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Abstract

We study the ergodic properties of the horospheres on certain classes of manifolds
without conjugate points. Our goal is to generalize several results already known
for negatively curved manifolds. We prove that, for a large class of nonpositively
curved rank 1 manifolds, certain horospheres are equidistributed under the action
of the geodesic flow towards the Bowen-Margulis measure. In the case of nonflat
nonpositively curved surfaces, we define a horocyclic flow on the set of horocycles
containing a rank 1 vector that is recurrent under the action of the geodesic flow
and we prove that this horocyclic flow has a unique invariant probability measure.
Finally, we show that any horocyclic flow on a compact higher genus surface
without conjugate points and with continuous Green bundles is uniquely ergodic.

Our approach is based on methods specific to geodesic flows such as the
boundary at infinity and the construction of the Bowen-Margulis measure via
the Patterson-Sullivan theory. The main ingredient in the equidistribution the-
orem is the mixing of the Bowen-Margulis measure. Regarding the horocyclic
flows, our results are obtained thanks to the definition of a uniformly expanding
parametrization similar to the one used by B. Marcus in negative curvature.
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Introduction

The main topic of this thesis is the ergodic theory of horospheres on Riemannian
manifolds with a weak form of hyperbolicity. We study two particular classes of
manifolds, which are nonpositively curved rank 1 manifolds and compact surfaces
without conjugate points. We are interested in properties such as the equidistri-
bution of horospheres and the unique ergodicity of the horospherical foliation. All
the results proved here are already known for strict negatively curved manifolds,
so our work consisted in extending them for more general classes of manifolds.

The origin of the study of horospheres is closely related to the study of the
geodesic flow. As a matter of fact, horocycles are already present in the celebrated
proof of E. Hopf of the ergodicity of the Liouville measure with respect to the
geodesic flow on hyperbolic surfaces [Hop36].

The first dynamical properties concerning horospheres were obtained by G. A.
Hedlund for hyperbolic surfaces [Hed36], namely he proved the minimality of the
horocyclic flow on a compact hyperbolic surface. Many years later, H. Furstenberg
proved that the horocyclic flow on a compact hyperbolic surface is also uniquely
ergodic [Fur73]. B. Marcus generalized this result to variable negative curvature
by his own methods.

Theorem. [Mar75a] Let M be a compact Riemannian surface with strictly nega-
tive curvature. Then, any horocyclic flow (stable or unstable) is uniquely ergodic,
i.e. there exists a unique invariant Borel probability measure.

In higher dimension, the fact that a foliation is uniquely ergodic means that
there is a unique transverse measure invariant by its holonomy. The unique er-
godicity of the horospherical foliation on compact negatively curved manifolds of
any dimension follows from the work of R. Bowen and B. Marcus [BM77].

On noncompact hyperbolic or negatively pinched manifolds, we can find both
compact and closed embedded horospheres. These provide different transverse
measures, so unique ergodicity fails in general. Some authors have studied the
transverse invariant measures on hyperbolic manifolds of finite volume [Dan78,
Dan81, Rat92] and others on geometrically finite manifolds [Bur90, Rob03]. The
most general result is the one given by T. Roblin under the condition that the
Bowen-Margulis measure is finite. He shows that, in restriction to a meaningful
subset of horospheres, there is a unique transverse measure [Rob03, Théorème
6.4].

The problem of unique ergodicity is naturally related to the equidistribution
of horospheres. In the case of the horocyclic flow on a compact surface, this
corresponds to the fact that the unique ergodicity is equivalent to the uniform
convergence of averages along the flow orbits towards a constant. In the set-
ting of negatively curved manifolds, M. Babillot proved that compact subsets of
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horospheres get equidistributed when they are pushed by the geodesic flow [Bab02,
Theorem 3]. T. Roblin proved a similar result [Rob03, Corollaire 3.2]. In the same
work, he also investigated the asymptotics of averages of functions on certain horo-
spherical balls when the radius tends to infinity. Still in negative curvature, B.
Schapira studied the equidistribution of horospherical balls towards Gibbs mea-
sures for convex-cocompact manifolds [Sch04] and the equidistribution towards
the Bowen-Margulis measure for geometrically finite surfaces [Sch05].

Context
The fact that the geodesic flow in negatively pinched curvature is an Anosov

flow explains many of the dynamical properties of the horospheres, since they are
the stable and the unstable manifolds of the geodesic flow. In this text, we deal
with large classes of manifolds defined by geometric constraints whose geodesic
flow is not necessarily Anosov. However, these manifolds have some common
features with the negatively curved ones, and for this reason we can refer to them
as weakly hyperbolic systems. We intend to prove equivalent ergodic properties
by generalizing methods which are specific to geodesic flows.

We rely on two different kinds of methods. On the one hand, we can obtain
information about the geodesic flow and the horospheres directly from the hypoth-
esis on the manifold, such as curvature restrictions. For general manifolds without
conjugate points, it is of special importance the definition of two invariant bundles
named after L. Green. On the other hand, the analysis of the global structure of
manifolds without conjugate points provides a good theory for studying them.
This includes the definition of a boundary at infinity of the universal cover of
our manifold and the study of the action of the covering group on these spaces.
The Patterson-Sullivan theory then gives the necessary tools in order to study the
ergodic properties of the horospheres.

Generally speaking, the lack of hyperbolicity occurs in regions where the stable
or unstable horosphere do not coincide with the stable or the unstable manifold,
and when the stable horosphere does not intersect transversally with the unstable
horosphere. In fact, the two horospheres can intersect in more than one point, this
generates a family of non-expanding orbits of the geodesic flow, which is called
a strip. Controlling this non-expanding regions is a great step towards obtaining
good dynamical results.

Results
Our first result deals with the equidistribution of horospheres under the action

of the geodesic flow on nonpositively curved rank 1 manifolds. It is a generalization
of the theorem of M. Babillot for negatively curved manifolds [Bab02]. Thanks
to the Patterson-Sullivan theory, we can define the Bowen-Margulis measure µ,
invariant by the geodesic flow gt, and a family of measures {µH}H supported on
the unstable horospheres of M , uniformly expanded by gt.

Theorem A. LetM be a nonpositively curved non-elementary complete connected
Riemannian manifold with a closed rank 1 geodesic. Assume that the geodesic
flow gt on the unit tangent bundle T 1M of M is topologically mixing on the set of
nonwandering vectors, and that the Bowen-Margulis measure µ is finite. Then, for
every unstable horosphere H ⊂ T 1M containing a gt-nonwandering vector, every
open subset U of H of finite and nonzero µH-measure is equidistributed under
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the action of the geodesic flow; i.e. for every bounded and uniformly continuous
function f on T 1M , we have

1

µH(U)

∫
U

f ◦ gt dµH −−−−→
t→+∞

1

µ(T 1M)

∫
T 1M

f dµ.

The theorem applies to compact nonpositively curved rank 1 manifolds, since
all the hypothesis are verified, but also to a large class of noncompact manifolds.
The theorem is optimal in the sense that it establishes that an open subset of a
horosphere is equidistributed as soon as it has positive measure. It is not difficult to
prove that the µH-measure of U is positive if and only if it contains a nonwandering
rank 1 vector. There exist open sets of horospheres with no rank 1 vectors which
are not equidistributed. As an example, we take a surface consisting of a flat
cylinder glued to two compact negatively curved ends (Figure 1). All the vertical
vectors with base point in a longitudinal segment of the cylinder are in the same
unstable horocycle. The set U formed by these vectors has zero µH-measure, which
is clear from its construction, and vectors on U are periodic, but do not have rank
1. This subset U is not equidistributed in any sense, because when we push it
by the geodesic flow it keeps turning around the cylinder. This flat cylinder is an
example of what we call a strip.

Figure 1: A surface with a flat cylinder

The thesis then focuses on the unique ergodicity of horocyclic flows on weakly
hyperbolic surfaces. We restricted our attention to surfaces as a first step to
understanding what happens in weakly hyperbolic spaces. Moreover, the methods
that we use are rather specific to dimension two.

The unstable horocycles on the unit tangent bundle of a surface without
conjugate points form a continuous foliation by Lipschitz curves. A continuous
parametrization of these curves is called a horocyclic flow. For example, when the
flow is parametrized by the Riemannian length of the horocycles, we say that the
horocyclic flow has the Lebesgue parametrization. Since there are many horocyclic
flows, in general we should specify the parametrization under study. However, for
a continuous flow on a compact space, unique ergodicity is a property which does
not depend on the parametrization of the flow. So, for compact surfaces, it is
enough to prove or disprove the unique ergodicity for a given parametrization.

We will use a method based on the work of B. Marcus for compact manifolds
with negative curvature. The key idea in his proof is the definition of parametriza-
tion uniformly expanded by the geodesic flow and called the Margulis parametriza-
tion. This gives an explicit description of Birkhoff averages on horocycles when
they are pushed by the geodesic flow. Then the equidistribution of horocycles un-
der the action of the geodesic flow implies the pointwise convergence of Birkhoff
averages towards a constant, and thus the unique ergodicity of the horocyclic flow.

The uniformly expanding horocyclic flow is obtained by parametrizing the horo-
cycles by the measures µH supported on the horocycles. For compact negatively
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curved surfaces, which is a particular case of manifolds with Anosov geodesic flows,
these measures were defined by G. A. Margulis [Mar70]. We also remark that the
Margulis and the Lebesgue parametrizations coincide in constant curvature.

Beyond the strict negative curvature case, it is not possible to define the Mar-
gulis parametrization in general. This is because of the presence of strips, which
yield open subsets of horocycles with zero µH-measure as we see in the example
of Figure 1.

In the next result, we get around this problem by restricting the domain of
definition of the horocyclic flow. On a nonpositively curved surface, a vector has
rank 1 if the geodesic tangent to this vector crosses a region with strictly negative
curvature. We consider the subset Σ0 of vectors whose unstable horosphere con-
tains a rank 1 vector recurrent by the geodesic flow. This set contains no strips of
non-expanding vectors. We define a horocyclic flow on Σ0 using the measures on
the horocycles and we show that this flow is uniquely ergodic.

Theorem B. Let M be an orientable rank 1 complete connected C∞ Riemannian
surface with nonpositive curvature. Assume that every vector v in the unit tangent
bundle T 1M is nonwandering by the geodesic flow gt and that the Bowen-Margulis
measure µ is finite. Let Σ0 the set of vectors v whose unstable horocycle contains
a rank 1 vector recurrent under the geodesic flow and let hs be the Margulis horo-
cyclic flow defined on Σ0. Then every finite Borel measure on Σ0 invariant under
the horocyclic flow hs is a constant multiple of the Bowen-Margulis measure µ|Σ0

restricted to Σ0.

Under the hypothesis of the theorem, the set Σ0 has full Bowen-Margulis mea-
sure and is Gδ-dense in the unit tangent bundle. We notice that the hypothesis
requiring that every vector in T 1M is nonwandering by the geodesic flow is satis-
fied if M has finite Riemannian volume. Moreover, nonflat compact surfaces with
nonpositive curvature satisfy all the hypothesis. However, even in this case, the
set Σ0 is not equal to the whole unit tangent bundle. The proof of Theorem B
uses the equidistribution of horocycles of Theorem A and a part of the strategy
followed by Y. Coudène in [Cou09].

Theorem B gives new information for a large class of nonpositively curved
surfaces, but gives no hints about what happens outside the set Σ0. Our third
important result solves this question for a class of compact surfaces larger than
nonpositively curved surfaces.

Theorem C. Let M be an orientable compact C∞ Riemannian surface without
conjugate points, with genus higher than one and continuous Green bundles. Let
hs be any horocyclic flow on the unit tangent bundle T 1M of M . Then there is a
unique Borel probability measure on T 1M invariant by the flow hs.

The hypothesis on the genus only excludes the case of the flat torus. Indeed,
E. Hopf proved that a compact surface without conjugate points is nonflat if and
only if it has genus at least two [Hop48]. The continuity of the Green bundles
is assumed for technical reasons, and we think that the theorem is probably true
without it. In any case, nonpositively curved surfaces, and even surfaces without
focal points, have continuous Green bundles. In particular, compact rank 1 non-
positively curved surfaces satisfy the hypothesis of Theorem C, but there are also
examples of surfaces satisfying the hypothesis with regions of positive curvature.
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We explained before that we cannot define a continuous Margulis parametriza-
tion on the whole unit tangent bundle of our manifold. The main obstruction is
the presence of strips, which are families of vectors whose orbits by the geodesic
flow stay close when viewed in the universal cover of the manifold. On a surface
without conjugate points and genus higher than one, a strip appears exactly when
there is a nontrivial intersection of a stable horocycle with an unstable one [RR21].
K. Gelfert and R. Ruggiero dealt with these strips by collapsing them, thus ob-
taining a quotient space with a continuous flow semiconjugated to the geodesic
flow. They show that this quotient is a topological 3-manifold when then Green
bundles are continuous, and also that the quotient flow is expansive, topologically
mixing and has a local product structure [GR20, GR19]. As an application, they
deduce the uniqueness of the measure of maximal entropy of the geodesic flow.

It is on this quotient that a uniformly expanding horocyclic flow is defined. A
theorem of Y. Coudène, based on B. Marcus’s ideas, will guarantee that this flow
is uniquely ergodic [Cou09]. Although this horocyclic flow cannot be lifted to the
unit tangent bundle of the surface, we succeed in proving that any horocyclic flow
above is also uniquely ergodic.

The manuscript also contains two other results that were obtained chrono-
logically between Theorem B and Theorem C. Although both results are now
particular cases of Theorem C, we present here the original proofs.

The first result reformulates Theorem B for any parametrization of the horo-
cyclic flow on a compact rank 1 nonpositively curved surface. It is obtained by
analyzing how a change of time in the flow changes the invariant measures on the
noncompact space Σ0.

Theorem D. Let M be an oriented nonflat compact Riemannian surface with
nonpositive curvature. Let hs be a horocyclic flow on the unit tangent bundle
T 1M of M and let Σ0 denote the set of unstable horocycles having a rank 1 vector
recurrent under the action of the geodesic flow. Then there is a unique Borel
probability measure on T 1M invariant by the flow hs giving full measure to Σ0.

The second result deals with nonpositively curved compact surfaces without
strips. The flat strip Theorem ensures that every strip in a nonpositively curved
manifold is flat i. e. an isometric immersion of an Euclidean strip. This class
of surfaces is interesting from the point of view of generic measures invariant by
the geodesic flow. In fact, on a compact nonpositively curved surface, ergodicity
is generic in the set of probability measures invariant by the geodesic flow if and
only if the surface has no flat strips [CS14]. If there are no strips, the Margulis
parametrization of the horocycles is still defined. On these surfaces, we prove the
best result one could expect by adapting Coudène’s argument in [Cou09].

Theorem E. LetM be an orientable nonpositively curved compact surface without
flat strips and let hs be any horocyclic flow on T 1M . Then the flow hs is uniquely
ergodic.

Organization
The manuscript is divided in two parts. The first part is a detailed description

of the main geometric tools available in the theory of geodesic flows on manifolds
without conjugate points. The second part is devoted to the study of the ergodic
properties of the horospheres, so it includes all our results.
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The first part achieves a double task. One the one hand, it is intended to be
an introduction to the geometric theory of geodesic flows. It constitutes sufficient
preparation for a reader with little knowledge of hyperbolic or Riemannian geom-
etry. On the other hand, it summarizes the work of many authors on different
aspects of the theory of weakly hyperbolic manifolds. It is a bit more than a
compilation of results, since we include the proofs of a great number of results.
A certain amount of the proofs needed to be adapted to our context, or we had
to clarify its validity in a more general setting. In particular, we think that our
treatment of the boundary at infinity is new in the literature.

Part I has two chapters. In Chapter 1, we define the geodesic flow and we
cover some basic Riemannian geometry such as the exponential map, Jacobi fields
and the curvature tensor. We also define the Green bundles, which are important
towards the end of the manuscript. In Chapter 2, we introduce a few more objects
such as the boundary at infinity, Busemann functions and horospheres, thanks
to which it is possible to understand the structure of a large class of manifolds
without conjugate points.

Part II contains all the equidistribution and unique ergodicity results explained
above. In a first lecture, the reader who is already familiar with geodesic flows, or
who is ready to accept a certain amount of facts as true, can skip directly to this
part.

Part II has four chapters. In Chapter 3, we explain the relation between the
limit set and nonwandering vectors under the geodesic flow. Then we define the
Patterson-Sullivan measure, and we construct the Bowen-Margulis measure for
the two situations under investigation: nonpositively curved rank 1 manifolds
and compact surfaces without conjugate points. We finally define the measures
µH on the horospheres, which will be essential in the sequel. In Chapter 4, we
establish an equivalence concerning the topological mixing of the geodesic flow
and the mixing of the Bowen-Margulis measure and we prove Theorem A about
the equidistribution of horospheres. Theorems B, D and E concerning the unique
ergodicity of the horocyclic flow on nonpositively curved surfaces are proved in
Chapter 5. Finally, Chapter 6 contains a brief explanation of the quotient by
strips and the proof of Theorem C.

The results of this thesis constitute three articles. The first [BC21a] is pub-
lished in Ergodic Theory and Dynamical Systems, the second [BC21b] is submitted
for publication and the third [BC22] will be submitted for publication soon.



Résumé en français

L’objectif principal de cette thèse est l’étude des propriétés ergodiques des horo-
sphères dans les variétés riemanniennes présentant une forme faible d’hyperbolici-
té. Nous visons spécifiquement deux classes de variétés, qui sont les variétés de
rang 1 à courbure négative ou nulle et les surfaces compactes sans points conjugués.
Nous nous intéressons aux propriétés telles que l’équidistribution des horosphères
et l’unique ergodicité du flot horocyclique. Tous les résultats ici présents sont déjà
connus en courbure strictement négative, donc notre travail a consisté à généraliser
ces résultats.

Le cadre classique pour l’étude des horosphères est celui de la géométrie hyper-
bolique. Le flot géodésique de ces variétés, aussi bien que des variétés à courbure
négative pincée, est un exemple de flot d’Anosov et les horosphères ne sont rien
d’autre que les variétés stables et instables de ce flot. Un grand nombre de pro-
priétés ergodiques des horosphères découlent alors directement de ce fait. Dans ce
texte, nous faisons face à des systèmes définis par des contraintes géométriques qui
n’auront pas la propriété d’Anosov, mais qui rassembleront encore dans certains
aspects aux flots géodésiques en courbure négative.

Ainsi, on sera amené à l’emploi d’outils liés à la géométrie que nous décrivons
brièvement maintenant. D’une part, les hypothèses sur notre espace, comme
par exemple sur la courbure, imposeront des restrictions au comportement des
géodésiques, qui se transporteront à la dynamique du flot géodésique. La définition
des fibrés de Green sur notre variété en absence de points conjugués sera aussi es-
sentielle par la suite. D’autre part, l’analyse de la structure globale de notre espace
à partir du bord à l’infini et l’étude de l’action du groupe de revêtement sur ce bord
sont très importantes. Ceci permet d’établir une théorie de Patterson-Sullivan
pour les espaces étudiés, qui fournit les éléments nécessaires pour l’obtention de
propriétés ergodiques des horosphères.

En règle générale, dans les variétés sans points conjugués, on observera des
phénomènes non hyperboliques comme des horosphères qui ne sont pas dilatantes
ou contractantes ou le fait qu’une horosphère stable intersecte une horosphère in-
stable de manière non transversale. En fait, ces dernières horosphères pourront
s’intersecter en plusieurs points, ce qui va engendrer une bande non expansive
d’orbites du flot géodésique. Le contrôle de ces bandes est un premier pas im-
portant vers la compréhension des propriétés dynamique du flot géodésique et des
horosphères.

Décrivons maintenant en détail nos résultats. Nous commençons par présenter
un résultat d’équidistribution des horosphères sous l’action du flot géodésique.
Nous aurons défini, grâce aux mesures de Patterson-Sullivan, une mesure µ in-
variante par le flot géodésique, appelée mesure de Bowen Margulis, et une famille
de mesures {µH}H supportées sur les horospheres instables de M qui sont uni-
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formément dilatées par le flot géodésique. On considère les moyennes d’une fonc-
tion par rapport à une mesure µH sur un ouvert dans une horosphère instable
poussées par le flot géodésique en un temps long.

Théorème A. SoitM une variété Riemannienne C∞ complète et non-élémentaire,
à courbure négative ou nulle et qui contient une géodésique fermée de rang 1.
Supposons que le flot géodésique gt sur le fibré tangent unitaire T 1M de M est
topologiquement mélangeant sur l’ensemble non-errant de gt, et que la mesure de
Bowen-Margulis µ est finie. Alors, pour toute horosphère instable H ⊂ T 1M con-
tenant un vecteur non-errant par gt, tout ouvert U de H avec mesure µH finie et
non nulle est équidistribué sous l’action du flot géodésique, autrement dit, pour
toute fonction f sur T 1M uniformément continue et bornée, on a

1

µH(U)

∫
U

f ◦ gt dµH −−−−→
t→+∞

1

µ(T 1M)

∫
T 1M

f dµ.

Ce résultat généralise un théorème de M. Babillot en courbure négative [Bab02].
Les variétés compactes de rang 1 à courbure négative ou nulle, ainsi qu’un grand
nombre de variétés non compactes, vérifient les hypothèses du théorème. Ce
théorème est optimal dans le sens où il établit qu’un ouvert d’une horosphère
est équidistribué dès qu’il a une mesure positive. La mesure µH de U est posi-
tive si et seulement si il contient un vecteur non errant de rang 1. Il existe des
parties ouvertes d’une horosphère qui n’ont pas de vecteurs de rang 1 et qui ne
s’équidistribuent pas. Par exemple, on prend une surface formée par un cylin-
dre plat collé à deux bouts compacts à courbure négative (Figure 1). Tous les
vecteurs verticaux dont le point base est dans un segment longitudinal du cylindre
sont dans le même horocycle instable. L’ensemble U formé par ces vecteurs est de
mesure µH nulle, ce qui ressort clairement de sa construction, et les vecteurs sur U
sont périodiques, mais ne sont pas de rang 1. Ce sous-ensemble U n’est en aucun
cas équidistribué, car lorsque nous le poussons par le flot géodésique, il tourne
autour du cylindre. Ce cylindre plat est un exemple de ce que nous appelons une
bande.

La thèse porte ensuite sur l’unique ergodicité des flots horocycliques sur des
surfaces faiblement hyperboliques. Les horocycles instables sur le fibré unitaire
tangent d’une surface sans points conjugués forment un feuilletage continu par
courbes lipschitziennes. Un flot horocyclique est une paramétrisation continue
de ces courbes. Par exemple, lorsque le flot est paramétré par la longueur d’arc
des horocycles, on dit que le flot horocyclique a la paramétrisation de Lebesgue.
Comme il existe de nombreux flots horocycliques, il convient en général de préciser
la paramétrisation étudiée. Cependant, pour un flot continu sur un espace com-
pact, l’ergodicité unique est une propriété qui ne dépend pas de la paramétrisation.
En conséquence, pour les surfaces compactes, il suffit de prouver ou d’infirmer
l’unique ergodicité pour une paramétrisation donnée.

Nous utiliserons une méthode basée sur les travaux de B. Marcus pour les
variétés compactes à courbure négative. L’idée clé de sa preuve est la définition
d’une paramétrisation uniformément dilatée par le flot géodésique, qu’on appelera
paramétrisation de Margulis. Cela donne une description explicite des moyennes
de Birkhoff sur les horocycles lorsqu’ils sont poussés par le flot géodésique. Alors
l’équidistribution des horocycles sous l’action du flot géodésique implique la con-
vergence simple des moyennes de Birkhoff vers une constante, donc l’unique er-
godicité du flot horocyclique.
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Le flot horocyclique uniformément dilaté est obtenu en paramétrant les horo-
cycles par les mesures µH supportées sur eux. Pour les surfaces compactes à
courbure négative, qui sont un cas particulier des variétés avec flots géodésiques
d’Anosov, ces mesures ont été définies par G. A. Margulis [Mar70]. On remar-
que aussi que la paramétrisation de Margulis et celle de Lebesgue cöıncident en
courbure constante.

Au-delà du cas de courbure négative, il n’est pas toujours possible de définir
la paramétrisation de Margulis. Cela est dû à la présence de bandes, qui donnent
lieu à des ouverts dans les horocycles de mesure µH nulle, comme nous l’avions vu
dans l’exemple de la Figure 1.

Dans le résultat suivant, nous contournons ce problème en restreignant le do-
maine de définition du flot horocyclique. Sur une surface à courbure négative ou
nulle, un vecteur est de rang 1 si la géodésique engendré par ce vecteur traverse une
région à courbure strictement négative. On considérera le sous-ensemble Σ0 formé
par les vecteurs dont l’horosphère instable contient un vecteur de rang 1 récurrent
par le flot géodésique. Cet ensemble ne contient aucune bande non expansive de
vecteurs. Nous définirons un flot horocyclique sur Σ0 à partir des mesures sur les
horocycles et nous montrerons que ce flot est uniquement ergodique.

Théorème B. Soit M une surface Riemannienne C∞ complète, connexe, ori-
entable et de rang 1 à courbure négative ou nulle. Supposons que tous les vecteurs
v du fibré tangent unitaire T 1M sont non errants par le flot géodésique gt et que
la mesure de Bowen-Margulis µ est finie. Soit Σ0 l’ensemble des vecteurs v dont
l’horocycle instable contient un vecteur de rang 1 récurrent par le flot géodésique
et soit hs le flot horocyclique de Margulis défini sur Σ0. Alors, toute mesure
borélienne finie sur Σ0 invariante par le flot horocyclique hs est, à une constante
multiplicative près, la mesure de Bowen-Margulis µ|Σ0 restreinte à Σ0.

Sous les hypothèses du théorème, l’ensemble Σ0 est de mesure de Bowen-
Margulis totale et il est Gδ-dense dans le fibré unitaire tangent. Nous remarquons
que tous les vecteurs de T 1M sont non errants par le flot géodésique si M est
de volume riemannien fini. De plus, les surfaces compactes non plates à cour-
bure négative ou nulle satisfont toutes les hypothèses. Cependant, même dans ce
cas, l’ensemble Σ0 n’est pas égal au fibré unitaire tangent entier. La preuve du
théorème B utilise l’équidistribution des horocycles du théorème A et une partie
de la stratégie suivie par Y. Coudène dans [Cou09].

Le théorème B donne de nouvelles informations pour une large classe de sur-
faces à courbure négative ou nulle, mais ne donne aucune indication sur ce qui se
passe en dehors de l’ensemble Σ0. Notre troisième résultat résout cette question
pour une classe de surfaces compactes qui inclut les surfaces à courbure négative
ou nulle.

Théorème C. Soit M une surface Riemannienne C∞ compacte orientable, de
genre supérieur à un, sans points conjugués et avec fibrés de Green continus. Soit
hs un flot horocyclique quelconque du fibré tangent unitaire T 1M de M . Alors, il
y a une unique mesure de probabilité borélienne sur T 1M invariante par le flot hs.

On suppose que M est de genre supérieur à un afin d’exclure le cas du tore
plat. En effet, E. Hopf a prouvé qu’une surface compacte sans points conjugués
est non plate si et seulement si elle a genre au moins deux [Hop48]. On suppose
la continuité des fibrés de Green pour des raisons techniques, mais nous pensons
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que le théorème est probablement vrai sans cette hypothèse. De toute façon, les
surfaces à courbure négative ou nulle, et même les surfaces sans points focaux,
ont des fibrés de Green continus. En particulier, les surfaces compactes de rang
1 à courbure négative ou nulle satisfont les hypothèses du théorème C, mais il
existe aussi des exemples de surfaces satisfaisant les hypothèses avec des régions
à courbure positive.

Pour montrer le théorème C, nous utiliserons un flot expansif et avec structure
de produit local associé au flot géodésique défini par K. Gelfert et R. Ruggiero
[GR20, GR19]. C’est sur le nouveau espace de phases qu’on définit un flot horo-
cyclique uniformément dilaté. Un théorème d’Y. Coudène, basé sur les idées de
B. Marcus, garantira que ce flot est uniquement ergodique [Cou09]. Bien que ce
flot horocyclique ne puisse pas être relevé directement au fibré unitaire tangent de
la surface, nous réussissons à prouver que tout flot horocyclique du fibré tangent
unitaire est aussi uniquement ergodique.



Part I

Geometry of weakly hyperbolic
spaces





Chapter 1

Reminders on Riemannian
geometry

This chapter introduces several differentiable tools for the study of geodesic flows,
paying special attention to manifolds without conjugate points or satisfying stronger
assumptions. It starts from elementary Riemannian geometry, describing the dou-
ble tangent bundle of a manifold and the action of the differential of the geodesic
flow. We recall the relation between the curvature of a manifold and Jacobi fields,
which has consequences on the dynamics of the geodesic flow. The final goal of
the chapter is to define two subbundles invariant by the geodesic flow, named after
L. Green, which will be present in the rest of the manuscript.

1.1 Geodesic flow

In the whole text we will work in the following setting:

Standing assumption: M is a C∞ complete Riemannian manifold of dimen-
sion n ≥ 2.

Let us detail these hypotheses. A Riemannian manifold is a differentiable
manifold M together with a positive definite symmetric 2-covariant tensor g on
M . Both the manifold M and the Riemannian metric g are assumed to be C∞.
The projection from the tangent bundle TM of M to the base M is denoted by
π. The metric g induces a scalar product on each tangent space TxM , x ∈ M
that will be denoted by ⟨·, ·⟩, and also a norm ∥·∥. The unit tangent bundle T 1M
is the subbundle of TM formed by the vectors with norm 1, the projection from
T 1M to M is also denoted by π.

The length of a smooth curve c : [a, b] →M is defined as

l(c) =

∫ b

a

∥ċ(t)∥ dt.

There is a natural Riemannian distance d on M , which for two points p, q ∈ M
can be defined as

d(p, q) = inf{l(c) | c is a piecewise C1 curve joining p to q}.

A differentiable curve c : (a, b) → M is a geodesic if it satisfies the second order
equation ∇ċċ = 0, where ∇ is the Levi-Civita connection associated to the metric
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g. We recall that geodesics locally minimize length, and that if a curve minimizes
length, it is a geodesic up to reparametrization by constant speed. For a vector
v ∈ TM , we denote by cv the unique geodesic such that cv(0) = π(v) and ċv(0) = v.
The Hopf-Rinow theorem says that (M,d) is complete as a metric space if and
only if the geodesics are defined for all time. We will assume that M is always
complete and consider the geodesics cv defined on R. In this situation we can
define the geodesic flow as follows.

Definition 1.1.1. The geodesic flow on T 1M is the family of maps gt : T 1M →
T 1M for t ∈ R defined by gt(v) = ċv(t), where v ∈ T 1M .

In order to study the geodesic flow more in depth, let us first describe the
structure of T 1M . Since TM and T 1M are manifolds themselves, we can consider
the respective tangent bundles TTM and TT 1M . The fibers of these bundles are
described by the following proposition.

Proposition 1.1.1. Let v ∈ TM . For each Z ∈ TvTM , let VZ : (−ε, ε) → TM be
a curve passing through v with direction Z, VZ(0) = v, V̇Z(0) = Z, so cZ = π ◦ VZ
is a curve on M and let DVZ

dt
denote the covariant derivative (VZ is thought as a

vector field along cZ). Then the map

TvTM −→ Tπ(v)M ⊕ Tπ(v)M
Z 7−→

(
˙cZ(0), DVZ

dt
(0)

)
is a isomorphism of vector spaces. Since T 1M is a submanifold of TM , for v ∈
T 1M , TvT

1M is a subspace of TvTM , which through the previous isomorphism
corresponds to Tπ(v)M ⊕ v⊥.

Thanks to this decomposition we define a natural Riemannian metric gS on TM
called the Sasaki metric. This metric is defined for two vectors Z1 = (X1, Y1), Z2 =
(X2, Y2) ∈ TvTM in the decomposition provided by Proposition 1.1.1 by

gSv (Z1, Z2) = gπ(v)(X1, X2) + gπ(v)(Y1, Y2).

As a Riemannian metric on the unit tangent bundle T 1M we consider the restric-
tion of gS, which is also called Sasaki metric.

