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pagné tout au long de cette aventure :

J’aimerais tout d’abord remercier chaleureusement mes encadrants chez Orange, Quentin et
Louis-Adrien, les principaux initiateurs de ces travaux et sans qui rien de tout cela n’aurait vu
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remerciements à Catherine Douillard et Emmanuel Boutillon pour avoir accepté d’être rappor-
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l’équipe CITY : Dominique, Eric, Esteban, Jean, Madhu, Marion, Mohamed T., Mohamed M.,
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Résumé

Les technologies sans fil occupent une place importante dans les sociétés d’aujourd’hui. Par
conséquent, les futurs réseaux de communication de 6ème génération - au sujet desquels les
premiers travaux de recherche ont récemment débuté - sont appelés à relever nombre de défis
sociétaux et technologiques. On peut notamment citer la réduction de l’impact environnemental
de nos sociétés et des technologies numériques, la souveraineté et la sécurité des infrastructures
de télécommunications, ou encore la réduction de la fracture numérique. Plus spécifiquement,
en ce qui concerne le premier point, là où les infrastructures de communication ont un im-
pact environnemental croissant qu’il est essentiel de limiter, les technologies du numérique ont
également un rôle à jouer dans la réduction de l’impact de tous les secteurs de l’économie. À
cette fin, les réseaux du futur devront non seulement permettre un transfert plus efficace de
l’information, mais aussi répondre aux besoins croissants en matière de capacité d’échange de
données, favorisant ainsi l’optimisation des sociétés.

C’est notamment le rôle des cas d’usage de l’internet des objets, plus particulièrement de
la ville ou de l’industrie intelligente, où l’utilisation d’un nombre massif de capteurs permet de
superviser en temps réel des systèmes complexes. De toute évidence, ces cas d’usage sont associés
à de nombreuses contraintes. Par exemple, un scénario typique de l’internet des objets implique
un grand nombre de dispositifs connectés, disposant de ressources énergétiques restreintes mais
supposées durer des années, avec un faible coût unitaire, une complexité, et donc des capacités de
calcul, limitées, communicant dans un environnement de propagation complexe (faible couverture
radio, nombreux interférents, etc.) et avec des exigences de latences raisonnables. Dès lors, une
couche physique - c’est-à-dire l’ensemble des fonctionnalités permettant la transmission efficace
et robuste d’informations entre deux dispositifs du réseau - à la fois performante et peu complexe
est absolument cruciale.

L’utilisation de techniques d’intelligence artificielle est considérée comme une option perti-
nente pour la réalisation d’un tel objectif. D’une part, on considère que le cadre mathématique
des réseaux de neurones, sur lesquelles de nombreuses solutions d’intelligence artificielle sont
basées, permet des implémentations matérielles génériques, extrêmement efficaces et peu coût-
euses. Ainsi, la description des fonctionnalités classiques de télécommunication et de traitement
du signal sous forme d’architectures de réseaux de neurones est un moyen de bénéficier des avan-
tages de ces technologies matérielles. D’autre part, et ceci est en partie permis par l’utilisation
des réseaux de neurones, l’application de procédures d’apprentissage est un moyen d’améliorer les
performances des fonctions de traitement du signal via la réduction des déficits algorithmiques
et/ou de modélisation de certaines solutions conventionnelles.

Dans ces travaux nous nous intéressons à l’utilisation de techniques issues de l’intelligence
artificielle, en particulier les réseaux de neurones et l’apprentissage machine, pour la réalisation
d’opérations de traitement numérique du signal en couche physique dans le contexte des cas
d’usage de l’internet des objets dans les réseaux 6G. Dans un premier temps, nous nous intéressons
à la transcription d’algorithmes conventionnels issus de la littérature des communications numé-
riques sous la forme de réseaux de neurones. Cette approche, premier pas vers l’intégration
d’intelligence artificielle au sein de la couche physique, permet à elle seule de bénéficier des
avantages des supports matériels pour l’exécution de réseaux de neurones. De plus, une telle
approche n’exige aucune modification des spécifications techniques des réseaux existants. Cela
permet ainsi l’intégration de telles solutions basées sur l’intelligence artificielle au sein de ces
derniers. Sont, entre autres, proposées diverses structures d’égalisation, de démodulation et
de décodage de codes correcteurs d’erreurs. Dans un second temps, nous nous intéressons à
l’application de mécanismes d’apprentissage sur ces structures de réseaux de neurones dans le
but d’en améliorer les performances vis-à-vis d’algorithmes conventionnels. Entre autres, un
décodeur de codes linéaire en bloc générique est proposé permettant la découverte à l’aveugle
d’un schéma de décodage avec des performances au moins équivalentes à celles du décodeur
de référence. Pour finir, une structure de réseau de neurones de bout-en-bout de type auto-
encodeur est proposée, permettant l’apprentissage conjoint d’un schéma de codage et du décodeur
associé. Cette dernière contribution permet la découverte de schéma de codage pertinents pour
les tailles réduites des paquets de l’internet des objets. Ce régime de taille est particulièrement
contraignant et il n’existe pas à ce jour de schéma de codage/décodage qui soit à la fois optimal
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d’un point de vue des performances et à complexité raisonnable. Le processus d’apprentissage
et l’architecture proposés permettent la découverte de schémas de codage dont les performances
sont comparables aux solutions état de l’art, construites via des approches conventionnelles et
sur la base de nombreuses connaissances expertes.

Abstract

Wireless technologies are of paramount importance for today’s societies. Therefore, future 6th

generation communication networks - whose initial research efforts have recently started - are ex-
pected to address a number of societal and technological challenges, including the environmental
impact of our societies and of digital technologies, the sovereignty and security of telecommu-
nication infrastructures or the reduction of the digital divide. More specifically, with regard to
the first point, where communication infrastructures have a rising environmental impact which
it is essential to reduce, digital technologies also have a role to play in reducing the impact of
all sectors of the economy. To this end, the networks of the future must not only enable more
efficient transfer of information, but also meet the growing need for data exchange capacity to
enable informed decision-making for the optimisation of the societies.

This is notably the role of the use cases of the internet of things, more particularly of the
smart city and smart industry, where the use of a massive number of sensors allows the real-time
monitoring of complex systems. Obviously, these use cases are associated with a large number of
constraints. A typical scenario for example involves a large number of connected devices, with
limited energy resources but expected to last for years, with low unit cost, limited complexity
and thus computational capabilities, in a complex propagation environment (low radio coverage,
many interferers, etc.) and with low latency requirements. Therefore, a physical layer - i.e. the
set of functionalities that allow the efficient and robust transmission of information between two
network devices - that is both efficient and low-complexity is absolutely crucial.

The use of artificial intelligence techniques is considered as a relevant option for the fulfilment
of such an objective. On the one hand, it is considered that the mathematical framework of neural
networks, on which many so-called artificial intelligence solutions are based, allows extremely
efficient, low-power and low-cost generic hardware implementations. Therefore, the description of
classical telecommunication and signal processing functionalities as neural network architectures
is a way to benefit from the advantages of these hardware technologies, even when the raw
algorithmic performance is not expected to be improved. On the other hand, and this partly
enabled by the use of neural networks, the application of learning procedures is a way of improving
the performance of signal processing functions via the reduction of algorithmic and/or modelling
deficits with respect to the conventional solutions.

In this work we are interested in the use of artificial intelligence techniques, in particular
neural networks and machine learning, for the realisation of digital signal processing operations
at the physical layer in the context of internet of things use cases of 6G networks. First, we
are interested in the transcription of conventional algorithms from the digital communication
literature into neural networks. This approach, which is a first step towards the integration of
artificial intelligence within the physical layer, allows to benefit from the advantages of neural
network dedicated hardware. Moreover, such an approach does not require any modification of
the technical specifications of existing networks, thus guaranteeing the possible integration of
such systems within these networks. Among other things, various structures for equalisation,
demodulation and decoding of error-correcting codes are proposed. In a second step, we are
interested in the application of learning mechanisms on these neural network structures in order
to improve their performance with respect to the reference algorithms from the literature. In
particular, a linear block code decoder is proposed which allows the blind discovery of a decoding
scheme with performance at least equivalent to that of the reference decoder. Finally, an end-to-
end auto-encoder structure is proposed, allowing the joint learning of an encoding scheme and
the associated decoder. This last contribution allows the discovery of relevant coding schemes
for the small packet sizes of the internet of things. This size regime is particularly challenging
and no single code and decoder scheme exists to date that is both performance-optimal and of
reasonable complexity. The learning process and the proposed architecture allow the discovery
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of coding schemes whose performance is comparable to state-of-the-art schemes, which are built
via conventional approaches, and rely on a lot of domain specific expertise.
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NOTATIONS

Throughout the present manuscript and unless otherwise specified, the following notations are
employed2:

Table 0.1: Numbers and Arrays

a Scalar.

a Vector (column).

A Matrix.

e(k) kth standard basis vector, i.e. a vector with a 1 at index k and 0 otherwise.

In Identity matrix of size n× n. If n is not specified, it is implied by context.

0 All-zero vector (or any n-dimensional tensor) whose size is implied by context. More
generally, bold face numbers denote a vector with a constant value across all indices.

j Imaginary unit.

x∗ Complex conjugate of the complex number x.

Table 0.2: Random Numbers and Probabilities

a Random scalar variable.

a Random vector variable (column).

A Random matrix variable.

a ∼ D Random variable a follows distribution D.

Pa∼D {a = a} Probability that the random variable a takes the value a under distri-
bution D.

pa∼D(a = a) = pa(a) Probability Mass Function of (discrete) random variable a.

fa∼D(a = a) = fa(a) Probability Density Function of (continuous) random variable a.

Ea∼D {a} Expectation of the random variable a following distribution D.

Vara∼D {a} Variance of the random variable a following distribution D.

2Most notations are borrowed from [1].
3Denominator layout convention is employed for matrix and vector manipulations [2]. The indexing of any array

start at 1. When an operator involve two arrays whose shape does not match across one or several dimensions, a
broadcasting operation is usually considered (e.g. X + y is equivalent to add the scalar y to all elements of X).
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Table 0.3: Indexing and Linear Algebra Operations3

ai i-th element of vector a.

ai i-th element of the random vector a.

Ai,j Element i, j of matrix A.

Ai,j Element i, j of the random matrix A.

Ai,: Row i of matrix A.

A:,j Column j of matrix A.

aT Transpose of vector a.

AT Transpose of matrix A.

A−1 Inverse of matrix A.

|A| Determinant of matrix A.

A† Transpose conjugate of A, or Hermitian transpose.

A∗ Conjugate of A.

diag(v) Diagonal matrix whose diagonal elements are the vector v.

D(M) Vector (column) constructed from the diagonal elements of matrix M .

A×B Product of matrices A and B.

A⊙B Point wise (Hadamard) product of matrices (or any n-dimensional tensor)
A and B.

||a||1 =
∑ |ai| 1-norm

||a||2 =
√∑

a2i 2-norm, or Euclidean norm

||a||22 =
∑

a2i Squared Euclidean norm

A ≻ 0 , A ≽ 0 Positive Definite and Positive Semi-Definite matrices.

A ≺ 0 , A ≼ 0 Negative Definite and Negative Semi-Definite matrices.

Table 0.4: Calculus

df(x)
dx ∈ R or simply f ′(x) Derivative of f(x) : R −→ R with respect to scalar x.

∂f(x)
∂x ∈ R Partial derivative of scalar field f(x) : Rn −→ R with respect

to scalar x.

∇xf(x) =
∂f(x)
∂x ∈ Rn Gradient of scalar field f(x) : Rn −→ R with respect to vector

x.

∇Xf(X) = ∂f(X)
∂X ∈ Rn,m Matrix derivative of scalar field f(X) : Rn,m −→ R with respect

to matrix X.
∂f(x)
∂x ∈ Rm Derivative of vector field f(x) : Rn −→ Rm with respect to

scalar x.

Jxf(x) =
∂f(x)
∂x ∈ Rn,m Jacobian matrix of vector field f(x) : Rn −→ Rm with respect

to vector x.
∂F (X)

∂x ∈ Rl,p Derivative of matrix function F (x) : Rn −→ Rl,p with respect
to scalar x.

∇2
xf(x) =

∂
∂x∇xf(x) ∈ Rn,n Hessian of scalar field f(x) : Rn −→ R with respect to vector

x.
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Table 0.5: Functions & Signals

x(t) A continuous signal as a whole or indexed at time t.

x[k] A discrete signal as a whole or the k-th sample (which is sometime denoted as
xk using vector indexing notations).

δ(x) Dirac function or Kronecker Delta function.

f(x; θ) Parametric function of x wiht θ as a parameter.

argmin
θ

f(θ) Argument of the minima of the function f(θ) with regard to parameters θ.

argmax
θ

f(θ) Argument of the maxima of the function f(θ) with regard to parameters θ.

Lim
x−→∞

f(x) Limit of the function f(x) as x approaches +∞.

x ∗ y Convolution of signal x by signal y (discrete or continuous).

x ⋆ y Cross-correlation of signal x by signal y (discrete or continuous).

Ryy Auto-Correlation Matrix of signal y.

Table 0.6: Sets

S A set.

{1, 2, 3} The elements of a set.

Sn The power set whose element are the n-ary cartesian product of S.
Sc Complement of a set (with regard to another).

A
⋃
B Union of sets A and B.

A
⋂
B Intersection of sets A and B.

Card(S) The cardinal, i.e size, of a set.

[a, b[∈ R An interval over an ordered set between a (included) and b (excluded) endpoints.

Fp A finite fied, i.e. Gallois field, of p element.

R The set of real numbers.

C The set of complex numbers.

Table 0.7: Other Conventions & Notations

x<t>
i i-th feature of time step t (RNN).

y
(n)
i i-th output of n-th layer (MLP).

x̂ The estimated value of x.

x⋆ The optimal value of x.

x̃ Approximately x.
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CHAPTER 1
INTRODUCTION

1.1 General Context - The Future 6G Networks

After a rapid evolution over the last 50 years, wireless technologies are increasingly present in
our societies and their importance is expected to grow in the future, fostering the emergence of
new services and ecosystems. While the 5th Generation (5G) of mobile network is rolling out,
the research on future 6th Generation (6G) networks have recently started worldwide. Among
the different research projects initiated worldwide, this Ph.D. work takes place in the context of
Hexa-X, the European Union H2020 flagship project on 6G networks. Hexa-X project aims to
initiate research on the next generation of mobile networks in Europe, and imagine tomorrow’s
technological tools to interconnect a “digital world of data, a physical world of process and
human world of intelligence and values” [3]. In the context of this European project, the early
reflections identified societal needs and the associated major challenges that are to be addressed
by the future generations of 2030s networks, and lay their foundations [3]:

1 - Connecting Intelligence: The next generation of networks should, on the one hand, rely
on increased intelligence to allow for a more efficient transfer of information and, on the
other hand, offer society as a whole the means to implement intelligent processes on a large
scale.

2 - Network of Networks: 6G will need to support heterogeneous communication and com-
puting resources that interact and connect together in a global digital ecosystem. Such an
ecosystem will need to integrate multiple scales, communicating seamlessly as a network
of intelligent networks. Such a complex entity will need to enable cost and energy efficient
mass deployment to sustainably support all segments of society.

3 - Sustainability: With the digital world having an increasingly significant environmental
impact, the footprint of future telecommunication infrastructures is at the heart of the
definition of 6G. The latter will need to fully improve the end-to-end resource utilisation
of the cellular network and significantly improve its energy efficiency. In addition, 6G
networks are expected to play an important role in improving the sustainability of all parts
of the economy by providing the digital tools to meet this objective.

4 - Global Service Coverage: While 6G networks need to integrate heterogeneous network
technologies into a network of networks, they also need to provide coverage on a global scale.
The next generation of networks should provide efficient and affordable digital access to
connect remote and vulnerable people and address the digital divide, as well as facilitate
business and transport activities by providing service coverage over very large geographical
areas.
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1.2 INTERNET OF THINGS IN FUTURE NETWORKS

5 - Extreme Experience: 6G is expected to offer, among other things, increased speeds and
capacity, reduced latency and more accurate location and sensing services compared to 5G
networks.

6 - Trustworthiness: In view of the ever-increasing role of digital ecosystems in our societies
and lives, 6G networks should be highly secure and resilient infrastructures, supporting the
confidentiality and privacy of data communications. A trusted network is essential for the
development of secure services in the democratic and sovereign societies of the EU.

To address all these challenges, and in particular the first one, Artificial Intelligence (AI) and
Machine Learning (ML) technologies are seen as key technologies and are therefore expected to
play a major role. While AI was already present in some parts of the 5G network, the extent
of its use is expected to reach a whole new dimension in 6G networks, where AI functions will
be natively supported in all parts of the system. In particular, while the design of AI-driven
communications is expected to improve the performance of the network itself, e.g. by increasing
the spectral efficiency at the Physical Layer (PHY), it is also expected from the 6G network
to support and enhance reliable AI/ML technologies at scale to provide the wider society with
an access to interconnected, sustainable and trustworthy intelligence. In other words, AI-driven
communication is expected to improve the network, and the latter should facilitate the use of AI
by the society.

1.2 Internet of Things in Future Networks

Among the many use cases for 6G networks, and extending those of previous network generations,
6G is envisioned to address the expansion of Internet of Things (IoT) use-cases (e.g. sensor
networks, smart cities and industries) whose traffic and Quality of Service (QoS) requirements
are deemed to grow significantly over the next decades. Broadly speaking, these scenarios aim to
collect large amounts of data from a very large number of connected devices, enabling informed
decision-making and thus improving the overall efficiency of complex systems, such as cities.
IoT use-cases usually come with particularly stringent requirements and constraints, such as
energy efficiency (especially in the case of battery-powered devices), reduced Hardware (HW)
cost and complexity, and the subsequent reduction in computing capacity. These constraint
typically imply the use of short packets and low-complexity communication schemes. Moreover,
the expected number of devices leads to very high connection density, often with bad coverage
conditions (e.g. deep indoor scenarios, wide area coverage, etc.). In this context an efficient and
low complexity PHY layer, ensuring the efficient and robust transmission of data over challenging
physical radio channels, is a key requirement.

An example of these constraints is provided in Table 1.1. This table lists some reference
use-cases and requirements of NR-RedCap1 from [4]. These balanced IoT scenarios exhibit
multiple contraints such as reasonable latencies, relatively high data-rates and perharps more
importantly, a controled energy consumption and a cost well below standard 5G-NR solutions
(and thus a reduced complexity). Furthermore, the Table 1.2 compares these requirements to
the capabilities of conventional Low Power Wide Area Network (LPWAN) technologies such as
NB-IoT and LTE-M and shows a clear emphasis on achieving significantly higher performance
within a controlled complexity envelope.

Again, AI and ML seem very promising tools to improve the capabilities of IoT cellular
networks and particularly to address these two conflicting goals of increased performance and
reduced complexity [5, 6]. These techniques might allow to improve the spectral efficiency, to
jointly optimise the End-to-End (E2E) communication chain, to reduce the control and signalling
overhead or even to correct complex hardware impairments. The main identified benefits of using
AI and ML at the PHY layer of IoT systems are related to:

Reduction of model deficits - Performance improvements: When the phenomena en-
countered become too complex to be adequately modelled or the problems to be solved

1NR-RedCap is a lightweight version of 5G New Radio (5G-NR) proposed for balanced and mixed IoT use
cases that are neither supported by 5G-NR, Long-Term Evolution for Machines (LTE-M) or Narrowband Internet
of Things (NB-IoT).

2



CHAPTER 1: INTRODUCTION

Industrial IoT Wearables Video Surveillance

Communication ser-
vice availability

99.99% From 99% to 99.99% From 99% to 99.9%

Latency < 100 ms, < 10 ms
for augmented real-
ity and safety-related
sensors

< 10 ms < 500 ms

Reference bit rate < 2 Mb/s 10–50/min. 5 Mb/s
in Down-Link/Up-
Link; Peak 150/50
Mb/s in Down-
Link/Up-Link

In Up-Link 2–4 Mb/s
and 7.5–25 Mb/s for
high-end video

Device battery life ≥ 5 years 1 to 2 weeks Not Applicable

Table 1.1: Overview of NR-RedCap Reference Use-Cases and Requirements [4]

LTE-M cat. M2 (Rel.
15)

NB-IoT (Rel. 15) NR-RedCap

Bandwidth 5 MHz 180 kHz Minimum 10 MHz
Peak data rates Down-Link/Up-

Link: 4 Mb/s
/∼7 Mb/s (FD-
FDD)

Down-Link/Up-
Link: ∼127 kb/s
/ ∼143 kb/s (HD-
FDD)

Down-Link/Up-
Link: 150 Mb/s;
50 Mb/s for smart
wearables

Latency < 10 s < 10 s < 100 ms; 5–10 ms
for safety related sen-
sors

Reliability < 99% < 99% 99–99.99%
Device battery life > 10 years > 10 years > 5 years for IIoT

sensors; 1–2 weeks
for smart wearables

Table 1.2: LTE-M and NB-IoT capabilities with respect to NR-RedCap requirements [4]
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are difficult to define in a formal way, the use of Neural Network (NN) and data driven
approaches can sometimes overcome these limitations and process the signal in a more
precise and refined way, therefore leading to performance gain over standard models.

Reduction of algorithmic deficit - Complexity reduction: An exact or satisfactory mo-
del is sometimes known but it’s algorithmic solution is intractable given a set of operational
constraints. The use of NN and ML allows, in certain situations, to perform or assist com-
plex signal processing operations at a reduced complexity compared to standard algorithms,
while keeping the same performance level [7, 8]. This reduction of complexity at equal levels
of performance is particularly interesting in the case of communication systems constrained
in energy and/or computing capacities such as the systems considered in the IoT context.

Hardware efficiency and cost: Beyond algorithmic and modelling improvement enabled by
NN and ML, NN are also interesting because of their dedicated efficient hardware imple-
mentations. Indeed, as it will be described in Chapter 2, the expressiveness of NN models
lies in their layered architectures and not in complex individual mathematical operations.
These computational structures of NN allow for very efficient, generic and cost effective
hardware to be developed such as Neural processing Unit (NPU) already available on the
market [9]. The performance per Watts of these devices drastically surpasses that of Central
Processing Unit (CPU) or Graphics Processing Unit (GPU) [10]. Furthermore, as they are
used in an increasing number of domains, including Computer Vision (CV), such hard-
ware can be purchased off-the-shelf from a number of competing sources, including Intel,
Nvidia, Google, etc., which further reduces its cost. Therefore, describing conventional sig-
nal processing algorithm using NN architectures is a way to benefits from the advantages
of these hardware technologies even in the case where it does not improve the raw algo-
rithmic or modelling performance. The wide development of high-performance hardware
architectures dedicated to the execution of NN models makes it possible to consider their
use in future IoT networks that are more performing, energy-efficient, software-based and
therefore adaptable, less expensive, etc.

1.3 Methodology and Approach

This PhD work focus on different sub-blocks of the PHY layer in an IoT context, in particular
those performing demodulation, equalisation and channel coding operations. On all these sub-
jects a particular attention is thus paid to the complexity and the explainability of the proposed
models. At first, the proposed approach aims at transcribing classical algorithms of the digi-
tal communication domain using the mathematical framework of NN. This first step, without
necessarily bringing any performance or complexity gains compared to classical solutions, offers
the advantage of fully explainable NN architectures. As a result, and with the same algorithmic
performances, this transcription allows to take advantage of the interesting properties of the
hardware architectures dedicated to the execution of NN. Then, ML methods are implemented
to improve the performance of the proposed models thanks to the adaptation of their parameters
with respect to the operating conditions. The proposed methodology thus seeks to take into
account the operational constraints of IoT systems as well as to preserve as much as possible
the explainability of the proposed models. And, as a matter of fact, the objective of this work is
not to seek performance gains at all costs, but rather to improve the performance-to-complexity
ratios of signal processing solutions for IoT systems. The chosen approach follow, in a certain
way, the road-map towards a 6G AI-native air interface from [11] and is summarised hereafter:

Step 1: Deterministic NN architecture are devised from conventional signal processing algo-
rithms.

Step 2: The introduction of ML enables performance enhancements of said functional process-
ing blocks.

Step 3: The concatenation of NN-based block enables the joint optimisation of parts of the
communication chain.

4



CHAPTER 1: INTRODUCTION

1.4 Research Plan

Following the above methodology, the research work described in this manuscript is structured
around the following 4 chapters (see Figure 1.1):

Chapter 2 - Theoretical Foundations on Artificial Intelligence and Machine Learning:
As this work aims at applying AI and ML algorithms for signal processing at the physical layer

of wireless communication systems, Chapter 2 clarifies the different concepts related to AI that
will be manipulated in the rest of the study.

Chapter 3 - Artificial Intelligence at the Physical Layer: The third chapter describes
the subject of the study, namely the PHY layer of future cellular IoT network. It provides a brief
overview of the main functions of the PHY layer of a digital communication systems, offers a
quick survey of the use of AI techniques at the PHY layer and discusses the main opportunities
and challenges related to the use of such techniques in this context.

Chapter 4 - Describing Signal Processing Operations Using Neural Networks: The
fourth chapter studies, as a first step toward the integration of AI at the PHY layer, how conven-
tional signal processing algorithms can be described as low-complexity NN structures. At first,
NN structures for single and multi-path channel equalisation are described. Then, low complex-
ity demodulation structures are introduced. Finally, a simple NN based PHY layer prototype
with realistic implementation constraints, including single path equalisation and demodulation,
is implemented using Software Defined Radio (SDR).

Context:
6G-IoT Networks

Subject:
PHY Layer

Tool:
AI

This
Ph.D.
Work

Constrained Equipments:
Typically battery powered,
small packets, low computa-
tional capacity, low cost, etc.

cf. Chapter 1

NN & ML:
Graphical models, gradient
descent optimisation, etc.

cf. Chapter 2

Base-Band Signal Processing:
(De)modulation, (de)coding,

equalisation, etc.

cf. Chapter 3

Contributions:
NN structures for equalisation,
demodulation and decoding.

ML-improved decoding.
AI-based error codes design.

cf. Chapters 4 & 5

Figure 1.1: AI Models for Digital Signal Processing at the Physical Layer in a 6G IoT Context
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Chapter 5 - Learning Process at the Air Interface: Application to Channel Cod-
ing: Finally, the fifth chapter discusses the application of ML procedures to NN-based signal
processing structures at the PHY layer, and more particularly for channel coding. Following
the approach introduced in Chapter 4, this chapter starts by describing how one can express a
conventional belief propagation decoding algorithm using a differentiable graphical model. Then,
ML techniques are used to improve the decoding performance of proposed decoder in a blind
manner. Finally, an end-to-end approach is used for the joint design of performing coding schemes
and associated decoders for short to medium packet sizes compatible with the constraints of IoT
scenarios. The proposed solution reaches performance comparable to that of state-of-the-art Low
Density Parity Check (LDPC) codes.

1.5 Contributions

Hereafter, the references to the different contributions made in the course of this thesis work are
provided:

1.5.1 Conference and Journal Publications

[12] G. Larue, M. Dhiflaoui, L.-A. Dufrene, Q. Lampin, P. Chollet, H. Ghauch, and G. Rekaya,
“Low-Complexity Neural Networks for Baseband Signal Processing,” in 2020 IEEE Globe-
com Workshops, pp. 1–6, 2020

[13] G. Larue, L.-A. Dufrene, Q. Lampin, P. Chollet, H. Ghauch, and G. Rekaya, “Blind Neural
Belief Propagation Decoder for Linear Block Codes,” in 2021 Joint European Conference
on Networks and Communications & 6G Summit, pp. 106–111, 2021

[6] C. F. Miltiadis et al., “Pervasive Artificial Intelligence in Next Generation Wireless: The
Hexa-X Project Perspective,” in Proceedings of the First International Workshop on Arti-
ficial Intelligence in Beyond 5G and 6G Wireless Networks, vol. 3189, 2022

[14] G. Larue, L.-A. Dufrene, Q. Lampin, H. Ghauch, and G. Rekaya, “Neural Belief Propagation
Auto-Encoder for Linear Block Code Design,” IEEE Transaction on Communications, 2022

1.5.2 Patents

[15] L.-A. Dufrene, Q. Lampin, and G. Larue, “Procédés et dispositifs pour geler ou adapter les
paramètres d’un réseau de neurones utilisé dans un réseau de télécommunications,” 2020.
WO2022144520A1 - FR3118519A1

[16] Q. Lampin, G. Larue, and L.-A. Dufrene, “Procédé et système d’adaptation d’un réseau
de neurones utilisé dans un réseau de télécommunications,” 2020. WO2021255362A1 -
FR3111454A1

1.5.3 Open Source

All the results and source code from the journal publication [14] are available in open-source at:
https://github.com/Orange-OpenSource/GNBP.

1.5.4 Hexa-X Project

As mentioned above, this work contributed to the Hexa-X project and has led to an active partic-
ipation in numerous meetings of the “AI-Driven Communication and Computation Co-Design”
Work Package (WP), which aims to improve the performance of the 6G air interface through
low-complexity AI and ML mechanisms, and to devise concepts for the 6G network as a dis-
tributed learning platform. In particular, multiple discussions and technical presentations were
conducted during the meetings of the working group, subdivided into three tasks: “4.1: Gap
Analysis for AI-Driven Communication and Computation Co-Design”, “4.2: AI-Driven Air In-
terface Design” and “4.3: Methods and Algorithms for Sustainable and Secure Distributed AI ”.
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The discussed proposals were then documented in three deliverables intended for the European
Commission: “D4.1: Gap Analysis” [17], “D4.2: Initial Solutions” [18] and the upcoming “D4.3:
Solutions”. The publications [13, 14] mentioned above have also been provided as Hexa-X con-
tributions. In particular, the publication [6], is a joint publication initiative of the WP4 Hexa-X
members, to which a contribution on the issue of coding has been made.
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2.1 A BRIEF HISTORY OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

Foreword

This manuscript focuses on how AI and ML algorithms could benefit the physical layer of next
generation wireless communication systems. The goal of this chapter is therefore to clarify the
principal AI and ML concepts, thus providing the reader with the necessary understanding of
the tools that will be manipulated throughout this manuscript. First, a brief history of AI and a
general description of the associated concepts will be provided. Then, the standard NN structures
and computational models will be explained. A short description of the hardware architectures
supporting the execution of NN will be described. Finally, some of the related ML optimisation
algorithms will be introduced.

2.1 A Brief History of Computer Science and Artificial
Intelligence

The ancient Greek mechanism of Antikythera [19], the earliest known example of an analogue
computer (2nd Century BC); Euclid’s algorithm [20], a step-by-step method for calculating the
greatest common divisor of two integers (3rd century BC); and many other examples around
the world, testify to mankind’s age-old dream of machines and algorithms capable of automati-
cally solving complex tasks [21]. While the early examples of computing mechanisms were single
purpose machines, the pioneering works of, among many others, Charles Babbage (1791 - 1871)
[22], Ada Lovelace (1815 - 1852) [23] or Alan Turing (1912 - 1954) [24] have led to the advent
of modern computer science and general purpose computers [25]. Babbage, while developing a
mechanical machine for calculating mathematical tables, had the idea of incorporating the pro-
gramming cards from the Jacquard Machine [26], the reading of which would provide calculation
instructions to his device. In a way, this versatile and programmable Analytical Engine is often
considered the ancestor of modern computers [27]. Lovelace had a great interest in Babbage
device for which she described what is considered the first program, following modern computer
science concepts such as machine language or conditional statements and loops [23]. One of
the conceptual breakthrough made by Lovelace was to acknowledge that such device could do
much more than manipulating numbers to numerically solve analytical mathematical problems
[25]. These numbers could also be used as an abstract representation of virtually any concepts,
e.g. text, and manipulated to perform operations on them [25]. Nearly a century later, Alan
Turing was involved in the formal definition of algorithms and the general concepts of com-
puting machine and theory of computation [24]. He conceptualised the Turing Machine [28],
a mathematical model describing an abstract machine capable of implementing any computer
algorithm and was able to prove the existence of fundamental limits on computing machines and
algorithms. Turing foresaw the potential of computers as intelligent machines, provided that it
is possible to define that notion, and devised one of the first test of artificial intelligence, the
Turing test [29]. This test is designed to assess a machine’s ability to demonstrate intelligent
behaviour. An evaluator is asked to have a written conversation with both another human and
a machine designed to write human-like responses. If the evaluator is unable to distinguish the
human from the machine consistently, the machine is deemed to have successfully completed
the test. Turing estimated that computers would be able one day to successfully pass the test
and predicted in a pioneering vision that learning processes would play an important role in
the advent of performing computers and algorithms. At about the same time, the first digital
electronic computer, the ENIAC, was created (1945) [30] and two years later, J. Bardeen, W.
Shockley and W. Brattain invented the transistor (1947) [31]. These inventions would spark the
digital electronics revolution, as well as the steady increase in computing capacity and speed,
and the miniaturisation of devices, without which modern AI techniques would never have been
possible.

AI is nowadays a field in great expansion, with a lot of promising applications and research
challenges, that tries to answer, in many different ways, the broad and somewhat vague question:
can a machine be intelligent? The term AI itself being semantically saturated, it is difficult to
define it in a generic way. Nonetheless, one could broadly define an AI as:

“Any device that perceives its environment and takes actions that maximise its chance
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Artificial
Intelligence
e.g. Deterministic
Rule-based models

Machine
Learning
e.g. Linear
Regression

Neural Networks
e.g. Multi-Layer
Perceptron and
Gradient Descent

Figure 2.1: A Simplified Hierarchy of AI Related Concepts
To disambiguate this schematic representation, we should emphasise that NN are purely functional models, as
will be described in further sections, and are thus not necessarily associated with ML algorithms (although it is
often the case).

of successfully achieving its goals.”[32]

Solving computationally intensive problems using expert knowledge were among the first suc-
cessful applications of AI. These problems, particularly difficult for human beings, were relatively
simple for a computer thanks to well defined handcrafted algorithmic rules. Ironically, the real
challenge turned out to be solving rather simple, intuitive, problems for human beings but diffi-
cult to formalise as a list of rules, e.g. recognising objects in images. For such problems, and as
imagined by A. Turing in 1950, a paradigm shift in algorithmic development took place. Where
the expertise of developers was focused on the development of the algorithms solving the actual
problems, it gradually shifted to the development of learning algorithms capable of automatically
finding solutions to these unsolved problems through data-driven approaches. These algorithms
are commonly referred to as ML algorithms. The latter usually try to maximise performance
metrics of a parametric model on given data-sets in order to learn to solve certain complex
problems. It should thus be emphasised that the ML algorithm is fundamentally different from
the functional model for which it tries to find an effective parameterization. Among AI models,
ANN, or more simply NN, are a particularly popular mathematical framework loosely inspired
by biological neurons. These graphical models are based on the composition of a large number of
local elementary operations, called neurons, representing much more complex global functions.
These models, sometimes referred to as connectionist models, offers efficient hardware implemen-
tations and are particularly suitable to the application of ML procedures, hence their successful
application to a wide range of domains and the increasing attention they receive from various
research fields, among which their potential applications at the PHY layer of next generations
of cellular networks. Such a hierarchy of concepts is described in Figure 2.1.

Computer have long been much better than human at solving well-defined complex numerical
problems but only recently have they begun to match or even surpass their abilities at e.g.
recognising images. As an illustration, the (top-5) accuracy of a human annotator on the image
classification ImageNet challenge is measured at 5.1% or errors (optimistic estimation gives an
error rate of 2.4%) [33] where the best model to date shows a (top-5) accuracy of 99.02% [34].
The success of modern AI, such as DeepMind Alpha-Go[35] or Open-AI GPT-3[36], finds its roots
in a few key technical advances, namely the democratisation of GPU accelerated computation
and subsequent increase in compute capability, the development of Deep Neural Network (DNN)
models, theoretical advances in ML techniques and the availability of massive data-sets. Even
though, current State of the Art (SOTA) models are examples of relatively narrow AI, in the
sense that they are rather specialised on certain tasks, they pave the way to the grail of general
AI. Only seventy years after asking the question “Can machine think?” in his seminal paper
[37], one could realistically imagine that the test imagined by the father of modern computing,
A. Turing, could be successfully passed by an AI in a relatively near future, testifying to the
impressive progress made in this field.

We acknowledge that this brief summary is just a glimpse into the history of AI, ML and

11



2.2 NEURAL NETWORKS AND RELATED COMPUTATIONAL STRUCTURES

computer science, and we refer the reader to [38] for a more detailed view. However, we hope
that it allows the reader to grasp the historical trends that have led to the computer technologies
we know today, and in particular the impressive pace of technical progress in recent years, which
augurs for future developments, particularly in the field of AI.

2.2 Neural Networks and Related Computational Struc-
tures

As described in previous Section, NN and related ML algorithms are among the main enablers
of modern AI techniques. The elementary building block of a NN is a neuron. This parametric
model computes a simple operation, usually the weighted sum of its inputs, the addition of a bias
and the application of a non-linear activation function. Individual neurons are then combined into
layers, which in turn are combined to form a NN. The hierarchical composition of a high number
of these simple parametric functions allows the NN to express complex operations. Some of the
theoretical properties of NN make them particularly interesting as they could potentially be ap-
plied to any kind of problem. Indeed, simple structures such as Multi-Layer Perceptron (MLP),
described in 2.2.3 were proven to be universal function approximators [39], and Recurrent Neural
Network (RNN) to be Turing complete [40]. Furthermore, their interesting graphical structures
make them particularly efficient with some ML algorithms, e.g. Back-Propagation (BPROP),
are prone to efficient hardware implementations. These advantages led to successful applications
in e.g. CV or Natural Language Processing (NLP), and NN are now widely adopted in sev-
eral field and of high interest for many other research domains, among which next generations
communication systems.

This section will go through the standard computational structures and probabilistic graphical
models from the neural networks literature to provide the reader with the material necessary to
the understanding of this manuscript.

2.2.1 A Simple Building Block: The Formal Neuron

x1

x2

xn

n∑

i=1

xi step y
...

Inputs

Neuron
Activation Output

y = step

(
n∑

i=1

xi

)

Figure 2.2: McCulloch and Pitts Formal Neuron Model
step(x) denote the step function, equal to 1 if x > 0 and 0 otherwise.

Early work on Artificial Neural Network (ANN) started as the crossroad of neurosciences,
mathematics and computer science. While studying the behaviour of biological neurons, McCul-
loch and Pitts proposed in 1943 a first mathematical model of a neuron, defined as a threshold
logical unit [41] as shown in Figure 2.2. In this model, the neuron fires whenever the sum of its
inputs is positive. This on-off behaviour is implemented using the step function as a non-linear
activation function.

This model was later refined and called Perceptron by F. Rosenblatt in 1958 [42]. In the
modern sense, the Perceptron is defined as the binary classifier function n(x) = step (

∑
wixi + b),

where w = {wi}ni=1 ∈ Rn are trainable weights and b ∈ R is the bias of the neuron, and
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step y
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y = step
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n∑

i=1

wixi + b

)

Figure 2.3: Modern Definition of a Perceptron

x = {xi}ni=1 ∈ Rn are its inputs, as represented in Figure 2.3. These trainable parameters allow
to weight the relative contributions of the inputs to the output and define the threshold above
which the neuron should be activated.

The name Perceptron is often misused to describe any artificial neuron, the individual brick of
neural networks, used in problems other than binary classification, albeit with different activation
functions. These neurons are usually represented in a more compact form where the activation
and bias (and possibly the weights) are implicitly represented as part of the neuron, as shown in
Figure 2.4. This is one of the most commonly accepted definition of an artificial neuron. Note
that while the term Perceptron refers to a single neuron, the Perceptron algorithm usually refers
to a (single) layer of multiple Perceptron neurons. Hence, the term Perceptron is also often used
to refer to a single layer of neurons.

Equivalently, a neuron can be seen as a parametric projection of its input space onto an axis,
defined by its weights. The activation function then introduces a non-linearity on this projection.

x1

x2

xn

n(x)

w1w1

w2w2

wnwn

y
...

Inputs

Neuron Output

y = n(x) = Φ

(
n∑

i=1

wixi + b

)

Figure 2.4: Compact Representation of a Neuron
Φ(x) denotes the arbitrary neuron’s activation function.

2.2.2 Adding Width: Standard Neurons Layers

Combining neurons, in a so called layer, allow to compute in parallel the features associated to
each of them. All the neurons from a layer usually share the same activation function. From the
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Figure 2.5: Standard Definition of Neuron Layer

definition of a neuron provided in previous section, one can define the computation associated
with a layer of neurons as the matrix multiplication of the weight matrix W ∈ Rm,n by the input
vector x = {xi}ni=1 ∈ Rn, the addition of the bias vector b = {bj}mj=1 ∈ Rm and the element-wise
application of the same activation function Φ(x) : Rm −→ Rm. This simple structure is often
referred to as a a dense or fully-connected layer. Note that here we represent the calculation of
the layer output with respect to a single input vector x. One can easily express the output of
the layer with respect to several input vectors, or what is commonly called a batch, using matrix
notation:

Y = Φ
(
WX + b · 1T

)
(
Y:,1 . . . Y:,k

)
= Φ

(
W
(
X:,1 . . . X:,k

)
+
(
b . . . b

))



Y1,1 . . . Y1,k

...
...

Ym,1 . . . Ym,k


 = Φ







W1,1 . . . W1,n

...
...

Wm,1 . . . Wm,n






X1,1 . . . X1,k

...
...

Xn,1 . . . Xn,k


+




b1 . . . b1
...

...
bm . . . bm







(2.1)
where X and Y are matrices representing a batch of k inputs/outputs (column) vectors. To
make the addition of the bias vector compatible with the shape of the matrix resulting from
the multiplication of the input batch by the weight matrix, one need to perform a so-called
broadcasting operation. The latter operation, simply represented by b·1T , consists in duplicating
and concatenating the bias vector k times. One should be aware that, although often encountered
in NN structures, broadcasting operations are usually not explicitly written, e.g. A + b · 1T is
simply noted as A+ b and the reader needs to infer the correct shape that b should take.

The computational flow of a NN layer, centred on a few simple operations, notably matrix
multiplications, lends itself to efficient parallel hardware implementations, as will be detailed in
Section 2.3.

Certain types of problems and data have inherent structures that can be advantageously
incorporated into computational models. The following sections deal with the most classical
structures usually used to process data with local patterns, such as images, or data with temporal
relationships, such as languages, namely the convolutional and recurrent layers.

Convolutional Layers

Some grid-spaced data exhibits local patterns, e.g. images can be represented as a 2D grid of
pixels in which the pixels values are generally related to that of their grid neighbours due to
the underlying structure of the image. When one wants to be able to detect these patterns,

14



CHAPTER 2: THEORETICAL FOUNDATIONS ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING

which may be anywhere in the input data, e.g. determine whether an image contains a certain
object, the processing structure must be position-invariant (also referred to as shift invariant)
with respect to the data and integrate this notion of locality into the calculation. A mathematical
operator that can represent such a behaviour is the convolution, which allows to apply the same
small transform to all the elements of the entire input.

Given two signals x and h, the convolution of x by h is the integral of the product of the two
signals after one is reversed and shifted, evaluated for all shift values:

y(τ) = (x ∗ h)(τ) =
∫ +∞

t=−∞
x(t)h(τ − t)dt (2.2)

Similarly for discrete signals:

y[n] = (x ∗ h)[n] =
+∞∑

m=−∞
x[m]h[n−m] (2.3)

Convolution has applications in many fields, notably in the context of electrical engineering
and communication where it is used to compute the response of various Linear Time Invariant
systems, e.g. a filter or a channel, to an input x given their impulse response h. A closely related
operator, used to assess the degree of similarity of two signals x and y, is the cross-correlation.
It is defined as the integral of the product of one signal by the shifted complex conjugate of the
other, evaluated for all shift values1:

Rxy(τ) = (x ⋆ y)(τ) =

∫ +∞

t=−∞
x(t)y∗(t− τ)dt (2.4)

Similarly with discrete signals:

Rxy[n] = (x ⋆ y)[n] =

+∞∑

m=−∞
x[m]y[m− n] (2.5)
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Rxy[n] = x[n] ⋆ y[n]

Figure 2.6: Cross-Correlation of Two Signals x and y
The cross-correlation result exhibit a maximum at n = 1 which correspond to the position of the signal y that we
want to detect in the signal x.

Figure 2.6 shows an example where the cross-correlation operator is used to extract the
position of a characteristic waveform within a signal in a similar way to that of matched filters.

In the field of NN, the convolutional layers (and corresponding networks) use the same prin-
ciple. In such context the signal x is usually referred to as the input and the reference signal
y as the kernel. The outputs are called the (extracted) features or the feature map. Although,
they are called convolutionnal, they usually rely on the cross-correlation operator. One of the
great interest in using convolutional layers (aside from the previously described shift invariant
property) is their so called sparse interaction and parameter sharing properties which lead to
very efficient computation and frugal memory usage when compared to standard fully-connected
layers.

