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Abstract 

Although “post” Li-ion battery is arising as an inevitable solution for sustainable energy 

transition, it would be unwise to assume ‘conventional’ Li-ion battery is approaching the end of 

their era; as many strategies are still available to improve their performance. While progress has 

been continuously achieved to get even better active materials, engineers and academic researchers 

have kept improving on the electrode scale. The most direct way can be done through the 

microstructure design. In light of this, this PhD work attempts to understand the interplay between 

the electrode microstructure and its performance, which plays a vital role in achieving high-

performance Li-ion battery electrodes. This work relies on three major pillars, which are 

electrochemical measurements, X-ray tomography and numerical modeling. The 

LiNi0.5Mn0.3Co0.2O2 industry-grade electrodes are investigated. 

The first part of this work focuses on the first two pillars that allow a complete characterization 

of porous electrodes, comprising both electrochemical performance and microstructural 

properties. Appropriate experimental methods are carried out to determine the transport properties 

of the electrodes, such as electrode tortuosity factor and effective electronic conductivity. Thin 

electrodes are made for the determination of active-material intrinsic properties. The 

electrochemical performance of industry-grade electrodes is then assessed through discharge rate 

capability. A complete quantitative analysis of the 3D microstructures using the X-ray 

holotomography technique is performed. The microstructural heterogeneities are quantified for 

each phase separately (active materials, carbon binder domain, pore space), along with the 

statistical quantification of their inter-connectivity at the particle scale. Besides, Operando X-ray 

Absorption Near Edge Structure coupled with transmission X-ray nano computed tomography are 

done, offering a direct correlation between electrode microstructure and local electrochemical 

performance. Also, an image quality assessment method is investigated, which utilizes 

convolutional neural networks. It can be a direct tool to produce reliable segmentation results and 

guide the image pre-processing step (e.g. denoise, contrast enhancement) for quality enhancement. 

The second part relies on the numerical approach to further understand the underlying physics 

of the electrode during operation. One starts with introducing a new concept of the tortuosity 

factor, which is demonstrated through a numerical approach to be more appropriate for porous 

electrodes. A model representing the symmetric cell method is implemented in an open-source 

application called TauFactor for the electrode tortuosity factor determination using tomographic 

data. Then, the performance of four industry-grade electrodes is investigated through mathematical 

models. As the Newman pseudo-2D model fails to capture the behavior of the set of electrodes, 

the formation of porous agglomerates due to the calendering process to achieve high-energy 

density is identified to be responsible for this discrepancy. Thus, porous agglomerates are included 

in the Newman pseudo-2D model. The validation of the electrodes with different electrolytes is 

done. As a result, the porous agglomerate effects are identified as a dominant limiting factor at 

high C-rates for high-energy-density electrodes. 

Keywords: Li-ion battery, electrode microstructure, electrochemical performance, 

tomography, mathematical modeling. 
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Résumé 

Bien que les batteries "post" Li-ion apparaissent comme une solution inévitable pour la 

transition énergétique durable, il serait peu sage de penser que les batteries Li-ion approchent de 

la fin de leur ère, car de nombreuses stratégies sont encore disponibles pour améliorer leurs 

performances. Alors que des progrès ont été réalisés en permanence pour obtenir des matériaux 

actifs encore meilleurs, les ingénieurs et les chercheurs ont continué à améliorer l'échelle des 

électrodes. Le moyen le plus direct est le design de la microstructure. Dans cette optique, ce travail 

de thèse tente de comprendre l'interaction entre la microstructure de l'électrode et sa performance, 

qui joue un rôle vital dans l'obtention d'électrodes de haute performance. Ce travail s'appuie sur 

trois piliers majeurs, qui sont les mesures électrochimiques, la tomographie aux rayons X et la 

modélisation numérique. Les électrodes de qualité industrielle LiNi0.5Mn0.3Co0.2O2 sont étudiées.  

La première partie de ce travail se concentre sur la caractérisation complète des électrodes 

poreuses, comprenant les performances électrochimiques et les propriétés de la microstructure. 

Des méthodes expérimentales appropriées sont mises en œuvre pour déterminer les propriétés de 

transport des électrodes. Des électrodes fines sont fabriquées pour la détermination des propriétés 

intrinsèques des matériaux actifs. Les performances électrochimiques des électrodes sont ensuite 

évaluées en fonction de leur capacité de décharge. Une analyse quantitative complète des 

microstructures 3D des électrodes est réalisée à l'aide de la technique de l’holotomographie aux 

rayons X. Les hétérogénéités liées à la microstructure sont analysées. Elles sont quantifiées pour 

chaque phase séparément, ainsi que la quantification statistique de leur inter-connectivité à 

l'échelle de la particule. En outre, la structure de l'absorption Operando XANES couplée à la nano-

tomographie aux rayons X sont réalisées, offrant une corrélation directe entre la microstructure de 

l'électrode et sa performance électrochimique locale. En outre, un outil direct, qui utilise des 

réseaux neuronaux convolutifs pour produire des résultats de segmentation fiables et guider l'étape 

de prétraitement de l'image pour en améliorer la qualité, est développé. 

La deuxième partie s'appuie sur l'approche numérique pour mieux comprendre la physique liée 

au comportement de l'électrode pendant son fonctionnement. On commence par introduire un 

nouveau concept de facteur de tortuosité, dont on démontre par une approche numérique qu'il est 

plus approprié pour les électrodes poreuses. Un modèle représentant la méthode de la cellule 

symétrique est mis en œuvre dans une application open-source appelée TauFactor. Ensuite, les 

performances de quatre électrodes de qualité industrielle sont étudiées à l'aide de modèles 

mathématiques. Comme le modèle pseudo-2D de Newman ne parvient pas à capturer le 

comportement de l'ensemble des électrodes, la formation d'agglomérats poreux due au processus 

de calandrage pour atteindre une densité énergétique élevée est identifiée comme responsable de 

cette divergence. Ainsi, les agglomérats poreux sont inclus dans le modèle pseudo-2D de Newman. 

En conséquence, les effets des agglomérats poreux sont identifiés comme un facteur limitant 

dominant à des régimes élevés pour des électrodes à haute densité énergétique. 

Mots-clés : Batterie Li-ion, microstructure d'électrode, performance électrochimique, 

tomographie, modélisation mathématique. 
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I.2 Motivation 

Nowadays, given the growth of worldwide population and the exponential development of 

technology, the energy demands still do not seem to reach the peak. To fulfill these demands, 

humanity keeps wiping out the resources from nature. Over 60% of the world’s energy is still 

produced through the combustion of fossil fuels or coal, as can be seen in Figure I-1. Different 

alternatives for energy demands have been proposed so far. However, only in a minority of cases, 

they can compete with fossil fuels and coal in terms of cost and energy density. Consequently, 

humanity is facing a real problem regarding climate change arising from the insulating 

“greenhouse effect” caused by the release of CO2 (majority) and other gasses into the atmosphere. 

Climate change became a global threat, which requires a global effort to tackle it. In light of this, 

the Paris climate agreement has been signed to fight global warming, which unites most of the 

leading countries of the world, who are also the major energy consumers in the world, for a joint 

action plan in order to reduce the release of “greenhouse gases”. 

 

Figure I-1. Global energy consumption by source of energy. Sources : BloombergNEF.  

However, to be able to cope with the action plan, the changes have to come from different 

sectors that are listed in Figure I-2. Among those sectors, the transportation sector is one of the 

biggest greenhouse gas emission source, where conventional vehicles relying on fossil fuels still 

offer many advantages compared to the “greener” alternatives.  



3 
 

 

Figure I-2. Greenhouse gas emissions by sector. The transport sector contributes up to 16.2% of 

greenhouse gas emission. Sources: BloombergNEF.  

Over the last decade, electric vehicles have been considered as a more sustainable solution for 

mobility, contributing to reducing the dependence on fossil fuel. Figure I-3 shows all available 

electric car models through 2020, which reflects the willingness of the automotive industry as a 

whole toward the EV transition. Although the transition in the automotive industry away from 

internal-combustion-engine (ICE) vehicles is well underway, there still are challenges and barriers 

to overcome for meeting the goals, as the electric vehicle fleet only reach 1% or less of the global 

vehicle fleet up to now with expectation for it to rise up to 31% by 2040.[1] 
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Figure I-3. Electric Vehicle boom. Model by style and range available through 2020. Sources: 

BloombergNEF.  

Compare to conventional vehicles using ICE, the complexity of the mechanical architecture of 

EVs is significantly less, as the electric powertrain consists of less components with better energy 

efficiency (Figure I-4a). For instance, the electric machine used as an engine in EVs already reach 

up to 94% of energy efficiency compared to that of the ICE being anywhere between 10% and 

45% (Figure I-4b). Moreover, EVs also use regenerative braking to recapture and reuse energy 

that normally would be lost in braking and waste no energy idling. As a result, EVs have a better 

power to the wheels efficiency (77%-90%) when comparing to gasoline-powered vehicles (16%-

25%).[2]  

Give their high power to the wheels efficiency, there is not much room for that for EVs. Under 

this situation, among the component on the electric drive system, the energy loss in the 

electrochemical devices remains somewhat important.  
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Figure I-4. Comparison between ICE and Electric Vehicles. a. The mechanical architecture of the 

two types of vehicle. b. The efficiency map of the ICE (left) and the Electric motor (right).  

That is to say, the electrochemical devices providing energy are the most critical puzzle that 

needs to be solved before triggering the EV transition. Among different electrochemical devices, 

Li-ion batteries (LiB) have become an important secondary (rechargeable) battery technology and 

are widely used in portable electronics and a growing number of electric vehicles. It has shown a 

high potential to substitute fossil fuel to power the vehicles, as they possess a high energy density 

with an ability to be scaled-up for mass production,  while there is still room for cost reduction. 

With the rapid growth of the use of LiB, the battery cost will be less than $100/kWh by 2030 

(Figure I-5) that makes the cost competitive with that of ICE vehicles.  
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Figure I-5. LiB cost and demand roadmap. The cost of the LiB pack is projected to be lower than 

100$/kWh with the increase of its demand for e-mobility. Sources: Bloomberg NEF. 

Therefore, the significant remaining challenges are: driving range and charging time without 

compromising safety. In light of this, not only the academic researchers but also industry sectors 

such as battery suppliers as well as car manufacturers, have put huge efforts into solving these two 

challenges. Align with this global interest, this work is carried out to contribute to a deeper 

understanding of the LiB in order to get closer to the target. 

I.3 Scope of the work 

Although scientists from academia and industry are already exploring new technologies that 

could provide higher energy density, referred to as “Post LiB”, one should not underestimate the 

time it takes for technology adoption, as every new technology has to go through “hype cycles” as 

they go from initial scientific breakthroughs to widespread use. Sapunkov et al.[3]  developed a 

qualitative version of the hype cycle chart placing the various battery technologies, as shown in 

Figure I-6. Moreover, it has historically taken 4-5 years to develop a new vehicle model in the 

automotive industry. The move to electrification is shortening these timelines, but safely getting 

below 3 years is difficult, and that is only after the battery has already passed a rigorous test cycle.  
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Figure I-6. The « hype cycle » of the battery technologies. A typical technology goes through five 

phases: (i) innovation trigger, (ii) peak of inflated expectations, (iii) trough of disillusionment, (iv) slope of 

enlightenment and (v) plateau of productivity. Na–air, Mg–ion, Na–ion and redox-flow batteries are still in 

the innovation trigger phase. Li–S and Li–air have moved past the innovation trigger, and it is still debated 

which one of the two will emerge as a practical battery. Li–ion batteries are well into the plateau of 

productivity, with the costs of these cells decreasing substantially over time. Sources: Sapunkov et al.[3] 

Thus, in a short-term perspective, one has to keep relying on LiB technology, especially when 

there is still room for improvement of LiB. This is the main reason for what our focus aims to 

enhance the LiB performance with today’s materials from an engineering aspect. Figure I-7 shows 

the evolution of the energy density that decreases with AM weight fraction when going from the 

level of the materials to the final application. Different initiatives can be considered at different 

levels to improve battery performance across the manufacturing process.  

For instance, Tesla suggested a new cell design with the “tabless” concept in a recent patent.[4] 

This solution is set to reduce the Ohmic’s loss due to the electronic transport in the current collector 

along with the reduction of heat generation. On the other hand, CATL introduced a new process 

that allows the fabrication of pack directly from the cell without the need of a module system (Cell 

to Pack, no module technology). The manufacturer claims that it allows increasing the energy 

density of the pack by 10%-15% while ensuring the functionality to be the same as the old design 

with modules.  

Alternatively, this work seeks to optimize high-energy-density electrodes’ performance 

through improvements at the electrode level, i.e. electrode design.  
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Figure I-7. The evolution of active material weight fraction across the product development 

process. The active material weight fraction decreases as we get closer to the final product due to the 

increase of inactive materials such as cell housing, sensors, control unit, cooling system. Source: European 

Commission. 

I.4 Enhanced Li-ion Battery - from electrode microstructural design aspect  

At the electrode level, it turns out that two different factors contribute to the electrode 

performance, namely intrinsic materials properties and electrode microstructural design. Several 

works highlighted the vital role of the electrode microstructure towards electrochemical kinetics, 

mechanical, and transport properties, which significantly impacts the electrode performance in 

terms of energy density, power capability, and lifetime.[5–13] The electrode microstructure 

optimization should be independent from the selection of active materials and can be applied to 

both electrodes. In light of these concepts, this work attempts to improve the performance of high 

energy density electrodes through electrode design optimization rather than improving with the 

characteristics of the materials.  

For this purpose, it is crucial to understand how the electrode microstructural properties affect 

its electrochemical performance, so as to establish a microstructure-performance relationship. This 

can shed light on the research for an optimal electrode microstructure suitable for electric vehicles. 

But first, it requires the ability to accurately determine the microstructural properties over a wide 

range of scales as well as the electrochemical properties. Even after getting those information, the 

interplay between these two aspects is not straightforward to unravel, as the effects from the 

electrode microstructure can strongly overlap within an operational cell and together affect the 
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battery performance. To understand this interplay,  physics-based numerical models stand as a 

powerful tool to quantify the effects of different limitation sources on the performance.  

Since the target application for this work is high energy density battery for the automotive 

industry, industry-grade electrodes with high energy density are studied in this work. 

I.5 Overview  

The rest of the dissertation is organized as follows : 

Background. Chapter II gives an overview of the fundamentals of the LiB studied in this work. 

It includes an explanation of the operating principle and a brief review of different limitations 

found within a cell. This is followed by a brief review of the microstructural design of the 

electrode. The remainder of this chapter is dedicated to different approaches used in this work. It 

includes tomographic-based methods to access the electrode microstructure and LiB physics-based 

models to get further insights into the interplay between microstructure and performance.  

Electrode tortuosity factor. Chapter III introduces the electrode tortuosity factor concept, 

which exhibits conceptual differences from the conventional tortuosity factor. Therefore, several 

key issues with the conventional “flow-through” type tortuosity factor are highlighted when used 

to characterize electrodes. This chapter presents a numerical approach based on simulations 

performed on numerically-generated microstructural images, demonstrating that the new concept 

of electrode tortuosity factor captures the transport processes relevant to porous electrodes (PE) 

better than the “flow-through” type tortuosity factor. 

Heterogeneity quantification by image-based approach (X-ray nano-holotomography). In 

chapter IV, a quantitative phase-contrast X-ray nano-holotomography technique is used as a 

straightforward approach to capture the 3D electrode microstructure. A complete characterization 

of microstructural properties from tomographic data is carried out. The microstructural 

heterogeneities are quantified, and a comparison between different electrodes is made. Based on 

the analysis, different scenarios are also discussed to better understand the microstructure's impact 

on the electrochemical performance.  

Image Quality Assessment for tomographic images. In this chapter, we tackle the uncertainty 

issue when using the image-based approach to determine microstructural properties. This chapter 

presents a method based on convolutional neural networks that can guide the image enhancement 

process and conduct reliable segmentation results with respect to subjective human opinion. The 

uncertainties relating to the raw image processing step can, therefore, be reduced.  As a result, 

image processing can turn into a very robust, observer-independent process. 

The use of physics-based battery model to validate the experiments. In chapter VI, a physics-

based model is developed to analyze the discharge behavior of industry-grade LiNi0.5Mn0.3Co0.2O2 

(NMC532) electrodes. A parametrization process relying on appropriate experimental 



10 
 

measurements is performed for the active material and each electrode. The model allows 

quantifying the effects of different limitation sources on the electrode performance. Thus, it is 

possible to unveil the rate-limiting processes in a given situation, facilitating the rational design of 

electrodes and cell optimization. 

Operando 3D XANES for Visualization of State-Of-Charge Heterogeneity within High-

Energy-Density NMC Electrodes. In chapter VII, we perform X-ray Absorption Near Edge 

Structure (XANES) coupled with transmission X-ray computed tomography (XCT) at the 

nanoscale in Operando mode to capture the electrode microstructure and chemical information 

during high-rate electrochemical operation. The goal is to propose a more efficient approach to 

directly unveil the effects of the microstructural heterogeneities on local electrochemical 

performance. For the first time to the best of the author’s knowledge, there is an attempt to work 

with electrodes similar to real-life designs (%v AM > 60%) and a high operating current density. 

Conclusions and Perspectives. Chapter VIII summarizes the main lessons from this work and 

some suggestions for additional microstructure characterizations and cell modeling in the future. 

It helps for improved manufacturing process, microstructure, and performance. 
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II.1 Li-ion Battery Fundamentals 

 

Figure II-1. Overview of the Li-ion Battery system that operates the Electric Vehicle. Source: 

Malifarge, PhD Thesis.[1] 

The LiB was first commercialized by Sony in 1991. A typical LiB is composed of a positive 

electrode (cathode), a negative electrode (anode), a separator and an electrolyte. This so-called 

“rocking chair” secondary battery, is based on the reversible exchange of lithium between two 

insertion materials that operate at different potentials. Commonly, the electrode microstructure is 

a mixture of different phases: active materials (AM), additives such as a mixture of conductive 

carbon (e.g., C65) and binder (e.g., Polyvinylidene Fluoride (PVdF)), and pores, which are 

eventually filled with an electrolyte. The conductive carbon is added to improve the effective 

electronic conductivity of the electrode, whereas the polymeric binder increases the mechanical 

stability of the electrode. The composite mixture is coated onto a current collector consisting of a 

copper foil at the anode and an aluminum foil at the cathode. A porous polymer membrane (e.g., 

polypropylene) is inserted between the two electrodes. Both electrodes and the separator are filled 

with a liquid electrolyte generally made up of a mixture of linear and cyclic carbonates (e.g., 

diethyl carbonate (DEC), dimethyl carbonate (DMC) and ethylene carbonate (EC)) and a lithium 

salt (e.g., lithium hexafluorophosphate (LiPF6)).  



14 
 

A schematic diagram of a LiB discharge is represented in Figure II-1. Upon discharge, the AM 

at the anode de-inserts lithium while releasing electrons, whereas that at the cathode inserts 

lithium. Electrons generated by the oxidation at the anode are collected and pass through an 

external circuit to the cathode while ions move across the electrolyte to the same direction. The 

process is reversed during the charge. Meanwhile, during charge and discharge, cathode and anode 

potentials vary depending on the degree of Li insertion. The resulting cell potential is controlled 

to remain between two cut-off potentials above and below, which help to prevent irreversible 

reactions that could deteriorate cell performance and may lead to safety issues.  

In the final application, this safe potential window is usually further shortened to ensure battery 

operation at constant performance over the battery life. 

At equilibrium, the LiB electrode behavior represents the inherent properties of the AM present 

inside. However, the experimental potential responses under current show a deviation from that at 

equilibrium, due to polarizations arising from electrochemical processes.  

 

Figure II-2. Losses of a half-cell LiB system (Li foil | Separator | Working Electrode). Equilibrium 

potential curve vs Discharge curve at 1C. Different contributions to the polarization that induces the overall 

loss. 

Figure II-2 shows the equilibrium potential curve (versus Li foil) of a NMC electrode used in 

this work along with its lithiation response (versus Li foil) at current 1C, in which the dashed 

region represents the overall loss. The overall loss, in turn, depicts the polarizations arising from 

different processes occurring during the operation. Let aside the contribution from the separator 

properties and from the Li foil, the magnitudes of these polarizations depend upon either the 
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intrinsic properties of the composite materials or the electrode microstructure. In essence, they can 

be resolved into four different mechanisms as follows:[2–4] 

• Loss by solid diffusion inside the AM particles 

• Loss by mass transport in liquid phase  

• Loss by electrochemical reaction kinetics at solid/liquid interface 

• Loss by electronic transport in solid phase (including inadequate contacts between 

different phases). 

II.1.1 Loss by solid diffusion inside the AM particles 

The AM is a host accommodating Li-ions during the (dis)charge process through an 

intercalation mechanism. Since the AM is generally a good electronic conductor, one assumes that 

all current is carried by electrons in the solid phase after the intercalation. An electron will move 

along with a Li-ion inside the AM (i.e., ambipolar motion), such that there is no migration term in 

the flux density expression, as the diffusing species is neutral <Li+,e->, not Li+.  

The solid-state diffusivity of an AM can be represented by the Fickian or chemical diffusion 

coefficient, 𝐷s. This coefficient is related to the thermodynamic diffusion coefficient, D, derived 

from the Stefan-Maxwell equations, by the relationship for concentrated solutions:  

𝐷s = D  

𝑐s,T
𝑐s,max

(1+
𝑑ln𝑓±
𝑑ln𝑐s

)

1−
𝑑ln𝑐s,max

𝑑ln𝑐s

            (Eq. II-1) 

where 𝑐s,T is the total concentration of the active materials, 𝑓± is the mean molar activity 

coefficient of the electrolyte, 𝑐s,max is the maximum concentration of intercalated Li in active 

materials particle, 𝑐s is the intercalated Li concentration within active materials particle. 

D may vary with the Li concentration inside the particles, as the available vacancies in the 

lattice to accommodate Li-ions varies. It also depends on the materials crystallographic structure, 

that can change during operation.[5]  Therefore, Fickian diffusion coefficient can also vary 

significantly with Li concentration via Eq. II-1. Approaching the full lithiation state, the available 

vacancy concentration decreases significantly, resulting in a significant drop in the thermodynamic 

diffusivity of the AM, so does the Fickian diffusion coefficient.[5]  

The solid diffusion limitation can be characterized through the characteristic time, 𝑇AM (s): 

𝑇AM =
𝑅p

2

𝐷s
         (Eq. II-2) 

where 𝑅p is particle radius, which is also the diffusion length in the AM particles. 

Notably, the diffusion path length appears with a square exponent. Thus, the loss by solid 



16 
 

diffusion can be significantly reduced with the particle size.[6] 

II.1.2 Loss by mass transport in the electrolyte 

This loss arises from the mass transport in the electrolyte (liquid phase) filling in pore space in 

order to access the reaction sites. Porous structure obstructs the mass transport of liquid phase, 

resulting in effective transport properties, which differ from the bulk properties. Thus, this loss 

contributes to the porous electrode effects along with the loss by electronic transport across the 

solid phase.  

The mass transport limitation can be characterized through the characteristic time, 𝑇elyte (s): 

𝑇elyte =
𝐿elyte

2

𝐷eff
           (Eq. II-3) 

where 𝐿elyte is the diffusion length in the electrolyte filled in pore space and 𝐷eff the effective 

Fickian diffusion coefficient of the binary electrolyte. 

Moving towards high-energy-density electrodes (either by increasing the electrode thickness 

and/or decreasing the porosity), one will have to deal with the power limitations which mainly 

arise from mass transport limitations in the liquid phase within the porous electrode.[4,5,7–9] 

II.1.3 Loss by electrochemical reactions at solid/liquid interface  

The loss is related to the charge transfer process occurring at the AM/electrolyte interface due 

to the electrochemical reactions. It represents the kinetics of electrochemical reactions, which vary 

as a function of the intrinsic reaction rate of AM. Particle radius can have an impact on this loss 

as it is connected to the active surface area. Lowering the particle size enables a high 

AM/electrolyte interfacial area within a given geometric dimension of the electrode. It reduces the 

local current density per active surface area for a given total operating current. 

II.1.4 Loss by electronic transport across the solid phase (including inadequate contacts 

between different phases) 

The loss is attributed to the electronic transport in the solid phase (mixture of AM and 

additives) to access the reaction sites. It results in an Ohmic loss contributing to the overall 

polarization. Furthermore, additional Ohmic loss can appear due to the contact resistances that 

might take place at the interface of different phases. The contact resistance between the current 

collector and the porous film has also been reported in previous works.[10,11] The contact resistance 

between the conducting matrix (carbon binder domain) with the AM phase might also result in 

overpotential.[12] 
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II.2 Li-ion Battery Microstructure Design 

As mentioned above, porous structures are widely used for making electrodes since they can 

massively increase the specific interfacial area between phases, which increases the accessible 

capacity of the AM at high C-rates. However, the trade-off is the complexity of the electrode 

microstructure, as it adopts a hierarchical architecture.[10,13,14] The microstructure has been reported 

to play a crucial role in the performance of lithium-ion battery electrodes, as it affects the effective 

electronic/ionic transport properties through the morphology of the pore network and the 

conducting matrix;[15–19] the electrochemical kinetics via the interfacial area between phases;[20,21] 

as well as the mechanical properties.[22]  

Therefore, the research for an optimal electrode microstructure needs to consider 

simultaneously different aspects, making it a non-trivial issue. For instance, an “ideal” CBD 

morphology does not only need to ensure good electronic conductivity, i.e. simply increase the %v 

of CBD would not be an obvious solution to improve the overall performance. The microstructures 

of the electrodes used in this work are investigated in detail in Chapter IV, in which we 

demonstrated that the excess of conductive carbon could negatively affect the active surface 

accessibility for ions. Furthermore, the CBD has been shown to be porous, which can locally 

increase the tortuosity of the ionic conducting pathway reducing the ionic transport properties.[18] 

Several works reported different approaches to optimize the electrode design for better 

performance.[23–30] Lu et al.[23] demonstrated numerically that graded-porosity designs (with the 

higher porosity layer at the separator side) could be used to increase the accessible capacity of an 

electrode. Other works have employed ultra-fast laser ablation to create structured electrodes 

(NMC and Graphite) to improve the ionic transport within the porous electrodes, which results in 

higher areal specific capacities at higher current rates, especially for the thick and low-porosity 

electrodes.[27–30] 

In light of this, our work in Chapter III also highlights the vital role of “dead-end” pores within 

the region near the separator to improve the power capability of high energy density electrodes. 

II.2.1 Macro-homogeneous Parameters For Porous Structure Characterization 

To reflect the microstructural properties of porous electrodes for battery modeling, most 

models apply a macroscopic treatment in which the electrode geometry is considered homogenous, 

and the exact geometric details are disregarded. In such a way, the electrode complex 

microstructure is reduced into a few macro-homogenous parameters such as porosity, 𝜀; 

macroscopic specific active surface area (ASA), 𝑎ASA (mASA
2 /mPE

3 ) ; and an electrode tortuosity 

factor, 𝜏e. These metrics represent the effective properties (volume-averaged) of the electrode 

structure.  

Porosity 𝜀 is defined as the ratio of void volume over the total volume of the porous electrode 

and is mainly controlled by the slurry formulation and the calendering steps. For LiB porous 



18 
 

electrodes, pore space will be filled with electrolyte providing ionic conducting network. Porosity 

can be readily calculated by knowing the composition, densities, weight, and volume of the porous 

electrode: 

𝜀 (%) = 1 −
𝑚PE ∑

%𝑤i
𝜌i

i

𝐴CC𝐿PE
           (Eq. II-4) 

where %𝑤i, 𝜌i are weight fraction and density of phase 𝑖 presented in the PE, 𝐴CC, 𝐿PE, and 

𝑚PE are the macroscopic current collector surface area, thickness and weight of the porous 

electrode. 

However, Eq. II-3 provides the total porosity, which comprises open and connected pores that 

contribute to ionic transport as well as closed and isolated pores that are strictly not filled with 

electrolyte. More specific methods for probing the “open” porosity can be used, such as intrusion 

mercury porosimetry or Helium pycnometry. To get the pore size distribution of all open pores, a 

combination of different methods might be required since each method cannot cover the entire 

range of pore size that exist in the porous electrode. In the battery industry, porosity is controlled 

by the composition of a slurry, its drying, and subsequent compressing of the electrode, so-called 

calendering. 

Macroscopic specific active surface area 𝑎ASA represents the available surface area on the AM 

particles for electrochemical reactions. It can, in principle, be explored using imaging techniques, 

although resolution constraints can be a challenge. Adsorption techniques like Brunauer-Emmett-

Teller (BET) method are typically preferred. Nevertheless, there can be a difference between the 

surface area measured with the BET method and the active surface area used in a macro-

homogenous model such as the Newman P2D model, since BET area is a measure of the entire 

area available for gas adsorption, such as the basal plane of the graphite for instance, the CBD, 

and will penetrate nanopores that are not accessed by electrolyte, and not only the 

electrochemically active surface area. Thus, being able to resolve the CBD distribution within the 

electrode can allow to determine the active surface area parameter accurately. 

Compared to the two microstructural properties mentioned above, the tortuosity factor, in turn, 

bears different definitions, which depends on the different methods for its determination. Since it 

is an important parameter for correlating electrode microstructure with performance through 

numerical modeling, it is critical to have an appropriate method for its accurate determination. 

In this work, we use the standard definition for the electrode tortuosity factor, 𝜏e, as stated in 

the following equation:[31–37] 

𝜏e

𝜀
=

𝜌eff

𝜌
=

𝜅

𝜅eff
=

𝐷

𝐷eff
= 𝑁M,e            (Eq. II-5) 

Where 𝑁M,e is the MacMullin number; 𝜌, 𝜅 and 𝐷 are, respectively, the “intrinsic” electrical 

resistivity (Ω. m), conductivity (S. m−1) and diffusion coefficient (m2. s−1) of the bulk electrolyte; 
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and 𝜌eff, 𝜅eff and 𝐷eff are the observed “effective” values resulting from the transport constraints 

imposed by a porous (and likely tortuous) microstructure. 

This definition for electrode tortuosity factor 𝜏e  bears a more physical meaning since it 

represents the change of transport properties within the porous structure with regard to the bulk, 

which is intrinsic of the materials. 

The MacMullin number in Eq. II-4 is also reported here since it describes the effect of a porous 

microstructure on the behavior of the liquid phase within the pore network, and as such it also 

appears in the Newman P2D model through the mass balance in the liquid phase and the Mac-

Innes equation for ionic transport. 

Geometric tortuosity can also be found in the literature[38,39] that accounts for both the 

additional path length and its effect on the velocity of a species when going through a porous 

structure. By definition, the tortuosity factor can be calculated with the square of the ratio between 

two distances: the shortest pathway (geodesic distance) travelled by a species 𝐿p and the straight 

distance between those two points 𝐿cv. However, as Epstein has clarified,[40] this definition does 

not consider the effect of the non-uniform cross-sectional area of the pathway, which is rarely the 

case in the highly complex electrode microstructures encountered in porous electrodes (Figure II-

3). As such, this definition is not well suited for characterizing 3D pore networks. 

 

Figure II-3. Geometrical tortuosity factor illustration. a. Pathway with the uniform cross-sectional 

area. b. Pathway with the non-uniform cross-sectional area. The definition of geometrical tortuosity suffers 

from key conceptual limitations as it ignores constriction in flow paths. 

Lastly, the tortuosity factor can also be estimated using the correlation of Bruggeman.[41] 

However, various assumptions are required to boil down into a simple correlation between 

tortuosity factor and porosity. Therefore, this correlation, in turn, has some key limitations for the 

use in the framework of porous electrodes that are reported in detail by Tjaden et al. in.[42] 

𝜏Bruggeman = {
𝜀−0.5   (𝑠𝑝ℎ𝑒𝑟𝑒𝑠)

𝜀−1  (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠)
           (Eq. II-6) 
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For instance, the Bruggeman model assumes that the obstructions to transport consist of either 

spheres or cylinders. Nonetheless, Figure II-4 shows the particle geometry of Graphite and NMC 

materials; both are far from these standard morphologies. 

 

Figure II-4. The geometry of the AM particles. a. Natural crystalline flake Graphite particle. b. NMC 

secondary particles used in this work. 

II.2.2 Microstructural Heterogeneities  

As we demonstrate later in this dissertation, microstructural properties of porous electrodes are 

frequently non-uniformly distributed. Non-optimized manufacturing process, non-optimized 

electrode compositions, and degradation over time can cause non-uniform agglomeration of 

carbon and binder fillers, or sedimentation of big particles, leading to non-uniform distribution of 

phases. Consequently, at the microscale, microstructural properties such as tortuosity factor, the 

volume fraction of phases, inter-connectivity between phases can vary between different regions 

across the electrodes (in-plane and through-plane).[43–45]  

Nevertheless, capturing the non-uniformities requires a multi-scale investigation, as the 

electrode adopts a hierarchical architecture. In essence, characterization techniques performed at 

the macroscopic scale (i.e. electrode level) allows only macro-homogenous parameters 

determination.  

Non-uniform distribution of phases herein referred to as microstructural heterogeneities, are 

part of our focus in this dissertation. They have been demonstrated to induce a non-uniform 

electrochemical behavior, which can deteriorate the final performance and cause macroscopic 

failures.[22,46–49] In order to quantify the effects of microstructural heterogeneities on 

electrochemical performance, appropriate physics-based models along with accurate 

microstructural properties are required. Chapter IV addresses the challenge of microstructural 

properties determination using the holotomography XCT technique. A physics-based model that 

can take these outputs into account still needs further investigations.   
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II.3 3D Imaging Techniques 

Since it is of particular importance to access the complex microstructure of a porous electrode 

to understand its effects on electrochemical performance, over the last decades, tomography 

techniques have been emerged as a powerful tool to this end.  

Tomography, from the Greek words tome meaning “slice” and graphos meaning “to write”, 

describes a family of methods that allow objects to be imaged in the three dimensions. More 

generally, tomography techniques involved using hundreds or thousands of 2D images to 

reconstruct the 3D volume. 

These techniques provide interesting quantitative and/or qualitative metrics that shed light on 

the effects of the microstructure on the final performance.[50,51] In particular, they allow for spatial 

analysis of the distribution of the different phases within the electrode, which is not accessible 

from regular electrochemical measurements.[31,47]  

Focused ion beam - Scanning electron microscopy (FIB-SEM),[20,50,52,53] and XCT including 

µCT[54–57], and nanoCT[46,58–63] are the most commonly used 3D techniques to study the 

microstructure of batteries.  

The FIB-SEM technique usually offers a higher spatial resolution (ca. 5-10 nm pixel size) than 

XCT, but only a small volume (ca. 10x10x10 µm3) can be acquired under reasonable time and 

labor. It uses a focused Gallium-ion beam to mill the sample sequentially, the ion beam pauses 

after each milling to allow capturing the 2D cross-sectional image by SEM. Then, the ion beam is 

moved with resolution up to 10 nm step by step relative to a reference mark milled on the sample. 

The 3D volume is simply obtained by combining the series of cross-sectional images through the 

sample depth. However, the technique is inherently destructive, preventing all subsequent studies 

of the microstructure if needed. 
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Figure II-5. 3D Imaging techniques. a. Schematic of a dual-beam FIB-SEM setup. b. Schematic 

representation of the hard X-ray nano-holotomography experimental setup at ID16B (ESRF). c. Schematic 

representation of nano-XCT setup at 32ID-C (APS).  

An alternative to FIB-SEM, XCT offers a non-destructive approach, relying on the interactions 

between materials in the sample and the incident X-ray beam. The interaction of X-ray with every 

material can be described through the refractive index 𝑛, such as: 𝑛 = 1 − 𝛿 − 𝑗𝛽, where 𝛽 is the 

absorption coefficient and 𝛿 is the decrement of the refractive index and refer, respectively, to the 

change of amplitude and the phase shift of the X-ray, as it passes through the materials. 

Tomography datasets are collected at different angles by acquiring 2D projection data as the object 

is rotated about an axis normal to the beam source, and are then reconstructed into the 3D volume 

using numerical algorithms. Different iterative and noniterative algorithms have been developed 

to efficiently and accurately perform the task of tomographic reconstruction for different 

measuring geometries.[64,65] In the vast majority of cases these datasets are reconstructed to form 

an image using filtered back projection (FBP).  

Most XCT experiments rely on attenuation contrast. Materials have different β values, leading 

to variations in the transmitted X-ray amplitude as a function of material density and thickness in 

a particular beam direction. Thus, the intensities of the transmitted beam with respect to each 

material in the sample can be measured and used to reconstruct the distribution of the related 

material within the sample. Nevertheless, since low-density materials such as the mixture of carbon 
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conductive and polymeric binder, have low attenuation, their contrast compared to pores in final 

images is weak. Consequently, image analysis, especially the segmentation step, is challenging, 

and in most studies, CBD and pores cannot be resolved. 

Besides the attenuation contrast information, XCT also probes the phase contrast information, 

which relates to the decrement of the refractive index, 𝛿. Since it can be a thousand times greater 

than its absorption factor, phase-contrast between weakly attenuating materials is enhanced. A 

variety of phase retrieval techniques have been developed. Among the most widely used are 

Holotomography,[59,60] and Zernike phase contrast.[63,66] However, as the mapping of 𝛿 relies on 

the measurement of interference effects, at least spatially coherent X-ray sources are required for 

phase-contrast tomography. 

The holotomography technique used in Chapter IV and developed by Cloetens  et al.[60] at 

European Synchrotron Radiation Facility (ESRF) allows to retrieve the phase quantitatively and 

get back to absorption-like images. Practically, it consists in acquiring four data sets at four focuses 

to sample distances (D11, D12, D13, D14 in Figure II-5b). This four distance scheme is justified by 

the fact that a spatially coherent X-ray beam illuminating a phase object will extinct some spatial 

frequencies in the projections, depending on the effective propagation distance.[67] Based on these 

four data sets, a numerical scheme allows the optical phase to be retrieved giving a single 

absorption-like image at the highest magnification, corresponding to the distance D11.  

Zernike phase contrast originally proposed by Zernike[66] in 1935 introduces a phase shift 

between scattered and non-scattered X-rays by inserting a phase ring located after the zone plate. 

The interaction of the phase-shifted non-scattered and scattered X-rays from the sample produces 

an image in the detector plane that has the appearance varying with the phase shift of the sample 

structures. As a result, the contrast between low attenuating materials having different phase shifts 

can be improved and enhance the appearance of edges and interfaces within the sample. 

While µ-XCT offers the capability of analyzing large volumes such as the visualization of an 

entire device,[57] nano-XCT provides a spatial resolution below 100 nm allowing to access 

properties at a micro-scale with high reliability.[46,59] Depending on the materials, the trade-off 

between an appropriate resolution and a large volume (i.e., the representativeness) needs to be 

considered to obtain reliable results. The principles and applications of modern X-ray tomography 

are discussed in great detail in [64] [65]. 

II.4 Li-ion Battery Modeling  

In this section, the battery modeling is introduced. Numerical modeling to understand battery 

performance has a history of more than 50 years. The battery model categories vary widely 

depending on the applications of interest, they can be classified by either physics-based models or 

empirical models, but also by their length-scale/time-scale, e.g., from quantum chemical 

calculations of material properties, through continuum performance models, and to techno-

economic analysis of markets.[68,69] 
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Figure II-6. The spectrum of battery modeling. Models address one of four “why” questions using 

appropriate paradigms—the “how.” Length and timescales of interest are associated with each 

corresponding paradigm; sometimes, these are (somewhat subjectively) also categorized into micro, meso, 

and macroscale. Each of these paradigms can be implemented using physics-based and/or data-driven 

technique. Source: Howey et al.[68] 

In general, the model-based approach can be performed cheaply and quickly, which provides 

a straightforward tool to explore wide new hypothesis or usage scenarios. The insights obtained 

from the models can be subsequently validated with well-defined experiments. In contrast, for the 

same achievements, the experimental approach requires a new experiment to be run for every use 

case of a battery; which, in turn, costs significant time and resources.  

In addition, physics-based models allow for a detailed interpretation of the experimental 

results, as they are able to quantify the contributions of different phenomena involved during the 

battery operation. They provide further understanding on material behavior and performance-

limiting processes (e.g., transport or kinetics), which allows the optimization of the electrode 

design to improve the performance. 

However, one crucial part of the numerical model in general, and physics-based models in 

particular, is parameterization. To get relevant quantitative conclusions about the contribution of 

different processes to the electrode performance, it is of particular importance to have an accurate 

set of parameters for the system under investigation. In most works dealing with physics-based 

models, values from supplementary literature sources are frequently used for some parameters; 

while some other parameters are fitted or even guessed. Without a well-determined set of 

parameters, the investigation using a model-based approach can quickly end up being a fitting 
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exercise. It can lead to repeated mistakes and the propagation of inappropriate assumptions. 

