
HAL Id: tel-03989856
https://theses.hal.science/tel-03989856

Submitted on 15 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Interactions between HPC Task-based Runtime
Systems and Communication Libraries

Philippe Swartvagher

To cite this version:
Philippe Swartvagher. On the Interactions between HPC Task-based Runtime Systems and Commu-
nication Libraries. Data Structures and Algorithms [cs.DS]. Université de Bordeaux, 2022. English.
�NNT : 2022BORD0322�. �tel-03989856�

https://theses.hal.science/tel-03989856
https://hal.archives-ouvertes.fr

THÈSE
PRÉSENTÉE À

L'UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE
DE MATHÉMATIQUES ET D'INFORMATIQUE

par Philippe Swartvagher

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

On the Interactions between

HPC Task-based Runtime Systems

and Communication Libraries

Sous la direction de Alexandre Denis et Emmanuel Jeannot

Soutenue le 29 novembre 2022

Devant la commission d'examen composée de :

M. Denis Barthou Professeur, Bordeaux INP . Président du jury
M. George Bosilca Assistant Professor, University of Tennessee Examinateur
M. Alexandre Denis . . . Chargé de Recherche, Inria, Université de Bordeaux Examinateur
M. Emmanuel Jeannot Directeur de Recherche, Inria, Université de Bordeaux Directeur de thèse
M. Arnaud Legrand . . Directeur de Recherche, CNRS, Université Grenoble Alpes Rapporteur
Mme Didem Unat Associate Professor, Koç University . Rapportrice

Titre De l'interaction entre les supports d'exécution à tâches HPC et les bibliothèques
de communications

Résumé Les supercalculateurs sont utilisés pour résoudre des problèmes numériques
complexes demandant beaucoup de ressources de calcul (simulations, prévisions météo-
rologiques, modélisations, etc), impossibles à exécuter sur des ordinateurs classiques. Ces
supercalculateurs sont composés de nombreux puissants ordinateurs, connectés par un
réseau. Bien que la puissance de ces supercalculateurs ne cesse d'augmenter, le développe-
ment d'applications exploitant toute leur puissance de calcul est de plus en plus complexe.
En e�et, de nombreux aspects doivent être considérés : des unités de calculs hétérogènes
qui se programment di�éremment, la hiérarchie mémoire et les transferts de données,
les communications réseau, l'ordonnancement, etc. Pour parer à ces di�cultés, les sup-
ports d'exécutions à tâches ont émergé : ils représentent les applications par des graphes
de tâches. Les di�érentes opérations exécutées par l'application et les dépendances entre
elles forment un graphe. Il su�t alors de donner une implémentation de chaque tâche pour
les unités de calcul ciblées, les dépendances entre les tâches et le support d'exécution se
charge d'exécuter l'application : ordonnancer les tâches sur les di�érentes unités de calcul,
réaliser les transferts mémoire et les communications réseau nécessaires, etc.

Dans cette thèse, nous explorons les di�érentes interactions possibles entre les sup-
ports d'exécution à tâches et la bibliothèque de communication utilisée pour réaliser les
transferts réseau. L'objectif est de faire plus collaborer ces deux couches logicielles, pour
améliorer la performances des applications exécutées. Pour analyser et comprendre les in-
teractions entre les supports d'exécution et les communications, tracer les applications est
une technique pertinente, malgré certaines limitations. C'est pourquoi nous commençons
par évaluer les surcoûts possibles en termes de performances induits par un système de
traces. Nous proposons des techniques pour réduire ces surcoûts et avons également évalué
l'impact de la précision de la synchronisation d'horloge pour les traces distribuées. Ensuite,
comme interaction positive entre un support d'exécution à tâches et la bibliothèque de
communications, nous proposons une solution pour e�cacement envoyer une même don-
née à plusieurs destinataires, tout en respectant les contraintes du support d'exécution.
D'autre part, nous considérons également les éventuelles interactions négatives, en éva-
luant les di�érentes sources d'interférences entre les calculs et les communications exécutés
en parallèle, dégradant leurs performances respectives. Ayant observé que la contention
mémoire entre les calculs et les communications a le plus d'impact, nous proposons �nale-
ment un modèle prédisant la répartition de la bande-passante mémoire entre les calculs et
les communications. Ce modèle permet de mieux comprendre le comportement du com-
posant mémoire en cas de contention et de prendre en compte ce phénomène dans les
décisions du support d'exécution. Les contributions présentées montrent qu'améliorer les
interactions entre les supports d'exécutions à tâches et les bibliothèques de communica-
tions a du potentiel pour améliorer les performances des applications HPC.

Mots-clés Calcul haute performance, programmation par tâches, calcul distribué, sup-
ports d'exécution, bibliothèques de communication, MPI, traces, contention mémoire

Laboratoire d'accueil Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400
Talence

Interactions between Task-based Runtime Systems and Communications i

Title On the Interactions between HPC Task-based Runtime Systems and Communi-
cation Libraries

Abstract Supercomputers are used to solve complex and demanding computational
problems (simulations, climate and weather forecasting, modelling, etc), impossible to
run on regular computers. These supercomputers are composed of many powerful com-
puters, interconnected through a network. While the power of these supercomputers
increases over time, it becomes more and more challenging to develop applications taking
bene�t from all o�ered computing power. Indeed, many aspects have to be considered by
the developer: heterogeneous computing units programmed in di�erent manners, mem-
ory hierarchy and transfers, network communications, scheduling, etc. To overcome these
challenges, task-based runtime systems have emerged. They model applications by graph
of tasks: sub-computations and dependencies between them form a graph. The program-
mer has to provide the implementations of the tasks for each targeted computing unit,
express dependencies between the tasks and then the runtime system is in charge of the
application execution: scheduling tasks on di�erent computing units, performing required
memory movements between memories and network transfers, etc.

In this thesis, we explore the possible interactions between a task-based runtime sys-
tem and the communication library it relies on to perform network transfers. The goal is
to make these two software layers more collaborate, to improve performance of executed
applications. To understand and analyze the interactions between the runtime systems
and communications, tracing applications is a powerful technique. However, it can have
some limitations. Thus, we �rst evaluate sources of performance overhead when tracing
applications, propose solution to alleviate them and evaluate the impact of clock syn-
chronization accuracy for distributed application tracing. Then, as a positive interaction
between the task-based runtime system and the communication library, we propose a
solution to e�ciently send the same piece of data to several nodes, coping with the con-
straints of the considered runtime system. On the other hand, we also consider possible
negative interactions, by evaluating the di�erent sources of interferences between com-
putations and communications being executed in parallel, more or less degrading their
respective performance. Since we observe memory contention between computations and
communications have the most impact, we �nally propose a model predicting the memory
bandwidth share between computations and communications, to better understand the
behaviour of the memory system in case of contention and be able to take into account
this phenomenon into decisions of the runtime system. Contributions presented in this
manuscript show that improving interactions and cooperations between task-based run-
time systems and communication libraries has potential to increase performance of HPC
applications.

Keywords High performance computing, task-based programming, distributed com-
puting, runtime systems, communication libraries, MPI, traces, memory contention

Hosting Laboratory Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33400
Talence

ii P. Swartvagher

Contents

Remerciements 1

Résumé étendu en français 3
Évaluation et amélioration du système de traces 4
Broadcasts dynamiques . 5
Interférences entre calculs et communications 6
Conclusion . 7

Introduction 9
High Performance Computing . 9
Goals and contributions of this thesis . 10
Organization of the document . 11

1 Distributed Task-based Runtime Systems 13
1.1 The growing complexity of HPC machines 13

1.1.1 More powerful machines... 13
1.1.2 ... but more complex to program! 17

1.2 Distributed systems . 19
1.2.1 Motivation for distributed computing 20
1.2.2 Environment for distributed systems 20
1.2.3 An HPC communication library: NewMadeleine 22

1.3 Task-based runtime systems . 22
1.3.1 General concepts . 23
1.3.2 StarPU . 24
1.3.3 Distributed StarPU . 27

1.4 Goals and contributions of this thesis . 29

2 Related Work 33
2.1 Programming models . 33
2.2 Task-based runtime systems . 37
2.3 Communications with task-based runtime systems 39
2.4 Work related to our contributions . 42

2.4.1 Broadcasts in task-based runtime systems 42
2.4.2 Interferences between computations and communications 42

iii

Contents

2.4.3 Tracing systems . 45
2.5 Conclusion . 47

3 Tracing Task-based Runtime Systems 49
3.1 Background: tracing task-based runtime systems 49

3.1.1 Generic tracing systems . 50
3.1.2 Tracing distributed applications: synchronizing clocks 50
3.1.3 Tracing systems and task-based runtime systems 51
3.1.4 Contributions . 51

3.2 Tracing StarPU's behaviour . 51
3.2.1 Trace gathering . 52
3.2.2 Trace exploitation . 53

3.3 Reducing impact on performance . 54
3.3.1 Avoid writing traces on the disk during execution 54
3.3.2 Number of recorded events . 57
3.3.3 Scalability of the number of recording cores 59
3.3.4 Summary about the tracing impact on performance 62

3.4 Precise distributed traces . 62
3.4.1 Motivation for synchronized clocks 62
3.4.2 Synchronized clocks in StarPU . 63
3.4.3 Conclusion on synchronizing distributed traces 72

3.5 Lessons learned . 72
3.5.1 Methodology to apply when tracing applications 72
3.5.2 Requirements for an e�cient tracing system 73
3.5.3 Extension to other runtime systems 73

3.6 Conclusion . 74

4 Dynamic Broadcasts 75
4.1 Broadcasts in dynamic task-based runtime systems 75
4.2 General concepts of dynamic broadcasts 77

4.2.1 Broadcast detection . 77
4.2.2 Dynamic broadcast algorithm . 78

4.3 Implementation . 80
4.3.1 Broadcast detection . 80
4.3.2 Dynamic broadcast interface . 80
4.3.3 Enforcing communication priorities 81
4.3.4 Using just received data but still being forwarded 82

4.4 Evaluation . 82
4.4.1 Microbenchmarks . 82
4.4.2 Cholesky factorization . 87
4.4.3 QR factorization . 92

4.5 Discussion . 95
4.5.1 Performance analyses . 95
4.5.2 Generalization and extensions of the concept 96

4.6 Conclusion . 97

iv P. Swartvagher

Contents

5 Interferences between Communications and Computations 99
5.1 Methodology . 100
5.2 Impact of frequencies . 101

5.2.1 Impact of frequencies on only communications 101
5.2.2 Impact of frequency variations caused by computations 102
5.2.3 Impact of AVX instructions on frequencies 104
5.2.4 Conclusion on the impact of frequency variations 104

5.3 Memory contention . 106
5.3.1 Benchmarking memory contention 106
5.3.2 Impact of memory contention . 107
5.3.3 Impact of thread and data placement 107
5.3.4 Impact of transmitted data size on memory contention 110
5.3.5 From CPU- to memory-bound applications 111
5.3.6 Conclusion on memory contention 112

5.4 Runtime system impacts on communications 112
5.4.1 Runtime system overhead . 113
5.4.2 MPI thread and data placement . 113
5.4.3 Worker polling . 114
5.4.4 Conclusion on runtime system impact 115

5.5 Use-cases: computational kernels . 115
5.6 Conclusion . 116

6 Modeling Memory Contention between Communications and Compu-
tations 119
6.1 Context and hypotheses . 119

6.1.1 Contention behaviour . 120
6.1.2 NUMA systems . 120
6.1.3 Last level caches . 121
6.1.4 Modeling methods . 121

6.2 A model for memory bandwidth sharing 122
6.2.1 Model parameters . 122
6.2.2 Modeling memory bandwidth . 124
6.2.3 Model NUMA e�ect . 126

6.3 Evaluation of the model . 127
6.3.1 Experimental setup . 127
6.3.2 Results . 128
6.3.3 Discussion . 136

6.4 Conclusion . 137

Conclusion and Perspectives 139
Summary of contributions . 139

Tracing systems . 139
Dynamic broadcasts . 140
Interferences between computations and communications 141

Perspectives . 141
Improve the interaction with other StarPU's features 142
What about GPUs? . 142

Interactions between Task-based Runtime Systems and Communications v

Contents

Performance model with communications 143
Towards a better integration to the scheduler 144
Consider other types of applications . 145

Final words . 145

A Di�erences between MPI and NewMadeleine backends in
StarPU 147
MPI backend . 147
NewMadeleine backend . 148

B Reproducible Experiments 149

C Machine Descriptions 151

D Algorithms to Model Memory Contention 161

E Parameter Values of Contention Model 165

Acronyms 169

References 171

Publications 183

Software Contributions 185

vi P. Swartvagher

List of Figures

1.1 Typical memory hierarchy. 15
1.2 Characteristics of di�erent memory kinds. 16
1.3 A NUMA machine. 17
1.4 Task-graph of the Cholesky factorization. 25
1.5 Distribution of the Cholesky DAG on 3 nodes. 28

2.1 The fork-join model. 34

3.1 Example of visualization of an execution of the Cholesky algorithm with
the StarVZ framework. 53

3.2 Impact of bu�er �ush on application performance, on a bora node. 55
3.3 Trace of several runs with highlighted impacts of event bu�er �ushes. . . . 55
3.4 Performance of several runs without interrupting bu�er �ushes, on a bora

node. 56
3.5 Number of events according to their type. 57
3.6 Number of events across time. 58
3.7 Number of events across time, for each event type. 58
3.8 Impact of the number of recorded events on the trace overhead. 60
3.9 Impact of the number of recorded events on the trace overhead, with longer

tasks. 60
3.10 Impact of the number of cores on performance with traces on peabody. . . 61
3.11 Impact of the number of cores on performance with traces on zonda, with

AMD processor and badly con�gured MKL library. 61
3.12 Impact of the number of cores on performance with traces on zonda, with

AMD processor and correctly con�gured MKL library. 61
3.13 MPI_Barrier: Not all processes leaves the barrier at the same time. 64
3.14 The communication from node 1 to node 2 is received before it is sent! . . 64
3.15 How clock o�set δ is computed between nodes 0 and n. 65
3.16 Communications duration over time: two synchronized barriers are re-

quired to take into account clock drifts. 67
3.17 Clock o�set computation. 70
3.18 Interpolating o�sets outside of the synchronized window can lead to nega-

tive timestamps. 71

vii

List of Figures

4.1 Examples of routing trees for 6 recipients. 78
4.2 Tree reordering to take into account communication priorities. 81
4.3 Microbenchmarks of the dynamic broadcasts with NewMadeleine, on

occigen. 83
4.4 Microbenchmarks of the dynamic broadcasts with StarPU and New-

Madeleine, on occigen. 84
4.5 Microbenchmark to check the respect of priorities in dynamic broadcasts

with NewMadeleine, on occigen. 85
4.6 Microbenchmark to check the respect of priorities in dynamic broadcasts

and impact of unlocking tasks as soon as data is received, with StarPU
and NewMadeleine, on occigen. 86

4.7 The two di�erent types of broadcasts for the Cholesky factorization. . . 87
4.8 Recipients in the two types of broadcasts in the Cholesky algorithm on

a 2D-block-cyclic distribution (P,Q) = (4, 3). 88
4.9 Performance of Cholesky factorization, on inti (old implementation). . 89
4.10 Performance of Cholesky factorization, on occigen. 90
4.11 Impact of priorities on Cholesky factorization, on occigen. 91
4.12 Impact of reading data as soon as possible on Cholesky factorization, on

occigen. 91
4.13 The two di�erent types of broadcasts for the QR factorization. 92
4.14 Performance of QR factorization, on occigen. 93
4.15 Impact of the tile size on QR factorization, on occigen. 94
4.16 Impact of the 2D-block-cyclic distribution parameters on QR factorization. 95

5.1 Impact of constant frequencies on network performance, on henri nodes. . 102
5.2 Frequency variations during only communications, sleep and simultaneous

communications and computations. 103
5.3 CPU-bound computations and network bandwidth performance, on bora

nodes. 103
5.4 Impact of AVX512 computations on network latency, on henri nodes with

turbo-boost. 105
5.5 Diagram of di�erent data streams in an HPC node. 106
5.6 Memory-bound computations and network performance, on henri nodes. . 107
5.7 Memory-bound computations and network bandwidth performance, on

bora nodes. 108
5.8 Impact of communication thread placement and data locality, on henri

nodes. 109
5.9 Impact of size of communicated data, on henri nodes. 110
5.10 Impact of memory pressure on network performance, on henri nodes. . . . 111
5.11 Impact of memory pressure on network performance, on billy nodes. . . . 112
5.12 Impact of data locality and thread placement on network latency with

StarPU, on henri nodes. 113
5.13 Impact of polling workers on network latency, on henri nodes. 114
5.14 Network performance and hardware counter values of CG and GEMM execu-

tions, on henri nodes. 116

viii P. Swartvagher

List of Figures

6.1 Stacked memory bandwidth for computations and communications, with
coordinates of the interesting points to instantiate the model. 123

6.2 Performance of computations and communications along with our model
prediction, on henri nodes (Intel, InifiniBand). 129

6.3 Performance of computations and communications along with our model
prediction, on henrisubnuma nodes (Intel, InifiniBand). 130

6.4 Performance of computations and communications along with our model
prediction, on diablo nodes (AMD, InifiniBand). 131

6.5 Performance of computations and communications along with our model
prediction, on billy nodes (AMD, InifiniBand). 132

6.6 Performance of computations and communications along with our model
prediction, on occigen nodes (Intel, InifiniBand). 132

6.7 Performance of computations and communications along with our model
prediction, on pyxis nodes (ARM, InifiniBand). 133

6.8 Performance of computations and communications along with our model
prediction, on bora nodes (Intel, Omni-Path). 134

6.9 Performance of computations and communications along with our model
prediction, on dahu nodes (Intel, Omni-Path). 134

6.10 Performance of computations and communications along with our model
prediction, on grvingt nodes (Intel, Omni-Path). 135

C.1 billy's topology. 152
C.2 bora's topology. 153
C.3 dahu's topology. 153
C.4 diablo's topology. 154
C.5 grvingt's topology. 155
C.6 henri's topology. 156
C.7 henrisubnuma's topology. 156
C.8 occigen's topology. 157
C.9 peabody's topology. 158
C.10 pyxis's topology. 159
C.11 zonda's topology. 159

Interactions between Task-based Runtime Systems and Communications ix

List of Figures

x P. Swartvagher

Remerciements

T
rois années de thèse sont passées, le manuscrit a été rédigé et la soutenance s'est
clôturée par le fameux � nous vous décernons le titre de Docteur en Informatique de

l'Université de Bordeaux �. Il semblerait bien qu'il ne reste plus qu'à rédiger les remer-
ciements pour vraiment achever cette thèse.

Tout d'abord, merci au jury. Merci à Arnaud et Didem pour avoir relu ce (long et
dense) manuscrit. J'espère que vous avez pris autant de plaisir à le lire que j'en ai eu
lors de l'écriture. Merci pour vos commentaires constructifs qui ont permis de l'améliorer.
Merci à George pour avoir accepté d'être examinateur, avoir un développeur de PaRSEC
dans le jury d'une thèse qui traite principalement de StarPU me semblait à la fois
intéressant et audacieux ! Merci à Denis pour avoir présidé le jury.

Les remerciements suivants s'adressent aux deux personnes qui ont permis à cette
thèse d'être ce qu'elle est aujourd'hui : Alexandre et Emmanuel. Votre encadrement et
votre soutien sans faille pendant ces trois années (voire plus pour Alexandre si on compte
sa casquette de maître de stage) ont été très importants pour moi. Merci pour m'avoir
transmis (une partie de) votre savoir, pour m'avoir fait découvrir le monde de la recherche
ainsi que le raisonnement et la méthode scienti�ques en informatique. Je pense qu'on a
aussi les mêmes exigences en terme de travail bien fait et pour aller au fond des choses ;
je trouve toujours agréable de travailler avec des personnes qui ont les mêmes attentes
que moi, j'espère que c'était pareil pour vous. Avoir deux encadrants peut parfois être
déstabilisant quand l'un dit noir et l'autre dit blanc, mais ces divergences d'opinions
(�nalement peu nombreuses) ont su être masquées par votre complémentarité. Je me
demande parfois quelle est la part des encadrants dans le travail et les résultats d'un
doctorant, à quel point ma thèse est aussi la vôtre : je vous laisse répondre à cette
question, et peut-être que le futur me donnera aussi la réponse !

Un merci plus collectif à toute l'équipe TADaaM, la meilleure équipe de l'Inria
Bordeaux ! Merci à Brice, François, Guillaume, Guillaume et Francieli pour hwloc, le
droit des logiciels, la théorie qui m'est imperméable, le standard MPI, les I/Os, le Brésil, les
Ardennes, le baby-foot, le militantisme syndical, les râleries sur les étudiants, la médiation
scienti�que, les fous-rires mais aussi le sérieux quand il s'agit de travailler (un petit jeu :
saurez-vous relier chaque terme au permanent correspondant ?). Ensuite, merci à l'open-
space, tout d'abord pour m'avoir supporté, merci à ceux que j'appelle mes grands-frères de
thèse : Valentin, Andrès, Nicolas et Florian. Votre parcours durant la thèse m'a aidé d'une

1

manière ou d'une autre dans ma thèse à moi. Après les grands-frères, les petits-frères de
thèse : Alexis, Clément, Robin, Julien et Richard. J'espère (humblement) aussi avoir réussi
à vous transmettre ce que mes grands-frères m'ont transmis. Bon courage pour la suite de
vos thèses et pro�tez bien, la �n et l'après-thèse ne sont pas vraiment les périodes les plus
agréables... Merci aux autres qui sont passés par l'open-space, quelque soit leur statut :
Luan, Clément, Clément, Adrien, Valentin, Corentin et Amaury. Merci aux intrus de
l'open-space, Luc et Romain, qui n'étaient pas de TADaaM et qui couvraient les tableaux
de signes bizarres ! Un merci particulier à Alexis et Luan, comme �dèles compagnons pour
la découverte par deux fois des États-Unis. Pour �nir avec les membres de l'équipe, un
grand merci à Catherine, qui, avec une grande gentillesse et une patience à toute épreuve,
a toujours su m'assister dans toutes mes démarches administratives.

Merci aux autres équipes HPC du centre, Storm et HiePACS. J'ai tellement travaillé
et discuté avec les membres de Storm, que j'avais l'habitude de dire que j'étais à moitié
de membre aussi de Storm ! Merci en particulier à Samuel et Nathalie pour les discussions
techniques (ou pas) et à Mathieu, Emmanuel et Pierre pour, entre autres, leurs explications
des algorithmes d'algèbre linéaire.

Merci ensuite à tout ce qui gravite autour de la recherche : le SED pour les discussions
techniques (ou pas), le SCM pour la médiation scienti�que (mais pas que), les enseigne-
ments à l'Enseirb-Matmeca (merci à, entre autres, David et Mathieu), Ludovic pour
Guix et les notions de recherche reproductible, le monde du libre en général et tous ceux
qui y contribuent. Et parce que c'est presque le seul outil dont on a besoin pour faire
de la recherche en HPC, merci aux plateformes de calculs, en particulier les Dalton et
PlaFRIM. Merci aux personnes qui les administrent, ça fait toujours plaisir de pouvoir
discuter de vive voix de ce qui fonctionne et ce qui ne fonctionne pas !

Pas merci au Covid-19, qui nous aura forcé au télétravail une bonne partie de la thèse
et nous aura privé de séjours touristiques conférences à Varsovie, Lisbonne, Bonn, Lyon,
Seattle, ou encore à Chicago. Di�cile de dire quelle voie aurait pris cette thèse sans cette
pandémie...

Merci à ma famille pour son soutien indéfectible, sans jamais poser de questions, alors
même qu'elle ne comprend pas un mot de mes sujets de recherche (et ce n'est pas faute
d'avoir essayé de l'expliquer) ! Et merci à Hélène pour s'être gentiment proposée pour faire
le dessert de mon pot de thèse.

Pour �nir, merci à toutes celles et ceux que j'ai pu oublier, mais qui ont été près ou
loin de moi lors de cette thèse.

2 P. Swartvagher

Résumé étendu en français

Les problèmes numériques complexes (comme les simulations, les prévisions météorolo-
giques, la climatologie, la cosmologie, la biologie, la chimie, les phénomènes physiques,
etc) font parties des applications ciblées par le calcul haute-performance (en anglais High
Performance Computing � HPC). Ces applications demandent généralement une puis-
sance de calcul importante ainsi qu'une grande quantité de mémoire pour être exécutées,
les rendant hors de portée des ordinateurs classiques. À la place, ces applications sont
exécutées sur des supercalculateurs qui sont un ensemble d'ordinateurs (appelés n÷uds)
individuellement très puissants, inter-connectés ensemble par un réseau rapide. Les pro-
grammes peuvent alors faire des calculs sur plusieurs n÷uds simultanément, permettant
d'agréger la puissance de calcul de ces n÷uds. Dans ce cas, une bibliothèque logicielle
de communication réseau s'occupe de déplacer les données entre les di�érents n÷uds,
par exemple lorsque le résultat d'un calcul intermédiaire e�ectué sur un certain n÷ud
est nécessaire sur un autre n÷ud pour lancer un autre calcul. Concernant les n÷uds de
calcul, leur conception ainsi que leur utilisation se sont complexi�ées au �l du temps, en
même temps que leur puissance de calcul augmentait. De nos jours, les n÷uds de calcul
équipant les supercalculateurs ont chacun des unités de calcul de di�érents types (CPU,
GPU, FPGA, etc) qui ne se programment pas de la même manière et qui sont plus ou
moins e�caces selon le type d'instructions qu'ils doivent exécuter. Cela rend la conception
d'applications plus complexe, puisqu'il faut minutieusement choisir quelle unité de calcul
va exécuter quelle opération. De plus, cette décision impacte également les transferts de
données nécessaires entre les di�érentes mémoires disponibles au sein d'un n÷ud. Mal
gérés, ces transferts mémoires peuvent être très lents et devenir un facteur limitant de
l'application. Pour résumer, l'hétérogénéité présente dans les n÷uds de calcul actuels rend
di�cile l'utilisation e�cace de toute la puissance de calcul qu'un n÷ud est (théorique-
ment) capable de fournir.

Face à ces di�cultés, les support d'exécutions à tâches (en anglais task-based runtime

systems) connaissent un bel essor. Leur modèle de programmation repose sur la repré-
sentation des applications par un graphe de tâches : chaque opération de l'application est
représentée par une tâche qui est un sommet du graphe. Chaque opération produit des
données, qui peuvent être utilisées en entrée d'autres opérations. Ces dépendances entre
tâches sont les arêtes du graphe de tâches. Pour chaque tâche, les instructions à e�ectuer
sur chaque unité de calcul ciblée doivent être fournies, ainsi que les dépendances entre
les tâches. Le support d'exécution se charge ensuite du reste : ordonnancer les tâches

3

Évaluation et amélioration du système de traces

sur les unités de calcul, faire les transferts de données nécessaires, exécuter les tâches, ...
L'écriture d'application parallèle est facilitée avec le modèle de programmation à tâches,
puisque c'est le support d'exécution qui infère le parallélisme de l'application, à partir
des dépendances entre tâches qui forment le graphe de tâches. Dans le cas d'applications
distribuées (utilisant plusieurs n÷uds), le support d'exécution à tâches peut également
découvrir et s'occuper des communications réseau nécessaires, mais en déléguant généra-
lement la réalisation de ces communications à une bibliothèque tierce.

Habituellement, les supports d'exécution et les bibliothèques de communications sont
deux briques logicielles bien distinctes. Le support d'exécution utilise l'interface de la bi-
bliothèque de communication, et cette dernière se contente de traiter les requêtes qui lui
sont adressées : elle n'a pas d'informations particulières sur l'application exécutée, ni sur
l'état courant du support d'exécution. Cependant, le support d'exécution peut avoir des
informations qui permettraient d'aider la bibliothèque de communication dans ses prises
de décisions (les futures communications à exécuter, les priorités des tâches, le chemin cri-
tique de l'application, etc). De la même façon, la bibliothèque de communications possède
une vision sur le réseau et les communications en cours, et certaines informations pour-
raient être utiles au support d'exécution (par exemple : les messages reçus incessamment
sous peu, une estimation de la durée des communications).

Le but de cette thèse est d'explorer les interactions possibles entre les supports
d'exécutions à tâches et les bibliothèques de communications, en échangeant plus
d'informations entre ces deux couches logicielles, a�n d'améliorer les décisions de l'un et
l'autre et �nalement augmenter les performances des applications.

Ce manuscrit présente les contributions réalisées en ce sens pendant trois années de
thèse. Tout d'abord, une évaluation et amélioration des outils de traces pour analyser
l'exécution des applications à base de tâches (et ainsi mieux comprendre les interactions
entre le support d'exécution et les communications) ont été réalisées. Une première in-
teraction positive entre supports d'exécution à tâches et bibliothèque de communications
a été proposée en implémentant une solution pour être capable d'envoyer e�cacement
une même donnée à plusieurs n÷uds di�érents. Nous avons également étudié les interac-
tions négatives, en évaluant les di�érentes sources d'interférences possibles entre calculs
et communications, lorsqu'ils sont exécutés en parallèle, comme c'est le cas dans de nom-
breux supports d'exécutions à tâches. Puisqu'il s'est avéré que la contention mémoire
entre les accès mémoires pour les calculs et les communications est la plus grande source
d'interférences pénalisant leurs performances respectives, nous avons proposé un modèle
pour prédire la bande-passante mémoire accordée à chaque type de �ux (calculs ou com-
munications). Ce modèle nous a permis de mieux comprendre le fonctionnement de la
mémoire en cas de contention et de pouvoir prédire les performances des calculs et des
communications. La suite de ce résumé détaille ces di�érentes contributions.

Évaluation et amélioration du système de traces

Pour comprendre les performances et le comportement des applications, tracer leurs exé-
cutions et analyser les détails du déroulement de l'exécution peut être une méthode très
e�cace. Pour être su�samment robustes, les systèmes de traces doivent avoir une préci-

4 P. Swartvagher

Résumé étendu en français

sion satisfaisante et interférer au minimum avec l'exécution de l'application tracée. Avoir
un impact sur l'application tracée peut changer son comportement, ce qui signi�e que
l'exécution décrite dans les traces est di�érente de l'exécution standard (non tracée). Ce
phénomène peut être gênant, puisque les traces servent généralement à comprendre ce qui
se passe lorsqu'une application n'est pas tracée ! Un système de traces pas assez précis,
avec des horloges mal synchronisées, produira des traces incohérentes, notamment concer-
nant les exécutions distribuées (par exemple : un message peut apparaître comme reçu
avant d'avoir été envoyé).

Nous avons évalué les di�érentes sources possibles de surcoût en terme de perfor-
mances de l'application, pouvant changer le comportement d'une application, lorsqu'une
application utilisant un support d'exécution à tâches est tracée. Nous avons également
proposé des solutions pour éviter (ou au moins réduire) ces surcoûts. De plus, nous avons
implémenté dans le système de traces du support d'exécution des techniques de synchro-
nisation d'horloges correspondant à l'état de l'art, et nous avons évalué l'amélioration de
la précision des traces ainsi obtenues.

En plus de proposer des solutions aux problèmes causés par les systèmes de traces,
notre travail avait aussi pour but de faire prendre conscience aux personnes utilisant
ces systèmes de traces les potentiels problèmes qui peuvent survenir lors de la trace de
programmes, potentiellement déformant la réalité.

Ce travail peut être perçu comme un pré-requis pour analyser sereinement les exécu-
tions d'applications, tout en ayant en tête les possibles problèmes.

Broadcasts dynamiques

Les communications sont l'un des facteurs limitant pour faire passer les applications à
l'échelle sur de nombreux n÷uds. Un motif de communications qui peut facilement s'opti-
miser à l'aide d'algorithmes de routages déjà présents dans la littérature, et qui se retrouve
dans les graphes de tâches de certaines applications, est l'envoi de la même donnée à plu-
sieurs n÷uds distincts. Ce motif s'appelle un broadcast.

Les bibliothèques de communications habituelles en HPC proposent des routines pour
exécuter des broadcasts d'une façon optimale. Cependant, plusieurs critères doivent être
remplis pour pouvoir utiliser ces fonctions : par exemple, tous les n÷uds impliqués dans le
broadcast doivent faire appel à la même fonction avec les mêmes paramètres, en particulier
la liste de tous les destinataires de la donnée. De plus, ce genre de fonction introduit une
sorte de synchronisation, qui, pour des raisons de performances, doit être évitée autant
que possible dans les supports d'exécution à tâches. Malheureusement, ces contraintes ne
sont pas satisfaites dans le contexte du support d'exécution considéré : les broadcasts n'y
sont pas explicites (ils doivent être inférés à partir du graphe de tâches) et seulement
l'émetteur du broadcast connaît tous les destinataires. Les destinataires, quant à eux, ne
savent même pas s'ils vont recevoir le message par un broadcast ou par une communication
point-à-point classique (et donc ne savent pas quelle fonction appeler).

Pour pouvoir pro�ter d'algorithmes de routages e�caces, tout en respectant les
contraintes du support d'exécution à tâches, nous avons proposé des broadcasts dyna-

Interactions between Task-based Runtime Systems and Communications 5

Interférences entre calculs et communications

miques. Le mécanisme pour détecter les broadcasts a une �abilité satisfaisante, et une
fois qu'une donnée à envoyer par un broadcast est disponible, l'interface que nous avons
développée dans la bibliothèque de communication le prend en charge de façon transpa-
rente pour le support d'exécution : la donnée venant d'un broadcast est reçue comme si
elle était reçue par une communication point-à-point.

Des microbenchmarks ont montré l'e�cacité de notre implémentation. Les gains de
performances pour les applications avec des broadcasts dans leurs graphes de tâches dé-
pendent de plusieurs facteurs. Les broadcasts dynamiques ont permis d'améliorer les
performances de 30% sur des factorisations de Cholesky et de multiplier par 6 les
performances de factorisations QR sur des matrices avec une forme et une distribution
spéci�ques.

La pertinence des broadcasts dynamiques montre le potentiel des interactions entre
les supports d'exécution à tâches et les bibliothèques de communications : à l'aide d'une
interface simple et générique exposée par la bibliothèque de communications, le support
d'exécution peut exécuter des broadcasts plus e�cacement.

Interférences entre calculs et communications

La plupart des supports d'exécutions à tâches permettent d'exécuter en parallèle calculs et
communications. Puisque cela signi�e exécuter simultanément des calculs et des communi-
cations qui partagent ressources matérielles communes, nous avons évalué les possibilités
d'interférences entre calculs et communications, impactant leurs performances respectives.

Les variations de fréquences causées par les calculs n'ont pas d'impact majeur sur les
performances des communications. Les communications lancées par le support d'exécution
peuvent être pénalisées par un surcoût en latence important, à cause de la pile d'appel
de fonctions à traverser avant d'atteindre la bibliothèque de communications. Mais la
dégradation de performances la plus importante, lorsque calculs et communications sont
exécutés en parallèle, provient de la contention mémoire entre les mouvements de données
pour les calculs et pour les communications.

La contention mémoire peut être in�uencée par plusieurs facteurs : le placement des
données et des threads, la taille des messages et l'intensité arithmétique des calculs.
Lorsque de la contention mémoire se produit, les performances des calculs peuvent être
impactées, mais ce sont les communications qui sont le plus pénalisées.

Pour mieux comprendre la contention mémoire se produisant entre calculs et commu-
nications et être capable de la prédire, nous avons proposé un modèle de ce phénomène
donnant le débit mémoire accordé aux calculs et aux communications, selon le nombre
de c÷urs exécutant des calculs et le placement des données. La di�culté de conception
du modèle venait du fait que la gestion de la contention par les composants mémoire
des processeurs est un secret bien gardé des fabriquants. L'évaluation de notre modèle
sur une large gamme de machines aux caractéristiques di�érentes ont con�rmé nos hypo-
thèses initiales : tant qu'il n'y a pas de contention, calculs et communications obtiennent
la bande-passante mémoire qu'ils requièrent ; lorsque la capacité du bus mémoire est at-
teinte, la bande-passante pour les communications est d'abord réduite, pour préserver

6 P. Swartvagher

Résumé étendu en français

celle des c÷urs qui calculent ; une bande-passante minimale est tout de même toujours
assurée pour les communications, pour éviter les famines ; �nalement, si la demande en
débit mémoire continue d'augmenter, alors les c÷urs de calcul sont également pénalisés.

Bien que ces interactions négatives entre calculs et communications apparaissent dans
tout programme qui exécute simultanément des calculs et des communications, quel que
soit le support d'exécution utilisé, les possibilités et l'abstraction o�ertes par les supports
d'exécution à tâches devraient permettre de prendre en compte ces phénomènes et essayer
de les éviter. Cette prise en compte de la contention entre calcul et communications par
le support d'exécution serait un autre cas d'interaction positive.

Conclusion

Les supports d'exécution à tâches sont une solution pour tirer plus facilement pro�t de
la puissance des supercalculateurs, en fournissant un haut niveau d'abstraction, allant
jusqu'à inférer le parallélisme des applications et les communications réseaux nécessaires.

Cette thèse aura montré que les interactions entre les supports d'exécutions à tâches
et les bibliothèques de communications, qu'elles soient positives ou négatives, ne doivent
pas être négligées. Dans un cas, elles ouvrent la voie à de considérables améliorations
des performances, mais dans l'autre, elles peuvent aussi pénaliser la vitesse d'exécution
des applications. Il n'est donc pas possible d'ignorer les communications au niveau des
supports d'exécutions à tâches.

Interactions between Task-based Runtime Systems and Communications 7

Conclusion

8 P. Swartvagher

Introduction

High Performance Computing

B
etween theoretical and experimental work, simulation can be considered as the third
pillar of current scienti�c research. Indeed, simulations allow to verify theories and

avoid real experiments, which can be costly and dangerous. Simulation can be used
in many research areas: weather forecasting, climate prediction, �uid dynamics, earth-
quakes, crash-tests for vehicles, rocket takeo�, biology, genomics, epidemiology, nuclear
phenomena, cosmology, etc. Many cars can be saved while perfecting the airbag, as well
as many rockets while the engine is not �nely tuned; phenomena hard to mimic at the
human scale, from the atom to the universe scale; dangerous experiments about nuclear
reactions or health can be performed; all thanks to simulation.

Simulations are usually performed with computer programs, solving numerous com-
plex equations, tracking the progression of a phenomenon over time steps, handling huge
amount of data. These speci�c programs often require lots of computing power and
memory to achieve precise simulations in a reasonable amount of time. More powerful
computers allow to increase simulation precision (more precise weather forecasting, for
instance) and to treat bigger problems. Using powerful computers to execute simulation
programs belong to the High Performance Computing (HPC) domain.

The computing power required for simulations is so important that speci�c computers
are built for this purpose. The most powerful of them are listed twice a year by the
Top500 ranking. In June 2022, the Frontier machine holds the �rst position1, with
a performance of 1.102E�ops: about 1018 �oating operations per second, while a regular
laptop treats about 200G�ops (i.e. Frontier is equivalent to 5 million laptops!). Such
powerful computers aimed at HPC are called supercomputers and are in fact composed
of many inter-connected nodes : individual computers which can be compared to more
regular servers. This connection of many nodes gives to the overall supercomputer an
important computing power: Frontier is composed of 9 472 nodes. Moreover, each
node has a processor with 64 cores and 4 GPUs. In the end, Frontier totals 8 730 112
computing units executing instructions in parallel.

These supercomputers can feature cutting-edge technology and the programming of

1https://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/

9

https://top500.org/news/ornls-frontier-first-to-break-the-exaflop-ceiling/

Goals and contributions of this thesis

applications dedicated to HPC machines can be quite challenging: applications have to
be parallel (i.e. divided in smaller independent parts executed simultaneously) to reduce
execution time and fully exploit the computing power of the machine, they have to support
di�erent computing units (CPUs and accelerators), correctly manage di�erent memories,
etc. With the increasing power and complexity of supercomputers, fully exploiting all
the computing power becomes more and more di�cult. Moreover, each supercomputer
is di�erently designed, which requires abstractions to have performance portability of
applications.

To address these di�culties, runtime systems are developed, to abstract part of the ma-
chine complexity: machine topology, scheduling, accelerator management, etc. Di�erent
kinds of runtime systems exist, with di�erent features and abstraction levels, like abstract-
ing the machine but letting the developer explicitly express the application parallelism.
Runtime systems following the task-based programming model with data dependencies
abstract even this level and ease the writing of parallel applications, by requiring only
an implicit expression of the parallelism. With task-based runtime systems, the applica-
tion is divided in small parts represented by tasks, and tasks are connected according to
the dependencies between those tasks (i.e. order constraints based on data manipulated
by each task). Tasks and dependencies form a graph, which, once given to the runtime
system, can be e�ciently scheduled on parallel computing units.

Speci�c software libraries (sometimes part of runtime systems) are also developed to
communicate between the nodes, by using the high performance network interconnect-
ing them. Exchanged data are mainly results produced by a node, required by another
node to perform a computation. Combining several runtime systems and a third-party
communication library is common for HPC applications.

Goals and contributions of this thesis

Usually runtime systems and communication libraries are two distinct and independent
software. The runtime system uses the interface provided by the communication library
to exchange messages on the network. The communication library is aware only of in-
formation related to network communications, and knows nothing about the application
nor the status of the runtime system. However, a task-based runtime system may have
information that could help the communication library in its decisions (future communi-
cations, priorities, application critical path, etc). Conversely, the communication library
is aware of the status of communications and could also share its knowledge (incoming
communications, estimated time of reception, etc) with the task-based runtime system.

The goal of this thesis is to explore the possible interactions between task-based run-
time systems and communication libraries, in order for these two software layers to better
exchange their respective information about the application execution and increase each
other knowledge to take better decisions.

The main two software libraries used in this work to implement prototypes and make
experiments are StarPU and NewMadeleine, introduced in Chapter 1.

This manuscript presents the following contributions, made during these last three

10 P. Swartvagher

Introduction

years:

Tracing systems. Recording application executions permits to later analyze the execu-
tion and understand the behaviour of the application, the decision taken by the runtime
system, etc. However, tracing executions can add a performance overhead, potentially
changing the behaviour of the application, making the behaviour represented in traces
di�erent than the behaviour in normal conditions, without traces. We evaluated the
impact of di�erent sources of overhead and proposed solutions to reduce them. More-
over, when tracing distributed applications, clocks used to timestamp events on each
node have to be accurately synchronized to have consistent information recorded in
traces, especially regarding communications. We evaluated the impact of clock syn-
chronization on accuracy of communication duration.

Findings in this work are submitted to the journal Concurrency and Computation:

Practice and Experience [134].

