Development of a numerical model of dispersive propagation of tsunamis
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Tsunamis generated by landslides are characterized by short wavelengths and high amplitudes, relative to depth. Their propagation is subject to frequency dispersion. Within the framework of the monitoring missions of the CEA's Department of Analysis, Surveillance and Environment (DASE), the challenge is to numerically simulate these tsunamis of gravity origin and to estimate the inundation heights. Currently, tsunami generation is simulated in the near field by a dedicated code while their propagation is simulated in the far field by the TAITOKO code. This code is also used by the French Tsunami Warning Center (CENALT), hosted by the CEA, and whose mission is to predict the water level on the French coast for tsunamis of tectonic origin and to launch alerts. The propagation in Mediterranean Sea of tsunamis of gravity origin can be dispersive for earthquakes of magnitude less than about 7. Until now, the dispersive propagation for tsunamis of tectonic or gravity origin is modeled by solving the standard Boussinesq equations. This Boussinesq model handles well the weakly dispersive and weakly nonlinear waves, but cannot handle strong nonlinearity or strong dispersion. This PhD's aim is to implement in TAITOKO a new approach which will allow to handle nonlinear and short waves. The starting point is an enhanced Boussinesq model which is numerically solved with a novel efficient high order finite difference based method. The approach proposed is based on a combination of fourth order centered finite differencing (FD4), combined with an original third order simplified Lax-Wendroff type time stepping called LW3e.

. The new LW3e-FD4 approach generates results as accurate as the third-order accurate Runge-Kutta method (RK3) with a computational time reduced by 35-40% in 1D.

The LW3e-FD4 method is then extended to 2D. This extension has carefully taken into account the issues of preserving some physically relevant stationary states (well balanced), as well as certain symmetries of the differential operators involved. The latter property appears to be crucial for the stability of the method.

The equations defined in the 2D system which allow the evaluation of the dispersive terms are interdependent. The discretization of the dispersive terms leads to a large system of sparse algebraic equations. Several formulations and several matrix inversions methods have been implemented to solve this system. The efficiency of these methods is compared in sequential implementation. The most efficient combination formulation-inversion method is obtained with a splitted formulation allowing pseudo one-dimensional row/column Gauss-Seidel iterations. The 2D parallelized implementation is validated through multidimensional cases which confirms the efficiency of the new LW3e-FD4 method compared to a classical RK3-FD4 method.

Développement d'un modèle numérique de propagation dispersive de tsunamis

Résumé :

Les tsunamis générés par des effondrements de terrain se caractérisent par des longueurs d'onde courtes et des amplitudes élevées, comparées à la profondeur. Leur propagation est soumise à la dispersion fréquentielle. Dans le cadre des missions de surveillance du Département Analyse Surveillance Environnement (DASE) du CEA, l'enjeu est de simuler numériquement ces tsunamis d'origine gravitaire et d'estimer les hauteurs d'inondation. Actuellement, la génération du tsunami est simulée en champ proche par un code dédié, tandis que leur propagation est simulée en champ lointain par le code TAITOKO. Ce code est également utilisé par le Centre français d'alerte aux tsunamis (CENALT), hébergé par le CEA, dont la mission est de prévoir les hauteurs d'eau des tsunamis d'origine tectonique à l'arrivée sur les côtes françaises et de lancer les alertes. La propagation de ces des tsunamis d'origine gravitaire en Méditerrannée peut être dispersive pour des séismes de magnitude inférieure à 7 environ. Jusqu'à présent, la propagation dispersive pour les tsunamis d'origine gravitaire ou tectonique est modélisée en résolvant les équations de Boussinesq standard. Ce modèle de Boussinesq considère les vagues faiblement dispersives et faiblement non linéaires, mais ne peut pas traiter de vague fortement non-linéaire ou fortement dispersive. Le caractère dispersif est pourtant essentiel dans les configurations qui nous intéressent.

L'objectif de cette thèse est d'implémenter dans TAITOKO une nouvelle approche permettant de traiter les ondes courtes non linéaires. Nous utilisons pour celà un modèle de Boussinesq amélioré qui est résolu numériquement avec une nouvelle méthode basée sur une combinaison de différences finies centrées d'ordre 4 (DF4) et d'une méthode d'intégration en temps originale de type Lax-Wendroff simplifié d'ordre 3 appelée LW3e.

Plusieurs méthodes d'intégration temporelle résolvant les équations de Boussinesq améliorées 1D sont implémentées et comparées à travers une analyse spectrale et la modélisation de benchmarks dispersifs [START_REF] Cauquis | Lax-wendroff schemes with polynomial extrapolation and simplified lax-wendroff schemes for dispersive waves: A comparative study[END_REF]. La nouvelle approche LW3e-DF4 génère des résultats aussi précis que la méthode Runge-Kutta d'ordre 3 (RK3) avec un temps de calcul réduit de 35-40% en 1D.

La méthode LW3e-FD4 est ensuite étendue au 2D en prenant soin de préserver certains états stationnaires physiquement pertinents, ainsi que certaines symétries des opérateurs différentiels impliqués. Cette dernière propriété semble être cruciale pour la stabilité de la méthode.

Les équations qui permettent l'évaluation des termes dispersifs dans le système 2D sont interdépendantes. La discrétisation des termes dispersifs conduit à un grand système d'équations algébriques. Plusieurs formulations et méthodes d'inversion de matrices ont été mises en oeuvre pour résoudre ce système. L'efficacité de ces méthodes est comparée avec une implémentation séquentielle. La combinaison formulation-méthode d'inversion la plus efficace est obtenue en séparant la résolution des deux équations en équations pseudo monodimensionnelles en ligne/colonne, ce qui permet l'utilisation d'itérations de la méthode de Gauss-Seidel. L'implémentation 2D parallélisée est validée par des cas multidimensionnels qui confirment l'efficacité de la nouvelle méthode LW3e-DF4 par rapport à une méthode classique RK3-DF4. Mots-clés : Propagation de vagues, Dispersion, Méthodes numeriques

Résumé en français Contexte

De nombreux tsunamis, consécutifs ou non à de forts séismes, sont générés ou accentués par le déclenchement d'effondrements de terrain. Ce fut le cas de plusieurs tsunamis historiques (Nice, 1564, 1979; Mer Ligure, 1887; Polynésie 1979 ; Papouasie, 1998; Java, 2012; Groenland, 2017 ; Anak Krakatau, 2018) ayant impacté plusieurs kilomètres de côtes proches ou lointaines. Les tsunamis générés par des effondrements de terrain se caractérisent par des longueurs d'onde courtes et des amplitudes élevées, relativement à la profondeur. Dans le cadre des missions de surveillance du Département Analyse Surveillance Environnement (DASE) du CEA, l'enjeu est de simuler numériquement ces tsunamis d'origine gravitaire et d'estimer les hauteurs d'inondation.

Le CEA, qui héberge le Centre français d'alerte aux tsunamis (CENALT), surveille également les tsunamis d'origine tectonique. La mission du CENALT est de prévoir les hauteurs d'eau sur les côtes françaises pour des tsunamis d'origine tectonique et de lancer une alerte le cas échéant. Les simulations sont réalisées en temps quasi-réel, dans la mesure où le CENALT ne dispose que de quelques minutes pour transmettre ces informations aux personnes en charge de l'évacuation en France sur les côtes de l'Atlantique Nord-Est et de Méditerrannée.

Pour réaliser ces modélisations, le CENALT utilise le code Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF], qui contient cinq méthodes non-dispersives, dont deux à capture de choc, qui résolvent les équations de shallow water, et une méthode dispersive qui résout les équations de Boussinesq standard. Utiliser ce modèle dispersif revient à résoudre les équations de shallow water en y ajoutant la prise en compte de la dispersion fréquentielle, qui permet de mieux modéliser la formation d'un train d'onde. Cette dispersion fréquentielle, parfois considérée comme négligeable, peut apporter des modifications significatives à la modélisation dans le cadre d'alerte tsunamis : un décalage pouvant atteindre plusieurs heures dans le temps d'arrivée des vagues à la côte, ou l'addition d'une vague d'amplitude non-négligeable dans le train d'onde. Ces différences peuvent être particulièrement fortes lors de propagation de longues durées, comme dans le cas de tsunamis transocéaniques.