Consequently, the potential insights of identifying performance-limiting factors may be 

compromised. 

Nevertheless, performing experiments in which the intended parameters can be accurately 

identified is a non-trivial issue. In chapter III, we highlight the fact that an appropriate method 

needs to be used to determine the right parameter that matches the reality used in the model, 

through the case of the tortuosity factor. 

In this dissertation, a parametrization is carefully carried out to characterize first the NMC 

materials, then each of four industry-graded electrodes. Then, the experimental discharge 

capabilities of these electrodes are validated against simulations obtained from physics-based 

macro-homogenous models. Based on the well-known Newman P2D model, which Newman’s 

research group develops at University of California Berkeley, USA[70], a new model that considers 

the effects of AM agglomerate formation is developed. It demonstrates to be more suitable to 

represent the experimental results for the set of electrodes studied in this work.  

II.4.1 Newman P2D model 

Newman P2D model is a physics-based model of the anode/separator/cathode elementary 

sandwich. The model equations and various model features are described in detail in [2,71–75]. In 

this dissertation, only the basic model features are described, for the sake of conciseness. The 

model is based on the porous electrode theory. That is, the PE is treated as a superposition of two 

continua that are considered to coexist at every point within the electrode. There is one continuum 

representing the solid mixture including AM, conductive carbon, and polymeric binder, and 

another one representing the liquid phase (electrolyte). Moreover, the exact geometry details of all 

the particles and pores in the electrode is disregarded, as they are considered as small enough 

compared to the volume element dimensions. Thus, each coexisting phase is ascribed macro-

homogenous parameters, as described previously. 

The model is a 1D + 1D (or P2D) model, i.e., there is a dimension 𝑥 across the sandwich 

(“macro” model), and a radial dimension 𝑟 along the AM particles that are assumed spherical and 

isotropic (“micro” model).  

In the “macro” model, an electronic current density 𝑖1 flowing across the PE thickness in the 

solid phase is represented by Ohm’s law, while an ionic current density 𝑖2 flows similarly in the 

liquid phase and is expressed according to a Mac-Innes equation, that depends on both potential 

and salt concentration gradients in the liquid electrolyte. The mass balance is applied on the anion 

(e.g., PF6
−), which has an identical concentration as the cation by virtue of electroneutrality. The 

anion flux density is treated with concentrated solution theory. The foundation of concentrated 

solution theory is the Onsager-Stefan-Maxwell multicomponent transport framework. In these 

equations, 𝑅 is the ideal gas constant, 𝑇 is the absolute temperature, 𝑡+
0  is the transference number 

of lithium ions in the electrolyte with respect to the solvent velocity, and 𝑐2 is the salt concentration 
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in the electrolyte.  These two current densities are linked through the so-called pore-wall flux of 

Li, 𝑗n, representing the rates of the electrochemical reactions at solid/liquid interface, expressed 

with Butler-Volmer kinetics. 

In the “micro” model, given AM is a good electronic conductor, the Li concentration 

distribution within the AM particles is obtained by solving for a mass balance on “neutral” Li, i.e. 

the <Li+,e-> neutral combination. If volume changes in the solid are negligible, and the 

thermodynamic factor is taken as unity as a first approximation, the material balance boils down  

to Fick’s second law. 

The “macro” model connects with the “micro” model through the pore-wall flux of Li+. The 

“micro” model represents the particle scale, while the “macro” model relates to the microstructural 

properties of the electrode. Thus, if the “micro” model can accurately represent the particle 

behavior, one may want to study the “macro” model to optimize the electrode design. 

Figure II-7 summarizes all the equations and the boundary conditions of the Newman P2D 

model.  

 

Figure II-7. Elementary sandwich used as the basis for Newman P2D model, which was developed 

by Newman’s research group in the 1990’s.[70] Model equations and boundary conditions are provided in 

the table. Note that boundary conditions for the bottom equation (spherical diffusion in the active particles) 

are not indicated, for conciseness. 

If a lithium foil electrode were used in place of a negative insertion electrode, a half-cell is 
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modeled with a porous cathode and a porous separator layer. The cathode is in contact with the 

separator on one end and with the current collector on the other end. Electric current is applied at 

the interface of the cathode and the current collector. 

In the Newman P2D model, a total of ca. 20 parameters is required to compute the simulations. 

Overall, there are six independent variables, namely the salt concentration in a binary 

electrolyte, 𝑐2; the solid-phase Li concentration within the AM particle, 𝑐s; the pore-wall flux, 𝑗n; 

the ionic current density, 𝑖2; the electric potential of solid phase, Φ1; the electric potential of liquid 

phase,  Φ2; which are defined at each node along the elementary sandwich at each time.  

Whenever a constant solid diffusion coefficient is used, methods like the Duhamel 

superposition[72] or the polynomial approximation[77] are frequently implemented to solve for solid 

diffusion and obtain the solid Li concentration at the particle surface. With a variable diffusion 

coefficient, the full solid concentration profile along the radial dimension of the active particle is 

solved numerically at each node of the sandwich, which makes the calculation more 

computationally intensive. A control volume formulation is used to solve the set of ordinary and 

differential equations across the sandwich. More details on the solution procedure may be found 

in.[2,71,75] 

  



28 
 

Nomenclature 

 

𝑎𝑖 m𝑖
2/mPE

3  
Interfacial surface area between phase 𝑖 and the liquid 

phase at porous electrode scale 

𝑐s,surf mol/mAM
3  

Concentration of intercalated Li at the surface of the 

AM particle within porous agglomerate 

𝑐s,T mol/mAM
3  Total concentration of active materials  

𝑐s,max mol/mAM
3  

Maximum concentration of intercalated Li in active 

materials particle 

𝑐s mol/mAM
3  

Intercalated Li concentration within active materials 

particle 

𝑐𝑖,0 mol/m3 Solvent concentration in phase 𝑖 

𝑐𝑖 mol/m3 Salt concentration in a binary electrolyte in phase 𝑖 

D1 m Focus to sample distances 

D m2/s 
Thermodynamics diffusion coefficient of a binary 

electrolyte 

𝐷 m2/s 
Measured diffusion coefficient of a bulk binary 

electrolyte 

𝐷eff,𝑖 m2/s 
Effective salt diffusion coefficient of the liquid phase 

in phase 𝑖 

𝐷s m2/s 
Diffusion coefficient of Li in active materials 

particles 

𝐹 C/mol Faraday’s constant 

𝑓±  
Mean molar activity coefficient of a binary 

electrolyte 

𝑖𝑖 A/mCC
2  

Current density in phase 𝑖 in the Newman P2D model 

or at porous agglomerate scale in the PApa model 

𝑖n
0 A/mASA

2  
Exchange current density at the active surface area 

across porous electrode  

𝐼app A/mCC
2  Discharge current density 

𝑗  Imaginary unit 
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𝑗n mol/(mAM
2 ∙ s) 

Pore-wall flux between active material particles and 

liquid phase in the Newman model 

𝑘0 mol/[m2 ∙ s ∙ (mol/m3)1.5] Reaction rate constant of the active materials 

𝐿PE µm Porous electrode thickness 

𝐿sep µm Separator thickness 

𝐿elyte m Diffusion length in electrolyte 

𝐿p m 
Shortest pathway (geodesic distance) travelled by a 

species 

𝐿cv m Straight distance between two points 

𝐿s m Diffusion length in solid phase 

𝑚 kg Mass 

𝑀 kg/mol Molar weight of salt in a binary electrolyte 

𝑛  Refractive index 

𝑁⃗⃗⃗𝑖 mol/(m2 ∙ s) Flux density of species 𝑖 in the Newman P2D model 

𝑅 J/(mol ∙ K) Ideal gas constant 

𝑅 Ω 
Sample resistance determined by the µ4-probe 

experiment 

𝑟 m Radial dimension along the active materials particle 

𝑟P µm Radius of an active materials secondary particle 

𝑇 K Absolute temperature 



30 
 

𝑇AM s Characteristic time of solid diffusion 

𝑇elyte s 
Characteristic time of ionic transport in the 

electrolyte 

𝑡 s Time 

𝑡+
0   

Transference number of Li+ in the electrolyte with 

respect to the solvent velocity 

𝑈 V Equilibrium potential of the AM vs Li 

𝑣⃗0 m/s The solvent velocity 

𝑤𝑖  Weight fraction of phase 𝑖 

𝑥 µm Dimension across the sandwich 

𝑥0  Initial Li stoichiometry 

Greek symbols 

Φ𝑖 V Electric Potential of phase 𝑖  

𝜇𝑖 J/mol Electrochemical potential of species 𝑖  

𝜌i kg/m3 Density of phase 𝑖  

𝜏Bruggeman  Tortuosity Factor by Bruggeman 

𝜏e  Electrode tortuosity factor 

𝛽   Absorption coefficient 

𝛿  Decrement of the refractive index 

𝜀  Porosity 
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𝜅 S/m Ionic Conductivity of the electrolyte  

𝜎 S/m Electronic Conductivity of the solid phase  

𝜏  Tortuosity factor 

Subscripts 

0 Solvent 

1 Solid Matrix (Active Materials + Additives) 

2 
Liquid Phase (Electrolyte) in the pore space (Newman model) or in macro-

pores (PApa model) 

+ Cation of the Salt 

− Anion of the Salt 

AM Related to the Active Materials 

eff Effective properties 

PE Belong to the Porous Electrode 

el Electronic in the solid phase 
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Chapter III . Electrode tortuosity factor for quantifying transport in 

porous Li-ion battery electrodes 
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III.1 Introduction 

Among all the macro-homogenous parameters, the tortuosity factor determination presents a 

great challenge as they are an emergent global property of the microstructures’ interaction with a 

particular transport process and, as such, require either a transport experiment or a simulation. The 

focus of this chapter is on the determination of tortuosity factors relevant to LiB electrodes. For 

this purpose, we choose to work with the standard definition for the tortuosity factor, 𝜏e, as stated 

in the Eq. II-5.  

The following two experimental techniques are used in the field of electrochemistry to 

determine the tortuosity factor of electronically insulating porous materials, such as battery 

separators. Both techniques require the porous medium to be infiltrated with an ionically 

conductive salt (of known bulk conductivity (𝜅) and diffusivity (𝐷)), and then placed between two 

electronically conductive plates to form a cell.  

The first technique is known as the “restricted-diffusion method” (RDM)[1–3] and is based on 

measuring diffusion in the time domain. For this technique, the plates on either side of the cell 

must be electroactive with respect to one of the ions in the electrolyte. A bias is applied between 

the plates, establishing a constant current, which in turn generates a linear salt concentration 

gradient across the cell. When the bias is removed, the salt gradually diffuses back to a uniform 

distribution, which is known as the relaxation step. By monitoring the salt diffusion during the 

relaxation step at sufficiently long times,[2] which can be done by following the decay of the 

electrochemical potential at each plate, using reference electrodes, one can determine the effective 

salt diffusion coefficient, 𝐷eff, within the porous medium. The experimental measurement of a cell 

potential can also be compared to a simulation with a numerical transport model to determine the 

effective salt diffusion coefficient within porous medium. In the case of an infinite dilute solution, 

the relation between the flux and the gradient concentration can be described by Fick’s law. 

The second technique utilizes the frequency-domain, where the high frequency impedance 

response of this symmetrical cell is measured (referred to as SCM for convenience in this chapter). 

By making the assumption that this impedance is caused entirely by the migration flux passing 

through the electrolyte filled pores, the effective ionic conductivity of the electrolyte filled pore 

network, 𝜅eff, can then be calculated using Ohm’s law.  
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Figure III-1. Schematics of experimental setup and the physics underlying the two methods for 

determining tortuosity factors of porous electrodes: a. eRDM[4] , and b. eSCM[5,6]. The arrows show 

different conducting pathways travelled by charged particles(ions/electrons).  

Crucially, the two commonly used methods described above cannot be applied directly to 

electronically-conducting porous materials, such as battery electrodes. This is in part because the 

material would provide an electronic short-circuit path between the two plates, but also because 

the presence of the electronic conductor would interact with the potential field, which undermines 

the simplified assumptions in the analysis. However, the following two adapted version of these 

methods have been proposed: 

The first method was developed by Thorat et al.[4] and is a time-domain approach based on 

RDM, but with two key differences. The cell used for this experiment requires a “free-standing” 

electrode, which is typically obtained by simply peeling the porous electrode material off the 

current collector foil. This electrode is then placed between two separators (i.e. electronically 

insulating and permeable materials) to electronically isolate it, before sandwiching these three 

layers between two lithium foils, as shown in Figure III-1a. Similar to RDM, a bias is applied 

causing a steady-state current in order to establish a salt concentration distribution across the cell. 

The use of the transport model is preferred, as it facilitates the decorrelation of the contribution of 

the porous electrodes layer to the overall transport from other porous layers (two separator layers). 

The experimental measurement of a cell potential is compared to a simulation with a numerical 

transport model to determine the effective salt diffusion coefficient within porous electrodes. Here, 

we refer to this variant of the RDM for electronic conductors as eRDM.  

The second approach was developed by Landesfeind et al.[5] and Malifarge et al.[6] and, similar 

to SCM, it is a frequency-domain technique.  It employs a conventional symmetrical cell setup, as 

shown in Figure III-1b, where pair of identical electrodes (backed by CC foil) are placed either 

side of a separator. In order to extract information about the pore phase only, a blocking condition 

is imposed at the electrode surface, preventing insertion of the mobile ions. This can be achieved 

through either the use of a non-intercalating electrolyte salt and/or by using electrodes in a non-
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intercalating state (e.g. fully lithiated/delithiated). EIS is then used to extract an impedance 

spectrum[7], from which information about the processes inside this cell can be extracted. A more 

involved analysis is required than for the simple SCM method and is described in more detail later 

in this article. We refer to this symmetrical cell method for characterizing transport in porous 

electronic conductors as eSCM. 

A recent comparison of these two methods for commercial battery electrodes was made by 

Pouraghajan et al.[8], which showed a reasonable agreement between these two approaches in cases 

where both of them can be implemented. Nevertheless, in many cases[8],  the eSCM seems to be 

faster and more convenient to implement than the eRDM, which requires a current-collector-free 

electrode along with precise determination of the bulk diffusion coefficient of the liquid 

electrolyte. 

Besides electrochemical methods for quantifying the tortuosity factor mentioned above, 3D 

imaging techniques (e.g., FIB-SEM, µ-XCT or nano-XCT) can be used to capture the geometry of 

these porous electrodes at the nanoscale. Although the imaged volume is generally very small in 

comparison to the cell, if it is large in comparison to the pore features, then this data may still be 

used to extract average morphological metrics that are representative of the whole electrode. 

However, the lack of capability in capturing either the fine features (due to the resolution) or 

different phases (carbon-binder domain is rarely well captured with XCT based on attenuation 

contrast) in the tomographic data can be a source of errors that impacts the quantification of 

microstructural properties, in particular interfacial area.[17,18] 

Among various tools for analysing tomographic data, TauFactor, developed by Cooper et 

al.[19], is an open-source MATLAB application that calculates tortuosity factors directly from 

segmented image stacks, as well as volume fractions, surface areas and other microstructural 

properties. To calculate the tortuosity factor, TauFactor uses an over-relaxed iterative approach to 

solve the steady-state diffusion equation of species in an infinitely dilute solution between two 

fixed value boundaries in a porous medium. However, it is worth stating that this simple definition 

of the tortuosity factor does not account for the multi-physics processes occurring in a real 

electrochemical system; so, for example, there are no contributions to ionic transport from electric 

migration or convection and no double-layer formation at solid/liquid interface.[20] It is the 

simplicity of this approach which allows for the system to be solved quickly, and this, in turn, has 

made this method of tortuosity factor determination the standard when using tomographic data.  

In this chapter, we develop a new frequency domain solver within the TauFactor framework 

in order to replicate the eSCM approach and understand why it can give different results to those 

derived through eRDM. Specific cases of 2D and 3D microstructures are studied to showcase the 

crucial difference between the two methods and highlight cases where one approach might be 

preferred. 
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III.2 Results  

Tortuosities calculated by the two approaches are denoted: 𝜏 for a tortuosity factor derived 

from the conventional eRDM approach and 𝜏e for “electrode tortuosity factor” determined using 

the eSCM. Furthermore, MacMullin Numbers 𝑁M and 𝑁M,e are defined similarly. 

The conventional definition of tortuosity factor, 𝜏, considers the steady-state flux of species 

from one side of the control volume (CV), through the pore network and out the opposite side. In 

this work, we describe pathways connecting between these two sides as “through-pores”. Pores 

that start from the separator side and reach the current collector side would count as through-pores 

(i.e. the current collector is not counted as part of the porous electrode). Those pores that either do 

not connect across the full thickness or have negligible contribution to the steady-state diffusive 

flux (see Figure III-2) are denoted as “dead-end pores” and their presence would cause an increase 

in the value of 𝜏. 

However, in the case of battery porous electrodes, “dead-end” pores may make a significant 

contribution to the transport. This is because battery electrodes do not require transport all the way 

through the pore structure, but rather the combination of ion transport from the separator (through 

the liquid) to the solid/liquid interface and electron transport from the current collector (through 

the solid) to the solid/liquid interface. This suggests that the conventional tortuosity factor, 𝜏, may 

be a misleading metric when trying to predict battery performance.  

By simulating the eRDM and eSCM concepts to extract both 𝜏 and 𝜏e from a variety of 

microstructures, we will demonstrate that 𝜏e is more relevant to predicting the performance of 

battery electrodes. 
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III.2.1 Simulations of 2D microstructures 

 

Figure III-2. Illustration of different types of pores that can be present within porous electrodes 

and their effects on the tortuosity factor 𝝉 and McMullin number 𝑵𝐌 determination. The simulated 

steady-state scalar distributions are shown as well as the normalised flux maps. Case A: microstructure with 

five different pores types: Gray - through pores;  Blue - dead-end pores for eRDM, that may or may not be 

available for eSCM, depending on the orientation of the CV; Purple - dead-end pores for eRDM that branch 

from the through pores; Green - dead-end pores like Blue but could become through pores if the CV was 

larger as it extends out the side of the CV; and  Red – small corner regions having low flux. Case B: 

microstructure with only through-pores (gray) based on low flux threshold. The microstructure size is 

256x256 pixels. 

In Figure III-2, we first consider an example to clearly showcase different types of pores that 

are investigated throughout this work. Based on the diffusive flux through the porous structure at 

steady-state (simulated with TauFactor), two main types of pores, as mentioned above, through 

pores and dead-end pores can be identified along with the quantification of their volume fraction 

respectively. Case A consists of both through and dead-end pores. At steady-state, only percolated 

pores are shown, in which there are pore regions that have a uniform concentration. Thus, these 

regions of pores contribute negligibly to the diffusive flux, as can be seen in the flux density map 

with almost no flux there. Since the diffusive flux is expected to penetrate through the porous 

microstructure principally by through-pores rather than dead-end pores, we apply an arbitrary 

threshold value (2% of maximum) to the flux density map at steady-state to label pores as 

“through” or “dead-end”. Then, among the dead-end pores, we divided them into subclasses of 

pores (differentiated by color). Once every pore is labeled, case B shows a microstructure that 

contains only the through pores (in gray) previously presented in case A. It’s interesting to note 

that the value of 𝑁M is the same for cases A and B, since the transport through these two systems 

would be essentially the same, as the pores that were removed make a minimal contribution to 

transport through the system.  
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Figure III-3. Comparison of the two approaches applied to the simplest cases. a. Simulated EIS of 

eSCM of the two 2D microstructures containing either only straight through-pores (red) or only straight 

dead-end pores (blue) along with the corresponding fits with Eq. III-3. The inset image displays the zoom 

at the mid-frequency region. The 45° slope in dashed line is used to guide the eyes; b. The geometry of two 

microstructures with 𝜏e and 𝜏 derived from the eSCM and eRDM simulations. Box colour corresponds to 

the colours in the Nyquist plot. The light blue band in the middle of the SCM geometries represents a 

separator with a direct pore connecting the two sides. The microstructure size is 100x100 pixels, the pixel 

size equals to 1 µm. 

 

Figure III-4. Comparison of two approaches with 2D microstructures. a. the four 2D 

microstructures are presented along with τ, NM given by eRDM and τe, NM,e given by eSCM in each case; 

the current collector “CC side” and the separator “Sep side” are labelled; b. simulated EIS of eSCM of the 

four microstructures along with the fit using Eq. III-3, the inset graph shows a zoom on the mid-frequency 

region to highlight the deviation of the simulated EIS shape from the conventional TLM response. The 45° 

slope in dashed line is used to guide the eyes. The microstructure size is 300x300 pixels, the pixel size 

equals to 1 µm. 
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The difference in terms of concept and physics between the two methods, eRDM and eSCM, 

is first illustrated through a very simple 2D example, as shown in Figure III-3b, in which the 

microstructure has either only straight through-pores or only straight dead-end pores. 

With only through-pores, the two approaches give the same value of 1 for the tortuosity factor, 

as expected for straight pores. Furthermore, this result helps to cross-check the symmetric cell 

model implemented in TauFactor. On the other hand, for a 2D structure based on a dead-end pore, 

the tortuosity factor values found by the two methods strongly contrast with each other: an infinite 

tortuosity factor results from the eRDM, whereas the eSCM yields an electrode tortuosity factor 

value less than 1.  

Microstructures made of simple pore networks containing both through and dead-end pores 

are studied next, as shown in Figure III-4. The MacMullin number 𝑁M in Eq. II-4 is also reported 

here since it describes the effect of a porous microstructure on the behavior of the liquid phase 

within the pore network[5,21,22] and as such it also appears in the Newman P2D model through the 

mass balance in the liquid phase and the Mac-Innes equation for ionic transport.[23] 

A template geometry is created in which there is only one through pore (case A in Figure III-

4). Then, three other geometry (cases B, C, D) are derivatives of geometry A through adding a 

constant volume fraction of dead-end pores (𝜀dead = 6%). The dead-end pores are all branched 

from the through pore. They are intentionally made to be different in terms of morphology from 

one structure to another, which leads to different value of 𝐴∗. The following four structures are 

investigated: 

1. Only one main through pore and no dead-end pore (A). 

2. Many short dead-end branches in addition to the main through pore (B). 

3. Dead-end branches with low microstructural active surface area in addition to the 

main through pore (C). 

4. A few long dead-end branches in addition to the main through pore (D). 

The four microstructures are intentionally designed to have the same value of the conventional 

MacMullin number, 𝑁M. In addition, the three derivative microstructures each have the same 

conventional tortuosity factor, 𝜏, as each other. The microscopic active surface area 𝐴∗ is 

represented as a relative value 𝐴re
∗  to that of microstructure A for ease of comparison. The electrode 

tortuosity factor, 𝜏e, is then expected to be impacted only by the dead-end pores in different ways 

in each situation according to their morphology. It can lead to more pronounced discrepancies 

between the two methods, so that we can unveil the fundamental difference between them.  

As shown in Figure III-4a, the three geometries B, C and D have the same tortuosity factor 

value (higher than for geometry A), despite having quite different morphologies of added dead-

end pores. This result highlights that the dead-end pores have no impact on the regular tortuosity 

value given by eRDM, which is consistent with the fact they do not contribute to the transport 

through the structure at steady state. In fact, it should be noted that the diffusional flux (from which 



45 
 

conventional tortuosity is calculated) is inversely proportional to the MacMullin number (i.e. the 

same in each case). So even though the dead-end pores do not contribute to species transport at 

steady-state, their presence does have an effect on the determination of tortuosity, via their 

additional volume fraction. The identical values for the MacMullin number found by eRDM would 

imply that the effect of these porous microstructures (mostly the dead-end pores), on the behavior 

of transport through the pores, is the same, regardless of their different pore network morphologies. 

However, this interpretation would be misleading when modelling battery electrodes, as will be 

discussed below. 

Let us now compare the tortuosities from the eSCM to those of the eRDM described above. In 

geometry A, when there is only a main through-pore and no dead-end pores added, the tortuosities 

found by both methods have a good agreement (<1% for relative difference), despite measuring 

quite different concepts (i.e. flux between parallel boundaries and flux from one boundary to the 

solid/liquid interface).  

As expected, for cases B, C and D, we find differences in the tortuosities and MacMullin 

numbers found by the two methods. As discussed, eSCM is a relative measure of how difficult it 

is to access the solid/liquid interface from one of the boundaries. Firstly, microstructure A has the 

lowest value of τe, so we can think of its surface area as being easy to access, although it does not 

actually have much surface area available. Microstructure B has a highest interfacial surface area, 

originating from many short dead-end pores. This surface area is slightly harder to access when 

compared to microstructure A, which is reflecting in the value of τe; however, it does have over 4 

times as much area available. Microstructure C also has fairly short dead-end pores, but they are 

much bulkier and there are only two of them. Half of all the additional new surface area is far from 

the separator, hence a high value of τe is observed, and only a modest additional surface area was 

added anyway. Lastly, microstructure D has a similarly large increase in surface area to case B, 

but now very long pores must be travelled to access it, so it has the highest tortuosity factor. 

Importantly, the value of A∗ can be observed in the characteristic frequencies of each 

microstructure through Eq. III-5. The microstructure B and D have the highest values of A∗ among 

all the microstructures, meaning that more time is required to saturate their capacitive surface and 

hence lower characteristic frequencies are observed.  

Figure III-4b also contains an inset showing a detailed view of the medium-to-low frequency 

region (NB. The high frequency offset on the real axis results from a separator spacer between the 

two electrodes as illustrated in Figure III-3). As can be seen, for cases B and D, the simulated 

impedance spectra strongly deviate from the expected shape for the TLM in this region (i.e. 45° 

slope). The shape of this region is a function of the accessible surface area per unit penetration 

depth, which explains why A and C are initially identical. Such a signature on the impedance 

spectra, although being only related to the microstructure, could be misinterpreted for an additional 

electronic/electrochemical process (e.g., contact resistance between electrode film and current 

collector or between particles) in experimental symmetric cell impedance measurements. 
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The discrepancy between τ and τe in the results above should not be surprising as the two 

methods are measuring distinct (but in some cases related) properties of the microstructure. 

Nevertheless, a key conclusion from the results reported here is that in the case of porous electrodes 

(i.e., where the pores are pathway for charged species to reach the electrochemical surface area), 

the more conventional eRDM approach suffers from some key conceptual issues compared to the 

eSCM approach. In particular, the fact that through-pores and dead-end pores both do participate 

in the ionic transport during electrode operation, because electrochemical reactions occur at the 

interfacial area of these pores contrary to only through-pores in the case of eRDM. Stated more 

plainly, a battery electrode does not need any pores to percolate all the way from the separator to 

the current collector in order to function, although this non-percolating scenario would give a value 

of τ = ∞ if measured with eRDM. Hence, the electrode tortuosity factor, τe, obtained from the 

eSCM seems to be a more appropriate metric to characterize porous electrodes than the tortuosity 

factor, τ, as eSCM more closely resembles how an actual battery electrode works. However, in the 

case of an electrode whose particle/feature size was much smaller than the electrode thickness and 

therefore where the conventional tortuosity factor could be extracted from a subvolume, the eRDM 

approach may still have some relevance, though it would still suffer from incorrectly accounting 

for the impact of dead-end pores. Thus, for battery macroscopic models such as Newman P2D 

model, the electrode tortuosity factor τe should be preferred over the conventional tortuosity factor 

τ during the parametrization step. 

Interestingly, the present results can also reveal information about the likely effect of certain 

pore morphologies on power performance. For example, if we consider geometries A and B, even 

though both microstructures show a similar NM and Rion, the accessible interfacial surface area of 

pores is not the same, since microstructure B has also the dead-end pores in addition to the through 

pore. This means that the specific electrochemical active surface area of the microstructure can be 

increased while keeping a low NM, which may improve power performance. 
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III.2.2 Simulations of 3D microstructures 

 

Figure III-5. Comparison of two approaches using two numerically generated 3D 

microstructures. Case A: microstructure with 2 µm particle size and 𝜀 = 35%. Case B: microstructure 

with 5 µm particle size and 𝜀 = 20%. For each case, a plot shows simulated EIS of eSCM along with the 

fit using Eq. III-3. Each plot contains an inset showing the resulting electrode tortuosity factor 𝜏e and the 

corresponding symmetric cell configuration. The cross-section and the tortuosity factor 𝜏 of these 

microstructures given by the eRDM are also presented. The pore networks separated into through-pores 

and dead-end pores are shown. Here, only open pores (connected pores) that possess less than 2% (arbitrary 

threshold value) of the total flux density are considered as dead-end pores. The threshold value was set to 

take into account the dead-end pores having either no flux or low flux. The microstructure size in case A is 

100x100x100 voxels, in case B is 50x50x50 voxels, and the voxel size is 250 nm. 

In this section, we examine 3D microstructures in order to investigate more realistic electrode 

geometries. Figure III-5 shows simulations performed on two 3D microstructures that have small 

and larger particle size with porosity 𝜀 = 35% (case A) and 𝜀 = 20% (case B), respectively. For 

both cases, the tortuosity values were calculated using the two methods and do not show a 

substantial difference.  

Regarding case B, Figure III-5 shows that there is a deviation of the impedance response from 

the idealized response of the TLM. As mentioned in the previous section, this deviation results 

from variations in the available surface area per unit penetration depth and as such can be used to 
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indicate one of two relevant concepts. Either the volume being simulated is too small (compared 

to its characteristic features) to be considered representative of the electrode as a whole; or the 

microstructure itself is simply not homogenisable (e.g. a graded electrode) and standard porous 

electrode theory cannot be applied[23,24]. Compared to case A, the particle size in case B is larger, 

thus the pore details in case B are no longer at a size negligible compared to that of the control 

volume, suggesting it may not be representative. Even if the full thickness of the electrode is 

already captured, increasing just the area (i.e. dimensions parallel to the current collector) will also 

allow for a greater degree of averaging to occur. For example, both the volume fraction and surface 

area at each distance increment from the current collector may approach a constant value if a large 

enough area was observed, at which point the simulated EIS response is expected to get closer to 

the idealized impedance response given by TLM or Newman P2D model. 

This work clearly illustrates how the simulated EIS spectrum for a symmetric cell in blocking 

conditions could be used as a quantitative tool to assess deviation from the porous electrode theory 

for a particular electrode microstructure. Moreover, when symmetric cell impedance 

measurements deviate from the expected TLM spectra (as reported in ref. [5] [7]), this model can 

help us understand why.  

Figure III-5 shows two specific cases where there is a good agreement in the tortuosity values 

between the two approaches. The pore networks are highly percolated in both cases (>99%, as 

expected for packed spheres) and low flux dead-end pores only occupy a minority of the pore 

networks (4% and 8%, value given by TauFactor, for microstructures A and B, resp.), as illustrated 

in Figure III-5. Hence, the presence of dead-end pores has a minor effect on the tortuosity of the 

pore networks when eSCM is considered, allowing good agreement with eRDM. Importantly, a 

significant proportion of the dead-end pores are on the boundaries of the control volumes, 

suggesting that the dead-end fraction would have decreased further if a larger control volume were 

considered.  

These results show that in case of more realistic 3D microstructures, a reasonable agreement 

may be obtained between the two approaches. It might also shed light on the work of Pouraghajan 

et al.[8], since for commercial electrodes of typical porosity, the pore network might contain mostly 

through-pores with only small fraction of dead-end pores. 

Here, to contrast with the above example, one can imagine a microstructure that has very low 

porosity, which typically leads to a decrease in the percolation of the pore network and therefore 

a greater fraction of dead-end pores. In order to showcase this concept, a new 3D microstructure 

was generated having two adjacent layers with two different porosities. For 90% of the thickness, 

the porosity is set to 35%, but for the last 10% of its thickness, the porosity is abruptly reduced to 

20%, as shown in the cyan box in Figure III-6. The purpose of this is to close most of the pores in 

order to create an otherwise well-percolated network of long dead-end pores. As a result, some 

dead-end pores travel almost the entire thickness of the microstructure, thereby increasing the 

impact of dead-end pores, depending on its orientation relative to the separator/current collector. 

As such, a substantial difference between the tortuosities measure using the two methods is 
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expected. It is worth mentioning that the microstructure in this example is potentially an 

informative and relevant model for some real electrodes, where sub-optimal manufacturing 

processes can yield a larger electrode density in the region close to the current collector (excess of 

binder) or the separator (drying too quickly). 

 

Figure III-6. Illustration of a numerically generated 3D microstructure having two adjacent 

layers with two different porosities. 90% of volume has 𝜀 = 35%, while 10% (cyan box) of volume has 

𝜀 = 20%. a. The plot shows the simulated EIS of eSCM along with the fit using Eq. III-3. The plot contains 

an inset showing the cross-section of the two microstructures, that have either the lower porosity region at 

the current collector side (blue square) or at the separator side (red square), in symmetric cell configuration 

with the associated electrode tortuosity factor 𝜏e; b. The 3D microstructure that has lower porosity at the 

top is shown in detail along with the associated tortuosity factor 𝜏 given by eRDM simulation. The 

simulated flux density shows a lower density on the top corresponding with the lower porosity region. The 

pore network separated in through-pores and dead-end pores is also presented. The microstructure size is 

50x50x50 voxels, the voxel size equals to 1 µm. 

In Figure III-6, the volume fraction of dead-end pores in the microstructure (33%) is 

significantly larger than the microstructure in Figure III-5. These dead-end pores are also larger 

and better connected across the entire CV. Notably, at the top of the microstructure where the 

porosity decreases, there are less available through-pores allowing the flux of species all the way 

through (as measured in eRDM). This effect is illustrated in the the projection of simulated flux 

density from TauFactor, also shown in Figure III-6.  

Despite having a high conventional tortuosity factor, this pore network, with its relatively large 

fraction of long, well-percolated, dead-end pores, has most of its surface area easily accessible, 

when the dense region is next to the current collector. This is reflected in the fitted value of 𝜏e =

4.0, which is much lower than the value of 𝜏 = 7.4 calcuated for eRDM. However, when the 

microstructre is reversed 𝜏e = 11.9, which is even higher than the eRDM value, highlighting the 
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importance of directional microstructural information absent from conventional electrode models. 

As mentioned above, electrodes that are dried too quickly during manufacture can have a fairly 

dense layer of binder near the top, resembling this configuration, and they show poor rate 

performance. 

With the dense layer next to the current collector, the impedance spectrum closely matches the 

TLM response; however, this is not the case when the dense layer is next to the separator. As 

already noted, deviations in the medium frequency region of the spectrum are caused by variations 

in the available surface area per unit penetration depth into the sample. Thus, the spectrum shows 

more information about these variations the closer they are to the separator, which is also where 

they would make a greater difference to cell performance. Furthermore, following on from a 

discussion earlier in the paper, Figure III-6 demonstrates that the homogenisablity of an electrode 

also depends on the analysis direction, which reinforces the conclusions from the simple case of 

open or closed straight pores in Figure III-3. This directional dependence of the eSCM approach 

is very informative and clearly reflected in real battery performance data. As such, the electrode 

tortuosity factor given by the eSCM should be a more appropriate metric for exploring the interplay 

between the electrode microstructure and cell performance, as it is able to highlight considerations 

critically lacking from the conventional tortuosity factor as well as various geometric tortuosity 

definitions. The result in Figure III-6 suggests that graded-porosity designs (with the higher 

porosity layer at the separator side) could be used to increase the accessible capacity of an 

electrode. This design concept was also explored by Lu et al.;[25] however, their analysis was based 

on geometric tortuosities, which make many simplifications including ignoring path constrictions.  

Finally, to understand why 𝜏e should be used in conventional P2D Newman models instead of 

𝜏, it should be understood that single values of the volume fractions, specific surface area and 

tortuosity factor are typically used to describe a whole electrode. Although it is possible to make 

each of these values vary as a function of depth (producing a visible effect on the Nyquist plot), 

the conventional tortuosity factor used to quantify the “obstruction to transport caused by 

microstructure” refers only to the “flow through” scenario and so is not able to represent anything 

about how accessible the surface area is. The tortuosity is the only term used to encode 

microstructural complexity in the P2D model and as such 𝜏e should be used instead of 𝜏 as it more 

closely represents the scenario in question.  

III.3 Discussion 

Effective transport properties are critical for understand and modelling battery electrodes. Two 

main experimental methods exist for determining tortuosity factors (eRDM and eSCM), but they 

do not always agree. In this study, conceptual flaws are exposed in the use of the conventional 

tortuosity factor, 𝜏, derived from eRDM for characterising porous battery electrode materials. In 

particular, the fact that 𝜏 is based on steady-state flow all the way through a system, whereas in a 

real electrode, ions migrate into the electrode and then on to the active surface area of the electrode 

itself. A new frequency domain solver was written to simulate the more realistic transport scenario 
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of distributed surface capacitance. This solver (eSCM) has been integrated into the open-source 

TauFactor platform, which already contains a solver for the conventional tortuosity factor 

(eRDM), and both can be applied directly to segmented tomographic data.  

Various synthetic microstructures were generated and then analysed using both tortuosity 

paradigms to highlight the distinction between the two. Like 𝜏, the electrode tortuosity factor, 

denoted 𝜏e, may depend on both the orientation of the microstructure (i.e. for anisotropic 

materials); however, unlike 𝜏, the direction of the analysis can also impact 𝜏e, which is a concept 

of particular relevance to graded battery electrode microstructures.  

The simulation results from this work unambiguously reveal that dead-end pores are the 

principal cause of discrepancies between the two approaches. Unlike the conventional “flow 

through” tortuosity factor where direct pores are optimal (𝜏 = 1), it is demonstrated that 𝜏e can be 

less than one, suggesting systems where the interfacial surface area is even easier to access than 

that of straight pores. As such, eSCM should be preferred over eRDM to be used in Newman P2D 

model and/or a TLM to model porous electrodes. Electrochemical modelers should consider this 

important result at the stage of precise P2D model parametrization. 

Finally, this work demonstrates that the impedance spectra simulated from 3D microstructures 

may deviate from the conventional behavior simulated by a TLM or Newman P2D model in one 

of two scenarios: Either the control volume is not large enough to be representative of the material, 

or the system is not conventionally homogeneous, e.g. the accessible interfacial area varies 

significantly with depth. As well as a qualitative comparison, it is possible to conceive of various 

metrics that could be used to quantify the degree of agreement between simulated EIS spectrum 

of the symmetric cell and TLM fit, thus providing a direct way to assess the degree to which porous 

electrode theory applies to a particular electrode microstructure. 

All of these concepts are to be applied to real electrode microstructural data in a follow-up 

study exploring optimal electrode design. 

III.4 Methods 

As mentioned above, this work focuses specifically on tortuosity factor determination methods 

applied to battery porous electrodes. Two methods, eRDM by Thorat et al.[4] and eSCM by 

Landesfeind et al.[5] and Malifarge et al.[6]  are further described and compared in the following 

sections. 

III.4.1 Restricted diffusion method for porous electrodes (eRDM) 

Figure III-1a shows a schematic of the experimental setup. The cell is first polarized to generate 

a constant current. Under the applied current, cations are released at one electrode and 

diffuse/migrate through the three porous layers (separator/free-standing electrode/separator) 

before finally being consumed at the other electrode. The electric field also causes the electrolyte 
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anions to migrate; however, since the electrodes are blocking with respect to the anions, they 

accumulate at the positive electrode. This results in a salt concentration gradient across the cell, 

which in turn results in a concentration overpotential, and a cell potential gradient between two 

plates. The current is then interrupted and reference electrodes at each side monitor the cell-

potential decay during the so-called relaxation step.  

During the relaxation process, the migration/diffusion of the ions is obstructed by the porous 

microstructure of the electrode and separators. A numerical model can then be used to fit the cell-

potential decay behavior in order to extract the effective salt diffusion coefficient of the porous 

layers. For instance, a transport model based on the Mac-Innes equation in a concentrated solution, 

including migration and diffusion in the liquid phase, can be used.[4] The cell-potential behavior 

during the polarization step can also be simulated if the model takes into account the charge 

transfer process at anode and cathode. Hence, it requires knowledge of several intrinsic electrolyte 

properties rather than just its ionic conductivity, e.g. the transference number and the diffusion 

coefficient, and also the parameters related to the kinetic reactions at the Li foil interfaces. Finally, 

using the porosity and tortuosity factors of the separators (which must already be known), it is then 

possible to isolate the effect of the free-standing electrode and extract its tortuosity factor by 

numerical fitting. 

