
accelerator memory, with quick access) and then copy back the data on the CPU memory.

Lhttps://developer.nvidia.com/blog/unified-memory-cuda-beginners/
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Figure 1.2: Characteristics of di erent memory kinds. From the PhD thesis of Andrés
Rubio Proaiio  [98].

Speaking of memory, memories accessible by a CPU bring also their set of complexity.
Computers feature a so-calleanemory hierarchy as illustrated by Figure 1.1. Indeed,
processors can access several kinds of memory, more or less close to each core. The
further the memory is located (from an architectural point of view), the longer it will
take to access this memory (to read or write), however, the higher the memory capacity.
This hierarchy comes from the complexity (or even impossibility!) to design the perfect
memory: fast, with high capacity and cheap: thus faster memories are smaller and closer
to computing units, to take bene t from an increased speed.

We can distinguish memory inside and outside the processor. Memory inside the
processor are caches, organized in several levels: rst levels are private to each core and
last levels are shared between cores. The most common memory outside processors is
Dynamic Random Access Memory (DRAM). Processors fetch memory from the DRAM
in caches and cache lines are evicted and stored back in the DRAM. DRAM memories
provide good trade-o in terms of capacity, bandwidth and latency. Again, since there
is no perfect memory with outstanding values in all performance metrics, other types
of memories exist, each type being better regarding one characteristic, as illustrated by
Figure 1.2: Non-Volatile Dual Inline Memory Module (NVDIMM) has a higher capacity
and High Bandwidth Memory (HBM) a higher bandwidth.

With the current important number of cores per processor, and given the fact that
HPC nodes can have several processors (usually two), the memory system cannot serve the
memory requests of all cores and exhibit correct performance. To tackle this issue, a Non-
Uniform Memory Access (NUMA) architecture is used: the whole memory is segmented
and each segment is dedicated to a set of cores, as illustrated by Figure 1.3NAMA
node is the name of the set composed of several cores and their dedicated segment of
memory. Cores can normally access memory located on a NUMA node di erent from
their NUMA node, but this kind of memory request will take longer to achieve.
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Current supercomputers feature several multi-core processors, NUMA architecture
and GPUs. Since they have dierent kinds of processing units, they are qualied as
heterogeneous Many-core processors such as théeon Phi are less present in current
supercomputers, while FPGAs and heterogeneous processors will probably be part of the
future of HPC. Increasing performance of supercomputers will continue, by increasing
also the complexity of their components. Unfortunately, this evolution is not transparent
anymore for application developer...

1.1.2 ... but more complex to program!

The application developer has now access to powerful machines, with di erent kinds of
computing units. The drawback of such wide panel of technologies is the diculty of
e ciently programming these platforms. Indeed, the challenges are numerous.

Computing unit programming. A CPU, a GPU or an FPGA are not programmed
with the same source code, and the programming paradigms can be quite di erent.

Programs can be parallelized on CPU cores with several methods: processes, threads,
a runtime system,etc. Programming application for CPUs can look simpler than for
accelerators, since it does not require a speci ¢ language and the use of the standard
library provided by the language can be enough. However, some points require par-
ticular attention, for instance: one core should not execute several threads, the load
balancing between the cores as well as memory access patterns should be optimized (to
e ciently use the cache, for instance),etc. In HPC applications, a popular method to
easily parallelize code is the use @penMP pragmas: by annotating the source code,
the developer can explain how the application should be parallelized.

Programming GPUs (and other accelerators) can be more complicated. Interacting
with GPUs is made with specic APIs (Cuda for Nvidia , Hip for AMD ) or even
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speci ¢ languages:Cuda programs are written in a C-like language and are compiled
with a speci c compiler. Moreover, since the GPU has its own memory, the application
developer has to manage the GPU access to application data.

One problem here is the portability: the application written to be executed on a CPU
has to be adapted to use a GPU (and the changes will be di erent according to which
GPU vendor is targeted).

To ease the writing of applications targeting heterogeneous systems, several frameworks
implement awrite once, run everywheranodel: the program is written in one language
(usually close to C) and the framework translates it to instructions for all required
computing units. OpenCL [6], OpenACC [5] or SYCL [7] are examples of such
frameworks.

Memory management. When using accelerators, memory transfers between the host
and the device are explicit. These data transfers can be long compared to computa-
tions (limited by the throughput of the PCle bus where they are plugged: 12 GB/s
vs 20 GB/s for throughput between CPUs and RAM memory) and since the memory
capacity is limited, data moved on accelerators have to be carefully chosen to then
be able to execute as much computations as possible on this data without requiring
additional data movements.

NUMA architectures has also to be taken into account for high performance. Since each
core can access a close memory faster than a remote memory, cores should rather only
access their local memory and minimize access to remote NUMA nodes. Accelerators
are also a ected by NUMA con gurations: in the memory hierarchy of a machine, they
are plugged into a speci c NUMA node, hence the same performance consideration for
CPU cores apply.

The organization of heterogeneous machines forces application developers to be careful
about the data locality: on which memory node (NUMA or accelerator) data has to
be allocated and then potentially moved. The decision is taken according to which
computing unit will work with this data, but also according to memory performance
and application requirements, when less standard memories (NVDIMM or HBM) are
available.

Data management involving an accelerator with its own memory is explicit and has
to be programmed by the application developer. Memory management on NUMA
architectures can also be made explicitly by the developer, but it is not mandatory since
all cores can access all the NUMA memory. Still, optimizing it can improve application
performance. Some runtime systems can relieve developer's work by abstracting the
memory management and handling all data transfers implicitly.

Exploiting accelerator a nities. Accelerators are usually e cient to execute a lim-
ited types of computations, not all possible kinds of computations. For instance, GPUs
are very e cient for matrix multiplications (30 times faster than on a CPU core), but
have more di culties for matrix factorizations (only 3 times faster than on a CPU
core). Thus, the choice of which computing unit (a CPU core or an accelerator) has
to execute a computation is based also on the performance of computing units on the
kind of the computation.
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To help taking this kind of decision, performance calibrations and models can be used:
computation kernels are executed on all possible computing unit to build a performance
model and be able to decide where to execute which computation.

Scheduling. Executing applications ends by raising the question: on which computing
unit execute which computations? In other words: how to schedule the computation
tasks? All the di culty of scheduling is to optimize the use of all computing units, to
reduce the application execution time. The elements of the answer are, among other,
the performance of computing units and the data locality. Many trade-o s appear, for
instance: is it worth to spend time moving data to the GPU, even if computations will
take less time on the GPU? Can CPU cores execute computations at the same time
as the GPU? In which order execute computations to expand as much parallelism as
possible, to always feed computing units with work?

This problem is actually NP-hard [121] and consists in a whole research eld. Heuristics
and algorithms are developed to minimize the application makespan.

In the end, the application developer has to consider many factors to e ciently ex-
ploit the whole computing power theoretically available in a machine. All these constraints
make it di cult to manually optimize the code of an application and require often ex-
pert knowledge in di erent areas (programming, architecture, scheduling, the application
domain, etc). Even if applications are successfully optimized for a supercomputer, the
next question is the portability: manually optimized applications are usually tuned for a
speci c computer, with a speci ¢ con guration. What is the necessary e ort to optimally
execute the same application on a di erent con guration €.9. change of GPU; instead
of one GPU, now two GPUs are available)? Ideally, it should be free, to let the scientist
focus on their research eld instead of software development.

One solution to tackle these problems is to add an abstraction layer to represent the
memory and the computing units, thus getting rid for the application developer of the
hardware speci cities. These abstractions are usually o ered byuntime systems the
application developer interacts with the runtime system, and the runtime system takes
all the burden of interacting with the hardware.

Unfortunately, the complexity of HPC systems is not restricted inside one HPC node:
these nodes are linked together to be used together fdistributed applications.

1.2 Distributed systems

Current supercomputers are composed of thousands of HPC nodes, linked together with
a high-performance network. The individual nodes are not really di erent from regular
servers dedicated to other purposes than HPC: they are optimized for computing perfor-
mance and scienti ¢ applications, which are programmed to exploit the computing power:
numerous CPU cores, accelerators, high memory capacity, acceleratets,
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1.2.1 Motivation for distributed computing

HPC clusters are composed of a set of HPC nodes connected through a high-performance
network. Applications are executed on several of these nodes and they exchange data
(inputs and outputs of computations, results of intermediary computationsetc) between

the cluster computers with the network. In addition to using ashared memoryprogram-
ming model (several cores share the same memory), applications usks&ributed memory
model: the total memory available for the whole application is distributed among several
computers.

Moreover, distributed computing allows to speed overall application duration up, since
more computing cores are available. The distributed memory provides more memory to
the application, to work simultaneously on more data, thus making applications able to
work on bigger problems, whose limiting factor is the memory capacity.

However, distributed computing comes with few drawbacks. First, network communi-
cations are much longer than local memory accessesl svs 100ns). Hence the gain of
having more computing cores can be o set by the communication overhead. Nowadays,
communications are considered as one of the major performance bottleneck, especially
when it comes to application scalability on many nodes. Then, applications (and even
algorithms) have to be redesigned to deal with the distributed memory: how to distribute
data and computations among the nodes, how and when to communicate between nodes,
etc.

These di culties can prevent perfect scaling: doubling the number of nodes used by
an application may not exactly double its performance, it depends on the application
behaviour.

1.2.2 Environment for distributed systems

From the hardware side, high performance network systems are composed of special net-
work adapters, plugged as a PCle extension card.

The major manufacturers of such network interfaces ar&lellanox , bought by
Nvidia in 2020, implementing thelnifiniBand standard; Cornelis Networks , a
spin-o company from Intel , providing Omni-Path networks; Atos with the BXI in-
terconnect; andCray , bought in 2019 byHPE , with the Slingshot network. All these
network devices exhibit low latency ( 1 svs O(10) s for Ethernet networks) and
high bandwidth (O(100)Gb/s vs usually 1 Gb/s or 10 Gb/s for Ethernet ). Some HPC
clusters are also equipped with RDMA over Convergelithernet  (RoCE) networks.