1.2 Curvature and Jacobi fields

Now we introduce the curvature tensor and the Jacobi equation. Let ∇ denote
the Levi-Civita connection of M . The curvature tensor R of the manifold M is
the (1, 3)-tensor defined by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ −∇[X,Y ]Z,

where X, Y, Z are three vector fields on M . The value of R(X, Y )Z at a point p ∈
M only depends of the values of X, Y and Z at p. Given two linearly independent
vectors v, w ∈ TpM , we write

Kp(v, w) =
g(R(v, w)v, w)

g(v, v)g(w,w) − g(v, w)2
.
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One can check that the above quantity does not depend on the choice of the basis
of the space ⟨v, w⟩ ⊂ TpM . So it defines a function K on the set of tangent planes
of M . This function is called the sectional curvature of M .

Let I be an interval of R and c : I →M a geodesic. A variation of the geodesic
c is a differentiable map f : (−ε, ε) × I → M such that for each s ∈ (−ε, ε),
t 7→ f(s, t) is a geodesic.

A vector field V along a geodesic c : I →M is a differentiable map V : I → TM
such that V (t) ∈ Tc(t)M for all t ∈ I. We denote DV

dt
, or V ′ for short, the covariant

derivative of V with respect to the time t, that is DV/dt(t) = (∇ċṼ )c(t), where Ṽ
is an extension of V to a neighborhood. A variation f of geodesic c comes with a
vector field ∂f

∂s
in the direction of the variation, formally defined as

∂f

∂s
(s, t) = d(s,t)f(

∂

∂s
).

We first introduce Jacobi fields as solutions of a certain equation.

Definition 1.2.1. A Jacobi field along a geodesic c is a vector field J : I → TM
along c which satisfies the equation

J ′′ +R(ċ, J)ċ = 0.

Since the Jacobi equation is a second order linear differential equation, its
solutions are uniquely determined by the initial conditions X = J(0) ∈ Tc(0)M
and Y = J ′(0) ∈ Tc(0)M (0 ∈ I). The space of Jacobi fields along a geodesic is
thus a vector space of dimension 2n. There are two trivial solutions J(t) = ċ(t)
and tċ(t) which correspond to the initial conditions (X, Y ) = (ċ(0), 0) and (0, ċ(t)).
We observe that these solutions are tangent to ċ all the time. The Jacobi fields
with initial conditions perpendicular to ċ(0) (i.e. g(X, ċ(0)) = g(Y, ċ(0)) = 0) form
a subspace of dimension 2n − 2. These Jacobi fields will be called perpendicular
or orthogonal, and they are exactly the ones which are perpendicular to ċ(t) for
all t, because of the formula

g(J(t), ċ(t)) = g(J(0), ċ(0)) + tg(J ′(0), ċ(0)). (1.1)

We can now characterize Jacobi fields as infinitesimal variations of geodesics.

Proposition 1.2.1. For a variation f of a geodesic c the vector field ∂f
∂s
|s=0 is a

Jacobi field on c. Conversely, any Jacobi field can be integrated into a variation
of geodesics.

Before going further in the study of Jacobi fields, let us explain how they are
related to geodesic flow.

Proposition 1.2.2. Let t ∈ R and v ∈ TM . The differential of the geodesic flow
dvgt : Tπ(v)M ⊕ Tπ(v)M → Tπ(gtv)M ⊕ Tπ(gtv)M at v is given by

dvgt(X, Y ) = (J(t), J ′(t)),

where J is the unique Jacobi field along γv such that J(0) = X and J ′(0) = Y .
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Proof. Let (X, Y ) ∈ Tπ(v)M ⊕Tπ(v)M . Consider a smooth curve s 7→ V (s) on TM

with c = π ◦V such that ċ(0) = X and DV
ds

(0) = Y . Then gt ◦V is a curve passing
through gtv and, by definition, with direction dvgt(X, Y ). In the decomposition
of the double tangent bundle, we have

dvgt(X, Y ) =

(
d

ds

∣∣∣∣
s=0

(π ◦ gt ◦ V )(s),
D(gt ◦ V )

ds
(0)

)
.

We consider the geodesic variation

f(s, t) = γV (s)(t) = π(gt(V (s)))

and observe that ∂f
∂t

(s, t) = gt(V (s)). So we obtain, for all t ∈ R,

dvgt(X, Y ) =

(
∂f

∂s
(0, t),

(
D

ds

∂f

∂t

)
(0, t)

)
=

(
∂f

∂s
(0, t),

(
D

dt

∂f

∂s

)
(0, t)

)
.

We know that J(t) = ∂f
∂s

(0, t) is a Jacobi field along γv and the last term is exactly
(J(t), J ′(t)). For t = 0 we see that (J(0), J ′(0)) = (X, Y ).

We can now relate the growth of the differential of the geodesic flow in the
Sasaki metric with the growth of Jacobi fields and their derivatives thanks to the
formula

||dvgt(J(0), J ′(0))|| =
√

||J(t)||2 + ||J ′(t)||2. (1.2)

Later we will look closer to the action of the differential of geodesic flow and
define some special invariant subspaces of the unit tangent space. For now, just
observe that the directions of the geodesic flow are given by

G(v) =
d

dt
|t=0gt(v) = (v, 0),

and that the orthogonal spaces in TT 1M are

G(v)⊥ = v⊥ ⊕ v⊥,

which are invariant by dgt thanks to Equation 1.1 and the fact that g(J ′(t), ċ(t))
is constant when J is a Jacobi field.

Cartan-Hadamard theorem

The exponential map at the point p ∈M is the map expp : TpM →M defined by

expp(v) = cv(1), v ∈ TpM.

This map is defined everywhere on TpM because M is complete and is surjective
by the Hopf-Rinow theorem. Given a curve V : (−ε, ε) → TpM , we can consider
the following variation of geodesics:

f(s, t) = expp(tV (s)).

Lemma 1.2.3. Let p ∈M , v ∈ TpM and w ∈ TvTpM ≡ TpM . The differential of
the exponential map is

dv expp(w) = J(1),

where J is the Jacobi field on cv with J(0) = 0 and J ′(0) = w.
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Thanks to this explicit formula for the differential of the exponential map, we
see that the critical points of expp are those v for which there exists a nonzero
Jacobi field J on cv which vanishes at 0 and at another point t ̸= 0. When this
happens, the point cv(t) with J(t) = 0 is said to be conjugate to p.

Definition 1.2.2. A manifold M has no conjugate points if, for each p ∈ M , p
has no conjugate points.

Proposition 1.2.4. If M is a manifold without conjugate points, the exponential
map expp at any point p is a universal covering map.

Proof. Let us show that expp is a covering map by proving the path lifting property.
First of all, we observe that expp is a local diffeomorphism by the remark made
just after 1.2.3.

Then, we lift the metric of M to TpM . The geodesics passing through 0 with
this new metric are straight lines. The Hopf-Rinow theorem implies that TpM
with the distance given by this new metric is complete, since geodesics from 0 are
defined for all time.

The following lemma, together with the fact that TpM is simply connected,
concludes the proof. In our, case f is a local isometry.

Lemma 1.2.5. [dC92, Lemma 3.3, Chap. 7] Let N be complete Riemannian
manifold and f : N → M a local diffeomorphism with ∥df∥ ≥ 1. Then f is a
covering map.

For a manifoldM , we denote by M̃ a universal cover equipped with the pullback
metric and Π : M̃ →M the covering map. If M has no conjugate points, the space
M̃ can be thought as an open ball of the same dimension as M with a certain
metric, and M̃ has no conjugate points either.

Proposition 1.2.6. If M has no conjugate points, the geodesics of M̃ are globally
minimizing.

Proof. For any point p ∈ M̃ , the exponential map expp : TpM̃ → M̃ is a bijection,

since M̃ is already simply connected. In fact, the map expp is a diffeomorphism.

This implies that, given another point q ∈ M̃ , there is a unique geodesic c joining
p to q up to reparametrization. Since the distance between two points is always
attained by the length of a geodesic, we deduce that geodesics minimize length
globally.

Throughout this manuscript, we will consider curvature bounds of the type
K ≤ κ or K ≥ κ, κ ∈ R, where K is the sectional curvature of M and the
inequalities are meant to hold for all the planes over all the points of M . One
important case are manifolds with nonpositive curvature, that is, K ≤ 0.

Before going further, we introduce another class of manifolds, the so-called
manifolds without focal points. We have not worked directly with these kind of
manifolds, but the concept it will be useful to understand some parts of the theory.
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Definition 1.2.3. Let c : I → M be a geodesic starting at a point c(0) = p. For
t ∈ I, the point c(t), t ∈ I is said to be focal to p if there exists a nonzero Jacobi
field J : I → TM along c such that J(0) = 0 and (∥J∥2)′(t) = 0. The manifold
M has no focal points if for every p ∈M there are no focal points to p.

In the rest of this section, we explore further the behaviour of Jacobi fields and
the Riemannian distance between geodesics for nonpositively curved manifolds,
manifolds without focal points and manifolds without conjugate points. The fol-
lowing proposition gives a characterization of each of the three classes of manifolds
in consideration in terms of the growth of Jacobi fields.

Proposition 1.2.7. Let M be a complete Riemannian manifold.

1. M has nonpositive curvature if and only if (∥J∥2)′′ ≥ 0 for every Jacobi field
J along every geodesic.

2. M has no focal points if and only if (∥J∥2)′(t) > 0 for all t > 0 for every
nonzero Jacobi field J vanishing at 0.

3. M has no conjugate points if and only if ∥J∥2 vanishes at most once for
every nonzero Jacobi field J along every geodesic.

Proof. 1. Let J be a Jacobi field along c. We compute

(∥J∥2)′′ = ⟨J, J⟩′′ = 2⟨J ′, J⟩′ = 2⟨J ′, J ′⟩+2⟨J ′′, J⟩ = 2⟨J ′, J ′⟩−2⟨R(ċ, J)ċ, J⟩.
The first term of the last inequality is always nonnegative. The second is
either 0 if ċ and J are linearly dependent or equal to −Kc(ċ, J)(∥ċ∥2 ∥J∥2 −
⟨ċ, J⟩2) in the other case. If the curvature of M is nonpositive, we see that
in both cases (∥J∥2)′′ ≥ 0.

Conversely, let v, w ∈ TpM be linearly independent. Consider the geodesic c
through p with direction v, and then the Jacobi field J along c with initial
conditions J(0) = w and J ′(0) = 0. Then, (∥J∥2)′′(0) = −Kp(v, w)(∥v∥2 ∥w∥2−
⟨v, w⟩2) ≥ 0, so Kp(v, w) ≤ 0.

2. If M has no focal points, for every nonzero Jacobi field J with J(0) = 0, we
have (∥J∥2)′(t) ̸= 0 for all t > 0. Since ∥J∥2 ≥ 0 and ∥J∥2 (0) = 0, it must
be (∥J∥2)′(t) > 0 for all t > 0. The converse is immediate.

3. By definition, two points are conjugate if there exists a nonzero Jacobi field
vanishing at both points.

The next result now becomes clear.

Corollary 1.2.8. If M has nonpositive sectional curvature, then it has no focal
points. If M has no focal points, then it has no conjugate points.

We next give a more precise estimate of the growth of Jacobi fields that we
will need later.

Proposition 1.2.9. Assume that the curvature on all the planes tangent to a
geodesic c : I → M is less than a constant −κ ∈ R. Let J be a perpendicular
Jacobi field on c. Then, if J does not vanish on I, we have for all t ∈ R,

∥J∥′′ (t) ≥ κ ∥J∥ (t).
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If we integrate the conditions on the Jacobi fields, we obtain the next propo-
sition about the distance between geodesics on the universal cover.

Proposition 1.2.10. Let c1, c2 : [0, 1] → M̃ be two geodesics with any speed on the
universal cover of a manifold M without conjugate points. If M is nonpositively
curved, then for all t ∈ [0, 1],

d(c1(t), c2(t)) ≤ td(c1(0), c2(0)) + (1 − t)d(c1(1), c2(1)).

If M has no focal points, then for all t ∈ [0, 1],

d(c1(t), c2(t)) ≤ d(c1(0), c2(0)) + d(c1(1), c2(1)).

Proof. It is enough to proof each of the statements for two geodesics c1, c2 with
c1(0) = c2(0) =: p.

Let c : [0, 1] → M̃ denote the unique geodesic joining c1(1) to c2(1). We
can write c(s) = expp(V (s)) for some curve V : [0, 1] → TpM̃ . We consider the

variation of geodesics f(t, s) = expp(tV (s)) and the Jacobi field Js(t) = ∂f
∂s

(t, s)
along the geodesic t 7→ f(t, s). Now, for t ∈ [0, 1]

d(c1(t), c2(t)) ≤
∫ 1

0

||∂f
∂s

(t, s)||ds =

∫ 1

0

||Js(t)||ds. (1.3)

For each s ∈ [0, 1], Js is a Jacobi field with Js(0) = 0. If M̃ is nonpositively
curved, since ∥Js∥ is convex, we have ∥Js(t)∥ ≤ t ∥Js(1)∥. If M̃ has no focal
points, ∥Js(t)∥ ≤ ∥Js(1)∥. Applying these inequalities to (1.3), since Js(1) = ċ(s),
we get the desired result.

To finish the section, we explain why focal points receive this name. Let N be
a submanifold of M . We denote the normal bundle of N by N⊥. Let c : R → M
be a unit speed geodesic with c(0) ∈ N and ċ(0) perpendicular to N . Consider a
variation f : (−ε, ε)×R →M of the geodesic c such that for all t ∈ R, s ∈ (−ε, ε),

f(s, 0) ∈ N,
∂f

∂t
(s, 0) ⊥ Tf(s,0)N. (1.4)

An N -Jacobi field along c is a Jacobi field J obtained from a variation of geodesics
satisfying (1.4), i.e. J(t) = ∂f

∂s
(0, t).

N -Jacobi fields also admit an infinitesimal characterization. Given a subman-
ifold N , p ∈ N , and a vector X ∈ TpM , we denote the projection of X to TpN
by XT . For a perpendicular vector v ∈ (TpN)⊥, we consider an extension V of v
normal to N on a neighborhood and define the shape operator Sv : TpN → TpN
by

Sv(X) = −(∇XV )T .

Proposition 1.2.11. A Jacobi field J along c is an N-Jacobi field if an only if

J(0) ∈ TpN, J ′(0) + Sċ(0)J(0) ∈ (TpN)⊥. (1.5)

We can now define the concept of focal points of a submanifold.

Definition 1.2.4. The point c(t) is focal to the submanifold N if there exists an
N -Jacobi field along c such that J(t) = 0.
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We denote the normal bundle of N by TN⊥. The normal exponential map
exp⊥ : TN⊥ → M is defined by exp(v) = expπ(v)(v). We can relate the focal
points of N to the singularities of the normal exponential map.

Lemma 1.2.12. Focal points of a submanifold N are the critical values of the
normal exponential map exp⊥ : TN⊥ →M .

The concept of focal points along a geodesic corresponds to focal points of
geodesic manifolds.

Proposition 1.2.13. Let c be a unit speed geodesic with c(0) = p, and ċ(0) = v.
Then the following are equivalent:

1. There exists a perpendicular Jacobi field J along c such that J(t) = 0 and
(∥J∥2)′(0) = 0.

2. The point c(t) is focal to a totally geodesic manifold N containing p perpen-
dicular to v.

In particular, M̃ has no focal points if and only if no totally geodesic submanifold
has focal points.

Proof. 2. =⇒ 1. Let J be an N -Jacobi field vanishing at c(t). Since N is totally
geodesic, the shape operator is identically zero, hence J ′(0) ∈ (TpN)⊥ and

1

2
(∥J∥2)′(0) = ⟨J(0), J ′(0)⟩ = 0.

1. =⇒ 2. Let J be a perpendicular Jacobi field along c such that (∥J∥2)′(0) = 0
and J(t) = 0. The manifold N that we consider is the geodesic generated by J(0),
so J(0) is clearly tangent to N . Moreover, the condition 0 = 1

2
(∥J∥2)′(0) =

⟨J(0), J ′(0)⟩ implies J ′(0) ∈ (TpN)⊥. This shows that J is an N -Jacobi field.

To show the last statement, it is enough to prove that if there are no perpendic-
ular Jacobi fields J such that J(0) = 0 and there exists t > 0 with (∥J∥2)′(t) = 0,
then this does not happen for any Jacobi field. The previous hypothesis means
that any perpendicular Jacobi field J vanishing at 0 satisfies (∥J∥2)′(t) > 0 for
t > 0. Now, let J̄ be any Jacobi field along a unit speed geodesic c with J̄(0) = 0.
It decomposes as the sum J̄(t) = J(t) + λtċ(t) of a perpendicular Jacobi field J
and the tangent field λtċ(t), λ ∈ R. An easy computations yields

(
∥∥J̄∥∥2

)′ = (∥J∥2)′ + 2λ2t,

which shows that (
∥∥J̄∥∥2

)′ > 0 for positive t, as we wanted to prove.

1.3 Green subbundles

The purpose of this section is to introduce one of the main tools in the study of the
dynamics of geodesic flows in the setting of manifolds without conjugate points,
the Green bundles. We first need to understand better the solutions of the Jacobi
equation.
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Proposition 1.3.1. Let M be a manifold without conjugate points and let c :
R → M be a geodesic. Choose t ̸= 0. For each X ∈ Tc(0)M and Y ∈ Tc(t)M there
exists a unique Jacobi field J along c with J(0) = X and J(t) = Y . Moreover, J
is perpendicular to c if and only if X ⊥ ċ(0) and Y ⊥ ċ(t).

Proof. We consider the liner map from the space of Jacobi fields on γ to Tc(0)⊕Tc(t)
given by J 7→ (J(0), J(t)). Since M has no conjugate points, nonzero Jacobi fields
do not vanish two times, so the kernel of the previous map is trivial. The two
spaces have the same dimension, so it is a isomorphism. By formula (1.1) if J(0)
and J(t) are orthogonal to the geodesic, then J is orthogonal for all time.

For v ∈ T 1M and X ∈ Tπ(v)M orthogonal to v, we consider for t ̸= 0 the
Jacobi field Jv,X,t on the geodesic cv such that Jv,X,t(0) = X and Jv,X,t(t) = 0.

Proposition 1.3.2. Let M be a manifold without conjugate points.

1. The fields Jv,X,t converge uniformly on compact subsets when t→ +∞ (t→
−∞) to an orthogonal Jacobi field Js

v,X (Ju
v,X) called the stable (unstable)

Jacobi field.

2. The correspondences X → Js
v,X and X → Ju

v,X are linear.

3. Stable and unstable Jacobi fields on a geodesic do not depend on the initial
point of the geodesic,

Js
v,X(· + t) = Js

gtv,Js
v,X(t), Ju

v,X(· + t) = Ju
gtv,Ju

v,X(t)

for all t ∈ R.

4. Nontrivial stable and unstable Jacobi fields never vanish.

In order to understand better these Jacobi fields, it is convenient to work
in coordinates. We consider an orthonormal parallel vector frame E1, . . . , En,
n = dimM , on the geodesic cv. Moreover, we can assume that E1 = ċv. Consider
the matrix valued function R : R →Mn−1(R) defined for 2 ≤ i, j ≤ n by

R = (⟨R(ċv, Ei)ċv, Ej⟩)i,j≥2.

Given coefficients α = (α2, . . . , αn) : R → Rn−1, the perpendicular field

J =
n∑

i=2

αiEi,

is a Jacobi field if and only if α satisfies the equation

α′′ + Rα = 0.

Let us consider the (n− 1)-matrix equation

J′′ + RJ = 0, (1.6)

the columns of J : R → Mn−1(R) represent perpendicular Jacobi fields. If for
some interval I, detJ(t) ̸= 0 for all t ∈ I, then we can consider the matrix
U : I →Mn−1(R) given by U = J′J−1, which is a solution of the Ricatti equation

U′ + U2 + R = 0 (1.7)
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on the interval I.

We remark that, given two solutions A,B of (1.6), the Wronskian

W (A,B) = (A′)TB−ATB′

is constant for all time.

Now we consider, for t ̸= 0, the solution Bt of (1.6) with Bt(0) = Id and
Bt(t) = 0. We observe that the Jacobi field Jv,X,t is written in coordinates as
Btα, where X =

∑
i≥2 αiEi(0). Also, we let A denote the solution of (1.6) with

A(0) = 0 and A′(0) = Id.

Lemma 1.3.3. For 0 < s < t, the solution Bt of the matrix Jacobi equation has
the following integral expression:

Bt(s) = A(s)

∫ t

s

A(u)−1(A(u)−1)Tdu.

Proof. The expression is well defined because detA(u) ̸= 0 for all u ̸= 0, given
that the columns of A represent linear independent Jacobi fields and A(0) = 0.
If we denote the right hand side by Lt(s), we can compute

L′
t = A′A−1Lt − (A−1)T ,

L′′
t +RLt = (A′′A−1+R)Lt−A′A−1A′A−1Lt+A′A−1L′

t+(A−1)T (A′)T (A−1)T =

((A−1)T (A′)T −A′A−1)(A−1)T .

So Lt is a solution of 1.6 if and only if A′A−1 is symmetric. The Wronskian

W (A,A) = (A′)TA−ATA′

is constant and equal to 0 at s = 0, which implies that A′A−1 is symmetric for all
time s ̸= 0. It is clear that Lt(t) = 0. By writing A(s) = sN(s) (so N(0) = Id),
we can check that

lim
s→0

Lt(s) = lim
s→0

sN(s)

∫ t

s

1

u2
N(u)−1(N(u)−1)Tdu = lim

s→0
N(s)−1(N(s)−1)T = Id

by applying L’Hôpital’s rule to the fraction with numerator equal to the integral
and denominator equal to 1/s. Hence Bt and Lt coincide on (0, t).

We can now prove Proposition 1.3.2.

Proof. We only prove the existence and the properties of Js
v,X , for Ju

v,X it is enough
to reverse the time.

1. In view of the remarks above, it is enough to show that the matrices Bt

converge when t→ ∞. To show that Bt converge uniformly on compact subsets it
is enough to check that the initial conditions Bt(0) and B′

t(0) converge, thanks to
the continuity of the solutions of a differential equation with respect to the initial
conditions. The quantity Bt(0) is constant equal to the identity. We observe that
the second quantity B′

t(0) is symmetric because

B′
t(0)T −B′

t(0) = W (Bt,Bt)(0) = W (Bt,Bt)(t) = 0.
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Moreover,

B′
t(0) −B′

1(0) = lim
s→0

B′
t(s) −B′

1(s) = lim
s→0

A′(s)A−1(s)(Bt(s) −B1(s)) =

lim
s→0

A′(s)

∫ t

1

A(u)−1(A(u)−1)Tdu =

∫ t

1

A(u)−1(A(u)−1)Tdu.

The integrand A(u)−1(A(u)−1)T is symmetric. It is also positive definite for small
u > 0 (because A(u) = uN(u) with N(0) = Id) and hence for all u > 0 given that
det(A(u)−1(A(u)−1)T ) ̸= 0. This implies that B′

t(0) is strictly increasing in t.

We will prove that B′
−1(0)−B′

t(0) is symmetric and positive definite, so B′
t(0)

is bounded and it needs to converge.

We remark that

B−1(s) = −A(s)A−1(−1)Bt(−1) + Bt(s)

so B′
−1(0) −B′

t(0) = −A−1(−1)Bt(−1). Moreover,

(B−1
t A)′ = B−1

t (B−1
t )TW (Bt,Bt)B

−1
t A−B−1

t (B−1
t )TW (Bt,A) = B−1

t (B−1
t )T ,

since W (Bt,Bt)(t) = 0 and W (Bt,A)(0) = −Id. We can now write

−(B−1
t A)(−1) = (B−1

t A)(0) − (B−1
t A)(−1) =

∫ 0

−1

B−1
t (B−1

t )Tds,

which shows that −(B−1
t A)(−1) is symmetric and positive definite, since the in-

tegrand is equal to the identity at 0 and det(B−1
t (B−1

t )T ) ̸= 0. Its inverse is
B′

−1(0) − B′
t(0), which also needs to be symmetric and positive definite. So Bt

converges to a solution of (1.6) which we denote by Bs.

2. In coordinates, the stable orthogonal Jacobi field with initial condition α
can be written as Bs(s)α, hence it is linear in α.

3. In coordinates,

u 7→ Bt(u)Bt(s)
−1Bs(s)α

is the Jacobi field which is equal to Bs(t)α at u = s and 0 at u = t, so when t
tends to +∞ it converges to the field Js

gsv,Js
v,X(s)(u − s). On the other hand, we

see that it converges to u 7→ Bs(u)α. This proves the property.

4. If for some s we have Js
v,X(s) = 0, by the previous property

Js
v,X(· + s) = Js

gsv,0 = 0,

so X = 0.

If we add stronger assumptions on the manifold M , we can say more about the
behavior of stable and unstable Jacobi fields. First of all, we look at curvature
restrictions on M . Given a geodesic c, we refer to the sectional curvatures of
planes passing through a point c(t) and containing the tangent vector ċ(t) as the
curvatures along c.
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Lemma 1.3.4. If the curvatures along a geodesic c are bounded above by a constant
−a2 < 0, then every orthogonal Jacobi field J with J(0) = 0 satisfies

||J ||′(s) ≥ a coth (as)||J(s)||

for s > 0. In particular, for t > s > 0,

||J(t)||
||J(s)|| ≥

sinh(at)

sinh(as)
.

Proof. By Lemma 1.2.9, the quantity(
∥J∥′ (t) sinh(at) − a ∥J∥ (t) cosh(at)

)′
=

(
∥J∥′′ (t) − a2 ∥J∥ (t)

)
sinh(at).

is nonnegative for positive time t. Then, for t > 0,

∥J∥′ (t) sinh(at) − a ∥J∥ (t) cosh(at) ≥ 0, (1.8)

and the first statement follows. Integration of ||J ||′/||J || between s and t yields
the second formula.

Lemma 1.3.5. If the curvatures along a geodesic c are bounded below by a constant
−b2 < 0, then every orthogonal Jacobi field J with J(0) = 0 satisfies

||J ′||(s) ≤ b coth (bs)||J(s)||

for s > 0. In particular, for t > s > 0,

||J(t)||
||J(s)|| ≤

sinh(bt)

sinh(bs)
.

Proof. Recall that J(t), in coordinates, is written as A(t)α for some α ∈ Rn−1

and its derivative J ′(t) is identified with A′(t)α. Then U(t) = A′(t)A(t)−1 is a
symmetric solution of the Ricatti equation (1.7) defined for t > 0 as we saw in the
proof of Proposition 1.3.2. So it will be enough to prove that ||U(t)|| ≤ b coth(bt).

Fix x ∈ Rn−1 with ||x|| = 1. We will prove that for all t > 0,

1. ⟨U(t)x, x⟩ ≤ b coth(bt)),

2. ⟨U(t)x, x⟩ ≥ −b,

which immediately imply the desired result.

1. In fact, we will prove that ⟨U(t)x, x⟩ ≤ κ coth(κ(t− ε)) for all κ > b, ε > 0
and t > ε, and then pass to the limit.

We consider the function

f(t) = ⟨(U(t) −V(t))x, x⟩ = ⟨U(t)x, x⟩ − κ coth(κ(t− ε)),

where V(t) = κ coth(κ(t− ε))Id is a solution of the Ricatti equation

V′ + V2 − κ2Id = 0

defined for t ̸= ε. We claim that if for some t0 ̸= ε, f(t0) = 0 then f ′(t0) < 0.
This means that if f gets strictly negative on (ε,∞) it stays strictly negative. The
derivative is
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f ′(t) = ⟨(U′(t) −V′(t))x, x⟩ = −⟨U2(t)x, x⟩ + ⟨V2(t)x, x⟩ − (⟨R(t)x, x⟩ + b2) <

−||U(t)x||2 + ||V(t)x||2,
since ⟨R(t)x, x⟩ is the curvature on a plane tangent to ċ(t), which is greater than
−b2 > −κ2. If f(t0) = 0, we have

||V(t)x||2 = (κ coth(κ(t− ε)))2 = (⟨U(t)x, x⟩)2 ≤ ||U(t)x||2,

so f ′(t0) < 0. But now observe that limt→ε+ f(t) = −∞. We conclude that f is
strictly negative for all t > ε, or equivalently,

⟨U(t)x, x⟩ < κ coth(κ(t− ε)).

2. We proceed by contradiction. Assume that ⟨U(t1)x, x⟩ < −b for some t1 > 0
and take −κ between both values. Then for very large ε > t1,

f(t1) = ⟨U(t1)x, x⟩ − κ coth(κ(t1 − ε)) < 0.

The same claim made before about f now implies f(t) < 0 for all t1 ≤ t < ε.
But taking the limit of f(t) when t → ε− gives ⟨U(ε)x, x⟩ + ∞, which should be
nonpositive, thus producing a contradiction.

In order to obtain the second equality, we remark that |||J ||′| ≤ ||J ′|| and
proceed as in Lemma 1.3.4.

The previous estimates allow us to obtain information about stable and unsta-
ble Jacobi fields under curvature constraints.

Theorem 1.3.6. Let c be a geodesic of M .

1. If the curvatures along c are bounded above by a constant −a2 ≤ 0, then for
every stable Jacobi J field along c, we have for all t ≥ 0

||J(t)|| ≤ ||J(0)||e−at, ||J ′(t)|| ≥ a||J(t)||.

2. If the curvatures along c are bounded below by a constant −b2 ≤ 0, then for
every stable Jacobi J field along c, we have for all t ≥ 0

||J(t)|| ≥ ||J(0)||e−bt, ||J ′(t)|| ≤ b||J(t)||.

If J is unstable, we will have the corresponding estimates for negative time.

Proof. 1. We consider the Jacobi field Kn(t) = Jv,J(0),n(n − t) on the geodesic
t 7→ c(n− t). Clearly Kn is an orthogonal Jacobi field with Kn(0) = 0.

A direct application of Lemma 1.3.4 to Kn (replacing s for n− t and t for n)
gives

||J(0)||
||Jv,J(0),n(t)|| ≥

sinh(an)

sinh(a(n− t))
, ||Jv,J(0),n||′(t) ≥ a coth(a(n− t))||Jv,J(0),n(t)||

Observe that ||J ||′||J || = ⟨J, J ′⟩, so |||J ||′| ≤ ||J ′|| whenever ||J || ≠ 0 for any field
J . Taking the limit when n→ +∞ gives the desired result.

2. We argue similarly using Lemma 1.3.5.
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Next, we want to say something about the growth of the differential of the
geodesic flow through these stable and unstable Jacobi fields. The subspaces of
the tangent space of T 1M corresponding to these stable and unstable Jacobi fields
are called Green spaces.

Definition 1.3.1. We define the stable Green bundle Gs as the subbundle of
TT 1M over T 1M whose fibers in the double tangent bundle decomposition are
given by

Gs(v) = {(Js
v,X(0), Js

v,X
′(0)) |X ∈ v⊥} ⊂ TvT

1M.

Similarly, we define the unstable Green bundle Gu by

Gu(v) = {(Ju
v,X(0), Ju

v,X
′(0)) |X ∈ v⊥} ⊂ TvT

1M.

We remark that the fibers of Gs and Gu have each dimension n− 1, that they
are perpendicular to the direction of the geodesic flow, and that this flow leaves
the subbundles invariant. However, in the general case Gs(v) and Gu(v) are not
necessarily linearly independent.

We recall the definition of the Anosov property for a geodesic flow and the
Sasaki metric.

Definition 1.3.2. Let M be a complete Riemannian manifold. We say that the
geodesic flow gt on T 1M is Anosov if there exists a proper gt-invariant splitting

TT 1M = Es ⊕ Eu ⊕ RG,

where G is the direction of the geodesic flow, and there exist constants C > 0 and
α > 0 such that for all t ≥ 0 we have, in the Sasaki metric,

||dvgt(Z)|| ≤ Ce−αt||Z||, ∀Z ∈ Es(v),

||dvg−t(Z)|| ≤ Ce−αt||Z||, ∀Z ∈ Eu(v).

Theorem 1.3.7. Let M be a manifold with curvature bounded between two nega-
tive constants −b2 ≤ K ≤ −a2 < 0. Then the geodesic flow of M is Anosov.