Le modèle de Boussinesq standard implémenté dans Taitoko simule très bien les vagues faiblement non-linéaires et faiblement dispersives, mais ne peut pas simuler correctement les vagues fortement non-linéaires ou fortement dispersives. Ce type de vagues est majoritairement détecté lors de tsunamis d'origine gravitaire, ainsi qu'on l'a observé en 1979 en Polynésie Française. Dans le cas des tsunamis d'origine tectonique, on constate que la propagation est dispersive, voire fortement dispersive, pour des séismes de magnitude inférieure à 7 environ. Ce modèle n'est donc pas suffisant pour modéliser les vagues courtes parfois générées par de petits séismes dans la Mer Méditerrannée ou par de petits glissements de terrain.
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Travail effectué

Au cours de cette thèse, j'ai développé et implémenté dans le code Taitoko deux nouvelles méthodes capables de modéliser des vagues courtes et faiblement non-linéaires. Les équations de Boussinesq standard n'étant pas capables de simuler la propagation de vagues en eau profonde ( λ < 2d, où λ et d sont respectivement la longueur d'onde et la profondeur), j'ai choisi d'utiliser le modèle des équations de Boussinesq étendues, dont le domaine de définition est plus important. D'autres modèles comme les équations 3D de Navier-Stokes peuvent en théorie aussi simuler la propagation de vagues en eau profonde. Toutefois, d'après la littérature, la propagation des ondes courtes s'effectue de façon non satisfaisante [START_REF] Kazolea | Wave propagation, breaking, and overtopping on a 2d reef: A comparative evaluation of numerical codes for tsunami modelling[END_REF]. Ceci est attribué à la nécessité d'un maillage haute résolution, très coûteux en temps de calcul et en place mémoire. Ce coût est prohibitif dans le cadre d'alertes tsunamis. Les équations de Boussinesq sont en revanche 2D et peuvent répondre aux besoins de l'alerte tsunami.

Différentes approches existent pour résoudre les équations de Boussinesq. Certains codes utilisent une discrétisation Volumes Finis; c'est le cas dans les codes Mike 21 [START_REF] Warren | Mike 21: a modelling system for estuaries, coastal waters and seas[END_REF], Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF] et FUNWAVE-TVD [START_REF] Shi | Funwave-tvd fully nonlinear boussinesq wave model with tvd solver -documentation and user's manual[END_REF]. Les codes Nektar++ [START_REF] Cantwell | Nektar++: An open-source spectral/hp element framework[END_REF] et Uhaina [START_REF] Filippini | Uhaina : A parallel high performance unstructured adaptive near-shore wave model[END_REF] utilisent quant à eux une discrétisation Éléments Finis. En revanche, le modèle de Boussinesq standard implémenté dans Taitoko est résolu en utilisant une discrétisation Différences Finies. Notre objectif est, en restant dans le même cadre, de proposer des méthodes plus précises. On utilisera donc une discrétisation Différences Finies. Afin de s'assurer que l'erreur de discrétisation soit plus petite que les termes dispersifs de troisième ordre, nous avons utilisé des Différences Finies centrées précises à l'ordre 4 (DF4).

Une des difficultés des termes dispersifs ajoutés par les modèles de type Boussinesq est qu'ils incluent des dérivées mixtes en temps et en espace. Dans le meilleur des cas, la résolution de ces systèmes nécessite au minimum l'inversion d'un système linéaire creux à chaque pas de temps. Dans cette thèse, nous avons reformulé les équations de Boussinesq étendues de façon à supprimer toute dérivée mixte temps-espace en ajoutant deux équations implicites et interdépendantes au système. Ces équations additionnelles permettent d'évaluer les termes dispersifs dans les directions x et y.

Dans le cas linéaire, un des moyens d'évaluer les caractéristiques dispersives d'un système ou d'un modèle est d'étudier sa relation de dispersion. La précision de la discrétisation spatiale dépendant des données disponibles, nous faisons une étude spectrale sur les méthodes d'intégration en temps en considérant les schémas continus en espace. D'après Lu et Qiu [START_REF] Lu | Simulations of shallow water equations with finite difference lax-wendroff weighted essentially non-oscillatory schemes[END_REF] et Qiu et Shu [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF], les méthodes Lax-Wendroff (LW) sont plus efficaces que les méthodes Runge-Kutta (RK) quand elles sont associées à une méthode WENO d'intégration en espace. Les relations de dispersion des méthodes LW et RK étant les mêmes jusqu'à au moins l'ordre 3, elles produisent des résultats similaires dans des cas linéaires. Ces deux méthodes requièrent la résolution d'un système implicite par ordre de précision en temps à chaque pas de temps, ce qui les rend très coûteuses en temps de calcul. Nous cherchons une méthode d'intégration en temps plus efficace en comparant plusieurs méthodes Runge-Kutta (RK) et approximations de méthodes Lax-Wendroff (LW) 1D à travers l'analyse spectrale et la simulation de cas-tests. Cette étude a été réalisée sur des valeurs sans dimension afin de rendre ces résultats plus facilement exploitables dans d'autres domaines physiques tels que l'acoustique ou la sismologie.

Trois schémas explicites et trois schémas implicites d'ordre 2 en temps, ainsi que deux schémas d'ordre 3 en temps, sont définis afin d'approcher les méthodes Lax-Wendroff d'ordre 2 et 3 notées respectivement LW2 et LW3. L'ensemble de ces schémas est décrit avec précision dans le Chapitre 3. En ce qui concerne les schémas de deuxième ordre, le schéma explicite LW2e 1 est probablement le meilleur compromis entre le temps de calcul et la précision. Comparé au temps de calcul du schéma RK2, celui des schémas LW2e 1 et LW2e 2 est réduit d'approximativement 40% et 48% respectivement.

Les résultats obtenus étant cependant parfois meilleurs avec le schéma explicite LW2e 2 , il faudrait approfondir les recherches. Néanmoins, aucun des schémas d'ordre 2 n'est capable de modéliser les vagues les plus courtes générées par la propagation d'une gaussienne. Aucun de ces schémas temporels ne convient donc à notre objectif.

Les schémas d'ordre trois sont en général plus précis, et sont capables de modéliser de telles ondes. Plusieurs simplifications de la méthode LW précise à l'ordre 3 ont aussi été étudiées afin de déterminer si un des termes spécifique à l'ordre 3 peut être négligé. Il en est ressorti que seul le terme contenant une dérivée temporelle deuxième des termes dispersifs était négligeable. Les résultats obtenus avec les schémas d'ordre 3 et le schéma simplifié génèrent des résultats similaires en terme de précision. C'est en étudiant leur temps de calcul qu'on observe des différences notables (voir Chapitre 4). Les schémas les plus rapides sont l'approximation explicite de la méthode Lax-Wendroff d'ordre 3 notée LW3e et le schéma simplifié de la méthode LW3, qui montrent une réduction du temps de calcul d'environ 37 % et 30% comparé à celui de la méthode RK3. Ce gain de temps s'explique par le remplacement de certaines inversions de matrices par un calcul approché des dérivées temporelles des termes dispersifs. On choisit en conséquence de conserver le schéma LW3e comme méthode d'intégration en temps.

Ayant défini la méthode d'intégration la plus adaptée en 1D, l'implémentation LW3e-FD4 a été étendue au 2D. Deux méthodes ont été implémentées dans Taitoko, l'une résolvant la formulation conservative (LW3eC-DF4) et l'autre la formulation non-conservative (LW3eNC-DF4) des équations de Boussinesq étendues. On parle de formulation conservative et non-conservative uniquement pour les équations de conservation de la masse et des moments. Les équations additionnelles permettant de calculer les termes dispersifs sont en revanche toujours sous forme non-conservative afin de réduire le temps de calcul.

Nous mettons en évidence au cours de cette implémentation que le calcul discret des dérivées troisièmes de l'élévation de la surface est crucial pour la stabilité des méthodes implémentées. La stabilité des méthodes semble être atteinte en emboîtant les dérivées de premier ordre pour obtenir des dérivées d'ordre supérieur (voir Chapitre 5). La méthode non-emboîtée présentée ne permet par exemple pas de remplir la condition de rotationel nul des termes dispersifs dans les cas linéaires sur fond plat, ce qui mène rapidement à une explosion des résultats. Les résultats préliminaires obtenus en comparant une méthode LW3e-DF4 et une méthode RK3-DF4 sur la résolution des équations conservatives de Boussinesq montre que l'impact de la discrétisation est indépendant du schéma temporel, et que la méthode RK3 semble plus prompte à générer des instabilités que la méthode LW3e. La méthode LW3eNC montre une réaction similaire aux deux méthodes de discrétisation.

De plus, les deux équations additionnelles définies dans notre formulation des équations de Boussinesq sont liées et implicites. Nous testons ici l'efficacité de plusieurs formulations du système discrétisé et de plusieurs méthodes d'inversion de matrice. Les résultats obtenus avec l'implémentation séquentielle montrent une meilleure efficacité en séparant le système de deux équations selon la formulation v2B définie dans le Chapitre 6. Cette formulation génère deux matrices de discrétisation pentadiagonales en utilisant des numérotations différentes : une numérotation ligne par ligne et une numérotation colonne par colonne. On peut alors adapter les méthodes d'inversion de matrice à cette forme pentadiagonale et ainsi de réduire considérablement le temps de calcul. En comparant des méthodes de Gauss et de Gauss-Seidel, nous obtenons un meilleur rendement avec la méthode Gauss-Seidel adaptée aux matrices pentadiagonales.