Even if it is usually possible to use this kind of network interfaces with théP pro-
tocol, these interfaces are programmed from the user-space,. the user can directly
send instructions to the device, without involving the OS kernel. This allows to save the
cost of user/kernel mode switch, which leads to a better latency. For bigger message sizes,
transfers are made with zero-copy: network interfaces directly access the memory location
where communication payload is stored (for send operations) or will be stored (for recep-
tion operations), without involving a processor to actually make the data transfer between
the network interface and the RAM memory. This allows higher network bandwidth.
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The programming of these network interfaces can be very low-level and speci c to each
vendor. To simplify the writing of distributed HPC applications, the de facto standard
that emerged is Message Passing Interface (MPI) [51]. As its title states, this standard
de nes a set of functions to exchange messages between processes. The rst version was
released in 1994 and the current version 4 was released in 2021. In an MPI program,
each process has mnk and each process decides which instructions to execute based on
its rank?. There is at least one MPI| process per node. More processes per node can be
used to exploit the machine architecture: for instance, one MPI process per NUMA node.
Then simple functions are available to send and receive messages between processes, by
providing the memory bu er to send / to receive in, the size of this bu er and the ranks
of sender and receiver processes. The following code snippet executasga a value is
passed from a process to another, and each process increments the value before sending
it to the MPI process with immediate higher rank value.
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nb_nodés)get's assume nb_nodes > 1

if (rank == 0)

{
dest = 1; // to right node
source = nb_nodes-1; // from last node
buffer = 0;
MPI_Send(&buffer, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);
MPI_Recv(&buffer, 1, MPI_INT, source, 0, MPI_COMM_WORLD, NULL);
printf( , buffer);
}
else
{
source = (rank - 1) % nb_nodes; // from left node
dest = (rank + 1) % nb_nodes; // to right node
MPI_Recv(&buffer, 1, MPI_INT, source, 0, MPI_COMM_WORLD, NULL);
buffer++; // work
MPI_Send(&buffer, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);
}

MPI_Finalize();

The interface proposed by the MPI standard is implemented in several available Ii-
braries. OpenMPI [52] is the most popular one. Other implementations exist, such as
MPICH [3], MVAPICH [4], Intel MPI [2] or MPC [92].

2More precisely, a process has aank inside an MPI communicator (a group of processes), but the
special communicatorMPI_COMM_WORiriains all the processes. Thus, each process can be identi ed
by its rank in this global communicator. To ease the reading,rank of an MPI process will refer to its
rank in the MPI_COMM_WOg&drBbmunicator.
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1.2.3 An HPC communication library: NewMadeleine

NewMadeleine [17] is a small HPC communication library, used as a research project
to implement prototypes and experimentsNewMadeleine has its own end-user inter-
face, but to support MPI applications,NewMadeleine exhibits also an interface called
MadMPI , implementing the MPI standard.

In the interfaces presented to the end-user, primitives to perform communications
manipulate messages While mainstream MPI libraries watch and manage the network
activity when the API is called from the user codeNewMadeleine decouples the net-
work activity from the calls to the API by the user. This separation allows to add a layer
applying an optimizing strategy before formingpacketsready to be sent to the network.
A packet may contain multiple messageqaggregation), amessagemay be split across
multiple packets(multi-rail), and messagesnay be actually sent on the wire out-of-order
depending on packet scheduler decision and priorities.

Moreover, the separation between network and application activities permits to
make network communicationsprogress without any specic action form the appli-
cation (such as loops ovemMPI_Test functions). This e cient background progres-
sion is achieved thanks to thePIOMan sub-project [44]. PIOMan allows alsoNew-
Madeleine to provide a native and e cient support for multi-threaded applications
(the MPI_THREAD_MULTIBitBading support level de ned in the MPI standard; see sec-
tion V.C of [44]), to be able to make calls to the library from di erent threads at the same
time.

NewMadeleine is designed with an event-driven paradigm, especially, its core activ-
ity is triggered by the network. When the network is busymessageso be sent are simply
enqueued; when the network becomes ready, the optimization strategy is called to form a
new packet from the pending messagesA receive is always posted to the driver, and all
the activity is made of up-calls (event noti ers) triggered from the lowest layer when dif-
ferent events occur: rst byte received, message fully received, completed receptietc,
These events can be hooked to execute a callback function de ned by the application.
This programming model makesNewMadeleine a library well-suited to program with
the Remote Procedure Call (RPC) model (used later in this thesis): a node can execute
a function on another node with parameters from the caller node.

1.3 Task-based runtime systems

Runtime systemsare software layers abstracting the complexity of machines, developed
to ease the writing of applications executed on these machines. There are many runtime
systems, with di erent features, dierent levels of abstraction and based on dierent
programming paradigms. In this thesis, we focus on the programming based t@asks
Other paradigms are mentioned in the next chapter.
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1.3.1 General concepts

The task-based programming model consists in decomposing applications into small tasks
and describing the dependencies between those tasks. Tasks are pure functions that are
sub-parts of the whole applications. Dependencies between tasks represent the constraints
in the execution order of tasks, and are determined with the data manipulated by the
tasks, e.g. a task B which works on a result generated by a previous tagk will impose a
dependency from the taskA to the task B. The set of tasks and their dependencies form

a Directed Acyclic Graph (DAG): tasks are the graph nodes and dependencies between
tasks are the edges. From this task graph, the runtime system can infer which tasks can
be executed as soon as their dependencies have been satisi.ed parent tasks in the task
graph have already been executed), as well as which tasks can be executed in parallel,
since they write in di erent data. If the runtime system knows the whole task graph, it

is aware of the future tasks to execute and can optimize its scheduling decisions.

This programming paradigm based on a DAG allows to schedule computationse(
task executions) in a asynchronous manner: since the dependencies are known from the
task-graph, the runtime system knows when tasks can be executed and does not require
synchronizations (orbarriers) to wait for the termination of tasks, potentially source
of idle time of computing units, increasing the application duration. The knowledge of
the DAG of the application also permits to apply scheduling algorithms to optimize the
execution time.

To use a task-based runtime system, the application developer has to provide the task
graph to the runtime system: the task themselves and the dependencies between them.
A task is a structure describing the small piece of computation it executes. It contains
a function actually executing the computations for each targeted architecture, with the
speci c instructions for each architecture: a function to be executed by a CPU, a function
to be executed by a GPUgtc. Computations being made on data (at least, on memory
bu ers), a task describes also which memory bu ers it manipulates, with which accesses:
read-only, write-only or read-and-write. This information will later be useful to build the
task graph: read bu ers will create in-going edges and written bu ers will create out-going
edges.

Several programming models exist to instantiate the task graph of an application,
to tell the runtime system which tasks have to be executed on which dataStarPU
relies on the Sequential Task Flow (STF): by sequentially describing which tasks have to
be executed with which data, the runtime system can infer the DAG. Indeed, for each
submittedtask, the runtime system knows which data will be manipulated by the task and
by comparing with the data used (and their access mode) by the previously submitted
tasks, it can detect if a data-dependency exists between the task and the previous tasks.

Once the application developer provided to the runtime system the task descriptions
and the dependencies between them, the runtime systems is in charge of all the remaining
work to actually execute the application. The main jobs (yet the more complex) are
scheduling and executing tasks on computing units, and managing data transfers between
memories. Basically, such a task-based runtime system does all the complicated work the
application developer has to previously do manually to e ciently use their whole machine.
The programmer can focus on the application side, and ignore the hardware problematic
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managed by the runtime systerh

Task-based runtime systems are widely used for linear algebra applications. One of
the most common operation to illustrate working and performance of task-based runtime
systems is theCholesky factorization (or decomposition). For a given symmetric de nite
positive matrix A, the Cholesky algorithm computes a lower triangular matrixL, such
that A = LLT. Its main purpose is to solve linear systems. To easily parallelize this
algorithm, the tiled avour is used: the matrix is decomposed ilN N (usually square)
tiles (sub-matrices, also calledblockg where A[i][j] is the tile of row i and columnj.
The data manipulated by the tasks of theCholesky factorization are the matrix tiles.
Algorithm 1 depicts the tiled version of the Cholesky algorithm: at each stepk, it
performs aCholesky factorization of the tile on the diagonal of panek (POTRkernel)
then it updates the remaining of the tiles of the panel using triangular solv& RSMernel).
The trailing sub-matrix is updated using the SYRKkernel for tiles on the diagonal and
matrix multiply ( GEMKernel) for the remaining tiles.

Algorithm 1 Tiled version of the Cholesky factorization.
1: for k=0to N 1do

2. AK]k] POTRRALK]K])

3: for m=k+1toN 1do

4: Alm]k] ~ TRSKEA[m][K]; A[K][K])
5: end for

6: forn=k+1to N 1do

7 Aln][n]  SYRKA[n][n]; A[n][k])
8: form=n+1toN 1ldo

9 A[m]in]  GEMM[m][n]; A[m][k]; A[n][k])
10: end for

11: end for

12: end for

Each task isinserted in the DAG during the execution of the nested loops. Each task
indicates which tiles it requires. This presentation with a pseudo-language is not so far
from what needs to be written in C when usingstarPU , as will be seen later. For this
algorithm, the application developer needs to provide the description of four taskBOTRF
TRSMSYRKand GEMM

The task graph corresponding to theCholesky factorization is depicted on Fig-
ure 1.4.

1.3.2 StarPU

StarPU is the task-based runtime system used in this thesis. Other task-based runtime
systems exist, they are covered in the next chapter.

StarPU [16] is a task-based runtime system developed in Inria Bordeaux, by the
Storm team. This C library was born as a proof-of-concept for the PhD thesis of Cédric

3Application developer still needs to give task functions for each targeted architecture. However,
piloting the device to execute the function is left to the runtime system.
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Figure 1.4: Task-graph of theCholesky factorization for a matrix divided in 4 4 tiles.

Augonnet about dynamic task scheduling on heterogeneous machines. The original goal
was to execute tasks simultaneously on CPU cores and GPUSs, in a portable manner, with
the minimum of pain for the application developer. From the beginning of the develop-
ment in September 2008, the project gained maturity over time to be used by several
scienti ¢ applications* but also as a playground for research ideas and experimentation
about scheduling policies, performance model and prediction, programming modeis,

StarPU supports CPUs, GPUs Nvidia and AMD ), Intel Xeon Phi  and FPGA?®.
Supporting additional architectures consists of implementing a de ned interface, with
mainly instructions to launch computations on the device and make memory transfers.
In the StarPU 's jargon, each device being able to execute tasks (a CPU core, a GPU,
etc) is called aworker.