Dynamic broadcasts. Some task-based algorithms require to send the same data to
di�erent nodes. While common communication libraries provide routines for such use-
case, with optimized communication scheme, these routines cannot be used within
StarPU because of (among other things) a lack of information by all nodes receiving
the data. We proposed a solution to use optimal routing algorithms for such commu-
nication patterns that �ts with StarPU's constraints.

The idea, its implementation and its evaluation were presented in an article published
at the 26th Euro-Par conference [130].

Interferences between computations and communications. Many runtime sys-
tems allow to execute simultaneously computations and network communications.
Since these two di�erent operations share common resources, interferences between
them can occur, impacting their respective performance. We evaluated several possible
sources of interferences and measured the impact on performance of both computations
and communications.

Results of this study were published in an article at the ICPP 2021 conference [128].

Model of memory contention. The major source of interferences between computa-
tions and communications is the possible memory contention generated by data move-
ments to perform computations and communications. We proposed a model to better
understand the contention and to be able to predict the share of memory bandwidth
between computations and communications.

Our model and its evaluation got the best paper award of the APDCM 2022 workshop,
in conjunction with the 36th IPDPS conference [129]. A research report contains results
on more machines [135].

Organization of the document

Chapters 1 and 2 present the context of this work by respectively introducing distributed
task-based runtime systems and reviewing related work. Chapter 3 digs in the tracing

Interactions between Task-based Runtime Systems and Communications 11

Organization of the document

system of StarPU, evaluates possible performance overheads when tracing applications
and proposes solutions to reduce these overheads and to improve accuracy of distributed
traces. Chapter 4 explains how we developed a broadcast system to �t with StarPU's
constraints while using an optimized communication pattern. Chapter 5 studies the pos-
sible interferences between computations and network communications, when they are
executed in parallel. Chapter 6 focuses on the impact of memory contention on computa-
tions and communications, by proposing a model for memory bandwidth sharing. Finally,
last chapter summarizes our work and discusses possible perspectives.

Appendix A explains in detail di�erences between the communication backends of
StarPU. Appendix B presents the followed methodology regarding reproducible experi-
ments. Appendix C describes the characteristics of the clusters used for the experiments
presented in this thesis. Appendices D and E provide respectively algorithmic versions of
equations described in Chapter 6 and the parameter values obtained during the evaluation
of the model.

12 P. Swartvagher

Chapter 1
Distributed Task-based Runtime
Systems

T
his �rst chapter presents the context and the problematic of this thesis. First, it de-
scribes the increasing complexity of HPC supercomputers, which makes them harder

to program in the most e�cient way. Then, we introduce task-based runtime systems, a
solution to address these programming di�culties. We explain how they work on a single
node but also for distributed applications on several nodes. Finally, we announce the
general problematic covered by this thesis and its main contributions.

1.1 The growing complexity of HPC machines

Although we reached some physical limits in the conception of processors, preventing from
increasing always the same characteristics (e.g. processor frequency and Instructions Per
Cycle (IPC)), performance of supercomputers did not stop to increase over time. Machine
vendors keep innovating, in several directions, to provide always more and more computing
power to their users. The diversity of solutions for real high performance computing has
a cost: e�ciently exploiting the whole computing power o�ered by the machines is much
more di�cult, and, moreover, it is a challenge left to application developers.

1.1.1 More powerful machines...

At the core of computers, processors execute all the instructions. To o�er better per-
formances and better exploit their possibilities, they present many features, more or less
complex to take into account by the application:

Multi-core processors. All available transistors in a processor can be used to split the
processor into several processing units (called cores), independently executing di�erent
instructions at the same time. Nowadays, HPC processors feature several tens of such
cores, each executing its own �ow of instructions. From the operating system point of
view, the di�erent cores appear like di�erent processors.

13

1.1. The growing complexity of HPC machines

Simultaneous multithreading. Since some processor instructions require several clock
cycles to complete (�oatting-point instructions, memory accesses, etc), the progress of
the instructions in the pipeline is not assured for each clock cycle. When such long
instruction is executed, the core has to wait for the dedicated subsystem to handle
the instruction, and thus waste clock cycles. These holes in the instruction pipeline
are called stalls (or bubbles). With simultaneous multithreading, physical cores are
split in several (usually two) logical cores: when a stall occurs in the instruction �ow
of a logical core, the physical core executes instructions from another logical core.
Intel implements this technique under the name of Hyper-Threading, which became a
common term to designate this feature, as well as hyper-thread to talk about a logical
core. From the operating system point of view, these logical cores appear as regular
cores.

Many-core processors. Another way of exploiting the transistors of a processor is to
split the processor into many cores. Like multi-core processors, each core manages
its own instruction �ow, but many-core processors feature much more cores: several
hundreds of hyperthreads. This important number of cores is possible at the cost of
simpler cores, with a reduced instruction set and less features. The main representative
of this class of processors is the Intel Xeon Phi, launched in 2010 and installed for
example in the Tianhe-2 supercomputer, �rst in the Top500 ranking in 2013.

Heterogeneous processors. More recently, heterogeneous processors have been intro-
duced, especially to reduce the power consumption: a set of cores requiring very few
energy is used for generic purpose and another set of cores more powerful, yet con-
suming more power, is enabled only in case of more demanding computations. The
main processor architectures in this family are the ARM's big.Little and the Intel's
Alder Lake. However, these models have not landed yet on supercomputers.

Instruction set. The important number of available transistors can be used to create
speci�c processor instructions, for instance implementing arithmetic operation directly
as one processor instruction, instead of several instructions called by the software. This
kind of optimization can save clock cycles and thus increase the computing power of
the processor. Vectorized instructions are also improved over the years: they consist in
executing the same operation on multiple registers at the same time (Single Instruction
on Multiple Data (SIMD)). The vectorization of the code can be done implicitly by
the compiler, or explicitly by the programmer by using the dedicated instructions.
The most famous SIMD instruction set is the Advanced Vector Extensions (AVX)
from Intel. The last version, AVX-512, released in 2017 on the Skylake processors,
handles 512-bit registers (which can be used as arrays of 16 floats, for instance).

GPUs. While CPUs (Central Processing Unit) are designed for a generic purpose (run-
ning the operating system, softwares) and have to support a wide range of instructions,
including branchings and loops; GPUs (Graphics Processing Unit) implement mainly
the SIMD architecture, thus they can exhibit a high level of parallelism, much higher
than regular CPUs, but have very low performance in case of branching instructions.
This speci�c kind of processor was originally designed for graphic processing such as
image rendering, and then other applications with similar requirements (e.g. linear
algebra and training of machine learning models) adopted it.

14 P. Swartvagher

1. Distributed Task-based Runtime Systems

Processor

Core

Registers

L1 Cache

L2 Cache

L3 Cache

Main Memory DRAM HBM

NVDIMM

Storage
SSD

HDD

-

C
apacity

+

-

L
atency

+

+

B
andw

idth

-

+
P
rice

p
er

byte

-

Figure 1.1: Typical memory hierarchy.

FPGAs. Field-Programmable Gate Arrays are processors that can be entirely repro-
grammed to execute a speci�c computation. This way, computations can be faster
on an FGPA than on a regular CPU, since the circuit of the FGPA is reprogrammed
speci�cally to execute only the desired computation, while the genericity of the CPU
can add important overhead. The main advantage of the FPGA is also its main draw-
back: the programming of the FPGA is made in a speci�c (low-level) language and
the recon�guration of the FPGA to execute a new program can be very long (several
hundreds of milliseconds). Such processors also tend to cost more than CPUs and have
a lower frequency.

All these di�erent uses of transistors rely on the parallel paradigm: applications are
divided in smaller independent instructions �ows, each being executed simultaneously by
di�erent sets of transistors (e.g. several cores or hyper-threads). Parallel applications
are the most common in HPC area, since this programming model is required to exploit
current powerful computers, featuring these parallel computing units.

Many-core processors, GPUs and FPGAs are examples of accelerators : they are in-
stalled in addition to a CPU, to accelerate only the kind of computations they are spe-
cialized in. While CPUs have direct access to the main memory (RAM) of the computer,
accelerators have their own memory. Some accelerators can access the CPU RAM, but
with a potential performance overhead if used improperly1; a technique to counterbalance
this overhead is to explicitly copy data to the accelerator memory, perform the maxi-
mum computations on the accelerator manipulating the copied data (now located in the
accelerator memory, with quick access) and then copy back the data on the CPU memory.

1https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Interactions between Task-based Runtime Systems and Communications 15

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

1.1. The growing complexity of HPC machines

High Bandwidth

Low LatencyHigh Capacity

Bad

Good

Very Good
HBM
DRAM
NVDIMM

Figure 1.2: Characteristics of di�erent memory kinds. From the PhD thesis of Andrès
Rubio Proaño [98].

Speaking of memory, memories accessible by a CPU bring also their set of complexity.
Computers feature a so-called memory hierarchy, as illustrated by Figure 1.1. Indeed,
processors can access several kinds of memory, more or less close to each core. The
further the memory is located (from an architectural point of view), the longer it will
take to access this memory (to read or write), however, the higher the memory capacity.
This hierarchy comes from the complexity (or even impossibility!) to design the perfect
memory: fast, with high capacity and cheap: thus faster memories are smaller and closer
to computing units, to take bene�t from an increased speed.

We can distinguish memory inside and outside the processor. Memory inside the
processor are caches, organized in several levels: �rst levels are private to each core and
last levels are shared between cores. The most common memory outside processors is
Dynamic Random Access Memory (DRAM). Processors fetch memory from the DRAM
in caches and cache lines are evicted and stored back in the DRAM. DRAM memories
provide good trade-o� in terms of capacity, bandwidth and latency. Again, since there
is no perfect memory with outstanding values in all performance metrics, other types
of memories exist, each type being better regarding one characteristic, as illustrated by
Figure 1.2: Non-Volatile Dual Inline Memory Module (NVDIMM) has a higher capacity
and High Bandwidth Memory (HBM) a higher bandwidth.

With the current important number of cores per processor, and given the fact that
HPC nodes can have several processors (usually two), the memory system cannot serve the
memory requests of all cores and exhibit correct performance. To tackle this issue, a Non-
Uniform Memory Access (NUMA) architecture is used: the whole memory is segmented
and each segment is dedicated to a set of cores, as illustrated by Figure 1.3. A NUMA

node is the name of the set composed of several cores and their dedicated segment of
memory. Cores can normally access memory located on a NUMA node di�erent from
their NUMA node, but this kind of memory request will take longer to achieve.

16 P. Swartvagher

1. Distributed Task-based Runtime Systems

Processor

Core

Core

...

Core

Core

RAM

Processor

Core

Core

...

Core

Core

RAM
local

remote

Figure 1.3: A NUMA machine: each processor has its own memory (local), but can also
access memory of other processors (remote).

Current supercomputers feature several multi-core processors, NUMA architecture
and GPUs. Since they have di�erent kinds of processing units, they are quali�ed as
heterogeneous. Many-core processors such as the Xeon Phi are less present in current
supercomputers, while FPGAs and heterogeneous processors will probably be part of the
future of HPC. Increasing performance of supercomputers will continue, by increasing
also the complexity of their components. Unfortunately, this evolution is not transparent
anymore for application developer...

1.1.2 ... but more complex to program!

The application developer has now access to powerful machines, with di�erent kinds of
computing units. The drawback of such wide panel of technologies is the di�culty of
e�ciently programming these platforms. Indeed, the challenges are numerous.

Computing unit programming. A CPU, a GPU or an FPGA are not programmed
with the same source code, and the programming paradigms can be quite di�erent.

Programs can be parallelized on CPU cores with several methods: processes, threads,
a runtime system, etc. Programming application for CPUs can look simpler than for
accelerators, since it does not require a speci�c language and the use of the standard
library provided by the language can be enough. However, some points require par-
ticular attention, for instance: one core should not execute several threads, the load
balancing between the cores as well as memory access patterns should be optimized (to
e�ciently use the cache, for instance), etc. In HPC applications, a popular method to
easily parallelize code is the use of OpenMP pragmas: by annotating the source code,
the developer can explain how the application should be parallelized.

Programming GPUs (and other accelerators) can be more complicated. Interacting
with GPUs is made with speci�c APIs (Cuda for Nvidia, Hip for AMD) or even

Interactions between Task-based Runtime Systems and Communications 17

1.1. The growing complexity of HPC machines

speci�c languages: Cuda programs are written in a C-like language and are compiled
with a speci�c compiler. Moreover, since the GPU has its own memory, the application
developer has to manage the GPU access to application data.

One problem here is the portability: the application written to be executed on a CPU
has to be adapted to use a GPU (and the changes will be di�erent according to which
GPU vendor is targeted).

To ease the writing of applications targeting heterogeneous systems, several frameworks
implement a write once, run everywhere model: the program is written in one language
(usually close to C) and the framework translates it to instructions for all required
computing units. OpenCL [6], OpenACC [5] or SYCL [7] are examples of such
frameworks.

Memory management. When using accelerators, memory transfers between the host
and the device are explicit. These data transfers can be long compared to computa-
tions (limited by the throughput of the PCIe bus where they are plugged: 12GB/s
vs 20GB/s for throughput between CPUs and RAM memory) and since the memory
capacity is limited, data moved on accelerators have to be carefully chosen to then
be able to execute as much computations as possible on this data without requiring
additional data movements.

NUMA architectures has also to be taken into account for high performance. Since each
core can access a close memory faster than a remote memory, cores should rather only
access their local memory and minimize access to remote NUMA nodes. Accelerators
are also a�ected by NUMA con�gurations: in the memory hierarchy of a machine, they
are plugged into a speci�c NUMA node, hence the same performance consideration for
CPU cores apply.

The organization of heterogeneous machines forces application developers to be careful
about the data locality : on which memory node (NUMA or accelerator) data has to
be allocated and then potentially moved. The decision is taken according to which
computing unit will work with this data, but also according to memory performance
and application requirements, when less standard memories (NVDIMM or HBM) are
available.

Data management involving an accelerator with its own memory is explicit and has
to be programmed by the application developer. Memory management on NUMA
architectures can also be made explicitly by the developer, but it is not mandatory since
all cores can access all the NUMA memory. Still, optimizing it can improve application
performance. Some runtime systems can relieve developer's work by abstracting the
memory management and handling all data transfers implicitly.

Exploiting accelerator a�nities. Accelerators are usually e�cient to execute a lim-
ited types of computations, not all possible kinds of computations. For instance, GPUs
are very e�cient for matrix multiplications (30 times faster than on a CPU core), but
have more di�culties for matrix factorizations (only 3 times faster than on a CPU
core). Thus, the choice of which computing unit (a CPU core or an accelerator) has
to execute a computation is based also on the performance of computing units on the
kind of the computation.

18 P. Swartvagher

1. Distributed Task-based Runtime Systems

To help taking this kind of decision, performance calibrations and models can be used:
computation kernels are executed on all possible computing unit to build a performance
model and be able to decide where to execute which computation.

Scheduling. Executing applications ends by raising the question: on which computing
unit execute which computations? In other words: how to schedule the computation
tasks? All the di�culty of scheduling is to optimize the use of all computing units, to
reduce the application execution time. The elements of the answer are, among other,
the performance of computing units and the data locality. Many trade-o�s appear, for
instance: is it worth to spend time moving data to the GPU, even if computations will
take less time on the GPU? Can CPU cores execute computations at the same time
as the GPU? In which order execute computations to expand as much parallelism as
possible, to always feed computing units with work?

This problem is actually NP-hard [121] and consists in a whole research �eld. Heuristics
and algorithms are developed to minimize the application makespan.

In the end, the application developer has to consider many factors to e�ciently ex-
ploit the whole computing power theoretically available in a machine. All these constraints
make it di�cult to manually optimize the code of an application and require often ex-
pert knowledge in di�erent areas (programming, architecture, scheduling, the application
domain, etc). Even if applications are successfully optimized for a supercomputer, the
next question is the portability: manually optimized applications are usually tuned for a
speci�c computer, with a speci�c con�guration. What is the necessary e�ort to optimally
execute the same application on a di�erent con�guration (e.g. change of GPU; instead
of one GPU, now two GPUs are available)? Ideally, it should be free, to let the scientist
focus on their research �eld instead of software development.

One solution to tackle these problems is to add an abstraction layer to represent the
memory and the computing units, thus getting rid for the application developer of the
hardware speci�cities. These abstractions are usually o�ered by runtime systems : the
application developer interacts with the runtime system, and the runtime system takes
all the burden of interacting with the hardware.

Unfortunately, the complexity of HPC systems is not restricted inside one HPC node:
these nodes are linked together to be used together for distributed applications.

1.2 Distributed systems

Current supercomputers are composed of thousands of HPC nodes, linked together with
a high-performance network. The individual nodes are not really di�erent from regular
servers dedicated to other purposes than HPC: they are optimized for computing perfor-
mance and scienti�c applications, which are programmed to exploit the computing power:
numerous CPU cores, accelerators, high memory capacity, accelerators, etc.

Interactions between Task-based Runtime Systems and Communications 19

1.2. Distributed systems

1.2.1 Motivation for distributed computing

HPC clusters are composed of a set of HPC nodes connected through a high-performance
network. Applications are executed on several of these nodes and they exchange data
(inputs and outputs of computations, results of intermediary computations, etc) between
the cluster computers with the network. In addition to using a shared memory program-
ming model (several cores share the same memory), applications use a distributed memory
model: the total memory available for the whole application is distributed among several
computers.

Moreover, distributed computing allows to speed overall application duration up, since
more computing cores are available. The distributed memory provides more memory to
the application, to work simultaneously on more data, thus making applications able to
work on bigger problems, whose limiting factor is the memory capacity.

However, distributed computing comes with few drawbacks. First, network communi-
cations are much longer than local memory accesses (∼ 1µs vs ∼ 100 ns). Hence the gain of
having more computing cores can be o�set by the communication overhead. Nowadays,
communications are considered as one of the major performance bottleneck, especially
when it comes to application scalability on many nodes. Then, applications (and even
algorithms) have to be redesigned to deal with the distributed memory: how to distribute
data and computations among the nodes, how and when to communicate between nodes,
etc.

These di�culties can prevent perfect scaling: doubling the number of nodes used by
an application may not exactly double its performance, it depends on the application
behaviour.

1.2.2 Environment for distributed systems

From the hardware side, high performance network systems are composed of special net-
work adapters, plugged as a PCIe extension card.

The major manufacturers of such network interfaces are Mellanox, bought by
Nvidia in 2020, implementing the InifiniBand standard; Cornelis Networks, a
spin-o� company from Intel, providing Omni-Path networks; Atos with the BXI in-
terconnect; and Cray, bought in 2019 by HPE, with the Slingshot network. All these
network devices exhibit low latency (∼ 1µs vs O(10)µs for Ethernet networks) and
high bandwidth (O(100)Gb/s vs usually 1Gb/s or 10Gb/s for Ethernet). Some HPC
clusters are also equipped with RDMA over Converged Ethernet (RoCE) networks.

Even if it is usually possible to use this kind of network interfaces with the IP pro-
tocol, these interfaces are programmed from the user-space, i.e. the user can directly
send instructions to the device, without involving the OS kernel. This allows to save the
cost of user/kernel mode switch, which leads to a better latency. For bigger message sizes,
transfers are made with zero-copy: network interfaces directly access the memory location
where communication payload is stored (for send operations) or will be stored (for recep-
tion operations), without involving a processor to actually make the data transfer between
the network interface and the RAM memory. This allows higher network bandwidth.

20 P. Swartvagher

1. Distributed Task-based Runtime Systems

The programming of these network interfaces can be very low-level and speci�c to each
vendor. To simplify the writing of distributed HPC applications, the de facto standard
that emerged is Message Passing Interface (MPI) [51]. As its title states, this standard
de�nes a set of functions to exchange messages between processes. The �rst version was
released in 1994 and the current version 4 was released in 2021. In an MPI program,
each process has a rank and each process decides which instructions to execute based on
its rank2. There is at least one MPI process per node. More processes per node can be
used to exploit the machine architecture: for instance, one MPI process per NUMA node.
Then simple functions are available to send and receive messages between processes, by
providing the memory bu�er to send / to receive in, the size of this bu�er and the ranks
of sender and receiver processes. The following code snippet executes a ring : a value is
passed from a process to another, and each process increments the value before sending
it to the MPI process with immediate higher rank value.

1 MPI_Init (&argc ,&argv);

2 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

3 MPI_Comm_size(MPI_COMM_WORLD , &nb_nodes); // let's assume nb_nodes > 1

4

5 if (rank == 0)

6 {

7 dest = 1; // to right node

8 source = nb_nodes -1; // from last node

9 buffer = 0;

10

11 MPI_Send (&buffer , 1, MPI_INT , dest , 0, MPI_COMM_WORLD);

12 MPI_Recv (&buffer , 1, MPI_INT , source , 0, MPI_COMM_WORLD , NULL);

13

14 printf("Ring completed [%d]\n", buffer);

15 }

16 else

17 {

18 source = (rank - 1) % nb_nodes; // from left node

19 dest = (rank + 1) % nb_nodes; // to right node

20

21 MPI_Recv (&buffer , 1, MPI_INT , source , 0, MPI_COMM_WORLD , NULL);

22 buffer ++; // work

23 MPI_Send (&buffer , 1, MPI_INT , dest , 0, MPI_COMM_WORLD);

24

25 }

26

27 MPI_Finalize ();

The interface proposed by the MPI standard is implemented in several available li-
braries. OpenMPI [52] is the most popular one. Other implementations exist, such as
MPICH [3], MVAPICH [4], Intel MPI [2] or MPC [92].

2More precisely, a process has a rank inside an MPI communicator (a group of processes), but the
special communicator MPI_COMM_WORLD contains all the processes. Thus, each process can be identi�ed
by its rank in this global communicator. To ease the reading, rank of an MPI process will refer to its
rank in the MPI_COMM_WORLD communicator.

Interactions between Task-based Runtime Systems and Communications 21

1.3. Task-based runtime systems

1.2.3 An HPC communication library: NewMadeleine

NewMadeleine [17] is a small HPC communication library, used as a research project
to implement prototypes and experiments. NewMadeleine has its own end-user inter-
face, but to support MPI applications, NewMadeleine exhibits also an interface called
MadMPI, implementing the MPI standard.

In the interfaces presented to the end-user, primitives to perform communications
manipulate messages. While mainstream MPI libraries watch and manage the network
activity when the API is called from the user code, NewMadeleine decouples the net-
work activity from the calls to the API by the user. This separation allows to add a layer
applying an optimizing strategy before forming packets ready to be sent to the network.
A packet may contain multiple messages (aggregation), a message may be split across
multiple packets (multi-rail), and messages may be actually sent on the wire out-of-order
depending on packet scheduler decision and priorities.

Moreover, the separation between network and application activities permits to
make network communications progress, without any speci�c action form the appli-
cation (such as loops over MPI_Test functions). This e�cient background progres-
sion is achieved thanks to the PIOMan sub-project [44]. PIOMan allows also New-
Madeleine to provide a native and e�cient support for multi-threaded applications
(the MPI_THREAD_MULTIPLE threading support level de�ned in the MPI standard; see sec-
tion V.C of [44]), to be able to make calls to the library from di�erent threads at the same
time.

NewMadeleine is designed with an event-driven paradigm, especially, its core activ-
ity is triggered by the network. When the network is busy, messages to be sent are simply
enqueued; when the network becomes ready, the optimization strategy is called to form a
new packet from the pending messages. A receive is always posted to the driver, and all
the activity is made of up-calls (event noti�ers) triggered from the lowest layer when dif-
ferent events occur: �rst byte received, message fully received, completed reception, etc.
These events can be hooked to execute a callback function de�ned by the application.
This programming model makes NewMadeleine a library well-suited to program with
the Remote Procedure Call (RPC) model (used later in this thesis): a node can execute
a function on another node with parameters from the caller node.

1.3 Task-based runtime systems

Runtime systems are software layers abstracting the complexity of machines, developed
to ease the writing of applications executed on these machines. There are many runtime
systems, with di�erent features, di�erent levels of abstraction and based on di�erent
programming paradigms. In this thesis, we focus on the programming based on tasks.
Other paradigms are mentioned in the next chapter.

22 P. Swartvagher

1. Distributed Task-based Runtime Systems

1.3.1 General concepts

The task-based programming model consists in decomposing applications into small tasks
and describing the dependencies between those tasks. Tasks are pure functions that are
sub-parts of the whole applications. Dependencies between tasks represent the constraints
in the execution order of tasks, and are determined with the data manipulated by the
tasks, e.g. a task B which works on a result generated by a previous task A will impose a
dependency from the task A to the task B. The set of tasks and their dependencies form
a Directed Acyclic Graph (DAG): tasks are the graph nodes and dependencies between
tasks are the edges. From this task graph, the runtime system can infer which tasks can
be executed as soon as their dependencies have been satis�ed (i.e. parent tasks in the task
graph have already been executed), as well as which tasks can be executed in parallel,
since they write in di�erent data. If the runtime system knows the whole task graph, it
is aware of the future tasks to execute and can optimize its scheduling decisions.

This programming paradigm based on a DAG allows to schedule computations (i.e.
task executions) in a asynchronous manner: since the dependencies are known from the
task-graph, the runtime system knows when tasks can be executed and does not require
synchronizations (or barriers) to wait for the termination of tasks, potentially source
of idle time of computing units, increasing the application duration. The knowledge of
the DAG of the application also permits to apply scheduling algorithms to optimize the
execution time.

To use a task-based runtime system, the application developer has to provide the task
graph to the runtime system: the task themselves and the dependencies between them.
A task is a structure describing the small piece of computation it executes. It contains
a function actually executing the computations for each targeted architecture, with the
speci�c instructions for each architecture: a function to be executed by a CPU, a function
to be executed by a GPU, etc. Computations being made on data (at least, on memory
bu�ers), a task describes also which memory bu�ers it manipulates, with which accesses:
read-only, write-only or read-and-write. This information will later be useful to build the
task graph: read bu�ers will create in-going edges and written bu�ers will create out-going
edges.

Several programming models exist to instantiate the task graph of an application,
to tell the runtime system which tasks have to be executed on which data. StarPU

relies on the Sequential Task Flow (STF): by sequentially describing which tasks have to
be executed with which data, the runtime system can infer the DAG. Indeed, for each
submitted task, the runtime system knows which data will be manipulated by the task and
by comparing with the data used (and their access mode) by the previously submitted
tasks, it can detect if a data-dependency exists between the task and the previous tasks.

Once the application developer provided to the runtime system the task descriptions
and the dependencies between them, the runtime systems is in charge of all the remaining
work to actually execute the application. The main jobs (yet the more complex) are
scheduling and executing tasks on computing units, and managing data transfers between
memories. Basically, such a task-based runtime system does all the complicated work the
application developer has to previously do manually to e�ciently use their whole machine.
The programmer can focus on the application side, and ignore the hardware problematic

Interactions between Task-based Runtime Systems and Communications 23

1.3. Task-based runtime systems

managed by the runtime system3.

Task-based runtime systems are widely used for linear algebra applications. One of
the most common operation to illustrate working and performance of task-based runtime
systems is theCholesky factorization (or decomposition). For a given symmetric de�nite
positive matrix A, the Cholesky algorithm computes a lower triangular matrix L, such
that A = LLT . Its main purpose is to solve linear systems. To easily parallelize this
algorithm, the tiled �avour is used: the matrix is decomposed in N ×N (usually square)
tiles (sub-matrices, also called blocks) where A[i][j] is the tile of row i and column j.
The data manipulated by the tasks of the Cholesky factorization are the matrix tiles.
Algorithm 1 depicts the tiled version of the Cholesky algorithm: at each step k, it
performs a Cholesky factorization of the tile on the diagonal of panel k (POTRF kernel)
then it updates the remaining of the tiles of the panel using triangular solve (TRSM kernel).
The trailing sub-matrix is updated using the SYRK kernel for tiles on the diagonal and
matrix multiply (GEMM kernel) for the remaining tiles.

Algorithm 1 Tiled version of the Cholesky factorization.
1: for k = 0 to N − 1 do
2: A[k][k]← POTRF(A[k][k])
3: for m = k + 1 to N − 1 do
4: A[m][k]← TRSM(A[m][k], A[k][k])
5: end for
6: for n = k + 1 to N − 1 do
7: A[n][n]← SYRK(A[n][n], A[n][k])
8: for m = n+ 1 to N − 1 do
9: A[m][n]← GEMM(A[m][n], A[m][k], A[n][k])
10: end for
11: end for
12: end for

Each task is inserted in the DAG during the execution of the nested loops. Each task
indicates which tiles it requires. This presentation with a pseudo-language is not so far
from what needs to be written in C when using StarPU, as will be seen later. For this
algorithm, the application developer needs to provide the description of four tasks: POTRF,
TRSM, SYRK and GEMM.

The task graph corresponding to the Cholesky factorization is depicted on Fig-
ure 1.4.

1.3.2 StarPU

StarPU is the task-based runtime system used in this thesis. Other task-based runtime
systems exist, they are covered in the next chapter.

StarPU [16] is a task-based runtime system developed in Inria Bordeaux, by the
Storm team. This C library was born as a proof-of-concept for the PhD thesis of Cédric

3Application developer still needs to give task functions for each targeted architecture. However,
piloting the device to execute the function is left to the runtime system.

24 P. Swartvagher

1. Distributed Task-based Runtime Systems

POTRF

TRSM

SYRK

GEMM

Dependency

Figure 1.4: Task-graph of the Cholesky factorization for a matrix divided in 4× 4 tiles.

Augonnet about dynamic task scheduling on heterogeneous machines. The original goal
was to execute tasks simultaneously on CPU cores and GPUs, in a portable manner, with
the minimum of pain for the application developer. From the beginning of the develop-
ment in September 2008, the project gained maturity over time to be used by several
scienti�c applications4 but also as a playground for research ideas and experimentation
about scheduling policies, performance model and prediction, programming models, etc.

StarPU supports CPUs, GPUs (Nvidia and AMD), Intel Xeon Phi and FPGA5.
Supporting additional architectures consists of implementing a de�ned interface, with
mainly instructions to launch computations on the device and make memory transfers.
In the StarPU's jargon, each device being able to execute tasks (a CPU core, a GPU,
etc) is called a worker.

The default scheduling policy of StarPU is local work-stealing, based on a list-
scheduling policy: each worker has its own queue of tasks ready to be executed. When
a worker �nishes the execution of a task, it executes the next task in its queue. If its
queue is empty, it tries to steal a task from another worker, but by respecting the machine
hierarchy (local work-stealing): to e�ciently take bene�t from the caches, it �rst looks for
tasks in the queues of other workers in its NUMA node, and only if it is unsuccessful it
looks in the task queues of further workers. Other scheduling policies, used especially with
accelerators, are based on performance models and implement a Minimum Completion
Time (MCT) policy: StarPU can predict the duration of tasks and data transfers and
takes this information into account for scheduling decisions to minimize the application

4See for instance https://starpu.gitlabpages.inria.fr/#software or
https://starpu.gitlabpages.inria.fr/publications.html#PublicationsOnApplications.

5StarPU: *PU � StarPU aims at supporting any kind of PU!

Interactions between Task-based Runtime Systems and Communications 25

https://starpu.gitlabpages.inria.fr/#software
https://starpu.gitlabpages.inria.fr/publications.html#PublicationsOnApplications

1.3. Task-based runtime systems

duration.

StarPU abstracts data pointers by using data handles : each piece of data manipu-
lated by a task is �rst registered by the user as a data handle: the user precises the size
of the data, its structure (a simple variable, an array, a matrix, etc), its type (float,
double, etc), and optionally an already allocated bu�er (otherwise StarPU can allocate
the bu�er on-the-�y when required). Then, StarPU is free to manage the location(s) of
the object referred to by this data handle: track its locality, duplicate the bu�er on sev-
eral NUMA node (thus the data is closer to more workers), move the data to accelerator
memory, synchronize all replicates when one bu�er is modi�ed by a task, etc.

StarPU's tasks are instantiations of codelets. A codelet is a structure factorizing all
properties common to all tasks executing the same computation: the functions to execute
on workers (several functions can be provided for a same type of worker: in this case,
the scheduler can chose the best function based on performance models), the number
of data handles manipulated by the functions and their access modes, speci�c options,
attributes to ease debugging (name, color, ...), etc. A task is an instantiation of a codelet:
it references a codelet and stores information speci�c to this task, which will be executed
only once: data handles which will provide data for the codelet functions, priority, callback
functions to be executed before or after the task execution, etc.

The Cholesky algorithm implemented with StarPU can look like the following code
snippet:

1 /* Data registration and codelet definitions not shown. */

2

3 for (k = 0; k < N; k++)

4 {

5 starpu_task_insert (&potrf_cl , RW , A_handles[k][k], 0);

6 for (m = k+1; m < N; m++)

7 {

8 starpu_task_insert (&trsm_cl ,

9 R, A_handles[k][k], RW , A_handles[m][k], 0);

10 }

11 for (n = k+1; n < N; n++)

12 {

13 starpu_task_insert (&syrk_cl ,

14 R, A_handles[n][k], RW , A_handles[n][n], 0);

15 for (m = n+1; m < N; m++)

16 {

17 starpu_task_insert (&gemm_cl ,

18 R, A_handles[m][k], R, A_handles[n][k],

19 RW, A_handles[m][n], 0);

20 }

21 }

22 }

23 starpu_task_wait_for_all ();

The variables portrf_cl, trsm_cl, syrk_cl and gemm_cl are the codelets corresponding
to the computation kernels. The data handles used for the tasks are in this example
blocks of the matrix A.

Finally, StarPU users and developers can rely on a large set of tools to analyze
application performance, which is important to understand the behaviour of the runtime

26 P. Swartvagher

1. Distributed Task-based Runtime Systems

system, scheduling decisions, etc.

1.3.3 Distributed StarPU

General concepts

The StarPU runtime system has been extended to support distributed applications [12].
When distributed applications are executed, each process executes the same program, the
same instructions, but parts of the program are conditioned by the rank of the process.

The starting point to write distributed applications with StarPU is the data distri-
bution: how the data manipulated by tasks are spread over the available nodes. The data
handles are created by specifying on which node they are actually allocated.

StarPU by default executes tasks where the data is located: the node which owns
data to execute a task will execute this task. Since all StarPU processes execute the
same program, all processes handle the same instructions to create tasks, and thus unroll
the same DAG. By analyzing the data required to execute each task, and their access
mode, StarPU knows which node has to execute which task: each node will execute the
tasks which write in the bu�ers it owns. If this node does not own bu�ers it needs to read
to execute this task, the node which owns the data will send it. If a task needs to write
several data handles that are not all owned by a common node, the default policy is to
select the node which will require the smallest total of transferred amount of data.

With such working, data exchanges between nodes are inferred by the runtime system
from the task graph and are not explicitly written by the application developer, which
simpli�es a lot the development of distributed applications.

The DAG of the distributed version of the Cholesky factorization depicted in Algo-
rithm 1 is the same, but mapped on the set of available nodes, as illustrated by Figure 1.5.
Internal data dependencies in a node are represented by gray arrows and required network
communications between nodes to exchange data handles are represented by black arrows.

Communication engine

StarPU-MPI, the name of the StarPU extension for distributed executions, provides
an API to the user to manage distributed executions. Internally, it uses by default the
MPI interface to make network communications, thus it can work on top of any MPI
library. A StarPU thread is dedicated to manage the communications: this thread makes
communications progress and watches their termination. Indeed, all MPI communications
posted by StarPU are non-blocking (i.e. the function call does not block the thread until
the completion of the communication) and the status of these communications has to be
watched to know when a communication is over, which can unblock tasks waiting for a
data handle from another node or waiting to write in a data handle being sent to another
node. Only this thread makes MPI calls, to avoid the need for MPI_THREAD_MULTIPLE,
required to make MPI calls simultaneously from di�erent threads.

The use of non-blocking functions and a dedicated communication thread allows to

Interactions between Task-based Runtime Systems and Communications 27

1.3. Task-based runtime systems

Node 0 Node 1 Node 2

POTRF

TRSM

SYRK

GEMM

Intra-node dependency

Inter-node dependency

Figure 1.5: Distribution of the Cholesky DAG on 3 nodes. Inter-node dependencies
trigger network communications.

overlap communications with computations, i.e. executing simultaneously communica-
tions by the MPI thread and tasks on other workers. While this can be a tedious work
to code such feature manually, StarPU-MPI allows to do it seamlessly, without real
additional work from the developer.

Actually, the MPI interface is not well-suited for distributed task-based runtime sys-
tems. The MPI API �ts with (and was designed for) Bulk Synchronous Parallel (BSP)
applications, which alternates phases of computations and communications: all workers
execute computations, then only one worker is in charge of communications and then cir-
cling back to computations (this is called the fork-join model). Task-based applications
are more irregular: each task is scheduled and executed independently from each other
(except the respect for dependencies), and any type of synchronization is avoided. Thus
communications can be triggered as soon as a task ends, and conversely, tasks can be ex-
ecuted as soon as a data is received, without any synchronization at node or application
level.

In this context, the main missing feature from MPI for task-based runtime systems is
event noti�cations: being able to register a callback function to execute when an event
occurs: for instance, telling StarPU expected data handles have just been received,
which ful�ls the dependency requirements of a task and allows to schedule this task for
execution. As well as communications could be issued directly from the task prolog,
executed by the same worker which just executed this task, to avoid the extra cost of
passing through the communication thread. This means the multi-threading support of

28 P. Swartvagher

1. Distributed Task-based Runtime Systems

the communication library has to exist and be e�cient.

Moreover, task-based runtime systems can issue bursts of communications requests
(at the beginning of an application, when the result of a task is required by many nodes,
etc), which have to be e�ciently handled by the communication library. First of all, the
communication library has to scale well regarding the number of issued requests. Then,
hints can be given to the communication library about the communication priorities,
to help the communication scheduling: the developer of a StarPU application can de-
�ne priorities to submitted tasks, and these task priorities can be used by StarPU to
determine communication priority. Unfortunately, the MPI standard does not support
communication priorities.

All these wished features are actually provided by NewMadeleine. This is why
StarPU-MPI has been ported to use the native interface of NewMadeleine [21], and
takes bene�t from the multi-threading support, event noti�cations, priority support, etc.
When this back-end is used (enabled at compile time), much part of the communication
engine logic is delegated to NewMadeleine: communication priorities, monitoring of
running requests, communication progress, etc. Send operations are issued directly from
workers and a thread managed by NewMadeleine executes callback functions.

Di�erences between the NewMadeleine and the MPI backends of StarPU are
further discussed in Appendix A.

1.4 Goals and contributions of this thesis

Optimizing HPC applications pursues usually one general objective: saving resources.
These resources can be temporal: reduce the duration of an application execution; and/or
spatial: require less memory capacity or less hardware resources (e.g. less nodes) to run
the same application.

To achieve this goal, optimizations can be made in several layers of our software stack:
improving the application algorithm in the user application (better initial data distribu-
tion, communication-avoiding algorithms, etc), improving the runtime system behaviour
to better exploit the resources (e�cient schedulers, correct performance prediction mod-
els, low overhead, etc), and improving performance of communication libraries (good
scalability of the number of request, low matching duration, etc).

Even if these software layers are dependent on each other (i.e. an application needs
a runtime system, but runtime systems are developed for applications) and performance
issues are found when using the whole stack, applications, runtime systems and com-
munication libraries can be optimized independently. Indeed, changing the application
algorithm does not require interaction with runtime system developers and improving
scheduling policies can stay opaque to the end-user of runtime systems, for instance.

The proposal of this thesis is to do the opposite: optimize task-based runtime sys-
tems and communication libraries together, by improving their interactions.
Both the runtime system and the communication library have information about their ac-
tivities: the runtime system can know future communications to be issued, the estimated
end of a task execution, the location of data handles, task priorities, etc; while the com-

Interactions between Task-based Runtime Systems and Communications 29

1.4. Goals and contributions of this thesis

munication library knows the state of the network, which communications are incoming,
performance of the network and its possible optimizations, etc. These two software layers
should be able to exchange information about their respective state in order to provide
more hints for their decision-makings.

Although, in this thesis, the ideas to increase interactions between task-based runtime
systems and communication libraries are implemented in StarPU and NewMadeleine,
the coupling between the runtime system and the communication library should remain
loose. Rather, we propose interfaces to exploit the ideas. These interfaces should be
portable enough to be implemented in any task-based runtime system and communication
libraries with similar constraints as the ones we are dealing with. Implementations made
in StarPU and NewMadeleine can be seen as prototypes: they aim at proving the
feasibility of the interface and evaluating the performance gain.

Three kinds of opportunities for better collaboration between task-based runtime sys-
tems and communication libraries have been explored during this thesis:

Tracing systems. Being able to precisely and e�ciently trace application executions
is paramount in order to understand the behaviour and performance of applications.
Recording execution events can add an execution overhead, reduce application perfor-
mance, and more important: change the behaviour of the applications. For distributed
applications, the traces gathered on each node have to be synchronized to keep co-
herency in the timeline of events. However, this requires distributed synchronized
clocks, which is not straightforward to provide.

In Chapter 3, we �rst describe the tracing system used with StarPU. Then, we present
few sources of performance overhead when using tracing systems and give hints to
reduce them. We evaluate di�erent methods of clock synchronization and evaluate
their accuracy for analysis of distributed traces. Finally we discuss requirements all
tracing system should ful�ll to be competitive enough.

Dynamic broadcasts. Some task-based algorithms need to send the same data to mul-
tiple nodes, i.e. broadcast patterns appear in their task graph. Plain MPI applications
can take advantage of routines dedicated to such situation, which will optimize the
broadcast by using the most suitable routing algorithm. However, broadcasting rou-
tines provided by the MPI standard does not �t with the constraints of StarPU.

We propose in Chapter 4 a new approach to overcome these constraints, while using
optimized broadcasting trees and improve application performance.

Interferences between computations and communications. Runtime systems
such as StarPU naturally overlap communications by computations. This means
computations and communications are executed simultaneously. Since these two
activities share the same resources (processor, memory system, etc), interferences
between computations and communications can happen, impacting their respective
performance.

We present in Chapter 5 the impact of computations and communications on the
performance of each other, when they are executed side-by-side. We study especially
the e�ects of processor frequency variations and memory contention.

30 P. Swartvagher

1. Distributed Task-based Runtime Systems

Chapter 6 focuses on the impact of memory contention between computations and
communications. We propose a model to predict memory bandwidth for computations
and communications, when they are executed simultaneously, according to the number
of computing cores and the data locality. This model helps to better understand how
the system deals with memory contention and where are the bottlenecks in the memory
system.