1The cross-correlation of x and y is thus equivalent to the convolution of x by y∗−, where y∗− is the reversed
complex conjugate of y.
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y = Φ(Wx+ b) ⇐⇒ y = Φ(k ⋆ x+ b)

Figure 2.7: 1D Convolutional Layer
A kernel of size 2 is applied to a 1D input of size n. Without padding and with a stride of 1, this lead to an
output of size m = n− 1. The multiplication of a Toeplitz weight matrix by the input vector and the addition of
the same bias to all outputs describe the equivalent computation with a conventional dense layer.

The Figure 2.7 shows an example of a 1D convolutional layer applying a kernel of size 2 to
an input of size n to compute n − 1 outputs. Similarly to a conventional dense layer, a bias is
added before applying the activation function Φ, although it is constant for all outputs, i.e. it is
part of the kernel. As shown on Figure 2.7 an equivalent computation using a dense layer could
be defined although much more complex. In this example, and supposing that this structure
is fit to the problem, the convolutional layer requires 2 weights and one bias compared to the
n(n − 1) weights and n − 1 bias required by the equivalent dense structure. Furthermore it
requires only 2(n − 1) multiplications and 2(n − 1) additions (including bias) compared to the
n(n− 1) multiplications and n(n− 1) additions of the dense layer.
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Figure 2.8: Example of a 2D Convolutional Layer
A kernel of size 3× 3 is applied to a 2D matrix of size 7× 7. Without padding and with a stride of 1, this leads
to an output of size 5× 5. No bias and activation are considered here.

Without loss of generality, this kind of structure can be applied to 2D data such as images,
or volumetric data such as medical scan or 3D scenes. Figure 2.8 shows the example of a 2D
convolution, similarly to what can be applied in the field of CV.

For more details on convolutional layers and associated concepts as well as their efficient
implementations, we refer the interested reader to [1].
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Recurrent Layers
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Figure 2.9: Compact Representation of a Standard Recurrent Layer
Arrows are a compact notation for a dense connection topology between the input vector and the recurrent layer
nodes, but other topology could be considered, e.g. convolutional layers. The converging arrow denotes the
concatenation of the input vector at time-step t and the state vector computed at previous time-step t− 1. The
diverging arrow represents a duplication. Activation and bias are not represented but could also be applied inside
the recurrent layer.

Some data are ordered and/or present temporal structures, e.g. an english text is read from
left to right and the knowledge of previous (or future) words in a sentence can be used to infer
the current word. Recurrent layers and corresponding RNN models are specific NN structures
that can take into account such data properties by performing a sequential operation (i.e. with
memory) along one of the axes of the inputs. The said axis can be time, as in time series, a
position in a sequence as in NLP, or any other dimension. Recurrent neurons and layers are
usually represented using the compact form of Figure 2.9. In such standard recurrent layer, a
feature vector x<t> ∈ Rn is provided at each of the τ time-step2. A dense layer of m neurons
computes the matrix multiplication of its weight matrixW ∈ Rm,m+n by the concatenation of the
input feature vector at time-step t and the state vector from previous time-step, y<t−1> ∈ Rm.
Equivalently, this computation can be decomposed as the sum of the product of inputs x<t> by
the weight matrix V ∈ Rm,n and the product of previous states y<t−1> by the weight matrix
U ∈ Rm,m. A bias and an activation function can be applied, as in conventional dense layers.
At first time-step, the state vector is arbitrarily initialised, usually to an all-zero vector.

The representation of Figure 2.9 can be confusing as to the different concepts involved, such
as the number of input and output features, the number of time-steps, the internal states, the
layer’s outputs, etc. To clarify the latter, one can unfold the computational graph of a recurrent
layer as shown on Figure 2.103. Contrarily to previously described convolutive or dense layers,
the recurrent layer is not a feed-foward layer although an efficient deterministic computational
graph can be defined if the number of time-step τ is pre-defined. It thus becomes similar to having
a stack of τ feed-forward layers with additional inputs and outputs all-along the computational
graph.

All calculations performed at a given time-step, given the state and input vectors, are con-

2The term “time-step”, derived from time series processing, is widely used even in cases where the RNN is not
applied on inputs with such a temporal ordering. It should be kept in mind as it can sometimes lead to confusion.

3Concept disambiguation: A common misunderstanding is to confuse the number of features and the number
of time-steps. In a simple time-series analysis setting, the input features can represent various quantities e.g.
temperature T and pressure P , while the time-steps represent the evolution of these quantities over time, e.g.
{x<1> = {T [1], P [1]},x<2> = {T [2], P [2]}, . . . ,x<τ> = {T [τ ], P [τ ]}}. In such a setting, two features are
considered and τ timesteps are provided. One should note, that although a temporal ordering might be present
in the data, it does necessarily have to be reflected by the different time-steps, e.g. it could be perfectly fine to
consider the following inputs sequence: {x<1> = {T [1], P [1]},x<2> = {T [1], P [1]}, . . . ,x<τ> = {T [1], P [1]}}. A
confusion can arise when considering features generated from a sliding window over the considered time-series e.g.
{x<1> = {T [1], T [2], T [3]},x<2> = {T [2], T [3], T [4]}, . . . ,x<τ> = {T [τ ], T [τ + 1], T [τ + 2]}}. In such a scenario,
both the τ time-steps and the 3 features provided at each time-step reflect the temporal ordering of the data.
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Figure 2.10: Unfolded Structure of a Standard Recurrent Layer
At each of the τ time-steps a feature vector of size n is provided to the so-called RNN cell. Based on the
concatenation of that vector and the result from previous cell, usually referred to as the state, a new state of size
m is computed. The new state is provided as the output of current time-step and passed onto next cell.
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Figure 2.11: An Example of Gated Cell: the Long Short Term Memory Cell
As shown in this figure, the internal mechanism of an RNN cell can be more elaborate than the standard dense-
structured RNN unit. The LSTM unit shown here maintains two internal state vectors, h and y, which are passed
from one iteration to the next. The y state vector is also used as the output of the cell. Gating mechanisms
based on multiple dense layers with various activation functions are used to control the information flow in these
internal states. This approach aims to preserve long-term dependencies while reducing the problems of gradient
vanishing during BPROP. The divided blue rectangles represent dense layers and their respective sigmoid (σ) or
tanh activations, while all other operators (in orange) represent point-wise operations (⊙ denotes multiplication,
+ denotes addition and tanh denotes hyperbolic tangent activation). The converging arrows represent vector
concatenation while the diverging arrows represent vector copy.
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ceptually integrated in what is usually termed the computational cell. Each of the cell share the
same parameters and computational graph although applied on different inputs and states. In
the standard case, the cell simply applies the computation of a standard dense layer but more
complex cell topology can be considered. Furthermore, the states and the outputs does not
necessarily need to be the same, contrarily to the example of Figures 2.9 and 2.10. For example,
the family of gated cells, such as Long-Short Term Memory (LSTM) [43] or Gated Recurrent
Unit (GRU) [44], considers more complex cell topology, where a so-called gate controls the flow
of information through various internal state vectors, usually different from the output vectors, in
order to keep track of the long-term dependencies in the data while avoiding gradient vanishing
during BPROP [43]. Figure 2.11 provides an example of such a gated cell in the form of a classic
LSTM unit.
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Figure 2.12: Various Recurrent Layer Inputs/Outputs Topology
Depending on the use-cases and data structures, the inputs/outputs topology of the recurrent layer can vary.

The configuration of input and output time-steps, so-called RNN topology, is adapted to each
use-case, as shown in Figure 2.12. For example, a many-to-one topology could be used for text
sentiment analysis where many input tokens are provided (letters or words in the text) to be
processed sequentially and a single output is expected, namely that the text expresses positive or
negative opinions. A many to many topology could be used for text translation, where multiple
tokens, forming a sentence in a given language, are provided as input, and the translation of
said sentence into another language is expected as output. Finally, a one to many topology
could typically be used for image captioning where a single token, the image, is provided while
a sequence of words describing the image is expected as an output.

For more details on recurrent layers, networks and sequence modelling we refer the interested
reader to the excellent Deep Learning book, chapter 10 [1].

2.2.3 Increasing the Depth: Some Neural Networks Structures

Now that some of the principal layer types have been introduced, a proper definition of NN can
be stated as the compositions of said layers.

One of the most classic NN structure is the MLP. MLP is a feed forward structure made out
of a combination of standard dense layers as shown on Figure 2.13. Obviously, more complex
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Figure 2.13: The Multi-Layer Perceptron
A standard MLP is defined as the composition of l dense layers whose activation functions and number of neurons
can vary from one layer to another.

combinations of heterogeneous layers - e.g. RNN, Convolutional Neural Network (CNN), etc.
- can be considered, but they are outside the scope of this introductory section. The global
function described by the MLP is simply the composition of the functions of the l individual
layers of the networks:

h(1) = Φ(1)
(
W (1)x+ b(1)

)

h(j) = Φ(j)
(
W (j)h(j−1) + b(j)

)
∀j ∈ {2, . . . , l − 1}

y = Φ(l)
(
W (l)h(l−1) + b(l)

)
(2.6)

where h(j), Φ(j), W (j) and b(j) are respectively the output, activation function, weights
matrix and bias vector of the j-th layer of the MLP.

The above equation stresses the importance of the use of non-linear activation functions.
Indeed, executing a MLP made out only of linear dense layers is equivalent to executing a single
linear dense layer, (i.e a composition of linear map is a linear map) as shown recursively with
the example of the identity activation function:

y = W (l)h(l−1) + b(l)

= W (l)
(
W (l−1)h(l−2) + b(l−1)

)
+ b(l)

= W (l,l−1)h(l−2) + b(l,l−1)

...

y = W (l,l−1,...,1)x+ b(l,l−1,...,1)

(2.7)

where W (l,l−1,...,1) and b(l,l−1,...,1) are linear combinations of the weights matrices and bias
vector of layers 1 through l.

Thus, and as stated before, one way to express more complex functions is to apply non-linear
activation functions between the different layers of the network. The following section provides
an overview of some of the most common activation functions and their implementation contexts.
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Name Symbol Definition Derivative Figure

Step H(x)

{
0 if x < 0

1 if x ≥ 0
δ(x)

Sigmoid σ(x)
1

1 + e−x
σ(x)(1− σ(x))2

Hyperbolic
Tangent

tanh(x)
ex − e−x

ez + e−z
1− tanh(x)2

ReLU R(x) max(0, x)

{
0 if x < 0

1 if x ≥ 0

Leaky ReLU Ŕ(x)
max(αx, x)

∀α ∈ [0, 1]

{
α if x < 0

1 if x ≥ 0

Softmax σi(x)
exi

∑
j e

xj

∂σi(x)
∂xk

=





exi
∑

j ̸=i e
xj

(∑
j e

xj

)2 if k = i

− exiexk

(∑
j e

xj

)2 if k ̸= i

Table 2.1: Common Non-Linear Activation Functions

Common Activation Functions and their Use

Table 2.1 lists the most commonly used non-linear activation, as-well as their derivative and
plots. The choice of an activation function is mainly related to the class of problems considered
as well as the activation numerical conditioning characteristics when running or learning a multi-
layer model. On the one hand, the nature of the problem generally influences the choice of the
activation function and size of the last layer of the network in order to format the outputs in a
suitable way. On the other hand, numerical conditioning issues generally dictate the choice of
the activation functions for the intermediate layers in order to ensure proper propagation of data
(execution) and gradients (learning) in the network.

As for the last layer activation choice, and when considering supervised learning problems
(which is primarily the case in this manuscript), it is common to distinguish regression problems
from classification problems. In essence, classification aims to predict a class label while regres-
sion aims to predict a quantity. Classifications problems can themselves be subdivided in three
categories:

� The binary or single-class classification problem where the model has a single output that
must take the value 0 or 1, for example when one wishes to label emails as spam or not.

� The multi-class single-label classification problem where the model has several outputs,
each relating to mutually exclusive classes, of which one must take the value 1 and the
others 0 (this is commonly referred to as one-hot encoding). This situation is encountered,
for example, when classifying entities among several mutually exclusive categories e.g. the
four colours of playing cards {heart, diamond, spade, clover}.

� Themulti-class multi-label classification where the model has several outputs, each referring
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to a different class, of which several may take the value 1 while the others take the value 0.
This may be encountered when one wishes to describe the presence or absence of multiple
objects in a scene, e.g. there is a tree and a bike but no pedestrian on the picture.

While linear activation functions in the last layer satisfy the need for continuous dynamics of
output variables in regression problems, non-linear activations, usually with binary behaviour,
are well suited to classification problems [45]. The step function is the prototypical function
for binary classification problems, although it is usually not used in practice due to its non-
differentiability and subsequent incompatibility with gradient-based optimisation methods. The
sigmoid function can be considered as a relaxed approximation of a step function, ideal to solve
binary classification or multi-class multi-label problems using gradient descent. When dealing
with multi-class single-label problems, the softmax function, a generalisation of the sigmoid that
normalises the sum of the outputs of the network to 1, is particularly suited.

For the intermediate layers of the network, the hyperbolic tangent is usually preferred over
the sigmoid because it is zero centred which is considered a desirable behaviour [46]. Still, both
sigmoid and hyperbolic tangent functions suffer from the so-called vanishing gradient4 problem
[43, 47] that can be described by the fact that the value of the gradient gets close to 0 when x >> 0
or x << 0. This behaviour causes a slowdown in gradient based optimisation of DNN, eventually
up to the point of completely blocking the back-propagation of the gradients to early layers of
the networks and any subsequent update of the weights. From a mathematical standpoint, and
as will be described in more detail in Section 2.4, the Jacobian matrices of the different layers
contain derivatives with small numerical values so that the product of these matrices tends to 0
and leads to small updates of the parameters. To circumvent this vanishing gradient problem,
the Rectified Linear Unit (ReLU) function has been proposed because of its constant gradient
when x ≥ 0 [48]. Still, when x < 0 the gradient of the ReLU is equal to 0 which can also block
the weights update. This is the so-called dying ReLU phenomena [49]. Leaky ReLU and variants
are widely adopted variants of the ReLU that reduce this problem with a small, but non-zero,
gradient value when x < 0.

For a finer understanding of the reasons behind the above-mentioned good practices in the
choice of activation functions, the reader is referred to Section 2.4. The latter provides additional
information on learning processes in NN and related concepts such as differentiability, Gradient
Descent (GD), BPROP, chain rule of derivatives, etc.

2.2.4 Probabilistic Reasoning and Related Structures

A complex, yet fundamental, aspect of the modelling of any phenomenon is uncertainty. The
causes of this uncertainty are various and include our limited ability to observe all the relevant
causes and the fact that even what we are able to observe may be observed with errors due to noise
or imperfections in measurement processes. Because of this pervasive uncertainty, it is important
to reason probabilistically. Probability theory is a mathematical framework that allows to make
uncertain statements and reason in the face of uncertainty. It is a fundamental tool in many, if
not all, fields of science, including AI where many probabilistic models have been developed. This
section provides an outline of probabilistic models and associated inference methods relevant to
this study. Readers willing to delve into a more formal and complete description of these concepts
are invited to read [50, 51, 52].

Probability Background

Probabilistic reasoning involves working with variables that can take different values at random.
Such variables are called random variables. A random variable is not of much use in itself as
it simply describes a list of possible outcomes. However, if it is associated with a probability
distribution it then becomes possible to describe the probability of occurrence of these outcomes
in order to list not only what is possible, but also, and more importantly, what is likely. With
some simplification, a random variable can be defined as a variable that can take on different,
discrete or continuous, values at random in a sample space Ω. In this manuscript, x denotes a

4See Section 4.18 for a detailed description of the concept of gradient and related optimisation algorithms.
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scalar random variable, while random vectors (random matrices respectively) are denoted by x
(X respectively). The probability distribution of a random variable describes the likelihood that
a random variable takes one of its possible outcomes. In this document, we adopt the notation
x ∼ D to indicate that the random variable x follows the probability distribution D.

When considering a discrete variable, e.g. when describing the outcome of a coin toss, the
distribution of the random variable is usually described using a Probability Mass Function (PMF)
px∼D(x = x), or simply px(x). This function expresses the probability that random variable x
takes on value x under distribution D. A probability of 1 means that an outcome is certain and
a probability of 0 means that it is impossible. A PMF must verify the following properties:

� 0 ≤ px(x) ≤ 1∀x ∈ Ω, the probability of any possible outcomes is always comprised between
0 and 1.

�

∑
x∈Ω px(x) = 1, the probabilities of all possible outcomes must sum to 1.

For example, the probability of event “x equals a” can be noted as Px∼D({x = a}) = px∼D(x =
a) where the brace notation {x = a} denote the event “x is equal to a”. This can be written
more concisely as Px {x = a} = px(a).

When considering continuous random variables, the sample space corresponds to one or mul-
tiple continuous intervals over the infinite set of real numbers R. The probability distribu-
tion is then described using the continuous Probability Density Function (PDF), denoted as
fx∼D(x = x), or simply fx(x). As the function is continuous, the PDF fx(x) does not directly
provide the absolute likelihood of the random variable x to be equal to x, the latter tending
toward 0 (there is infinitely many different possible outcomes). Instead, a PDF can be inter-
preted as the relative likelihood or the probability of random variable x to takes on a value in
the infinitesimal neighbourhood dx of x as fx(x)dx. Similarly to the PMF, the PDF must satisfy
certain properties:

�

∫
x∈Ω

fx(x)dx = 1, similarly to the PMF but replacing the discrete summation by an inte-
gral, the probabilities of all possible outcomes must sum to 1.

� 0 ≤ fx(x)∀x ∈ Ω, the PDF is always positive. Note that, contrarily to PMF, the PDF
fx(x) is not required to be smaller than one because of the infinitesimal nature of this
description. Indeed this would not be the case e.g. when considering a PDF of the form
fx(x) = δ(x) where δ(x) is the Dirac function, even though the area under the curve still
equals 1.

With such continuous distribution we are generally interested in finding the probability that the
random variable lies on a certain interval which can be computed by means of integration over
that interval. For example assume we want to compute the probability that the random variable
x is comprised between two numbers a and b. This can be expressed as Px∼D({a ≤ x ≤ b}) =∫ b

a
fx∼D(x = x)dx where the brace notation {a ≤ x ≤ b} denote the event “x is comprised

between a and b”. This can be written more concisely as Px {a ≤ x ≤ b} =
∫ b

a
fx(x)dx.

One can obviously consider to work with several random variable simultaneously. In such
situation, a probability distribution over the different variables is known as a joint probability
distribution. Similarly to the single variable case one can describe these joint probability distri-
bution with multi-variate PDF or PMF. For example, a multivariate PMF would be noted as
px∼D1,y∼D2

(x = x, y = y) or more concisely px,y(x, y). For continuous variables, a multivariate
PDF is denoted as fx∼D1,y∼D2

(x = x, y = y) or more concisely fx,y(x, y).
One can sometime be provided with a joint distribution over many variables while being

interested only by the distribution of a subset of these variables. Such distribution is known as a
marginal probability distribution and can be found using what is know as the sum rule. The latter
consists in the summation or integration of the joint distribution (depending of the continuous
or discrete nature of the considered variables) over the sample spaces of the variables that are
not of interest. For example, if considering a set of n discrete random variables {x1, . . . , xn}, the
marginal distribution over the sub-set made of the first k < n random variables would be defined
as:
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px1,...,xk
(x1, . . . , xk) =

∑

xk+1∈Ωk+1

. . .
∑

xn∈Ωn

px1,...,xn
(x1, . . . , xn) (2.8)

which will be noted more concisely in this manuscript as:

px1,...,xk
(x1, . . . , xk) =

∑

∽x1,...,xk

px1,...,xn
(x1, . . . , xn) (2.9)

where the ∽ symbol denote the nested summation over all the variable except the ones listed.
Similarly, when considering continuous variables:

fx1,...,xk
(x1, . . . , xk) =

∫

xk+1∈Ωk+1

. . .

∫

xn∈Ωn

fx1,...,xn (x1, . . . , xn) dxn . . . dxk+1 (2.10)

which will be noted more concisely in this manuscript as:

fx1,...,xk
(x1, . . . , xk) =

∫

∽x1,...,xk

fx1,...,xn
(x1, . . . , xn) (2.11)

One can define the conditional probability of an event A conditioned by an event B as the
probability that the event A is realised under the assumption that the event B is realised. The
conditional probability of event {A} knowing that event {B} has happened is denoted as:

P {A|B} = P {A,B}
P {B} ∀ P {B} > 0 (2.12)

From the above definitions one can derive the famous Bayes rule that allows to compute the
probability of some hypothesis {H} to be true given the observation of evidence {E}:

P {H|E} = P {E|H} P {H}
P {E} (2.13)

where P {H} is the probability that hypothesis {H} is true before any evidence is observed,
also known as the prior. P {E} is the probability of seeing the evidence {E}, also known as the
marginal likelihood. P {E|H} is the probability to observe the evidence {E} given the hypothesis
{H} is true, also known as the likelihood. Finally, P {H|E} is the probability that hypothesis
{H} is true given the evidence {E}, which can be seen as an update over the prior given the
evidences, also known as the posterior.

From the definition of conditional probability, one can derive the product rule of probability
stating that a multivariate joint probability distribution can be factored into the chained product
of their conditional probability:

P {X1, . . . , Xn} = P {X1}
n∏

i=2

P {Xi|X1, . . . , Xi−1} (2.14)

Two events are said independent when P {A|B} = P {A} (and vice et versa) and thus
P {A,B} = P {A}P {B}.

Assuming an infinitely large number of samplings, the expected value of a random variable
(also called expectation or first moment) is the average of these samplings. Assuming that
the distribution of said random variable is known, the expected value can be calculated as the
weighted average of the possible outcomes according to their probability of occurrence, as follows:

Ex∼D {x} =
∑

i

xipx∼D(x = xi) (2.15)

Which can similarly be written for a continuous variable:

Ex∼D {x} =
∫

xfx∼D(x = x)dx (2.16)

The empirical mean is an unbiased estimator of the expected value in the sense that it
converges to the latter when the number of sample tends to infinity:

Lim
n−→+∞

x̄ = Lim
n−→+∞

n∑

i=1

xn = Ex∼D {x} , xn ∼ D (2.17)

24



CHAPTER 2: THEORETICAL FOUNDATIONS ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING

Probabilistic Models and Inference

Lets suppose that a sequence of samples d is generated following an unknown random or stochastic
process. Let’s further assume that we want to build a probabilistic model, with parameters θ,
whose outputs fit the observed sequence d. Since the model is probabilistic, its outputs can be
represented as a random variable d.

In that context, the likelihood function5 L(θ,d) denotes the probability that the model, with
parameters θ, outputs a sequence equal to that of the observed sequence d:

L(θ,d) = Pd∼D{d = d;θ} (2.18)

where Pd∼D|θ{d = d;θ} denotes the probability that a random sequence d sampled from the
distribution D of the chosen model under parameterization θ, takes the same values d as the
observed realizations of the (unknown) data generating distribution.

Assuming independence between samples, the likelihood function can be simplified to a prod-
uct of probabilities. In this case, it may be convenient to introduce the log-likelihood function,
i.e. the logarithm of the likelihood function:

log L(θ,d) = log

n∏

i=1

Pdi∼D{di = di;θ} =
n∑

i=1

log Pdi∼D{di = di;θ} (2.19)

Although this is only a matter of practical convenience, sums are generally easier to handle in
many numerical and/or analytical aspects, such as differentiation or integration, which justifies
such a notation. Furthermore, since the logarithm is a strictly monotonic function, it has no
impact on maximisation or minimisation processes.

For example, suppose we observe a sequence of n coin flips and do not know whether the
coin is fair or not. We choose to model this sequence of observations using a Bernoulli model
in which the single parameter θ (1 − θ respectively) is the probability of the coin landing head
up (tail up respectively). Given a sequence of observations d the log-likelihood function is thus
defined as:

log L(θ,d) =
n∑

i=1

1(di = H)log θ + 1(di = T)log (1− θ) = nHlog θ + nTlog (1− θ) (2.20)

where 1(di = H) (1(di = T) respectively) is an indicator function equal to ’1’ when the i-th
coin toss lands head up (tail up respectively) and ’0’ otherwise.

Figure 2.14 describes the log-likelihood function in such a scenario for different sequences
of coin flips. It is clear in this model that if we observe a majority of coins that land head
up (tail up respectively), the most probable value for the parameter θ of the chosen Bernoulli
model is shifted to 1 (0 respectively). When the coins always land heads up (tails respectively)
the log-likelihood function shows that the most probable value for the Bernoulli process is 1 (0
respectively). This estimator, which consists in computing the parameters that maximise the
(log-)likelihood function, is commonly known as the Maximum Likelihood Estimator (MLE):

θ̂MLE ≜ argmax
θ

log L(θ,d) (2.21)

As shown earlier, the MLE provides a choice of parameters for the chosen probabilistic model
most likely to yield the observed data. This choice is made solely on the basis of the available
data. Therefore, it is particularly sensitive to small data sets for which it is prone to over-fitting.
Sometimes knowledge of the phenomenon to be modelled provides prior information that can be
advantageously used for parameter selection, especially when there are few data available. This
idea is at the heart of Maximum A Posteriori Estimator (MAPE). This method attempts to
answer the same question as MLE, but allows us to inject an a priori distribution on the value
that the parameters could take to allow a better estimation of them. The joint probability of an

5The likelihood function should not be confused with a probability distribution.
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Figure 2.14: Log-Likelihood Functions of a Bernouilli Model for Sequences of Coin Flips
The likelihood functions of the chosen model are computed for three different sequences of coin flips. H stands
for ”heads up” and T for ”tails up”.

a priori distribution on the parameters of the model and its output can be defined and factored
as follows:

Pd,θ{d = d,θ = θ} = Pd|θ{d = d|θ = θ}Pθ{θ = θ} (2.22)

Note that since we are now considering an a priori distribution on θ we treat it as a random
variable (or vector). As a result, we use the conditioning bar instead of the Pd∼D{d = d;θ}
notation used previously for the MLE. The above expression can be used to compute the a
posteriori distribution of the model parameters given a set of observations d, through Bayes
rule:

Pθ|d{θ = θ|d = d} = Pd|θ{d = d|θ = θ}Pθ{θ = θ}
Pd{d = d} (2.23)

The MAPE, similarly to the MLE, consists in computing the argument of the maxima with
respect to the parameters θ of the (log-)posterior distribution and is defined as:

θ̂MAPE ≜ argmax
θ

log Pθ|d{θ = θ|d = d} = argmax
θ

log
Pd|θ{d = d|θ = θ}Pθ{θ = θ}

Pd{d = d} (2.24)

As we compute the argument of the maxima with regard to the parameters θ, Pd{d = d} is a
constant. Hence, this expression can be further simplified, making MAPE appear as a regularised
version of MLE:

θ̂MAPE = argmax
θ

log Pd|θ{d = d|θ = θ}Pθ{θ = θ} = argmax
θ

(log L(θ,d) + log Pθ{θ = θ})
(2.25)

The above expression shows MAPE to be equivalent to MLE when the considered prior is
uniform. Assuming independently and identically distributed (i.i.d.) samples the MAPE can be
further decomposed as the following sum:

θ̂MAPE = argmax
θ

(
log Pθ{θ = θ}+

n∑

i=1

log Pdi|θ{di = di|θ = θ}
)

(2.26)

Supposing we are able to compute or approximate the argmax function with analytical or sam-
pling methods, both MLE and MAPE can be relatively computationally efficient. On the other
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Figure 2.15: Bayesian Posterior Distribution Computation
In this example, a posteriori distributions are computed based on an arbitrary a priori distribution of the Bernoulli
model parameter and different observations of sequences of coin flips. The chosen prior distribution indicates that
it is more likely that the parameter θ is equal to 0 than to 1. However, the observations seem to contradict
this prior distribution since we only observe heads. The prior distribution is therefore updated to 1 when the
posterior distribution is calculated. We can see that the more observations we have, the less influence the a priori
distribution has on the a posteriori distribution.

hand, they are said to be point estimators in the sense that they provide a single set of value for
the parameters θ and not a distribution. This leaves out some information such has an estimate
of the uncertainty over the computed parameters. Computing the complete posterior distribu-
tion and not only its argmax can be costly as it involves computing it’s denominator through
an integration (or a sum for discrete variables), potentially of high dimension depending of the
dimension of θ. Indeed, the denominator can be formulated as:

Pd{d = d} =
∫

θ

Pd|θ{d = d|θ = θ}Pθ{θ = θ}dθ (2.27)

Figure 2.15 follows up on the coin flip example of Figure 2.14, but adds the knowledge of an
arbitrary prior distribution to compute the a posteriori distributions. Here, the prior distribution
is a linear function with smaller values of θ being more likely than higher values of θ. The MAPE
consists in taking the argument of the maxima of these a posteriori distribution. As can be seen
by comparing Figures 2.15 and 2.14, for the same observed sequence d = HHHH, where the
MLE would have selected a parameter θ̂MLE = 1, the MAPE selects a parameter θ̂MAPE = 0.8
as a result of the added prior knowledge. It can also be noted that the posterior distribution
becomes tighter as the number of observed data increases, thus providing a measure of the
uncertainty on the chosen parameter. Furthermore, it can be seen that the impact of the prior
distribution on the posterior distribution decreases as the number of observations increases, such
that the MAPE converges to the MLE. The a posteriori distribution is then supposed to be
a better description of the actual data generation process than the a priori distribution, as it
contains more information. It should also be noted that an a posteriori distribution can later
become the prior for the calculation of a new a posteriori distribution provided that new data
are observed.
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Structured Probabilistic Graphical Models, Factor Graphs and Associated Inference
Algorithms

When many random variables are involved in the representation of a stochastic process, it can
become very complex to exhaustively describe the complete joint distribution, e.g. in a tabular
approach. Indeed, n random variables taking k possible values lead to kn possible outcomes,
which grows exponentially in n. In reality, the relationships between these n variables are usually
sparse, in the sense that one variable usually influences only a few others (which, in turn, may
influence others) and these joint distributions of considerable dimensions can be represented in
a more compact way. The objective of structured probabilistic graphical models is to model
these large joint probability distributions as a sparse graph of local relationships describing how
random variables interact directly with (hopefully a small number of) other variables.

Among the different types of probabilistic graphical models, this section introduces the notion
of undirected Factor Graph (FG) and the associated inference algorithms that are of interest for
the present manuscript. The idea behind the FG is, as the name implies, to express a global
function of many variables, and therefore complex to compute, as a factorisation of many local
functions, much easier to compute. This idea is obviously not specific to the calculation of large
joint probability distributions but can be used advantageously for such tasks.

Let g(x1, . . . , xn) be a global function of n variables that can be factored as a product of k
local functions over subsets of the n variables. A (Forney-style) FG is defined by the following
rules:

� Every factor is represented by a unique node.

� Every variable is represented by a unique edge (or half edge) and an edge can connect at
most 2 factors.

� A node gi is connected to an edge xj if and only if gi is a function of xj .

For example, Figure 2.16 provides the FG corresponding to the following function:

g(x1, . . . , x5) = g1(x1, x2, x3)g2(x2)g3(x3, x4, x5) (2.28)

where g is a global function factored as a product of local functions gi working on subsets of all
the variables x1, . . . , x5.

g1
x1

g2
x2

g3

x3
x4

x5

Figure 2.16: An Example of Factor Graph

In some case we might be interested in representing FG where a variable participates in more
than two factors. This is in contradiction with the construction rules of a FG described before.
To solve that issue one can simply define a new variable and a new factor node whose local
function g= act as a “cloning” function from the original variable to be duplicated to the newly
defined variable. For example, lets imagine the following function:

g(x1, . . . , x5) = g1(x1, x2, x3)g2(x2, x3)g3(x3, x4, x5) (2.29)
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As one can see, variable x3 participate in more than two factors thus violating the construction
principles of FG enumerated before. One could define an equivalent function, whose FG is
depcited in Figure 2.17, as:

g′(x1, . . . , x5) = g1(x1, x2, x
(1)
3 )g2(x2, x

(2)
3 )g3(x

(3)
3 , x4, x5)g=(x

(1)
3 , x

(2)
3 , x

(3)
3 ) (2.30)

The relation described by the equality constraint g= states that the variables x
(1)
3 and its two

copies x
(2)
3 and x

(3)
3 must be equal. Such constraint is formally defined for n variables as:

g=(x
(1), . . . , x(n)) =

n∏

i=2

δ(x(1) − x(i)) (2.31)

where δ(x) express the Kronecker delta function equal to 1 when x = 0 and 0 otherwise. The
above constraint is valid if and only if all the copied variables x(1) through x(n) are equal.

g1
x1

g2
x2

=
x
(1)
3 g3

x
(3)
3

x4

x5

x
(2)
3

Figure 2.17: An Example of Factor Graph with Equality Constraint Node

Note that the graph from Figure 2.17, contrarily to the one from Figure 2.16, contains a
cycle. As will be detailed later on, while inference is exact on trees, i.e. graph without cycles, it
is usually only approximate when such cycles are present.

We are usually interested in answering two types of problems:

� The marginalisation problems where we attempt to compute a function of the form ḡ(xi) ≜∫
∽xi

g(x1, . . . , xi, . . . , xn) (or similarly with a sum for discrete variables).

� The maximisation problem where we want to compute a function of the form ĝ(xi) ≜
max
∽xi

g(x1, . . . , xi, . . . , xn).

Both problems are in general intractable for large n if not considering specific structure of
the global function g(x1, . . . , xn). Yet, the factorisation of the global function g(x1, . . . , xn) in
a product of local function can help to reduce that complexity. For example, let’s consider the
following function and associated FG represented in Figure 2.18:

g(x1, . . . , x11) = g3(x5, x6, x7)g2(x3, x4, x6)g1(x1, x2, x3)g4(x7, x8, x9, x10)g6(x10)g5(x9, x11)
(2.32)

Let’s consider the case where we are interested in computing the marginal ḡ(x7). Assuming
all xi are continuous variables, the latter is defined as:
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Figure 2.18: Marginalization on a Factor Graph

ḡ(x7) =

∫

∽x7

g(x1, . . . , x11)

=

µg3−→x7
(x7)︷ ︸︸ ︷



∫

x5,x6

g3(x5, x6, x7)

µg2−→x6
(x6)︷ ︸︸ ︷



∫

x3,x4

g2(x3, x4, x6)

µg1−→x3
(x3)︷ ︸︸ ︷


∫

x1,x2

g1(x1, x2, x3)dx1dx2


 dx3dx4



dx5, dx6




µg4−→x7
(x7)︷ ︸︸ ︷



∫

x8,x9,x10

g4(x7, x8, x9, x10)g6(x10)

µg5−→x9
(x9)︷ ︸︸ ︷


∫

x11

g5(x9, x11)dx11


 dx8dx9dx10




(2.33)

As evidenced in this example, the advantages of using a factor graph is that it allows to
express a global function as a product of local functions. As a consequence, this approach allows
to locally eliminate certain variable and simplify a computation such as the marginalisation of
the global function. In the above example, one can see that instead of computing a marginal on
the global system in R11, the computation has advantageously been recursively decomposed into
a nested sums (or integrals) of local marginals of much smaller dimensions. The global integral
is simplified to a chained product of simpler integrals by the so called local elimination property
of FG. In this hierarchical view, each subsystem calculates a summary and passes it on to its
parent, which in turn summarises all the data received from all its children and passes it on to
its own parent, and so on and so forth. It is in this hierarchical structure that the interest of this
type of approach lies. These local summaries, denoted as µgi−→xj

(xj) in Eq (2.33), can be seen
as “messages” that are sent along the edges of the graph to propagate some knowledge. Hence,
the common name of Message Passing Algorithm (MPA) to refer to many inference algorithms
used on FG.

This idea is notably at the heart of the well-known Sum-Product Algorithm (SPA), whose
name comes explicitly from these alternating sums of products. In this algorithm each node
representing a local function g(x1, . . . , xk) receive messages from neighbouring variable edges,
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denoted as µxj−→g(xj). Then, the node compute the outgoing messages to neighbouring variables
xi based on the received messages (except the message previously received from the recipient
variable) and the local node function. As evidenced in the previous marginalisation example of
Eq. (2.33) one can simply define the general Sum-Product rule, that is locally computed at each
node of the graph, as:

µg−→xi
(xi) =

∫

∽xi

g(x1, . . . , xi, . . . , xk)

k∏

j=1

j ̸=i

µxj−→g(xj) (2.34)

Or, in the case of discrete variables:

µg−→xi
(xi) =

∑

∽xi

g(x1, . . . , xi, . . . , xk)

k∏

j=1

j ̸=i

µxj−→g(xj) (2.35)

where µg−→xi(xi) is the outgoing message from node g toward variable xi, g(x1, . . . , xi, . . . , xk) is
the function of k variables of said node and µxj−→g(xj) are the incoming message from variables
xj (∀j ∈ {1, . . . , k}, j ̸= i) toward the node g.

Note that if the node g is a function of a single variable xi, then the Sum-Product rule at
this specific node simply become:

µg−→xi
(xi) = g(xi) (2.36)

When there is no prior information about a given variable, e.g. at the graph initialisation,
the associated messages toward neighbouring nodes are by default initialised to a constant func-
tion equal to 1 (the neutral element of the product). This, from a probabilistic standpoint, is
equivalent to having a uniform prior.

We are able to compute the marginal distribution of a given variable xi when the two opposite
messages on the corresponding edge are available, i.e. they have been computed. The marginal
distribution is then defined as follows:

ḡ(xi) = µga−→xi
(xi).µgb−→xi

(xi) (2.37)

where ga and gb are the two neighbouring nodes of variable xi
A very interesting properties of FG and SPA is that the messages exchanged in the graph to

compute a given marginal can be stored and reused without additional computations to compute
all the other marginals.

If the graph has no cycles the algorithm is simply executed as follow:

� All messages are initialised, based on some observations. When no information is available
a uniform prior is usually applied.

� The information is propagated from neighbour to neighbour by applying the sum-product
rule to each node where that is possible. As new messages are computed, we can progress
in the graph and compute successively new messages. In graphs without cycle, only one
pass is necessary and each message is computed only once.

� Finally, for each edge where the backward and forward messages are available, the marginal
function can be computed as a product of the two messages as shown in Eq. (2.37).

For cycle-free graphs, the SPA converges toward the correct solution in a finite number of steps
depending of the size of the graph. In the case of graphs with cycles, it is necessary to iteratively
transmit messages over the cycles of the graphs a certain number of time. This is notably the
case of many Forward Error Correction (FEC) graph as will be introduced in Chapter 5 of this
manuscript. The algorithm is then not guaranteed to converge, notably because of undesired
feedback effects, even if it works well in many practical cases. Algorithms similar to the SPA
can be used in the more general paradigm of summary propagation algorithms applied on FG.
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In this case, other summary rules than the one proposed here are used such as min or max (e.g.
Max-Product or Min-Sum algorithms).

FG are a very generic and powerful tool that somehow unify related historical concepts
from many separate scientific fields. As an example one can cite the MRF used to describe
Ising models in statistical physic [53], Kalman filters [54] or HMM [55] in signal processing,
and obviously in Error Correction Code (ECC), notably with the work on LDPC codes [56]
and associated concepts, as will be the subject of an important part of the present manuscript
(see Chapter 5). Obviously, such structure can be used to perform probabilistic inference on
joint probability distributions and more precisely joint PDF or joint PMF. Recall that a joint
probability distribution can be factored into a product of conditional probability distributions,
as presented earlier. For example, let’s consider the following joint distribution factored into an
arbitrary product of conditional distributions assumed to model a given process:

Px1,x2,x3,x4,x5
{x1, x2, x3, x4, x5} =Px1

{x1}Px2
{x2}Px3|x1,x2

{x3|x1, x2}
× Px4|x3

{x4|x3}Px5|x3
{x5|x3}

(2.38)

Such product of conditional distributions can be represented using the formalism of Bayesian
networks as shown in Figure 2.19. Bayesian networks allow us to represent the notion of con-
ditional relationships by representing the presence of a conditioning relationship between two
variables, symbolized by nodes, with arrows. The direction of the arrows indicates the direction
of the conditioning relationship.

x1 x3

x2

x4

x5

Figure 2.19: Example of a joint probability distribution represented as a Bayesian directed acyclic
graph
In a Bayesian graph, random variables are represented by nodes and conditional dependencies are represented by
arrows pointing in the direction of the conditioning relationship.

Although conceptually interesting and remarkably simple to read, the practical implementa-
tion of inference algorithms on such graphs can be tricky, especially due to their directed nature.
Nevertheless, if such a conditioning relationship between two variables exists in one direction,
then, regardless of the causality in the interaction between said variables, a correlation “in the
other direction” also exists, as shown by Bayes’ rule introduced earlier. Therefore, any Bayesian
graph can also be represented in the formalism of FG by representing conditional interactions in
the form of factors, thus avoiding the problem of directed connections.

Using Bayes rule, Eq. 2.38 can be noted as:

Px1,x2,x3,x4,x5
{x1, x2, x3, x4, x5} =Px1

{x1}Px2
{x2}

Px3,x1,x2{x3, x1, x2}
Px1,x2

{x1, x2}

× Px4,x3{x4, x3}
Px3
{x3}

Px5,x3{x5, x3}
Px3
{x3}

(2.39)

Which is simply a product of factors, represented by the FG of of Figure 2.20, of the form:

Px1,x2,x3,x4,x5{x1, x2, x3, x4, x5} =
1

Z
g1(x1)g2(x2)g3(x1, x2, x3)g4(x3, x4)g5(x3, x5) (2.40)

where Z is a normalisation constant that ensure that the integral of the probability distribution
sums to one.
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Figure 2.20: Equivalent Factor Graph to the Bayesian newtork of Figure 2.19
Converting conditional probabilities into factors through Bayes’ rule allow to express an equivalent factor graph.

The question of the definition of said factors and their efficient computation is of course highly
dependant on the specific use-cases considered and thus, out of the scope of this theoretical
introduction on probabilistic models. The specificity of the FG models used for ECC and more
specifically BP decoders will be introduced more in-depth in the corresponding Chapter 5.

2.3 Neural Networks and Hardware Architectures

The previous sections have described various computational structures, including classical NN
models. In this section, we focus on one of the advantages of using these NN structures, namely
the associated efficient hardware accelerators.

As described in Section 2.2, and despite being universal approximators, NN are simple in
essence. Indeed, the expressiveness of NN models lies in their layered architectures and not in
complex individual mathematical operations and even the most complex deep-learning instances
usually rely on simple operations such as matrix multiplications, additions and a few simple ac-
tivation functions: maxima, sigmoid, etc. Those simple mathematical operations allow for very
efficient and generic hardware implementations [9]. Those implementations are built around a
Matrix Multiply Unit (MMU) composed of several Multiply-Accumulate (M-AC) units, accumu-
lators and Look-Up Table (LUT) activation units, matching the mathematical operations carried
out by NN. Those co-processors receive both data (tensors) and NN weights from its host and
execute different models depending on the task at hand. This genericity allows to efficiently
perform different processing tasks on the very same hardware, be it computer visions, speech
recognition, radio base-band processing.

As shown in Figure 2.21, a matrix multiplication can be efficiently implemented with specific
physical layouts of M-AC units. Similarly, one can implement a dense NN layer in hardware using
a so-called stationary weights systolic array architecture, as depicted in Figures 2.22. A systolic
architecture is defined by a set of interconnected cells each able to locally perform some simple
operation. Information flow directly between cells in a pipe-lined way on short and very fast hard
wired interconnections. Contrary to the general-purpose CPU architecture, where operands and
instructions are fetched from memory, pushed to an Algorithmic Logic Unit (ALU) and the result
is then put back in memory, a systolic array architecture chains Processing Element (PE) such
that one receives the result, and or input data, from its predecessor without using the memory
or cache as a buffer.

Such dedicated hardware is now developed by several sources, including Google [57], Intel [58],
Nvidia [59], Qualcom [60] and integrated in smartphone by their manufacturers, e.g. Apple [61],
Huawei [62], etc. While these digital architecture rely on conventional, transistor based circuitry,
further research aims to develop physical neuromorphic electronic components to enable a giant
leap in terms of energy consumption, latency, number of neurons and inter-connections, speed
of execution and distributed memory [63, 64, 65].

2.4 Learning and Optimisation

In the previous sections, various computational models and structures, both deterministic and
probabilistic, have been described. The issue of optimising their parameters was only briefly
addressed in the case of simple probabilistic models, through the MLE and MAPE techniques.
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Figure 2.21: One Possible HW Implementation of (2,n) by (n,2) Matrix Multiplication Unit
An array of 2 by 2 M-AC is used to perform the multiplication of two matrix A and B of size (2, n) and (n, 2)
respectively. The column of A are injected on one side of the array while the line of B are injected on the other
side. The M-AC are hard wired so as to perform the multiplication of the related terms of matrix A and B and
accumulate the results. The inputs are timed using synchronous (clocked) D-Latches, represented by a rectangle
with a black triangle clock input.
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Figure 2.22: One Possible Implementation of a Dense Neural Network Layer as a Systolic Array
A stationary weights systolic array is used to compute the outputs of one layer of NN with two neurons on an
input batch of size k (as introduced in Section 2.2.2). Each batch element (i.e. column of the input matrix) is
provided to the systolic array. Each M-AC compute the multiplication of the corresponding input with its local
stationary weight and pass the results onto the next M-AC for results accumulation. The first M-AC in line use
the accumulation entry to add the bias of the neuron. The outputs of the systolic array are finaly passed into
the chosen activation function, usually implemented as a LUT. The computation flow is timed using synchronous
D-Latches.
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This section presents in more detail various optimisation techniques and learning algorithms,
including the most classical gradient-based methods used to train NN models.