The default scheduling policy of StarPU is local work-stealing based on a list-
scheduling policy: each worker has its own queue of tasks ready to be executed. When
a worker nishes the execution of a task, it executes the next task in its queue. If its
gueue is empty, it tries tosteal a task from another worker, but by respecting the machine
hierarchy (local work-stealing): to e ciently take bene t from the caches, it rst looks for
tasks in the queues of other workers in its NUMA node, and only if it is unsuccessful it
looks in the task queues of further workers. Other scheduling policies, used especially with
accelerators, are based on performance models and implement a Minimum Completion
Time (MCT) policy: StarPU can predict the duration of tasks and data transfers and
takes this information into account for scheduling decisions to minimize the application

4See for instancehttps:/starpu.gitlabpages.inria.fr/#software or
https://starpu.gitlabpages.inria.fr/publications.html#PublicationsOnApplications
SStarPU :*PU StarPU aims at supporting any kind of PU!
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duration.

StarPU abstracts data pointers by usingdata handles each piece of data manipu-
lated by a task is rst registered by the user as a data handle: the user precises the size
of the data, its structure (a simple variable, an array, a matrix,etc), its type (float ,
double, etc), and optionally an already allocated bu er (otherwiseStarPU can allocate
the bu er on-the- y when required). Then, StarPU is free to manage the location(s) of
the object referred to by this data handle: track its locality, duplicate the bu er on sev-
eral NUMA node (thus the data is closer to more workers), move the data to accelerator
memory, synchronize all replicates when one bu er is modi ed by a tasletc.

StarPU 's tasks are instantiations ofcodelets A codelet is a structure factorizing all
properties common to all tasks executing the same computation: the functions to execute
on workers (several functions can be provided for a same type of worker: in this case,
the scheduler can chose the best function based on performance models), the number
of data handles manipulated by the functions and their access modes, specic options,
attributes to ease debugging (name, color, ...gtc. A task is an instantiation of a codelet:
it references a codelet and stores information speci c to this task, which will be executed
only once: data handles which will provide data for the codelet functions, priority, callback
functions to be executed before or after the task executioric.

The Cholesky algorithm implemented with StarPU  can look like the following code
shippet:

/* Data registration and codelet definitions not shown. */

for (k = 0; k < N; k++)

{
starpu_task_insert(&potrf_cl, RW, A_handles[k][k], 0);
for (m = k+1; m < N; m++)

{

starpu_task_insert(&trsm_cl,
R, A_handles[k][k], RW, A_handles[m][k], 0);
}

for (n = k+1; n < N; n++)

{
starpu_task_insert(&syrk_cl,
R, A_handles[n][k], RW, A_handles[n][n], 0);
for (m = n+1; m < N; m++)

{
starpu_task_insert(&gemm_cl,
R, A_handles[m][k], R, A_handles[n][K],
RW, A_handles[m][n], 0);
}
}
}
starpu_task_wait_for_all();
The variablesportrf_cl , trsm_cl , syrk_cl and gemm_chre the codelets corresponding
to the computation kernels. The data handles used for the tasks are in this example
blocks of the matrix A.

Finally, StarPU users and developers can rely on a large set of tools to analyze
application performance, which is important to understand the behaviour of the runtime
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system, scheduling decisiongtc.

1.3.3 Distributed StarPU
General concepts

The StarPU runtime system has been extended to support distributed applications [12].
When distributed applications are executed, each process executes the same program, the
same instructions, but parts of the program are conditioned by the rank of the process.

The starting point to write distributed applications with StarPU is the data distri-
bution: how the data manipulated by tasks are spread over the available nodes. The data
handles are created by specifying on which node they are actually allocated.

StarPU by default executes tasks where the data is located: the node which owns
data to execute a task will execute this task. Since aftarPU processes execute the
same program, all processes handle the same instructions to create tasks, and thus unroll
the same DAG. By analyzing the data required to execute each task, and their access
mode, StarPU  knows which node has to execute which task: each node will execute the
tasks which write in the bu ers it owns. If this node does not own bu ers it needs to read
to execute this task, the node which owns the data will send it. If a task needs to write
several data handles that are not all owned by a common node, the default policy is to
select the node which will require the smallest total of transferred amount of data.

With such working, data exchanges between nodes are inferred by the runtime system
from the task graph and are not explicitly written by the application developer, which
simpli es a lot the development of distributed applications.

The DAG of the distributed version of theCholesky factorization depicted in Algo-
rithm 1 is the same, but mapped on the set of available nodes, as illustrated by Figure 1.5.
Internal data dependencies in a node are represented by gray arrows and required network
communications between nodes to exchange data handles are represented by black arrows.

Communication engine

StarPU-MPI |, the name of theStarPU extension for distributed executions, provides
an API to the user to manage distributed executions. Internally, it uses by default the
MPI interface to make network communications, thus it can work on top of any MPI
library. A StarPU thread is dedicated to manage the communications: this thread makes
communications progress and watches their termination. Indeed, all MPI communications
posted byStarPU are non-blocking(i.e. the function call does not block the thread until
the completion of the communication) and the status of these communications has to be
watched to know when a communication is over, which can unblock tasks waiting for a
data handle from another node or waiting to write in a data handle being sent to another
node. Only this thread makes MPI calls, to avoid the need faviPI_THREAD_MULTIPLE
required to make MPI calls simultaneously from di erent threads.

The use of non-blocking functions and a dedicated communication thread allows to
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Figure 1.5: Distribution of the Cholesky DAG on 3 nodes. Inter-node dependencies
trigger network communications.

overlap communications with computations,i.e. executing simultaneously communica-
tions by the MPI thread and tasks on other workers. While this can be a tedious work
to code such feature manuallyStarPU-MP1  allows to do it seamlessly, without real

additional work from the developer.

Actually, the MPI interface is not well-suited for distributed task-based runtime sys-
tems. The MPI API ts with (and was designed for) Bulk Synchronous Parallel (BSP)
applications, which alternates phases of computations and communications: all workers
execute computations, then only one worker is in charge of communications and then cir-
cling back to computations (this is called thefork-join model). Task-based applications
are more irregular: each task is scheduled and executed independently from each other
(except the respect for dependencies), and any type of synchronization is avoided. Thus
communications can be triggered as soon as a task ends, and conversely, tasks can be ex-
ecuted as soon as a data is received, without any synchronization at node or application
level.

In this context, the main missing feature from MPI for task-based runtime systems is
event noti cations: being able to register a callback function to execute when an event
occurs: for instance, tellingStarPU expected data handles have just been received,
which ful Is the dependency requirements of a task and allows to schedule this task for
execution. As well as communications could be issued directly from the task prolog,
executed by the same worker which just executed this task, to avoid the extra cost of
passing through the communication thread. This means the multi-threading support of
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the communication library has to exist and be e cient.

Moreover, task-based runtime systems can issue bursts of communications requests
(at the beginning of an application, when the result of a task is required by many nodes,
etc), which have to be e ciently handled by the communication library. First of all, the
communication library has to scale well regarding the number of issued requests. Then,
hints can be given to the communication library about the communication priorities,
to help the communication scheduling: the developer of &tarPU application can de-
ne priorities to submitted tasks, and these task priorities can be used b$tarPU to
determine communication priority. Unfortunately, the MPI standard does not support
communication priorities.

All these wished features are actually provided byjNewMadeleine . This is why
StarPU-MPI  has been ported to use the native interface diewMadeleine [21], and
takes bene t from the multi-threading support, event noti cations, priority support, etc.
When this back-end is used (enabled at compile time), much part of the communication
engine logic is delegated ttNewMadeleine : communication priorities, monitoring of
running requests, communication progresgtc. Send operations are issued directly from
workers and a thread managed bjNewMadeleine executes callback functions.

Di erences between theNewMadeleine and the MPI backends of StarPU are
further discussed in Appendix A.

1.4 Goals and contributions of this thesis

Optimizing HPC applications pursues usually one general objective: saving resources.
These resources can be temporal: reduce the duration of an application execution; and/or
spatial: require less memory capacity or less hardware resourceg( less nodes) to run
the same application.

To achieve this goal, optimizations can be made in several layers of our software stack:
improving the application algorithm in the user application (better initial data distribu-
tion, communication-avoiding algorithms,etc), improving the runtime system behaviour
to better exploit the resources (e cient schedulers, correct performance prediction mod-
els, low overhead,etc), and improving performance of communication libraries (good
scalability of the number of request, low matching durationetc).

Even if these software layers are dependent on each othee( an application needs
a runtime system, but runtime systems are developed for applications) and performance
issues are found when using the whole stack, applications, runtime systems and com-
munication libraries can be optimized independently. Indeed, changing the application
algorithm does not require interaction with runtime system developers and improving
scheduling policies can stay opaque to the end-user of runtime systems, for instance.

The proposal of this thesis is to do the oppositeoptimize task-based runtime sys-
tems and communication libraries together, by improving their interactions
Both the runtime system and the communication library have information about their ac-
tivities: the runtime system can know future communications to be issued, the estimated
end of a task execution, the location of data handles, task prioritiestc; while the com-
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munication library knows the state of the network, which communications are incoming,
performance of the network and its possible optimizationgtc. These two software layers
should be able to exchange information about their respective state in order to provide
more hints for their decision-makings.

Although, in this thesis, the ideas to increase interactions between task-based runtime
systems and communication libraries are implemented BtarPU and NewMadeleine
the coupling between the runtime system and the communication library should remain
loose. Rather, we propose interfaces to exploit the ideas. These interfaces should be
portable enough to be implemented in any task-based runtime system and communication
libraries with similar constraints as the ones we are dealing with. Implementations made
in StarPU and NewMadeleine can be seen as prototypes: they aim at proving the
feasibility of the interface and evaluating the performance gain.

Three kinds of opportunities for better collaboration between task-based runtime sys-
tems and communication libraries have been explored during this thesis:

Tracing systems. Being able to precisely and e ciently trace application executions
Is paramount in order to understand the behaviour and performance of applications.
Recording execution events can add an execution overhead, reduce application perfor-
mance, and more important: change the behaviour of the applications. For distributed
applications, the traces gathered on each node have to be synchronized to keep co-
herency in the timeline of events. However, this requires distributed synchronized
clocks, which is not straightforward to provide.

In Chapter 3, we rst describe the tracing system used witlstarPU . Then, we present
few sources of performance overhead when using tracing systems and give hints to
reduce them. We evaluate dierent methods of clock synchronization and evaluate
their accuracy for analysis of distributed traces. Finally we discuss requirements all
tracing system should ful Il to be competitive enough.