Proof. The splitting is given by the Green subbundles. Thanks to Theorem 1.3.6
and equation (1.2) we can control the growth of the differential of the geodesic
flow:

||dvg±(Z)|| ≤
√

1 + b2 e−at||Z||
for Z ∈ Gs/u(v). This and the gt-invariance imply that Gs and Gu are linearly
independent, so they are complementary because of their dimensions.

When the sectional curvature are not negatively pinched, there are examples of
both Anosov and non Anosov geodesic flows. The most general characterization of
Anosov geodesic flows on compact manifolds without conjugate points was given
by Eberlein.

Theorem 1.3.8. [Ebe73b] Let M be a compact Riemannian manifold without
conjugate points. The following conditions are equivalent:

1. The geodesic flow gt of M is Anosov.

2. For every v ∈ T 1M , Gs(v) ∩Gu(v) = {0}.
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3. There are no nontrivial perpendicular Jacobi fields bounded for all time.

Moreover, if gt is Anosov, the spaces E
s(v) and Eu(v) of the splitting in Definition

1.3.2 coincide with Gs(v) and Gu(v), respectively.

We end the section with some remarks about the behaviour and the regularity
of stable and unstable Jacobi fields. Eberlein proved that Jacobi fields bounded
in positive time are stable.

Proposition 1.3.9. [Ebe73b, Proposition 2.12] Let M be a manifold without con-
jugate points and curvature bounded below by a constant −b2 ≤ 0. If J is a
perpendicular Jacobi field with ||J(t)|| bounded for t ≥ 0, then J is stable.

The converse of Proposition 1.3.9 is not true in general. The next result gives
a condition on the growth of vanishing Jacobi fields under which stable Jacobi
fields are bounded. Nonpositively curved manifolds and manifolds without focal
points satisfy this condition.

Proposition 1.3.10. [Ebe73b, Proposition 2.13] Let M̃ be a manifold without
conjugate points and curvature bounded below by a constant −b2 ≤ 0. Assume
that there are constants C, T > 0 such that every Jacobi field on a unit speed
geodesic of M̃ with J(0) = 0 and every t > s ≥ T satisfy

||J(t)|| ≥ C||J(s)||.

Then the following are true:

1. A perpendicular Jacobi field J is stable if and only if ||J(t)|| is bounded for
t ≥ 0.

2. The Green bundles are continuous.

Proposition 1.3.10 also asserts the continuity of the Green bundles. These sub-
bundles are just measurable in general. There is an example of a compact surface
without conjugate points but with discontinuous Green subbundles [BBB87]. In
Chapter 6, we will assume that they are continuous.





Chapter 2

Structure of manifolds without
conjugate points

In this chapter, we continue with the presentation of different tools and concepts
that we will use in the second part of the thesis. These objects rely on the
global geometry of manifolds without conjugate points. The so-called boundary
at infinity puts some light on the structure of the set of geodesics in the universal
cover of a manifolds without conjugate points.

We will define also two central objects in our works, the stable and the unstable
horospheres. These horospheres form two foliations invariant by the geodesic flow.
Moreover, they are the natural candidates for the stable and the unstable manifolds
of this flow, although they are not equal in general. The main results of this thesis
(Chapters 4 to 6) are about the equidistribution under the action of the geodesic
flow and the unique ergodicity of horospherical foliations.

In Section 2.1, we introduce two hypothesis, the quasi-convexity and the di-
vergence of geodesic rays, satisfied by a large class of manifolds without conjugate
points. We define the boundary at infinity in Section 2.2, and prove a structure
theorem under the previous hypothesis. Next, in Section 2.3, we discuss visibility
manifolds, which we will need later in the text. The approach used to define horo-
spheres are Busemann functions, as explained in Section 2.4. In Section 2.5, we
address the existence of strips of geodesics, that is, sets of geodesics which are at
distance bounded for all time. In Section 2.6, we introduce the rank 1 condition,
which will be used in the sequel, mainly in the setting of nonpositive curvature.
Finally, in Section 2.7, we display a diagram with the main classes of manifolds
discussed in this chapter and the relations between them.

2.1 Quasi-convexity and divergence of geodesic rays

We will add hypothesis on our manifold so that later we can define a boundary
at infinity with interesting properties. We start with a very general setting, and
later we will add hypothesis in order to strengthen the results. Proceeding in this
way we will treat simultaneously the different situations that we will find in Part
II. Let us begin by defining the classes of manifolds on which we will work.

Definition 2.1.1. Let M be a manifold without conjugate points. We say that M̃
is quasi-convex if there exist constants A,B > 0 such that for every two geodesic
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segments ci : [ai, bi] → M̃, i = 1, 2,

dH(c1([a1, b1]), c2([a2, b2])) ≤ Amax{d(c1(a1), c2(a2)), d(c1(b1), c2(b2))} +B,

where dH is the Hausdorff distance.

Two geodesic rays c1, c2 : R+ → M̃ with c1(0) = c2(0) diverge if

lim
t→+∞

d(c1(t), c2(t)) = +∞.

We say that geodesic rays on M̃ diverge uniformly if for every R > 0 and θ > 0,
there exists T > 0 such that for any two geodesic rays c1, c2 : R → M̃ with
c1(0) = c2(0) and ∠(ċ1(0), ċ2(0)) ≥ θ, we have

∀t ≥ T, d(c1(t), c2(t)) ≥ R.

The combination of these two properties alone has strong consequences on
the structure of the manifold. It is not difficult to prove the following lemma
concerning manifolds with a compact quotient.

Lemma 2.1.1. Let M be a compact manifold without conjugate points. If the uni-
versal cover M̃ is quasi-convex and geodesic rays on M̃ diverge, then the divergence
is uniform.

The first important family of examples of quasi-convex manifolds is given in the
next proposition. The condition on the growth of vanishing Jacobi fields already
appeared in Proposition 1.3.10.

Proposition 2.1.2. Let M̃ be a manifold without conjugate points. Assume that
there are constants C, T > 0 such that every Jacobi field on a unit speed geodesic
of M̃ with J(0) = 0 and every t > s ≥ T satisfy

||J(t)|| ≥ C||J(s)||.

Then M̃ is quasi-convex. In particular, if M̃ has no focal points, it is quasi-convex.

Proof. First, we observe that it is enough to check that there exist constants
A,B ≥ 0 such that any two unit speed geodesic segments ci : [0, li] → M̃, i = 1, 2
with c1(0) = c2(0) we have

dH(c1([a1, b1]), c2([a2, b2])) ≤ Ad(c1(l1), c2(l2)) +B.

Actually, if we have any two geodesics ci : [ai, bi] → M̃, i = 1, 2, we can apply
the previous inequality to the couples (c1, c) and (c, c2), where c is the geodesic
joining c1(a1) to c2(b2) and obtain

dH(c1, c2) ≤ dH(c1, c) + dH(c, c2) ≤ A(d(c1(b1), c2(b2)) + d(c1(a1), c2(a2))) + 2B.

So M̃ is (2A, 2B)-quasi-convex.

We consider the geodesic α : [0, 1] → M̃ joining c1(l1) to c2(l2) and denote its
length by d = d(c1(l1), c2(l2)). Set p = c1(0) = c2(0). In terms of the exponential
map, α is written as α(s) = expp(V (s)) for some vector field V : [0, 1] → TpM̃ .
Also consider the parametrized surface f(t, s) = expp(tV (s)), (t, s) ∈ [0, 1]2, (see

Figure 2.1) and the family of Jacobi fields Js = ∂f
∂s

on the family of non normalized
geodesics t 7→ f(t, s).
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Figure 2.1: Parametrized surface f .

For 0 ≤ t ≤ 1,

d(c1(tl1), c2(tl2)) ≤ l(s 7→ f(t, s)) =

∫ 1

0

||Js(t)||ds.

The hypothesis tells us after normalizing that ||Js(t)|| ≤ ||Js(1)||/C if d(p, f(t, s)) =
td(p, α(s)) ≥ T .

Now, if tl1 ≥ T + d, then for all t,

d(p, f(t, s)) = td(p, α(s)) ≥ t(l1 − d(c1(l1), α(s))) ≥ t(l1 − d) ≥ T,

which implies

d(c1(tl1), c2(tl2)) ≤
1

C

∫ 1

0

||Js(1)||ds =
d

C
.

Otherwise, tl1 ≤ T + d and

d(c1(tl1), c2(tl2)) ≤ d(c1(tl1), p) + d(p, c2(tl2)) = tl1 + tl2 ≤
tl1 + t(l1 + d) ≤ 2(T + d) + td ≤ 3d+ 2T.

So we have proved the claim with A = max(3, 1/C) and B = 2T .

Finally, we observe that the absence of focal points implies the condition in
the statement with C = 1 and T = 0, because the norm of vanishing Jacobi fields
is non-decreasing for positive times.

It is also true that the condition in the previous proposition, plus a lower
curvature bound imply that geodesic rays diverge uniformly. In fact, Eschenburg
and O’Sullivan proved the uniform divergence of geodesic rays for manifolds with
continuous Green bundles and curvature bounded below.

Proposition 2.1.3. [EO76, Corollary 1] Let M̃ be a simply connected manifold
without conjugate points and the curvature bounded below by a constant −b2. As-
sume that the Green bundles are continuous. Then geodesic rays diverge uniformly.

It is well known that the condition of Proposition 2.1.2 implies the continuity
of Green bundles (see bounded asymptote condition in [Kni86, Chapter V]).

The second important family of examples of quasi-convex spaces is given by
manifolds whose universal cover is Gromov hyperbolic.

Definition 2.1.2. Three geodesic segments ci : [ai, bi] → M̃, i = 1, 2, 3 form a
geodesic triangle

∆ = c1([a1, b1]) ∪ c2([a2, b2]) ∪ c3([a3, b3])
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if c1(b1) = c2(a1), c2(b2) = c3(a3) and c3(b3) = c1(a1). Given δ > 0, the triangle ∆
is called δ-thin if for every i ∈ {1, 2, 3}, and every t ∈ [ai, bi], the point ci(t) is in
the δ-neighborhood of

∪k ̸=ick([ak, bk]).

The space M̃ is δ-hyperbolic if all the triangles are δ-thin.

Proposition 2.1.4. If M̃ is δ-hyperbolic, then M̃ is (1, 2δ)-quasi-convex.

Proof. Let ci : [ai, bi] → M̃, i = 1, 2 be two geodesics. Denote the geodesic joining
c1(a1) to c2(a2) by α, the geodesic joining c1(b1) to c2(b2) by β and the geodesic
joining c1(a1) to c2(b2) by γ. Consider the triangles c1βγ and c2γα (Figure 2.2).

Figure 2.2: Triangles c1βγ and c2γα.

Given x ∈ c1, by δ-hyperbolicity, either d(x, β) ≤ δ or d(x, γ) ≤ δ. In the first
case, we will have

d(x, c2) ≤ d(x, c2(b2)) ≤ d(x, β) + d(c1(b1), c2(b2)) ≤ d(c1(b1), c2(b2)) + δ.

In the second, let y ∈ γ such that d(x, γ) = d(x, y). Again by hyperbolicity,
either d(y, α) ≤ δ or d(y, c2) ≤ δ. So either,

d(x, c2) ≤ d(x, c2(a2)) ≤ d(x, y)+d(y, α)+d(c1(a1), c2(a2)) ≤ d(c1(a1), c2(a2))+2δ

or
d(x, c2) ≤ d(x, y) + d(y, c2) ≤ 2δ.

Hence,
d(x, c2) ≤ max{d(c1(a1), c2(a2)), d(c1(b1), c2(b2))} + 2δ.

Similarly, we can bound d(c1, z) for all z ∈ c2. We conclude that M̃ is quasi-convex
with the right constants.

2.2 Boundary at infinity

The first important tool that we present is the boundary at infinity. Inspired by
hyperbolic geometry, this boundary was studied by M. Gromov for Gromov hy-
perbolic spaces [Gro87, Gro81], and by P. Eberlein for visibility manifolds [Ebe72].
For nonpositively curved spaces it has also been studied, for example by W. Ball-
mann, M. Gromov and V. Schroeder in [BGS85].

Definition 2.2.1. Let M̃ be a simply connected, complete manifold without con-
jugate points. A geodesic defined on R+ is called a geodesic ray. Two geodesic
rays σ1, σ2 : R+ → M̃ are said to be asymptotic if there exists C > 0 such that for
all t ≥ 0, we have d(σ1(t), σ2(t)) ≤ C. Since being asymptotic is an equivalence
relation, we can consider the set ∂M̃ of equivalence classes of geodesic rays on M̃ .
This set is called the boundary at infinity.
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To a vector v ∈ T 1M̃ , we can associate two points v+ and v− at infinity, which
are respectively the classes in ∂M̃ of the positive and the negative ray generated
by v. Thanks to our assumption that M̃ has no conjugate points, any two points
x, y ∈ M̃, x ̸= y can be joined by a unique geodesic. We denote by V (x, y) the
unique vector in T 1

xM̃ tangent to the geodesic joining x to y. It is natural then to
ask whether we can join points at the boundary. In negative curvature, it is well-
known that any point at infinity can also be joined to both a point in the interior
and to another point at infinity by a unique geodesic. As we will see, the situation
is somewhat different outside the negative curvature case, and everything is not
completely understood yet.

Theorem 2.2.1. Let M̃ be a simply connected, complete manifold without conju-
gate points.

1. If M̃ is quasi-convex, then for every x ∈ M̃ and ξ ∈ ∂M̃ , there exists at least
a vector v ∈ T 1

xM̃ such that v+ = ξ.

2. If geodesic rays on M̃ diverge, then for every x ∈ M̃ and ξ ∈ ∂M̃ , there is
at most a vector v ∈ T 1

xM̃ such that v+ = ξ.

Assume that M̃ is quasi-convex and that geodesic rays diverge. We denote by
V (x, ξ) the unique vector in T 1

xM̃ pointing to ξ.

3. There is a topology on M̄ := M̃ ∪ ∂M̃ which extends that of M̃ , with a basis
formed by open sets of M̃ together with sets of the form

Tv,ε,R := {q ∈ M̄ |∠(V (π(v), q), v) < ε and d(π(v), q) > R if q ∈ M̃}.
with v ∈ T 1M̃ , ε, R > 0.

4. The map {(x, y) ∈ M̃ × M̄ |x ̸= y} → T 1M̃ , (x, ξ) 7→ V (x, ξ) is continuous.
Its restriction to M̃ × ∂M̃ → T 1M̃ is a homeomorphism. Moreover, M̄ is
topologically a closed disk, ∂M̃ corresponds to the boundary and M̃ to the
interior of the disk.

Proof. 1. Consider a geodesic c in the class ξ. For t > 0, let vt ∈ T 1
xM̃ be the

vector tangent to the geodesic joining x to c(t). By quasi-convexity, for t > 0 we
have

dH(c([0, t], cvt([0, d(x, c(t)])) ≤ Ad(c(0), x) +B.

Let v be an accumulation point of the sequence vt when t → +∞. Passing the
inequality to the limit we obtain that c and cv are at bounded Hausdorff distance.

Claim: If the Hausdorff distance between two geodesic rays c, c′ is finite, then
d(c(t), c′(t)) is bounded.

Proof. There exists a constant K > 0 such that for every t > 0, there exists st > 0
with d(c(t), c′(st)) ≤ K. Consider the quadrilateral c(0)c′(0)c′(st)c(t). The lengths
of its sides are d(c(0), c′(0)), st, d(c′(st), c(t)) and t and we have the inequality

|st − t| ≤ d(c(0), c′(0)) + d(c′(st), c(t)) ≤ d(c(0), c′(0)) +K,

therefore

d(c(t), c′(t)) ≤ d(c(t), c′(st)) + d(c′(st), c
′(t))

= d(c(t), c′(st)) + |st − t| ≤ d(c(0), c′(0)) + 2K.



42 CHAPTER 2. MANIFOLDS WITHOUT CONJUGATE POINTS

2. If geodesic rays diverge, the distance between the geodesic generated by
two distinct vectors v, w ∈ T 1

xM̃ goes to infinity, so they are not asymptotic and
v+ ̸= w+.

3. Clearly the family B formed by open subsets of M̃ together with the trun-
cated cones Tv,ε,R is a cover of M̄ . To see that B is the basis of some topology, we
need to see that for any x ∈ U ∩ V , where U, V ∈ B, there exists B ∈ B such that
x ∈ B ⊂ U ∩ V .

The following observations prove the previous property:

� For every truncated cone Tv,ε,R and every y ∈ Tv,ε,R, we have for small enough
ε′ > 0 (depending on v, ε and y), TV (π(v),y),ε′,R ⊂ Tv,ε,R.

� If y ∈ Tv,ε,R ∩ M̃ , there exists ε′ > 0 such that B(y, ε′) ⊂ Tv,ε,R.

Proof. Thanks to the previous property we can assume that y is in the posi-
tive geodesic ray generated by v, so y = cv(t0), t0 > R. If ε′ < t0−R, the ball
B(y, ε′) is at distance at least R from π(v). Since the map z 7→ V (π(v), z) is
continuous, if z ∈ B(y, ε′) and ε′ > 0 is small enough, then the angle between
v and V (π(v), z) is less than ε. So B(y, ε′) ⊂ Tv,ε,R.

� If ξ ∈ Tv,ε,R ∩ ∂M̃ , for any y ∈ M̃ , there exists ε′ > 0 and R′ > 0 such that
TV (y,ξ),ε′,R′ ⊂ Tv,ε,R.

Proof. We can assume that v+ = ξ. We proceed by contradiction. If the
property is false, there is a sequence qn of points of M̄ with d(y, qn) → +∞
(understanding that d(y, qn) = +∞ if qn ∈ ∂M̃) such that ∠(V (y, ξ), V (y, qn))
→ 0 but

∠(v, V (π(v), qn)) ≥ ε. (2.1)

Now, if qn ∈ M̃ , let αn be the geodesic segment between π(v) and qn and βn
be the one between y and qn. By quasi-convexity we have

dH(αn, βn) ≤ Ad(π(v), y) +B. (2.2)

The same is true if qn ∈ ∂M̃ and αn, βn are replaced respectively by the
geodesic rays from π(v), y and in the asymptotic class qn, as we saw in the
proof of 1.

Let w be an accumulation point of the V (π(v), qn). Passing to the limit in
equation (2.2), we obtain that the geodesic rays generated by w and V (y, ξ) =
limV (y, qn) are at bounded Hausdorff distance. Therefore they must be
asymptotic. By the uniqueness of the ray from π(v) in the class ξ we deduce
v = w. But (2.1) gives in the limit ∠(v, w) ≥ ε > 0, so we get a contradiction.

4. It is clear that the map is continuous at points (x, y) ∈ M̃ × M̃, x ̸= y. Let
(x, ξ) ∈ M̃ × ∂M̃ and (xn, ξn) a sequence of {(x, y) ∈ M̃ × M̄ |x ̸= y} converging
to (x, ξ). By definition of the topology of M̄ , we know that the angle between
V (x, ξ) and V (x, ξn) tends to 0, so V (x, ξn) converges to V (x, ξ). Moreover, the
Hausdorff distance between the geodesic segments or rays joining x to ξn and xn
to ξn is less than Ad(x, xn) +B. So any accumulation point of V (xn, ξn) generates
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a geodesic from x asymptotic to the geodesic generated by V (x, ξ). So V (xn, ξn)
converges to V (x, ξ).

It is clear that V |M̃×∂M̃ is bijective. Its inverse is the map v 7→ (π(v), v+). The
first component is clearly continuous. Let vn be a sequence of vectors converging
to v in T 1M̃ . We want to see that vn+ → v+. Consider the vector V (π(v), vn+),
whose geodesic is asymptotic to the geodesic generated by vn, and the Hausdorff
distance is controlled by Ad(π(v), π(vn)) + B. Since the geodesic generated by
any accumulation point of the V (π(v), vn+) must be asymptotic to the geodesic
generated by v, we see that in fact V (π(v), vn+) has to converge to v. So the angle
between V (π(v), vn+) and v goes to 0. This shows that vn+ converges to v+.

Let φ be any increasing homeomorphism between [0,+∞] and [0, 1]. For any
p ∈ M̃ , we define the map fp between M̄ and the closed unit ball B1

pM̃ of TpM̃
by

fp(x) = φ(d(p, x))V (p, x),

understanding that fp(p) = 0. The previous steps show that this map is con-
tinuous. Its inverse is given by f−1

p (0) = p, f−1
p (v) = expp(φ

−1(||v||)v/||v||) if

0 < ||v|| < 1 and f−1
p (v) = v+ if ||v|| = 1. The map is clearly continuous on the

open unit ball. Moreover, if vn → v with ||v|| = 1, we have d(p, f−1
p (vn)) → +∞

and ∠p(f
−1
p (v), f−1

p (vn)) = ∠(vn, v) → 0 so f−1
p (vn) → f−1

p (v) and we have shown
that the inverse is continuous. Therefore fp is a homeomorphism.

2.3 Visibility manifolds

The next class of manifolds that we will talk about was introduced by P. Eberlein
and B. O’Neill in [EO73] for nonpositively curved manifolds and by P. Eberlein
alone in [Ebe72] for manifolds without conjugate points in general.

Definition 2.3.1. We say that a simply connected manifold M̃ without conjugate
points satisfies the visibility axiom if for every ε > 0, there exists R > 0 such that
for every geodesic segment σ : [a, b] → M̃ and every p ∈ M̃ ,

d(σ([a, b]), p) ≥ R =⇒ ∠p(σ(a), σ(b)) ≤ ε.

We say that a manifold M without conjugate points is a visibility manifold if the
universal cover M̃ satisfies the visibility axiom above.

Some authors call this property the uniform visibility axiom, since they reserve
the terminology visibility axiom for a weaker property in which the number R
depends on the point p ∈ M̃ . But, in this text, we only consider the property as
defined above. R. Ruggiero proved the following important characterization for
the compact case.

Proposition 2.3.1. [Rug07, Theorem 6.8] Let M be a compact manifold without
conjugate points. Then M̃ is a visibility manifold if and only if geodesic rays
diverge and M̃ is Gromov hyperbolic.

Since every Gromov hyperbolic space is quasi-convex, visibility manifolds sat-
isfy the hypothesis of Theorem 2.2.1. Visibility manifolds were extensively studied
by Eberlein in the 70s. One surprising result is that the visibility property does
not depend on the metric.
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Theorem 2.3.2. [Ebe72, Theorem 5.1] Let (M, g) be a compact visibility manifold.
Then, for any other metric g∗ without conjugate points onM , (M, g∗) is a visibility
manifold.

We would like to state the following characterization for nonpositively curved
manifolds.

Theorem 2.3.3. [Ebe72, Theorem 4.1] Let M be a nonpositively curved compact
manifold. Then M is a visibility manifold if and only if it does not contain an
isometric totally geodesic immersed Euclidean plane R2. In particular, if K < 0
then M is a visibility manifold.

Since compact surfaces of higher genus admit hyperbolic metrics, we have the
following consequence.

Corollary 2.3.4. Compact surfaces without conjugate points and genus higher
than one are visibility manifolds.

As a result, the conclusions of Theorem 2.2.1 hold for these surfaces.

2.4 Busemann functions and horospheres

We now turn our attention to Busemann functions. For v ∈ T 1M̃ and t > 0,
consider the function bv,t : M̃ → R defined by bv,t(x) = d(cv(t), x)− t. It is easy to
show using the triangular inequality that these functions converge pointwise when
t goes to infinity. The Busemann function bv : M̃ → R is defined by

bv(x) = lim
t→+∞

bv,t(x).

Proposition 2.4.1. [Kni86, 3.5 Satz] Let M̃ be a simply connected manifold
without conjugate points. For every v ∈ T 1M̃ , the Busemann function bv is C

1+Lip

(this means C1 with locally Lipschitz derivatives). Moreover, ||∇bv|| = 1 and the
integral curves of ∇bv are geodesics.

The following lemma expresses the relation between the geometry of spheres
and stable solutions of the Jacobi equation.

Lemma 2.4.2. Let v ∈ T 1M̃ . The shape operator at the point x ∈ M̃ of the
sphere centered at cv(t), t > 0 and passing through x is given by

−∇X∇bv,t(x) = J ′
−∇bv,t(x),X,d(cv(t),x)(0).

Proof. We take −∇bv,t(x) as vector normal to the sphere at x. By definition, the
shape operator with respect to the normal vector −∇bv,t(x) at a vector X ∈ TxM
tangent to the sphere is

−∇X∇bv,t(x).

Let α : (−ε, ε) → M be a curve in the sphere with α(0) = x and α̇(0) = X. Let
r = d(cv(t), x) be the radius of the sphere. The curve α can be written as

α(s) = expcv(t)(rV (s))
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for a curve V : (−ε, ε) → T 1
cv(t)

M . We define a variation of geodesics

f(u, s) = expcv(t)(uV (s)),

so that ∂f
∂u

(r, s) = ∇bv,t(α(s)). Hence, if we consider the Jacobi field J(u) =
∂f
∂s

(u, 0) along u 7→ f(u, 0), the shape operator is

− ∂2f

∂s∂u
(r, 0) = −J ′(r).

This Jacobi field J satisfies J(0) = 0 and J(r) = X. The result follows by changing
the origin along the geodesic from cv(t) to x.

Proof of Proposition 2.4.1. The fact that bv is C1 and ∇bv,t converges pointwise
to ∇bv goes back to J. H. Eschenburg [Esc77, Proposition 1].

Claim. Given a compact subset K of M̃ , there exists a constant L > 0 such
that, for all v ∈ T 1M̃ , if t is large enough, ∇bv,t is L-Lipschitz on K.

Proof. Let Bv,s denote the solution of the matrix Jacobi equation along cv with
Bv,s(0) = Id and Bv,s(s) = 0. We consider the differentiable operator which sends
X ∈ v⊥ to −∇X∇bv,t(x) ∈ v⊥. By Lemma 2.4.2, this operator in coordinates is
given by the matrix

B′
−∇bv,t(x),d(cv(t),x)(0).

We showed in the proof of Proposition 1.3.2 that, for s > 0, B′
v,s(0) is increasing

and bounded by B′
v,−1(0). Hence, if d(cv(t), x) ≥ 1,

B′
−∇bv,t(x),1(0) ≤ B′

−∇bv,t(x),d(cv(t),x)(0) ≤ B′
−∇bv,t(x),−1(0)

Since K is compact, if t is large enough, d(cv(t), x) ≥ 1 for all x ∈ K. Moreover,
B′

w,1(0) and B′
w,−1(0) are continuous on w. Let L be a bound of their norm for

w ∈ T 1K. We conclude that for all v ∈ T 1M , if t is large enough the norm of
B′

−∇bv,t(x),d(cv(t),x)
(0) is bounded by L. This shows that ∇bv,t is L-Lipschitz on

K.

Now we can apply Arzelà-Ascoli to ∇bv,t. Since ∇bv,t already converges point-
wise to ∇bv, we deduce that the convergence is uniform. Moreover, the limit ∇bv
is also L-Lipschitz on K.

□

We deduce from the proof that if the curvature of M̃ is bounded from below
by a constant −b2, ∇bv is globally L-Lipschitz, where L depends only on b.

The level sets of a Busemann function

b−1
v (k) ⊂ M̃, k ∈ R

are called horospheres and are C1 submanifolds of dimension n − 1. We observe
that for all s ∈ R, bgsv = bv +s so bgsv and bv define the same horospheres. The set
b−1
v (k) can be obtained as the image of b−1

v (0) by the integral flow of ∇bv at time k.
This also shows that horospheres of the same Busemann function are equidistant.
We will usually prefer to consider lifts of these hypersurfaces to the unit tangent
bundle.
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Definition 2.4.1. The stable horosphere of v ∈ T 1M̃ is the subset

H̃s(v) := {−∇bv(x) |x ∈ b−1
v (0)}.

The unstable horosphere of v is

H̃u(v) := {∇b−v(x) |x ∈ b−1
−v(0)}.

These two spaces satisfy H̃s(v) = −H̃u(−v). They are Lipschitz submanifolds
of T 1M̃ , each of dimension n − 1. Since the displacement of a horosphere in M̃
on its perpendicular geodesics produces another horosphere, we have

gtH̃
s(v) = H̃s(gtv),

so we can say that the geodesic flow preserves the horospheres. Finally, we observe
that Busemann functions are invariant by the isometries of M̃ , so horospheres are
also invariant by the isometries. This allows us to define horospheres on non
simply connected manifolds as the images of horospheres by the covering map.

Proposition 2.4.3. [Kni86, 3.8 Satz] Let M̃ be a simply connected manifold
without conjugate points. Assume that the stable Green bundles v 7→ Gs(v) are
continuous. Then, the stable horospheres Hs(v) of T 1M̃ are C1 manifolds, which
depend continuously on v in the C1 topology, and their tangent spaces TvH

s(v) are
the stable Green spaces Gs(v).

Consequently, the stable horospheres form a continuous gt-invariant foliation
with C1 leaves if the Green bundles are continuous. Without this hypothesis we do
not even know if the map v 7→ Hs(v) is continuous. To our knowledge, the most
general results involving the continuity of the horospheres for compact manifolds
are the following. We remark that the continuity of the horospheres H̃s(v) in v is
equivalent to the continuity of v 7→ bv in the C1 topology.

Theorem 2.4.4. Let M be a complete manifold without conjugate points. If the
universal covering M̃ is quasi-convex and geodesic rays diverge, then the horo-
spheres Hs(v) depend continuously on v.

Proof. Let vn → v ∈ T 1M̃ and fix a compact K of M̃ . We can assume that v is in
the interior of K by extending K if necessary. We want to show that bvn and ∇bvn
converge uniformly to bv and ∇bv on K. We observe that −∇bv,t(x) = V (x, cv(t))
and the equality extends to the limit t → +∞, since V is continuous (Theorem
2.2.1) and ∇bv,t → ∇bv as seen in the proof of Theorem 2.4.1, so

−∇bv(x) = V (x, v+).

Now, for all x ∈ M̃ we see that ∇bvn(x) = −V (x, vn+) → −V (x, v+) = ∇bv(x)
when n → ∞. Moreover, the convergence is uniform for x ∈ K. If this was not
the case, we could find ε > 0, a subsequence nk → +∞ and points xk ∈ K such
that

∠(V (xk, vnk+), V (xk, v+)) ≥ ε > 0.

But letting w be an accumulation point of V (xk, vnk+), we would have w+ =
lim vnk+ = v+ and xk → π(w), and the last equation would give in the limit
∠(V (π(w), v+, V (π(w), v+)) ≥ ε, which is clearly a contradiction.
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From the inequality |bw(x) − bw(y)| ≤ d(x, y), we see that the family of func-
tions {bvn|K}n is equicontinuous and uniformly bounded, so by Arzelà-Ascoli it is
relatively compact in the uniform topology. Let f = lim bvnk

be one of its accumu-
lation points. Since the pair (bvnk

,∇bvnk
) converges uniformly to (f,∇bv) on K,

the function f is differentiable and ∇f = ∇bv. Therefore there exists a constant
λ such that f = bv +λ. But f(π(v)) = lim bvnk

(π(vnk
)) = 0, so λ = 0. The unique

accumulation point of {bvn|K}n is bv so in fact bvn has to converge to bv on K. We
have proved that bvn converges to bv in the C1 topology, which is equivalent to the
continuity of the horospheres.

In the converse direction we have the following theorem.

Theorem 2.4.5. [Rug03, Theorem 1] Let M be a compact manifold without con-
jugate points. If the horospheres Hs(v) depend continuously on v, then geodesic
rays diverge uniformly.

Next we state the relation between asymptotic geodesics and the orbits of the
gradient of a Busemann function, something which is already implicit in the ideas
of the Theorem 2.4.4.

Lemma 2.4.6. Let M̃ be quasi-convex and assume that geodesic rays diverge.
Then the integral curves of the gradient ∇bv of a Busemann function bv are
geodesics asymptotic to cv. Conversely, is cw is positively asymptotic to cv (that
is v+ = w+), then cw is an orbit of ∇bv. In fact, bv = bw + bv(π(w)).

Thanks to the previous lemma, we can speak of a horosphere centered at
ξ ∈ ∂M̃ , which is a level set of any Busemann function bv with v ∈ T 1M̃ pointing
at ξ. Fixing the vector v, notice that there is a bijection from R to the set of
horospheres centered at ξ given by t 7→ b−1

v (t).