2.4.1 The Main Classes of Learning Problems

The optimisation of a parametric model, also called training or learning, aims at identifying the
values of its parameters which allow it to answer a practical problem in the best possible way.
Based on a given dataset, this parameter choice is performed regarding an objective function
often termed loss function, which aims at rating the quality of the model work.

ML problems are usually divided into the following three categories:

Supervised Learning: The most classic ML configuration, and probably the easiest to grasp,
requires labelled data, used as ground truth, to train the model. For example, images
of cats and dogs are labelled individually according to the animal they represent. The
model is then used to classify these images. The predicted classes are finally compared
to the actual labels of the images to evaluate the quality of the model’s predictions and
update the model’s parameters accordingly. More formally, the goal of such technique is
to learn, based on a training set S = {(xi,yi)}si=1, a mapping f(xi;θ) from inputs xi

to known outputs, or labels, yi. This model is trained based on an error metric, or loss
function, usually computed as a distance between the true labels yi and the predicted
labels ŷi = f(xi;θ). The ML problem is thus the minimisation problem of the expected

loss function, or risk, given the set of model parameters θ̂ = argmin
θ

ℓ(θ). One of the major

challenge is to ensure that the mapping learned on the training set is still valid during
exploitation of the model on unseen data. We speak of generalisation capabilities of the
model.

Unsupervised Learning: Unlike supervised learning, unsupervised methods do not require
labelled data. Instead, it relies on intrinsic data structures and is evaluated on its ability
to exploit and/or organise the input data in some quantifiable way. These techniques are
typically used for clustering methods where one does not know in advance how the data
should be labelled, but instead wants to project data with similar properties into a lower
sized manifold where they would be close to each other. For example, grouping people
based on their buying habits in order to target them with more effective advertising (as
questionable as such an approach might be). Unsupervised Learning methods typically
include algorithms and models such as Self Organising Map (SOM) or Kohonen Map, k-
Nearest Neighbours (k-NN), Principal Component Analysis (PCA), t-distributed Stochastic
Neighbour Embedding (t-SNE), etc [66, 67].

Reinforcement Learning: Finally, Reinforcement Learning (RL) methods are a class of learn-
ing methods loosely inspired by the way animals learn, as emphasised for example by
Pavlov ’s famous experiments on animal psychology, and in particular the notion of condi-
tioned reflexes [68]. In the general framework of RL, the model is referred to as an agent
that interacts with an environment. A positive or negative reward is given to the agent
to evaluate the impact of its actions (and not the actions themselves as could be done in
a supervised framework). The agent’s goal is then to find the sequence of actions that
give him the highest possible reward when faced with a certain situation in a certain en-
vironment [69]. Those techniques include Dynamic Programming methods, Multi-Armed
Bandit (MAB) [70], Q-learning [71], etc. For example, consider a simple MAB scenario,
where the agent has the choice between two dices, one fair dice and one loaded, rolling only
sixes. The agent’s objective is to maximise the sum of rolls, i.e. rewards, without prior
knowledge on the dices, by learning the dice behaviour (exploration phase) and exploiting
that knowledge (exploitation), i.e. rolling the dice thought to roll the highest. Thanks to
its generality, RL can be used in a variety of domains. Impressive results have recently
been obtained using such techniques, for example by defeating the world champion of the
very complex game of Go [35].

As far as this manuscript is concerned, supervised and unsupervised frameworks will be mainly
targeted, while RL will be left out of the scope of the study. Again, these learning mechanisms go
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beyond the sole concept of NN. The latter are purely parametric models on which ML algorithms
can be advantageously applied in order to find satisfactory configurations.

2.4.2 Optimisation of Neural Networks

The operation performed by a NN is dictated by its structure and parameters. The Section 2.2
presented different structures of NN. These models were simply described as parametric functions
without further explanation as to how their parameters can be set. Although it is sometimes
possible to manually set them to perform a given task - as will be explained in Chapter 4 -
this approach quickly becomes impractical for large and complex networks. For this reason, ML
techniques have been proposed. Indeed, one of the main features of NN models that makes them
widely used is that they allow the implementation of very efficient learning algorithms, the most
classical of which are presented in this section.

Empirical Risk Minimisation Principle

ML algorithms, generally used to optimise NN models, are different from classical optimisation
algorithms in that they attempt to improve the performance of a model on a test set that is not
available at the time of training (and may therefore be infeasible). In general, a ML learning
algorithm attempts to minimise a surrogate loss function evaluated on a limited training set. The
latter is supposed to be representative of the distribution of data in the test set. Therefore, this
approach is an indirect form of optimisation. In contrast, in classical optimisation algorithms,
the objective is directly to find a solution to a function to be optimised, without using any form
of proxy metric.

Typically, in a standard supervised learning setting the ML problem for every sample pair of
the training set S = {(xi,yi)}si=1 of size s, is the optimisation problem of the parameters θ so
as to best fit the output of the parametric model f(xi;θ) with the expected true labels yi. The
adequacy of the model’s prediction with respect to the expected label is evaluated by the loss
function, or cost function, which has the form of a scalar distance metric. The individual loss
terms are defined for each training sample pair as:

li = l(f(xi;θ),yi) (2.41)

Ideally, the goal of the optimisation problem is to find the optimal set of model parameters θ⋆

that minimises the expected loss, or risk, ℓ(θ), over all instance of the data generating distribution
D:

θ⋆ = argmin
θ

ℓ(θ) = argmin
θ

E(x,y)∼D {li} (2.42)

Unfortunately, the complete data generating distribution is not accessible and the true risk is
approximated by the empirical risk ℓ̂(θ), defined as the average of the loss terms on the considered
training dataset S:

ℓ̂(θ) =
1

s

s∑

i=1

li (2.43)

The training dataset S is a random sub-sample of size s assumed to be drawn from the same
data generating distribution D as any of all the possible test samples. The empirical risk thus is
an unbiased estimator of the true risk:

E(x,y)∈S∼D

{
ℓ̂(θ)

}
= E(x,y)∈S∼D

{
1

s

s∑

i=1

li

}
= E(x,y)∼D {li} = ℓ(θ) (2.44)

The training of a model based on the minimisation of this average training error is known
as the Empirical Risk Minimisation (ERM). By the ERM principle, the optimisation algorithm

should find the set of parameters θ̂ such that:

θ̂ = argmin
θ

ℓ̂(θ) (2.45)

θ̂ is usually not equal to θ⋆ although, without considering any other optimisation issues (e.g.
local minima of the loss), its value is expected to converge to the latter as the dataset size grows.
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Loss Functions

As one can imagine, the choice of the loss function plays a very important role in the final
performance of the model. Obviously, this choice depends strongly on the use case considered
and the nature of the data. Among the most common loss functions are the two prototypical
loss functions for regression and classification tasks6:

� Mean Squared Error (MSE): Typically used for regression problems, the MSE loss com-
putes the squared distance between the model’s predictions and targeted labels as:

l2i = (f(xi;θ)− yi)
2 (2.46)

� Binary Cross-Entropy (BCE): Typically used for classification tasks, the BCE loss increases
when the predicted probability of belonging to a certain class diverges from the actual label.
It is defined as:

lBCEi
= (1− yi)log(1− f(xi;θ))− yilog(f(xi;θ)) (2.47)

Over-fitting, Under-fitting and Regularisation

A performing ML algorithm should be able to both:

� Reduce the training error i.e. minimise the empirical risk.

� Ensure that the test error, i.e. the error of the model on data not included in the training
dataset, is as close as possible to the training error.

These two points are closely related to the concept of over and under fitting and the bias-variance
trade-off as illustrated in Figure 2.23. The bias-variance trade-off states that a high-variance
model easily reduces the training error, possibly at the cost of a higher test error due to over-
fitting. On the contrary, a low variance model reduces the gap between the training error and
the test error, at the cost of a higher training error due to under-fitting. Therefore, one should
try to find the balance between a high variance/low bias model and a low variance/high bias
model.

A regularisation term, in the form of a function of the weights r(θ), is often added to the
empirical risk to reduce the model variance, and thus its tendency to over-fit the training data
set, leading to the regularised empirical risk:

ℓ̂r(θ) =
1

s

s∑

i=1

li + r(θ) (2.48)

By influencing the set of solutions that the model can choose from, the addition of a regulariser
is one of many ways to modify the so-called hypothesis space of the model and thus structure
the learning process.

When to Halt the Training

One specificity of ML algorithms is that they do not halt upon reaching a local minimum as can
be the case e.g. with a convex optimisation algorithms. Instead ML algorithm minimises the
cost function and halt when reaching some convergence criterion such an early stopping criterion.
The latter can be very useful to halt the training just when the model start to overfit the data.
This phenomenon can be detected through a method named cross-validation, as demonstrated
on Figure 2.24.

During a training, the cross-validation consists in monitoring both the loss function evaluated
on the training dataset and the loss function evaluated on some validation data, that are not
part of the training dataset. While the first metric allows to measure the effective reduction of
the training error, the second one allows to measure the gap between the training and test error.
When the later increases while the training error continues to decrease, the model is probably
starting to overfit the data.

6To simplify the description, the loss terms are described for a model with a scalar output. The calculation of
the loss function can be extended to vector or matrix valued outputs (e.g. when considering a batch), by summing
or averaging the individual loss terms over all the outputs.
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Figure 2.23: The Bias-Variance Trade-off
There are an infinite number of different models that can possibly fit certain training data, but with different
biases and variances. In this example, the observed data ( ) is sampled from an unknown process, which happens
to be quadratic. Three models are used to fit the data. The first model ( ) is a linear model, which fails to
capture the curvature present in the data and is therefore particularly biased. This model is said to under-fit the
data. The second model ( ) is a quadratic model that is able to well capture the underlying phenomena from
the observation of the training data. The model is therefore able to generalize well outside of the training data
set. Finally, a third model ( ) based on a polynomial of degree 6, is able to fit the training data perfectly,
although its high variance does not capture the underlying phenomena well. The model is said to be over-fitting
the data. This example highlights what is called the Bias-Variance trade-off.
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Figure 2.24: Cross-Validation Method
Tracking performance during model learning, both on the training set and on a validation set, is a good way to
know the appropriate time to stop the learning procedure. The dotted red line indicates the appropriate time to
stop the learning procedure or what is sometimes known as the optimal capacity of the model.
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Decomposing the Learning Problem

Depending on the model complexity and the dataset size, it is not always possible to compute
the objective function associated to all sample pairs as a single calculation. As the empirical risk
usually decomposes as a sum over the training samples, the training dataset can, under certain
assumptions, be decomposed into smaller sets. The optimisation algorithm can then update the
model based on the estimation of the expected loss on subsets of the complete cost function.

Algorithm working on the complete dataset in a single pass are said to be deterministic or
batch algorithms7. When the optimiser works in a sample by sample fashion, the algorithm is
said to be stochastic. Finally, optimiser working on subsets (of more than one elements) of the
entire dataset are referred to as minibatch methods. The latter approach is one of the most
widely used in ML.

Gradient-Based Optimiser

We have already discussed the “what” - i.e. the minimisation of an objective function with
respect to a set of training data - but not the “how” - i.e. the way to act on the parameters of
the model to efficiently reduce this loss function in practice. The optimisation of NN is often
performed by GD, or related methods, because of the very interesting properties allowed by the
graphical and hierarchical structures of NN, as will be detailed in the next section.

GD is a method that attempts to minimise a function based on the evaluation of its partial
derivatives at various points. We first give an illustration of this method in the case of a single-
variable scalar function. Let f(θ) : R −→ R. The partial derivative, or gradient, of the function f

with respect to the variable θ, denoted as ∂f(θ)
∂θ , represents the slope of the function evaluated

at point θ. This slope information is very valuable because it can guide us to the point θ⋆ that
minimises the function f . Indeed, imagine that you are blindfolded at the top of a hill, knowing
the slope of the hill under your feet is a good way to go back down to the valley (even if one has
to be mindful of possible cliffs and trees on the way...).

From a starting point θ0, the GD algorithm, in its simplest form, iteratively pushes the
parameter θ in the opposite direction to that of the gradient to get step by step closer to the
minimum of the function. The magnitude of these updates depends not only on the modulus
of the gradient, but also on a strictly positive parameter called the learning rate, noted here α,
which weights the latter (see Algorithm 2.1 and Figure 2.25).

Algorithm 2.1 Gradient Descent (Simplified)

procedure GD(f(x), nSteps, α, θ0)
θ ← θ0
for i ∈ {1, . . . , nSteps} do

θ ← θ − α∂f(θ)
∂θ

end for
Return θ

end procedure

Obviously, this algorithm can easily be extended to the multi-variate case so as to update
several parameters simultaneously. Let f(θ) : Rm −→ R. The gradient is formally defined as the
vector of partial derivatives of f with respect to all components θi of the parameter vector θ:

∇θf(θ) ≜
∂f(θ)

∂θ
=




∂f(θ)
∂θ1

∂f(θ)
∂θ2
...

∂f(θ)
∂θm




(2.49)

It should also be kept in mind that, for NN or more generally for parametric functions, the
inputs (i.e. from the dataset) of the functions are considered as constants when calculating

7The word batch can be confusing as the term batch size is often used to describe the size of the minibatch
used for minibatch optimisation algorithms.
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Figure 2.25: Gradient Descent
Starting from the point θ0 = 2, the GD algorithm, with a LR of 0.25, iteratively update the parameter θ so as to
minimize the function f as described in Algorithm 2.1.

Algorithm 2.2 Minibatch Gradient Descent
The model’s parametric function is f(xi;θ) and the loss l. The training set of size s is denoted as S. Minibatch
B of size b are randomly sampled from S at each of the nSteps of the training. The LR is denoted as α and the
inital parameter values as θ0.

procedure Minibatch GD(S = {(xi, yi)}si=1, f(x;θ), nSteps, b, α,θ0)
θ ← θ0
for i ∈ {1, . . . , nSteps} do

S← Shuffle(S)
B← S[0 : b]

θ ← θ − α∇θ

(
1
b

∑
(xi,yi)∈B

l(f(xi;θ), yi)

)

end for
Return θ

end procedure
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the partial derivatives with respect to the parameters. Also, the calculation of the empirical
risk, including the cost function, the parametric function itself, and this for a specific subset of
the training dataset (deterministic, stochastic, mini-batch, etc...), are part of the GD algorithm
itself. A more thorough description of the GD algorithm in the multivariate case and including
the previous remarks is detailed in Algorithm 2.2.

The attentive reader will have noticed that this method works well in the example of Fig-
ure 2.25 thanks to the very favourable conditioning of the considered function. Indeed, the latter
is a strongly convex function for which GD methods are guaranteed to converge (assuming an
appropriate LR is chosen). On the contrary, when considering more complex functions, that
present several critical points, i.e points where the derivative of the function is null, the GD
algorithm can get stuck before reaching the global minima. Such a function is exemplified in
Figure 2.26. In the proposed example, three situations are described with different initialisation
of the GD algorithm leading to drastically different results. As shown on the figure, the initial
conditions and the existence of these multiple critical points can lead the algorithm to a solution
that performs poorly compared to the optimal one. Many other factors, such as the choice of an
excessively large Learning Rate (LR), can also have a severe impact on the performance of the
model, for example by preventing the stabilisation of the optimisation algorithm.

To overcome these major problems, several variants of the GD algorithm have been developed,
e.g. [72, 73], including momentum techniques. Simply put, momentum techniques are based on
the calculation of a moving average of previous gradient values, so as to keep updating the model
weights when a critical point, i.e. where the gradient is equal to zero, is reached. As indicated
by its name, this technique uses the momentum gained on a downward slope to eventually exit
a local minima. Such an approach is described in Algorithm 2.3.

Still, it should be noted that, if the GD algorithm should ideally find the global minimum of
the function, it is often sufficient to reach a local minimum with performance close to that of the
global one. This allows to practically reduce the complexity on very large function with many
local minima. This is the idea of approximate minimisation.

Many variants of GD have been proposed and an in-depth description of all of them would
fall beyond the scope of this introductory section. We refer the interested reader to [1] for a more
detailed explanation of these concepts.
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Figure 2.26: Some Challenges of the Gradient Descent - Critical Points & Initial Conditions
Starting from three different points θ0, with the same LR α = 5, the GD algorithm leads to entirely different
results. When starting from θ0 = 2.5 ( ), the GD rapidly reach the global minimum of the function f(θ)
defined on [0, 20]. When starting from a slightly different point θ0 = 3 ( ), the GD unfortunately fall on
the wrong slope and get stuck in a local minimum that performs poorly when compared to the global minimum.
Finally, when starting from θ0 = 14 ( ), the slope of the plateau being almost null, the GD fails to update
the parameter toward the global minimum.
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Algorithm 2.3 Minibatch Gradient Descent with Momentum
The model’s parametric function is f(xi;θ) and the loss l. The training set of size s is denoted as S. Minibatch
B of size b are randomly sampled from S at each of the nSteps of the training. The LR is denoted as α and the
inital parameter values as θ0. At each step, the momentum term is computed as the weighted sum of previous
momentum and current gradient values. The β parameter control the balance between the gradient at current
step and the momentum information from previous steps. If β = 0 this algorithm is equivalent to Algorithm 2.2.

procedure Minibatch GD with Momentum(S = {(xi, yi)}si=1, f(x;θ), nSteps, b, α,θ0)
θ ← θ0
m← 0
for i ∈ {1, . . . , nSteps} do

S← Shuffle(S)
B← S[0 : b]

m← βm+ (1− β)∇θ

(
1
b

∑
(xi,yi)∈B

l(f(xi;θ), yi)

)

θ ← θ − αm
end for
Return θ

end procedure

Gradient Back-Propagation and Automatic Differentiation

One of the reason to use GD to optimise NN models lies in their graph structure that allows to
efficiently compute gradient with regard to a very high number of parameters.

As described earlier, a NN can be thought of as a global function defined as the composition of
simpler parametric functions called layers. When an input is submitted to the network, the result
of the computation performed by the first layer is passed on to the next and so on until the overall
function of the network has been computed. Such an input-to-output computation procedure of
the NN is commonly called forward propagation. When considering the learning phase of the
network, the calculation of the loss function is also conceptually integrated into this forward
propagation. As described in the previous section, in order to optimise the network, one seeks to
propagate the loss function information to the model parameters in order to update the latter, via
the GD method, towards a more capable configuration. Analytically deriving the expression of
the gradient of the loss with respect to one of the model parameters is not intrinsically complex,
but being able to numerically evaluate said gradient efficiently for all variables of the model,
especially over large NN, is a much more complex task. The BPROP algorithm [74] presents an
elegant solution to that problem.

We emphasise that GD - i.e. the optimisation algorithm that updates the model parameters
based on the loss gradient - should not be confused with BPROP - i.e. the algorithm that
efficiently computes said gradient so that GD can be applied. Furthermore, just as GD is a very
generic algorithm, it should be noted that BPROP is not specific to NN but to a wide class of
graphical models.

Figure 2.27 describes, as an example, the detailed forward pass computational graph of a
two-layer NN in a standard supervised learning setting. We will now describe how the BPROP
algorithm can be applied to efficiently compute the gradient of the loss with respect to the
model parameters. BPROP algorithm is based on a very common rule of calculus known as
the chain rule of derivatives. This rule states that the derivative of a global function made of a
composition of functions is equal to the product of their derivatives. For example let f ,g and h
be three real functions. Let y = f(x), z = g(f(x)) = g(y) and w = h(g(f(x)) = h(g(y)) = h(z).
The computation of the derivative of the output w with regard to the input x can be simplified
to the following product:

∂w

∂x
=

∂w

∂z

∂z

∂y

∂y

∂x
(2.50)

Figure 2.28 shows a very simple application example of the chain rule to the above composition
of functions. This figure also shows that while the local derivatives can be computed during the
forward pass through each of the nodes (although this is just one possible implementation), the
forward pass must be finished to compute all of the chained derivatives.
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Figure 2.27: Computational Graph of a Two-Layer Neural Network
Representation of the forward pass computation graph of a two-layer neural network in a classical supervised
learning context.

Obviously, there is nothing to prevent the use of the chain-rule on non-scalar variables.
Instead of multiplying the partial derivatives, one must instead multiply the Jacobian matrices
of each vector function. The Jacobian matrix is the matrix containing all of the partial derivatives
of a vector function. For example, let f(x) : Rn −→ Rm and y = f(x). The Jacobian matrix is
defined as:

Jxf(x) =
∂f(x)

∂x
=
(

∂f(x)
∂x1

. . . ∂f(x)
∂xn

)
=



∇xy

T
1

...
∇xy

T
m


 =




∂y1

∂x1
. . . ∂y1

∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

∂xn


 (2.51)

The idea behind BPROP algorithm is to apply this chain rule to computational graphs in
a clever way so that to avoid as much as possible duplicate derivative computations. Indeed,
the back-ward computational graph can be seen as a tree where the calculations made by a
parent node can be reused by children nodes to reduce the computational load. Figure 2.29
displays the complete computational graph, including the forward pass, the backward pass and
the parameters update, of the two-layer NN described as an example in Figure 2.27. As can be
seen, while the local derivatives of each of the functions can be computed during the forward
pass in each operator, the backward pass can be performed intelligently by using the BPROP
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Figure 2.28: Chain Rule of Derivatives & Back-Propagation of Gradients
The chain rule of derivatives can easily be applied to calculate the derivative of a composition of functions as the
product of their respective derivatives.

algorithm to combine these local derivatives to compute the gradient of the loss function with
respect to the model parameters. As shown in the figure, instead of calculating each of the partial
derivatives of the loss gradient starting from zero, many calculations can be reused thanks to the
chain rule of derivatives and the graphical structure of the model, so as to efficiently calculate
this gradient. Such a modular structure is also helpful to design and integrate new operators
by simply defining their local derivatives and relying on automatic differentiation to build the
global gradient back-propagation graph. Furthermore, in addition to showing the distinct roles
of BPROP and GD, it is also interesting to note that all steps in the optimisation process can
be represented in a single deterministic directed graph, including the optimiser, which allows for
efficient implementations.

Finally, these descriptions emphasise the need for differentiable operators that enable the
computation of all the partial derivatives. Should a single non-differentiable operator lie along the
BPROP trajectory, all the parameters upstream of this non-differentiability cannot be updated.
While these analytical considerations are paramount, other numerical considerations must also
be taken into account. Indeed, and as previously mentioned in Section 2.2.3, some operators are
not necessarily suitable to be chained several times from a gradient perspective. For example,
some activation functions may display a very small gradient so that the use of the chain rule
on a composition of these activation functions may lead to a contraction of the loss gradient
with respect to the upstream parameters. This is known as vanishing gradient. The opposite
phenomenon can also occur when gradients are numerically ill-conditioned such that they build
up exponentially while applying the chain rule in what is commonly referred to as an exploding
gradient.

2.5 Conclusion of the Chapter

The present manuscript looks at how AI and ML algorithms could be used at the PHY layer of
future 6G networks. In this introductory chapter on AI and ML techniques, we have provided a
description of all the tools that will be necessary for the full understanding of this manuscript.
After a brief introduction on the history of AI and computer science, some classical NN structures
have been detailed. Dense and convolutional layers have been described and will be mainly used
in the Chapter 4. RNN and probabilistic graphical models such as FG were also presented and
will be mainly used in Chapter 5. Next, a short section introduced hardware structures dedicated
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to the execution of NN. Finally, an extensive section was devoted to describing the basics of NN
optimisation, including the classical GD and BPROP algorithms.

Now that the relevant AI and ML techniques have been presented, the next chapter focuses
on the subject of interest in this work - i.e. the PHY layer - on which we wish to apply these
techniques.
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Figure 2.29: Complete Optimisation Graph of a Two-Layer Neural Network
This figure shows the complete optimisation graph of a simple neural network. The model is first executed on input
data during the “forward-pass”. The BPROP algorithm is then applied, during the so-called “backward-pass”, to
efficiently compute the gradient of the loss with respect to the variables of interest. Finally, the GD optimiser is
used to update the model parameters according to the gradient thus obtained. It is particularly interesting to note
that while the NN structures, presented in Section 2.2, were described as modular compositions of individually
trivial operations, the same is true for the operations used for model training in the BPROP framework, as
emphasised in this figure.
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3.1 A BRIEF INTRODUCTION TO DIGITAL COMMUNICATION SYSTEMS AND
PHYSICAL LAYER

Foreword

As a result of the success of AI/ML in areas such as CV or NLP, the availability of increasingly
powerful computing resources such as GPU or Tensor Processing Unit (TPU), and the develop-
ment of widely available software libraries, AI/ML is now being used in an increasing number of
domains. Among these new use cases is the application of AI/ML algorithms for digital signal
processing at the PHY layer of communication systems. In the preceding chapter, we have dis-
cussed general concepts of ML, NN and probabilistic reasoning. In this chapter, we focus on the
use case of interest to this work, i.e. the PHY layer. As a background, we start by providing
the reader with a brief introduction to digital communication systems, in order to highlight the
specific role and place of the PHY layer within a communication network, at least as we see it
in the present work. Then, a survey on the use of AI at the PHY layer is provided to describe
the main associated approaches, challenges and opportunities.

3.1 A Brief Introduction to Digital Communication Sys-
tems and Physical Layer

In this section, the role of the PHY layer of a communication system is described. An outline of
the main functional blocks of the PHY layer of a digital communication system, as we conceive
it in this work, is provided to define the scope of the study. The descriptions provided for each
of the blocks are linked to the corresponding contribution chapters and their specific constraints
within the context of IoT scenarios are specified.

3.1.1 General Role and Architecture of the Physical Layer in a Digital
Communication System

The PHY layer, also called air or radio interface1 in the case of wireless systems, constitutes one
of the lowest layer of a communication system. Its role, from an information theory perspective,
is to convert the raw binary digital signal, containing the information to be communicated, into a
suitable form for an efficient and reliable transmission over physical channels connecting network
nodes. Following, this definition, Figure 3.1 display the main signal processing blocks of a digital
communication system. This layer usually includes signal processing operations such as FEC,
modulations, filtering operations and, at the receiver side, channel equalisation and decoding
processes.

Obviously, the use-case defines the specificity and technical constraints to which the commu-
nication system under consideration is subject. For example, a typical smart city IoT use-case
could be the transmission of small datagrams from a massive number of low-power sensors, in
an urban propagation environment, toward a few base stations. The high number and density
of devices imposes additional constraints in terms of QoS, available power, Total Cost of Owner-
ship (TCO) of the infrastructure and devices, and the resulting limited complexity of the latter.
The design choices for the signal processing functional blocks of the communication chain must
take all these constraints into account.

Within the frame of this work we are interested in the digital processing of the signal carried
out in base-band, i.e. before the analogue conversion and transposition of the signal in carrier
frequency at the level of the Radio Frequencies (RF) head of the system (or just after its transpo-
sition in base-band, in the case of the receiver). Hereafter, and following the sequential diagram
of Figure 3.1, we provide a description of the commonly accepted view of the main signal pro-
cessing blocks of the PHY layer of a digital communication system, or at least a description
corresponding to the one adopted in our work.

1The terms physical layer, air interface or radio interface might be used interchangeably throughout the present
manuscript.
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Figure 3.1: Simplified Digital Communication System
This schematic view of the PHY layer of a digital communication system highlights, from an information theory
perspective, the main signal processing blocks used to communicate as effectively as possible over a physical
transmission channel.

3.1.2 Source Coding

Source coding or data compression consists in extracting the useful information from the source in
order to transmit only the necessary data and thus increase the efficiency of the communication by
reducing the effective bit rate. For example, an image may contain a lot of redundant information,
such as when a large portion of the image depicts a blue sky with the same colour on many
adjacent pixels. In such a situation, a source coder could schematically pass the areas of the
image where the colour is the same, instead of transmitting all the pixels in the raw image. When
some information (hopefully not too much) is lost during the source coding process, it is called
lossy compression. On the contrary, when the compression process is completely reversible, it is
called lossless compression.

If we consider that the different messages that can be transmitted by a communication system
belong to a discrete set, for example 0’s and 1’s, the efficiency of the communication is directly
linked to the statistics of the messages. Let us suppose, in the extreme case, a communication
system which always and only transmits 0’s. Then the utility of the transmission is questionable
since the receiver knows, even before receiving the message, what will be the content of the
transmission. Such an idea is described by the notion of entropy. In information theory, the
entropy of a random source x is the average information level (in other words, its uncertainty
level) of its possible draws, defined as follows:

Hx∼X {x} = −
∑

x∈Ωx

px(x)logbpx(x) = −Ex∼X {logbpx(x)} (3.1)

where px(x) is the probability that the source x takes the discrete value x and logb is the logarithm
base b. According to the base of the logarithm, the unit of the entropy will be different: from
bits for base 2 logarithm to hartleys for base 10 logarithm and nats for natural logarithm.

Figure 3.2 shows the entropy (in bits) of a binary information source as a function of the
probability that a sample of the source is equal to 0. From this figure, we can see that the
information content of the source is maximal when both possible outcomes of the binary source
are equally likely, i.e. the uncertainty of the source is maximal. From the above considerations,
we can summarise the role of source coding as maximising source entropy.

An example of lossless source coding is the famous Huffman entropic coding [75]. Huffman
coding aims at associating the least probable source message with the longest code-words and the
most probable one with the shortest code-words so as to maximise the transmission efficiency.
Huffman algorithm is a two steps algorithm. At first, the algorithm construct a tree where the
least probable message are iteratively grouped two by two and ordered by descending order of
probability. When the tree is constructed, the algorithm runs through it the reverse way and
append a data symbol to code-words each time a branch is taken. By doing so an instantaneous
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Figure 3.2: Entropy of a Binary Source
The entropy of the source is maximal when it is just as likely that the random variable x takes the value 0 or
1. The uncertainty about the message expected by the receiver of the transmission, and thus the utility of the
latter, is then maximal.
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Figure 3.3: Huffman Entropic Coding
In this example, the Huffman tree is constructed from left to right starting with 6 possible symbols x ∈ Ωx and
their respective probability of occurrence px(x), ordered by decreasing value. The probabilities of the least likely
symbols are successively grouped in pairs until a single possible event with probability 1 is reached. Then, from
right to left, the coded symbols are constructed. Each time a branch is taken, a 0 or a 1 (depending on whether it
is the lower or upper path) is added to the codeword of the current branch, until the whole tree has been covered.
With this procedure, the least likely source symbols are associated with the longest coded representation, thus
increasing the entropy of the coded source. In this example, the source entropy is initially 0.77bits/binary symbols
(or 2.36bits/symbol) while the coded source entropy is increased to 0.97bits/binary symbol.
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code is constructed - i.e. a code in which each code-word can be decoded as soon as it is received -
where the most likely source symbols are mapped to short coded representation so as to maximise
the entropy of the coded source. Figure 3.3 shows how such a coding tree is constructed for an
initial source ensemble of 6 symbols to be coded using binary symbols.

Owing to its fundamental role in any digital communication system, source coding is briefly
developed here but is not further elaborated in the contributions of this thesis.

3.1.3 Channel Coding

Now that we have described how the information content of a source can be compressed so as to
transmit only the strictly necessary data and thus increase the efficiency of the communication,
we look at the mechanisms that make the latter robust against transmission impairments. Indeed,
during a transmission over a noisy channel, the noise and all sort of physical impairments can
cause transmission errors such that certain symbols are received with an erroneous value (see
Section 3.1.5 for some details on the effects of the transmission medium). The role of channel
coding is to enable the detection and eventually correction of such transmission errors to make
the communication more reliable.

Let S ∈ Fk
p be the set of messages of k information symbols from the finite field of p elements

to be transmitted over a noisy channel. For binary symbols p = 2 and the size of S is usually
chosen as a finite power of 2 such that Card(S) = 2k. When transmitting messages from S
over a noisy channel, it is advisable to implement error detection/correction mechanisms. To be
able to detect errors it is necessary to introduce redundancy in the transmitted message such
that each of the message of size k from S is associated to a unique message of size n, with
n > k, through the application f : Fk

p −→ Fn
p . A code is the mapping function f and the sub-set

V = f(S) ∈ Fn
p image of S through the application f . The application f must be injective such

that all information words are associated with different code-words and the code is decipherable.
A code with code-words of size n constructed from information words of size k is known as a
C(n, k) code. The rate of the code is the ratio r = k/n ∈ ]0, 1[ describing the part of each
code-word used to convey meaningfull data (in contrast to code redundancy).

When receiving a message, the receiver check if it is a code-word of C(n, k). If so, it assumes
that no transmission error occurred (although this is not necessarily true if the erroneous word
happens to be a valid code-word). If not, the receiver can request a re-transmission, provided
that a feedback channel exists. Such a procedure is commonly referred to as Automatic Repeat
Request (ARQ). In such a scenario, the code is only used as an error detection code. To avoid
these costly re-transmissions, the code can also be used to correct transmission errors. It is then
referred to as a FEC code. In such a scenario, the receiver needs to choose a code-word ĉ ∈ V
as close as possible to the received code-word y so as to maximise the a posteriori probability:

ĉ = argmax
c

Pc|y {c|y} (3.2)

When the prior distribution over the possible code-word is uniform, i.e. all code-words are
equally likely, the MAPE is equivalent to the MLE:

argmax
c

Py|c {y|c} = argmax
c

Pc|y {c|y}Py {y}
Pc {c}

= argmax
c

Pc|y {c|y} (3.3)

where the probability to receive code-word y knowing that the true code-word is c, Py|c {y|c},
is simply the transmission channel conditional probability distribution.

Obviously, mixed strategy with both error detection and correction approaches can be defined
such that words within the correction capabilities of the code are corrected at the receiver while
a re-transmission is requested for code-words with too many errors. An example of such an
approach are the Hybrid Automatic Repeat Request (HARQ) methods [76].

Hamming distance is defined as the number of positions between two sequences of same size
where the symbols are different. The minimum Hamming distance of a code dmin is the minimum
pairwise distance among all possible code-words pairs, i.e. the distance between the two closest
code-words of the code. The error detection and correction capabilities of an ECC are directly
related to this characteristic. A code is said to be perfect when the spheres of radius t centred on
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the code-words form a partition of the code vector space Fn
p . In summary, the code vector space

is entirely and optimally packed with closed spheres of radius t. A perfect code is an optimal
code for the chosen (n, k) parameters. Few linear codes are perfect such that a less constraining
class of codes, known as Maximum Distance Separable (MDS) codes, is often considered in the
research of performing coding schemes. While all linear codes respect the following equation:

n− k ≥ dmin − 1 (3.4)

Few reach the bound, known as the singleton bound, such that n− k = dmin− 1. Such codes are
referred to as MDS and are optimal for the chosen (n, k) parameters, i.e. if a code of dimension
n and length k is MDS then there are no other codes of the same length and dimension with a
larger minimum distance.

FEC are often divided into convolutional codes and block codes families. Convolutional codes
constructs each of the redundancy symbols via the sliding application of a logic function to the
data stream. Block codes divides the data stream in blocks of fixed length k and construct
code-words of size n through the application of an application f : Fk

p −→ Fn
p . Among the block

codes, Linear Block Codes (LBC) further impose the constraint that the application must be a
linear map. In this manuscript, only LBC are considered.

A very simple example of LBC are repetition codes which repeat each transmitted bit of
information a certain number of times to allow for error correction/detection mechanisms at the
receiver. Let C(3, 1) be a three repetitions code with the following mapping:

{
c1 = f(0) = (0, 0, 0)

c2 = f(1) = (1, 1, 1)
(3.5)

The code vector space can be represented as a cube where only the (0, 0, 0) and (1, 1, 1) code-
words effectively belong to the C(3, 1) code as shown on Figure 3.4. As evidenced by the figure,
the code has correction capacity of up to 1 error or a detection capacity of up to 2 errors. Using
MLE decoding, the errors are simply corrected based on the Table 3.1.

The MLE decoder cannot usually be applied in such a naive way as it would require to
compare the received code-word with all of the 2k possible code-words of the code which get
rapidly computationally intensive, or even intractable, when increasing k. This highlights the
trade-off between adding redundancy to reduce the number of transmission errors and increasing
the complexity and energy consumption of the system, hence the need for well constructed
(de)coding scheme with balanced complexity and performance.

The stringent constraints of IoT systems directly impact the choice of ECC mechanisms.
Indeed, these scenarios usually imply both challenging transmission conditions requiring error
correction and reduced device complexity preventing from using complex, but performing, FEC
mechanisms. Furthermore, while using longer codes (typically thousand or ten of thousands of
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Figure 3.4: Illustration of the C(3, 1) Repetition Code
All of the 23 possible words of size 3 are represented as vertices on a three dimensional cube. The 21 code-words of
the C(3, 1) repetition code are represented using black-filled circle. When a transmission error occurs the decoding
strategy is simply to find which of the two

(
0 0 0

)
or

(
1 1 1

)
code-words is the closest to the received one.
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Table 3.1: Correction Table of the C(3, 1) Repetition Code

bits) is a way to asymptotically reach optimal performances (i.e. channel capacity) [77], the
packet size encountered in IoT scenarios (typically tens or hundreds of bits) are not compatible
with such code sizes. One could aggregate successive payloads until reaching a sufficient size,
but this would incur intolerable latency and would not solve the highly increased complexity
of the encoders/decoders. A concrete example of FEC mechanisms in IoT scenarios are the
FEC used in LoRa2. In LoRa, the system can choose among 4 different Hamming codes of size
C(n = {5, 6, 7, 8}, k = 4) depending on the transmission quality [78]. These are very small codes
with low complexity encoding/decoding but very limited performance. The most efficient rates,
r = 4/5 and r = 4/6, allow only for error detection. The least efficient rates, r = 4/7 and
r = 4/8, allow to correct one-bit errors. Although, the C(7, 4) Hamming code is a perfect code3 ,
i.e. there is no better ECC with such size and rate, its dimensions limit its performance. In this
context, Chapter 5 discusses how one can design performing short to medium length (i.e. tens
or a few hundreds of bits) coding and decoding schemes compatible with the constraint of IoT,
both in terms of complexity and packet size. Two contributions of this Ph.D. work are proposed
[13, 14] to answer this question.

3.1.4 Line Encoding and Modulation

Pre-coding Transcoding Shapping (Amplitude)
Modulation

Q-ary symbols
1/T rate

Q-ary symbols
1/T rate

M-ary symbols
1/Ts rate

Shaped signal
s(t) =

∑
k gjk(t − kTs)

Modulated signal
m(t) = s(t)ej2πfct+ϕ0

Pass-bandBase-band

+ AnalogDigital +

Figure 3.5: Simplified Line Coding and Modulation Chain in a Digital Communication System
The main steps of line coding and modulation are described. In this example, an amplitude modulation is
considered, but any other modulation scheme could be equivalently considered.

The transmission of the information on the channel requires coding and shaping operations to
transform the discrete digital signal4 into a continuous analogue form suited to the transmission

2LoRa (acronyms for long range) is the PHY layer of LoRaWAN, which is an IoT network solution typically
used for sensor networks on unlicensed band, providing vast coverage and low power consumption.

3Although the C(7, 4) Hamming code is perfect, it is not MDS. The singleton bound can thus not be attained
for a (7,4) code.

4In this manuscript we only look at the case of a digital communication chain although the concept of modu-
lation is obviously not specific to digital signals, e.g. we can think of the case of analogue amplitude modulation.
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medium. These are the roles of the line coding and modulation functional blocks. In order to
adapt the signal to the channel bandwidth, these blocks are responsible for defining the number
of signal levels, the (coded) transmission rate, the filters and the symbols waveforms. All the
operation conducted on the base-band signal are commonly referred to as line coding. The
modulation5 block carries out the frequency transposition of the base-band signal by means of
the modulation of a carrier to make its transmission across longer distance possible and eventually
provide additional immunity against noise, interference, etc.

These operations are usually decomposed into four steps: pre-coding, trans-coding, shaping
and carrier modulation. Following, the channel coding, Q-ary symbols, usually binary, are pro-
vided to the line encoder at a rate 1/T . Without modifying the symbol rate nor the alphabet
size, a pre-coding step might be applied to linearly transform these symbols into other pre-coded
symbols. The role of the pre-coder is to facilitate certain processing at the receiver side, or
protect the transmitted data from malicious tapping. Then, the trans-coding step modify the
alphabet size and symbol rate so as to adapt the transmission to the channel, and use case.
Hence, it usually defines the effective number of signal levels M and symbol rate 1/Ts. As an
illustration one can decide to increase the effective bit-rate of a binary signal by grouping bits by
pair so as to define 4 symbols and associated signal levels. Yet by doing so, and without changing
the transmit power, the system get more sensitive to noise as the different symbol levels are now
closer to each other. After trans-coding, the shaping step associate the symbols from the chosen
M-ary alphabet at a rate 1/Ts with wave-forms to define the, usually continuous, signal:

s(t) =
∑

k

gjk(t− kTs) jk ∈ {1, . . . ,M} (3.6)

The use of specific wave-forms can help reducing Inter-Symbol Interference (ISI), e.g. by using
root-raised cosine filters, and/or improve the spectral efficiency of the transmission. Finally,
the modulation step consists in modifying the properties (e.g. the amplitude, the phase, the
frequency, etc.) of a sinusoidal carrier, based on the shaped signal s(t). The carrier frequency
has an impact on the achievable data rate and the propagation behaviour of radio waves in a
given environment and scenario. As an example, a carrier signal modulated in amplitude by the
shaped signal s(t) would be defined as:

m(t) = s(t)ej2πfct+ϕ0 (3.7)

where fc is the frequency of the carrier and ϕ0 the initial phase shift.

A very common modulation, which will be extensively considered in the rest of this manuscript,
is the Binary Phase Shift Keying (BPSK). If considering no specific wave-form, the BPSK simply
consists in modulating the phase of the carrier based on binary symbols, i.e 0’s does not change
the phase whereas 1’s add 180◦ to the phase of the carrier.

Thanks to their orthogonality properties, a sine and cosine carriers can be separately mod-
ulated in amplitude by two signals and transmitted simultaneously as a sum, while allowing to
be coherently demodulated and separated at the receiver. Such schemes are usually known as
quadrature modulations. An example of a quadrature modulation is the 4-Quadrature Amplitude
Modulation (QAM) where information bits are grouped in pairs to form complex symbols (the
modulation symbols now belong to a quaternary alphabet). The first bits is used to modulate the
amplitude of the cosine carrier, the I (In-phase) channel, while the second is used to modulate
the amplitude of the sine carrier, the Q (Quadrature) channel. Quadrature modulation symbols
are usually represented using complex symbols and referred to as In-phase/Quadrature (IQ) sym-
bols. The real coordinate of the IQ symbol represents the amplitude of the cosine carrier, while
the imaginary part represents the amplitude of the sine carrier. The modulus of the IQ symbol
and its phase represent the amplitude and phase of the output signal resulting from the sum of
the I and Q channel. The list of possible symbols as represented in the complex IQ plane, is
commonly referred to as the constellation of the modulation. Such a 4-QAM modulation scheme
is represented in Figure 3.6 as an example of a quadrature modulation.

5Because of model abstraction, the term modulation can be used somewhat improperly to refer to both the
modulation of a carrier signal and the line encoder related operation.
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Figure 3.6: Quadrature Modulation - Example of the 4-QAM Modulation
The digital modulation considered is a four state modulation. The four possible symbols are represented in the
complex plane by red points. The modulation in quadrature is realized by modulating separately a cosine carrier
and a sine carrier by the amplitude on their respective channels (i.e. the real or imaginary part of the complex
symbol IQ) before mixing them in order to obtain the final modulated signal.

Most modulations can be conveniently described using the IQ formalism. Even modula-
tions that are not conceptually constructed around the amplitude modulation of two carriers
in quadrature can be represented as a constellation on the IQ plane. For example, a BPSK
modulation constellation can be described by two symbols symmetrically placed onto the real
axis, or I axis. Similarly, a 4-Quadrature Phase Shift Keying (QPSK) modulation would have
the same constellation as the previously described 4-QAM. Yet, the technical implementation of
these modulations would not necessarily rely on similar modulator circuits (hence, the different
names).

In the present manuscript, BPSK and M-Ary Quadrature Amplitude Modulation (M-QAM)
digital modulations are considered. In particular Chapter 4 describes efficient and low-complexity
NN-based demodulation structures for M-QAM modulations.

3.1.5 Transmission Medium

The communication between a transmitter and a receiver takes place over a transmission medium
or channel, such as optical fibres, twisted copper pairs, electromagnetic waves in the air, etc.
Every transmission medium, wired or wireless, has specific physical characteristics, including a
limited bandwidth (which may, moreover, be restricted by legal regulations). The channel has an
effect on the transmitted signal, which can vary depending on the frequency considered. Thus, a
channel is generally characterised by its transfer function Hc(f) which describes the attenuation
of the channel as a function of the (pure) frequency of the input signal, or, equivalently, its
impulse response hc(t) which describes the time response of the channel to an impulse signal. It
should be noted that the transmission medium also includes the emitter and receiver analogue
processing chains.