Dynamic broadcasts. Some task-based algorithms need to send the same data to mul-
tiple nodes,i.e. broadcast patterns appear in their task graph. Plain MPI applications
can take advantage of routines dedicated to such situation, which will optimize the
broadcast by using the most suitable routing algorithm. However, broadcasting rou-
tines provided by the MPI standard does not t with the constraints of StarPU

We propose in Chapter 4 a new approach to overcome these constraints, while using
optimized broadcasting trees and improve application performance.

Interferences between computations and communications. Runtime systems
such asStarPU naturally overlap communications by computations. This means
computations and communications are executed simultaneously. Since these two
activities share the same resources (processor, memory systestt), interferences
between computations and communications can happen, impacting their respective
performance.

We present in Chapter 5 the impact of computations and communications on the
performance of each other, when they are executed side-by-side. We study especially
the e ects of processor frequency variations and memory contention.
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Chapter 6 focuses on the impact of memory contention between computations and
communications. We propose a model to predict memory bandwidth for computations
and communications, when they are executed simultaneously, according to the number
of computing cores and the data locality. This model helps to better understand how
the system deals with memory contention and where are the bottlenecks in the memory
system.
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Chapter

Related Work

his chapter presents the work related to topics covered in this thesis. First sections
describe programming models used in HPC applications and present existing task-
based runtime systems. Then, we explain how distributed models are integrated in other
task-based runtime systems, and how communications can be optimized by the runtime
system. The rest of the chapter browses the literature related to the contributions of this
thesis.

2.1 Programming models

The general problematic about programming HPC machines is how to express parallelism
when writing application code. Several methods exist, providing more or less abstraction
of the machine and requiring instructions from the programmer more or less implicit
or explicit. Task-based model (presented in section 1.3.1) makes programmer implicitly
express the parallelism of its application and provides a high level of abstraction of the
machine to ease the writing and portability of applications.

Fork-join model

The most common parallel programming model is thirk-join model (or BSP) where the
program is a sequence of parallel regions interleaved by sequential sections, as illustrated
by Figure 2.1. Many applications use this model to make computations in parallel sections:
each thread works on its dedicated set of data; then in the sequential section, only one
thread does a speci c task, for instance communication instructions.

Fork-join applications can be written in several manners, the most common being with
OpenMP . OpenMP [91] is a runtime system, driven by annotations in the application
code (calledpragmag to explain how the code should be parallelized. An example is
given in the following code snippet, which parallelizes the sum cell-by-cell of two arrays
in a third array:
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Figure 2.1: Thefork-join model.

int i;

#pragma omp parallel for
for (i = 0; i < n; i++)

cli] = afi] + b[il;
}

Compared to task-based programming paradigm, this model is simpler, yet more lim-
ited: since there is no mechanism to nely manage dependencies in the whole application
(at least in the rst versions of the OpenMP standard), the parallel sections fork) are
almost limited to embarrassingly parallelsections of the program. To start the next part
of the program, if the previous part has to be nished to keep data coherence.g. not
reading data that is not completely computed (written) yet), a synchronization is re-
quired: wait (join) for the end of all threads in the previous parallel section. In case
of load-imbalance, this can lead to idle time (some threads do nothing, waiting for the
other threads), which represents wasted resources. In the same vein, it can be di cult
to overlap several steps of the program when data dependencies have to considered or
overlap communications with computations [105, 76].

With task-based programs, the knowledge of data dependencies allows an implicit
parallelism handled by the runtime system. As long as dependencies are satis ed, tasks
can be executed without having to wait for other threads, which are maybe working on
independent data (thus waiting for them is useless). Overlapping program phases or
communications and computations is implicit and thus straightforward with task-based
runtime systems.
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Plain MPI

Distributed systems with multicore processors can be programmed with only MPI in-
structions to parallelize the application. In this case, one MPI process can be launched
per processor core. The parallelization is driven by selecting the computations to execute
and the data to use according to the rank of the MPI process. Synchronization points
consist in exchanging messages between MPI processes: it can be between processes run-
ning on the same node ifitra-node communication) or on di erent nodes ifter -node
communication).

While this solution is simple to use, it has several drawbacks. With one MPI process
per core, it can be more di cult to take into account the machine topology to optimize
applications. The point-to-point communications are more numerous and collective com-
munications involve more MPI processes, whereas several MP| processes in a collective
can be on the same node. The memory consumption can be much higher with plain MPI
programs: data being replicated on several MPI processes can in fact be replicated in the
memory of a single node: if processes knew the topology, maybe one copy of the data on
the node would be enough. More communications implies also more memory allocated
for reception bu ers.

On heterogeneous systems, MPI processes running on a same node have to nd a
consensus on which process will use the accelerators, and then e ciently balance the
workload between processes computing with an accelerator and other processes.

MPI+X

MPI+X is a programming model with MPI associated with another runtime system han-
dling the program parallelization. In such case, usually MPI manages distributed memory
and X shared memory. A common mix is MPI andOpenMP : there is one MPI process
per node, MPI handles the distributed memory by exchanging messages between nodes;
and each MPI process useQpenMP to express the possible parallelism on each node,
using shared memory. This way each MPI process can exploit the topology of nodes,
especially regarding the memory organization.

Other than OpenMP , the companion of MPI can be any programming model running
on a single node, exploiting shared memory. It can be, for instance, simple threads, or
even... MPI [64]!

A trade-o between one MPI process per core and one MPI process per node (with
another runtime system for parallelization inside a node) is to use one MPI process per
memory group in the memory topology, especially per processor or per NUMA node. This
can be a good approach if the runtime system X ignores the memory topology.

StarPU can be used in a MPI4StarPU  model: in this case,StarPU would not
see the distributed side of the program, would only be used for parallelism inside nodes
and would let the application developer manually manage the distributed aspect of their
application. Such use-cases can appear, for instance, when progressively transforming an
MPI+X application into a StarPU application.
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The distributed extension of StarPU can be considered as an implementation en-
compassing an MPI+threads model.

PGAS

The MPI standard is based on explicitly exchanging messages between MPI processes.
Another communication model is the Partitioned Global Address Space (PGAS) model:

a global memory address space is split across all the nodes, and each process can access
memory regions exposed by other processes, without any speci c instruction from the
target process for this speci ¢ access. In other words, this model allows to access remote
memory regions without requiring synchronization between the sender and the receiver
process.

Several libraries and runtime systems implement this communication model:
UPC [47], UPC++ [127],Chapel [32], etc. PGAS is now part of the Fortran 2008
standard with coarrays The MPI standard supports a PGAS model (also calledne-sided
operations) with its set of Remote Memory Access (RMA) routines.

The PGAS programming model does not t withStarPU 's design. One of the princi-
ples in theStarPU 's working is a process can work by ignoring the current state of other
processes. When communications are necessary, the sender sends a message when it is
ready to send the data and the receiver explicitly (internally byStarPU ) posts a receive
request when it is ready to receive the messaged. it does not use the bu er anymore for
other purposes). By requiring explicit actions from nodes involved in a communication,
the data coherency is guaranteed. With PGAS systems, only one of the process takes
the initiative to access remote memory of another node. However, without any additional
synchronisation mechanism, the active node cannot know if the data located in the re-
mote memory of the passive node is already in the state the active node wants to get
the data. In the same fashion, it is important forStarPU to know when a data is com-
pletely received or sent, since it can unlock tasks to execute, which requires a noti cation
mechanism.

To summarize, the PGAS model would need synchronization and noti cation features
to properly work with StarPU . Implementing them would mimic the working of MPI
backend of StarPU

Conclusion

Presented parallel programming models require to explicitly express parallelism in the
application and to use synchronization points to ensure application coherency. Such work
can be tedious for the application developer and the resulting program may not be portable
on other clusters. Moreover, the developer has to know several runtime systems: usually
at least two, for both inter- and intra-node parallelization. The task-based model allows
to implicitly express parallelism (at a node or cluster level) of applications and the role
of the runtime system ensures a good portability across di erent machines.
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2.2 Task-based runtime systems

StarPU (already presented in section 1.3.2) is not the only distributed task-based run-
time system. Others exist, and they all have their own speci cities.

PaRSEC

PaRSEC [25], the successor oDAGUE [26], is a runtime system similar toStarPU ,
except it supports more input formats to describe programs. It is originally focused on
the PTG representation, but it can also be used with the STF model.

Parametrized Task Graph (PTG) is a algebraic representation of a task-based pro-
gram [37]: each task is described by its code (usually calls to C functions) and dependen-
cies between tasks are represented with algebraic conditions on input and output data of
each task. The following code snippet is th&RSMpart of the PTG version of the tiled
Cholesky factorization:

TRSM(k, m)

/I Execution space
k =0 .. NT-1
m = k+1 .. NT-1

/I Task Mapping
© Alm][K]

/I Flows & their dependencies
READ A <- A POTRF(k)
RW C <- (k == 0) ? A[m][K]
<- (k '= 0) ? C GEMM(k-1, m, k)
A SYRK(k, m)

1
\Y

-> A GEMM(k, m, k+1..m-1)
> B GEMM(k, m+1..NT-1, m)
-> A[m][k]
BODY
trsm(A /* A[KI[K] * , C /* A[m][K] */ );
END

The main advantage of such model is the lightweight representation of the DAG for
the runtime system: each task composing the whole task graph of an application does
not need to be instantiated ahead of time, instead the algebraic representation of the task
graph indicates to the runtime system, from the current application state, which kind of
task has to be executed after the end of a task. While the memory used for the DAG
representation ofStarPU applications is linear with the number of tasks; with the PTG
representation ofPARSEC applications, it is linear with the number of types of tasks.

Unlike StarPU , eachPaRSEC's thread can change its purpose during program ex-
ecution: during a phase without communications, all threads can execute tasks and no
thread will be in charge of communications. When a phase with communication will
start later, any thread can take the bullet to deal with communications. The same goes
for threads driving GPUs. This mechanism allows to better adapt the runtime system
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behaviour to application phases.

By default PaRSEC relies on the MPI interface for network communications. Never-
thelessPaRSEC supports other communication systems, such as directyCX (Uni ed
Communication X [106]), a low-level communication library, abstracting the access to
di erent types of network interfaces; orLCI [41], which is a lightweight communication
library designed originally for graph analytic, avoiding the pitfalls of MPI mismatching
with requirements of graph applications and supports multithreading (in a word: a library
with features similar to NewMadeleine ).