Definition 2.4.2. The weak stable manifold of v ∈ T 1M̃ is the subset

W̃ws(v) := ∪t∈RH̃
s(gtv) = {−∇bv(x) |x ∈ M̃}.

The weak unstable manifold of v is

W̃wu(v) := ∪t∈RH̃
u(gtv) = {∇b−v(x) |x ∈ M̃}.

We define the weak stable and unstable manifolds on T 1M as the projections of
the weak stable and unstable manifolds on T 1M̃ .

If M̃ is quasi-convex and geodesic rays diverge, by Lemma 2.4.6, the weak
stable and unstable manifolds can also be characterized as

W̃ws(v) = {w ∈ T 1M̃ |w+ = v+}, W̃wu(v) = {w ∈ T 1M̃ |w− = v−}.

Let M̃ be a quasi-convex manifold without conjugate points, on which geodesic
rays diverge uniformly. For ξ ∈ ∂M̃ and x, y ∈ M̃ , we introduce the notation

βξ(x, y) := bV (y,ξ)(x),

that we will use later. Notice that this quantity does not depend on x and y,
but on the horospheres centered at ξ containing them. The function βξ is called
a Busemann cocycle. By Theorem 2.4.1 and Theorem 2.4.4, βξ(x, y) depends

continuously on the triple (ξ, x, y) ∈ ∂M̃ × M̃ × M̃ . We extend the notation by
putting that βz(x, y) = d(x, z) − d(y, z) if (z, x, y) ∈ M̃ × M̃ × M̃.
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Lemma 2.4.7. Let M̃ be a simply connected quasi-convex manifold without con-
jugate points where geodesic rays diverge. Then the function

M̄ × M̃ × M̃ −→ R
(z, x, y) 7−→ βz(x, y)

is continuous.

2.5 Strips and endpoints of geodesics

We would like to describe the unit tangent bundle of a simply connected manifold
M̃ without conjugate points using only points on the boundary at infinity. In this
section we explain how this is possible. Recall that we associate to each vector
v ∈ T 1M̃ two natural points at infinity v− and v+ ∈ M̃ , which are respectively
the asymptotic classes of the negative and positive geodesic rays generated by v.
These points have to be different because geodesics on M̃ are globally minimizing.
We consider the map

P : T 1M̃ −→ ∂2M̃
v 7−→ (v−, v+),

where ∂2M̃ = (∂M̃ × ∂M̃) \ ∆ and ∆ is the diagonal of ∂M̃ × ∂M̃ .

All the vectors tangent to a given geodesic have the same image under P .
We will see that there may be other vectors with this same image. We will also
investigate in which situations P is surjective. In other terms, we want to know
if, given two distinct points at infinity, there exists a geodesic joining them; and
when this happens, if the geodesic is unique.

Proposition 2.5.1. Let M̃ satisfy the visibility axiom. Then the map P is sur-
jective.

Proof. Let ξ1, ξ2 ∈ ∂M̃ be two distinct points, and consider the geodesic rays c1, c2
in each class starting at the same point p ∈ M̃ . Let ct be the geodesic joining
c1(t) to c2(t). The angle ∠p(c1(t), c2(t)) is constant for all t, so by the visibility
property there exists a constant R such that d(ct, p) ≤ R for all t > 0. We can
parameterize ct such that d(ct(0), p) ≤ R. By compactness, when t goes to infinity,
ct must accumulate to some geodesic c. This geodesic will be asymptotic to c1 in
one direction, and to c2 in the other. In other words, c joins ξ1 to ξ2.

Without the hyperbolicity provided by the visibility hypothesis we cannot ex-
pect P to be surjective. For example, on the flat plane R2 we can only join
antipodal points.

Now we turn to the question of vectors whose images under P are equal. Given
v ∈ M̃ , the set

S̃(v) := {w ∈ T 1M̃ | sup
t∈R

d(cv(t), cw(t)) < +∞} = P−1(v−, v+)

is called the strip of v. We observe that its projection to T 1M̃ is

π(S̃(v)) = {c(R) | c is a geodesic with dH(c, cv) < +∞},

a maximal set of biasymptotic geodesics.
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Proposition 2.5.2. [RR21, Lemma 3.1]Let M be a compact manifolds without
conjugate points such that M̃ is quasi-convex and geodesic rays diverge on M̃ . For
every v ∈ T 1M̃ and w ∈ S̃(v), there exists a connected compact subset Σ(v, w) of
H̃s(v) ∩ H̃u(v) which contains v and

w ∈ S̃(v, w) :=
⋃
t∈R

gtΣ(v, w) ⊂ S̃(v).

[Pes77, Theorem 7.3] If M̃ has no focal points, we can choose Σ(v, w) to be of
the form

Σ(v, w) = {∇bv(α(s)) | s ∈ [0, l]},
where α : [0, l] → M̃, l ≥ 0 is a unit speed geodesic. Moreover, the set π(S̃(v, w))
is isometric to [0, l] × R via the map (s, t) 7→ c∇bv(α(s))(t).

We introduce the following notations for the intersections between stable and
unstable horospheres.

Definition 2.5.1. For v ∈ T 1M̃ , we define

Ĩ(v) = H̃s(v) ∩ H̃u(v).

For v ∈ T 1M , we consider any lift ṽ of v to T 1M̃ and we define

I(v) = dπ(Ĩ(v)).

The set Ĩ(v) (I(v)) will be said to be trivial if Ĩ(v) = {v} (I(v) = {v}). The
expansive set E is the set of vectors v ∈ T 1M̃ for which Ĩ(v) is trivial,

E := {v ∈ T 1M̃ | Ĩ(v) = {v}}.
If M is a surface, we refer to Ĩ(v) or I(v) as the interval of v.

Proposition 2.5.2 implies that the set S̃(v) is homeomorphic to Ĩ(v) × R. In
other words, the appearence of biasymptotic geodesics is caused by nontrivial
intersections of the stable horosphere with the unstable one. If M̃ is a surface, we
say that the set Ĩ(v) is an interval because it is homeomorphic to an interval of
R, since H̃s(v) is 1-dimensional.

We observe that E is gt-invariant, in the sense that gt(E) = E for all t ∈ R. In
order to study the dynamics of gt, it is crucial to understand the set expansive set
E and determine how big it is. This can be done in various situations, as we will
see later.

If M is a visibility axiom, we can control the size of each nontrivial intersection
Ĩ(v).

Proposition 2.5.3. Let M̃ satisfy the visibility axiom. Then there exists a con-
stant Q > 0 such that, for all v ∈ T 1M̃ , the diameter of Ĩ(v) is bounded by
Q.

Proof. Let c be a geodesic biasymptotic to the geodesic generated by v ∈ T 1M̃ .
For n ≥ 0, consider the vectors vn and wn ∈ T 1

π(v)M̃ pointing to c(n) and c(−n)
respectively. Because of the continuity of V , we have lim vn = v and limwn = −v.
Since the angle formed by c|[−n,n] from π(v) does not go to 0, by the visibility
property, there exists a constant Q′ > 0 such that d(π(v), c|[−n,n]) ≤ Q′. This
implies also that d(π(v), c) ≤ Q′, and therefore Q′ bounds the distance between
any two biasymptotic geodesics. We can conclude that there exists a constant
Q > 0 depending on Q′ such that, for all v ∈ T 1M̃ , diam Ĩ(v) ≤ Q.
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Without the visibility axiom we know little about the image of the map P .
In the next section we will introduce the concept of rank 1 manifold. With this
condition, if M is nonpositively curved or has no focal points, there are still
strong results about P which ensure that certain points at infinity are joined by
a geodesic.

2.6 Rank 1 manifolds

We have seen how the behaviour of the Green subbundles has a strong impact
on the structure of the manifold and the dynamics of the geodesic flow. For
example, Eberlein’s Theorem 1.3.8 establishes that the linear independence of the
Green subbundles implies the Anosov property of the geodesic flow. In a general
manifold without conjugate points, the vectors whose stable and unstable Green
subspaces are linear independent are said to have rank 1. Thus, the rank 1 set is

R1 := {v ∈ T 1M |Gu(v) ∩Gs(v) = {0}}.

This set is gt-invariant. It is immediate that if M̃ has continuous Green bundles,
the rank 1 set R1 is open and

R1 ⊂ E
because horospheres are tangent to the Green bundles (see Theorem 2.4.3), so
they intersect trivially on R1. If we do not make any additional assumptions on
the manifold, there is no reason why R1 should be nonempty.

Definition 2.6.1. A manifold M without conjugate points has rank 1 if R1 ̸= ∅.

The concept of rank takes its full meaning for manifolds with nonpositive cur-
vature or with no focal points.

Lemma 2.6.1. Let M̃ be a manifold without focal points. Then, for every v ∈
T 1M̃ the dimension of the space of parallel Jacobi fields along the geodesic gener-
ated by v is equal to

1 + dim(Gs(v) ∩Gu(v)). (2.3)

Proof. The space of parallel Jacobi fields along v decomposes as N ⊕ R ċv, where
N is the space of perpendicular parallel Jacobi fields. We want to show that N is
the set of Jacobi fields which are both stable and unstable.

(⊂) If J ∈ N , J ′ = 0 so ||J ||2′ = 2⟨J, J ′⟩ = 0 so ||J || is constant. By 1.3.10,
Jacobi fields bounded for positive time are stable, and for negative time, unstable,
so J is both stable and unstable.

(⊃) Since M̃ , has no focal points, the norm of stable Jacobi fields is non-
decreasing, and the norm of unstable Jacobi fields is non-decreasing. So if J is
both stable and unstable, the norm of J is constant.

Recall from the proof of Theorem 1.3.2, that fixing a parallel orthonormal
frame along cv, a perpendicular stable Jacobi field J can be written in coordinates
as Bs(t)x for some x ∈ Rn−1, where Bs is the stable solution of the matrix Jacobi
equation with Bs(0) = Id and x represents the initial condition J(0). We also
recall that Bs(t) is nonsingular for all t ∈ R and that U(t) = Bs′(t)(Bs(t))−1 is a
symmetric solution of the Ricatti equation.
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Now, for all x ∈ Rn−1 and all t ∈ R, denoting y = (Bs(t))−1x we have

⟨U(t)x, x⟩ = ⟨Bs′(t)y,Bs(t)y⟩ =
1

2

d

ds
|s=t⟨Bs(s)y,Bs(s)y⟩ =

1

2
(||Bsy||2)′(t) ≤ 0,

since the norm of every stable Jacobi field is non-decreasing. This shows that U
is negative semidefinite.

If t 7→ Bs(t)y represents a unstable Jacobi field, then the computation above
implies that for all t ∈ R,

0 = ⟨Bs′(t)y,Bs(t)y⟩ = ⟨U(t)Bs(t)y,Bs(t)y⟩,

so U(t)Bs(t)y = 0 because U(t) is semidefinite. This says that Bs′(t)y = 0 so the
Jacobi field t 7→ Bs(t)y is parallel.

The lemma provides a way to define the rank of the vector v for manifolds
with no focal points which is consistent with the definition of rank 1 vector made
at the beginning of the section.

Rank 1 vectors behave like in a hyperbolic space in many senses, the following
results clarifies the structure of the rank 1 set in terms of the boundary of the
manifold. It was first proved by W. Ballmann in nonpositive curvature [Bal82,
Lemma 3.1].

Proposition 2.6.2. [LWW20, Proposition 7] Let M̃ be a manifold without focal
points and let v ∈ T1M̃ be a rank 1 vector. For every ε > 0, there exist neighbor-
hoods U, V of v−, v+, respectively, in ∂M̃ such that for every (η, ξ) ∈ U ×V , there
exists a rank 1 vector w with w− = η and w+ = ξ with

d(v, w) < ε.

In particular, S̃(w) is just the orbit of w by gt.

This result improves our understanding of the structure of the unit tangent
bundle of the universal cover. Let 0 ∈ M̃ be a reference point. We consider the
continuous map

P̄ : T 1M̃ −→ ∂2M̃ × R
v 7−→ (v−, v+, βv−(0, π(v)).

Proposition 2.6.2 directly implies.

Corollary 2.6.3. The restriction of the map P̄ to the rank 1 set P̄ : R1 → P̄ (R1)
is a homeomorphism.
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2.7 Diagram

To finish the chapter, we summarize the different classes of manifolds without
conjugate points in the following diagram.

Visibility K ≤ 0

No focal points

Gromov hyperbolicity C0 Green bundles

Quasi-convexity Divergence of geodesic rays

C0 Hs



Part II

Ergodic properties of horospheres





Chapter 3

Generalizations of the
Patterson-Sullivan measure

In this chapter we construct a series of objects of measure-theoretic nature that we
will use later in the study of the dynamics of horospheres. These methods were
pioneered by Patterson and Sullivan [Pat76, Sul79] for hyperbolic spaces, and
then extended to more general settings [Yue96, Rob03, Kni02, LP16, CKW21].
The basic idea is to exploit the duality between the geodesic flow on a given space
and the action of the covering transformations group on the universal cover. The
boundary at infinity and the description of the unit tangent bundle of the universal
cover using this boundary play a crucial role in the theory.

In Section 3.1 we introduce the limit set and establish the relation with the
dynamics of the geodesic flow. The first important object we consider is the
Patterson-Sullivan measure, which is a measure supported on the boundary at
infinity which contains a lot of information about the dynamics on the quotient
as we will explain in Section 3.2. From this measure, in Section 3.3, we construct
a measure invariant by the geodesic flow, which we will call the Bowen-Margulis
measure. This measure is proved to be the unique measure of maximal entropy in
many situations. In the final section, 3.4, we define a family of measures supported
on the horospheres.

3.1 Limit set and nonwandering subset of the geodesic flow

Let M̃ be a quasi-convex simply connected manifold without conjugate points
with divergence of geodesic rays. We will consider a group of isometries Γ of M̃ .
The group Γ is called discrete if it is discrete in the compact-open topology. For
example, if M̃ is the universal cover of a manifold M , then the group of covering
transformations of the covering Π : M̃ → M is a discrete group of isometries. In
this case, the action is also free. We do not need to assume that Γ acts freely yet,
so for now M̃/Γ is not necessarily a manifold.

We can extend the action of Γ on M̃ to M̄ because isometries preserve asymp-
totic classes. Moreover, each γ ∈ Γ is a homeomorphism of M̄ . We will often
consider the orbit Γx ⊂ M̄ of a point x ∈ M̃ . This orbit can only accumulate on
the boundary ∂M̃ . Moreover, if ξ = lim γnx, then for every y ∈ M̃ , lim γny = ξ.
This is because ∠x(γny, γnx) → 0 by the uniform divergence of geodesic rays, so
∠x(γny, ξ) → 0 since ∠x(γnx, ξ) → 0. This shows that the set of accumulation
points of an orbit Γx does not depend on the point x.
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Definition 3.1.1. The limit set Λ of Γ is defined as the set of accumulation points
of an orbit Γx, i.e.

Λ = Γx ∩ ∂M̃.

An isometry γ is called axial if there exists a geodesic c : R → M̃ and there
exists T > 0 such that for all t ∈ R, γc(t) = c(t + T ). The geodesic c is called
an axis of γ. If c is an axis of an isometry γ and we denote v = ċ(0), then
v+ = lim γnc(0) and v− = lim γ−nc(0) are in the limit set Λ. We remark that,
when M = M̃/Γ is a manifold, the axes of axial isometries are exactly the lifts of
closed geodesics of M . An axial isometry γ is said to have rank 1 if it has an axis
which is a rank 1 geodesic.

At this point the theories of the two cases that we are mainly interested in
differ a bit. To our knowledge there is not a theory which unifies the study of
discrete isometry groups of nonpositively curved rank 1 manifolds and of visibility
manifolds. In the next theorem we summarize the main results that will be needed
in the sequel. The proof in nonpositive curvature is due to W. Ballmann and for
visibility manifolds, which are hyperbolic spaces, to M. Gromov.

Proposition 3.1.1. [Bal82, Theorem 2.8] [Gro87, Lemma 8.2.A] Let M̃ be a
simply connected manifold without conjugate points and let Γ be a discrete group
of isometries of M̃ which satisfy one of the following:

A) M̃ is nonpositively curved and Γ contains a rank 1 axial isometry,

B) M̃ is a visibility manifold and Γ contains an axial isometry.

Then the limit set Λ of Γ has either 2 or infinitely many elements. In the latter
case the limit set Λ is minimal under Γ, that is, for every ξ ∈ Λ, Γξ = Λ.

Both in case A) and B), Γ is said to be non-elementary when Λ has infinitely
many elements.

Recall that a vector v ∈ T 1M is said to be nonwandering for the flow gt if for
any neighborhood U of v there exists t > 1 such that gtU ∩ U ̸= ∅. Alternatively
we can say that there exists a sequence of vectors vn → v and a sequence of times
tn → +∞ such that gtnvn → v. We will denote by Ω the set of nonwandering
points of gt on T 1M and by Ω̃ its lift to T 1M̃ , so

Ω̃ = {v ∈ T 1M̃ | ∃ vn → v, tn → +∞, γn ∈ Γ s.t. γngtnvn → v}.

Proposition 3.1.2. Let M̃ be a simply connected quasi-convex manifold without
conjugate points where geodesic rays diverge. Let Γ be a discrete group of isome-
tries. Assume that the limit set Λ is infinite and that Γ acts minimally on Λ. A
vector v ∈ T 1M̃ is in Ω̃ if and only if v− and v+ belong to Λ.

Proof. Let v ∈ Ω̃. There exists a sequence of vectors vn → v, a sequence of times
tn → +∞ and a sequence of isometries γn ∈ Γ such that γngtnvn → v.

First we prove that π(gtnvn) → v+, where π : T 1M̃ → M̃ is the projection to
the base point. If this was not true, we could assume by compactness that π(gtnvn)
has an accumulation point z ∈ M̄ different from v+, and this accumulation point
has to be in ∂M̃ . But, since

vn = V (π(vn), π(gtnvn)) → v = V (π(v), v+),
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and because of the continuity of the map V , we would get V (π(v), v+) = V (π(v), z),
which contradicts that z is different from v+.

We observe that d(gtnvn, γ
−1
n v) → 0, so d(π(gtnvn), π(γ−1

n v)) → 0. By the
uniform divergence of geodesic rays, given ε > 0 there exists T > 0 such that
if d(c1(t), c2(t)) ≤ 1 for t ≥ T and c1(0) = c2(0) = x then ∠x(c1(t), c2(t)) ≤ ε.
Applying this to the geodesics joining π(v) to π(gtnvn) and π(v) to π(γ−1

n v) we see
that the angle ∠π(v)(π(gtnvn), π(γ−1

n v)) tends to 0. We deduce that π(γ−1
n v) also

tends to v+. So v+ is in the closure of Γπ(v). A similar argument proves that v−
belongs to Λ.

Now we prove the converse. We will need the following lemma.

Lemma 3.1.3. Let ξ, η ∈ Λ, and let x ∈ M̃ . There exists a sequence of isometries
(γn)n such that lim γnx = ξ and lim γ−1

n x = η.

Proof. Let ξ ∈ Λ. Consider the set Aξ ⊂ Λ of points η ∈ ∂M̃ such that there
exists (γn)n with lim γnx = ξ and lim γ−1

n x = η. This set is nonempty because of
the compactness. It is also Γ-invariant, because if lim γnx = ξ and lim γ−1

n x = η
then lim γnγ

−1x = ξ and lim γγ−1
n x = γη. The first property is true thanks to the

uniform divergence of geodesic rays.

So if we prove that Aξ is closed, we will conclude that Aξ = Λ by minimality.

Let ηn be a sequence of Aξ converging to η ∈ ∂M̃ . Let, for each n, γn,k a sequence
such that limk γn,kx = ξ and limk γ

−1
n,kx = ηn. We set w = V (x, ξ) and u = V (x, η)

and we consider cones of the type Tw,ε,R and Tu,ε,R around w and u. For each n,
let kn large enough such that

∠x(γn,knx, ξ) ≤ 1/n,

∠x(γ−1
n,kn

x, ηn) ≤ 1/n

d(γn,knx, x) ≥ n,

d(γ−1
n,kn

x, x) ≥ n.

Now the sequences γn,knx and γ−1
n,kn

x converge to ξ and η, respectively, by con-
struction (see Figure 3.1). So we have proved that η ∈ Aξ

Applying the lemma to v−, v+ and π(v) we obtain a sequence γn with γnπ(v) →
v− and γ−1

n π(v) → v+. Consider the vectors wn ∈ T 1
γnπ(v)

M̃ pointing to π(v).

Writing tn = d(γnπ(v), π(v)), we have vn = gtnwn ∈ T 1
π(v)M̃ . Moreover, ∠(v, vn) =

∠π(v)(v−, γnπ(v)) → 0, so vn → v.

On the other hand, γ−1
n g−tnvn = γ−1

n wn = V (π(v), γ−1
n π(v)) → v. This proves

that v is nonwandering.

If M is a Riemannian manifold of finite volume, then the Lebesgue measure
on T 1M is finite. By the Poincaré recurrence Theorem, Lebesgue almost every
point is gt-recurrent. In particular, recurrent points are dense in T 1M , so every
point is nonwandering. If the hypothesis of Proposition 3.1.2 are satisfied, this is
equivalent to saying that the limit set Λ is the whole boundary ∂M̃ .
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Figure 3.1: Proof of Lemma 3.1.3
.

3.2 Patterson-Sullivan measure

As we said before, Patterson-Sullivan methods consist basically in extracting all
the information of the action of Γ on the space M̃ . The first interesting quantity
is the growth rate of an orbit of Γ. We fix a point 0 ∈ M̃ for the duration of the
chapter.

Definition 3.2.1. Let Γ be a discrete group of isometries of a simply connected
manifold M̃ without conjugate points. The critical exponent of Γ is defined as

δ = lim sup
R→+∞

1

R
log #{γ ∈ Γ | d(0, γ0) ≤ R}.

We remark that δ does not depend on the choice of the origin 0. If the curvature
of M̃ is bounded below by a constant −κ2, a volume comparison argument shows
that δ is finite. When Γ is the covering group of a compact manifold M without
conjugate points, A. Freire and R. Mañé established that the topological entropy
of the geodesic flow of M is equal to the critical exponent.

Theorem 3.2.1. [FMn82] Let M be a compact manifold without conjugate points
and let Γ be the covering transformations group. Then the topological entropy of
the geodesic flow gt : T 1M → T 1M is equal to critical exponent δ of Γ.

J. P. Otal and M. Peigné showed that the critical exponent and the topological
entropy of the geodesic flow also coincide for non-elementary manifolds if the
curvature is negatively pinched and has bounded derivatives [OP04].

Next we introduce the Poincaré series and justify the terminology used for δ.

Definition 3.2.2. Given two points x, y ∈ M̃ , we define the Poincaré series of Γ
depending on a real variable s ∈ R as

P (s;x, y) =
∑
γ∈Γ

e−sd(x,γy).
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The summability of the Poincaré series at each s is independent of x and y.

Proposition 3.2.2. Let Γ be a discrete group of isometries of a simply connected
manifold M̃ without conjugate points. Then the Poincaré series converges for
s > δ and diverges for s < δ.

Proof. We write
N(R, x, y) = #{γ ∈ Γ | d(x, γy) ≤ R},

which is sometimes called the orbital counting function. The set of distances
{d(x, γy) | γ ∈ Γ} is discrete, so we can order them as a sequence 0 ≤ t1 < t2 < . . . .
Given R > 0, we consider i0 ≥ 0 such that ti0 ≤ R < ti0+1, and we can write

∑
d(x,γy)≤R

e−sd(x,γy) =

i0∑
i=1

#{γ ∈ Γ | d(x, γy) = ti} e−sti =

i0−1∑
i=1

∫ ti+1

ti

N(ti, x, y)e−sts−1dt

+N(ti0 , x, y)e−sti0 =

∫ R

0

N(t, x, y)e−sts−1dt+N(ti0 , x, y)e−sti0 .

Applying the definition of δ we can control the growth of N(t, x, y) and show that
the previous expression converges for s > δ and diverges for s < δ.

The Poincaré series can have two different behaviours at s = δ.

Definition 3.2.3. We say that Γ is divergent (resp. convergent), if the Poincaré
series diverges (resp. converges) at s = δ.

Now we will explain how to generalize the Patterson-Sullivan measure for quasi-
convex manifolds with divergence of geodesic rays. This measure is constructed
as a weak limit of measures supported on an orbit of Γ weighted by the Poincaré
series. For technical reasons we need to consider a modified Poincaré series if Γ is
of convergent. The following lemma explains how to obtain this modified series.

Lemma 3.2.3. Let (an)n be a non-increasing sequence of positive numbers con-
verging to 0 and consider a formal series Q(s) =

∑+∞
n=1 a

s
n depending on a real

parameter s ∈ R. Assume that Q has a critical exponent δ ≥ 0, that is, a
number δ ≥ 0 for which Q(s) converges for s > δ and diverges for s < δ.
Then, there exists a non-decreasing sequence bn ≥ 1 such that for all λ > 0,
lim sup(bn/bn′)(an/an′)λ ≤ 1 when n ≥ n′ → +∞ and the modified series

Q′(s) =
+∞∑
n=1

bna
s
n

converges for s > δ and diverges for s ≤ δ.

Proof. If the series Q already diverges at δ, the statement is true without any
modifications. If δ = 0, then Q diverges at δ. So we can assume that δ > 0.
We choose a decreasing sequence εn of numbers in (0, δ) converging to 0. We set
m1 = 1 and b1 = 1 and define recursively, a sequence (mk)k of integers and the
sequence (bn)n. Assume that (mk)k is defined up to k and (bn)n is defined up to
mk. Since Q diverges at δ − εk, we can choose mk+1 such that

bmk
aεkmk

mk+1∑
n=mk+1

aδ−εk
n ≥ 1.



60 CHAPTER 3. PATTERSON-SULLIVAN MEASURE

For mk < n ≤ mk+1 we set
bn = bmk

aεkmk
a−εk
n .

The sequence bn is non-decreasing because an is non-increasing. Now we have

+∞∑
n=1

bna
δ
n = aδ1 +

+∞∑
k=1

mk+1∑
n=mk+1

bmk
aεkmk

aδ−εk
n ≥ aδ1 +

+∞∑
k=1

1 = +∞.

From the definition of the bn we can also see that, if n ≥ n′ ≥ mk, then

bn
bn′

≤
(
an′

an

)εk

.

This implies the asymptotics of the statement. The convergence of Q for s > δ
follows from the fact that bn = o(a−λ

n ) for all λ > 0.

We write the elements of the group Γ as a sequence γn such that d(x, γny)
is non-decreasing. Applying the lemma to the Poincaré series P ( · , x, y), we
obtain coefficients bγ with lim sup(bγ/bγ′)eλ(d(x,γ

′y)−d(x,γy)) ≤ 1 when d(x, γy) ≥
d(x, γ′y) → +∞, for all λ > 0, and a modified Poincaré series

P ′(s, x, y) =
∑
γ∈Γ

bγe
−sd(x,γy).

We fix the coefficients bγ, so we can forget the dependence on x and y. The

summability of P ′ does not depend on x, y. Given s > δ, and two points x, y ∈ M̃ ,
since the Poincaré series converges at s, we can consider the measure on M̄ defined
by

µx,y,s =

∑
γ∈Γ bγe

−sd(x,γy)δγy

P ′(s, y, y)
. (3.1)

We observe that the mass of µx,y,s satisfies

e−sd(x,y) ≤ ||µx,y,s|| ≤ esd(x,y).

We endow the space of measures on M̄ with the weak topology. Since M̄ is
compact, the unit ball of the space of measures is compact, so the sequence µx,y,s

has at least a weak accumulation point when s→ δ+, and it is nonzero.

Proposition 3.2.4. Let M̃ be a quasi-convex manifold without conjugate points
where geodesic rays diverge. Let µx,y,sn converge weakly to a measure µx of M̄ on
a sequence sn → δ+. Then:

1. The support of µx is contained in the limit set Λ.

2. For every z ∈ M̃ , the sequence µz,y,sn converges weakly to a measure µz, which

is absolutely continuous with respect to µx and satisfies, for all ξ ∈ ∂M̃ ,

dµz

dµx

(ξ) = e−δβξ(z,x).

3. The family of measures {µz}z∈M̃ is Γ-invariant, i.e. γ∗µz = µγz.
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Proof. 1. Since µx is a weak limit of measures whose support is Γy, the support
of µx must be contained in Γy = Γy ∪ Λ. But a point of the form γy cannot
be contained in the support because, taking a small neighborhood U of γy,
we have

µx,y,sn(U) =
bγe

−snd(x,γy)

P ′(sn, x, y)
→ 0,

since the modified Poincaré series diverges at s = δ. Hence, suppµx ⊂ Λ.

2. We observe that

dµz,y,sn(p) = e−s(d(z,p)−d(x,p))dµx,y,sn(p).

Recall that p 7→ d(z, p) − d(x, p)) extends to a continuous function on M̄
denoted by p 7→ βp(z, x) (Lemma 2.4.7). Taking the limit n → +∞ we get
the desired result.

3. Let f be a continuous function on M̄ . The value of γ∗µx(f) is the limit of

γ∗µx,y,sn(f) =

∑
α∈Γ bγ−1αe

−snd(γx,αy)f(αy)

P ′(sn, y, y)

and the value of µγx(f) is the limit of

µγx,y,sn(f) =

∑
α∈Γ bαe

−snd(γx,αy)f(αy)

P ′(sn, y, y)
.

Thanks to the asymptotics of the coefficients bα we have, for all λ > 0

e−λd(y,γy) ≤ bγ−1α

bα
≤ eλd(y,γy)

for all α ∈ Γ but a finite number. Since the denominators are equal and tend
to +∞, the two expressions coincide in the limit.

Definition 3.2.4. A measure µx supported on ∂M̃ which is a weak accumulation
point of the µx,y,s is called a Patterson-Sullivan measure. A conformal density of
dimension α ≥ 0 for a group Γ is a family of measures {σx}x∈M̃ supported on Λ
satisfying

∀x ∈ M̃, ∀γ ∈ Γ, γ∗σx = σγx,

∀x, y ∈ M̃, ∀ξ ∈ ∂M̃,
dσy
dσx

(ξ) = e−αβξ(y,x).

Proposition 3.2.4 implies that there always exists a conformal density of di-
mension δ. In the case that Γ acts minimally on Λ, the support of a conformal
density is the whole limit set Λ. In the two situations under investigation, the
critical exponent is positive in the non-elementary case.

Proposition 3.2.5. [LP16, Coo93] Let M̃ be a simply connected manifold without
conjugate points and let Γ be a discrete group of isometries of M̃ which satisfy one
of the following:
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A) M̃ is nonpositively curved and Γ contains a rank 1 axial isometry,

B) M̃ is a visibility manifold and Γ contains an axial isometry.

Assume that Λ has infinitely many points. Then ∂M̃ does not support a Γ-
invariant measure. In particular, the critical exponent δ is positive.

3.3 Bowen-Margulis measure

The next step is to define a measure on the unit tangent bundle T 1M invariant
by the geodesic flow gt called the Bowen-Margulis measure. This measure will be
first constructed on T 1M̃ using Patterson-Sullivan measures.

Let M̃ be a quasi-convex simply connected manifold without conjugate points
with divergence of geodesic rays. Recall that we defined the set ∂2M̃ of pairs of
distinct points at infinity and a map P : T 1M̃ → ∂2M̃ sending a vector v to its
endpoints (v−, v+). The set of geodesic endpoints is

E(M̃) := P (T 1M̃) = {(v−, v+) ∈ ∂2M̃ | v ∈ T 1M̃} ⊂ ∂2M̃.

Unless M̃ satisfies the visibility axiom, the set E(M̃) is not necessarily equal to
∂2M̃ .

Definition 3.3.1. For (η, ξ) ∈ E(M̃), let pη,ξ ∈ M̃ be any point on a geodesic

joining η to ξ and define the Gromov product of ξ and η at x ∈ M̃ as

⟨η, ξ⟩x :=
1

2
(βξ(x, pη,ξ) + βη(x, pη,ξ)).