Interactions between Task-based Runtime Systems and Communications 31

1.4. Goals and contributions of this thesis

32 P. Swartvagher

Chapter 2
Related Work

T
his chapter presents the work related to topics covered in this thesis. First sections
describe programming models used in HPC applications and present existing task-

based runtime systems. Then, we explain how distributed models are integrated in other
task-based runtime systems, and how communications can be optimized by the runtime
system. The rest of the chapter browses the literature related to the contributions of this
thesis.

2.1 Programming models

The general problematic about programming HPC machines is how to express parallelism
when writing application code. Several methods exist, providing more or less abstraction
of the machine and requiring instructions from the programmer more or less implicit
or explicit. Task-based model (presented in section 1.3.1) makes programmer implicitly
express the parallelism of its application and provides a high level of abstraction of the
machine to ease the writing and portability of applications.

Fork-join model

The most common parallel programming model is the fork-join model (or BSP) where the
program is a sequence of parallel regions interleaved by sequential sections, as illustrated
by Figure 2.1. Many applications use this model to make computations in parallel sections:
each thread works on its dedicated set of data; then in the sequential section, only one
thread does a speci�c task, for instance communication instructions.

Fork-join applications can be written in several manners, the most common being with
OpenMP. OpenMP [91] is a runtime system, driven by annotations in the application
code (called pragmas) to explain how the code should be parallelized. An example is
given in the following code snippet, which parallelizes the sum cell-by-cell of two arrays
in a third array:

33

2.1. Programming models

Main thread

Fork

Join

P
arallel

tasks

Figure 2.1: The fork-join model.

1 int i;

2

3 #pragma omp parallel for

4 for (i = 0; i < n; i++)

5 {

6 c[i] = a[i] + b[i];

7 }

Compared to task-based programming paradigm, this model is simpler, yet more lim-
ited: since there is no mechanism to �nely manage dependencies in the whole application
(at least in the �rst versions of the OpenMP standard), the parallel sections (fork) are
almost limited to embarrassingly parallel sections of the program. To start the next part
of the program, if the previous part has to be �nished to keep data coherency (e.g. not
reading data that is not completely computed (written) yet), a synchronization is re-
quired: wait (join) for the end of all threads in the previous parallel section. In case
of load-imbalance, this can lead to idle time (some threads do nothing, waiting for the
other threads), which represents wasted resources. In the same vein, it can be di�cult
to overlap several steps of the program when data dependencies have to considered or
overlap communications with computations [105, 76].

With task-based programs, the knowledge of data dependencies allows an implicit
parallelism handled by the runtime system. As long as dependencies are satis�ed, tasks
can be executed without having to wait for other threads, which are maybe working on
independent data (thus waiting for them is useless). Overlapping program phases or
communications and computations is implicit and thus straightforward with task-based
runtime systems.

34 P. Swartvagher

2. Related Work

Plain MPI

Distributed systems with multicore processors can be programmed with only MPI in-
structions to parallelize the application. In this case, one MPI process can be launched
per processor core. The parallelization is driven by selecting the computations to execute
and the data to use according to the rank of the MPI process. Synchronization points
consist in exchanging messages between MPI processes: it can be between processes run-
ning on the same node (intra-node communication) or on di�erent nodes (inter -node
communication).

While this solution is simple to use, it has several drawbacks. With one MPI process
per core, it can be more di�cult to take into account the machine topology to optimize
applications. The point-to-point communications are more numerous and collective com-
munications involve more MPI processes, whereas several MPI processes in a collective
can be on the same node. The memory consumption can be much higher with plain MPI
programs: data being replicated on several MPI processes can in fact be replicated in the
memory of a single node: if processes knew the topology, maybe one copy of the data on
the node would be enough. More communications implies also more memory allocated
for reception bu�ers.

On heterogeneous systems, MPI processes running on a same node have to �nd a
consensus on which process will use the accelerators, and then e�ciently balance the
workload between processes computing with an accelerator and other processes.

MPI+X

MPI+X is a programming model with MPI associated with another runtime system han-
dling the program parallelization. In such case, usually MPI manages distributed memory
and X shared memory. A common mix is MPI and OpenMP: there is one MPI process
per node, MPI handles the distributed memory by exchanging messages between nodes;
and each MPI process uses OpenMP to express the possible parallelism on each node,
using shared memory. This way each MPI process can exploit the topology of nodes,
especially regarding the memory organization.

Other than OpenMP, the companion of MPI can be any programming model running
on a single node, exploiting shared memory. It can be, for instance, simple threads, or
even... MPI [64]!

A trade-o� between one MPI process per core and one MPI process per node (with
another runtime system for parallelization inside a node) is to use one MPI process per
memory group in the memory topology, especially per processor or per NUMA node. This
can be a good approach if the runtime system X ignores the memory topology.

StarPU can be used in a MPI+StarPU model: in this case, StarPU would not
see the distributed side of the program, would only be used for parallelism inside nodes
and would let the application developer manually manage the distributed aspect of their
application. Such use-cases can appear, for instance, when progressively transforming an
MPI+X application into a StarPU application.

Interactions between Task-based Runtime Systems and Communications 35

2.1. Programming models

The distributed extension of StarPU can be considered as an implementation en-
compassing an MPI+threads model.

PGAS

The MPI standard is based on explicitly exchanging messages between MPI processes.
Another communication model is the Partitioned Global Address Space (PGAS) model:
a global memory address space is split across all the nodes, and each process can access
memory regions exposed by other processes, without any speci�c instruction from the
target process for this speci�c access. In other words, this model allows to access remote
memory regions without requiring synchronization between the sender and the receiver
process.

Several libraries and runtime systems implement this communication model:
UPC [47], UPC++ [127], Chapel [32], etc. PGAS is now part of the Fortran 2008
standard with coarrays. The MPI standard supports a PGAS model (also called one-sided
operations) with its set of Remote Memory Access (RMA) routines.

The PGAS programming model does not �t with StarPU's design. One of the princi-
ples in the StarPU's working is a process can work by ignoring the current state of other
processes. When communications are necessary, the sender sends a message when it is
ready to send the data and the receiver explicitly (internally by StarPU) posts a receive
request when it is ready to receive the message (e.g. it does not use the bu�er anymore for
other purposes). By requiring explicit actions from nodes involved in a communication,
the data coherency is guaranteed. With PGAS systems, only one of the process takes
the initiative to access remote memory of another node. However, without any additional
synchronisation mechanism, the active node cannot know if the data located in the re-
mote memory of the passive node is already in the state the active node wants to get
the data. In the same fashion, it is important for StarPU to know when a data is com-
pletely received or sent, since it can unlock tasks to execute, which requires a noti�cation
mechanism.

To summarize, the PGAS model would need synchronization and noti�cation features
to properly work with StarPU. Implementing them would mimic the working of MPI
backend of StarPU...

Conclusion

Presented parallel programming models require to explicitly express parallelism in the
application and to use synchronization points to ensure application coherency. Such work
can be tedious for the application developer and the resulting program may not be portable
on other clusters. Moreover, the developer has to know several runtime systems: usually
at least two, for both inter- and intra-node parallelization. The task-based model allows
to implicitly express parallelism (at a node or cluster level) of applications and the role
of the runtime system ensures a good portability across di�erent machines.

36 P. Swartvagher

2. Related Work

2.2 Task-based runtime systems

StarPU (already presented in section 1.3.2) is not the only distributed task-based run-
time system. Others exist, and they all have their own speci�cities.

PaRSEC

PaRSEC [25], the successor of DAGuE [26], is a runtime system similar to StarPU,
except it supports more input formats to describe programs. It is originally focused on
the PTG representation, but it can also be used with the STF model.

Parametrized Task Graph (PTG) is a algebraic representation of a task-based pro-
gram [37]: each task is described by its code (usually calls to C functions) and dependen-
cies between tasks are represented with algebraic conditions on input and output data of
each task. The following code snippet is the TRSM part of the PTG version of the tiled
Cholesky factorization:

1 TRSM(k, m)

2

3 // Execution space

4 k = 0 .. NT -1

5 m = k+1 .. NT -1

6

7 // Task Mapping

8 : A[m][k]

9

10 // Flows & their dependencies

11 READ A <- A POTRF(k)

12 RW C <- (k == 0) ? A[m][k]

13 <- (k != 0) ? C GEMM(k-1, m, k)

14 -> A SYRK(k, m)

15 -> A GEMM(k, m, k+1..m-1)

16 -> B GEMM(k, m+1..NT -1, m)

17 -> A[m][k]

18 BODY

19 trsm(A /* A[k][k] */, C /* A[m][k] */);

20 END

The main advantage of such model is the lightweight representation of the DAG for
the runtime system: each task composing the whole task graph of an application does
not need to be instantiated ahead of time, instead the algebraic representation of the task
graph indicates to the runtime system, from the current application state, which kind of
task has to be executed after the end of a task. While the memory used for the DAG
representation of StarPU applications is linear with the number of tasks; with the PTG
representation of PaRSEC applications, it is linear with the number of types of tasks.

Unlike StarPU, each PaRSEC's thread can change its purpose during program ex-
ecution: during a phase without communications, all threads can execute tasks and no
thread will be in charge of communications. When a phase with communication will
start later, any thread can take the bullet to deal with communications. The same goes
for threads driving GPUs. This mechanism allows to better adapt the runtime system

Interactions between Task-based Runtime Systems and Communications 37

2.2. Task-based runtime systems

behaviour to application phases.

By default PaRSEC relies on the MPI interface for network communications. Never-
theless PaRSEC supports other communication systems, such as directly UCX (Uni�ed
Communication X [106]), a low-level communication library, abstracting the access to
di�erent types of network interfaces; or LCI [41], which is a lightweight communication
library designed originally for graph analytic, avoiding the pitfalls of MPI mismatching
with requirements of graph applications and supports multithreading (in a word: a library
with features similar to NewMadeleine).

OmpSs

TheOmpSs programming model [46] is similar toOpenMP (annotations, fork-join model,
etc) and is used as research platform to experiment and implement research ideas, which
could end in the OpenMP standard. Its distributed implementations [28, 112] rely on
the PGAS communication model and a master/slave design: the master process analyzes
the task graph and sends to slave processes tasks to execute.

The master/slave model is known to have scalability issues: when the number of slave
processes increases, the bottleneck is the single master process which has to supervise the
activity of more slave processes. To mitigate this issue, several levels of hierarchy can be
introduced in the master/slave model: the main master process distributes coarse-grain
work to submasters and these submasters manage a set of slave processes.

With StarPU, each node unrolls the same task graph of the application and keep
only the task it will execute. This method avoids the need for a centralized approach and
monitoring the state of each node or exchange status messages between nodes. However,
it cannot dynamically handle load unbalance if the original data (or task) distribution is
not optimized.

OpenMP

Version 3 of the OpenMP standard introduces the task keyword and the version 4 adds
the support of dependencies between tasks. The conception of task-based applications
with OpenMP is di�erent from just using a fork-join model: the application has to be
taski�ed and dependencies have to be expressed. The pragma instructions can become
quite long and complex...

Regarding distributed applications, OpenMP can be used along with MPI with the
fork-join model. Calling MPI routines directly from OpenMP threads allows to avoid
the need to wait the end of a parallel section to launch communications, but it adds a
complexity level to the program and can be tedious to master. Moreover, it requires a
correct support of MPI_THREAD_MULTIPLE from the MPI implementation. To ease this
usecase, the version 4 of the MPI standard introduced partitioned communications : each
thread can bring its contribution to a single message, without requiring to initialize the
MPI library with the MPI_THREAD_MULTIPLE threading support.

Actually StarPU provides an implementation of the OpenMP interface, to be used

38 P. Swartvagher

2. Related Work

as the runtime system executing OpenMP instructions [11].

And many others

Quark (QUeing And Runtime for Kernels) [126] is a task-based runtime system for
multi-core systems with shared memory, especially targeting linear algebra applications. It
uses the STF model and inspired a lot the design of StarPU, especially the task_insert
semantic. However, the project does not seem active anymore. YarKhan showed in his
PhD thesis [15] some concerns about the distributed extension of Quark, QuarkD:
unrolling the whole DAG on all nodes might become a bottleneck when the number of
task increases, and can be partially unnecessary for speci�c applications, for instance,
coupling applications described by task graphs with several components connected with
only few dependency edges.

Legion [19], introduced in Bauer's PhD thesis [20], is a task-based runtime system
focused on data locality.

Other task-based runtime systems exist, among them: OneAPI (now encompassing
Intel's Threading Building Block), SuperGlue [115], Charm++ [9], HPX [75],
etc. More detailed comparisons between task-based runtime systems about their di�erent
working, features and performance can be found in the literature [114, 108, 66].

2.3 Communications with task-based runtime systems

As discussed in the previous chapter (in page 28), MPI is not the most well-suited to be
integrated with task-based runtime systems. MPI was not designed for irregular applica-
tions requiring asynchronous mechanisms and high reactivity.

Integrating communications in task-based runtime systems

Di�erent techniques can be applied to use a communication library in a task-based pro-
gramming context. Each task-based runtime system proposed its solution to integrate a
communication library and support distributed executions.

HCMPI [34] is an extension of the Habanero-C task-based programming model to
support distributed executions. One major goal of HCMPI is to avoid the synchroniza-
tions imposed by the fork-join model, where communications are made by a single worker
after waiting for all workers to �nish their computations. The design of the distributed
extension is positioned between the MPI+OpenMP model and a PGAS model: to handle
the asynchronicity of the task-based model and be able to easily overlap communications
by computations, communications are non-blocking, can be launched from tasks and are
handled by speci�c workers, di�erent from those executing computation tasks.

In the OmpSs programming model, MPI communications can also be made inside
tasks. To prevent blocking communication operations from wasting worker time to wait
for a communication inside a task, Sala et al. proposed [100] mechanisms to pause tasks

Interactions between Task-based Runtime Systems and Communications 39

2.3. Communications with task-based runtime systems

and exclude them from the ones being ready to be executed, when they start a blocking
MPI communication, and release them when the MPI communication is �nished. This
way, the worker which was executing the task can execute other tasks while the blocking
MPI operations are not completed. Another thread is dedicated to poll the completion
status of the MPI operations.

One-sided communications can also be used in OmpSs [99]. Both the runtime system
and the PGAS library needed proper changes, especially to be able to notify receivers
when data arrived and to wait for speci�c communication operations, and not a set of
communications.

Some attempts were made to try to extend the MPI interface to include a noti�cation
system. For instance, Schuchart et al. proposed [102] an extension to register callback
functions to be executed when an MPI request is �nished. Their solution still requires a
progress thread to make MPI check the status of current requests, but their evaluations on
several applications (including PaRSEC ones) show performance gains. Similar proposal
was made by Protze et al. [97].

To the best of author knowledge, a combination of a task-based runtime system with a
natively event-driven HPC communication library has not been proposed nor evaluated.
This thesis might in a sense �ll this lack, by exploring the possibilities of the couple
StarPU and NewMadeleine.

Considering communications from a runtime system point of view

After integrating communications into the working of a task-based runtime system, the
runtime system can also optimize their use and take them into account to make smart
decisions.

Castillo et al. expose [30] internal events of MVAPICH and implement mechanisms
in OmpSs to listen to them and react accordingly. The knowledge of the communication
library internal states now available to the runtime system allows them a better reactivity
to network events and especially an optimization of collective operations which collect
data from several peers (e.g. MPI_Gather or MPI_Alltoall): when data from a collective
operation is only partially received (i.e. only a subset of involved nodes already sent
their contribution), tasks that require only the received portion of data can immediately
be launched, without waiting the end of the whole collective operation. This permits a
better overlap of collective communications with computations.

Pereira et al. propose [93] to prioritize OpenMP tasks containing MPI send instruc-
tions (and their parent tasks), to reduce the idle time waiting to receive data. They study
di�erent techniques: manually setting the priority of OpenMP tasks, with a higher value
for those containing send instructions; a semi-automatic approach annotating OpenMP
tasks which contains send instructions to inform the runtime system and let it manage the
priorities; and an automatic approach based on building pro�les of tasks which contained
MPI operations, to be able to set suitable task priority to future tasks matching the same
pro�le. The main goal in this work was to reduce the time a task blocks a thread because
of a blocking MPI operation inside.

40 P. Swartvagher

2. Related Work

This situation cannot appear in StarPU, since communications are not executed
inside tasks and are non-blocking; a lengthy MPI communication will only delay the
execution of tasks waiting to receive this data; during the time, workers can execute other
ready tasks.

Again, presented work is close to the problematic of this thesis (better collaborat-
ing between communications and task-based runtime systems), but does not consider a
runtime system with an STF model and event-based communication library.

In StarPU

In the second chapter of his PhD thesis [104], Marc Sergent improves the scalability of
StarPU-MPI in three ways, detailed in the remaining of this section.

In StarPU-MPI applications, by default all nodes unroll the same task graph. This
is required by the STF model to avoid synchronizations and/or control messages between
StarPU processes. This means each node analyzes all tasks of the program, and keeps
only the tasks it is involved in. Sergent showed the time required to analyze the whole
task graph (the submission time) can become a bottleneck when the number of tasks and
nodes increase. To address this issue, the task graph can be pruned from the application
level: each node will submit only tasks, which the runtime system needs to be aware of
on this node: none of the submitted task will be useless for the local StarPU process.
This reduces the number of task each node has to discover and improves scalability.

Another factor limiting the scalability is the memory consumption by both the runtime
system itself and the application. A cache mechanism was introduced in the memory
management of StarPU to avoid heap fragmentation and memory waste. This is mainly
dedicated to memory allocations for MPI receptions.

Unrolling the whole DAG at the beginning of application execution allows for the
runtime system to have visibility about all the data dependencies and future tasks, which
allows to optimize scheduling decisions. However, it requires to allocate more memory
at the beginning of the execution for the internal task structures but also for bu�ers
receiving data from MPI communications. These early allocations can lead to consume
too much memory. To tackle this issue, Sergent introduces a mechanism to control the
task submission �ow by blocking the submission of tasks, based on two possible criteria:
the number of submitted tasks not executed yet, or the amount of memory allocated for
the submitted tasks.

To prevent duplicated communications, e.g. when the same data has to be sent to
another node for several di�erent tasks, the data is sent only once, and not independently
for each task that requires it [12]. This reduces the number of communications and save
memory consumption used by reception bu�ers.

This work improves performance of the distributed extension of StarPU, but at the
StarPU level: the communication library is not aware of the optimizations made in the
runtime system.

Interactions between Task-based Runtime Systems and Communications 41

2.4. Work related to our contributions

2.4 Work related to our contributions

This section presents work related more speci�cally to our di�erent contributions.

2.4.1 Broadcasts in task-based runtime systems

The main question addressed in Chapter 4 is how to use optimized routing algorithms for
broadcast communication patterns between nodes, while these broadcasts are not explicit
and no StarPU process has a whole vision of the application DAG. The two challenges
are the detection of the broadcast and the participation to the broadcast of nodes that
do not know ahead of time the data they will receive is actually part of a broadcast.

E�cient broadcasting routing schemes have already been discussed a lot [123, 95, 118,
101]. The presented work relies on these existing algorithms and can use any tree-based
broadcasting algorithm.

With the PTG representation used by PaRSEC, all nodes know the full task graph,
they can easily know all nodes involved in a broadcast and the entire graph being known
at the beginning of the execution, explicit call to broadcast routines can be made. In
practice, PaRSEC uses binomial or chained trees, on the top of MPI point-to-point
requests. Broadcasts are identi�ed directly from the algebraic representation of the task
graph, which the application programmer thus has to provide, while our approach can
be introduced in most task-based runtime systems, which use a dynamic task submission
API.

With the master/slave model of OmpSs, only the master node knows the whole task
graph and distributes tasks to slave nodes. Thus, the master node can easily detect
broadcasts and tells slave nodes how to handle them. However, no information is published
about the optimization of broadcasts.

Charm++ comes with the TRAM subsystem for collective communications, but it
is supposed to be used explicitly by the application, which makes its constraints di�erent
from our use case.

HPX executes task on remote nodes via active messages. Its API contains routines
to explicitly invoke a broadcast involving several nodes.

All in all, other task-based runtime systems either do not optimize broadcasts, or have
an API or a DAG representation that allows for explicit use of broadcasts, which are
di�erent constraints than dynamic task submission.

2.4.2 Interferences between computations and communications

Chapters 5 and 6 explore the possible negative interferences between computations and
communications when they are executed simultaneously, since task-based runtime sys-
tems usually provide this feature. We mainly study the impact of processor frequency
and the impact of memory contention, of which we propose a memory bandwidth shar-
ing model. Unlike many studies which tend to neglect performance of communications

42 P. Swartvagher

2. Related Work

in favour of computations, our work consider equally performance of computations and
communications.

Impact of frequencies

A lot of research is done about the impact of CPU frequency scaling, mostly to save energy.
However, most of these works consider communication phases as a good opportunity to
reduce CPU frequency, because communications would be less CPU-intensive. In our
work, we want to reach maximal performance of both communications and computations.

Liu et al. studied [84] power consumption of Remote Direct Memory Access (RDMA)
communications. They noticed that RDMA consumes less CPU cycles and memory band-
width than TCP/IP. Moreover, CPU frequency has almost no e�ect on RDMA perfor-
mance, unlike TCP/IP. Their work focuses on power consumption and only on commu-
nications.

In order to save energy, Lim et al. proposed [82] to decrease CPU frequency in com-
munication phases of executed programs. They observed that reducing frequency does
almost not degrade communications. However they only use Ethernet-100, which does
not behave the same as high-performance networks.

Sundriyal et al. applied [111] Dynamic Voltage and Frequency Scaling (DVFS) and
CPU throttling techniques during collective communications to reduce energy consump-
tion. They accepted a communication performance loss of 10% and only changed the
behavior of the communication core, not of the whole machine.

Memory contention between computations and communications

Regarding memory contention, previous works focus mainly on impact of memory con-
tention on computation and tend to neglect performance of communications.

Memory contention caused by communications and computations is observed by Chai
et al. [31]. They did not evaluate the impact of this contention.

Balaji et al. studied [18] CPU load and memory tra�c caused by communications
with TCP/IP over 10 Gbps Ethernet and with RDMA over 10 Gbps InfiniBand. They
did not discuss the interaction with simultaneous memory-bound computations.

NiMC (Network-induced Memory Contention) is introduced by Groves et al. [58]:
they studied the memory contention generated by network communications on a set of
applications with and without RDMA. However, they only considered the performance
of computation, not the performance of the network communications. The solutions
they proposed are already implemented in our software stack (using a dedicated core,
o�oading RDMA transfers) or penalize communications (reducing network bandwidth to
reduce memory bandwidth for communications and save it for computations).

Interactions between Task-based Runtime Systems and Communications 43

2.4. Work related to our contributions

Modeling memory contention

Gropp et al. proposed [57] to improve the postal model, commonly used to model the
performance of ping-pong exchanges, by taking into account the number of MPI processes
accessing the Network Interface Card (NIC) at the same time. It is not applicable to our
work since in our context only one thread handles all communications done by a host.

A theoretical model of the memory bandwidth sharing between computing and com-
municating threads was made by Langguth et al. [79]. Although they considered com-
munications and computations are executed simultaneously, in their model, when com-
munications end before computation, computation gets again all the available bandwidth
and vice-versa when computation ends before communications. We rather focus on the
steady state when there are always computations and communications in parallel (as in
many StarPU applications), by considering bandwidths instead of durations. Moreover
our model is more low-level, by considering the data placement on the machine topology
and the number of computing cores.

Work presented in the rest of this section did not consider communications, but was
helpful to better understand the memory system, and the possibilities to model its be-
haviour, especially under contention.

Queuing theory is often used [35, 119] to model memory contention. Each queue can
represent one contention point, and assembling them can describe the general behaviour
of the whole memory system. Model parameters are derived from hardware counters,
read while executing applications. This kind of model �ts well with homogeneous queue
consumers (computing cores, caches, memory controllers), but is more di�cult to use in
our context, because of the heterogeneity of data streams to consider.

Wang et al. presented [122] the possible bottlenecks in the memory system to model
them with Integer Programming, to �nd the optimal number of cores to execute memory-
bound applications, especially on NUMA systems.

Majo andGross studied [86] the behaviour of memory controllers in charge of serving
local and remote memory accesses. They distinguished the local memory bandwidth (of
the local memory controller) and the remote memory bandwidth (of the QPI bus) and
modeled the maximum available bandwidth as a pondered sum of the two bandwidths,
by introducing a sharing-factor. The evolution of this factor depending on the number
of computing cores helps to understand how the memory controller manages its queuing
fairness between di�erent types of memory requests.

Goodman et al. presented [55] Pandia, a framework to predict performance of other
con�gurations (number of threads and their placement) of parallel applications. From a
machine description and 6 well-chosen application runs, they have all required information
to make accurate predictions, by knowing the bandwidth capacity of the di�erent memory
buses. They take into account parallel fraction, memory accesses, load balancing and
computing resource demands of applications, and rely on hardware counters to get these
information.

44 P. Swartvagher

2. Related Work

2.4.3 Tracing systems

To better understand interactions between runtime systems and communication libraries,
tracing application executions can be very helpful. Tracing applications consists in record-
ing the behaviour of an application execution to analyze it latter in depth and try to
understand the performance. Many articles start from observations of trace executions to
explain their �ndings and improvements, for instance [53, 29, 90]. Two main steps form
the tracing process: telling the application what to record and then analyze the execution
traces.

Tracing solutions

A large set of tools dedicated to the tracing work�ow is available. Some tools focus only
on a subset of the steps composing the whole tracing process, while others take care of
the whole work�ow. As examples, FxT [42] and LiTL [70] are libraries handling event
probes and their storage; EZtrace [116] is a library to easily wrap function calls: it stores
events when the functions are entered and left. More complex tools such as Tau [107] and
OpenSpeedShop [103] execute the application to trace, process all the collected data
and give information back to the user about the execution.

Trace �le formats resulting from a traced execution are usually a raw format, under-
standable only by the library which generated the �le. However, once converted, the �les
depicting the execution can be in more common �le formats, like Pajé [43] or OTF2 [49],
to be read by tools to view and analyze the trace, like Vampir [89], Paraver [94],
Scalasca [54] or ViTE [38]. Usually, tools focusing on a particular step of the tracing
work�ow are linked to speci�c tools focused on other steps. Some collaborations tend to
reinforce these a�nities, like Score-P [78], a joint performance measurement environ-
ment gathering, among others, Tau, Scalasca and Vampir. All these tools can be used
to trace any kind of application, even if they tend to focus on parallel applications.

An overview of the characteristics of traces representing executions of task-based appli-
cations is given in [62], along with propositions to ease the trace analysis. The beginning
of Chapter 3 explains in detail the speci�cities of task-based applications when it comes
to tracing their executions and how tracing process works within StarPU.

Regarding other task-based runtime systems, OmpSs [46] relies on the Extrae [1]
library to generate traces, browsable by the Paraver trace explorer, and PaRSEC [25]
uses an internal system to record events [29] and provides a set of tools to convert resulting
trace �les in more convenient �le formats, such as Pajé.

Distributed clock synchronization

When benchmarking or tracing distributed applications, getting the current time to times-
tamp events, and thus be able to locate them in the time, is usually done by relying on
the local clock of each node. However, each node can have a di�erent time origin and,
even worse, clocks can have di�erent drifts. Therefore, clocks have to be synchronized
between nodes to be accurate enough.

Interactions between Task-based Runtime Systems and Communications 45

2.4. Work related to our contributions

The problem of distributed synchronized clocks, applied to tracing systems or other,
has already been covered in the literature, to explain the origin of clock di�erences in
distributed systems, to propose algorithmic solutions, and to present solutions used by
applications. Among many work, Becker et al. explain [24] how non-constant clock
drifts, caused for instance by processor frequency variations, can have a severe impact
on distributed clock synchronization. They show that post-mortem linear interpolation
of clock drift based on clock synchronizations before and after application execution is
not enough to compensate for these clock variations, especially on long runs (after several
minutes). Jones et al. statistically evaluate [74] the accuracy of time synchronization on
several leadership class supercomputers in 2016, and report their clock synchronization is
not as good as expected, for such top-world supercomputers.

The problem of clock synchronization is not only present in the HPC area. For com-
modity computers, the Network Time Protocol (NTP) [8] is used by operating systems
to have a correct clock, but with a coarse-grain precision: only around 200µs on local
networks. In research about distributed systems, for instance, Clément and Dage-

nais synchronize [36] event timestamps to trace events in OS kernel during distributed
executions.

In the HPC area, there are two main features requiring accurate synchronized dis-
tributed clocks: correctly timestamping events to trace distributed executions and bench-
marking inter-node communications. Both su�er from the same problems and can usually
be solved by similar solutions, but there are still some di�erences.

In tracing systems, one of the most important requirements is to keep sequential
consistency in the traces, for instance to avoid communications appearing as received
before they are sent (this kind of artifacts are sometimes called tachyons). In addition
to correctly synchronizing clocks in order to accurately compute the clock o�set during
post-processing, some tools also rely on logical clocks: they look for timing inconsistencies
and try to correct them by changing their timestamp to preserve the correct chronological
event order [48]. With Vampir, two barriers are used before and after the application exe-
cution, and then the event timestamps are corrected by interpolating the clock o�set [77];
Scalasca use additional logical clocks to �x remaining inaccuracies [23, 22].

For communication benchmarks, especially collective communications (involving sev-
eral processes), the accuracy of a synchronized clock is of paramount importance to have
precise measurements and to be able to correctly analyze the results. The problem lies
more in being able to start an MPI operation at the exact same time on all nodes, rather
than measuring the duration of an action taking place over several nodes. If all processes
are able to start at the exact same time, we can use local clocks to measure the duration of
the local action, and then aggregate the duration of all local events to get an overview of
the global duration. Many articles [60, 61, 65, 80, 69, 68] explore what di�erent methods
are used in MPI benchmark sets to synchronize clocks. Lots of tools just use MPI barriers
in each loop iteration to start the MPI function at the same time on all processes, despite
the inaccuracy MPI barriers can su�er from, as pointed out in several papers [69, 65]. A
common practice is also to use the same process (and thus the same clock, not requiring
distributed synchronization) to collect the start and end time of the routine execution to
be benchmarked. SKaMPI was the �rst MPI benchmark [125] to implement the most
e�cient technique to start a function on several distributed processes at the exact same

46 P. Swartvagher

2. Related Work

time, with a so-called window-based synchronization.

In both cases, tracing or benchmarking, synchronizing clocks requires e�cient algo-
rithms, to compute clock o�set as fast as possible. The literature contains some work
about the communication patterns to use to synchronize clocks [45, 69, 67, 68, 65], im-
plementation techniques [73] or statistical approaches [85, 39].

In the MPI standard, the function MPI_Wtime returns the time in seconds since an
arbitrary time in the past. The origin of the clock used by MPI_Wtime is guaranteed not
to change during the life of the process. However, the used clock does not have to be
necessarily synchronized with other processes in the MPI job. In other words, having a
global synchronized clock is left to the appreciation of MPI library developers, which is
currently not the case in OpenMPI, MVAPICH or Intel MPI.

We explain in Chapter 3 how clocks are synchronized to trace distributed executions of
StarPU applications, and we empirically evaluate the accuracy of our implementation.

2.5 Conclusion

Task-based paradigm is an emerging programming model for HPC applications, to easily
abstract the complexity of supercomputers. Nonetheless, there is a lot of room for im-
provements regarding the distributed mechanisms of current task-based runtime systems:
the MPI standard does not �t well with the desynchronized aspect of task-based run-
time systems, which leads to more or less complex solutions, presented above. Moreover,
network communications could be more taken into account by runtime systems to make
smarter decisions about scheduling, data placement, etc.

Two steps are required to achieve correct performance with distributed task-based
runtime systems: the use of a communication library in the runtime system to execute
distributed applications and then, optimizing communications from the runtime system,
by improving interactions between task-based runtime systems and communication li-
braries. This thesis focuses on the second step, by exploring which information have to
be shared between the task-based runtime system and the communication library.

Most of the reviewed related work does not consider the use of an event-based commu-
nication library, more suitable to requirements to task-based runtime systems. Thus, we
try to improve the possible interactions between them and more suitable communication
libraries, like NewMadeleine.

Interactions between Task-based Runtime Systems and Communications 47

2.5. Conclusion

48 P. Swartvagher

Chapter 3
Tracing Task-based Runtime Systems

W
orking on the interactions between runtime systems and communication libraries
requires to �rst understand the existing interactions and then observe and analyze

the implemented improvements. Tracing systems can be a handy tool here: they are usu-
ally used to record details of an application execution, to then be able to precisely analyze
and understand the execution. However, these tracing systems have a cost: some of them
require code instrumentation (i.e. modi�cation in the application code) and they can add
an important performance overhead, sometimes changing the application behaviour when
tracing is enabled, which can be dramatic if tracing the execution makes the developer
actually observes di�erent behaviours from the ones he wanted to understand originally.
Challenges for tracing systems are thus to be as light as possible, as well as being able to
bring insightful information to the application user or developer.

Since with task-based runtime systems, application performance can depend as well
on the runtime system behaviour as the application behaviour itself, it is important to
be able to understand how each component of the runtime system (scheduling, memory
management, communications, etc) works, and thus have a well-integrated tracing system
in the chosen runtime system. Some of them use their own tracing systems, while others
rely on existing ones.

In this chapter, we present the challenges we faced to e�ciently use and improve the
tracing layer in the StarPU task-based runtime system. We explain how the tracing
system works within StarPU and focus on two aspects: the di�erent sources of perfor-
mance overhead coming from the tracing system, and the clock synchronization issue for
precise traces of distributed executions.

3.1 Background: tracing task-based runtime systems

This section presents tracing systems, how they work, the problems they face, and �-
nally what the special requirements of task-based runtime systems are regarding tracing
systems.

49

3.1. Background: tracing task-based runtime systems

3.1.1 Generic tracing systems

Development of runtime systems and applications includes being able to trace their exe-
cutions, to �x bugs, improve performance, etc, by having an overview of what is precisely
happening during executions. Here, we focus on o�ine (or post-mortem) analysis: ex-
ecute the application by recording a set of events describing the application behaviour.
When the application terminates, �les containing the execution trace are saved and can
be exploited by tools dedicated to trace analysis.

The tracing work�ow can be decomposed in several steps, each coming with their set
of problematic and solutions:

1. Collecting information from application executions. This can be achieved mainly
by manually putting probes into the code of the component to be traced (method
called instrumentation) or by wrapping function calls to let the trace system catch
them;

2. Storing collected information. Trace systems have to timestamp all events and save
all collected data in a persistent format to make the trace data available to the user
for the post-mortem analysis. Data has to be stored in a coherent format (keeping
the chronological order of events, storing all possible kinds of additional data for
each event, etc), preferably minimizing the size of the trace �les;

3. Converting raw trace �les to more practical �le formats. Because of the constraints
on the previous step, the raw trace �les are usually not directly exploitable, and
need some processing to be read by other tools;

4. Analyzing the trace �les. The converted �les during the previous step can be read by
tools to visualize the execution timeline and to highlight the performance bottlenecks
and hotspots, for instance.

3.1.2 Tracing distributed applications: synchronizing clocks

With distributed executions, usually each process is traced locally, generating one trace
�le per process. A subsequent conversion step is then in charge of merging the trace �les
to generate a single exploitable trace �le describing the behaviour of the whole application
execution.

The main concern with distributed traces is the clock synchronization between nodes:
each node usually has a di�erent clock origin. Since each process uses its local clock to
timestamp events stored in the trace �le, clocks have to be synchronized between the
di�erent nodes. Even worse, clocks of di�erent nodes can have di�erent drifts, causing a
single clock synchronization not to be accurate enough after some elapsed time.

In practice, badly synchronized clocks can break temporal order of events (the best
example is a communication between two nodes appearing in the trace as being received
before it was sent) and/or distort the durations of actions involving several nodes (a
communication can for instance look faster than in the reality).

50 P. Swartvagher

3. Tracing Task-based Runtime Systems

There is no straightforward solution to synchronize distributed clocks, which satis�es
all requirements: accurate, fast to initialize and to access, scalable with the number of
processes, precise enough for a de�ned amount of time and without overhead for the ap-
plication using this kind of clock. Moreover, many factors may in�uence the accuracy of
synchronized clocks, from hardware characteristics (processor frequencies, network perfor-
mance, computing load, etc) to software features (algorithmic complexity, for instance).

The distributed clock synchronization problem is discussed in detail in section 3.4.

3.1.3 Tracing systems and task-based runtime systems

Even if task-based runtime systems can be traced and analyzed with existing tools, these
tools are widely used for more classic applications, which are usually more regular (or
even based on the BSP model), and can miss some important information related to the
working of task-based runtime systems. For instance, one of the key components of such
runtime systems is the scheduler, orchestrating the DAG execution onto the computing
units: tracing its behaviour to control and understand its decisions requires to collect
and visualize particular information, such as the number and types of tasks ready to be
executed, which memory node the data bu�ers these tasks will use are on, what the current
status of each computing unit is, etc. Moreover, since all the program execution relies
on a DAG, saving this graph, e.g. all information about the tasks and the dependencies
between them, is also important to understand the application structure and how the
runtime system deals with it.

3.1.4 Contributions

Within the context of StarPU, this chapter presents some challenges and solutions while
integrating and using a tracing systems. It makes the following contributions:

1. A presentation of three sources of performance overhead caused by tracing systems.
For each source of overhead, we measure the performance penalty and propose
solutions to reduce it;

2. An empirical evaluation of di�erent distributed clock synchronization methods,
along with implementation details to compute clock o�sets between nodes;

3. A discussion from the di�erent elements learned in the following sections about the
method to e�ciently trace applications and which requirements has to �t a generic
competitive tracing system.

3.2 Tracing StarPU's behaviour

The large number of concepts speci�c to task-based runtime systems (tasks, dependencies,
memory transfer, scheduling, etc) shows how complex the work of such runtime systems

Interactions between Task-based Runtime Systems and Communications 51

3.2. Tracing StarPU's behaviour

can be. Thus, it is important to be able to precisely analyze the runtime system be-
haviour, to check if it works as expected, to detect and investigate performance issues,
etc. Each previously enumerated concept can give valuable and ample information about
application execution. A method to retrieve all this information is to record them during
the application execution and exploit them later, in a post-mortem analysis.

To better understand following sections, this one explains more in depth how the trace
gathering works within StarPU and how the collected data can then be exploited.

3.2.1 Trace gathering

The big picture to explain StarPU's tracing mechanism is that the internal code of
StarPU is riddled with probes to describe what is happening. These probes are instruc-
tions to save an event with a timestamp and additional provided information. These
events are then stored in a �le, to be analyzed later.

Let us consider the example of pushing a task to workers: all data dependencies of
this task have been ful�lled, the task is ready to be executed by a worker. The function
in charge of this action begins as follows:

1 int _starpu_push_task_to_workers(struct starpu_task *task)

2 {

3 _STARPU_TRACE_JOB_PUSH(task , task ->priority);

4

5 // ... actually push the task to computing units

_STARPU_TRACE_JOB_PUSH will generate an event representing the push of the task given
as a parameter, with the given priority. In fact, it is a preprocessor macro that checks
whether tracing is enabled and then calls the tracing library to store the event.

StarPU relies on a third-party library, FxT [42], to record and store events. FxT
is in charge of collecting events, possibly �ltering them, timestamping them and saving
them in a raw �le. Then, FxT is also used to read the trace �le and get all event
information: timestamp, event type, thread ID and additional given information (in the
previous example: the task and its priority).

Internally, FxT allocates a bu�er to temporarily store events, before �ushing this
bu�er to a disk, in the trace �le. The bu�er is �ushed when it is full or when the
application terminates. During a �ush, other threads can continue to record events,
thanks to a double-bu�ering system.

For distributed executions, a raw trace �le per StarPU process is created.

In StarPU, all possible events belong to a category, for instance:

� TASK: task information: name, color, submission time, dependencies, number, throt-
tling, etc;

� WORKER: computing unit activity: start and end of task execution, sleep, memory
transfer to execute tasks, etc;

52 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.1: Example of visualization of an execution of the Cholesky algorithm with
the StarVZ framework.

� DSM: all memory management made by StarPU: allocation, release, transfers be-
tween memory node, etc;

� SCHED: scheduler activity: new task to schedule, scheduled task, work stealing, etc;

At execution time, users can select which event categories they want to be recorded.

3.2.2 Trace exploitation

Once the application execution has been traced, a raw trace �le per StarPU process
is left to the user for post-mortem analysis. Since these �les are understandable only
for FxT, StarPU provides the tool starpu_fxt_tool which reads the trace �les, and
transforms them into �les with a more convenient format, for instance:

� paje.trace: the Pajé format stores timestamped events to describe application
behaviour;

� Several rec �les (a format similar to Comma-Separated Values) listing all commu-
nications, tasks, data bu�ers, etc and their characteristics,

� dag.dot: a DOT �le representing the task graph of the application, executed by
StarPU.

These di�erent processed �les can be exploited in di�erent ways:

� The ViTE [38] software can be used to display the Gantt diagram described in
the paje.trace �le: it will statically represent along a timeline the activity driven
by the runtime system: task executions by workers, memory and network data
transfers, etc. An example of the representation of a StarPU application by ViTE
is given by Figure 3.3 (page 55).

� StarVZ [53] is an R framework, useful to manipulate data from the trace and to
easily make all sorts of plots about information stored in the trace �le. Figure 3.1

Interactions between Task-based Runtime Systems and Communications 53

3.3. Reducing impact on performance

is an example of basic visualization rendered with StarVZ, where the di�erent
plots represent: the parallelization of Cholesky iterations, the task executions by
workers, the number of submitted tasks, the worker status, the number of ready
tasks, a metric representing work imbalance and worker utilization.

� Users can manually parse �les generated by starpu_fxt_tool to produce their own
analysis and plots to represent metrics they are interested in.

3.3 Reducing impact on performance

Tracing applications implies executing instructions for the original application processing,
but also additional instructions to record the events. These additional instructions can
add a performance overhead and thus reduce the application performance or, even worse,
change the application behaviour. This section presents three sources of overhead caused
by the trace recording and proposes solutions to reduce these overheads.

3.3.1 Avoid writing traces on the disk during execution

As mentioned earlier, FxT �ushes its event bu�er on the disk when it is full. FxT will
notice the bu�er is full when it will try to record a new event: if the bu�er is full, writing
the bu�er in the �le will increase the duration of the probe routine, as much as the
necessary time to �ush the bu�er. This can a�ect application performance, if it happens
during application execution, on a critical path.