III.4.2 Symmetric cell method for porous electrodes (eSCM) 

The experimental setup for eSCM significantly differs from the eRDM approach and consists 

of a symmetrical cell with two identical electrodes facing each other with a separator in between, 

as shown in Figure III-1b. The method is based on electrochemical impedance measurement of a 

symmetric cell in order to determine the effective ionic conductivity of the electrolyte across the 

porous electrode, which is related to the tortuosity factor of the structure through Eq. II-4.  
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Figure III-7. Impedance theory of the eSCM method. a. An ideal impedance response of a 

symmetric cell in blocking condition (no faradaic process so 𝑧̃t becomes 𝑐dl which is pure capacitance of 

the double layer) along with the fit using the TLM represented in b., which allows the determination of 𝜏e. 

The dashed line is used to highlight the 45° slope of the medium frequency region. 

For tortuosity factor determination using eSCM, a so-called blocking (i.e. zero flux) condition 

is applied at the pore-wall, as no faradaic processes are occurring. In this manner, there is no 

contribution from charge transfer, or diffusion in either the liquid or solid phases. Another 

simplifying assumption is that the transport within the separator alone determines the high 

frequency intercept on EIS spectrum. This means that only processes within the porous electrodes 

themselves are the cause of the medium and lower frequency EIS data and the effective ionic 

resistance within the porous electrodes can be determined using a simpler model. The Nyquist plot 

in Figure III-7a shows an idealized impedance response of a symmetric cell in blocking condition. 

In the medium frequencies, a linear region with a nearly 45° slope results from the distributed 

capacitance of the double-layer throughout the porous electrode in combination with the ion 

migration required to access each region of the solid/liquid interface.[26–28] In the low frequencies, 

the impedance response tends towards a vertical line, typical of ionically-blocking behavior. 

A porous electrode can be represented by a structure with essentially straight-cylindrical pores 

of uniform diameter, which are homogeneously filled with electrolyte and have a uniformly 

distributed ionic resistance and double-layer capacitance per unit length. The electrode material is 

also considered to have uniformly distributed electronic resistance. This porous electrode can then 
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be macroscopically described by a uniform RC transmission line model (TLM), see Figure III-

7b.[29–31] The electronic resistance of the solid matrix of the electrode and the ionic resistance of 

the liquid phase are expressed by a serial connection of ohmic resistors, 𝑟el and 𝑟ion, respectively. 

In addition, there can be a faradaic and/or capacitive process taking place at the solid/liquid 

interface, which are described by the surface impedance elements 𝑧̃t. 

Hence, a TLM can be used to fit the symmetric cell impedance response, allowing for the 

determination of the effective ionic conductivity which is expressed through the effective 

resistance of the electrolyte 𝑅ion across the electrode[5,7]. This quantity can be further used to 

determine the tortuosity of the electrodes according to the following equation: 

𝜏e 

ε
=

𝑅ion𝐴CC𝜅

2𝐿PE
= 𝑁M,e            (Eq. III-1) 

where 𝑅ion = ∑ 𝑟ion; 𝐿PE is the electrode thickness (m); 𝐴CC is the macroscopic current 

collector area (m2); 𝜏e is the electrode tortuosity factor, which, as will be discussed later in the 

paper, is distinct from the conventional tortuosity factor; and 𝑁M,e is the Mullin number calculated 

with the electrode tortuosity factor instead of the conventional tortuosity factor. 

Here, we also introduce the relationship between different types of surface areas that are used 

throughout this work: 

𝐴∗ =
𝐴micro

𝐴CC
=

𝑎ASA𝐴CC𝐿PE

𝐴CC
= 𝑎ASA𝐿PE          (Eq. III-2) 

where the non-dimensional term 𝐴∗ is the microscopic active surface area of the electrode per 

unit of current collector area; 𝐴micro is the microstructural active surface area (m2); 𝑎ASA is the 

volume specific active surface area (mASA
2 ∙ mPE

−3).  

Landesfeind et al.[5] assumed that the effective electronic resistance of the solid electrode 

material is much lower than the effective ionic resistance of the electrolyte in the pores so that it 

can be ignored (i.e. 𝑟ion ≫ 𝑟el = 0). In practice, either a highly electronically conductive electrode 

(such as graphite) must be used, or the experiment should be carried out using an electrolyte with 

a low enough salt concentration to reduce its ionic conductivity.[5,18] The TLM equation that 

represents the impedance of a porous electrode can then be simplified to Eq. III-3:[5,31,32]  

𝑍̃PE = √𝑅ion ∙ 𝑍t coth (√
𝑅ion

𝑍̃t
) = √

𝑅ion

𝑗𝜔𝐴CC𝐶DL
coth (√𝑗𝜔𝐴CC𝐶DL𝑅ion)   (Eq. III-3) 

where 𝑍̃PE is the porous electrode impedance (Ω); 𝑗 is the imaginary unit; 𝜔 is the frequency; 

𝑍̃t =
1

𝑗𝜔𝐴CC𝐶DL
 is the total interfacial impedance (Ω), which, in blocking condition, becomes 𝐶DL =

∑cdlΔ𝐴∗, the interfacial double layer capacitance per unit current collector area (F ∙ mCC
−2); 𝐴∗ is 

defined in Eq. III-2, 𝑐dl interfacial double layer capacitance per unit microstructural active surface 

area (F ∙ mASA
−2 ). 
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Notably, given the assumptions above, one may realise that the mathematical description of 

TLM (Eq. III-3) reduces to that of a Finite-Space Warburg (FSW) element. Nonetheless, it is worth 

mentioning that the parameters governing the behaviour are clearly different. The intrinsic 

capacitances in the two models are not the same, i.e. surface scaling in Eq. III-3 instead of 

volumetric scaling in the case of FSW. 

The limiting values of the real and imaginary parts of 𝑍̃el as 𝜔 → 0 are shown as follows:[32] 

lim
𝜔→0

(𝑍̃PE
′ ) =  

𝑅ion

3
                 (Eq. III-4) 

lim
𝜔→0

(𝑍̃PE
′′ ) =  

−1

𝜔𝐴CC𝐶DL
               (Eq. III-5) 

From Eq. III-4, Rion can also be determined approximately since the length of the 45° sloped 

region spans across approximately Rion/3 along the real axis.[7] Likewise, Pouraghajan et al.[33] 

showed different methods to quickly estimate Rion that all provide a reasonable estimate with minor 

discrepancy as compared to using the fit of Eq. III-3. 

The impedance of the electrode is normalised for ease of comparison by using: 

𝑍̃PE
∗ = 𝑍̃PE

𝐴CC𝜅eff

𝐿PE
               (Eq. III-6) 

Malifarge et al.[6] developed a more general analytical expression of the symmetric cell 

impedance that takes into account an arbitrary electronic resistance of the conductive matrix. More 

recently, Pouraghajan et al.[33] developed a generalized TLM that takes into account additional 

possible sources of impedance, such as a contact resistance with the current collector, the charge-

transfer resistance and the electronic resistance of the electrode solid phase.  

To better fit the experimental results, the pure capacitance that represents the double layer 

charging/discharging at the solid/liquid interface can be replaced by the 𝑄S (F ∙ mASA
−2 ∙ s−(1−𝛾)), 

which denotes a  pseudo-capacitance, accompanied by an exponent 𝛾 in the constant-phase 

element (CPE). 

Furthermore, the electrolyte concentration is assumed here to be high enough and the 

interfacial area not too large such that we may neglect any significant depletion of ions due to the 

accumulation of charge in the double layer at the electrode/electrolyte interface. Under this 

assumption, in addition to the fact that no charge transfer is expected to take place, no 

concentration gradient is assumed to develop across the cell. Hence, the electrolyte concentration 

remains uniform throughout the cell. Electrolyte diffusion can thus be safely neglected with the 

present experimental setup.   

It is worth noting that when charge transfer is blocked in Newman P2D model, it simplifies 

down to the TLM[23,24,29,34], which is why the P2D model can also be used to fit the impedance 
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response of the symmetric cell in blocking condition.[6] However, it is restricted to the limiting 

case where the double layer is a pure capacitance (CPE exponent 𝛾 = 1 in the TLM). 

III.4.3 Numerical Methods – Simulation 

TauFactor is an open-source MATLAB application developed by Cooper et al.[20] for 

characterizing microstructure based on image data; including determining the tortuosity factors. In 

line with the conventional definition of the tortuosity factor, only simple Fickian diffusion is 

currently solved in TauFactor, which is only valid in certain cases, e.g. diffusion of species in an 

infinitely dilute solution within pores having electrically insulating walls (no double-layer 

formation). TauFactor uses an over-relaxed iterative approach to numerically solve Fick’s 

diffusion equation at steady-state in order to calculate the flux and hence the associated tortuosity 

factor. 

A diffusion simulation can be used to model effective steady-state electronic or thermal 

conductivity instead, by conceptually replacing the concentration gradient with a potential or 

temperature gradient respectively, as the mathematics is identical. 

To the authors’ knowledge, there is currently no numerical tool specifically for modelling the 

eSCM directly from 3D microstructural data. As such, this critical functionality has now been 

added to TauFactor as a tool for the battery community to highlight the fundamental differences 

between tortuosities determined by eRDM and eSCM. 

While an eRDM model must capture the diffusion of species all the way through a pore 

network between two parallel boundaries, eSCM considers the migration of a species from the 

walls of one porous electrode’s surface onto the surface of the other electrode (both having a 

double-layer capacitance). Consequently, there is an extra term that represents the double-layer 

charging/discharging at the solid/liquid interface within the porous electrodes. Furthermore, the 

geometry for the simulation now comprises a porous separator layer in between two identical 

electrode structures to be accounted for, instead of simply a passive (three-layers) porous structure 

as in the case of eRDM (see Figure III-8). The solid phase of the porous separator is considered to 

be inert, meaning there is no interaction with either the electrode solid phase or the liquid phase. 

In a future work, the 3D model of this symmetric cell structure may be simplified to just a “half-

cell”, which would be computationally less expensive. 
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Figure III-8. Illustration of the use of segmented tomographic data as input along with the 

governing equation and boundary conditions for: a. eRDM and b. eSCM simulation implemented in 

TauFactor. Voxels in blue represent the pore network, transparent voxels represent the solid phase. For 

eRDM,  Ĉ is the complex concentration of the diffusing species. For eSCM, there is a domain in between 

the two electrodes that represents the porous separator. Since there is no electrochemical reaction occurring 

in the system, 𝛷̃1 and 𝛷̃2 are simply the electron-conducting phase (solid) and ionic-conducting phase 

(liquid) electric potentials respectively; ω is the pulsation of the boundary stimulation; 𝑗 is the imaginary 

unit; cdl is interfacial double layer capacitance per unit microstructural active surface area. For both 

methods, Ω is the pore network domain in the system (in both electrodes and separator); 𝐧 is the outward 

pointing unit normal to each voxel face. The color of the equations corresponds to the domain where they 

are applied. Vectors are represented in bold. 

Along with tortuosity determination, Cooper et al. also implemented in TauFactor the option 

to solve this equation in the frequency domain. As a result, one obtains an impedance spectrum of 

a diffusing species through the pores of an inert (electronically-insulating) porous medium, which 

can capture the effect of pore structural features that leads to deviations from the conventional 

Warburg diffusion model.[35] It’s worth noting that the time constants in the diffusion impedance 

are a volumetric phenomenon, whereas in the eSCM method, they originate from the interfacial 

capacitance instead. The mathematics correspondence of these two scenarios is described in the 

appendix of. [35] 

In this work, the governing equation of eSCM and its boundary conditions are also Fourier 

transformed to their frequency domain representation, where sinusoidal stimulation of electric 

potential typical of EIS becomes a constant value imposed at the boundary, as shown in Figure III-

8. As with the other solvers in TauFactor, the solver is pre-compiled into C++ and an iterative 

over-relaxation approach is used to accelerate convergence at each frequency. 

We use the symmetric cell model proposed by Landesfeind et al.[5] in which the solid phase of 

the porous electrode is assumed to have a negligible electronic resistivity, such that its electronic 

potential is uniform within each electrode. For each frequency, the simulated impedance 𝑍̃PE−sim 
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is calculated as the ratio of the potential difference between the solid phases of the two electrodes 

(∆𝛷̃1 = 1 V is arbitrary selected) and the total ionic current density (expressed per geometric cross-

sectional area of the cell). Since the physical problem is linear, the value of ∆𝛷̃1 has no effect on 

the simulated impedance and so it is arbitrarily set to unity throughout. 

As for the experimental data analysis in ref. [6], the electrode tortuosity is determined from a 

least-mean square fit of the simulated impedance response to the TLM model using Eq. III-3. 

Practically, the fminsearch function in MATLAB is used as the non-linear fitting function to 

minimize the objective functions shown below: 

𝐹 = ∑
(|𝑍̃PE−sim

∗ −𝑍̃PE
∗ |)²

|𝑍̃PE−sim
∗ |

𝑝𝑛=1            (Eq. III-7) 

where 𝑍̃PE−sim
∗  is the normalised-simulated impedance given by eSCM from TauFactor; 𝑍̃PE

∗  

is the normalised-fitting impedance given by Eq. III-3, 𝑝 is a weighing factor.[33] However, it 

should be noted that the value of 𝜏e can be extract from just the values of 𝑍̃PE
∗  at 𝜔 →  0 and 𝜔 →

 ∞. 

III.4.4 Set of studied microstructures 

Simulations are run on both 2D and 3D numerically-generated microstructures. The parameters 

used to simulate the eSCM are given in Table III-1. “Model” 2D microstructures (generated in MS 

paint) containing simple pore networks are investigated to demonstrate the fundamental difference 

in terms of the physics and the concept behind the two methods, eRDM and eSCM. Furthermore, 

2D microstructures are modified to investigate some specific cases that help unveil the effects of 

microstructural features such as different morphology of pore networks or different types of pore, 

on the simulated impedance spectra and/or derived tortuosity value.  

Table III-1. Parameters used in eSCM simulation 

Parameters Value 

𝜅 0.046 1   S ∙ m−1 

𝑐dl (per unit active surface area)      0.01 2   F ∙ m−2 

𝑓 107 − 10−1 a  

Voxel size 1 × 1 × 1a µm3 

1 The electrolyte conductivity is chosen from ref. [5] for 10mM blocking electrolyte of salt TBAClO4. 

2 The interfacial double layer capacitance per unit microstructural electrode active surface area is chosen 

from ref. [5]. a Assumed values. 

For 2D microstructures, we first consider the case where there is a porous separator in which 

there are only straight pores that perfectly align with those of porous electrodes on both side. For 

3D microstructure, to facilitate the data preparation step, we use a free-standing electrolyte layer 
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where only liquid electrolyte is present between the two electrodes with no porous separator. The 

investigation can also be extended to include the pore network within the separator between the 

two electrodes in the symmetric cell simulations in future work, since tomographic data of several 

types of separators are already available in open-access literature.[36] 

For the 3D structures, random-packing of spheres is generated using GrainGeo module by 

GeoDict40 to imitate a battery porous electrode microstructure. Simulations using 3D 

microstructures allow us to gain insight into the likely behavior of real-life electrodes, given the 

tomographic data is reliable enough in capturing the real electrode microstructure, and help us 

shed light on the appropriate method for the determination of tortuosity for battery applications. 
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Nomenclature 

 

𝐴∗ mASA
2 /mCC

2  
Microscopic active surface area of the electrode per 

unit of current collector area 

𝐴CC mCC
2  Current collector surface area 

𝐴micro mASA
2  Microstructural active surface area 

𝑎𝑖
∗ m𝑖

2/mCV
3  

Volume-specific surface area of phase 𝑖 within the 

control volume captured by tomography  

𝑎𝑖 m𝑖
2/mPE

3  
Interfacial surface area between phase 𝑖 and the liquid 

phase at porous electrode scale 

𝑐dl F. mASA
−2  

Interfacial double layer capacitance per unit 

microstructural active surface area 

Ĉ mol/m3 

Complex concentration of the diffusing species when 

solving Fick’s 2nd law of diffusion at frequency 

domain 

𝐶DL F/mCC
2  

Interfacial double layer capacitance per unit current 

collector area  

𝑓 Hz Frequency 

𝑗   Imaginary unit 

𝑛⃗⃗  
Outward pointing unit normal to a plane or each voxel 

face 

𝑝  Weighing factor 

𝑄s F/(mASA
2 ∙ s1−γ) 

Pseudo-capacitance at the solid/liquid interface 

expressed per porous electrode active surface area 

𝑅ion Ω Effective ionic resistance of the electrolyte 

𝑟el Ω 
Electronic resistance in a differential segment of the 

electrode 

𝑟ion Ω 
Ionic resistance in a differential segment of the 

electrolyte 

𝑍̃PE Ω Complex porous electrode impedance 
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𝑍̃t Ω Complex total interface impedance 

𝑍̃PE
∗   Complex normalised porous electrode impedance  

𝑧̃t Ω ∙ m2 

 

Complex surface impedance elements 

 

Greek symbols 

Φ𝑖 V Electric Potential of phase 𝑖  

𝜏Bruggeman  Tortuosity Factor by Bruggeman 

𝜏e  Electrode tortuosity factor 

𝛾  Constant Phase Element exponent 

𝜀  Porosity 

𝜅 S/m Ionic Conductivity of the electrolyte  

𝜎 S/m Electronic Conductivity of the solid phase  

𝜏  Tortuosity factor 

𝜔 rad/s Pulsation  

Ω  Pore network domain in the system 

Subscripts 

1 Solid Matrix (Active Materials + Additives) 
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2 Liquid Phase (Electrolyte) in the pore space  

eff Effective properties 

re relative 

PE Belong to the Porous Electrode 

el Electronic in the solid phase 
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Chapter IV . 3D Quantification Of Microstructural Properties Of 

NMC High-Energy Density Electrodes By X-Ray Holographic 

Nano-Tomography 
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IV.1 Introduction 

As discussed in Chapter II, due to the low attenuation of the CBD, the X-ray contrast of the 

CBD compared to pores in final images is weak. Therefore, the CBD and pores in the majority of 

the studies cannot be resolved, which prevents the complete characterization of the electrode 

microstructure. Few studies based on nano-XCT have attempted to capture the three phases 

separately: AM, CBD, and pores. The common approach is to add a synthetic structure of CBD[1,2] 

to the AM framework obtained from the tomographic data. Although this approach offers the 

ability of adjustment of the CBD morphology,[3–5] the results stay somehow “fictive”. A more 

realistic approach is from Daemi et al.,[6] in which they combined the information from the FIB-

SEM analysis of a stand-alone CBD electrode (i.e. prepared with no NMC particles). The use of a 

stand-alone CBD electrode was also used by Lu et al.[7] to capture features of the CBD using a 

novel nano-XCT dual-scan superimposition technique. The validity of the stand-alone CBD 

electrode might be questioned since the behavior of the CBD slurry during the manufacturing 

process might not be the same as when considering the presence of AM in the slurry. Recently, 

Müller et al.[8] proposed the multimodal approach combining nano-XCT data with data obtained 

using ptychographic X-ray CT. Impressively, this approach enables CBD to be clearly visualized, 

as the ptychographic technique offers higher spatial resolution (40 nm) along with a pixel size of 

20 nm. However, combining different imaging techniques requires significant effort for the sample 

preparation step, the imaging process and the post-processing data. As an innovative solution, 

Morelly et al.[9] proposed to replace the conventional carbon black by carbon-coated iron 

nanoparticles as contrast-enhancing particles, which allows resolving the CBD from the remaining. 

However, this approach cannot be applied for a wide range of industry-graded electrodes, as it still 

requires a supplementary step for making electrodes with specific additives. 

In this chapter, the hard X-ray nano-holotomography technique illustrated in Figure IV-1a and 

available at the ID16B beamline of the ESRF is used[10,11] to extract microstructural properties of 

three different NMC porous electrodes. This phase contrast technique allows the reconstruction of 

large 3D volumes (for those, the size can be up to 100x100x100 µm3, see Figure IV-1b, c), while 

keeping a small pixel size (50 nm) for an adequate high spatial resolution and intensity contrast to 

distinguish the three domains: AM, CBD and pores. It is worth noting that the resolution of the 

holotomography technique might not be enough to capture the nano-porosity that can exist in the 

CBD clusters and that can only be captured by FIB-SEM technique (Figure IV-2). Given that this 

porosity can reach up to 47% within the CBD,[2] it can contribute significantly to electrochemical 

performance, as discussed by Trembacki et al.[5] and Ferraro et al.[12] using synthetic CBD 

morphology. Nevertheless, the holotomography technique still provides a persistent and high-

throughput workflow to capture other microstructural details. Furthermore, the volumes examined 

with holotomography are relatively large, in respect to the most prominent component within the 

electrodes, i.e. NMC particles (𝑑50 = 4.7 µm). The representativeness can therefore be validated. 
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Figure IV-1. Illustration of the workflow used for this study. a. Schematic representation of the 

hard X-ray nano-holotomography experimental setup at ID16B [62] b, c. Raw data filtered with Non-local 

Mean and Unsharp Mask in 2D and 3D. d, e. Examples of the segmentation results in 2D and 3D using the 

machine learning segmentation plugin, Trainable Weka[13], in ImageJ. f. Visualization of the individual 

NMC particle colored in red in e along with the interfacial area with the other phases. 
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Figure IV-2. Analysis of Active Materials phase. a, b. The particle size distribution and the sphericity 

of all particles presented within the control volume. c, d. The MX-02b after removing all particles touching 

the control volume boundaries along with the 2D slice showing the cracking parts of the AM particles. 

The discrimination of the morphology of the different phases within the electrode using a 

machine-learning segmentation method (Figure IV-1d, e) allows for a complete image-based 

analysis in order to investigate the effects of the microstructure on the electrode electrochemical 

performance. A statistical approach is frequently employed to determine microstructure 

inhomogeneities. It can be done by studying variations of different sub-volumes at different 

locations. In this study, beside the global analysis of the control volume, a statistical analysis at 

the particle scale (Figure IV-1f) including more than 500 individual NMC particles for each sample 

is proposed instead. It has been chosen because certain metrics are more relevant at particle scale, 

since they are related to the kinetics of the electrochemical reaction, which occurs at the interface 

between the AM particles and the electrolyte. This approach provides statistically-significant 
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results that offer an insight into the distribution of the microstructural properties at particle scale. 

Finally, a scenario to comprehend the impact of the microstructure on the electrochemical 

performance (via discharge rate-capability measurements) of the three electrodes is proposed.  

IV.2 Results & Discussion 

The results presented here after are based on a careful image processing of the 3D volumes 

obtained by X-ray nano-holotomography. All the steps of the image processing and data analysis 

are detailed in the ‘Methods’ section of this chapter.  It is worth noting: (i) that the 

representativeness of the control volumes used for the data analysis has been validated (Figure IV-

3), (ii) that a machine learning algorithm (Random Forest via Trainable Weka plugin in ImageJ) 

has been used for the segmentation and (iii) that a global analysis of the control volume along with 

a statistical quantification of the inter-connectivity between phases at the particle scale are 

performed for the complete characterization of the microstructures. 
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Figure IV-3. Representative Volume Analysis. The analysis shows the evolution of the variation 

of %v and surface area of different phases by the size of the control volume, which is approximately 

incremented 5% in the three directions at each iteration. It is denoted as Cuboid method in TauFactor. It 

can be seen that in all cases, the %v of the three phases rapidly converges to representative values as the 

fraction of total volume increases. In contrast, the surface area in turn are more sensitive to the control 

volume size. However, the results show that by getting closer to 100% of the total volume, which equals to 

the control volume studied in the text, the variation of the surface area of the three phases converge to 0%. 
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Thus, the three control volumes can be considered as representative. In this figure, the AM phase is 

represented in black, the CBD phase is represented in green and the Pores phase is represented in dashed 

black line. 

IV.2.1 Active material phase  

As illustrated in Figure IV-1b-d, the NMC particles of the AM phase can be well-identified 

based on either the grey level (brightest region) or their morphology (e.g. “spherical”-type 

secondary particles). The volume fraction (%v) of AM phase for the three samples are given in 

Table IV-1. It shows that the obtained values are slightly higher (2-5%) than expected ones. While 

the expected value can contain itself an inherit error due to either the fabrication process or the 

measurement of the volume, the difference is also due to the fact that the voxels at the phases 

interfaces may belong to more than a single phase due to the partial volume effect (detailed in the 

“Methods” section). As such, there is always some uncertainty in segmenting the interfacial 

regions between phases. To evaluate the sensitivity of the uncertainty in this region, from the 

segmentation results, a dilatation and an erosion of a single pixel layer at the AM phase boundary 

have been done. This step induces a variation of ±6% on the obtained %v AM. Thus, this 

discrepancy is considered within the uncertainty range due to the method limitation (i.e. image 

resolution). It is worth noting that the overestimation of %v of AM will lead to the underestimation 

of the %v of either CBD or pores. 

Table IV-1. Volume fraction of the active materials in the three electrodes. Expectation (Exp) 

values provided by the supplier are reported along with the values extracted from the 3D 

tomographic data (Data). 

Sample MX-01 MX-01b MX-02b 

%v AM 
Data Exp. Data Exp. Data Exp. 

74.4 70.92 74.1 69.6 71.7 69.6 

Figure IV-4a shows the AM phase in MX-01 after being separated into more than 500 

individual NMC particles (using Avizo software). It is worth noting that the electrodes studied in 

this work are for high energy applications, that require high density of AM. This can be seen 

through the highly packed of NMC particles within the control volume. After the separation of the 

NMC particles, image-based particle size distribution can be calculated for each sample. Yet, the 

edge effect of the cropped volume can cause a decrease in particle size. It refers to particles that 

are at the boundaries of the cropped volume. As such, only a part of them is taken into account for 

the volume calculation, which under-estimates their exact size. Thus, to better quantify the particle 

size, all particles touching the volume boundaries have been removed (see Figure IV-2). Figure 

IV-4b shows the particle size distribution of three samples along with the distribution obtained by 

the laser diffraction measurement on raw material powder. All three sample exhibit the highest 

peak corresponding to the 𝑑50 of the materials, despite a slightly lower-than-expected particle size, 

when comparing to the laser diffraction’s result. Here, we assume that this is due to the calendaring 
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process, which is known to cause fractures of AM particles under the high pressure.[14] This 

assumption is supported by the visualization of cracked particles in the SEM image of the MX-

02b cross-section in Figure IV-4d. The cracking parts are also presented in our segmented volume 

as single AM particles (Figure IV-2), as we also accounted the internal fissures during the 

segmentation step. Also, internal pores are observed for NMC secondary particles. Interestingly, 

we can observe the occasional presence of the CBD inside these internal pores (see purple arrows 

in Figure IV-4d), which shows that these pores can be opened to the electrolyte. This observation 

is in line with the work done by Miller et al.,[15] who revealed the penetration of electrolyte through 

the AM grain boundaries. Thus, the (de)lithiation process can theoretically occur from the inside 

of the NMC secondary particles, reducing the diffusion length, thereby easing the solid-diffusion 

process. The broad sphericity distribution (and lower than 1) observed in Figure IV-4c challenges 

the assumption on the sphericity of the NMC particles that is made in many simulations.  

 

Figure IV-4. Morphology of the AM phase in three different samples. a. The AM phase of MX-01 

sample is separated into individual particles that allow the statistical analysis of the microstructural 

properties by particles.  b. Particle size distribution is given by tomographic data without removing the edge 

particles and by laser diffraction. c. The distribution of the sphericity of the NMC particles in the three 

samples. d. FIB-SEM image of the sample MX-02b shows cracked NMC particles. Purple arrows: internal 

pore without CBD, Green arrows: internal pore with CBD e. Spatial repartition of the NMC particles in the 

three samples in the direction normal to the current collector. Blue circles: Small particles, Red squares: 

Average particles and Black stars: Big particles. 

Image-based approach allows the access to the spatial distribution of the AM particles. Since 

our sample preparation protocol (see details in ‘Methods’ section) allows to keep the through-

plane direction aligned with the Z-axis during the acquisition step, we can visualize the distribution 

of the AM particles in the direction normal to the current collector (Figure IV-4e) (the coordinates 

of the particle are based on the coordinates of its centroid in space). Our results clearly point out 
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that the big particles tend to move into the bulk of the electrode rather than be in the electrode 

boundaries (either separator side or current collector side), which is consistent with the work from 

Ebner et al..[16] For the remaining, most of the particles are well-distributed along the electrode 

thickness, which can be confirmed with the minor variation of the %v of AM phase with the 

fraction of total volume in Figure IV-3. The small particles are found to be more at the boundary 

of the control volume, which can due to the edge effect mentioned above.  

IV.2.2 Carbon Binder Domain 

The CBD refers to the additives that do not contribute to the capacity of the electrode (inactive 

materials) but rather to the rate performance of the electrode. It consists of a mixture of good 

electronically-conducting materials (e.g. carbon black, carbon fiber) and a polymeric binder. The 

CBD provides the mechanical stability of the electrode and establish the electronic conducting 

pathways within the electrode for most active materials. Thus, it is expected to be well-percolated 

and uniformly-distributed throughout the electrode volume. Otherwise, electrons cannot be 

transported uniformly to all reaction-sites (at the AM particle surface in contact with electrolyte) 

across the electrode. 

 

Figure IV-5. Electronic conductivity measured by the 4-line method. The electronic conductivities 

of four different electrodes are measured in function of temperature, which give the corresponding 

activation energy for each electrode. Noting that the MX-02 is not in the scope of the study in this chapter. 

Table IV-2 shows the microstructural properties of the CBD extracted from the 3D 

microstructure data along with the electronic conductivities measured by the 4-line method (see 

Figure IV-5). Figure IV-7a shows the 3D CBD distribution and morphology (green) in the three 

different samples. It can be seen that the CBD tends to form clusters that locate in between 

neighboring particles rather than a film-like morphology. The presence of CBD clusters observed 
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in this work is consistent with other work [19] [42] [43] based on different approaches. As it is 

observed in the 2D slices of the Figure IV-7b, the CBD clusters present a porous morphology, 

which has been also confirmed by high resolution FIB-SEM data of MX-02b presented in Figure 

IV-6, as well as in [19] [42]. Looking at Table IV-2, the extracted %v of CBD from MX-01 and 

MX-02b volumes are consistent with the expected values, while in MX-01b, the obtained %v of 

CBD yields a lower value. Despite a lower %v compared to MX-02b and MX-01b, the CBD 

network in MX-01 has a larger volume-specific surface area 𝑎CBD
∗

 (Table IV-2), which refers to 

the sum of interfacial area CBD/AM, and CBD/pores normalized to the control volume. The 

decrease of 𝑎CBD
∗  at higher %v, as it is the case for MX-02b, indicates a more important  formation 

of CBD agglomerates. It is important to note that the formation of CBD agglomerates will 

negatively impact the inter-connectivity between CBD and the other phases, as it will be discussed 

later in the paper. The percolation of the CBD is quantified for the three samples (Table IV-2). As 

expected, higher %v coupled with a lower 𝑎CBD
∗  in MX-01b and MX-02b results in a better 

percolation compared to MX-01. 

 

 

Figure IV-6. FIB-SEM data of MX-02b. The image shows the porous morphology of the CBD 

clusters (marked with red arrows). 

Table IV-2. Microstructural properties of the CBD phase. Expected (Exp.) values are presented 

along with the values extracted from the 3D tomographic data (Data). 

Sample MX-01 MX-01b MX-02b 

Percolation [%] 88.2 91.4 93.2 

%v CBD Data Exp. Data Exp. Data Exp. 
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7.5 7.8 8.8 11.3 10.5 11.3 

𝑎CBD
∗  

 (µmCBD
2 ∙ µmCV

−3) 
1.12 1.08 1.00 

𝜎eff (S ∙ cm−1) 0.0025 0.0250 0.0300 

E
a
 (eV) 0.030 0.007 0.006 

 

 

Figure IV-7. 3D microstructure of the CBD and simulations from diffusion-based method (with 

TauFactor) in the three different electrodes. a. The CBD network (green) within the control volume 

(25x25x25 µm3). For the ease of visualization, the rest is represented as a transparent grey phase. b. For the 
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ease of the observation of the porous morphology of the CBD, 2D slices are chosen to be shown, in which 

dead-end paths (white) and flux-through paths (blue) are both presented. One can observe the porous 

morphology of the CBD in various clusters (either in blue or white). c. The normalized flux density within 

the flux-through paths was colored for the three volumes. Dead-end pathways are represented in the three 

ortho slices as the white phase. Through-plane: Z-axis (green arrow), In-plane: X-axis (red arrow), Y-axis 

(blue arrow). 

Figure IV-7c shows the simulation results of the normalized electronic current density through 

the control volume in the direction normal to the current collector in the three samples using a 

diffusion-based method (see details in ‘Methods’ section). It is worth to mention that, the flux 

density maps include only the pathways that allow moving from one side to the other side of the 

microstructures, so-called flux-through paths.[17] No or low flux regions were detected by applying 

an arbitrary threshold value (2% of maximum) to the flux density map at steady-state, denoted as 

dead-end paths. They are represented in white in Figure IV-7b, c.  

In MX-01b and MX-02b, a considerable amount of flux-through paths are presented compared 

to MX-01. These pathways can be considered as long-range connections presented in the CBD 

network. They are essential for establishing a good inter-connectivity between different regions of 

the electrode at larger scale, which, along with a better percolation, enhances the electronic 

conductivity of the electrode.[18–20] This hypothesis is supported by the electronic conductivity 

measurements, shown in Table IV-2, on the three samples using the four lines method.[21,22] As 

expected, MX-02b and MX-01b exhibit a higher conductivity along with a lower activation energy 

compared to MX-01.  

While flux-through paths can be considered as long-range contacts that rapidly transport 

electrons between different regions of the electrode, dead-end paths rather play a role of short-

range contacts, which uniformly distribute the electrons to the reaction-sites throughout the 

electrode. As a result, the synergistic effect which provides both long-range and short-range 

contacts can be crucial to the electrode performance, especially at high C-rates, as highlighted by 

several authors.[18–20,23] 

IV.2.3 Pore Network 

The pore network is responsible for the ionic transport when filled with the electrolyte. Its 

microstructure governs the effective ionic conductivity of the electrolyte within the porous 

structure, which is critical for the electrode performance at high C-rates, especially for high loading 

electrodes.[24] As expected for high energy density electrodes, the segmentation of the three 

volumes results in porosities that are unusually low (<20%), as it can be seen in Table IV-3. 

Although the porosities are slightly lower than the expected values, they are consistent with the 

electrode specifications. Despite their low porosities, all three samples exhibit a percolation of the 

pore network greater than 94%. MX-01b has a lowest porosity but presents a highest volume 

specific surface area 𝑎pores
∗ , which is defined in the same way as 𝑎CBD

∗ . The morphology of the 

pore network (segmented in blue) in the three different samples is illustrated in Figure IV-8a. 



77 
 

Table IV-3. Microstructural properties of the pore network. Expected (Exp.) values are presented 

along with the values extracted from the 3D tomographic data (Data). 

Sample MX-01 MX-01b MX-02b 

Percolation [%] 95.5 94.6 94.6 

Porosity 
Data Exp. Data Exp. Data Exp. 

18.1 21.2 17.1 19.1 17.8 19.1 

𝑎pores
∗  

(µmpores
2 . µmCV

−3) 
1.05 1.07 1 

𝜏 

(N
M

) 

X-axis Z-axis X-axis Z-axis X-axis Z-axis 

8.13 

(45.17) 

4.12 

(22.88) 

9.31 

(54.44) 

4.15 

(24.15) 

7.31 

(41.07) 

3.74 

(21.05) 

𝜏e 

(N
M,e

) 

X-axis Z-axis X-axis Z-axis X-axis Z-axis 

8.51 

(47.28) 

3.78 

(20.87) 

8.57 

(50.12) 

3.95 

(22.99) 

6.97 

(39.16) 

3.56 

(20.00) 
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Figure IV-8. 3D microstructure of the pore network and simulations from diffusion-based 

method in the three different electrodes. a. Morphology of the pore network (blue) within the control 

volume, the AM & CBD phases are represented in transparent grey for the ease of visualization. b. The 

normalized flux density map of the pore network. The flux only passes by the through-pores in red, dead-

end pores are represented in white on the ortho slices. c. The 2D ortho-slices of the pore network separated 

into through-pores (blue) and dead-end pores (white). Through-plane: Z-axis (green arrow), In-plane: X-

axis (red arrow), Y-axis (blue arrow). 

To investigate the impacts of the pore network on the ionic transport properties, the tortuosity 

factor and the McMullin number of the pore network are quantified using simulations. However, 

compared to other microstructural properties such as porosity or volume-specific surface area, the 

determination of the tortuosity factor is still not standardized in the literature. Our previous work[17] 
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showed that there is a theoretical difference between the tortuosity factors calculated by the two 

methods: the diffusion-based method (regular method),[25] and the symmetric cell method 

(SCM).[26,27] The diffusion-based method considers the transport through the porous 

microstructure whereas the symmetric cell method considers the transport to the AM surfaces 

within the porous microstructure. As demonstrated in [48], the electrode tortuosity factor, obtained 

from the SCM, is more suitable to characterize porous electrodes than the commonly-used 

tortuosity factor. Still, both tortuosity factors are calculated in this work for comparison. 

Furthermore, the tortuosity factors (in-plane and through-plane) were also quantified allowing the 

investigation of tortuosity anisotropy. The tortuosity anisotropy has been widely reported in the 

literature. It has been demonstrated by tomography-based approach as well as experimental 

measurements (for the case of MCMB active materials) to increase with either the non-spherical 

AM particles or the calendaring process.[28–31] A minor tortuosity anisotropy (𝜏through−plane >

 𝜏in−plane) is reported for NMC electrodes in [61] [62] via simulations using 3D microstructures 

with numerically-generated CBD. The results can be attributed to the roughly spherical geometry 

of the raw NMC particle. However, for both methods used for the tortuosity factor determination, 

the through-plane tortuosity factor is noticed to be significantly lower than the in-plane for all 

electrodes. Given the low level of porosity (𝜀 < 20%) studied here, the electrodes might suffer of 

a high applied pressure during the calendaring step. Thus, it can result in a reduction of the gap 

between particles in the direction normal to the current collector (Z-axis). The solid phase (NMC 

particles + CBD) in the three electrodes can, therefore, form agglomerates with their longest axes 

normal to the current collector. This can prevent the ionic transport in the liquid phase in the 

direction parallel to the current collector (in-plane), which causes the higher tortuosity in this 

direction compared to the through-plane direction. To qualitatively verify our hypothesis, we 

calculated the two-point correlation of the three volume. This metric is commonly used to 

characterize a microstructure, as it calculates the probability that two points 𝑥 and 𝑥 + 𝑟 separated 

by a vector 𝑟 belong to the same phase 𝑖. Thus, it is valuable for analyzing the anisotropy of the 

microstructure, as any anisotropy on the characteristic distance (the size where the two-point 

correlation reaches an asymptotic value) implies an anisotropy on the analyzed phase geometry. 
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Figure IV-9. Two-point correlation of the solid phase in the three volumes (here, the solid phase: 

AM + CBD, is considered, as both phases are ionically-blocking). The data in Z-axis shows a delay 

compared to X and Y-axis to reach the asymptotic behavior, which represents the anisotropic of the 

considered phase in Z-axis.  

The two-point correlation reveals that the solid phase sizes in the through-plane direction (Z-

axis) are significantly larger compared with the in-plane sizes (X and Y-axis) (see Figure IV-9), 

as the Z-axis line reach the asymptotic values after the in-plane lines. The through-plane direction 

should be preferred over the in-plane directions in terms of ionic transport properties in order to 

improve the electrode performance, since the porous electrode limitations rather develop across 

the electrode thickness. For the rest of the article, tortuosity will refer to the through-plane 

tortuosity factor unless otherwise specified. 

The results of conventional tortuosity factors (McMullin numbers) show the highest value for 

MX-01b and the lowest value for MX-02b. Figure IV-8b shows the simulation results using the 

diffusion-based method, in which we can see the flux density passing through the three volumes 

(via flux-through pores). The flux density map reveals a uniform distribution of flux for MX-01. 

In contrast, MX-01b and MX-02b both show locally higher flux density regions pointing out to a 

heterogeneous flux-through porosity. The high flux density regions may represent the 
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restriction/constriction effects (bottlenecks) in the pore network, which may be useful for 

understanding localized degradation mechanisms. Besides, the simulation of diffusion flux passing 

through the volumes allows the identification of the flux-through and dead-end pores, as can be 

observed in Figure IV-8c.  