Let us check that the previous definition does not depend on the choice of
p := pη,ξ. Let p′ ∈ M̃ be another point in a geodesic joining η to ξ. Let v be the
vector with base point at p pointing to ξ. By Proposition 2.5.2, p′ ∈ b−1

v (t)∩b−1
−v(−t)

for some t ∈ R. Then, by the definition of the Busemann cocycle, we obtain

βξ(x, p) + βη(x, p) = βξ(x, p
′) + βξ(p

′, p) + βη(x, p
′) + βη(p

′, p)

= βξ(x, p
′) + βη(x, p

′) + bv(p
′) + b−v(p

′) = βξ(x, p
′) + βη(x, p

′).

We next define an auxiliary measure on the set of geodesic endpoint pairs.

Definition 3.3.2. Let M̃ be quasi-convex and assume that geodesic rays diverge.
Let Γ be a discrete group of isometries and let {σx}x∈M̃ be a conformal density of

dimension α ≥ 0. Fix x ∈ M̃ . We define a Borel measure µ̄ on the set of geodesic
endpoint pairs E(M̃) by its density

dµ̄(η, ξ) = e2α⟨η,ξ⟩xdσx(ξ) dσx(η).

Proposition 3.3.1. The measure µ̄ defined above does not depend on the choice
of x and it is invariant by the diagonal action of Γ on E(M̃).

Proof. If y ∈ M̃ , we have

2⟨η, ξ⟩y = βη(y, x) + βξ(y, x) + 2⟨η, ξ⟩x
and dσy(ξ) = e−αβξ(y,x)dσy(ξ). Hence, µ̄ does not depend on x. Moreover,

⟨γ−1η, γ−1ξ⟩x = ⟨η, ξ⟩γx,
which combined with the previous formulas shows that µ̄ is Γ-invariant.
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We now describe a general procedure to construct a measure on the unit tangent
bundle T 1M̃ from the measure µ̄. For every (η, ξ) ∈ E(M̃), the set P−1(η, ξ) is a
nonempty gt-invariant subset of T 1M̃ . Assume that there exists a family of Borel
measures {νη,ξ}(η,ξ)∈E(M̃) on T 1M̃ such that:

1. each νη,ξ is nonzero and supported on P−1(η, ξ),

2. for every Borel subset A of T 1M̃ , the map

(η, ξ) 7→ νη,ξ(A)

is Borel measurable,

3. if B ⊂ T 1M̃ is bounded, then νη,ξ(B) is bounded uniformly in (η, ξ) ∈ E(M̃),

4. the family of measures {νη,ξ}(η,ξ)∈E(M̃) is Γ-invariant, i.e.

∀γ ∈ Γ, γ∗νη,ξ = νγη,γξ.

Then this family of measures {νη,ξ}(η,ξ)∈E(M̃) allows us to define a Borel measure

µ̃ on T 1M̃ by writing, for every Borel subset A of T 1M̃ ,

µ̃(A) =

∫
E(M̃)

νη,ξ(A) dµ̄(η, ξ). (3.2)

Proposition 3.3.2. Equation (3.2) defines a locally finite Borel measure µ̃ on
T 1M̃ which is Γ-invariant. This induces a Borel measure µ on T 1M , which locally
is the projection of µ̃. Moreover, if each νη,ξ is gt-invariant, then µ̃ and µ are also
gt-invariant, and if each νη,ξ is fully supported on the fiber P−1(η, ξ), then the

supports of µ̃ and µ are, respectively, Ω̃ and Ω.

The choice of the measures νη,ξ depends slightly on the context. We treat
separately the case of nonpositive curvature and the case of compact manifolds
without conjugate points.

3.3.1 The Bowen-Margulis measure in nonpositive curvature

For nonpositively curved manifolds, but also for manifolds with no focal points,
we proceed as follows. As a consequence of Theorem 2.5.2, for each (η, ξ) ∈ E(M̃),
the set π(P−1(η, ξ)) is a totally geodesic flat submanifold of M̃ . Then, the geodesic
flow gt acts isometrically on P−1(η, ξ). We take the lift of the volume measure of
π(P−1(η, ξ)) to P−1(η, ξ) as the measure νη,ξ, which is automatically gt-invariant.
In the case that P−1(η, ξ) is a single geodesic, νη,ξ is the Lebesgue measure.

This construction was first carried out by G. Knieper in [Kni98] for the case
of nonpositive curvature. His goal was to prove that, under a few hypothesis, µ is
the unique measure of maximal entropy for the geodesic flow.

Theorem 3.3.3. [Kni98] Let M be a nonpositively curved rank 1 compact man-
ifold. Let µ denote the gt-invariant measure on T 1M constructed in Proposition
3.3.2 from a conformal density {σx}x∈M̃ and the volumes {νη,ξ}(η,ξ)∈E(M̃) on the
fibers of P . Then, µ is the unique measure of maximal entropy of the geodesic flow
gt on T

1M .
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This result was recently generalized to rank 1 compact manifolds without focal
points by F. Liu, F. Wang and W. Wu [LWW20].

Let us now investigate the case of noncompact manifolds. G. Link and J. C.
Picaud have studied what happens in nonpositive curvature with few geometric
assumptions. They proved a generalization of the Hopf-Tsuji-Sullivan dichotomy
(see [Rob03, Théorème 1.7]).

Theorem 3.3.4. [LP16, Lin18] Let M be a nonpositively curved non-elementary
manifold which contains a rank 1 closed geodesic. Let µ denote the gt-invariant
measure on T 1M constructed in Proposition 3.3.2 from a conformal density {σx}x∈M̃
of dimension α > 0 and the volumes {νη,ξ}(η,ξ)∈E(M̃) on the fibers of P . Then, ei-
ther:

1. The Poincaré series diverges at α, the geodesic flow gt is ergodic and com-
pletely conservative with respect to µ. Moreover,

(a) the dimension α is equal to the critical exponent δ,

(b) the conformal density {σx}x∈M̃ is the unique conformal density of di-
mension δ up to a scalar factor,

(c) the density {σx}x∈M̃ is ergodic under the action of Γ,

(d) σx has no point masses.

2. The Poincaré series converges at α, the geodesic flow gt is completely dissi-
pative with respect to µ.

R. Ricks proved independently a weaker version of Theorem 3.3.4 for rank 1
CAT (0) spaces with a different construction of µ [Ric17]. These two constructions
coincide when Γ is divergent. We do not know if the previous theorem has been
generalized for manifolds without focal points.

We observe that if the measure µ is finite, then gt is automatically conservative,
so we are in the first case of Theorem 3.3.4. Since µ is locally finite, it is finite if
M is compact. We also observe that when Γ is divergent, the unique conformal
density is constructed explicitly in Proposition 3.2.4.

Corollary 3.3.5. LetM be a nonpositively curved non-elementary manifold which
contains a rank 1 closed geodesic. Assume that Γ is divergent and let {σx}x∈M̃ be
the unique conformal density of dimension δ. Then the rank 1 set has full measure
in T 1M . In particular, in restriction to R1, the measure µ̃ satisfies

dµ̃(v) = e2δ⟨v−,v+⟩0dt dσ0(v−) dσ0(v+). (3.3)

Proof. Let v ∈ T 1M be a rank 1 vector tangent to a closed geodesic. Then v
is nonwandering, so it is in the support of µ. Since the rank 1 set is open, it
has positive measure. This set is also gt-invariant, so we conclude thanks to the
ergodicity that R1 has full measure.

3.3.2 The Bowen-Margulis measure on compact manifolds without
conjugate points

Outside the no focal points case, since the flat strip theorem may fail [Bur92], the
volume measure on the fibers of P is not necessarily gt-invariant. V. Climenhaga,
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G. Knieper and K. War succeeded in defining a gt -invariant measure on T 1M for
compact visibility manifolds and deduce relevant dynamical properties. They use
the following fact. Recall that the set Ĩ(v) is defined as the intersection of the
stable and the unstable horosphere of v.

Lemma 3.3.6. Let M be a compact visibility manifold. There is a Γ-invariant
measurable map F : {Ĩ(v) | v ∈ T 1M̃} → T 1M̃ such that F (Ĩ(v)) ∈ Ĩ(v) for all
v ∈ T 1M̃ .

Recall that, for a visibility manifold, any two distinct points at infinity are
joined by a geodesic, so E(M̃) = ∂2M̃ . Next, we can define the measures νη,ξ. For

(η, ξ) ∈ ∂2M̃ , choose any v ∈ P−1(η, ξ) and, for a Borel subset A of T 1M̃ , put

νη,ξ(A) = Leb{t ∈ R |F (Ĩ(gtv)) ∈ A}.
This definition does not depend on v. Hence we have a family of measures
{νη,ξ}(η,ξ)∈∂2M̃ satisfying the conditions of Proposition 3.3.2, so we obtain a fi-

nite measure µ on T 1M . This measure is not necessarily gt-invariant yet, for this
reason we consider a weak limit of

1

T

∫ T

0

gt∗µdt

when T → +∞. This gives a gt-invariant measure µ0 on T 1M that we can assume
to be normalized.

We denote by Prob(g1) the set of Borel g1-invariant probability measures. For
ν ∈ Prob(g1), we write ν̃ for the lift of ν to T 1M̃ . We also denote the metric
entropy of ν by hν(g1) and the topological entropy of the geodesic flow by htop.

Theorem 3.3.7. Let M be a compact manifold without conjugate points and let
{σx}x∈M̃ be the conformal density given by Proposition 3.2.4. We assume that:

1. There exists a metric g′ on M of negative curvature.

2. Geodesic rays on M̃ diverge.

3. The covering group Γ is residually finite (the intersection of its finite index
subgroups is trivial).

4. M has an entropy gap:

sup{hν(g1) | ν ∈ Prob(gt), ν̃(E) = 0} < htop.

Then µ0 is the unique measure of maximal entropy. Moreover, µ0 is ergodic,
fully supported on T 1M and its lift µ̃0 gives full measure to the expansive set
E.

The ergodicity of µ0 is a consequence of the fact that µ0 is the unique measure
of maximal entropy. One particular case of manifolds satisfying the hypothesis of
the theorem are compact surfaces without conjugate points of higher genus (see
Proof of Theorem 1.1 in [CKW21]).

Corollary 3.3.8. Let M be a compact surface without conjugate points of genus
equal or higher than 2. Then µ0 is the unique measure of maximal entropy. More-
over, µ0 is ergodic, fully supported on T 1M and its lift µ̃0 gives full measure to
the expansive set E.
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Since the restriction of µ to E is already gt-invariant, we get the following
corollary as well.

Corollary 3.3.9. Let M be a compact manifold satisfying the hypothesis of Theo-
rem 3.3.7. For µ̄-a.e. (η, ξ) ∈ ∂2M̃ , P−1(η, ξ) is a single orbit of gt. In particular,
the measures µ and µ0 coincide and we can write, in restriction to E,

dµ̃0(v) = eδ⟨v−,v+⟩0dt dσ0(v−) dσ0(v+). (3.4)

Corollaries 3.3.5 and 3.3.9 give the same description of the measure µ for man-
ifolds satisfying simultaneously their hypothesis. Based on the terminology for
Anosov flows, and in particular geodesic flows in negative curvature, the measure
µ will be called the Bowen-Margulis measure.

Definition 3.3.3. We refer to both the unique measure µ of Theorem 3.3.4 when
M̃ is a nonpositively curved rank 1 manifold whose covering group Γ is divergent
and the measure µ0 of Theorem 3.3.7 when M is a compact manifold satisfying
the hypothesis therein as the Bowen-Margulis measure. From now on, we denote
these measures by µBM .

3.4 A family of measures on the horospheres

We now define a natural family of measures on the horospheres from a Patterson-
Sullivan measure. In the whole section, M denotes either a nonpositively curved
rank 1 non-elementary manifold or a compact visibility manifold without conjugate
points.

On a stable horosphere H̃s(v), v ∈ T 1M̃ , we define a projection map

PH̃s(v) : H̃s(v) → ∂M̃ \ {v+},

which takes a vector w ∈ H̃s(v) to its negative endpoint w− ∈ ∂M̃ . Similarly,
for an unstable horosphere H̃u(v), there is a map PH̃u(v) : H̃u(v) → ∂M̃ \ {v−},

sending w ∈ H̃u(v) to w+. These two maps are continuous. Nonempty fibers of
PH̃s(v) and PH̃u(v) are sets of the form Ĩ(w).

Recall that, if M is nonpositively curved, π(Ĩ(v)) is a flat totally geodesic
submanifold of M̃ for every v ∈ T 1M̃ , possibly a single point. When M is a
compact visibility manifold without conjugate points, Lemma 3.3.6 provides a
measurable Γ-invariant map F , which for each Ĩ(v) selects a vector F (Ĩ(v)) ∈ Ĩ(v).

We consider a family of measures {νĨ(v)}v∈T 1M̃ supported on the sets Ĩ(v). The
measure νĨ(v) is set to be either

1. the lift to Ĩ(v) of the volume measure of π(Ĩ(v)) if M is nonpositively curved,
or

2. the Dirac measure at F (Ĩ(v)) if M is a compact visibility manifold.

This family of measures are Γ-invariant and depend measurably on Ĩ(v). When
Ĩ(v) is a single vector, νĨ(v) is the Dirac measure on this vector. If we integrate

these measures along S̃(v) = ∪t∈RĨ(gtv) in t, we recover the measure νv−,v+ sup-

ported on S̃(v) = P−1(v−, v+).
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Let H be a stable or unstable horosphere on T 1M̃ . For ξ ∈ PH(H), the function
βξ(0, · ) is constant on π(P−1

H (ξ)). So the quantity

ϕH(ξ) := eδβξ(0,π(P
−1
H (ξ)))

is well defined.

Definition 3.4.1. Let H be a stable or unstable horosphere on T 1M̃ . For every
Borel subset A of H, we define

µH(A) =

∫
PH(H)

νP−1
H (ξ)(A)ϕH(ξ) dσ0(ξ). (3.5)

It is straightforward to prove the following properties.

Proposition 3.4.1. Equation (3.5) defines a family {µH̃u(v)}v∈T 1M̃ of locally finite

Borel measures on the unstable horospheres of T 1M̃ such that

1. they are Γ-invariant, i.e.

γ∗µH̃u(v) = µH̃u(γv),

2. they are uniformly expanded by the geodesic flow, i.e.

µgtH̃u(v) = eδt(gt)∗µH̃u(v).

There is a family of measures {µH̃s(v)}v∈T 1M̃ on the stable horospheres, which
is uniformly contracting instead of expanding. The definitions do not depend
on the point 0 ∈ M̃ .

The measures on the horospheres that we have defined are analogous to the
Margulis measures on the stable and the unstable manifolds of an Anosov flow.
In the remaining chapters, they will be used to prove ergodic properties of the
horospheres.





Chapter 4

Equidistribution of horospheres
under the action of the geodesic
flow

In this entire section M will be a non-elementary rank 1 nonpositively curved
manifold. For our purpose, we assume that the Bowen-Margulis measure µBM on
the space T 1M is finite, hence the geodesic flow is conservative, according to the
Poincaré recurrence theorem, and there is only one conformal density σ0. Our goal
is to find an equidistribution result in the sense that the µH-averages of functions
on a horosphere H tend to the µBM -averages on the whole space.

As we mentioned before, there are connections between the dynamics of the
geodesic flow and of the horospheres. The equidistribution result that we want
to prove relies on the mixing property of the geodesic flow with respect to the
Bowen-Margulis measure. The first section guarantees this property for a large
class of nonpositively curved rank 1 manifolds. It is a generalization of a result
already known for negatively curved manifolds ([Dal00, Theorem A] and [Bab02,
Theorem 1]). In Section 2, we will prove the main theorem of this chapter about
the equidistribution of horospheres under the action of the geodesic flow. This
chapter corresponds to the first part of [BC21a].

4.1 Topological mixing of the geodesic flow

The starting point is the mixing property of the geodesic flow with respect to
the Bowen-Margulis measure µBM . The next result says that this property is
equivalent to the topological mixing of the geodesic flow on Ω. We do not know
if this equivalence has been stated in this generality, although it can be expected
and the main part of the work is already published.

There is a third equivalent property related to the length of the closed geodesics,
analogous to what happens in negative curvature. We define the rank 1 length
spectrum as the set of lengths of rank 1 closed geodesics. We say that the rank 1
length spectrum is non-arithmetic if the rank 1 length spectrum generates a dense
subgroup of R.

Theorem 4.1.1. LetM be a rank 1 nonpositively curved non-elementary complete
connected Riemannian manifold. Assume that the Bowen-Margulis measure µBM

is finite. Then the following are equivalent:
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(i) The geodesic flow gt is topologically mixing on the nonwandering set Ω.

(ii) The geodesic flow gt is mixing with respect to the Bowen-Margulis measure
µBM .

(iii) The rank 1 length spectrum is non-arithmetic.

Proof. (ii) =⇒ (i) The mixing property with respect to a measure implies the
topological mixing on the support of the measure. In our case, the support of
µBM is the nonwandering set Ω, so the implication is proved.

(i) =⇒ (iii) We reproduce the argument used in negative curvature by F.
Dal’bo [Dal00]. Since the set of rank 1 vectors is open [Bal95], we can find a
closed ball B of certain radius only containing rank 1 vectors. Let ε > 0 be
a given number. We apply the closing lemma for the nonwandering rank 1 set
proved by Y. Coudène and B. Schapira [CS10]: there exists constants T0 > 0 and
δ > 0 such that, for every v ∈ B and t ≥ T0 with d1(v, gt(v)) ≤ δ, there exists a
periodic rank 1 vector v′ at distance d1(v, v

′) ≤ ε, where the period t′ of v satisfies
|t− t′| < ε.

There exists a nonempty open subset U of Ω of diameter smaller than δ and
such that U ⊂ B. Since the geodesic flow on Ω is topologically mixing, there exists
a number T ≥ T0 such that for all t ≥ T , we have U ∩ gt(U) ̸= ∅. In particular,
there is a rank 1 vector v in B satisfying d1(v, gt(v)) ≤ δ. Hence, for each t ≥ T ,
there exists a periodic rank 1 vector of period in [t− ε, t+ ε]. Since ε is arbitrary,
this proves that the rank 1 length spectrum is non-arithmetic.

(iii) =⇒ (ii) This implication may be the hardest, but it is essentially done
in the proof of Theorem 2 in [Bab02], asserting that the geodesic flow is mixing
with respect to µBM on a compact manifold. All the arguments work for a rank 1
manifold with finite Bowen-Margulis measure, but at the end, instead of applying
the compactness, we can use the assumption of non-arithmeticity of the length
spectrum.

4.2 Equidistribution of horospheres

We start with a local result showing that there is equidistribution near rank 1
vectors: for a function f : T 1M → R, the average on a horosphere of its lift
f̃ : T 1M̃ → R pushed by the geodesic flow converges to the average of f with
respect to the Bowen-Margulis measure.

Proposition 4.2.1. Let M be a nonpositively curved non-elementary complete
connected Riemannian manifold with a closed rank 1 geodesic. Assume that the
geodesic flow gt on T

1M is topologically mixing on Ω and that the Bowen-Margulis
measure µBM is finite. Then, for every rank 1 vector v ∈ Ω̃ ⊂ T 1M̃ , there exists
an open subset U of H̃u(v) containing v which is equidistributed under the action
of the geodesic flow; i.e. for every bounded and uniformly continuous function f
on T 1M and every Borel neighborhood V ⊂ U of v we have

1

µH̃u(v)(V )

∫
V

f̃ ◦ gt dµH̃u(v) −−−−→t→+∞

1

µBM(T 1M)

∫
T 1M

f dµBM .

Proof. We follow the same strategy as M. Babillot in [Bab02], which consists in
approximating the integral on a piece of horosphere by the integral of the same
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function on a box around that piece, and then use the mixing property of the
geodesic flow with respect to µBM . The added difficult is to find a box with a
good system of coordinates, which is done by avoiding the higher rank vectors.

Let v be a rank 1 vector in Ω̃ and denote its horosphere by H. From [Bal95,
Lemma III.3.1] we know that there exist disjoint connected neighborhoods A1 and
A2 of v− and v+, respectively, in ∂M̃ such that for every (ξ, η) ∈ A1 × A2 there
exists a unique geodesic from ξ to η, and it has rank 1. This allows us to consider
a coordinate neighborhood of v via the map P̄ of the form A1 × A2 × R.

We claim that the proposition is true with U = P−1
H (A2). Notice that U is

contained in the rank 1 set by construction. Consider any neighborhood V ⊂ U of
v and write V+ := {w+ |w ∈ V } for its projection to the boundary at infinity ∂M̃ .
Since v is nonwandering, its endpoints are in the limit set, and this guarantees that
V+ and V have positive measure. We notice that the integral on V of a function
h of T 1M̃ can be written in coordinates as∫

V

h dµH̃u(v) =

∫
V+

h(v−, η, t0)e
δβη(0,π(v−,η,t0))dσ0(η),

where t0 has the value βv−(0, π(v)). This is because νP−1
H (η) is the Dirac measure

on P−1
H (η) whenever this set is contained in the rank 1 set.

Given ε > 0, we can find a small connected neighborhood B ⊂ A1 of v− and a
number r > 0 such that:

(i) ∀ξ ∈ B, ∀η ∈ V+, 1 − ε ≤ eδβη(π(v−,η,t0), π(ξ,η,t0)) ≤ 1 + ε,

(ii) ∀(ξ, η) ∈ B×V+, ∀s ∈ [−r, r],∀t ≥ 0, |f̃(v−, η, t0+t)−f̃(ξ, η, t0+t+s)| < ε.

The first property follows from the continuity of the map P̄ on the coordinate
neighborhood, and the continuity of the projection π and of the Busemann func-
tion. We use that V+ is relatively compact to assert that the inequality holds
uniformly in η ∈ V+. For property (ii), we apply the uniform continuity of f̃ , and
then we choose B and r so that the points (v−, η, t0) and (ξ, η, t0 + s) are close
enough for ξ ∈ B and s ∈ [−r, r], uniformly in η ∈ V+. Since these points are in
the same weak stable leaf, the distance between them does not increase when they
are pushed by the geodesic flow, which allows us to deduce the above property for
all t ≥ 0. Again the condition v ∈ Ω̃ implies that v− ∈ Λ, which ensures that B
has positive measure.

These estimates allow one to compare the average of f̃ ◦ gt on the set V with
respect to µH̃u(v) and the average of the same function on the box of the form

P̄−1(B × V+ × [t0, t0 + r]) with respect to the measure µBM by means of the
product structure of µBM in the rank 1 set (Equation (3.3)). More precisely, for
all nonnegative t,

[∫
V
f̃ ◦ gt dµH̃u(v)

µH̃u(v)(V )
− ε

]
1 − ε

1 + ε
≤

∫
P̄−1(B×V+×[t0,t0+r])

f̃ ◦ gt dµBM

µBM(P̄−1(B × V+ × [t0, t0 + r]))
≤

[∫
V
f̃ ◦ gt dµH̃u(v)

µH̃u(v)(V )
+ ε

]
1 + ε

1 − ε
.
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Figure 4.1: We consider a box B around a subset V of an unstable horosphere. A
vertical leaf S of B is included in the weak stable manifold, so its size does not increase
when we apply the geodesic flow for a positive time. Hence, if the box B is thin enough,
f̃ ◦ gt(v) is a good approximation of f̃ ◦ gt on S.

See Figure 4.1 for a schematic representation of these approximations.

Moreover we may assume that the neighborhood P̄−1(B × A2 × [t0, t0 + r]) ⊂
T 1M̃ is homeomorphic to its projection on the unit tangent bundle of the manifold
M . Then, since the geodesic flow is mixing with respect to µBM , the average of
f̃ ◦ gt in P̄−1(B× V+ × [t0, t0 + r]) converges to 1

µBM (T 1M)

∫
fdµBM when t goes to

infinity. We have thus shown the equidistribution of U .

To deduce a global result, we need to understand what happens on vectors
of rank different from 1, and the next two lemmas will be crucial. The unstable
manifold of v in T 1M̃ is the set

W̃ u(v) = {w ∈ T 1M̃ | d1(gt(v), gt(w)) → 0, t→ −∞}.

W̃ u(v) is a subset of the unstable horosphere H̃u(v), but they are not necessarily
equal in nonpositive curvature.

Lemma 4.2.2. Let M be a rank 1 nonpositively curved non-elementary complete
connected Riemannian manifold. If v is a rank 1 recurrent vector in T 1M̃ , then
its unstable horosphere coincides with its unstable manifold, H̃u(v) = W̃ u(v), and
it consists of rank 1 vectors exclusively.

Proof. The fact that the unstable manifold and the horosphere coincide is already
proved in [Kni98, Proposition 4.1]. Let w in W̃ u(v) and r its rank, we will see
that r is 1. Since v is negatively recurrent there exist a sequence tn → −∞ and
isometries γn ∈ Γ such that γn(gtn(v)) → v when n→ ∞. Now we have

d1(v, γngtn(w)) ≤ d1(v, γngtn(v)) + d1(gtn(v), gtn(w)) −→ 0

and the rank of γngtn(w) is the same as the rank of w, r. Since v is a limit
of vectors of rank r and the rank function is upper semi-continuous, we deduce
r ≤ rank v = 1.

Lemma 4.2.3. Let M be a nonpositively curved non-elementary complete con-
nected Riemannian manifold with a closed rank 1 geodesic. Assume that the
Bowen-Margulis measure µBM is finite and that the geodesic flow gt on T 1M is
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ergodic with respect to the µBM . Then, for every horocycle H, the set of vectors
in H of rank equal or higher than 2 is µH-negligible.

Proof. Let R̃ec
1 ⊂ T 1M̃ be the set of rank 1 vectors which are recurrent under

gt on the quotient T 1M and S ⊂ T 1M̃ be the set of vectors of rank 2 or higher.
We claim that the projections to the boundary of these two sets are disjoint,

R̃ec
1

+ ∩ S+ = ∅. Otherwise, there are vectors v ∈ R̃ec
1

and w ∈ S such that
v+ = w+. By Lemma 4.2.2, the unstable horosphere of −v only contains vectors
of rank 1. The geodesic associated to −w intersects this horosphere H̃u(−v)
(Figure 4.2), so w should have rank 1, which is a contradiction.

Figure 4.2: Vectors v and w of the proof.

Around a nonwandering rank 1 vector there is a neighborhood only consisting of
rank 1 vectors, and this neighborhood has positive measure because it intersects
the support of µBM . By hypothesis, the manifold M contains a closed rank 1
geodesic, which is an example of nonwandering rank 1 geodesic. The set of rank
1 vectors has positive measure, and it is invariant under the geodesic flow. So
the set of rank 1 vectors has full measure because of the ergodicity of µBM . In
consequence, the set of rank 1 recurrent vectors Rec1 has also full µBM -measure
in view of the Poincaré recurrence theorem. By the product structure of µBM , we

see that R̃ec
1

+ has positive σ0-measure. Finally, R̃ec
1

+ is a Γ-invariant set, so we

deduce that R̃ec
1

+ has full σ0-measure because Γ acts ergodically.

Therefore, S+ is negligible. The endpoints of higher rank vectors in H̃u(v) are
clearly in S+ and, using the definition of the measure on the horosphere, we obtain
µH̃u(v)(S ∩ H̃u(v)) = 0.

We can finally prove Theorem A, which we have reformulated in terms of
horospheres on the universal cover M̃ . On the horospheres centered at the limit
set, every open set with positive and finite measure is equidistributed (Figure
4.3). Being positive is equivalent to having a nonwandering rank 1 vector. In
particular, all relatively compact neighborhoods of nonwandering rank 1 vectors
are equidistributed.

Theorem 4.2.4. Let M be a nonpositively curved non-elementary complete con-
nected Riemannian manifold with a closed rank 1 geodesic. Assume that the
geodesic flow gt on T

1M is topologically mixing on Ω and that the Bowen-Margulis
measure µBM is finite. Then, for every horosphere H ⊂ T 1M̃ centered at Λ, ev-
ery open subset U of H of finite and nonzero µH-measure is equidistributed under
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Figure 4.3: The average of f on the image of an open subset U of a horosphere H by
the geodesic flow gt with respect to µH tends to the average of f with respect to µBM .

the action of the geodesic flow; i.e. for every bounded and uniformly continuous
function f on T 1M , we have

1

µH(U)

∫
U

f̃ ◦ gt dµH −−−−→
t→+∞

1

µBM(T 1M)

∫
T 1M

f dµBM .

Proof. We first observe that the set U1 of rank 1 vectors in U is open in H, because
the set of rank 1 vectors is open in T 1M̃ [Bal95]. By Lemma 4.2.3, the set U1 has
full measure in U , so the averages on the two sets are the same. Next, we use the
fact that µH is a Radon measure: given a number ε > 0, there exists a compact
subset K ⊂ U1 such that µH(U1 \K) < ε.

Since Ω̃ is closed, L = K ∩ Ω̃ is again compact, and L has full measure in K,
because vectors outside of Ω̃ are not in the support of µH . We want to show that L
is equidistributed. Proposition 4.2.1 gives an equidistributed open neighborhood
Uv ⊂ U1 of each vector v in L. The set L can be covered by finitely many Uv

because it is compact, say U1, . . . , Um. Then, the sets Vk = Uk \ ∪k−1
i=1Ui form a

finite cover of L by pairwise disjoint Borel sets, and each of them is equidistributed,
thanks to the fact that the subsets of Uv are equidistributed too.

If we let λ :=
∫
fdµBM/µBM(T 1M), the set V := V1∪· · ·∪Vn is equidistributed

because ∫
V
f̃ ◦ gt dµH

µH(V )
=

∑n
i=1

∫
Vi
f̃ ◦ gt dµH

µH(V )
−−−−→
t→+∞

∑n
i=1 µH(Vi)λ

µH(V )
= λ.

On the other hand, we have µH(U \ V ) < ε, so∣∣∣∣ 1

µH(U)

∫
U

f̃ ◦ gt dµH − 1

µH(V )

∫
V

f̃ ◦ gt dµH

∣∣∣∣ ≤ 2ε ∥f∥∞
µH(U)

for all t ≥ 0. This proves that U is equidistributed as well.



Chapter 5

Horocyclic flows in nonpositive
curvature

In this chapter we restrict our attention to rank 1 surfaces with nonpositive cur-
vature. Our goal is to study the invariant measures of the horocyclic flow aiming
for unique ergodicity results. To prove some of these results we will make use of
the equidistribution theorem of Chapter 4.

The first step is to define a flow that preserves the Bowen-Margulis measure
and whose orbits are horocycles. The idea is to define the parametrization of
the flow by the measures on the horocycles as in the negative curvature case
[Mar75b]. However, the presence of flat pieces of horocycles makes impossible to
define globally a continuous flow with this method. We define a subset Σ0 of the
unit tangent bundle which excludes the horocycles causing trouble, like the one
displayed in Figure 5.2, and which is topologically and metrically large. We will
define a parametrization of the horocyclic flow on Σ0 and prove that it is uniquely
ergodic. This is done in Section 5.1.

In Section 5.2, we study the other parametrizations of the horocyclic flow, and
in particular the parametrization by arc-length. The goal is to show that unique
ergodicity is still true for these other parametrizations. This is clear when we have
two continuous flows with no fixed points and with the same orbits on a compact
space, but here the subset Σ0 where the Margulis parametrization is defined is not
compact. The key point is to show that the change of time between the two flows
does not blow up outside Σ0.

Finally, in Section 5.3, we obtain a stronger result for the class of compact
nonpositively curved surfaces without flat strips. In this case, we will see that the
Margulis parametrization is defined everywhere and not only on Σ0. Using this
parametrization, we will show that the horocyclic flow is uniquely ergodic on the
whole unit tangent bundle.

The results in this chapter correspond to the second part of [BC21a] and to
[BC21b]. These were the first attempts made by the author to solve the problem of
unique ergodicity, and for this reason they are not conclusive. Chapter 6 provides
a complete answer in the compact case with slightly different methods.
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5.1 Margulis horocyclic flow

5.1.1 Surfaces with nonpositive curvature

In this section, M is a nonpositively curved non-elementary orientable surface
with a closed rank 1 geodesic and the Bowen-Margulis measure µBM , constructed
as before, is assumed to be finite. We will further assume that M satisfies the
duality condition, which means that every vector of T 1M is nonwandering, or
equivalently we assume that Λ = ∂M̃ . Under these hypothesis, the geodesic flow
is topologically mixing [Ebe73a, Theorem 6.3], so it is also mixing with respect
to the Bowen-Margulis measure. The duality condition is satisfied if M has finite
Riemannian volume, as an application of the Poincaré recurrence theorem. It is
worth mentioning that a nonpositively curved non-elementary rank 1 manifold
satisfying the duality condition contains automatically a closed rank 1 geodesic.