L'inversion de matrice est ensuite parallélisée. On divise la matrice complète en plusieurs sousmatrices réparties sur les différents processeurs. La méthode de Gauss-Seidel est ensuite appliquée simultanément à ces sous-matrices, tout en s'assurant que les valeurs aux limites des sous-domaines soient bien échangées entre les processeurs. On continue ainsi jusqu'à converger vers la solution du système inverse.

Nous évaluons finalement la précision et l'efficacité des deux nouvelles méthodes implémentées pour résoudre les formulations conservatives et non-conservatives des équations de Boussinesq étendues dans le Chapitre 7. Ces méthodes sont comparées, suivant le cas-test, soit à la méthode dispersive de Taitoko résolvant les équations standard de Boussinesq, soit à une méthode RK3-DF4 résolvant les équations de Boussinesq étendues conservatives. Les deux méthodes ont été validées dans le cas de vagues courtes faiblement non-linéaires se propageant sur un fond marin plat.

La méthode non-conservative montre parfois des difficultés à traiter les frontières du maillage ou les frontières terre-mer (ou dry-wet), qui s'accroissent quand le maillage est raffiné. Cette erreur numérique demandera un traitement supplémentaire avant de pouvoir valider la méthode et de la comparer à la méthode conservative.

La version conservative a en revanche été validée dans ces deux cas. Une viscosité artificielle y a été ajoutée afin de traiter certaines frontières dry-wet spécifiques aux quatrième et cinquième cas-tests. Cette viscosité artificielle est nécessaire pour éviter les irrégularités générées près de la frontière sec-mouillé. Celà permet à cette nouvelle méthode de traiter la plupart des benchmarks.

Les résultats préliminaires obtenus en comparant les méthodes LW3e et RK3 résolvant les équations conservatives donnent des résultats similaires en terme de précision. C'est aussi le cas de la méthode LW3eNC-FD4 quand il n'y a pas de problème aux frontières.

Une autre différence notable entre la résolution des équations conservatives et non-conservatives est le temps de calcul. Les deux méthodes sont bien sûr plus rapides qu'une résolution avec une méthode RK3, mais pas dans les mêmes proportions. En comparant les temps de calculs des deux nouvelles méthodes à la méthode RK3C-DF4, on observe une diminution d'environ 60% en utilisant la méthode LW3eNC-DF4 et d'environ 42% en utilisant la méthode LW3eC-DF4.

Pour résumer :

Deux nouvelles méthodes résolvant les équations de Boussinesq étendues sous forme conservative et non-conservative ont été implémentées dans le code tsunami du CEA nommé Taitoko. Ces méthodes sont capables de modéliser la propagation de vagues courtes et non-linéaires sur un fond marin plat et sur certaines bathymétries.

La formulation conservative semble capable de gérer la plupart des cas-tests. Une viscosité artificielle est nécessaire pour traiter les instabilités qui apparaissent parfois près de la côte.

La formulation non-conservative génère parfois des irrégularités en présence des frontières du maillage ou des frontières dry-wet. Ces irrégularités augmentent quand on raffine le maillage. On attribue celà à un mauvais traitement des frontières.

Les deux méthodes LW3e-DF4 sont plus rapides que la méthode RK3C-DF4. Des résultats préliminaires montrent une réduction du temps de calcul plus importante d'environ 18% dans le cas de la méthode LW3eNC-DF4.

Perspectives futures

Plusieurs axes de recherche seront explorés dans le futur :

La méthode Boussineq standard de Taitoko passe des équations de Boussinesq aux équations shallow water en s'approchant de la côte, ce qui permet de limiter l'apparition d'irrégularités.

Une perspective future pourrait être de ne plus prendre en compte les termes dispersifs dans nos nouvelles méthodes quand on est proche de la côte, afin de réduire encore, voire de supprimer totalement ces irrégularités.

La méthode non-conservative nécessite des modifications afin de traiter correctement les frontières. Des recherches supplémentaires seront ensuite nécessaires pour mettre en évidence les différences entre les deux nouvelles méthodes. Une attention particulière sera portée au temps de calcul.

La majeure partie du temps de calcul est liée à l'inversion de matrices. Si aucun des solveurs trouvés dans la littérature n'est vraiment adapté aux matrices pentadiagonales, il existe des méthodes numériques qui le sont. Il serait intéressant dans le futur de tester certaines de ces méthodes afin de réduire encore le temps de calcul des méthodes implémentées. 

Introduction

The word 'tsunami' comes from the japanese 'tsu', the port, and 'nami', the wave. It can be thus translated as port wave. It generally consists of several waves arriving at the coast every ten to thirty minutes for a duration which can reach several hours. It is generated by a vertical displacement of the water surface, originated by a displacement of the sea floor due to an earthquake or to a submarine landslide. The waves generated by this displacement propagate until hitting the shores, and may generate material and human losses.

The lifetime of a tsunami consists of three steps: the generation, the propagation and the flooding of the coast, that we call run-up.

Once the water surface is deformed, the wave propagates. In most cases, the amplitude of the wave is reduced during the propagation due to energy dispersion. However, the wave celerity and amplitude depend also on the sea depth variation. Due to the shoaling phenomenon, the energy conservation implies that the deeper the water is, the faster the wave propagates. This principle is illustrated in Fig 1 .1, where the wave slows and increases as the water depth decreases. It is the reason why wave heights of only a few centimeters offshore can reach meters when hitting the coast.

Run-up is the less-known step, due to the difficulty to forecast a moving dry-wet boundary. It is also the most critical phase for people in charge of the population's evacuation. The material on which the wave propagates as well as the buildings and structures along the path influence the characteristics and severity of the impact of the wave. Modelling the run-up accurately requires really precise and updated digital terrain and elevation models, which are hard to find and increase greatly the computational time.

As part of tsunami alert, we need fast modelling. In this study, we focus on the evaluation of the time, location and amplitude of arrival at the coast rather than on the run-up. For this exercise, all the effort goes to the precise and efficient modelling of wave propagation.

In this introduction, we briefly present the three types of tsunami dispersion, the French tsunami alert center and the main phases of this PhD.

Dispersive effects

Tsunami propagation is strongly influenced by energy dispersion, that we can classify in three types: nonlinear dispersion, frequential dispersion and geometrical dispersion. Their importance depends on the sea floor, on the depth and on the wavelength.

A wave can be seen as the composition of several elementary signals of different wavelengths. This wavelength has an influence on the celerity of each of these elementary waves. A long wave propagates faster than a short one: their phase velocity is, in linear theory, equal to c = g k th(kh)

with k the wavenumber, h the water height, and g the gravitational acceleration. These different phase velocities separate the initial wave into elementary waves along the propagation, thus generating a wave train. This effect is called frequential dispersion. At the generation of the frequential dispersion, the first wave is the highest. During the generation of the wave train, the maximum amplitude propagates at the group velocity, which corresponds to the mean velocity of the tsunami. The elementary waves not propagating at the same velocity, the maximum amplitude can switch from an elementary wave to another during the propagation. Nonlinear dispersion steepens the waves as they propagate. Unlike the frequential dispersion, it is more noticeable when the water depth decreases. This dispersion generates discontinuities of fluxes, hence complicating the modelling.

Geometrical dispersion defines the laws linking the amplitude decrease to the distance travelled by the wave. Unlike the two other types of dispersion, this dispersion is obviously taken into account in all the free surface models, even those called non-dispersive.

Following this classification, we can deduce that there are two phases during which the dispersion is significant: -during deep water propagation and up to the early phase of the shoaling, when the earthquakes tsunamis are linear, -in shallow water, where dispersion and nonlinear effects interact leading to undular bores.

The importance of dispersion tends to increase for long-distance propagation. There are, nevertheless, phases of the propagation where dispersion is negligible. With all these different effects, how to estimate the timing when dispersion is negligible? Glimsdal et al. [START_REF] Glimsdal | Dispersion of tsunamis: Does it really matter?[END_REF] define a dispersion time that depends on the wavelength, on the water depth during propagation, and on the propagation distance or time. Due to the modifications of arrival time and amplitude of the waves caused by the dispersion, as well as the increase of computational time required to evaluate this dispersion, it is crucial to know when to take it into account. 

CENALT

In metropolitan France, tsunami alerts are launched by the French Tsunami Alert Center (CENALT), located in Bruyères-le-Châtel, which has two objectives. The first one is to evaluate in near real time the amplitude of waves along the French coasts, and the second to create a database determining the tsunamigenic potential of a water displacement, generally generated through an earthquake (Fig 1 .2). This data is used to evaluate the risk of a water surface movement and to launch an alert within fifteen minutes to countries located in the Mediterranean Sea and the North East Atlantic Ocean.