We made an experiment to evaluate this possible source of tracing overhead on per-
formance of applications. To generate a lot of events and observe how trace bu�er �ushes
re�ect in application performance, we execute several times the same Cholesky decom-
position of a matrix of size 24 000 × 24 000 and plot the performance of each run. At
the end, the trace �le size is 7.1GB while the trace bu�er size is 1024MB (i.e. �ushes
occurred during application execution). The trace �le was recorded on a BeeGFS paral-
lel �lesystem. Results of this experiment are depicted on Figure 3.2: blue dots represent
application performance in G�ops and runs during which a �ush of the trace bu�er oc-
curred are highlighted with a vertical red line. When runs are not disturbed by a �ush,
application performance is around 3T�ops (small variations may be caused by processor
frequency variations, to avoid overheating). When a �ush occurs during application exe-
cution, performance can be severely reduced (1.1T�ops for runs 6 and 12, 1.8T�ops for
runs 18, 30 and 36) or not (3T�ops for run 25).

Indeed, the impact of a trace bu�er �ush on the disk depends on when (and where
in the StarPU's code) it happens. Figure 3.3 represents the Gantt chart of several
executions of a Cholesky decomposition (here the size of the trace bu�er was 512MB
and the resulting trace �le weights 1.7GB). The di�erent executions are separated by the
vertical white dashed lines and red areas represent idle computing units. Trace bu�er
�ushes occurring at di�erent times lead to di�erent situations, highlighted in Figure 3.3:

1Machines used for experiments are described in Appendix C.

54 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.2: Impact of bu�er �ush on application performance, on a bora node1.

A

B

C

Figure 3.3: Trace of several runs with highlighted impacts of event bu�er �ushes.

Interactions between Task-based Runtime Systems and Communications 55

3.3. Reducing impact on performance

Figure 3.4: Performance of several runs without interrupting bu�er �ushes, on a bora

node.

� A: �ush occurred during overhead (somewhere in StarPU's code, but not in a
speci�c section): it did not disturb the application too much, because other workers
were able to execute tasks and make the application progress;

� B: �ush occurred during progressing (a memory transfer): in this situation, no
computing unit was able to execute other tasks, because a lock was taken, preventing
StarPU from launching tasks on other workers;

� C: the �ush occurred during a task, other workers were able to work as long as the
result of the blocked task was not necessary to process remaining tasks.

One way to avoid troubles caused by trace bu�er �ushes during critical moments is to
be able to set the size of the trace bu�er. When users execute the application a �rst time,
they are warned for each �ush occurring during the execution; at the end of execution,
the user can look at the size of the trace �le to have a rough idea of the required size of
the trace bu�er to avoid �ushes during execution. Then, users execute the application
again, but with specifying the size of the trace bu�er. Figure 3.4 presents performance
with a trace bu�er of 8192MB (as said previously, the trace �le for this experiment has
a size of 7.1GB). There is no outliers and the remaining small variations are probably
caused by processor frequency variations.

Another (not implemented) idea to avoid disturbing bu�er �ushes is to dedicate a
non-bound thread to �ush the bu�er. Since FxT has a double-bu�ering system, enabling
to record events in a second bu�er while the �rst one is being �ushed, the thread could
write the bu�er on the disk without disturbing other important threads. Moreover, this

56 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.5: Number of events according to their type.

thread would be performing only I/O activities, requiring few CPU resources. This could
avoid having to manually specify a bu�er size to avoid the problem.

3.3.2 Number of recorded events

The more events are recorded, the more time is spent in the tracing library and we can
presume the overhead will be more important. By default, all available event types in
StarPU are recorded. The resulting number of recorded events in the trace �le can be
considerable.

Figure 3.5 depicts the number of events according to their type, for one run of
the Cholesky decomposition of a matrix of size of 24 000 × 24 000. The trace �le
weights 170MB and contains 3 887 676 events. On the histogram, only events with more
than 2000 occurrences are considered. We can notice some event types are more rep-
resented than others: for instance, TASK_DEPS (records dependencies between tasks),
END_PROGRESS_ON_TID (records end of memory transfers), CODELET_DATA and
CODELET_DATA_HANDLE (both record information about the data bu�ers used by tasks)
make the majority.

Recorded events also depict the potential di�erent phases of the analyzed applica-
tion. Thus, the number and type of recorded events can change during the application
execution. Figure 3.6 represents the number of events generated during the application
execution. Even without knowing in detail which events are recorded, we can notice four
phases: (A) data and problem initialization, (B) task executions, (C) task graph submis-
sion, and (D) data release. There are more events during the phase C, because the task
graph submission is overlapped by the task executions, which are two di�erent StarPU's
activities, each generating their own events. If we look at the same plot, but with details
about which types of events are recorded (Figure 3.7), our hypothesis is con�rmed: events
corresponding to task graph submission occur only in phase C, while events about task
execution occur during the whole phase B.

From �gures 3.6 and 3.7, we can determine which event types are dominant in the

Interactions between Task-based Runtime Systems and Communications 57

3.3. Reducing impact on performance

A

B D

C

Figure 3.6: Number of events across time (see Figure 3.7 for details about the number of
events).

Figure 3.7: Number of events across time, for each event type (detailed version of Fig-
ure 3.6).

58 P. Swartvagher

3. Tracing Task-based Runtime Systems

trace �le and thus which ones have to be �ltered out in priority, if we want to lighten
the tracing activity. The di�culty in selecting which event types to drop during trace
recording is �nding the good trade-o� between acceptable trace overhead (caused by an
important number of events to collect) and enough events in the trace �le to be able to
do insightful post-mortem analysis.

If the user knows on which events to focus to analyze the trace of an execution, the
set of recorded events can be reduced to keep only the interesting events, and thus reduce
the tracing overhead. There are several possible approaches:

� Using the environment variable STARPU_FXT_EVENTS to specify which event cate-
gories have to be recorded:

export STARPU_FXT_EVENTS="TASK|DATA|WORKER"

� Manually changing in the source code of StarPU which events will be recorded (by
removing some tracing probes, for instance). This can be much more complicated
than the previous solution, but it allows a more �ne-grain selection of events than
just �ltering out whole categories.

Figure 3.8 depicts the tracing overhead according to which events are recorded, which
changes the number of recorded events (as reported by the red dots to be read on the right
Y-axis). One can notice that building StarPU with the trace support, without enabling
trace recording at the runtime, does not add an overhead. Then, as expected, the more
there are recorded events, the more the impact on application performance is important.
It should be noted that this seems to be relative to the runtime system behaviour: in this
case, the task graph submission is longer than task execution, thus workers were actively
waiting for new tasks to execute. In an execution with another con�guration, where the
task graph submission is shorter than task execution, the overhead of traces is almost
negligible (see Figure 3.9). We can conclude that the trace overhead is mainly caused by
events to record on the runtime system critical path, especially when this critical path is
under pressure.

3.3.3 Scalability of the number of recording cores

The number of workers (threads bound on CPU cores, for instance) used by StarPU to
execute tasks can be set by the user at execution time. The default con�guration is to
put one thread per processor core. All these threads produce events to be recorded.

By observing the performance of the strong scaling of the Cholesky decomposition,
we can notice that the more there are threads recording events, the higher the impact
seems to be on performance: Figure 3.10 shows the results on peabody, an Intelmachine.

On AMD zonda nodes, when the MKL library (providing routines called by tasks to
actually make the linear algebra computations) is used with its default settings, the max-
imal reached performance is 1T�ops, and there is no impact on performance when traces
are enabled, regardless of the number of computing cores (see Figure 3.11). However,
when the MKL is correctly set up to use all features of the AMD processor (Figure 3.12),

Interactions between Task-based Runtime Systems and Communications 59

3.3. Reducing impact on performance

Figure 3.8: Impact of the number of recorded events on the trace overhead. The 4 event

types are the ones previously mentioned being the most numerous in the trace: TASK_DEPS,
CODELET_DATA, CODELET_DATA_HANDLE and END_PROGRESS_ON_TID.

Figure 3.9: Similar to Figure 3.8, but in this case the tasks took more time to complete,
reducing the pressure on the runtime system, thus tracing had less impact on performance.

60 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.10: Impact of the number of cores on performance with traces on peabody, with
Intel processor.

Figure 3.11: Impact of the number of
cores on performance with traces on
zonda, with AMD processor and badly
con�gured MKL library.

Figure 3.12: Impact of the number of
cores on performance with traces on
zonda, with AMD processor and cor-
rectly con�gured MKL library.

Interactions between Task-based Runtime Systems and Communications 61

3.4. Precise distributed traces

the maximal reached performance is 3T�ops, and there is an impact on performance with
enabled traces, starting from 53 computing cores (out of 64). This makes sense since
faster execution of tasks means a higher throughput of events to record. We can notice
here the tracing overhead also depends on performance of the analyzed application, and
not only from the implementation of the tracing library or the runtime system.

The observed phenomenon comes from a lock that protects the single list of recorded
events in the FxT library. This single list allows to easily keep the temporal order of
recorded events in the trace �le. With a list of events per core, there would be no lock
(and thus no contention on waiting for this lock), but the events would then need to be
correctly reordered before any possible exploitation: during the writing of the trace �le on
the disk or during the conversion of the trace �le with starpu_fxt_tool. The reordering
could be based on the timestamps of the events, which need proper synchronization even
when running on a single node, as detailed in section 3.4.2.

3.3.4 Summary about the tracing impact on performance

The various experiments and results presented in this section explored three sources of
disturbances caused by the tracing system, impacting application performance and be-
haviour. Writing on the disk the bu�er containing all recorded events can have a severe
impact on the application performance, depending on where the �ush occurs. Recording
many events means an important intrusion in the runtime system behaviour, and an in-
creased activity of the tracing library, which can increase the performance overhead caused
by the tracing system. Similarly, many cores recording events can generate contention on
getting access to the tracing library.

All these experiments were made on a single node. In distributed executions, the
distributed aspect does not bring additional speci�c overhead coming from the tracing
system. However, it has also its set of di�culties, as explained in the next section.

3.4 Precise distributed traces

When distributed applications are traced, there is a need for precise synchronized clocks
between nodes to keep a temporal coherency between events. If clocks are not synchro-
nized, the event order can be wrong and, for instance, network data transfers can appear
as being received before they are sent! A software adjustment is necessary to avoid these
artifacts.

This section presents the problems requiring synchronized clocks, our implementation
of precise distributed clocks to trace StarPU applications and its empirical evaluation.

3.4.1 Motivation for synchronized clocks

Usually, when tracing distributed applications, each process uses the local clock to times-
tamp events recorded in the trace �le. To keep a correct temporal coherency between

62 P. Swartvagher

3. Tracing Task-based Runtime Systems

events (an event on a node occurring after another event on another node is presented
as such in the post-processed trace �les), clocks of all nodes have to be synchronized: all
clocks need to have the same origin and the same speed.

Unfortunately, such perfectly synchronized clocks are usually not present on computing
clusters. The local clocks have as origin the start of the node, which is hardly the same on
all nodes (nodes are sometimes rebooted independently from each other, for maintenance
tasks, for instance). They can also have di�erent speeds, depending on di�erences in
crystal manufacturing, temperatures, and voltage variations.

Synchronization methods exist (such as NTP) to have the current time available on all
nodes, but they are too much coarse-grain for the tracing requirements. If we need dura-
tion of communications reported in traces, the allowed error on the clock synchronization
has to be lower than the minimum network latency (approximately 1µs on InifiniBand
networks).

All in all, if we want precise and coherent distributed traces, the problem of distributed
clocks to be precisely synchronized has to be considered in tracing systems. The rest of
this section presents how we addressed this issue in StarPU.

3.4.2 Synchronized clocks in StarPU

This section presents in detail how we implemented state-of-the-art techniques to have
distributed traces with events precisely timestamped within StarPU. We also report how
it improved the accuracy of event timestamps, by comparing the di�erent solutions.

To evaluate the accuracy of several synchronized methods, we will execute several
times a ring communication pattern between all nodes, with 4-byte-long messages.

Implementation overview

The general idea is to record events timestamped with the local clock; record an event at
the exact same time on all nodes; and during trace �le post-processing, use this event to
compute clock o�sets and adjust the timestamps of all events.

A naive approach to execute an event at the exact same time on all nodes is to perform
an MPI barrier, and record the event just after the exit of the barrier. An MPI barrier is a
function, provided by the MPI standard, that blocks as long as not all processes called the
function. However, an MPI barrier is not precise enough to synchronize clocks, because
all nodes do not leave the barrier at the same time, as illustrated by Figure 3.13: the
event recorded just after processes left the barrier will not happen at the exact same time
(t0 6= t1 6= t2 6= t3), while it will be considered as such (t0 = t1 = t2 = t3) to compute clock
o�sets. In practice, this can actually make communications being received after they are
sent, as shown by Figure 3.14: starpu_fxt_tool considered that all MPI processes have
left the MPI barrier at the same time (as indicated by the four vertically aligned white
circles). However, this was not true: the MPI process 2 left the barrier a moment after
the other processes.

Interactions between Task-based Runtime Systems and Communications 63

3.4. Precise distributed traces

Inside MPI_Barrier

P0

P1

P2

P3

Time
t1 t2 t0 t3

Figure 3.13: MPI_Barrier: Not all processes leaves the barrier at the same time.

Figure 3.14: The communication from node 1 to node 2 is received before it is sent!

64 P. Swartvagher

3. Tracing Task-based Runtime Systems

Clock 0

Node 0

Node n

Clock n

tstart

tmiddle

tmiddle
dummy
value

tend

. . .

tstart

tmiddle

tmiddle
dummy
value

tend

N iterations

δ

Figure 3.15: How clock o�set δ is computed between nodes 0 and n.

Using a precise barrier To make all nodes leaving the barrier at the same time,
we use a synchronized barrier, based on a window-based synchronization [125]. During
application execution, after computing clock o�sets (see below), the node 0 (arbitrary
choice) decides at which time all nodes will leave the barrier. This time is broadcasted to
all nodes, each node applies the previously computed clock o�set to get the decided time
in its local clock and then waits in the barrier until the deadline. Thus, all nodes leave
the barrier at the exact same time. The next instruction after the barrier is to record the
event which will be used to compute clock o�sets during the trace post-processing.

Computing clock o�set To compute the clock o�set between nodes, for each node to
convert the time received from the node 0 to its local clock, clocks of the two nodes are
compared, with the following protocol, illustrated by Figure 3.15:

1. the node 0 saves the current time tstart;

2. the node 0 sends a message to the node n;

3. just after the node n receives the message from the node 0, it saves the current time
tmiddle;

4. the node n sends the time tmiddle to the node 0;

5. just after the node 0 receives the message from the node n, it saves the current time
tend;

6. the node 0 can now compute the clock o�set δ between the nodes 0 and n: δ =
tstart+tend

2
− tmiddle;

7. the previous steps are repeated N times and we select the clock o�set obtained with
the minimal di�erence tend − tstart;

8. the node 0 sends to the node n the selected o�set δ.

Interactions between Task-based Runtime Systems and Communications 65

3.4. Precise distributed traces

Let's explain some details of the protocol. To compute the clock o�set between the
nodes 0 and n, we need to send the time given by the clock n to the node 0, so it can
compare with its own local clock (step 4). However, the time required to send tmiddle to
the node 0 has to be taken in account when comparing the two clocks. To do so, we need
to know the duration of the communication transferring tmiddle. Since the only accurate
way to achieve this is to use the same clock to read o� the times before and after the
communication, we measure on node 0 the necessary duration to send a dummy value
with the same size of the transferred message from node 0 to n (step 2) and receive back
tmiddle. Then, the average of tstart and tend should be aligned with tmiddle, and the di�erence
between this average and tmiddle gives the clock o�set between the nodes 0 and n. This
is based on the assumption that the communications from the node 0 to the node n and
inversely are exactly symmetric: this is why we send a dummy message from the node 0
to the node n (instead of an empty message), and we take the clock o�set obtained with
the minimum duration of the exchanges between the nodes 0 and n (the smallest duration
is when the �uctuation of network latency is minimal, thus a better symmetry of the two
communications).

Taking into account clock drift With this synchronized barrier, we can have one
reference point in the trace �les to compute clock o�sets between nodes. However, due to
clock drift being di�erent on each node, the computed clock o�set is valid only to adjust
timestamps of events recorded a short time after the synchronized barrier. Then, clocks
follow di�erent drifts and the synchronization is not valid anymore.

A solution to take into account clock drifts is to perform two synchronized barriers,
delimiting the period requiring precise well-synchronized timestamps and then, in the
trace �le conversion step, interpolate the clock o�set to apply to each timestamp, with
the events recorded after the two synchronized barriers as reference points.

Figure 3.16 shows the di�erence between using one (at the beginning of application
execution) or two (at the beginning and at the end) synchronized barriers. This �gure
plots the duration of communications from the rings mentioned earlier: the send and
receive times are taken from two di�erent nodes (the sender and the receiver), thus having
a precise synchronized clock is crucial here for a good estimation of communications
duration. Since each communication has the same message size, communications duration
should be constant. With only one synchronized barrier at the beginning of the execution
(blue dots), measured durations are constant, but for less than one second. Then, the
durations follow lines with non-zero slopes, coming from clock drifts. The di�erent slopes
come from the clock drift di�erences between pairs of nodes (clock drift di�erence between
nodes 0 and 1 is di�erent from the clock drift di�erence between nodes 1 and 2). With
two synchronized barriers (before and after the region of interest, orange dots), measured
durations are, as in the reality, constant. Durations measured with a simple MPI barrier
are not represented, because they are much higher, and the chart scale prevents from
seeing the interesting di�erences between one or two synchronized barriers.

However, linearly interpolating clock drift assumes the clock drift is linear, which in
practice is not the case after several minutes. Thus, this method can be used to trace
only short executions.

66 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.16: Communications duration over time: two synchronized barriers are required
to take into account clock drifts.

Using the right clock

To get a su�cient resolution for the clock and reduce drift, we must use the right clock
source. There are multiple sources for clock in a regular computer:

� Real Time Clock (RTC): this is the basic clock available in every computer/AT-
compatible machine since 1984. It has been considered legacy for a long time. Its
resolution is very poor.

� ACPI_PM: this is the clock device from the ACPI Power Management speci�ca-
tion [120]. The frequency is hardwired to 3.579545MHz which makes it a better
resolution than RTC but still poor to timestamp events in the range of the gigahertz.
It is considered legacy as a clock source.

� High Precision Event Timer (HPET) [72]: this is a clock that was introduced es-
pecially to get a precise and steady clock source. It guarantees a resolution higher
than 10MHz. Its resolution is usually average and it costs a system call to be read.

� Time Stamp Counter (TSC): this high resolution timer was introduced [71] in the
Intel Pentium Pro family. It is synchronized with the instruction counter and
thus has a resolution su�cient for tracing. Moreover, it is very cheap to consult,
using a single unprivileged instruction. However, it is not guaranteed to be synchro-
nized between cores, and its frequency varies with the processor frequency (Turbo
Boost, energy saving, etc), which makes it an unreliable source for timing.

� Invariant TSC: more recent CPUs feature an invariant TSC, which is based on the
Always Running Timer (ART), running at the crystal clock frequency. This �avor

Interactions between Task-based Runtime Systems and Communications 67

3.4. Precise distributed traces

of TSC is synchronized between cores and uses a constant frequency, even when the
CPU changes its frequency for energy saving.

Hence, the most relevant clock to use for traces is invariant TSC, when available. It
has a good resolution, is steady, and cheap to consult. When it is not available, the
second-best choice is HPET, though the resolution is usually much lower.

To get access to the clocks, multiple interfaces are available. The old gettimeofday

interface cannot express high resolution, and the clock it provides access to is a�ected by
NTP adjustments, which makes it not steady. It is not suitable for our use case.

Then, there is the direct access to a hardware clock. However, direct reading from
/dev/hpet is slow (involves a system call) and usually reserved to root. The direct read
of TSC (with the rdtsc instruction) is fast but is non-portable and requires non-trivial
code to check its properties (mostly whether it is invariant TSC or not).

The best solution is to use the POSIX.1-2001 function clock_gettime that gives
access to various clocks of the system: CLOCK_REALTIME is actually the same clock as
gettimeofday and should not be used for tracing; CLOCK_MONOTONIC is fast and mono-
tonic, derived from the default system clock (usually TSC, sometimes HPET if TSC is
not invariant) but a�ected by NTP (no jumps, but not steady); CLOCK_MONOTONIC_RAW
is a direct portable way (although Linux-only) to get direct access to the default clock.

The main goal of NTP is to compensate for the drift between the local clock and
the real time. It adjusts the rate of local clock to reach sync with the root clock, thus
locally it causes small �uctuations in the speed of the local clock. Therefore, to avoid
those �uctuations, it is relevant to use a raw clock when we compensate for the drift
ourselves, since we do not need features from NTP and it would only add noise in the
clock. However, in cases where we use a single barrier with o�set, we need to use a regular
clock (with NTP roughly compensating for the drift) since we do not compensate for the
drift ourselves.

As a consequence, we use clock_gettime(CLOCK_MONOTONIC) when using a single o�-
set, and clock_gettime(CLOCK_MONOTONIC_RAW) when interpolating between two syn-
chronized barriers.

Protection from preemption between synchronized barrier and event probe

As mentioned earlier, one of the most e�cient ways to have an event recorded at the exact
same time on all nodes is to perform a synchronized barrier and then execute the probe
corresponding to the synchronizing event. In the code, it can look like this:

1 mpi_sync_barrier ();

2 _STARPU_MPI_TRACE_BARRIER(rank);

Since the barrier is synchronized, we are sure each process will leave the barrier function
call at the same time and should execute the next instruction (here: the trace probe to
later compute clock o�sets) also at the same time. However, a thread preemption can
happen between the end of the barrier call and the trace probe: this could prevent the
event from being recorded at the exact same time on each distributed process. To avoid

68 P. Swartvagher

3. Tracing Task-based Runtime Systems

such problem, the solution is to get the local time the barrier is waiting to unblock, use
this time as an additional data for the trace probe, and then use this time as the event
timestamp, instead of the timestamp set by the tracing library to compute the clock o�set:

1 mpi_sync_barrier (& local_sync_time);

2 _STARPU_MPI_TRACE_BARRIER(rank , local_sync_time);

In fact, the interesting value to correctly synchronize distributed clocks is not the times-
tamp of the event indicating this synchronization, but the local time the barrier was
waiting for.

Even if it can seem obvious, it is important to mention that the clock used for times-
tamping events and the one used for the time as additional data of the synchronized event
have to come from the same clock and have the same origin. Since timestamping events is
done by the tracing library and the synchronized barrier is done by another library, this
might not be trivial, and requires proper support: either being able to specify the same
clock to be used by the both libraries or to convert the time given by the synchronized
barrier to the one used by the tracing library.

Compute clock o�sets to adjust event timestamps

A synchronized barrier followed by a recorded event is done in the StarPU initialization
and release phases, thus delimiting the application execution requiring events with precise
timestamps. In order to merge the distributed traces, starpu_fxt_tool, the tool in
charge of converting raw trace �les to exploitable ones, now has two tasks to achieve:
computing the clock o�sets between the nodes from the events of the synchronized barriers,
and then interpolating the clock o�sets to apply the timestamp adjustment on each event.
Figure 3.17 describes how the clock o�sets corresponding to one synchronized barrier are
computed:

� Clock origins can be di�erent on each node, because the clocks we are using have as
origin the start of the node. Then, the application does not start at the exact same
time on all nodes (the instruction to start the application is not synchronized to be
executed at the exact same time on all nodes). In the runtime system initialization,
once all distributed processes are launched, we execute a �rst synchronized barrier
to record the event used as reference point by all processes.

� First step: we consider the event following the synchronized barrier as the local
time origin. Thus, the synchronized time t̃i of an event on process i with a timestamp
ti is: t̃i = ti − tBarrieri . This also allows having small timestamp values, easier to
analyze, since the clock origin will now be the beginning of the application execution.

� Second step: the previous step makes the events occurring before the barrier
having a negative adjusted timestamp. To avoid this, we shift the time origin, to the
�rst application start, which is the maximum of the distances between application
starts and synchronized barriers. Now the transformation to apply is: t̃i = ti −
tBarrieri +max

j
{tBarrierj − tStartj }.

Interactions between Task-based Runtime Systems and Communications 69

3.4. Precise distributed traces

Timestamp con�guration as recorded in raw traces:

P0
0 Start Barrier

P1

P2

Step 1: Consider barrier as local time origin:

P0
0

P1

P2

Step 2: Shift all events with the largest start-barrier distance:

P0
0

P1

P2

Figure 3.17: Clock o�set computation.

70 P. Swartvagher

3. Tracing Task-based Runtime Systems

Figure 3.18: Interpolating o�sets outside of the synchronized window can lead to negative
timestamps.

As one may notice, there is no one node designated as having the reference clock,
before beginning computing clock o�sets.

When two synchronized barriers are used, we follow the same steps: the two barriers
give two sets of clock o�sets between nodes, and then the o�set to apply to an event
timestamp is linearly interpolated. Outside of the interval delimited by the two barriers,
we cannot extrapolate the clock o�set, because there is no guarantee a linear extrapolation
will �t the real clock drift. Thus, in some cases, applying the extrapolated o�set can lead
to negative timestamps. Figure 3.18 illustrates this phenomenon. The black vertical lines
represent the �rst and last events recorded in the trace. The synchronized barriers and
the o�sets computed for each of them are represented by the blue dots on the upper plot.
The time range between these two dots is the range where interpolating clock o�sets gives
valid results, while extrapolating clock o�sets outside of this window can lead to negative
timestamps, as illustrated by the orange curve on the lower plot, before local time of 0.45.
If we only interpolate o�sets in the synchronized window and use the clock o�set of the �rst
synchronized barrier for events before it and the clock o�set of the second synchronized
barrier for events after it, we get acceptable timestamps even outside the synchronized
window, as illustrated by the green curve. The resulting inaccuracy is acceptable outside
the synchronized window, because timestamp of events outside of the window do not have
to be very precise, they are usually more descriptive than indicative of a state change.

Interactions between Task-based Runtime Systems and Communications 71

3.5. Lessons learned

3.4.3 Conclusion on synchronizing distributed traces

In this section, we presented why we need clock synchronization to trace distributed
executions and how we ended up with a working solution within StarPU.

The �rst motivation for clock synchronization is the use of clocks having as origin the
start of the node to timestamp events. A coarse-grain synchronization can be done with
a classic MPI barrier. With a real use-case, the presented experiences show, and con�rm
what is reported in the literature, that a simple MPI barrier is not precise enough to
synchronize clocks, and the clock drift has to be taken into account by interpolating the
clock o�sets between two reference points. The given implementation details specify which
clock we use, how we avoid thread preemption between synchronized barrier and event
probe, and how we compute clock o�sets during post-processing to merge distributed
traces.

The solution we implemented in StarPU is valid while the clock drift is linear, i.e.
only for short executions. This is not limiting, since we usually only trace short executions,
to ease their analysis. We do not use logical clocks, because it would require lots of
development, and the correction of chronological order of events would not reach the
precision we are looking for in distributed executions.

3.5 Lessons learned

This section summarizes the insights learned by exploring the issues previously described
to deal with when tracing applications: it proposes a methodology to apply to e�ciently
trace applications and a list of requirements for a satisfying tracing system.

3.5.1 Methodology to apply when tracing applications

As observed previously, the overhead caused by tracing systems can impact application
performance, and even modify the behaviour we want to observe in the post-mortem

analysis. Thus, the user has to be sure that the potential tracing overhead is acceptable
regarding the purpose of the traces. To do so, the best way is to compare the application
performance with and without tracing it. If the impact on performance is too important,
the user can try to reduce it with several methods:

� Set a correct trace bu�er size to avoid applications being disturbed by the �ushes
on the disk;

� Reduce the number of recorded events, by focusing only on important ones;

� If it appears to be a source of overhead, reduce the number of workers. However,
this can also change the application behaviour.

Reducing the number of events to record is also useful to reduce the size of trace
�les, making them much more convenient to manipulate (to transfer between clusters, to
convert and exploit, for instance).

72 P. Swartvagher

3. Tracing Task-based Runtime Systems

If the user is interested in precise timestamps of events occurring on several nodes,
using a synchronized barrier to synchronize trace �les is a good solution to trace fast
executions (O(several seconds)). An easy way to verify the clock synchronization is cor-
rect is to compare the observed communication duration to the theoretical duration (for
instance, on InifiniBand networks, a transfer of small data lasting less than 1µs might
be suspect).

3.5.2 Requirements for an e�cient tracing system

All these highlighted possible problems appearing when tracing applications allow us to
suggest a list of requirements for an e�cient tracing system. Of course, such systems have
to feature the lowest performance overhead and be precise enough, which can be possible
with:

� A good scalability of the number of cores recording events: this excludes all general
locks protecting a resource accessed by all cores at the same time;

� Accurate-enough timestamps of events, especially on distributed executions, but
this is also true if each core records events in its own bu�er: at the end, events have
to be presented ordered to exploit the trace;

� A good control of trace bu�er �ushes on the disk, to avoid them occurring in the
traced region of interest;

� A user-friendly system to easily �lter which events have to be recorded, to reduce
the tracing overhead and the trace �le size;

� A completely transparent tracing mechanism from the point of view of the user
application: only the runtime system has to be aware whether tracing is enabled or
not;

� Regarding the integration of a tracing system in the runtime system, the runtime
developer has to be careful about where to put the probes in the code, to avoid over-
loading critical paths. Also, if the tracing system allows it, it might be interesting
to distinguish events requiring a timestamp (state changes, action which duration is
an important information, etc) from others, usually more descriptive (for instance
the dependencies of a task, which scheduling policy is selected, etc), since the latter
do not require to be correctly ordered to keep a temporal coherency. Thus, it can
reduce the contention of resources in charge of respecting the temporal order of
events.

3.5.3 Extension to other runtime systems

We discussed previously the speci�cities of task-based runtime systems when it comes
to tracing their executions: especially information about the application DAG and its
scheduling has to be recorded in the trace. However, the majority of phenomenons covered
in this chapter is also valid in the context of other runtime systems than task-based ones.

Interactions between Task-based Runtime Systems and Communications 73

3.6. Conclusion

We took the occasion of improving the tracing system used by StarPU to evaluate its
capabilities, but in the end, the reported issues are not speci�c to task-based runtime
systems: performance overhead caused by bu�er �ushes or the number of events to record
has to be considered with every tracing system, the number of cores recording events
has to be considered for parallel applications, while distributed synchronized clocks is a
general problem when tracing distributed applications.

3.6 Conclusion

Tracing application executions helps to understand their behaviour and improve them, it
is a valuable technique given the current complexity of supercomputers. We presented
how we integrated a tracing layer in the StarPU task-based runtime system.

We evaluated the di�erent sources of performance overhead coming from the trac-
ing system: writing the event bu�er on the disk during the execution, the number of
recorded events, and of recording cores, are all responsible for penalizing the application
performance. The tracing overhead can depend of the application behaviour, but can also
change it; thus the user should always try to minimize the overhead caused by the tracing
system, or at least be aware of the performance di�erence when traces are recorded.

We improved the clock synchronization mechanism in StarPU by implementing state-
of-the-art techniques, and observed the di�erent timestamp accuracy when di�erent tech-
niques are used to synchronize clocks. This work also con�rms that using accurate syn-
chronized clocks is necessary when dealing with distributed applications.

From the observations and conclusion we made, we proposed a methodology to follow
when an application is traced, to minimize the phenomena we described; and we suggested
a list of features a tracing system should implement to ease the application integration
and user manipulation.

Finally, even if our feedback comes from experiments with StarPU and FxT, most
of our observations and conclusions are valid also to trace applications that do not rely
on a task-based runtime system.

74 P. Swartvagher

Chapter 4
Dynamic Broadcasts

W
e have seen in Chapter 2 that most task-based runtime systems rely on the MPI
standard for network communications, while MPI libraries and the MPI interface

do not �t with working of task-based runtime systems. Sending the same data to several
recipients in a optimized manner is not as straightforward as it can be in BSP applications
where calling the right MPI function at the right place is enough. Indeed, the requirements
to be able to call the appropriate MPI function are not met in the StarPU programming
model. Nonetheless, optimizing the broadcast of a data to several nodes is important for
the scalability of the application when the number of nodes (thus the number of recipients)
increases.

In this chapter, we propose an algorithm for a dynamic broadcasts, coping with
StarPU's constraints: only the root knows the list of all recipients, and recipients do not
have to know in advance whether data will arrive through a broadcast or a point-to-point
operation, while still being able to leverage optimized tree-based broadcast algorithms.

This chapter presents in detail the incompatibilities between task-based runtime sys-
tems featuring the STF model and the MPI interface, explains the working of dynamic
broadcasts, and evaluates the performance improvements they bring.

4.1 Broadcasts in dynamic task-based runtime systems

In task-based applications, a given piece of data may be a dependency for multiple tasks
(a vertex with several outgoing edges in the DAG). If the receiving tasks are located on
di�erent nodes, the same data will have to be sent to multiple nodes. This communication
pattern is generally known as a multicast, or a broadcast in MPI speaking, which is a kind
of collective communication.

The naive way to perform a broadcast is to send data from the root to each node
using independent point-to-point transfers. With such an implementation, the duration
of a broadcast is linear with the number of nodes. MPI libraries usually implement much
better algorithms [95, 118, 101] for MPI_Bcast, such as binary trees, binomial trees, rings,
pipelined trees, or 2-trees, which exhibit a logarithmic complexity with the number of

75

4.1. Broadcasts in dynamic task-based runtime systems

nodes. It is thus strongly advised to use MPI_Bcast to broadcast data when possible.

However, for task-based runtime systems that dynamically build the DAG, such as
StarPU, nodes do not have a global view of data location and do not synchronize their
scheduling. This makes the use of MPI_Bcast or MPI_Ibcast di�cult and ine�cient, for
the following reasons:

Detection. All the information the runtime system knows about data transfers is the
DAG. A broadcast appears as a task whose result is needed by multiple other tasks.
However, in general the whole DAG is not known statically but generated while the
application is running. Therefore, the runtime system cannot know whether the list of
recipient is complete or if another recipient will be added later.

Explicit. The MPI_Bcast function has to be called explicitly by the sender and all the
receivers. Therefore, each receiver node has to know in advance whether a given piece
of data will arrive through an MPI_Bcast or a point-to-point MPI_Recv communication.
Application programmer cannot give any hint, since communications are driven by the
DAG, and thus depends on where tasks are mapped during the execution.

Communicator. The MPI_Bcast function works on a communicator, a structure con-
taining all nodes taking part in the broadcast (sender node and recipients). The con-
struction of a communicator is also a collective operation: to build it, each node partic-
ipating in a communicator must know the list of all nodes in the communicator. Thus,
if we build a communicator containing a speci�c list of nodes for a given broadcast
operation, all nodes have to know the list of all nodes participating in the broadcast.

Yet, the runtime system on a node only has a local view of the task graph: receiver
nodes know which node will send them the data, but they do not know all other nodes
which will also receive the same data. Hence, building an MPI communicator is im-
possible without �rst sending the list of nodes to all nodes, but that would mean we
need a broadcast before being able to do a broadcast! In our case, communicators
cannot be built before broadcast executions (for instance, during application initial-
ization), because the broadcasts, and thus the nodes taking part in those broadcasts,
are discovered dynamically, during the execution of the DAG. Moreover, each node can
be involved in di�erent broadcasts composed of di�erent sets of recipients: this would
require a communicator for each broadcast with di�erent recipients.

Synchronization. Even if we use a non-blocking MPI_Ibcast instead of a blocking
MPI_Bcast, it works on a communicator. The creation of a communicator with the
precise set of nodes has to be performed by all nodes at the same time. Moreover, a
single communicator creation may take place at the same time. This means broadcasts,
and their associated communicator creation, must nonetheless be executed in the same
order by all nodes, which implies some kind of synchronization to agree on broadcast
scheduling, thus hindering one of the most important feature of distributed task-based
runtime system: its ability to scale by avoiding unnecessary synchronization.

As a consequence, the mechanisms needed to actually use the MPI_Bcast function to
broadcast data in a task-based runtime system are likely to cost more than the bene�t
brought by the use of an optimized broadcast.

76 P. Swartvagher

4. Dynamic Broadcasts

The general problem is being able to use desynchronized and optimized broadcasting
algorithms, without all nodes of the broadcast know each other, and even the root node
cannot know when the list of recipients is complete. Next, we present the solution we
developed to achieve this goal.

4.2 General concepts of dynamic broadcasts

Our algorithm for dynamic broadcasts is comprised of two parts: the detection of broad-
casts by the task-based runtime system, and the broadcast itself in the communication
library.

4.2.1 Broadcast detection

As explained previously, the detection of broadcast patterns is not straightforward since
the DAG is dynamic.

From the dependency graph view, a broadcast is a set of outgoing edges from the same
vertex and going to tasks executed on di�erent nodes. During task graph submission, the
runtime system creates a send request for each of these edges, even before the data to
send is available. When the data becomes available, the requests are actually submitted
to the communication library to actually execute the communication.

The detection of broadcast consists in noticing on creating a send request that one
already exists for the same data, and aggregating them into a single request with a list
of recipients. When the data becomes available (e.g. the task that generated this data
is �nished), if the list contains more than one recipient, a broadcast is submitted to the
communication library.

This method may miss some send requests if they are posted after the data became
ready, i.e. if a task is submitted after the completion of the task that produces the data
it depends on. This happens if the task graph submission takes longer than the task
graph execution (which is not supposed to happen in general), or if the application de-
lays submission of parts of the task graph for its own reasons, in which case the runtime
system did not need to send this data sooner anyway. Code instrumentation showed that
98% of broadcasts were detected with the correct number of recipients for the Cholesky
decomposition (described latter). The 2% missed broadcasts correspond only to commu-
nications performed during the very beginning of the application execution, when the
application has only started submitting the task graph, and thus task execution has in-
deed caught up quickly and made some data available before the application could submit
all inter-node edges for them. Quickly enough, tasks submission proceeds largely ahead
of tasks execution, and all broadcasts are entirely detected.

To avoid redundant transfers of the same data between two nodes, a cache mechanism
is used, as explained in Chapter 2. If two tasks scheduled on the same node need a piece of
data from another node, only one communication will be executed. Hence, the recipient
list does not contain duplicates.

Interactions between Task-based Runtime Systems and Communications 77

4.2. General concepts of dynamic broadcasts

0

1

2

3

4

5

6

T
im

e

(a) Flat tree

0

2 4

1 3 5 6

T
im

e

(b) Binary tree

0

40

2

3

0

1

4 6

5

T
im

e

(c) Binomial tree

Figure 4.1: Examples of routing trees for 6 recipients. Levels in the tree are steps in the
algorithm.

4.2.2 Dynamic broadcast algorithm

We propose here a broadcast algorithm, that we call dynamic broadcast, that ful�lls the
requirements to be used by task-based runtime systems, namely: use optimized broadcast
algorithms; all recipients of the broadcast do not have to know each other; have a seamless
integration for the receiver who is expecting a point-to-point communication.

Optimized broadcast algorithm

Several optimized algorithms for broadcast exist [123]. The main idea of all these opti-
mized algorithms is that after a node received data, it sends this data to other recipients,
so that the root node has less communications to execute, which shortens the global ex-
ecution time. For most algorithms, routing is organized as a tree: the source node sends
to a set of nodes, each of these nodes then sends to a set of other nodes, and then recur-
sively until all recipients get the data. Tree-based algorithms have usually a logarithmic
complexity in the number of nodes. The choice of a broadcast algorithm depends mainly
on the number of recipients and the size of data to transmit.

Figure 4.1 illustrates three routing algorithms for a broadcast to 6 recipients, initiated
by the node 0. With a �at tree (Figure 4.1a), the naive broadcast algorithm, the node 0
sends sequentially the message to one of the recipients. The complexity of this algorithm
is linear with the number of recipients and involves the node 0 for the whole collective
duration.

With a binary tree (Figure 4.1b), each node sends the message to at most two another

78 P. Swartvagher

4. Dynamic Broadcasts

nodes in a row: node 0 sends to nodes 2 and 4, and the job of 0 is done.

In the binomial tree algorithm, each node receiving data contributes to the di�usion
by sending data to next nodes, and keep sending data to other recipients until all nodes
received the data. In the example depicted by Figure 4.1c, node 0 starts by sending to
node 4, then 0 sends to 2 and at the same time 4 sends to 6 and �nally while 0 is sending
to 1, 2 is sending to 3 and 4 is sending to 5.

The binary tree has a worse complexity in the number of recipients (yet still loga-
rithmic: in the example with 6 recipients, the binary tree as only one additional step
compared to the binomial tree), but has the advantage to require less handling time from
each forwarding node, and thus can make the received data available to the application
faster. In the other hand, binomial trees are a good trade-o� for a single all-purpose algo-
rithm to get good performance on a wide range of data sizes and numbers of nodes. Other
optimized algorithms [118, 101, 95] could be used in our dynamic broadcast, following the
same approach.

Self-contained messages

Since nodes do not know in advance whether they will be participating in a broadcast,
our algorithm is based on self-contained messages. They are processed upon reception,
outside of the application �ow, without requiring the application to call speci�c primitives
in the communication library. The message contains all the information needed to unroll
the collective algorithm.

Only the root of the broadcast knows the complete list of recipients. Recipients them-
selves only need to know to which nodes they will need to forward the data, i.e. the
sub-tree below them. We send this list of nodes together with data, in the header of the
message. When a node forwards data to other nodes, it trims the list of nodes so as to
include only the nodes contained in the relevant sub-tree.

In the case depicted in Figure 4.1c, the list of nodes sent by node 0 to 4 is {5, 6}, the
list sent to 2 is {3} and the list sent to 1 is empty.

The general idea behind this mechanism is that routing information are transmitted
with the data itself, and are not assumed to be prior knowledge, as MPI_Bcast would
otherwise require.

Transparent receive

When a request which is part of a broadcast is received, the data is �rst forwarded to
nodes contained in the list (following the chosen routing algorithm), and then delivered
locally to the runtime system. Since nodes cannot predict whether data will arrive through
point-to-point communication or through a broadcast, on the receiver side our algorithm
injects data received by a broadcast in the path of point-to-point receive. The runtime
system posts a regular point-to-point receive request, and when data arrives through a
dynamic broadcast, it is actually received by this point-to-point request for a seamless
integration.

Interactions between Task-based Runtime Systems and Communications 79

4.3. Implementation

We called our algorithm dynamic broadcast because nodes realize they take part in a
broadcast in a dynamic fashion, on the �y at the same time as data arrives.

4.3 Implementation

Dynamic broadcasts were implemented as a new interface of NewMadeleine, and the
NewMadeleine backend of StarPU was adapted to exploit this new interface.

4.3.1 Broadcast detection

The detection of broadcasts is implemented in StarPU. When the application submits
a task B which depends on data produced by a task A mapped on a di�erent node, an
inter-node communication request is issued. If a previous request or collective was already
detected for this data, the new request is merged in to get a bigger collective.