Moreover, we know that any two distinct points in the boundary at infinity can
be connected by a geodesic. This follows from the fact that, for a nonflat surface
M with the duality condition, the universal cover M̃ satisfies the visibility axiom
[Ebe79, Proposition 2.5]. Therefore, the map P : T 1M̃ → ∂2M̃ is surjective.

We notice that an orientation of the boundary at infinity ∂M̃ induces an ori-
entation on each horocycle of T 1M̃ . One vector v ∈ T 1M̃ divides its horocycle
H̃u(v) in two connected sets, one in the positively oriented direction, H̃u

R(v), and

the other in the negatively oriented direction, H̃u
L(v). The group of isometries Γ

is orientation-preserving because M is orientable. As a consequence, horocycles
on T 1M̃ descend to T 1M as oriented immersed curves.

Horocycles are diffeomorphic to the real line. Let H be a horocycle of T 1M̃ .
The interval (v, w) ⊂ H between two vectors v, w ∈ H is the connected subset
bounded by v and w. The map PH : H → ∂M̃ \ {ξ}, where ξ is the center of
H, which projects a vector to its positive endpoint, is continuous and surjective.
We also observe that PH(v) = PH(w), with v ̸= w, implies, according to the flat
strip theorem, that the curvature vanishes on the strip π(∪t∈Rgt((v, w))). Such an
interval (v, w) will be called a flat piece of horocycle (see Figure 5.1). It is clear
that H does not contain any flat piece if and only if PH is injective, in which case
PH is also a homeomorphism.

Figure 5.1: Universal cover of the surface M with a region where the curvature vanishes
(shadowed region). We represent an unstable horocycle with a flat piece.
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5.1.2 Continuity of the measures on the horocycles

Let M be a connected complete non-elementary Riemannian surface of nonpositive
curvature with a closed rank 1 geodesic. We assume additionally that the group
Γ is divergent. The next result expresses the continuity of the measure µH with
respect to the horocycle H, and is proved from the simplified expressions of the
measures.

Proposition 5.1.1. The map

{(v, w) ∈ T 1M̃ × T 1M̃ |w ∈ H̃u(v)} −→ R
(v, w) 7−→ µH̃u(v)((v, w))

is continuous.

Proof. The measure of the interval (v, w) is

µH̃u(v)((v, w)) =

∫
PH̃u(v)((v,w))\S̃+

1(v,w)(P
−1

H̃u(v)
(η))ϕH̃u(v)(η) dσ0(η).

The set PH̃u(v)((v, w)) is an interval of ∂M̃ that satisfies (v+, w+) ⊂ PH̃u(v)((v, w)) ⊂
[v+, w+]. Since σ0 has no point masses [LP16, Proposition 5], we can write

µH̃u(v)((v, w)) =

∫
(v+,w+)\S̃+

ϕH̃u(v) dσ0.

Let f : T 1M̃ → R be the real continuous function given by

f(u) = exp(δβu+(0, π(u))).

Because of the definition of ϕH̃u(v) and the fact that (v+, w+)\S̃+ ⊂ PH̃u(v)(H̃
u(v)∩

R̃1), we have

∀η ∈ (v+, w+) \ S̃+, ϕH̃u(v)(η) = e
δβη(0,π(P

−1

H̃u(v)
(η)))

= f(P−1

H̃u(v)
(η)).

Let v ∈ T 1M̃ and w ∈ H̃u(v). We want to show the continuity of the map in
the statement at (v, w). Let us explain step by step the needed estimates and at
the end we will apply them. We fix ε > 0.

Boundedness of the integrated function. Let K be a compact neigh-
borhood of [v, w] in T 1M̃ . By the continuity of horocycles there are open neigh-
borhoods V1 ⊂ K and W1 ⊂ K of v and w in T 1M̃ such that if v′ ∈ V1 and
w′ ∈ W1∩H̃u(v′) the interval (v′, w′) is contained in K. The function f is bounded
on K by a constant C > 0.

For all v′ ∈ V1, for all w′ ∈ W1 ∩ H̃u(v′), we have the inclusion

P−1

H̃u(v′)
((v′+, w

′
+) \ S̃+) ⊂ (v′, w′) ⊂ K,

which says that, for all η ∈ (v′+, w
′
+) \ S̃+, the quantity f(P−1

H̃u(v′)
(η)) is bounded

by C.

Approximation of intervals. Since σ0 has no point masses and is outer
regular, there are open intervals A and B around v+ and w+ in ∂M̃ of arbitrarily
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small measure. We choose A and B such that σ0(A) < ε/16C and σ0(B) <
ε/16C. By the continuity of the projection T 1M̃ → ∂M̃ to the endpoint, there
are neighborhoods V2 and W2 of v and w such that V2+ ⊂ A and W2+ ⊂ B. For
every v′ ∈ V2 and w′ ∈ W2, we have

(v+, w+)△(v′+, w
′
+) ⊂ [v+, v

′
+] ∪ [w+, w

′
+] ⊂ A ∪B,

so σ0((v+, w+)△(v′+, w
′
+)) ≤ σ0(A) + σ0(B) < ε

8C
(Figure 5.2).

Figure 5.2: Positions of the endpoints of the vectors v, w, v′ and w′.

Continuity of the integrated function uniform with respect to η. First,
we apply the inner regularity of σ0: there exists a compact subset F ⊂ (v+, w+)\S̃+

such that σ0(((v+, w+) \ S̃+) \ F ) < ε/8C.

If v′ ∈ T 1M̃ and η ∈ PH̃u(v′)(H̃
u(v′) ∩ R̃1) then (v′−, η) ∈ E1(M̃). Since

F ⊂ (v+, w+) \ S̃+ ⊂ PH̃u(v)(H̃
u(v) ∩ R̃1), one has that {v−} × F is a subset of

E1(M̃). The subset E1(M̃) is open in ∂M̃ × ∂M̃ and {v−} × F is compact, so
there exists a neighborhood A of v− in ∂M̃ such that A× F ⊂ E1(M̃). Let U be
a neighborhood of v such that U+ is contained in A. Now there is a well defined
map

U × F −→ T 1M̃
(v′, η) 7−→ P−1

H̃u(v′)
(η) = P−1(v′−, η, βv′−(0, π(v′))),

which is continuous, because P−1 is continuous on E1(M̃)×R and the Busemann
function depends continuously on its three variables. Composing by f we obtain
a continuous map from U×F to R. Since F is compact, this map is continuous at
v uniformly with respect the second variable: there exists a neighborhood U0 ⊂ U
of v such that, for all v′ ∈ U0, for all η ∈ F ,

|f(P−1

H̃u(v′)
(η)) − f(P−1

H̃u(v)
(η))| < ε

2σ0((v+, w+))
.

Conclusion. We choose a subset F of (v+, w+) \ S̃+ as explained above.
Thanks to the integral expressions of the measures we can write, for v′ ∈ T 1M̃
and w′ ∈ H̃u(v′),

|µH̃u(v)((v, w))−µH̃u(v′)((v
′, w′))| ≤

∫
F∩(v′+,w′

+)

|f(P−1

H̃u(v)
(η))−f(P−1

H̃u(v′)
(η))| dσ0(η)

(∗)

+

∫
(((v+,w+)\F )∪((v+,w+)△(v′+,w′

+)))\S̃+

(|f(P−1

H̃u(v)
(η))| + |f(P−1

H̃u(v′)
(η))|) dσ0(η). (∗∗)
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We can now see that both terms are small if (v′, w′) is close to (v, w).

We set V = U0 ∩ V1 ∩ V2 and W = W1 ∩W2. Let v′ ∈ V and w′ ∈ W ∩ H̃u(v′),
so that we can apply all the bounds found above. In the first integral (∗), the
integrand is bounded by ε

2σ0((v+,w+))
and the integrating set has measure at most

σ0((v+, w+)) (we assume σ0((v+, w+)) > 0 because if σ0((v+, w+)) = 0 the integral
is trivially 0). In (∗∗), the integrand is bounded by 2C and the measure of the
integrating set is at most σ0((v+, w+) \ F ) + σ0((v+, w+)△(v′+, w

′
+)) < ε/4C. So

the result is less than ε.

5.1.3 Definition of the horocyclic flow on a certain subset of T 1M

Next, we define a subset of the unit tangent bundle T 1M̃ of M̃ and we study the
properties of its horocycles and their associated measures. Let Σ̃0 ⊂ T 1M̃ denote
the set of vectors whose horocycle contains a rank 1 recurrent vector, that is to
say,

Σ̃0 =
⋃

v∈R̃ec
1

H̃u(v).

This set is invariant under Γ, under the geodesic flow and under the horocyclic
foliation, in the sense that Σ̃0 contains a horocycle H as soon as it contains one
vector of H. Our set Σ̃0 contains a Gδ-dense set, namely the set of rank 1 recurrent
vectors Rec1. The latter is the intersection of the set of rank 1 vectors, which is
open and dense [Bal95, Corollary III.3.8], with the set of recurrent vectors, which
is Gδ-dense when all the vectors of T 1M are nonwandering. The set Σ̃0 also has
full µBM -measure. By Lemma 4.2.2, all the vectors in Σ̃0 have rank 1 and each
horocycle H ⊂ Σ̃0 coincides with the unstable manifold. This also implies that
the horocycles in Σ̃0 do not contain any flat pieces of horocycle.

First, we state and prove a few properties of individual measures on horocycles
that later will help us define the parametrization.

Lemma 5.1.2. Let H be a horocycle of T 1M̃ and v ∈ H:

(i) The measure µH has no point masses.

(ii) If H does not contain any flat piece, then µH is of full support in H.

(iii) The measure µH is finite on compact sets.

(iv) If v is in Σ̃0, then the half horospheres H̃u
R(v) and H̃u

L(v) have infinite mea-
sure.

Proof. (i) We know that σ0 has no point masses. If w ∈ H, σ0({v+}) = 0 directly
implies that µH({v}) = 0.

(ii) If U ⊂ H is an open nonempty subset, PH(U) is also open and nonempty.
So σ0(PH(U)) > 0 because its support is Λ = ∂M̃ . Then µH(U) =

∫
PH(U)

ϕvdσ0 >
0.

(iii) If K ⊂ H is compact, PH(K) is also compact. The function ϕv is bounded
on PH(K). The volume part of the integral is bounded by the length of K. Then
it is clear that µH(K) is finite.
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(iv) By (iii) it is clear that, for every w ∈ H̃u(v), the measure of H̃u
R(v) is

infinite if and only if the measure of H̃u
R(w) is also infinite. So we can assume that

v is in R̃ec
1
.

Let Bu(w, r) denote the open ball in H̃u(w) of center w and radius r > 0. The
balls Bu(w, 1) have two boundary points aw, bw ∈ H̃u(w) that depend continuously
on w so that Bu(w, 1) = (aw, bw). In view of Proposition 5.1.1, the function
w 7→ µH̃u(w)((aw, w)) is continuous. The continuity at v implies that there exists

a neighborhood U of v in Σ̃0 such that for all w ∈ U

µH̃u(w)((aw, w)) ≥ 1

2
µH̃u(v)((av, v)). (5.1)

The inequality is in fact valid on ∪γ∈ΓγU because the family of measures is Γ-
invariant.

Since v is recurrent, there is a sequence tk converging to −∞ and isometries
γk ∈ Γ such that the the distance d1(gtkv, γkv) goes to 0. For k big enough, the
vector gtkv is in γkU , so Equation 5.1 remains true if we replace w by gtkv. Let

ak, bk be the points in H̃u(gtkv) such that Bu(gtkv, 1) = (ak, bk). Using the fact
that the measures on horocycles expand exponentially, we obtain

µH̃u(v)((g−tkak, v)) = e−tkµH̃u(gtkv)
((ak, gtkv)) ≥ 1

2
e−tkµH̃u(v)((av, v)).

This shows that in one half-horocycle there are subsets of arbitrarily large measure.
We proceed analogously for the other half-horocycle, with bk instead of ak.

We can now define a suitable parametrization of the horocyclic flow on the set
Σ̃0. Given v ∈ Σ̃0, we consider the function mv : H̃u(v) → R defined by

mv(w) :=


µH̃u(v)((v, w)) if w ∈ H̃u

R(v),

0 if w = v,

−µH̃u(v)((w, v)) if w ∈ H̃u
L(v).

The mapmv is well defined by properties (ii) and (iii) of Lemma 5.1.2, is continuous
by (i), strictly increasing (with the order given by the orientation) by (ii) and
surjective by (iv). Then mv is in fact a homeomorphism, because the domain and
the codomain of the function are topologically the real line.

Definition 5.1.1. We define a horocyclic flow hs : Σ̃0 → Σ̃0 by

∀v ∈ Σ0,∀s ∈ R, hs(v) = m−1
v (s).

It is clear that hs satisfies the group law, hs1 ◦ hs2 = hs1+s2 , because of the
additivity of the measure and property (i). For the same reasons, the mea-
sure of every interval I ⊂ Hu(v) (hence, every measurable set) is preserved,
µHu(v)(hs(I)) = µHu(v)(I). Thanks to the product structure of the measure (Equa-
tion 3.3), we deduce that hs preserves µBM . The expanding property of the mea-
sures on horocycles is transformed into the commutation relation gt◦hs = hseδt ◦gt
between the geodesic flow and the horocyclic flow. The Γ-invariance of the mea-
sures implies the Γ-invariance of hs. Only the continuity of hs remains to be
proven.
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Lemma 5.1.3. The flow
R×Σ̃0 −→ Σ̃0

(s, v) 7−→ hs(v)

is continuous.

Proof. Let s ∈ R and v ∈ Σ̃0 and consider sequences sk → s and vk → v. We
know that the horocycles H̃u(w) depend continuously on w, so for each k there
exists a vector wk ∈ H̃u(vk) such that the sequence {wk}k converges to hs(v). By
Proposition 5.1.1, we have µH̃u(vk)

((vk, wk)) → µH̃u(v)((v, hs(v))) = |s|. We deduce

then that the measures of the intervals (wk, hsk(vk)) tend to 0. If the distance
between wk and hsk(vk) tends to 0 too, then we obtain hsk(vk) → hs(v) so the flow
is continuous at (s, v).

Otherwise, we get a contradiction. To see this, suppose that, for some ε > 0
and subsequence ki, the Riemannian distance d1(wki , hski (vki)) is greater than ε.

Then, since wki → hs(v), for i big enough hski (vki) is at distance greater than

ε/2 from hs(v). But the sequence hski (vki) must accumulate at some point ζ in

H̃u(v) ∪ {v−}, outside of a ball centered at hs(v). Again by the continuity of the
measure, it follows that µH̃u(v)((hs(v), ζ)) = 0, which is impossible because the
interval is nonempty.

5.1.4 Unique ergodicity of the horocyclic flow on Σ0

To study the ergodic properties of the horocyclic flow we introduce the Birkhoff
averages. Let f : T 1M → R be a Borel function and f̃ : T 1M̃ → R its lift. For a
number R > 0 and v in Σ̃0, we define

MR(f)(v) :=
1

R

∫ R

0

f̃(hs(v))ds.

A simple computation using the commutation relation between the geodesic and
the horocyclic flow shows that MR(f ◦ gt) = MReδt(f) ◦ gt.

Moreover, if we assume that f is bounded and uniformly continuous, the
equidistribution under the action of the geodesic flow we showed in Theorem A
implies that the Birkhoff averages M1(f ◦ gt) converge pointwise to

1

µBM(T 1M)

∫
fdµBM

when the time t goes to +∞. However, we need to understand the behavior of
MR(f) when R goes to infinity, that is to say, the equidistribution of horocycles
in length. To do this we will use the relation M1(f ◦ gt) = Meδt(f) ◦ gt and some
kind of uniform convergence of the averages M1(f ◦ gt) towards the average of f
on the unit tangent bundle of the manifold M , which we are going to prove.

It is clear from the continuity of the measures on horocycles (Proposition 5.1.1)
that the function M1(f ◦ gt) is continuous on Σ̃0. We can prove the following
improved result.

Proposition 5.1.4. Let M be an orientable rank 1 complete connected Rieman-
nian surface with nonpositive curvature satisfying the duality condition. Let f be a
bounded and uniformly continuous function on T 1M . Then the family of functions
{M1(f ◦ gt)}t>0 is equicontinuous at every vector of Σ̃0.



82 CHAPTER 5. HOROCYCLIC FLOWS

Proof. Let v be a vector in Σ̃0. The average of the horocyclic flow can be written
explicitly as

M1(f ◦ gt)(w) =

∫
(w,h1(w))

f̃ ◦ gt dµH̃u(w) =

=

∫
(w+,h1(w)+)

f̃ ◦ gt(P−1

H̃u(w)
(η))e

δβη(0, π(P
−1

H̃u(w)
(η)))

dσ0(η). (5.2)

Fix ε > 0. We consider a relatively compact neighborhood U of v such that,
for all w ∈ U ,

σ0((v+, h1(v)+)△(w+, h1(w)+)) < ε.

Let C be a uniform bound of exp(δβη(0, P
−1

H̃u(w)
(η))) for w ∈ U and η in a compact

neighborhood of (v+, h1(v)+). When w approaches v, the set (w+, h1(w)+) will be
contained in this compact neighborhood. Then we can change the domain of
integration in Equation 5.2 to (v+, h1(v)+) with an error of ε ∥f∥∞C at most.

By the uniform continuity of f̃ , there is a number r > 0 such that |f̃(w) −
f̃(w′)| < ε if d1(w,w

′) < r. If w is close enough to v, for all η ∈ (v+, h1(v)+),
P−1

H̃u(w)
(η) is at distance less than r from P−1

H̃u(v)
(η). Applying the geodesic flow

gt, t ≥ 0 to these two vectors, their distance does not increase. Hence, when w is
close to v,

∀t ≥ 0, ∀η ∈ (v+, h1(v)+), |f̃(gt(P
−1

H̃u(w)
(η))) − f̃(gt(P

−1

H̃u(v)
(η)))| < ε.

This is essentially the same as we did in property (ii) of the proof of Proposition
4.2.1. We can also control the difference between the quantity exp(δβη(0, P

−1

H̃u(w)
(η)))

and exp(δβη(0, P
−1

H̃u(v)
(η))) if we consider a w close enough to v. So the values of

the functions at w are close to the values at v uniformly in t when the two vectors
are close. This shows that {M1(f ◦ gt)}t>0 is equicontinuous at v.

Both the set Σ̃0 and the functions MR(f) : Σ̃0 → R are invariant under Γ, so
they descend respectively to a set Σ0 ⊂ T 1M and some functions M̄R(f) : Σ0 → R.
The family of functions is still M̄1(f ◦ gt) equicontinuous. In the next proposition,
we combine this with the equidistribution of horocycles to show that M̄1(f ◦ gt)
converges uniformly on compact subsets of Σ0.

Proposition 5.1.5. Let M be an orientable rank 1 complete connected Rieman-
nian surface with nonpositive curvature satisfying the duality condition. Assume
that the Bowen-Margulis measure µBM is finite. Let f be a bounded and uniformly
continuous function on T 1M . Then the functions M̄1(f ◦ gt) : Σ0 → R converge
uniformly on compact sets to the constant

∫
fdµBM/µBM(T 1M) when the time t

tends to +∞.

Proof. The functions M1(f ◦ gt) are bounded by the uniform norm ∥f∥∞. Let
K be a subset of Σ0. We apply the Arzelà-Ascoli theorem on the space of con-
tinuous functions C(K). For every uniformly continuous and bounded function
f : T 1M → R, the family {M̄1(f ◦ gt)|K}t>0 ⊂ C(K) is equicontinuous and
uniformly bounded, so it is a relatively compact subset of C(K) in the uniform
convergence topology. On the other hand, M̄1(f ◦ gt) converges pointwise on K
to

∫
fdµBM/µBM(T 1M) when t → +∞. This is enough to conclude that the

convergence is uniform, as we recall below.
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Lemma 5.1.6. Let {fn} be a family of functions relatively compact in the uniform
topology. Assume that fn converges pointwise to a function f̄ . Then, fn converges
uniformly to f̄ .

Proof. Assume that fn does not converge uniformly to f̄ . Then {fn} has an accu-
mulation point g different from f̄ , so we can write g = lim fnk

for a subsequence
nk. In particular, fnk

converges pointwise to g. By uniqueness of the limit, g and
f̄ are equal, which contradicts the assumption.

Finally, we state Theorem B again and prove it with the help of the Birkhoff
averages. Recall that Σ0 is the set of vectors whose horosphere contains a rank 1
recurrent vector, and Σ0 has full µBM -measure in T 1M .

Theorem 5.1.7. Let M be an orientable rank 1 complete connected Riemannian
surface with nonpositive curvature satisfying the duality condition. Assume that
the Bowen-Margulis measure µBM is finite. Then every finite Borel measure on Σ0

invariant under the horocyclic flow hs is a constant multiple of the Bowen-Margulis
measure µBM |Σ0 restricted to Σ0.

Proof. Firstly, let us prove that, for every bounded and uniformly continuous func-
tion f : T 1M → R and for every vector v in Σ0, there exists a sequence tn → +∞
such that the Birkhoff integral M̄etn (f)(v) tends to λ :=

∫
fdµBM/µBM(T 1M).

There is a recurrent vector w in the unstable horocycle of v, since v is in Σ0. Let
tn be a sequence tending to +∞ such that g−tn(w) → w. Then obviously g−tn(v)
also tends to w. We consider the compact set K := {g−tn(v)}n≥0 ∪ {w} ⊂ Σ0. By
Proposition 5.1.5, the functions M̄1(f ◦ gt) converge uniformly on K to the global
average λ of f . Therefore, using the time-scale relation, we have

|M̄etn (f)(v)− λ| = |M̄1(f ◦ gtn)(g−tn(v))− λ| ≤ sup
u∈K

|M̄1(f ◦ gtn)(u)− λ| n→+∞−−−−→ 0.

We can now prove that the restriction µBM |Σ0 of µBM to Σ0 is the unique
measure on Σ0 invariant under hs, up to a multiplicative constant. Suppose that
ν is an ergodic hs-invariant probability measure on Σ0. By the Birkhoff ergodic
theorem, for every bounded and uniformly continuous function f : Σ0 → R, for
ν-a.e. v in Σ0, we have

M̄R(f)(v) =
1

R

∫ R

0

f(hs(v))ds
R→+∞−−−−→

∫
Σ0

fdν.

We take v one of the points of Σ0 where M̄R(f) converges to
∫
fdν. We can

extend f to a bounded and uniformly continuous function f̂ on T 1M , because
Σ0 is dense in T 1M . As we have seen, there is a sequence Rn = etn where
M̄R(f̂)(v) = M̄R(f)(v) tends to λ as well. So we obtain∫

Σ0

fdν = λ =

∫
T 1M

fdµBM

µBM(T 1M)
=

∫
Σ0
fdµBM

µBM(Σ0)
,

because Σ0 has full µBM -measure. We have concluded that ν is equal to the
normalization of µBM |Σ0 .
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5.1.5 Alternative proof of the unique ergodicity

We would like to point out another way to prove Proposition 5.1.5, which does
not require the equidistribution of horocycles (Theorem 4.2.4). Instead, we use a
version of the Arzelà-Ascoli theorem for the compact-open topology, the ergodic
theorem and the fact that there exists a dense horocycle in Σ0. Actually, we can
prove that all the horocycles of Σ0 are dense.

Lemma 5.1.8. Let M be a rank 1 nonpositively curved complete connected Rie-
mannian surface with the duality condition. Then every horocycle H contained in
Σ0 is dense in T 1M .

Proof. This follows directly from two results of Eberlein. A nonpositively curved
complete connected manifold that satisfies the visibility axiom and the duality
condition, like M , has a dense horocycle in T 1M [Ebe73a, Theorem 5.2]. Next
we apply [Ebe73a, Theorem 5.5] to M , which says that a horocycle Hu(v) is
dense in T 1M if and only if v is not almost minimizing. We say that v is almost
minimizing if there exists a constant C > 0 such that, for all t ≥ 0, we have
d(π(v), π(gt(v))) ≥ t − C. If a horocycle H is contained in Σ0, then there is a
recurrent vector in H and, in particular, this vector is not almost minimizing.
Thus, the horocycle H is dense in T 1M

We consider the space of continuous functions C(Σ0) on the set Σ0 equipped,
this time, with the compact-open topology. Recall that, for functions on a metric
space, the convergence in the compact-open topology is equivalent to the uniform
convergence on compact subsets.

Proof of Proposition 5.1.5. Let f be a bounded and uniformly continuous func-
tion on T 1M . Applying the Arzelà-Ascoli theorem for the compact-open topology
[Dug66, Theorem XII.6.4], since the family of functions {M̄1(f ◦gt)}t>0 is equicon-
tinuous and uniformly bounded, we obtain that it has a compact closure in C(Σ0)
endowed with the compact-open topology. To complete the proof, we show that
the only accumulation point of {M̄1(f ◦ gt)}t>0 in the compact-open topology is
the constant function

∫
fdµBM/µBM(T 1M).

Let φ in C(Σ0) be the limit of a sequence M̄1(f ◦ gtk) in the compact-open
topology, where tk → +∞. By the dominated convergence theorem, φ is the limit
in L2(Σ0, µBM |Σ0) of the same sequence. On the other hand, we apply the L2 er-
godic theorem for the system (Σ0, hs, µBM |Σ0) to the function f ∈ L2(Σ0, µBM |Σ0).
We conclude that M̄t(f) converges to an hs-invariant function f̄ in the L2 norm,
with the equality

∫
f̄dµBM =

∫
fdµBM . Thanks to the gt invariance of µBM , we

have the inequality∥∥φ− f̄ ◦ gtk
∥∥
2
≤

∥∥φ− M̄1(f ◦ gtk)
∥∥
2

+
∥∥f̄ − M̄etk (f)

∥∥
2
,

which implies the L2-convergence of f̄ ◦ gtk to φ, because both terms on the right
side tend to zero. The function f̄ is a.e. hs-invariant, so f̄ ◦ gtk are also a.e.
invariant because the geodesic and the horocyclic flow commute. Then their limit,
the continuous function φ defined on Σ0, is invariant under hs.

In brief, the function φ is constant on the orbits of hs, and these orbits are
dense by Lemma 5.1.8. Since φ is continuous, we conclude that it is constant on
Σ0. In fact, the value of the constant is

∫
fdµBM/µBM(T 1M), because we have
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∫
φ dµBM =

∫
f̄ ◦ gtk dµBM =

∫
f̄ dµBM =

∫
f dµBM .

□

5.1.6 Final remark

Theorem 5.1.7 does not solve completely the problem of the horocyclic flow in
nonpositive curvature, since it does not say what happens to the flow outside
the set Σ0. For instance, we wonder if a horocyclic flow defined everywhere on
a compact nonpositively curved surface is uniquely ergodic. We will study this
question for the class of compact manifolds without flat strips in Section 5.3.

5.2 Reparametrization of the horocyclic flow

In this section we will study how invariant measures are transformed by a change
of parametrization. This will eventually allow us to conclude that the unique
ergodicity also holds for the arc-length parametrization. We start by a general
result on reparametrization of measures.

5.2.1 A general reparametrization result

Let X be a topological space. A flow on X is a map

X × R −→ X
(x, t) 7−→ ft(x).

satisfying for all x ∈ X and t1, t2 ∈ R, f0(x) = x and ft1+t2(x) = ft1(ft2(x)). By
abuse of notation, we denote the flow by ft. We say that the flow ft is continuous
if the map (x, t) 7→ ft(x) is continuous. The orbit of x ∈ X is the set {ft(x)}t∈R.
The point x is fixed by the flow if its orbit consists of a single point.

Let ft be a continuous flow onX. A Borel measure µ onX is said to be invariant
by ft if for every Borel subset A of X we have, for all t ∈ R, µ(ft(A)) = µ(A).
Let Mes(ft) denote the set of locally finite Borel measures on X invariant by ft.
Let Prob(ft) be the subset of Mes(ft) consisting of the probability measures. The
flow ft is uniquely ergodic if the set Prob(ft) consists of a single measure. The
next result is due to M. Beboutoff and W. Stepanoff in 1940.

Theorem 5.2.1. [BS40] Let X be a separable metric space. Let ft be a continuous
flow on X without fixed points. Let gt be another continuous flow on X with the
same orbits than ft, i.e. for all x ∈ X, we have {gt(x)}t∈R = {ft(x)}t∈R. Then
there is a bijective correspondence Φ : Mes(ft) → Mes(gt).

The correspondence Φ will be described in the next section in the setting of
horocyclic flows. If X is a compact space, since every locally finite measure is in
fact finite, the map Φ given in the theorem is an isomorphism between the spaces
of finite Borel invariant measures of ft and gt. This induces a bijection between
Prob(ft) and Prob(gt). In particular, ft is uniquely ergodic if and only if gt is
uniquely ergodic.

However, in a general separable metric space, we think that there is no reason
why the map of the theorem would send finite measures to finite measures, and
infinite measures to infinite measures.
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5.2.2 Reparametrization of the horocyclic flow on a compact surface

In this section, we apply the ideas of Beboutoff and Stepanoff [BS40] to establish
what happens to a measure invariant by a horocyclic flow under a change of
parametrization. We specify the bijection Φ for a horocyclic flow on a compact
surface.

In what follows, let M denote an oriented compact connected rank 1 surface
with nonpositive curvature. Such a manifold M is complete, has a rank 1 closed
geodesic, and the covering transformations group Γ is non-elementary and diver-
gent [Kni98, Theorem 4.3]. Moreover, the Bowen-Margulis measure we defined in
Section 3.3 is finite.

By horocyclic flow we mean a continuous flow hs on T 1M whose orbits are the
unstable horocycles, i.e

∀v ∈ T 1M, {hs(v)}s∈R = Hu(v).

Definition 5.2.1. The Lebesgue horocyclic flow hLs is given by the arc length of
the horocycles: for any v ∈ T 1M and s ∈ R, the vector hLs (v) is the vector of
Hu(v) that we get by traveling a distance |s| on Hu(v) from v in the positive or
negative direction accordingly to the orientation depending on the sign of s. We
will say that the horocyclic flow hLs has the Lebesgue parametrization.

A horocyclic flow hs on T 1M is lifted to a horocyclic flow h̃s on the unit
tangent bundle T 1M̃ of the universal cover satisfying h̃s(γv) = γh̃s(v) for every

s ∈ R, v ∈ T 1M̃, γ ∈ Γ. Conversely, a horocyclic flow h̃s on T 1M̃ with the
property h̃s(γv) = γh̃s(v) passes to the quotient T 1M giving a horocyclic flow hs.

Moreover, hs-invariant measures on T 1M are in correspondence with h̃s-invariant
measures on T 1M̃ which in addition are Γ-invariant.

The weak unstable manifold W̃wu(v) of a vector v ∈ T 1M̃ is the union of all
horocycles along the geodesic generated by v,

W̃wu(v) = ∪t∈RH(gtv) = {w ∈ T 1M̃ | w− = v−},
and has dimension 2. In the universal cover, the weak stable manifold W̃ws(v) =
−W̃wu(−v) of a vector v ∈ T 1M̃ is a section of the flow in the sense of [BS40] in
many cases, as explained in the next lemma.

Lemma 5.2.2. Let v ∈ T 1M̃ . Assume that the weak stable manifold W̃ws(v) of v
has no rank 2 vectors. Then for every w ∈ T 1M̃ \ W̃wu(−v) = {u ∈ T 1M̃ |u− ̸=
v+}, there exists a unique time s ∈ R such that h̃s(w) ∈ W̃ws(v).

Proof. It is known that a nonflat compact surface M with nonpositive curvature
satisfies the visibility axiom, which means that any two distinct points of the
boundary ∂M̃ can be joined by a geodesic on M̃ [Ebe79, Proposition 2.5]. If v
and w are as in the statement, the points v+ and w− ∈ ∂M̃ are distinct, so there
is at least a geodesic between them. Hence, there exists a vector u in the unstable
horocycle H̃u(w) of w pointing to v+. This vector can be written as u = h̃s(w) for
some s ∈ R and is in W̃ws(v).