OmpSs

The OmpSsprogramming model [46] is similar tdpenMP (annotations, fork-join model,

etc) and is used as research platform to experiment and implement research ideas, which
could end in the OpenMP standard. Its distributed implementations [28, 112] rely on
the PGAS communication model and a master/slave design: the master process analyzes
the task graph and sends to slave processes tasks to execute.

The master/slave model is known to have scalability issues: when the number of slave
processes increases, the bottleneck is the single master process which has to supervise the
activity of more slave processes. To mitigate this issue, several levels of hierarchy can be
introduced in the master/slave model: the main master process distributes coarse-grain
work to submasters and these submasters manage a set of slave processes.

With StarPU , each node unrolls the same task graph of the application and keep
only the task it will execute. This method avoids the need for a centralized approach and
monitoring the state of each node or exchange status messages between nodes. However,
it cannot dynamically handle load unbalance if the original data (or task) distribution is
not optimized.

OpenMP

Version 3 of theOpenMP standard introduces thetask keyword and the version 4 adds
the support of dependencies between tasks. The conception of task-based applications
with OpenMP is di erent from just using a fork-join model: the application has to be
taski ed and dependencies have to be expressed. T@gmainstructions can become
quite long and complex...

Regarding distributed applications,OpenMP can be used along with MPI with the
fork-join model. Calling MPI routines directly from OpenMP threads allows to avoid
the need to wait the end of a parallel section to launch communications, but it adds a
complexity level to the program and can be tedious to master. Moreover, it requires a
correct support of MPI_THREAD_MULTIRbE the MPI implementation. To ease this
usecase, the version 4 of the MPI standard introduceghrtitioned communications each
thread can bring its contribution to a single message, without requiring to initialize the
MPI library with the MPI_THREAD_MULTIEEading support.

Actually StarPU provides an implementation of theOpenMP interface, to be used
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as the runtime system executingpenMP instructions [11].

And many others

Quark (QUeing And Runtime for Kernels ) [126] is a task-based runtime system for
multi-core systems with shared memory, especially targeting linear algebra applications. It
uses the STF model and inspired a lot the design &tarPU , especially thetask_insert
semantic. However, the project does not seem active anymoiéarKhan showed in his
PhD thesis [15] some concerns about the distributed extension Quark , QuarkD :
unrolling the whole DAG on all nodes might become a bottleneck when the number of
task increases, and can be partially unnecessary for specic applications, for instance,
coupling applications described by task graphs with several components connected with
only few dependency edges.

Legion [19], introduced inBauer 's PhD thesis [20], is a task-based runtime system
focused on data locality.

Other task-based runtime systems exist, among then®neAPI (now encompassing
Intel 's Threading Building Block ), SuperGlue [115],Charm++ [9], HPX [75],
etc. More detailed comparisons between task-based runtime systems about their di erent
working, features and performance can be found in the literature [114, 108, 66].

2.3 Communications with task-based runtime systems

As discussed in the previous chapter (in page 28), MPI is not the most well-suited to be
integrated with task-based runtime systems. MPI was not designed for irregular applica-
tions requiring asynchronous mechanisms and high reactivity.

Integrating communications in task-based runtime systems

Di erent techniques can be applied to use a communication library in a task-based pro-
gramming context. Each task-based runtime system proposed its solution to integrate a
communication library and support distributed executions.

HCMPI [34] is an extension of theHabanero-C task-based programming model to
support distributed executions. One major goal oHCMPI is to avoid the synchroniza-
tions imposed by thefork-join model, where communications are made by a single worker
after waiting for all workers to nish their computations. The design of the distributed
extension is positioned between the MPI®penMP model and a PGAS model: to handle
the asynchronicity of the task-based model and be able to easily overlap communications
by computations, communications are non-blocking, can be launched from tasks and are
handled by speci c workers, di erent from those executing computation tasks.

In the OmpSs programming model, MPI communications can also be made inside
tasks. To prevent blocking communication operations from wasting worker time to wait
for a communication inside a taskSala et al. proposed [100] mechanisms to pause tasks

Interactions between Task-based Runtime Systems and Communications 39



2.3. Communications with task-based runtime systems

and exclude them from the ones being ready to be executed, when they start a blocking
MPI communication, and release them when the MPI communication is nished. This
way, the worker which was executing the task can execute other tasks while the blocking
MPI operations are not completed. Another thread is dedicated to poll the completion
status of the MPI operations.

One-sided communications can also be used@mpSs[99]. Both the runtime system
and the PGAS library needed proper changes, especially to be able to notify receivers
when data arrived and to wait for speci c communication operations, and not a set of
communications.

Some attempts were made to try to extend the MPI interface to include a noti cation
system. For instance Schuchart et al. proposed [102] an extension to register callback
functions to be executed when an MPI request is nished. Their solution still requires a
progress thread to make MPI check the status of current requests, but their evaluations on
several applications (includingPaRSEC ones) show performance gains. Similar proposal
was made byProtze et al. [97].

To the best of author knowledge, a combination of a task-based runtime system with a
natively event-driven HPC communication library has not been proposed nor evaluated.
This thesis might in a sense |l this lack, by exploring the possibilities of the couple
StarPU and NewMadeleine

Considering communications from a runtime system point of view

After integrating communications into the working of a task-based runtime system, the
runtime system can also optimize their use and take them into account to make smart
decisions.

Castillo et al. expose [30] internal events d'VAPICH and implement mechanisms
in OmpSsto listen to them and react accordingly. The knowledge of the communication
library internal states now available to the runtime system allows them a better reactivity
to network events and especially an optimization of collective operations which collect
data from several peersd.g. MPI_Gatheror MPI_Alltoall ): when data from a collective
operation is only partially received (.e. only a subset of involved nodes already sent
their contribution), tasks that require only the received portion of data can immediately
be launched, without waiting the end of the whole collective operation. This permits a
better overlap of collective communications with computations.

Pereira et al. propose [93] to prioritizeOpenMP tasks containing MPI send instruc-
tions (and their parent tasks), to reduce the idle time waiting to receive data. They study
di erent techniques: manually setting the priority of OpenMP tasks, with a higher value
for those containing send instructions; a semi-automatic approach annotatir@penMP
tasks which contains send instructions to inform the runtime system and let it manage the
priorities; and an automatic approach based on building pro les of tasks which contained
MPI operations, to be able to set suitable task priority to future tasks matching the same
pro le. The main goal in this work was to reduce the time a task blocks a thread because
of a blocking MPI operation inside.
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This situation cannot appear in StarPU , since communications are not executed
inside tasks and are non-blocking; a lengthy MPI communication will only delay the
execution of tasks waiting to receive this data; during the time, workers can execute other
ready tasks.

Again, presented work is close to the problematic of this thesis (better collaborat-
ing between communications and task-based runtime systems), but does not consider a
runtime system with an STF model and event-based communication library.

In StarPU

In the second chapter of his PhD thesis [104], Mai®ergent improves the scalability of
StarPU-MPI  in three ways, detailed in the remaining of this section.

In StarPU-MPI  applications, by default all nodes unroll the same task graph. This
is required by the STF model to avoid synchronizations and/or control messages between
StarPU processes. This means each node analyzes all tasks of the program, and keeps
only the tasks it is involved in. Sergent showed the time required to analyze the whole
task graph (the submissiontime) can become a bottleneck when the number of tasks and
nodes increase. To address this issue, the task graph canpoened from the application
level: each node will submit only tasks, which the runtime system needs to be aware of
on this node: none of the submitted task will be useless for the locatarPU process.
This reduces the number of task each node has to discover and improves scalability.

Another factor limiting the scalability is the memory consumption by both the runtime
system itself and the application. A cache mechanism was introduced in the memory
management ofStarPU to avoid heap fragmentation and memory waste. This is mainly
dedicated to memory allocations for MPI receptions.

Unrolling the whole DAG at the beginning of application execution allows for the
runtime system to have visibility about all the data dependencies and future tasks, which
allows to optimize scheduling decisions. However, it requires to allocate more memory
at the beginning of the execution for the internal task structures but also for bu ers
receiving data from MPI communications. These early allocations can lead to consume
too much memory. To tackle this issueSergent introduces a mechanism to control the
task submission ow by blocking the submission of tasks, based on two possible criteria:
the number of submitted tasks not executed yet, or the amount of memory allocated for
the submitted tasks.

To prevent duplicated communications,e.g. when the same data has to be sent to
another node for several di erent tasks, the data is sent only once, and not independently
for each task that requires it [12]. This reduces the number of communications and save
memory consumption used by reception bu ers.

This work improves performance of the distributed extension dbtarPU , but at the
StarPU level: the communication library is not aware of the optimizations made in the
runtime system.
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2.4 \Work related to our contributions

This section presents work related more speci cally to our di erent contributions.

2.4.1 Broadcasts in task-based runtime systems

The main question addressed in Chapter 4 is how to use optimized routing algorithms for
broadcast communication patterns between nodes, while these broadcasts are not explicit
and no StarPU process has a whole vision of the application DAG. The two challenges
are the detection of the broadcast and the participation to the broadcast of nodes that
do not know ahead of time the data they will receive is actually part of a broadcast.

E cient broadcasting routing schemes have already been discussed a lot [123, 95, 118,
101]. The presented work relies on these existing algorithms and can use any tree-based
broadcasting algorithm.

With the PTG representation used byPaRSEC, all nodes know the full task graph,
they can easily know all nodes involved in a broadcast and the entire graph being known
at the beginning of the execution, explicit call to broadcast routines can be made. In
practice, PaARSEC uses binomial or chained trees, on the top of MPI point-to-point
requests. Broadcasts are identi ed directly from the algebraic representation of the task
graph, which the application programmer thus has to provide, while our approach can
be introduced in most task-based runtime systems, which use a dynamic task submission
API.

With the master/slave model of OmpSs, only the master node knows the whole task
graph and distributes tasks to slave nodes. Thus, the master node can easily detect
broadcasts and tells slave nodes how to handle them. However, no information is published
about the optimization of broadcasts.

Charm++ comes with the TRAM subsystem for collective communications, but it
Is supposed to be used explicitly by the application, which makes its constraints di erent
from our use case.

HPX executes task on remote nodega active messages. Its API contains routines
to explicitly invoke a broadcast involving several nodes.

All'in all, other task-based runtime systems either do not optimize broadcasts, or have
an API or a DAG representation that allows for explicit use of broadcasts, which are
di erent constraints than dynamic task submission.