Most often, task submission proceeds quickly, and thus the submission front is largely
ahead of the execution front. As a consequence, when task B is submitted, task A
will probably not have been executed yet, and similarly for all tasks which depend on
A. This is why our approach catches most potential for broadcasts. Once task A is
completed and thus the data available for sending, the whole collective request is handed
to NewMadeleine.

Once the broadcast has been triggered, if additional tasks which require the data
produced by the task A are submitted and need data transfers, these communications
will be executed as point-to-point communications. Our mechanism catches only pending
transfers inferred while the data is not available.

4.3.2 Dynamic broadcast interface

The dynamic broadcast itself is implemented in NewMadeleine with a speci�c inter-
face called mcast. It is using its non-blocking RPC interface to call functions on remote
nodes, with arguments to express the remaining of the broadcast. They use a dedicated
communication channel that is separate from the channel used for point-to-point com-
munications. Thus, the library distinguishes broadcasts, which needs special processing,
from regular point-to-point messages. The library is always listening for RPC requests
and is thus able to always process dynamic broadcasts for all tags and from all nodes.

When a broadcast is received, the matching point-to-point receive is searched and
data is received in-place in the bu�er of the point-to-point request, forwarded to nodes
in sub-trees, and the completion of the point-to-point request is noti�ed. If the matching
point-to-point receive was not posted yet, the broadcast request is locally postponed until
the matching point-to-point receive is posted. To be able to match a message arriving
through a broadcast with a point-to-point request, the original source node (root of the
broadcast) is also part of the broadcast metadata.

80 P. Swartvagher

4. Dynamic Broadcasts

0

0 8

0 4 8 10

0 2 4 6 9 11

1 3 5 7

T
im

e
Recipients: R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Priorities: P = ∅

(a) Without priorities

0

0 11

0 10 11 9

0 8 10 7 6 5

4 3 2 1

T
im

e

Recipients: R = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Priorities: P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

(b) With priorities: nodes with higher priority
have to receive data �rst

Figure 4.2: Tree reordering to take into account communication priorities. Message to
recipient R[k] has a priority P [k].

4.3.3 Enforcing communication priorities

StarPU sets a priority level for each communication request, depending on task priorities,
de�ned by the application: during the submission of tasks, the user can de�ne the priority
of each task, by specifying an integer. This information may be used by a communication
library that is able to schedule packets by priority like NewMadeleine.

The di�erent communication requests in a broadcast can have di�erent priorities. To
respect the communication priorities, we reorder the list of nodes of broadcasts so that
higher-priority requests are closer to the root of the tree, for them to get data earlier.
Indeed, the initial list of recipients may not respect the priority order, since the order of
insertion in the list is the same of the task insertion order.

Moreover, in addition to the list of nodes, we transmit the list of priorities within the
broadcast metadata. This way, when inner nodes of the tree have to forward messages,
they get inserted in their local packet �ow, managed by NewMadeleine, with the right
priority.

Figure 4.2 illustrates the di�erence in reception order when priorities are set or not.
Without priorities, there is no guarantee in the reception order: in Figure 4.2a the node 8
receives data �rst and nodes 1, 3, 5 and 7 receive it in the last step. When priorities are
provided and respected, (in Figure 4.2b, recipient nodes with higher ranks have higher
priority), the node 11 receives data �rst, and nodes 4, 3, 2 and 1 receive it in the last
step, as indicated by the priorities.

Interactions between Task-based Runtime Systems and Communications 81

4.4. Evaluation

4.3.4 Using just received data but still being forwarded

With point-to-point communications, as soon as data is received from the network by
NewMadeleine, StarPU is noti�ed the data is ready to be used, which can unlock
tasks waiting for this data.

When a node receives a data which is part of a dynamic broadcast, this node may have
to forward the data to other nodes, as stated by the routing tree. In such case, received
data is available on the node, but the application cannot use it while NewMadeleine
forwards it to other nodes, because immediately launching tasks unlocked by the data
reception may modify the data being forwarded. Waiting for all forwards being �nished
adds a delay to make the data available to StarPU and unlock tasks, compared to a
point-to-point communication.

A trade-o� to reduce the waiting time while preserving the integrity of forwarded data
is the following mechanism:

1. Unlock tasks which only need the data in a read-only mode as soon as the data is
received on the node;

2. Let NewMadeleine forward the data to other nodes if required;

3. Notify StarPU NewMadeleine does not need the data anymore, it can also
unlock tasks which need to write in this bu�er.

From the implementation point of view, these two states (data received but still for-

warding and �nished forwards) corresponds to two distinct events triggered by the com-
munication library, on which are bound the action of unlocking tasks, which only read
the data or also write it.

4.4 Evaluation

In this section, we present the performance results we obtain for mechanisms presented
earlier. We executed microbenchmarks to ensure the broadcast performance is as expected
and then we evaluated the impact on two real computing kernels, the Cholesky and QR
factorizations. Other applications could take bene�t from dynamic broadcasts, such as
matrix multiplications [13].

The majority of results depicts executions on the occigen machine, described in Ap-
pendix C.

4.4.1 Microbenchmarks

General performance

To be sure our algorithm and its implementation have the expected behaviour and perfor-
mance, we conducted microbenchmarks of the dynamic broadcast and compared its perfor-
mance to the one of MPI_Ibcast fromMadMPI (the MPI interface of NewMadeleine),

82 P. Swartvagher

4. Dynamic Broadcasts

(a) Latency (b) Bandwidth

Figure 4.3: Microbenchmarks of the dynamic broadcasts with NewMadeleine, on
occigen.

and a naive broadcast (a loop of point-to-point requests to the recipient nodes; �at in the
legends).

We considered the same metrics as NetPIPE [109]: the latency and the bandwidth of
broadcasts. The latency of the broadcast is de�ned as the time di�erence between the start
on the root node and the last received data on the last node. With a constant message
size (429KB in the following experiments), we increase the number of recipient nodes in
the broadcast. The bandwidth reached with a broadcast is the data size divided by its
latency. With a constant number of recipient nodes (38 in the following experiments), we
increase the size of the broadcasted data.

Figure 4.3 depicts the performance results with onlyNewMadeleine, to �rst evaluate
its raw performance. The reported latencies on Figure 4.3a clearly show the di�erent
complexities of the used routing algorithms. The naive algorithm (�at) is linear with the
number of recipients, and both binary and binomial trees have a logarithmic complexity
with the number of nodes (we can even notice the di�erent plateau corresponding to the
di�erent heights of the routing trees). Broadcasts are faster with binomial or binary trees
than with linear sequential point-to-point communications (less than 1000µs vs more
than 3000µs). The same ranking of routing algorithms applies to the communication
bandwidth (Figure 4.3b): �at algorithm cannot reach 200MB/s while binomial trees
reach 1000MB/s when broadcasting data to 38 recipients.

The performance di�erence between dynamic broadcasts and regular MPI broadcasts
is insigni�cant, which shows that the additional routing data and the treatment when
receiving data is negligible.

The same microbenchmarks are conducted with StarPU and NewMadeleine, to
evaluate performance when StarPU triggers broadcasts. Results are depicted on Fig-
ure 4.4: Without dynamic broadcasts means that the detection of broadcasts is disabled in
StarPU and point-to-point communications are submitted to NewMadeleine as soon
as a communication is detected. Overall results are similar to NewMadeleine alone,

Interactions between Task-based Runtime Systems and Communications 83

4.4. Evaluation

(a) Latency (b) Bandwidth

Figure 4.4: Microbenchmarks of the dynamic broadcasts with StarPU and New-

Madeleine, on occigen.

except for a small overhead coming from the StarPU management of communications.

Performance with priorities and reading data as soon as possible

To verify that the priorities attached to communication are correctly taken into account,
we consider the time of data reception on each node, and not only the maximum used in
the previous benchmarks to get the overall duration of the broadcast. Then, we plot this
time according to the node rank. First nodes which have to receive data (with a higher
priority) should have a smaller reception time.

To correctly represent the impact of priorities, reported times have to distinguish
the time when data arrived on the node (in�uenced by the priority of the incoming
communication) and the time when all forwards are �nished and data is not needed by
the NewMadeleine anymore. Without this distinction, the forwarding duration would
be included in the reported time, which could fake the representation of priority impact.

The described benchmark was �rst conducted with only NewMadeleine executing a
program where node 0 sends a broadcast to many nodes. The priorities of communications
are equal to the rank of the recipient node (i.e. nodes with higher rank should receive data
�rst). Each recipient node records the time when data arrived and when it is released by
NewMadeleine. This set of values can be plotted as an area: the X-axis corresponds
to the node rank and reported times are read on the Y-axis. Times when data is received
are the lower boundary of the area and times when data are completely released from
NewMadeleine is the upper boundary. The lower boundary can be used to see impact
of priorities and the height of the area is the duration NewMadeleine took to forward
the data to other nodes.

Figure 4.5 depicts such benchmark with 38 recipients in the broadcast and a data with
a size of 409KB. Three routing algorithms were evaluated. For the �at tree (node 0 sends
sequentially the data to each recipient), nodes receive the data in a reversed order of their

84 P. Swartvagher

4. Dynamic Broadcasts

Figure 4.5: Microbenchmark to check the respect of priorities in dynamic broadcasts with
NewMadeleine, on occigen.

rank, and since receiving nodes do not forward the data to other nodes in this algorithm,
the data is immediately available to the application after it is received: the lower and
upper lines of the area are superimposed. When using a binary tree, nodes receiving the
data have to forward it to 2 other nodes. We easily see the di�erence between forwarding
nodes and the other leafs of the tree: the former spend time to forward the data, thus
there is a delay between receiving the data and delivering it to the application; the latter
do not have to forward to other nodes and thus can directly notify the application. Similar
behaviour can be noticed for the binomial tree, except forwarding nodes are involved until
the end of the collective operation. This is why the height of area is inversely proportional
to the node rank (and thus the priority): the deeper a node appears for a �rst time in the
binomial tree, the less time it will spent forwarding to other nodes, since it will forward to
fewer nodes, corresponding to fewer steps to reach the end of the collective. The observed
small variations in latency of nodes belonging to the same levels in routing trees comes
from the system noise and the fact that nodes of a same level are not synchronized: in
reality, trees are a little bit distorted (e.g. a node can start communications from the next
level quicker than a node which just received the data and has to initiate its participation
in the broadcast).

In all cases, priority are respected: nodes with higher priority receive data before those
with lower priority.

Similar benchmark was executed with StarPU (see Figure 4.6), but the di�erence
between just receiving the data and �nishing forwarding is plugged to the task model: to
trigger the broadcast tasks which only need to read the data are submitted on all recipient
nodes and then tasks which also need to write the data are also submitted on all nodes.

Interactions between Task-based Runtime Systems and Communications 85

4.4. Evaluation

Figure 4.6: Microbenchmark to check the respect of priorities in dynamic broadcasts and
impact of unlocking tasks as soon as data is received, with StarPU andNewMadeleine,
on occigen.

Actually these tasks only get the current time to know when they started to be executed.
The interpretation of the areas can now be di�erent: the lower border represents the start
of the reading-only task and the upper border the start of the writing task.

We evaluated two cases: when StarPU is allowed to launch read-only tasks just
when data is received (Unlock read) and when StarPU has to wait for NewMadeleine
to completely release the received data (i.e. �nish all the forwards) before launching
any task accessing to the received data (Wait write). Three trees were tested: binary,
binomial and �at. An execution with disabled dynamic broadcasts in StarPU are also
been performed (without broadcasts). With disabled broadcasts, the broadcasts are not
detected and StarPU submits each communication request to NewMadeleine as soon
as they are detected, NewMadeleine then performs the independent point-to-point
communications. With the �at tree, the broadcast is detected by StarPU and submitted
as such to NewMadeleine, but NewMadeleine follows a �at tree to execute the
broadcast.

The results of this performance evaluation are depicted on Figure 4.6. The general
shape of the curves are similar to those with plain NewMadeleine. The wait write areas
are very thin: they represent the elapsed time between the end of a task (the read-only
one) and the beginning of another task (the write one). Since both tasks on each node are
unlocked when forwards are �nished, these areas match with the top of their unlock read
counterparts, where StarPU launches the read-only tasks as soon as the data is received
and waits for the end of forwards to launch the write task.
The sudden increase in the �rst nodes when dynamic broadcasts are not enabled can

86 P. Swartvagher

4. Dynamic Broadcasts

be explained with the priority strategy followed by NewMadeleine. When dynamic
broadcasts are disabled, StarPU submits send requests to NewMadeleine sequentially
one-by-one. The order the send requests are submitted correspond to the order of task
submission: here, in the order of node ranks, thus inversely proportional to the attached
priorities. When NewMadeleine handles the �rst submitted request (with the lowest
priority), there is no other communication with higher priority waiting to be handled, thus
NewMadeleine executes this �rst low-priority communication. This works for the �rst
send requests, but after a short time, all send requests are submitted to NewMadeleine
while only the �rst send requests are �nished. When NewMadeleine has to choose
again which communication to handle, they are now all waiting, and NewMadeleine
can pick the one with the higher priority. When dynamic broadcasts are enabled, New-
Madeleine receives directly the whole list of communication requests and thus is aware
of the communication with the highest priority.

To summarize, our implementation works as expected: routing algorithms with loga-
rithmic complexities exhibit corresponding performance, priorities are correctly taken into
account and unlocking tasks that only need to read the received data allows to launch
them sooner.

4.4.2 Cholesky factorization

Description

The Cholesky factorization, described previously in Algorithm 1 (page 24), is a good
use-case for the dynamic broadcast problem. Indeed, as shown in Figure 4.7, each A[k][k]
tile computed by a POTRF kernel is broadcasted to the N −k− 1 TRSM kernels of the same
panel (blue arrows). Moreover, each A[m][k] (m > k) tile generated by the TRSM kernels,
is used by one SYRK kernel (to update the tile A[m][m], red arrows) and N − k − 2 GEMM

POTRF

TRSM

SYRK

GEMM

N

N

Figure 4.7: The two di�erent types of broadcasts for the Cholesky factorization for
N = 5 and k = 0. Blue arrows: from 1 POTRF to N − k − 1 = 4 TRSM. Green and black
arrows from 1 TRSM to N − k − 2 = 3 GEMM and red arrows to 1 SYRK.

Interactions between Task-based Runtime Systems and Communications 87

4.4. Evaluation

N

N

6 7 8 6 7 8 6 7 8 6 7

3 4 5 3 4 5 3 4 5 3

0 1 2 0 1 2 0 1 2

9 10 11 9 10 11 9 10

6 7 8 6 7 8 6

3 4 5 3 4 5

0 1 2 0 1

9 10 11 9

6 7 8

3 4

00

3

P − 1 recipients

P − 1 recipients

Q− 1 recipients

POTRF

TRSM

Figure 4.8: Recipients in the two types of broadcasts in the Cholesky algorithm on a
2D-block-cyclic distribution (P,Q) = (4, 3). Gray numbers indicate on which MPI process
is the tile and dashed curves represent duplicated communications, not done in reality.

kernels (to update the tiles A[m][n] (k < n < m), black arrows; and the tiles A[m][n]
(m < n < T), green arrows).

In practice, as the matrix distribution on available nodes is 2D-block-cyclic with P
rows and Q columns (with P × Q = the number of nodes), the maximum number of
recipients of a broadcast in the Cholesky algorithm is P +Q− 2. Figure 4.8 illustrates
this formula: the result of a POTRF is broadcasted to all nodes of the same column: with
a 2D-block-distribution, this means P − 1 recipients in the broadcast. Results of TRSM
kernels are broadcasted to nodes belonging to the same line (Q − 1 recipients) and the
column of the most-right recipient of the line (P−1 recipients since one recipient is already
counted as a recipient in the line): Q− 1 + P − 1 = P +Q− 2.

We used the Cholesky factorization from the Chameleon library [10], which can
use StarPU as task-based runtime system.

Results

Two sets of results will be presented. First results use a proof-of-concept implementation
of the dynamic broadcasts and were collected on the inti machine from the CEA. inti

88 P. Swartvagher

4. Dynamic Broadcasts

(a) 64 nodes (b) 100 nodes

Figure 4.9: Performance of Cholesky factorization, on inti (old implementation).

nodes were dual Intel Xeon E5-2680 at 2.7GHz, with 16 cores and 64GB RAM, and
equipped with InifiniBand Connect-IB QDR. inti was replaced by another machine
before a more robust implementation was rewritten from scratch, with additional features
(di�erent routing trees, support of priorities and read-only use of received data). The
second set of results uses this more recent implementation and comes from executions on
occigen. Old results on inti are presented because they show performance improvements
with dynamic broadcasts, more signi�cant than on occigen.

Results for machine inti on 64 and 100 nodes are shown in Figure 4.9. There is one
MPI process per node and each point on graphs is the average of two runs. We compare the
baseline NewMadeleine version without dynamic broadcast against NewMadeleine
with dynamic broadcasts following binomial tree routing. At that time, recipients were
not reordered according to priorities and NewMadeleine released the received data to
StarPU only once all forwards were �nished. For both number of nodes, using dynamic
broadcasts improves performance, especially for medium-sized matrices: on 64 nodes the
improvement is up to 20% and on 100 nodes up to 30%. Since the number of nodes in
broadcasts increases with the total number of nodes, the more nodes are used, the more
the broadcast takes time, thus dynamic broadcasts improve overall scalability with the
number of nodes. For larger matrices, the hypothesis is that communications have less
impact since there are always enough ready tasks to execute before having to wait for
data coming from the network, hence it is not surprising to observe the best performance
improvement for smaller matrices.

Figure 4.10 shows the performance of the current implementation of dynamic broad-
casts on the occigen machine, which has more recent processors than inti with more
cores (28 vs 14). With 1 MPI process per node on 196 nodes (Figure 4.10a), the use of
dynamic broadcasts with binomial or binary trees does not improve performance. How-
ever, with 2 MPI processes per node (i.e. one per NUMA node) on 200 nodes1, dynamic
broadcasts with binary trees improve performance up to 15% again for medium-sized
matrices. Using 2 MPI processes per node increases the total number of MPI processes
and thus creates broadcasts with more recipients: up to 38 recipients2 vs 26 for the case

Interactions between Task-based Runtime Systems and Communications 89

4.4. Evaluation

(a) 196 nodes with 1 MPI process / node (b) 200 nodes with 2 MPI processes / node

Figure 4.10: Performance of Cholesky factorization, on occigen.

with one MPI process per node.

Priorities in the Cholesky factorization permits to prioritize tasks and communica-
tions on the critical path of the execution (especially POTRF kernels) which will unlock
many tasks and exhibits wide parallelism. The importance of communication priorities
is illustrated by the Figure 4.11. First when dynamic broadcasts are disabled, if New-
Madeleine does not have priorities to order the communications, the general application
performance is very poor: only 151T�ops compared to the plateau of 228T�ops reached
when priorities are attached to communications. When dynamic broadcasts are used,
reordering recipients according to their priorities improves the binary routing but not the
binomial one. Probably because with a same number of recipients, binary trees are deeper
than binomial trees, i.e. recipients may wait longer to receive the data, thus a correct
recipient ordering is more important for the binary routing.

Figure 4.12 depicts the impact of unlocking tasks that only read the received data
as soon as it is received (Unlock read) or waiting the end of the node participation in
the collective to unlock any task requiring the data (Wait write). Curve when dynamic
broadcasts are disabled is not showed, since this feature a�ects only dynamic broadcasts.
Unlocking tasks as soon as possible improves performance with the binomial but not for
the binary tree. It was expected: with binary trees, the recipient node forwards the
received data to only two other nodes: its participation in the collective is very quick and
the delay between the reception of the data and the end of forwards to other nodes is
small. On the contrary, when a node starts to contribute to a binomial tree, it is involved
for all the next steps of the tree: in this case the delay can be much longer and unlocking
tasks which only needs to read the data can be bene�cial.

1We slightly change the number of nodes to be able to always have a square 2D-block-cyclic distri-
bution (i.e. the square root of number of MPI processes has to be an integer).

2This is why the microbenchmarks were made to have broadcasts with up to 38 recipients.

90 P. Swartvagher

4. Dynamic Broadcasts

Figure 4.11: Impact of priorities on Cholesky factorization, on occigen.

Figure 4.12: Impact of reading data as soon as possible on Cholesky factorization, on
occigen.

Interactions between Task-based Runtime Systems and Communications 91

4.4. Evaluation

GEQRT

ORMQR

TPQRT

TPMQRT

M

N

Figure 4.13: The two di�erent types of broadcasts for the QR factorization for M = 4,
N = 12 and k = 0. Blue arrows: from 1 GEQRT to N − k − 1 = 11 ORMQR; green arrows:
from each of M − k − 1 = 3 TPQRT to N − k − 1 = 11 TPMQRT.

4.4.3 QR factorization

Description

The second application used to benchmark the dynamic broadcasts is the QR factoriza-
tion. From a matrix A, the QR factorization computes an orthogonal matrix Q and an
upper triangular matrix R, such as A = QR. One di�erence compared to the Cholesky
factorization is that the matrix A does not need to be square.

Algorithm 2 Tiled version of the QR factorization.
1: for k = 0 to min(M,N)− 1 do
2: GEQRT(RW, A[k][k], W, T [k][k])
3: for j = k + 1 to N − 1 do
4: ORMQR(R, A[k][k], R, T [k][k], RW, A[k][j])
5: end for
6: for i = k + 1 to M − 1 do
7: TPQRT(RW, A[k][k], RW, A[i][k], W, T [i][k]) . Executed on node (i, k)
8: for j = k + 1 to N − 1 do
9: TPMQRT(R, A[i][k], R, T [i][k], RW, A[k][j], RW, A[i][j]) . Executed on node (i, j)
10: end for
11: end for
12: end for

We used the version described in the Algorithm 1 of [59], implemented in Chameleon,
and summarized in Algorithm 2. Like the Cholesky factorization, at each step k, the
kth tile of the diagonal is factorized (GEQRT kernel) and then the right panel is updated
accordingly. As illustrated by the Figure 4.13, the two outputs of the GEQRT kernels are
broadcasted to all ORMQR kernels of the same line, as well as two outputs of each TPQRT

kernel to all TPMQRT kernels of the same line.

To push the dynamic broadcasts to their limits, we used on purpose large matrices
(three times larger than their height), with a speci�c data distribution: all tiles of a
column are on the same node (i.e. P = 1 and Q equals the number of nodes: a 1D-
block-cyclic distribution). This way the number of recipients in broadcasts are always the
number of nodes minus one and all broadcasts have the same number of recipients.

92 P. Swartvagher

4. Dynamic Broadcasts

Figure 4.14: Performance of QR factorization, on occigen.

Results

The impact of dynamic broadcasts for the QR factorization on 196 nodes (with one MPI
process per node) is plotted on Figure 4.14. For this application with such distribution,
dynamic broadcasts considerably increase the performance: with binary trees it is 7 times
higher than without broadcasts and 5 times with binomial trees.

The �rst comment on these results is that the baseline (without broadcasts) is very
low (20T�ops with 196 nodes is low, this performance should be reached with only some
twenty nodes!), because of the suboptimal data distribution which requires lot of commu-
nications. Since communications are a bottleneck and broadcasts appear in the algorithm,
improving the broadcasts execution increase performance, as con�rmed by the curves for
the two di�erent trees. Even if the performance was not analyzed in detail, a hypothesis
to explain the better performance of binary trees over binomial ones could be the follow-
ing. With binary trees a node is involved in a broadcast for a short time (only to send
to two other nodes): thus, network bandwidth is quickly available for other communica-
tions, from other broadcasts. The contrary applies to binomial trees. If this hypothesis
is veri�ed, it would mean for the QR algorithm that all recipients of a broadcast do not
need to receive the data very fast, it is enough if a few of them receive it quickly, because
binary trees are deeper than binomial ones.

Finally, performance is the same if tasks are unlocked as soon as possible or if the end
of forwards to other recipients is awaited. Chameleon does not provide priorities for
tasks of the QR algorithm, thus taking into account priorities in dynamic broadcasts is
useless.

Interactions between Task-based Runtime Systems and Communications 93

4.4. Evaluation

Figure 4.15: Impact of the tile size on QR factorization, on occigen. The run without
broadcasts with a block size of 960× 960 failed due to a deadlock.

The chosen size for the matrix tiles can in�uence several aspects of the program exe-
cution: the number of tasks is di�erent, therefore there is more or less parallelism, tiles
may or not �t in the di�erent caches, causing potentially lot of cache evictions, etc. From
a communication point-of-view, the number of messages transmitted through the network
will be di�erent and their size as well: 225KB for 240× 240 tiles, 409.6KB for 320× 320
tiles1, or 3.6MB for 960 × 960 tiles. As observed previously with the microbenchmarks
(especially on Figure 4.3b), with bigger messages, it is even more attractive to use dy-
namic broadcasts, regarding the network bandwidth. Figure 4.15 shows the same curve
order and di�erences compared to Figure 4.14, but according to the tile size. The optimal
tile size seems to be around 640×640: below this value there is too many communications
and above the communication latency is too costly.

In the two previous experiments, the data distribution was on purpose suboptimal,
to create broadcasts with many recipients. Figure 4.16 evaluates the performance of
other 2D-block-cyclic data distributions, on a small matrix (28 800 × 86 400). The least
intuitive data distributions for QR factorization (1D-block-cyclic or close to: 1 × 196,
2 × 98) appear to be those with best performance with dynamic broadcasts. With the
1×196 data distribution, binary trees allow the application to reach 30.7T�ops, while the
version with disabled broadcasts does not even reach 5T�ops. Performance with dynamic
broadcasts is never worse than without broadcasts. In all cases, the performance is very
low, with regards to the number of nodes. This comes probably from the rectangular
shape of the matrix and its small size which does not allow to reach the maximum of
possible parallelism.

1320× 320 is the default tile size in all other experiments.

94 P. Swartvagher

4. Dynamic Broadcasts

Figure 4.16: Impact of the 2D-block-cyclic distribution parameters on QR factorization,
with tile size of 320× 320, on occigen.

4.5 Discussion

4.5.1 Performance analyses

As mentioned when commenting the performance results, an in-depth analysis of the
performance with dynamic broadcasts has not been performed. Indeed, it is not straight-
forward for several reasons: it requires a deep analysis of the runtime system and the
communication library together, to understand how dynamic broadcasts in�uence the
application execution.

Since we use trees with a logarithmic number of steps with the number of recipients, the
performance gain provided by dynamic broadcasts will be visible only for broadcasts with
many recipients: to add one level in a tree, we need to double the number of recipients;
according to the data distribution, this can require to at least double the number of nodes.
Executing applications at a large scale (several hundreds of nodes) can be very costly in
terms of resources and time. The suboptimal data distribution used for the QR algorithm
allowed to see how our implementation behaves with larger broadcasts (a binomial tree
with 195 recipients has 8 steps, a binary tree has 7 steps).

Introducing a theoretical model to predict the performance gain thanks to dynamic
broadcasts is not easy, because of the natural overlap of communication by computations
by the runtime system and the asynchronicity of the programming model: there are no
synchronizations, no well-identi�ed phases where only communications occur and whose
duration would be easy to measure and compute.

Interactions between Task-based Runtime Systems and Communications 95

4.5. Discussion

Despite these di�culties, precisely understanding the performance of dynamic broad-
casts would allow to explain why dynamic broadcasts improve performance on some ma-
chines (e.g. Cholesky on inti, Figure 4.9) but not on others (e.g. Cholesky on
occigen, Figure 4.10a). First hypothesis suggest it has to do with the ratio of computa-
tion / communication performance and/or number of tasks and network communications.

4.5.2 Generalization and extensions of the concept

Other types of collective operations

This work was focused on broadcasts. One may ask about similar techniques to improve
other collective operations.

There was opportunity for performance improvement with the broadcast operation,
since smart routing algorithms can be used to increase its performance. Main di�culties
to set up an e�cient broadcast in the StarPU context was the lack of synchronization
in the programming model and the di�cult detection.

For operations which cannot bene�t in general from clever routing techniques, espe-
cially because each of their internal point-to-point communications transmits a di�erent
data, there is no trivial improvement to bring. This is the case for the gather (MPI_Gather,
collect di�erent portions of an array from di�erent processes to a single process), or scatter
(MPI_Scatter, distribute di�erent portions of an array from a single process to several
processes) operations. Moreover, using these operations within StarPU does not really
make sense: each portion of the array should be represented by a di�erent data handle
and should be independently communicated, without waiting for all data portions to start
the collective operation (a sort of synchronization!).

The reduction operation is more interesting because it may leverage optimized routing
schemes and needs to execute computation at each step with received data. The reduction
tree could be managed by the communication library and the computations could be tasks
managed by StarPU. Actually, reductions can already be executed with StarPU, with
speci�c �ags attached to tasks to indicate the reduction. StarPU manages itself the
reduction tree, submitting point-to-point communications following a tree scheme and
corresponding tasks. In a word, the reduction is decomposed internally by StarPU in
point-to-point communications and computation tasks, without any optimization directly
from the communication library.

On top of problems mentioned for MPI_Gather and MPI_Scatter, the main di�culty
also for other collective operations such as MPI_AllGather (all processes get the �nal
whole array); MPI_AllReduce (all processes get the result of the reduction) MPI_AllToAll
(a combination of MPI_Scatter and MPI_Gather), is the detection from the DAG. For
a broadcast, the pattern is easy to recognize in the DAG: a node with several outgoing
edges. Patterns corresponding to other collective communications are much harder to
recognize in the tangle of dependencies between tasks. Even if the patterns are found in the
task graph, it can be di�cult to propose solutions using optimized collective operations,
without synchronization, and which at the end improve performance.

96 P. Swartvagher

4. Dynamic Broadcasts

Tree types

When a broadcast is initiated, the routing algorithm is executed to know to which nodes
the direct recipients of the root node will need to forward the data. This list of nodes
forming a subtree is included in the message header. When a node receives such a message,
it executes the routing algorithm on the list of nodes included in the message header, to
know to which nodes it has to forward. The process continues recursively while the leaf
of the tree are not reached.

All kind of trees can be used with this technique: we showed binomial and binary
trees, but it can be extended to chains, k-ary, k-nomial trees, etc.

We made experiments with what we called bitrees : the list of recipients of a broadcasts
is split in two groups (one group can contains more items), the root node starts a �rst
broadcast with the �rst group of recipients and when this broadcast is �nished, the root
node starts a second broadcast with the second group. The two broadcasts can follow
di�erent routing schemes. This pattern can be useful if a set of recipients needs the
data very quickly but not the other set (e.g. communication priorities form two distant
clusters): the �rst broadcast can use a binomial tree and the second a binary one. First
results show that mixing this way two di�erent routing trees gives performance similar
to performance obtained with only one tree with all recipients, following the routing
algorithm of the tree with the highest number of recipients in the bitree version.

Another option is to delegate the broadcast execution to the �rst recipient: the root
node sends data to only the �rst recipient, and the latter has to execute the remaining of
the broadcast, as if it was the root node, with the selected tree type. This can be useful
if the original root node has to send many broadcasts with independent recipient sets
very quickly: therefore the di�erent broadcasts can start to be executed simultaneously
on di�erent nodes.

An improvement (not implemented yet) is to take into account the network topology in
the recipient reordering, in addition to communication priorities. This could load-balance
the communications and reduce the general occupancy of the network links. However,
gains should only be expected with broadcasts delivering big messages to many recipients.

4.6 Conclusion

In DAG of task-based applications, a situation may appear where a given piece of data
needs to be sent to multiple nodes. The use of an optimized broadcast algorithm is desir-
able for scalability. However, the constraints of relaxed synchronization and asynchronous
schedulers on nodes make the use of MPI_Bcast inappropriate: the cost of required mech-
anisms to be able to use this function would cost more than the gain of performance it
could provide.

We have introduced a dynamic broadcast mechanism which makes it possible to use
an optimized tree-based broadcast algorithm without needing all the participating nodes
to know all the other nodes, and without even needing them to know at all they are
involved in a broadcast. The integration is seamless and nodes receive data with a regular

Interactions between Task-based Runtime Systems and Communications 97

4.6. Conclusion

point-to-point receive function. We evaluated its performance on Cholesky and QR

factorizations. Results show that our dynamic broadcast may improve overall performance
and scalability.

Many applications are developed and optimized to reduce costly communications. Our
system allows to be less concerned by communications which can be detected as broad-
casts, since they will be automatically detected and optimized. This mechanism is also
a good example of interaction between task-based runtime systems and communication
libraries: the runtime system shares with the communication the recipient list of a broad-
cast, and the communication library is able to notify the runtime system as soon as data
arrived from a broadcasts but forwards are not �nished. Moreover, we extended the
interface of the communication library to cope with StarPU's constraints.

98 P. Swartvagher

Chapter 5
Interferences between Communications
and Computations

S
tarPU naturally overlap communications with computations by executing ready tasks
in parallel of communications. This means communications and computations are

executed simultaneously. Using this technique with task-based runtime systems or just
with non-blocking MPI calls is supposed to improve application performance, by masking
the duration of communications. We have observed with execution traces that, in some
applications, sometimes, when computations and communications are executed side by
side, communications are slower than nominal performance and computations can also be
degraded, which is consistent with the literature reviewed in Chapter 2.

Since possible interactions between communications and computations, and especially
the impact on communication performance, are not well detailed in other studies (but
only mentioned), we assess the possible causes of these interferences and measure their
impact on performance of both communication and computing. We investigate the impact
of processor frequencies, memory contention and the use of a task-based runtime system.

This chapter presents the following study. We measure the impact of frequency scaling
on communications. We also study the impact, in the case of CPU-bound applications
and memory-bound ones, on communication bandwidth and latency. Moreover, we study
the e�ect of data locality and thread mapping on the interference between computation
and communication. Further, we introduce a benchmark with tunable arithmetic intensity
to observe how the application memory pressure penalizes the performance of communi-
cations. We also study the communication performance degradation caused by the use
of StarPU. For all possible presented interferences, we measure their impact on both
communication and computing performance. Finally, we realize the same study on two
important HPC kernels: conjugate gradient (CG) and matrix multiplication (GEMM).

99

5.1. Methodology

5.1 Methodology

Our goal is to measure performance of communications and computations when they are
run side by side and evaluate the potential impact of interferences on performance of both
communications and computations. To achieve this, we have designed a multithreaded and
parallel benchmark using MPI+OpenMP1. One thread is dedicated to communications (it
submits communication instructions and ensures MPI progression) and other threads do
computations. This communication benchmark performs ping-pongs to measure network
latency and bandwidth.

We need to compare performance of communications and computations when they
are executed alone and when they are executed together. Therefore, we decomposed our
benchmark into the following steps:

1. Computation without communication;

2. Communication without computation;

3. Computation with side by side communication.

Computations and communications use di�erent data and hence are completely indepen-
dent. The majority of plots in this chapter compares performance of communications
and computations when they are executed separately or simultaneously (see Figure 5.3
for instance). The former are represented by plain curves and the later by dashed curves.
Curves represent median value of the results obtained with several runs and background
areas are delimited by the �rst and the last decile of these results.

Communications and computations are done in dedicated threads, all belonging to
the same program. Each thread (computing ones and communicating one) is bound to a
di�erent core to stabilize performance and ensure reproducibility. In the remaining of this
chapter, we will call computation cores the cores that execute the computation threads
and communication core the core that executes the communication thread.

We use the same metrics as in the previous chapter: latency represents the duration
of a communication (time elapsed between the beginning of MPI_Send and the end of
MPI_Recv, i.e. half ping-pong) and bandwidth is the obtained network throughput by
dividing the size of the transmitted data by this latency. When we do not mention data
size, latency is measured on 4 bytes of data (one float), and bandwidth is the asymptotic
value, evaluated for 64MB message size. Bu�ers used for ping-pongs are recycled to mimic
standard applications that update internal data step by step and to take bene�t of reg-
istration cache mechanism [113]. Since our �rst observations about possible interferences
between computations and communications were made with StarPU-MPI applications,
our benchmark mimics on purpose its working. We chose to measure communication
performance with ping-pongs for their simplicity, they require only few parameters to be
analyzed and StarPU uses mainly point-to-point communications; analyzing also collec-
tive communications would be beyond the scope of this work. In the same way, when
many threads make MPI communications, it brings many other considerations we do not
want to explore in this study.

1Available on https://gitlab.inria.fr/pswartva/memory-contention

100 P. Swartvagher

https://gitlab.inria.fr/pswartva/memory-contention

5. Interferences between Communications and Computations

We ran our own benchmark suite on several clusters with di�erent characteristics:
from small experimental clusters to large production ones. Since results are generally
similar on all tested clusters, we present only results obtained on henri nodes (described
in Appendix C) and mention noteworthy di�erences on other clusters.

We show results obtained with MadMPI, the MPI interface of NewMadeleine; we
observed similar results with other MPI implementations, such as OpenMPI 4.0.

5.2 Impact of frequencies

In this section, we study the impact of frequencies on communication performance. To
avoid overheating and minimize energy consumption, processors change their frequencies
depending on the processor load. This dynamic frequency scaling feature of modern pro-
cessors has a direct impact on computing performance. Since computation may cause
changes in processor frequencies, we assess, in this section, whether these frequency vari-
ations also have an impact on communications.

We consider two kinds of frequencies: core and uncore. The core frequency impacts
computation units and L1 and L2 caches2. The uncore frequency [63] concerns last level
cache and the memory controller3. We measure the impact of these two frequencies
independently by setting them to a constant value for all cores and sockets. We evaluate
network performance for the two extremes of the permitted ranges of frequencies: 1000-
2300MHz for core frequency and 1200-2400MHz for uncore frequency.

5.2.1 Impact of frequencies on only communications

We performed ping-pong benchmarks to measure network latency and bandwidth in func-
tion of core and uncore frequencies. Since we study only the impact of frequencies, the
ping-pong benchmark relies only on an MPI library and no other runtime. No computa-
tion is done at the same time.

Concerning the core frequency, as seen on Figure 5.1a, the network latency is lower
when the frequency is higher: 1.8µs with 2300MHz vs 3.1µs with 1000MHz. We explain
this as follows. The network latency is comprised of hardware latency (time to move the
data over the wire) and software overhead (time for software to process the communication
operation, the o of the LogP model [40]). Hence, with a lower core frequency, the software
overhead is higher. Variations of the CPU frequency do not a�ect the network bandwidth
(Figure 5.1b), except for the �xed overhead of latency that impacts slightly the bandwidth
for small messages. It is explained by the fact that large messages are transferred through
DMA, without going through the CPU, thus their speed is una�ected by CPU frequency.

Conversely, the uncore frequency has no impact on the latency (the di�erence when
changing only the uncore is negligible regarding the di�erence when changing only the

2We use the userspace governor and the cpupower tool to set the constant core frequency we wish,
otherwise the performance governor is used.

3We use Likwid [117] to get and set the uncore frequency.

Interactions between Task-based Runtime Systems and Communications 101

5.2. Impact of frequencies

(a) Impact on latency (b) Impact on bandwidth

Figure 5.1: Impact of constant frequencies on network performance, on henri nodes.

core frequency: +5% vs +72%) but has a small impact on the bandwidth (10.5GB/s
with 2400MHz vs 10.1GB/s with 1200MHz).

5.2.2 Impact of frequency variations caused by computations

We now observe network performance when one core executes the communications (using
the ping-pong benchmark) and other cores are executing CPU-bound computations: a
computing benchmark counts in a very naive way the number of prime numbers in an
interval. This forces the CPU to execute instructions which do not require any memory
access (the algorithm uses only few integer variables).

In Figure 5.2, we plot the frequencies of the di�erent cores when (A) only communica-
tion is performed, (B) all cores are idle and (C) communications are performed while 20
cores are executing the compute-bound benchmark. We see that all cores have a higher
frequency when computations and communications are done at the same time than when
communications are executed alone. We have also measured the bandwidth and the la-
tency when communications and computations are done side by side: the network band-
width is very slightly improved when computation is done at the same time (9097MB/s vs
9063MB/s), as well as the network latency (1.52µs vs 1.7µs). As the CPU frequency of
communication core is the same in case (A) and (C) we conclude that the communication
latency is not impacted only by the frequency of the core doing these communications:
when other cores increase their frequency, it improves the communication latency.

However, these results seem to be hardware-dependent: on bora, the network band-
width has a wide deviation4 and computations are highly impacted by the communications
when there are more than 15 computing cores. In Figure 5.3, we see the computing dura-
tion jumps from 183ms to 236ms: the computation is slowed down when it starts using
the socket performing communication. Network latency is constant and duration of com-
putations done along the latency benchmark is also constant regardless of the number of

4We observed this behaviour on other clusters equipped with Intel Omni-Path networks.

102 P. Swartvagher

5. Interferences between Communications and Computations

Figure 5.2: Frequency variations during (A) only communications, (B) sleep and (C)
communications and computations, with 20 computing cores, on henri nodes.

Figure 5.3: CPU-bound computations and network bandwidth performance, on bora

nodes.

Interactions between Task-based Runtime Systems and Communications 103

5.2. Impact of frequencies

computing cores, exactly like on henri nodes (not displayed on Figure 5.3).

5.2.3 Impact of AVX instructions on frequencies

Computing cores can use wide vector instructions such as those from the AVX family [81].
Although these instructions allow reaching better computing performance, they force the
cores executing them to reduce their frequency because these instructions consume more
power [56]. The core frequency is further reduced when there are more cores executing
AVX instructions at the same time. On the other hand, with turbo-boost, if only few cores
execute AVX instructions, these cores can increase their frequency.

We study here if computing cores doing AVX instructions can have an impact on
the frequency of the core executing the communication thread and thus change the com-
munication latency. In our experiment, each computing core does the same amount of
computation: a set of multiple AVX512 �oating instructions (weak scalability). Since the
range of frequency variation is higher when turbo-boost is enabled, we show only this case
here (results are similar when turbo-boost is disabled).

As expected, computations are faster with only few computing cores (Figure 5.4a).
With only 4 computing cores (Figure 5.4b), computing cores work at 3GHz and compu-
tations last 135ms and with 20 computing cores (Figure 5.4c), their frequency is 2.3GHz
and computations last 210ms (lowered core frequency increases computing duration). In
both cases, the frequency of the communication core is stable at 2.5GHz and is not nega-
tively impacted by cores executing AVX instructions: no matter the number of computing
cores, the network latency is always slightly better when computations are done at the
same time (1.33µs vs 1.49µs) of computations. This is consistent with what we have
observed with previous experiments (in section 5.2.2) on the same machine: the uncore
frequency (constant regardless the number of computing cores) has no e�ect on network
latency, while a higher core frequency can improves latency. On bora nodes, computation
and communication performance with AVX instructions are the same as those observed
without AVX instructions.