To prove the uniqueness, let us suppose that for some different reals s and s′,
h̃s(w) and h̃s′(w) are in the weak stable manifold W̃ws(v). Then the vectors h̃s(w)

and h̃s′(w) are asymptotic both for positive and negative time, so the correspond-
ing geodesics bound a flat strip. This would imply that these vectors have rank
2, which contradicts the hypothesis that W̃ws(v) has no such vectors.
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The condition that W̃ws(v) has no rank 2 vectors is equivalent to the fact that
v+ is not in the set S̃+ of endpoints of vectors of rank 2. We know that S̃+ has
zero σ0-measure, so its complement must be dense in ∂M̃ . This ensures that there
are enough sections for the horocyclic flow.

We recall how an invariant measure is locally disintegrated. Let µ ∈ Mes(h̃s)
be an invariant measure. Given a Borel subset A of a section W̃ws(v), we consider
the function ϕA : [0, 1] → R+ ∪{+∞} defined by

ϕA(s) = µ(h̃[0,s](A)).

Let us assume that ϕA(1) is finite. Then we have, for any integer number n ≥ 1,

ϕA(0) = µ(A) ≤ µ(h̃[0,1/n)(A)) =
1

n

n−1∑
k=0

µ(h̃k/n(h̃[0,1/n)(A)))

=
1

n
µ(h̃[0,1)(A)) ≤ ϕA(1)

n
,

hence ϕA(0) = 0. Moreover, for every two nonnegative numbers s, t such that
s+ t ≤ 1, we have

ϕA(s+ t) = ϕA(s) + µ(hs(h(0,t](A))) = ϕA(s) + ϕA(t) − ϕA(0) = ϕA(s) + ϕA(t)

thanks to the invariance of µ. Since ϕA is monotonic, we deduce that it is linear,
so there is a constant lA ≥ 0 such that ϕA(t) = lAt for all t ∈ [0, 1].

We now define a measure µW̃ws(v) on W̃ws(v) which associates the value lA =

ϕA(1) to the set A if ϕA(1) is finite, and the value ∞ otherwise. It is not difficult
to check that µW̃ws(v) is a Borel locally finite measure and it is the same for two
vectors on the same weak stable leaf. Furthermore, the measure µ is the product
of the Lebesgue measure on each horocycle by the measure µW̃ws(v) (Figure 5.3):

for every Borel subset E ⊆ T 1M̃ \ W̃wu(−v) we have

µ(E) =

∫
W̃ws(v)

∫
R
1E(h̃s(u)) ds dµW̃ws(v)(u).

Figure 5.3: Decomposition of µ.

Let h′s be another horocyclic flow of T 1M . The two horocyclic flows h̃s and

h̃′s on T 1M̃ are related by a change of time, given v ∈ T 1M̃ and s′ ∈ R, there

exists a unique s = s(s′, v) ∈ R such that h̃s(v) = h̃′s′(v). In fact, s as a function

R×T 1M̃ → R satisfies:
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(i) For all v ∈ T 1M̃ and s′ ∈ R, we have h̃′s′(v) = h̃s(s′,v)(v).

(ii) s is continuous.

(iii) For all v ∈ T 1M̃, s( · , v) : R → R is strictly monotonic.

(iv) For all v ∈ T 1M̃ , s(0, v) = 0.

(v) For all v ∈ T 1M̃ and s′1, s
′
2 ∈ R, s(s′1 + s′2, v) = s(s′1, v) + s(s′2, h̃s(s′1,v)(v)).

(vi) For all v ∈ T 1M̃ , s′ ∈ R and γ ∈ Γ, s(s′, γv) = s(s′, v)

The converse is also true: given a function s with the properties (ii)-(vi) we can

define a new horocyclic flow by h̃′s′(v) := h̃s(s′,v)(v) which passes to the quotient
T 1M .

As stated in Theorem 5.2.1, there is a correspondence between the measures
invariant by the two flows.

Definition 5.2.2. Given two horocyclic flows h̃s and h̃′s of T 1M̃ , we define a map

Φ : Mes(h̃s) → Mes(h̃′s) putting, for every weak stable manifold W̃ws(v) containing
no rank 2 vectors and any Borel subset E of T 1M̃ \ W̃wu(−v),

(Φ(µ))(E) =

∫
W̃ws(v)

∫
R
1E(h̃′s(u)) ds dµW̃ws(v)(u). (5.3)

By [BS40], the measure µ′ = Φ(µ) is well defined and h̃′s-invariant. If the
measure µ is in addition Γ-invariant, then so is the measure µ′. We obtain, af-
ter normalization of measures, a correspondence between the sets Prob(hs) and
Prob(h′s), because T 1M is compact. We also remark that the measures µW̃ws(v)

are independent of the parametrization of the horocyclic flow.

5.2.3 Horocyclic flows on a subset of T 1M

Let M be a compact oriented nonpositively curved rank 1 surface. We consider
a Borel subset Σ of T 1M which is a union of horocycles and let Σ̃ be its lift
to T 1M̃ . We want to study the continuous flows defined on Σ whose orbits are
horocycles. It is clear that a horocyclic flow hs on T 1M is restricted to a horocyclic
flow hs|Σ on Σ, and that a measure µ ∈ Mes(hs) can be restricted to a measure
µ|Σ ∈ Mes(hs|Σ). In many situations, a certain parametrization of the horocyclic
flow is just defined on a subset Σ and we would like to deduce ergodic properties
for the flow on the whole space from this specific parametrization.

The set Σ does not have to be compact, or even locally compact. Then, if
we have two horocyclic flows hs and h′s on Σ, we still have a bijection between
Mes(hs) and Mes(h′s) by Theorem 5.2.1, but we have no information about the
subsets Prob(hs) ⊂ Mes(hs) and Prob(h′s) ⊂ Mes(h′s) or the relation between
them.

We can restrict the sections of the horocyclic foliation that we found in the
previous section to Σ̃ and disintegrate invariant measures with respect to them.
More precisely, if the set W̃ws(v) ∩ Σ̃ is nonempty and W̃ws(v) has no rank 2

vectors, then W̃ws(v)∩ Σ̃ is a section for the flow h̃s and we can define a measure

µW̃ws(v)∩Σ̃ on this set from a h̃s-invariant measure µ on Σ̃.



5.2. REPARAMETRIZATION OF THE HOROCYCLIC FLOW 89

Another horocyclic flow h̃′s′ on Σ̃ is related to h̃s by a change of time s = s(s′, v)

as before. The h̃′s-invariant measure µ′ = Φ(µ) associated to µ ∈ Mes(h̃s) has a
local expression given by Equation (5.3) as a product of the Lebesgue measures
on horocycles by µW̃ws(v)∩Σ̃.

5.2.4 The Margulis parametrization

Some of the most relevant properties of the horocyclic flow are deduced thanks
to the Margulis parametrization, which allows to apply the usual techniques of
ergodic theory. In Section 5.1, we established the unique ergodicity of the Margulis
horocyclic flow for a certain class of nonpositively curved surfaces. The situation is
different from negatively curved manifolds, because the Margulis parametrization
can only be defined on a certain subset Σ0 of T 1M . Here we will study the relation
between the Margulis parametrization hMs on Σ0 and the Lebesgue parametrization
hLs on T 1M . We will see that the map Φ induces a bijection between Prob(hLs |Σ0)
and Prob(hMs ), which is not trivial at all because no assumptions of compactness
are made on Σ0.

As we have seen in Section 3.4, the set of horocycles of T 1M̃ admits a family
of measures {µH}H , which is exponentially expanded by the geodesic flow,

µgtH = eδtgt∗µH .

To define the Margulis parametrization, we parametrize each horocycle H by the
measure µH . Let us explore a few further properties of these measures.

Lemma 5.2.3. The measures µH are locally finite and have no point masses.

Proof. The measure µH is obtained from the Patterson-Sullivan measure σ0 on
∂M̃ as

dµH(v) = eδβv+ (0,π(v))dσ0(v+).

Since σ0 is finite and the factor is bounded on bounded sets, µH is locally finite.
We also know that σ0 has no point masses, so neither does µH .

The orientation of M induces an orientation on each horocycle H, so there are
well defined positive and negative directions. A vector v ∈ H divides the horocycle
into two infinite intervals, we write H̃u

R(v) for the one in the positive direction and

H̃u
L(v) for the other. Next, we give some conditions on a subset of Σ that allow

us to define the Margulis parametrization.

Proposition 5.2.4. Let M be a compact oriented nonpositively curved rank 1
surface. Let Σ̃ be a Borel subset of T 1M̃ which is a union of horocycles. We
assume that for every horocycle H ⊂ Σ̃,

(i) the measure µH is of full support in H,

(ii) for one (hence for all) vector v ∈ H, the half horocycles H̃u
R(v) and H̃u

L(v)
have infinite measure.

Then there exists a horocyclic flow h̃Ms on Σ̃ such that for all v ∈ Σ̃ and s ∈ R,
we have

µH̃u(v)((v, h̃
M
s (v))) = |s|.

Moreover, the flow h̃Ms satisfies, for every Borel subset A of the horocycle H̃u(v),

µH̃u(v)(A) = Leb({s ∈ R | h̃Ms (v) ∈ A}).
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Proof. Let H be a horocycle in Σ̃ and v ∈ H. We consider the function mv :
H → R defined by mv(w) = ±µH̃u(v)((v, w)) if w ∈ H̃u

R/L(v) and mv(v) = 0. It
is continuous because of Proposition 5.1.1, strictly increasing because µH has full
support in H and is surjective because both half-horocycles have infinite measure.
Since H is homeomorphic to R, the map mv is a homeomorphism. We then define
h̃Ms (v) = m−1

v (s) for all s ∈ R.

It is clear that the orbit of v is the horocycle H. Also, µH has no point masses
by Lemma 5.2.3, so we have mh̃M

s (v)(w) = mv(w) − s. This leads to the additive
property

h̃Ms ◦ h̃Ms′ = h̃Ms+s′ .

To see the equality of measures, we observe that

µH((v, h̃Ms (v))) = |mv(h̃
M
s (v))| = |mv(m

−1
v (s))| = |s|, (5.4)

from the definition of the flow. If we take the pullback m∗
v Leb of the Lebesgue

measure by mv, we can see that m∗
v Leb coincides with µH on the intervals (w1, w2),

so they are equal. Actually, if we set w1 = h̃Ms1 (v) and w2 = h̃Ms2 (v),

Leb(mv((w1, w2))) = Leb((s1, s2)) = |s2 − s1|
= µH((w1, h̃

M
s2−s1

(w1))) = µH((w1, w2)),

thanks to (5.4). Then for every Borel subset A of H, µH(A) = Leb(mv(A)). But

s ∈ mv(A) if and only if h̃Ms (v) = m−1
v (s) ∈ A. This proves the second property.

It remains to prove the continuity of the flow as a map from R×Σ̃ → Σ̃. Fix
a couple (s, v) ∈ R×Σ̃ and consider a sequence ((sk, vk))k of elements of R×Σ̃

converging to (s, v). We need to show that h̃Msk (vk) converges to h̃Ms (v). We assume

s ≥ 0, the other case being done analogously. We know that the horocycles H̃u(w)
depend continuously on w, so for each k there exists a vector wk ∈ H̃u(vk) such

that the sequence {wk}k converges to h̃Ms (v). By Proposition 5.1.1, we know that

µH̃u(vk)
((vk, wk)) converges to µH̃u(v)((v, h̃

M
s (v))) = s when k tends to infinity. We

deduce then that the measures of the intervals (wk, h̃
M
sk

(vk)) go to 0.

We claim that the distance between wk and h̃Msk (vk) tends to 0. Assume, con-
trary to our claim, that, for some ε > 0, there is a subsequence ki such that
the Riemannian distance d1(wki , h̃

M
ski

(vki)) is greater than ε. Let us consider the

points h̃Lε (wki), which are in the interval (wki , h̃
M
ski

(vki)). So the µH̃u(vki )
-measure

of (wki , h̃
L
ε (wki)) also tends to 0. In the limit, we have

µH̃u(v)((h̃
M
s (v), h̃Lε (h̃Ms (v)))) = 0

thanks again to the continuity of the measures. This is a contradiction because
µH̃u(v) has full support in H̃u(v) by hypothesis. Finally, since wk converges to

h̃Ms (v), the sequence h̃Msk (vk) also converges to this point.

The point of this discussion is the following result that establishes a bijection
between the finite invariant measures of the flows hLs |Σ and hMs , both defined on
Σ.
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Proposition 5.2.5. Let Σ̃ be a subset of T 1M̃ satisfying the hypothesis of Propo-
sition 5.2.4. Assume that there are at least two distinct stable manifolds of vectors
in Σ̃ that do not have rank 2 vectors. Consider the horocyclic flow hMs on the
set Σ ⊂ T 1M there defined. The map Φ : Mes(hLs |Σ) → Mes(hMs ) sends finite
measures to finite measures, and infinite measures to infinite measures.

Proof. We first show that the image of a finite measure is finite. Let µ ∈ Mes(h̃Ls |Σ̃)
be a Γ-invariant measure whose projection to Σ ⊂ T 1M is finite and let µ′ = Φ(µ)

be its image in Mes(h̃Ms ).

Let D ⊂ T 1M̃ be a compact fundamental domain for the action of Γ. We want
to show that µ′(D ∩ Σ̃) is finite. Let v1, v2 ∈ Σ̃ two vectors such that W̃ws(v1)
and W̃ws(v2) are distinct sections of the horocyclic flow (i.e. they do not contain
any rank 2 vector). Take disjoint open neighborhoods A,B in ∂M̃ of the points
v1+, v2+. By the continuity of the projection to the boundary we know that the
sets

{w ∈ D |w− /∈ A}, {w ∈ D |w− /∈ B}
are closed in D, therefore compact. They form a cover of D. This reduces the proof
to showing that µ′(K ∩ Σ̃) is finite where K is a compact set such that v0+ /∈ K−,
where v0 is any vector of Σ̃ whose stable manifold has no rank 2 vectors. Let us
fix such a vector v0 until the end of the proof.

By Lemma 5.2.2, for every w ∈ K there exists a number s(w) such that

h̃Ls(w)(w) ∈ W̃ws(v0) (Figure 5.4). We see s(w) as a continuous function from K

to R. It is then bounded by some constant S > 0. The function w 7→ h̃Ls(w)(w) is

also continuous, so the projection of K to W̃ws(v0) is a compact set, denoted by
L. The following inclusion holds,

K ⊂ h̃L[−S,S](L).

Figure 5.4: Definition of s(w).

The problem is reduced now to showing that sets of the form h̃L[−S,S](L) ∩ Σ̃

have finite µ′-measure. Recall that our measure µ is the product of some mea-
sure µW̃ws(v0)∩Σ̃ on W̃ws(v0) ∩ Σ̃ and the Lebesgue measures on the horocycles.
Subsequently,

µ(h̃L[−S,S](L) ∩ Σ̃) = 2S · µW̃ws(v)∩Σ̃(L ∩ Σ̃).

Since h̃[−S,S](L) is covered by a finite number of images of D by elements of Γ, and

D ∩ Σ̃ has finite µ-measure by hypothesis, then the left hand side of the previous
equation is finite, and so is µW̃ws(v)∩Σ̃(L ∩ Σ̃).
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The measure µ′ of the set h̃L[−S,S](L) ∩ Σ̃ can also be decomposed as

µ′(h̃L[−S,S](L) ∩ Σ̃) =

∫
L∩Σ̃

∫ sM (v,S)

sM (v,−S)

ds dµW̃ws(v)∩Σ̃(u),

where sM is the change of time between the Lebesgue and the Margulis flows. If
the quantities sM(v,−S) and sM(v, S) are bounded on the set L∩ Σ̃, then the last
integral is bounded and we obtain the desired result.

We have the equality

sM(v,±S) = ±µH̃u(v)((v, h̃
L
±S(v))).

Thanks to the continuity of the measure on the horocycles, the functions v 7→
µH̃u(v)((v, h̃

L
±S(v))) are continuous (and globally defined). So they are bounded on

L because of the compactness. This completes the proof of the first implication.

Let µ ∈ Mes(h̃Ls |Σ̃) any Γ-invariant measure and assume that its image µ′ =

Φ(µ) in Mes(h̃Ms ) induces a finite measure on the quotient Σ ⊂ T 1M . We need
to show that the µ-measure of D ∩ Σ̃ is finite, where D is a compact fundamental
domain. Similarly to the first situation we can reduce the problem to showing
that, if S > 0, L is a compact subset of W̃ws(v) and v ∈ Σ̃ is a vector whose stable

manifold has no rank 2 vectors, then the sets of the form h̃L[−S,S](L)∩ Σ̃ have finite
µ-measure. Since

µ(h̃L[−S,S](L) ∩ Σ̃) = 2S · µW̃ws(v)∩Σ̃(L ∩ Σ̃),

this is equivalent to showing that L ∩ Σ̃ has finite µW̃ws(v)∩Σ̃-measure.

We know that h̃L[−S,S](L) ∩ Σ̃ has finite µ′-measure, because it can be covered

by finitely many images of D, and D ∩ Σ̃ has finite measure. This measure is the
integral of the function sM(v, S)−sM(v,−S) over L∩Σ̃ with respect to µW̃ws(v)∩Σ̃.

But the function sM(v, S) − sM(v,−S) is strictly positive because S > 0, so the
measure µW̃ws(v)∩Σ̃(L∩ Σ̃) is finite, otherwise we would obtain an infinite integral.

This proves that µ(h̃L[−S,S](L)) is finite, as we wanted.

Corollary 5.2.6. Let M be an oriented rank 1 compact connected Riemannian
surface with nonpositive curvature and let Σ be a subset of T 1M whose lift Σ̃ to
T 1M̃ satisfies the hypothesis of Proposition 5.2.4. Then the map µ 7→ Φ(µ)/Φ(µ)(Σ)
is a bijection between Prob(hLs |Σ) and Prob(hMs ).

We finally apply this result to the subset Σ0 of T 1M defined as the union of
horocycles containing a rank 1 gt-recurrent vector,

Σ0 = ∪v∈Rec∩R1H
u(v).

This set satisfies the hypothesis of Proposition 5.2.4, so the Margulis parametriza-
tion of the horocyclic flow can be defined. In Theorem 5.1.7, we proved that the
Margulis flow on Σ0 is uniquely ergodic. Thanks to the work in this section, we
now know that the same holds for the Lebesgue parametrization.

Theorem 5.2.7. Let M be an oriented rank 1 compact connected Riemannian
surface with nonpositive curvature. In restriction to Σ0, the flow given by the
parametrization by the arc length of the horocycles is uniquely ergodic.
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5.3 Unique ergodicity on compact surfaces without flat
strips

We now look back to Proposition 5.2.4. There seem to be two difficulties in defin-
ing the Margulis parametrization on a given horocycle. One is a rather technical
difficulty, the fact that half-horocycles have infinite measure. We are not sure
to what extent this could fail. Both in Section 5.1 and here, we have worked
under hypothesis where it is true. In contrast, the fact that a horocycle H con-
tains an interval of µH-zero measure is a clear obstruction to the definition of the
parametrization on H. This in fact can only happen if the interval consists of rank
2 vectors. This phenomenon is produced by flat strips.

A flat strip on the universal cover is a totally geodesic submanifold isometric
to the space R×[0, r] for some r > 0. Given a horocycle H in T 1M̃ , an interval
[v, w] ⊂ H consists only of rank 2 vectors if and only if the geodesics generated by
the vectors in [v, w] form a flat strip. In this case, we say that H cuts a flat strip.

In the following we prove that the Margulis parametrization is defined on
the whole unit tangent bundle if M has no flat strips. With the help of this
parametrization, we show that the horocyclic flow is uniquely ergodic using stan-
dard techniques.

Proposition 5.3.1. Let M be an oriented nonpositively curved compact surface
without flat strips. Then for every horocycle H in T 1M̃ the measure µH is of full
support in H and the µH-measure of each half-horocycle is infinite.

Proof. Every interval (v, w) on the horocycle H contains a rank 1 vector. Other-
wise, all the vectors in [v, w] would be of rank 2, so the curvature would vanish
everywhere on the geodesics they generate, and v and w would bound a flat strip.

Since the rank 1 set is open, then (v, w) contains an interval of rank 1 vectors.
Now we use the fact that µH is a positive function times the projection of σ0 on
the rank 1 vectors (Definition 3.4.1). Recall that σ0 is supported on the limit set,
which is the whole boundary ∂M̃ because M is compact, so the measure of (v, w)
is strictly positive. This proves that µH is fully supported.

To prove the infiniteness of the measures µH on half-horocycles, we consider
the map from T 1M to R which sends v to the µHu(v)-measure of the horocyclic ball
of center v and radius 1. This map is continuous, by Proposition 5.1.1, and T 1M
is compact, so it attains an absolute minimum α ∈ R. But the map is everywhere
strictly positive, so the constant α is strictly positive too. Now, a half-horocycle
HR/L in the tangent space of the universal cover M̃ , contains infinitely many
disjoint unstable balls of radius 1, each of them with measure at least α > 0. We
conclude that the µH-measures of the half-horocycles HR/L are infinite.

This result ensures that the conditions of Proposition 5.2.4 are satisfied on
the whole unit tangent bundle. The Margulis parametrization can be defined
everywhere for the class of nonpositively curved compact surfaces without flat
strips. It induces a horocyclic flow hMs on T 1M . We deduce the main result of
this section, namely the unique ergodicity of the horocyclic flow, thanks to the
good properties of this parametrization.

Theorem 5.3.2. Let M be an orientable nonpositively curved compact surface
without flat strips. Then there is a unique Borel probability measure on T 1M
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invariant by hMs . This measure is a constant multiple of the Bowen-Margulis
measure.

Proof. We observe that the Bowen-Margulis measure µBM is invariant by both the
geodesic flow gt and the Margulis horocyclic flow hMs . The expanding property of
the measures on the horocycles translates to the commuting property gt ◦ hMs =
hM
seδt

◦ gt between the flows. In this situation there is an argument of Coudène
to show the unique ergodicity of hMs when µBM is absolutely continuous with
respect to the weak stable foliation [Cou09]. The geodesic flow of a nonpositively
curved surfaces without flat strips does not meet this last requirement because
there is not a local product structure on non-hyperbolic regions. Indeed, weak
stable manifolds are tangent to unstable horocycles on rank 2 vectors. We thus
need to adapt Coudène’s argument.

Fortunately, the absolute continuity of µBM with respect to the weak stable
foliation only intervenes in the proof of the equicontinuity of averages along a
horocycle pushed by the geodesic flow. The latter fact can be shown in our case
using the disintegration of µBM on the boundary ∂M̃ .

Lemma 5.3.3. Let M be an orientable nonpositively curved compact surface with-
out flat strips. Let f : T 1M → R be a continuous function. For every v ∈ T 1M
and R > 0, write

MR(f)(v) :=
1

R

∫ R

0

f(hMs (v))ds.

Then the family of functions {M1(f ◦ gt)}t>0 is equicontinuous at every point
v ∈ T 1M .

Proof. We will rather work on the universal cover. Let f be a real continuous
Γ-invariant function on T 1M̃ . Since Γ is cocompact, the absolute value of f is
bounded by a real constant C > 0. From the definition of h̃Ms , the average of f is

M1(f ◦ gt)(v) =

∫
[v, h̃M

1 (v)]

f ◦ gt dµH̃u(v),

which is also written as

M1(f ◦ gt)(v) =

∫
∂M̃

1[v+,h̃M
1 (v)+]\S̃+

· f ◦ gt ◦ P−1

H̃u(v)
· ϕH̃u(v) dσ0

by Lemma 4.2.3.

Given two vectors v, w ∈ T 1M̃ , we observe

|M1(f ◦ gt)(v) −M1(f ◦ gt)(w)| ≤

≤
∫
∂M̃

|(1[v+,h̃M
1 (v)+]\S̃+

ϕH̃u(v) − 1[w+,h̃M
1 (w)+]\S̃+

ϕH̃u(w)) · f ◦ gt ◦ P−1

H̃u(w)
| dσ0

+

∫
∂M̃

|1[v+,h̃M
1 (v)+]\S̃+

ϕH̃u(v) · (f ◦ gt ◦ P−1

H̃u(v)
− f ◦ gt ◦ P−1

H̃u(w)
)| dσ0

≤ C

∫
∂M̃

|1[v+,h̃M
1 (v)+]\S̃+

ϕH̃u(v) − 1[w+,h̃M
1 (w)+]\S̃+

ϕH̃u(w)| dσ0 (∗)

+

∫
[v,h̃M

1 (v)]

|f ◦ gt − f ◦ gt ◦ P−1

H̃u(w)
◦ PH̃u(v)|dµH̃u(v). (∗∗)
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The term (∗) is independent of t and tends to 0 when w tends to v. This is because
the function 1[w+,h̃M

1 (w)+]\S̃+
ϕH̃u(w) converges almost surely to 1[v+,h̃M

1 (v)+]\S̃+
ϕH̃u(v).

The function P−1

H̃u(w)
◦ PH̃u(v) in the term (∗∗) is defined at least on the set

P−1

H̃u(v)
(PH̃u(w)(H̃

u(w)) \ S̃+), which has full measure. The map

(w, u) 7→ P−1

H̃u(w)
◦ PH̃u(v)(u) = P̄−1(w−, u+, βw−(0, π(w)))

is continuous on its domain.

Given δ > 0, we can take w in a neighborhood of v such that the distance
between u and P−1

H̃u(w)
◦ PH̃u(v)(u) is less than δ for all u ∈ [v, h̃M1 (v)] where the

function is defined. Since u and P−1

H̃u(w)
◦ PH̃u(v)(u) are on the same weak stable

manifold, the distance between them is non-increasing when we apply gt. The
distance between gt(u) and gt ◦ P−1

H̃u(w)
◦ PH̃u(v)(u) is therefore less than δ for all

positive t. In this way, the term (∗∗) is bounded by the modulus of continuity
ωf (δ) of f , which goes to 0 if δ → 0 because f is uniformly continuous. This
proves the equicontinuity of the functions {M1(f ◦ gt)}t>0 at v.

It is straightforward to see that nonwandering rank 1 vectors are contained in
the support of µBM from the definition. But every vector is nonwandering and the
rank 1 set is dense in T 1M , because M is compact. So µBM is fully supported.
It is also known that the horocyclic foliation is transitive [Ebe73a, Theorem 5.2].
These are the remaining ingredients of Coudène’s theorem.

The rest of the proof goes verbatim to the one by Coudène. We explain it for
the sake of completeness. We use the equicontinuity to apply the Arzelà-Ascoli
theorem to {M1(f ◦ gt)}t>0. Hence, {M1(f ◦ gt)}t>0 is relatively compact in the
space of continuous functions on T 1M endowed with the uniform topology. Let
f̄ be an accumulation point of this family, so there is a sequence tk → +∞ such
that M1(f ◦ gtk) converges to f̄ .

The commuting relation between gt and hMs yields the formula

M1(f ◦ gt) = Meδt(f) ◦ gt. (5.5)

Moreover, by the Von Neumann ergodic theorem, MR(f) converges in L2(µBM)
to an hMs -invariant function Pf . Combining both facts with the gt-invariance of
µBM , we have

||f̄ − Pf ◦ gtk ||2 ≤ ||M1(f ◦ gtk) − f̄ ||2 + ||Meδtk (f) − Pf ||2.

This inequality implies that f̄ is a L2 limit of hMs -invariant functions. So f̄ is
continuous and hMs -invariant, and in fact it is constant since hMs has a dense orbit.
This constant is

∫
fdµBM .

Since {M1(f ◦gt)}t>0 has a unique accumulation point, the quantity M1(f ◦gt)
converges uniformly to this accumulation point when t goes to infinity. Using
again (5.5) and the fact that the accumulation point is constant, we deduce that
MR(f) converges uniformly to the same constant when R goes to infinity. This
implies the unique ergodicity of hMs .
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Finally, as a corollary of Theorem 5.3.2, we can deduce the unique ergodicity
of the horocyclic flow for other parametrizations, for example by the arc-length.

Corollary 5.3.4. Let M be an orientable nonpositively curved compact surface
without flat strips. The Lebesgue horocyclic flow hLs on T 1M is uniquely ergodic.



Chapter 6

Unique ergodicity of the
horocyclic flow on compact
surfaces without conjugate points

In the last chapter of this manuscript we use a more powerful approach to inves-
tigate the question of unique ergodicity of the horocyclic flow. This approach is
based on the work of Gelfert and Ruggiero [GR19, GR20], who construct an ex-
pansive model of the geodesic flow on certain compact surfaces without conjugate
points. We will explain how this model is also good to derive ergodic properties
of the horocyclic flow. As we have seen in the previous chapter, the main diffi-
culty in our way to study ergodic properties of the horocycles are strips. These
strips are generated by nontrivial intersections of stable and unstable horocycles.
A naive idea, but which indeed will work very well, is to collapse them, thus ob-
taining a quotient space, and study the dynamics there. We define a continuous
flow on this new space with a uniformly expanding parametrization, which will
contain essentially all the information concerning the horocyclic flow. We will
prove that this quotient flow is uniquely ergodic thanks to the uniformly expand-
ing parametrization, and then lift the result to the original horocyclic flow. Our
results are explained in a recent article [BC22].

We detail the construction of the expansive model in Section 6.1 and prove some
additional properties of the family of measures on the horocycles in Section 6.2.
Once we have defined the uniformly expanding parametrization of the horocyclic
flow in the quotient, we will prove that it is uniquely ergodic in Section 6.3. Finally,
in Section 6.4 we will prove the technical result allowing us to lift unique ergodicity
to the horocyclic flow on the unit tangent bundle of our manifold.

6.1 Quotient by strips

Let M be a compact surface without conjugate points and genus equal or higher
than 2. Such a surfaces admits a metric of negative curvature, and therefore it
satisfies the visibility property. Our goal is to study the dynamics of the geodesic
flow and, especially, the horocyclic flow on T 1M . Our approach is inspired by two
recent works of K. Gelfert and R. Ruggiero [GR19, GR20].

Recall that in T 1M̃ a strip is generated by a nontrivial intersection of the stable
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and the unstable horocycle of a vector ṽ ∈ T 1M̃ ,

Ĩ(v) = H̃u(v) ∩ H̃s(v).

For v ∈ T 1M , we define I(v) and the projection Ĩ(ṽ) by π : M̃ → M for any
lift ṽ of v. The set I(v) is compact and, by Proposition 2.5.2, it is the image of
a continuous curve. Since horocycles on T 1M have no self-intersections [Ebe77,
Theorem 4.5], the curves I(v) have no self-intersections either.

The existence of strips is the most obvious difference between the structure
of strict negatively curved surfaces and the structure of the surface M with the
present conditions. A way to simplify the dynamics of the geodesic flow on the
strips is to identify them into single orbits as follows.

Definition 6.1.1. Let ∼ be the equivalence relation on T 1M defined by

v ∼ w ⇐⇒ w ∈ I(v).

The quotient of T 1M by this equivalence relation is denoted by X = T 1M/ ∼,
and quotient map by χ : T 1M → X. We also define a flow ϕt : X → X by putting
for θ ∈ X, t ∈ R,

ϕt(θ) := χ(gt(v)), where v is any vector in the class θ.

Observe that the flow ϕt is well-defined, because gt preserves the intervals
I(v), and continuous. By definition, χ is a semi-conjugation between gt and ϕt.
Similarly, we define the quotient X̃ of T 1M̃ by the intervals Ĩ(v), and the quotient
map χ̃ : T 1M̃ → X̃. all these objects are related as expressed in the following
diagram.

T 1M̃ X̃

T 1M X

dπ

χ̃

χ

Gelfert and Ruggiero obtained strong results about the structure of the quotient
space and the dynamics of the quotient flow under a regularity assumption on
Green subbundles. These subbundles are the graphs of the stable and the unstable
solutions of the Ricatti matrix equation introduced by L. W. Green in [Gre58] for
manifolds without conjugate points with curvature bounded below. Later, P.
Eberlein used these bundles to characterize Anosov geodesic flows [Ebe73b].

Recall that R1 is the subset of T 1M formed by the vectors where the Green
subspaces are linearly independent and E is the subset of T 1M formed by the
vectors v with trivial interval I(v).

Theorem 6.1.1. [GR20] Let M be a compact connected surface without conjugate
points of genus greater than one and with continuous stable and unstable Green
bundles.