A frequently used channel model is the Additive White Gaussian Noise (AWGN) channel
which models thermal noise in the electronic components. It is characterised by a bilateral power
spectral density of N0/2, where the power of the thermal noise N0 is directly proportional to the
temperature by a factor corresponding to the Boltzman constant, kb. This noise is generated by
the random thermal motion of electrons inside the conductor and is thus unavoidable.

When considering the sampling process to pass from analogue signal to digital signal, the
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Figure 3.7: Characteristics of an Arbitrary Multi-path Channel
In this example, the channel impulse response is described using a discrete path model where each peak represents
the reception of a delayed signal (related to multi-path). The time is normalised with respect to the first signal
received. From the time impulse response, the corresponding frequency response of the channel can be deduced,
which describes the frequencies at which the signal will be well received and those at which it will suffer potentially
significant attenuation.

effective noise sample collected by the Analogue to Digital Converter (ADC) directly depends
on its integration time, and thus the sampling time T . Indeed, although the noise power is
considered constant across time:

Lim
T−→∞

1

T

∫ T

0

n2(t)dt = N0 (3.8)

The average noise sample over an infinitesimal duration follows a Gaussian distribution whose
variance is the thermal noise power:

Lim
T−→0

1

T

∫ x+T

x

n(t)dt ∼ N (0, N0) (3.9)

The samples are i.i.d such that the average noise tends to 0 as the measurement time increase:

Lim
T−→∞

1

T

∫ T

0

n(t)dt = 0 (3.10)

During the sampling of an analogue signal in a ADC, while the constant signal of interest adds up
coherently, the noises samples are destructively combined. Hence, the measured noise power Pn

decreases as the measurement duration, i.e the sampling time T , increases, so that the effective
Signal to Noise Ratio (SNR) improves:

Pn =
1

N

N∑

k=1

(
1

T

∫ k+T/2

k−T/2

n(t)dt

)2

=
1

N

N∑

k=1

n2[k] (3.11)

The sampling time depends directly on the bandwidth of the signal of interest. To be recon-
structed without ambiguity and following the Shannon-Nyquist theorem on sampling [77], the
signal must be sampled at least at twice the highest frequency of interest.

From a digital base-band perspective, using the AWGN model thus consists in adding samples
drawn from a Gaussian random variable whose variance depends on the bandwidth of the signal
Bs (which is inversely proportional to the symbol time Ts). If we consider the transmitted base-
band sampled signal x[k], of power Ps, the received base-band sampled signal under AWGN
channel is defined as y[k] = x[k] + n[k]. The noise samples follow a Gaussian distribution
n[k] ∼ N (0, Pn)∀k and the signal-to-noise ratio in Decibel (dB) is 10log10(Ps/Pn). The perceived
noise power Pn after sampling at the receiver depends directly on the transfer function of the
receiver’s signal processing chain before sampling. Under the consideration of a perfect processing
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chain, it depends directly on the bandwidth B of the receiver’s ADC, which is at least twice that
of the signal, so that Pn = BN0 = 2BsN0 = 2N0

Ts
.

In addition to random noise, the communication channel, because of propagation effects,
can also alter the phase and the amplitude of the received signal. This is commonly referred
to as fading. For example, one can consider multi-path channels where the signal is scattered
and reflected by physical obstacles in the environment, before being received multiple times
by the receiver, causing constructive and destructive signal interference. An example of the
impulse response of such a channel model and the corresponding transfer function is shown in the
Figure 3.7. While Gaussian noise is a completely random and unavoidable process, propagation
effects are caused by phenomena whose time constants are usually relatively long compared to
the communication process. Therefore, it is usually possible to estimate them, which then allows
their mitigation. Often, the channel is even considered to be constant over a certain period of
time, under the simplifying assumption of block-fading. The latter consideration is quite realistic
because the channel coefficients are primarily affected by the propagation environment which
generally changes over time constants bigger than the symbol time of the transmitted signal.
Under such channel, the received signal at the receiver is defined as the convolution of the
transmitted signal by the (constant) channel impulse response upon which is added AWGN:

y(t) = x(t) ∗ hc(t) + n(t) (3.12)

Clearly, countless channel models can be defined to describe various transmission impairments.
A detailed description of these channel models is out of the scope of the present manuscript
but we refer the interested reader to the very detailed book of Proakis and Salehi on Digital
Communication for a more thorough description [79]. The following contribution of Chapters 4
and 5 always consider an AWGN source. In addition to AWGN, Chapter 4 also considers single
and multi-path propagation effects.

3.1.6 Detection, Synchronisation and Equalisation

The previous section described how a transmission medium can affect the transmitted signal.
We will now briefly describe the operations performed at the receiver end to mitigate the effects
of this channel and thus effectively recover the transmitted signal.

The first operations performed at the receiver are the detection and synchronisation oper-
ations. Indeed, the receiver does not necessarily know when a transmission occurs and, even
in the case of scheduled transmissions, the synchronisation of the emitter/receiver clocks may
be imperfect. Therefore, the receiver must be able to detect the incoming signals and estimate
the correct sampling time in order to receive the transmitted symbols. To do this, preamble
sequences are usually added at the beginning of a transmission. These sequences have specific
properties in order to increase their detection probability and to reduce as much as possible the
error on the estimation of the sampling time and the beginning of the payload. An example
of such sequences are Zadoff-Chu (ZC) sequences which have the very interesting property of
having an auto-correlation of 0 except for a shift of 0 [80, 81]. This unique auto-correlation peak
allows a receiver to efficiently detect and estimate the sampling time by constantly passing the
received signal through a filter matched to the transmitted ZC sequence. When a correlation
peak is detected, it means that a signal of interest is picked up and that the receiver should start
sampling the payload at the end of the ZC sequence.

After the synchronisation, the receiver must perform channel equalisation to mitigate the
effects of the channel. As described above, and assuming perfect synchronisation, the received
signal can be modelled as the transmitted signal convolved with the channel impulse response
and affected by AWGN. While there is no way to correct the individual noise samples which
are, by definition, random, it is possible to estimate the channel impulse response. Under the
previously described block fading hypothesis, the channel can be assumed to be constant over a
certain time period. Since the payload is initially unknown to the receiver, it is generally not
possible to use it to estimate the channel. Once again, and in the same way as for the preamble
sequence (which can in fact be used for both synchronisation and equalisation), a pre-defined
pilot sequence is added to the transmitted message to allow estimation of the channel impulse
response by the receiver. Under the block fading assumption, such a pilot sequence must be
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Figure 3.8: Typical Frame Structure for Synchronization and Block Equalization

regularly inserted into the transmitted signal to ensure correct channel estimation if the channel
should change over time as shown in Figure 3.8.

Here, we provide the textbook example of the equalisation of a single path, or single tap,
channel using the Zero-Forcing (ZF) method assuming perfect receiver synchronisation. Let p[k]
be the transmitted pilot and x[k] the subsequent payload represented by vectors of complex
symbols p ∈ CN and x ∈ CM . Let’s assume a single path channel i.e. a channel where the
transmitted signal does not undergo multi-path propagation through reflection, diffraction, etc,
and is received only once, without interference, at the receiver (or more precisely, if multi-path
propagation occurs, its delay spread is smaller than the symbol time). The sampled channel
impulse response h[k] can be described by the vector h =

(
h1 h2 . . . hL

)
∈ CL. In the case

of a single path channel, all coefficients or taps of the channel are equal to 0, except the first one,
h1, which describes the attenuation and phase shift introduced by the one and only propagation
path of the channel.

As described before, the effect of a block fading channel on the transmitted pilot is defined
as the following convolution:

yp[k] = p[k] ∗ h[k] + n[k] (3.13)

In vector/matrix notation such a convolution operation on a finite support can be defined as the
product of the input signal by the Toeplitz matrix H:

p[k] ∗ h[k]⇐⇒
(
p1 p2 . . . pN

)




h1 h2 h3 . . . hL 0 0 0 . . . 0
0 h1 h2 h3 . . . hL 0 0 . . . 0
0 0 h1 h2 h3 . . . hL 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 0 h1 . . . hL−2 hL−1 hL 0
0 . . . 0 0 0 h1 . . . hL−2 hL−1 hL




(3.14)
Which can be simplified in the case of the single tap channel where hi = 0∀i ̸= 1 by replacing H
by a diagonal matrix (thus not taking into account the tail of the convolution which is irrelevant
here because equal to 0):

p[k] ∗ h[k]⇐⇒
(
p1 p2 . . . pN

)




h1 0 . . . 0

0 h1
. . .

...
...

. . .
. . . 0

0 . . . 0 h1




= h1

(
p1 p2 . . . pN

)
(3.15)

The received signal is thus of the form:

yp
T =

(
h1p1 + n1 h1p2 + n2 . . . h1pN + nN

)
(3.16)

As the receiver knows the pilot sequence that has been transmitted, it can use that knowledge
to estimate the channel coefficient h1 by computing the aligned cross-correlation of the received
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signal and the pilot signal, normalised by the auto-correlation of the pilots:

ĥ1 =
Rpyp

[0]

Rpp[0]
=

p∗1(h1p1 + n1) + p∗2(h1p2 + n2) + . . .+ p∗N (h1pN + nN )

|p1|2 + |p2|2 + . . .+ |pN |2

=
h1

∑N
i=1 |pi|2 +

∑n
i=1 pini∑N

i=1 |pi|2

(3.17)

Assuming an AWGN channel, the above estimator is an unbiased estimator of h1:

En∼N
{
ĥ1

}
= En∼N

{
h1

∑N
i=1 |pi|2 +

∑n
i=1 pini∑N

i=1 |pi|2

}

=
h1

∑N
i=1 |pi|2 + En∼N {

∑n
i=1 pini}∑N

i=1 |pi|2
= h1

(3.18)

After estimating the channel based on the received sequence and under the hypothesis of
block-fading, stating that the subsequent payload is affected by the same channel, the receiver
can equalise the received signal by multiplying it by the inverse channel:

x̃[k] =
yx[k]

ĥ1

=
yx[k]ĥ

∗
1

|ĥ1|2
(3.19)

If the channel estimation is correct, i.e. ĥ1 ≈ h1, then this equalisation scheme corrects the
channel distortions but can also amplify the noise terms as a side effect. Yet it remains the
optimal equalisation scheme for single path channels:

x̃[k] =
ĥ∗
1 (h1x[k] + n[k])

|ĥ1|2
≈ x[k] +

ĥ∗
1

|ĥ1|2
n[k] (3.20)

Equalisation processes can get particularly complex and challenging for IoT scenarios. The
Chapter 4 look at the question of expressing conventional signal processing algorithms, including
single and multi-path equalisation schemes, using the framework of NN. Low complexity struc-
tures of linear equalisers are proposed, in line with the complexity constraints of IoT. Among
other things, These structures enable the use of dedicated low-power and cost effective hardware,
ideal for energy constrained IoT devices. Simple learning processes are also studied, showing how
a simple NN-based equaliser can be trained using online methods from the ML literature.

3.1.7 Demodulation and Decoding

Finally, after equalisation the receiver must infer which symbols have been sent from the received
samples. This step is commonly referred to as demodulation. In its most simple form, the
demodulation consists in taking a decision on the symbol value, by outputting the most likely
symbol. For example, in the case of a BPSK modulation with two possible binary symbols {0, 1}
associated with the values {+1,−1}, if a sample is received with a value of 0.5, then the most
likely BPSK symbol, i.e. the one with the shortest distance, is +1, associated to the binary
value of 0. This process is known as hard decision (or demodulation). After the demodulation
of successive samples, the obtained code-word can be provided to a FEC decoder to correct
potential transmission errors. The main advantage of hard decision is that it is very simple
and can easily be implemented using threshold mechanisms. The main disadvantage is that
by performing the hard decision, some information is lost. Indeed, in our BPSK example, two
samples of value +0.1 and +0.99 will lead to the same demodulated symbol value of 0, although
the uncertainty on this decision is not the same for both samples. The first sample is very close
to the decision boundary and is almost as likely to be associated with the symbol 0 as with the
symbol 1. On the contrary, the second sample is very close to the symbol 0 and it is rather
unlikely that the transmitted symbol was actually 1. As a result, after hard decision, all symbols
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Figure 3.9: Hard versus Soft Demodulation - BPSK under AWGN
While in hard demodulation a decision is made on the individual samples before any error correction mechanism
is applied, in soft decoding the probability law of the channel is used to estimate the probable values of the
transmitted symbols. The final decision is then made only after the soft samples of a same code-word are
combined during decoding.

in the resulting code-word are, from the FEC decoder perspective, equally reliable and the error
correction, which consists in combining redundant information that might have been altered, will
be performed accordingly.

A more sophisticated approach would instead compute the symbol probability distribution
associated to each received samples. In our previous BPSK example, instead of associating both
sample 0.1 and 0.99 to the symbol 0, the demodulator could provide a likelihood that they are
associated to that symbol, e.g. P {y = 0.1|s = s1} = 0.55 and P {y = 0.9|s = s1} = 0.95. The
latter although supposes that the conditional probability distribution of the channel is known
to the receiver. Such probabilistic information are usually combined into a more compact form,
so-called (log-)likelihood ratios, which, for a binary variable, is simply defined as:

λ(y) = log
P {y|s = s1}
P {y|s = s2}

(3.21)

Providing this finer information to the FEC decoder allows to greatly improve the error correction
capabilities (at the cost of some additional complexity) as the decoder is now able to correct errors
in a probabilistic manner, based on redundant information whose reliability is exploited. Such
demodulation is know as soft demodulation.

To better understand the difference between soft and hard decision, let’s take the example of
the C(3, 1) repetition code described above. Assume we want to communicate the bit 0. After
channel coding, the corresponding binary code-word

(
0 0 0

)
is transmitted on the channel

as the sequence of BPSK symbols
(
+1 +1 +1

)
. Let’s now assume that because of channel

effects and noise, the received samples are
(
−0.5 −0.2 0.9

)
. Under hard demodulation, such

samples would be individually associated to the BPSK symbols
(
−1 −1 +1

)
, corresponding

to the binary code word
(
1 1 0

)
. Hence, the FEC mechanism would decode it as the code

word
(
1 1 1

)
associated to the binary digit 1. This would constitute a transmission error. The

same example under a soft decision process would lead to a different result, as the definitive value
of the symbols would be selected only after decoding. Indeed, assume that instead of working on
the

(
−1 −1 +1

)
hard demodulated sequence, the FEC decoder works directly on the received(

−0.5 −0.2 0.9
)
sequence of samples. The Euclidean distances of that sequence with the two

possible BPSK code words
(
+1 +1 +1

)
(all zero code word) and

(
−1 −1 −1

)
(all one code

word) are 1.9 and 2.1 respectively. Based on a soft distance, e.g. Euclidean distance, the FEC
decoder would select the BPSK code word

(
+1 +1 +1

)
corresponding to the correct binary

digit of 0.
It should be emphasised that this distinction between hard and soft demodulation only makes

sense when considering FEC mechanisms. In the absence of an error correction mechanism, the
use of a complex soft demodulation process is irrelevant.

While soft demodulation can substantially improve the performance of the decoder - it is
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then referred to as a soft decoder, in contrast to a hard decoder - it also leads to a much higher
decoding complexity. Chapter 5 describes low complexity soft decoding structure for LBC with
sizes compatible with IoT scenarios. In particular, the proposed structure supports learning
procedures to learn to decode codes from the literature with better decoding performance than
that of the conventional solution. Finally, a structure is proposed to jointly design a code and
the corresponding decoder ex-nihilo with performance comparable to the SOTA.

3.1.8 Specific Considerations in the Present Study

In the previous sections, we have provided the reader with an overview of digital communication
systems that corresponds to the assumptions made in this work. The interested reader is referred
to [79] for a much more detailed description of communication systems. We hope that the
proposed description clarifies the context in which this study takes place. Hereafter, we would
like to emphasise on some specific considerations in the present work:

� We consider only the digital part of the communication systems and not analogue process-
ing, e.g. in the RF processing chain.

� We always consider base-band equivalent models which abstract the frequency transposition
of the carrier.

� Both finite field signals, e.g. binary signal, and sampled continuous signals are considered.

� The source coding is not further elaborated in this work, and a maximum entropy random
binary source is almost always considered, thus abstracting the nature of transmitted data.

� The IoT use cases underlying this work induce some specificities, especially in terms of
complexity and size of information blocks.

3.2 Artificial Intelligence at the Physical Layer - A Survey

With the expansion of IoT use-cases, an efficient and low complexity PHY layer is a key re-
quirement. In this context, the use of AI at the level of the PHY layer for various digital signal
processing tasks is of growing interest. This section examines how AI and ML can be used at the
PHY layer, discusses the reasons why this might be of interest, particularly for IoT scenarios,
and outlines the main challenges and opportunities associated with such integration.

First, a brief historical perspective of ML methods for signal processing in communication
systems is provided. Then, different approaches to the integration of artificial intelligence models
at the PHY layer are presented, ranging from incremental approaches to end-to-end designs. The
main opportunities, on the one hand, and challenges, on the other hand, of such integration are
explored. Finally, the issue of practical integration into existing 5G and future 6G networks is
discussed.

3.2.1 An Historical Perspective on Artificial Intelligence at the Phys-
ical Layer

The use of learning processes in telecommunication systems can be said to originate in the so-
called Adaptive Signal Processing (ASP) field in the early 1960s [82]. In 1960 Widrow and Hoff
developed the Least-Mean Square (LMS) algorithm [83] for electrical engineering applications, in
particular adaptive antenna arrays and adaptive noise cancelling. This algorithm uses Stochastic
Gradient Descent (SGD) methods to iteratively adapt the parameters of an adaptive linear filter,
called Adaline. Developed at the same time as the invention of the Perceptron by Rosenblatt,
Adaline is directly inspired by McCulloch and Pitt formal neuron. A few years later, in 1965, and
following ideas similar to that of the LMS algorithm, Lucky invented the first adaptive equaliser
with the Maximum Likelihood Sequence Estimator (MLSE) algorithm [84, 85]. In 1967, Sondhi
and Presti developed similar idea applied to echo cancellation [86]. These algorithms apply an
inverse filter to the signal, i.e. a filter whose response is inverse to that of the disturbance channel,
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and whose parameters are found through a learning procedure. The underlying structures are
in a sense conceptually close to those of simple NN. Although inspired by early work on AI and
NN, they are generally not labelled as such.

Since the 1950s, AI has gone through several winters, i.e. periods of declining interest and
thus funding for AI research due to disappointments and criticism. These winters have so far
always been followed by a resurgence of interest years or decades later, in what are known as AI
springs. In 2009, researchers from Stanford and Princeton universities inaugurated the ImageNet
project [34], a database of millions of hand-annotated images, including 90+ dog and cat breeds.
Since 2010, an annual contest sees teams of researchers from both the academia and the indus-
try compete in classification and object detection contests. In less than 7 years of competition,
contest winners’ classification error rates dropped from around 25% to 7%, exceeding human
recognition abilities on specific tasks [87]. This tremendous improvement in performance finds
its roots in a few key technical advances, namely the democratisation of GPU accelerated compu-
tation, the development of Deep Learning (DL) techniques [88] and theoretical advances in ML
techniques [89]. Thanks to the arrival of efficient and well-document programming frameworks
such as TensorFlow [90] or PyTorch [91], and performing hardware processing platform (GPU,
TPU), AI now not only supplants previous SOTA expert algorithms on CV tasks, but is also
successfully applied to a wide range of applications.

The telecommunication domain and cellular networks are no exception. As illustrated by
the Hexa-X flagship EU project on 6G network [3], AI is indeed envisioned as a critical enabler
for next-generation cellular networks [6] and is, in fact, already discussed for several functional
blocks of the 6G stacks such as Radio Resource Control (RRC), Medium Access Control (MAC)
or, as far as this work is concerned, digital signal processing at the PHY. While signal processing
for wireless communications was traditionally reserved for deterministic algorithms running on
dedicated hardware - e.g. Digital Signal Processor.ing (DSP), Field Programmable Gate Ar-
ray (FPGA), Application Specific Integrated Circuit (ASIC), etc. - the need for higher spectral
efficiency has led to an ever growing algorithmic complexity. Implementing optimal signal pro-
cessing algorithms while respecting the constraints of an embedded IoT platform has become an
increasingly unattainable goal. Publications on AI-based signal processing at the air interface
started to (re)appear around 2016, reflecting the recognition of AI techniques, and in particular
NN, as interesting alternatives to conventional algorithms.

The following sections summarises contributions in AI for the PHY layer, discusses the oppor-
tunities and challenges of AI-based approaches, and finally exposes some perspectives of AI-based
digital signal processing in future networks.

3.2.2 Approaches to the Integration of Artificial Intelligence at the
Physical Layer

Functional Approaches: An Incremental Evolution

Traditionally, as in 4th Generation (4G) or 5G networks, the base-band workflow is performed
in a sequential way. As illustrated by Figure 3.10 which depicts the 5G NR Physical Uplink
Shared Channel (PUSCH), each block of the processing chain performs a specialised task, e.g.
the channel estimation block try to estimate the channel undergone by the transmitted signal in
order to equalise it, the channel coding block adds redundancy to the information words to detect
and correct errors, and so on. Each block’s role, inputs and outputs are formally described in the
Technical Specification (TS) documents, e.g. TS 38.211 [92] specifies the physical channels and
modulation, TS 38.212 [93] specifies the multiplexing schemes and channel coding , etc. This
section provides example of contributions that we refer to as incremental with respect to the
SOTA. By incremental, we mean that these contributions do not require a change in the TS of
existing communication systems:

� Some contributions, e.g. [94, 95, 96], borrow the Neural Network architectures used in
image classification tasks to classify signals by their properties: modulations, IQ symbol
patterns, etc. The hypothesis is that radio signals and spectrum can be seen as images,
therefore efficient image classification techniques can be transposed to the classification of
radio signals. Existing studies have shown deep learning identification methods to perform
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better than traditional counterparts, effectively detecting and classifying modulations at
SNR levels well below demodulation levels [96].

� NN have also been proposed as an alternative approach to channel estimation and charac-
terisation. Notably, [97] discusses NN architectures that achieve equivalent performances
to SOTA Minimum Mean Square Error (MMSE) estimation techniques for Orthogonal
Frequency Division Multiplexing (OFDM) systems while being more robust to non-linear
interference. [98] proposes to use Channel State Information (CSI) readings to localise
transmitters in indoor environments and claims better performances than existing ap-
proaches.

� Significant efforts are invested in the study and design of NN Decoders. [99] shows that
a properly trained RNN performs as well as SOTA turbo-decoders in a Gaussian channel
setup and surpasses their performances for non-gaussian channels. [100] demonstrates that
DNN are able to exploit common structures of different coding schemes - namely LDPC
and polar codes – and effectively decode both. Several contributions study the regime of
short to medium-sized block codes. In particular NN and ML are used in [101, 102, 103,
104, 105, 106] to improve the performance of BP decoding of short Bose, Ray-Chaudhuri et
Hocquenghem (BCH) codes using trainable weighted decoder. Finally, some publications
look at the question of designing new polar and LDCP codes using ML [107, 108]. In this
manuscript, Chapter 5 focuses on these two latter issues.

However, as hinted by [99, 109, 110], AI-based approaches do not necessarily outperform
traditional approaches on well-defined, well-modeled tasks for which there are also convenient
derivations of closed-form algorithmic solutions. Furthermore, it should be emphasised that as
telecommunication is a particularly mature field, several proposed solutions and algorithms are
either proven optimal or closely approaching theoretical performance bounds with respect to
specified criteria. As explained in [111], AI-based approaches might perform better than others
is situation where there is either a model deficit or algorithmic deficit:

� A model deficit arises when the task at hand is set in a context that cannot be easily
summarised by a formal model, e.g. challenging interference, non-Gaussian noise. The
phenomena encountered become too complex to be adequately modelled and the associated
problems to be solved are difficult to define formally. The use of NN and learning processes
can sometimes overcome these limitations and enable the signal to be processed more
accurately and finely, leading to a performance gain over standard models.

� An algorithmic deficit occurs when the task at hand is loosely described, e.g. distinguishing
Wi-Fi from Long-Term Evolution (LTE) signals, or when the canonical algorithmic solution
is too complex so that its computation is unbounded, e.g. it requires an exhaustive search
over too large a set, too many iterations to obtain respectable performance, etc. Indeed,
although an exact or optimal model is sometimes known, its algorithmic solution may not
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be feasible within a set of operational constraints, e.g. exhaustive MLE decoding of large
codes. The use of NN and ML allows, in some situations, to perform or assist complex signal
processing operations at a reduced complexity compared to standard algorithms, while
keeping the same level of performance [7]. This reduction in complexity at an equal level of
performance is particularly interesting in the case of communication systems constrained
in energy and/or computing capacity, such as the systems considered in the IoT context.

This discussion on model and algorithmic deficits questions the relevance of a transmission chain
of individual and specialised functional blocks. On one hand, a block architecture facilitates the
specification and design of a system, allowing each block to be studied, designed and optimised
separately. Such choice allows for simpler models, simpler algorithmic solutions, easier to prove
performances. On the other hand, this design choice hinders the optimisation of the system as
a whole. Furthermore, while an optimal solution to a global problem can be found by founding
optimal solution to its constituent sub-problems, this is not always possible or easy. Taking
the example of channel and source coding, it has been proven that, under certain assumptions,
an optimal solution for the joint source-channel coding problem can be found by optimising
the source and channel coding problems separately, as indicated by the Shannon source-channel
separation theorem [112]. However, this theorem, by considering asymptotically long code blocks,
makes assumptions that cannot always be satisfied in real life, and especially not when considering
the short code block sizes of IoT use cases. It might then become interesting to consider and
optimise the system as a whole in order to hopefully achieve an optimal level of performance.

End-to-End Designs: A Paradigm Shift

From the previous observation, it appears that getting the full benefit of learning and optimisation
algorithms might require to consider the joint optimisation of multiple signal processing blocks
if not that of the complete communication chain. Hence, several publications, e.g. [113, 114],
challenged the conventional functional approaches and proposed to use so-called end-to-end ap-
proaches:

� In [97], the authors propose to use a DNN to perform a joint channel estimation and symbol
detection for an OFDM system. Initial findings reveal that the DNN approach allows to
reduce the number of pilot symbols without significant degradation of the performance.

� In [115], DNN are trained to perform a direct mapping from binary words, i.e. data, to
modulation symbols and vice versa: two DNN, one encoder and one decoder are arranged
in a particular form of Auto-Encoder (AE) [116] where the encoding and decoding parts
are the transmitter and the receiver respectively. The transmitter output is then fed to an
AWGN channel model and injected in the receiver. Results show that the training allowed
the AE to learn joint modulation and coding schemes, achieving similar performances to
SOTA coding and modulation schemes on very simple channel models.

� By taking the AI optimisation process higher in the communication chain, recent publica-
tions discuss the problem of goal-oriented communications, also called semantic communi-
cations. In such a scenario, instead of being optimised on the basis of a low-level metric,
e.g. Bit Error Rate (BER), the transmission chain is optimised on the basis of the achieve-
ment of the goal of the communication, i.e. the reason why the communication has taken
place. We often speak of semantic communication because an effective communication,
from a higher application level standpoint, is one that is able to extract from the source
information the necessary semantics to achieve the communication goal at the recipient’s
end [117, 118, 119]. In particular, this idea introduces the notion of context and common
knowledge from multiple and heterogeneous sources of information, which allow to further
reduce the amount of data to be transmitted [120, 121]. This line of work is, in particu-
lar, related to the Joint Source-Channel Coding (JSCC) problem where one tries to define
source and channel coding as a single operation [122, 123].

Although there are still relatively few publications following this new end-to-end approaches,
results are encouraging, some hinting towards better performance and adaptability in complex
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channels or better spectrum efficiency using DNN, etc. Obviously, those benefits come at the
cost of a change of specifications. It should also be noted that such a large-scale optimisation
process is not necessarily limited to the PHY layer, but can also encompass the higher layers of
the network in order to optimise the network as a whole, from the high-level objectives of the
application to the digital processing of the radio signal and the management of the distributed
network resources.

The Interpretability of the Models

Another dimension to the question of AI integration at the PHY layer, beyond the breadth of
the latter, is the type of AI models used, in particular their level of interpretability. In a very
simplistic way, we can generally distinguish between what we will call model-based and model-free
approaches6, which is also often referred to as black-box and clear-box approaches respectively:

� The clear-box approaches rely on conventional signal processing algorithms as a back-bone
structure for a trainable model, e.g. [124]. It can, in a sense, relate to ASP methods
introduced in Section 3.2.1. Such structures and their results are thus usually easier to
explain but the reduced model’s expressiveness and the strong inductive bias7 can also
hinder innovative solutions. This work mainly considers such a clear box approach for the
models proposed in Chapters 4 and 5.

� In contrast, black-box approaches rely on recent advances in DL and DNN to define larger
models with important parameter spaces, to allow for greater model expressiveness and
freedom in proposed solutions, [115, 125]. While these approaches have produced impres-
sive results, for example in CV, they are generally less interpretable and potentially more
expensive to run or train. Such approaches shift the problem of defining the telecommuni-
cation process itself to the problem of learning the latter.

Research Axes in Artificial Intelligence for the Physical Layer

From the above considerations, two principal research axis can be defined (see Figure 3.11):

Functional Versus End-to-End : in the functional approach, the communication chain is a
composition of blocks with well identified functions that are optimised individually based
on local metrics whereas end-to-end approach look at the complete chain as a single system
to leverage joint optimisation based on global metrics.

Clear-Box Versus Black-Box : in the clear-box approach, the NN are defined based upon
standard signal processing algorithms and expert knowledge leading to generally rather
low-complexity and explainable models. On the contrary, in the black-box approach, the
models are defined following more disruptive DL approaches with often less understandable
but also more expressive and potentially more performing models.

End-to-end approaches are generally related to black-box models and clear-box models are
generally used within a functional approach, but the other combinations also exist, as further
described in examples from SOTA. In a clear-box and functional settings, signal processing
blocks are translated into NN and eventually individually optimised using ML techniques. A
particularly interesting example of this approach was recently proposed by Nachmani et al. [101].
The proposed Neural Belief Propagation (NBP) decoder introduces a promising and explainable
way to improve the decoding performance of a BP iterative algorithm for short to medium length
linear block codes as will be described in Chapter 5. This manuscript mainly considers such an
approach. The functional approach is also used in several publication adopting more complex
DNN models at the expense of a higher number of parameters and a reduced explainability.
As an example, DNN decoders are proposed to learn the decoding of convolutional and turbo

6Not to be confused with model-based and model-free RL
7The inductive bias of an ML algorithm is the set of assumptions that are made to restrict the parameter

and solution space based on expert knowledge of the problem. Although such a bias can help to improve the
effective learning of a model, it also limits it to specific solutions. A basic example of inductive bias are weights
regularisation methods.
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codes [99] and polar codes [109]. Some interesting DL approach push this idea further, leading
to hybrid LDPC/polar decoders [100].

The more disruptive black-box and end-to-end approaches try to answer the question of de-
signing a full transceiver, jointly optimising all the functions that one can expect to be present
in a communication chain (modulation, equalisation, etc.) [115, 126]. These end-to-end ap-
proaches, of a great interest, are yet facing many unanswered challenges: reduced interpretabil-
ity of the models, non-differentiable channels, combinatorial explosion with respect to payload
length, reduced generalisation capabilities, non-convergence of the models, etc. Yet, the end-to-
end approach can also be combined with the clear-box one, by defining a fully interpetable and
structured AE model based upon individually well-defined NN signal processing blocks to be
optimised based on global performance metrics. This last approach will be treated superficially
in Chapter 4 - where two interpretable NN-based models for equalisation and demodulation will
be concatenated to form a larger NN model - and in Chapter 5 - where a fully interpretable AE
structure will be proposed for the joint learning of a coding and associated decoding scheme.

Integration in Existing 5G and Future 6G Networks

As manufacturers sell products that meet specific technical specification, they do not necessarily
need to explain how their solutions work. It is therefore difficult to determine where AI is present
in current 5G networks, although it is most likely that it is already being used to perform specific
operations within well-defined functional blocks. Manufacturers as Ericsson, Nokia and Huawei
already showed their increasing interest for such techniques. In this respect, an incremental
evolution towards AI may benefit to current 5G networks as the traditional functional block
approach used in telecommunications can allow manufacturers to replace one block with an
AI/ML solution, without affecting the specifications. Once the algorithm meets the performance
and interoperability requirements defined by the 3GPP, it can be used.

As far as 6G networks are concerned, while the extent of the future AI integration remains
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an open question, it is clear that AI is seen as a major technical enabler for future networks.
Indeed, research has already showed that NN and ML could challenge complex conventional
signal processing algorithms. Hence, Hexa-X, the EU flagship research project on future 6G
networks, to which this thesis work contributes, devotes an entire WP to the following research
question: ”AI-Driven Communication and Computation Co-Design” [3]. An interesting question
is that of the adoption and integration of these technologies into future networks, especially the
timing of these changes. Hoydis describes in [11] probable steps of the integration of AI in
the networks from clear-box and functional models to black-box end-to-end approaches. The
methodology adopted in this thesis loosely follows such a road-map.

3.2.3 Expected Gain and Opportunities

After describing some approaches to the integration of AI/ML at the PHY we detail the identified
gain and opportunities of using such techniques.

Complexity and Performance in Real-Life Conditions

Existing publications suggest that ML techniques allow for discovering NN configurations that
perform similar tasks than complex SOTA approaches for a fraction of the complexity. One such
example is the application to the Sparse Code Multiple Access (SCMA) decoder that is shown to
be achieved by a NN with a computation cost eleven times lower than a SOTA approach [110].
This observation is an invitation to revisit the current architecture choices, including channel
codes. Indeed, one reason to choose one scheme over another is the complexity of the decoder.
In 5G networks, the complexity of polar decoders for large block lengths contributed, among
other reasons, to the coexistence with LDPC codes and their corresponding BP decoders, the
latter being used for data traffic and the former for control traffic. This last problem is partly at
the origin of the study in Chapter 5 where an AE model is proposed to learn short-to-medium
LBC codes compatible with the BP decoder in order to have an efficient and unified coding and
decoding scheme for both control and data channels.

While performance of traditional approaches are often proven for given analytical models, e.g.
polar codes are shown to be capacity achieving for symmetric binary-input memoryless channels
[127], they tend to degrade significantly in a real-life scenario due to the mismatch between the
analytical models used in the design of said techniques and the actual real-life scenario. In this
context, NN exhibit interesting robustness characteristics. In [99], a neural decoder for turbo-
codes trained using a novel loss function on an AWGN channel is shown to perform as well as a
SOTA turbo-decoder on gaussian channels while outperforming it in non-gaussian channels.

Efficient Uniform and Cost Effective Hardware Architecture

As described in Chapter 2, NN lend themselves to efficient hardware architecture e.g. based
on systolic arrays. While such implementations were usually aimed at being operated in data
centers as co-processors [128], down-sized version are now available for integration in energy
and size constrained IoT devices [57]. For the moment, those new chips are often restricted
to inference tasks, i.e. they cannot train a model yet. However, they are already capable of
running real-time complex vision models at 100+ frames per seconds [10], handling 2 trillion
operations per Watts on 8bits integers, which is most likely enough for implementing complex
signal processing tasks on the User Equipment (UE) side of a network as well. Google own first
dedicated AI accelerator, called TPU [57], claimed performances ratio, i.e. relative performance
per Watt, of 29 times that of contemporary GPU, and 83 times that of CPU (see Figure 3.12
and [128])8. TPU performance to Watts ratios make them promising enablers to reduce the
energy consumption of computation-intensive tasks in a cellular network. This scenario exhibits
multiple benefits from a network operator perspective:

8It should be noted that [128] studies only the TPUv1 generation from 2015, and that 3 new releases occurred
since then, increasing the performance per Watt even further (although no relevant study were available at the
moment of the writing of this manuscript).
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Figure 3.12: Benchmarking Neural Network Models on Different Hardware Platforms
Reproduced from [128] - Relative performance - measured in Floating Point Operations Per Second (FLOPS) -
per Watt of power consumption on a realistic workload of 6 different neural network models running on various
server targets. The study is conducted in a data centre and, therefore, the power consumption is measured either
including the entire host server (left) or only the specific HW on which the models are run (right). The TPU v1
server (2015 version) shows a clear advantage over the Haswell CPU/ K80 GPU servers with up to 83 times the
performance of the CPU server at equal power consumption. The TPUv1∗ represents a hypothetical version of the
TPUv1 where equivalent technology generations to the CPU/GPU are used (e.g. GDDR5 memory technology,
input/output bandwidth, clock frequency, etc.).

� As discussed earlier, this hardware is generic in the sense that it can change models on the
fly. In addition to reducing the gross power consumption of such a hardware target, it would
therefore be possible to reuse the same hardware target for multiple non-simultaneous tasks
(possibly not only related to radio signal processing in a hardware pooling scenario), further
reducing the device (or Integrated Circuit (IC)) size and power consumption.

� Since this hardware is designed as a co-processor, it may be easier and cheaper to scale
up to the computational load. In addition, as mentioned above, hardware resource sharing
could be considered in edge computing scenarios to offload, for example, AI-based CV tasks
to the edge when the Base Station (BS) does not have to perform radio signal processing
tasks.

In addition, the use of a similar hardware architecture between data centre System on Chip
(SoC) and embedded SoC could be considered, which would have several advantages. As the
hardware is similar, the development of ML algorithms and models should require similar skills,
both on the UE (embedded) side and on the gateway side. As an example, the different TPU
models produced by Google can be defined and trained within the same framework, TensorFlow
[90], albeit with some limitations on the size and types of data that can be processed by the
smaller embedded TPU. In addition to the skill factoring, this also opens up the possibility of
distributed and/or federated learning concepts via the learning of UE models within the more
capable and less constrained TPU of the infrastructure, provided that a side channel is available
to transmit the information required for training and transmit the result of the training back to
the UE. Such distributed learning scenarios are described in two patent applications filled during
the course of this Ph.D. work [15, 16].

While such hardware is developed by several manufacturers, including Google [57], Intel [58],
Nvidia [59], Qualcom [60] or Apple [61], its cost is even further reduced. The wide development
of high-performance hardware architectures dedicated to the execution of NN models makes it
possible to consider their use in future networks that are more performing, energy-efficient and
less expensive.
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3.2.4 Challenges

While NN and ML opens many opportunities, they also come with their own set of challenges
which are described in this section.

Performance Guarantees and Bounds

Even-though NN are made of simple atomic components and operated on simple hardware ar-
chitectures, complete models are often complex and their parametrisation remains a challenge
that usually rely on ML techniques. This introduce a paradigm shift in the design of algorithms:
While the traditional design approach is model-based, i.e. first model the environment and task
then devise an algorithmic solution, ML techniques are data-based, i.e. the algorithmic solution
is tightly bound to training data-sets. Contradictory to conventional approaches which usually
allow for an analytical study of the performance of algorithms, there is often no guarantee that
a NN model is able to deliver expected performances as there is no proof of correctness of the
model involved in the process of learning. The actual performance is only tested on limited
validation data-sets. Training and validation data-sets are therefore of critical importance to
ensure models perform as expected in a live network with online learning scenarios.

Generalisation of Learning

The data used in the training of models must fit with the real-life conditions in which models will
then be run. This is particularly challenging due to the radio environment differing significantly
from one location to another. Caution is especially required when off-line training is in use.
While online training seems therefore an interesting alternative, it raises other equally challenging
issues, e.g. the definition of loss/error to monitor the performances, the optimisation of hyper-
parameters which traditionally requires a level of human intervention and the support of training
procedure at the constrained edge of the network.

Curse of Dimensionality

NN model can be challenging to train notably because of the so called “Curse of dimensionality”.
This phenomenon, well-known to the ML community, is related to the fact that the solution space
of a problem grows exponentially with its dimensionality. This makes the available training
data sparse and thus non-statistically significant or the needed volume of training samples too
important. Similarly, the “Curse of (code-word) dimensionality” appears in the context of PHY
layer when one tries to train models with increased information block sizes. The number of code-
words associated to information blocks of size k is of 2k which can rapidly become prohibitively
large when increasing k, making the learning of large codes a challenging problem [115, 5]. In
most cases, it is impractical (or impossible) to train models on exhaustive data-sets, e.g. all
possible combination of data.

Security Concerns and Trustworthiness

The increasing complexity of NN, with too many parameters to be fully understood, raises the
question of their unpredictability, or at least the difficulty of fully testing them. Obviously,
testing models before operating them provides a degree of confidence but does not fully prevent
from attacks based e.g. on adversarial ML techniques [129]. Network reliability and security are
even more difficult to ensure when considering fully distributed and online learning techniques,
which argues for the adoption of specific performance and monitoring procedures.

Distributed Learning

The distributed nature of a telecommunication network makes the optimisation of NN models
spread across different physical devices particularly challenging, notably when considering online
training procedures. As discussed earlier, introducing AI at the PHY to learn new communication
schemes questions the notion of communication standard itself. In such a scenario, how to
make sure that multiple devices training local AI models converges toward a globally valid
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communication scheme, a fortiori without side-channels and coordination? How can the training
metrics used to orient the model toward a better solution be exchanged in the network, even
before the communication scheme is learned? In particular, when considering gradient based ML
methods, how to back-propagate gradient information on a non-differentiable channel so that to
update the emitter weights?

Interoperability of AI-Based Networks

How to ensure interoperability between fully AI-defined wireless systems is another open question:
The concept of AI-defined air interface, by definition, means that it will not be possible anymore
to specify an air interface as wireless standards do. What could be standardised is the data-set
used for training, that could be built so as to include the interoperability constraint.

3.3 Conclusion of the Chapter

This preliminary chapter has provided, in a first part, the basic knowledge on the PHY layer
of digital wireless communications necessary to understand the present study. The proposed
description has highlighted the role of the PHY layer and its main constituent blocks while
emphasising on the specific IoT context and constraints considered in the present work. In
a second section, a general survey on the current state of research on AI for PHY has been
proposed. The main approaches - functional versus end-to-end and clear-box versus black-box -
have been presented, as well as the main challenges and opportunities of such an integration in
future networks.

We now conclude the two introductory chapters on AI/ML and AI at the PHY layer before
detailing the contributions of this thesis work. In particular, the next chapter describes, as a first
step towards the integration of AI at the PHY layer, conventional signal processing algorithms
for equalisation and demodulation in the form of efficient and low-complexity NN structures.
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Foreword

While modern DNN leverage several hidden layers to express sophisticated non-linear functions to
solve complex problems which do not have any known analytical solution, their important number
of parameters might lead to complex and time-consuming inference and learning processes. These
limitations might be incompatible with the energy, computational power and cost constraints
of IoT and low-power networks. Moreover, due to their inherent black-box design, DNN are
often not interpretable, i.e. they may not offer the analytical guarantees usually required for
a trustworthy communication system. Such an observation advocates for the translation of
conventional signal processing algorithm into their low-complexity NN counterparts which can
make for a good basis to the design of structured NN or DNN models with efficient learning
procedures, better generalisation capabilities and increased interpretability.

The aim of this chapter is thus to illustrate this approach with concrete examples by study-
ing how conventional signal processing algorithms can be expressed using NN structures. As
explained in previous chapters, such an approach is a first step towards the integration of effi-
cient AI hardware platforms at the PHY layer. Moreover, it potentially enables the use of ML
procedures. Furthermore, the definition of a differentiable graph structure for each of the sig-
nal processing blocks allows the use of end-to-end learning even in systems where standardised
blocks have to be used. An example of such a system could be the learning of an equaliser model
upstream of a demodulator model based on an output metric, e.g. a differentiable relaxation of
the BER, calculated downstream of said demodulator (and not immediately after the equaliser).
At first, we will look at the question of single and multi-path channel equalisation using sim-
ple NN structures. Then, low complexity demodulation structures will be introduced. Finally,
a simple NN-based PHY layer with realistic implementation constraints, including single path
equalisation and M-QAM demodulation, will be implemented using SDR, as described in the
first publication of this PhD [12]. It should be emphasised that the goal of the present chapter is
not to describe methods that offers raw performance improvements over conventional algorithms
but rather to demonstrate how said conventional algorithms can be translated into equivalent
NN structures, thus enabling the use of AI/ML inside communications systems.

4.1 Equalisation

As briefly introduced in Sections 3.1.6 and 3.1.5, several types of distortions can affect the signal
transmitted over a wireless communication channel (e.g. shadowing, diffraction, fading, Doppler
shift, scattering, path loss, reflection, etc.), thus provoking many undesired alterations of the
received signal. Mitigating these effects is thus crucial for a reliable and efficient transmission
process and that is why equalisation schemes are put in place. This section will look into the
question of expressing conventional linear equalisation methods for single and multi-path channels
using low complexity NN structures with strict mathematical equivalence.