To summarize, cores executing AVX instructions do not impact the frequency of the
core executing the communications and thus communication performance is not a�ected.

5.2.4 Conclusion on the impact of frequency variations

In conclusion, we have observed that the core CPU frequency impacts communication
latency: the higher the frequency, the lower the latency. To a lesser extent, uncore
frequency slightly impacts the communication bandwidth. Computations can change
the frequency of the cores executing them, but do not change the frequency of the core
executing communications, even with AVX instructions, and hence do not impact the
communication performance. On the contrary, latency is slightly better when CPU-bound
computations are made at the same time.

104 P. Swartvagher

5. Interferences between Communications and Computations

(a) Network latency

(b) Frequency variation with 4 computing cores
and communications

(c) Frequency variation with 20 computing
cores and communications

Figure 5.4: Impact of AVX512 computations on network latency, on henri nodes with
turbo-boost.

Interactions between Task-based Runtime Systems and Communications 105

5.3. Memory contention

Socket 0 Socket 1

NUMA node 0

NUMA node 1

NUMA node 2

NUMA node 3

RAM

PU

PU

...

PU

PU

RAM

PCIe

NIC

UPI
n
co
m
pu

ti
ng

T
hr
ea
ds

RAM

PU

PU

...

PU

PU

RAM

UPI

Data Data

E

E

E

E

Figure 5.5: Diagram of di�erent data streams in an HPC node: contention between
computations and communications can occur at di�erent locations. The inter-socket bus
is called In�nity Fabric (IF) on AMD processors, and Ultra Path Interconnect (UPI) on
Intel processors.

5.3 Memory contention

Data moving from memory to the CPU and data moving from memory to the NIC are
actually using the same memory bus. Therefore, in this section, we study the interaction
between memory accesses used for computations and communications over the network,
to check whether there may be contention between the data streams for computations
and for communications, as illustrated by Figure 5.5.

5.3.1 Benchmarking memory contention

To see what happens when memory contention occurs, we produce memory contention
with the STREAM benchmark suite [87], especially the following two STREAM kernels
that perform simple arithmetic on large arrays:

COPY copy each element of an array to another one: b[i]← a[i]

TRIAD multiply each element of an array by a constant, add it to the element of another
array and store the result in another one: c[i]← a[i] + C × b[i]

These kernels are memory-bound, causing high pressure on the memory bus. Moreover,
to really produce memory contention, we allocate memory on a single NUMA node, to

106 P. Swartvagher

5. Interferences between Communications and Computations

(a) Network latency (b) Network bandwidth

Figure 5.6: Memory-bound computations and network performance, on henri nodes.

increase the tra�c on the memory bus between cores belonging to di�erent NUMA nodes.
The loop iterating over these arrays is parallelized on available computing cores with
OpenMP. The performance of the computing benchmark is measured using the memory
bandwidth per core (hence higher is better). For communications, we execute a ping-pong
benchmark (see section 5.1) in its own thread. Such communication benchmark is run
alongside STREAM in a separate thread to measure the impact of interferences.

5.3.2 Impact of memory contention

In the execution reported in Figure 5.6, memory is allocated on the NUMA node where
the NIC is also connected, communication thread is bound to the last core of the other
NUMA node, and computing threads are bound to cores respecting the order of the logical
core numbering. Figure 5.6a shows that network latency is impacted by the STREAM
operations when there are at least 22 computing cores and this impact can double the
regular latency when all available cores are computing. However, STREAM operations
are not impacted by the ping-pong benchmark. The network bandwidth is impacted
sooner, from 3 computing cores (Figure 5.6b). When all available cores are computing,
the network bandwidth is reduced by almost two third from the regular network band-
width. Memory bandwidth measured by the STREAM benchmark is lower when network
bandwidth is measured at the same time as when network latency is measured, which is
expected because one bandwidth ping-pong transfers more data than a latency ping-pong
(64MB vs 4B). On bora nodes (Figure 5.7), the network bandwidth is impacted, but
later: from 20 computing cores; latency gives similar results. Results on billy and pyxis

nodes are similar to those observed on henri nodes.

5.3.3 Impact of thread and data placement

Here, we study the impact on the performance of the data locality and the communication
thread mapping. To do so, we bind the communication thread to a core either on the same

Interactions between Task-based Runtime Systems and Communications 107

5.3. Memory contention

Figure 5.7: Memory-bound computations and network bandwidth performance, on bora

nodes.

NUMA node where the NIC is plugged (near the NIC) or on the other NUMA node (far
from the NIC). Similarly, we explicitly allocate the memory (used for computations and
communication) either on one or the other NUMA node. It is known [88] that placement
may have an impact on communication performance; we check whether contention worsens
this phenomenon.

On henri nodes, Figure 5.6 shows results for data near the NIC and communication
thread far from the NIC and Figure 5.8 shows results for other placement schemes. Results
on other clusters were similar. When the communication thread is bound near the NIC,
the latency increases as soon as we use more than 6 computing cores, but then stays
around 2µs (even if the error range is higher). When the communication thread is far
from the NIC, the latency increases considerably from 25 computing cores by doubling
its nominal value and reaching more than 4µs. Without computations at the same time,
latency is slightly better when communication thread is bound near the NIC (1.39µs vs
1.67µs). As expected, because small messages are sent from the CPU to the NIC (using
programmed I/O), thus if the communication thread is closer to the NIC, the latency is
better.

Bandwidth curves have generally the same shape wherever the communication thread
is bound. When data is located near the NIC, bandwidth decreases steadily when the
number of cores increases. When data is located far from the NIC, bandwidth drops much
more abruptly. Since large messages are sent through Direct Memory Access (DMA), the
crucial factor is data placement; when data is closer to the NIC, we observe better overall
bandwidth and less impact of memory contention than when data is far from the NIC.

In all con�gurations, latency benchmarks do not impact the STREAM benchmark per-

108 P. Swartvagher

5. Interferences between Communications and Computations

(a) Network latency, data: near the NIC, MPI
thread: near the NIC

(b) Network bandwidth, data: near the NIC,
MPI thread: near the NIC

(c) Network latency, data: far from the NIC,
MPI thread: near the NIC

(d) Network bandwidth, data: far from the
NIC, MPI thread: near the NIC

(e) Network latency, data: far from the NIC,
MPI thread: far from the NIC

(f) Network bandwidth, data: far from the NIC,
MPI thread: far from the NIC

Figure 5.8: Impact of communication thread placement and data locality, on henri nodes.
Legend is the same as in Figure 5.7.

Interactions between Task-based Runtime Systems and Communications 109

5.3. Memory contention

(a) 5 computing cores (b) 35 computing cores

Figure 5.9: Impact of size of communicated data, on henri nodes.

formance, but bandwidth benchmarks do: STREAM loses up to 25% (with 5 computing
cores) of its performance when executed side by side of communications.

To sum up, placement of communicating thread and locality of memory has an impact
on network performance and on the memory contention. When the communication thread
is far from the NIC, latency su�ers more from contention on the memory bus. When data
is far from the NIC, network bandwidth su�ers more from contention. Moreover, in
all con�gurations, transmitting large messages on the network increases the impact of
contention on the computations.

5.3.4 Impact of transmitted data size on memory contention

In this section, we study the impact of message size on the contention on the memory
bus. We have observed in the previous section that bandwidth benchmarks are more
impacted by contention than latency benchmarks. Moreover, communication libraries
can exhibit di�erent behaviours according to the size of data to transmit (e.g. switch
from eager to rendez-vous protocol). We measure STREAM and network performance
with varying message size transmitted through the network, so as to know which message
sizes cause a performance drop. We performed this benchmark with two di�erent numbers
of computation cores: 5 cores, which is the point where STREAM is the most impacted
by communications; and 35 cores, where the network bandwidth is the most impacted by
STREAM, as we saw on Figure 5.6b.

With 5 computing cores (Figure 5.9a), communications begin to be degraded with a
message size of 64KB, but STREAM begins to be impacted sooner, from 4KB transferred
over the network. With 35 computing cores (Figure 5.9b), communications begin to be
degraded sooner than with 5 computing cores: from 128B and STREAM is impacted from
4KB as well. Results were similar on other clusters, when there is a small computing cores
or when all available cores are computing.

On the whole, a large number of computation cores causes a high memory pressure

110 P. Swartvagher

5. Interferences between Communications and Computations

(a) Network latency (b) Network bandwidth

Figure 5.10: Impact of memory pressure on network performance, on henri nodes.

which impacts communication for a wide range of message sizes on the network. Con-
versely, large messages exchanged through the network cause enough tra�c on the memory
bus to impact computation even with only 5 cores.

5.3.5 From CPU- to memory-bound applications

Real-world applications are usually not fully CPU-bound or completely memory-bound,
but somewhere between these two extremes. Previous sections showed that CPU-bound
applications have almost no impact on communications, but memory-bound ones do.
Therefore, we modi�ed the TRIAD algorithm in the STREAM benchmark to be able to
tune the memory pressure, so as to see how the variation of this pressure degrades the
network performance.

The memory pressure caused by computation is expressed as the arithmetic intensity,
as used by the roo�ine model [124]: it is de�ned as the number of �ops per byte of moved
data.

In practice, to make the arithmetic intensity of our benchmark tunable, we added a
simple loop in STREAM, repeating the operation on each item of the array, before moving
to the next item. By changing the number of repetition on each item, the arithmetic
intensity varies: with few repetitions the program moves rapidly from one item of the
array to the next one (memory-bound) and with many repetitions, it spends more time
before accessing the next item (CPU-bound). We call this number of iterations per item
in the array a cursor : changing the cursor value thus makes the benchmark progressively
moving from being memory-bound to CPU-bound.

Results of this benchmark on henri nodes are depicted in Figure 5.10. We observe
that high levels of memory pressure cause a huge performance drop for the network. When
the arithmetic intensity is lower than 6 �op/B, the memory pressure has an impact: in
the latency benchmark (Figure 5.10a), the network latency doubles and the computing
duration is constant, which is the con�rmation that it is actually memory-bound, and

Interactions between Task-based Runtime Systems and Communications 111

5.4. Runtime system impacts on communications

(a) Network latency (b) Network bandwidth

Figure 5.11: Impact of memory pressure on network performance, on billy nodes.

una�ected by the small messages on the network. In the same interval in the bandwidth
benchmark (Figure 5.10b), the network bandwidth drops by 60% and the computation
is slowed down by 10% because of interference with network operations which use large
packets in this benchmark.

For arithmetic intensity higher than 6 �op/B, the program becomes CPU-bound, the
memory pressure decreases: communication performance gets back to its nominal value
and computation time is una�ected by network interference. On billy (Figure 5.11),
the boundary between memory- and compute-bound programs is at 20 �op/B: it is also
visible on both computation and communication performance, but the network bandwidth
becomes not impacted by computations only when the arithmetic intensity is higher than
70 �op/B.

5.3.6 Conclusion on memory contention

Contention on the memory bus, caused by data movement between main memory and
cores or NIC, can have a strong impact on performance. We have shown that the impact
depends on several factors: (1) the placement of the communication thread and the data
locality, since contention ampli�es the impact of NUMA e�ects on the network; (2) the
size of the messages transferred over the network, since larger messages cause a higher
impact on computation performance; and (3) the arithmetic intensity of the code executed
by computing cores, since code with low arithmetic intensity (thus high memory pressure)
has a higher impact on network performance.

5.4 Runtime system impacts on communications

In this section, we study the impact of StarPU on communication performance, by
executing a ping-pong benchmark, written with the StarPU API instead of plain MPI.

112 P. Swartvagher

5. Interferences between Communications and Computations

Figure 5.12: Impact of data locality and thread placement on network latency with
StarPU, on henri nodes. close means on the same NUMA node as the NIC and far

means on the other NUMA node.

5.4.1 Runtime system overhead

Using the StarPU API for the communications adds extra software layers on the path
of messages that have to go through message lists, be processed by a worker and then
by the communication thread. These mechanisms add an overhead to communication
performance: in StarPU, the latency is increased by 38µs on henri nodes, by 23µs on
billy nodes and by 45µs on pyxis nodes. This latency di�erence is also noticeable on
network bandwidth benchmark for messages smaller than 64MB.

5.4.2 MPI thread and data placement

Within StarPU, a thread is dedicated to communications and makes them progress. This
thread is usually bound to a dedicated core (similarly to what we did in section 5.3.3).
The issue of memory locality and communication thread placement is still present when
memory is directly allocated by workers, namely by di�erent cores. If there are workers
on all available cores and memory allocation uses the �rst-touch strategy, memory will
be allocated on di�erent NUMA nodes. Therefore, the performance of the transfer for
those messages should depend on where the memory was allocated regarding the NIC, as
observed previously.

Figure 5.12 shows the network latency overhead explained previously, but mainly that
the most important for the network latency is that data to transfer and the communication
thread are on the same NUMA node. That is expected, because for small messages, if

Interactions between Task-based Runtime Systems and Communications 113

5.4. Runtime system impacts on communications

Figure 5.13: Impact of polling workers on network latency, on henri nodes.

the communication thread needs a remote NUMA access to get the data to send, it adds
some delay to the latency. StarPU does not impact more the network bandwidth than
previously observed.

5.4.3 Worker polling

StarPU's scheduler stores tasks submitted to the runtime system in a list. When a
worker �nishes a task execution, it consults this list to get the next task to execute. To
be reactive enough, workers wait actively for tasks, this mechanism is called busy waiting

or polling : if the list is empty, the worker waits a moment by executing a number of nop
instructions, and then tries again to get a task. The number of nop is de�ned by an
exponential backo� algorithm: it is doubled after each unsuccessful poll until a maximum
is reached. The number is reset to its minimum when the worker �nally gets a task. The
maximum number of nop instructions can be de�ned by the user. With a small number,
workers will be very reactive when a new task is pushed to the list (the task will start
sooner). However, it produces tra�c on the memory bus, because this list of tasks is
shared among all workers. Worker polling can be interrupted by pausing workers.

To study the impact of polling done by workers on communications, we implement
a benchmark with a ping-pong on network running without any task to execute, hence
workers are constantly polling for new tasks. We executed the benchmark with default
con�guration (the default maximum number of nop instructions is 32), with a huge backo�
(10000: workers poll rarely), with a small backo� (2: workers poll very frequently) and
with paused workers (they are not polling at all). Figure 5.13 shows that polling workers
have an impact on communication latency: the latency is higher when workers poll more

114 P. Swartvagher

5. Interferences between Communications and Computations

often. A long period between two polls is equivalent to paused workers and does not
impact the latency. We explain this result by the increased tra�c induced by workers
accessing the list of tasks and locking mechanisms. However, polling workers have no
impact on communication performance on billy and pyxis nodes.

5.4.4 Conclusion on runtime system impact

Our experiments show that task-based runtime system (here StarPU) can negatively
impact the communication performance (especially latency) because of the longer software
stack messages have to go through and due to aggressive worker polling.

5.5 Use-cases: computational kernels

To measure interferences between communications and computations in real computation
codes, and especially the impact of computations on communications, we executed a dense
conjugate gradient (CG) and a dense general matrix-matrix multiplication (GEMM), both
built with StarPU, using the Intel MKL BLAS library and distributed on two henri

nodes (2 MPI processes are enough to see the interferences and simplify the analysis).
Using the pro�ling utility provided by NewMadeleine, we measured the time spent
to send data over the network. This gives a sending network bandwidth: the network
bandwidth as perceived by the sending node, not taking into account the time to receive
data on the receiving node. We also used pmu-tools5, a tool built on the top of the
Linux perf program to read CPU performance counters, to evaluate the memory pressure
caused by the computations. Regardless of the number of computing cores, the execution
parameters are the same: matrix sizes and/or number of iterations (strong scaling), hence
the amount of network communications is also the same.

Figure 5.14 depicts measured values according to the number of computing cores.
All curves are the average of values obtained on the two MPI processes. The top plot
represents the normalized bandwidth for network sends and the bottom one plots the
proportion of execution time when the CPU was stalled on accesses to memory. This
�gure shows that, the more there are computing cores, the more cores are spending time
to access the memory and hence a�ects negatively the sending bandwidth, as observed
previously with our microbenchmarks. CG is more a�ected by this e�ect than GEMM. This
is because CG is more memory bound than GEMM: with the maximum number of workers,
70% of stalls are caused by memory accesses, while it is only 20% with GEMM. As seen
previously, these di�erent memory pressures a�ect di�erently the network send bandwidth:
with GEMM, communications lose at most 20% of performance, while with CG, the loss is
up to 90%.

To sum up, common computational kernels, such as CG and GEMM, can have a signi�cant
impact on communications executed at the same time as computations. This impact
depends on the arithmetic intensity of the executed kernels.

5https://github.com/andikleen/pmu-tools

Interactions between Task-based Runtime Systems and Communications 115

https://github.com/andikleen/pmu-tools

5.6. Conclusion

Figure 5.14: Network performance and hardware counter values of CG and GEMM executions,
on henri nodes.

5.6 Conclusion

Doing parallel computation side by side with communications is one of the key features
of task-based runtime systems and MPI libraries to achieve high-performance. However,
such feature can have side e�ects that actually degrade performance. We studied in this
chapter the possible e�ects and evaluated their impact on performance of both compu-
tations and communications. Frequency variations caused by computing cores have little
impact on communications. However, memory contention caused by memory-bound com-
puting programs and network transfers of big chunks of data has a strong impact on both
computation and communication performance. This impact depends on the placement,
the arithmetic intensity of the program executed by computing cores and the amount of
data transferred across the network. Moreover, using StarPU can also penalize com-
munications, just with the runtime system overhead, but also with internal mechanisms
like polling on task queues. Communication thread placement, data locality and node
topology (to which NUMA node the NIC is the closest) also impact performance. We ob-
served the penalty on communications also in the execution of common HPC kernels such
as conjugate gradient and matrix multiplication programs. These preliminary detailed
results are necessary to be aware of these behaviours, and before being able to present
solutions.

These phenomena are examples of negative interactions between runtime systems and
communication libraries. The interferences do not appear only with task-based runtime
systems, but because of their natural communications/computations overlap mechanisms,
these kinds of runtime systems can also be victims of these interferences. Moreover, with
all the features and abstractions provided by task-based runtime systems, it should be

116 P. Swartvagher

5. Interferences between Communications and Computations

easier to avoid these negative interactions. Taking the interferences between computations
and communications would then become a positive interaction between the two software
layers. To do so, we present in the next chapter a model to predict bandwidth sharing
between computations and communications.

Interactions between Task-based Runtime Systems and Communications 117

5.6. Conclusion

118 P. Swartvagher

Chapter 6
Modeling Memory Contention between
Communications and Computations

W
e observed in the previous chapter that memory contention between computations
and communications executed in parallel (illustrated by Figure 5.5 on page 106) is

the most important interference impacting performance of both computations and commu-
nications, because when overlapping communications and computation, data movement
for the computation and for the network may share parts of the path in the machine
memory system. Several factors can in�uence the contention: data placement, message
size and arithmetic intensity of computing kernels. Performance is the most reduced when
computing kernels are memory-intensive (putting important pressure on memory buses),
big messages are exchanged (thus moving large amount of data through memory buses)
and data to send to the network is located on a NUMA node di�erent than the one where
the network interface is plugged to.

In this chapter, we propose a model of this contention between computations and
communications. Given a number of computing cores, the model can predict memory
bandwidth available for computations and communications, when they are executed si-
multaneously, while taking into account the locality of data they manipulate. More than
just predicting performance, the proposed model allows us to test our hypotheses about
the internal working of processors' memory system, how they deal with contention be-
tween di�erent kinds of streams.

6.1 Context and hypotheses

Since di�erent kinds of data streams share the same memory bus, it is possible to sum the
measured bandwidths of each data stream, to get the overall occupancy of the bus capacity,
from a bandwidth point of view, like Majo and Gross did [86]. Indeed, this assumption
is the cornerstone of our model; once the bandwidth capacity of the bus is known, one
has to distribute the available bandwidth between computations and communications.

However, it is important to note that behaviours of processors and memory controllers

119

6.1. Context and hypotheses

regarding contention are not publicly documented by processor manufacturers. Moreover,
the values they use to characterize hardware features (the memory controller bandwidth
or the SMP interconnect rate, for instance) can hardly be linked to experimental obser-
vations, nor directly used as parameters of the model.

Thus, we propose a model whose parameters are determined through experiments
rather than theoretical capacity of hardware. We make our own set of hypotheses ex-
plaining memory bandwidth in case of contention, as well as our own set of benchmarks
to get model parameters.

6.1.1 Contention behaviour

Memory buses have a �nite bandwidth. When this capacity (or threshold) is reached, the
bus capacity is shared between all components accessing it, reducing memory bandwidth
available for each accessor. Memory requests issued by CPU cores may have a di�erent
(often higher) priority than requests coming from Peripheral Component Interconnect
Express (PCIe) devices, e.g. from a network interface. However, a minimal memory
bandwidth will always be available for these devices, to prevent starvations. We can also
assume in some cases computing cores can generate contention with each other, even
without communications in parallel.

If we put together these hypotheses: when communications and computations exe-
cuted in parallel reach together the memory bus bandwidth threshold, communication
bandwidth starts to decrease to avoid impacting computing cores. When the assured
minimum bandwidth for communications is reached, the performance of computations
decreases uniformly between computing cores to �t the memory bus capacity; but the
contention between the computing cores can already create contention penalizing compu-
tation performance too.

6.1.2 NUMA systems

Within NUMA systems, the performance of a memory access varies whether a core is
accessing its own memory or the memory from another memory bank. Hence, we will use
the terms local and remote to qualify whether computing cores use memory respectively
close or far to them.

The main consequence of such NUMA systems is that memory bandwidth will vary
whether cores or network interface are accessing local or remote memory. Moreover, de-
pending on where is located memory used for computations or communications, the path
taken by the data between the NUMA node and the computing core or the network inter-
face will be di�erent, changing the locations of contention. Thus, our model has to take
into account on which NUMA node data manipulated by computations or communications
are located.

To focus on the interferences between computations and communications, we will
not mix local and remote accesses from computing cores. This means we will
model performance of computations and communications when cores of only one socket

120 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

are computing. Considering computing cores of all sockets accessing the same NUMA
node (thus, some of them are doing local accesses and other ones remote accesses) is
another problematic that is left for future work.

6.1.3 Last level caches

The last-level cache (L3 cache on most machines), between cores and RAM memory,
tends to alleviate the number of memory transfers done by computations. Thus, we
would overestimate the number of memory movements if we assumed that every memory
access instruction would lead to an actual transfer through the whole memory system.
It would lead to inaccurate results about contention since our model only takes as input
actual memory transfers.

If the data of the streams we are predicting the bandwidth go through the last-level
cache, our model has to describe two phenomena: the contention on memory bus and the
behaviour of the cache. However, the behaviour of the cache is complex to model [33,
14], implements undocumented strategies di�erent for each processor manufacturer, and
changes for each kind of application. All in all, modeling the cache is another topic,
di�erent from the one we are currently dealing with.

For all these reasons, we chose to ignore the last-level cache and make the
data stream bypass it.

6.1.4 Modeling methods

A widespread model for contention is queuing theory [35, 119]: cores or network interfaces
are customers; when they make a memory request, they enter in the queue: they leave the
queue when the request is processed. Closed-form expressions exist for properties of such
queues, especially the mean time spent in a queue. Unfortunately this kind of model is not
relevant for our usecase. Since NUMA machines have a hierarchical organization of their
memory, bottlenecks can appear on several places in the memory system (see Figure 5.5
on page 106). Each place where contention can occur has to be represented by a dedicated
queue, and the di�erent queues of all memory components have to be combined to model
the behaviour of the whole memory system. Correctly assembling the queues requires
to have a sharp understanding of how the memory system works (knowledge usually not
available publicly and speci�c to each processor generation and manufacturer). Even if
we succeed in proposing an assembly of queues, getting all parameters of all queues would
require lot of execution samples to be precise enough. Moreover, obtained parameters
characterizing the queue can lack physical meaning, making the parameter interpretation
harder. Most queuing models are built with the assumption that all customers have the
same request rate; it is not necessarily true in our case: one network interface can issue
memory requests at a higher rate than one computing core (a single computing core can
reach a memory bandwidth of 5GB/s, while network bandwidth can be around 10GB/s).
In such situation, we lose the closed-form expressions, which were the main advantage of
queuing theory.

We chose a simpler model, easier to manipulate, but accurate enough for our needs:

Interactions between Task-based Runtime Systems and Communications 121

6.2. A model for memory bandwidth sharing

a basic threshold. While the bandwidth required by all issuers of memory requests stays
under the memory bus capacity, there is no contention, no impact on performance. When
it does not �t the memory bus anymore, only the bus capacity is available, and is split
among computing cores and network interface. This model, described in detail below,
has the advantages of requiring few application runs to calibrate the parameters and
has understandable parameters with a physical meaning, well-known units, and coherent
values regarding performed benchmarks and hardware features.

6.2 A model for memory bandwidth sharing

The model aims at giving the memory bandwidths available for computations and com-
munications, and thus predicts the impact of the contention on their performance, using
as parameters the number of computing cores, the memory location of data used by
computations and communications and the topology of the machine.

Since memory bandwidth depends on which NUMA node is accessed, we need to in-
stantiate our model once for local accesses, notedMlocal (e.g. memory for computations
and communications located on the �rst NUMA node of the �rst socket), and once for
remote accesses, notedMremote (e.g. memory for computations and communications lo-
cated on the �rst NUMA node of the second socket). Parameters of each model are de�ned
with metrics collected on executions where data used for computations and communica-
tions are on the same NUMA node (case with the largest contention). Once parameters
are collected, performance can be predicted according to these parameters. Performance
with memory placement con�gurations other than the ones used to instantiate the model
is predicted by combining the local and remote models. This section explains how model
parameters are de�ned, then how the model predicts performance and �nally how models
for local and remote accesses are combined to predict performance of all possible data
placements.

6.2.1 Model parameters

The model requires several parameters describing the behaviour of the machine when
communications and computations are executed independently, to know nominal perfor-
mance and predict them correctly when there is no contention, and in parallel, to know
what can be the impact of contention.

A convenient way to understand how bandwidths which will be predicted by the model
evolve is to sum memory bandwidths for computations and communications and visualize
them by stacking them. Since both streams share parts of the same memory system, it
allows to easily represent the share of the bus capacity among the two di�erent streams.
Figure 6.1 is an example of such representation: according to the number of computing
cores, the orange area depicts memory bandwidth for all computing cores and blue area
depicts memory bandwidth for communications, when they are both executed in parallel.
We also show the graph of the memory bandwidth for computation executed alone, in
green.

122 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

δl
δr

(Nmax
par ,T

max
par) (Nmax

seq ,Tmax
seq)

(Nmax
seq ,Tmax2

par)

(1, Bcomp
seq)

Figure 6.1: Stacked memory bandwidth for computations and communications, with co-
ordinates of the interesting points to instantiate the model: memory bandwidth for one
computing core, the maximum memory bandwidths reached with lonely computations,
with computations and communications in parallel, and the loss of total memory band-
width when additional cores are computing. The values are obtained with the benchmark
described in section 6.3.1.

One can notice memory bandwidth for computations alone scales perfectly from Bcomp
seq

(• on the plot, with one computing core) until Tmax
seq with Nmax

seq computing cores (• on
the plot). With more computing cores, the memory bandwidth slightly decreases almost
linearly.

When computations and communications are executed in parallel, the maximum band-
width is di�erent (Tmax

par ,• on the plot) than when computations are executed alone, as
well as the number of computing cores (Nmax

par) necessary to reach this maximum. With
more computing cores, the total bandwidth decreases linearly too, but with a slope dis-
continuity when there are Nmax

seq computing cores. Between Nmax
par and Nmax

seq computing
cores, each additional computing core reduces the total bandwidth Tmax

par by δl. With more
than Nmax

seq computing cores, each additional computing core reduces the total bandwidth
for computations and communications with Nmax

seq computing cores (Tmax2
par , • on the

plot) by δr.

Other important parameters of the model are related to network performance. Net-
work communications require a bandwidth Bcomm

seq when they are executed alone (the
nominal performance, not appearing in Figure 6.1). Although it is di�cult to perceive on
this �gure, the memory bandwidth available for communications is reduced in the worst
case by a factor α, computed as follow: α = min

i
(
Bcomm

par (i)

Bcomm
seq

), where i represents the number

of computing cores. On most machines we evaluated the model, the factor α has a value
around 0.9 (i.e. the network bandwidth has 10% of its nominal value) for a number of

Interactions between Task-based Runtime Systems and Communications 123

6.2. A model for memory bandwidth sharing

computing cores higher than Nmax
seq (precise values can be found in Appendix E).

Introduced notations characterize behaviour of the memory system and compose the
model parameters. To sum up, the model requires the following parameters to predict
memory bandwidth for computations and communications:

� Nmax
par ,T

max
par : the maximum total memory bandwidth Tmax

par reached when computa-
tions and communications are executed simultaneously, and with how many com-
puting cores Nmax

par it is reached;

� Nmax
seq ,Tmax

seq : the maximum memory bandwidth Tmax
seq reached when computations

are executed alone, and with how many computing cores Nmax
seq it is reached;

� Tmax2
par : the total memory bandwidth when communications are performed and Nmax

seq

cores are computing in parallel;

� δl, δr: the memory bandwidths lost per additional computing core when there are
respectively between Nmax

par and Nmax
seq computing cores and when there are more

than Nmax
seq computing cores;

� Bcomp
seq : the memory bandwidth used by one single computing core;

� Bcomm
seq : the communication bandwidth when communications are executed alone;

� α: the ratio of the available bandwidth for communications in the worst case.

6.2.2 Modeling memory bandwidth

The goal of our model is to predict the performance of computations and communications
when they are executed in parallel, for every possible number n of computing cores on
one socket. It also predicts performance when computations and communications are exe-
cuted independently, to be able to predict performance of memory binding con�gurations
without contention.

Memory bandwidths are predicted in two steps: �rst, the total bandwidth T the
memory system can support according to the number of computing cores is estimated,
then this total bandwidth is split between communications and computations.

The maximum available bandwidth T (n) for computations and communication when
n cores are computing is given by the following equation:

T (n) =


Tmax

par if n ≤ Nmax
par

Tmax
par − δl × (n− Nmax

par) else if Nmax
par < n ≤ Nmax

seq

Tmax2
par − δr × (n− Nmax

seq) otherwise
(6.1)

The di�erent cases linearly approximate the maximum bandwidth: while there are less
than Nmax

par computing cores, the bandwidth is at its higher level Tmax
par ; when there are

more computing cores, contention starts to impact total bandwidth and for each additional
core, δl or δr is subtracted, whether there are less or more than Nmax

seq computing cores
(corresponding to the left or the right of the in�exion point• on Figure 6.1).

124 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

Bandwidth allocated to computations and communications follows di�erent equations
which depend if satisfying computing core requirements (n×Bcomp

seq) and assuring minimum
bandwidth to communications (α × Bcomm

seq) is lower than the bus capacity or exceeds it.
The bandwidth required to �t into the bus, noted R(n), is given by the following formula:

R(n) = n×Bcomp
seq + α×Bcomm

seq (6.2)

The share of the total bandwidth allocated to computing cores is then described by
the following equation:

Bcomp
par (n) =

{
n×Bcomp

seq if R(n) < T (n)
T (n)− Bcomm

par (n) otherwise
(6.3)

While all memory bandwidth requested by computing cores and minimal bandwidth as-
sured for communications �t in the total available bandwidth, computations on n comput-
ing cores will get the memory bandwidth Bcomp

par (n), corresponding to their request (perfect
scaling). When the threshold is reached, computations get the remaining bandwidth after
communications got their share of the bandwidth.

The bandwidth for communications is allocated as stated by the following equation:

Bcomm
par (n) =

{
min(T (n)− Bcomp

par (n), Bcomm
seq) if R(n) < T (n)

α(n)×Bcomm
seq otherwise

(6.4)

While R(n) is lower than the bus capacity T (n), communications get the share of the
total bandwidth unused by computing cores, but they cannot use more than the nominal
performance of the network Bcomm

seq (hence the min). When R(n) exceeds the bus capacity,
the bandwidth for communications is impacted by a factor α(n):

α(n) =


Bcomm
par (i)

Bcomm
seq

−
Bcomm
par (i)

Bcomm
seq

−α

Nmax
seq −i

× (n− i) if Nmax
seq − Nmax

par > 1 and n < Nmax
seq ,

where i = max
j

({j|R(j) < T (j)})
α otherwise

(6.5)

With Nmax
seq or more computing cores, communications get their minimal assured band-

width, thus α(n) = α. When there are less computing cores, more than one core between
Nmax

par and Nmax
seq , and R(n) ≥ T (n) (i.e. the case when α(n) has to be computed), band-

width for communication does not abruptly drop to α × Bcomm
seq . Therefore, we linearly

interpolate the factor, with a line passing by the points where the factor of impact on
communications with the maximum number of computing cores where R(n) < T (n) is
still valid (noted i in the equation), and α with Nmax

seq computing cores.

To predict performance on all memory placement con�gurations, the model needs in
some con�gurations to predict performance of computations and communications exe-
cuted alone, when there is no contention. The bandwidth for communications executed
alone is simply the model parameter Bcomm

seq . The bandwidth for computations executed
alone is given by the following formula:

Bcomp
seq (n) = min(n×Bcomp

seq , T (n),Tmax
seq) (6.6)

The formula considers a perfect scaling of memory bandwidth allocated to computing
cores, limited by the memory bus capacity T (n) and cannot neither exceed the maximum
bandwidth Tmax

seq when computations are executed alone.

Interactions between Task-based Runtime Systems and Communications 125

6.2. A model for memory bandwidth sharing

6.2.3 Model NUMA e�ect

NUMA systems present di�erent memory bandwidths depending if accesses are made to a
local or a remote NUMA node. Therefore, we need two model instantiations, each with its
own set of parameter values. The set of parameters describing local accesses, when both
computations and communications make memory accesses to the same local NUMA node
(regarding to computing cores), is noted Mlocal , and conversely, the set of parameters
describing remote accesses, when they make memory accesses to the same NUMA node
of a another socket, is notedMremote .

Using equations 6.1 to 6.5, we can model performance for the two memory binding
con�gurations we used to calibrate the two models (data for computations and communi-
cations both on the same NUMA node than the NIC and on the other NUMA node) , by
directly using the corresponding model. However, we need to combine these two models to
predict performance on all other memory binding con�gurations. Predicting bandwidths
of computations and communications requires now two additional parameters, to take
into account data location: the index of the NUMA node where is located data used by
computations (mcomp) and by communications (mcomm). These parameters, in addition
to the number of NUMA nodes per socket (noted #m), allow to select the corresponding
bandwidth according to placement.

In the rest of the section, the notation B(M) means the bandwidth B is given by using
the model instantiationM.

Regarding communications, the model to apply is selected with the following equation:

Bcomm
par (n,mcomp ,mcomm) =
Bcomm
par (Mremote , n) if mcomp ≥ #m and mcomp = mcomm

Bcomm
par (Mlocal rBcomm

seq (Mremote), n) else if mcomm ≥ #m
Bcomm
par (Mlocal , n) otherwise

(6.7)

If both computations and communications access to the same remote NUMA node,
communication bandwidth is given by the remote model Mremote . In all other cases,
communications are less subject to contention and follow the local modelMlocal . However,
on some machines, the network performance is very sensible to the locality of exchanged
data. SinceMlocal is instantiated with communication bandwidth with data located on the
local NUMA node, it may not �t the network performance when data for communications
are located on the remote NUMA node. Therefore, in this case, we use the local model,
but with the nominal network performance when data is located on remote memory, i.e.
the Bcomm

seq ofMremote .

The model for computation bandwidth is selected with the following equation:

Bcomp
par (n,mcomp ,mcomm) =
Bcomp
par (Mlocal , n) if mcomp < #m and mcomp = mcomm

Bcomp
seq (Mlocal , n) if mcomp < #m and mcomp 6= mcomm

Bcomp
par (Mremote , n) if mcomp ≥ #m and mcomp = mcomm

Bcomp
seq (Mremote , n) if mcomp ≥ #m and mcomp 6= mcomm

(6.8)

Computations are impacted by contention only when data used for communications is

126 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

on the same NUMA node as data for computations. In such case, bandwidth for compu-
tations is the one with communications in parallel Bcomp

par , from the model corresponding
to computation data location, local or remote. In the same fashion, when computations
and communications do not use the same NUMA node for their data, computations get
their nominal memory bandwidth Bcomp

seq .

Appendix D presents algorithms to predict memory bandwidth for computations and
communications, implemented using equations described above.

6.3 Evaluation of the model

We want to measure the impact of memory contention on computations and communica-
tions, when they are executed in parallel, and to compare it with the predictions of our
model. To know the impact, we need the performance of computations and communica-
tions executed alone and in parallel.

6.3.1 Experimental setup

Benchmarking program

We used the same benchmarking program we presented in Chapter 5 to get performance
of computations and communications, executed either alone or in parallel.

Performance is measured on a single node, but we still need two machines for network
exchanges. We study the performance penalty caused by memory contention, therefore,
to control and understand memory movements, all computing cores perform non-temporal

memset instructions to move data from cores to memory, and communication performance
is measured with the bandwidth observed to receive messages of 64MB from the other
machine. We use non-temporal instructions to bypass the last level cache, as explained
in section 6.1.3: they tell the processor to store data directly in memory, bypassing the
cache.

Data used for communications and computations are explicitly bound on selected
NUMA nodes, to know the data location and consider it in the model. Unlike what
we did in the previous chapter, bu�ers for computations and communications are not
necessarily allocated on the same NUMA node.

Memory bandwidth for computations is computed from the duration of the memset

instructions, each computing core always work on the same amount of data (weak scaling).
Memory bandwidth for communications is considered to be the same as the network
bandwidth, i.e. the message size over the necessary time to receive data from the other
machine, since this stream has also to go through the memory bus after arriving on the
network interface.

Only samples collected during steady state are considered: all cores execute compu-
tation iterations for a de�ned amount of time, then we skip performance of �rst and
last iterations of each core, to get rid of the performance when not exactly all cores are

Interactions between Task-based Runtime Systems and Communications 127

6.3. Evaluation of the model

computing.

To bind memory on a speci�c NUMA node, bind threads to cores and gather topology
information, we use Hwloc [27].

Modeling all placements

With NUMA machines, we need two model instantiations: one for local memory accesses
and another one for remote accesses. On a machine with two sockets (processors) and
two NUMA nodes per socket, we would execute our benchmarking program to get model
parameters using memory for computations and communications both located on the �rst
NUMA node of the �rst socket for the local model and using memory located on the �rst
NUMA node of the second socket for the remote model. Thus, we need to measure memory
bandwidths of two placement con�gurations, to latter be able to predict performance of
all other con�gurations (16 in this example, since there are 4 possibilities where to put
data for computations and the same 4 possibilities for communication data), as explained
in section 6.2.3.

The program to measure memory bandwidth of one placement con�guration needs
to be executed for all possible numbers of computing cores, in the range of the number
of cores on the �rst socket, as explained in section 6.2. Once the performance metrics
(memory bandwidth for computations alone and in parallel of communications, network
bandwidth for communications alone and in parallel of computations) are extracted from
benchmark outputs, the evolution of the bandwidths over the number of computing cores
is analyzed (it mostly looks for minimums and maximums) and the parameters of the
model, listed in section 6.2.1, are computed.

Note that this process can be optimized: once the peaks of bandwidth Tmax
par and Tmax

seq

are found, one can skip executions with number of computing cores greater than Nmax
seq ,

except the execution with all cores of the �rst socket, required to compute δr. Here we still
need to execute the program with all possible numbers of computing cores, to evaluate
the accuracy of our model.

Testbed platforms

We evaluated our model for the bandwidth metrics obtained on several platforms with
di�erent characteristics: from small experimental platforms to large production ones,
presented in Appendix C. Hyperthreading is only enabled on platforms dahu, grvingt,
pyxis and occigen, however, on all platforms, threads are bound to physical cores (i.e.
hyperthreads are not used).

Values of model parameters for each platform are presented in Appendix E.

6.3.2 Results

Figures 6.2 to 6.7 depict performance of computations and communications as well as
the model predictions. Each �gure is composed of several subplots, one per possible

128 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

Figure 6.2: Performance of computations and communications along with our model
prediction, on henri nodes (Intel, InifiniBand).

placement combination of data for computations and data for communications on available
NUMA nodes. For instance, Figure 6.2 represents results on the henri platform, with
2 NUMA nodes. Data for communications can be located on 2 NUMA nodes, as well
as data for computations, which leads to 4 placement combinations. Each line of plots
represents one placement for communication data, while columns represent placements
for computation data. Titles above each plot precise the placement of data. The two
placement combinations used to instantiate the local and remote models are highlighted
with a bold title and a thicker frame. Each subplot presents, according to the number
of computing cores, network bandwidth (in blue, to be read on the left Y-axis) and
memory bandwidth for computations (in orange, to be read on the right Y-axis), when
they are executed alone (• markers) and in parallel (H markers). The blue and orange
lines indicate our model predictions of the bandwidth for respectively communications and
computations. Error bars are not shown to ease reading, but the run-to-run variability is
very low.

henri Figure 6.2 shows there is contention between computations and communications,
impacting them both, more or less severely according to data placement. Our model is
accurate when computations and communications perform both remote memory accesses.
When computations and communications perform both local accesses, our model re�ects
the correct impact on communications too late (the model predicts a decrease starting
with 14 computing cores, while it is 10 in reality), because communications start to be
impacted before the total bandwidth threshold T is reached. Other memory placement

Interactions between Task-based Runtime Systems and Communications 129

6.3. Evaluation of the model

Figure 6.3: Performance of computations and communications along with our model
prediction, on henrisubnuma nodes (Intel, InifiniBand).

con�gurations, not used to instantiate the model, show the same �aws.

henrisubnuma The henri platform con�gured with 4 NUMA nodes allows 16 data place-
ment combinations, described by Figure 6.3. The grey and white areas are used to dis-
tinguish the two NUMA nodes of the �rst socket. With such numerous con�gurations,
symmetries in performance appear, mimicking symmetries of the machine topology: for
instance, when data for computations and communications are on di�erent NUMA nodes
of the second socket (right half of set of plots), performance is always the same, regardless
of which NUMA nodes are used. These symmetries allow the predictions done by the
model to be correct, with only two con�gurations used to predict all 16 combinations. All
these con�gurations also show that the placement con�gurations the most disturbed by
memory contention are the ones where data for computations and communications are
on the same NUMA node (i.e. subplots on the diagonal of the �gure), while computa-
tions are almost not impacted in other cases. Therefore, we can guess memory contention
occurs the most on memory controllers (responsible of accesses to one dedicated NUMA
node), rather that on the inter-socket connection bus.