To perform such simulations, the CENALT uses the tsunami code Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF]. It contains five non-dispersive models solving the shallow water equations and one dispersive model solving the standard Boussinesq equations, which corresponds to the shallow water equations with an additional term taking into account the frequential dispersion and generates more accurate results.

Denoting µ := d/L the frequential dispersion parameter, L a caracteristical wavelength, k the wavenumber and d the water depth, the weakly nonlinear equations are defined neglecting terms containing µ n for n > 2, and fulfill the hypotheses that µ ≤ 0.5 and kd ≤ π. Taitoko's Boussinesq The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step.

model handles well the weakly dispersive and weakly nonlinear waves, but cannot handle strong nonlinearity or strong dispersion. Equations are solved using a second order temporal scheme and a second order accurate Finite Difference discretization, and are obviously more accurate than shallow water models. Two important disadvantages are that it is far more expensive in computational time than shallow water models, and that it does not handle the really short and nonlinear waves such as those generated by submarine and subaerial landslides, as can be seen in Fig 1 .3. In this modelling, a wave train is generated due to the frequential dispersion generated by a seism. As this wave train goes away from the epicenter of the seism, amplitudes at the epicenter should reduce until nothing, yet we see here the appearance of unrealistic waves.

PhD's objectives and achievments

This PhD's aim is to implement in Taitoko a new method able to handle short and weakly nonlinear waves. The first step is to choose a model with a larger domain of definition than the standard Boussinesq model already in Taitoko, which is suitable to weakly dispersive weakly nonlinear wave. Furthermore, standard Boussinesq equations cannot simulate the propagation of wave in deep-water ( kd > π ) because its dispersion relation has very limited accuracy for d/l 0 > 0.48, [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] where d is the water depth and l 0 is a characteristic wavelength. We notably evaluate the nonlinearity with more accuracy. The current Taitoko's Boussinesq model is second order accurate in time and around second order accurate in space. The momentum equations of this implicit model are discretized with staggered Finite Differences and solved successively until convergence. Due to this iterative method, the second order in space is in reality achieved only for linear waves, the dispersive terms being evaluated with a lower order. A more accurate model as the one we look for has to take into account terms with greater order than the current ones.

To go beyond the second-order FD of Taitoko, we may use for example compact or Padé differences [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF], residual based differencing [START_REF] Lerat | On the design of high order residual-based dissipation for unsteady compressible flows[END_REF], summation by parts Finite Differences [START_REF] Del Rey Fernández | Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations[END_REF] or WENO Finite Differences methods [START_REF] Shu | High order finite difference and finite volume weno schemes and discontinuous galerkin methods for cfd[END_REF].

Each of these settings has some appealing properties. Another aspect which plays a major role is the time-stepping scheme. Boussinesq models always involve mixed spatial-temporal derivatives. In the best of cases, this requires the inversion of a sparse linear system at every evaluation of a new solution. Several studies propose ad-hoc time integration schemes for Boussinesq equations [START_REF] Shi | A high-order adaptive time-stepping tvd solver for boussinesq modeling of breaking waves and coastal inundation[END_REF] [START_REF] Wei | Time-dependent numerical code for extended boussinesq equations[END_REF] [17] [START_REF] Tavakkol | Adaptive third order adams-bashforth time stepping scheme for 2d extended boussinesq equations[END_REF].

Different approaches exist to solve Boussinesq equations. Some codes use a Finite Volume discretization ; it is the case for the codes Mike 21 [START_REF] Warren | Mike 21: a modelling system for estuaries, coastal waters and seas[END_REF], Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF] and FUNWAVE-TVD [START_REF] Shi | Funwave-tvd fully nonlinear boussinesq wave model with tvd solver -documentation and user's manual[END_REF]. The codes Nektar++ [START_REF] Cantwell | Nektar++: An open-source spectral/hp element framework[END_REF] and Uhaina [START_REF] Filippini | Uhaina : A parallel high performance unstructured adaptive near-shore wave model[END_REF] use a Finite Element discretization. Taitoko's standard Boussinesq model is solved using a Finite Difference discretization. Our objective is to propose more accurate methods in the same framework. We then use a Finite Difference discretization too.

The contributions of this work are summed up as:

Reformulation of the Boussinesq equations into a form erasing the time-space derivatives;

Definition of several simplifications of Lax-Wendroff methods in single and multi-step methods;

Minimization of the impact of numerical dispersion through a 1D Fourier analysis and a quantitative evaluation of the Runge-Kutta and approximated Lax-Wendroff methods;

2D extension of the implementation paying attention to the preservation of some symmetries and to the optimization of the system inversion;

Implementation of an iterative solver and a parallelized scheme into Taitoko.

The work produced led to the following publications and presentations:

A first article: This PhD is organized as follows:

Chapter 2 discusses free surface models.

Chapter 3 presents the basic ideas of approximated 1D Lax-Wendroff (LW) schemes and their Fourier analysis compared to Runge-Kutta (RK) methods.

Chapter contains the results obtained applying RK and approximated LW schemes to 1D benchmarks. The efficiency of these schemes is intercompared.

Chapter presents the 2D extension of an explicit approximation of LW3 scheme and two discretized approachs which are compared on 2D benchmarks.

Chapter 6 presents three formulations of the discretized system and several inversion methods, whose efficiencies are compared.

Chapter contains the results obtained applying the Taitoko, RK3 and LW3e schemes to 2D benchmarks and a comparison of their efficiency.

Chapter 2

Free surface wave models

From the Navier-Stokes to the Shallow Water equations, different models can be used to to model waves propagation. Depending on the model, some effects are taken into account and others are neglected: : non-linear effects, frequential dispersion, propagation of vorticity, viscous effects and production of vorticity... Why choose a model rather than another ? Which assumptions are used to define these models ? In which conditions can they be applied ? What are their limits ? How evaluate their performances ?

As regards tsunami propagation, some hypotheses are taken into account :

The effect of boundary layers is neglected due to the large water depth

The vorticity is small and then not taken into account.

The aftershocks of a tsunamigenic seism having few effects on the tsunami compared to the initial floor displacement, oceanic floor is considered fixed once the initial water surface perturbation is generated.

The dispersive effects are generally weak, since tsunamis consist in long waves.

We discuss in this chapter several famous free surface wave models : firstly the Boussinesq-types models, then the Navier-Stokes models and finally the shallow water ones. While presenting the Boussinesq-type models, I detail the formulations solved in this PhD. The third section is devoted to the presentation of a method to evaluate the dispersive properties of a model. This method is used in Chapter 3.

Most of the variables used in these systems are described in Fig 2 .1, where (u, v, w) t is the velocity field following the cartesian x-, y-and z-directions, η is the surface elevation, d is the water depth and h = η + d is the water height. We also denote F x and F y the external forces along the xand y-directions and L the wavelength.

Two parameters are associated to Boussinesq-type and Shallow Water equations : the nonlinearity parameter = η/d and the dispersion parameter µ = d/L.

Boussinesq-type equations

Boussinesq-type equations are an approximation of the fully dispersive nonlinear potential equations [START_REF] Wei | Time-dependent numerical code for extended boussinesq equations[END_REF], within an error of in O(µ 4 ). The first Boussinesq model was derived by J. Boussinesq in 1872, but for horizontal bottom only. It assumes the irrotationality of the flow, a parabolic vertical dependence of the horizontal velocity and a linear dependence of the vertical velocity. These assumptions allow to reduce the threedimensional problem to a two-dimensional one. The equations include weakly dispersion (µ 2 1) and weakly nonlinearity ( 1).

The presence of dispersive terms within cancels the shock-capturing capacity present in shallow water models. To ensure the stability of Boussinesq schemes, we fulfill the condition CF L := √ gh∆t/∆x ≤ 1

This section is devoted the presentation of three Boussinesq-type models : the standard Boussinesq models, the enhanced ones and the fully nonlinear and fully dispersive ones.

Standard Boussinesq equations

Peregrine (1967) derives the Boussinesq model for variable depth. This model uses the free-surface elevation and the depth-averaged velocity as the dependent variables. This model is widely used and is generally called the "standard Bousssinesq" model.