4.1.1 Base-Band Equivalent Tap Channel Model

Before describing some linear equalisation methods, we first provide a quick description of the
channel effects in the form of a sampled channel model. Indeed, although propagation effects
directly affect the physical, i.e. analogue, signal, a base-band equivalent is often used to describe
the wireless channel of a digital communication system. It is then presented as a band-limited
digital filter defined by its discrete transfer function (cf Section 3.1.5).

A particularly important concept is that of multi-path propagation and the resulting spread of
the received signal. Due to the propagation of the radio signal in an open and wide environment,
and the subsequent effects of scattering, reflection, diffraction, etc., the same transmitted signal
may follow different paths before reaching the receiver at different times. In simplified terms, the
channel delay spread is the time interval between the first and last reception of the same signal
in a multi-path channel. It is therefore directly dependent on the propagation environment. For
example, in a mountain environment, the channel spread is large because of the reflection of the
signal on the distant mountains. On the contrary, in an urban environment, although the number
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Figure 4.1: Tap Channel Models
The different taps represent the effect of the channel at a given sampling time. Time zero is set to correspond to
the reception of the first path. Obviously, the channel theoretically has an infinite impulse response, although in
practice the amplitude decreases rapidly, so we usually only need to consider a reasonable number of taps (or at
least we set the number of taps according to the computational capacity of our equaliser).

x[k] LTI +

Gaussian Noise
n[k]

CHANNEL

Equaliser u[k]
x[k] ∗ h[k] y[k]

Figure 4.2: Digital Base-Band Equivalent System Model
In this work we always consider a digital base-band equivalent system model, where the output of the channel is
a discrete signal y[k] defined as the convolution of the discrete input signal x[k] by the tap-channel coefficients
h[k] (represented as a Linear Time Invariant filter) and to which Gaussian noise samples n[k] are added. After
attenuating the effects of the channel as much as possible, the equaliser produces a signal u[k].

of reflections may be higher due to the multiplicity of obstacles (buildings, cars, etc.), the delay
spread is generally lower due to the smaller characteristic distances between said obstacles [130].

Assuming a discrete signal with a sample time Ts, the base-band equivalent of the impulse
response of the channel can be represented by a tap delay model, where each tap represent the
sampled impulse response of the channel at a given sample time as represented on Figure 4.1:

h[k] =

L∑

i=1

aie
jθiδ[(k − i)Ts] (4.1)

When the delay spread of the channel is greater than the symbol time, one symbol interferes
with subsequent ones in a so-called ISI phenomenon. If not compensated, ISI as-well as the other
channel effects can introduce severe error levels.

Considering a discrete signal x[k], transmitted through a Linear Time Invariant (LTI)1 multi-
path channel, with discrete tap impulse response h[k], the received signal y[k] constituted of
multiple overlapping replicas of original signal will be defined as:

y[k] = x[k] ∗ h[k] =
+∞∑

m=−∞
x[m]h[m− k] (4.2)

1A Linear Time Invariant system is a filter that produces an output signal from an input signal under linearity
and time-invariance constraints. The response y(t) of such a system to a given input x(t) is defined by the
convolution y(t) = x(t) ∗ h(t) where h(t) is known as the system’s impulse response. Such a system can typically
be used to model a block fading channel.
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In fact, as both the channel impulse response and the signal have finite support, the span of
the convolution sum is reduced on that support. The operation can thus be represented using
vector/matrix notations using a Toeplitz matrix as (see Section 3.1.6):




y1
y2
...

yN+L−1


 =




x1 0 . . . 0
x2 x1 0

x3 x2 x1
. . .

...
... x3 x2

. . . 0
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0 xN
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0 xN x3 x2

... 0
. . .

... x3

. . . xN
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h1
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hL


⇐⇒ y = Xh (4.3)

where x ∈ CN is the input signal and h ∈ CL the L-tap fading channel.

Such a channel can be modelled as a tap-delay line, in a similar way to that of the linear
equaliser described in the next section. To reduce the channel effects one idea is to find an inverse
filter, called an equaliser, and apply it to the received signal (see Figure 4.2).

z−1 z−1 z−1 z−1

×w1 ×w2 ×w3 ×w4 ×w5

y[k − 1] y[k − 2] y[k − 3] y[k − 4]

+
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u[k]




u1

u2

...
uN+5−1


 =




y1 0 . . . . . . 0

y2 y1
. . .
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... y2

. . . 0
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yN
...

. . . y1 0
0 yN y2 y1
... 0

. . .
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 ⇐⇒ u = Y w ⇐⇒ u[k] = y[k] ∗ w[k]

Figure 4.3: Schematic of a Linear Equaliser Represented Using a Transversal Filter
The discrete input signal to be equalised is delayed by a 5-tap delay line and each delayed version of the signal is
multiplied by the equaliser parameters and linearly combined to obtain the equalised signal.
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4.1.2 Linear Equalisation

One very common family of equalisers, which will be the only one treated in this manuscript, are
the linear equalisers which aim at applying to the received signal a linear filter which seeks to
reduce the channel effects. Such a filter is usually defined and implemented as a finite transversal
filter or so called tap-delay line as represented in Figure 4.3. In such filter, the received discrete
signal y[k] is delayed on a delay-line of a certain length (or memory) and each of the delayed
samples are multiplied by the equaliser weights and linearly combined so as to form the equalised
signal u[k]. The memory of the filter should be adequately selected so as to match the delay
spread caused by the channel, but can also be limited by the technical implementation complexity
of the equaliser system.

A question arising from the above description is that of the parametrisation of such an
equaliser. We will cover in the upcoming sections two famous methods, namely ZF and (linear)
MMSE.

Least Square Channel Estimation and Zero-Forcing Equalisation

In most digital communications applications, the channel response h is not known in advance.
Although some use-case dependent expert knowledge is known (such as the expected delay spread
of the channel and therefore the number of taps needed to represent it with a good level of
fidelity), an online estimate of the channel is almost always required. One such channel estimation
method, known as the Least Square (LS) channel estimation, aims at performing the following
minimisation:

ĥ = argmin
h

||y −Xh||22 = argmin
h

||Xh⋆ −Xh||22 (4.4)

where ĥ is the estimated channel and h⋆ the effective channel.

By finding the value ĥ such that the derivative of the function with respect to h is zero, we
find that the LS channel estimate is:

ĥ = (X†X)−1X†y (4.5)

where X† denotes the trans-conjugate of matrix X, also referred to as Hermitian transpose of
X.

Obviously, and as described in Section 3.1.6, this channel estimation supposes the knowledge
of the transmitted sequence x by the use of a pilot sequence.

After channel estimation, the ZF equaliser can be used to equalise the received signal on the
basis of the estimated channel (usually in the frequency domain). The ZF enforces a completely
flat (constant) frequency response of the channel/equaliser combination, by choosing the equaliser
transfer function as [79]:

E(f) =
1

Ĥ(f)
(4.6)

where E(f) is the frequency response of the equaliser and Ĥ(f) the least-square estimate of the
channel frequency response.

The ZF equaliser is optimal in single-path channels and, in the absence of channel noise,
in multi-path channels as well, where it can completely eliminate ISI. However, in practice, ZF
equalisation does not work well in most applications because, under noisy channels, the ZF
equaliser strongly amplifies the noise at frequencies f where the channel response H(f) has a
low amplitude (commonly referred to as a channel zero) in an attempt to completely negate its
effect [79]. An example of such noise enhancement is described in Figure 4.4.

In fact, the purpose of an equaliser is not to remove ISI at all costs, but rather to minimise
the final BER. The noise amplification property of ZF equalisers makes them unsuitable for such
a task. A more balanced linear equaliser in this case is the MMSE equaliser, which generally
does not completely eliminate ISI but rather minimises the total power of the noise and ISI
components in the output [79].
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Figure 4.4: Noise Enhancement Problem in Zero-Forcing Equalisers
One of the main problems with the ZF equaliser is that, by imposing a completely flat response of the chan-
nel/equaliser ensemble to eliminate ISI, the ZF equaliser significantly degrades the SNR and colors the noise
by increasing its level at the channel nulls. Note that a perfect channel estimation is considered here (i.e.

Ĥ(f) = H(f).
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Minimum Mean Squared Error Equaliser

Contrarily to ZF where the channel is first estimated and then an inverse filter which minimizes
the ISI is designed, MMSE seeks to directly optimise the linear equaliser parameters so as to
minimise the errors. The goal of the MMSE equaliser is thus to solve the following equation (real
signals are considered here):

ŵ = argmin
w

E
{
||u− x||22

}
= argmin

w
E
{
||Yw − x||22

}
(4.7)

where w are the parameters of the L-tap (or order) of the linear equaliser filter (also referred as a
Wiener filter in the case of MMSE equalisation [131]), x the known vector of pilot symbols, u the
random vector of equalised samples and Y the random Toeplitz representation of the received
samples y.

By developing the above expression we obtain:

E
{
||Yw − x||22

}
= E

{
wTYTYw − 2wTYTx+ xTx

}

= wTE
{
YTY

}
w − 2wTE

{
YTx

}
+ xTx

= wTRyyw − 2wTrxy + Px

(4.8)

whereRyy = E
{
YTY

}
is the auto-correlation matrix of the received signal y[k], rxy = E

{
YTx

}

the cross-correlation vector between received signal y[k] and transmitted one x[k] and Px is the
power of transmitted signal.

To find the vector w which minimizes the expression above, we calculate its gradient:

∇wE
{
||Yw − x||22

}
= 2Ryyw − 2rxy (4.9)

The minimum of the function is found by solving the system of equations defined by a gradient
equal to zero, commonly known as the Wiener-Hopf equations:

2Ryyw − 2rxy = 0⇐⇒




Ryy[0] Ryy[1] . . . Ryy[L− 1]
Ryy[1] Ryy[0] . . . Ryy[L− 2]

...
...

. . .
...

Ryy[L− 1] Ryy[L− 2] . . . Ryy[0]







w1

w2

...
wL


 =




rxy[0]
rxy[1]

...
rxy[L− 1]




(4.10)
where Ryy[n] =

∑
i y[i]y[i+ n] and rxy[n] =

∑
i x[i]y[i+ n] (the expectation is approximated by

the empirical mean). The auto-correlation matrix Ryy is a symmetric Positive Definite (PD)
Toeplitz matrix, such that the Wiener filter has a unique solution w = R−1

yy rxy. Furthermore,
Levinson-Durbin algorithm can be used to solve the Wiener-Hopf equations without requiring
an explicit inversion of Ryy [131].

When considering complex signal, the above system of equation becomes [132]:




Ryy[0] R†
yy[1] . . . R†

yy[L− 1]
Ryy[1] Ryy[0] . . . R†

yy[L− 2]
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. . .
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Ryy[L− 1] Ryy[L− 2] . . . Ryy[0]







w†
1

w†
2
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w†
L


 =




rxy[0]
rxy[1]

...
rxy[L− 1]


 (4.11)

Although we speak of an MMSE equaliser, it could also be referred to as a Wiener equaliser,
as we in fact seek to find the parameters of the Wiener filter that minimise the MMSE criterion.

4.1.3 Single-Path Equalisation using Neural Networks

Now that the classical solutions of ZF and MMSE equalisers have been introduced, this section
examines the issue of expressing such linear equalisers in the form of a simple NN structures,
more specifically in the case of single path equalisation.
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In the simplest case, there is only one channel path2, or more precisely one dominant path,
to be considered. This is referred to as a single path propagation channel. This situation is
considered favourable because the channel introduces mainly delay and attenuation but no ISI,
and is therefore easy to estimate and correct. This situation is typically encountered in Line
of Sight (LoS) scenarios where the transmitter and receiver are in direct view. Some technical
solutions, such as Cyclic Prefixed Orthogonal Frequency Division Multiplexing (CP-OFDM), also
allow practical consideration of single-path equivalent sub-channels, which considerably reduces
the complexity of equalisation (this is however outside the scope of this study).

Channel Model and Theoretical Solution

In this section we consider the single-path base-band equivalent channel defined by the following
combination of propagation effects and hardware impairments3:

AWGN: real and imaginary parts of the noise are sampled from a bi-variate zero-mean Gaus-
sian distribution:

nk =

(
nik

nqk

)
with nik , nqk

i.i.d∼ N
(
0,
√
N0/2

)
(4.12)

where nk denotes the k-th bi-variate sample of the noise signal n[k]

Phase shift: symbols are rotated by an angle ϕ with the following rotation matrix:

R =

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
(4.13)

IQ amplitude imbalance: a different scaling factor is applied to I and Q channels as described
in the following diagonal stretching matrix:

A =

(
αi 0
0 αq

)
(4.14)

IQ offset: a different offset is applied to I and Q channels:

o =

(
ωi

ωq

)
(4.15)

Phase shift, IQ amplitude imbalance and IQ offset are considered constant under block-fading
hypothesis4. The overall channel effect on a given sample is:

yk
T = xk

TRA+ (o+ nk)
T (4.16)

(
yik
yqk

)T

=

(
xik

xqk

)T (
αi cos(ϕ) αq sin(ϕ)
−αi sin(ϕ) αq cos(ϕ)

)
+

(
ωi + nik

ωq + nqk

)T

where xk is the k-th input symbol and yk the corresponding sample, affected by the channel.
On the receiver side, the effect of the channel must be mitigated by a single-path equaliser.

perfect synchronisation is considered. The equalised sample is noted as:

uk = x̃k + ñk (4.17)

where uk is the equalised sample and ñk is the noise sample after equalisation that can be
described, without loss of generality, as a bi-variate AWGN.

2We use the terms tap and path interchangeably here to refer to the base-band equivalent paths of the channel.
It should be noted that the term path is often used to describe the physical path of the channel (i.e. a continuous
channel), while the term tap is used to describe the digital processing of these paths.

3Complex IQ samples are represented in vector notation for direct conversion to NN structures.
4As described in Section 3.1.5, the block-fading hypothesis assumes that the channel coefficients remain con-

stant for a block of K symbols. This duration depends on the channel coherence time.
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The objective of the equalisation block is to retrieve the original samples before the chan-
nel impairments. The optimal solution given the single-path channel impairments described in
Equation (4.16), commonly referred to as ZF, is defined as:

uk
T = (yk − o)T (RA)−1

= yk
T (RA)−1 − oT (RA)−1

= xk
T + nk

T (RA)−1

(4.18)

where

(RA)−1 =
1

αiαq

(
αq cos(ϕ) −αq sin(ϕ)
αi sin(ϕ) αi cos(ϕ)

)
(4.19)

As shown in Equation 4.18 the ZF methods simply consists in multiplying the received sig-
nal by the inverse channel (which obviously needs to be estimated first, eventually using the
previously described LS method).

Corresponding Neural Network Structure

From the optimal equalisation scheme presented previously, one can deduce a straightforward NN
implementation. Indeed, under the considered channel model, the optimal equalisation scheme
from Equation 4.18 is simply the equation of a linear biased layer of two neurons:

uk
T = yk

T (RA)−1 − oT (RA)−1 = yT
k W + cT (4.20)

where yk is the k-th input sample (real and imaginary part of the sample form a vector of two
elements) and uk the k-th equalised sample. W and c are the (2×2) weights matrix (each column
representing one of the two kernels) and the bias vector of size two, respectively. Complex-valued
NN are still at the stage of research such that this representation using separate I and Q channel
is convenient to describe and process complex-valued signals.

Given the optimal solution described in equation (4.18), the optimal NN weights W and bias
c are: {

Woptimal = (RA)−1

cToptimal = −oT (RA)−1
(4.21)

Figure 4.5: Proposed CNN Architecture for Single-Path Equalisation
The proposed layer uses six shared parameters (two weights and one bias per kernel) to equalise a complete batch
of sample whose size must not exceed the coherence time of the block-fading channel.
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The single-path equalisation operation can be applied independently to all samples of a given
frame affected by the same channel under block-fading hypothesis. A CNN is therefore partic-
ularly suited in this case and allows for an efficient parallel processing of samples blocks. The
CNN shift invariant architecture, based on shared weights, drastically reduces the number of
trainable parameters, independently of the number of samples to be processed [133]. The pro-
posed minimal CNN to perform single-path equalisation consists of one linear layer (i.e. without
a non-linear activation function) with only two kernels of size (1, 2) as described in Figure 4.5.
An input matrix of shape (K, 2) is considered, where K corresponds to the number of samples
and 2 to real (I channel) and imaginary (Q channel) parts of these samples.

Figure 4.6 shows the result of the operation applied by this minimal CNN to a 16-QAM
constellation altered by a channel with arbitrarily defined impairments. One can see that the
samples are perfectly equalised under the, manually configured, optimal parameterisation of
Eq. (4.21).

Figure 4.6: Single Path Equalisation Using Convolutional Linear Neural Network Layer
Left figure: Received samples with impairments - Right figure: Samples equalised by the NN.

Associated Learning Process

The previous sections proposes a mathematical definition of a minimal NN architecture com-
patible with an optimal single-path equalisation procedure, and an analytical derivation of its
parameters which corresponding to ZF solution described in Section 4.1.2. Obviously, such NN
structure could be configured and continuously adapted to the channel evolution using a ML
algorithm.

In this section, such an approach is described. The latter aims to find the weight matrix Ŵ
and bias vector ĉ that minimise the MSE between the transmitted samples x[k] and the equalised
one u[k], as described by the following equation:

Ŵ , ĉ = argmin
W ,c

∑

k

(
xT
k − uT

k

)2
= argmin

W ,c

∑

k

(
xT
k − yT

kW + cT
)2

(4.22)

This method corresponds exactly to the MMSE equaliser solution. Obviously, as the trans-
mitted samples xk are unknown during relevant date transmission, pilot sequences known by the
receiver must be regularly inserted. This learning process will be implemented in Section 4.3
where a prototype NN-based transmission chain will be proposed and evaluated in real conditions
using SDR cards
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Figure 4.7: Multi-Path Equalisation Using Linear Convolutional Neural Network Layer
Example of a 3-tap CNN-based linear equaliser.

4.1.4 Extension to Multi-Path Equalisation

Previous section described how a conventional single-path equalisation algorithm can be trans-
lated into a very simple NN architecture. This section briefly extends previous results to the case
of multi-path channel using a similar approach. As in previous section, the linear equaliser is
defined as a CNN as shown in Figure 4.7. Although, we now consider a multi-tap linear equaliser,
so as to match the channel memory, and the CNN kernel size is thus increased accordingly. In
the example of Figure 4.7 a 3-tap linear IQ equaliser is considered. The computation performed
by such an equaliser can be summarised by the following equation:
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(4.23)

Similarly, to the case of single-path equalisation, one can train the CNN model so as to
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minimise the MSE loss function:

Ŵ (I), Ŵ (Q), ĉ = argmin
W (I),W (Q),c

∑

k

(
xT
k − uT

k

)2
(4.24)

The proposed system is tested on a 16-QAM signal affected by a 3-taps channel. Without
surprise, the CNN model trained to minimize the MSE criterion achieves exactly the same
performance as a classical MMSE filter (see Figure 4.8). This result stems from the rigorous
translation of the standard linear equaliser into the strictly equivalent CNN structure.
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Figure 4.8: Performance of the proposed CNN-based Multi-Path Equaliser over a 3-Tap Channel

4.1.5 Perspectives

While this section demonstrated the translation of some conventional equalisation algorithms
into their corresponding NN structures, other equalisation algorithm could be used as a starting
point for more complex NN structures. As an example the Direct Feedback Equaliser (DFE)
equaliser which uses previously equalised samples to better equalise current sample could easily
lends itself to an RNN-based implementation. More compute intensive MLSE equaliser and
the associated Viterbi trellis algorithm could also be described as NN structure. Furthermore,
one could imagine to use DNN structure so as to learn efficient approximation of these very
costly types of equaliser although at a cost of a reduced interpretability. An example of such
an approach is the DeepRX model [126] which use a complete end-to-end receiver using a deep
CNN to executes a complete receiver pipeline including channel estimation and equalisation.

4.2 Designing a Neural Network Based Detection System

The step involved in the demodulation of a digital modulation, e.g. M-QAM, is typically a
decision problem (at least when faced with a hard demodulation process) which are known to
be efficiently solved using NN [134, 135]. Indeed, a formal neuron associated with an activation
function expresses a non-linearity over an hyper-plane that can then be used to define decision
boundaries as will be further described in the following sections. This section describes a minimal
NN architecture solving the decision problem faced in a M-QAM demodulator so as to associate
the received samples to the most probable symbols within the complex plane of the constellation,
and then to the corresponding binary code-words. This minimal model is derived from the
theoretical demodulation process and offers a particularly low-complexity NN-based solution to
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this problem. Finally, the question of NN-based soft demodulation process is briefly addressed,
so as to enable soft FEC decoding procedures as will be studied in Chapter 5.

4.2.1 QAM Demodulator - Naive approach

In this section, a NN-based solution for demodulating a complex signal from a QAM of arbitrary
order is described. To demodulate a QAM of order M, a naive algorithm calculates the Euclidean
distance between the received IQ sample and the different symbols in the constellation. At first,
the aim is here to study a NN-based algorithm that offers an optimal level of performance, and
if possible with a lower complexity to that of the naive algorithm.

Quadrature Amplitude Modulation

As briefly introduced in Section 3.1.4, QAM is a form of digital modulation which modulate
the amplitudes of a carrier and the same carrier in quadrature based on the information carried
by two input channels commonly referred to as I (In-phase) and Q (Quadrature) channels. To
illustrate, let’s take the example of a rectangular QAM of order 16, whose constellation is shown
in Figure 4.9. The amplitude of the in-phase channel (I) is shown on the horizontal axis and the
amplitude of the quadrature channel (Q) is shown on the vertical axis. It can be seen that each
channel can be modulated using 4 discrete amplitude levels: {−3,−1,+1,+3}. This results in
16 combinations of amplitudes of the I and Q channels commonly referred to as symbols, each of
which encode a 4 bits word. As an example, if one wishes to transmit the binary sequence ’0110’,
the amplitude of the in-phase carrier will be modulated by a factor of -1 and the amplitude of
the quadrature carrier, by a factor of -3.

Figure 4.9: Constellation of a 16th Order Gray Mapped Quadrature Amplitude Modulation

Architecture of the Demodulator Neural Network

In the case of a 16-QAM there are six boundaries allowing to distinguish the 16 symbols, as
described in the Figure 4.9. A NN is known to be efficient to solve the previous decision problem
[134, 135]. Indeed, a formal neuron associated with an activation function such as a sigmoid or
a ReLU expresses a non-linearity over an hyper-plane.

Upon reception of the transmitted symbols, the received samples must be associated back
to the corresponding binary words, in the best possible way w.r.t the transmission noise. The
input data of the demodulator are the amplitudes of the I and Q channels after equalisation
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(perfect equalisation and synchronisation are considered here, i.e. only gaussian noise remains).
We want the NN to associate an input IQ pair with the corresponding binary word. If we take
the constellation diagram of a rectangular 16-QAM modulation from Figure 4.9, we can see that
we can easily square the space by defining 6 decision boundaries allowing us to separate the 16
symbols of the constellation without ambiguity (see Figure 4.10). The first layer of the NN must
be able to differentiate these 16 possible symbols. From Figure 4.10, we can see that a number
of neurons certainly allowing to distinguish the M possible symbols of a QAM modulation of
order M, corresponds to the number of decision boundaries present. The number of decision
boundaries of a QAM of order M is given by:

N = 2
(√

M − 1
)

(4.25)

In the case of a 16-QAM, we can see that there are 6 decision boundaries, hence we use 6 neu-
rons on the first layer (at least) in order to distinguish the 16 possible symbols (see Figure 4.10).

Figure 4.10: The QAM Demodulation - Neural Network Decision Problem Perspective
In red, ideal decision boundaries for a QAM modulation of order 16 - In black, illustration of possible activation
functions for the 6 neurons of the first layer - In green, an example of I and Q inputs belonging to the decision
zone of the word ’1111’ leads to the activation of neurons N1, N2 and N4, while the 3 other neurons remain idle.
Each symbol is associated with a unique combination of activations of the 6 neurons

The six neurons of this first layer can be configured as shown on Figure 4.10 (considering non
normalised constellation i.e. symbols with {−3,−1,+1,+3} levels):





n1(i, q) = σ(1× i+ 0× q + 2)

n2(i, q) = σ(1× i+ 0× q + 0)

n3(i, q) = σ(1× i+ 0× q − 2)

n4(i, q) = σ(0× i+ 1× q + 2)

n5(i, q) = σ(0× i+ 1× q + 0)

n6(i, q) = σ(0× i+ 1× q − 2)

(4.26)

The last layer of the NN aims to format the result of the calculation according to the type of
output desired. In our case, we wish to have in output the word, in bits, which was determined
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by the NN demodulator. The output layer therefore necessarily has K neurons, K being the
number of bits used to encode a word in an M-order QAM modulation:

K = log2(M) (4.27)

For example, for a 16-QAM modulation, words are coded on log2(16) = 4 bits. The output
layer of the NN of a 16-QAM demodulator must therefore use at least 4 neurons.

Other output formats could have been chosen, such as the one-hot encoding, which consists
in having as many outputs as the number of different classes, i.e. one output per constellation
symbol. This type of encoding was not chosen because it becomes inefficient when considering
higher modulation orders.

Under the chosen encoding and following the decision boundaries of the first layer, as pre-
sented in Figure 4.10, the second layer could combine the outputs n = (n1, . . . , n6) of the first
layer to form the binary word as follow:





b1(n) = 0× n1 + 1× n2 + 0× n3 + 0× n4 + 0× n5 + 0× n6 + 0

b2(n) = 1× n1 + 0× n2 − 1× n3 + 0× n4 + 0× n5 + 0× n6 + 0

b3(n) = 0× n1 + 0× n2 + 0× n3 + 0× n4 + 1× n5 + 0× n6 + 0

b4(n) = 0× n1 + 0× n2 + 0× n3 + 1× n4 + 0× n5 − 1× n6 + 0

(4.28)

Figure 4.11 describe a NN-based demodulator architecture built following the above design
rules.

I&Q
Channels

Number of
decision

boundaries.
2
(√

M − 1
)

neurons

Number of
bits per

symbols
log2(M)
neurons

Dense layer n°1
and sigmoid
activation

Dense layer n°2
and sigmoid
activation

I: -0,3321

Q: +0,9456

0

0

1

0

Example of
IQ samples

Example
of

predicted
word

Figure 4.11: Naive Neural Network Based QAM Demodulator
Example of a 16-QAM demodulator with 6 neurons on the input layer and 4 neurons on the output layer. Sigmoid
activation functions are used due to the binary nature of the problem.

Demodulator Weights Learning using Gradient Descent

Although such a simple model can be configured manually as demonstrated above, one can
apply a supervised learning procedure and the gradient descent method to learn them. IQ
samples noised under AWGN are thus provided to the NN as inputs while the corresponding
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symbols are used as target prediction labels. The SGD algorithm is then expected to iteratively
update the model weight so as to reduce the error between predicted and theoretical symbols.
The presence of noise plays a very important role in that process so as to ensure that the model

Q
ch
an

n
el

I channel

Figure 4.12: Optimal 4-QAM Decision Boundaries
Gaussian noise and equally likely symbols are considered.

select decision boundaries that minimise the error rate. As shown on Figure 4.12, if the model
only sees samples corresponding to the exact symbols (red dots) during training it might choose
decision boundaries that does not generalise well under a noisy channel. Still, certain errors
are irreducible errors from a pure demodulation perspective (i.e. without considering any error
correction mechanisms) in the sense that the received data belong to what should be the optimal
decision area of a given symbol but is associated to another symbol label. As such, using a noise
level too important during training reduce the sample efficiency of the learning algorithm, i.e
increase the needed volume of training samples and, subsequently, the convergence time. Indeed,
irreducible errors provide no useful information to the training, or worse, provide deleterious
information. For example, an IQ sample initially belonging to the lower left quadrant of the
constellation (corresponding to the word ’00’) but noised in such a way that it belongs to the
upper right quadrant upon reception (corresponding to the word ’11’), hinders the learning and
generalisation of the problem by the NN because it is labelled ’00’ but belongs to the decision
zone where the network should ideally return the result ’11’. The learned demodulator for QAM
order comprised between 4 and 256 are provided on Figure 4.13.

4.2.2 Low Complexity Neural Network Based QAM Demodulator

The previous model, is naively build based on the number of decision boundaries of the considered
constellation and the number of output bits per word. Obviously, several simplifications can be
noted so as to propose a lower complexity NN for M-QAM demodulation.

The NN should associate to a sample the corresponding binary code-word. Therefore, the
NN need to solve both decision and demapping problems. The simplified model in the case of a
16-QAM, as proposed in Figure 4.14, is based on the following observations:

� The same demodulation operations can be applied independently to each sample of a batch
of inputs. For reasons similar to those described in Section 4.1, a CNN with kernels of the
size of one sample is particularly well-suited in this case and allow for an efficient parallel
processing of samples blocks. Their shift invariant architecture based on shared weights
drastically reduce the number of trainable parameters to a constant value, independent of
the number of samples to process.
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(a) 4-QAM (b) 16-QAM

(c) 64-QAM (d) 256-QAM

Figure 4.13: Learned M-QAM Demodulators
Visualisation of the decision boundaries as learned by the neural networks for different modulation orders. The
coordinates (x, y) correspond to the value of the IQ pair given as input to the network and the value in z
corresponds to the value of the word predicted (in decimal) by the latter - In the case of successful learning,
we expect to observe the most regular grid possible, corresponding to the constellation considered. N.B.: The
arrangement of the words in the constellation corresponds to a Gray mapping, hence the observation of very clear
borders passing from low value words to high value words.
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Figure 4.14: Proposed CNN Model for 16-QAM Demodulation
The proposed model leverages properties of CNN to perform the same processing on both I and Q channels and
on all samples. It thus uses only 10 shared parameters.

� The NN carries out both decision and demapping tasks. Following a similar approach to
the one proposed in [136], a bit-level decision process is considered instead of symbol-level
decision process followed by a symbol-to-bit demapping. The objective of the NN is to
approximate the functions stated as b1,b2,b3 and b4 in Figure 4.9. Considering the usual
monotonic activation functions offered by the majority of NN frameworks, the NN needs
at least two layers to compute the desired functions, as b2 and b4 aren’t monotonic:

– Regarding the input layer, the minimum number of kernels corresponds to the number
of decisions boundaries associated to the Least Significant Bit (LSB) on each channel
(namely b2 and b4). Consequently, four non-linear kernels are needed (2log2(M)/2 in
the general case of a M-QAM). Considering computational power constraints, ReLU
activation is chosen. All the decision boundaries can be expressed as a combination
of the four kernels by the output layer.

– The output of the NN needs to represent the values of the four bits associated to each
symbol. As a result, the output layer needs four kernels (log2(M) for a M-QAM).
The outputs representing binary values, a sigmoid activation function is particularly
well-suited.

� Under the assumption that the samples are perfectly equalised, I and Q channels can be
processed separately with the same operations, therefore dividing the number and size of
the aforementioned kernels by two.

The architecture of this model is scalable to any QAM order by following the number of
parameters described in Table 4.1.

The choice of a hard sigmoid instead of a sigmoid activation on the output layer of the NN is
proposed to lower the computational complexity. As shown in equation (4.29), the hard sigmoid
requires at most two comparisons, one addition and one multiplication.

σhard(x) =





0 if x < −2.5
1 if x > 2.5

0.2x+ 0.5 otherwise

(4.29)

As a reference, a demodulator based on minimal Euclidean distance needs 3M additions, 2M
multiplications andM−1 comparisons, withM the order of the QAMmodulation [136]. Table 4.2
presents a comparison in terms of computational complexity between the regular demodulator
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Table 4.1: Minimal Neural Network Model Architecture Proposed for M-QAM Demodulation

CONVOLUTIONAL LAYER 1
Input matrix dimensions (K, 2)
Kernel number and properties n1 = 2log2(M)/2−1, size (1, 1), stride (1, 1)
Activation ReLU
Output tensor dimensions (K, 2, n1)

CONVOLUTIONAL LAYER 2
Kernel number and properties n2 = log2(M)/2, size (1, 1), stride (1, 1)
Activation Hard sigmoid
Output tensor dimensions (K, 2, n2)

FLATTEN LAYER
Output vector dimension Klog2(M)

and the proposed NN model. One can see that the NN outperforms, in terms of complexity, the
proposed reference demodulator.

Table 4.2: Complexity Comparison for Different Demodulation Schemes

QAM Real Multiplications Real Additions Real Comparisons
Order Regular NN Improv. Regular NN Improv. Regular NN Improv.
(M) (2M) Model (%) (3M) Model (%) (M-1) Model (%)
4 8 6 25 12 6 50 3 6 -50
16 32 16 50 48 12 75 15 12 20
64 128 38 70 192 20 90 63 20 68
256 512 88 83 768 32 96 255 32 87
1024 2048 202 90 3072 52 98 1023 52 95

Configuration and Performance of the Neural Network Demodulator

As pointed out earlier, the application of a learning procedure to the configuration of such a
demodulator is not necessarily interesting for several reasons. The first is that demodulation
is a deterministic process which is not expected to change over time, as may be the case with
equalisation. The second is that since the model under consideration is not very complex, a valid
configuration of its parameters can easily be found analytically, as we will demonstrate in this
section. One of the main advantages of defining such a demodulator as a NN model is that it
allows, thanks to the differentiability of the structure, the end-to-end learning of communication
schemes, which may possibly involve conventional modulations. For example, suppose we want
to optimise an equalisation scheme based on a BER metric calculated following demodulation.
In such a situation, the (possibly non-trainable) demodulator model must necessarily be differ-
entiable in order to allow the propagation of the gradient information to the equaliser weights,
upstream of the demodulator.

In the case of 16-QAM, one possible configuration of the weights and bias that is optimal
with regard to the theoretical decision boundaries is proposed5:

Layer1

{
w1 = (−1) c1 = 0

w2 = (1) c2 = 0

Layer2

{
w3 = (−1 1) c3 = 0

w4 = (−1 −1) c4 = 2δ

(4.30)

wherewi and ci are respectively the weights vectors and bias of the i-th kernel (following number-
ing of Figure 4.14). 2δ corresponds to the inter-symbol distance of the considered constellation.

5Proposed configuration is not unique and assume a hard demodulation process with a rounding of the output
values to either zero or one. Higher dynamic of the output layer parameters might be used to approximate the
step function with hard sigmoid activation and avoid rounding the outputs.
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Figure 4.15: Hard Demodulation of 16-QAM Using the Proposed CNN Model
The above figure presents the value of the layers outputs at different level of the NN with regard to the I or
Q channel input amplitude. The first layer use ReLU activation to express piece-wise linear function while the
second layer combine them so as to ensure the correct sign of the outputs bits with respect to the input value.
The hard sigmoid activation of the second layer ensures output values between 0 and 1. The final plot shows
the value rounded to the closest integer of the output, demonstrating the validity of the proposed demodulation
process.

92



CHAPTER 4: DESCRIBING SIGNAL PROCESSING OPERATIONS USING NEURAL
NETWORKS

Layer 1 - ReLU Activation

0

2

4

ReLU(h
(1)
4 )

ReLU(h
(1)
3 )

ReLU(h
(1)
2 )

ReLU(h
(1)
1 )

ReLU(h
(1)
5 )

ReLU(h
(1)
6 )

ReLU(h
(1)
7 )

ReLU(h
(1)
8 )

Layer 2 - Net Value

−4
−2
0

2

4

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

Layer 2 - Hard Sigmoid Activation

0

0.5

1

σhard(h
(2)
1 )

σhard(h
(2)
2 )

σhard(h
(2)
3 )

σhard(h
(2)
4 )

Layer 2 - Closest Binary Value

−15A −11A −7A −3A 0 +3A +7A +11A +15A

0

0.5

1

01
00

01
0
1

01
11

01
10

00
10

00
11

00
01

00
00

11
00

11
0
1

11
11

11
10

10
1
0

10
11

10
0
1

10
0
0

I or Q Channel Amplitude

round σhard(h
(2)
1 )

round σhard(h
(2)
2 )

round σhard(h
(2)
3 )

round σhard(h
(2)
4 )

Figure 4.16: Hard Demodulation of 256-QAM Using the Proposed CNN Model
The configuration of the M-QAM demodulator simply consists in positioning and combining piecewise linear
functions. In this configuration, the Layer 2 net value highlights the greater robustness of some bits - typically
the Most Significant Bit (MSB) - compared to others - typically the LSB. This reminds of the idea of soft
demodulation and LLR.
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δ = 1/
√
10 in the case of a 16-QAM with a power normalised to one. Such a configuration is

simply obtained by the composition of piece-wise linear functions obtained using the first NN
layer with a ReLU activation. A visual support of such a method is proposed in Figure 4.15 in
the case of 16-QAM and Figure 4.16 in the case of 256-QAM.

The performance of the proposed model are represented on Figure 4.17. Without much
surprise because of the analytical definition of the proposed model, it reaches theoretical op-
timal BER performance6 over AWGN channel for different QAM orders with the appropriate
configurations of the NN.
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Figure 4.17: Comparison of the BER Demodulation Performance
A regular, minimal Euclidean distance based, and the proposed CNN based demodulators are compared under a
simulated AWGN channel for different QAM orders.

As shown in Figure 4.15 for the 16-QAM and even more on Figure 4.16 for the 256-QAM,
the more we consider a bit of low importance, the less important the dynamics of the NN
output, which highlights the lower robustness of these bits and the lower confidence we can
place in the demodulation results for them. These considerations lead us to the notion of a soft
demodulation process and the associated probabilistic view of the demodulation output. We will
show in the next section that the proposed model can, with only minor modifications, produce
soft information.

Soft Demodulation

Hard demodulation is particularly computationally efficient, yet it hinders potential performance
gain from a subsequent FEC decoder as explained in Section 3.1.7. Instead of first hard de-
modulating the received sample and providing the demodulated bits to the FEC decoder, soft
demodulation aims at providing to the FEC decoder probabilistic information on the received
bits. Such probabilistic information usually takes the form of a so-called LLR, defined for each

6Optimal BER over AWGN channel is computed considering the nearest neighbour approximation and Gray
mapping:

BERM−QAM ≈
√
M − 1√

M log2
√
M

Q

√
6log2(

√
M)Eb

(M − 1)N0

 (4.31)

where the Q function is defined as:

Q(x) =
1√
2π

∫ +∞

x
exp

(
−y2

2

)
dy =

1

2
erfc

(
x√
2

)
(4.32)

where erfc(x) is the complementary error function.
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bit of a word x as:

λi(y) = log
P {xi = 0|y}
P {xi = 1|y} (4.33)

where xi is the value corresponding to the i-th bit of the transmitted word x and y is the received
sample (usually complex).

Lets take as a warm-up example the case of a BPSK modulation represented on Figure 4.18,
where the input word is constituted of a single bit of information that can take on either the
value x = 0 or x = 1. The BPSK symbol s1 is associated to word 0, while the symbol s2 is
associated to the word 1. The BPSK symbols s1 and s2 are respectively mapped onto the real
axis with amplitude +A and −A. An AWGN channel is considered with noise power σ2. The
LLR calculation associated to the received sample y in such a situation is straightforward:

λ(y) = log
P {x = 0|y}
P {x = 1|y}

= log
P {s = s1|y}
P {s = s2|y}

= log

[
P {y|s = s1}P {s = s1}

P {y} × P {y}
P {y|s = s2}P {s = s2}

]

= log
P {y|s = s1}P {s = s1}
P {y|s = s2}P {s = s2}

(4.34)

As both symbols are equally likely, the above expression simplify to:

λ(y) = log
P {y|s = s1}
P {y|s = s2}

(4.35)

where P {y|s} is the channel conditional probability distribution which equals, in the case of an
AWGN channel, to:

P {y|s} = 1√
2πσ2

e−
(y±A)2

2σ2 (4.36)

The LLR expression for BPSK symbols under AWGN channel is thus defined as:

λ(y) =
(y +A)2

2σ2
− (y −A)2

2σ2
=

2Ay

σ2
(4.37)

−A +A

s1

x = {0}
s2

x = {1}

y

P {y|s = s1}
P {y|s = s2}

λ(y)

Figure 4.18: Soft Demodulation of a BPSK Under AWGN Channel
The noise power of the AWGN channel is set to half the inter-symbol distance, i.e. σ2 = A.

A similar approach can be taken for higher order modulation. In this section, we want to
investigate how the proposed demodulator model could be used for soft demodulation of QAM
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signals. For the sake of simplicity, we will consider the case of a 16-QAM. As described above, the
processing applied to the I and Q channels for QAM demodulation is, under perfect equalisation
and synchronisation, strictly equivalent. We will therefore study only one channel, as the results
can easily be extended to the two-channel case.

−3A −A +A +3A

s1

x ={0, 0}
s2

x ={0, 1}
s3

x ={1, 1}
s4

x ={1, 0}

y

P {y|s = s4}
P {y|s = s3}
P {y|s = s2}
P {y|s = s1}

Figure 4.19: Single Channel 16-QAM Soft Demodulation under AWGN
In the present example, the considered noise level of the AWGN channel is equivalent to the half inter-symbol
distance, i.e. σ2 = A.

Let us first define the expression of the LLR in the case of a 16-QAM modulation. Under
such a modulation the (half-)words associated to one of the two I and Q channels contain two
bits and the LLR can thus be seen as a vector function:

λ(y) =



λ1(y)

λ2(y)


 =



log P{x1=0|y}

P{x1=1|y}

log P{x2=0|y}
P{x2=1|y}


 =



log P{y|x1=0}

P{y|x1=1}

log P{y|x2=0}
P{y|x2=1}


 =



log P{y|s=s1}+P{y|s=s2}

P{y|s=s3}+P{y|s=s4}

log P{y|s=s1}+P{y|s=s4}
P{y|s=s2}+P{y|s=s3}


 (4.38)

As shown on Figure 4.19, we have, under AWGN channel:

λ1(y) = log
e−

(y+3A)2

2σ2 + e−
(y+A)2

2σ2

e−
(y−A)2

2σ2 + e−
(y−3A)2

2σ2

(4.39)

and:

λ2(y) = log
e−

(y+3A)2

2σ2 + e−
(y−3A)2

2σ2

e−
(y+A)2

2σ2 + e−
(y−A)2

2σ2

(4.40)

Such functions can be approximated by piece-wise linear functions:

λ1(y) ≈





log
e−

(y+3A)2

2σ2

e−
(y−A)2

2σ2

=
−4A(y +A)

σ2
∀ y ≪ −2A

log
e−

(y+A)2

2σ2

e−
(y−A)2

2σ2

=
−2Ay

σ2
∀ − 2A≫ y ≪ 2A

log
e−

(y+A)2

2σ2

e−
(y−3A)2

2σ2

=
−4A(y −A)

σ2
∀ y ≪ −2A

(4.41)

and:

λ2(y) ≈





log
e−

(y+3A)2

2σ2

e−
(y+A)2

2σ2

=
−2A(y + 2A)

σ2
∀ y ≪ 0

log
e−

(y−3A)2

2σ2

e−
(y−A)2

2σ2

=
−2A(y − 2A)

σ2
∀ y ≫ 0

(4.42)
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Figure 4.20 shows the exact and approximate values of the LLR calculated for the 16-QAM
under AWGN channel. First, it can be noted that the piece-wise approximations are almost
equal to the exact value, except when considering values too close to the theoretical decision
boundaries. Another interesting fact shown in this figure is that the net output values of the
second layer of the proposed CNN demodulator form a good first approximation of the LLR.
A more accurate approximation, could simply be obtained by combining more piece-wise linear
functions than the one provided by the two ReLU neurons currently used in the first layer of the
CNN. In this case, two additional ReLU neurons at the first layer would allow the second layer
to express the two inflection points of λ1(y) displayed in −2A and +2A. These considerations
highlight the fact that, for any QAM order, the proposed CNN can be improved towards soft
demodulation simply by adding a few neurons (or kernels in the CNN vocabulary) to the first
layer.

−3A −A +A +3A

y

−2× h
(2)
1

−2× h
(2)
2

λ1(y)

λ̃1(y)

λ2(y)

λ̃2(y)

Figure 4.20: LLR function for a 16-QAM Modulation under AWGN
This figure present the exact and approximate LLR values for both bits of the (half-)word of a Gray-mapped
16-QAM modulation (considering σ2 = A). The net output values of the layer 2 of the CNN demodulator are
also shown, to highlight that they can be used, as is, as a first approximation of an LLR (up to a multiplying
constant).

Soft demodulation, as highlighted before, allows to improve the FEC decoding performance.
Furthermore, in the case of NN, the ReLU activation used to express soft demodulation allows a
better differentiability of the model when compared to sigmoid-like binary activation functions
or worse step functions (for exact hard binary demodulation). In fact, ReLU function or one
of its related activation functions (e.g. leaky ReLU, GeLU, etc.), are almost exclusively used
in the intermediate layers of modern NN for this exact reason. As explained above, for a good
approximation of the LLR, it is necessary to add some parameters to the model, which can be
adjusted by hand in the simplest cases or purely through model training. It should also be noted
that, while the expression of LLR is relatively straightforward for an AWGN channel and/or
small modulation orders, it may be difficult or impossible to express an analytical form in a
more complex scenario. In such situations, the use of a NN and a learning procedure becomes
even more interesting, as shown in the article [8] which uses a NN to approximate LLR functions
at a lower computational cost.