Using the SCM, we can see a decreasing trend of the electrode tortuosity factors and McMullin 

numbers compared to the previous values for all electrodes in all directions (Table IV-3). The MX-

01b still has the most tortuous pore network compared to the other two in terms of electrode 

tortuosity factor. In both approaches, the lowest tortuosity factor is found for MX-02b, even though 

it does not have the highest porosity. Although the differences between two methods are not 

apparent, it is worth to restate that the SCM relies on the (dis)charging of double-layer capacitance 

at the solid/liquid interface throughout the electrode instead of the diffusional flux through the 

porous structure as for diffusion-based method. Thus, it takes into account both flux-through and 

dead-end pores contributions to the overall ionic transport of the pore network.[17] In Figure IV-

8c, the dead-end pores presented in the ortho-slices (colored in white) are mainly small sections 

and disconnected (%v < 5% and without percolation), which results in slight effects on the 

tortuosity of the pore networks when the SCM is considered.[17]   

IV.2.4 Inter-connectivity between phases 

The inter-connectivity between the different phases within the electrode is investigated in the 

following section, as it constitutes an important parameter for the electrode to achieve a good 

electrochemical performance. For this purpose, we adopted a statistical approach in which more 

than 500 individual particles within each volume were separately studied. It is worth noting that, 

in this section, all the volume-specific interfacial areas and the triple-phase boundary (TPB) 

density, i.e. the boundary where the three different phases (AM, CBD, pores) meet, are normalized 

by each AM particle volume and not by the control volume as in the previous sections. The 

subscript p is added to these metrics (𝑎p
∗ , TBPp density) to avoid confusion. 

For fuel cell electrodes, TPB is the exact location that electrochemical reactions take place 

during the operation, since it is the meeting point of three components that are required for the 

electrochemical process. In contrast, for lithium-ion battery, the electrochemical reactions are not 

necessary take place unique at the TPB but rather at the AM/electrolyte interface, as will be 

discussed later in the text. Yet, the TPB for lithium-ion battery remains the reaction-site that costs 

a lowest polarization related to the electrochemical reaction. 
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Figure IV-10. Inter-connectivity between phases in three samples. a. Interfacial area per AM 

particle volume between AM/CBD (𝑎𝑃(𝐴𝑀/𝐶𝐵𝐷)
∗ ) and AM/pores (𝑎𝑃(𝐴𝑀/𝑝𝑜𝑟𝑒𝑠)

∗ )  are presented for each 

sample. b. TPBp density per AM particle volume for each sample. c, e, f. Comparison of the distribution of 

different microstructural properties in three samples. The size of the dot corresponds to the particle size. 

The color corresponds to the TPBp density of the particle, which is represented on the color bar. d. 

Visualization of the AM/CBD (green) and AM/pores (blue) interfacial area along with the TPB map of the 

representative particle of sample MX-01 (ID=341). The dashed line to guide eyes cut each other at the 

representative particle. 
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Figure IV-10a shows the distribution of the interfacial area between the AM particles and the 

CBD of the three samples, 𝑎P(AM/CBD)
∗ . MX-02b has the highest inter-connectivity between NMC 

and CBD among the samples along with a large dispersion. Despite a lower %v of CBD, MX-01 

possesses a lower dispersion of 𝑎P(AM/CBD)
∗

, which represents a more uniform distribution of the 

CBD. However, the lower average interfacial area with CBD found in MX-01 might introduce an 

additional contact resistance due to the poor AM particle-CBD contacts. 

The interfacial area between the AM and the pores, 𝑎P(AM/pores)
∗ , is also determined and shown 

in Figure IV-10a. This interfacial area corresponds to the electrochemical active surface area, 

where the charge transfer process occurs. It is worth noting that although the CBD can eventually 

be ionically-conducting by considering either the ability to absorb electrolyte the PVdF[32–34] or 

the porous morphology showed above, one might expect it to have lower ionic transport properties 

at high C-rates than the electrolyte filling in the pores. The presence of CBD at the AM surface 

can, therefore, negatively impact the kinetics of charge transfer at the interface AM/CBD. Hence, 

the interfacial area between AM/pores will mainly determine the exchange current density 

(A/m²ASA) within the porous electrode. Consequently, assuming all the AM surface are in contact 

with electrolyte only (i.e. ignoring the CB coverage of the AM particles) can potentially lead to 

errors in the evaluation of electrode properties used for the simulation of the electrode behavior.[35] 

MX-01 yields a higher AM/pores interfacial area compared to MX-01b and MX-02b, which can 

be explained by its highest porosity and its lower AM/CBD interfacial area. 

Figure IV-10b shows the distribution of TPBp density at each particle in the three samples. The 

TPBp density per particle volume was found to be the highest in the sample MX-02b, in average. 

This sample also presents the largest dispersion of the TPBp density values. In contrast, sample 

MX-01 presents a lower average for the TPBp density values but with a more uniform distribution. 

The results from 𝑎P(AM/CBD)
∗  and TPBp density unveil the impact of %v of CBD on the three 

microstructures considered in this study. Even though the CBDs in MX-01b and MX-02b have a 

smaller volume-specific surface area (𝑎CBD
∗ ) than in MX-01, both are still able to provide a larger 

interfacial area 𝑎P(AM/CBD)
∗   and a higher TPBs density throughout the microstructures due to a 

higher amount of CBD. This means that the CBD is still well-dispersed throughout the volume in 

the samples with high %v of CBD that have been used in this work. The mechanism of lacking 

short-range contacts for a higher %v CBD, as mentioned above, is therefore not valid for samples 

MX-01b and MX-02b. This can be confirmed further with the visualization of the CBD in Figure 

IV-7a, in which one can see that the CBD distributes well over the entire volume of MX-01b and 

MX-02b (very few spaces without the CBD).  

Figure IV-10c, e, f show the percentage of particles surface covered by the CBD and the pores 

by particles for MX-01b, MX-02b and MX-01 respectively. The TPBp density of each particle is 

also represented with a color scale bar. A broader distribution can be seen for the MX-02b and 

MX-01b as discussed previously. Furthermore, smaller particles tend to have a higher cover ratio 
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of CBD as well as TPBp density. On the other hand, larger particles show a higher cover ratio of 

pores. A “representative” particle having an effective %s. covered by CBD (~14%) and pores 

(~56%) is showed for sample MX-01 in Figure IV-10d along with its TPBp map. This particle can 

be relevant for macroscopic modelling approach.   

In summary, the sample MX-01 shows a higher degree of uniformity than MX-01b and MX-

02b in terms of inter-connectivity between phases at particle scale. As a result, one might expect 

lower microstructural heterogeneities effects during operation for MX-01 compared to the others, 

which can be detrimental for the performance. This is in line with what has been reported by Müller 

et al.[36] and Forouzan et al.[37] through numerical modeling. 

The Figure IV-11a displays the results of the rate capability of the three electrodes measured 

in a coin-cell setup at 25°C (see Methods section). The rate capability allows assess the 

performance of an electrode under different currents density. It shows that MX-01 outperforms the 

MX-01b (same loading), especially at high current density region (I>I*), whereas MX-01b 

presents a higher TPBp density and a higher %v of CBD. It is worth mentioning that MX-02b also 

underperforms when comparing to an electrode having the same loading with lower %v of CBD 

(this electrode, however, is not studied in this work). It is worth noting that for the battery porous 

electrodes such as graphite or some oxide materials, the charge transfer does not occur only at the 

TPBp, since the AM phase can have an appreciable electronic conductivity. For NMC material, 

this is particularly true once it is partially delithiated.[38] Thus, the lack of AM/CBD interfacial 

area, as well as a low TPBp density, can be compensated by the electronic transport through the 

NMC particles to join the reaction-sites, as discussed in [11] [45]. In addition, the brutal drop of 

the rate capability in the high current density region is commonly attributed to the porous electrode 

effects, i.e. through the McMullin number as the main limitation is considered to be in the liquid 

phase. Nevertheless, by using a 3D particle-resolved, mesoscale model to investigate the 

electrochemical behaviors on a per-particle and per-surface basis, Ferraro et al.[12] demonstrated a 

significant capacity loss coming from the reaction rate at the surface of AM particles. The latter is 

directly related to both interfacial surface area: AM/Pores and AM/CBD of each particle. In light 

with this, based on the analysis results in our work (Figure IV-10), the excess of CBD (MX-01b, 

MX-02b) might cause an additional issue for the electrode performance at high C-rates. Indeed, it 

can lead to the reduction of electrochemical active surface area at the particle scale, due to the 

ionically-blocking properties of the interface AM/CBD, as illustrated in Figure IV-11b. This 

consequence of the CBD excess has been reported by several authors.[3,5,12,35,39] Consequently, the 

solid-diffusion limitation can be exacerbated due to the lower electrochemical surface area, 

because of longer diffusive pathways for lithium to travel from the surface to the bulk of the NMC 

particles. This results in an underutilization of AM. However, this scenario is only valid when the 

AM has a good electronic conductivity, which can compensate for the lack of the AM/CBD 

interface and/or the TPBp density, as discussed above. For an AM with high electronic resistance, 

the TPBp density can be vital for the performance of the electrode at high C-rates, as reaction-sites 

mainly sit at the TPB. For instance, since NMC exhibits a reduction of electronic conductivity at 

the vicinity of the full lithiation state, Ferraro et al.[12] observed a higher reactivity at the interfacial 
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area between AM and porous CBD (i.e., there is electrolyte within the pores of CBD), which 

consists of multi TPBp. Here, as NMC exhibits a good electronic conductivity,[38] the performance 

at high C-rate seems to be negatively impacted by the excess of CBD, as observed for MX-01b 

and MX-02b. Thus, to improve the power rate of the Li-ion battery electrodes having a good 

electronic conductivity AM, one should go for high values of interfacial area between AM and 

pores rather than between AM and CBD. A porous CBD phase can also create positive impacts as 

it allow the electrolyte to impregnate, so that increases the AM/Pore interface.  

 

Figure IV-11. Correlation to the electrode performance. a. The lithiation performance of the three 

electrodes measured in a coin-cell setup at 25°C. The current density 𝐼∗ indicated the boundary between 

high and low current density regions. b. Our proposed scenario to explain the impact of the microstructure 

on the final performance. The electrochemical active surface area are highlighted in red. The excess of CBD 

increases the coverage by CBD over the AM particle surface as well as the TPBp density but reduces 

significantly the interfacial area between AM and electrolyte filled in pores at which charge transfer takes 

place. 

Besides, microstructural heterogeneities can also significantly impact the electrode 

performance. Here, a higher degree of uniformity observed in MX-01 compared to MX-01b could 

help minimize the electrochemical heterogeneities, improve material utilization, and reduce 

polarization losses during operation. All result in a better rate capability. 

IV.3 Conclusion 

In this work, we demonstrated that the X-ray holotomography-based approach is an efficient 

way to reveal valuable insights about the microstructural properties and the electrode heterogeneity 

that is not straightforward to quantify using regular electrochemical-based approaches.  

We show that with higher %v of CBD, the CBD provides a higher interfacial area with the AM 
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phase, along with the tendency to form agglomerates. The formation of agglomerates promotes the 

formation of long-range contacts within the porous electrode, which provides a good electronic 

conductivity. However, electrode performance is observed to be deteriorated at high C-rates, with 

higher %v of CBD, when comparing two electrodes with the same loading but with different ratios. 

Based on the analysis, we suggested herein that increase the %v of CBD causes a decrease of the 

electrochemical active surface area (surface area AM/pores). For an electronically-conducting 

AM, the TPB density and the AM/CBD interfacial area are thought to have minor effects on the 

performance at high C-rates. Thus, to improve the power rate of the Li-ion battery high-energy 

electrodes, engineering of electrode design should aim for high values of interfacial area between 

AM/pores instead. Also, the research for an “ideal” CBD morphology needs to consider 

simultaneously different aspects and not only the electrical conductivity, i.e. simply increase 

the %v of CBD would not be an obvious solution to improve the overall performance.  

Regarding the pore network, we compared the two methods for tortuosity factor determination: 

the diffusion-based method (regular tortuosity factor) and the SCM (electrode tortuosity factor). 

A decrease trend was observed when comparing the electrode tortuosity factor to the regular 

tortuosity factor, which highlights a positive contribution of the dead-end pores to the overall ionic 

transport, albeit it is small compared to that of through pores, at least with the electrodes studied 

here. The tortuosity anisotropy of the pore network has been observed for through-plane and in-

plane directions for both methods. The tortuosity factor in the direction normal to the current 

collector was found to be substantially lower than the in-plane direction (about half). Although the 

cause of the anisotropy stays uncertain, a hypothesis that is related to the calendaring process used 

in this work to achieve electrodes with a high energy density was proposed.  

Finally, a higher heterogeneity in terms of inter-connectivity between phases at particle scale 

was also found for the electrodes with higher %v of CBD, which can lead to higher risk of 

performance deterioration during battery operation. All of these results are to be included in a 

numerical model to a quantitative investigation of their effects on the performance in a follow-up 

study. 

IV.4 Methods 

IV.4.1 Analyzed samples  

Three different positive electrodes are investigated in this work and labelled as MX-01, MX-

01b, MX-02b. Each electrode is a mixture of NMC532, conductive carbon black and PVdF with 

different composition. Their specifications are shown in Table IV-1, 2 and 3, where expected 

values of AM, CBD and pores are reported respectively. 

The particle size distribution of the raw  NMC532 particles is determined with the laser 

diffraction method. This method is a widely used particle sizing technique for materials ranging 

from hundreds of nanometers up to several millimeters in size. It measures particle size distribution 

by measuring the angular variation in intensity of light scattered as a laser beam passes through a 
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dispersed particulate sample. Large particles scatter light at small angles relative to the laser beam 

and small particles scatter light at large angles. The angular scattering intensity data is then 

analyzed to calculate the size of the particles responsible for creating the scattering pattern, using 

the Mie theory of light scattering. The particle size is reported as a volume equivalent sphere 

diameter. As for output, laser diffraction will give a volume-weighted distribution. That is, the 

contribution of each particle in the distribution relates to the volume of that particle, i.e., the 

relative contribution will be proportional to size. 

IV.4.2 Sample preparation 

The sample preparation is a crucial step to get a high-quality result and to avoid artefacts during 

the acquisition process. Then, a careful preparation of the sample is needed to have the sample size 

required for X-ray nano-tomography. When performing X-ray tomography, the size of the sample 

is of importance. The first obvious reason is linked to the absorption of the X-rays. Indeed, because 

it is a transmission technique, it is necessary to have enough X-rays going out of the sample to 

have enough signal on the detector. The second reason is linked to the field of view of the detector. 

The 3D resolution will be better if the sample lateral size fits into this field of view. Local X-ray 

tomography, i.e. into samples that are bigger than the field of view, are possible but usually results 

in a compromise on the final resolution. As the field of view is equal to the number of pixel on the 

camera times the pixel size, it is usually quite large for micro-scale X-ray tomography.  Then, 

appropriate sizing of ex-situ samples (from 0.5 to few mm) is typically not a problem. In this study 

the pixel size used was 50 nm and corresponds to a field of view of 130 µm. Moreover, because 

of the absorption of the NMC particles at the used energy, an optimal size of 50 µm diameter has 

been calculated.  

For this, a “free-standing” electrode was first required, which was typically obtained by simply 

peeling the porous electrode material off the current collector foil. A laser cutter built in-house at 

IMPMC laboratory was used to precisely cut a pillar of ca. 50 µm in diameter from the bulk 

electrode. It is worth mentioning that to avoid any damage of the laser beam on the region of 

interest, the pulse mode was used for laser beam instead of permanent mode. Then, the electrode 

pillar was mounted on the tip of a quartz capillary, which is mounted on the sample holder, using 

cyanoacrylate glue (see Figure IV-12). 
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Figure IV-12. Sample preparation for X-rays nano-tomography experiments. a. The SEM image 

of the tip of a quartz capillary with the sample. b. Zoom on the sample. 

IV.4.3 Electrochemical measurements 

All measurements are carried out in a controlled temperature chamber at 25°C. The cycling 

test were performed with a multipotentiostat (Biologic, France). The operational range for the 

NMC materials in this work is chosen between 2.5 and 4.3 V versus Li/Li+. 

All coin cells first undergo a formation process in which they are cycled four times with 

constant-current (CC) discharge/charge cycles at C/10 to form a stable passive layer the particle 

surface. For the fifth cycle, a constant voltage (CV) is held at the end of the discharge until the 

current gets down to C/50. This extra steps before further charging were to ensure that the electrode 

completely lithiated (pristine state) after removing all possible limitations (for example: solid-
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diffusion limitation). Finally, a CCCV charge followed by a CC discharge are carried out, both at 

C/25, for capacity determination. The available capacity is determined at the end of the CC 

discharge. 

Rate-capability tests are performed on either a VMP3 or a BCS (Bio-Logic, France). The rate 

experiments were conducted on two separate electrodes of the same composition for the 

reproducibility. We assume that there is no electrode degradation during the measurements. The 

cells are cycled with different currents following by a CV at the end of each cycle to reach a stable 

stoichiometry until the current gets lower than C/50. In the rate capability test, the cells were 

charged with a CC phase followed by a CV phase, which remained unaltered, independent of the 

applied discharge current. Between each charge and discharge cycle a pause of 1 h was kept to 

allow for relaxation of the cells. In the discharge procedure, the cells were discharged with C/25, 

C/10, C/5, C/2, 1C, 2C. 

For effective electronic conductivity determination, EIS were carried out using ITS system 

with the 4 lines configuration, and MTZ device from Biologic, France. The 4 lines configuration 

(see the experiment setup in Figure IV-5)  is known to minimize the impact from the contact 

resistances between the probes and the sample, which can vary along with the applied pressure on 

the sample. The temperature was set to vary within a range [-20°C,60°C] allowing to extract the 

activation energy of the electronic conductivity. Activation energy close to zero refers to a metallic 

behavior of the materials, which provides good electronic conducting pathways.  

IV.4.4 Holographic X-ray nanoCT technique for Li-ion battery 

The holotomography technique used in this study and developed by Cloetens  et al.[10] is based 

on phase contrast imaging. It gives high contrast images for low atomic number samples. The setup 

at the ID16B beamline of the ESRF[40] is described in Figure IV-1a. The high flux (8X1010) nano-

beam (50x50 nm2) is used as a secondary source. Thanks to the diverging beam of 29.6keV, four 

tomographies at four different distances from the focal plane are performed by acquiring 2515 

projections over 360° with an exposure time of 0.4s per 2D image recorded on a PCO edge 5.5 

camera. The 3D reconstructions with a pixel size of 50 nm are achieved in two steps: (1) recursive 

phase retrieval calculation[41,42] using an in-house developed octave script  based on a Paganin-

like[43] approach with a delta/beta of 137 and (2) filtered back projection reconstruction using 

ESRF software PyHST2.[44] 

IV.4.4.1 Data processing 

Pre-processing 

Due to shortcomings in the image acquisition process, the base signal of an X-ray scan is often 

superimposed by different kind of image artefacts, that can be observed in the reconstructed image 

most frequently as noise, and blur effects.[45,46] For multi-phases microstructures, these effects can 

be very disturbed for the segmentation step. Therefore, pre-processing of the reconstructed 2D 
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images might be needed to improve the image quality, allowing a good result in the segmentation 

process.[45,46]  

In this work, we applied a non-local mean filter subsequently following by an unsharp mask 

for edge enhancement systematically to all the tomographic data. Non-local means filter has been 

reported to be an excellent candidate to efficiently remove noise and at the same time conserve 

edges between objects. In addition, an unsharp mask is for edge enhancement after denoising 

process. It reduces the partial volume effect, as shown in Figure IV-13, due to image blur and/or 

low resolution.  

At the boundary between two phases (highlighted in red in Figure IV-13), gradual grey level 

changes spanning several voxels due to the image blur and/or low resolution, as referred to as 

partial volume effect. As a result, voxels near the phases interface can be misleading as a “third 

phase”, which can be a source of errors. Consequently, this can lead to a morphology completely 

unreal. Figure IV-13 illustrates a scenario in which, after applying a thresholding corresponding 

to a theoretical value of %v of NMC, almost every NMC particles is covered by a thin film of 

CBD which are far to be correct, as CBD tends to form porous clusters instead of thin film. A 

detailed study of pre-processing methods is beyond the scope of this work. For more details 

information, we direct the reader to ref [41].  

 

Figure IV-13. The partial volume effect can significantly affect the segmentation based on image 
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histogram, that lead to unreliable results. a. 2D zoom of raw data on a region where there are three 

phases (AM, CBD, Pores) presented. b. The profile of gray value of the straight line that pass through the 

three phases, with the partial volume effect region highlighted in red. c. The binary thresholding result of 

this region using traditional method based only on the histogram of the image. The black phase represented 

the AM and pores, whereas the white phase is for the CBD. d. The binary thresholding result of the entire 

image. The NMC particles can be recognized through their spherical-type shape. Thus, it can be seen that 

all of the NMC particles are covered by white phase which is the CBD. 

As it can be seen in Figure IV-14, the contrast between the CBD and the pore space was 

enhanced after filtering. Figure IV-13 illustrates the partial volume effect, when the boundaries 

between two phases do not manifest themselves as crisp intensity steps (type Dirac signal), but 

rather as gradual grey level changes spanning several voxels. The contrasts between phases are 

improved while preventing details loss, as shown in the histogram (global) and line profile (local) 

of the image (Figure IV-14). 

 

Figure IV-14. Pre-processing Data. a. Zoom on a 2D cross section extracted from a 3D reconstruction 

of the sample (Raw data). b. Resulted image after filtering with non-local mean filter and unsharp mask of 

the image a. c. Comparison of the histograms of two datasets in a and b. d. Comparison of the gray level at 

the line in the two images in a and b. 

Pietsch et al.[47] have reported that the uncertainty of the segmented data is well correlated with 

the Otsu inter-class variance. Here, we evaluated this metric on our dataset before and after the 
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filtering process. The filtering process allows to get a better inter-class variance, hence reduces the 

uncertainty of the segmentation process. 

Image segmentation 

Image segmentation is a crucial step in image processing and affects all subsequent image 

analyses. It is commonly done by histogram evaluation, which considers only voxel’s grey level 

(global thresholding). This approach can be very efficient in terms of computational time and 

efforts if high contrast between phases is presented, i.e. separate peaks appear in the histogram. 

However, for a multi-phases microstructure, each phase is frequently represented by a distribution 

of grey level that can be partially overlapped with others, or even completely hidden in the 

histogram. Hence, the threshold uncertainty range can be significant when using a global approach. 

Moreover, it is worth to note that since this approach is based only on voxel’s grey level, it can be 

susceptible to the partial volume effect. Local segmentation methods such as watershed, 

converging active contours, show a better performance on the multiphase segmentation of 

tomographic images, as reported by Schlüter et al..[45] However, they always rely on grey’s level 

and/or gradient of grey values of pixels for the classification.   

In this work, the segmentation was performed with an ImageJ’s plugin named Weka,[13] which 

involved machine learning in performing the segmentation. This approach is based on features 

extracted from the image through a set of different filters. It is based on microstructural information 

captured from the image (2D) or volume (3D) to train a machine learning model rather than the 

only grey level for the classification of voxels. The model uses a random forest algorithm, which 

has been reported to be relevant for classification task without the need for substantial 

computational resources. This tool is part of the machine learning field, so-called “supervised 

learning”, that needs a label data to train the model. Regarding the label data, the users have to 

carefully classify the pixels (taken from different slices located throughout the volume depth) into 

different classes (three in this work) based on various criteria: the pixel’s grey value, the pixel’s 

neighborhood, the morphology of each phase (e.g., the AM particle frequently takes a roughly 

spherical geometry, while the CBD tends to form clusters in between AM particles). The pixels 

that were classified by the users are then considered as “reference label”. They are used for the 

training step to get the best model that minimizes the errors. The model is applied to segment the 

rest of the volume automatically. We repeat this process for each sample in this work. The label 

data, therefore, needs to be carefully selected by users. The labelling step is mainly based on the 

subjective human opinion about the difference of grey value and can vary upon people. Thus, 

having a pre-processing step to improve the quality of the image can be helpful to reduce the 

segmentation error. We compared the segmentation results of the AM phase in MX-02b with the 

segmentation result of the same phase using binary threshold technique on the high resolution FIB-

SEM data to validate our segmentation, see Figure IV-15.  
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Figure IV-15. Validation of the Segmentation Results. Comparison of the AM phase morphology 

between the segmentation results of FIB-SEM data (using binary thresholding of the image histogram) and 

the segmentation results from X-ray Holotomographic data (using Machine Learning algorithm). One can 

find a good similarity of the AM phase morphology between the two results (cracks inside particles, gaps 

between particles). 

IV.4.4.2 Microstructural analysis 

Once images are segmented into three separated phases, the reconstructed 3D volumes of the 

electrodes were imported into the commercial software package Avizo V9.4 (Avizo, Thermo 

Fisher Scientific, Waltham, Massachusetts, USA) for 3D visualization and NMC particles 

separation. The particle size distribution is used as reference to adjust parameters of the separation 

object algorithm in Avizo. 

The phase volume fraction is defined by the ratio: 
𝑉𝑖

𝑉cv
, where 𝑉𝑖 refers to the volume of phase 

𝑖, calculated as the percentage of voxels corresponding to this phase, and 𝑉cv to the total volume 

of the control volume. 

The percolation represents the intra-connectivity of the phase 𝑖. It is quantified by the ratio 

between all connected voxels of phase i to the total voxels of this phase (connected and isolated 

voxels) within the control volume. Voxels that share a common face are considered as connected.  

The sphericity is a measure of how closely the shape of an object resembles that of a perfect 

sphere. It is defined by the ratio of the surface area of a sphere with the same volume as the given 

particle to the surface area of the particle: 𝜓p =
𝜋

1
3𝑉p

2
3

𝐴p
, where 𝜓p, 𝑉p and 𝐴p are the sphericity, the 

volume and the surface area of the individual particle respectively. The sphericity is calculated for 

each individual AM particle. 
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The specific surface area quantifies the surface area of phase 𝑖 per unit electrode volume. On 

the other hand, the specific interfacial surface area refers to the total surface area of the interface 

between two phases 𝑖, 𝑗 per unit electrode volume. 

It is worth to note that our analysis is based on voxelized data for convenience such that a 

meshing process is not necessary. This approach is relevant for volume quantification as it shows 

comparable results to other approaches. However, for surface area, this approach tends to 

overestimate the value of the surface area, even though with a high value of resolution. The 

marching cube (MC) algorithm[48] is shown to give the highest accuracy for the surface area 

calculation.[49] This algorithm polishes the originally derived voxel-based surface mesh as 

described in [75]. The ratio 𝑎voxel, 𝑎MC of the three volumes analyzed here varies from 1.2 to 1.3. 

Nevertheless, we may have of particular interest to the relative values rather than the absolute one 

since the comparison between samples can still give us insight about the effects of 

microstructures.  

The TPB density is defined as the length of the intersection among three phases 𝑖, 𝑗, and 𝑘, 

normalized by the total volume of the microstructure domain. For voxelized data used in this work, 

a TPB is defined as the length of the edges where three of the four connecting voxels contain 

different phases. 

Most of the parameters studied throughout this work are straightforward to quantify using 

either TauFactor and/or built-in tools or plugins in Fiji or Avizo. The visualization of the TPBs 

required adding work.[50] TauFactor is an open-source MATLAB application developed by 

Cooper et al.[51] allowing a complete characterization of the microstructure based on image data. 

The analysis were proceeded first on separated phases (AM, CBD, pores), then on the correlation 

between phases to capture the microstructural characteristics of the electrodes as a whole. 

Furthermore, based on the TauFactor framework, an in-house code was developed. It allows 

extracting different microstructural properties when the AM phase was separated into individual 

particles.  

For tortuosity factor determination, our previous work in [17] unambiguously demonstrated 

that the electrode tortuosity factor given by the symmetric cell method is a more appropriate metric 

to characterize porous electrodes than the conventional tortuosity factor determined with the 

diffusion-based method. Hence, in this work, we quantified both tortuosity factors using two 

approaches for comparison.  

Recently, Gayon-Lombardo et al.[52] proposed to use periodic boundaries instead of Dirichlet 

boundaries for the diffusion-based method for the conventional tortuosity factor determination. 

They suggested that this approach allows representing better the bulk behavior of the 

microstructure. Thus, it might be interesting for future works to evaluate the electrode tortuosity 

factor under the same conditions and to compare the two methods as what has been done by 

Nguyen et al..[17] 
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To study the morphology of the CBD, the diffusion-based method was also used for the 

simulation of a flux of electrons passing through the control volume via the CBD. Although this 

simulation relies on the Fick’s law, the governing equation is mathematically homologue to the 

Ohm’s law, which governs the electronic transport in CBD. 

Despite the large acquisition volume given by the X-ray holotomography technique, there is 

one sample that suffered from crack, which reduces significantly the exploitable data. 

Consequently, to be consistent in the comparison, we considered an adequate sub-volume of 

25x25x25 µm3 in each of the three samples and defined as the control volume. In addition, a 

representative volume analysis had been done to study the representativeness of this control 

volume. As can be seen in Figure IV-3, all three volumes can be considered as homogeneous and 

representative. The two-point correlation calculation also showed in Figure IV-9 that the 

asymptotic behavior is reached for all the three volumes justifying the representativeness of the 

control volume. 
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Nomenclature 

 

𝐴CC mCC
2  Current collector surface area 

𝑎𝑖
∗ m𝑖

2/mCV
3  

Volume-specific surface area of phase 𝑖 within the 

control volume captured by tomography  

D1 m Focus to sample distances 

𝑑50 µm Median diameter of active materials particles 

𝐸a eV Activation energy 

𝐹 C/mol Faraday’s constant 

𝐼∗ A/mCC
2  

Value separating the high and low current density 

regions 

𝑚 kg Mass 

𝑛  Refractive index 

𝑤𝑖  Weight fraction of phase 𝑖 

Greek symbols 

Φ𝑖 V Electric Potential of phase 𝑖  

𝜌i kg/m3 Density of phase 𝑖  

𝜏e  Electrode tortuosity factor 

𝜏  Tortuosity factor 

𝛽   Absorption coefficient 
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𝛿  Decrement of the refractive index 

𝜀  Porosity 

𝜅 S/m Ionic Conductivity of the electrolyte  

𝜎 S/m Electronic Conductivity of the solid phase  

𝜓p  Particle sphericity 

Subscripts 

AM Related to the Active Materials 

eff Effective properties 

re relative 

p variable relative to an AM particle 

PE Belong to the Porous Electrode 

el Electronic in the solid phase 
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Chapter V . Self-supervised image quality assessment for X-ray 

tomographic images of Li-ion battery materials 
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V.1 Introduction 

XCT is considered as a powerful technique to study LiB, since its nondestructive 3D imaging 

across multiple length scales provides quantitative and qualitative metrics for characterization of 

their complex microstructure[1]. The effects of microstructural properties on the electrochemical 

performance of the battery can therefore be investigated, allowing the optimization of the electrode 

design. However, extracting reliable microstructural properties from 3D tomographic images is 

not straightforward, as it requires a reliable image processing methodology, which consists of a 

pre-processing step and a segmentation process followed by an accurate 3D quantitative analysis[2]. 

Due to the environmental disturbance, the tomographic images frequently contain distortions, such 

as noise, blur, ring artefact etc., which affect the determination of microstructural properties using 

those images (e.g., surface area and volume fraction). Besides, user-to-user variation can be 

significant when different people process the same images. As a result, the image pre-processing 

step is frequently applied to improve the image quality and reduce the uncertainty allowing reliable 

analysis. It involves the image feature enhancement (histogram equalization, normalization, 

brightness, and contrast adjustment) and distortion suppression such as denoise, deblur and ring 

artefact removal. Segmentation is supposed to distribute pixels among certain groups based on 

pixel values, with the aim of assigning various regions of the image to different phases of the 

material.  

In addition to the analysis, the pre-processing and the segmentation procedure are both non-

trivial issues that have a significant impact on any subsequent image analyzes, such as the 

calculation of porosity, tortuosity, and the surface area of a specific phase. Due to the lack of a 

non-distorted reference image, the quality of the pre-processing is typically assessed by subjective 

visual inspection. However, image pre-processing has a profound impact on following 

segmentation performance. Schluter et al.[3] presented that, with suitable image enhancement prior 

to segmentation, segmentation algorithms became more robust and were less prone to operator 

bias. The authors analyzed the segmentation accuracy of the images before and after pre-

processing and pointed out that the distortion leads to poor segmentation. In addition, the absence 

of ground-truth makes it difficult to assess the quality of the segmentation. Pietsch et al.[4] proved 

that subjective judgement was not a reliable standard for the selection of binarization criteria in 

the segmentation procedure, leading to uncertainties in the results. Therefore, a numerical metric 

to assess the quality of images is needed to guide the pre-processing step (setting parameters, 

selecting filters) so that the next segmentation step can result in further highly reliable quantitative 

analysis. 

Image quality assessment (IQA) aims to predict the perceptual quality of a distorted image.  

However, the human vision system (HVS)[5] needs a reference to quantify the discrepancy by 

comparing the distorted image either directly with the original undistorted image or implicitly with 

a hallucinated scene in mind[6]. It is time-consuming and labor-intensive to assess image quality 

from a crowd of people. Moreover, due to different culture and living environments, people 

sometimes give different views on the same picture. Especially for tomographic images, 
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inexperienced and laymen would like to give totally different scores. Therefore, it is complicated 

to objectively assess the quality of tomographic images. 

To avoid the distinction caused by cognitive bias and to provide robust professional estimation, 

some machine assisted IQA methods have been proposed in recent decades. They are generally 

divided into three categories: (a) Full-Reference Image Quality Assessment (FR-IQA) which 

evaluates the distorted image by comparing it to the reference image and measuring the 

difference[7,8]; (b) Reduced-Reference Image Quality Assessment (RR-IQA) which measures 

image quality with part of the reference image[9,10]; (c) No-Reference Image Quality Assessment 

(NR-IQA), which requires little information about reference images and estimates image quality 

directly from distorted images [11,12].  

The conventional metrics used for FR-IQA and RR-IQA are peak signal-to-noise ratio (PSNR) 

and root mean square error (MSE) which compare image intensity of distorted images to that of 

reference images without considering HVS. By considering the luminance, contrast and structural 

information, SSIM[7] used average pooling to calculate a score from a similarity map. Based on 

SSIM, MS-SSIM[13] compared distorted image to reference image at multiple scales. F-SIM[14] 

leveraged phase congruency and gradient magnitude features to derive a quality score while 

GMSD[15] only considered the image gradient as the criterial features. Besides the gradient, 

MDSI[16] utilized chromaticity similarity and deviation pooling to imitate the HVS and achieved 

better results. 

Although the above methods can serve as an indicator, reference images are not always 

available in real-world situations. Hence, NR-IQA methods have attracted extensive attention 

recently which is also challenging due to lack of reference information. Early NR-IQA methods 

mainly focused on specific types of distortions, such as noise[17], contrast change[18], blur[19] and 

ring artifact[20],[21]. Since the types of distortion of the images are unknown in real scenarios, these 

methods are impractical compared to the general methods [22,23] which require no priori information 

about the distortion types. 

With the development of deep neural network (DNN), the deep learning methods have been 

exploited for NR-IQA without any prerequisites and have demonstrated superior prediction 

performance. Le et al.[24] firstly proposed a shallow convolutional neural network (CNN) to 

estimate the quality score for natural images. Ke et al.[25] introduced a deep learning-based image 

quality index for blind image quality assessment, which was more efficient and robust. Instead of 

the multi-stage methods, Sebastian et al.[26] presented an end-to-end neural network to regress the 

quality score by joint learning of local quality and local weights. Instead of considering the whole 

image in the network, Simone et al.[27] cropped the image into patches, estimated the scores 

separately and fused them finally, which was more suitable for insufficient training data cases. 

However, the lack of training data was a crucial obstacle for aforementioned methods. To 

overcome the limitation of data, Xialei et al.[28] implemented data augmentation by generating 

artificial distorted images and then trained a Siamese network (Rank-IQA) to regress the quality 

scores. Kwan-Yee et al.[6] combined the generative neural network to generate the reference 
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images and convolutional neural network to regress the quality score from the discrepancy. 

Hancheng et al.[29] developed a meta-learning[30] method to estimate the quality score of images 

with new distortion, which addressed the generalization problem of IQA. 

Although many methods have been provided for IQA and achieved excellent results, most of 

them focus on natural images and require a huge number of annotated labels, which are not 

practical for X-ray tomography images. For example, the FR-IQA methods need a reference image 

for each estimation of a distorted image, which implies a high demand of annotations. The already 

developed NR-IQA methods requiring less data than the FR-IQA method, but still relatively large 

(hundreds of annotations) to avoid overfitting. Besides, the existing open-source datasets[31],[32],[33] 

of battery electrodes tomographic images are not for IQA task, i.e. without various distortion-types 

and corresponding scores. Therefore, a light NR-IQA method, which requires less annotated data 

and is robust to transfer among different X-ray tomography images, is urgently demanded. 

The main contributions of this work are summarized as follows: 

● A no reference tomographic image quality assessment (T-IQA) method is proposed 

for tomographic images which requires only dozens of annotated images for training and 

achieves outperformed results. 

● A data generation method is developed by imitating the human observers to label 

the distorted images automatically for the purpose of addressing the insufficient data 

problem. Benefit from data generation, our TIQA method requires only one fifth of the 

number of images comparing to other NR-IQA methods. 

● The correlation of image quality score and segmentation results is studied to guide 

the pre-processing step. 

The remainder of the paper is organized as follows: In section “Results”, we show the results 

of our data generation method and T-IQA method. Moreover, the segmentation result and the link 

of quality score and segmentation performance are demonstrated in this section as well. In section 

“Discussion”, we summarize the results and emphasize the features of our method. We also 

propose several potential applications and future directions of our method. In section “Methods”, 

we introduce our dataset and the experiment details. 

V.2 Results 

V.2.1 Data generation results 

As shown in Figure V-1, the first step in our approach is to generate the data required for the 

subsequent training process of the score prediction network, whose purpose is to address the 

problem of insufficient data. The detailed workflow of the data generation process is illustrated in 

Figure V-2. 
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Figure V-1. Pipeline of our T-IQA method. It is composed of two modules: the data generation and 

score prediction. In score prediction, (1) is the self-supervised learning for ranking the images, (2) is the 

fine tune procedure for regressing the ranks to a score in fixed range. 

 

Figure V-2. Detailed structure of data generation. The observers are some FR-IQA methods. y is 

the human annotation, 𝑦𝑖 is the predicted score of the i-th observer, 𝑦̅ is the average score of 𝑦𝑖.  

Firstly, the original image is resized and cropped into a fixed size, 224*224 pixels. Notably, to 

verify whether the resize operation affects the image quality scores, we compare the annotations 

on the images before and after this operation. The comparison results (Figure V-3) confirm that 

the pre-processing operations do not affect the image quality. Next, three types of distortion (ring 

artifact, blur, noise), that are commonly presented in X-ray tomographic images, are added to 

generate distorted images. (More generated images can be found in Figure V-4). Finally, the label 

projection step systematically produces the annotations of distorted images by comparing the HVS 

features of original image and distorted image using different FR-IQA metrics (more details are in 

Methods section). 



107 
 

 
Figure V-3. Comparison of the labels for images before and after down-sampling. Five image 

pairs are evaluated. 

 

 
Figure V-4. Results of distorted image generation. These three types of distorted images are 

produced from the reference image 

To validate our method for data generation, we consider two criteria to quantify the correlation 

between generated results from the label projection step, and corresponding labels from the survey, 

including the Pearson's linear correlation coefficient (PLCC) and Spearman's rank ordered 

correlation coefficient (SROCC). As presented in Figure V-5 and Figure V-6, for all types of 

distortions, the generated scores have positive correlation with the annotations. Especially for the 

images with noise or blur, the correlation is high. As for the ring artifact, the results demonstrate 

that the existing general FR-IQA metrics cannot well handle this type of distortion. 
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Figure V-5. Evaluation results of label projection module. It shows the data augmentation 

performance for three types of distortions. (a) and (b) demonstrate the correlation between predicted scores 

and human-annotated scores in three types of distorted images. (c-e) illustrate the quantitative value of the 

predicted scores and human labels of images with blur, noise and ring artefact. The red boxes represent the 

confident human annotations. 

 

 

Figure V-6. The qualitative results of label projection. The red box shows the human labels with 

95% confidence intervals. The red dot in each line is the average value of the labels. In y axis, the image 

score ranges from 1 to 5. 

V.2.2 Score prediction results 

In the procedure of image quality score prediction, as shown in Figure V-1, the network was 

firstly trained to rank the images according to their distortion levels. Then, based on the prior 

“ranking” knowledge, it was finetuned to regress the order information to a comprehensive quality 

score that represents the image quality in the range of 1 (worst) to 5 (best). 