In the shallow water theory, only the first term on the right hand side of the Boussinesq-type models is reproduced. The second term O(µ 2 ) is reproduced by the "standard" Boussinesq formulation. These equations are based on the assumptions of weak dispersion and weak nonlinearity and assume O(µ 2 ) = O( ) 1. The terms O( µ 2 ) and O(µ 4 ) are omitted in the momentum equations whereas the continuity equation is exact. These equations write :

∂ t η = -∂ x (hu) -∂ y (hv) ∂ t u + g∂ x η + u∂ x u + v∂ y u = d 2 ∂ x (∂ x (d∂ t u) + ∂ y (d∂ t v)) - d 2 6 ∂ x (∂ xt u + ∂ yt v) ∂ t v + g∂ y η + u∂ x v + v∂ y v = d 2 ∂ y (∂ x (d∂ t u) + ∂ y (d∂ t v)) - d 2 6 ∂ y (∂ xt u + ∂ yt v)
with the constant g = 9.81 m.s -2 .

The major limitation of these equations is that they are restricted to relatively shallow water depths. The standard Boussinesq equations generally break down when the water depth is greater than one fifth of the wavelength. Moreover, nonlinear effects are also assumed to be small. The Peregrine equations are rewritten by Abott et al. (1978) in a conservative formulation, where the conservative variables are the water depth h=eta+d and the flux Q=hu [3].

Enhanced Boussinesq equations

Later, extended forms of Boussinesq equations have been derived by Madsen and Sorensen (1992) [START_REF] Madsen | A new form of the boussinesq equations with improved linear dispersion characteristics. part 2. a slowly-varying bathymetry[END_REF] and [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF]. These "extended" or "enhanced" models are applicable to deeper water regions or to shorter waves than the standard models. The models of Madsen and Sorensen (MS) and Nwogu include a correction of O(µ 2 ) to the shallow water theory. Madsen and Sorensen introduce third-order terms into the momentum equation, while Nwogu derives a new set of equations.

Compared to the standard Boussinesq equations, this enhanced formulation contains an additional frequency dispersion term in the continuity equation.

The dispersion relations of both standard and enhanced Boussinesq equations are equivalent in relatively shallow water (h/l 0 < 0.02 for h the water amplitude and l 0 the characteristical wavelength), but gradually depart from the Navier-Stokes equations' one with increasing depth. In intermediate water depths with h/l 0 < 0.3, the differences between the phase and group velocities of the enhanced Boussinesq model and Airy theory are negligible [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF].

The enhanced Boussinesq equations are applicable to water depths three to five times deeper than could be previously modeled with the same level of accuracy in the linear dispersion characteristics [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF]. These equations can model the propagation of waves in deep water if the depth is constant, and can be applicated to the shoaling of irregular waves.

Madsen-Sorensen model

Another well-known formulation of enhanced Boussinesq equations is Madsen and Sorensen's (MS) one [START_REF] Madsen | A new form of the boussinesq equations with improved linear dispersion characteristics. part 2. a slowly-varying bathymetry[END_REF]. Madsen et al. (1991), Madsen and Sorensen (1992) include into the standard Boussinesq model [START_REF] Peregrine | Long waves on a beach[END_REF] higher order dispersive terms. Starting from the "standard" formulation, they simply add two extra terms into the momentum equations of order µ 4 and µ 2 (Pedersen and Lovholt, 2008) [START_REF] Pedersen | Documentation of a global boussinesq solver[END_REF]. Compared to the "standard" formulation, third order derivatives of η have to be calculated. These extra terms result in a more accurate approximation of the exact linear dispersion relationship since the the third term (µ 4 ) is reproduced. The equations are then applicable to ratio of water depth to wavelength up to 1/2. They write :

∂ t η = -∂ x (hu) -∂ y (hv) ∂ t u + g∂ x η + u∂ x u + v∂ y u = gβd 2 ∂ x (∂ xx η + ∂ yy η) + d 2 ∂ x (∂ x (d∂ t u) + ∂ y (d∂ t v)) -(1/2 -α)d 2 ∂ x (∂ xt u + ∂ yt v) ∂ t v + g∂ y η + u∂ x v + v∂ y v = gβd 2 ∂ y (∂ xx η + ∂ yy η) + d 2 ∂ y (∂ x (d∂ t u) + ∂ y (d∂ t v)) -(1/2 -α)d 2 ∂ y (∂ xt u + ∂ yt v) (2.1)
with (u, v) the velocities field, η the surface elevation above the zero limit, d the water depth, h = η + d the water height and the constant g = 9.81 m.s -2 . We note that 1/6 -β = 1/2 -α, with β and α parameters whose values can be determined in order to give more importance to some effects and less to others. System 2.1 can be recasted in several forms. We call non-conservative the equations whose variables are h, u and v, such as Lovholt et al's ones [START_REF] Pedersen | Documentation of a global boussinesq solver[END_REF]. We call conservative those whose variables are h, hu and hv. Using calculations detailed in Appendix A, we write here the Boussinesq equations in another non-conservative form :

∂ t η + ∂ x (hu) + ∂ y (hv) = 0 ∂ t u + g∂ x η + u∂ x u + v∂ y u = gϕ u ∂ t v + g∂ y η + u∂ x v + v∂ y v = gϕ v 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) (2.2) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u ) (2.3)
where ϕ = (ϕ u , ϕ v ) t denotes the dispersive terms in the (x,y) directions. This formulation erases the time-space derivatives adding Eqs 2.2 and 2.3. The operators S1 and S2 are written explicitly hereafter.

Denoting M = M u + gh 2 /2 et Ñ = N v + gh 2 /2, a corresponding conservative formulation of the Boussinesq presented previously is written as :

                   ∂ t η + ∂ x M + ∂ y N = 0 ∂ t M + ∂ x M + ∂ y (N u) = gh(∂ x d + ϕ u ) ∂ t N + ∂ x (M v) + ∂ y Ñ = gh(∂ y d + ϕ v ) 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
where M = hu, N = hv are the volume fluxes in the x-and y-directions. For simplicity, we have kept here the two last equations in a non-conservative form. While a conservative form, based on derivatives of h, N , and M , can be written with some cumbersome manipulations, there is also a more practical reason. Indeed, while for ϕ = 0 the equations obtained admit discontinuous solutions (Cf Section 2.3), solutions of the Boussinesq equations are smooth. For this reason, the conservative formulation, which is more complicated than the non conservative one, is not required to evaluate the dispersive terms. The dispersive sub-system will be solved using a non conservative formulation (using velocities instead of fluxes), whose computational time is supposed reduced compared to the conservative formulation. By contrast, we will keep a conservative approximation for the shallow water terms. The operators S1 and S2 are written, denoting

A u = - u g ∂ x u -∂ x η, A v = - v g ∂ y v -∂ y η and D = ∂ x A u + ∂ y A v , as : S1 (η, u, v, ϕ v ) = βd 2 ∂ x (∂ xx η + ∂ yy η) + d 2 α∂ x D + ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d 2 D∂ x d + ∂ x A u - v g ∂ y u ∂ x d + A v - u g ∂ x v ∂ y d + d 2 ∂ x d ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d αd∂ xy ϕ v + 1 2 ∂ x d∂ y ϕ v + 1 2 ∂ x (ϕ v ∂ y d) S2 (η, u, v, ϕ u ) = βd 2 ∂ y (∂ xx η + ∂ yy η) + d 2 α∂ y D + ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d 2 D∂ y d + ∂ y A u - v g ∂ y u ∂ x d + A v - u g ∂ x v ∂ y d + d 2 ∂ y d ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d αd∂ xy ϕ u + 1 2 ∂ y d∂ x ϕ u + 1 2 ∂ y (ϕ u ∂ x d) .
Different combinations of (α, β) result in different types of Boussinesq equations. The most commonly used are the standard (α = 1/3, β = 0) (Peregrine [START_REF] Peregrine | Long waves on a beach[END_REF]) and enhanced (α = 0.39, β = 0.057) (Nwogu [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF]) Boussinesq equations. The conservative formulation assures the conservation of the mass, which is not always preserved by the discretizations of non-conservative forms. It also has the advantage to switch easily to the conservative NSWE, that is required to handle bores or jumps.

Nwogu's model

As Madsen-Sorensen's one, [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] model describes weakly nonlinear and weakly dispersive water waves in a conservative form and were derived under the assumption that = h/d 1,

µ 2 = d 2 /l 2 0
1 and /µ 2 = O(1). This model is obtained using the horizontal velocity at an arbitrary depth as a dependent variable (instead of the commonly used depth-averaged velocity) and by calculating Taylor series for the horizontal velocity. This depth (z=-0.531d) is chosen in order to match the linear dispersion relationship and to minimize the error.

Although the methods of MS(1991) and [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] are different, the resulting dispersion relations are similar and reproduce the term O(µ 4 ). The continuity and momentum equations of Nwogu's model retain terms up to O( ) and O(µ 2 ). Terms of order O( 2 ), O( µ 2 ) and O(µ 4 ) and higher are neglected. Compared to the standard Boussinesq equations, the new equations contain an additional frequency dispersion term in the continuity equation.