130 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

Figure 6.4: Performance of computations and communications along with our model
prediction, on diablo nodes (AMD, InifiniBand).

Figure 6.1 used previously to explain the model is the stacked version of the top left
subplot of the Figure 6.3.

diablo Figure 6.4 shows results on the diablo platform, and illustrates especially the
case when network performance is highly sensible to data locality: when data for commu-
nications is on the �rst NUMA node, network bandwidth reaches only 12.1GB/s whereas
when data is on the second NUMA node (which the NIC is actually plugged to), network
bandwidth can raise up to 22.4GB/s. Our model succeeds in predicting performance,
even if there is almost no contention on this platform.

billy Figure 6.5 depicts results on the billy platform, similar to diablo. The network
performance is still sensible to placement (we get stable 14GB/s when data for communi-
cations is on the �rst NUMA, up to 20GB/s otherwise), but is more chaotic (when data
for communications is on the second NUMA node, network bandwidth oscillates between
12GB/s and 24GB/s); the model fails to capture the variability, but follows the general
trend of observations.

occigen Figure 6.6 shows results on the only production platform of our testbed. On
this ancient platform (2014-2022), only computations are impacted when computations
and communications do both remote memory accesses. For instance, with 7 computing
cores, memory bandwidth for computations decreases from 21.1GB/s to 18.5GB/s when

Interactions between Task-based Runtime Systems and Communications 131

6.3. Evaluation of the model

Figure 6.5: Performance of computations and communications along with our model
prediction, on billy nodes (AMD, InifiniBand).

Figure 6.6: Performance of computations and communications along with our model
prediction, on occigen nodes (Intel, InifiniBand).

132 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

Figure 6.7: Performance of computations and communications along with our model
prediction, on pyxis nodes (ARM, InifiniBand).

communications are executed in parallel. Network bandwidth stays always constant at
6.2GB/s. This platform is where our model is the most accurate, with the lowest predic-
tion error (see further).

pyxis Figure 6.7 shows results on a platform with ARM processors. Our model pre-
dicts correctly performance of computations, although it does not catch that memory
bandwidth for computations does not scale well when it gets closer to the threshold. For
instance, with data for computations on the �rst NUMA node and data for communica-
tions on the second node (bottom left plot), our model predicts a memory bandwidth of
62.5GB/s for 19 computing cores, while in reality is 58.7GB/s. Network performance is
not correctly predicted for placement con�gurations which were not used to instantiate
the model. On this architecture, the network performance seem to be harder to predict
by just relying on the locality of the data.

bora, dahu, grvingt Model predictions for platforms equipped with similar hardware
(Intel processor and Omni-Path network) give as expected similar results, as can be
seen on �gures 6.8, 6.9 and 6.10.

Table 6.1 reports the prediction errors on all platforms. The error is estimated with

the mean absolute percentage error (100%
n

∑n
k=1

∣∣∣ak−pkak

∣∣∣), for predictions of computations

and communications separately, by distinguishing also predictions made by the model on
a placement con�guration used to instantiate the model (samples) or not (non-samples).

Interactions between Task-based Runtime Systems and Communications 133

6.3. Evaluation of the model

Figure 6.8: Performance of computations and communications along with our model
prediction, on bora nodes (Intel, Omni-Path).

Figure 6.9: Performance of computations and communications along with our model
prediction, on dahu nodes (Intel, Omni-Path).

134 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

Figure 6.10: Performance of computations and communications along with our model
prediction, on grvingt nodes (Intel, Omni-Path).

Platform
Communications Computations

Averageon

Samples

on non-

Samples
all

on

Samples

on non-

Samples
all

henri 2.62% 3.53% 3.08% 0.80% 2.34% 1.57% 2.32%
henrisubnuma 2.90% 3.80% 3.69% 1.89% 3.66% 3.44% 3.56%

billy 8.22% 10.84% 9.53% 3.98% 3.40% 3.69% 6.61%
bora 4.39% 5.14% 4.77% 1.34% 0.78% 1.06% 2.91%
dahu 2.76% 2.38% 2.57% 2.00% 3.85% 2.92% 2.74%

diablo 2.32% 1.54% 1.93% 0.92% 0.99% 0.95% 1.44%
grvingt 3.41% 8.06% 5.74% 2.44% 4.48% 3.46% 4.60%
pyxis 1.15% 13.32% 7.24% 1.95% 2.79% 2.37% 4.80%

occigen 0.01% 0.01% 0.01% 0.22% 0.58% 0.40% 0.20%
Average 3.09% 5.40% 4.28% 1.73% 2.54% 2.21% 3.24%

Table 6.1: Model errors on testbed platforms.

Interactions between Task-based Runtime Systems and Communications 135

6.3. Evaluation of the model

Regarding communications, the highest prediction error on all con�gurations is on billy

(8.22% on sample con�gurations, 10.84% on others), explainable by the high variability
of network performance, even when communications are executed alone, not taken into
account by our model. The prediction error is also high on pyxis, especially on non-
sample con�gurations (13.32%), caused by the wrong appreciation of locality impact
on this architecture, as discussed above. On other platforms, the average of prediction
error of network bandwidth on all placement con�gurations is below 6%. Performance
of computations is better predicted, with an overall error lower than 4%. Worst cases
are on billy (3.69%) and grvingt (3.46%), where the model tends to over-estimate
the bandwidth for computations because it assumes a perfect scaling when the number
of computing cores increases, but in reality computing cores start to create contention
before reaching the bandwidth threshold.

6.3.3 Discussion

Results presented above show our model is valid to predict memory bandwidth allocated to
communications and to computations: from sample executions on two di�erent placement
con�gurations to instantiate the whole model, we are able to predict bandwidths with
all possible placement con�gurations, with an overall prediction error lower than 4%.
Higher prediction errors come most often from unstable input data, nonetheless the model
formulation allows us to better understand in which circumstances memory contention
happens and how the hardware deals with it.

Model limits

Even though our model makes overall good predictions, there are some corner cases where
it show its limits. It has di�culties to accurately predict network bandwidth if network
performance is not stable even without contention (see for instance results on billy,
pyxis, bora or grvingt). On systems where data locality can highly in�uence network
performance (such as diablo, billy, pyxis or bora), the model can be wrong more
often, especially on placement con�gurations not used to instantiate the model. These
weaknesses are not related to modeling of contention, since the odd network performance
is also hard to predict with communications executed alone. Being able to model network
performance in all placement con�gurations, when communications are executed alone,
would help improving our model, to predict network bandwidth in case of contention.

On machines with many NUMA nodes (more than 4; for instance, billy can be con-
�gured with 8 NUMA nodes � 4 per processor), network performance under memory
contention depends on data locality and the heuristic given by formula 6.7 is not suf-
�ciently accurate anymore. Moreover, when communications and computations use the
same NUMA node for their data (i.e. when contention has the most impact), the dis-
tribution of memory bandwidth between computations and communications before the
threshold is reached (�rst cases of equations 6.3 and 6.4) is, in our model, more in favour
of computations as in reality. Thus, these more complex system topologies would require
more precise hypotheses about memory routing between NUMA nodes to model them
accurately. Moreover, evaluating the model on all placement con�gurations (64 with 8

136 P. Swartvagher

6. Modeling Memory Contention between Communications and Computations

NUMA nodes!) is more di�cult due to necessary time to execute benchmarks on all
con�gurations (about one hour per con�guration).

The model predictions are only valid for the parameters of the benchmarks used to
instantiate the model: the computation kernels executed by computing cores and the mes-
sage size used by communications. For di�erent computation kernels and message sizes,
memory contention can be di�erent and thus model parameters as well. However, since
the computation kernels and message size were chosen here to maximize the contention,
other kernels or message size should produce less contention, but the insights provided by
our model in the worst case should still be valid.

Lessons learned

Distinguishing location of data used for computations and for communications allows to
change paths of the two di�erent data streams in the memory system and thus better
locate bottlenecks, where memory contention occurs. First hypotheses assume contention
happens in memory controller (controlling the memory of a NUMA node) or in inter-
processor link. Results on machines with 2 NUMA nodes show contention occurs when
data for communications and computations are located on the same NUMA node, es-
pecially on the same remote NUMA node (i.e. data streams have to go through inter-
processor link and memory controller). When communications and computations use
each their own NUMA node for their data, memory contention is very low (when not
null). Results on machines with 4 NUMA nodes (2 local and 2 remote nodes, for instance
on henrisubnuma), re�ne the location of the bottleneck: when computations and com-
munications do both remote accesses (data streams have to go through the inter-socket
link), performance is the most impacted due to contention when they use the same re-
mote NUMA node. Thus, the place where the most contention occurs is memory
controller, and not the inter-socket link.

The hypotheses made to design the model, and validated with experiments, teach us
memory bandwidth for network communications is the �rst reduced in case of
memory contention, to preserve memory bandwidth dedicated to computations. However,
aminimum bandwidth is always assured for network, to prevent starvations. When
this minimum bandwidth is reached, bandwidth for computations starts to decrease to �t
memory system capacity.

6.4 Conclusion

Computations and communications in parallel distributed HPC applications can be exe-
cuted in parallel to save execution time. With memory-bound computations and network
exchanges with large messages, contention can occur in the memory system, reducing
performance of both computations and communications.

In this chapter, we proposed a model to predict memory bandwidth allocated for
computations and communications when they are executed in parallel. Predictions are
made from parameters describing behaviour of the memory system with two data place-

Interactions between Task-based Runtime Systems and Communications 137

6.4. Conclusion

ment con�gurations. From these parameters, the topology description of the machine
and information about data locality, our model is able to predict memory bandwidth for
computations and for communications, regardless on which NUMA node data are located,
with an average prediction error lower than 4%.

Building this model allows to better understand that memory contention is the most
severe when computations and communications use data located on the same NUMA
node, bottleneck causing this contention is mainly located in the NUMA node controller,
rather than in the inter-socket connection bus. In case of contention, the system �rst
degrades memory bandwidth allocated to communications, but ensures a minimum, and
then reduces computation bandwidth if necessary.

This knowledge about the system behaviour in case of memory contention could help
the runtime system to optimize data placement and the scheduling of memory-bound com-
putations and communications, in order to avoid (or at least minimize) possible memory
contention impacting performance of the application.

138 P. Swartvagher

Conclusion and Perspectives

T
o address the increasing complexity of HPC machines, task-based runtime systems
have emerged. The task-based paradigm decomposes applications into smaller parts

with dependencies between the tasks, forming a DAG, scheduled and executed by the
task-based runtime system. Task-based runtime systems ease the exploitation of the whole
computing power o�ered by HPC machines and permit better application portability on
di�erent machines. Distributed applications can be handled by such runtime systems when
they provide a component managing network communications. Network communications
are usually delegated to a third-party library.

Task-based runtime systems have speci�c requirements in terms of communications,
because of their asynchronous and dynamic behaviour. In this thesis, we explored the
possible interactions between task-based runtime systems and communication libraries,
especially between StarPU and NewMadeleine, in order that these two di�erent and
independent software layers exchange their respective knowledge to take more clever de-
cisions.

Summary of contributions

We �rst evaluated and improved the tracing system of StarPU to have precise execution
traces describing behaviour of applications, to analyze interactions between StarPU and
the communication library. We developed dynamic broadcasts, a positive interaction be-
tween StarPU and NewMadeleine to improve application performance. On the other
hand, we also evaluated negative interactions between communications and computations
when they are executed simultaneously.

Tracing systems

To understand performance and behaviour of application executions, tracing them and
then analyzing the execution details is a �rst-class citizen technique. To be robust enough,
tracing systems have to disturb as less as possible the program execution and provide
satisfactory precision. Impacting the application execution can change the application
performance, but mainly the behaviour of the application: thus the execution described

139

Summary of contributions

in the trace �les is di�erent than an execution not traced. This can be inconvenient,
since we usually trace application to understand what is happening when the application
is not traced! A bad precision can lead to inconsistent traces, especially for distributed
executions, when the event causality can be broken (a message can appear as received
before it was sent) if clocks are not accurately enough synchronized.

We evaluated possible sources of performance overhead when StarPU applications
are traced and provided possible solutions when the overheads are too important. We im-
proved the clock synchronization mechanism in StarPU to use state-of-the-art techniques
and empirically evaluated the accuracy improvement.

More than providing robust and e�cient solutions to some problems caused by tracing
systems, our work aimed at making users of such systems aware of these possible �aws,
and the execution traces they are analyzing might re�ect a distorted regular execution.

This work can be seen as a prerequisite to serenely analyze application executions with
tracing systems, with all the possible problems in mind.

Dynamic broadcasts

Communications are one of the bottlenecks for application scalability over many comput-
ing nodes. One communication pattern which can be easily optimized is the broadcast,
thanks to a tree routing of the required exchanges for all recipients nodes to get the data.

Regular MPI applications can use dedicated routines to perform optimized broadcasts.
Unfortunately for task-based runtime systems such as StarPU, several criteria have to
be met to use these routines: all nodes in the broadcast have to call the function with
the same parameters, especially the list of recipients. Moreover, such call is a sort of
synchronization we want to avoid. With the STF model of StarPU and the implicit
communications, broadcasts are not explicit and only the sender node knows all the
recipients. Recipient nodes do not even know that the data will come from a broadcast
and not from a regular point-to-point communication.

We proposed what we called dynamic broadcasts to perform optimized broadcasts fol-
lowing tree routing, yet �tting StarPU's constraints. The mechanism to detect broad-
casts may miss only few of them, at the beginning of the application execution. Once
the data to broadcast is ready to be sent, the interface we developed in NewMadeleine
handles it and the StarPU recipient processes receive the data transparently as it came
from a point-to-point communication.

Microbenchmarks showed the e�ciency of our implementation. Performance gain on
applications exhibiting broadcasts in their DAG depends on several factors. Dynamic
broadcasts bring up to 30% performance improvement for the Cholesky factorization
and can multiply by 6 the performance of QR factorizations with speci�c data distribution
and matrix shape.

The relevance of dynamic broadcasts illustrates the potential for positive interactions
between task-based runtime systems and the communication libraries: with a simple
and generic interface, StarPU is able to better take pro�t from NewMadeleine and
NewMadeleine can notify StarPU of di�erent statuses of communications, in order

140 P. Swartvagher

Conclusion and Perspectives

for StarPU to use the data as soon as possible.

Interferences between computations and communications

While the original goal of the thesis was to develop positive interactions between task-
based runtime systems and communication libraries, this contribution evaluated the pos-
sible drawbacks of executing computations and communications in parallel, as done in
many runtime systems.

We studied di�erent source of negative interferences between runtime systems and
communications. Frequency variations caused by computations do not have a major
impact on communications. The communications launched by runtime abstractions can
su�er from an important overhead caused by the call stack to cross before reaching the
communication library. But the most important performance degradation come from the
memory contention between data moving for computations and data being moved for
communications.

Memory contention can be in�uenced by several factors: data and thread placements,
message size and arithmetic intensity of computational tasks. When memory contention
occurs, it can impact computations, but mostly performance of communications.

Despite the lack of information regarding contention management in processors and
memory systems, we proposed a model to predict the memory bandwidth share between
computations and communications, taking into account contention and data locality. The
evaluation of our model on a wide range of machines with di�erent architectures con�rmed
our initial hypotheses: as long as there is no contention, computations and communica-
tions get the memory bandwidth they require; when the memory bus capacity is reached,
bandwidth of communications is �rst decreased to preserve the computations as long as
possible; a minimal bandwidth for communications is still assured, to avoid starvations;
then if the memory bandwidth requirement from computations and communications keeps
increasing, the memory bandwidth allocated to computations decreases uniformly across
the cores.

Although these negative interactions between computations and communications ap-
pear in all programs overlapping communications by computations, the features and
abstractions o�ered by task-based runtime systems would ease the implementations of
solutions to avoid (or at least minimize) their impact.

Perspectives

We showed in this thesis interactions between task-based runtime systems and commu-
nication libraries can be strengthened to improve the collaboration of these two software
layers and increase application performance. These �rst results pave the way to other
possible interactions.

Interactions between Task-based Runtime Systems and Communications 141

Perspectives

Improve the interaction with other StarPU's features

Some speci�c features in StarPU are good candidates to carefully consider their interplay
with communications.

The distributed extension of StarPU features fault tolerance mechanisms [83] with
checkpoint instructions inserted in the task graph. These instructions produce commu-
nications to save data and state of a StarPU process to another process, in case the
former had a failure. These additional communications for check-pointing generate more
tra�c on the network and thus can disturb initial communications required for the DAG
execution. Priorities of the checkpointing communications can be reduced to favor ini-
tial application communications. However, the checkpointing communications cannot be
performed too late, to avoid loosing too much data in case of failure. More than just
priorities, mechanisms could be included in communication libraries to speci�cally handle
checkpoint messages: splitting (not to occupy the network for a long time), piggybacking,
etc. Of course, it assumes a robust priority mechanism in the communication library,
from both sender and receiver sides.

To tackle the problems of task graph submission time and task granularity (e.g. smaller
tasks on CPUs and bigger tasks on GPUs), research on hierarchical tasks is conducted [50]:
a coarse-grain DAG is submitted and then according to which worker will execute a task,
the task can issue a sub-DAG with smaller tasks leading to the same result as the bigger
original task. Creating on-the-�y smaller tasks requires to partition data bu�ers: split
them into smaller ones to feed the tasks of the sub-DAG. Although a distributed version
of such mechanism is not implemented yet, it presents several challenges, especially to
know the granularity of the received data: is the received data partitioned and has to
be used with small tasks? Should we wait to receive all sub-data bu�ers to reassemble
a larger bu�er to execute a bigger task? Can we aggregate only available sub-bu�ers
to launch a medium-sized bu�er? The main possible problem involving the interaction
between the runtime system and the communication library is that receiver process may
not know beforehand in which state the data will arrive: partitioned or not.

What about GPUs?

GPUs can execute some types of tasks much faster than CPUs (e.g. GEMM kernels). Tasks
executed faster can mean more communication requests to handle at the same time, very
fast. Thus, it requires high reactivity and e�ciency from the communication library.

Executing tasks on GPUs implies explicit memory transfers from the RAM mem-
ory to the GPU memory. Like network communications, these movements take place
on the memory bus, shared by other data streams as well. Our study on memory con-
tention between computations on CPUs and network communications could be extended
to consider also the impact of memory transfers with GPUs on CPU computations and
communications. This would add a third dimension to the contention problem (memory
bandwidth for computations, communications, and now GPU transfers), but on the other
hand transfers between GPU memory and the host memory are explicit: the runtime
system can decide when to perform these transfers and then computations on GPU will

142 P. Swartvagher

Conclusion and Perspectives

not disturb CPU computations and communications, as opposed to CPU computations,
which generate implicit memory transfers by directly accessing to the RAM memory.

Moreover, GPUs improve their integration to distributed environments. Technologies
such as GPUDirect [96] allow to move the data directly between the GPU memory
and the NIC, without requiring intermediate copies through the RAM memory. Besides,
most recent supercomputers, such as Fugaku, Frontier or Lumi, have GPUs with
embedded network interfaces. With such con�guration, it is possible to transfer through
the network data on the GPU memory, with good performance thanks to the optimum
memory a�nity of the embedded NIC. These speci�c con�gurations increase the com-
plexity of the machine: appropriate functions have to be called to drive the NIC of the
GPU and the scheduler has to be clever enough to know data can be directly sent from
the GPU, whether it can be received directly by the NIC of a GPU of the remote node or
not, etc. Task-based runtime systems have been designed to hide such kind of di�culties,
hence e�ciently integrating mechanisms of `network-aware' GPUs in task-based runtime
systems should be the next move.

GPUs have not been considered in this thesis, nevertheless, considering GPUs and
their impact on communications within task-based runtime systems is de�nitely a relevant
future work.

Performance model with communications

Most of the work done around performance models of whole applications is done by
neglecting the performance of network communications. This assumption is usually jus-
ti�ed by the overlap of communications by computations. When communications are
considered, it is in fork-join models, where identi�ed communications occur in speci�c
application phases, without computations in parallel. In this case, it is much easier to
model the cost of communications in the application execution.

With task-based runtime systems, the dynamic and asynchronous behaviour of the
DAG execution makes the model of communication cost more complicated: one cannot
know precisely when a communication will start, which communications are on the ap-
plication critical path (and thus their performance is critical) and which communications
are further from the critical path and/or actually overlapped by computations.

The majority of results presented in this thesis shows that changing only the behaviour
of communications can have an impact of the whole application performance: communi-
cations have to be considered in performance models!

Having such model would satisfy several needs. First, it could tell which performance
improvement is expected if only communications are improved. For instance, it could
explain the di�erent performance improvements observed with dynamic broadcasts on
di�erent machines and predict the performance on other machines. Moreover, we only
empirically observed performance improvement with dynamic broadcasts, but maybe the
performance are far below the performance that would have predicted the model: the
model could guide the improvement of communications and the location of bottlenecks.
The second goal of the model would be to understand what are the important network
metrics for distributed task-based programs: whether it is the latency or the bandwidth, or

Interactions between Task-based Runtime Systems and Communications 143

Perspectives

maybe it is not important at all? Such information would help predicting performance of
task-based applications on machines with known characteristics and could answer whether
the network performance is important or not for a speci�c application. The last possible
use of such model is to provide information to simulators (such as SimGrid, already
used by StarPU [110]) for more accurate simulations, especially to simulate con�gura-
tions hard to obtain in reality (many nodes to study scalability, many GPUs, speci�c
accelerators, etc).

Towards a better integration to the scheduler

Currently, network communications are totally ignored by StarPU's scheduler, while
transfers between memories are considered in some scheduler policies.

The scheduler could take into account the number of communications and their du-
rations to optimize the application makespan. Avoiding the memory contention between
computations and communications observed in this thesis could be a motivation: the
scheduler could avoid scheduling memory-bound tasks and communications at the same
time.

The fact that intra-node memory transfers are already taken into account by scheduling
policies could lead to try to consider all nodes of a StarPU execution as a single big
node with inter-node communications becoming sort of intra-big-node memory transfers.
However, this idea brings back the master-slave model to have one scheduler instance with
a global overview of the task graph and required memory transfer. Unfortunately, this
model has scalability issues one cannot ignore these days.

Costly inter- and intra-node movements of data involving communications could be
minimized with heuristics in the runtime system. From the local point of view of a
StarPU process, bu�ers which will receive data from the network or bu�ers containing
data which will be sent to the network could be allocated directly (or opportunistically
copied) on the NUMA node where the NIC is plugged. The risk is that this NUMA node
becomes overloaded, hence a clever heuristic is required. Inter-node communications
could be reduced with several mechanisms, for instance redistributing data on nodes
for a better load-balancing or work-stealing between nodes. However, the integration of
these techniques with the STF model and dynamic task-based runtime systems is not
straightforward.

The scheduler might also help predicting the number of occurring communications in
the near future. With this information, the polling thread can be suspended (or at least
have a reduced activity) when no communications are planned and tasks can be executed
on its core; conversely the number of computing cores could be reduced to dedicate more
memory bandwidth to communications, when numerous important communications will
occur. With the help of model performance of tasks, the scheduler is able to estimate the
end time of a running task. If the end of this task releases a communication with high
priority, other ready communications could be postponed if they could not be �nished
before the end of the task, to immediately be able to send the important communication.

144 P. Swartvagher

Conclusion and Perspectives

Consider other types of applications

We studied mainly communications in task-based runtime systems with dense linear al-
gebra applications. With only this kind of applications, we noticed di�erent behaviours
regarding communications which depend on applications: applications with or without
broadcasts, memory-bound application causing contentions, etc.

This means other types of applications could bring their speci�c challenges for com-
munications. Possible other applications, among other, are sparse linear algebra, Fast
Fourier Transform (FFT), stencils, graph algorithms, neural networks for machine-
learning, etc. The main di�culty is that these applications have to be compatible with
the task model.

Final words

Task-based runtime systems are a solution proposed to tackle the increasing complexity
of supercomputers, by providing an abstraction layer between the application and the
machine. Di�erent types of task-based runtime systems exist, with di�erent features and
di�erent input formats. These runtime systems are usually dynamic and asynchronous,
and they implicitly overlap communications by computations.

Most of distributed extensions of task-based runtime systems rely on the de facto com-
munication standard MPI, which is not adapted to such usage. Communication libraries
better suited to task-based runtime systems are event-based, to easily react on communi-
cation events; propose to attach priorities to communications; and support multithreading
to be able to submit communication request from di�erent threads. Active messages can
be convenient to execute instructions according to incoming message.

There are many possible interactions between task-based runtime systems: positive,
by improving their cooperation; as well as negative, coming from the simultaneous execu-
tion of both computations and communications. Regardless the type of interaction, the
separation between the runtime system and the communication library has to be clearly
de�ned, and the interface of communication library allowing these interactions has to be
generic enough, to be usable outside of the scope of task-based runtime systems. In the
end, this prevents from integrating the communication library in the runtime system, and
ease benchmarking and debugging of the communication library alone.

This thesis showed such software design is possible to make task-based runtime systems
and communication libraries better work together, thanks to the abstraction o�ered by
the runtime system and the speci�c interface of the communication library. It paves the
way to many ideas of possible positive interactions!

Interactions between Task-based Runtime Systems and Communications 145

Final words

146 P. Swartvagher

Appendix A
Di�erences between MPI and
NewMadeleine backends in StarPU

In its distributed extension, StarPU can use two di�erent interfaces (backends): one
using the MPI interface and another one using the NewMadeleine interface. The
choice between these two backends is done before the compilation1. The MPI backend
was implemented �rst, before the NewMadeleine one. The MPI backend can work
with any library implementing the MPI standard: OpenMPI, Intel MPI, etc, but also
NewMadeleine trough its MPI implementation calledMadMPI (in this case, the MPI
backend of StarPU can use only functions from the MPI standard, and not the interfaces
speci�c to NewMadeleine). The NewMadeleine backend uses the native interface of
NewMadeleine.

Since the working and the features o�ered by MPI libraries and NewMadeleine are
di�erent, this appendix explains the di�erences between the two StarPU backends for
distributed computing.

MPI backend

With the MPI backend, each StarPU process (corresponding to an MPI process) launches
a thread to manage communications, bound on a dedicated core. This thread executes an
in�nite loop which performs all required MPI calls and makes communication progress.

When, at the end of a task, a bu�er written by the task has to be sent through the
network (as de�ned in the application DAG), a communication request is issued by the
core which executed the task. This request is inserted in a list of ready requests. This list
is sorted by communication priorities.

When a reception from the network is detected in the DAG, the thread detecting it
submits a reception request by inserting it in a list of reception requests.

1In the ./configure step: by default, the MPI backend is selected if an MPI library is found; the
NewMadeleine backend has to be explicitly enabled with ./configure --enable-nmad.

147

NewMadeleine backend

The loop in the MPI thread of StarPU takes requests from lists of requests and
calls the corresponding MPI function (e.g. MPI_Isend to send a data, MPI_Irecv for
receptions). Each send operation is actually divided in two MPI communications: the
�rst contains the envelope to tell the receiver process the properties of the incoming
message (e.g. its tag and its size). When the receiver node acknowledged this envelope,
the real data is sent with a non-blocking call. To avoid over-loading the MPI library,
only a �nite number of send operations are issued simultaneously (10, by default). The
rest of the loop handles reception instructions: it posts a MPI_Irecv to receive envelope
messages and then tests the status of posted communications with MPI_Test. Once a
communication is terminated, StarPU releases the used data handle, which can unlock
tasks. Finally, if an envelope message has been received, it is handled di�erently whether
a matching receive request has already been submitted or not. In the �rst case, the
data handle provided by the application to receive the data is used, otherwise a bu�er is
allocated to receive the data while the matching reception is not posted (early request).

The use of a unique and dedicated thread to perform MPI operations is to make sure
communication progress (thanks to the MPI_Test calls in each loop iteration) and not
having to use the MPI_THREAD_MULTIPLE threading support level, causing performance
troubles to many MPI implementations. Moreover, two main missing features of the MPI
standard are emulated in this communication backend: communication priorities by using
sorted list of requests and communication completion noti�cations by polling regularly on
communications to get their status.

NewMadeleine backend

Since NewMadeleine supports multithreaded applications, communication priorities
and is designed with an event-driven paradigm, the NewMadeleine backend is much
simpler than the MPI one (1525 lines of C code vs 3195).

The thread to make communications progress is managed by NewMadeleine (more
precisely PIOMan); StarPU only indicates on which core this thread can be bounded.
When a send communication has to be issued at the end of a task, the core which executed
the task calls in the end directly NewMadeleine functions. The same goes for reception
instructions: they can be issued from any StarPU's thread.

When NewMadeleine is noti�ed of the end of a communication, a function contain-
ing StarPU code is executed by the progression thread to release the data handle used
for the �nished communication.

Communication priorities can be directly passed as parameters to NewMadeleine
functions to submit the communication request, thus there is no need for priority man-
agement made by StarPU. The information sent in envelopes of the MPI backend can
be sent as message headers with NewMadeleine: the receiver can read the headers of
a message before actually receiving the message content, which can be convenient to take
decisions according to the header content (e.g. the size of the incoming data and where to
store it). There is no early requests in the NewMadeleine backend: network transfers
are performed only when both send and receive instructions are posted.

148 P. Swartvagher

Appendix B
Reproducible Experiments

Experiments presented in Chapters 3 and 6 were performed following a reproducible
methodology.

The reproducibility of the software stack used for the experiments is assured thanks
to the Guix software deployment tool. Guix is a functional package manager, with
packages de�ned in the Guile Scheme language. Each package is installed in a dedicated
directory, named after a cryptographic hash based on the de�nition of the package and
its dependencies. This allows to install di�erent versions (release version, but also other
dependencies, for instance) of the same software without breaking the system.

With a software stack like the one used in this thesis, such feature is very welcome: it
is very easy to create an isolated environment with customized packages. Guix proposes
several so-called package transformations to change on-the-�y properties of a package: the
commit or the branch of the source code of the software, replace a dependency by another,
etc. Used with the isolated environments of Guix, these package transformations remove
the burden of compiling the correct version of each software before each experiment.

To ensure reproducibility of experiments made with Guix, software versions have to
be pinned and saved along with scripts to launch the experiments. The �le describing
pinned software versions can then be provided to Guix commands to use the speci�c
version of Guix and have exactly the same packages as those available when the software
versions were exported.

Guix provides many mainstream packages. The Guix-HPC e�ort1packages applica-
tions speci�c to the HPC environment and aims at easing the use of Guix in a HPC con-
text. All packages directly used in this thesis (NewMadeleine, StarPU, Chameleon,
FxT) are de�ned in the Guix-HPC channel.

The following command is an example of Guix usage:

1https://hpc.guix.info/

149

https://hpc.guix.info/

1 guix time -machine --channels=guix -channels.scm -- \

2 shell --pure --preserve =^SLURM \

3 chameleon slurm@19 \

4 --with -input=openmpi=nmad \

5 --with -input=openblas=mkl \

6 --with -branch=starpu=nmad -coop -mcast -- \

7 mpirun chameleon_stesting -o potrf --n 4800:40000:3200

It uses the versions described in the guix-channels.scm �le, creates an isolated environ-
ment (--pure), but preserves environment variables starting with SLURM and populates the
environment with the packages of Chameleon and the version 19 of Slurm. The depen-
dency graph is modi�ed to replace OpenMPI by NewMadeleine (OpenMPI is a de-
pendency de�ned in the StarPU package, dependency of Chameleon), replace Open-
BLAS by the Intel MKL and use the branch nmad-coop-mcast of the Git repository of
StarPU used to get the sources. Once the environment is setup, chameleon_stesting
is launched with mpirun, with software available in the Guix environment only.

With the guix-channels.scm and this command line backed-up, one is sure to repro-
duce the same environment at any time.

Making the experimental scripts publicly available is another step to achieve a repro-
ducible experiments. It requires to clearly organize experiments, describe their goals and
workings, and ensure the maximum independence from cluster speci�cities (or document
which changes are necessary to launch the experiments on another cluster). When the
repository describing the experiments is completed, archiving it on Software Heritage
and providing the obtained ID to easily retrieve the scripts is e�ortless.

Scripts and instructions to reproduce experiments presented in Chapters 3 and 6 are

available online and are archived on Software Heritage2.

2Chapter 3: https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y
Archived with the ID swh:1:snp:e098c2012fa26baf67056e82f8d822dfcecc08cb

Chapter 6: https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y
Archived with the ID swh:1:snp:306f7c10cf69a5860587e5aad62b76070b798ecd

150 P. Swartvagher

https://gitlab.inria.fr/pswartva/paper-starpu-traces-r13y
https://gitlab.inria.fr/pswartva/paper-model-memory-contention-r13y

Appendix C
Machine Descriptions

Experiments made for this thesis were carried out on several machines, from di�erent
cluster centers, with di�erent features. This appendix presents the characteristics of each
type of machine.

The resource of the following computing clusters were used:

� the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB),
Université de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine (see
https://www.plafrim.fr);

� the HPC resources of CINES under the allocations 2019-A0060601567,
2020-A0080601567, 2021-A0100601567 attributed by GENCI (Grand Equipement

National de Calcul Intensif);

� the Grid'5000 testbed, supported by a scienti�c interest group hosted by Inria and
including CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr);

� the Dalton local experimental platform, supported by Inria.

billy

Platform : Dalton

Processor : dual AMD EPYC 7502 at 2.5GHz with 64 cores,
enabled hyperthreading

Memory : 128GB of RAM, with 2 NUMA nodes

Network : InifiniBand ConnectX-6 HDR

Number of nodes : 2

151

https://www.plafrim.fr
https://www.grid5000.fr

Figure C.1: billy's topology.

bora

Platform : PlaFRIM

Processor : dual Intel Xeon Gold 6240 at 2.6GHz with 36 cores,
disabled hyperthreading

Memory : 192GB RAM, with 2 NUMA nodes

Network : Omni-Path HFI Silicon 100 series

Number of nodes : 44

dahu

Platform : Grid'5000

Processor : dual Intel Xeon Gold 6130 at 2.1GHz with 32 cores,
enabled hyperthreading

Memory : 192GB of RAM, with 2 NUMA nodes

Network : Omni-Path HFI Silicon 100 Series

Number of nodes : 32

152 P. Swartvagher

C. Machine Descriptions

Figure C.2: bora's topology.

Figure C.3: dahu's topology.

Interactions between Task-based Runtime Systems and Communications 153

Figure C.4: diablo's topology.

diablo

Platform : PlaFRIM

Processor : dual AMD EPYC 7452 at 2.35GHz with 64 cores,
disabled hyperthreading

Memory : 256GB of RAM, with 2 NUMA nodes

Network : InifiniBand ConnectX-6 HDR

Number of nodes : 4

grvingt

Platform : Grid'5000

Processor : dual Intel Xeon Gold 6130 at 2.1GHz with 32 cores,
enabled hyperthreading

Memory : 192GB of RAM, with 2 NUMA nodes

Network : Omni-Path HFI Silicon 100 Series

Number of nodes : 64

154 P. Swartvagher

C. Machine Descriptions

Figure C.5: grvingt's topology.

henri

Platform : Dalton

Processor : dual Intel Xeon Gold 6140 at 2.3GHz with 36 cores,
disabled hyperthreading

Memory : 96GB of RAM, with 2 NUMA nodes

Network : InifiniBand ConnectX-4 EDR

Number of nodes : 2

henrisubnuma

henri nodes recon�gured with sub-NUMA clustering: they feature 4 NUMA nodes instead
of 2.

occigen

Platform : Dalton

Processor : dual Intel Xeon E5 2690v4 at 2.6GHz with 28 cores,
enabled hyperthreading

Interactions between Task-based Runtime Systems and Communications 155

Figure C.6: henri's topology.

Figure C.7: henrisubnuma's topology.

156 P. Swartvagher

C. Machine Descriptions

Figure C.8: occigen's topology.

Memory : 64GB of RAM, with 2 NUMA nodes

Network : InifiniBand Connect-IB FDR

Number of nodes : 1260

peabody

Platform : Dalton

Processor : dual Intel Xeon Gold 6230R at 2.1GHz with 52 cores,
enabled hyperthreading

Memory : 32GB RAM, with 2 NUMA nodes

Number of nodes : 1

pyxis

Platform : Grid'5000

Processor : dual Cavium-ARM
ThunderX2 99xx at 2.5GHz with 32 cores,
enabled hyperthreading

Interactions between Task-based Runtime Systems and Communications 157

Figure C.9: peabody's topology.

Memory : 256GB of RAM, with 2 NUMA nodes

Network : InifiniBand ConnectX-6 EDR

Number of nodes : 4

zonda

Platform : PlaFRIM

Processor : dual AMD EPYC 7452 at 2.35GHz with 64 cores,
disabled hyperthreading

Memory : 256GB RAM, with 2 NUMA nodes

Network : 10Gb/s Ethernet

Number of nodes : 21

158 P. Swartvagher

C. Machine Descriptions

Figure C.10: pyxis's topology.

Figure C.11: zonda's topology.

Interactions between Task-based Runtime Systems and Communications 159

160 P. Swartvagher

Appendix D
Algorithms to Model Memory
Contention between Computations and
Communications

The following algorithms are the implementation of equations presented in Chapter 6, to
model the memory bandwidth share between computations and communications.

Algorithm 3 Predict total memory bandwidth (implementation of equation 6.1)

Inputs: Nmax
par , T

max
par , N

max
seq , Nmax

par , T
max2
par , δl, δr

Output: T
1: function PredictTotal
2: T ← []
3: for i = 1 to number_cores do
4: if i ≤ Nmax

par then
5: T [i]← Tmax

par

6: else if i ≤ Nmax
seq then

7: T [i]← Tmax
par − δl × (i− Nmax

par)
8: else
9: T [i]← Tmax2

par − δr × (i− Nmax
seq)

10: end if
11: end for
12: end function

161

Algorithm 4 Compute memory bandwidths available for computations and communi-
cations (implementation of equations 6.2, 6.3, 6.4, 6.5 and 6.6)

Inputs: T , Bcomp
seq , Tmax

seq , Nmax
seq , Nmax

par , B
comm
seq , α

Outputs: Bcomp
par , Bcomm

par , Bcomp
seq

1: function PredictBandwidths
2: Bcomm

par ← []
3: Bcomp

par ← []
4: Bcomp

seq ← []
5: βv ← None
6: βi ← None
7: for i = 1 to number_cores do
8: Bcomp

seq [i]← min(Bcomp
seq × i, T [i],Tmax

seq) . Equation 6.6
9: if i×Bcomp

seq + α×Bcomm
seq < T [i] then . Equation 6.2

10: Bcomp
par [i]← i×Bcomp

seq . Equation 6.3
11: Bcomm

par [i]← min(T [i]− Bcomp
par [i], Bcomm

seq) . Equation 6.4
12: βv ← Bcomm

par [i]/Bcomm
seq

13: βi ← i
14: else
15: αi ← α . Equation 6.5
16: if (Nmax

seq − Nmax
par) > 1 and i < Nmax

seq then
17: δc ← (βv − α)/(Nmax

seq − βi)
18: αi ← βv − δc × (i− βi)
19: end if
20: Bcomm

par [i]← αi ×Bcomm
seq . Equation 6.4

21: Bcomp
par [i]← T [i]− Bcomm

par [i] . Equation 6.3
22: end if
23: end for
24: end function

162 P. Swartvagher

D. Algorithms to Model Memory Contention

Algorithm 5 Predict communication performance according to memory placements (im-
plementation of equation 6.7)

Inputs: mcomp , mcomm , Mlocal , Mremote

Outputs: Bcomm
par

1: function GetCommBandwidths
2: if mcomp == mcomm and mcomp ≥ #m then
3: Bcomp

par ,Bcomm
par ,Bcomp

seq ←PredictBandwidths(Mremote)
4: return Bcomm

par

5: else
6: if mcomm ≥ #m then
7: Bcomp

par ,Bcomm
par ,Bcomp

seq ←PredictBandwidths(
Mlocal ,
Bcomm

seq ← Bcomm
seq (Mremote) . Use Bcomm

seq fromMremote in the function
)

8: return Bcomm
par

9: else
10: Bcomp

par ,Bcomm
par ,Bcomp

seq ←PredictBandwidths(Mlocal)
11: return Bcomm

par

12: end if
13: end if
14: end function

Algorithm 6 Predict computation performance according to memory placements (im-
plementation of equation 6.8)

Inputs: mcomp , mcomm , Mlocal , Mremote

Outputs: Bcomp
par

1: function GetCompBandwidths
2: if mcomp < #m then
3: Bcomp

par ,Bcomm
par ,Bcomp

seq ←PredictBandwidths(Mlocal)
4: if mcomp == mcomm then
5: return Bcomp

par

6: else
7: return Bcomp

seq

8: end if
9: else
10: Bcomp

par ,Bcomm
par ,Bcomp

seq ←PredictBandwidths(Mremote)
11: if mcomp == mcomm then
12: return Bcomp

par

13: else
14: return Bcomp

seq

15: end if
16: end if
17: end function

Interactions between Task-based Runtime Systems and Communications 163

164 P. Swartvagher

Appendix E
Parameter Values of Contention Model

The following tables contain the parameter values of the models instantiated in Chapter 6.

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 32 32

Tmax
par (MB/s) 95555.5 75276.9

Nmax
seq (number of computing cores) 32 32

Tmax
seq (MB/s) 84420.4 76466.4

Tmax2
par (MB/s) 95555.5 75276.9

α 0.842 0.593
δl (MB/s/core) 0.0 0.0
δr (MB/s/core) 0.0 0.0
Bcomp

seq (MB/s) 2808.8 2746.5
Bcomm

seq (MB/s) 12793.0 18898.9

Table E.1: Parameter values for executions on billy nodes (Figure 6.5).

165

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 18 8

Tmax
par (MB/s) 83849.6 32315.3

Nmax
seq (number of computing cores) 18 8

Tmax
seq (MB/s) 80107.7 32733.3

Tmax2
par (MB/s) 83849.6 32315.3

α 0.951 0.936
δl (MB/s/core) 0.0 0.0
δr (MB/s/core) 0.0 1.6
Bcomp

seq (MB/s) 4489.2 4487.6
Bcomm

seq (MB/s) 9948.4 8784.7

Table E.2: Parameter values for executions on bora nodes (Figure 6.8).

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 11 5

Tmax
par (MB/s) 72147.6 32102.5

Nmax
seq (number of computing cores) 14 5

Tmax
seq (MB/s) 70072.9 32677.4

Tmax2
par (MB/s) 71509.2 32102.5

α 0.959 0.949
δl (MB/s/core) 212.8 0.0
δr (MB/s/core) 656.8 -38.4
Bcomp

seq (MB/s) 6656.5 7171.3
Bcomm

seq (MB/s) 11341.2 10607.0

Table E.3: Parameter values for executions on dahu nodes (Figure 6.9).