In this work, we take the EfficientNet[34] as the feature extractor instead of VGG[35] used in 

RankIQA[22] because it has less parameters (about 9 million parameters compared to VGG about 
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138 million trainable parameters), which means easier to converge and less possibility for 

overfitting.  

For the validation of the model, we predict the quality score of 56 images and compared the 

results with human annotations, as presented in Figure V-7c-f. The results of images with different 

types of distortions were evaluated separately, which allows to observe the performance of the 

model towards different distortions. Taken together, these results indicate that there is a correlation 

between our predicted results and the human labeled scores, which demonstrates our method is 

able to imitate the HVS for the IQA. Interestingly, for blurred images, it performs excellently on 

both the relative order and the absolute score. 

We also apply our method on two X-ray tomographic volumes to observe the consistence of 

the results. As demonstrated in Figure V-7a, b, we generate two image volumes with different 

quality and each of them contains 594 slices with size of 720*720. The images with higher quality 

are generated by applying filters on the worse images.  In the box plot, we can see that the volume 

(purple) with high quality achieved higher score while the one (cyan) with lower quality had lower 

score. This comparison results present that our method could guide the pre-processing step and 

assist in choosing an appropriate filter. Moreover, from the variance of these two boxes, we can 

conclude that our method has stable performance because the difference among confident scores 

is small (less than 0.05) comparing to human distinction. 

 

Figure V-7. (a-b) Image quality prediction results of two image volumes. They both are from the 

same material, but the volume Image Stack 01 has better quality than volume Image Stack 02. The figure 

on right shows the predicted quality score of the two volumes. The line in the box is the mean value of all 

scores. (c-e) Quantitative comparison among different methods. show the results of assessing the images 

with ring artifact, noise, and blur distortion, respectively. The last figure (e) illustrates the results of different 

methods for all types of distortions. 

To demonstrate the advantage of our method, we compare it to other outstanding NR-IQA 

methods through two quantitative metrics (SROCC and PLCC) and the full table is shown in Table 
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V-1. Here, we represent two of them, BRISQUE[22] and RankIQA[28] in Figure V-7f. Overall, it 

shows that our method excels at assessing the quality of tomography images since it yields the 

highest correlation score among these three methods. In terms of the different types of distortion, 

our method outperforms BRISQUE for all three distortions. When compared with RankIQA, our 

method achieves better results for images with ring artifact and noise, and on par performance on 

the images with blur distortion.  

Table V-1. Comparison with other deep-learning NR-IQA methods 

Method SROCC PLCC 

dipIQ24 0.780 0.782 

MEON25 0.728 0.716 

RankIQA22 0.809 0.801 

TIQA(ours) 0.837 0.841 

V.2.3 Segmentation evaluation method 

The T-IQA method provides us with an efficient tool to select the image with best quality 

among pre-processing process, and the clue of how the distortion affects the segmentation 

accuracy could suggest the pre-processing step. Therefore, extra experiments were conducted to 

inspect the relation of the image quality and segmentation accuracy. We implemented a CNN 

based on D-linkNet[36] to predict the semantic segmentation results and compared them with T-

IQA results to explore the influence of the distortions. 

As presented in Figure V-8, a CNN network for segmentation is trained on X-ray tomography 

images and annotated segmentation ground-truth before making predictions. The uncertainty map 

is generated by calculating the entropy[37] of the possibility of each pixel belonging to different 

classes. It represents the uncertainty when the network assigns a phase (φi) to each pixel. A high 

uncertainty is represented as a red pixel, while a low certainty is displayed as a white pixel. From 

the uncertainty map, we can see that a higher uncertainty exists at the interphases, while low 

uncertainty exists at the bulk, which proves that the network usually produces fuzzy boundary. 

The segmentation results are obtained by binarizing the probability map. Here, only two classes 

are considered but the segmentation process can be extended to multiple classes.  
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Figure V-8. Pipeline of segmentation evaluation procedure. In uncertainty map, the red area means 

high uncertainty while the white area means low uncertainty. In IoU map, the red, black, green areas 

represent true positive, true negative and false negative, respectively. 

V.2.4 Relation between IQA results and segmentation accuracy 

In addition to the uncertainty map, the 𝐹1 score, which is calculated from the confusion matrix, 

is also considered to quantify the segmentation accuracy. The correlation between the T-IQA score 

and the segmentation accuracy is investigated. We select an original image and its corresponding 

images with different types of distortions as the data for both IQA and segmentation (see Figure 

V-9). From the results, we can clearly see that the distortion affects the image quality and the 

segmentation performance. With distortion, images have lower quality score and 𝐹1 score which 

means lower segmentation accuracy. The uncertainty map clearly presents the influence of 

distortion on final segmentation results. Compared these three types of distortion, the noise causes 

a large amount of incertitude points in the uncertainty map, shown as the red points in Figure V-

9. Although it seems that the blur distortion causes little uncertainty, it leads to vague boundaries 

and misclassification as well as huge reduction in HVS-based image quality score.  

Moreover, the quantitative evaluation results of the T-IQA and segmentation accuracy are 

shown in Table V-2. From the SROCC and PLCC, we can see that the quality scores predicted by 

our approach are well correlated to the segmentation accuracy. The T-IQA scores share similar 

trend with the 𝐹1 scores, especially for the images with ring artifact and blur distortions. 
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Figure V-9. Results of different distorted images evaluated by T-IQA and segmentation. For F1 

score, it is in the range of 0 (the worst) and 1 (the best). 

 

Table V-2. Quantitative results of the correlation between predicted quality score and 

segmentation accuracy. These measurements are calculated between 𝐹1 score and IQA score. 

 

 SROCC PLCC 

Ring Artifact 0.925 0.887 

Noise 0.829 0.877 

Blur 0.928 0.952 

To inspect the impact of distortion on classification result from pixel perspective, we calculate 

the point correlation pixel by pixel between predicted segmentation masks and ground truth. As 

shown in Figure V-10, we can observe that the colorful lines (with distortion) have positive 

correlation with the black line (without distortion). Nevertheless, they may have different 

sensitivity for specific types of distortion. For example, the point correlation line of the 

segmentation masks with noise do not converge at the reference line and the fluctuation indicates 

the serious impact of noise on segmentation results. Additionally, Figure V-10c illustrates that, 

with the increase of distortion level, the IQA score decreases quickly but the segmentation 
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accuracy keeps stable, which implies the network can tell very little difference of pixel values in 

the image and classify the pixels to different categories on the basis of the distinction. Due to the 

limitation of HVS, people cannot distinguish the little variation of the pixel intensities, as the 

results of blurred image shown in Figure V-10c.  

 

Figure V-10. Point correlation between predicted segmentation mask and ground truth for black 

phase. The figures (a-c) set out the correlation results from images with ring, noise, and blur. The color bar 

shows the distortion at different level, from little distortion to severe distortion. The solid line means the 

point correlation at X direction. The number labeled at the end of each line is the image quality score. 

In summary, through the image quality score produced by our method, especially for images 
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with blur and ring artifact, as described in Table V-2, we can infer the corresponding segmentation 

performance without implementation. It greatly reduces the time of choosing appropriate pre-

processing algorithm to improve the image quality and achieve better segmentation accuracy. 

V.3 Discussion 

Tomography images are widely used for analyzing the battery microstructure. However, the 

essential image pre-processing procedure is, mostly, observer-dependent.[38] This observer-

dependence can lead to dispersions and uncertainties in the segmentation process. The latter might 

produce unreliable results that deteriorate the subsequent quantitative analysis, especially when 

the segmentation involves the supervised training procedure (inaccurate ground-truth). However, 

we believe that observer dependence can be diminished or eliminated by the appropriate prior pre-

processing step, that provides the image with good quality according to HVS. Hence, a trust-

worthy metric, which can assess the image quality like human observers, to guide the pre-

processing procedure helps with dependable post-processing workflow (segmentation and 

analysis).  

In this chapter, we propose a quantitative metric, denoted as T-IQA, for X-ray tomographic 

image quality assessment. Moreover, we address the lack of data issue for X-ray tomographic 

images through the data generation process. Overall, our approach shows a good performance and 

outperforms the other two IQA methods (BRISQUE & RankIQA) for X-ray tomographic images, 

given only few annotations for training. It is worth noting that although we try to reduce the 

demand of training annotations, a small number of labels are still required, so that it cannot be 

considered as an absolutely blind IQA method.  

The correlation of our metric and the segmentation performance has also been explored. The 

qualitative and quantitative evaluation results prove that the segmentation performance is 

associated with the predicted quality score, which is also related to subjective human annotations. 

This correlation gives us tips to reduce the uncertainties and variations of segmentation results by 

applying pre-processing algorithms to improve the image quality. 

For the idea of using neural network to evaluate the results of IQA, we use the similar method 

as Samuel et al.[39], who investigated the effect of image quality on DNN results by applying 

different distorted images on the same network, but we conducted more types of distortion. Instead 

of focusing on image classification problem, which classifies an image to one category, we 

analyzed the impact of distortion on image segmentation problem, that is concerned about pixels 

classification. Taking advantage of uncertainty map and IoU (Intersection over Union) map, the 

influence of distortion could be clearly visualized. 

In conclusion, this work provides a quantitative IQA metric to guide the pre-processing step 

based on the subjective human opinion, so that the observer-dependence can be alleviated or 

removed from the pre-processing and the segmentation step. It greatly reduces the tedious work 

for selecting the good images and facilitates the automation of analyzing X-ray tomography 
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images. In addition, it provides more reliable assessment on image pre-processing results, which 

avoids the conflicts of different human observers, and promises an outperformed segmentation 

analysis.  

However, some limitations remain to be solved. The undistorted images are not well evaluated 

in our method, due to the lack of images with excellent quality. Although our approach does not 

need hundreds of images for training, the estimation results of image quality can still be improved 

with the larger dataset. These limitations can be solved with the contribution from the community 

by sharing open-sources X-ray tomographic data, such as Tomobank[31] ,[32], [33]. 

Interestingly, thanks to the demand of automatically analyzing the tomography images, our T-

IQA method can be extended to improve the image quality by using different image processing 

method. For example, by constructing a Teacher-Student model, our method (teacher) can teach a 

distortion removal network (student) to automatically eliminate the distortions. It will greatly 

release the burden of human observers and reduce the impact of distortion on segmentation. In 

addition, the image quality assessment can be extended to object-oriented assessment. For 

instance, through learning of object information, the network can judge whether the materials 

inside of the battery are destroyed or not.  

V.4 Methods 

V.4.1 Dataset creation 

We collected 40 8-bit images from 11 different types of batteries with different resolutions. 

All the images were rescaled to the same resolution 224×224. To avoid deformation, we resized 

the original image to the width or height equaling 255 while preserving the aspect ratio, then 

randomly cropped the region with size of 224×224. We also maintained 6 original images for the 

analysis of the impact of down-sampling operation on image quality score. To expand the dataset, 

we applied different algorithms with different parameters to generate images with different types 

of distortion. For example, we generated several rings with different radius and intensities based 

on original images and add them together to imitate the ring artifact distortion. For blur and noise, 

we used the methods implemented in scikit-image[40]. Similar to Hanne’s method[41], we manually 

set the parameter values that control the distortion amount such that the visual quality of the 

distorted images varies, from an expected rating of 1(worst) to 5 (best). The distortion parameter 

values were chosen based on a small set of images and applied the same for the remaining images 

in our database. 

We performed two surveys for subjective image quality score and conveyed them to different 

people who included beginners and experts of this field for annotation among five levels: terrible, 

bad, average, good and excellent. For each image, we collected annotations from 15 people and 

set the average number as its quality score. 
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V.4.2 Data generation 

As illustrated in Figure V-2, the preprocessed images were regarded as reference images. Then 

several distortion filters, including noise, blur, and ring artifact, were applied on the reference 

image to generate the distorted images. The parameter values of the filters were set differently, as 

shown in Table V-3, to create different distortion masks before adding them to the reference 

images so as to produce the images at different levels of distortion. For label projection, we used 

five FR-IQA evaluators, mimicking the human observers, to calculate the difference between 

reference image and distorted image and pass a score for distorted image. Due to the range of the 

score from each evaluator varies, we normalized and rescaled them to the same range.  Finally, we 

averaged the produced scores and set it as the generated score. 

Table V-3. Parameters to generate distorted images. The parameters in second column are contrast 

coefficients used to generate ring artifact in images. The third and fourth columns are the variance applied 

to produce gaussian noise and blur distribution 

Level Ring artifact Noise Blur 

1 0.10 0.001 1.20 

2 0.13 0.006 2.50 

3 0.15 0.022 6.50 

4 0.18 0.088 15.20 

5 0.20 1.000 33.20 

V.4.3 Score prediction 

As shown in Figure V-1, we took the EfficientNet network as the feature extractor and change 

the last three layers to output a score for each input image. Among the dense layers, we added 

dropout[42] to avoid the overfitting. Instead of training the network from scratch, we transferred the 

weights from the pre-trained model in ImageNet[43] to reduce the time of convergence[44]. The input 

image size was fixed at 224×224×3 and the corresponding output was a score with shape of 1×1.  

We built the image pair by picking an original image, generating the distorted images with 

distortions at different levels. The image with lower level of distortion was regarded as a better 

image than the one with higher level of distortion. Taking advantage of the generated ranking 

information, the network could order the images by quality. The corresponding rank loss[45] 

function is: 

𝐿(𝑦̂𝑖, 𝑦̂𝑗) = max (0, 𝑚 + 𝑦̂𝑖 − 𝑦̂𝑗)     (Eq. V-1) 
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where 𝑦̂𝑖 , 𝑦̂𝑗 are the prediction results of a pair of images; 𝑚, set at 6 in our experiment, is a 

margin to control the minimum distance of the positive image pair. 

After the image ordering process, the human annotations and the generated machine labels 

were inputted into the network to regress the output score to a fixed range by leveraging the Minor 

Square Error (MSE) loss function. 

V.4.4 Training and testing parameters 

In the score prediction module, we used 32 original images which were expanded to 512 

images after data generation but without labels for training the rank. The initial learning rate was 

set at 3E-5 and decayed after several iterations. The network was trained for 30 epochs and on 

each epoch, it iterated on the whole dataset. The rate of the dropout was set at 0.5 to avoid 

overfitting. The Adam[46] optimizer was applied for optimizing the rank loss.   

After training the rank, the model was fine tuned in the score regression step. The training 

dataset contains 29 images with the size of 224*224*3 and their corresponding labels, which are 

in the range from 1 to 5. The data generation method was also implemented to expand the training 

dataset to 464 images with generated annotations. Then, they were inputted to the network for 

regression with the MSE loss. The network iterated 20 epochs with the initial learning rate at 5E-

5 which decayed every 4 epochs. The dropout rate was 0.5 in training. For testing procedure, totally 

56 images were tested and evaluated with corresponding human annotations.  

All the experiments were conducted on python with TensorFlow[47] library. The computing 

hardware was Tesla K80. 

V.4.5 Evaluation metrics 

The PLCC is the linear correlation coefficient between the predicted score and human labeled 

score. It measures the prediction accuracy of an IQA metric, i.e., the capability of the metric to 

predict the subjective scores with low error. The PLCC is calculated as follows: 

PLCC =
∑ (𝑦̂𝑖−𝑦̂avg)(𝑦𝑖−𝑦avg)

𝑀𝑑
𝑖=1

(∑ (𝑦̂𝑖−𝑦̂avg)
2𝑀𝑑

𝑖=1
)

1
2(∑ (𝑦𝑖−𝑦avg)

2𝑀𝑑
𝑖=1

)
1
2

       (Eq. V-2) 

where 𝑦̂𝑖 and 𝑦𝑖 are the predicted score and the human labeled score of the i-th image in a 

dataset of size Md respectively, , 𝑦̂avg and 𝑦avg are the average of the predicted scores and human 

labeled scores, respectively. 

The SROCC is the rank correlation coefficient between predicted score and labeled score and 

it compares the monotonicity of the prediction performance, i.e., the limit to which the predicted 

scores agree with the relative magnitude of the labels. The SROCC can be calculated via following 

equation: 
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SROCC = 1 −
6 ∑ (𝑑𝑖)2𝑀𝑑

𝑖=1

𝑀𝑑(𝑀𝑑
2−1)

                   (Eq. V-3) 

where the 𝑑𝑖 is the difference between the i-th image’s rank in prediction results and labels. 

V.4.6 Segmentation-based evaluation method 

To inspect the effect of distortion on segmentation accuracy, we applied D-LinkNet[36], which 

is an encoder decoder network connected by dilated convolutions[48], for tomography image 

segmentation. It segmented the image to 2 classes and produced the probability map which 

indicated the possibility of each pixel belonging to a class. Finally, the classification result is 

generated by setting a threshold to binarize the probability map. The network ran for 200 epochs 

on 110 images with segmentation labels. The size of input image and label was 1024×1024 and 

they were normalized to range of 0 and 1 before inputting to the network. The initial learning rate 

was 1E-4 and decayed to one fifth of previous value after fixed steps. The optimizer was Adam 

and binary cross-entropy loss was used to measure the difference of prediction and ground truth.  

In the testing procedure, the output of the network was utilized to generate the uncertainty map. 

We used the entropy function[37] to calculate the uncertainty, which is described as follows,  

𝐻[𝑦|𝑥, 𝑋, 𝑌] = − ∑ 𝑝(𝑦 = 𝑐|𝑥, 𝑋, 𝑌) log𝑝(𝑦 = 𝑐|𝑥, 𝑋, 𝑌)𝑐    (Eq. V-4) 

where 𝑥 is the test image, 𝑦 is the predicted class, 𝑋 and 𝑌 are the images and labels in training 

process, c is the class index. 

The IoU (intersection over union) and 𝐹1 score were utilized to measure the segmentation 

performance. IoU means the area of overlap between the predicted segmentation and the ground 

truth divided by the area of union between them. It ranges from 0 to 1 with 0 signifying no 

overlapping and 1 indicating perfect overlapping. Different from IoU, the 𝐹1 score can be 

calculated by: 

𝐹1 =
2×𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
    (Eq V-5) 

where 𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 means the number of pixels in both segmentation results and ground truth, 

and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 means the intersection of segmentation results and ground truth. 

V.5 Code Availability 

The python code for IQA and segmentation evaluation of the project is available at 

https://github.com/SummerOf15/TomoIQA. 

  

https://github.com/SummerOf15/TomoIQA
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Chapter VI . Numerical Modeling Of Discharge Rate Capability Of 

Industry-Grade Electrodes 
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VI.1 Introduction 

The LiNixMnyCo(1-x-y)O2 electrode features high theoretical capacity, high energy density, 

structural stability, and high intrinsic rate capability that offer many potential advantages over 

existing technologies. While progress has been continuously achieved to get even better active 

materials,[1–5] industry engineers and academic researchers keep working on making improvement 

at the electrode scale. This can be done through the microstructure design, which plays a vital role 

in achieving high-performance LiB electrodes.[6–14] 

Obviously, it can be seen that either densification of the electrode and/or increase in thickness 

significantly improve its volumetric energy density. In addition, the overall AM amount increases 

with coating thickness as the electrolyte, separator and current collector content decrease 

relatively, which can be a benefit for gravimetric energy density at the module or pack level. 

However, the search for optimal design is not straightforward because of the complex interplay 

between the microstructure and the different processes occurring during battery operation that 

affect the electrode performance. Understanding this interplay, therefore, is key for the 

optimization process of the electrode design.  

For this purpose, the common approach currently relies on a trials-errors process using 

experimental testing. The drawback is that it generates little knowledge and understanding of what 

really happens in a device or during a process. It also requires a considerable amount of 

measurements with different configurations to be carried out so as to obtain reliable data for 

investigation. Instead, numerical modeling is promising and potentially a more time-efficient 

alternative to provide valuable insights for electrode design optimization. Among the different 

approaches to building a numerical model, physics-based models are based on the use of 

mathematical equations that represent the underlying physics. Providing the input parameters can 

be accurately determined, battery physics-based models enable predicting what is actually 

happening inside a cell in terms of, e.g., local state-of-charge and temperature, electric potentials 

of solid and liquid phase, electronic and ionic current densities and solid/liquid lithium 

concentration gradients. Moreover, rate-limiting factors can also be quantified through model 

analysis.  

Among LiB continuum models, the so-called Newman P2D model[15–17] introduced in Chapter 

II offers the best compromise between computation speed and physical significance. It relies on 

porous electrode theory and concentrated solution theory.[18] However, such a detailed model 

requires a number of input parameters, describing each component's morphology, kinetics, 

transport and thermodynamics, which are not straightforward to determine. Without an exact 

knowledge of the individual material parameters, statements about internal states are only possible 

to a minimal extent. Very little literature[14,19–21] has so far dealt with the complete parameterization 

of a specific LiB. Consequently, in most works dealing with physics-based models, values from 

supplementary literature sources are used; some key parameters are fitted or even assumed in order 

to match the experimental results. Still, based on the Newman P2D model, relevant works 



124 
 

demonstrated valuable insights about the performance of porous electrodes (PE).[14,19,20,22–25] 

Malifarge et al.[14] combined experimental measurements with simulations to investigate the 

effects of Graphite electrode loading and porosity on electrode performance. Similarly, Colclasure 

et al.[25] investigated limitations of extreme fast charging for NMC/Graphite cells with high 

electrode loading. They demonstrated that electrolyte transport is a major limitation resulting in 

lithium plating and poor utilization for thick-electrode cells.  

Also, many works focus on NMC electrodes since it is a popular class of materials for the 

cathode. Despite a high extent of the investigation, the interplay between their performance and 

their microstructure has not been completely unveiled. Several works reported that the somewhat 

mediocre performance of high-energy density NMC electrodes at high C-rate relates to the 

transport limitation in electrolyte-filled pores. The tortuosity of the pore network is, therefore, 

assigned to be the main rate-limiting factor.[24,26] 

In contrast, Appiah et al.[27] and Xu et al.[28] investigated the performance deterioration through 

the solid-diffusion process, for which an empirical relationship of the solid diffusion coefficient 

with the electrode thickness and the C-rate was set forth. Although these correlations allow for a 

good agreement between simulations and experimental results, the approach relies on fitted 

correlations rather than on a physical foundation.  

In this work, we first proceed with a careful parametrization step, in which the majority of the 

input parameters are determined with appropriate measurements along with the validation on lab-

made “model” electrodes. Then, we demonstrate that the conventional Newman P2D model fails 

at obtaining a good agreement with the experimental results for a set of industry-grade electrodes 

used in this work. Careful analysis with the Newman P2D model and insights from tomographic 

data point out that the limitations would arise from the presence of particle agglomerates, which 

are believed to arise from the electrode calendering for achieving high-energy density. Therefore, 

a new model is developed in this chapter and shows a good agreement with experimental results. 

After validation, the performance of different electrode designs is analyzed using the model, i.e. 

the electrode overpotential is decorrelated into each polarization source for a low- and a high-

loading electrode design. Results obtained from this model-based analysis are eventually 

discussed. Finally, as a perspective for optimizing high-energy density electrode design, the 

performance benefits if agglomerate formation is suppressed are examined with the model. 

VI.2 Model Theory 

In this chapter, since lithium metal is used in place of a porous negative electrode, a half-cell 

is modeled. The model consists of one NMC electrode and one separator domains, whereas only 

the outer surface of the Li foil and the current collector are represented through their boundary 

with the separator and the electrode, for the sake of simplicity.  
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VI.2.1 Newman P2D model 

The Newman P2D model can be seen as the reference for physics-based modeling of LiB, as 

described in detail in Chapter II. For this chapter, the Newman P2D model is simulated with 

DUMBAT,[29] a physics-based modeling software for Li-ion cell simulations. Later, we introduce 

the Newman model using polynomial approximation based on Subramanian et al.,[30] which is 

simulated with COMSOL Multiphysics. For ease of understanding, it is referred to as the 

“baseline” model, whereas the regular Newman P2D model is denoted as the Newman model here 

below. 

VI.2.2 Porous Agglomerate model  

Later in this chapter, we investigate a possible scenario where the calendering process 

increases the electrode density leading to the formation of porous agglomerates (PA), which is a 

consequence of groups of individual NMC secondary particles densely packed with CBD and 

pores. The pores located in these PAs are assumed to be very small and narrow due to the high 

density of the solid mixture, so that they are denoted as sub-pores. Since the NMC secondary 

particle diameter is more than thirty times that of the primary particles, the primary particles are 

not considered, along with grain-boundary effects that might exist. 

Thus, we introduce herein a new physics-based model that takes into account the presence of 

such PAs instead of individual AM particles. The model’s mathematical methodology relies on 

the porous electrode theory in the same manner as the Newman P2D model. Likewise, the 

electrolyte transport in the electrolyte phase of the electrode is described by concentrated solution 

theory. The model is implemented and solved with COMSOL Multiphysics. 

Regarding the PA model, Dargaville et al.[31] proposed a 1D+1D+1D (P3D) model for 

modeling the LiFePO4 electrode. The three correspond scales are the PE, the PA, and the LiFePO4 

particles located inside the PA. Based on this work, several follow-up works[32–34] developed 

models for electrodes having an agglomerate structure of the AM particles (e.g. NMC, 

Li(Ni0.33Co0.33Al0.33)O2) with an inner pore structure. Nevertheless, these works used the PA model 

to consider the morphology of individual secondary particles, which differs from the concept in 

this chapter.  

Purposely, the model in this work is kept as simple as possible to minimize the number of 

additional parameters with respect to the Newman model. It is decided to resort to the polynomial 

approximation to treat the solid diffusion in NMC particles, as proposed by Subramanian et al.[30] 

They developed efficient approximate solutions for the solid diffusion within AM secondary 

particles by assuming that the Li concentration inside the spherical particle can be expressed as a 

polynomial across the radial dimension. Therefore, solid diffusion within AM particles is solved 

by a set of ordinary differential equations and algebraic equations without adding a pseudo-

dimension to the model.  
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In [30], the authors demonstrated that the approximate model using high order (4th-order) 

polynomial to represent the Li concentration profile within the particles yields a great extent of 

accuracy that is tantamount to the P2D model. The polynomial is, then, solved in terms volume-

average AM-phase Li concentration, surface concentration and volume-average concentration 

flux.  

Since a variable solid diffusion coefficient is considered here instead of a constant coefficient 

as in [30], it is taken to be a function of the volume-average Li concentration instead of the local 

Li concentration in the P2D model. The error of this assumption on the simulations are investigated 

later on when comparing the simulated rate capability upon discharge using Newman model with 

polynomial approximation against that from the Newman P2D model for the same electrode (see 

Figure VI-1).  

 
Figure VI-1. Comparison of regular Newman P2D model and “baseline model”. Discharge curves 

at different C-rates obtained by using Newman model with polynomial approximation for the solid phase 

concentration is compared with those obtained by Newman P2D model. 

The PA is assumed to be spherical and radially symmetric. In addition, the interface between 

secondary particles located at the outer of the PA and electrolyte in macro-pores (i.e., outer surface 

of the agglomerate) is assumed to be inactive, i.e. there is no charge transfer process at the 

PA/macro-pores interface. Thus, the pore-wall flux occurs only at the interface between AM and 

sub-pores located inside the PA.   

Finally, it is worth mentioning that the effective electronic conductivity of the solid phase in 

the “macro model” is assumed to be constant. This might not be valid if the conductive pathway 

is a mixture of CBD and NMC, since the electronic conductivity of the NMC materials has been 

reported to vary as a function of the Li content.[35] 
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Figure VI-2. Schematic of the two size scales in our proposed model: a. Porous Electrode, b. Porous 

Agglomerate. c. Active Material Particle. 

A schematic diagram of the model is illustrated in Figure VI-2. The “macro model” refers to 

the PE scale as in the Newman P2D model. In the PE scale, there is a liquid phase filling in the 

macro-pore domain and a solid phase, which is made up of PA (referred to as “micro model”) 

instead of a mixture of AM particles and additives. These agglomerates contain the AM, the CBD 

and a sub-pore domain filled with electrolyte. The total electrode porosity is the sum of that of 

sub-pores and that of macro-pores. 

Within the PA, AM particles are considered spherical with a uniform diameter. It is worth 

noting that the PA can be extremely dense, which promotes an inter-connectivity between solid 

particles. Consequently, unlike in the Newman model, the AM particle surface might not be 

completely exposed to the electrolyte such that the active surface area is reduced. Although the 

particle/particle interface is not active for electrochemical reaction, it is assumed to allow the inter-

particle diffusive flux due to the gradient of concentration between particles in contact. As a result, 

an additional physics is introduced in the model to represent the mass balance of inserted Li in AM 

phase at PA scale.    

In addition, the CBD is assumed to be well-percolated throughout the PA, so that there is no 

limitation from electronic transport. Thus, the electric potential is uniformly distributed throughout 

the PA, i.e., there is no ohmic drop in the solid phase across the radial dimension of the PA. 

For the sake of understanding, the solid phase that consists of AM and CBD is referred to as 

domain 1, the liquid phase in the “macro model” is referred to domain 2, the liquid phase in the 

sub-pore domain in the “micro model” is referred to domain 3. The AM phase within the PA is 

subscripted with AM. The parameters pertaining to the PE dimensions are denoted with uppercase 

symbols, whereas lowercase symbols are dedicated to parameters pertaining to the PA scale. The 

model is also referred to as the PApa model, which comes from Porous Agglomerate with 
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polynomial approximation. 

“Macro model” 

Regarding the macro model, an electronic current density 𝐼1 flows across the PE in the solid 

phase along the 𝑥 dimension (i.e., across sandwich), and an ionic current density 𝐼2 flows similarly 

in the liquid phase. The sum of these two current densities is uniform across the PE, which means 

that any increase in 𝐼2 is compensated for by a decrease in 𝐼1. For the macroscopic model, this is 

expressed as: 

∇ ∙ 𝐼1 + ∇ ∙ 𝐼2 = 0  (Eq. VI-1) 

By electroneutrality in the solution, a current balance relates the divergence of the ionic current 

density to the net cation flux leaving the macro-pore domain to enter the sub-pore domain:  

∇ ∙ 𝐼2 = 𝐴PA𝐹(𝑗3,+ − 𝑗3,−)          (Eq. VI-2) 

in which 𝐴PA (mPA
2 /mPE

3 ) is the specific interfacial area between the PA and the liquid phase 

in macro-pore domain per unit volume of PE and 𝐹 is the Faraday’s constant. Given a spherical 

shape of the PA having a radius, 𝑅PA, it is common in a macro-homogenous model that 𝐴PA is 

estimated from the PA volume fraction, ΨPA (mPA
3 /mPE

3 ), using the following equation: 

𝐴PA =
3ΨPA

𝑅PA
           (Eq. VI-3) 

The net cation flux 𝑗3,+ − 𝑗3,− (mol/mPA
2 ∙ s) relates to the amount of Li+ consumed/produced 

by the electrochemical reactions occurring within the PA, at the interface between the AM particles 

and the sub-pores. 

From Eq. VI-1, the electronic current balance in the solid phase is inferred: 

∇ ∙ 𝐼1 = −𝐴PA𝐹(𝑗3,+ − 𝑗3,−) (Eq. VI-4) 

The electronic current density in solid phase 𝐼1 is simply described with Ohm’s law, with Φ1 

the electric potential of the solid phase and 𝜎eff the effective electronic conductivity of the solid 

phase of the electrode.  

𝐼1 = −𝜎eff∇Φ1        (Eq. VI-5) 

The ionic current density in liquid phase 𝐼2 is expressed using the Mac-Innes equation that 

derives from the concentrated solution theory and accounts for salt concentration gradients across 

the liquid phase. 
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𝐼2 = −𝜅eff,2∇Φ2 + 2𝜅2,eff
𝑅𝑇

𝐹
(1 − 𝑡+

0)𝛼∇ln𝑐2       (Eq. VI-6) 

In this equation, 𝑅 is the ideal gas constant, 𝑇 is the absolute temperature, 𝑡+
0  is the transference 

number of Li+ in the electrolyte with respect to the solvent velocity, 𝛼 is the thermodynamic factor, 

and 𝜅eff,2 stands for the effective ionic conductivity the electrolyte within the macro-pore domain. 

The effective ionic conductivity can be calculated from the bulk ionic conductivity 𝜅 by:   

𝜅eff,2 =
Ψ2

𝜏e,2
𝜅              (Eq. VI-7) 

where Ψ2 (m2
3/mPE

3 ) is the volume fraction of the macro-pore domain, and 𝜏e,2 is the electrode 

tortuosity factor of the macro-pore domain. 

It is noteworthy that E6 is strictly valid for a binary electrolyte, i.e., a salt and a single solvent 

mixture. Newman and coworkers consider that solvent components commonly used in LiB are 

similar enough to be approximated as a single solvent component.[36] 

In the separator domain, the charge is conserved, hence Eq. VI-2 reduces to: 

∇ ∙ 𝐼2 = 0        (Eq. VI-8) 

The ionic current density is continuous at the interface between the separator and the PE. 

Since only potential differences, and not absolute potentials, are measurable, Φ2 has an 

arbitrary datum as a boundary condition. Here, we set the reference potential at the PE/current 

collector boundary: 

Φ2 = 0  (BC. VI-1) 

At the Li foil, a boundary condition specifies all the applied current is carried by the ionic 

current in the liquid phase: 

𝐼2 ∙ 𝑛⃗⃗ = 𝐹𝑖Li
0 {exp (

(1−𝛽)𝐹

𝑅𝑇
(Φ1,Li − Φ2)) − exp (−

𝛽𝐹

𝑅𝑇
(Φ1,Li − Φ2))} = −𝐼app   (BC. VI-2) 

where, 𝑖Li
0 = 𝐹𝑘0,Li𝑐2

1−𝛽
 represents the exchange current density at the Li foil, where the 

reaction Li ↔ Li+ + e−occurs, 𝐼app represents the discharge current density (A/mCC
2 ), which is 

negative for Li insertion in AM phase in convention. 

At the current collector/PE boundary, the ionic current is set to be 0, as all applied current is 

carried by the electronic current in the solid phase: 

𝐼2 ∙ 𝑛⃗⃗ = 0  (BC. VI-3) 

For the solid phase, the electronic current density is assumed to be equal to the applied current 
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density at the current collector: 

𝐼1 ∙ 𝑛⃗⃗ = 𝐼app          (BC. VI-4) 

At separator/PE boundary, the electronic current density is set to be 0, as the total current is 

carried by ions only: 

𝐼1 ∙ 𝑛⃗⃗ = 0  (BC. VI-5) 

Since conventional Li intercalation process in LiB involves only the Li+, the equations are 

made simpler later on if a mass balance on the anion of the salt (e.g., PF6
−) is used in order to solve 

for the salt concentration. By virtue of electroneutrality, the concentration of the anion is identical 

to that for the cation. 

From porous electrode theory, the mass balance for the anion across the PE reads:  

Ψ2
𝜕𝑐2

𝜕𝑡
= −∇ ∙ 𝑁⃗⃗⃗2,− + 𝐴PA𝑗3,−           (Eq. VI-9) 

where 𝐴PA𝑗3,− is the anion flux per unit volume of PE, that reciprocally flows between macro-

pore domain in PE and sub-pore domain in PA. 

The flux density of the anion is described by concentrated solution theory as: 

𝑁⃗⃗⃗2,− = − (1 −
𝑑 ln 𝑐2,0

𝑑 ln 𝑐2
) 𝐷eff,2∇𝑐2 − (1 − 𝑡+

0)
𝐼2

𝐹
+ 𝑐2𝑣⃗0        (Eq. VI-10) 

where 𝑐2,0 is the solvent concentration,𝑣⃗0 is the solvent velocity, and 𝐷eff,2 represents the 

effective salt diffusion coefficient of the liquid phase in the macro-pore domain. 

Similar to the effective conductivity, the effective diffusion coefficient can be calculated from 

the bulk diffusion coefficient 𝐷 by:  

𝐷eff,2 =
Ψ2

𝜏e,2
𝐷                       (Eq. VI-11) 

It is common in papers relying on Newman model that the convection term 𝑐2𝑣⃗0 in the anion 

flux expression is ignored, assuming that convection is negligible. Likewise, one generally 

assumes the term 
𝑑 ln 𝑐2,0

𝑑 ln 𝑐2
  to be zero. 

The flux density of the anion is zero at the current collector/PE boundary and at the Li foil 

surface, where all of the current is carried by ionic (Li+) current: 

𝑁⃗⃗⃗2,− ∙ 𝑛⃗⃗ = 0 at 𝑥 = 0 and 𝑥 = 𝐿el + 𝐿sep       (BC. VI-6) (BC. VI-7) 
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The concentration and flux are continuous at the boundary between the separator and a porous 

electrode.  

“Micro model” 

The volume fraction of the sub-pore domain, Ψ3 (m3
3/mPE

3 ) is expressed as: 

Ψ3 = Ψ − Ψ2 = ξ3Ψ      (Eq. VI-12) 

where ξ3 is the ratio of sub-pore domain among the total porosity of the PE, Ψ.  

From Eq. VI-12, we can infer the volume fraction of the sub-pore domain at PA scale, 

𝜀3 (m3
3/mPA

3 ), by:  

𝜀3 =
Ψ3

ΨPA
         (Eq. VI-13) 

The mass transport in the electrolyte filling in the sub-pore domain is also described by 

concentrated solution theory. For the sake of simplicity, the mass balance for the anion is 

considered: 

𝜀3
𝜕𝑐3

𝜕𝑡
= −∇ ∙ 𝑛⃗⃗3,−          (Eq. VI-14) 

where: 

𝑛⃗⃗3,− = − (1 −
𝑑 ln 𝑐3,0

𝑑 ln 𝑐3
) 𝐷eff,3𝛻⃗⃗𝑐3 − (1 − 𝑡+

0)
𝑖3

𝐹
≈ −𝐷eff,3𝛻⃗⃗𝑐3 − (1 − 𝑡+

0)
𝑖3

𝐹
      (Eq. VI-15) 

where 𝐷eff,3 =
𝜀3

𝜏e,3
𝐷 represents the effective diffusion coefficient of the liquid phase in the 

sub-pore domain. The electrode tortuosity factor of the sub-pores is 𝜏e,3. 𝑐3,0 is the solvent 

concentration. Similar to the macro-pore domain, the convection term 𝑐3𝑣⃗0 in the anion flux 

expression is also ignored and 
𝑑 ln 𝑐3,0

𝑑 ln 𝑐3
 is assumed to be zero. 

The flux density of anion is zero at the PA center by symmetry. At the PA surface, one has the 

continuity of the salt concentration between the sub-pore and macro-pore domain. As the result, 

we get: 

    𝑛⃗⃗3,− ∙ 𝑟∗⃗⃗ ⃗⃗ = 0   at  𝑟∗ = 0              (BC. VI-8) 

    𝑐3 = 𝑐2    at  𝑟∗ = 𝑅PA           (BC. VI-9) 

Moreover, the continuity of the anion and cation fluxes at the PA surface holds:  

𝑛⃗⃗3,− ∙ 𝑟∗⃗⃗ ⃗⃗ = −𝐷eff,3
𝜕𝑐3

𝜕𝑟∗ − (1 − 𝑡+
0)

𝑖3,𝑟∗

𝐹
= 𝑗3,−    (Eq. VI-16) 
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𝑛⃗⃗3,+ ∙ 𝑟∗⃗⃗ ⃗⃗ = −𝐷eff,3
𝜕𝑐3

𝜕𝑟∗ + 𝑡+
0 𝑖3,𝑟∗

𝐹
= 𝑗3,+                 (Eq. VI-17) 

These two extra equations are necessary to close the equation system (by solving for 𝑗3,− and 

𝑗3,+). 

The current balance in electrolyte filling in the sub-pore domain reads: 

∇ ∙ 𝑖3 = 𝑎AM−3𝐹𝑗int, +   (Eq. VI-18) 

where 𝑎AM−3 (mAM−3
2 /mPA

3 ) the specific interfacial area between the AM and the liquid phase 

in the sub-pore domain and 𝑗int, + the cation internal pore-wall flux. The internal pore-wall flux 

𝑗int, + corresponds to the rate of the electrochemical reaction for Li insertion/deinsertion, and is 

detailed in the following. 

Since the particle surface is likely not fully exposed to the electrolyte in sub-pores due to the 

inter-connectivity between solid particles, we introduce a new variable, 𝑓AM−3 representing the 

fraction of particle surface in contact with the electrolyte. Therefore, 𝑎AM−3 is estimated using the 

following equation: 

𝑎AM−3 =
3𝜀AM𝑓AM−3

𝑟P
    (Eq. VI-19) 

where 𝑟P is the radius of a NMC secondary particle.  