These extended Boussinesq formulations provide accurate linear dispersion and shoaling characteristics for kd up to 3 (intermediate water depths) for k the wave number. They also give more accurate representation of the phase and group velocities in intermediate water (d/l 0 ≤ 0.5) than the standard Boussinesq equations.

According to [START_REF] Kazolea | A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1d boussinesq models[END_REF], the two enhanced Boussinesq models provide more accurate results than the nonlinear shallow water equations (NSWE) for highly dispersive waves over increasing water depths, with Nwogu's model having a precedence over the MS one.

A dimensionless model

The dimensionless and dimensional formulations of a model have the same properties. In cases in which we want to make studies regardless of the parameters of a benchmark, such as the one presented in the following chapter, we use a dimensionless form. It enables us to use as parameters the nonlinearity and frequential dispersion terms, respectively noted and µ.

We used the Nwogu's nondimensional parameters [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF], denoting the dimensional variables with a prime: u = c 0 w where = a 0 /d 0 is the nonlinearity parameter

x = xl t = tl/c 0 η = a 0 ζ d = d 0 d h = η + d = d 0 ( ζ + d) = d 0 H
where c 0 = √ gd 0 , d 0 is a given nondimensional depth, l is a characteristic length and a 0 a characteristic amplitude. The frequential dispersion parameter is defined as µ := d 0 /l. The corresponding dimensionless system in non-conservative formulation is written, denoting the dimensionless variables

A u = -u∂ x u -∂ x ζ, A v = -v∂ y v -∂ y ζ and D = ∂ x A u + ∂ y A v , as :                                                                      ∂ t ζ + ∂ x (Hu) + ∂ y (Hv) = 0 ∂ t u + ∂ x ζ = -u∂ x u -v∂ y u + µ 2 ϕ u ∂ t v + ∂ y ζ = -u∂ x v -v∂ y v + µ 2 ϕ v 1 - µ 2 d 2 ∂ xx d ϕ u -µ 2 d∂ x d∂ x ϕ u -µ 2 αd 2 ∂ xx ϕ u = βd 2 ∂ x (∂ xx ζ + ∂ yy ζ) + d 2 α∂ x [D + ∂ x (-v∂ y u) + ∂ y (-u∂ x v)] + d 2 [D∂ x d + ∂ x ((A u -v∂ y u)∂ x d + (A v -u∂ x v)∂ y d)] + d 2 ∂ x d[∂ x (-v∂ y u) + ∂ y (-u∂ x v)] + dµ 2 αd∂ xy ϕ v + 1 2 ∂ x d∂ y ϕ v + 1 2 ∂ x (ϕ v ∂ y d) 1 - µ 2 d 2 ∂ yy d ϕ v -µ 2 d∂ y d∂ y ϕ v -µ 2 αd 2 ∂ yy ϕ v = βd 2 ∂ y (∂ xx ζ + ∂ yy ζ) + d 2 α∂ y [D + ∂ x (-v∂ y u) + ∂ y (-u∂ x v)] + d 2 [D∂ y d + ∂ y ((A u -v∂ y u)∂ x d + (A v -u∂ x v)∂ y d)] + d 2 ∂ y d[∂ x (-v∂ y u) + ∂ y (-u∂ x v)] + dµ 2 αd∂ xy ϕ u + 1 2 ∂ y d∂ x ϕ u + 1 2 ∂ y (ϕ u ∂ x d)
This system, which corresponds to Madsen and Sorensen's model, is used in Chapter 3 for a spectral study.

Fully nonlinear and fully dispersive Boussinesq models

As waves approach the shore, wave heights increase due to wave shoaling and wave breaking may occur. The weakly nonlinear Boussinesq models [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] [29] are then inaccurate. Wei et al.(1995) [45] use [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF] approach but without the restriction of the weak nonlinearity by removing the h/d ratio as a scaling or expansion parameter in the development of approximate governing equations. The equations of Wei et al. (1995) are obtained introducing a series expansion for the velocity potential calculated at an arbitrary depth and retaining terms to O(µ 4 ). Terms of O(µ 6 ) and higher are neglected. As regards nonlinearity,model equations are derived for = O(1). Finally, this model is a fully nonlinear approach with fourth-order accuracy in dispersion.

It improves applicability in the surf and swash zones, where η is of the the same order, or even equal to d (in swash conditions). This model is used in FUNWAVE [START_REF] Shi | A high-order adaptive time-stepping tvd solver for boussinesq modeling of breaking waves and coastal inundation[END_REF] to reduce the noise or small instability in high wavenumbers.

Navier-Stokes equations

While Navier-Sokes (NS) models are much more complete than Boussinesq-type ones, they have also disadvantages. Kazolea et al. [START_REF] Kazolea | Wave propagation, breaking, and overtopping on a 2d reef: A comparative evaluation of numerical codes for tsunami modelling[END_REF] compare three Boussinesq-type codes implemented in the codes SLOWS, TUCWave and FUNWAVE-TVD to two NS models implemented in Thetis and EOLE codes [START_REF] Kazolea | Wave propagation, breaking, and overtopping on a 2d reef: A comparative evaluation of numerical codes for tsunami modelling[END_REF]. According to Kazolea et al. [START_REF] Kazolea | Wave propagation, breaking, and overtopping on a 2d reef: A comparative evaluation of numerical codes for tsunami modelling[END_REF], while NS codes identify moving fronts more oscillatory than the Boussinesq-type ones, they miss the higher frequency modes we want to study in this PhD. They are nevertheless well handled by the the Boussinesq ones.

Another significant difference is that the computational times of the Boussinesq-type models are significantly less compared to the ones of NS models, which confirms our idea to implement a Boussinesq model.

Shallow Water models

The shallow water or Saint Venant equations have been used for decades in the context of tsunami alert. This model being accurate enough for most of the tsunamis, researchers were not interested in studying more complete models.

The name Shallow Water comes from the fact that these models are more suitable to shallow water areas, where the frequential dispersion is weak. They are also called Saint-Venant equations in monodimensional cases. They are obtained in the limit µ = d/λ 1 for λ the wavelength and d the water depth, which applies to shallow flows. More precisely, all O(µ 2 ) terms are neglected. The celerity of linear waves defined in Airy theory with c = λg 2π th d2π λ may then be approximated by √ gd.

This model supposes the irrotationnality of the fluid, and variables are averaged along the water height. The model also assumes a purely hydrostatic variation for the pressure in the fluid column : P = ρg(η -z), where ρ is the volumic mass and g is the gravitational acceleration. This last assumption results in neglecting the vertical acceleration of water.

In 2D, Shallow water equations can be written as :

             ∂η ∂t + ∂hu ∂x + ∂hv ∂y = 0 ∂u ∂t + u ∂u ∂x + v ∂u ∂y = -g ∂η ∂x + F x ∂v ∂t + u ∂v ∂x + v ∂v ∂y = -g ∂η ∂y + F y
The model is purely hyperbolic which allows very efficient resolution methods and is greatly appreciated in the tsunami alert context.

What induce this absence of dispersive terms ? Are these terms really negligible ? That is a question which has been discussed extensively by Glimsdal and al. [START_REF] Glimsdal | Dispersion of tsunamis: Does it really matter?[END_REF], who defined a criterion to determine the cases in which the dispersion effect is negligible, and hence whether the Shallow Water would be accurate enough for a given modelling. To put in evidence the differences that can occur while modelling a wave with the Shallow Water or with a dispersive system, we plot in Fig 2 .2 the results obtained simulating the propagation of a monodimensional gaussian wave on a flat bottom either solving the standard Boussinesq equations or the Shallow Water equations.

The absence of dispersive terms in the Shallow Water equations, while reducing their accuracy, has also advantages. The shallow water equations, as all hyperbolic systems, admit more general families of solution: classical continuous and locally differentiable solutions; weak solutions which may involve discontinuities in the unknowns.

As Boussinesq models, Shallow Water models are not valid on discontinuous bathymetries [START_REF] Dutykh | Modified shallow water equations for significantly varying seabeds[END_REF]. In practice, Shallow water equations work nevertheless onto it, and can even admit discontinuous solutions [START_REF] Bernetti | Exact solution of the riemann problem for the shallow water equations with discontinuous bottom geometry[END_REF] [START_REF] Parés | The riemann problem for the shallow water equations with discontinuous topography: The wet-dry case[END_REF]. It requires a suitable formulation of the shallow water equations [START_REF] Bonneton | Modelling of periodic wave transformation in the inner surf zone[END_REF] (different from the ones written above) that fulfills Rankine Hugoniot relations in presence of a bore or a jump.

For the shallow water equations, the velocities of the elementary waves are independent on the wavelength. More particularly, they correspond to the limit value of an infinitely long wave. This can be also seen as the value of the propagation of the average wave signal over the entire domain. Taking into account the dispersive effects, the different wavelengths of these waves affect their velocities, and separate them into a wave train. As an example, the propagation of a 1D gaussian wave results in (Fig 2 .2).