1. The families Hs and Hu are continuous foliations of T 1M by C1 curves which
are tangent to the stable and the unstable Green bundles, respectively.

2. The rank 1 set R1 is invariant, open, and dense in T 1M , and it is contained
in the expansive set E.
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3. The quotient space X is a compact topological 3-manifold and the quotient
flow ϕt is expansive, topologically mixing, and has a local product structure.

The existence of expansive stable and unstable leaves is one of the key ideas
that makes the previous theorem work. We state below the result, which is a
generalization of Lemma 4.2.2.

Proposition 6.1.2. [GR20, Proposition 3.6 and Corollary 3.7] Let M be a com-
pact connected surface without conjugate points of genus greater than one. For
every v ∈ R1 that is forward gt-recurrent, for every w ∈ Hs(v) there exists a
sequence tn → +∞ such that

d(gtn(v), gtn(w)) −−−−→
n→+∞

0 and gtn(v) → v.

Moreover, if the Green bundles are continuous, we have

Hs(v) ⊂ R1 ⊂ E .

The analogous statement holds true for Hu as t→ −∞.

6.2 Properties of the measures on the horocycles

6.2.1 Patterson-Sullivan measure

Let M be a compact higher genus surface without conjugate points. We recall
briefly that there exists a Patterson-Sullivan measure σ0 on the boundary at in-
finity ∂M̃ . In Section 3.3, we defined the Bowen-Margulis measure in terms of
σ0. According to [CKW21, Theorem 5.6], the lift µBM of the measure of maximal
entropy for the geodesic flow gt on T 1M gives full measure to Ẽ ⊂ T 1M̃ and in
restriction to this set it satisfies

dµBM(v) = e2δ⟨v−,v+⟩0dt dσ0(v−) dσ0(v+), (6.1)

where dt stands for the Lebesgue measure on the gt orbit going from v− to v+.

We start by proving that endpoints of strips have zero Patterson-Sullivan mea-
sure. When a vector is both in R1 and gt-recurrent, then its horocycles are entirely
contained in R1 by Proposition 6.1.2. Let Rec1 be the set of vectors in R1 which
are forward and backward gt-recurrent and let R̃ec1 be its lift to T 1M̃ . A subscript

+ on a subset of T 1M̃ denotes its projection to the boundary and a superscript c

denotes its complement.

Lemma 6.2.1. We have R̃ec1+ ∩ (R̃c
1)+ = ∅.

Proof. Let η ∈ R̃ec1+ and take v ∈ R̃ec1 such that v+ = η. By Proposition 6.1.2,
we know that H̃s(v) is contained in the rank 1 set, so W̃ws(v) is also in the rank 1
set by invariance. Then, since the set of vectors pointing positively to η is exactly
W̃ws(v), η is not the endpoint of a vector in R̃c

1.

Let σ0 be a Patterson-Sullivan measure on ∂M̃ .

Lemma 6.2.2. R̃ec1+ has full σ0-measure.
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Proof. The Bowen-Margulis measure µBM is ergodic and fully supported [CKW21].
Since R1 is open and gt-invariant it has full µBM -measure. By the Poincaré recur-
rence theorem, µBM -a.e. vector is forward and backward recurrent, which yields
that Rec1 has full measure, and so does R̃ec1.

Now consider the subset A := {v ∈ T 1M̃ | v− ̸∈ R̃ec1+} of T 1M̃ . The
expression of the Bowen-Margulis measure on Ẽ (Equation 6.1) implies

µBM(A) =

∫
(R̃ec1+)c

∫
∂M̃

∞eδ(ξ|η)0dσ0(η)dσ0(ξ),

so A is negligible in T 1M̃ if and only if R̃ec1+ has full measure in ∂M̃ . Finally,
we can observe that

A = {v ∈ T 1M̃ | v− ̸∈ R̃ec1+} ⊂ R̃ec
c

1,

which implies that A is actually negligible.

6.2.2 Product structure of the measure of maximal entropy

In Section 3.4, we defined a family of measures on the horocycles of T 1M̃ . Since
the endpoints of strips have zero σ0-measure, we can simplify the expression of the
measure µH on a unstable horocycle H = H̃u(v) by restricting it to the vectors
with trivial strips. This measure is given by

dµH(w) = eδbw(0)dσ0(w+).

Similarly, the measures on the stable horocycles satisfy

dµH̃s(v)(w) = eδb−w(0)dσ0(w−). (6.2)

For each v ∈ T 1M̃ , we define a measure νv on the weak stable leaf W̃ws(v) of
v by

νv(A) =

∫
R
eδt

∫
H̃s(gtv)

1A(w)dµH̃s(gtv)
(w) dt.

This is not the usual Margulis measure on W̃ws(v) which is uniformly expanded.
In fact, gt∗νv = νv and νgtv = e−δtνv. We can recover the Bowen-Margulis measure
from the product of measures on the horocycles.

Proposition 6.2.3. For every vector u ∈ T 1M̃ and every Borel subset A ⊂
T 1M̃ \ W̃ws(u), we have

µBM(A) =

∫
H̃u(u)

∫
W̃ws(v)

1A(w) dνv(w) dµH̃u(u)(v).

Proof. For v ∈ T 1M̃ , η ∈ ∂M̃ \ (Ec)+ with η ̸= v+ and t ∈ R, let wv
t,η the unique

vector in H̃s(gtv) pointing negatively to η. Also, for ξ ∈ ∂M̃ \ (Ec)+ let vξ be the

unique vector lying in H̃u(u) pointing to ξ. Finally, let wξ
t,η := w

vξ
t,η.

We prove the proposition by carrying the following computations. First, we
write the double integral in terms of the measure on the boundary. Then we apply
the equality

βξ(0, π(vξ)) = βξ(0, π(wξ
t,η)) − t
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to simplify. Finally, we integrate in t the indicator function of A at the point wξ
t,η,

which is exactly the Lebesgue measure on the geodesic (η, ξ) of the set A. We
can restrict all the integrals to vectors in E or endpoints in ∂M̃ \ (Ec)+ because
they are of full measure each time, thus we do not need to worry about vectors
contained in strips.

∫
H̃u(u)

∫
W̃ws(v)∩E

1A(w) dνv(w) dµH̃u(u)(v)

=

∫
H̃u(u)

∫
R

∫
H̃s(gtv)∩E

1A(w)eδtdµH̃s(gtv)
(w) dt dµH̃u(u)(v)

=

∫
H̃u(u)

∫
R

∫
∂M̃\(Ec)+

1A(wv
t,η)e

δteδβη(0,π(wv
t,η)) dσ0(η) dt dµH̃u(u)(v)

=

∫
∂M̃\(Ec)+

∫
R

∫
∂M̃\(Ec)+

1A(wξ
t,η)e

δteδβη(0,π(w
ξ
t,η))eδβξ(0,π(vξ)) dσ0(η) dt dσ0(ξ)

=

∫
∂M̃\(Ec)+

∫
R

∫
∂M̃\(Ec)+

1A(wξ
t,η)e

δ⟨η,ξ⟩0 dσ0(η) dt dσ0(ξ)

=

∫
∂M̃\(Ec)+

∫
∂M̃\(Ec)+

eδ⟨η,ξ⟩0Lebη,ξ(A) dσ0(η) dσ0(ξ) = µBM(A).

6.2.3 Additional properties of the measures on the horocycles

It is not hard to check that the family of measures {µH̃u(v)}v∈T 1M̃ is Γ-invariant
and is exponentially expanded by the geodesic flow,

µgtH = eδtgt∗µH ,

because bgtv(0) = t+ bv(0).

We can also show that the measures µH̃s(v) defined by (6.2) vary continuously
with v.

Proposition 6.2.4. The map

{(v, w) ∈ T 1M̃ × T 1M̃ |w ∈ H̃u(v)} −→ R
(v, w) 7−→ µH̃u(v)((v, w))

is continuous.

Proof. We want to show the continuity at (v, w), w ∈ H̃u(v). The map (v′, η) ∈
T 1M̃ × ∂M̃ 7→ ϕH̃u(v′)(η) is continuous, so it is bounded by a constant C if we

restrict v′ to a small enough neighborhood of v and η to a relatively compact
neighborhood of [v+, w+] in ∂M̃ \ {v−}. The difference in measure with and
interval (v′, w′) close to (v, w) is

|µH̃u(v)((v, w)) − µH̃u(v′)((v
′, w′))| ≤

≤
∫
[v+,w+]

|ϕH̃u(v) − ϕH̃u(v′)|dσ0 + Cσ0([v+, w+]△[v′+, w
′
+]).
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The second term clearly goes to 0 when (v′, w′) approaches (v, w). In the first
one, ϕH̃u(v′) converges pointwise to ϕH̃u(v) when v′ → v. Moreover, ϕH̃u(v′)|[v+,w+]

are dominated by the constant C. So the first integral tends to 0 by dominated
convergence.

To prove one of the next properties we will need the following lemma. For
each v ∈ T 1M̃ , we define l(v) ∈ [0,+∞] to be the length of the interval π(Ĩ(v)) =
π(H̃s(v)) ∩ π(H̃u(v)).

Lemma 6.2.5. The function l is bounded by a constant R > 0.

Proof. The function l is upper semi-continuous and Γ-invariant, so the claim is
reduced to showing that l cannot take the value +∞.

The fact that l(v) is infinity implies that we can find vectors w in H̃u(v)∩H̃s(v)
at arbitraly large Sasaki distance from v. As we now explain, this contradicts the
following consequence of Morse’s theorem [Mor24]: there is a constant Q > 0
which bounds the Haussdorff distance between any two biasymptotic geodesics.
It is enough to consider w ∈ H̃u(v) ∩ H̃s(v) such that d(π(v), π(w)) > 2Q. The
geodesics γv and γw are biasymptotic, but d(π(v), γw(t)) ≥ d(π(v), π(w))−|t| > Q
for |t| ≤ Q and d(π(v), γw(t)) ≥ |bv(γw(t))| = |bw(γw(t))| > Q for |t| > Q.

Finally, we can show the following properties of the measures on the horocycles.

Proposition 6.2.6. For every leaf H = H̃u(v), the measure µH satisfies the
following:

1. it has no point masses,

2. it is finite on compact subsets,

3. for every w ∈ H, w ̸∈ suppµH if and only if w ∈ int Ĩ(v),

4. it gives infinite measure to half-horocycles.

Proof. 1. It is true because σ0 has no point masses. The latter is a consequence
of the shadow lemma [CKW21, Proposition 5.4(b)], which says that any point has
neighborhoods of arbitrarily small measure.

2. It is true because ϕH is a continuous function on ∂M̃ \{v−}, so it is bounded
on compact subsets.

3. If w ∈ H is in the interior of Ĩ(w) with respect to the topology on the leaf
H, since µH(int Ĩ(w)) = 0, we see that w is not in the support of µH . Conversely,
suppose that there is an open interval containing w with zero µH-measure. If
u ∈ U \ Ĩ(w), then u ̸∈ Hs(w) and actually w+ and u+ are distinct. A simple
computation,

µH(U) ≥
∫
[w+,u+]

ϕH(η)dσ0(η) > 0,

yields a contradiction. So we have proved that U ⊂ Ĩ(w) and the statement
follows.
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4. Consider the horocyclic flow ht with the Lebesgue parametrization. Let
R > 0 be the bound obtained in 6.2.5. Assume that

µH({ht(v)}t≥0) =
+∞∑
k=0

µH([h2Rk(v), h2R(k+1)(v))) < +∞.

Then µH([h2Rk(v), h2R(k+1)(v))) → 0 when k → +∞. Let w be an accumulation
point of h2Rk(v). By continuity of the measure we get that µHu(w)((w, h2R(w))) =
0. But this means that (w, h2R(w)) ⊂ I(w), so l(w) ≥ 2R, which contradicts the
lemma.

6.2.4 Measures on the quotient X

We now turn our attention to the quotient X, which is where the next arguments
will take place. Recall that X is defined as the quotient of T 1M by an equivalence
relation whose classes [v] are the intervals I(v). We can also define the quotient X̃
of T 1M̃ by the equivalence relation which identifies elements in the same interval
Ĩ(v). The group Γ acts naturally on X̃ since γĨ(v) = Ĩ(γv), and X can be thought
as its quotient space.

We now bring horocycles and their measures to the quotients. We write

V u([v]) = χ(Hu(v)), Ṽ u([v]) = χ(H̃u(v))

for the quotient horocycles, and then we push the measures,

µV u([v]) = χ∗µHu(v), µṼ u([v]) = χ∗µH̃u(v).

The curves V u(θ) form a continuous foliation of X because the charts used
in [GR20, Lemma 4.4] to show the topological structure of X are in fact foliated
charts of V u. Next we transfer the properties of the previous sections about the
measures on the horocycles to the quotient.

Proposition 6.2.7. 1. For all θ ∈ X̃, µṼ u(θ) has no point masses.

2. For all θ ∈ X̃, µṼ u(θ) is finite on compact subsets.

3. For all θ ∈ X̃, suppµṼ u(θ) = Ṽ u(θ).

4. For all θ ∈ X̃, µṼ u(θ) gives infinite measure to half-horocycles.

5. For all θ ∈ X̃, for all t ∈ R, for all γ ∈ Γ, we have

µṼ u(ϕt(θ))
= eδt(ϕt)∗µṼ u(θ) µṼ u(γ(θ)) = γ∗µṼ u(θ)

.

6. The map

{(θ, β) ∈ X̃ × X̃ | β ∈ Ṽ u(θ)} −→ R
(θ, β) 7−→ µṼ u(θ)((θ, β))

is continuous.
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Proof. 1. We have µṼ u([v])([w]) = µH̃u(v)(I(w)) = 0, because I(w) projects to a
single point in the boundary.

2. Since χ is proper, the preimage of a compact set K in Ṽ u([v]) is compact
and µṼ u([v])(K) = µH̃u(v)(χ

−1(K)) is finite by Proposition 6.2.6.

3. Let U be an open nonempty subset of Ṽ u([v]). Then χ−1(U) is an open
neighborhood of I(w) in H̃u(v), where [w] is a point in U . By Proposition 6.2.6,
the two ends of the interval I(w) ⊂ χ−1(U) are in the support of µH̃u(v), hence

µH̃u(v)(χ
−1(U)) = µṼ u([v])(U) > 0.

4. The positive half-horocycle of θ is given by χ({ht(v)}t≥0), where v is any
vector in θ. Then this implies

µṼ u(θ)(χ({ht(v)}t≥0)) = µH̃u(v)({ht(v)}t≥0 ∪ I(v)) = µH̃u(v)({ht(v)}t≥0) = +∞.

Analogously, we show that the negative half-leaf χ({ht(v)}t≤0) has infinite mea-
sure.

5. This follows directly from the corresponding properties for {µH̃u(v)}v∈T 1M̃ .

6. For every θ ∈ X̃ and every β ∈ Ṽ u(θ), note that µṼ u(θ)((θ, β)) = µH̃u(v)((v, w))
for any v ∈ θ and any w ∈ β.

We proceed by contradiction: suppose that the map is not continuous at (θ, β).
Then there exists two sequences (θk)k∈N and (βk)k∈N converging to θ and β, re-
spectively, with βk ∈ Ṽ u(θk) and such that

∀k |µṼ u(θ)((θ, β)) − µṼ u(θk)
((θk, βk))| > ε > 0. (6.3)

For each k select any vk ∈ θk and wk ∈ βk. Up to taking a subsequence, we
can assume that vk converges to a vector v ∈ T 1M̃ and wk converges to w ∈ T 1M̃ .
The continuity of the quotient map implies that v ∈ θ and w ∈ β. But now, by the
observation made at the beginning and the continuity of the family of measures
{µH̃u(v)}v∈T 1M̃ proved in Proposition 6.2.4, we obtain

µṼ u(θk)
((θk, βk)) = µH̃u(vk)

((vk, wk)) → µH̃u(v)((v, w)) = µṼ u(θ)((θ, β)).

This is in clear contradiction with Equation 6.3.

6.3 Unique ergodicity of the horocyclic flow on X

Now we define a horocyclic flow on X̃. First, we orient the horocycles in T 1M̃
thanks to the orientation of the surface, and we also get an orientation of the
images of the horospheres in X̃. For each θ ∈ X̃, define hs(θ) as the unique point
in the positive (resp. negative) sense of Ṽ u(θ) such that µṼ u(θ)((θ, hs(β))) = |s| if

s is a positive (resp. negative) real number.

Proposition 6.3.1. The family of maps hs : X̃ → X̃ is a continuous Γ-invariant
flow which satisfies ϕt ◦ hs = hseδt ◦ ϕt and whose orbits are the curves Ṽ u(θ).
Moreover, hs preserves the measure µX̃ = χ∗µBM .
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Proof. Since both ends of Ṽ u(θ) have infinite measure, the point hs(θ) exists, and
it is unique because µṼ u(θ) has full support. Clearly, hs is a flow. Let us prove that

it is continuous. Let (sk, θk) → (s, θ) ∈ R×T 1M̃ . We want to prove that hsk(θk)
converges to hs(θ). We assume s ≥ 0, the other case being done analogously. We
know that the curves Ṽ u(β) depend continuously on β, so there exist a sequence
βk converging to hs(θ) such that βk ∈ Ṽ u(θk). By Proposition 6.2.7, we know that
µṼ u(θk)

((θk, βk)) converges to µṼ u(θ))((θ, hs(θ))) = s when k tends to infinity. We

deduce then that the measures of the intervals (βk, hsk(θk)) go to 0.

We claim that the distance between βk and hsk(θk) tends to 0. Assume, con-
trary to our claim, that, for some ε > 0, there is a subsequence ki such that the
distance d(βki , hski (θki)) is greater than ε. The intervals (βki , hski (θki)) are accu-

mulating to some interval in Ṽ u(θ) of length at least ε. But since the measure of
(βki , hski (θki)) tends to 0, the limiting interval should have zero measure, which

is a contradiction because µṼ u(θk)
has full support in Ṽ u(θ). Finally, since βk

converges to hs(θ), the sequence hsk(θk) also converges to this point.

The Γ-invariance and the uniformly expanding property of hs follow from the
corresponding properties for µṼ u(θ). Finally, the conditional measures of µX̃ along
horocyclic orbits are exactly the µṼ u(θ), and since hs preserves each of these, it
preserves the measure µX̃ .

In this way, we obtain a uniformly expanding continuous flow on the quotient
X, which will also be denoted by hs.

Proposition 6.3.2. The flow hs on X is uniquely ergodic.

Proof. We apply the following theorem due to Coudène:

Theorem 6.3.3. [Cou09] Let X be a compact metric space, gt and hs two con-
tinuous flows on X which satisfy the relation : gt ◦ hs = hseδt ◦ gt. Let µ a Borel
probability measure invariant under both flows, which is absolutely continuous with
respect to Wws, and with full support. Finally assume that the flow hs admits a
dense orbit. Then hs is uniquely ergodic.

The flows ϕt and hs, with the parametrization that we have just given, are con-
tinuous, satisfy the relation of the theorem above (Proposition 6.3.1) and preserve
the measure µX = χ∗µBM . The local weak unstable manifolds Wwu of the quo-
tient flow ϕt are the projections of the weak central leaves W̃ws, proven in [GR20].
Moreover, the flow hs is transversal to these manifolds and the flow ϕt has a prod-
uct structure [GR20, Proposition 4.11]. Proposition 6.2.3 implies that the measure
µX is locally the product of measures on the image of weak stable leaves by the
measure on a curve V u. In terms of the theorem, this means that µX is absolutely
continuous with respect to Wws. It also has full support [CKW21, Theorem 1.1].
Finally, the existence of a dense orbit of hs follows from the minimality of the
foliation Hu [Ebe77, Theorem 4.5].

6.4 Lift to the unit tangent bundle T 1M

So far, we have proved the unique ergodicity of a horocyclic flow on the quotient
space X. In this final section, we will deduce that the horocyclic flow on the



106 CHAPTER 6. UNIQUE ERGODICITY

unit tangent bundle of the surface M with any parametrization is also uniquely
ergodic. For this, we need a technical result allowing to relate the two flows from
the point of view of invariant measures. This is done in Subsection 6.4.1, and then
in Subsection 6.4.2 we apply the result to conclude the proof.

6.4.1 A general result on flow invariant measures

Let ϕt be a continuous flow without fixed points on a compact metric space X.
We study the flow locally with the help of flow boxes.

Definition 6.4.1. An open subset U of X is called a flow box if there exists a
closed subset T of U , ε > 0 and a homeomorphism

Φ : T × (−ε, ε) −→ U

such that Φ(x, s) = ϕs(x) for all (x, s) ∈ T × (−ε, ε). The subset T is called a
transversal and we write U = ϕ(−ε,ε)(T ) to express the fact that U is a flow box
with transversal T .

The existence of transversals and flow boxes is guaranteed at the neighborhood
of each point. We observe that if U = ϕ(−ε,ε)(T ) is a flow box, then for each open
subset S of T and 0 < ε′ < ε, U ′ = ϕ(−ε′,ε′)(S) is also a flow box. Since we can
find arbitrarily small flow boxes containing any given point, they form a base of
the topology. At some point it will be easier to work with a finite number of flow
boxes which form a cover of the space; this is possible thanks to the compactness
assumption.

Flow boxes describe the flow locally, but in order to recover the global dynamics
of the flow, we will need extra information provided by the holonomies.

Definition 6.4.2. A holonomy is a map Θ : T1 → T2 between two transversals
which is a homeomorphism onto its image, and such that, for every x ∈ T1, Θ(x)
lies in the orbit of x by ϕt.

We remark that holonomies exist locally, that is, given two transversals T1 and
T2, if x ∈ T1 and ϕt(x) ∈ T2 for some t ∈ R, then for every y ∈ T1 close to x there
exists ty, such that y 7→ ty is continuous, with tx = t and such that ϕty(y) ∈ T2.
So Θ(y) = ϕty(y) is a holonomy.

Our goal is to study the measures preserved by the flow ϕt in terms of measures
on the transversals of the flow.

Definition 6.4.3. A finite Borel measure µ on X is said to be invariant by the
flow ϕt if µ(ϕt(A)) = µ(A) for all Borel subset A of X. Let {µT}T be a family of
finite Borel measures indexed on all possible transversals T to the flow ϕt, with
each µT supported on the transversal T . The family {µT}T is invariant under
holonomy if every holonomy map Θ : T1 → T2 between two transversals preserves
the measures, i.e. Θ∗µT1 = µT2|Θ(T1).

Proposition 6.4.1. Let ϕt be a continuous flow without fixed points on a compact
metric space X. There is a correspondence between finite Borel measures on X
invariant by ϕt and families {µT}T of finite Borel measures on the transversals
invariant under holonomy.
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We only recall the main idea, the details can be found in [BS40, § 2]. If µ is
invariant by ϕt, the measure µT of a Borel subset A of T can be defined as

µT (A) = µ(ϕ(−ε,ε)(A))/2ε

where ε is chosen small enough such that ϕ(−ε,ε)(T ) is a flow box. Conversely, the
measure µ is defined from µT on a flow box U = ϕ(−ε,ε)(T ) as Φ∗(µT ⊗Leb) where
Φ is the homeomorphism of Definition 6.4.1 and Leb is the Lebesgue measure on
the interval (−ε, ε). One can check that these definitions do not depend on the
choices made and that they glue up together, that the measures thus obtained
satisfy the invariance properties, and that one construction is the inverse of the
other.

We want to represent an invariant measure µ by their measures on the transver-
sals µT . It is clear that a lot of information is redundant. For example, it would be
enough to take the transversals associated to a finite cover by flow boxes. Then
the measure on the rest of the transversals is recovered as push forwards from
measures on the finite collection of transversals. In fact, we need a bit less.

Definition 6.4.4. A finite set of transversals T1, . . . , Tn will be called complete if
every point in X is in the orbit of an element of one of the Ti’s.

Proposition 6.4.2. An invariant measure µ is determined by the measures µT1 ,
. . . , µTn on a complete set of transversals T1, . . . , Tn.

Proof. In view of Proposition 6.4.1, we only need to show that the measures
µT1 , . . . , µTn determine a family {µT}T of measures on the transversals invariant
under holonomy. We consider any transversal T and a point y ∈ T . Since the
family of transversals is complete y = ϕt(x) for some x ∈ Ti. Now consider the
holonomy ΘTi,S from a small neighborhood of x in Ti to a neighborhood S of y
in T . The only way to define a measure on S that will be preserved by holonomy
is to push forward the measure µTi

by the holonomy ΘTi,S. The definition does
not depend on the choice of Ti and x, because if we have a different holonomy
ΘTj ,S from a neighborhood in Tj to S, then ΘTi,S∗µUi

= (ΘTi,Tj
◦ ΘTj ,S)∗µUi

=
ΘTj ,S∗(ΘTi,Tj∗µUi

) = ΘTj ,S∗µUj
thanks to the fact that the measures on Ti are pre-

served by holonomy. Moreover if we take another neighborhood S ′ of a possibly
different point y′ ∈ T , then the definitions of the measure coincide on S ∩ S ′ by a
similar argument.

Consequently, we have a well defined family of measures {µT}T on the transver-
sals. It remains to show that they are invariant under holonomy. This immediately
follows from the fact that the measures {µTi

}1≤i≤n already have this property.

We would like to remark that if the flow ϕt is minimal (that is, every orbit is
dense in X), then any transversal T of ϕt is complete. Indeed, the orbit of any
point x ∈ X passes through an open flow box U around T , so the orbit intersects
T and x is in the orbit of a point of T .

Finally we get at the main point of this section. We have seen that an invariant
measure is determined by a finite number of transversal measures. So if we have
two flows on two possibly different spaces, each with their transversals, but the
dynamics on these transversals are essentially equal, then both flows will have the
same invariant measures.
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Definition 6.4.5. Let X, Y be two compact metric spaces and let ϕt : X → X,
ψt : Y → Y be two continuous flows. Let F : T ⊂ X → Y a map defined on a
subset T of X. We say that the map F preserves the holonomy if for all x, y ∈ T ,
x and y lie in the same orbit of ϕt if and only if F (x) and F (y) lie in the same
orbit of ψt.

Theorem 6.4.3. Let X, Y be two compact metric spaces and let ϕt : X → X,
ψt : Y → Y be two continuous flows without fixed points. Let (Ti)1≤i≤n, (T ′

i )1≤i≤n

be complete sets of transversals for the flows ϕt, ψt, respectively. Assume that
there is a map F : ⊔n

i=1Ti → ⊔n
i=1T

′
i which preserves the holonomy and such that

for all i ∈ {1, . . . , n}, F |Ti
: Ti → F (Ti) = T ′

i is a homeomorphism. Then there
is a correspondence between the finite Borel measures on X invariant by ϕt and
those on Y invariant by ψt.

In particular, ϕt is uniquely ergodic if and only if ψt is uniquely ergodic.

Proof. Since invariant measures can be thought as families of measures {µTi
}i

and {µT ′
i
}i on the complete sets of transversals invariant by holonomy, we only

have to prove the correspondence between the latter objects. This correspondence
is induced by the map F . Given a family {µTi

}i of measures invariant under
holonomy, we take the pushforward by F to obtain a family of measures {F∗µTi

}i
on the transversals T ′

i . Let us check that they are also invariant under holonomy.
Consider a holonomy Θ : U ⊂ T ′

i → T ′
j . Since Θ preserves the holonomy, the map

F−1 ◦ Θ ◦ F : F−1(U) ⊂ Ti → Tj is a holonomy again. By the invariance of the
first family of measures we have

(F−1 ◦ Θ ◦ F )∗µTi
= µTj

|(F−1◦Θ)(U).

Taking F∗ we obtain

Θ∗(F∗µTi
) = (F∗µTj

)|Θ(U),

which proves the invariance of the F∗µTi
. This process is reversible because Θ is

inversible, so we have a bijection.

This result is a generalization of Theorem 5.2.1, which corresponds to the case
that one flow is a change of time of the other. The result also applies when the
two flows are conjugate. But neither of these situations is the one where we will
apply the theorem. There is no obvious relation between the horocyclic flows on
the unit tangent bundle T 1M and on the quotient space X, in fact we do not even
have a homeomorphism between both spaces.

6.4.2 Transversals to the horocyclic flows

Our final goal is to show the unique ergodicity of the horocyclic flow on T 1M .
For this, we choose a continuous parametrization of the horocyclic foliation Hu,
for example the parametrization hLt by the arc length of horocycles. We want to
apply the result of the previous section to the flows hLt on T 1M and ht on X.
The natural projection χ : T 1M → X is not well behaved with respect to these
flows, it collapses segments and does no preserve the parametrizations. We will
find complete sets of transversals for both flows such that the restriction of χ on
these transversals satisfies the properties of Theorem 6.4.3.
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Proposition 6.4.4. There exists a transversal T of the flow hLt on T 1M such that
χ(T ) is a transversal of the flow ht on X and χ : T → χ(T ) is a homeomorphism
which preserves the holonomy.

Proof. The subset of generalized rank 1 vectors

R1 = {v ∈ T 1M |Gu(v) ̸= Gs(v)}

of T 1M is nonempty and open because we are assuming the continuity of the Green
bundles. Moreover the tangent space to the stable (resp. unstable) leaf Hs(v) is
the stable (resp. unstable) Green subspace Gs(v) at each point v ∈ T 1M . As a
consequence, the weak stable leaf Wws(v) is transverse to the unstable leaf Hu(v)
at points v ∈ R1. Fix v ∈ R1, and consider a relatively compact neighborhood T
of v in Wws(v) ∩R1, so the unstable leaves are still transverse to Wws(v) at each
point of T .

The set R1 does not contain vectors with nontrivial strips, so χ : R1 → χ(R1)
is a homeomorphism as well as χ : T → χ(T ). Since T is a transversal of the horo-
cyclic flow hLt and T̄ ⊂ R1, we can consider a flow box of the form U = hL(−δ,δ)(T )

included in R1. Now, χ(T ) is relatively compact and with closure included in the
open subset χ(U). There exists ε > 0 such that h(−ε,ε)(χ(T )) is included in χ(U).
It is straightforward to see that h(−ε,ε)(χ(T )) is a flow box with transversal χ(T )
using the continuity of ht.

Finally, χ automatically preserves the holonomy because for v, w ∈ T , we have
w ∈ Hu(v) if and only if χ(w) ∈ V u(χ(v)) = χ(Hu(v)).

We recall that the flow hLt is minimal [Ebe77, Theorem 4.5]. Since minimality
is a property of the orbits of the flows, the unstable leaves, and the map χ is
continuous, it passes to the images of the unstable leaves, which are exactly the
orbits of ht. In short, the flow ht on X is also minimal. As we observed after
Proposition 6.4.2, in the case of minimal flows any transversal is complete in the
sense of Definition 6.4.4, so we can directly apply Theorem 6.4.3 to the transversals
T and χ(T ) of the previous proposition and we get the correspondence between
hLt -invariant measures and ht-invariant measures. Since the flow ht is uniquely
ergodic, we get the desired result.

Theorem 6.4.5. The horocyclic flow hLt on the unit tangent bundle of a com-
pact surface of genus equal or higher than 2 without conjugate points and with
continuous Green bundles is uniquely ergodic.





Nomenclature

µ̄ Γ-invariant measure on ∂2M̃

P̄ Map from T 1M̃ to ∂2M̃ × R

βξ Busemann cocycle

δ Critical exponent

∂2M̃ Pairs of distinct points in ∂M̃

Γ Isometry subgroup

Λ Limit set of Γ

E Expansive set

µBM Bowen-Margulis measure

Ω Nonwandering set of gt

∂M̃ Boundary at infinity of M̃

Σ0 Vectors whose horocycle contains a rank 1 recurrent vector

σ0 Patterson-Sullivan measure

bv Busemann function

E(M̃) Pairs of geodesic endpoints

Gs(v) Stable Green subspace of v

Gu(v) Unstable Green subspace of v

gt Geodesic flow

Hs(v) Stable horosphere of v in T 1M

Hs(v) Unstable horosphere of v in T 1M

hs Horocyclic flow

I(v) Intersection of the stable and the unstable horosphere

P Projection from T 1M̃ to the endpoints

R1 Rank 1 set

Rec Set of gt-recurrent vectors

cv Geodesic generated by a vector v

T 1M Unit tangent bundle
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