The ionic current density in liquid phase 𝑖3 is expressed by means of Mac-Innes equation, 

according to: 

𝑖3 = −𝜅eff,3∇Φ3 + 2𝜅eff,3
𝑅𝑇

𝐹
(1 − 𝑡+

0)𝛼∇ln𝑐3  (Eq. VI-20) 

where  𝜅eff,3 =
ε3

𝜏e,3
𝜅 stands for the effective ionic conductivity of the electrolyte within the 

sub-pore domain. 

Two boundary conditions are required for solving for Φ3 by combining Eq. VI-18 and Eq. VI-

20. The current density is equal to zero at the PA center by symmetry. At the PA surface, there is 

a continuity of the liquid phase potential between sub-pore and macro-pore domain. 

    𝑖3 ∙ 𝑟∗⃗⃗ ⃗⃗ = 0     at  𝑟∗ = 0           (BC. VI-10) 

    Φ3 = Φ2  at  𝑟∗ = 𝑅PA           (BC. VI-11) 

At the PA scale, an additional mass balance applied on inserted “neutral” Li in the AM phase 

is introduced, which considers the inter-particle solid diffusion through the AM/AM interface. It 

is an additional pathway for Li transport across the radial dimension of the PA, alongside with the 
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Li+ transport across the sub-pores followed by electrochemical insertion in the AM. Based on the 

porous electrode theory applied to the PA scale, it reads:    

𝜀AM
𝑑𝑐s̅

𝑑𝑡
= −∇ ∙ 𝑛⃗⃗AM−AM − 𝑎AM−3𝑗int,+  (Eq. VI-21) 

With 𝑐s̅ is the local volume-averaged solid Li concentration of AM phase within the PA; 

𝑛⃗⃗AM−AM = −
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅ represents the Li flux diffusing between AM particles within the PA; 𝜏AM 

is the tortuosity factor of the AM phase.  

At particle scale, the transport model is based on solid diffusion of “neutral” Li species, and 

reads: 

𝑑𝑐s

𝑑𝑡
= −∇ ∙ 𝑛⃗⃗s    (Eq. VI-22) 

With 𝑛⃗⃗s the Li flux in the AM particle, which is zero at the particle center (by symmetry) and 

which is set equal to the total flux, 𝑗total (mol/(mAM
2 ∙ s)) entering the particle at the surface. 

    𝑛⃗⃗s ∙ 𝑟 = 0      at  𝑟 = 0              (BC. VI-12) 

    𝑛⃗⃗s ∙ 𝑟 = 𝑗total  at  𝑟 = 𝑟P             (BC. VI-13) 

The total flux entering the AM particle is set equal to the sum of the two contributions at the 

particle surface, which gives:  

𝑗total = 𝑓AM−3𝑗int,+ + (1 − 𝑓AM−3)𝑗AM−AM    (Eq. VI-23) 

where, 𝑗AM−AM (mol/(mAM−AM
2 ∙ s)) is the rate of transfer of solid Li from the AM particle to 

another AM particle, and (1 − 𝑓AM−3) is the fraction of AM particle surface in contact with other 

AM particles (fraction covered with CBD is assumed to be negligible here). 

To resolve the transport model at particle scale, the polynomial approximation is adopted, so 

that the particle dimension is dropped. The detail of the development of the polynomial 

approximation can be found in [30]. Here, only the three final equations are presented along with 

the three variables to be solved, namely 𝑐s̅; the volume-averaged concentration flux 𝑞̅; and the 

concentration at the surface of the AM particle, 𝑐s,surf. 

𝑑𝑐s̅

𝑑𝑡
+ 3

𝑗total

𝑟p
= 0                (Eq. VI-24) 

𝑑

𝑑𝑡
𝑞̅ + 30

𝐷s

𝑟p
2 𝑞̅ +

45

2

𝑗total

𝑟p
2 = 0               (Eq. VI-25) 

35
𝐷s

𝑟p
[𝑐s,surf − 𝑐s̅] − 8𝐷s𝑞̅ = −𝑗total               (Eq. VI-26) 
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Notice that by combining  Eq. VI-21 and Eq. VI-24, one gets: 

𝜀AM(−3)
𝑗total

𝑟p
= −∇ ∙ 𝑛⃗⃗AM−AM − 𝑎AM−3𝑗int,+   (Eq. VI-27) 

Substitute 𝑎AM−3, 𝑛⃗⃗AM−AM, and 𝑗total gives: 

∇ ∙ (−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅) =

3(1−𝑓AM−3)𝜀AM𝑗AM−AM

𝑟p
      (Eq. VI-28) 

where, 
3(1−𝑓AM−3)𝜀AM

𝑟p
 gives the specific interfacial area of AM in contact with other AM 

particles, so-called 𝑎AM−AM (mAM−AM
2 /mPA

3 ). 

The two boundary conditions are required for solving Eq. VI-28. The Li+ flux is equal to zero 

at the PA center by symmetry.  At the PA surface, one makes the hypothesis of no charge transfer, 

hence the flux of lithium in the AM phase is zero 

−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅ ∙ 𝑟∗⃗⃗ ⃗⃗ = 0  at 𝑟∗ = 𝑅PA     (BC. VI-14) 

−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅ ∙ 𝑟∗⃗⃗ ⃗⃗ = 0  at  𝑟∗ = 0        (BC. VI-15)   

At 𝑡 = 0, the volume-average concentration of Li in all the AM particles is taken as: 

𝑐s̅(𝑡 = 0) = 0.38 ∗ 𝑐s,max                 (IC. VI-1) 

Reaction rate 

The pore-wall flux 𝑗int, + directly relates to the reaction rate occurring at the internal solid/liquid 

interface (i.e., between the AM and sub-pore domain within the PA). Thus, an equation is needed 

to simulate the kinetics of the reaction, which depends on the local concentrations and phase-

potential difference at the interface. Butler-Volmer kinetic equation is used to this end: 

𝑗int, + = 𝑖n
0

{exp (
(1−𝛽)𝐹

𝑅𝑇
(Φ1 − Φ3 − 𝑈(𝑐s,surf))) − exp (−

𝛽𝐹

𝑅𝑇
(Φ1 − Φ3 − 𝑈(𝑐s,surf)))}   (Eq. VI-29) 

where 𝑈 represents the equilibrium potential of the AM that is a function of Li content; 𝑖n
0 

denotes the exchange current density.  

For an insertion electrode involving the reaction LiΘ ↔ Li+ + Θ + e−, where Θ represents the 

solid lattice, the exchange current density depends on the lithium concentration in the electrolyte 

𝑐3 that fills  in the sub-pores  , the lithium concentration in the solid lattice 𝑐s,surf and the 

concentration of unoccupied sites in the lattice 𝑐s,max − 𝑐s,surf according to: 

𝑖n
0 = 𝐹𝑘0𝑐3

1−𝛽
(𝑐s,max − 𝑐s,surf)

1−𝛽𝑐s,surf
𝛽

      (Eq. VI-30) 
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where 𝑘0 is the rate constant of the electrochemical reaction. The exchange current density 

tends to zero as the solid concentration approaches either 0 or 𝑐s,max.  

Since the reaction-rate equation is algebraic, it requires no boundary condition. 

Compared with the Newman P2D model, the PApa model has three additional parameters, 

representing the fraction of particle surface in contact with electrolyte in sub-pores (𝑓AM−3), the 

PA radius (𝑅PA) and the volume fraction of the sub-pore domain (ξ3). 

Table VI-1. Summary of equations and boundary equations in PApa model. 

Equations Boundary Conditions 

Ψ2

𝜕𝑐2

𝜕𝑡
= −∇ ∙ 𝑁⃗⃗⃗2,− + 𝐴PA𝑗3,− 𝑁⃗⃗⃗2,− ∙ 𝑛⃗⃗ = 0 at 𝑥 = 0 and 𝑥 = 𝐿el + 𝐿sep 

∇ ∙ 𝐼2 = 𝐴PA𝐹(𝑗3,+ − 𝑗3,−) 

𝐼2 ∙ 𝑛⃗⃗ = 0 at 𝑥 = 𝐿el + 𝐿sep 

Φ2 = 0 at 𝑥 = 𝐿el + 𝐿sep 

∇ ∙ 𝐼1 = −𝐴PA𝐹(𝑗3,+ − 𝑗3,−) 

𝐼1 ∙ 𝑛⃗⃗ = 𝐼app at 𝑥 = 𝐿el + 𝐿sep 

𝐼1 ∙ 𝑛⃗⃗ = 0 at 𝑥 = 𝐿sep 

𝜀3

𝜕𝑐3

𝜕𝑡
= −∇ ∙ 𝑛⃗⃗3,− 

𝑛⃗⃗3,− ∙ 𝑟∗⃗⃗ ⃗⃗ = 0   at  𝑟∗ = 0 

𝑐3 = 𝑐2    at  𝑟∗ = 𝑅PA 

∇ ∙ 𝑖3 = 𝑎AM−3𝐹𝑗int, + 
𝑖3 ∙ 𝑟∗⃗⃗ ⃗⃗ = 0     at  𝑟∗ = 0 

Φ3 = Φ2  at  𝑟∗ = 𝑅PA 

𝑑𝑐s̅

𝑑𝑡
+ 3

𝑗total

𝑟p
= 0  

𝑑

𝑑𝑡
𝑞̅ + 30

𝐷s

𝑟p
2 𝑞̅ +

45

2

𝑗total

𝑟p
2 = 0  
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35
𝐷s

𝑟p
[𝑐s,surf − 𝑐s̅] − 8𝐷s𝑞̅ = −𝑗total  

∇ ∙ (−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅) =

3(1 − 𝑓AM−3)𝜀AM𝑗AM−AM

𝑟p
 

−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅ ∙ 𝑟∗⃗⃗ ⃗⃗ = 0  at 𝑟∗ = 𝑅PA 

−
𝜀AM

𝜏AM
𝐷s𝛻⃗⃗𝑐s̅ ∙ 𝑟∗⃗⃗ ⃗⃗ = 0  at  𝑟∗ = 0 

 

VI.3 Experimental 

NMC electrode preparation — Four different industry-grade positive electrodes are 

investigated in this work and labelled as MX-01, MX-02, MX-01b, and MX-02b. Each electrode 

is a mixture of LiNi0.5Mn0.3Co0.2O2 (NMC532) as AM, conductive carbon black and a mixture of 

polyvinylidene fluoride (PVdF) with a co-binder as additives with various compositions and 

loadings. They are all calendered to reach the targeted high density value. Their specifications 

from supplier’s datasheet are shown in Table VI-2. 

Table VI-2. Theoretical composition, porosity, thickness (without Al current collector), AM 

loading and density of NMC electrodes used in this work. 

Sample 

Content Porosity (Ψ) Thickness AM loading Density 

%w NMC/CB/Binder 

%v NMC/CB/ Binder 
m2+3

3 /mPE
3  µm mg/cm2 g/cm3 

MX-01 
96.0/2.2/1.8 

90.0/5.0/5.0 
0.212 74.4 25 3.5 

MX-02 
96.0/2.2/1.8 

90.0/5.0/5.0 
0.280 48.8 15 3.2 

MX-01b 
94.2/3.2/2.6 

86.0/7.0/7.0 
0.191 74.4 25 3.5 

MX-02b 
94.2/3.2/2.6 

86.0/7.0/7.0 
0.191 44.6 15 3.5 

Particle size distribution. — The particle size distribution (PaSD) of the raw NMC532 particles 

is determined with the laser diffraction method. PaSD is obtained from the angular variation in the 

intensity of light scattered as a laser beam passes through a dispersed particulate sample. Large 

particles scatter light at small angles relative to the laser beam and small particles scatter light at 

large angles. The angular scattering intensity data is then analyzed to calculate the size of the 

particles responsible for creating the scattering pattern, using the Mie theory of light scattering. As 

for output, laser diffraction will give a volume-weighted distribution of particle diameter, which 

is calculated with the volume-equivalent sphere diameter. 
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Thin Electrode fabrication. — The mixture of AM and carbon black is first pre-mixed for 12 

hours before adding binder dispersed in NMP using a Polytron PT10-35 homogenizer. The slurry 

is cast on an 18 μm thick battery-grade aluminum foil. After being dried overnight in the dry room 

at room temperature, only uniform regions of the electrode are calendared using a rolling mill and 

their thickness is measured to an accuracy of 1 μm with the digital Palmer. The measured 

thicknesses are ca. 7 to 12 μm, ranging from two to four layers of NMC particles on the current 

collector (Figure VI-7). 

Coin cell fabrication. — The electrodes are punched from the laminates to 1.3 cm diameter 

disks. The weight and thickness are measured for each electrode, so that electrode porosity and 

specific capacity is calculated for each coin cell. The electrodes are dried completely under vacuum 

at 120°C for 8-10 hours before coin-cell assembling. The coin cells are assembled inside an argon-

filled glove box in standard 2032 coin cell hardware. A lithium metal disk with a diameter of 1.75 

cm is used as the counter electrode. The counter electrode is pressed on a 0.5 mm stainless steel 

spacer. A Celgard 2500 monolayer polypropylene separator of 1.6 cm is placed on top of the Li 

foil. 100 µL of different electrolytes are then added to soak the separators. Three electrolytes are 

used in this work to unveil different limitations sources, as discussed later in the text. The LP30 1 

M refers to the 1 mol/L solution of lithium hexafluorophosphate (LiPF6) in ethylene carbonate 

(EC)/dimethyl carbonate (DMC) (1:1 w). The LP40 1 M refers to the 1 mol/L solution of lithium 

hexafluorophosphate (LiPF6) in EC/diethyl carbonate (DEC) (1:1 w). Finally, the same mixture is 

used but with a lower concentration (0.5 M), hereafter referred to as “LP40” 0.5 M. Lastly, the 

cathode is placed on top of the separator. The cell is then crimped closed with a hydraulic crimping 

machine. 

Electrochemical measurements. — All measurements are carried out in a controlled 

temperature chamber at 25°C. The cycling tests are performed with a multipotentiostat (Bio-logic, 

France). The potential window for the NMC materials in this work is between 2.5 and 4.3 V vs 

Li/Li+. 

All coin cells first undergo a formation process in which they are cycled five times with 

constant-current (CC) discharge/charge cycles at C/10 to form a stable passive layer at particle 

surfaces as well as for Li foil to further cycle on already cycled Li. A CV is held at the end of the 

discharge of the fifth cycle until the current gets down to C/50. This extra step before further 

charging is to ensure that the electrode discharge is complete (close to pristine state). Finally, a 

CCCV charge followed by a CC discharge is carried out, both at C/25, for capacity determination. 

The available capacity is determined at the end of the CC discharge. 

The rate-capability experiments are conducted on two separate coin cells using the same 

electrode to ensure repeatable results. Upon both charge and discharge, a CCCV protocol is used, 

where the cells are cycled with different currents (C/25, C/10, C/5, C/2, 1C, 2C, and 3C). During 

the CV steps, the cell potential is held constant at both cutoff voltages until the current gets down 

to C/50. Between each change of current, cell is idled during 1 h to allow for some relaxation.  
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For the potentiostatic intermittent titration technique (PITT), the cell potential is stepped by 10 

mV increments from 2.5 and 4.3 V and vice-versa. Each individual titration (at a potential step) is 

held until the current decreases to C/200 (in magnitude).  

For the tortuosity determination, the symmetric cell method is used, which is reported by 

Landesfeind et al.[37] and Malifarge  et al.[38]. The coin cells are assembled with identical cathodes 

at both sides of a separator, filled with a blocking electrolyte (10 mM of TBAClO4 in EC:DMC 

(1:1 w) solvent). Two stainless-steel spacers of 1 mm instead of 0.5 mm are used to compensate 

for the lower thickness of the cathode compared to a Li foil, so that an appropriate pressure inside 

the cell is ensured. The impedance spectroscopy of the cells is measured using MTZ frequency 

analyzer from Bio-logic. The measurements are carried out at two different temperatures (25°C 

and 10°C). The change in temperature changes the ratio between the effective ionic and electronic 

conductivity of the liquid and solid phase respectively; as the ionic conductivity is more 

temperature-dependence than the electronic conductivity. It is a simple way to assess whether the 

electronic conductivity can be safely ignored from the determination of the electrode tortuosity 

factor. If the electrode tortuosity factor value is consistent at both temperatures, no electronic 

conductivity measurement is needed to analyze data from the symmetric cell. In addition, the 

experiments are conducted on two separate coin cells using the same electrode to ensure the results 

are reproducible. 

For electronic conductivity determination, Electrochemical Impedance Spectroscopy (EIS) is 

performed using a 4-line configuration. This configuration ensures that measured conductivities 

are independent of the contact resistances between the probes and the sample, which are known to 

vary depending on the applied pressure of the probes onto the sample. The temperature is set to 

vary within a range [-20°C, 60°C], allowing to extract an activation energy for the electronic 

conductivity.  The measurements are carried out using an ITS system and a MTZ (Bio-logic, 

France).  

Besides, to access the local electronic conductivity, a direct current measurement is performed 

using the µ4-probe method.[39–41] When the 4 probes are aligned, the voltage drop ∆𝑉 between the 

two inner contacts is measured, while a current 𝐼 is injected through the two outer contacts, so that 

the ratio 
∆𝑉

𝐼
 is a measure of the sample resistance 𝑅. The 4 probes are fixed on µ-manipulators 

allowing independent movement of each probe. As a result, the distance between probes can be 

varied, then the measured scale also changes. Depending on the probing distance, the effective 

resistivity of the PE can be determined through equations in Table 1 in [37]. 

VI.4 Results & Discussion: 

VI.4.1 Parametrization results 

Electrolyte properties as a function of Li concentration are reported by Lundgren et al.[42]  and 

Landesfeind et al.[43]. It is worth mentioning that in order to improve model prediction, we have 
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extrapolated the LP40 properties from [0.5–1.5] mol/L to [0–3] mol/L, just like it was done by 

Malifarge et al.[14]. For the LP30, the experimental data was already reported over the range [0-3] 

mol/L. Both electrolytes’ properties are presented in Figure VI-3. 

 

Figure VI-3. Summary of the electrolyte properties. a, b, c, d. for LP40 (LiPF6 in EC:DEC (1:1wt)); 

the extrapolated data is colored in red. e, f, g, h. for LP30 (LiPF6 in EC:DMC (1:1wt)). 
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Values for the separator thickness and porosity are taken from the Celgard datasheet. Its 

tortuosity factor is determined by measuring the effective electrolyte conductivity by EIS (more 

details in Figure VI-4).  

 
Figure VI-4. The electrolyte bulk and effective ionic conductivity are presented. The tortuosity 

factor can be calculated. 

The reaction-rate constant at the lithium foil was measured by Mastali et al.[44]. It is determined 

from data analysis of a lithium symmetric cell cycled at various current densities. Similar 

experiments carried out in house yielded a similar value at 25°C (not shown here).  

Regarding the PE, a multi-modal approach combined with model analysis is required for 

complete characterization: transport properties (electronic/ ionic conductivity), AM intrinsic 

properties (solid diffusion coefficient, reaction-rate constant).  For AM, the variation of the solid 

diffusion coefficient with Li concentration is significant, especially as to the material gets close to 

a full lithiation state.[45,46] Thus, a variable diffusion coefficient is considered in this work for 

higher simulation accuracy. This is also applied to the reaction-rate constant.[47] 

Despite the authors’ effort to build the model from the root, solid diffusion coefficient still 

needs to be taken from the work of Wu et al.[45], after it is slightly adjusted to validate the rate 

capability of the thin electrode. This will be discussed later in the paper. 

The common parameters for the models in this work are summarized in Table VI-3. 
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Table VI-3. Common parameters for the models used in this work (a: assumed, m: measured, *: 

calculated) 

Parameters Values 

LiNi0.5Mn0.3Co0.2O2 

Theoretical Capacity, 𝑄th 277 Ah/kg* 

Density, 𝜌el 4740 kg/m3* 

Initial stoichiometry, 𝑥0 0.38m 

Particle diameter, 𝑑50 4.7 µmm 

Charge transfer coefficient, 𝛽 0.5a 

Li foil 

Li metal reaction rate, 𝑘Li
0  6.6410−6 mol/[m2 ∙ s ∙ (mol/m3)0.5][44] 

Separator 

Porosity, 𝜀sep 0.55[48] 

Tortuosity factor, 𝜏sep 6.8m  

Thickness, 𝐿sep 25 µm[48] 

Electrolyte 

LiPF6 in EC:DEC (1:1 w) Lundgren (2014)[42]  

LiPF6 in EC:DMC (1:1 w) Landesfeind (2019)[43]  

 

VI.4.1.1 Particle size distribution:  

PaSD of AM measured by laser diffraction is presented as black line in Figure VI-5, which 

possess a 𝑑50 of 4.7 µm. The PaSD is divided into multiple intervals or bins (in this case, 12). The 

full PaSD (12 bins), as well as a binned PaSD (reduced to 5 bins) are used for simulations, and 

both show no substantial differences from simulation with one-particle size using the 𝑑50 value 

(Figure VI-6). As a result, for the simulation convenience (duration and convergence), one-particle 

size instead of multiple particle sizes is used for simulations.  
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Figure VI-5. Morphology of the AM phase. a. PaSD of the NMC used as AM characterized by Laser 

diffraction and X-ray Holotomography. b. SEM photo of NMC powder. c. The NMC in an electrode 

captured by X-ray Holotomography is separated into individual particles that allow the statistical analysis 

of the microstructural properties by particles. 
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Figure VI-6. Rate capability simulated by DUMBAT using Newman P2D model with different 

number of particle sizes. 

Besides, the PaSD using tomographic data of MX-01, MX-01b and MX-02b from our previous 

work[7] are also presented in Figure VI-5a, showing a good agreement with the laser diffraction 

experiment. The largest population of particles from three tomographic data correspond to the 𝑑50 

from measurement, despite a slightly larger population of particles having a diameter less than 3 

µm. Here, this can be due to the calendering process, which is known to cause fractures of AM 

particles under high mechanical pressure resulting in smaller particles. The cracked AM particles 

can be clearly observed from the tomographic data.[7] 

It is worth noting that the particle size is calculated after separating the NMC continuum phase 

into individual particles. The analysis discards the possible agglomeration of particles, hence it 

does not contradict with the model based on particle agglomeration that is discussed in this work.  

VI.4.1.2 Porous effects on thin electrodes  

As mentioned above, thin electrodes are made in our laboratory using the same AM powder 

used in the industry-grade electrodes under investigation. Thin electrodes are well-suited to the 

determination of intrinsic properties of AM, because the porous-electrode effects are alleviated, 

thereby increasing the sensitivity to solid diffusion and charge transfer.  

The minor effects of porous-electrode limitations are experimentally assessed by comparing 
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the rate capabilities of two thin electrodes with different compositions and porosity and that are 

filled with a different electrolyte (LP30 1 M or LP40 1 M). The geometric characteristics of the 

two electrodes are shown in the Table VI-4. Figure VI-7 shows a good agreement between the rate 

capabilities of the two electrodes, which confirms that porous-electrode effects are almost 

negligible. The thin electrodes are, therefore, appropriate for the determination of AM intrinsic 

properties, namely  the reaction rate constant and the solid-diffusion coefficient.  

 

Figure VI-7. Rate capabilities of two thin electrodes. Both are made with different compositions 

(%w AM/CB/PVdF: 96/2/2 vs 94/3.2/2.8) and filled with different electrolytes (LP40 1 M vs LP30), 

respectively. 

VI.4.1.3 Solid diffusion coefficient & Reaction rate constant  

The NMC used in this work are intercalation compounds, the performance of which depends 

on the kinetics of charge transfer and the solid Li diffusion. These two processes are described in 

Newman-type models by two parameters, namely the reaction-rate constant 𝑘0 and the solid 

diffusion coefficient 𝐷s. Numerous experimental methods were developed to determine them, e.g., 

PITT,[49–54] galvanostatic intermittent titration technique (GITT),[55,56] cyclic voltammetry 

(CV),[57] and electrochemical impedance spectroscopy (EIS).[58,59] 

Here, the PITT is employed because it is well suited for a fine screening of composition ranges 

in which the AM experiences a steep change in equilibrium potential with composition. For NMC, 

it is the region close to the full lithiation state that is known to experience the largest variation of 

the diffusivity.  
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Figure VI-8. Intrinsic properties of the NMC used in this work. a. The solid-diffusion coefficient 

extracted from PITT experiment along with four others: the original values from Wu et al.[45] and Verma et 

al.[46], two set of adjusted values to fit the rate capability of thin electrode from this work using either the 

Newman model or the “baseline” model. b. The reaction rate constant extracted from PITT measurement.  

In Figure VI-8, the two parameters are determined from the PITT experiment on thin electrodes 

by combining with Newman model analysis, as used in many works.[45,54,60] They are estimated by 

matching the simulated and experimental current response during potential steps at different 

lithiation states using a least-square regression method. 

Nonetheless, as discussed later, the solid-diffusion coefficient determined in this work does 

not provide a good agreement between the simulated and experimental rate capability of the thin 

electrode, despite decent fits of the current response during potential steps in PITT (see Figure VI-

9). Instead, we relied on the solid diffusion coefficient obtained from Figure 6 in [43] with slight 

adjustments so as to approach the experimental rate capability better. For comparison, 𝐷s reported 

by Wu et al.[45] for NMC111, and by Verma et al.[46] for NMC532, along with the 𝐷s extracted 

from PITT in this work and the “adjusted” 𝐷s used for the Newman and  the “baseline” models are 
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all presented in Figure VI-8a. 

 
Figure VI-9. Current responses during the potential step in PITT experiment along with the 

simulated responses given by Newman P2D model using DUMBAT. 

VI.4.1.4 Equilibrium potential 

At the end of each potential step during the PITT experiments, the lithiation state within the 

NMC particles reaches quasi-equilibrium, as the current is lower than C/200. At that time, the cell 

potential is considered at equilibrium. Upon charge and discharge, two different equilibrium 
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potential curves due to a residual hysteresis are obtained. Thus, the final equilibrium potential is 

taken as the average of the two curves.   

On the other hand, we also consider a low-rate discharge (C/50) to get the full lithiation state 

started from the initial stoichiometry 𝑥0 = 0.38 (i.e., Li0.38Ni0.5Mn0.3Co0.2O2). This low-current 

potential profile, whenever used directly as input for the equilibrium potential, is more correctly 

labelled as a pseudo-equilibrium potential because the system is never at equilibrium. 

 

Figure VI-10. Equilibrium potential of the NMC used in this work. Different potential curves 

during the charge and discharge process extracted from PITT experiment along with the discharge curve at 

C/50 are presented for comparison. 

Figure VI-10 compares the average equilibrium potential obtained from the PITT upon charge 

and discharge with the pseudo-equilibrium potential from the low-rate discharge at C/50. The 

discrepancy in terms of polarization between these two curves is minor. In other words, during a 

discharge at C/50, the system is very close to its thermodynamic stability. While the equilibrium 

potential averaged from PITT shows an abrupt drop toward the cut-off voltage at the EoD, referred 

to as the “kink” region, the PITT in discharge and the discharge curve at C/50 represent a more 

gradual potential decline at the EoD. Therefore, as we focus on the discharge behavior of the 

electrodes, the discharge curve at C/50 is rather considered hereafter as the equilibrium potential 

to better capture this behavior. 

VI.4.1.5 Electrode Tortuosity factor 

The electrode tortuosity factors are measured with the symmetric cell method,[37,38] which has 

been demonstrated through experimental[61,62] as well as a numerical approaches[63] to be 

appropriate for the determination of tortuosity applied to porous electrodes.  

Figure VI-11 shows the electrode tortuosity factor determined from the symmetric-cell method 
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for the four industry-grade electrodes studied in this work. The results suggest negative effects of 

the CBD on the electrode in terms of tortuosity, as MX-01b and MX-02b both yield higher 

electrode tortuosity factor values than MX-01, despite having similar porosities.  

 

Figure VI-11. Electrode tortuosity factor and McMullin number. The electrode tortuosity factors 

of the 4 electrodes measured by the symmetric cell method are presented along with the McMullin number 

calculated for each electrode. 

Notably, the results are in good agreement with the values calculated from the power-law 

reported by Usseglio-Viretta et al.[62] based on a fit of measured values using the same method for 

electrodes having similar NMC532 materials. Given that the porosity can slightly deviate (±3%) 

from theoretical value due to a non-optimized manufacturing process, the McMullin number for 

each electrode is also calculated (i.e., it corresponds to an electrode tortuosity “normalized” by its 

porosity). 

Furthermore, Malifarge et al.[38] measured the electrode tortuosity factors of different graphite 

electrodes using a similar method (except for the use of a conventional LP40 electrolyte instead of 

a blocking salt) and found really good agreement between simulated and experimental rate 

capability of the electrodes. For graphite electrodes with similar porosity, they found that the 

electrode tortuosity factors range from 7 to 10. Since the graphite particles have flake-like 

geometry, electrodes having graphite as AM are expected to be more tortuous than those with more 

spherical particles such as NMC. Therefore, the electrode tortuosity-factor values shown in Figure 

VI-11 seem to be reasonable for industry-grade electrodes in this work.  

Moreover, the simulations by TauFactor[63,64] using the tomographic data also give the values 

within the experimental ranges for MX-01b and MX-02, as shown in Figure VI-12. The EIS 

responses of the four electrodes, along with the fit for tortuosity factor determination are shown in 
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Figure VI-13.  

 
Figure VI-12. The electrode tortuosity factors are calculated by TauFactor[1,2] using X-ray 

tomographic data.  a. MX-02. b. MX-01b.  
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Figure VI-13. EIS response of symmetric cell measurements for tortuosity determination. a, b. 

MX-02b in 10mM of TBAClO4 at different temperatures (25°C, 10°C) along with the fit proposed by 

Landesfeind et al.[37]. c. Summarize of EIS responses of the industry-grade electrodes used in this work. 
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VI.4.1.6 Electronic conductivity 

 

 

Figure VI-14. Electronic conductivities of the 4 industry-grade electrodes measured by the 4-line 

method as a function of the temperature.  

For the electronic conductivity measurements, the 4-line method[65] is used instead of the 2-

point method that highly depends on the compression pressure by the two probes, which cannot 

be controlled with our equipment. The effective conductivity in function of the temperature along 

with the activation energy for four electrodes is shown in Figure VI-14. The sensitivity of the 

conductivity measured by the 2-point method as a function of the compression pressure is shown 

in Figure VI-15. 
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Figure VI-15. Pressure sensitivity investigation of 2-point & 4-line electronic conductivity 

measurement. 

Besides, a µ-4probe method is also employed that allows probing the electronic conductivity 

at various scales, as the probing distance can be adjusted using µ-manipulators. This study enables 

the mapping of the electronic conductivity at different locations throughout the electrode surface. 

A correlation between the local electronic conductivity and the electrode microstructure, measured 

at identical locations, is a scope of future work. Several measurements were performed at different 

locations (without overlapping) to assess the microstructure heterogeneities, at each probing 

distance. The average/min/max 𝜎eff along with the 95% confidence intervals are presented in 

Figure VI-16. As expected, a higher dispersion, i.e. larger error bar, of 𝜎eff is observed, as we go 

to a lower scale, as it gets more sensitive to local microstructure. All values measured at the macro 

scale lie within the confidence intervals of the conductivity measured with the µ-4probe method 

at the lowest scale. 
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A higher amount of carbon additives (1%w) shows a big improvement (~x10) on the electronic 

conductivity of the electrode across multi-length scales. The effective electronic conductivities of 

the porous electrodes lie between the bulk values of the carbon binder mixture (250-300 S/m)[66] 

and the NMC materials at a pristine state (0.00136 S/m).[26,67] In a multi-phase porous structure, 

there might be a mix of transport properties, so that the carbon additives and the NMC materials 

both contribute to the electronic transport throughout the electrodes. Given that the NMC 

electronic conductivity varies with the Li concentration, the electronic conductivity of the porous 

electrode may vary as a function of the SoC. Nevertheless, we notice here that the electronic 

conductivity is not a dominant limitation of these electrodes as the higher CBD possess a lower 

electrochemical performance, as shown later. Therefore, throughout our work, it is assumed that 

the electronic conductivities of the electrodes during operation can be represented by the values 

measured at a pristine state. 

 

Figure VI-16. Multi-scale electronic conductivity. a. The electronic conductivities of the 4 electrodes 

measured by two methods (4-line and µ4-probe) at different length scales are presented. b. Schematics of 

the electrode used in the 4-line method from Bio-logic, in which the 4 probes are made by gold deposit on 

a plastic substrate. c. SEM photo of the 4 µ-probes made by tungsten in µ4-probe method.  

VI.4.2 Model Validation against experimental results 

In this section, the Newman model is first used to validate the AM properties: reaction rate 

constant (𝑘0) and solid diffusion coefficient (𝐷s), in the framework of the thin electrodes. Then, a 

model-based analysis of the rate capability of the four different industry-grade electrode designs 

with respect to their experimental results is detailed.  
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Simulations for which local salt concentration reaches 3 mol/L anywhere across the cell 

sandwich are interrupted. In this situation, simulated values of the cell overpotential may still serve 

for comparison with experiments, whereas values of the delivered capacity are irrelevant and 

discarded.  

Besides, the reported electrolyte diffusion coefficients, for both LP40 and LP30, are a strong 

function of salt concentration and decrease by nearly one order of magnitude with every 1 M of 

increasing concentration. In model calculations, the small diffusion coefficient at high 

concentration results in a large potential drop near the lithium anode, which in turns lowers the 

potentials throughout the separator and electrode. Therefore, at high current density, the simulated 

discharge potential curve might show a fast drop and a much smaller EoD capacity than that 

observed in the experiments. 

For some simulations, the cut-off voltage is set to 3.0 V to avoid convergence issues, as it 

causes only a minor difference on discharge capacity if it is set to 2.5 V instead. 

VI.4.2.1 Validation on thin electrodes 

Regarding the thin electrode characterization, its effective electronic conductivity cannot be 

measured properly with the 4-line method as for higher loading electrodes, since the aluminum 

foil cannot be removed without breaking the electrode due to its low loading. Also, the symmetric 

cell method is conducted first, so as to determine the electrode tortuosity factor. However, the EIS 

response does not agree well with theoretical expectations; a large semi-circle appears in the 

intermediate frequency range instead of a straight line with slope of ca. 45°.  

Fortunately, as demonstrated above, porous electrode effects in the thin electrode are 

negligible. As a result, it is assumed that the thin electrode tortuosity factor follows Bruggeman’s 

correlation, even though it is known to poorly predict electrode tortuosity factor for the other 

electrodes studied here. Also, the effective electronic conductivity of the thin electrode is set to a 

high value, so that there is no ohmic drop across the electrode thickness. Table VI-4 shows the set 

of parameters used for the Newman model of the thin electrodes. 

Table VI-4. List of model parameters used for half-cell simulations at 25°C of rate capability of 

the thin electrode. a: assumed value, m: measured value, *: calculated from design. 

Parameters Values 

Electrode 3.2 %w CB 2 %w CB 

Thickness, 𝑳𝐞𝐥 6.44 µmm 7.57 µmm 

Porosity, 𝜺 0.41* 0.19* 

Tortuosity factor of the liquid 

phase (Bruggeman),  𝝉𝐁𝐫 
0.41−0.5a 0.19−0.5a 

Electronic conductivity, 𝝈𝐞𝐟𝐟 1000 S/ma 1000 S/ma 

%v AM, 𝚿𝐀𝐌 0.51* 0.73* 
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The parameters (𝐷s, 𝑘0) determined from PITT experiments on a thin electrode are integrated 

back to the Newman model to simulate its rate capability for validation. Even though the current 

response during potential steps simulated by the Newman model match pretty well with the PITT 

experiment albeit perhaps close to full AM lithiation (see Figure VI-9), Figure VI-17a shows that 

the simulated rate capability does not match experimental data correctly. Despite the significant 

discrepancies in EoD capacity, the polarizations of the electrode from simulations match well with 

the measurements (up to 3C in Figure VI-17b). Therefore, 𝑘0 values from PITT are retained for 

the rest of the study. Conversely, the mismatch between simulated and experimental EoD capacity 

suggests values of 𝐷s from PITT are not suitable for rate-capability simulations. The root cause of 

the disagreement remains unclear. Further investigations are needed to determine the origin of this 

inconsistency, but it is not addressed here. 

 

Figure VI-17. Validation of the experimental results. The simulation of the rate capability of the thin 

electrode (solid lines) is compared with the experimental results (square markers). AM intrinsic properties 

(𝐷s, 𝑘0) derived from the PITT measurement are used as model inputs. The current densities are in A/m². 

The solid-diffusion coefficient, 𝐷s, determined by Wu et al. for NMC111 materials using 

another interrupted titration technique (namely GITT on a thin electrode combined with a model 

analysis), is used instead. To get a better match between simulations and experiments upon 

discharge rate capability, 𝐷s is manually adjusted in the Li-rich composition range and turns out 

to decrease faster than that by Wu et al. for NMC111.  



156 
 

 

Figure VI-18. Validation rate capability on thin electrodes. a. Discharge curves of thin electrodes 

at different current densities. b. EoD capacity as a  function of C-rate from experimental and simulation 

data. c. Overpotential at Li0.77Ni0.5Mn0.3Co0.2O2 upon discharge from Li0.38Ni0.5Mn0.3Co0.2O2 (indicated by 

the black arrow) in function of C-rates from experimental and simulation data. The current densities are in 

A/m². 

Figure VI-18a shows a good agreement between the simulated discharge curves and the 

experimental data, regarding both EoD capacity (Figure VI-18b) and average polarization (Figure 

VI-18c), over the entire range of discharge C-rates. Thus, 𝐷s and 𝑘0 are then retained for modeling 

the industry-grade electrodes here below.  

Nevertheless, the model cannot represent the gradual decline of cell potential toward the EoD, 

especially at high C-rates. Even with the use of the discharge curve at C/50 as an equilibrium 

potential rather than the averaging of PITT charge and discharge, the simulated potential drop near 

the EoD is much more sudden with the model than it is in the experimental data.  

A possible reason for it is the distribution of the electronic resistance (e.g., electronic contact 

resistance between AM/CBD, electronic resistance across the AM) that would account for a 

distribution of the resistance for electron transport  from the conductive electrode matrix all the 

way to the reaction sites.[22] Furthermore, the NMC conductivity is reported to decrease 

substantially once the materials get close to full lithiation state.[35] Consequently, considering a 

constant effective electronic conductivity during the entire operation might not be accurate enough 

to properly address the cell potential decline toward the EoD. Here, the authors decide not to focus 

on this minor discrepancy, but acknowledge that electronic effects (distribution + stoichiometry 

dependence of AM conductivity) could be implemented to the mathematical model for a better 

model prediction capability in a future work. 

As seen in Figure VI-19a-c, the simulated liquid-phase concentration profile across the 

electrode thickness does not show any Li depletion issue.  
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Figure VI-19. Simulated concentration profile across the thin electrode (“model” electrode). a, c. 

Concentration profile at different times across the separator + PE thickness at 10C and 20C, respectively. 

b, d. AM utilization profile at different times across the separator + PE thickness at 10C and 20C, 

respectively. 

In addition, Figure VI-19b-d show the volume-average Li utilization within the particles across 

the thickness of the electrodes, which is nearly uniform, even for C-rates as high as 10C and 20C. 

This justifies that the Li intercalation occurs uniformly across the electrode thickness, as expected 

if porous-electrode effects are negligible. Increasing the tortuosity factor at values well above that 

estimated from Bruggeman correlation also yields no effect on the particle utilization. 

Later in the paper, we develop a new model that uses the polynomial approximation[30] as an 

approximate solution to solve the solid diffusion in AM particles. Compared with the regular 

Newman P2D model, this approximation allows removing the additional dimension across the 

particle radius.  

As mentioned above, the solid coefficient diffusion 𝐷s is no longer taken as a function of 𝑐s, 

but assumed to be a function of 𝑐s̅ whenever the polynomial approximation is used. Thus, 𝐷s must 
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be re-adjusted to validate the thin electrode rate capability (orange curve in Figure VI-8a), given 

the slight differences due to this assumption (Figure VI-1).  

Figure VI-20 represents the model/experiment comparison of the discharge rate capability of 

the thin electrode with the “baseline” model using the new “fitted” 𝐷s. On the other hand, the 

polarization from simulations shows good agreement to the experimental for the entire range of C-

rates. Therefore, 𝑘0 is kept identical hereafter. 

As a short conclusion, the validation step on the thin electrode without substantial porous-

electrode effects, proves our set of parameter values to be relevant for representing the AM 

intrinsic properties.  

 

Figure VI-20. Validation on the thin electrode for polynomial approximation. The parameters for 

intrinsic properties of AM are validated again using the Newman model with polynomial approximation 

upon the rate capability of the thin electrode. 