The simplicity of SW has also some disadvantages [START_REF] Nwogu | Alternative form of Boussinesq equations for nearshore wave propagation[END_REF]:

The omission of the dispersion yields a stricter stability criterion than for dispersive methods : CF L = √ gh∆t/∆x ≤ 0.63 with h the water height.

For the leading parts of the wave train, SW solutions converge more slowly than the dispersive ones, and are strongly affected by artificial dispersion for coarse grids.

Applying SW models on coarse grids, the numerical dispersion removes the steep fronts and yields trailing noise.

Model characterization

With so many different models, how chose the right one ? One way to evaluate a model could be to assess its error compared to the most accurate models. First of all, we want a model accurate enough to simulate the propagation of short dispersive waves. In this aim, we can determinate the dispersion relation of the studied model. Determining the dispersion relation of a model helps to evaluate its dispersion and diffusion. It can also put in evidence the limits of a model, both in term of domain of definition or the values at which it would be more unstable.

Dispersion relations are determined assuming a flat bottom and a linear propagation in the positive direction. We summarize the determination of the relation dispersion in three steps:

1. Denoting ν = ω + iξ, we express each variable X of the system (η, u and ϕ) in the form X 0 e i(2πx-νt) , where X 0 is a constant. Here, ω and ξ may be considered as parameters of dispersion and amplification, respectively.

2. We formally replace ν by its expression and separate the equations for real and imaginary parts.

3. From this new system, we can then determine ω and ξ.

Under these assumptions, the closest equations to the Navier-Stokes ones are the Airy equations, that correspond to the linearized Navier-Stokes equations averaged on the height. The dimensionless dispersion relation of the Airy equations writes as :

ω 2 Airy = 2π µ tanh(2πµ)
where ω is the frequency of the wave and µ is the frequential dispersion parameter.

The dimensionless dispersion relation of the enhanced Boussinesq equations writes as : where α and β are constants associated to the dispersion and γ = α -β.

ω 2 Bsq = (2π) 2 1 + β(2πµ) 2 1 + α(2πµ) 2
According to the full potential theory, the dispersion relationship for a linear sinusoidal wave (for d = 1) writes as:

c 2 = 1 kµ tanh(µk) = 1 - 1 3 (µk) 2 + 2 15 (µk) 4 + ...
where k is the wavenumber.

Comparing the Boussinesq equations' dispersion relation to the Airy ones, you can determine the Boussinesq model error. An example of such a study can be found in Fig 2 .3. A similar analysis can also be performed in the discrete case to evaluate the dispersion error of the discrete equations.

Chapter summary

In this chapter, we have presented the most used models in tsunami modelling : The Shallow Water, Boussinesq and Navier-Stokes equations. While the Shallow Water equations are faster to solve than the Boussinesq equations, they are also less accurate, particularly concerning wave dispersion. The Boussinesq model generates accurate results in both dispersive and non-dispersive propagation, but it cannot account for the dissipation taking place in breaking regions. Our interest being the propagation of dispersive waves, we implement a Boussinesq model.

In linear cases, one way to assess the dispersive capacities of a model or a scheme is to evaluate its dispersion relation, as explained in the fourth section of this chapter. It will be used in the next chapter to evaluate some time integration methods.

Chapter 3

Numerical schemes for propagation : improved time advancement for standard and enhanced Boussinesq equations

In each system we implement, we make two choices of discretizations : the temporal and the spatial discretization. The spatial one depending on the available data, we focus on the temporal discretization. What accuracy is necessary to obtain an accurate modelling of the dispersive propagation in dispersive cases ? Which scheme takes the less computational time to reach this required accuracy ?

To answer these questions, several alternative choices for the time marching strategy are discussed in this chapter. These include novel Lax Wendroff type approximations for the Boussinesq equations. I describe several temporal schemes that I implemented with the same spatial discretization, and compare their characteristics in terms of accuracy. I assess the numerical dispersion and diffusion of these schemes, comparing their dispersion relations to reference ones.

These comparisons are made for a monodimensional non-conservative formulation. In order to give results easily applicable to other type of waves (seismic wave, acoustic wave ...), we make this study on a dimensionless version of the equations. The work discussed in this chapter appeared in [START_REF] Cauquis | Lax-wendroff schemes with polynomial extrapolation and simplified lax-wendroff schemes for dispersive waves: A comparative study[END_REF], and all the figures in this chapter are originated from this article.

The chapter focuses on the non-conservative form of the equations. A similar formulation allowing the use of the conservative form of the equations at least for the shallow water part is discussed later in the manuscript.

Context

We look for a cost effective, stable, and accurate enough discretization for dispersive wave propagation. The approach followed in this work is to use a combination of a simple, symmetric, high order central differencing coupled to an appropriate time integration strategy. Our objective is thus to design the most accurate time marching method, which is also the most effective in terms of cost, storage and implementation.

To fix things, and to explain the main idea of the work, let us start from the linearized onedimensional Boussinesq equations, which in dimensionless form read

∂ t ζ + ∂ x (dw) = 0 (3.1) ∂ t w + ∂ x ζ = ϕ (3.2) ϕ -αµ 2 d 2 ∂ xx ϕ = -µ 2 R(d, ζ) (3.3) where R(d, ζ) = γd 2 ∂ xxx ζ.
Remember that ζ is the dimensionless surface elevation, w is the dimensionless velocity in the x-direction, d is the dimensionless water depth and γ = α -β. We remember that we speak of standard Boussinesq system when α = 1/3 and β = 0 [START_REF] Peregrine | Long waves on a beach[END_REF]. When α = 0.39 and β = 0.057, the system corresponds to the frequency enhanced Boussinesq equations of [START_REF] Madsen | A new form of the boussinesq equations with improved linear dispersion characteristics. part 2. a slowly-varying bathymetry[END_REF]. In the context of tsunami modelling, we suppose that the movement of the oceanic floor along the time is negligible, which simplified the model. In Filippini et al 2016 [START_REF] Filippini | A flexible genuinely nonlinear approach for wave propagation, breaking and runup[END_REF], the authors have studied the phase error of several multi-step and multi-stage time discretizations applied on the system formed of the Eqs 3.1,3.2,3.3. The reference has shown that the classical three stages SSP Runge Kutta scheme provides very low dispersion errors when compared to other third order schemes, and to the classical fourth order Adams-Bashfort/Adams-Moulton predictor corrector. For this reason, this will be considered as a reference here.

In particular, setting U := (ζ, w) T and denoting L(U) the evolution operator L(U ) := (-∂ x (dw), ϕ-∂ x ζ) T , the second and third order RK schemes applied to Eqs 3.1 and 3.2 read :

   U n+ 1 2 = U n + ∆t 2 L(U n ) U n+1 = U n + ∆tL(U n+ 1 2 )
and

           U p = U n + ∆tL(U n ) U 2p = 3 4 U n + 1 4 U p + ∆t 4 L(U p ) U n+1 = 1 3 U n + 2 3 U 2p + 2∆t 3 L(U 2p )
Note that both the second and third order accurate Runge-Kutta methods involve at each stage a single evaluation of the evolution operator. In this respect they can be implemented in a relatively simple manner a combination of explicit Euler stages. However, each stage requires the new value of L, which requires the new value of ϕ, thus the inversion of the elliptic sub-problem 3.3. As this is the most computationally expensive operation of the method, this may reduce the benefit of the low error of the RK method.

In order to further simplify the implementation and limit the computational cost, we chose to use a centered-finite-difference code. In order to stabilize the inherent instabilities of the centered schemes, we study a Lax-Wendroff approach, that Filippini et al. 2015 [START_REF] Filippini | A flexible genuinely nonlinear approach for wave propagation, breaking and runup[END_REF] has shown to have a lower dispersion error compared to the classical fourth order Adams-Bashfort/Adams-Moulton predictor corrector [START_REF] Wei | Time-dependent numerical code for extended boussinesq equations[END_REF]. It also enables to guarantee the mass conservation.

Our objective is to propose a single step, single stage method, with accuracy as close as possible to that of the RK schemes, but with a reduced cost due to its single stage nature. To this end, we investigate simplified variants of high order Lax Wendroff methods (or Taylor methods when applied to simple ODEs).

In the following sections of this chapter, I apply in all the schemes implemented the same fourthorder centered finite-difference discretization to approximate the space derivatives, in order to insure that the differences obtained only result of the choice of temporal scheme.

The dispersion relations of these schemes can be found in Appendix B. They are determined from a linearized ( = 0) 1D version of the non-conservative dimensionless system presented in Chapter 2 and applied to a flat bottom, which is written as :

These dispersion relations will be compared to the Boussinesq' and Airy's dispersion relations, which have been presented in the previous chapter.