2.4.2 Interferences between computations and communications

Chapters 5 and 6 explore the possible negative interferences between computations and
communications when they are executed simultaneously, since task-based runtime sys-
tems usually provide this feature. We mainly study the impact of processor frequency
and the impact of memory contention, of which we propose a memory bandwidth shar-
ing model. Unlike many studies which tend to neglect performance of communications
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in favour of computations, our work consider equally performance of computations and
communications.

Impact of frequencies

A lot of research is done about the impact of CPU frequency scaling, mostly to save energy.
However, most of these works consider communication phases as a good opportunity to
reduce CPU frequency, because communications would be less CPU-intensive. In our
work, we want to reach maximal performance of both communications and computations.

Liu et al. studied [84] power consumption of Remote Direct Memory Access (RDMA)
communications. They noticed that RDMA consumes less CPU cycles and memory band-
width than TCP/IP. Moreover, CPU frequency has almost no e ect on RDMA perfor-
mance, unlike TCP/IP. Their work focuses on power consumption and only on commu-
nications.

In order to save energyLim et al. proposed [82] to decrease CPU frequency in com-
munication phases of executed programs. They observed that reducing frequency does
almost not degrade communications. However they only use Ethernet-100, which does
not behave the same as high-performance networks.

Sundriyal et al. applied [111] Dynamic Voltage and Frequency Scaling (DVFS) and
CPU throttling techniques during collective communications to reduce energy consump-
tion. They accepted a communication performance loss of 10% and only changed the
behavior of the communication core, not of the whole machine.

Memory contention between computations and communications

Regarding memory contention, previous works focus mainly on impact of memory con-
tention on computation and tend to neglect performance of communications.

Memory contention caused by communications and computations is observed®iai
et al. [31]. They did not evaluate the impact of this contention.

Balaji et al. studied [18] CPU load and memory tra ¢ caused by communications
with TCP/IP over 10 Gbps Ethernet and with RDMA over 10 Gbps InfiniBand . They
did not discuss the interaction with simultaneous memory-bound computations.

NiMC (Network-induced Memory Contentiol is introduced by Groves et al. [58]:
they studied the memory contention generated by network communications on a set of
applications with and without RDMA. However, they only considered the performance
of computation, not the performance of the network communications. The solutions
they proposed are already implemented in our software stack (using a dedicated core,
o oading RDMA transfers) or penalize communications (reducing network bandwidth to
reduce memory bandwidth for communications and save it for computations).
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Modeling memory contention

Gropp et al. proposed [57] to improve thepostal model, commonly used to model the
performance of ping-pong exchanges, by taking into account the number of MPI processes
accessing the Network Interface Card (NIC) at the same time. It is not applicable to our
work since in our context only one thread handles all communications done by a host.

A theoretical model of the memory bandwidth sharing between computing and com-
municating threads was made by.angguth et al. [79]. Although they considered com-
munications and computations are executed simultaneously, in their model, when com-
munications end before computation, computation gets again all the available bandwidth
and vice-versawhen computation ends before communications. We rather focus on the
steady state when there are always computations and communications in parallel (as in
many StarPU applications), by considering bandwidths instead of durations. Moreover
our model is more low-level, by considering the data placement on the machine topology
and the number of computing cores.

Work presented in the rest of this section did not consider communications, but was
helpful to better understand the memory system, and the possibilities to model its be-
haviour, especially under contention.

Queuing theory is often used [35, 119] to model memory contention. Each queue can
represent one contention point, and assembling them can describe the general behaviour
of the whole memory system. Model parameters are derived from hardware counters,
read while executing applications. This kind of model ts well with homogeneous queue
consumers (computing cores, caches, memory controllers), but is more di cult to use in
our context, because of the heterogeneity of data streams to consider.

Wang et al. presented [122] the possible bottlenecks in the memory system to model
them with Integer Programming, to nd the optimal number of cores to execute memory-
bound applications, especially on NUMA systems.

Majo andGross studied [86] the behaviour of memory controllers in charge of serving
local and remote memory accesses. They distinguished the local memory bandwidth (of
the local memory controller) and the remote memory bandwidth (of the QPI bus) and
modeled the maximum available bandwidth as a pondered sum of the two bandwidths,
by introducing a sharing-factor. The evolution of this factor depending on the number
of computing cores helps to understand how the memory controller manages its queuing
fairness between di erent types of memory requests.

Goodman et al. presented [55Pandia , a framework to predict performance of other
con gurations (number of threads and their placement) of parallel applications. From a
machine description and 6 well-chosen application runs, they have all required information
to make accurate predictions, by knowing the bandwidth capacity of the di erent memory
buses. They take into account parallel fraction, memory accesses, load balancing and
computing resource demands of applications, and rely on hardware counters to get these
information.
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2.4.3 Tracing systems

To better understand interactions between runtime systems and communication libraries,
tracing application executions can be very helpful. Tracing applications consists in record-
ing the behaviour of an application execution to analyze it latter in depth and try to
understand the performance. Many articles start from observations of trace executions to
explain their ndings and improvements, for instance [53, 29, 90]. Two main steps form
the tracing process: telling the application what to record and then analyze the execution
traces.

Tracing solutions

A large set of tools dedicated to the tracing work ow is available. Some tools focus only
on a subset of the steps composing the whole tracing process, while others take care of
the whole work ow. As examples,FxT [42] andLiTL [70] are libraries handling event
probes and their storageEZtrace [116]is a library to easily wrap function calls: it stores
events when the functions are entered and left. More complex tools suchTas [107] and
OpenSpeedShop [103] execute the application to trace, process all the collected data
and give information back to the user about the execution.

Trace le formats resulting from a traced execution are usually a raw format, under-
standable only by the library which generated the le. However, once converted, the les
depicting the execution can be in more common le formats, likBajé [43] orOTF2 [49],
to be read by tools to view and analyze the trace, lik&ampir [89], Paraver [94],
Scalasca [54] or VIiTE [38]. Usually, tools focusing on a particular step of the tracing
work ow are linked to speci c tools focused on other steps. Some collaborations tend to
reinforce these a nities, like Score-P [78], a joint performance measurement environ-
ment gathering, among othersTau , Scalasca and Vampir . All these tools can be used
to trace any kind of application, even if they tend to focus on parallel applications.

An overview of the characteristics of traces representing executions of task-based appli-
cations is given in [62], along with propositions to ease the trace analysis. The beginning
of Chapter 3 explains in detail the speci cities of task-based applications when it comes
to tracing their executions and how tracing process works withiStarPU

Regarding other task-based runtime system®mpSs [46] relies on theExtrae [1]
library to generate traces, browsable by th&araver trace explorer, andPaRSEC [25]
uses an internal system to record events [29] and provides a set of tools to convert resulting
trace les in more convenient le formats, such adajé .

Distributed clock synchronization

When benchmarking or tracing distributed applications, getting the current time to times-
tamp events, and thus be able to locate them in the time, is usually done by relying on
the local clock of each node. However, each node can have a di erent time origin and,
even worse, clocks can have di erent drifts. Therefore, clocks have to be synchronized
between nodes to be accurate enough.
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The problem of distributed synchronized clocks, applied to tracing systems or other,
has already been covered in the literature, to explain the origin of clock di erences in
distributed systems, to propose algorithmic solutions, and to present solutions used by
applications. Among many work,Becker et al. explain [24] how non-constant clock
drifts, caused for instance by processor frequency variations, can have a severe impact
on distributed clock synchronization. They show thatpost-mortem linear interpolation
of clock drift based on clock synchronizations before and after application execution is
not enough to compensate for these clock variations, especially on long runs (after several
minutes). Jones et al. statistically evaluate [74] the accuracy of time synchronization on
several leadership class supercomputers in 2016, and report their clock synchronization is
not as good as expected, for such top-world supercomputers.

The problem of clock synchronization is not only present in the HPC area. For com-
modity computers, the Network Time Protocol (NTP) [8] is used by operating systems
to have a correct clock, but with a coarse-grain precision: only around 208 on local
networks. In research about distributed systems, for instanc&;lément and Dage-
nais synchronize [36] event timestamps to trace events in OS kernel during distributed
executions.

In the HPC area, there are two main features requiring accurate synchronized dis-
tributed clocks: correctly timestamping events to trace distributed executions and bench-
marking inter-node communications. Both su er from the same problems and can usually
be solved by similar solutions, but there are still some di erences.

In tracing systems, one of the most important requirements is to keep sequential
consistency in the traces, for instance to avoid communications appearing as received
before they are sent (this kind of artifacts are sometimes calledchyonsg. In addition
to correctly synchronizing clocks in order to accurately compute the clock o set during
post-processing, some tools also rely on logical clocks: they look for timing inconsistencies
and try to correct them by changing their timestamp to preserve the correct chronological
event order [48]. WithVampir , two barriers are used before and after the application exe-
cution, and then the event timestamps are corrected by interpolating the clock o set [77];
Scalasca use additional logical clocks to x remaining inaccuracies [23, 22].

For communication benchmarks, especiallgollective communications (involving sev-
eral processes), the accuracy of a synchronized clock is of paramount importance to have
precise measurements and to be able to correctly analyze the results. The problem lies
more in being able to start an MPI operation at the exact same time on all nodes, rather
than measuring the duration of an action taking place over several nodes. If all processes
are able to start at the exact same time, we can use local clocks to measure the duration of
the local action, and then aggregate the duration of all local events to get an overview of
the global duration. Many articles [60, 61, 65, 80, 69, 68] explore what di erent methods
are used in MPI benchmark sets to synchronize clocks. Lots of tools just use MPI barriers
in each loop iteration to start the MPI function at the same time on all processes, despite
the inaccuracy MPI barriers can su er from, as pointed out in several papers [69, 65]. A
common practice is also to use the same process (and thus the same clock, not requiring
distributed synchronization) to collect the start and end time of the routine execution to
be benchmarked. SKaMPI was the rst MPI benchmark [125] to implement the most
e cient technique to start a function on several distributed processes at the exact same
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time, with a so-calledwindow-based synchronizatian

In both cases, tracing or benchmarking, synchronizing clocks requires e cient algo-
rithms, to compute clock o set as fast as possible. The literature contains some work
about the communication patterns to use to synchronize clocks [45, 69, 67, 68, 65], im-
plementation techniques [73] or statistical approaches [85, 39].