VI.4.2.2 Industry-grade-electrode validation 

Here, we focus on how rate capability changes for different electrode designs to identify rate-

limiting factors for each design. For this purpose, different electrolytes are used, resulting in 

different impacts on ionic transport. Using an electrolyte with low transport properties (LP40 1 M 

and 0.5 M) magnifies the discrepancy between electronic and ionic transport limitations. In 

contrast, ionic transport is improved with a high-performance electrolyte (LP30), so that it ionic 

transport limitations get closer to electronic ones. By changing the ratio between electronic and 

ionic transport, it can lead to either a more uniform reaction rate across the electrode (with LP30) 
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or conversely a narrow reaction zone that moves across the PE as discharge proceeds (with 

LP40).[18] This is expected to provide more insights for understanding the interplay between 

electrode design and its performance.  

Table VI-5. List of model parameters used for discharge process simulations at 25°C. 

Parameters Values 

MX-01 LP40 1 M LP40 0.5 M LP30 1 M 

Thickness, 𝑳𝐞𝐥 73.55 µm 72.13 µm 72.95 µm 

Porosity, 𝚿 0.24 0.24 0.25 

McMullin number, 𝑵𝐌,𝐞 17.47 

Electronic conductivity, 𝝈𝐞𝐟𝐟 0.11 S/m 0.11 S/m 0.11 S/m 

%v AM, 𝚿𝐀𝐌 0.68 0.68 0.66 

MX-02 LP40 1 M LP40 0.5 M LP30 1 M 

Thickness, 𝑳𝐞𝐥 46.13 µm 46.40 µm 46.50 µm 

Porosity, 𝚿 0.28 0.25 0.25 

McMullin number, 𝑵𝐌,𝐞 17.56 

Electronic conductivity, 𝝈𝐞𝐟𝐟 0.16 S/m 0.16 S/m 0.16 S/m 

%v AM, 𝚿𝐀𝐌 0.65 0.68 0.68 

MX-01b LP40 1 M LP40 0.5 M LP30 1 M 

Thickness, 𝑳𝐞𝐥 74.35 µm 73.75 µm 74.45 µm 

Porosity, 𝚿 0.19 0.19 0.22 

McMullin number, 𝑵𝐌,𝐞 36.67 

Electronic conductivity, 𝝈𝐞𝐟𝐟 2.38 S/m 2.38 S/m 2.38 S/m 

%v AM, 𝚿𝐀𝐌 0.70 0.67 0.67 

MX-02b LP40 1 M LP40 0.5 M LP30 1 M 

Thickness, 𝑳𝐞𝐥 39.95 µm 39.95 µm 39.95 µm 

Porosity, 𝚿 0.16 0.18 0.17 

McMullin number, 𝑵𝐌,𝐞 24.35 

Electronic conductivity, 𝝈𝐞𝐟𝐟 3.07 S/m 3.07 S/m 3.07 S/m 

%v AM, 𝚿𝐀𝐌 0.72 0.70 0.71 

Figure VI-21a, c, e summarize the experimental rate capabilities of all industry-grade 

electrodes with three different electrolytes. Notably, all electrodes show very similar performances 

up to C/5 regardless of the type of electrolyte, which are also very close to those of the thin 

electrodes (Figure VI-18). This indicates that the limitations at low C-rates mainly come from the 

solid diffusion and charge transfer at particle scale, related to AM intrinsic properties rather than 

electrode design (PE scale).  

As the discharge rate increases further (C/2 or more), the electrode performance starts to 

deviate from each other and from that of the thin electrode. This suggests a change in the electrode 
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limitation, as the thickness increases, which is commonly explained by the contribution from 

porous-electrode effects, i.e. ionic/electronic transport. The Newman model should be able to 

capture this behavior, since the electrode tortuosity and electronic conductivity were carefully 

determined using appropriate experiments, as detailed above. 

Also, it is noteworthy that a lower performance is observed experimentally for electrodes with 

a higher CB/binder content, despite a higher electronic conductivity. This result, albeit surprising 

at first sight, does not contradict with other works in the literature.[26,67] It is explained by the fact 

that a higher content of CB/binder content leads to a higher electrode tortuosity factor, as the CBD 

tends to form clusters containing meso/nano-pores.[7,68] Moreover, a reduction of the active surface 

area can also occur as a larger AM particle surface is covered by the CBD, at the expense of the 

surface in contact with liquid electrolyte.  

Furthermore, our previous work[7] demonstrated that the MX-01 electrode has a better 

dispersion of CBD than MX-01b and MX-02b based on tomographic data. This promotes better 

short-range contacts[13,69,70] for electronic transport. It was experimentally demonstrated to be 

essential for electrode performance rather than long-range electronic conductivity, as it allows to 

have a more uniform distribution of reactions throughout the PE. 

Regarding the simulations, Figure VI-21b, d, f show the corresponding results simulated with 

the “baseline” model. The model operates with the set of parameters determined earlier (Table VI-

5) without any fitting parameters. Unfortunately, there is a poor agreement between the model and 

the experimental results. Overall, the model tends to overestimate the performance in all cases, 

especially toward moderate to high-rate discharge curves (ca. C/5 or larger). This is seen in Figure 

VI-22a, in which the complete simulated and experimental discharge curves are compared for MX-

01b in LP40 1 M. Similar to the thin electrode, the polarization of simulated curves is in agreement 

with the experimental curves at least at low C-rate (< C/5). 
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Figure VI-21. Validation on industry-graded electrodes with “baseline” model. 



162 
 

 

Figure VI-22. Study the effects of the particle size on the simulation results of MX-01b sample 

with LP40 1 M. a. Simulation results using “baseline” model with one particle size (2.35 µm diameter 

given by laser diffraction measurement). b. Simulation results using “baseline” model with a particle size 

of 10 µm diameter. 

Although Malifarge et al.[14] demonstrated a good agreement between simulation and 

experimental results by measuring all the model parameters carefully in the case of graphite 

electrodes, the same approach on NMC positive electrodes do not seem to be as straightforward. 

Many literature works struggle to capture the correct discharge behavior at multiple C-rates using 

the Newman-based model for the family of NMC materials.[24,26–28] 

It is worth mentioning that in most of these works, an overestimation of predicted capacities is 

observed in the discharge simulations. The dominant performance-limiting factor is attributed to 

the ionic transport related to the liquid phase within the electrode porosity. Hence, they explain 

the performance overestimation by either an underestimation of the electrode microstructural 
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parameters (e.g. 𝜏e) or an overestimation of the bulk electrolyte properties.  

Among these works, Wu et al.[24] proposed a similar approach, in which they carefully 

validated the intrinsic properties of their AM through the use of a “model” electrode, just like we 

do in this work. However, the authors had to assume a large electrode tortuosity factor (𝜏e = 26) 

in order to match the experimental data. Tambio et al.[26] assumed EoD capacity is diffusion-

limited by the liquid phase. Following this postulate, the authors relied on the empirical model 

developed by Gallagher et al.[71], which explicitly neglects other limitation sources, to validate the 

experimental measurements. However, the authors considered the geometric tortuosity factor, 

which is not the most appropriate to represent the tortuosity of a PE, as it suffers some key 

conceptual issues such as not accounting for “bottleneck” pores.[72] This explains why the 

tortuosity are quite low for their electrodes, albeit their high density, and also why the effective 

porosity is lower than given in order to compensate the underestimation of the tortuosity. Even 

when they demonstrated an increase of the electrode tortuosity factor values due to micro/nano-

porosities, the values remain low (1.2 < 𝜏e < 2.9). They do not significantly differ from the values 

estimated by the Bruggeman correlation, which is reported to frequently underestimate the 

tortuosity of the pore network. 

Although electrode tortuosity-factor values seem to be reliable, as discussed above, attempts 

are made to adjust them for matching the experimental results and possibly verify assumptions on 

liquid-phase limitations. The case of MX-01b using LP30 1 M is considered (Figure VI-23a, b), 

in which MX-01b shows important capacity loss from rates above C/2 (ca. 1 mA/cm²). An 

electrode tortuosity factor larger than 11 is needed to capture this behavior. Though, it does not 

affect the discharge at C/2. Figure VI-23c, d show simulation results of MX-02 with LP40 1 M, 

with an electrode tortuosity factor that is increased by a factor of 2 (𝜏e,fit = 8), which shows a 

better agreement with experimental data at the high discharge rates (1C, 2C). However, similar to 

MX-01b, this value does not resolve the difference between simulations and experimental results 

at lower discharge rates (C/5, C/2).  
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Figure VI-23. Study the effects of the electrode tortuosity factor on the simulation results. The 

electrode tortuosity factor was varied in two different cases to match the simulation results to the 

measurements. a, c. Comparison of EoD capacity between simulation and experiment for MX-01b and MX-

02b, respectively.  b, d. Comparison of polarization between simulation and experiment for MX-01b and 

MX-02b, respectively. 

The analysis above has thus far suggested that the mass transport in liquid phase is likely not 

the solely limiting source of the electrode performance. Xu et al.[28] and Appiah et al.[27] tackle the 

issue differently, as they attribute the severe drop in capacity observed at high C-rate to the solid-

state Li diffusion, which is a process occurring at the particle scale. However, using the Newman 

model, they need to exacerbate the limitation of this process through an empirical correlation of 

the solid-diffusion coefficient to either the electrode thickness or to the C-rate in order to fit the 

experimental data. Even though both correlations allow for matching the experimental data, the 

underlying physics accounting for these dependencies is not clearly unraveled.  

Back to the electrodes studied in this work, the worst performance is observed for electrodes 

with a higher content CB, so it is unlikely that the lack of limitations at the higher discharge rates 

of the simulations cannot be addressed by additional electronic resistances, which can be referred 

to as contact resistance between either particles or between porous electrodes and current collector. 

Furthermore, the change of electronic resistances mainly impacts the polarization of the discharge 
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curves but has slight impacts upon the EoD capacity, unless a there is a large distribution of contact 

resistances, with a fraction of poorly-connected particles. 

In this work, given that a good agreement between experimental and simulated rate-capability 

curves is obtained for thin electrodes up to very high C-rates (20C corresponding to a current 

density of ~8 mA/cm²), the parameters used for AM properties are expected to represent the AM 

behavior even in higher-loading electrodes correctly, as long as the assumptions at particle scale 

remain valid (isolated spherical particles).[18] Thus, the discrepancies indicate that the AM particle 

morphology in industry-grade electrodes might deviate from the “ideal” particle model used for 

the thin electrodes.  

Fortunately, the analysis from tomographic data of the industry-grade electrodes can give more 

insights.[7] It shows a tendency of narrowing the gap between solid particles along the electrode 

thickness. In addition, a non-negligible extent of the inter-connectivity among AM particles is also 

quantified, which can reach up to 20% of the particle surface. Overall, the analysis implies a 

tendency of particle agglomeration (AM and CBD). This deviates from the assumption of isolated 

AM particles in Newman model, in which the Li diffusion between adjacent AM particles, referred 

to as inter-particle diffusion, is not accounted for.[73]  

Recently, the inter-particle diffusion was numerically demonstrated by Ferraro et al.[74] to 

occur between particles in contact. Assuming that there is no resistance due to the inter-particle 

diffusion, then a group of particles in contact would behave as a large single particle. The solid 

diffusion length increases, as it now relies on the size of the large particle agglomerate. This makes 

solid diffusion more critical. Moreover, the formation of particle clusters tends to reduce the active 

surface area, as particles are no longer exposed completely to the liquid phase as in the physical 

representation of Newman model. This causes fewer reaction-sites dispersed over the particle 

surface, resulting in longer diffusive pathways for “neutral” Li to move in order to occupy all the 

solid lattice during the discharge process. 

If the solid diffusion process is the primary rate-limiting factor, a simple increase of the 

apparent particle radius, i.e. diffusion length, may reproduce the detrimental effects on electrode 

performance at high C-rates that are seen experimentally. Figure VI-22b shows that in order to 

match the high C-rate region, the increase of diffusion length will also overestimate the limitation 

at the low C-rate region and vice-versa. Therefore, an apparent particle size that empirically varies 

as a function of the C-rate would be required in order to fit the entire rate capability. 

To conclude this part, the Newman P2D model with a “micro” model that matches the AM 

behavior fails to predict the discharge rate capabilities of the industry-grade electrodes. Different 

hypotheses are investigated to understand the root cause of the non-agreement between simulations 

and experiments. Nevertheless, simply tuning an individual parameter to control either the liquid-

phase transport (via 𝜏e) or the “micro” model behavior (via 𝑟P) does not help reconcile simulations 

and experiments over the full range of C-rates. Thus, this discrepancy may arise from extra 

limitation(s) that are not built-in in the Newman model, but can be relevant for electrodes in this 
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study.  

Given the high density of the industry-grade electrodes used in this work along with the 

analysis from tomographic data, the formation of particle agglomerates is likely to occur, which 

exacerbates the solid-diffusion limitations, as discussed above. However, we hypothesize that sub-

pores can be located inside an agglomerate, making it a porous medium instead of a bulk 

nonporous agglomerate. In that case, the formation of agglomerates can also exacerbate the 

impacts from the ionic transport in the liquid phase. Since agglomerate formation reduces the 

available active surface area, which is also reduced by the CBD coverage, less reaction sites have 

to support a higher pore-wall flux under a same current density. This accelerates the Li+ depletion 

in the liquid phase in the vicinity of the reaction-sites. Moreover, we assume that the pore network 

within the PA is formed by either the mesopores of the swollen CBD or the narrow gaps between 

solid particles due to the calendering process. Thus, the local size of the pores is another factor 

that would aggravate these local liquid-phase limitations.  

Overall, the abovementioned combined effects (deterioration of solid diffusion, lowering of 

active surface area, and local Li+ depletion) due to electrode calendering can be represented by a 

PA, in which solid particles are clustered together along with a low volume fraction of inter-

connected sub-pores.  

Figure VI-24 illustrates the geometric change from isolated-spherical particles to PA assumed 

to form on industry-grade electrodes. Within a highly dense agglomerate, as shown in Figure VI-

24b, the inter-connectivity between solid particles is likely to occur, such that reduces the particle 

surface exposed to electrolyte (highlighted in red). It is worth noting that the interface 

particle/particle is not active for electrochemical reactions but allowing the inter-particle diffusive 

flux going through. As a result, a PA allows both inter-particle solid diffusion and ionic transport 

via sub-pores in order to reach the AM located at the inner of the PA. The CBD is assumed to be 

packed inside the PA and combines with AM particles to form the solid phase.  

To numerically investigate this hypothesis, a new model, PApa model, is developed and used 

to simulate the performance of the electrodes. In this model, the PA is assumed to be spherical, 

which has a radius, 𝑅PA; whereas ξ3 represents the volume fraction of sub-pores among the total 

porosity. Since the AM particle surface is assumed to be covered by either the electrolyte in sub-

pore domain or by other solid particles, a parameter representing the fraction of particle surface in 

contact with electrolyte in sub-pores, 𝑓AM−3  is also required.  
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Figure VI-24. Our hypothesis of the formation of PA. Calendering process reduces the gap between 

solid particles (AM, CBD) leading to PA, in which a sub-pore domain contains some electrolyte. Within 

the PA, there are two mechanisms of transport where a Li+ can diffuse through liquid phase in sub-pore 

domain or a bipolar <Li+,e-> can diffuse between secondary particles (interparticle solid diffusion). Ionic 

transport in sub-pore domain (magenta arrows), Inserted flux of Li+ from electrolyte in sub-pores into 

individual AM particle (blue arrows), Inter-particle solid diffusion (green arrows). Active surface area is 

colored in red, Inter-connectivity between AM/AM is colored in green, Inactive surface area is colored in 

dark blue. 

Regarding the parametrization for the model, most of the parameters remains unchanged 

compared to the “baseline” model or can be estimated by empirical laws from literature. For 

macro-pore domain, it is decided that the electrode tortuosity factor value remains equal to that 

determined by the symmetric cell method, since the volume fraction of sub-pores is eventually 

shown to be very small in the simulations below. For the sub-pore domain, the tortuosity is 

assumed to follow the power-law fit from Usseglio et al.,[62] since this law already demonstrated a 

somewhat good agreement for electrode tortuosity at PE scale in our work (Figure VI-11). 

Commonly, since the entire surface of a spherical particle is assumed to be exposed to the 

electrolyte, the fraction of particle surface in contact with other phases is not resolved. Here, 

characterization based on advanced X-ray tomography techniques provides insights. In [7], the 

microstructure of the three samples MX-01, MX-01b and MX-02b were investigated using X-ray 

holotomography, where the three phases: AM, CBD and electrolyte were completely resolved. 

Furthermore, the AM phase was separated into more than 500 individual particles, allowing a 

statistical analysis of their inter-connectivity between different phases. Therefore, 𝑓AM−3 of these 

samples in this work is taken as the average value of the inter-connectivity AM/electrolyte 

obtained from the statistical analysis, as shown in Figure 5 in [7]. Also, in [7], we concluded that 

higher amount of CBD and higher density of the electrode reduce the interface AM/electrolyte. A 

highest fraction of particle surface exposed to electrolyte compared to the three others is, therefore, 

assumed for MX-02. 



168 
 

Since 𝑓AM−3 is determined from [7] except for the MX-02 that is assumed, (𝑅PA, ξ3) are the 

only two additional parameters, which are not characterized. Therefore, they are set as fitting 

parameters to validate the experimental results. However, one must verify whether they can be 

fitted simultaneously. For that, they need to be independent of each other. Notably, these two 

parameters are connected through the characteristics time of the ionic transport within the sub-

pore domain according to: 

𝑇elyte,3 =
𝑅PA

2

𝐷eff,3
=

1.4𝑅PA
2

𝜀3
1.77𝐷

        (Eq. VI-31) 

given 𝜏3 = 1.4𝜀−0.77 as assumed earlier. 

If the two parameters are correlated, the simulations remain intact as long as the group 
𝜀3

1.77

𝑅PA
2  

remains unchanged, even though 𝜀3 and 𝑅PA are modified; in other words, simulations with 𝑅PA =

𝛾𝑅PA,0, and 𝜀3 = 𝛾−1𝜀3,0 (𝑅PA,0, 𝜀3,0 are set) are identical whatever the value of 𝛾. As a result, 

only the group 
𝜀3

1.77

𝑅PA
2  can be fitted.  

One shows that the Li transport through inter-particle diffusion should have minor effects if 

the transport through the electrolyte in sub-pores is dominated (e.g., highly porous PA). 

Consequently, one cannot independently fit the two parameters. The case, where the inter-particle 

solid diffusion is disabled, is illustrated in Figure VI-25a.  

Nevertheless, given the high density of PA, inter-particle solid diffusion can strongly 

contribute to the mass transport at the PA scale along with the regular ionic transport via the 

electrolyte. In this case, the 𝑅PA will also impact the electrode performance via the inter-particle 

solid diffusion limitations, so that it will be decorrelated from the group in Eq. VI-31. A sensitivity 

analysis of 𝑅PA is performed for two electrodes; for those the inter-particle solid diffusion effects 

are expected to be either the highest or lowest. In addition, only moderate to high C-rates are 

investigated, since low C-rates are mainly limited by the individual solid diffusion such that not 

sensitive to inter-particle diffusion. 

Figure VI-25b, c show the sensitivity of the 𝑅PA while the group 
𝜀3

1.77

𝑅PA
2  remains invariant. The 

effects from 𝑅PA are clearly observed on the simulated curves. The larger PA size deteriorates the 

electrode performance, as the inter-particle solid diffusion turns more critical. 

Following the sensitivity analysis, one can, therefore, consider (𝑅PA, ξ3,) as two separated 

parameters to be fitted simultaneously. The tuning is manually performed by trial and error and 

assessing the qualitative agreement between experimental and simulations for each electrode in 

three electrolytes. These two parameters are tuned to achieve an overall good fit of all the cases, 

i.e. they allow fitting over the entire range of C-rates, while not having significant variation from 

one electrolyte to another instead of having a best fit for each electrolyte.  
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Figure VI-25. Sensitivity analysis of 𝑹𝐏𝐀 for MX-01b and MX-02. The corresponding values of 

𝑅PA (µm) are represented under each simulated curve. The experimental data are also plotted for the ease 

of comparison. 
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Regarding the model validation against experimental results, while the “baseline” model 

overestimates the rate performance for all the industry-grade electrodes studied here, the PApa 

model shows a very good agreement over a large range of C-rates for all these electrodes, even 

when different electrolytes are used (Figure VI-26, VI-27). In most cases, the model simulations 

match well in terms of both polarization and EoD capacities. For higher loading electrodes (MX-

01, MX-01b), as current densities get above 1C (ca. 4 mA/cm²), a mismatch between experimental 

and simulated data starts appearing for the LP40 electrolyte. The mismatch can be due to the low 

LP40 bulk properties, that creates a large potential drop near the Li foil and much less EoD capacity 

as mentioned above. Still, a good agreement is achieved for electrolyte LP30 with better transport 

properties. This problem does not appear for lower loading electrodes (MX-02, MX-02b). 

 



171 
 

Figure VI-26. Validation of the PAPA model on electrodes with loading of 25 mg/cm². a, c, e. The 

discharge rate capabilities (C/25, C/10, C/5, C/2, 1C, 2C) using three different electrolytes (LP40 1 M, 

LP40 0.5 M, LP30 1 M) are shown for MX-01. b, d, f. The discharge rate capabilities (C/25, C/10, C/5, 

C/2, 1C, 2C) using three different electrolytes (LP40 1 M, LP40 0.5 M, LP30 1 M) are shown for MX-01b. 

 

 

Figure VI-27. Validation of the PAPA model on electrodes with loading of 15 mg/cm². a, c, e. The 

discharge rate capabilities (C/25, C/10, C/5, C/2, 1C, 2C) using three different electrolytes (LP40 1 M, 

LP40 0.5 M, LP30 1 M) are shown for MX-02. b, d, f. The discharge rate capabilities (C/25, C/10, C/5, 

C/2, 1C, 2C) using three different electrolytes (LP40 1 M, LP40 0.5 M, LP30 1 M) are shown for MX-02b. 
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Figure VI-28a summarizes the two “fitted” parameters required to validate the experimental 

results for the set of electrodes, whereas the fraction of particle surface exposed to electrolyte and 

the group 
𝜀3

1.77

𝑅PA
2  are presented in Figure VI-28b. Since both “fitted” parameters are manually selected 

such that they remain persistent for all samples, even with different electrolytes, Figure VI-28a 

represents the values providing a qualitatively good fitting results in overall for each electrode.  

As mentioned above, the limitations from inter-particle diffusion are mainly related to the PA 

radius when the PA is highly dense (𝜀AM → 1). The size of the PAs shows clearly a strong 

correlation with the electrode loading, i.e. higher loading electrodes tend to have larger PA under 

the calendering effects. Thus, MX-01b is the most limited by the inter-particle diffusion among 

the electrodes. When MX-01b is compared against MX-02b, by reducing 40% of the electrode 

loading (from 25 to 15 mg/cm²), one reduces 50% of the PA size, which can significantly benefit 

for the power performance. As for MX-01 and MX-02, both the loading and the density are 

changed. Interestingly, the PA size is reduced by 60% overall, which is 10% higher than when 

only the loading is changed. The electrode density, therefore, shows less impacts on the PA size 

than the loading. This can also be observed for MX-02 and MX-02b, when 30% change of density 

(19% versus 28% of porosity) results in ~33% of change in PA size. 

Moreover, a more significant fraction of pores that are sub-pores is observed for electrodes 

with a higher density and/or loading. As a consequence, the ionic transport across the sandwich is 

exacerbated as the macro-pore domain declines. The ionic transport in sub-pores can be evaluated 

via the group 
𝜀3

1.77

𝑅PA
2 , which is directly related to the characteristic time 𝑇elyte,3. Interestingly, it is 

worth noting that no large discrepancy is observed for the group 
𝜀3

1.77

𝑅PA
2  for all electrodes, which 

indicates that the extent of limitation from ionic transport in the sub-pore domain is tantamount 

for all electrodes. Electrode having a longer ionic conductive pathway to the PA center (i.e., PA 

radius) is compensated with higher sub-porosity within the PA.  

The inter-particle diffusion, therefore, remains the main limiting factor for mass transport at 

the PA scale. MX-01b and MX-02b have higher densities than their peers (MX-01 and MX-02), 

resulting in larger PA size, which undermines the inter-particle diffusion, albeit the PA is more 

porous (i.e., lower ionic limitations). Higher porous and lower loading electrode under calendering 

process leads to smaller PA. Sample MX-02 with a lower loading and density has its porosity 

containing of mainly macro-pores along with smaller agglomerates provides the highest rate 

performance. 
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Figure VI-28. Summarize of the two additional parameters used for PApa model. a. For each 

sample, the mean values of the two parameters (𝑅PA, ξ3) are presented along with the shaded area 

representing the max/min values. b. The fraction of particle surface exposed to the electrolyte, 𝑓AM−3 

obtained from tomographic data and the group 
𝜀3

1.77

𝑅PA
2  are also presented for each sample. 

For an easier interpretation of the simulation results with the PApa model, the “baseline” model 

simulations are used to compare low, moderate and high C-rates for MX-01b. This enables more 

insights about the effects of the presence of PAs compared to the case without.  
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Figure VI-29. Comparison of concentration profiles in solid and liquid phases for MX-01b at 

EoD by “baseline” and PApa models. a, d, g. Comparison of the simulated discharge curves with the 

experimental data at C/25, C/5, 1C, respectively. b, e, h. The concentration profile of Li+ in liquid phase 

across the PE at C/25, C/5 and 1C, respectively. c, f, i. The local volume-average AM utilization and the 

local AM utilization at the particle surface across the PE at C/25, C/5 and 1C are represented, respectively. 

At low to moderate C-rates, a lower concentration in the sub-pore domain than in the macro-

pore domain is observed in both cases, as expected. Nevertheless, the Li+ concentration remains  

substantial (>0.4 mol/L) , so that no complete Li+ depletion occurs during the full discharge process 

(see Figure VI-29a, c). Moreover, the concentration profile in the macro-pores of the PApa model 

does not show an important deviation from that in the liquid phase of the “baseline” model. This 

is because the sub-pore domain does not occupy a large volume fraction of the total porosity (ξ3 =

5%, which translates to a porosity for the PA of ε3 = 1.2%), so the macro-pore domain behaves 

similar as the total porosity under low-to-moderate current density (up to C/5 in Figure VI-29b). 

Besides, the AM utilization (Figure VI-29c, f) do not differ significantly between the two models, 

resulting in the same capacity at the end of the discharge (Figure VI-29a, d).  

In contrast, at high C-rates, the concentration profile in the macro-pore domain starts deviate 

more substantially from the “baseline” model. The concentration in the sub-pore domain 
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significantly drops even in the vicinity of the separator/PE boundary (Figure VI-29h), resulting in 

local Li+ depletion within this domain. Higher limitation from the solid diffusion can be observed 

as the concentration at the PA surface reaches higher extent than the “baseline” model. Also, the 

AM utilization is significantly lower in the PApa model than in the Newman model (Figure VI-

29i), which results in a lower EoD capacity, thereby matching the experimental results.  

In Figure VI-30, at PA scale, the total Li flux defined in Eq. VI-23 along with the inter-particle 

diffusive flux and the charge-transfer flux are scaled with the AM particle surface, the coverage 

fraction by AM and electrolyte in sub-pores, respectively. This allows to evaluate the main 

contribution of the inserted Li flux into the AM phase across the PA radius. At C/25, the ionic 

transport in sub-pores is not limited, so that the lithiation process is performed through 

electrochemical reactions. Consequently, the inter-particle diffusion flux is negligible. In contrast, 

at 1C, the inter-particle diffusion flux becomes important. A discrepancy between PA located at 

separator side and current collector side are also highlighted upon the 1C discharge. The PA at the 

current collector side is barely active, as the flux entering the AM phase is minor compared to that 

of the PA at the separator side.  

Interestingly, near the PA center, the inter-particle diffusive flux dominates, because a local 

depletion of Li+ in liquid phase prevents the charge-transfer to occur. In contrast, at the outer of 

the PA, the charge-transfer flux dominates the flux of Li+ inserting to the AM particles, while there 

is an outward inter-particle diffusive flux leaving the particles at the outer to enter the particles at 

the inner. It is worth noting that the inter-particle diffusive flux is conserved over the PA volume, 

as any lithium leaving a particle of the agglomerate necessarily inserts into another particle. At 1C, 

at the current collector, the reactions mostly occur at the vicinity of the pore mouth of the sub-pore 

domain. The Li then diffuses toward the PA center solely through the inter-particle diffusion 

process. 
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Figure VI-30. The Li flux flows within the PA at EoD. a, c. For PA located at separator side upon 

discharge at C/25 and 1C, respectively. b, d. For PA located at Al foil side upon discharge at C/25 and 1C, 

respectively. 

VI.4.2.3 Model analysis 

One of the unique strengths of battery modeling is its ability to predict the distributions of 

current, potential, and concentrations across the full cell during the operation of the battery. This 

often will provide information that is either difficult or impossible to determine experimentally, 

and improve our understanding of the phenomena occurring inside the cells.  

After the validation of experimental results, the model can be used for an in-depth analysis of 

the electrode performance, which allows resolving the electrode overpotential into separated 

polarization sources and identifying performance limiting factors for each electrode design.   

For this purpose, all the limitation sources are turned off sequentially. This means that 

parameter values are tuned so that limitations of corresponding physical phenomena are cancelled 

in the simulations. To this end, electrolyte conductivity, kinetic rate constant, and electrolyte/solid 

diffusion coefficient are set to high values. In addition, for electrolyte limitations shutdown, the 
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lithium transference number and thermodynamic factor are set to one. It is worth noting that the 

electrolyte limitations in the sub-pore domain are combined with the inter-particle diffusion into a 

so-called porous agglomerate effects, since they are parallel transport pathways and cannot be 

completely decorrelated. The electrolyte limitations in the sub-pore domain are, therefore, 

separately investigated from those in the macro-pore domain.  

Here, we investigate samples MX-01b and MX-02, which provide us with the worst and the 

best performance among the four electrode designs, respectively. Figure VI-31 shows three cases 

with low, moderate and high current density for both samples. For both electrodes, at low C-rates, 

the performance is primarily limited by the solid diffusion within the secondary particles. This 

explains why the results simulated by the Newman baseline and PApa models are very similar at 

low current. As the current density increases, different contributions from other sources are 

involved as limitations of the electrode performance. For MX-01b, albeit the PE limitations still 

dominate as one moves to higher C-rates (1C, ca. 4 mA/cm²), the effects from PA formation 

become significant. The rate capability of MX-01b can be considerably improved (up to 44% of 

EoD capacity at 1C) if we can avoid the negative effects from the PA.  

For MX-02, given its high porosity and lower loading, limitations from liquid phase are minor 

compared to other sources even at 1C. The limitations are mainly at the PA and the particle scales, 

as the intra-particle solid diffusion is the most critical followed by the PA limitations. Without the 

presence of PAs, the rate capability of MX-02 can be improved up to 12% of EoD capacity at 1C. 
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Figure VI-31. Decomposition of the potential curve. The potential curves along with experimental 

data (circles) at C/25, C/2 and 1C for MX-01b (a, c, e) and MX-02 (b, d, f) are resolved into different 

limitation sources. Starting from “as-is” simulations (blue line), porous agglomerate effects are first 

shutdown (light green), followed by porous electrode effects (light red), solid-phase diffusion intra-particles 

(cyan) and eventually the charge-transfer polarization (light purple). Lithium foil polarization (light orange) 

forms the last overpotential source up to the equilibrium potential represented as a solid black line. 

VI.5 Conclusions 

Industry-grade electrodes with high loading and density are capable of storing large amounts 
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of Li/energy, which is a requirement for battery packs to meet customer’s expectation in terms of 

battery autonomy. However, the downside is that the power capability of such electrodes is limited. 

In this work, a combined experimental/modeling approach is carried out in order to shed light on 

the discharge performance limitations of these electrodes.   

Thin electrodes, which have minor porous electrode effects are used to determine and validate 

intrinsic AM properties (𝐷s, 𝑘0). Other electrode properties such as the electrode tortuosity factor 

and the effective electronic conductivity are determined through appropriate experiments.  

Regarding the experimental results, three different electrolytes are used to gain more insights 

on the effects of liquid-phase limitations upon discharge. Electrodes with higher amounts of CBD 

are found to exhibit a worse performance than those with a lower amount of CBD, despite a higher 

electronic conductivity. Tomographic data from our previous work suggested that the dispersion 

of CBD might play a crucial role to improve the rate performance.  

First, a classic Newman P2D model is used for validation of the experimental discharge rate 

capability of the four industry-grade electrodes at room temperature. Although this model on thin 

electrodes provides a strong agreement with the experimental data for the entire range of C-rates 

(up to 20C), its output only matches the experimental data at low C-rates, while diverges at higher 

C-rates for all the industry-grade electrodes. Different hypotheses from the literature are 

investigated, but none of these leads to adequate results.  

Therefore, a new macroscale battery model, referred to as the PApa model, is constructed, 

taking into account the effects of possible porous agglomerates originating from the severe 

calendering process undergone by thick and dense electrodes. The new model has three additional 

parameters compared to regular Newman P2D model. Since X-ray tomography technique was 

used to quantify the fraction of particle surface exposed to the electrolyte, only two parameters 

(𝑅PA, ξ3) were used as fitting parameters by which model output was tuned to match experimental 

results qualitatively for all electrode/electrolyte couples investigated here. 

Compared to the Newman model, the PApa model showed a better agreement with the 

experimental results for all the industry-grade electrode up to 4 mA/cm² of current density. The 

values of fitting parameters (𝑅PA, 𝜉3) are also consistent with the expectations. Higher-loading and 

higher-density electrodes result in a higher amount of pores that are sub-pores, and a larger 

apparent size of porous agglomerates. Both features exacerbate the limitations on the electrode 

performance.  

For industry-grade electrodes used in this work, at low C-rates whenever the liquid-phase does 

not generate high limitations, solid-diffusion within individual NMC secondary particles is the 

performance-limiting factor. As one moves to higher C-rates, the PA effects turn a critical 

limitation source that deteriorates the rate performance of these electrodes. The model analysis 

suggests that a substantial gain in performance at high C-rate is expected if proper way rounds are 

figures to mitigate the agglomeration effects in these high-energy electrodes. 
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Nomenclature 

 

𝐴PA mPA
2 /mPE

3  

Specific interfacial area between the porous 

agglomerate and the liquid phase in macro-pore 

domain per unit volume of porous electrode 

𝐴CC mCC
2  Current collector surface area 

𝑎AM−3 mAM−3
2 /mPA

3  

Specific interfacial area between the active materials 

and the liquid phase in the sub-pore domain at porous 

agglomerate scale 

𝑎AM−AM mAM−AM
2 /mPA

3  
Specific interfacial area between the active materials 

particles at porous agglomerate scale 

𝑐s̅ mol/mAM
3  

Local volume-averaged of intercalated Li 

concentration in active materials phase within porous 

agglomerate 

𝑐s,surf mol/mAM
3  

Concentration of intercalated Li at the surface of the 

AM particle within porous agglomerate 

𝑐s,max mol/mAM
3  

Maximum concentration of intercalated Li in active 

materials particle  

𝑐s mol/mAM
3  

Intercalated Li concentration within active materials 

particle 

𝑐𝑖,0 mol/m3 Solvent concentration in phase 𝑖 

𝑐𝑖 mol/m3 Salt concentration in a binary electrolyte in phase 𝑖 

𝑑50 µm Median diameter of active materials particles 

𝐷 m2/s 
Measured diffusion coefficient of a bulk binary 

electrolyte 

𝐷eff,𝑖 m2/s 
Effective salt diffusion coefficient of the liquid phase 

in phase 𝑖 

𝐷s m2/s 
Diffusion coefficient of Li in active materials 

particles 

𝐸a eV Activation energy 

𝐹 C/mol Faraday’s constant 

𝑓AM−3  
Fraction of particle surface in contact with the 

electrolyte in sub-pores 
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𝑓±  
Mean molar activity coefficient of a binary 

electrolyte 

𝐼1 A/mCC
2  

Electronic current density across porous electrode in 

the solid phase in the PApa model 

𝐼2 A/mCC
2  

Ionic current density across porous electrode in the 

liquid phase in the PApa model 

𝑖𝑖 A/mCC
2  

Current density in phase 𝑖 in the Newman P2D model 

or at porous agglomerate scale in the PApa model 

𝑖n
0 A/mASA

2  
Exchange current density at the active surface area 

across porous electrode  

𝑖Li
0  A/mLi foil

2  Exchange current density at the Li foil 

𝐼 A Applied total current in the µ4-probe experiment 

𝐼app A/mCC
2  Discharge current density 

𝑗int, + mol/(mAM−3
2 ∙ s) 

Cation internal pore-wall flux within porous 

agglomerate 

𝑗3,− mol/(mPA
2 ∙ s) 

Net exchange anion flux between macro-pore domain 

in porous electrode and sub-pore domain within 

porous agglomerate 

𝑗3,+ mol/(mPA
2 ∙ s) 

Net exchange cation flux between macro-pore 

domain in porous electrode and sub-pore domain 

within porous agglomerate 

𝑗AM−AM mol/(mAM−AM
2 ∙ s) 

Rate of transfer of solid Li between active materials 

particles in contact 

𝑗n mol/(mAM
2 ∙ s) 

Pore-wall flux between active material particles and 

liquid phase in the Newman model 

𝑗total mol/(mAM
2 ∙ s) 

Total flux entering the active materials particle within 

porous agglomerate 

𝑘0 mol/[m2 ∙ s ∙ (mol/m3)1.5] Reaction rate constant of the active materials 
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𝑘0,Li mol/[m2 ∙ s ∙ (mol/m3)0.5] Reaction rate constant of the Li foil 

𝐿PE µm Porous electrode thickness 

𝐿sep µm Separator thickness 

𝐿elyte m Diffusion length in electrolyte 

𝑛⃗⃗  
Outward pointing unit normal to a plane or each voxel 

face 

𝑁⃗⃗⃗𝑖 mol/(m2 ∙ s) Flux density of species 𝑖 in the Newman P2D model 

𝑁⃗⃗⃗2,− mol/(m2 ∙ s) 
Flux density of the anion in macro-pore domain at 

porous electrode scale in the PApa model 

𝑛⃗⃗3,− mol/(m2 ∙ s) 
Flux density of the anion in sub-pore domain at 

porous agglomerate scale in the PApa model 

𝑛⃗⃗AM−AM mol/(m2 ∙ s) 
Li flux diffusing between active materials particles 

within porous agglomerate 

𝑛⃗⃗s mol/(m2 ∙ s) Li flux in the active materials particle 

𝑄th Ah/kg Electrode theoretical capacity 

𝑞̅ mol/(m3 ∙ s) Volume-averaged concentration flux 

𝑅 J/(mol ∙ K) Ideal gas constant 

𝑅 Ω 
Sample resistance determined by the µ4-probe 

experiment 

𝑅PA µm Porous agglomerate radius 

𝑟 m Radial dimension along the active materials particle 

𝑟∗ m Radial dimension of the porous agglomerate 

𝑟P µm Radius of an active materials secondary particle 

𝑇 K Absolute temperature 

𝑇elyte,3 s characteristic time of ionic transport in liquid phase 
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𝑡+
0   

Transference number of Li+ in the electrolyte with 

respect to the solvent velocity 

𝑈 V Equilibrium potential of the AM vs Li 

∆𝑉 V 
Voltage drop between the two inner contacts in the 

µ4-probe experiment 

𝑉 V Electrode or cell potential 

𝑣⃗0 m/s The solvent velocity 

𝑥 µm Dimension across the sandwich 

𝑥0  Initial Li stoichiometry 

Greek symbols 

𝛼  Thermodynamic factor 

𝛽  Charge transfer coefficient 

𝜀 melyte
3 /mPE

3  Porous electrode porosity 

𝜀AM mAM
3 /mPA

3  
Volume fraction of the AM phase at porous 

agglomerate scale 

𝜀sep melyte
3 /msep

3  Separator porosity 

𝜀𝑖 m𝑖
3/mPA

3  
Volume fraction of phase 𝑖 at porous agglomerate 

scale 

𝜅 S/m Bulk ionic conductivity of the electrolyte 

𝜅eff,𝑖 S/m 
Effective ionic conductivity of the liquid phase in 

phase 𝑖 

𝜌el g/cm3 Electrode density 

𝜎eff S/m 
Effective electronic conductivity of the solid phase 

of the electrode 

𝜏AM  Tortuosity factor of the active material phase 

𝝉𝐁𝐫  
Tortuosity factor of the liquid phase by 

Bruggeman 

𝜏e,𝑖  
Electrode tortuosity factor of phase 𝑖 at porous 

agglomerate scale 

𝜏e  Electrode tortuosity factor 
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𝜏sep  Separator tortuosity factor 

ξ3  
Ratio of sub-pore domain among the total porosity 

of the porous electrode 

Φ1,Li V Electric potential at Li foil 

Φ𝑖 V Electric potential of phase 𝑖 

Ψ m2+3
3 /mPE

3  Total porosity of the porous electrode 

Ψ𝑖 m𝑖
3/mPE

3  
Volume fraction of phase 𝑖 at porous electrode 

scale 

ΨPA mPA
3 /mPE

3  
Porous agglomerate volume fraction at porous 

electrode scale 

Subscripts 

0 Solvent 

1 Solid Matrix (Active Materials + Additives) 

2 
Liquid Phase (Electrolyte) in the pore space (Newman model) or in macro-

pores (PApa model) 

3 Liquid Phase (Electrolyte) in sub-pores (PApa model) 

+ Cation of the Salt 

− Anion of the Salt 

AM Related to the Active Materials 

eff Effective properties 

PE Belong to the Porous Electrode 
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PA Belong to the Porous Agglomerate 
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Chapter VII . Operando X-ray Computed Tomography coupled 

with XANES spectroscopy 

  



191 
 

VII.1 Introduction  

One of the objectives of this work is to identify the microstructural heterogeneities and to 

understand their effects on the electrochemical performance, and eventually improve the electrode 

design.  