4.3 Experimentation on a Software Defined Radio Test-
Bed

In the previous section, different NN structures for M-QAM equalization and demodulation were
presented. Based on the proposed NN models for single-path equalisation and M-QAM demod-
ulation, this section examines the implementation of a functional prototype of a simplistic PHY
layer using SDR, thus demonstrating the use of NN structures as an alternative to conventional
algorithms. While the previous descriptions were primarily concerned with the structural aspects
of the NN models with respect to the targeted algorithms, this section implements the MMSE
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learning procedure proposed in Section 4.1.3 for the online learning of an equalisation scheme
based on pilot sequences.

4.3.1 System Model and Working Assumptions

Modulation Channel Equalisation Demodulation

Binary
Words

b[k]

Complex
Symbols

x[k]

Complex
Samples

y[k]

Complex
Samples

u[k]

Estimated
Binary
Words

b̂[k]

Figure 4.21: Baseband Description of the Considered M-QAM Communication Chain

A simple communication system is considered, as described in Figure 4.21. Binary sequences
are modulated using a Gray mapped 16-QAM modulator. A single-path AWGN channel model
is adopted, similar to the one described in Section 4.1.3. On the receiver side, the effect of
the channel must be mitigated by a single-path equaliser and the original binary code-words
recovered thanks to a hard 16-QAM demodulator. Decoding, and especially soft decoding, is not
considered in this section but will be extensively discussed in Chapter 5.
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Figure 4.22: Functional Diagram of the Test Bench Implementation

The considered signal, generated and processed by a computer, is constituted of several blocks
of symbols. These blocks are transmitted and received back by an Ettus USRP B210 SDR [137]
from TX channel to RX channel through a Spirent Vertex channel emulator [138] as shown on
Figures 4.22, 4.23 and 4.24. The later adds a controlled amount of Gaussian noise. An unchecked
phase shift, considered invariant during the transmission of a block, is also introduced because
of the propagation time and the Local Oscillator (LO) misalignment and needs to be corrected
during the equalisation step. To this end, each block begins with a ZC sequence7 of length 256.
The ZC sequence is followed by a payload of 4096 random 16-QAM symbols. On the receiver
side, the signal is sampled with an up-sampling factor of 4. The ZC sequence is used as a pilot
sequence to identify payload start and ideal sampling instant as well as channel effects. For
each block, the detection and synchronisation of the payload is performed by a regular maximal
correlation based algorithm, but a NN architecture could be envisioned to perform such task.
After down-sampling, a ZC sequence of size 256 and a payload of size 4096 are thus recovered.
The objective of the proposed solution is, for each block, to learn in an online fashion the channel
effects based on the comparison of the received down-sampled ZC sequence with the theoretical
one, and use this knowledge to equalise and demodulate the down-sampled payload.

7ZC sequences are Constant Amplitude Zero Auto-Correlation (CAZAC) wave-forms that exhibits interesting
properties [80, 81]. They are notably used in 3GPP LTE and 5G air interfaces.
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Figure 4.23: Ettus USRP B210 Figure 4.24: Spirent Vertex Channel Emulator

4.3.2 Proposed Neural Network Based Receiver and Experimental Per-
formance

Figure 4.25: Description of the Proposed Processing Chain
The Equalisation model is trained using the received ZC sequence and the theoretical one, known by the re-
ceiver. Using the trained equalisation model, the payload is equalised and then demodulated using a predefined
demodulation model.

The performances of the NN-based equaliser and demodulator, proposed in Section 4.1.3
and 4.2.2 respectively, are jointly evaluated in this more realistic setting where SDR is used to
transmit IQ samples over the physical channel generated by a channel emulator. The parameters
of the demodulation model are set following the configuration proposed in Section 4.2.2. Under
the hypothesis of block fading, it is necessary to perform online learning of the equalisation
model. As described in Figure 4.25 the proposed system works as follow:

� For each block, the equalisation model is trained by comparing the received and theoretical
ZC sequences. The 256 samples of the ZC sequences are divided in two parts: two third
for training and one third for validation. MSE loss and ADAM optimiser with a learning
rate of 0.1 are used.

� After learning, the 4096 IQ samples of the payload are corrected using the newly trained
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equalisation model before being fed to the demodulation model.
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Figure 4.26: Comparison of the Performance of a Regular Receiver and the Proposed CNN-Based
Receiver over an Emulated AWGN Channel

As described in Figure 4.26, this simple system achieves performance close to the theoretical
performance of a system under assumptions of perfect synchronisation and no channel coding. As
a comparison, the regular receiver estimates the channel parameters by computing the correlation
between the received ZC sequence and the theoretical one to perform single-path equalisation.
A minimal Euclidean distance algorithm is then used for demodulation. One can see a slight
degradation of the BER performance of the MMSE NN model compared to that of a regular ZF
receiver. Indeed, MMSE equalisers are known to converge toward a biased solution [139], that
can be expressed in the considered case of single-path channel by:

wMMSE =
h∗

|h|2 + E(|nk|2)
E(|xk|2)

(4.43)

where wMMSE is the complex scalar coefficient of the equaliser that minimises the L2 loss function
between the equaliser output and the expected one (which can be expressed as a (2 × 2) real-
valued matrix transformation). h is the complex scalar coefficient of the single-path channel

and E(|nk|2)
E(|xk|2) is the noise-to-input complex signals power ratio (i.e. inverse of the SNR). The

existence of such a learning bias is demonstrated in the simpler case of a real BPSK modulation
and adopting the same notations as in the Section 4.1:

Proof. Lets consider a simple channel which multiply the signal x[k] by an attenuation h and
add Gaussian noise wk ∼ N (0, σ2) to the signal:

yk = hxk + nk (4.44)

A simple equaliser which aims at applying the inverse filter using the following parametric
function (which correspond to a single biased neuron with one entry) is considered:

uk = wyk + b (4.45)
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By ERM principle (see Chapter 2), and under MSE loss, the ML problem to find the param-
eters w and b of the equaliser, given a batch of N pilot samples is:

ŵ, b̂ = argmin
w,b

ℓ̂(w, b) = argmin
w,b

1

N

N∑

k=1

lk (4.46)

where lk = (uk − xk)
2 is the loss sample associated to the kth element of the batch.

ℓ̂(w, b) =
1

N

N∑

k=1

lk =
1

N

N∑

k=1

(uk−xk)
2 =

1

N

N∑

k=1

(wyk + b−xk)
2 =

1

N

N∑

k=1

[w(hxk + nk) + b− xk]
2

(4.47)
Since the signal and noise samples are both i.i.d., centred on zero and uncorrelated with each

other, the expected empirical risk is defined as follows:

Exknk

{
ℓ̂(w, b)

}
= Exk,nk

{
[w(hxk + nk) + b− xk]

2
}

= E
{
w2(hxk + nk)

2 + 2bw(hxk + nk)− 2xkw(hxk + nk) + b2 − 2bxk + x2k
}

= E
{
w2(hxk + nk)

2 − 2hx2kw + b2 + x2k
}

= E
{
x2k(h

2w2 − 2hw + 1) + n2kw
2 + b2

}

(4.48)
Let Var {xk} = mσ2, with m the SNR and σ2 the noise variance:

Exknk

{
ℓ̂(w, b)

}
=
(
h2w2 − 2hw + 1

)
Var {xk}+ w2σ2 + b2

=
[
(mh2 + 1)w2 − 2hwm+m

]
σ2 + b2

(4.49)

We now compute the gradient of the empirical risk:

∇w,bExknk

{
ℓ̂(w, b)

}
=

(
∂ℓ̂
∂w
∂ℓ̂
∂b

)
=

([
2(mh2 + 1)w − 2mh

]
σ2

2b

)
(4.50)

We compute the Hessian:

∇2
w,bExknk

{
ℓ̂(w, b)

}
=

(
∂2ℓ̂
∂w2

∂2ℓ̂
∂w∂b
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∂b∂w

∂2ℓ̂
∂b2

)
=

(
2(mh2 + 1)σ2 0

0 2

)
≻ 0 (4.51)

The Hessian being a diagonal matrix with positive diagonal entry is thus PD and the expectation
of the empirical risk convex. Hence, to find the global minimum of the function we simply need
to find the values of w and b where the derivatives equal 0:

{[
2(mh2 + 1)w − 2mh

]
σ2 = 0

2b = 0
⇐⇒




ŵ =

mh

mh2 + 1
=

h

h2 + 1/m

b̂ = 0

(4.52)

This shows that the SNR has a direct impact on the learned weight as previously described
in Equation (4.43) (complex case). More precisely:





Lim
m−→∞

ŵ =
1

h
= w⋆

Lim
m−→0

ŵ = 0
(4.53)

In the absence of noise the equaliser converges toward the optimal solution and MMSE solution
become equivalent to that of LS. When the noise level increase, the learned solution is biased
towards 0.
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As demonstrated above, the MMSE solution to the single-path equalisation problem is a
biased solution because of the noise present in the signal. Instead of reducing the error between
the equalised sample and the theoretical pilot value, one can consider the inverse problem, i.e.
minimising the error between the output of the model and the received samples, when its input is
the pilot sequence, as in the LS method. The NN then acts as a channel model whose parameters
are expected to converge towards the channel parameters. The weight of the model can then be
used as an unbiased channel estimate, which could be inverted to perform ZF equalisation. Yet,
such an approach does not really fit in the usual NN philosophy where a functional model (i.e.
the equaliser) is usually directly trained to perform a task (i.e the equalisation) without having
to act on the parameters of the model at the end of the training phase. Furthermore, while LS
estimation and ZF equalisation leads to an optimal solution in the case of single-tap channel,
this is not necessarily the case for multi-tap channel where a MMSE equaliser might be more
suitable.

4.4 Conclusion of the Chapter

In this chapter we have demonstrated how conventional PHY layer signal processing algorithms
can be expressed using equivalent NN structures. In particular low-complexity NN-based linear
equalisation and M-QAM demodulation structure were described and studied. The proposed
models have been experimentally assessed using SDR based communication chain and a chan-
nel emulator, achieving near-optimal performance, and demonstrating simple online learning
procedures.

The study of NN complexity is of great importance in the context of future cellular networks
for IoT, where it is not always possible to use deep NN structures. Using low-complexity NN offers
the advantages of higher efficiency and reduced learning and inference time. It also mitigates the
lack of interpretability, and therefore the consequent lack of trustworthiness, often reproached
to DNN. The models proposed in this chapter are in this sense compatible with the stringent
operational constraints of IoT devices and networks. As already explained in Chapter 2, the
expression of all signal processing blocks using NN offers advantages in various ways. First,
it allows the use of specific AI hardware accelerators that are particularly interesting for their
intrinsic energy and compute efficiency. Furthermore, since the latter are generic, they can be
used to run different types of signal processing algorithms based on NN, thus constituting a
unified hardware platform. This hardware generality is interesting in terms of the scalability
of the PHY layer, but also in terms of the possible mutualisation of hardware in a distributed
learning and inference system or in aMobile Edge Computing (MEC) context where the hardware
resources of the Radio Access Network (RAN) could, in case of inactivity, be allocated to the
end-user’s AI processing. Moreover, recent versions of the aforementioned hardware, such as
Google Edge TPU [57], have been developed to address embedded and low power applications.
Hence, they are particularly appealing for IoT devices. As more and more companies develop NN
dedicated hardware, the TCO of a NN-based communication systems is expected to decrease.
Thus, the more elements of the PHY layer (and beyond) are replaced by NN algorithms, the
more one can expect to benefit of the properties described above. Therefore, it is interesting
to study NN models for all base-band functionalities and even those that might have a known
optimal analytical solution.

Obviously, the use of NN is also a way to enable learning procedures that can be interesting for
discovering efficient signal processing solutions as well as for allowing a fast online model adap-
tation. In this respect, it should be noted that the translation of some conventional algorithms
is also interesting not for the direct improvement of said algorithms, but for the implementa-
tion of end-to-end learning procedures on communication systems requiring some conventional
(possibly non-trainable, but differentiable) blocks in the middle of a globally trainable chain.
The expression of all blocks as a differentiable structure is thus a mean of enabling the use
of gradient back-propagation algorithms. While learning was briefly addressed in this chapter,
notably for the online parameterisation of the equalisation model of Section 4.3, the goal was
not to improve over the corresponding conventional methods but rather express an equivalent
NN-based structure and corresponding learning algorithm. The following chapter, will look at
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the question of using ML algorithm at the PHY more in depth and notably how it can improve
the performance of certain algorithms w.r.t the SOTA. One particularly challenging problem of
learning algorithms at the PHY is the recurrent use of finite field (e.g. binary source) and many
other source of non-differentiability as well as the problematic “curse of dimensionality”. One
such functional block particularly concerned by these problems is the channel (de)coding which
will thus be studied in depth in the following chapter.
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Foreword

Previous chapter described how differentiable graphical structures can be used to represent con-
ventional signal processing algorithms thus enabling the application of learning algorithms and
the use of dedicated high efficiency AI accelerator hardware platforms. In this chapter, we go one
step further by studying how the use of learning procedure on such trainable signal processing
structure can bring significant performance gains.

After the equalisation and (soft) demodulation blocks studied in the previous chapter, channel
coding is one of the fundamental block missing in our NN-based communication chain. Moreover,
it is an interesting function to study from a NN and ML standpoint, given the many challenges
it raises in this respect and which will be detailed in the course of this chapter. At first, this
chapter will, following the previously defined methodology, start by describing how one can
express conventional decoding algorithm using a differentiable graphical model. Then, we will
show how ML techniques can be used to improve the decoding performance. Finally, an end-to-
end approach will be used for the joint design of a coding scheme and associated decoder.

5.1 Motivations

Efficient FEC schemes are a key enabler for IoT scenarios and/or Ultra-Reliable Low-Latency
Communications (URLLC) in next generation communication networks. Such use-cases typically
imply the use of short packets and low-complexity and/or fast (de)coding schemes, in line with
latency, energy consumption, hardware cost and computational power constraints. Existing FEC
codes, such as BCH, Tail Biting Convolutional Code (TB-CC), Turbo, Polar or LDPC codes,
and their respective decoders, attempt to meet these needs, each with their own advantages
and limitations. In late 2018, 3GPP agreed to use Polar codes for the control channels and
LDPC for the data channels of the 5G-NR interface for enhanced Mobile Broad-Band (eMBB)
applications [140]. On the one hand, for high throughput applications, large LDPC codes offer
near capacity performances, efficient encoding and decoding with highly parallel decoders based
on BP and variants, e.g. Min-Sum (MS) [141] or Offset Min-Sum (OMS) [142]. On the other
hand, Polar codes are proven to achieve capacity on Binary Symmetric Channel (BSC) and
offer a reasonable decoding complexity for shorter block lengths based on successive cancellation
list decoders. While BP decoders offer high performance and efficient decoding for long and
sparse codes, they tend to be less efficient for decoding smaller, usually denser, ones. Indeed, for
shorter code lengths, the Parity-Check (PC) matrix of LDPC codes is, unfortunately, no more
sparse. The ”Low Density” property is lost and it becomes unavoidable to have short cycles in
the PC matrix. Similarly, while successive cancellation list decoders offer high performance and
controlled decoding complexity for short polar codes, they tend to become inapplicable when
considering larger codes. Therefore, there is currently no efficient unified FEC code and decoder
architecture for all code lengths and rate ranges. Such an architecture would be of great interest
for next generation communication networks such as 6G networks. This chapter propose different
approach to this problematic:

� Improving the performance of a decoder for an already existing coding scheme. This is the
approach adopted in Section 5.3, where ML techniques are used to learn to decode a code
using a trainable weighted decoding procedure.

� Improving a coding scheme with respect to a given decoder target. This is the method
described in Section 5.5 where an end-to-end NN model is used to design a coding scheme
ex nihilo. This approach is combined with a joint training of the decoder structure to
further improve the FEC performance.

AI and ML techniques are deemed to play a major role in 6G networks [5, 143] and they have
naturally been applied to the field of channel coding and particularly to the short block length
regime. As described in Chapter 3, the advantages of such approaches are mainly two-folds:

� As described in Chapters 2 and 3, the mathematical framework of NN enables extremely
efficient, low-power, generic and cost effective hardware implementations such as NPU[9].
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Therefore, describing classic telecommunication and signal processing functionalities as
NN architectures is a way to benefits from the advantages of these hardware technologies
even though the raw algorithmic performance, such as the BER, might not necessarily be
improved.

� Partly enabled by the use of NN, the use of training procedure and ML techniques is a way
to improve the performance of the signal processing algorithms. The improvements are
usually of two natures. On the one hand, by defining new solutions offering a finer process-
ing, tailored to a communication scenario, e.g. correction of complex channel impairments,
ML allows to reduce the modelling deficit and improve performance when compared to
existing solutions. On the other hand, optimal algorithms - e.g. minimal Euclidean dis-
tance Maximum Likelihood Decoding (MLD) - are sometimes known but their algorithmic
complexity can grow rapidly with the size of the problem until it eventually leads to com-
putationally infeasible tasks within a realistic time frame. In such situations, ML allows
to find lower complexity approximations and thus improve efficiency by reducing the algo-
rithmic deficit.

Multiple contributions have succeeded in improving the decoding performance by applying a
NN-based decoder to an existing coding scheme. One such example is the work on NBP, which
seeks to implement a trainable weighted BP decoder to improve the decoding performance of
short BCH codes [101]. Following this idea, similar approaches are employed in [103, 102, 144,
105]. Other contributions try to learn end-to-end communication schemes, including channel
coding. As an example, an AE NN models is used in [115] to jointly design the transmitter
and receiver of a simple communication scheme. However, while interesting, these end-to-end
black-box approaches are, to the best of our knowledge, currently limited to, either small code
sizes, e.g. (8,4) or (15,7) in [115], or rely on extremely large models, particularly complex to
train notably because of the so called “Curse of dimensionality”. This well-known phenomenon
in ML is related to the fact that the solution space of a problem grows exponentially with
its dimensionality. This makes the available training data sparse and thus non-statistically
significant or the needed volume of training samples too important. Similarly, the “Curse of
(code-word) dimensionality” appears in the context of PHY layer when one tries to train models
with increased information block sizes. The number of code-words associated to information
blocks of size k is of 2k which can rapidly become prohibitively large when increasing k, making
the learning of large codes a challenging problem [115, 5].

To alleviate this problem, one solution is to use structured approaches [145, 146], [1, p 576-
577]. For example, one can exploit code structures such as convolutional codes [147] or construct
specific NN-based decoder structure using RNN [148] or CNN [147] to circumvent this dimen-
sionality problem. Still, existing approaches are, to the best of the our knowledge, limited to
the design of convolutional [147, 148], Turbo [149] or Polar codes [107] and often exhibit a high
number of model parameters and a reduced interpretability. Also, the comparison with tradi-
tional (de)coding schemes is sometimes complex. Indeed, the proposed solutions are often based
on the learning of end-to-end communication schemes (usually based on AE), not limited to the
(de)coding function but also allow the joint learning of (de)modulation, equalisation, etc. It then
becomes difficult to distinguish the contribution of each of these functions to the final perfor-
mance in view of a fair comparison with classical approaches. A different approach based on BP
decoders uses a Genetic Algorithm (GA) to optimise LDPC codes from existing distributions
with promising results [108].

5.2 An Introduction to Iterative Methods for the Decoding
of Linear Block Codes

This brief introduction aims to provide the necessary knowledge on classic iterative techniques
that are used for the decoding of LBC such as LDPC codes. The present document introduces
as a reminder notions related to LBC before describing soft iterative decoding methods based on
TG models and BP algorithms.
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5.2.1 Fundamentals of Linear Block Codes

As described in Chapter 3, channel coding is a method used to improve reliability of a transmis-
sion over a noisy communication channel by adding redundancy in the transmitted signal so that
potential transmission errors can be corrected by the receiver. LBC are a class of FEC for which
the information to be transmitted is split into blocks x of fixed size k named words. Words are
encoded using linear combinations to form code-words c of size n with n > k. In the case of
binary codes, which are the only codes considered in this manuscript, we recall that, there are
2k different information words and associated code-words, referred to as the code-book, forming a
subset of Fn

2 . The minimal distance dmin of the code is the smallest Hamming distance between
two code-words.

Let C(n, k) be a binary LBC of length n and rank k that will be referred to as an “(n, k)

code” throughout the rest of this manuscript. Let G ∈ Fk,n
2 be the associated generator matrix

of size k by n describing the encoding relations. For example, considering the following encoding
relations of a Hamming (7,4) codes:





c1 = x1

c2 = x2

c3 = x3

c4 = x4

c5 = x1 ⊕ x2 ⊕ x4

c6 = x1 ⊕ x3 ⊕ x4

c7 = x2 ⊕ x3 ⊕ x4

(5.1)

These relations can be expressed by the following generator matrix (in standard form):

G =




1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


 (5.2)

Let H ∈ F(n−k),n
2 be the corresponding PC matrix of size (n− k) by n constructed such that

GHT = 0 ∈ Fk,(n−k)
2 . The role of the PC matrix is to describe the relations to be verified at

the receiver for any valid code-words. In the previous Hamming (7,4) code example, a valid PC
matrix, obtained using Gauss-Jordan Elimination method, could be:

H =



1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 (5.3)

Which can equivalently be described by the following system of equation stating that the three
parity equations that sums to zero if there is no errors in the code-words:





c5 ⊕ c1 ⊕ c2 ⊕ c4 = 0

c6 ⊕ c1 ⊕ c3 ⊕ c4 = 0

c7 ⊕ c2 ⊕ c3 ⊕ c4 = 0

(5.4)

The PC equations can be represented by the diagram of figure 5.1 showing the code covering
and its ability to always correct one error and detect up to three errors.

The encoding process to obtain a code-word c ∈ Fn
2 from a word x ∈ Fk

2 can simply be defined
as:

c = xG ∈ Fn
2 (5.5)

For example if we consider the information word x =
(
0 1 1 0

)
, we can obtain the

109



5.2 AN INTRODUCTION TO ITERATIVE METHODS FOR THE DECODING OF
LINEAR BLOCK CODES

Figure 5.1: Representation of the Three Parity Check Equations of Hamming (7,4) Code
If there is no error in the code-word, the bits inside a given circle must sum to zero.

corresponding code-word as follow1:

c = xG =
(
0 1 1 0

)
×




1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


 =

(
0 1 1 0 1 1 0

)
(5.6)

The linear property of linear block codes ensures that any linear combination of code-words
is also a code-word. Using linear combinations of the rows and columns permutations, a standard
form of the generator matrix can be obtained [79]:

Gstd =
(
Ik,k|Rk,(n−k)

)
(5.7)

where Ik,k and Rk,(n−k) are respectively an identity matrix and a redundancy matrix.
Using the standard form results in a simplified encoding process with code-words of the form:

c = (x|r) (5.8)

where x is the raw information word and r the computed redundancy.
When G is in the standard form the code is said to be systematic and the corresponding PC

can simply be obtained as:

Hstd =

([
Rk,(n−k)

]T ∣∣∣I(n−k),(n−k)

)
(5.9)

On the decoder side and by construction of the PC matrix, the received code-word y is valid
if the following relation is verified:

s = yHT = 0 (5.10)

where s ∈ Fn−k
2 is called the syndrome of the received code-word. If the received code-word

contains some errors, the value of the syndrome depends only on the value of the error vector ϵ:

s = yHT = (c+ ϵ)HT = ϵHT

where y is the received code-word and ϵ is the random error vector.
The rate of the code r = k/n, represents the proportion of the coded bits that conveys useful

information. FEC mechanisms imply an important trade-off between error correction capacity
and information rate. In fact, a good way of measuring the global efficiency of a code is to
evaluate the BER related to the SNR normalised per information bit usually denoted as Eb/N0

where Eb denotes the average energy used to transmit one bit of information and N0 is the
variance of the AWGN noise.

1All operations described here follow modulo two arithmetic in Galois field F2
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5.2.2 A Step Towards Soft Iterative Decoding

As described in Chapter 3, having more accurate - e.g. soft - information about the received data
improves the performance of FEC mechanisms, but at the cost of increased decoding complexity
(which is even more true as the code size increases). To reduce this complexity, iterative methods
can be employed to correct one or a few errors at a time and thus progress until the entire code
word is error-free.

Such a concept is illustrated with the example of a three state iterative decoder applied to
the decoding of Hamming (7,4) code. Aside from the two states 0 and 1 the receiver can tag
received data as erased when it is unsure of the received data. As one can see in Figure 5.2, the
iterative decoding combined with more precise information on the value of the received symbols
(3 different states: 0,1 or ”erasure”) allow to correct up to three erasures.

Figure 5.2: Iterative decoding of three erasures with Hamming (7,4) codes.

We can push this idea further using soft-decoding based on LLR instead of hard-decoding with
a finite number of states. Instead of using hard-decoding to associate to each bit of information
a value from a fixed set of possible values, we can consider soft-decoding where probabilities on
the bits values are used instead. In the binary case, one can associate to each received samples yi
the two probabilities P {yi = yi|xi = 0} and {yi = yi|xi = 1} which is often written into a more
compact combination of both metric, the Likelihood Ratio:

Λ(yi) =
P {yi = yi|xi = 0}
P {yi = yi|xi = 1} (5.11)

Which can be conveniently transposed into LLR:

λ(yi) = log
P {yi = yi|xi = 0}
P {yi = yi|xi = 1} (5.12)

We recall the LLR expression for BPSK symbols under AWGN channel demonstrated in
Section 4.2.2:

λ(y) =
2Ay

σ2
(5.13)

where A is the amplitude of the BPSK symbols and σ2 the noise variance.

5.2.3 Factor Graph Representation of a Linear Block Code

Now that we have described how a code enforce relations between several variables and how
these variables can be described in a probabilistic manner at the receiver side, a question is
how to describe an efficient soft decoding process. Such a process would need to combine the
information from multiple linked random variables, or said otherwise compute marginals over,
potentially large, joint probability distributions. Such a class of problem might efficiently be
treated using the theory of FG described in Chapter 2.

In fact, the relation between bits of a code can be represented by a bipartite graph called
a Tanner Graph (TG). TG are a special case of the more general concept of FG and are used
in several iterative decoding algorithms based on MPA such as the BP algorithm. For example,
modern codes such as LDPC were designed to ensure good performance and high throughput
thanks to low complexity decoding algorithms like BP based on such graphical models. On the
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contrary, most of the traditional LBC (Hamming codes, BCH codes, etc.) were rather designed
with algebraic properties in mind such as minimal Hamming distance and are usually defined by
High Density Parity-Check (HDPC) matrices. Such properties do not necessarily guarantee good
performance when using TG decoding which rather rely on graph properties such as a low density
of connections, stopping sets, graph girth2, etc [150]. In a way, modern coding techniques give
a central place to the decoding algorithm, whereas earlier coding techniques put more emphasis
on the MLD performance of the code [150].

Following up on the example of the Hamming (7,4) code, one can define the TG of the code
as shown on Figure 5.3. In such a graph, the seven received variables (leaves) are distributed by
equality constraint factors (commonly referred to as variable nodes) to each of the three zero-sum
constraint factors (commonly referred to as control nodes) that bind the variables of the code
together.

=

v1

=

v2

=

v3

=

v4

=

v5

=

v6

=

v7

⊕ c1

⊕ c2

⊕ c3

H =



1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




y1

y2

y3

y4

y5

y6

y7

Figure 5.3: Tanner Graph of the Hamming (7,4) Code.

As introduced in Chapter 2, equality constraint factors are defined as:

g=

(
x(1), . . . , x(n)

)
≜

n∏

i=2

δ(x(1) − x(i)) (5.14)

where x(1), . . . , x(n) are all the variables connected to the factor.

A new type of factor, specific to the FEC use-case, are the zero-sum factors which states that
all connected variables should sum (in the corresponding finite field) to zero:

g⊕ (x1, . . . , xn) ≜ δ

(
n⊕

i=1

xi

)
(5.15)

5.2.4 Applying Message Passing Algorithm to the Factor Graph of a
Code

Now that the structure and nodes of the FG of a code have been described we will detail how
one can apply the standard sum-product rule to such a structure to perform inference. We recall

2The girth of a code denotes the length of the shortest cycle in its bipartite Tanner graph.
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the (discrete) sum-product rule described in Chapter 2:

µg−→xi(xi) =
∑

∽xi

g(x1, . . . , xi, . . . , xk)

k∏

j=1

j ̸=i

µxj−→g(xj) (5.16)

And the final marginalisation rule when the two messages of an edge are available:

f(xi) = µg1−→xi(xi)× µg2−→xi(xi) (5.17)

We now define the corresponding sum-product rule for the two types of nodes encountered
in a Tanner graph:

Sum-Product Rule at a Variable Node - Equality Constraint

In the case of equality node, the factor function is defined following Eq. (5.14). The Sum-Product
rule defining the outgoing message is thus reduced to:

µg→xi
(xi) =

∑

∼xi

0 if any xj ̸= xi

1 if x2 = . . . = xi = . . . = xn︷ ︸︸ ︷
δ(xi − x2)...δ(xi − xn)

︸ ︷︷ ︸
=1

∏

j ̸=i

µxj→g(xj) =
∏

j ̸=i

µxj→g(xj = xi) (5.18)

Indeed the nested sum over all variable domains except variable xi is valid iff all variables
connected to the factor are equal to xi.

Recall that we consider binary variables. As such, the marginalisation process over the factor
graph consists either in computing the PMF of the variables, i.e. pxi(xi = 0) and pxi(xi = 1),

or, in a more compact form its LLR, i.e. log
pxi

(xi=0)

pxi
(xi=1) . The exchanged messages in the FG are

thus either of the form of vectors of size 2 containing the two probabilities, or more simply scalar
LLR. If we consider messages based on probabilities, the Eq (5.18) becomes3:

µg→xi
(xi) =

(
pg→xi(xi = 0)

pg→xi(xi = 1)

)
= α

∏

j ̸=i

(
pxj→g(xj = 0)

pxj→g(xj = 1)

)
(5.19)

If LLR are considered instead of probability the outgoing message from equality constraint
node g becomes:

µg→xi(xi) = λg→xi(xi) = log

(
pg→xi

(xi = 0)

pg→xi(xi = 1)

)
= log


∏

j ̸=i

pxj→g(xi = 0)

pxj→g(xi = 1)


 =

∑

j ̸=i

λxj→g(xj)

(5.20)

Note that we adopt, within the FG formalism, the following notation for PMF:

pg→xi
(xi)

This slightly different notation uses an arrow to express the origin/destination of some prob-
ablistic information in the graph. For example, pg→xi(xi = 0) = α

∏
j ̸=i pxj→g(xj = 0) denote

the probability that the variable xi equals 0, given the extrinsic information summarised by node
g.

3An optional scaling factor α is added so that the probabilities always sum to one.
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Sum-Product Rule at a Check Node - Zero-Sum Constraint

In the case of zero-sum node the factor function is defined by Eq. (5.15). The Sum-Product rule
is therefore given by:

µg→xi
(xi) =

∑

∼xi

δ(x1 ⊕ ...⊕ xi ⊕ ...⊕ xn)
∏

j ̸=i

µxj→g(xj) (5.21)

Let xi be random binary variables and the messages µxj→g(xj) of the form of binary PMF
(i.e. size two vectors). Let y be a random binary variable defined as the (modulo-2) sum of the
n variable xi:

y =

n⊕

i=1

xi (5.22)

One can show that4:





py(y = 0)− py(y = 1) =

n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)]

py(y = 0) + py(y = 1) =

n∏

i=1

[pxi(xi = 0) + pxi(xi = 1)] = 1

(5.23)

Which can be simplified as:





py(y = 0) =
1

2
+

1

2

n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)]

py(y = 1) =
1

2
− 1

2

n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)]

(5.24)

Equation (5.21) can thus be rewritten as:

µg→xi(xi) =

(
pg→xi

(0)

pg→xi
(1)

)
= α




py(y=0) with y=
⊕

i̸=j xi︷ ︸︸ ︷∑

∼xi

δ(x1 ⊕ ...⊕ xi = 0⊕ ...⊕ xn)
∏

j ̸=i

µxj→g(xj)

∑

∼xi

δ(x1 ⊕ ...⊕ xi = 1⊕ ...⊕ xn)
∏

j ̸=i

µxj→g(xj)

︸ ︷︷ ︸
py(y=1) with y=

⊕
i̸=j xi




(5.25)

µg→xi
(xi) = α




1

2
+

1

2

∏

j ̸=i

[
pxj→g(0)− pxj→g(1)

]

1

2
− 1

2

∏

j ̸=i

[
pxj→g(0)− pxj→g(1)

]




(5.26)

Which is the expression of the sum-product rule at a zero-sum factor node, when considering
random binary variables and messages taking the form of probabilities. Lets now see how this
same rule can be expressed in terms of LLR:

Let

∆g→xi(xi) ≜
pg→xi(0)− pg→xi(1)

pg→xi
(0) + pg→xi

(1)
(5.27)

From Eq. (5.23) one can write:

∆g→xi
(xi) =

∏
j ̸=i

[
pxj→g(0)− pxj→g(1)

]
∏

j ̸=i

[
pxj→g(0) + pxj→g(1)

] =
∏

j ̸=i

∆xj→g(xj) (5.28)

4Proof in Appendices A.I
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Let ∆xj→g(xj) be expressed in terms of likelihood ratios:

∆xj→g(xj) =

pxj→g(0)

pxj→g(1)
− 1

pxj→g(0)

pxj→g(1)
+ 1

=
Λxj→g(xj)− 1

Λxj→g(xj) + 1
(5.29)

By definition of the LLR, we have:

λxj→g(xj) ≜ log

(
pxj→g(0)

pxj→g(1)

)
= log

(
Λxj→g(xj)

)
(5.30)

As a consequence:

∆xj→g(xj) =
eλxj→g(xj) − 1

eλxj→g(xj) + 1
=

eλxj→g(xj)/2 − e−λxj→g(xj)/2

eλxj→g(xj)/2 + e−λxj→g(xj)/2
= tanh

(
λxj→g(xj)

2

)
(5.31)

Combining Eq. (5.28) and (5.31) leads to:

tanh

(
λg→xi

(xi)

2

)
=
∏

j ̸=i

tanh

(
λxj→g(xj)

2

)
(5.32)

As a consequence the outgoing message from a zero-sum factor node g toward the edge xi,
knowing the LLR messages from incoming edges xj is given by:

λg→xi
(xi) = 2tanh−1


∏

j ̸=i

tanh

(
λxj→g(xj)

2

)
 (5.33)

Table 5.1 summarise the two conventional sum-product rules in a TG for BP decoding of
binary codes (with their probabilities and LLR forms).

In terms of probabilities:

µg→z(z) =

(
pg→z(0)

pg→z(1)

)
= α

(
px→g(0)× py→g(0)

px→g(1)× py→g(1)

)

In terms of LLR:

µg→z(z) = λg→z(z) = λx→g(x) + λy→g(y)

In terms of probabilities:

µg→z(z) =

(
pg→z(0)

pg→z(1)

)
= α

(
px→g(0)py→g(0) + px→g(1)py→g(1)

px→g(0)py→g(1) + px→g(1)py→g(0)

)

In terms of LLR:

µg→z(z) = λg→z(z) = 2tanh−1
[
tanh

(
λx→g(x)

2

)
× tanh

(
λy→g(y)

2

)]

Table 5.1: Sum-Product Rules for Equality and Zero-Sum Factors of a Tanner Graph
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Belief Propagation Decoding of a Linear Block Codes

We described in previous sections the Sum-Product rule for different types of nodes involved
in the TG representation of a code. In this section, we describe the iterative BP5 decoding
algorithm which uses the sum-product rule to compute efficiently all the marginals of the TG of
a code. We recall the basic steps of such a message passing algorithm on a generic graph:

� Input variables are provided to the half-edge (leaves) of the graph.

� For each nodes where all the needed input messages are available, new messages are com-
puted according to the sum-product rule (Eq. (5.16)).

� As new messages are computed and propagated, one can progress in the graph and suc-
cessively compute new messages. In cycle-free graphs, only one pass forward and one pass
backward is needed and each messages are computed only once.

� Finally, for each edge, the marginal function can be computed as the product of the two
opposite messages (Eq. (5.17)).

In the context of communication systems, messages exchanged at the decoder between the
nodes of the TG are usually related to the LLR of transmitted bits. The sum-product update
rule can be applied iteratively to all the nodes of a code graph using equations (5.34), (5.35) and
(5.36) (see previous sections for the detailed derivations).

Message from the variable node i toward the check node j is computed using:

µvi−→cj = λi +
∑

l ̸=j

µcl−→vi (5.34)

where λi is the a priori LLR received by variable node i and µcl−→vi are the other messages
received by variable node i from neighbouring check nodes l.

Similarly, message from the check node j toward the variable node i is defined as:

µcj−→vi = 2 tanh−1


∏

l ̸=i

tanh
(µvl−→cj

2

)

 (5.35)

where µvl−→cj are the messages received by check node j from neighbouring variable nodes l.

Finally, the a posteriori LLR can be computed using the marginalisation rule at the variable
node i as:

λ̃i = λi +
∑

l

µcl−→vi (5.36)

Note that the marginalisation step uses here a sum instead of a product because of the LLR
nature of the exchanged message (more specifically because of the use of a log function)

As explained in Chapter 2, while BP is generally exact for tree structures (meaning that it
always converges to the true posterior in one pass) it is only approximate for graphs with cycles.
The presence of such loops in the inference graph can induce undesirable feedback effects. The
TG of codes are generally not cycle-free and the BP inference not exact, hence the necessity
to apply iterative decoding by passing messages back and forth between variable and check
nodes, using equations (5.34) and (5.35), before hopefully converging to a satisfying solution. In
practice, the BP has proven to be effective in the decoding of high girth (the shortest cycle of
a TG) codes, such as large LDPC, offering both high performance and reasonable complexity.
For shorter and higher density codes, the presence of short cycles is usually detrimental to the
decoding performance [151].

5“Belief Propagation” and “Sum-Product” decoding are often used interchangeably to refer to the same de-
coding process based on the sum-product algorithm. In this document, we will mostly use “Belief Propagation”.
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5.2.5 Degree Distribution Notations

Following notations from Richardson and Urbanke [150], a convenient way to describe LBC
ensembles and particularly LDPC ensembles is to use degree distribution pairs (Λ, P ). Let
C(n, k) be a LBC of size (n, k). Let Λi be the number of variable nodes with degree i and Pj be
the number of check nodes with degree j. It is worth noting that the total number of variable
nodes is n =

∑
i Λi, the total number of check nodes is (n − k) =

∑
j Pj and the total number

of ones in the matrix, i.e. edges of the TG, is e =
∑

i iΛi =
∑

j jPj . From these notations, one
can define the variable and check degree distribution from node perspective polynomials:

Λ(x) =
∑

i

Λix
i P (x) =

∑

j

Pjx
j (5.37)

As previously, the total number of variable nodes and check nodes can be noted as:

Λ(1) =
∑

i

Λi = n P (1) =
∑

j

Pj = (n− k) (5.38)

And the normalised degree distributions from node perspective are written as:

L(x) =
Λ(x)

Λ(1)
=
∑

i

Λix
i

Λ(1)
=
∑

i

Lix
i R(x) =

P (x)

P (1)
=
∑

j

Pjx
j

P (1)
=
∑

j

Rjx
j (5.39)

In other words, Li (Rj respectively) is the probability that a variable node (check node
respectively) chosen uniformly at random among the n nodes ((n− k) nodes respectively) has a
degree i (j respectively).

The overall code matrix density can be derived as:

δ =
e

n(n− k)
=

∑
i iΛi

Λ(1)P (1)
=

∑
j jPj

Λ(1)P (1)
(5.40)

5.3 Belief Propagation Decoder as an Efficient Recurrent
Neural Network for Short Codes

In this section, we describe how the BP propagation algorithm can be expressed using a RNN
model. The proposed model allows to efficiently execute a trainable and weighted version of the
conventional BP algorithm that can improve the decoding performance of short codes.

5.3.1 Description of the Neural Belief Propagation Algorithm and its
Variants

As described in previous section, the FG of a code not being usually cycle-free, it is necessary to
apply the BP iterative decoding by passing messages back and forth between variable and check
nodes, using equations (5.34) and (5.35), before hopefully converging to a satisfying solution.
While the performance of such decoder is close to optimal when considering high girth codes
such as large LDPC, the presence of short cycles in smaller codes can induce feedback effects,
detrimental to the decoding performance. NBP decoders were recently introduced by Nachmani
et al. as a way to improve the decoding performance of BP iterative algorithm for short to
medium length LBC [101].

Neural Belief Propagation Decoder

The main idea behind NBP algorithm [101] is to represent the BP algorithm using a NN and
to learn how to weight BP equations to reduce the negative influence of the short cycles on the
decoding performance. In the form described in [101], the NBP modifies equations (5.34) and

(5.36) by adding four sets of trainable weights (ω(λ),ω(µ),ω(λ̃) and ω(µ̃)):
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µvi−→cj = ω
(λ)
i,j λi +

∑

l ̸=j

ω
(µ)
i,j,lµcl−→vi

(5.41)

λ̃i = ω
(λ̃)
i λi +

∑

l

ω
(µ̃)
i,l µcl−→vi (5.42)

The interested reader can refer to the original publication for the detailed derivations of
NBP equations [101]. With the growing number of IoT use-cases and associated needs of low-
complexity decoding and performing short codes, this type of decoder is of interest and several
publications discussed improvements of NBP using pruning [102], weights sharing [144] or active
sampling [105].

Parallel Neural Belief Propagation Decoders

Parallel variants of NBP have also been proposed in the original paper (mRRD-RNN) [101]
and further improved in a second publication (perm-RNN) [104] thus combining the concepts
of modified Random Redundant Decoder (mRRD) and NBP decoders. The latter drastically
improves the performance of the decoder and bring it closer to that of MLD, at the cost of much
higher complexity. Indeed, depending on the received error vector different valid decoding graphs
can lead to different decoding performance. In these decoders, each of the parallel decoding
branches is a BP decoder (or variant) to which a different permutation of the received code-word is
supplied. To ensure the correct operation of this approach, the permutations are carefully chosen
and must belong to the automorphism group of the code. The main drawbacks associated to these
approaches are the additional complexity and the mandatory knowledge of the automorphism
group of the code. One interesting variant of this approach [106] proposes to use a NN to predict
which of the permutation will probably lead to the best decoding results and therefore reduce the
decoding complexity by executing only the corresponding branch of the parallel decoder. Such
parallel decoders will not be further detailled in the present work.

5.3.2 Neural Belief Propagation as an Efficient Gated Recurrent Neu-
ral Network

In this section, a generic NN architecture is proposed to execute an efficient version of NBP
algorithm applied to the decoding of any short to medium sized LBC. Unlike the original NBP
algorithm, which is configured to decode predefined codes from the literature, we expect the
proposed architecture to be generic and thus able to learn to decode without any prior knowledge.
At first, sum-product rules will be described as efficient matrix operations for generic LBC. Then
the proposed operations will be embedded in a custom RNN cell architecture. Mechanisms,
such as weight sharing and gating, enabling an efficient decoding scheme to be learned will be
described. A generic factor graph, described in Fig. 5.4, will be used throughout this section to
illustrate the proposed architecture6

In the proposed approach, and similarly to the NBP, edges weights are used to improve the
decoding performance in the presence of short cycles. Still, to reduce the complexity, the NBP
equations were simplified to:

µvi−→cj = λi +
∑

l ̸=j

ω
(µ)
i,l µcl−→vi (5.43)

λ̃i = λi +
∑

l

ω
(µ̃)
i,l µcl−→vi (5.44)

This form is more compact than standard NBP as there are no weights for the inputs LLR and
the message weights of equation (5.43) do not depend on the destination check nodes anymore.

6For the sake of simplicity, such a FG cannot represent a valid code C(n, k) since the number of check nodes
ncheck = n−k is equal to the number of variable nodes nvar = n, so that k is necessarily equal to 0. Nevertheless,
the proposed structure can easily be extended to any other number of variable nodes and check nodes and thus
represent valid codes.
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Figure 5.4: Generic 3× 3 Factor Graph
λi are the received LLR, vi variable nodes and cj check nodes. The dashed edges represent the generic nature
of the factor graph, where, depending on the considered decoding scheme, the edges may or may not be actually
present. Note that the edges, and the corresponding weights that will be used in the following sections, are always
indexed from the variable node i to the control node j they connect.

These modifications reduce the complexity, potentially at the cost of a slight reduction in model
expressiveness, although no significant performance degradation was observed with respect to
NBP.