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 32 32

Tmax
par (MB/s) 81846.8 87081.5

Nmax
seq (number of computing cores) 32 32

Tmax
seq (MB/s) 70092.1 67694.6

Tmax2
par (MB/s) 81846.8 87081.5

α 0.967 0.908
δl (MB/s/core) 0.0 0.0
δr (MB/s/core) 0.0 0.0
Bcomp

seq (MB/s) 2221.1 2210.2
Bcomm

seq (MB/s) 12139.7 22394.3

Table E.4: Parameter values for executions on diablo nodes (Figure 6.4)

166 P. Swartvagher

E. Parameter Values of Contention Model

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 14 5

Tmax
par (MB/s) 75015.2 31928.2

Nmax
seq (number of computing cores) 15 5

Tmax
seq (MB/s) 73818.4 32576.8

Tmax2
par (MB/s) 74398.4 31928.2

α 0.953 0.971
δl (MB/s/core) 616.8 0.0
δr (MB/s/core) 649.2 -10.6
Bcomp

seq (MB/s) 6698.7 7178.5
Bcomm

seq (MB/s) 9628.8 9345.7

Table E.5: Parameter values for executions on grvingt nodes (Figure 6.10).

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 17 5

Tmax
par (MB/s) 73423.0 31629.7

Nmax
seq (number of computing cores) 18 7

Tmax
seq (MB/s) 72589.9 29130.7

Tmax2
par (MB/s) 73387.7 31278.1

α 0.915 0.761
δl (MB/s/core) 35.3 175.8
δr (MB/s/core) 0.0 119.8
Bcomp

seq (MB/s) 4455.4 4455.2
Bcomm

seq (MB/s) 11481.1 11459.6

Table E.6: Parameter values for executions on henri nodes (Figure 6.2)

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 8 11

Tmax
par (MB/s) 42487.7 16936.1

Nmax
seq (number of computing cores) 11 4

Tmax
seq (MB/s) 43655.6 14726.2

Tmax2
par (MB/s) 39718.9 15217.8

α 0.853 0.270
δl (MB/s/core) 922.9 859.1
δr (MB/s/core) 191.7 103.3
Bcomp

seq (MB/s) 4456.4 4455.4
Bcomm

seq (MB/s) 11450.4 11410.0

Table E.7: Parameter values for executions on henrisubnuma nodes (Figure 6.3)

Interactions between Task-based Runtime Systems and Communications 167

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 14 7

Tmax
par (MB/s) 53948.2 24706.4

Nmax
seq (number of computing cores) 14 7

Tmax
seq (MB/s) 47817.2 21137.3

Tmax2
par (MB/s) 53948.2 24706.4

α 1.000 1.000
δl (MB/s/core) 0.0 0.0
δr (MB/s/core) 0.0 39.9
Bcomp

seq (MB/s) 3417.6 3417.8
Bcomm

seq (MB/s) 6220.0 6219.5

Table E.8: Parameter values for executions on occigen nodes (Figure 6.6).

Parameter Mlocal Mremote

Nmax
par (number of computing cores) 24 25

Tmax
par (MB/s) 64626.9 36737.2

Nmax
seq (number of computing cores) 26 31

Tmax
seq (MB/s) 62462.7 32649.8

Tmax2
par (MB/s) 64566.2 36696.7

α 0.990 0.945
δl (MB/s/core) 30.3 6.8
δr (MB/s/core) 56.9 -8.4
Bcomp

seq (MB/s) 3211.5 3030.8
Bcomm

seq (MB/s) 4958.6 4390.1

Table E.9: Parameter values for executions on pyxis nodes (Figure 6.7).

168 P. Swartvagher

Acronyms

ACPI Advanced Con�guration and Power Interface. 67

ART Always Running Timer. 67

AVX Advanced Vector Extensions. 14, 104

BSP Bulk Synchronous Parallel. 28, 33, 51, 75

DAG Directed Acyclic Graph. 23, 24, 27, 28, 37, 39, 41, 42, 51, 73, 75�77, 96, 97, 139,
140, 142, 143, 147

DMA Direct Memory Access. 101, 108

DRAM Dynamic Random Access Memory. 16

DVFS Dynamic Voltage and Frequency Scaling. 43

FFT Fast Fourier Transform. 145

HBM High Bandwidth Memory. 16, 18

HPC High Performance Computing. i, ii, 5, 9, 10, 13, 15�17, 19�22, 29, 33, 40, 46, 47,
99, 106, 116, 137, 139, 149, 151

HPET High Precision Event Timer. 67, 68

I/O Inputs/Outputs. 57, 108

IPC Instructions Per Cycle. 13

MCT Minimum Completion Time. 25

MPI Message Passing Interface. 21, 22, 27�30, 35, 36, 38�42, 44, 46, 47, 63, 66, 72, 75,
76, 82, 83, 88�90, 93, 99�101, 109, 112, 115, 116, 140, 145, 147, 148

NIC Network Interface Card. 44, 106�110, 112, 113, 116, 126, 131, 143, 144

169

Acronyms

NTP Network Time Protocol. 46, 63, 68

NUMA Non-Uniform Memory Access. 16�18, 21, 25, 26, 35, 44, 89, 106�108, 112�114,
116, 119�122, 126�131, 133, 136�138, 144, 151, 152, 154, 155, 157, 158, 185

NVDIMM Non-Volatile Dual Inline Memory Module. 16, 18

OS Operating System. 20, 46

PCIe Peripheral Component Interconnect Express. 18, 20, 120

PGAS Partitioned Global Address Space. 36, 38�40

PTG Parametrized Task Graph. 37, 42

RAM Random Access Memory. 15, 18, 20, 121, 142, 143

RDMA Remote Direct Memory Access. 43

RMA Remote Memory Access. 36

RoCE RDMA over Converged Ethernet. 20

RPC Remote Procedure Call. 22, 80

RTC Real Time Clock. 67

SIMD Single Instruction on Multiple Data. 14

SMP Symmetric Multiprocessing. 120

STF Sequential Task Flow. 23, 37, 39, 41, 75, 140, 144

TSC Time Stamp Counter. 67, 68

170 P. Swartvagher

References

[1] Extrae. https://tools.bsc.es/extrae. Accessed: 2021-10-01.

[2] Intel MPI. https://www.intel.com/content/www/us/en/developer/tools/

oneapi/mpi-library.html. Accessed: 2022-06-22.

[3] MPICH: High-Performance Portable MPI. https://www.mpich.org/. Accessed:
2022-06-22.

[4] MVAPICH: MPI over In�niBand, Omni-Path, Ethernet/iWARP, and RoCE. http:
//mvapich.cse.ohio-state.edu/. Accessed: 2022-06-22.

[5] OpenACC. https://www.openacc.org. Accessed: 2022-07-13.

[6] OpenCL Overview. https://www.khronos.org/opencl/. Accessed: 2022-07-13.

[7] SYCL Overview. https://www.khronos.org/sycl/. Accessed: 2022-07-13.

[8] Network Time Protocol (Version 3) Speci�cation, Implementation and Analysis.
RFC 1305, March 1992.

[9] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon, Eric
Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, et al. Parallel pro-
gramming with migratable objects: Charm++ in practice. In SC'14: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 647�658. IEEE, 2014.

[10] Emmanuel Agullo, Cédric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond
Namyst, Samuel Thibault, and Stanimire Tomov. Faster, Cheaper, Better � a Hy-
bridization Methodology to Develop Linear Algebra Software for GPUs. In Wen mei
W. Hwu, editor, GPU Computing Gems, volume 2. Morgan Kaufmann, September
2010.

[11] Emmanuel Agullo, Olivier Aumage, Bérenger Bramas, Olivier Coulaud, and Samuel
Pitoiset. Bridging the gap between OpenMP and task-based runtime systems for the
fast multipole method. IEEE Transactions on Parallel and Distributed Systems,
page 14, April 2017.

171

https://tools.bsc.es/extrae
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
https://www.openacc.org
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/

References

[12] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Flo-
rent Pruvost, Marc Sergent, and Samuel Thibault. Achieving High Perfor-
mance on Supercomputers with a Sequential Task-based Programming Model.
IEEE Transactions on Parallel and Distributed Systems, 2017.

[13] Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann, and An-
toine Jego. Task-Based Parallel Programming for Scalable Algorithms: application
to Matrix Multiplication. Research Report RR-9461, Inria Bordeaux - Sud-Ouest,
February 2022.

[14] Diego Andrade, Basilio B. Fraguela, and Ramón Doallo. Accurate prediction of
the behavior of multithreaded applications in shared caches. Parallel Comput.,
39(1):36�57, jan 2013.

[15] Asim YarKhan. Dynamic Task Execution on Shared and Distributed Memory Architectures.
PhD thesis, 2012.

[16] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: A Uni�ed Platform for Task Scheduling on Heterogeneous Multicore
Architectures. CCPE - Concurrency and Computation: Practice and Experience,
Special Issue: Euro-Par 2009, 23:187�198, February 2011.

[17] Olivier Aumage, Elisabeth Brunet, Nathalie Furmento, and Raymond Namyst.
NewMadeleine: a Fast Communication Scheduling Engine for High Performance
Networks. In Workshop on Communication Architecture for Clusters (CAC 2007),
Long Beach, California, United States, March 2007.

[18] Pavan Balaji, Hemal Shah, and D.K. Panda. Sockets vs RDMA Interface over
10Gigabit Networks: An In-depth analysis of the Memory Tra�c Bottleneck. 01
2004.

[19] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing locality
and independence with logical regions. In SC '12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pages 1�11, Nov 2012.

[20] Michael Bauer. Legion: Programming Distributed Heterogeneous Architectures with Logical Regions.
PhD thesis, 2014.

[21] Guillaume Beauchamp. Portage de StarPU sur la bibliothèque de communication
NewMadeleine. Master's thesis, Universite Bordeaux, September 2017.

[22] Daniel Becker, John C. Linford, Rolf Rabenseifner, and Felix Wolf. Replay-based
synchronization of timestamps in event traces of massively parallel applications.
In Wu-chi Feng, editor, 2008 International Conference on Parallel Processing -
Workshops, pages 212�219, 2008.

[23] Daniel Becker, Rolf Rabenseifner, and Felix Wolf. Timestamp synchronization
for event traces of large-scale message-passing applications. In Franck Cappello,
Thomas Herault, and Jack Dongarra, editors, Recent Advances in Parallel Virtual

172 P. Swartvagher

References

Machine and Message Passing Interface, pages 315�325, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[24] Daniel Becker, Rolf Rabenseifner, and Felix Wolf. Implications of non-constant
clock drifts for the timestamps of concurrent events. In Yutaka Ishikawa, editor,
2008 IEEE International Conference on Cluster Computing, pages 59�68, Tsukuba,
Japan, 2008.

[25] George Bosilca, Aurélien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack Dongarra. PaRSEC: A programming paradigm exploiting hetero-
geneity for enhancing scalability. Computing in Science and Engineering, 15(6):36�
45, November 2013.

[26] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre
Lemarinier, and Jack Dongarra. DAGuE: A generic distributed DAG engine for
High Performance Computing. Parallel Computing, 38(1):37�51, 2012. Extensions
for Next-Generation Parallel Programming Models.

[27] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie
Furmento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and
Raymond Namyst. hwloc: a Generic Framework for Manag-
ing Hardware A�nities in HPC Applications. In IEEE, editor,
PDP 2010 - The 18th Euromicro International Conference on Parallel, Distributed and Network-Based Computing,
Pisa, Italy, February 2010.

[28] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier Martorell,
Eduard Ayguadé, and Jesús Labarta. Productive Programming of GPU Clusters
with OmpSs. In 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, pages 557�568, 2012.

[29] Qinglei Cao, Yu Pei, Thomas Herault, Kadir Akbudak, Aleksandr Mikhalev, George
Bosilca, Hatem Ltaief, David Keyes, and Jack Dongarra. Performance Analysis
of Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation Tools.
In 2019 IEEE/ACM International Workshop on Programming and Performance
Visualization Tools (ProTools), pages 25�32, 2019.

[30] Emilio Castillo, Nikhil Jain, Marc Casas, Miquel Moreto, Martin Schulz, Ra-
mon Beivide, Mateo Valero, and Abhinav Bhatele. Optimizing computation-
communication overlap in asynchronous task-based programs. In Proceedings of
the ACM International Conference on Supercomputing, ICS '19, page 380�391,
New York, NY, USA, 2019. Association for Computing Machinery.

[31] L. Chai, Q. Gao, and D. K. Panda. Understanding the Impact of Multi-Core
Architecture in Cluster Computing: A Case Study with Intel Dual-Core System. In
Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07),
pages 471�478, 2007.

[32] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel Programmability and
the Chapel Language. The International Journal of High Performance Computing
Applications, 21(3):291�312, 2007.

Interactions between Task-based Runtime Systems and Communications 173

References

[33] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In 11th International
Symposium on High-Performance Computer Architecture, pages 340�351, 2005.

[34] Sanjay Chatterjee, Sagnak Tas�rlar, Zoran Budimlic, Vincent Cavé, Milind Chabbi,
Max Grossman, Vivek Sarkar, and Yonghong Yan. Integrating Asynchronous Task
Parallelism with MPI. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 712�725, 2013.

[35] Younghyun Cho, Surim Oh, and Bernhard Egger. Performance modeling of parallel
loops on multi-socket platforms using queueing systems. IEEE Transactions on
Parallel and Distributed Systems, 31(2):318�331, 2020.

[36] Eric Clément and Michel Dagenais. Traces synchronization in distributed networks.
Journal of Computer Systems, Networks, and Communications, 2009, 2009.

[37] M. Cosnard and M. Loi. Automatic task graph generation techniques. In
Proceedings of the Twenty-Eighth Annual Hawaii International Conference on
System Sciences, volume 2, pages 113�122, 1995.

[38] Kevin Coulomb, Augustin Degomme, Mathieu Faverge, and François Tra-
hay. An open source tool chain for performance analysis. In Holger Brunst,
Matthias S. Müller, Wolfgang E. Nagel, and Michael M. Resch, editors,
5th Parallel Tools Workshop, pages 37�48, Dresden, Germany, September 2011.
Springer.

[39] Flaviu Cristian. Probabilistic clock synchronization. Distributed computing,
3(3):146�158, 1989.

[40] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. LogP: Towards a
Realistic Model of Parallel Computation. SIGPLAN Not., 28(7):1�12, July 1993.

[41] Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli Dryden,
Andrew Lenharth, Loc Hoang, Keshav Pingali, and Marc Snir. A lightweight com-
munication runtime for distributed graph analytics. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 980�989, 2018.

[42] Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier. An e�cient
multi-level trace toolkit for multi-threaded applications. In José C. Cunha and Pe-
dro D. Medeiros, editors, Euro-Par 2005 Parallel Processing, pages 166�175, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[43] Benhur de Oliveira Stein and Jacques Chassin de Kergommeaux. Pajé trace �le
format. online, March 2003.

[44] Alexandre Denis. pioman: a pthread-based Multithreaded Communication Engine.
In Euromicro International Conference on Parallel, Distributed and Network-based Processing,
Turku, Finland, March 2015.

174 P. Swartvagher

References

[45] Jens Doleschal, Andreas Knüpfer, Matthias S. Müller, and Wolfgang E. Nagel. In-
ternal timer synchronization for parallel event tracing. In Alexey Lastovetsky, Tahar
Kechadi, and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 202�209, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[46] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. OmpSs: a proposal for programming heteroge-
neous multi-core architectures. Parallel Processing Letters, 21(02):173�193, 2011.

[47] Tarek El-Ghazawi and François Cantonnet. UPC performance and potential: A
NPB experimental study. In SC'02: Proceedings of the 2002 ACM/IEEE Conference
on Supercomputing, pages 17�17. IEEE, 2002.

[48] Loretta Ellwood and Michael Heath. A Tracing Environment for MPI. 07 1995.

[49] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang
E. Nagel, and Felix Wolf. Open Trace Format 2: The Next Generation of Scalable
Trace Formats and Support Libraries. In Koen De Bosschere, Erik H. D'Hollander,
Gerhard R. Joubert, David A. Padua, Frans J. Peters, and Mark Sawyer, edi-
tors, Applications, Tools and Techniques on the Road to Exascale Computing,
Proceedings of the conference ParCo 2011, 31 August - 3 September 2011, Ghent,
Belgium, volume 22 of Advances in Parallel Computing, pages 481�490. IOS Press,
2011.

[50] Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Ray-
mond Namyst, Samuel Thibault, and Pierre-André Wacrenier. Programming Het-
erogeneous Architectures Using Hierarchical Tasks. Research Report RR-9466, Inria
Bordeaux Sud-Ouest, March 2022.

[51] MPI Forum. MPI: A Message-Passing Interface Standard. Technical report, USA,
1994.

[52] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Je�rey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timo-
thy S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users' Group Meeting,
pages 97�104, Budapest, Hungary, September 2004.

[53] Vinícius Garcia Pinto, Lucas Mello Schnorr, Luka Stanisic, Arnaud Legrand, Samuel
Thibault, and Vincent Danjean. A visual performance analysis framework for
task-based parallel applications running on hybrid clusters. Concurrency and
Computation: Practice and Experience, 30(18):e4472, 2018.

[54] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and
Bernd Mohr. The Scalasca Performance Toolset Architecture. Concurrency and
Computation: Practice and Experience, 22(6):702�719, April 2010.

Interactions between Task-based Runtime Systems and Communications 175

References

[55] Daniel Goodman, Georgios Varisteas, and Tim Harris. Pandia: Comprehensive
contention-sensitive thread placement. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys '17, page 254�269, New York, NY,
USA, 2017. Association for Computing Machinery.

[56] Mathias Gottschlag and Frank Bellosa. Reducing AVX-
Induced Frequency Variation With Core Specialization. In
The 9th Workshop on Systems for Multi-core and Heterogeneous Architectures.
Dresden, 2019.

[57] William Gropp, Luke N. Olson, and Philipp Samfass. Modeling MPI Commu-
nication Performance on SMP Nodes: Is It Time to Retire the Ping Pong Test.
In Proceedings of the 23rd European MPI Users' Group Meeting, EuroMPI 2016,
page 41�50, New York, NY, USA, 2016. Association for Computing Machinery.

[58] T. Groves, R. E. Grant, and D. Arnold. NiMC: Characteriz-
ing and Eliminating Network-Induced Memory Contention. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 253�262, 2016.

[59] Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongarra. Tile QR
Factorization with Parallel Panel Processing for Multicore Architectures. In
24th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2010),
Atlanta, United States, April 2010.

[60] Nor Asilah Wati Abdul Hamid and Paul Coddington. Comparison of MPI Bench-
mark Programs on Shared Memory and Distributed Memory Machines (Point-to-
Point Communication). The International Journal of High Performance Computing
Applications, 24(4):469�483, 2010.

[61] Nor Asilah Wati Abdul Hamid, Paul Coddington, and Francis Vaughan. Compar-
ison of MPI benchmark programs on an SGI Altix ccNUMA shared memory ma-
chine. In Paul Spirakis and H.J. Siegel, editors, Proceedings 20th IEEE International
Parallel Distributed Processing Symposium, 2006.

[62] Blake Haugen, Stephen Richmond, Jakub Kurzak, Chad A. Steed, and Jack Don-
garra. Visualizing execution traces with task dependencies. In Proceedings of the
2nd Workshop on Visual Performance Analysis, VPA '15, New York, NY, USA,
2015. Association for Computing Machinery.

[63] David L Hill, Derek Bachand, Selim Bilgin, Robert Greiner, Per Hammarlund,
Thomas Hu�, Steve Kulick, and Robert Safranek. The Uncore: A Modular
Approach To Feeding The High-Performance Cores. Intel Technology Journal,
14(3):30�49, 2010.

[64] Torsten Hoe�er, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur. MPI + MPI: A new hy-
brid approach to parallel programming with MPI plus shared memory. Computing,
95, 12 2013.

176 P. Swartvagher

References

[65] Torsten Hoe�er, Timo Schneider, and Andrew Lumsdaine. Accurately measuring
overhead, communication time and progression of blocking and nonblocking collec-
tive operations at massive scale. International Journal of Parallel, Emergent and
Distributed Systems, 25(4):241�258, 2010.

[66] Reazul Hoque and Pavel Shamis. Distributed task-based runtime systems - cur-
rent state and micro-benchmark performance. In 2018 IEEE 20th International
Conference on High Performance Computing and Communications; IEEE 16th
International Conference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pages 934�941, 2018.

[67] S. Hunold and A. Carpen-Amarie. Hierarchical Clock Synchronization in MPI. In
Dimitrios Nikolopoulos and Bronis R. de Supinksi, editors, 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pages 325�336, Los Alamitos, CA,
USA, sep 2018. IEEE Computer Society.

[68] Sascha Hunold and Alexandra Carpen-Amarie. MPI benchmarking revisited: Ex-
perimental design and reproducibility. CoRR, abs/1505.07734, 2015.

[69] Sascha Hunold and Alexandra Carpen-Amarie. On the Impact of Synchronizing
Clocks and Processes on Benchmarking MPI Collectives. In Proceedings of the
22nd European MPI Users' Group Meeting, EuroMPI '15, New York, NY, USA,
2015. Association for Computing Machinery.

[70] Roman Iakymchuk and François Trahay. LiTL: Lightweight Trace Library. Techni-
cal report, INF - Département Informatique, Telecom SudParis, July 2013.

[71] Intel Corporation. Pentium® Pro Family Developer's Manual, December 1995.

[72] Intel Corporation. IA-PC HPET (High Precision Event Timers) Speci�cation, re-
vision 1.0a, October 2004.

[73] Terry Jones and Gregory A. Koenig. Clock synchronization in high-end computing
environments: a strategy for minimizing clock variance at runtime. Concurrency
and Computation: Practice and Experience, 25(6):881�897, 2013.

[74] Terry Jones, George Ostrouchov, Gregory A. Koenig, Oscar H. Mondragon, and
Patrick G. Bridges. An evaluation of the state of time synchronization on leadership
class supercomputers. Concurrency and Computation: Practice and Experience,
30(4):e4341, 2018.

[75] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX An Advanced Parallel Execu-
tion Model for Scaling-Impaired Applications. In 2009 International Conference on
Parallel Processing Workshops, pages 394�401, Sep. 2009.

[76] Timothy H Kaiser and Scott B Baden. Overlapping communication and computa-
tion with OpenMP and MPI. Scienti�c Programming, 9(2-3):73�81, 2001.

Interactions between Task-based Runtime Systems and Communications 177

References

[77] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,
Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The Vampir Per-
formance Analysis Tool-Set. In Michael Resch, Rainer Keller, Valentin Himm-
ler, Bettina Krammer, and Alexander Schulz, editors, Tools for High Performance
Computing, pages 139�155. Springer Berlin Heidelberg, 2008.

[78] Andreas Knüpfer, Christian Feld, Dieter Mey, Scott Biersdor�, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Malony,
Wolfgang Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl,
Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf.
Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and Vampir,
pages 79�91. Springer Berlin Heidelberg, Berlin, Heidelberg, 01 2012.

[79] J. Langguth, X. Cai, and M. Sourouri. Memory Band-
width Contention: Communication vs Computation Trade-
o�s in Supercomputers with Multicore Architectures. In
2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS),
pages 497�506, 2018.

[80] Alexey Lastovetsky, Vladimir Rychkov, and Maureen O'Flynn. MPIBlib: Bench-
marking MPI Communications for Parallel Computing on Homogeneous and Het-
erogeneous Clusters. In Alexey Lastovetsky, Tahar Kechadi, and Jack Dongarra,
editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface,
pages 227�238, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[81] Gregory Lento. Optimizing performance with Intel advanced vector extensions.
online, September, 2014.

[82] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive, Transparent Fre-
quency and Voltage Scaling of Communication Phases in MPI Programs. In
SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
pages 14�14, 2006.

[83] Romain Lion and Samuel Thibault. From tasks graphs to
asynchronous distributed checkpointing with local restart. In
FTXS 2020 - IEEE/ACM 10th Workshop on Fault Tolerance for HPC at eXtreme Scale,
Atlanta / Virtual, United States, November 2020.

[84] Jiuxing Liu, Dan Po�, and Bülent Abali. Evaluating High Performance Communi-
cation: a Power Perspective. pages 326�337, 01 2009.

[85] E. Maillet and C. Tron. On e�ciently implementing global time for perfor-
mance evaluation on multiprocessor systems. Journal of Parallel and Distributed
Computing, 28(1):84�93, 1995.

[86] Zoltan Majo and Thomas R. Gross. Memory System Performance in a NUMA Mul-
ticore Multiprocessor. In Proceedings of the 4th Annual International Conference
on Systems and Storage, SYSTOR '11, New York, NY, USA, 2011. Association for
Computing Machinery.

178 P. Swartvagher

References

[87] John McCalpin. Memory bandwidth and machine balance in high performance
computers. IEEE Technical Committee on Computer Architecture Newsletter, pages
19�25, 12 1995.

[88] Stéphanie Moreaud and Brice Goglin. Impact of NUMA E�ects on High-Speed
Networking with Multi-Opteron Machines. In PDCS, Cambridge, United States,
November 2007.

[89] Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and
Karl Solchenbach. VAMPIR: Visualization and Analysis of MPI Resources.
Supercomputer, 63, Vol. XII(1):69�80, 1996.

[90] Lucas Leandro Nesi and Lucas Schnorr. Detection, Evaluation and Mitigation
of Resource A�nity and Communication Contention Problems in a Task-Based
Runtime over Heterogeneous Clusters. In Anais do XXI Simpósio em Sistemas
Computacionais de Alto Desempenho, pages 275�286, Porto Alegre, RS, Brasil,
2020. SBC.

[91] OpenMP Architecture Review Board. OpenMP Application Programming Interface.
https://www.openmp.org/.

[92] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A Uni�ed Parallel
Runtime for Clusters of NUMA Machines. In Emilio Luque, Tomàs Margalef, and
Domingo Benítez, editors, Euro-Par 2008 � Parallel Processing, pages 78�88, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[93] Romain Pereira, Adrien Roussel, Patrick Carribault, and Thierry Gautier.
Communication-Aware Task Scheduling Strategy in Hybrid MPI+OpenMP Ap-
plications. In IWOMP 2021 - 17th International Workshop on OpenMP, OpenMP
: Enabling Massive Node-Level Parallelism (IWOMP 2021), pages 1�15, Bristol,
United Kingdom, September 2021.

[94] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. PARAVER: A Tool
to Visualize and Analyze Parallel Code. WoTUG '96: Proceedings of the 19th
World Occam and Transputer User Group Technical Meeting on Parallel Processing
Developments, 1996.

[95] Jelena Pje²ivac-Grbovi¢, Thara Angskun, George Bosilca, Graham E Fagg, Edgar
Gabriel, and Jack J Dongarra. Performance analysis of MPI collective operations.
Cluster Computing, 10(2):127�143, 2007.

[96] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda. E�cient
Inter-node MPI Communication Using GPUDirect RDMA for In�niBand Clusters
with NVIDIA GPUs. In 2013 42nd International Conference on Parallel Processing
(ICPP), pages 80�89, Los Alamitos, CA, USA, oct 2013. IEEE Computer Society.

[97] Joachim Protze, Marc-André Hermanns, Ali Demiralp, Matthias S. Müller, and
Torsten Kuhlen. MPI Detach - Asynchronous Local Completion. In 27th European
MPI Users' Group Meeting, EuroMPI/USA '20, page 71�80, New York, NY, USA,
2020. Association for Computing Machinery.

Interactions between Task-based Runtime Systems and Communications 179

https://www.openmp.org/

References

[98] Andrès Rubio Proaño. Data Placement Strategies for Heterogeneous and Non-Volatile Memories in High Performance Computing.
Theses, Université de Bordeaux, October 2021.

[99] Kevin Sala, Sandra Macià, and Vicenç Beltran. Combining One-Sided Commu-
nications with Task-Based Programming Models. In 2021 IEEE International
Conference on Cluster Computing (CLUSTER), pages 528�541, 2021.

[100] Kevin Sala, Xavier Teruel, Josep M. Perez, Antonio J. Peña, Vicenç Beltran, and
Jesus Labarta. Integrating blocking and non-blocking MPI primitives with task-
based programming models. Parallel Computing, 85:153�166, 2019.

[101] Peter Sanders, Jochen Speck, and Jesper Larsson Trä�. Two-tree algorithms for full
bandwidth broadcast, reduction and scan. Parallel Computing, 35(12):581 � 594,
2009. Selected papers from the 14th European PVM/MPI Users Group Meeting.

[102] Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, and
George Bosilca. Callback-based completion noti�cation using MPI Continuations.
Parallel Computing, 106:102793, 2021.

[103] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya,
and Scott Cranford. OpenSpeedShop: An Open Source Infrastructure for Parallel
Performance Analysis. Sci. Program., 16(2�3):105�121, April 2008.

[104] Marc Sergent. Passage à l'echelle d'un support d'exécution à base de tâches pour l'algèbre linéaire dense.
Theses, Université de Bordeaux, December 2016.

[105] Marc Sergent, Mario Dagrada, Patrick Carribault, Julien Jaeger, Marc Pérache,
and Guillaume Papauré. E�cient Communication/Computation Overlap with
MPI+OpenMP Runtimes Collaboration. In Marco Aldinucci, Luca Padovani, and
Massimo Torquati, editors, Euro-Par 2018: Parallel Processing, pages 560�572,
Cham, 2018. Springer International Publishing.

[106] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,
Liran Liss, et al. UCX: an open source framework for HPC network APIs and be-
yond. In 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects,
pages 40�43. IEEE, 2015.

[107] Sameer Shende. The Tau Parallel Performance System. International Journal of
High Performance Computing Applications, 20:287�311, 05 2006.

[108] Elliott Slaughter, Wei Wu, Yuankun Fu, Legend Brandenburg, Nicolai Garcia, Wil-
hem Kautz, Emily Marx, Kaleb S. Morris, Qinglei Cao, George Bosilca, Seema Mir-
chandaney, Wonchan Lee, Sean Treichler, Patrick McCormick, and Alex Aiken. Task
bench: A parameterized benchmark for evaluating parallel runtime performance.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC '20. IEEE Press, 2020.

[109] Quinn Snell, Armin Mikler, and John Gustafson. NetPIPE: A Network Protocol In-
dependent Performance Evaluator. IASTED International Conference on Intelligent
Information Management and Systems, 1, 06 1996.

180 P. Swartvagher

References

[110] Luka Stanisic, Samuel Thibault, Arnaud Legrand, Brice Videau, and
Jean-François Méhaut. Faithful Performance Prediction of a Dynamic
Task-Based Runtime System for Heterogeneous Multi-Core Architectures.
Concurrency and Computation: Practice and Experience, page 16, May 2015.

[111] Vaibhav Sundriyal, Masha Sosonkina, and Zhao Zhang. Achiev-
ing Energy E�ciency during Collective Communications.
Concurrency and Computation: Practice and Experience, 25, 10 2013.

[112] Enric Tejedor, Montse Farreras, David Grove, Rosa M Badia, Gheorghe Almasi,
and Jesus Labarta. A high-productivity task-based programming model for clusters.
Concurrency and Computation: Practice and Experience, 24(18):2421�2448, 2012.

[113] Hiroshi Tezuka, Francis O'Carroll, Atsushi Hori, and Yutaka Ishikawa. Pin-down
cache: A virtual memory management technique for zero-copy communication.
pages 308 � 314, 01 1998.

[114] Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier Aguilar,
Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis, Her-
bert Jordan, Thomas Fahringer, Kostas Katrinis, Erwin Laure, and Dimitrios S.
Nikolopoulos. A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput., 74(4):1422�1434, apr 2018.

[115] Martin Tillenius. SuperGlue: A Shared Memory Framework Using Data Versioning
for Dependency-Aware Task-Based. SIAM J. Sci. Comput., 37(6):C617�C642, jan
2015.

[116] François Trahay, François Rue, Mathieu Faverge, Yutaka Ishikawa, Raymond
Namyst, and Jack Dongarra. EZTrace: a generic framework for performance analy-
sis. In Nalini Venkatasubramanian and Craig Lee, editors, IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 618�619, New-
port Beach, CA, USA, 05 2011.

[117] J. Treibig, G. Hager, and G. Wellein. LIKWID: A lightweight performance-oriented
tool suite for x86 multicore environments. In Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures, San
Diego CA, 2010.

[118] Jesper Larsson Trä� and Andreas Ripke. Optimal broadcast for fully connected
processor-node networks. Journal of Parallel and Distributed Computing, 68(7):887
� 901, 2008.

[119] Bogdan Marius Tudor, Yong Meng Teo, and Simon See. Understanding o�-chip
memory contention of parallel programs in multicore systems. In 2011 International
Conference on Parallel Processing, pages 602�611, 2011.

[120] UEFI Forum, Inc. Advanced Con�guration and Power Interface Speci�cation, ver-
sion 6.4, January 2021.

Interactions between Task-based Runtime Systems and Communications 181

References

[121] J.D. Ullman. NP-complete scheduling problems. Journal of Computer and System
Sciences, 10(3):384�393, 1975.

[122] Wei Wang, Jack W. Davidson, and Mary Lou So�a. Predicting the memory band-
width and optimal core allocations for multi-threaded applications on large-scale
NUMA machines. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 419�431, 2016.

[123] Udayanga Wickramasinghe and Andrew Lumsdaine. A survey of methods for col-
lective communication optimization and tuning. CoRR, abs/1611.06334, 2016.

[124] Samuel Williams, Andrew Waterman, and David Patterson. Roo�ine: an insightful
visual performance model for multicore architectures. Communications of the ACM,
52(4):65�76, 2009.

[125] Thomas Worsch, Ralf Reussner, and Werner Augustin. On Benchmarking Collective
MPI Operations. In Dieter Kranzlmüller, Jens Volkert, Peter Kacsuk, and Jack Don-
garra, editors, Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pages 271�279, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[126] Asim YarKhan, Jakub Kurzak, and Jack Dongarra. QUARK users' guide: Queuing
and runtime for kernels, version 1.0. technical report UT-ICL-11-02, University
of Tennessee Innovative Computing Laboratory, Knoxville, Tennessee 37996, April
2011.

[127] Yili Zheng, Amir Kamil, Michael B. Driscoll, Hongzhang Shan, and Katherine
Yelick. UPC++: A PGAS Extension for C++. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 1105�1114, 2014.

182 P. Swartvagher

Publications

Articles in Peer-reviewed Conferences

[128] Alexandre Denis, Emmanuel Jeannot, and Philippe Swartvagher. Interfer-
ences between Communications and Computations in Distributed HPC Systems.
In ICPP 2021 - 50th International Conference on Parallel Processing, page 11,
Chicago / Virtual, United States, August 2021.

[129] Alexandre Denis, Emmanuel Jeannot, and Philippe Swart-
vagher. Modeling Memory Contention between Communica-
tions and Computations in Distributed HPC Systems. In
APDCM - IPDPS - 2022 - IEEE International Parallel and Distributed Processing Symposium Workshops,
page 10, Lyon / Virtual, France, May 2022.

[130] Alexandre Denis, Emmanuel Jeannot, Philippe Swartvagher, and Samuel Thibault.
Using Dynamic Broadcasts to improve Task-Based Runtime Performances. In
Euro-Par - 26th International European Conference on Parallel and Distributed Computing,
Euro-Par 2020, Warsaw, Poland, August 2020. Rzadca and Malawski, Springer.

[131] Philippe Swartvagher. Amélioration des performances de sup-
ports d'exécution à tâches à l'aide de broadcasts dynamiques. In
COMPAS 2020 - Conférence francophone d'informatique en Parallélisme, Architecture et Système,
Lyon, France, June 2020.

[132] Philippe Swartvagher. Interactions entre calculs et com-
munications au sein des systèmes HPC distribués. In
COMPAS 2021 - Conférence francophone d'informatique en Parallélisme, Architecture et Système,
Lyon, France, July 2021.

[133] Philippe Swartvagher. Interactions entre calculs et communications au
sein des systèmes HPC distribués : évaluation et modélisation. In
COMPAS 2022 - Conférence francophone d'informatique en Parallélisme, Architecture et Système,
Amiens, France, July 2022.

183

Publications

Articles in Peer-reviewed Journals

[134] Alexandre Denis, Emmanuel Jeannot, Swartvagher Philippe, and Samuel Thibault.
Tracing task-based runtime systems: feedbacks from the StarPU case. Concurrency
and Computation: Practice and Experience. Submitted.

Research Reports

[135] Alexandre Denis, Emmanuel Jeannot, and Philippe Swartvagher. Modeling Mem-
ory Contention between Communications and Computations in Distributed HPC
Systems (Extended Version). Research Report RR-9451, INRIA Bordeaux, équipe
TADAAM, February 2022.

Technical Reports

[136] Pierre-Antoine Bouttier, Ludovic Courtès, Yann Dupont, Marek Fel²öci, Felix Gru-
ber, Konrad Hinsen, Arun Isaac, Pjotr Prins, Philippe Swartvagher, Simon Tournier,
and Ricardo Wurmus. Guix-HPC Activity Report 2020-2021. Technical report, In-
ria Bordeaux - Sud-Ouest ; Université Grenoble - Alpes ; Université Paris, February
2022.

Posters

[137] Philippe Swartvagher. Interferences between Communications and Computations
in Distributed HPC Systems. Euro-Par - 27th International European Conference
on Parallel and Distributed Computing, August 2021. Poster.

[138] Philippe Swartvagher. Interferences between Communications and Computations
in Distributed HPC Systems. Journée de l'École Doctorale Mathématiques et In-
formatique, May 2021. Poster.

184 P. Swartvagher

Software Contributions

This section presents the contributions made to softwares for the purposes of the experi-
ments done in this thesis.

NewMadeleine

� Implementation of the mcast interface for dynamic broadcasts, and related mi-
crobenchmarks.

FxT

� Add support to record executions generating trace �les bigger than 2GB.

� Add possibility to register a callback function to call when the event bu�er is �ushed
on the disk.

StarPU

� Maintenance of the NewMadeleine backend.

� Integration of dynamic broadcasts in theNewMadeleine backend to use the mcast
interface.

� Improvement of the tracing system:

� Warn the user by printing a message when the event bu�er of FxT is �ushed
during application execution.

� Add option to �lter the event to record in traces.

� Add support of the mpisyncclocks library to synchronize distributed traces.

� Save in traces the NUMA node on which are located data bu�ers manipulated
by StarPU (for tasks or communications).

185

Chameleon

� Miscellaneous bug �xes.

Memory contention

� Development of a benchmark to evaluate interferences between computations and
communications.

� Development of scripts to analyze, plot and model the results of the benchmark.

Guix

� Maintenance of the packages of the PM2 project (NewMadeleine, PIOMan,
mpisyncclocks, and other sub-projects).

� Miscellaneous bug reports.

ViTE

� Miscellaneous bug �xes.

186 P. Swartvagher

	Remerciements
	Résumé étendu en français
	Évaluation et amélioration du système de traces
	Broadcasts dynamiques
	Interférences entre calculs et communications
	Conclusion

	Introduction
	High Performance Computing
	Goals and contributions of this thesis
	Organization of the document

	Distributed Task-based Runtime Systems
	The growing complexity of HPC machines
	More powerful machines...
	... but more complex to program!

	Distributed systems
	Motivation for distributed computing
	Environment for distributed systems
	An HPC communication library: NewMadeleine

	Task-based runtime systems
	General concepts
	StarPU
	Distributed StarPU

	Goals and contributions of this thesis

	Related Work
	Programming models
	Task-based runtime systems
	Communications with task-based runtime systems
	Work related to our contributions
	Broadcasts in task-based runtime systems
	Interferences between computations and communications
	Tracing systems

	Conclusion

	Tracing Task-based Runtime Systems
	Background: tracing task-based runtime systems
	Generic tracing systems
	Tracing distributed applications: synchronizing clocks
	Tracing systems and task-based runtime systems
	Contributions

	Tracing StarPU's behaviour
	Trace gathering
	Trace exploitation

	Reducing impact on performance
	Avoid writing traces on the disk during execution
	Number of recorded events
	Scalability of the number of recording cores
	Summary about the tracing impact on performance

	Precise distributed traces
	Motivation for synchronized clocks
	Synchronized clocks in StarPU
	Conclusion on synchronizing distributed traces

	Lessons learned
	Methodology to apply when tracing applications
	Requirements for an efficient tracing system
	Extension to other runtime systems

	Conclusion

	Dynamic Broadcasts
	Broadcasts in dynamic task-based runtime systems
	General concepts of dynamic broadcasts
	Broadcast detection
	Dynamic broadcast algorithm

	Implementation
	Broadcast detection
	Dynamic broadcast interface
	Enforcing communication priorities
	Using just received data but still being forwarded

	Evaluation
	Microbenchmarks
	Cholesky factorization
	QR factorization

	Discussion
	Performance analyses
	Generalization and extensions of the concept

	Conclusion

	Interferences between Communications and Computations
	Methodology
	Impact of frequencies
	Impact of frequencies on only communications
	Impact of frequency variations caused by computations
	Impact of AVX instructions on frequencies
	Conclusion on the impact of frequency variations

	Memory contention
	Benchmarking memory contention
	Impact of memory contention
	Impact of thread and data placement
	Impact of transmitted data size on memory contention
	From CPU- to memory-bound applications
	Conclusion on memory contention

	Runtime system impacts on communications
	Runtime system overhead
	MPI thread and data placement
	Worker polling
	Conclusion on runtime system impact

	Use-cases: computational kernels
	Conclusion

	Modeling Memory Contention between Communications and Computations
	Context and hypotheses
	Contention behaviour
	NUMA systems
	Last level caches
	Modeling methods

	A model for memory bandwidth sharing
	Model parameters
	Modeling memory bandwidth
	Model NUMA effect

	Evaluation of the model
	Experimental setup
	Results
	Discussion

	Conclusion

	Conclusion and Perspectives
	Summary of contributions
	Tracing systems
	Dynamic broadcasts
	Interferences between computations and communications

	Perspectives
	Improve the interaction with other StarPU's features
	What about GPUs?
	Performance model with communications
	Towards a better integration to the scheduler
	Consider other types of applications

	Final words

	Differences between MPI and NewMadeleine backends inStarPU
	MPI backend
	NewMadeleine backend

	Reproducible Experiments
	Machine Descriptions
	Algorithms to Model Memory Contention
	Parameter Values of Contention Model
	Acronyms
	References
	Publications
	Software Contributions