For this purpose, a multimodal approach (electrochemical measurements combined with 

tomography techniques) has been used in the literature, despite significant efforts required for the 

setup preparation as well as the data post-processing. Our previous chapters are part of this 

multimodal approach as an attempt to learn more about the interplay between the microstructural 

and performance.  

As we can see so far, while tomography techniques have been significantly developed and 

stand as a  powerful tool to investigate the microstructural properties of the electrodes (Chapter 

II)[5–10], local electrochemical properties (e.g., effective ionic conductivity, charge transfer 

impedance) are not trivial to measure by traditional electrochemical methods. Forouzan et al.[2] 

attempted to tackle this issue by considering an inverse correlation between the local electronic 

and ionic conductivities, as the mixture of additives, referred to as CBD, increases the electronic 

conductivity but also the tortuosity of the ionic conducting pathway with its nano-porosity. The 

local effective electronic conductivity was determined by a µ4-line system. The authors can, 

therefore, qualitatively correlate the microstructure of the electrode to its effective transport 

properties. A similar method, the µ4-probe was also adopted for the electronic conductivity 

mapping of the electrodes used in this work (chapter VI).  

On the other hand, reaction distributions in composite battery electrodes can also be 

investigated using various techniques such as Raman microscopy,[11] X-ray diffraction (XRD),[12] 

or 2D XANES.[13–16] However, these methods have been restricted to 2D observation, because the 

obtained signal is usually spatially integrated along the depth direction. Hence, these methods, 

cannot accurately capture the 3D spatial distributions and can lead to a wrong interpretation of the 

mechanism caused by the difficulty of uniquely interpreting complex 3D structures based on 

projected images.[17] Recently, Finegan et al.[18] used Operando X-ray diffraction-computed 

tomography (XRD-CT) for characterizing, in 3D, the dynamic crystallographic structure between 

and within LiMnO2 particles during operation. This technique facilitates identification of 

stoichiometric and phase heterogeneities within particles and/or in the bulk electrode, so that the 

reaction distribution can also be inferred. Nevertheless, the technique does not provide the access 

to other phases of the electrode such as CBD.  

In this chapter, a method to capture the electrode microstructure during high-rate 

electrochemical operation is presented. The goal is to propose a more efficient approach to unveil 

the effects of the microstructural heterogeneities on the electrochemical performance.   

Several authors have combined XANES and tomography to generate a rich data set that allows 

a direct correlation of the chemical information and the microstructure. Meirer et al. used 3D 
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XANES to probe the conversion of NiO to Ni metal in a partly reduced electrode. They found 

significant inhomogeneities in terms of chemical states across the particle that depended on its 

size, as well as evidence of fracturing caused by volume expansion during the reaction. More 

recently, Wang et al. collected a 46-point spectrum across the iron K-edge of a LiFePO4 cathode 

particle and developed a run-out correction system to enable automated tomography. Nonetheless, 

the insight collected was noteworthy, with the advent of a clear core−shell structure.  

Here, we perform XANES coupled with nano-XCT in Operando mode to investigate NMC532 

electrodes. The ability to probe battery materials in Operando, provides significant advantages 

over ex situ approaches, as the battery stays functional during experiment. It holds the promise of 

characterizing the microstructure while capturing the electrochemical behavior (transport 

properties and reaction kinetics) at nanoscale resolution. 

Nevertheless, Operando measurements create the most severe challenges to an imaging 

experiment when considering the three scales of resolution above, namely, spatial, chemical, and 

temporal. Many battery reactions span several hours, but the need to build a reaction pathway 

means that it is desirable to collect at least five data points during the reaction. This goal imposes 

restrictions on the time available to complete an image containing the desired chemical 

information, at the desired level of spatial resolution. Unfortunately, all modes of chemical contrast 

require collecting multiple frames for the same reaction state to reconstruct a map of the species 

present in the field view. Using XANES microscopy as an example, chemical resolution is 

achieved by collecting frames at a large number of energies, with the limit being set by the 

precision of the upstream optics. In practice, the most common choice is to minimize the number 

of points to obtain some level of chemical resolution in the individual frame-set, scanning energy 

(spectroscopy).  

Moreover, most of the works on in situ/Operando whether 2D XANES or XANES-XCT 

worked with electrodes having very low loading of active material, and very low AM density 

(ca. %v AM = 20%).[13,19,20]  This helps to avoid the overlapping issue when performing the 2D 

XANES experiment, i.e., the information through the depth is lost as it is lumped into one 

projection, while allowing high X-ray transmission during the acquisition (to maximize signal-to-

noise ratio). With the type of electrodes that has been used in the prior art, electrochemical 

performance is mainly limited to the solid diffusion in the AM particles rather than porous-

electrode effects.  

For the first time to the best of author’s knowledge, there is an attempt to work with electrodes 

that are similar to real-life designs (%v AM > 60%) along with a high operating current density. 

As such, the system is more sensitive to the porous electrode effects rather than just the AM 

intrinsic properties. 
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VII.2 Results 

 

Figure VII-1. Illustration of the workflow used for this study. a. Two reference XANES were 

obtained at Ni K-edge for electrode at pristine (Li stoichiometry = 1) and delithiation state (ca. 

stoichiometry Li = 0.38). Three energy levels: pre-edge, edge, post-edge, were selected, at which three 

tomography datasets are obtained. The 3D map of Li concentration distribution can be extracted via the 

relative shift of the absorption edge, which reflects the shift of Ni oxidation state from NMC with Ni2+/Ni3+ 

in a pristine state to NMC with Ni3+/Ni4+ in a delithiation state (see details in Methods). b. Schematic 

representation of the hard X-ray nano-holotomography experimental setup. c, d. The two Operando 

electrochemical cells used in this work: AMPIX cell,[21,22] novel home-made cell, along with the low and 

high loading NMC electrodes that are used by each cell, respectively. The scale bar in a represent 10 µm.   

Figure VII-1 illustrates the workflow used in this work, which highlights our approach for Li 

concentration mapping based on three energy levels (Figure VII-1a) and the use of two different 

electrodes that have similar AM density as real-life applications but have different AM loadings 

(Figure VII-1d). The thinner electrode, labelled as MX-A (AM loading = 3 mg/cm²), is made to 

facilitate the transmission of the X-ray through the sample without any further preparation steps 

as for higher AM loading electrode (AM loading = 15 mg/cm²), labelled as MX-B. 

Within the cycling range between 2.5-4.3 V, Bak et al. reported that Ni is the predominant 

redox partner for lithium (de)intercalation in NMC, without any reactivities from Mn or Co have 
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been witnessed.[23] Hence, the Ni K-edge (Figure VII-1a) was selected to track the local Li content 

in the active material particles, as Ni edge is the most sensitive to the local electrochemical 

reactions (compared with Mn and Co). 

Depending on the Ni oxidation state, the AM can exhibit a change in X-ray absorption 

coefficient at the K-edge leading to a change of voxels’ intensity in the images. In spite of minor 

fluctuations at the pre-edge and post-edge energy, the AM keeps a stable interaction with the X-

ray. This results in an invariance of intensity regardless the Ni oxidation state. Figures VII-1a  

shows the 3D volumes obtained at the X-ray energies of 8.30 keV (pre-edge), 8.35 keV (edge) and 

8.43 keV (post-edge), respectively. As shown in these figures, an almost uniformly dark image 

was obtained when the X-ray energy was 8.30 keV. On the other hand, in the image obtained at 

8.43 keV, the region where Ni was present showed a higher brightness. Edge absorption features 

(either edge position or peak top position) in the Ni K-edge have been shown in the literature to 

be approximately linearly correlated to Li content in NMC particles.[24,25] Thus, by following the 

relative change of the absorption coefficient at the edge level normalized by the absorption jump 

(gap between the pre-edge and post-edge’s absorption coefficient), one can infer the local Li 

concentration at each voxel with a simple linear correlation. As a result, a 3D map of the Li 

distribution throughout the control volume can be derived.  

It is worth to mention that two different electrochemical cells (Figure VII-1c) were used to 

carry out the Operando experiments in this work. The AMPIX cell,[21,22] developed by Argonne 

National Laboratory, allows in situ experiments including multiple synchrotron-based X-ray 

scattering and spectroscopy methodologies to be performed. However, it is not fully compatible 

with the setup for XCT experiment (e.g., high thickness, low open-angle) leading to high dead-

angle during the acquisition. To minimize the dead-angle that increases with the sample thickness, 

the AMPIX cell was only used for the thinner electrode, MX-A. 

On the other hand, a new cell design has been developed that better satisfies requirements for 

XCT experiment giving high-quality tomographic data. Several features are optimized that allow 

the use of higher loading electrodes MX-B (loading AM = 15 mg/cm²) such as the cell thickness 

and the open-angle. The cell design is closely mirroring coin cell conditions, so that ensures good 

stack pressure as well as proper electrochemical functionality.  
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VII.2.1 Low loading Electrode MX-A 

 

Figure VII-2. Results of thin electrodes MX-A using AMPIX cell. a, d , g, j. The 3D map of Li 

concentration extracted from the XANES-XCT performed at the end of the relaxation steps that correspond 

to state 1 to 4. b, e ,h, k. 2D slices of Li concentration distribution at the same electrode depth across 

different states of lithiation were shown for the ease of visualization. c, f, i, l. The repartition of Li-rich 

regions at each state are highlighted in red. m. The evolution of cell potential during the lithiation process. 

n. The distribution of voxel’s absorption coefficient in each state. The Z-axis represents the direction of the 

electrode thickness. The scale bars represent 10 µm.   

Given that the same region was monitored throughout the experiment, Figure VII-2a, d , g, j 

show the 3D Lithium concentration maps during the lithiation process with a current density of 2 

mA/cm². The overall Li concentration increases, as the experiment goes from state 1 to 4, seen by 

the fact that the shading of each map turns reddish on average. Figure VII-2 c, f, i, l show an 

increase of the amount of Li-rich regions along the lithiation process, which are, however, not 
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well-dispersed throughout the volume (denser accumulation of Li-rich regions can be observed at 

the front-right corner of the electrode).  

The 2D slices are also shown in Figure VII-2b, e ,h, k for the ease of the visualization. Overall, 

it can be seen that the core-shell structure is formed as the lithiation progresses. This result 

demonstrates that the Li intercalation starts first at the particle surface and moves toward the 

particle center as lithiation progresses, which is consistent with the results in [16]. However, it is 

worth noting that not all the particle surface area is active, as further discussed when zooming in 

individual AM particles (Figure VII-3). 

The heterogeneity of Li spatial distribution can be investigated through the distribution of the 

absorption coefficient at each voxel, as it is directly related to the Li content at the voxel. A shift 

of the absorption coefficient to a higher value is found as the lithiation occurs, in agreement with 

the XANES theory (Figure VII-1a). However, one can see that the shift is minor in Figure VII-2n. 

Besides, one can notice a large polarization appearing during the lithiation process (green and blue 

curves in Figure VII-2m). It is possible that this large polarization stems from the use of AMPIX 

cell along with too low electrode thickness. According to the AMPIX design, an annular flat gasket 

is used as a means to accommodate battery stacks having a typical thickness of ca. 800 µm, which 

is significantly higher than the battery stack used with MX-A (ca. 400 µm for MX-A with Al 

current collector/Glassy fiber/Li foil). This can deteriorate the role of the ‘spring’ resistance 

necessary for controlling the application of stack pressure of the gasket, leading to higher 

polarization. 

Figure VII-3a shows a zoom on the Li concentration evolution within the two particles as the 

lithiation proceeds. Notably, a heterogenous Li distribution is observed inside both particles as the 

Li front moves toward the particle center. This observation is consistent with other works using 

NMC as AM,[20,26] in which a heterogeneous Li distribution within the secondary particles was 

also witnessed. 
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Figure VII-3. Zoom on the individual NMC secondary particles across the lithiation process. a. 

3D map of Li concentration evolution as the lithiation proceeds. b. Repartition of the Li-rich regions (in 

red) at each state of lithiation (I-IV). The scale bars represent 2 µm.   

Figure VII-3b highlights the Li-rich areas (in red), which mainly establish at the vicinity of the 

particle surface area during the lithiation process. These regions are not uniformly distributed over 

the particle surface area. Thus, Li intercalation is likely to occur at some preference sites. This 

might be attributed to the non-uniform distribution of phases such as the pore network or the CBD, 

which can impact the ionic/electronic transport to the reaction sites. Furthermore, the distribution 

of Li-rich regions at the AM particle surface might question the assumption used in macro-

homogenous battery models that considers the entire particle surface area as available for 

reactions. Our next step will be to capture the presence of the CBD to understand further its role 

in the distribution of the reaction sites at the surface of the particles.  
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VII.2.2 High loading electrode MX-02 

A industry-graded electrode with a substantial AM loading is subsequently investigated to 

reflect real-life scenarios better. Consequently, more limitations from the porous microstructures 

leading to higher non-uniformity of electrochemical behavior due to porous-electrode limitations 

are expected.  

The electrode was charged by CCCV at ca. C/10 up to 4.3 V and relaxed (Figure VII-4a). 

Before the charge, the pristine electrode bears a uniform Li distribution throughout the volume 

(Figure VII-4b). Figure VII-4c shows the final Li concentration at delithiation state (state II) 

corresponding with the OCV that equals to 4.25 V at a different position than state I. Despite a 

moderate discharge rate following by a CV step, there still are regions having high Li 

concentration, i.e. electrochemical reactions might not take place at these regions. Still, we 

remarked a shift to more oxydation state of AM comapred to state I (majority is colored in green).  

The discharge process is shown in Figure VII-5. It consists of two separate steps, starting from 

state II discharge to 50% DoD and from 50% DoD discharge to 2.5 V following by a CV step. We 

decided to reduce the number of acquistion points compared to the case of thin electrode, since we 

observed some important motion of the microstructure, e.g. detachment of the AM particles, during 

the acquistion. This makes the data processing cannot be ensured as the alignment would be 

challenging.  

At 50% DoD, two different locations that went through the same lithiation process are shown 

in Figure VII-5b-c. Overall, the Li content at each state shows a good agreement with the expected 

values inferred from the electrochemical process. That is, a significant decrease of Li content at 

the end of the delithiation step (Figure VII-4b) then the Li concentration increases as we switch to 

the lithiation process (Figure VII-5b-c).  
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Figure VII-4. Results of thick electrode MX-B using our Operando cell during charge. a. The 

measured cell potential during the CCCV charge at C/10. The two XANES-XCT measurements are 

performed at points colored in purple. b. The 3D map of Li concentration at pristine state of the electrode 

before charging. c. The 3D map of Li concentration extracted from the XANES-XCT performed at the end 

of the relaxation step after reaching 4.3 V with a CCCV. The scale bars represent 8 µm. 
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Figure VII-5. Results of thick electrode MX-02 using our Operando cell during discharge. a. The 

measured cell potential during the CC discharge at 1C. The three XANES-XCT measurements are 

performed at points colored in purple. b-d. The 3D map of Li concentration extracted from the XANES-

XCT performed at the end of the relaxation steps that correspond to different states of lithiation. The scale 

bars represent 8 µm. 

This is also confirmed in the bar graph, that compares the difference of Li content between 

different states (Figure VII-6a). It quantifies the volume fraction of three classes relying on their 

Li content: Li rich (where 0.9 ≤ absorption coefficient), Li moderate (where 0.6 < absorption 

coefficient ≤ 0.9), and Li poor (where absorption coefficient ≤ 0.6), respectively. The bar graph 

unveils that the position in Figure VII-5b possesses a higher amount of Li than the position in 

Figure VII-5c, despite undergoing the same discharge process. This is evidence for 

electrochemical heterogeneity occurring across the electrode during the battery operation. Notably, 

the last step, after 1 hour of lithiation at 1C, shows a composition of Li concentration that is very 

close to the pristine electrode (Figure VII-5d). 

Besides, the heterogeneity of Li content is also quantified, as shown in Figure VII-6b. The 

distribution of voxels’ grey level is plotted, which is tantamount to the distribution of Li content 
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presented within the volume. The pristine electrode exhibits essentially uniform Li content, as the 

distribution represents a sharp peak. In contrast, at the end of the first charge, the electrode (Figure 

VII-4b) possesses a heterogenous Li concentration (broader distribution), where regions with high 

Li content still present. Interestingly, despite the good agreement of the overall Li concentration 

at the end of the lithiation process, the electrode (Figure VII-5e) bears a higher non-uniformity of 

the Li content when comparing to the pristine state.  

 

Figure VII-6. Summarize of the results. a. The bar graph represents the volume fraction of AM with 

different Li contents obtained from 3D quantitative analysis. b. The distribution of absorption coefficient 

at each voxel within the volume.  

To quantitatively analyze the distribution of Li concentration in the thickness direction, we 

calculated the average Li content in each 2D slice in the through-plane direction (Z-axis) and 

plotted it as a function of distance in Z-axis (Figure VII-7). Pristine electrode (State I) shows an 

uniform high Li concentration across the thickness. Furthermore, position 2 also exhibits a higher 

uniformity of Li content than in position 1 after undergoing the same discharge condition. Overall, 

the average Li content was not significantly changed across the electrode thickness. The 

orientation of the thickness cannot be detected with our cell design. It should need further 

investigation in order to capture the electrochemical reaction evolving across the electrode 

thickness, which is crucial to investigate the effects of the porous electrode to the performance (i.e. 

transport in the liquid phase).  
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Figure VII-7. The volume fraction profiles along the Z-axis direction (through-plane) of the 

electrode. Each point was obtained by calculating the fraction of the phase in a 2D slice across the Z-axis. 

a. State I (Pristine electrode). b. State II (CCCV charge to 4.3 V). c-d. Discharge 1C to 50% DoD captured 

at position 1 and 2, respectively. e. State III (CCCV discharge to 2.5 V). 
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VII.3 Discussions 

In this work, we demonstrate that Operando XANES-XCT nanoCT allows access to the Li 

distribution (local Li concentration) at nanoscale within the LiB electrodes during the operation. 

We also proposed a method that relies on just three energy levels located at pre-edge, edge, post-

edge for minimization of radiation damage to the sample (see more details in Methods). Also, a 

specific electrochemical cell and a sample preparation process were introduced, which make the 

use of electrodes typical to those used in real-life applications possible. This is crucial for our study 

where our goal is to focus on the impact of the microstructure on the electrochemical performance 

at electrode scale rather than the composition distribution within an individual AM particle, as 

reported in previous works.  

With the addition of three-dimensional capability, both microstructural and chemical 

properties are obtained for a given large control volume, avoiding an overlap of contributions to 

the attenuation and providing the opportunity to probe the sample at different locations throughout 

the electrode. 

Our experimental results unveil the non-uniformity of the Li repartition throughout the LiB 

porous electrodes during operation. Besides the core-shell structure found within the AM particles 

arising from the solid diffusion, the heterogeneity mainly reflects the microstructural 

heterogeneity, that can locally impact the kinetics of the electrochemical reactions through a non-

uniform distribution of whether ionic/electronic transport network or inter-connectivity between 

phases throughout the electrode. As a result, there are regions being more active than the others as 

well as preference spots on the particle surface where the reactions are more likely to occur.  

The Li repartition across the electrode depth is adequately uniform, which indicates a 

negligible effect from porous electrode. It is worth noting that an electrolyte with high transport 

properties was used,[27] which can significantly reduce the effects from the porous electrode. Thus, 

the transport in electrolyte is not a rate limiting factor in this electrode under the applied cycling 

conditions. 

However, without a knowledge of the CBD morphology in the microstructure, it is not possible 

to accurately address the correlation between the microstructure to the electrochemical 

heterogeneity, as the CBD can affect most of the microstructural properties (transport properties, 

active electrochemical surface area). Thus, our next step is to capture the CBD morphology, which 

would allow the determination of all the microstructural properties with their spatial distribution 

(e.g. electronic conductivity, ionic tortuosity factor, triple-phase boundary). The distribution of 

electrochemical performance can, therefore, be fully resolved.  

In addition, some of the reconstructed slices also revealed that the lithiation process could also 

happen from internal pores of the AM particles. This observation also implies that the electrolyte 

along with the carbon conductive can penetrate into some internal pores through the AM grain 

boundaries and allow the (de)lithiation process to occur from the inside of the NMC secondary 
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particles. This observation is in line with our previous work, in which we observed the occasional 

presence of the CBD inside the internal pores as well as the work done by Miller et al.,[28] who 

revealed the penetration of electrolyte through the AM grain boundaries. 

Finally, we expect that our analysis technique will provide a direct method to unveil the effects 

of the electrode microstructure on its electrochemical performance. This multiscale insight can 

shed light to the optimization of the electrode design to improve the electrode performance.  

VII.4 Methods 

VII.4.1 Materials 

Two positive electrodes investigated are both a mixture of NMC532 as AM, conductive carbon 

black and a mixture of PVdF with the same composition (96%w AM, 2%w carbon black and 2%w 

PVdF) but different AM loading. Electrode labelled as MX-A is made in our laboratory having a 

very low loading (c.a. 3mg/cm²) with 30% of porosity after calendaring. The second electrode 

labelled as MX-B is a commercial electrode with a loading of 15mg/cm² and 28% of porosity after 

calendaring. 

VII.4.2 Sample preparation 

Our setup requires the X-ray to go through at least the entire thickness of the electrode, as the 

travel pathway increases as the rotation angles move between [-150°,150°] (assuming that the 

glassy carbon windows, the Celgard 2500 and the Li foil are mostly transparent). Since it is a 

transmission technique, it is necessary to have enough X-rays going out of the sample to have 

enough signal on the detector. For the two electrodes used in this work, the MX-B will cause an 

issue with its considerable thickness. Without the preparation step, the rotation angle is limited to 

only [-75°, 75°] for MX-B. Hence, the sample preparation for the MX-B is a crucial step to get a 

high-quality result and to limit the dead-angle during the acquisition. 

Regarding the sample preparation, a “free-standing” electrode was first required, which was 

obtained by simply peeling the porous electrode material off the current collector foil. A ZEISS 

laser dissection was used to precisely cut a specific pattern from the bulk electrode (see Figure 

VII-1d). The pattern along with the void around allows reducing the pathway travelling by the X-

ray over a wide rotation angle [-120°, 120°]. As a result, it reduces the dead angle from 75° to 30°. 

Smaller dead-angles allow the use of the thicker sample (MX-B) for the experiment. It is worth 

mentioning that to avoid any damage of the laser beam on the region of interest, the pulse mode 

was used for laser beam instead of permanent mode.  

VII.4.3 Experiment process 

Assembly of compact electrochemical cells  
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The assembly of the Operando cell was carried out in an argon-filled glovebox . The electrode 

was first introduced in the cell at the center, just above the glassy carbon window. For the MX-B, 

one may want to keep the patterns cut by laser beam near to the center of the windows for the ease 

of locating them during acquisition. Li foil and 1.2M LiPF6 (dissolved in a solvent consisting of 

50% EC and 50% DMC by weight) were used as the counter electrode and the electrolyte along 

with Celgard 2500 as the separator.  

Our Operando cell was designed to minimize the dead angle as much as possible during the 

acquisition (see Figure VII-1c). The cells was verified to be stable for electrochemical cycling with 

constant current. This cell design is also compatible with other Operando experiments such as X-

ray diffraction in transmission. 

Electrochemical cycling 

All cycling test were performed with a multipotentiostat from Biologic (France) and Maccor. 

The operational range for the NMC materials in this work is chosen between 2.5 and 4.3 V vs 

Li/Li+.  

Delithiation of NMC will be galvanostatically carried out under a C/10 current from pristine 

state to 4.3 V following by a CV step to get a stoichiometry as much uniform as possible. Then a 

high C-rate (1C) current will be used for the lithiation of NMC in order to enhance the limitation 

from porous electrode and to maximize the presence of heterogeneities. At the chosen state of 

lithiation, a relaxation step will be proceeded for 1 hour, and XANES-XCT data set will be 

collected at the end of this step. During the acquisition, 3 different energy level scans which are 

defined earlier, will take place.  

Operando XANES tomographic data collection 

The assembled cell was imaged using XCT at beamline 32-ID-C, Advanced Photon Source 

(APS). First, two reference spectra were collected from both pristine state and delithiation state 

(up to 4.3V vs Li/Li+) with energy scan ranges from 8.30 keV to 8.43 keV with 150 energy steps 

in between. From those two reference spectra, we identified three energy levels that locate at pre-

edge (8.33 keV), edge (8.58 keV), and post-edge (8.43 keV) respectively (Figure VII-1a). Here, in 

our approach, only 3 energy levels were recorded, which does not allow for the identification of 

all the Ni K-edge features during the operation as what proposed by Nowack et al.[13] using 12 

energy levels. However, our approach can significantly reduce the exposure time to X-ray of the 

sample as well as the duration per scan. 

At the end of each relaxation step, three XCT datasets at three energy levels defined earlier 

were collected using 721 projections over an angular range [-120°,120°] with a field of view of 

50x50 µm². 
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VII.4.4 Data processing 

It is worth stating that the voxel size of the XANES-XCT measurements with our experimental 

setup was ca. 30 nm. However, to reduce the noise and the artefacts of the tomographic data in 

order to facilitate registration of volumes, which is crucial for the mapping of Li content, we binned 

the voxels of the tomographic data. Thus, the spatial resolution of the 3D volumes became lower 

than the single voxel size. Kimura et al. has investigated the effect of binning on the data 

processing, and they reported that there was no large difference in the magnitude of noise for the 

number of binned voxels more than 6×6×6. In this work, each of 7x7x7 voxels was binned, 

resulting in a voxel size of 210 nm. Considering the average particle size of the NMC particles 

(𝑑50 = 4.7 µm), this spatial resolution is thought to be high enough to discuss the mesoscopic 

charging state distribution.  

Registration of 2D slices between energies 

In order to process the quantification of the Li concentration based on the change of the 

absorption coefficient at the Ni K-edge, the three XCT datasets at the three energy levels have to 

be spatially aligned. Image registration was performed using the elastix software. Following an 

initial rigid transformation, a nonrigid b‐spline‐transform is applied.  

Li concentration mapping  

Both the edge and peak absorption features in the Ni K edge have been shown in the literature 

to be approximately linearly correlated to lithiation state in NMC. Therefore, our approach was 

relied on the relative shift of the absorption coefficient at the Ni K-edge (at 8.35 keV). The relative 

shift is obtained by normalizing the 3D volume captured at the K-edge to the absorption jump 

calculated as a difference of the absorption coefficient at the pre-edge and the post-edge.  

MAP =
Voledge−Volpre−edge

Volpre−edge−Volpost_edge
        (Eq. VII-1) 

where Voledge, Volpre−edge, Volpost−edge are the 3D volumes obtained at the edge, pre-edge 

and post-edge of the Ni K-edge respectively. 

As a result, we obtained the 3D volume that has voxels’ grey level reflecting the Li 

concentration within the NMC particles. By combining the obtained data of NMC distribution and 

the Li content at corresponding voxels, we acquired the 3D charging state (Li content) map. By 

repeating above procedure as lithiation proceeds, 3D lithium distribution evolution as a function 

of Li content in the AM can be rendered, as shown in Figure VII-1a. 
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Chapter VIII . Concluding Remarks & Perspectives 
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VIII.1 General conclusion 

This thesis is in the continuity of the partnership with Renault car manufacturer that aims to 

improve the performance of the LiB through the electrode design. For this purpose, this work 

investigated the interplay between the microstructures of four industry-grade NMC electrodes: 

MX-01 (25 mg/cm² / 3.5 g/cm3 / 2.2%w of CB), MX-02 (15 mg/cm² / 3.2 g/cm3 / 2.2%w of CB), 

MX-01b (25 mg/cm² / 3.5 g/cm3 / 3.2%w of CB), MX-01b (15 mg/cm² / 3.5 g/cm3 / 3.2%w of CB); 

and their electrochemical performance.  

Given the complexity of the LiB system’s behavior, a numerical approach based on physics-

based battery models was adopted, where the models allowed the identification of different sources 

of performance limitation, which can be quantitatively correlated to the microstructure. 

Prior to that, since one understand the crucial role of reliable model parameters, a large part of 

this work focused on the characterization of the microstructural and electrochemical properties of 

the electrodes. Both image-based methods and electrochemical measurements were carried out to 

get as many properties as possible, such that they can either be used as input parameters for 

physics-based battery models or provide insights for better understanding about the system. 

As a starting point, we revisited the concept of the tortuosity factor for porous electrodes. Using 

a numerical approach, based on simulations performed on synthetic microstructural image data 

(2D and 3D), we unveiled several key issues with the conventional tortuosity factor when used to 

characterize electrodes. As a result, we introduced a new concept called the “electrode tortuosity 

factor”, which captures the transport processes relevant to porous electrodes better than 

conventional ones. We demonstrated that the symmetric cell method is appropriate for accurately 

determining the tortuosity factor for battery porous electrodes. This method was then used for the 

tortuosity determination of the electrodes studied in this work. Beyond the scope of this work, this 

is an important result for optimizing electrode design that electrochemical modelers should 

consider. This simulation tool is provided as an open-source MATLAB application and is freely 

available online as part of the TauFactor platform. 

Since this work dealt with NMC materials that possess a better contrast against the additives 

and voids than materials such as Graphite, X-ray tomography works well in capturing the electrode 

3D microstructure. Thus, an image-based approach relying on a quantitative phase-contrast 

imaging technique, so-called hard X-ray nano-holotomography, was carried out. This technique 

provides a large reconstructed volume, where the carbon binder domain can be resolved along with 

the active materials and the pore space. A complete quantitative analysis of the microstructures of 

three electrodes (MX-01, MX-01b, MX-02b), including the characterization of each phase 

separately along with the statistical quantification of their inter-connectivity at particle scale, is 

performed. This work suggests the negative impacts of an excess of carbon binder domain on the 

electrode performance at high C-rates. Those results are valid for industry-grade electrodes, and 

are ascribed to a decrease of the electrochemical active surface area. In addition, electrodes with a 

higher amount of additives exhibit a higher level of microstructural heterogeneities, which might 
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also deteriorate the overall performance. 

Through the work on X-ray nano-holotomography, we noticed a marked uncertainty source 

related to the segmentation process. To resolve this uncertainty , a machine learning approach was 

applied to image segmentation. Although it has been changing dramatically the way one 

segmentate images, a labelling step required for network training might lead to significant user-

to-user variation, as it strongly depends on the human perception of the images. Thus, it prevents 

the quantification of reliable properties using image-based methods. Consequently, having a 

consistent human perception for the same image regardless of the operator is essential to get 

reliable results from image data. Usually, one has to go through an image pre-processing step 

(e.g. denoise, contrast enhancement) for quality enhancement. However, this step frequently 

involves human observers that also results in user-to-user dispersion and uncertainties. We 

introduced a method with no observer-dependence in this work to tackle this challenge, which 

utilizes convolutional neural networks for tomographic image quality assessment. Our method 

requires fewer image labels to train the neuronal network and is more appropriate to assess the 

quality of X-ray tomographic images that need to be segmented than most existing data-driven 

methods. The evaluation results from this work demonstrate that our method can be a direct tool 

that guides the enhancement process and leads to reliable segmentation results regarding subjective 

human opinion. As a result, image processing can turn into a very robust, observer-independent 

process. 

As mentioned above, the main goal of this work is to use physics-based models to decipher the 

effects of the electrode microstructure on their performance.  For this purpose, we selected the 

Newman P2D model as a baseline model because it offers the best compromise between 

computation speed and physical significance among battery models. Most of these model inputs 

come from experimental measurements that have been done in this work, and then model 

simulations were run “as is”, i.e. without fitting any parameter. The model was validated against 

the discharge rate capabilities of the four industry-grade electrodes at 25°C. However, a careful 

analysis demonstrated that the Newman P2D model was not appropriate to represent the electrode 

rate capabilities. Considering the outcomes from tomographic data analysis, we suggested an 

additional limitation coming from the agglomeration of AM and a reduction of the available active 

surface area along with additional transport limitations for ions in the sub-pores within the porous 

agglomerates. A new physics-based model, the so-called PApa model, was developed to address 

this specific mechanism. The polynomial approximation was adopted for the solid diffusion within 

AM particles for the model to be pseudo 2D and not pseudo 3D.  

Moreover, inter-particle solid diffusion is also considered in the model. The new model 

provided a very good agreement between simulation and experimental results on the set of four 

electrodes with three different electrolytes. This model is a sophistication of Newman model that 

may be relevant for dense porous electrodes, wherein active particles are agglomerated to some 

degree. 

Finally, we investigated an approach that directly correlates the microstructure and 
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electrochemical performance at multi-scale through the Operando XANES combined with the 

nano-XCT experiment. An Operando electrochemical cell was purposely developed for this work, 

exhibiting good stability for electrochemical tests and small dead-angles for high-quality data. The 

results from this work demonstrated a high level of non-uniformity in state-of-charge within the 

porous electrodes during the operation. 

VIII.2 Future work 

All parts of this work can be continued based on several considerations. In what follows, we 

described some potential future modeling and experimental work.  

VIII.2.2 Numerical Modeling 

The charging behavior of NMC electrodes should also be investigated because it is critical for 

fast charging applications. With this regard, we have observed the asymmetric behavior between 

the charge & discharge process on the set of electrodes used in this work. Unfortunately, the root 

cause is still out of sight. Recently, Chueh et al.[1] addressed this asymmetric behavior by 

attributing it to the kinetic limitations from the NMC materials during fast delithiation. They have 

found the reaction rate constant that increases as the lithiation progresses, which is consistent with 

the result from this work. Upon fast charge, this behavior exacerbates the non-uniformity between 

high and low Li concentration particles, which leads to “fictive” phase-separation. A group of 

particles with a distribution of different properties such as electronic conductivity, particle size, 

and contact resistance with the CB matrix might be required to introduce this mechanism into the 

model.  

Once the half-cell model for the NMC electrode is fully validated, a reliable full cell model 

can be built up from the two experimental-consistent half-cell models: Graphite anode 

(Malifarge’s PhD thesis 2017) and the NMC cathode (this work). This model would allow 

engineers to improve the cell design for automotive applications and predict battery degradation 

phenomena such as Li plating during the fast charging process. 

We can imagine such a full-cell model connected to the downstream of a numerical 

manufacturing model, which provides a digital twin of the cell fabricated in a real factory. The 

digital twin allows the identification of manufacturing parameters that are critical for battery 

performance. In addition, an optimization process that considers the cost model, the manufacturing 

yield can also be coupled to the cell performance given by the model to find the optimal 

compromise for the production.  

Furthermore, access to the spatial distribution of different properties via electrochemical 

measurement (e.g. µ4probes) or tomography can be used as inputs of a (3D-1D) macroscopic 

model. Heterogeneities can, therefore, be directly taken into account in this model. As a result, the 

model can be used to investigate the effects of the heterogeneities at the electrode scale on the 

macroscopic performance and the degradation mode of the LiB system. For instance, the 
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interaction between heterogenous regions within the same electrode or the possible effects of the 

heterogeneities on the opposite electrode could be addressed.  We have built this model based on 

the Newman P2D model using COMSOL Multi-physics, however, the investigation using this 

model is beyond the scope of the PhD work.  

VIII.2.3 Experiments 

Investigation of the performance of a larger set of electrodes covering a wider range of 

densities and or loadings can be carried out to gain more insights into the interplay between the 

electrode microstructure and its performance. In particular, it allows validating the assumption on 

the formation of porous agglomerates. Tomography with large FoV such as µ-XCT can be 

interesting to gain more evidence of the presence of porous agglomerates, as we only need to 

capture the AM phase. 

Regarding the materials, NMC electrodes with single-crystalline particles can be used to 

compare with the behavior obtained from the polycrystalline particles in this work. Single 

crystalline particles have been demonstrated to prevent cracking during the calendering 

process.[2][3][4] This improvement can change the way the solid particles behave within the 

electrode and possibly the porous agglomerate effects. 

Also, a full-cell (NMC/Graphite) rate capability could be performed to validate the 

corresponding full-cell model and investigate the fast-charging applications. 

Operando XANES experiment has a large room for improvement. Once one can resolve the 

CBD morphology and better track a specific region, the complete picture of the correlation of 

microstructure and performance can be unveiled. A smaller Operando cell was designed and 

machined in order to fit more easily to different beamline configurations (e.g. SOLEIL and APS 

synchrotrons). 

With a better strategy of coupling different methods, we can perform the electronic 

conductivity measurements and the tomography experiment on the same location. This would 

provide more insights into the interplay between transport and microstructural properties. 

More data might be required to improve the accuracy of our algorithm for the image quality 

assessment. An online platform can be built where people can go and get guidelines for image 

processing in order to get image data that possess the most robust human perception, minimizing 

the uncertainty of the output. 
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Abstract 

Although the use of Li-ion batteries has made the growth of the electric vehicle market possible, range is still a 

limiting point for many users. In order to improve this, a lot of research has been carried out to develop new 

positive electrode materials and negative electrode materials. However, the maturity of these different materials 

still does not allow considering their use in batteries for automotive applications. A simple alternative to 

increasing the energy density with the active materials currently in use is to decrease the amount of inactive 

material within the cell by increasing the amount of material deposited on the current collectors. However, this 

increase has the direct impact of increasing the thickness of the electrodes and their resistance. In addition, a side 

effect is to increase the inhomogeneities within the electrodes. To avoid excessive degradation linked to the use 

of this type of electrode, a detailed study (tomography, measurements of electrical and ionic transport) of various 

types of positive electrode, coupled with electrochemical modeling will bring us an improvement of 

understanding the limitations of this type of electrode. The first part of this work focuses on the complete 

characterization of porous electrodes, comprising both electrochemical performance and microstructural 

properties. The second part relies on the numerical approach to further understand the underlying physics of the 

electrode during operation 

Keywords: Li-ion battery, electrode microstructure, electrochemical performance, tomography, 

mathematical modeling. 

Résumé 

Bien que l'utilisation des batteries Li-ion ait rendu possible la croissance du marché des véhicules électriques, 

l'autonomie est toujours un point limitant pour beaucoup d'utilisateurs. Afin d'améliorer cela, de nombreuses 

recherches ont été menées pour développer de nouveaux matériaux d'électrode positive et des matériaux 

d'électrode négative. Cependant, la maturité de ces différents matériaux ne permet toujours pas d'envisager leur 

utilisation au sein de batteries pour des applications automobiles. Une alternative simple pour augmenter la 

densité d'énergie avec les matériaux actifs actuellement utilisés est de diminuer la quantité de matière inactive au 

sein de la cellule en augmentant la quantité de matière déposée sur les collecteurs de courant. Cependant, cette 

augmentation a pour impact direct d'augmenter l'épaisseur des électrodes et leur résistance. De plus, un effet 

collatéral est d'augmenter les inhomogénéités au sein des électrodes. Pour éviter une dégradation trop importante 

liée à l'utilisation de ce type d'électrode, une étude détaillée (tomographie, mesures de transport électrique et 

ionique) de divers types d'électrode positive, couplée à de la modélisation électrochimique nous apportera une 

amélioration de la compréhension des limitations de ce type d'électrodes. La première partie de ce travail se 

concentre sur la caractérisation complète des électrodes poreuses, comprenant les performances électrochimiques 

et les propriétés de la microstructure. La deuxième partie s'appuie sur l'approche numérique pour mieux 

comprendre la physique liée au comportement de l'électrode pendant son fonctionnement. 

Mots-clés : Batterie Li-ion, microstructure d'électrode, performance électrochimique, tomographie, 

modélisation mathématique. 

 