As in the NBP, the message equation from the control nodes to the variable nodes remains
unchanged from the conventional BP algorithm:

µcj−→vi = 2 tanh−1


∏

l ̸=i

tanh
(µvl−→cj

2

)

 (5.45)

Variable to Check Nodes Computation

At each NBP iteration the decoder starts by updating messages from variable to check nodes,
µvi−→cj , following the weighted Eq. (5.43). This computation can be implemented using a simple
matrix multiplication as shown in Figure 5.5. A diagonal matrix is formed from the concatenation
of the messages received from check nodes7 and the input LLR. The resulting matrix is then
multiplied by a weight matrix. With a good initialization of the parameters, this layer can
rigorously perform the update rule for messages from variable to check nodes, but it has several
drawbacks:

� High complexity in terms of number of parameters and computations.

� Need of a sparse weights matrix to actually perform BP algorithm.

� Loss of explanability after a training. There are no guarantees that the performed algorithm
is still a BP or NBP (without further refinements, all parameters of the weight matrix, even
zeros, being trainable).

� Low generalization capabilities due to loosely structured architecture [145, 152] leading to
probable unscalability to bigger codes.

An efficient, scalable and fully differentiable computational graph for the variable to check
nodes update rule is proposed in Figure 5.6. This graph drastically reduces the number of
parameters and operations as shown in Table 5.2 and ensures the efficient execution of a lower
complexity NBP. In a sense, the proposed structured computation can relate to the philosophy
behind the efficient implementation of convolutional layers based on general matrix multiplication
[153]. In these approaches, the inputs and kernels of the convolutional layer are first reshaped in a

7The input messages received from check nodes µcj−→vi are initialised to 0 at the first iteration, which corre-
spond to an equally likely LLR prior.
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Figure 5.5: Naive Implementation of Eq. (5.43) using a Matrix Multiplication
Diag(v) denotes the diagonal matrix whose diagonal elements are constructed from the elements of the vector v.
n is the number of variable nodes and (n− k) is the number of check nodes.

particular way, before performing a convolution calculation using compact matrix multiplication
instead of the sparse multiplication (see section 2.2.2) that would result from a naive approach.
Once again, we emphasise on the generic nature of the proposed description. Obviously, a realistic
(de)coding scheme would not involve all of the possible connections of the FG, such that certain

of the ω
(µ)
i,j would be equal to zero (in the case of a LDPC code, the connection topology would

even be a sparse topology such that most ω
(µ)
i,j would in fact be equal to zero). In the present

work, we distinguish the contribution of the graph structure - i.e. what connections should be
present in the decoding graph - from that of the NBP weights - i.e. how these connections should
be weighted so as to improve the decoding performance. We thus note ω(µ) = σ(wG)⊙wΣ where
σ(wG) is a gating mechanism which represent the decoder structure and is used to prune/select
the relevant connections8, ⊙ denote the point-wise multiplication, or Hadamard product, while
wΣ is a weighting mechanism used to improve the decoding performance similarly to what is
used in the original NBP algorithm from Nachmani et al.. Both sets of parameters are assumed
to be trainable if one seeks to learn to decode without prior knowledge of a coding scheme.
Yet, the gating weights can also be set manually from the parity check matrix of code - this
architecture then become similar to the original NBP approach - and the NBP weights be set to
1 - the algorithm then represent a conventional BP.

Naive (Fig 5.5) Improved (Fig 5.6)
# multiplications O(n2 × (n− k)2) O(n× (n− k))
# additions O(n2 × (n− k)2) O(n× (n− k)2)
Biggest tensor allocation O(n2 × (n− k)2) O(n× (n− k)2)

Table 5.2: Complexity - Variable Nodes to Check Nodes

8The σ(x) function refers, as is often the case in ML, to a function with sigmoidal behaviour used to enforce
the binary nature of the gating mechanism. Different functions will be used in the course of this work, so that
they will be formally defined at a later stage.

120



CHAPTER 5: LEARNING PROCESS AT THE AIR INTERFACE: APPLICATION TO
CHANNEL CODING




µc1−→v1

µc1−→v2

µc1−→v3

µc2−→v1

µc2−→v2

µc2−→v3

µc3−→v1

µc3−→v2

µc3−→v3




⊙




ω
(µ)
1,1

ω
(µ)
2,1

ω
(µ)
3,1

ω
(µ)
1,2

ω
(µ)
2,2

ω
(µ)
3,2

ω
(µ)
1,3

ω
(µ)
2,3

ω
(µ)
3,3




=




A
B
C
D
E
F
G
H
I






A B C
D E F
G H I




Reshape
[−1, (n− k), n]




A B C
A B C
D E F
D E F
G H I
G H I




Repeat
×(n− k − 1)




A B C
A B C
D E F
D E F
G H I
G H I
J K L
J K L
J K L






λ1

λ2

λ3


 =




J
K
L




(
J K L

)

Reshape
[−1, 1, n]



J K L
J K L
J K L




Repeat
×(n− k)

Concatenate



A B C A B C D E F
D E F G H I G H I
J K L J K L J K L




Reshape
[−1, (n− k), n× (n− k)]

Sum Reduction λi +
∑

l ̸=j ω
(µ)
i,l µcl−→vi

(
µv1−→c3 µv2−→c3 µv3−→c3 µv1−→c2 µv2−→c2 µv3−→c2 µv1−→c1 µv2−→c1 µv3−→c1

)

∑

Figure 5.6: Efficient Computational Graph for Eq. (5.43)
Using several reshaping operations, the sparse computation of the naive implementation described in Figure 5.5 is
transformed into a compact and structured calculation that precisely represents a weighted BP algorithm. The −1
terms in the various reshaping operations denote the fact that these operation are broadcasted over an arbitrary
batch-size. ⊙ denotes the point-wise product, or Hadamard product.
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Figure 5.7: Naive Implementation of Eq. (5.45)
As previously described, σ(wG) denote the (ideally binary) gating weights. They are used to select the relevant
messages, depending on the decoding graph structure. σ(wG) = 1 - σ(wG) denotes the (soft) binary inverse of
σ(wG).

The second step of the NBP decoding process consists in updating messages from check to
variable nodes µcj−→vi based on Eq. (5.45). It can be implemented by using a naive architecture
based on a few differentiable operations as described in Fig. 5.7. The multiplicative step selects
the relevant inputs based on the shared gating mechanism σ(wG). The additive step ensures
the neutral element of the product is added to non-selected inputs, before the upcoming product
reduction (so that the latter does not always give a result equal to 0). The following tanh−1

activation function having exploding gradient when approaching −1 or +1 makes gradient based
training through such a functional block difficult. To overcome this issue one can use a Taylor
expansion of the function as proposed in [154], or simply clipping. A judicious parameterization
of this architecture implements the update rule for messages from check to variable nodes. But,
once again, it is inefficient and can lose interpretability after a training phase. An efficient
computational graph for this update rule is proposed in Fig. 5.8. Based on standard matrix
operations, it reduces the complexity as shown in Table 5.39.

9The algorithmic complexity of tanh and tanh−1 operators is not included in the table because of the presence
of these operations in both architectures.
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Figure 5.8: Efficient Computational Graph for Eq. (5.45)
It is important to note that given the order of the input messages provided by previous operation (see Section
5.3.2), it is necessary to re-arrange the parameters vectors too.

Naive (Fig 5.7) Improved (Fig 5.8)
# multiplications O(n2 × (n− k)2) O(n2 × (n− k))
# additions O(n2 × (n− k)2) O(n× (n− k))
Biggest tensor allocation O(n2 × (n− k)2) O(n2 × (n− k))

Table 5.3: Complexity - Check Nodes to Variable Nodes

Output Marginalisation

The final step of the NBP decoding consists in computing the a posteriori LLR λ̃i using
Eq. (5.44). Similarly to Section 5.3.2, one can express this computation as a sparse matrix mul-
tiplication as shown in Fig. 5.9. A more efficient computational graph is proposed on Fig. 5.10.
The complexity of the proposed model is reduced compared to the naive architecture as described
in Table 5.4. Again, and similarly to the case of the variable to check node computation, some

of the ω
(µ̃)
i,j are expected to be equal to 0 depending on the considered graph of the code. We

thus decompose the weights as ω(µ̃) = σ(wG)⊙wM where σ(wG) is the same gating mechanism
while wM is a trainable weighting mechanism specific to this marginalisation operation.
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Figure 5.9: Naive Implementation of Eq. (5.44) using a Matrix Multiplication
Note that the ω(µ̃) weights are different from the ω(µ̃) used for the variable to check nodes messages computation.
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Figure 5.10: Efficient Computational Graph for Eq. (5.44)

Naive (Fig 5.9) Improved (Fig 5.10)
# multiplications O(n2 × (n− k)) O(n× (n− k))
# additions O(n2 × (n− k)) O(n× (n− k))
Biggest tensor allocation O(n2 × (n− k)) O(n× (n− k))

Table 5.4: Complexity - Output Marginalisation Operation
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Figure 5.11: Gated Neural Belief Propagation Recurrent Neural network Cell
The proposed cell is a generic representation of one iteration of BP. The RNN allows to sequentially execute
several iterations of the decoder while sharing the decoding parameters. λ<t> and λ̃<t> denote the a priori and
a posteriori LLR vector respectively provided and computed at decoding iteration t. While the a priori vector is
usually the same at each iteration, the a posteriori vector resulting from the decoding may vary from one iteration
to another. wΣ and wM are the NBP weights used to improve the decoding performance. σ(wG) are the gating
weights used to define the decoding graph structure. The three parameters vectors can be trained and are shared
from one iteration to another under the RNN property. σ(wG) weights are represented outside the cell as they
might be provided by an external model in some of the further described implementations of Sections 5.4 and 5.5.
N.B.: ⊙ and ⊕ denote element-wise multiplication and addition.

Recurrent Neural Network Cell

BP decoding being an iterative algorithm, the aforementioned operations must be repeated
several times to reach good performance. RNN can be used to execute such iterative decoding
in a NN framework [101]. Using the previously described operations, a structured RNN cell,
that will be referred to as Gated Neural Belief Propagation (GNBP), tailored to perform low-
complexity NBP decoding of LBC is proposed in Fig. 5.11. The RNN cell (see Chapter 2 for
more details on RNN structures), inspired by gated cells such as LSTM [43] or GRU [44], is built
around two types of trainable weights:

� Gating weights: wG represent the topology of the FG, i.e. the PC matrix of the code,
and are used to select messages accordingly during the different steps of the decoding
process. To represent such binary selection behaviour a sigmoidal activation function σ is
applied to these weights.

� NBP weights: The wΣ and wM weights are used to improve the performance of the
decoding scheme similarly to the NBP mechanism described in [101]. They should be real
valued and centred around 1 to ensure weighting of the messages and not selection.

All the weights are shared between different RNN iterations (following known properties
of RNN). Gating weights are also distributed inside any given iteration between the different
operations of the BP algorithm; see Fig. 5.11. The structured NN architecture ensures the
learned decoding algorithm is similar to a NBP but allows the learning of the code’s factor
graph’s topology. It can be noted that the chosen architecture only weights the messages at
certain steps. From conducted experiments, using different weighting mechanisms before Σ and
OUT operations - i.e. wΣ and wM - seems performing. In most of the trials, using a weighting
mechanism before the Π operation was detrimental to the performance of the model. This might

125



5.4 LEARNING TO DECODE - BLIND NEURAL BELIEF PROPAGATION DECODER

partially be explained by the numerical sensitivity of the product reduction and arctanh function
used in Π block. The weighting of the input LLR (inside the RNN cell) did not prove efficient
either.

5.4 Learning to Decode - Blind Neural Belief Propagation
Decoder

In the previous section, an efficient and generic description of NBP decoding algorithm was
proposed in the form of a fully differentiable RNN architecture. In the present section we look
at how ML procedure can be applied to such a structure to learn to decode LBC. At first, we
study how the proposed GNBP RNN decoder is able to learn an improved decoding scheme
without any prior knowledge of the coding scheme used at the emitter. Indeed, the original
NBP publication [101] assumes a perfect knowledge of the code by the receiver to define the NN
architecture. In the present work, the proposed NN architecture is used to perform blind NBP
decoding of LBC without prior knowledge of the coding scheme used. Furthermore, while several
publications discussed improvements of NBP using pruning [102, 155], weights sharing [144] or
active sampling [105], none of them, to the best of our knowledge, studied the learning of NBP
for LBC without prior knowledge of the code.

5.4.1 System model

A simple communication scheme is considered for the rest of this chapter (see Figure 5.12).
Inputs words are encoded based on a generator matrix G. A BPSK modulation is applied and
the symbols are sent through an AWGN channel with real noise power N0/2. LLR of the received
samples are decoded based on a PC matrix H.

x

Encoder BPSK

Emitter

+

N (0, N0/2)

AWGN

LLR
λ

Decoder

Receiver x̃

Code C(n, k)
G H

Figure 5.12: System model of the considered communication scheme.

5.4.2 An Auto-Encoder Structure to Learn to Decode

An AE structure based on the previously described GNBP RNN cell is defined (see Figure 5.13).
In an AE learning scheme, the inputs are identical to the associated labels (hence the unsupervised
or semi-supervised terms often used to refer to such learning structures). The proposed AE model
is defined as an end-to-end Tensorflow graph where input words of size k are provided to a LBC
encoder which applies a systematic coding scheme defined by its generator matrix G. The coded
words of size n are modulated using a BPSK modulation and sent over an AWGN channel. Upon
reception, the received samples are soft demodulated to provide a vector of LLR λ to the decoder.
In order to ensure the consistency of LLR amplitude spans across all training samples of a batch,
LLRs are normalised by their mean absolute value per codeword. This normalisation should not
affect the decoding capabilities of the system as the high versus low confidence LLR ordering
remains unchanged. The normalized LLR are broadcasted and weighted on a per-iteration basis
and provided to the GNBP RNN decoder as follows:

λ<t> = w<t>
in

nλ∑n
j=1 |λj |

∀t ∈ {1, . . . , niter.} (5.46)
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Figure 5.13: Proposed Auto-Encoder Architecture
GNBP RNN, described in Section 5.3, is used to learn to decode without prior knowledge of the code used at the
emitter (with niter = 5 BP iterations). Note that while all the blocks of the transmission chain are defined as
Tensorflow functions, no training of the encoder part is considered in this section.
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In this section, the gating mechanism of the GNBP cell is based on a parametric “refined
gate function” applied to the trainable code weights wG [156], defined as:





r = sigmoid(wG ⊙wr)

f = sigmoid(wG ⊙wf )

σ(wG) = (2r − 1)⊙ [f ⊙ (f − 1)] + f

(5.47)

where wr and wf are two sets of parameter of the same size as the original gating weights wG.
This function closely acts as a sigmoid function but is supposed to allow better gradient

back-propagation in the saturation regime of the sigmoid thus improving the learn-ability of the
gates (at the cost of additional trainable parameters).

Instead of extracting only the result of the last BP iteration, the outputs of all iterations
are re-combined using a weighted sum. Thus, the RNN layer is used in a “many-to-many”
configuration. This approach is inspired by [157, 144] and might allow an easier back-propagation
of the gradient by injecting it back at each BP iterations:

λ̃ =

niter.∑

t=1

w<t>
out

nλ̃<t>

∑n
j=1 |λ̃<t>

j |
(5.48)

The systematic bits are selected as the first k LLR of the decoded code-words and are fed to a
sigmoid function to assign them binary-like values. In an AE learning scheme, the inputs are
identical to the associated labels. Hence, the loss function is computed as the BCE between the
input and decoded binary words:

ℓ(x, x̃) = BCE(x, x̃) = BCE
(
x, σ(−λ̃)[0 : k]

)
(5.49)

Unless otherwise specified, the RNN decoder is configured to execute the equivalent of 5 BP
iterations. The total number of trainable parameters of the proposed architecture is defined as
follows:

nparam. = n(n− k)︸ ︷︷ ︸
wΣ

+n(n− k)︸ ︷︷ ︸
wM

+n(n− k)︸ ︷︷ ︸
wG

+ 2n(n− k)︸ ︷︷ ︸
Refine Gate σ

+ 2niter.︸ ︷︷ ︸
win & wout

= 5n(n− k) + 2niter. (5.50)

The use of shared parameters and a structured architecture allow for a controlled number of
trainable parameters, improved explainability and possibly better generalisation capabilities for
larger codes [145, 152]. Furthermore, for a fixed code-rate, the number of parameters of the AE
evolves in O(n2) ensuring the scalability of the proposed architecture on that matter, at least in
the short-to-medium block size regime of interest to the present study.

5.4.3 Model Training and Results

Weights # Trainable Parameters BCH(15,7) decoder BCH(15,11) decoder

PRE-PROCESSING STAGE
win niter. 5 5

GNBP RNN
wG n× (n− k) 120 60
Refine Gate σ 2× n× (n− k) 240 120
wΣ n× (n− k) 120 60
wM n× (n− k) 120 60

POST-PROCESSING STAGE
wout niter. 5 5

TOTAL 2× niter. + 5× n× (n− k) 610 310

Table 5.5: Number of Trainable Parameters of the Proposed Decoder
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Information words x are encoded using systematic versions of either BCH (15,11) or BCH
(15,7) codes described in [158]. For both codes, the overall complexity of the model is described
in Table 5.5. The AE framework enables a simple training process as the loss function can
be computed as the BCE between initial information words x and decoded words x̃. Many
hyperparameter configurations were tested, and the one that yielded the best results is described
thereafter. For both codes, training is performed using randomly chosen information bits, divided
in words of size k. The number of words used for training corresponds to 10 times the total
number of possible words, 2k. The SNR used during training phase is fixed at 4 dB. RMSProp
[159] optimiser is used with a triangular cyclic learning rate scheduler [160] oscillating between
learning rates of 10−2 and 10−1. The model is trained during 250 Epochs. Except wG weights
that are initialized using Glorot uniform initializer [161], all the other weights are initialised to
1. A shifted L2 regularisation mechanism is applied to penalise learned NBP weights that lie too
far from 1.

Results

The model is evaluated on a dataset composed of randomly chosen words. To obtain reliable
results, instead of fixing the number of testing words, the number of errors to reach has been fixed.
The performance of the best model among 50 trainings, denoted as “Blind GNBP”, is compared
with Maximum Likelihood (ML) [158] and standard BP decoding baselines for both codes as
depicted in Fig. 5.14. All the performance curves are displayed in Block Error Rate (BLER)
versus Eb/N0. Proposed model is able to learn to decode both codes, without prior knowledge,
at least at the level of performance of a standard BP decoder, and even outperforms it in the
case of BCH (15,11) code thanks to NBP approach.
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Figure 5.14: Block Error Rate of the Blind Gated Neural Belief Propagation Decoder
The proposed model (solid lines) is compared with standard BP (dotted lines) and Maximum Likelihood (dashed
lines) decoders for BCH (15,11) (red - square markers) and BCH (15,7) (blue - triangle markers) codes.

This efficient GNBP architecture thus enables a blind approach where no prior knowledge of
the used coding scheme is needed at the receiver side and leverages NBP technique to achieve
potential performance gains over standard BP decoders. The computational graph has been
designed to be low-complexity, generic and scalable to bigger codes. Now that the faisability of
learning to decode an arbitrary LBC coding scheme has been demonstrated, a fully trainable
end-to-end architecture is described in the next section, to jointly discover an efficient coding
and decoding scheme, and particularly while considering longer and thus more challenging code
sizes of up to 128 bits.

129



5.5 LEARNING TO CODE - NEURAL BELIEF PROPAGATION AUTO-ENCODER FOR
LINEAR BLOCK CODE DESIGN

5.5 Learning to Code - Neural Belief Propagation Auto-
Encoder for Linear Block Code Design

This section investigates the joint learning of short to mid block-length coding schemes and
associated BP like decoders using ML techniques. An interpretable AE architecture is proposed,
ensuring scalability to block sizes currently challenging for ML-based linear block code design
approaches.

5.5.1 Learning to Code: Main Challenges

Differentiability of the Models

Gradient based ML techniques require the differentiability of the models to be trained. Proposed
AE models in the domain of PHY layer can present several non differentiability issues related
to the channel, the digital modulation, and when considering channel coding, the extensive
use of finite field (e.g. F2) and associated modulo arithmetic based on eXclusive-OR (XOR).
The trainability of the model can also be impacted by many other optimisation issues such as
non-convexity, non-smoothness and non-linear separability of the loss function. Differentiable
structures and approximations must be defined to circumvent such issues, thus allowing the
back-propagation of gradients during the model training.

Scalability - the “Curse of Code Dimensionality”

A key factor for the adoption of AI/ML-based (de)coding methods is the scalability of the
proposed models and their associated training schemes. As the number of possible words in an
(n, k) code is 2k, even for relatively small codes it becomes impossible to use exhaustive training
data-sets that include all words. In the previous section, reasonably small codes were considered
so that a naive approach to the learning of a decoding scheme was possible. In this section, codes
with sizes up to 128 bits will be considered and it will no longer be possible to consider such an
approach. It is therefore necessary to find structured architectures and learning procedures that
allow the training on a subset of the possible data-words while ensuring the generalisation to the
remaining words during execution of the coding scheme in real operation conditions.

5.5.2 Linear Block Code Neural Belief Propagation Auto-Encoder

This section focuses on the joint design of short to medium sized LBC matrices and associated
weighted BP decoding structures using ML techniques. The idea is to guide the design of code
matrices based on the decoder structure rather than optimising the decoding of a potentially
flawed code with respect to the decoder.

Linear Block Code Neural Encoder

Unlike the previous section where the parameters of the coding scheme were learned only from
the decoder’s side, in this section we seek to learn both a coding and a decoding scheme, hence
the need for a trainable and differentiable LBC encoder, hereafter referred to as a neural LBC
encoder. The objective of this block is to encode binary words of size k into coded representation
of size n based on a set of trainable parameters representing the code’s generator matrix G.
The latter will be provided, in the present section, by an external “bridge” model, as will be
introduced in Figure 5.16. The proposed encoder block describes linear combination in F2 by
representing the XOR function as a differentiable product of bipolar symbols (Figure 5.15):

� Binary words of size k are converted into bipolar form (i.e. {0; 1} are mapped to {+1;−1}).

� Inputs are broadcasted and multiplied by trainable external binary weights, i.e. the code’s
generator matrix G, thus selecting the bits participating in each of the n encoding equa-
tions.

� For the variables that were not selected the neutral element of the product (+1) is added.
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Figure 5.15: Proposed Linear Block Code Neural Encoder Model
Toy example of a (n=3, k=2) encoding. The proposed block works only for binary inputs and weights G. To
represent the F2 XOR as a differentiable operation, a product reduction of binary inputs in their bipolar form
is used. N.B.: The last conversion step from bipolar to binary notation is not necessary when the up-coming
modulation is a BPSK.
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� Finally, a product reduction is performed for each of the n encoding equations.

� (Optional) The results can be converted back to binary form. This is not interesting in the
present case were the bipolar words can be directly transmitted as BPSK symbols.

The proposed architecture works if the weights G and inputs are indeed binary. Since the
encoder inputs are also those of the AE model, it is not difficult to guarantee this condition
for the latter. However, this is more difficult in the case of the trainable weights fed to the
encoder which require the loss function to remain differentiable with respect to them. Several
solutions could be thought of, such as sigmoidal activation applied to the weights (such as the
“refine gate mechanism” that was used in previous section for blind decoding), regularisation
methods, sampling techniques [162], discrete functions trained using REINFORCE algorithm
[163], Straight-Through Estimator [164] or a stochastic binariser [165] as used in [107]. In this
work, a differentiable approximation of the step function, inspired by the idea of differentiable
bypass [166], is used. The idea is to apply a non-differentiable step function on a forward pass of
the NN and approximate the gradient by a differentiable approximation of the step, a sigmoid
in the present case, during the backward pass. This functional block will be referred to as a
Differentiable Step Function (DSF):

f(x) = step(x)
df(x)

dx
=

dσ(x)

dx
= σ(x)σ(1− x) (5.51)

where σ(x) denotes the sigmoid function. The DSF is applied to the weights G before being
used by the encoder as will be further detailed in Section 5.5.2.

Gated Neural Belief Propagation Decoder

The decoder is based on the GNBP RNN Cell introduced in Section 5.3, although with two minor
modifications:

� The trainable binary gating weights defining the decoding TG architecture are now provided
by an external “bridge model”. These weights represent the PC matrix of the code, H.

� The refine gate mechanism that was used in Section 5.4 to ensure saturated sigmoid func-
tions is now replaced by the DSF which is applied directly inside the aforementioned bridge
model.

Proposed Auto-Encoder Architecture for Linear Block Code Design

The proposed AE architecture for the joint design of a LBC and associated GNBP decoder is
very similar to that of previous section which was used to learn to decode LBC, except that we
now want to learn not only to decode but also to code. The AE consists of the proposed encoder
and decoder models at the transmitter and receiver sides (Figure 5.16). The encoder weights
and corresponding decoder gating weights that represent the code matrices are provided by a
third “bridge model” to ensure that they are continuously matched. The use of such a weight
sharing procedure makes the training easier and thus reduces training time. A simple way to
implement this procedure is to restrict the learned code to generator and parity-check matrices in
standard forms. It enables a direct and differentiable conversion between G and H, as described
in Section 5.2.1. The standard form offers the advantage of a reduced number of trainable
code parameters. In addition, it reduces the complexity of the encoding and possibly avoids
costly decoding in the absence of errors, e.g. by computing a Cyclic Redundancy Check (CRC)
of the complete data-frame before checking the syndromes of it’s constituent code-words and
eventually initiating decoding procedures. However, the standard form can be detrimental to
the performance of a BP-based decoder as it generally leads to denser PC matrices. Input words
are encoded, according to the trainable matrixG provided by the bridge model, using the encoder
introduced in Section 5.5.2. The resulting code-words are modulated using a BPSK and sent
over an AWGN channel. On reception, the LLR of the code-words are computed and normalised
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Figure 5.16: Proposed Auto-Encoder Architecture for Linear Block Code Design
Contrarily to previous section, the code used at the emitter is now part of the learning process. The binary
encoder’s generator and decoder’s PC matrices are now provided by a third model that will be referred to as
“Bridge Model”. Once again, niter = 5 BP iterations. To facilitate gradient back-propagation toward the emitter,
a residual connection is added to bypass the GNBP RNN decoder. N.B.: the σ(wG) notation previously used to
denote the gating weights of the RNN cell are now denoted by H, the equivalent PC matrix.

133



5.5 LEARNING TO CODE - NEURAL BELIEF PROPAGATION AUTO-ENCODER FOR
LINEAR BLOCK CODE DESIGN

n 8 31 63 128
k 4 16 11 45 36 64

nparam. 91 1181 1471 3089 4385 20491

Table 5.6: Auto-Encoder Number of Parameters

by their per-codeword mean absolute value. The normalised LLR are broadcasted and weighted
on a per-iteration basis and provided to the GNBP RNN decoder as follows:

λ<t> = w<t>
in

nλ∑n
j=1 |λj |

∀t ∈ {1, . . . , niter.} (5.52)

After GNBP decoding based on the trainable matrix H provided by the bridge model, the
iterations results and the residual connection are normalised and weighted for recombination as
follows:

λ̃ = wresidual
nλ∑n

j=1 |λj |
+

niter.∑

t=1

w<t>
out

nλ̃<t>

∑n
j=1 |λ̃<t>

j |
(5.53)

As in previous section, the systematic bits are extracted as the first k LLR of the decoded code-
words and the loss function is computed as the BCE between the input and decoded binary
words (after sigmoid activation):

ℓ(x, x̃) = BCE(x, x̃) = BCE
(
x, σ(−λ̃)[0 : k]

)
(5.54)

Unless otherwise specified, the RNN decoder is configured to execute the equivalent of 5 BP
iterations. The use of a residual connection bypassing the decoder and the iterations results re-
combination mechanism are design choices deemed to facilitate gradient back-propagation during
training. The total number of trainable parameters of the proposed architecture is defined as
follows:

nparam. = k(n− k)︸ ︷︷ ︸
Systematic code

+2n(n− k) + 2niter. + 1︸ ︷︷ ︸
GNBP decoder

(5.55)

Again, the use of shared parameters and a structured architecture allow for a controlled num-
ber of trainable parameters (Tab. 5.6). Similarly to the previous AE, the number of parameters
of the AE evolves in O(n2) (for a fixed code-rate) ensuring the scalability of the proposed archi-
tecture. Thanks to the definition of matched G and H matrices in standard form, the bridge
model ensures an efficient training phase. The interpretable structure of the model allows the
learned code to be extracted and used with other LBC decoding schemes, possibly within legacy,
non-AI based systems. The enhanced weighted decoding procedure based on the RNN GNBP
cell is jointly trained with the coding scheme. In conclusion, the proposed differentiable AE
architecture allows the efficient training of performing LBC suitable for a BP-based decoding.

5.5.3 Data-sets, Training and Evaluation Procedures

In a naive approach, learning a code of size (n, k) would require to use a training data-set
including all the 2k words. This number grows exponentially with the code size and can become
prohibitively large. In the case of LBC and under symmetric assumption on the channel and the
decoder (implying in the case of NN based decoders the use of symmetric activations, absence
of biased units, etc.), it is common to train or evaluate a decoder only with the zero code-word
while guaranteeing performance on the complete code [150]. Nevertheless, the training of the
encoder is also considered in this work, thus requiring the use of different words. The proposed
encoder ensures that all code-words are linear combinations of the basis of the vector subspace
of the code. Hence, the model can be trained using only the basis vectors of the words thus
reducing the training data-set size from an exhaustive data-set of 2k words to only k words.

It should also be noted that since the XOR function used in the encoder is a non-linearly
separable operator, optimising the weights upstream this function can be challenging for a high
input cardinality. Indeed, the non-linear separability of the operator prevents from identifying
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the individual contributions of each input in the final results as for a linearly separable operator
such as the sum. Still, one way to ensure that the individual contributions are identifiable in
the final results is to ensure that there is only one non-zero input contributing to the XOR in
each dataset entry e.g. by considering only standard basis vectors as inputs, hence the adopted
data-set. Similarly, the decoder uses product operators, particularly challenging with respect
to the optimisation of the model for similar reasons. Following the same intuition as before,
one should carefully choose the channel noise level ensuring a controlled amount of bit flips per
code-word. Gaussian noise sampled by the NN model with a fixed Eb/N0 of 4 dB has shown
empirically to provide good results. The model is trained with RMSProp optimiser [159] using
batch-size of 64 words and 25 steps per epochs until an early stopping criterion is met (200 epochs
without improvement) or the maximum number of epochs, set to 1 000, is reached (a significant
margin is used as it has been experimentally observed that the AE usually converges to its best
level of performance within the first 100 epochs). The LR is initially set at 10−1 and follows a
decaying schedule on plateau: when the model does not improve for 50 epochs the LR is reduced
by 20%. The validation data-set is randomly sampled from the 2k possible words in batches of
size 64 which are used to monitor the model progress on the real encoding/decoding task, i.e.
transmitting and recovering any of the possible words with as few errors as possible. A BCE loss
function, particularly suited for binary error evaluation, is used. The model weights representing
the systematic part of the code, W , are initialised uniformly at random on the [−0.01;+0.01]
range. The GNBP decoder weights are initialised at ’1’. After training, the model is evaluated
on randomly sampled words from the 2k possible words with Eb/N0 ranging from 0 dB to 6 dB.
To ensure a reliable BER evaluation at each Eb/N0 level, new words are sampled and provided
to the model until the 95% confidence interval, computed using Agresti-Coul method [167], on
the estimated model BER performance is within the estimated BER +/-5% interval, i.e. there
is a 95% probability that the true value of the BER lies in-between +/- 5% of the estimated
BER10.

5.5.4 Results

The following sections describe the results obtained with the proposed model in various experi-
ments. At first, (8,4) codes will be used to illustrate the approach and to formulate hypotheses
as to why it is likely to produce successful results. A second experiment will study in depth the
training of the AE on a (31,16) code size and compare its performance with those of a standard
BCH code in standard and non-standard forms. The observed performance gain will be investi-
gated in a short ablation study on a (31,11) code size. Scalability of the approach will then be
evaluated on (63,36) and (63,45) code sizes and compared to some existing results, notably with
the NBP approach [101]. In addition, a comparison of the complexity of the different decoders
will be proposed. Finally, the approach will be tested against other state-of-the-art codes with
sizes up to 128 bits, including LDPC codes better suited for BP decoding than BCH codes.

(8,4) Code: Illustration of the Proposed Concept

The model is first tested on a (8,4) code size and compared with a classic hand-crafted code:
Extended Hamming (8,4) (Figure 5.17). The performance of the AE model ( ) is compared
to those of MLD11 ( ) and BP ( ) decoders applied to the Hamming code. MLD is also
applied, after training, on the code matrix designed by the AE ( ). This allows to evaluate
the proposed code’s raw algebraic performance independently of the decoder’s target.

As demonstrated by the MLD performance curves, the learned code is not as good as the
Hamming code in terms of algebraic properties. Nonetheless, the proposed AE outperforms, by
a significant margin, a standard BP decoder applied to Hamming code.

Figure 5.18 represents the PC matrices as well as the corresponding TG for both Hamming
code and the best AE designed code out of 5 trials. Several interesting algebraic properties are to

10In this section, results are presented, unless otherwise specified, in BER versus Eb/N0 [dB] where N0/2 is
the variance of the (real) AWGN noise. When the proposed model is compared with other algorithms such as
standard BP or NBP algorithms, 5 decoding iterations are considered, unless expressly stated otherwise.

11Unless otherwise specified, the MLD decoders considered in this work are based on an exhaustive minimal
distance algorithm.
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Figure 5.17: Performance Comparison of the Auto-Encoder with that of a Hamming (8,4) Code
The extended Hamming code not being designed for BP decoder performs poorly with it, although its MLD
performance are good. On the contrary, a code designed for a BP-like decoder offers higher performance.

be noted when comparing both codes. As one can see the learned coding scheme is an irregular
coding scheme. The minimum distance of the learned code is equal to 3 while the minimum
distance of the Hamming (8,4) code is equal to 4. This explains why the proposed coding scheme
is less efficient in terms of MLD performance. Still, the average Hamming distance is of 4.26
for both codes. As one can see, while the density of the PC matrix is reduced, the girth of the
TG is augmented in the case of the learned code. Indeed, the Hamming code presents a density
of δ = 16/32 = 0.500 and a girth of 4 with 6 associated cycles, whereas the learned code has
a density δ = 13/32 = 0.406 and a girth of 6 with 3 associated cycles. These properties are
key in the performance of a BP decoder and can explain the performance gain of the proposed
code when associated to a GNBP decoder. These results are a good illustration of the proposed
concept: instead of trying to find a code with good properties such as minimum distance, the
model proposes a code that improves the performance with respect to the targeted BP-like
decoder. In the case of such a short code, it is worth noting that even a naive MLD is not
complex and is eventually more efficient than 5 iterations of a BP-like approach. However, this
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Figure 5.18: (8,4) PC Matrices and their Associated Tanner Graph Representation
(a) Left: Extended Hamming (b) Right: Auto-Encoder. - A non bipartite representation has been used
to easily exhibit the cycles present in both graphs. A compact notation of the TG is used where black circle
represent variable node whereas black square represents check nodes.
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Figure 5.19: BER Evolution During a Training of the Auto-Encoder Model
The noisy curves can partly be explained by the relatively small batch sizes considered here. The best validation
BER of 3 × 10−3, attained around the 150th epoch, is consistent with the performance of the AE displayed on
Figure 5.20.

statement quickly becomes untrue as the code size increases.

(31,16) Codes: Statistical Study of Model Training

Model Performance During Training: The proposed model’s BER metric is measured
during training to assess the existence of a learning process on a (31,16) code. Figure 5.19 shows
the BER at the selected training Eb/No of 4 dB evaluated at each epoch for the training ( )
and validation ( ) data-sets. Although noisy, these curves show a clear decrease in BER during
training as supported by the corresponding smoothed metrics ( / ). During training the
BER is roughly divided by a factor 10, from ≈ 2.5× 10−2 to a minimum of ≈ 2.5× 10−3.

Training Repeatability: The design of an AI/ML-based error correction scheme can usually
be performed offline and only the best learned coding scheme is selected for implementation
in the final communication system. Nevertheless, it is interesting to study the performance
consistency of the learned codes as an empirical assessment of the model training reliability.
Furthermore, in future work, such model could be integrated into end-to-end communication
systems relying on the joint learning of equalisation, (de)modulation and (de)coding, etc. Such
scenario would require an efficient and reliable online learning process. The min-max interval
of BER performance of the proposed AE ( ) across 50 independent trainings (Figure 5.20)
demonstrates the model’s ability to learn a larger code size of (31,16) and shows a reliable and
repeatable training process with relatively small variations between runs. Indeed, Figure 5.20
shows approximately 0.5 dB between the worst and best model in the asymptotic regime. The
repeatability of model training being demonstrated, the following results of this chapter will
present only the best training out of 5 trials as an estimate of the achievable performance of
the AE and thus reduce the effective simulation time. Additionally, Figure 5.20 shows the
performance of a non-systematic BCH code (31,16) from the literature [158], evaluated on MLD
( ) and BP ( ) decoders. A systematic version of the BCH code obtained by the Gauss-
Jordan elimination method is also evaluated with a BP decoder ( ). Finally, the code learned
by the AE is extracted and evaluated on these same MLD ( ) and BP ( ) decoders.
Similarly to what has been observed previously with the extended Hamming code, the learned
(31,16) code has slightly worse MLD performance than the BCH code (yet almost equivalent
in the case of the best model) but is significantly more competitive when using the BP or
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Figure 5.20: Repeatability of the Auto-Encoder Training
At each Eb/N0 level, the error bars describe the min-max interval of the BER performance across the 50 inde-
pendent trainings. Performance of systematic and non-systematic BCH codes, decoded using standard BP, are
provided for comparison.

GNBP decoders compared to the standard BP decoder applied to both systematic and non-
systematic BCH codes. It can also be noted that a systematic form is generally detrimental to
the performance of a BP decoder. Indeed, it artificially increases the density of the PC matrix
in its redundant part which in turn can reduce the girth of the code.

Correlation Between Decoders Types and their Performances: Figure 5.20 showed
the span of the BER performance of the 50 learned codes with different decoders. One question
is whether good code performance with one decoder type is generally associated with good
performance with the other decoders. To answer this question, the performance correlations of
a given learned code between GNBP and BP (Figure 5.21) or MLD decoders (Figure 5.22) and
between BP and MLD decoders (Figure 5.23) are provided. For each decoder and Eb/N0, the
BER performance of the 50 learned codes are normalised on the [−1;+1] range and aggregated
on a single plot. As one can see, the performance of the learned code evaluated on BP decoder are
correlated with their performance on the GNBP decoder. This was foreseeable since the GNBP
decoder is derived from the BP decoder. On the contrary, the performance of the learned code
evaluated on the GNBP or BP decoders are not correlated with those of the corresponding MLD
decoder. The latter observation was also to be expected as the system is not trained in view of a
MLD but rather (GN)BP decoding. Furthermore, a good code from a BP decoding perspective
is not necessarily a good code from a MLD perspective (as was illustrated in Section 5.5.4).

Degree Distributions of Learned Codes: In an attempt to explain the observed perfor-
mance from a code design perspective, and even though only small codes are considered here,
the normalised variable and check node degree distributions are computed for each of the 50
learned PC matrices and averaged over all the trainings (Figure 5.24 and 5.25). These distribu-
tions ( ) are compared with those at model initialisation ( ). In addition to demonstrating
consistent results across trainings and showing that the learning procedure does indeed have an
impact on the choice of specific, non-random structures, the learned matrices exhibit unexpected
check node degree distributions. The learning procedure seems to encourage overall lower density
of the matrices, which was something to be expected given the targeted BP decoder structure.
On the other hand, it also seems to promote the definition of a few high degree check nodes.
This behavior is not yet explained but is of interest for future studies.
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Figure 5.21: Correlogram of
the Performance of the 50
Learned Codes Evaluated on
GNBP and BP Decoders.

Figure 5.22: Correlogram of
the Performance of the 50
Learned Codes Evaluated on
GNBP and MLD Decoders.

Figure 5.23: Correlogram of
the Performance of the 50
Learned Codes Evaluated on
BP and MLD Decoders.
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Figure 5.24: Variable Node Degree Distribu-
tion Before and After Training
The distribution is averaged over the 50 runs. Note
that the peak observed for a degree of 1 is explained
by the standard form of the considered codes.
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Figure 5.25: Check Node Degree Distribution
Before and After Training
The distribution is averaged over the 50 runs. Un-
expectedly, some check nodes take on high degrees,
leading to all-1 (or almost all-1) rows in the redundant
part of the PC matrix.

(31,11) Codes: Auto-encoder Training Procedure and Ablation Study

Several questions arise from observations of previous section. What is the origin of the AE
performance gain? Is it due mainly to the use of a weighted decoding procedure such as GNBP,
the design of a more efficient coding scheme or a combination of both? Is it preferable to first
train the coding scheme and then adapt the GNBP decoder to proposed code or learn jointly
both codes and decoders as it was done in previous sections? To try to answer these questions,
the AE is applied to a (31,11) code and compared to a BCH code from [158]. The influence of
the different elements of the AE and their training schedules is studied to better understand the
origin of the performance gain. Different schemes are compared (Figure 5.26):

� The full AE model as described in 5.5.2 to study the influence of both the learned code
and the GNBP decoding scheme ( ).

� The code learned by the aforementioned AE model evaluated on a standard BP decoder
to study the influence of the sole learned code ( ).

� A slightly different AE trained with a differentiable standard BP decoder i.e. without any
GNBP decoder weights, inputs LLR weightings, residual connection or weighted outputs
sum (only the result of the last iteration is selected as in standard BP decoders). This
scheme is referred as “AE BP” on the Figure 5.26 ( ).

� The code learned by this AE BP model used to train a GNBP decoder to study the impact
of the training schedule ( ).
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Figure 5.26: Study of the Joint Encoder/Decoder Training Procedure
Evaluation of the relative contributions of the code and decoder design to the final performance.

� The MLD performance of the codes learned by both AE (GNBP) ( ) and AE BP ( )
models.

� A reference BCH (31,11) code [158] in both systematic and non-systematic forms evaluated
with MLD ( ), standard BP ( / ) and trainable GNBP decoders ( / ).

Even though a different code rate is considered, similar statements can be made on the perfor-
mance of the (31,11) code to that of the (31,16) code: the MLD performance of the BCH (31,11)
code is better than that of the learned coding schemes. Yet, all the proposed coding scheme
outperforms by a significant margin the standard BP decoder applied to both systematic and
non-systematic BCH (31,11) codes. It appears that the design of an effective coding scheme and
the use of a weighted GNBP decoding procedure can both contribute to the final performance of
the AE. However, the training schedule has an impact on their relative contributions to the final
performance (Figure 5.26). Indeed, after learning both the code and the GNBP decoder weights,
regardless of the training schedule of the different blocks involved, the AE achieves similar per-
formance. Yet, the code learned directly with a BP decoder achieves better performance than
the code learned with a GNBP decoder and subsequently evaluated on a BP decoder. Therefore,
if the final goal is to run a GNBP decoder, it is more interesting to train the model directly with
such a decoder rather than first training the code on a BP decoder and then learn the GNBP
weights, which would take twice as much training time for a similar outcome.

On the contrary, if the aim is to use a standard BP decoder, it is more interesting to train the
model with such a decoder from the beginning, as this may lead to better overall results compared
to a code learned on a GNBP decoder and then evaluated on a BP decoder. It is also worth
noting that the performance of the AE model trained and evaluated only on a BP decoder is close
to that of the AE model using a GNBP decoder. This suggests that when the coding scheme is
well constructed and suffers from few defects with respect to a BP decoder, e.g. a small number
of short cycles, the benefit of a weighted decoding procedure such as GNBP might be reduced
and a simpler BP decoder could be sufficient. Nevertheless, as shown by the GNBP performance
curve of the BCH code, the use of a weighted decoder can bring a significant performance gain
for codes that exhibit defects with respect to the targeted BP decoding procedure, e.g. BCH
codes, confirming results from previous works [101]. However, the observed performance gain is
not up to the level of the AE joint code and decoder design.
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Code (n, k) (63, 36) (63, 45)

# Code-words 2k ≈ 1010 ≈ 1013

# Basis code-words k 36 45

# Different sys. PC matrices 2k(n−k) ≈ 10292 ≈ 10243

Table 5.7: “The Curse of Code Dimensionality”

(63,36) and (63,45) Codes: Scalability and Algorithmic Complexity

Scalability to (63,36) and (63,45) Codes: To illustrate the flexibility and scalability of
the proposed approach, the AE model is evaluated on higher sizes (63,36) and (63,45) codes.
With such sizes the code-books include too many code-words to be included in an exhaustive
data-set (Tab. 5.7). Additionally, the trainable part of the systematic matrices include many
configurations of ’0’ and ’1’.
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Figure 5.27: Performance Comparison Be-
tween (63,36) BCH and AE-Based Codes with
Various Decoders.
NBP, mRRD-RNN and MLD (OSD) performances are
from Nachmani et al. [101]. BP results are consistent
with those from [101]. The performance of GNBP
decoder demonstrate the equivalence with NBP de-
coders.
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Figure 5.28: Performance Comparison Be-
tween (63,45) BCH and AE-Based Codes with
Various Decoders.
All results, except the AE results and the cycle re-
duced BP, are from Nachmani et al. [101]. Unlike the
case of (63,36) BCH, the BP and NBP results from
[101] were not successfully reproduced for the non-
systematic code.