In the MPI standard, the function MPI_Wtimereturns the time in seconds since an
arbitrary time in the past. The origin of the clock used byMPI_Wtimds guaranteed not
to change during the life of the process. However, the used clock does not have to be
necessarily synchronized with other processes in the MPI job. In other words, having a
global synchronized clock is left to the appreciation of MPI library developers, which is
currently not the case inOpenMPI , MVAPICH or Intel MPI.

We explain in Chapter 3 how clocks are synchronized to trace distributed executions of
StarPU applications, and we empirically evaluate the accuracy of our implementation.

2.5 Conclusion

Task-based paradigm is an emerging programming model for HPC applications, to easily
abstract the complexity of supercomputers. Nonetheless, there is a lot of room for im-
provements regarding the distributed mechanisms of current task-based runtime systems:
the MPI standard does not t well with the desynchronized aspect of task-based run-
time systems, which leads to more or less complex solutions, presented above. Moreover,
network communications could be more taken into account by runtime systems to make
smarter decisions about scheduling, data placemermtc.

Two steps are required to achieve correct performance with distributed task-based
runtime systems: the use of a communication library in the runtime system to execute
distributed applications and then, optimizing communications from the runtime system,
by improving interactions between task-based runtime systems and communication li-
braries. This thesis focuses on the second step, by exploring which information have to
be shared between the task-based runtime system and the communication library.

Most of the reviewed related work does not consider the use of an event-based commu-
nication library, more suitable to requirements to task-based runtime systems. Thus, we
try to improve the possible interactions between them and more suitable communication
libraries, like NewMadeleine
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Chapter

Tracing Task-based Runtime Systems

orking on the interactions between runtime systems and communication libraries
W requires to rst understand the existing interactions and then observe and analyze
the implemented improvements. Tracing systems can be a handy tool here: they are usu-
ally used to record details of an application execution, to then be able to precisely analyze
and understand the execution. However, these tracing systems have a cost: some of them
require code instrumentation {.e. modi cation in the application code) and they can add
an important performance overhead, sometimes changing the application behaviour when
tracing is enabled, which can be dramatic if tracing the execution makes the developer
actually observes di erent behaviours from the ones he wanted to understand originally.
Challenges for tracing systems are thus to be as light as possible, as well as being able to
bring insightful information to the application user or developer.

Since with task-based runtime systems, application performance can depend as well
on the runtime system behaviour as the application behaviour itself, it is important to
be able to understand how each component of the runtime system (scheduling, memory
management, communicationsgtc) works, and thus have a well-integrated tracing system
in the chosen runtime system. Some of them use their own tracing systems, while others
rely on existing ones.

In this chapter, we present the challenges we faced to e ciently use and improve the
tracing layer in the StarPU task-based runtime system. We explain how the tracing
system works within StarPU  and focus on two aspects: the di erent sources of perfor-
mance overhead coming from the tracing system, and the clock synchronization issue for
precise traces of distributed executions.

3.1 Background: tracing task-based runtime systems

This section presents tracing systems, how they work, the problems they face, and -
nally what the special requirements of task-based runtime systems are regarding tracing
systems.
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3.1.1 Generic tracing systems

Development of runtime systems and applications includes being able to trace their exe-
cutions, to x bugs, improve performancegtc, by having an overview of what is precisely
happening during executions. Here, we focus amine (or post-mortem) analysis: ex-
ecute the application by recording a set of events describing the application behaviour.
When the application terminates, les containing the executiortrace are saved and can
be exploited by tools dedicated to trace analysis.

The tracing work ow can be decomposed in several steps, each coming with their set
of problematic and solutions:

1. Collecting information from application executions. This can be achieved mainly
by manually putting probes into the code of the component to be traced (method
called instrumentation) or by wrapping function calls to let the trace system catch
them;

2. Storing collected information. Trace systems have to timestamp all events and save
all collected data in a persistent format to make the trace data available to the user
for the post-mortem analysis. Data has to be stored in a coherent format (keeping
the chronological order of events, storing all possible kinds of additional data for
each event.etc), preferably minimizing the size of the trace les;

3. Converting raw trace les to more practical le formats. Because of the constraints
on the previous step, the raw trace les are usually not directly exploitable, and
need some processing to be read by other tools;

4. Analyzing the trace les. The converted les during the previous step can be read by
tools to visualize the execution timeline and to highlight the performance bottlenecks
and hotspots, for instance.

3.1.2 Tracing distributed applications: synchronizing clocks

With distributed executions, usually each process is traced locally, generating one trace
le per process. A subsequent conversion step is then in charge of merging the trace les
to generate a single exploitable trace le describing the behaviour of the whole application

execution.

The main concern with distributed traces is the clock synchronization between nodes:
each node usually has a di erent clock origin. Since each process uses its local clock to
timestamp events stored in the trace le, clocks have to be synchronized between the
di erent nodes. Even worse, clocks of di erent nodes can have di erent drifts, causing a
single clock synchronization not to be accurate enough after some elapsed time.

In practice, badly synchronized clocks can break temporal order of events (the best
example is a communication between two nodes appearing in the trace as being received
before it was sent) and/or distort the durations of actions involving several nodes (a
communication can for instance look faster than in the reality).
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There is no straightforward solution to synchronize distributed clocks, which satis es
all requirements: accurate, fast to initialize and to access, scalable with the number of
processes, precise enough for a de ned amount of time and without overhead for the ap-
plication using this kind of clock. Moreover, many factors may in uence the accuracy of
synchronized clocks, from hardware characteristics (processor frequencies, network perfor-
mance, computing loadetc) to software features (algorithmic complexity, for instance).

The distributed clock synchronization problem is discussed in detail in section 3.4.

3.1.3 Tracing systems and task-based runtime systems

Even if task-based runtime systems can be traced and analyzed with existing tools, these
tools are widely used for more classic applications, which are usually more regular (or
even based on the BSP model), and can miss some important information related to the
working of task-based runtime systems. For instance, one of the key components of such
runtime systems is the scheduler, orchestrating the DAG execution onto the computing
units: tracing its behaviour to control and understand its decisions requires to collect
and visualize particular information, such as the number and types of tasks ready to be
executed, which memory node the data bu ers these tasks will use are on, what the current
status of each computing unit is,etc. Moreover, since all the program execution relies
on a DAG, saving this graph,e.g. all information about the tasks and the dependencies
between them, is also important to understand the application structure and how the
runtime system deals with it.

3.1.4 Contributions

Within the context of StarPU , this chapter presents some challenges and solutions while
integrating and using a tracing systems. It makes the following contributions:

1. A presentation of three sources of performance overhead caused by tracing systems.
For each source of overhead, we measure the performance penalty and propose
solutions to reduce it;

2. An empirical evaluation of dierent distributed clock synchronization methods,
along with implementation details to compute clock o sets between nodes;

3. A discussion from the di erent elements learned in the following sections about the
method to e ciently trace applications and which requirements has to t a generic
competitive tracing system.

3.2 Tracing StarPU 's behaviour

The large number of concepts speci ¢ to task-based runtime systems (tasks, dependencies,
memory transfer, schedulingetc) shows how complex the work of such runtime systems
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can be. Thus, it is important to be able to precisely analyze the runtime system be-
haviour, to check if it works as expected, to detect and investigate performance issues,
etc. Each previously enumerated concept can give valuable and ample information about
application execution. A method to retrieve all this information is to record them during
the application execution and exploit them later, in apost-mortem analysis.

To better understand following sections, this one explains more in depth how the trace
gathering works within StarPU and how the collected data can then be exploited.

3.2.1 Trace gathering

The big picture to explain StarPU 's tracing mechanism is that the internal code of
StarPU s riddled with probes to describe what is happening. These probes are instruc-
tions to save an event with a timestamp and additional provided information. These
events are then stored in a le, to be analyzed later.

Let us consider the example of pushing a task to workers: all data dependencies of
this task have been ful lled, the task is ready to be executed by a worker. The function
in charge of this action begins as follows:

int _starpu_push_task to_workers(struct starpu_task *task)

{
_STARPU_TRACE_JOB_PUSH(task, task->priority);

/I ... actually push the task to computing units

_STARPU_TRACE_JOB_RillRj¢nerate an event representing the push of the task given
as a parameter, with the given priority. In fact, it is a preprocessor macro that checks
whether tracing is enabled and then calls the tracing library to store the event.

StarPU relies on a third-party library, FXT [42], to record and store eventsFxT
Is in charge of collecting events, possibly Itering them, timestamping them and saving
them in a raw le. Then, FXT is also used to read the trace le and get all event
information: timestamp, event type, thread ID and additional given information (in the
previous example: the task and its priority).

Internally, FxT allocates a bu er to temporarily store events, before ushing this
buer to a disk, in the trace le. The buer is ushed when it is full or when the
application terminates. During a ush, other threads can continue to record events,
thanks to a double-bu ering system.

For distributed executions, a raw trace le perStarPU process is created.

In StarPU , all possible events belong to a category, for instance:

" TASKtask information: name, color, submission time, dependencies, number, throt-
tling, etc;

" WORKEBomputing unit activity: start and end of task execution, sleep, memory
transfer to execute tasksetc;

52 P. Swartvagher



3. Tracing Task-based Runtime Systems

Figure 3.1: Example of visualization of an execution of th€holesky algorithm with
the StarvVZ framework.

A

DSMall memory management made bystarPU : allocation, release, transfers be-
tween memory nodegtc;

" SCHEDBcheduler activity: new task to schedule, scheduled task, work stealireic;

At execution time, users can select which event categories they want to be recorded.

3.2.2 Trace exploitation

Once the application execution has been traced, a raw trace le p&tarPU process
is left to the user for post-mortem analysis. Since these les are understandable only
for FxT , StarPU provides the tool starpu_fxt tool  which reads the trace les, and
transforms them into les with a more convenient format, for instance:

" paje.trace : the Pajé format stores timestamped events to describe application
behaviour;

" Severalrec les (a format similar to Comma-Separated Valueslisting all commu-
nications, tasks, data bu ers,etc and their characteristics,

" dag.dot: a DOTle representing the task graph of the application, executed by
StarPU

These di erent processed les can be exploited in di erent ways:

" The VITE [38] software can be used to display th&antt diagram described in
the paje.trace le: it will statically represent along a timeline the activity driven
by the runtime system: task executions by workers, memory and network data
transfers,etc. An example of the representation of &tarPU application by VIiTE
is given by Figure 3.3 (page 55).

" StarVZ [53] is an R framework, useful to manipulate data from the trace and to
easily make all sorts of plots about information stored in the trace le. Figure 3.1
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is an example of basic visualization rendered witbtarVZ , where the dierent
plots represent: the parallelization ofCholesky iterations, the task executions by
workers, the number of submitted tasks, the worker status, the number of ready
tasks, a metric representing work imbalance and worker utilization.

Users can manually parse les generated tstarpu_fxt_tool to produce their own
analysis and plots to represent metrics they are interested in.

3.3 Reducing impact on performance

Tracing applications implies executing instructions for the original application processing,
but also additional instructions to record the events. These additional instructions can
add a performance overhead and thus reduce the application performance or, even worse,
change the application behaviour. This section presents three sources of overhead caused
by the trace recording and proposes solutions to reduce these overheads.

3.3.1 Avoid writing traces on the disk during execution

As mentioned earlier,FXT ushes its event bu er on the disk when it is full. FxT will
notice the bu er is full when it will try to record a new event: if the bu er is full, writing
the buer in the le will increase the duration of the probe routine, as much as the
necessary time to ush the bu er. This can a ect application performance, if it happens
during application execution, on a critical path.

We made an experiment to evaluate this possible source of tracing overhead on per-
formance of applications. To generate a lot of events and observe how trace bu er ushes
re ect in application performance, we execute several times the sar@holesky decom-
position of a matrix of size24000 24000and plot the performance of each run. At
the end, the trace le size is 7.1 GB while the trace bu er size is 1024 MB.€. ushes
occurred during application execution). The trace le was recorded onBeeGFS paral-
lel lesystem. Results of this experiment are depicted on Figure 3.2: blue dots represent
application performance in G ops and runs during which a ush of the trace bu er oc-
curred are highlighted with a vertical red line. When runs are not disturbed by a ush,
application performance is around 3T ops (small variations may be caused by processor
frequency variations, to avoid overheating). When a ush occurs during application exe-
cution, performance can be severely reduced (1.1 T ops for runs 6 and 12, 1.8 T ops for
runs 18, 30 and 36) or not (3T ops for run 25).

Indeed, the impact of a trace bu er ush on the disk depends on when (and where
in the StarPU 's code) it happens. Figure 3.3 represents th@antt chart of several
executions of aCholesky decomposition (here the size of the trace bu er was 512 MB
and the resulting trace le weights 1.7 GB). The di erent executions are separated by the
vertical white dashed lines and red areas represent idle computing units. Trace bu er
ushes occurring at di erent times lead to di erent situations, highlighted in Figure 3.3:

IMachines used for experiments are described in Appendix C.
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Figure 3.2: Impact of bu er ush on application performance, on aora node.

Figure 3.3: Trace of several runs with highlighted impacts of event bu er ushes.
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Figure 3.4: Performance of several runs without interrupting bu er ushes, on @ora
node.

" A: ush occurred during overhead (somewhere inStarPU 's code, but not in a
speci ¢ section): it did not disturb the application too much, because other workers
were able to execute tasks and make the application progress;

" B: ush occurred during progressing (a memory transfer): in this situation, no
computing unit was able to execute other tasks, because a lock was taken, preventing
StarPU from launching tasks on other workers;

C: the ush occurred during a task, other workers were able to work as long as the
result of the blocked task was not necessary to process remaining tasks.

One way to avoid troubles caused by trace bu er ushes during critical moments is to
be able to set the size of the trace bu er. When users execute the application a rst time,
they are warned for each ush occurring during the execution; at the end of execution,
the user can look at the size of the trace le to have a rough idea of the required size of
the trace bu er to avoid ushes during execution. Then, users execute the application
again, but with specifying the size of the trace bu er. Figure 3.4 presents performance
with a trace bu er of 8192 MB (as said previously, the trace le for this experiment has
a size of 7.1 GB). There is no outliers and the remaining small variations are probably
caused by processor frequency variations.

Another (not implemented) idea to avoid disturbing bu er ushes is to dedicate a
non-bound thread to ush the bu er. Since FXT has a double-bu ering system, enabling
to record events in a second bu er while the rst one is being ushed, the thread could
write the bu er on the disk without disturbing other important threads. Moreover, this
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Figure 3.5: Number of events according to their type.

thread would be performing only 1/O activities, requiring few CPU resources. This could
avoid having to manually specify a bu er size to avoid the problem.

3.3.2 Number of recorded events

The more events are recorded, the more time is spent in the tracing library and we can
presume the overhead will be more important. By default, all available event types in
StarPU are recorded. The resulting number of recorded events in the trace le can be
considerable.

Figure 3.5 depicts the number of events according to their type, for one run of
the Cholesky decomposition of a matrix of size 024000 24000 The trace le
weights 170 MB and contains 3887 676 events. On the histogram, only events with more
than 2000 occurrences are considered. We can notice some event types are more rep-
resented than others: for instance TASK _DEP@ecords dependencies between tasks),
END_PROGRESS_ONrédbrds end of memory transfers}CODELET _DAAm
CODELET_DATA_HANIMtE record information about the data bu ers used by tasks)
make the majority.

Recorded events also depict the potential di erent phases of the analyzed applica-
tion. Thus, the number and type of recorded events can change during the application
execution. Figure 3.6 represents the number of events generated during the application
execution. Even without knowing in detail which events are recorded, we can notice four
phases: (A) data and problem initialization, (B) task executions, (C) task graph submis-
sion, and (D) data release. There are more events during the phase C, because the task
graph submission is overlapped by the task executions, which are two di ereStarPU 's
activities, each generating their own events. If we look at the same plot, but with details
about which types of events are recorded (Figure 3.7), our hypothesis is con rmed: events
corresponding to task graph submission occur only in phase C, while events about task
execution occur during the whole phase B.

From gures 3.6 and 3.7, we can determine which event types are dominant in the
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Figure 3.6: Number of events across time (see Figure 3.7 for details about the number of
events).

Figure 3.7: Number of events across time, for each event type (detailed version of Fig-
ure 3.6).
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trace le and thus which ones have to be Itered out in priority, if we want to lighten
the tracing activity. The di culty in selecting which event types to drop during trace
recording is nding the good trade-o between acceptable trace overhead (caused by an
important number of events to collect) and enough events in the trace le to be able to
do insightful post-mortem analysis.

If the user knows on which events to focus to analyze the trace of an execution, the
set of recorded events can be reduced to keep only the interesting events, and thus reduce
the tracing overhead. There are several possible approaches:

" Using the environment variableSTARPU_FXT_EVERMT Specify which event cate-
gories have to be recorded:

| export STARPU_FXT_EVENTS=

" Manually changing in the source code ddtarPU which events will be recorded (by
removing some tracing probes, for instance). This can be much more complicated
than the previous solution, but it allows a more ne-grain selection of events than
just Itering out whole categories.

Figure 3.8 depicts the tracing overhead according to which events are recorded, which
changes the number of recorded events (as reported by the red dots to be read on the right
Y-axis). One can notice that buildingStarPU  with the trace support, without enabling
trace recording at the runtime, does not add an overhead. Then, as expected, the more
there are recorded events, the more the impact on application performance is important.
It should be noted that this seems to be relative to the runtime system behaviour: in this
case, the task graph submission is longer than task execution, thus workers were actively
waiting for new tasks to execute. In an execution with another con guration, where the
task graph submission is shorter than task execution, the overhead of traces is almost
negligible (see Figure 3.9). We can conclude that the trace overhead is mainly caused by
events to record on the runtime system critical path, especially when this critical path is
under pressure.

3.3.3 Scalability of the number of recording cores

The number of workers (threads bound on CPU cores, for instance) used $tarPU to
execute tasks can be set by the user at execution time. The default con guration is to
put one thread per processor core. All these threads produce events to be recorded.

By observing the performance of the strong scaling of theéholesky decomposition,
we can notice that the more there are threads recording events, the higher the impact
seems to be on performance: Figure 3.10 shows the resultpeabody, anIntel machine.

On AMD zondanodes, when the MKL library (providing routines called by tasks to
actually make the linear algebra computations) is used with its default settings, the max-
imal reached performance is 1 T ops, and there is no impact on performance when traces
are enabled, regardless of the number of computing cores (see Figure 3.11). However,
when the MKL is correctly set up to use all features of th&MD processor (Figure 3.12),
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Figure 3.8: Impact of the number of recorded events on the trace overhead. Thevent
typesare the ones previously mentioned being the most numerous in the tradéASK_DEPS
CODELET_DATODELET DATA HANMDLEND PROGRESS ON_TID

Figure 3.9: Similar to Figure 3.8, but in this case the tasks took more time to complete,
reducing the pressure on the runtime system, thus tracing had less impact on performance.
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Figure 3.10: Impact of the number of cores on performance with traces paabody, with
Intel processor.

Figure 3.11: Impact of the number of Figure 3.12: Impact of the number of
cores on performance with traces on cores on performance with traces on
zonda, with AMD processor and badly zonda, with AMD processor and cor-
con gured MKL library. rectly con gured MKL library.
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the maximal reached performance is 3T ops, and there is an impact on performance with
enabled traces, starting from 53 computing cores (out of 64). This makes sense since
faster execution of tasks means a higher throughput of events to record. We can notice
here the tracing overhead also depends on performance of the analyzed application, and
not only from the implementation of the tracing library or the runtime system.

The observed phenomenon comes from a lock that protects the single list of recorded
events in the FXT library. This single list allows to easily keep the temporal order of
recorded events in the trace le. With a list of events per core, there would be no lock
(and thus no contention on waiting for this lock), but the events would then need to be
correctly reordered before any possible exploitation: during the writing of the trace le on
the disk or during the conversion of the trace le withstarpu_fxt_tool . The reordering
could be based on the timestamps of the events, which need proper synchronization even
when running on a single node, as detailed in section 3.4.2.

3.3.4 Summary about the tracing impact on performance

The various experiments and results presented in this section explored three sources of
disturbances caused by the tracing system, impacting application performance and be-
haviour. Writing on the disk the bu er containing all recorded events can have a severe
impact on the application performance, depending on where the ush occurs. Recording
many events means an important intrusion in the runtime system behaviour, and an in-
creased activity of the tracing library, which can increase the performance overhead caused
by the tracing system. Similarly, many cores recording events can generate contention on
getting access to the tracing library.

All these experiments we