The performance of the AE ( ) is compared to that of the BP ( / ), NBP (
/ ) and MLD ( ) - evaluated using Ordered Statistic Decoding (OSD) [168] - decoders
applied to the (63,36) and the (63,45) BCH codes as described in the original Nachmani et al.
publication [101]. AE BP scheme results, evaluated with both BP ( ) and GNBP ( ), are
also provided for the (63, 45) code. In contrast to Section 5.5.4, this scheme is here not on par
with the AE GNBP. This difference is currently unexplained and would require further studies,
which have not yet been conducted at the time of the writing of this manuscript, to determine
its cause. The performance of mRRD-RNN ( ) and Perm-RNN ( ) parallel BP decoders
from [101, 104] are also provided as examples of close to MLD decoders, although at a much
higher complexity (Figure 5.27 and 5.28). In addition, the GNBP decoder is applied on BCH
(63,36) codes ( / ), demonstrating similar performance to that of the NBP. For both
sizes, the AE outperforms BP and NBP decoders with different BCH PC matrices forms. Even
the code learned by the AE evaluated with a BP decoder ( ) outperforms GNBP decoder
applied on the BCH codes, at least in the considered Eb/N0 regime. Again, these curves show
that the design of a code tailored to the decoder provides substantial performance gain at no
significant complexity cost.

Complexity Study: To further illustrate the advantageous performance to complexity ratio
of the proposed approach, the number of decoding operations is computed for the different codes
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and associated decoders12, as summarised in Tab. 5.8. The coding gain (dB) with respect to an
uncoded BPSK is then computed for each code and decoder and normalised by the number of
operations13. The AE is able to design codes that offer a good performance to complexity trade-
off based on GNBP or BP decoding (Figure 5.29 and 5.30). Final complexity is also dependent
of specific hardware implementations which is not taken into account in the present analysis.
Regardless of this point, one should also consider that, during training, the AE requires a higher
number of operations as the code’s matrices are not yet fixed.

Lower complexity BP-like decoders from the literature such as MS, OMS or Neural Offset
Min-Sum (NOMS) [103] are not included to the comparison, but there is no strong evidence
suggesting that such approaches could not be applied to the proposed AE and further improve
the performance to complexity ratio. The densities δ of the learned codes are lower than those
of the BCH codes (Tab. 5.8). This was to be expected as BP decoders are supposed to perform
well on low density codes, e.g. LDPC codes. A regularisation technique could be used in future
work to further enhance this interesting property that can both reduce the decoding complexity
and potentially improve the performance. Still, this would be a strong inductive bias towards the
already known solution that BP decoders perform well on low density codes and could potentially
conceal innovative code designs that has not yet been thought of and that could be revealed by
an AI/ML system.

Comparison with LDPC and other State-Of-the-Art Codes

Comparison with Short (64,k) LDPC Codes - Impact of the Rate: To ensure a fairer
study of the proposed system, and since BP decoders were originally engineered to decode such
codes, a comparison with LDPC codes of size 64 and with various rates is made (Figure 5.31). The
different regular and irregular LDPC codes are generated by the Progressive Edge Growth (PEG)
algorithm [169] and decoded using BP ( / ) and GNBP ( ) decoders.

Said codes are compared with the proposed AE model trained with a GNBP decoder and
evaluated with both BP ( ) and GNBP ( ) decoders. When considering a GNBP decoder,

12See Appendices B for detailed derivations. As described by Nachmani et al., Perm-RNN (1,50,2) denotes a
decoder with one branch, 50 permutations per branch and two NBP iterations between two consecutive permu-
tations. Although it is not a parallel decoder, it requires a total number of up to 100 NBP iterations. Similarly,
mRRD-RNN (5) denotes a 5 branch parallel decoder each constituted of 30 blocks of two NBP iterations leading
to a total number of up to 300 NBP iterations

13More precisely, the coding gain is normalised based on the number of multiplications. Such operations are
usually considered to be more costly than additions. Moreover, the number of additions is unchanged between
BP, GNBP and NBP decoders.
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n k Code δ Decoder
# Operations

# SUM #MULT.

63

36

AE (systematic) 0.18
BP - 5 iter. 11,775 21,475
GNBP - 5 iter. 11,775 24,525

BCH (non systematic) 0.29
BP - 5 iter. 23,620 38,880
GNBP - 5 iter. 23,620 43,740
NBP - 5 iter. 23,620 65,245

BCH (cycle reduced) 0.24

BP - 5 iter. 16,490 27,840
GNBP - 5 iter. 16,490 31,980
NBP - 5 iter. 16,490 46,715
mRRD-RNN(5) 989,400 2,802,900

45

AE (systematic) 0.19
BP - 5 iter. 4,910 11,290
GNBP - 5 iter. 4,910 13,450

BCH (non systematic) 0.38
BP - 5 iter. 17,500 47,520
GNBP - 5 iter. 17,500 51,840
NBP - 5 iter. 17,500 67,495

BCH (cycle reduced) 0.28

BP - 5 iter. 8,680 24,720
GNBP - 5 iter 8,680 27,840
NBP - 5 iter 8,680 35,275
perm-RNN(1,50,2) 173,600 494,400

Table 5.8: Estimated Number of Operations for Each Code and Decoder
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Figure 5.31: Performance Comparison Between Various (64,k) LDPC Codes and The Proposed
AE
Different decoder targets are considered. For better readability, and in contrast to the other graphs of this section,
the SNR [dB] is used for the x-axis.
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and despite the standard form constraint, the AE shows decent performances compared to the
LDPC codes. AE performs significantly better than regular LDPC codes and is not far from
the irregular codes (half a dB difference in the worst case). For the 46

64 code rate, the GNBP
AE even reaches the performance of the irregular LDPC code under BP decoding and is close to
the performance of the same code under GNBP decoding. Under BP decoding, the AE code is
not as good as before, especially for the lower code-rates, where the systematic part of the PC
matrix becomes prominent.

n k Code δ Degree Distributions

64

18

AE 0.10
Λ(x) =46x1 + x10 + 2x12 + 4x13 + 2x14 + 5x15 + 2x16 + 2x17

P (x) =4x2 + 7x3 + 11x4 + 8x5 + x6 + 4x7 + 2x9 + x10 + 2x11 + x13 + x16 + x18 + 3x19

Irregular LDPC 0.056
Λ(x) = 45x2 + x3 + 18x4

P (x) = 19x3 + 27x4

Regular LDPC 0.087
Λ(x) = 64x4

P (x) = 20x5.0 + 26x6.0

32

AE 0.16
Λ(x) =32x1 + x6 + 3x7 + 7x8 + 10x9 + 3x10 + 3x11 + 3x12 + 2x13

P (x) =x4 + 5x5 + 5x6 + 4x7 + 2x8 + 2x9 + 5x10 + x12 + 2x13 + x15 + x18 + x26 + 2x31

Irregular LDPC 0.079
Λ(x) = 31x2 + 33x3

P (x) = 31x5 + x6

Regular LDPC 0.13
Λ(x) = 64x4

P (x) = 32x8

46

AE 0.18
Λ(x) =19x1 + 3x2 + 14x3 + 9x4 + 9x5 + 7x6 + 2x7 + x8

P (x) =2x8 + x9 + 5x10 + x11 + 2x12 + 2x13 + 2x14 + x15 + x16 + x17

Irregular LDPC 0.15
Λ(x) = 17x2 + 47x3

P (x) = 5x9 + 13x10

Regular LDPC 0.22
Λ(x) = 64x4

P (x) = 14x14 + 4x15

Table 5.9: Degree Distribution of the Codes

The Tab. 5.9 provides the degree distributions of the codes. Similarly to what was observed
in Section 5.5.4, it can be seen that the learned codes have degree distributions with significantly
higher polynomial degrees than the regular and irregular LDPC codes (Tab. 5.9). This can prob-
ably be partly explained by the systematic constraint but could also be a code design strategy.
Surprisingly, these much higher degree distributions lead to decent performance on the GNBP
decoder. Moreover, it can be noted that the densities of the learned matrices are generally higher
than those of the LDPC codes, which is to be expected with a systematic matrix.

Comparison with State-of-the-Art (128,64) Codes - Impact of the Number of It-
erations: Finally, the AE is compared at the challenging (128,64) size to binary codes and
theoretical bounds from [170] (Figure 5.32). The model is trained and evaluated with a number
of decoding iterations ranging from 3 to 10 to study the impact of the latter on the performance.
When the number of iterations at evaluation is different from the one used during training, the
GNBP decoder is re-trained while keeping the previously learned code fixed. AR3A ( ) and
CCSDS ( ) LDPC codes [170] display better performance than the best AE GNBP ( ) but
their decoding complexity is also higher with up to 200 decoding iterations. For a fairer compar-
ison the CCSDS code [158] is decoded with 3 ( ), 5 ( ) and 10 ( ) BP iterations, thus
reducing the performance gap to half a dB, similar to the one observed between the AE and the
LDPC codes of Section 5.5.4. As expected, the performance of the standard and the AE codes
improves with the number of iterations. The number of training iterations of the AE also seems
to have an impact on the final performance. Figure 5.32 shows that it seems better to train the
AE with 3 iterations and subsequently evaluate it with 10 ( ) instead of training it with 10
iterations from the start ( ). Another ML-based approach relying on a GA is proposed as an
additional comparison, although it uses 20 iterations ( ) [108]. The latter performs well both
against standard LDPC and the AE. However, the GA approach is fundamentally different from
the one adopted in this section because it attempts to optimise LDPC codes based on existing
distributions while the AE learns ex nihilo. Although their decoding complexity is not easily
comparable to that of the AE, the performance of a Polar code ( ) and a TB-CC ( ) with
their respective decoders are also provided [170]. Finally, the performance of an extended BCH
is provided, showing poor BP performance ( ) even though its MLD performance ( ) is
close to the optimum. As before, the AE outperforms the BCH with a significantly reduced
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complexity. These results demonstrate that a systematic LBC of significant size can be learned
by a ML procedure, with performance relatively close to that of LDPC codes and a controlled
complexity.
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Figure 5.32: Comparison of Different (128,64) Codes and their Respective Decoders from [170,
108]
For the BP decoders, a study of the impact of the number of decoding iterations is conducted, both for the
proposed schemes and the conventional ones. For comparison with [170, 108], BLER is used on the y-axis instead
of BER.

5.5.5 Discussion and Perspectives

The proposed AE architecture is a performing, low complexity, AI-based approach for the joint
design of small-to-medium size LBC and associated weighted decoders. Instead of improving
the decoding procedure of codes that otherwise suffers from defects with respect to the targeted
decoder, the proposed model supports the joint design of a LBC tailored to a BP-like decoding
allowing significant performance gain. The main advantages of the approach are:

� Code agnostic: The proposed approach does not require the knowledge of any LBC scheme
from the literature, which allows to build codes of arbitrary size and rate.

� Repeatable: The proposed architecture offers a repeatable training procedure. The study
showed results within a 0.5 dB margin over 50 runs for a (31,16) code in Section 5.5.4.

� Adaptable: The AE model can be trained with various decoders, e.g BP or GNBP. While
GNBP has been shown to improve decoding performance on some codes, this study pointed
out in Section 5.5.4 that the AE trained with a BP decoder can have performance close to
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that of the AE trained with the GNBP. Although it has not been confirmed in Section 5.5.4,
a well designed code might thus not necessarily need a weighted decoding procedure.

� Interpretable and Low complexity: The tightly structured architecture ensures a controlled
number of parameters, tractable training procedure and high interpretability compared
to black-box ML-based approaches. After learning, the code matrices can be extracted
and eventually used in a standard LBC decoder ensuring backward compatibility with
legacy, non-AI based communication systems with a satisfactory level of performance.
This interesting property also allows the study of the learned matrices in order to better
understand the quality of the learned codes or to use them as initialization for other learning
algorithms.

� Scalable and Differentiable: As explained in Section 5.5.4, the structured design of both
encoder and decoder is a key enabler for the scalability of the approach. The model is
able to jointly learn a code and associated decoder only using the k basis vectors of the
information space, while generalising well to the many other unseen words even on relativity
important code size. Moreover, the different structures presented throughout the chapter
ensure the differentiability of the complete architecture.

� Efficient: The study of Section 5.5.4 showed improvement in terms of performance to
complexity ratios when compared to other approaches, e.g. NBP or high performance but
high complexity parallel decoders applied to (63,45) and (63,36) BCH codes. As shown
in Section 5.5.4, the performance of the learned codes with size up to (128, 64) are close
to those of LDPC codes, which are reference codes for BP decoding procedure. This
emphasises the ability of an AI-based system to design competitive LBC.

Still, several perspectives of future works can be outlined from the current proposition:

� The current architecture does not exploit the blind property of the decoder as described in
Section 5.4. Instead, a bridge model is used to keep the encoder and decoder matched during
training, which makes distributed online learning procedures complex in addition to limiting
the codes to standard forms only. The latter usually leads to denser PC matrices which
can be a limitation in terms of performance and decoding complexity when considering
BP decoders. As such, it would be interesting to further study a non systematic AE
architecture.

� The GNBP RNN cell uses a low complexity static decoding strategy which repeat a certain
number of time the BP operations under the same set of shared parameters. The decoding
performance could be improved by dynamically computing the decoding graph at each
decoding iterations of the RNN, based on the inputs and states of the decoder as it is often
the case in standard RNN-based approaches. One could learn codes permutations to be
applied during the decoding procedure, or inhibit certain parts of the graph, which has been
shown to improve significantly decoding performance in parallel decoders [171, 104, 106].

� A (GN)BP decoder was considered in this work but lower complexity decoders from the
literature e.g. MS, OMS or NOMS, could probably be used within the proposed system to
further reduce the complexity of the system while maintaining competitive performance.

� As shown in Section 5.5.4, the learned codes have unexpected degree distributions with high
degrees. Further studies are needed to understand the performance of these distributions.

5.5.6 Source Code

All the material necessary to reproduce the experiments listed in this section is available in open
access at:

https://github.com/Orange-OpenSource/GNBP
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CHAPTER 5: LEARNING PROCESS AT THE AIR INTERFACE: APPLICATION TO
CHANNEL CODING

5.6 Conclusion of the Chapter

In this chapter, we have examined the issue of applying ML techniques to improve the perfor-
mance of channel coding mechanisms. The latter impose difficult constraints on the learning
procedure due to the intensive use of finite field arithmetic. In a first part, and based on the
theory of FG described in Chapter 2, we detailed an iterative decoding method, known as BP,
which is notably implemented in 5G networks for the decoding of LDPC codes of data chan-
nels. In a second part, following the approach of Chapter 4, we described a structured RNN
model capable of executing a weighted and low-complexity version of the BP algorithm. In a
third part, we examined how the proposed structure was able to learn to decode a given coding
scheme without any prior knowledge. The NN model succeeded in learning to decode BCH codes
with performance at least equal to that of a conventional BP decoder. Finally, the approach was
taken a step further by defining a complete auto-encoder structure allowing the joint learning of
a code and the associated weighted RNN BP decoder. An extensive performance study of this
model has been provided, showing performance comparable to that of SOTA LDPC codes with
sizes up to 128 bits, which corresponds to the packet size typically encountered in IoT scenarios.
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CHAPTER 6
CONCLUSION

6.1 Reminder on the Context of this Work

The future 6G cellular networks will need to support the rapid expansion of the IoT services and
use-cases both in terms of traffic and QoS. These scenarios encompass very strong constraints
such as high spectral and energy efficiency, reduced hardware cost, complexity and subsequent
compute power, etc. All these constraints call for an efficient and low complexity PHY layer
design. While AI and ML techniques are expected to be largely integrated in future networks
to address the ever-growing complexity of the latter, they are particularly promising for the
improvement of PHY layer algorithms, including that of IoT systems.

6.2 Results

In this context, this work looked at how NN and ML could benefits to the constrained PHY layer
of such cellular IoT networks. In particular, the proposed study focused on several fundamental
base-band signal processing blocks, relying either on binary signals or sampled continuous signal,
such as channel coding, demodulation and channel equalisation.

Following the proposed approach and methodology, the first chapter of contributions, Chap-
ter 4, has explained how classical signal processing algorithms can be described in the NN for-
malism. One incentive behind this approach is to allow these algorithms to be run on hardware
accelerators for AI and thus benefit from their interesting properties in terms of efficiency. This
type of generic hardware has benefited from years of development, particularly in the areas of
CV and NLP, and can now be considered mature. It is already embedded in consumer devices,
such as smartphones (albeit for application tasks only), and is therefore widely available off
the shelf at a very competitive cost. Therefore, by expressing signal processing algorithms in a
compatible form, communication systems could benefit from these hardware targets resulting in
increased efficiency. Assuming some changes in the overall system architecture, a mutualisation
of AI computing resources could even be envisioned, as the hardware used by the RAN could
be exploited to process application tasks at the edge when it is not used by the communication
tasks. In the proposed study, equivalent low-complexity NN models have been proposed for
single and multi-path linear equalisation tasks. An ML procedure corresponding to the MMSE
solution has been applied to parameterise such a NN model, but without seeking a performance
gain over the conventional solution. The presence of a learning bias was demonstrated and for-
mally justified. Following a similar approach, a minimal NN model has been proposed for the
low-complexity demodulation of M-QAM modulations of arbitrary order. A solution for both
soft and hard demodulation was proposed. Finally, the proposed models were integrated into
a prototype low-complexity NN-based PHY layer which was tested under real operating con-
ditions using SDR cards and a channel emulator, proving the performance equivalence to the

149



6.3 PERSPECTIVES

corresponding conventional solution. The results described in this chapter have been published
in a conference paper [12].

The second contribution chapter, Chapter 5, took the previous proposal a step further by
using ML procedures to achieve better performance than classical PHY layer algorithms. Indeed,
a second advantage of expressing signal processing algorithms using NN structures is that it
allows the use of efficient learning procedures, such as GD and BPROP. The chapter starts
by describing how a conventional LBC decoding algorithm, namely the BP algorithm, can be
expressed using an interpretable and differentiable structure. Then, an ML algorithm is applied
to adapt the proposed structure to the decoding of a coding scheme from the literature and thus
improve the performance over the conventional solution. Among other things, and contrary to
the prior literature, one of the objectives of the proposal is to make the learning of the decoding
task possible without any knowledge of the coding scheme used by the transmitter. These first
findings led to the publication of a second conference paper [13]. Since one of the performance
limitations of the previous approach is due to the code used at the transmitter, an end-to-end
approach to the joint design of a coding scheme and the associated decoder is adopted in a second
part of the chapter. Based on the LBC decoder structure introduced earlier, a trainable end-
to-end AE architecture is proposed. The described structure and learning methods guarantee
scalability to block sizes currently challenging for ML-based linear block code design approaches.
Codes of up to 128 bits in size were successfully learned, demonstrating performance comparable
to SOTA LDPC codes in the short to medium length regime and thus the applicability of ML
and NN techniques for the realisation of such tasks. The results of this second part have been
published in a journal article [14].

This work contributed to the Hexa-X project, in particular to the WP4 on “AI-Driven Com-
munication and Computation Co-Design” as described in [6, 17, 18].

6.3 Perspectives

The use of AI, in its modern sense, at the PHY layer of communication systems is still in its
infancy. As more and more studies show its relevance for almost all parts of the radio interface,
new perspectives are opening up, leading to innovative approaches that could result in unexpected
paradigm shifts.

On the one hand, the use of neural network-based algorithms opens up new perspectives in
terms of hardware architecture that could be used for signal processing in future networks. The
shift from expensive, specialised hardware to generic, energy and cost efficient AI accelerators
could be a very interesting change. Furthermore, as AI is now used in more and more domains,
it could be conceivable in a MEC scenario to delegate AI-based application tasks to these new
network hardware resources, when available.

On the other hand, these approaches open up entirely new possibilities in terms of algorithm
performance and complexity thanks to advanced ML procedures. In particular, it is now possible
to consider the transition from a modular system of specialised blocks to the optimisation of the
overall system in an end-to-end manner. Although the joint optimisation of certain subsystems
has already been studied, for example in the framework of JSCC, its practical implementation
was often very complex. AI now makes it possible to consider such joint optimisation, although
it presents many challenges. The latter could even be considered at a larger scale, for example in
scenarios such as semantic communications, where the whole communication chain is optimised
according to the overall communication objectives.

More generally, as AI research has produced practical solutions that are now widely adopted in
all segments of the industry, AI is now often seen as a tool. In such a context, the “conventional”
works on many of the issues of the PHY layer, e.g. MIMO, ECC, etc., is still ongoing, but it is
now almost certain that they will involve this new tool at some point.
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A Proofs

A.I Sum of Random Binary Variables

Let xi be a binary random variable that can take the value 0 or 1 with probabilities pxi
(xi = 0)

and pxi(xi = 1), respectively. Let y be a second binary random variable defined as a modulo
sum of n variable xi:

y =

n⊕

i=1

xi (A.I.1)

Let also wi and ti be random variables given by wi = 1− 2xi and t =
∏n

i=1 wi.
Obviously, wi equals +1 or −1 with probabilities pxi

(xi = 0) and pxi
(xi = 1), respectively.

As a consequence:

E {wi} = pxi(xi = 0)− pxi(xi = 1) (A.I.2)

By hypothesis of independence:

E {t} =
n∏

i=1

E {wi} =
n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)] (A.I.3)

t is equal to +1 or −1 if an even or odd number of wi = −1 (or equivalently xi = 1).
Similarly, y equal 0 or 1 if an even or odd number of xi = 1.
As a consequence:

{
pt(t = +1) = py(y = 0)

pt(t = −1) = py(y = 1)
(A.I.4)

So:

E {t} = py(y = 0)− py(y = 1) =

n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)] (A.I.5)

Finally,

py(y = 0)− py(y = 1) =

n∏

i=1

[pxi
(xi = 0)− pxi

(xi = 1)] (A.I.6)
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B Decoding Complexity

Let C(n, k) be an irregular LBC of size (n, k) defined by its degree distributions from node
perspective Λ(x) and P (x). The number of operations involved in each step of the decoding is
entirely defined by these two polynomials1.

B.I Standard Belief Propagation Decoders

The objective is to evaluate the algorithmic complexity of one full iteration of standard BP
decoding over the irregular code C(n, k). The equations for variable to check node messages,
check to variable nodes messages and marginalisation computation are recalled:

µvi−→cj = λi +
∑

k ̸=j

µck−→vi (B.I.1)

µcj−→vi = 2 artanh


∏

k ̸=i

tanh
(µvk−→cj

2

)

 (B.I.2)

λ̃i = λi +
∑

k

µck−→vi (B.I.3)

Equation (B.I.1) involves Λi variable nodes of degree i from which are computed i variable
to check node messages, each based on i variable (when taking into account the a priori LLR λ)
and therefore requiring i− 1 additions (Figure B.I.1). No multiplication are involved.

+

+

λ

µ v
−→c

µc−→v

µ
c−→

v

Figure B.I.1: Equation (B.I.1)
- Variable to Check - Example
of Degree 3 Variable Node.

×

µ
c−→

v

µv−→c

µ v
−→c

Figure B.I.2: Equation (B.I.2)
- Check to Variable - Example
of Degree 3 Check Node.

+

+

+

λ

µ c
−→v

µc−→v

µ
c−→

v

Figure B.I.3: Equation (B.I.3)
- Marginalisation - Example of
Degree 3 Variable Node.

Hence, the number of additions and multiplications required for the computation of all the
variable to check nodes messages are:

NΣv−→c
=
∑

i

i(i− 1)Λi =
∑

i

i2Λi − e NΠv−→c
= 0 (B.I.4)

Similarly, equation (B.I.2) involves Pj check nodes of degree j from which are computed j
check to variable node messages, each based on j − 1 variables and therefore requiring j − 2
multiplications (Figure B.I.2). No additions are involved.

Therefore, the number of additions and multiplications required for the computation of all
the check to variables nodes messages are2:

1The reader should keep in mind that the following derivations assume that the implementations of the decoding
algorithms exploit the sparsity of the code (which is not necessarily the case in the present work).

2For simplification, the functions f1(x) = 2artanh(x) and f2(x) = tanh(x/2) are considered as tabular functions
stored in LUT that don’t modify the algorithmic complexity.
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NΣc−→v
= 0 NΠc−→v

=
∑

j

j(j − 2)Pj =
∑

j

j2Pj − 2e (B.I.5)

Finally, equation (B.I.3) involves Λi variable nodes of degree i where a marginalisation in-
volving i+ 1 variables is computed (Figure B.I.3).

As a result, the number of additions and multiplications required for the final marginalisation
are:

NΣv−→λ
=
∑

i

iΛi = e NΠv−→λ
= 0 (B.I.6)

Hence, the total number of operations required to perform one complete iteration of BP
algorithm over an irregular code is:

NΣBP
=
∑

i

i2Λi NΠBP
=
∑

j

j2Pj − 2e (B.I.7)

B.II Neural Belief Propagation Decoders

NBP algorithm as described in [101] improves the performances of standard BP by adding
trainable multiplicative weights into the BP algorithm. The NBP modifies equations (B.I.1)
and (B.I.3) as following:

µvi−→cj = ω
(λ)
i,j λi +

∑

k ̸=j

ω
(µ)
i,j,kµck−→vi (B.II.8)

λ̃i = ω
(λ̃)
i λi +

∑

k

ω
(µ̃)
i,k µck−→vi (B.II.9)

Since the number of operations required to compute messages from check to variable nodes is
unchanged from standard BP), the number of operations required to execute equations (B.II.8)
and (B.II.9) are:

NΣv−→c
=
∑

i

i2Λi − e NΠv−→c
=
∑

i

i2Λi (B.II.10)

And the complexity of the NBP marginalisation equation (B.II.9) is:

NΣv−→λ
=
∑

i

iΛi = e Πv−→λ =
∑

i

(i+ 1)Λi = e+ n (B.II.11)

Hence, the total number of operations required to execute one iteration of NBP over an
irregular code is:

NΣNBP
=
∑

i

i2Λi NΠNBP
=
∑

i

i2Λi +
∑

j

j2Pj + n− e (B.II.12)

B.III Gated Neural Belief Propagation Decoders

The GNBP decoder slightly reduces the decoding complexity compared to a NBP as the weighting
mechanism is simplified3 The equations of the GNBP decoder are recalled:

µvi−→cj = λi +
∑

k ̸=j

ω
(µ)
i,k µck−→vi (B.III.13)

λ̃i = λi +
∑

k

ω
(µ̃)
i,k µck−→vi (B.III.14)

3During training the GNBP decoder must be able to represent all possible codes of size (n, k). As a result, and
as already descirbed in Section 5.5.4, this is equivalent to consider that the code has higher complexity degree
distributions of the forms Λ(x) = kx(n−k)+(n−k)x and P (x) = (n−k)x(k+1). After training, a tailored decoder
can be devised for the learned code matrices.
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It follows that the number of operations required to execute equations (B.III.13) and (B.III.14)
for a fixed (i.e after training) irregular code are:

NΣv−→c
=
∑

i

i2Λi − e NΠv−→c
=
∑

i

iΛi = e (B.III.15)

NΣv−→λ
=
∑

i

iΛi = e NΠv−→λ
=
∑

i

iΛi = e (B.III.16)

As a result, the total number of operations required to perform one complete iteration of
GNBP algorithm over an irregular code is:

NΣGNBP
=
∑

i

i2Λi NΠGNBP
=
∑

j

j2Pj (B.III.17)

B.IV Parallel Belief Propagation Decoders

Perm-RNN or mRRD decoders as proposed in [101],[171] and [104] rely on the idea of executing
in parallel several BP decoders (or NBP,GNBP, etc.) using carefully chosen permutations of the
automorphism group of the code. If one of the M parallel decoders reaches a valid code-word,
the decoding process can be stopped. As a result, an upper bound for the complexity of such
family of decoder is the number of parallel decoders times the number of iterations per decoder
branch times the number of operation associated to one iteration of the considered decoder, e.g.
BP or NBP as detailed in previous sections.
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C BER and BLER Performance

To allow further comparisons, a complete summary of both BER and BLER versus Eb/No

[dB] performance of all the models presented in Chapter 5, Section 5.5 are provided. The
results are also available in open access along with the experiment source code at: https:

//github.com/Orange-OpenSource/GNBP

Table C..1: BER and BLER Performance

n k Code Decoder
BER @ Eb/N0 [dB] BLER @ Eb/N0 [dB]

0 1 2 3 4 5 6 0 1 2 3 4 5 6

8 4

AE (sys.)
BP - 5 iter. 8.10−2 6.10−2 3.10−2 1.10−2 5.10−3 2.10−3 4.10−4 2.10−1 1.10−1 7.10−2 3.10−2 1.10−2 5.10−3 1.10−3

GNBP - 5 iter. 8.10−2 6.10−2 3.10−2 1.10−2 5.10−3 1.10−3 4.10−4 2.10−1 1.10−1 7.10−2 4.10−2 1.10−2 5.10−3 1.10−3

MLD 8.10−2 5.10−2 3.10−2 1.10−2 5.10−3 1.10−3 3.10−4 2.10−1 1.10−1 6.10−2 3.10−2 1.10−2 4.10−3 1.10−3

Hamming (sys.)
BP - 5 iter. 1.10−1 7.10−2 4.10−2 2.10−2 1.10−2 4.10−3 1.10−3 2.10−1 1.10−1 1.10−1 5.10−2 2.10−2 1.10−2 3.10−3

GNBP - 5 iter. 1.10−1 7.10−2 4.10−2 2.10−2 9.10−3 3.10−3 8.10−4 2.10−1 1.10−1 1.10−1 4.10−2 2.10−2 6.10−3 2.10−3

MLD 8.10−2 5.10−2 3.10−2 1.10−2 4.10−3 1.10−3 3.10−4 2.10−1 1.10−1 5.10−2 3.10−2 8.10−3 2.10−3 5.10−4

31

11

AE (sys.)
BP - 5 iter. 1.10−1 7.10−2 3.10−2 2.10−2 7.10−3 1.10−3 4.10−4 4.10−1 3.10−1 1.10−1 8.10−2 3.10−2 8.10−3 2.10−3

GNBP - 5 iter. 1.10−1 7.10−2 3.10−2 1.10−2 3.10−3 8.10−4 4.10−4 4.10−1 3.10−1 1.10−1 6.10−2 2.10−2 3.10−3 4.10−4

MLD 8.10−2 4.10−2 2.10−2 5.10−3 1.10−3 1.10−4 1.10−5 3.10−1 1.10−1 6.10−2 2.10−2 4.10−3 6.10−4 6.10−5

AE BP (sys.)
BP - 5 iter. 9.10−2 5.10−2 3.10−2 1.10−2 3.10−3 8.10−4 1.10−4 4.10−1 2.10−1 1.10−1 6.10−2 2.10−2 5.10−3 9.10−4

GNBP - 5 iter. 9.10−2 5.10−2 3.10−2 1.10−2 3.10−3 6.10−4 9.10−5 4.10−1 2.10−1 1.10−1 6.10−2 2.10−2 4.10−3 7.10−4

MLD 8.10−2 4.10−2 2.10−2 5.10−3 1.10−3 3.10−4 4.10−5 3.10−1 2.10−1 8.10−2 3.10−2 8.10−3 2.10−3 3.10−4

BCH (non sys.)
BP - 5 iter. 2.10−1 1.10−1 8.10−2 4.10−2 2.10−2 6.10−3 2.10−3 8.10−1 6.10−1 4.10−1 2.10−1 1.10−1 3.10−2 1.10−2

GNBP - 5 iter. 2.10−1 1.10−1 8.10−2 4.10−2 2.10−2 5.10−3 7.10−4 8.10−1 6.10−1 4.10−1 2.10−1 1.10−1 3.10−2 5.10−3

BCH (sys.)
BP - 5 iter. 2.10−1 1.10−1 8.10−2 7.10−2 4.10−2 2.10−2 1.10−2 8.10−1 6.10−1 4.10−1 3.10−1 2.10−1 8.10−2 3.10−2

GNBP - 5 iter. 2.10−1 1.10−1 8.10−2 5.10−2 3.10−2 9.10−3 3.10−3 8.10−1 6.10−1 4.10−1 2.10−1 1.10−1 4.10−2 1.10−2

BCH (all forms) MLD 8.10−2 4.10−2 1.10−2 3.10−3 4.10−4 3.10−5 2.10−6 2.10−1 1.10−1 4.10−2 9.10−3 1.10−3 8.10−5 4.10−6

16

AE (sys.)
BP - 5 iter. 8.10−2 5.10−2 2.10−2 1.10−2 3.10−3 8.10−4 1.10−4 5.10−1 3.10−1 2.10−1 7.10−2 3.10−2 6.10−3 1.10−3

GNBP - 5 iter. 8.10−2 5.10−2 2.10−2 9.10−3 2.10−3 4.10−4 5.10−5 5.10−1 3.10−1 2.10−1 6.10−2 2.10−2 3.10−3 3.10−4

MLD 7.10−2 4.10−2 1.10−2 4.10−3 7.10−4 7.10−5 6.10−6 3.10−1 2.10−1 7.10−2 2.10−2 4.10−3 4.10−4 5.10−5

BCH (non sys.)
BP - 5 iter. 1.10−1 9.10−2 5.10−2 3.10−2 1.10−2 3.10−3 6.10−4 7.10−1 5.10−1 4.10−1 2.10−1 6.10−2 2.10−2 4.10−3

GNBP - 5 iter. 1.10−1 8.10−2 5.10−2 3.10−2 8.10−3 2.10−3 3.10−4 7.10−1 5.10−1 4.10−1 2.10−1 6.10−2 1.10−2 2.10−3

BCH (sys.)
BP - 5 iter. 1.10−1 9.10−2 6.10−2 4.10−2 3.10−2 1.10−2 6.10−3 7.10−1 5.10−1 4.10−1 2.10−1 1.10−1 5.10−2 3.10−2

GNBP - 5 iter. 1.10−1 9.10−2 5.10−2 3.10−2 1.10−2 4.10−3 8.10−4 7.10−1 5.10−1 4.10−1 2.10−1 9.10−2 3.10−2 6.10−3

BCH (all forms) MLD 7.10−2 4.10−2 1.10−2 4.10−3 5.10−4 6.10−5 2.10−6 3.10−1 2.10−1 7.10−2 1.10−2 2.10−3 2.10−4 8.10−6

63

36

AE (sys.)
BP - 5 iter. 1.10−1 7.10−2 4.10−2 2.10−2 4.10−3 1.10−3 2.10−4 8.10−1 6.10−1 3.10−1 1.10−1 4.10−2 1.10−2 2.10−3

GNBP - 5 iter. 1.10−1 8.10−2 4.10−2 2.10−2 3.10−3 3.10−4 3.10−5 8.10−1 7.10−1 3.10−1 1.10−1 3.10−2 4.10−3 4.10−4

BCH (non sys.)
BP - 5 iter. 1.10−1 1.10−1 8.10−2 4.10−2 2.10−2 1.10−2 3.10−3 1.100 1.100 8.10−1 5.10−1 3.10−1 1.10−1 4.10−2

GNBP - 5 iter. 1.10−1 1.10−1 8.10−2 4.10−2 2.10−2 5.10−3 8.10−4 1.100 1.100 8.10−1 5.10−1 3.10−1 8.10−2 1.10−2

NBP - 5 iter. [101] 1.10−1 1.10−1 8.10−2 4.10−2 2.10−2 5.10−3 8.10−4

BCH (cycle red.)

BP - 5 iter. 1.10−1 1.10−1 8.10−2 4.10−2 2.10−2 5.10−3 8.10−4 1.100 1.100 8.10−1 5.10−1 2.10−1 6.10−2 1.10−2

GNBP - 5 iter. 1.10−1 1.10−1 7.10−2 3.10−2 1.10−2 3.10−3 3.10−4 1.100 1.100 8.10−1 4.10−1 2.10−1 5.10−2 5.10−3

NBP - 5 iter. [101] 1.10−1 1.10−1 7.10−2 3.10−2 1.10−2 3.10−3 4.10−4

mRRD-RNN [101] 4.10−3 3.10−4 2.10−5

BCH (all forms) MLD (OSD) [101] 1.10−3 3.10−5 3.10−7

45

AE (sys.)
BP - 5 iter. 1.10−1 7.10−2 4.10−2 2.10−2 4.10−3 7.10−4 1.10−4 9.10−1 7.10−1 4.10−1 2.10−1 5.10−2 1.10−2 1.10−3

GNBP - 5 iter. 1.10−1 7.10−2 4.10−2 1.10−2 2.10−3 3.10−4 3.10−5 9.10−1 7.10−1 4.10−1 2.10−1 4.10−2 6.10−3 5.10−4

BCH (non sys.)
BP - 5 iter. [101] 1.10−1 9.10−2 7.10−2 4.10−2 2.10−2 6.10−3 3.10−3

NBP - 5 iter. [101] 1.10−1 9.10−2 6.10−2 3.10−2 1.10−2 3.10−3 5.10−4

BCH (cycle red.)
BP - 5 iter. 1.10−1 9.10−2 5.10−2 3.10−2 1.10−2 2.10−3 3.10−4 1.100 9.10−1 7.10−1 4.10−1 1.10−1 3.10−2 5.10−3

NBP - 5 iter. [101] 1.10−1 8.10−2 5.10−2 2.10−2 6.10−3 1.10−3 1.10−4

Perm-RNN [101] 6.10−2 2.10−2 3.10−3 3.10−4 1.10−5

BCH (all forms) MLD (OSD) [101] 6.10−2 2.10−2 3.10−3 2.10−4 8.10−6

64

18

AE (sys.)
BP - 5 iter. 1.10−1 8.10−2 4.10−2 2.10−2 1.10−3 3.10−3 2.10−3 6.10−1 5.10−1 2.10−1 1.10−1 5.10−2 2.10−2 1.10−2

GNBP - 5 iter. 1.10−1 6.10−2 4.10−2 1.10−2 3.10−3 5.10−4 9.10−5 6.10−1 3.10−1 2.10−1 7.10−2 2.10−2 4.10−3 7.10−4

Irregular LDPC
BP - 5 iter. 1.10−1 8.10−2 4.10−2 1.10−2 3.10−3 3.10−4 3.10−5 6.10−1 4.10−1 3.10−1 1.10−1 3.10−2 4.10−3 3.10−4

GNBP - 5 iter. 1.10−1 8.10−2 4.10−2 1.10−2 2.10−3 3.10−4 2.10−5 6.10−1 4.10−1 3.10−1 8.10−1 2.10−2 3.10−3 2.10−4

Regular LDPC BP - 5 iter. 6.10−2 3.10−2 8.10−3 1.10−3

32

AE (sys.)
BP - 5 iter. 1.10−1 9.10−2 4.10−2 2.10−2 6.10−3 2.10−3 4.10−4 8.10−1 6.10−1 3.10−1 2.10−1 5.10−2 1.10−2 4.10−3

GNBP - 5 iter. 1.10−1 7.10−2 4.10−2 1.10−2 3.10−3 4.10−4 3.10−5 8.10−1 6.10−1 3.10−1 1.10−1 3.10−2 4.10−3 5.10−4

Irregular LDPC
BP - 5 iter. 1.10−1 5.10−2 2.10−2 6.10−3 1.10−3 1.10−4 8.10−6 8.10−1 5.10−1 3.10−1 8.10−2 2.10−2 2.10−3 2.10−4

GNBP - 5 iter. 1.10−1 5.10−2 2.10−2 6.10−3 1.10−3 1.10−4 8.10−6 8.10−1 5.10−1 3.10−1 8.10−2 2.10−2 2.10−3 2.10−4

Regular LDPC BP - 5 iter. 1.10−1 6.10−2 2.10−2 5.10−3 1.10−3 5.10−5

46

AE (sys.)
BP - 5 iter. 9.10−2 7.10−2 4.10−2 1.10−2 3.10−3 7.10−4 6.10−5 9.10−1 8.10−1 5.10−1 2.10−1 6.10−2 1.10−2 1.10−3

GNBP - 5 iter. 9.10−2 7.10−2 4.10−2 1.10−2 2.10−3 3.10−4 3.10−5 9.10−1 8.10−1 5.10−1 2.10−1 5.10−2 7.10−3 8.10−4

Irregular LDPC
BP - 5 iter. 9.10−2 7.10−2 4.10−2 1.10−2 2.10−3 3.10−4 3.10−5 9.10−1 8.10−1 5.10−1 2.10−1 5.10−2 7.10−3 5.10−4

GNBP - 5 iter. 9.10−2 7.10−2 4.10−2 1.10−2 2.10−3 2.10−4 1.10−5 9.10−1 8.10−1 5.10−1 2.10−1 3.10−2 3.10−3 2.10−4

Regular LDPC BP - 5 iter. 1.10−1 8.10−2 5.10−2 2.10−2 6.10−3 1.10−3 1.10−4
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Titre: Modèles IA pour le traitement des signaux numériques dans les futurs réseaux 6G-IoT
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Résumé: Les technologies sans fil sont d’une impor-
tance capitale pour les sociétés d’aujourd’hui et les
futurs réseaux de communication de 6ème génération
sont appelés à relever nombre de défis sociétaux et
technologiques. Si les infrastructures de communi-
cation ont un impact environnemental croissant qu’il
est essentiel de réduire, les technologies numériques
ont également un rôle à jouer dans la réduction de
l’impact de tous les secteurs de l’économie. À cette
fin, les réseaux du futurs devront non seulement per-
mettre un transfert d’informations plus efficace, mais
aussi répondre aux besoins croissants de capacité
d’échange de données. C’est notamment le rôle des
cas d’utilisation de l’internet des objets, où un nom-
bre massif de capteurs permet de superviser des
systèmes complexes. Ces cas d’utilisation sont as-
sociés à de nombreuses contraintes telles que des
ressources énergétiques et une complexité limitées.
Par conséquent, une couche physique - chargée de
la transmission de l’information entre les noeuds du
réseau - efficace et peu complexe est absolument cru-
ciale. Dans cette optique, l’utilisation de techniques
d’intelligence artificielle est pertinente. D’une part,
le cadre mathématique des réseaux neuronaux per-

met des implémentations matérielles génériques ef-
ficaces et peu coûteuses. D’autre part, l’application
de procédures d’apprentissage permet d’améliorer
les performances de certains algorithmes. Dans
ce travail, nous nous intéressons à l’utilisation des
réseaux de neurones et de l’apprentissage automa-
tique pour le traitement numérique du signal dans
le contexte des réseaux 6G-IoT. En premier lieu,
nous nous intéressons à la transcription sous forme
de réseaux de neurones de certains algorithmes
d’égalisation, de démodulation et de décodage is-
sus de la littérature des communications numériques.
Dans un second temps, nous nous intéressons à
l’application de mécanismes d’apprentissage sur ces
structures de réseaux de neurones afin d’en améliorer
les performances. Un décodeur de codes linéaires en
bloc est proposé et permet la découverte à l’aveugle
d’un schéma de décodage dont les performances
sont au moins équivalentes à celles du décodeur de
référence. Enfin, une structure de bout en bout est
présentée, permettant l’apprentissage conjoint d’un
schéma de codage/décodage avec des performances
et une complexité comparables aux solutions état de
l’art.

Title: AI Models for Digital Signal Processing in Future 6G-IoT Networks

Keywords: 6G, Internet of Things, Physical Layer, Channel Coding, Neural Networks, Machine Learning

Abstract: Wireless technologies are of paramount
importance to today’s societies and future 6th genera-
tion communication networks are expected to address
many societal and technological challenges. While
communications infrastructures have a growing en-
vironmental impact that needs to be reduced, digi-
tal technologies also have a role to play in reducing
the impact of all sectors of the economy. To this
end, the future networks will not only have to en-
able more efficient information transfer, but also meet
the growing need for data exchange capacity. This
is particularly the role of the Internet of Things use
cases, where a massive number of sensors allow to
monitor complex systems. These use cases are as-
sociated with many constraints such as limited en-
ergy resources and complexity. Therefore, an effi-
cient and low-complexity physical layer - responsible
for the transmission of information between the net-
work nodes - is absolutely crucial. In this regard, the
use of artificial intelligence techniques is relevant. On

the one hand, the mathematical framework of neu-
ral networks allows for efficient and low-cost generic
hardware implementations. On the other hand, the
application of learning procedures can improve the
performance of certain algorithms. In this work, we
are interested in the use of neural networks and ma-
chine learning for digital signal processing in the con-
text of 6G-IoT networks. First, we are interested in
the transcription of certain equalisation, demodulation
and decoding algorithms from the digital communica-
tions literature into neural networks. Secondly, we
are interested in the application of learning mecha-
nisms on these neural network structures in order to
improve their performance. A linear block decoder is
proposed which allows the blind discovery of a decod-
ing scheme whose performance is at least equivalent
to that of the reference decoder. Finally, an end-to-
end structure is presented, allowing joint learning of
an encoding/decoding scheme with performance and
complexity comparable to state-of-the-art solutions.
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