Construction of low dispersion Lax-Wendroff schemes for Boussinesq equations

As already underlined, multi-stage schemes as the RK method require multiple evaluations of ϕ, which in practice correspond to the inversion of the elliptic problem 3.3, thus to a matrix inversion at each stage. The cost of this inversion is small only for second order schemes in one dimension, where efficient iterations as the Thomas'method can be used. When considering higher order discretizations of the elliptic problem, or in the multidimensional cases, this inversion is the most expensive computation in each time step. For this reason, we have decided to investigate the possiblity of constructing cost efficient single-stage explicit approximation based on the classical approach known as Taylor method for ODEs, and Lax Wendroff for PDEs.

To obtain computationally efficient, yet accurate, schemes we use two main ideas. The first is to couple the spatial error and the truncation error of the Taylor series expansion in time, using the Lax-Wendroff strategy. The second is to couple this expansion with appropriately chosen polynomial extrapolation in time, allowing for an efficient high order discretization in time.

Lax-Wendroff schemes

The main idea of these methods is to introduce a truncated Taylor series development in time to approximate the unknowns at time t n+1 = (n + 1) × ∆t, given the solution at time t n .

To evaluate the time derivatives appearing in the series, one uses the so-called Cauchy-Kowaleskaya procedure. For the ODE ∂ t u = l(u), this procedure consists in using the evolution operator and its derivatives to evaluate high order time derivatives of u(t), namely :

∂ t u = l(u) ∂ tt u = ∂ t l(u)l(u) ∂ ttt u = ∂ tt l(u)l(u)l(u) + ∂ t l(u)∂ t l(u)l(u)
Applied on the Eqs 3.1,3.2,3.3 , this gives, within third order of accuracy:

ζ n+1 = ζ n + ∆t∂ t ζ n + ∆t 2 /2 × ∂ tt ζ n + ∆t 3 /6 × ∂ ttt ζ n (3.4)
w n+1 = w n + ∆t∂ t w n + ∆t 2 /2 × ∂ tt w n + ∆t 3 /6 × ∂ ttt w n (3.5)
Simple calculations show that the time derivatives required in the above equations have the following form:

∂ t ζ n = -∂ x {dw} n (3.6) ∂ tt ζ n = ∂ x {d(∂ x ζ -ϕ)} n (3.7) ∂ ttt ζ n = ∂ x {-d(∂ xx (dw) + ψ)} n (3.8) ∂ t w n = -(∂ x ζ -ϕ) n (3.9) ∂ tt w n = (∂ xx (dw) + ψ) n (3.10) ∂ ttt w n = -{∂ xx [d(∂ x ζ -ϕ)] -θ} n (3.11)
In the expressions above, we have introduced the auxiliary variables ψ := ∂ t ϕ and θ := ∂ tt ϕ, which can be readiliy shown to satisfy the auxiliary elliptic problems:

ϕ -µ 2 αd 2 ∂ xx ϕ = -µ 2 R(d, ζ) ψ -µ 2 αd 2 ∂ xx ψ = -µ 2 R(d, ∂ t ζ) (3.12) θ -µ 2 αd 2 ∂ xx θ = -µ 2 R(d, ∂ tt ζ) (3.13)
where the temporal derivatives of ζ and w are replaced by time-independent expressions. So if nothing special is done, we see that a third order Lax-Wendroff approach requires, perhaps not surprisingly, the inversion of three elliptic systems exactly as the RK3 scheme.

Differently from the RK3 case however, for the LW method the unknowns of the additional systems have a clear meaning, which we can now exploit to construct simplified schemes. Eight different approximations (associated to eight numerical schemes) are proposed in this chapter.

Polynomial extrapolation and finite differences in time

We start here from the observation that the accuracy in time of the Taylor series development can be preserved by replacing the various time derivatives by approximations of an appropriate order. In particular, we can consider the modified development that reads:

     ζ n+1 = ζ n + ∆t ∂t ζ n + ∆t 2 2 ∂tt ζ n + ∆t 3 6 ∂ttt ζ n w n+1 = w n + ∆t ∂t w n + ∆t 2 2 ∂tt w n + ∆t 3 6 ∂ttt w n
where second and third order of accuracy are guaranteed under the following approximation constraints:

∂t (•) = ∂ t (•) + O(∆t 2 ) ∂tt (•) = ∂ tt (•) + O(∆t)
for second order in time and

   ∂t (•) = ∂ t (•) + O(∆t 3 ) ∂tt (•) = ∂ tt (•) + O(∆t 2 ) ∂ ttt (•) = ∂ttt (•) + O(∆t)
for third order in time. The above systems summarize the accuracy constraints necessary for each derivative order for the truncated Taylor series development to meet the required second and third order of accuracy.

This suggests two approaches to obtain approximations of the ψ and θ terms in order to avoid the additional linear system inversions.

The first is based on backward polynomial interpolation, and differentiation, which provides the following first and second order approximations:

ψ n e 1 = ϕ n -ϕ n-1 ∆t , ψ n e 2 = 3ϕ n -4ϕ n-1 + ϕ n-2 2∆t and θ n e = ϕ n -2ϕ n-1 + ϕ n-2 ∆t 2 ,
where we recall that a first order approximation of θ is sufficient to guarantee the formal third order of accuracy in time. We refer to this approach as the extrapolated method, and use the subscript e to denote the associated schemes.

The second is based on an iterative segregated solution strategy. We refer to this approach as the segregated/implicit method, and use the subscript si to denote the associated schemes. At second order, we first compute ζ n+1 , which only requires the knowledge of ϕ n (Eqs 3.4, 3.6 and 3.7). We then evaluate ϕ n+1 using Eq 3.3, and set

ψ n si 2 = ϕ n+1 -ϕ n-1 2∆t .
Two equivalent first order approximations are obtained by setting

ψ n si 1 = ϕ n+1 -ϕ n ∆t or ψ n si 3 = 3ϕ n+1 -4ϕ n + ϕ n-1 2∆t .
We then proceed to update w n+1 with one of these values (ψ si 1 ,ψ si 2 or ψ si 3 ).

In the third order case, we use a similar segregated strategy. We first compute an approximation of ζ n+1 using the first order approximation ψ n e 1 and w n to evaluate the third order derivative. This value is used to estimate ϕ n+1 and used to compute ψ si as before, and also to estimate

θ n si = ϕ n+1 -2ϕ n + ϕ n-1 ∆t 2 .
These values are used to evaluate w n+1 using Eq 3.5. The schemes obtained with the above approaches are in the following referred to as the LW2e 1 , LW2e 2 , LW2si 1 , and LW2si 2 and LW2si 3 in the second order case using the various definitions of the auxiliary variables. Similarly we denote by LW3 e and LW3si the third order schemes obtained using respectively ψ e 2 and θ e , and ψ si 2 and θ si .

Simplified LW3 scheme via

O(∆t 3 , µ 2 ∆t 2 ) truncation
The previous approaches are based on neglecting O(∆t 3 ) terms in the truncated Taylor series. Using arguments similar to those put forward in the previous section, we may use the smallness of µ 2 to simplify somewhat the scheme. In particular, we may choose to also neglect terms of O(µ 2 ∆t 2 ) in the development. This leads to several possibilities, as we may choose to keep some of the truncation terms, and only neglect those adding a large computational effort. To this end, we consider the linear limit of the third order method, on a flat bathymetry, which we recast as:

                           ζ n+1 -ζ n ∆t + ∂ x w n = ∆t 2 ∂ xx ζ n - µ 2 ∆t 2 ∂ x ϕ n 1 - ∆t 2 6 ∂ xxx w n - µ 2 ∆t 2 6 ∂ x ψ n 1 w n+1 -w n ∆t + ∂ x ζ n = µ 2 ϕ n 1 + ∆t 2 ∂ xx w n + µ 2 ∆t 2 ψ n 1 - ∆t 2 6 ∂ xxx ζ n + µ 2 ∆t 2 6 (∂ xx ϕ n 1 + θ n 1 ) ϕ n 1 -µ 2 α∂ xx ϕ n 1 = -γ∂ xxx ζ n ψ n 1 -µ 2 α∂ xx ψ n 1 = γ∂ xxxx w n θ n 1 -µ 2 α∂ xx θ n 1 = -γ∂ xxxxx ζ n + µ 2 γ∂ xxxx ϕ n 1 having set ϕ = µ 2 ϕ 1 , ψ = µ 2 ψ 1 and θ = µ 2 θ 1 .
We can now define different versions of a simplified LW3 method, depending on which of the µ 2 ∆t 2 terms are neglected.

Terms µ 2 ∆t 2 6 ∂ x ψ n 1 µ 2 ∆t 2 6 ∂ xx ϕ n 1 µ 2 ∆t 2 6 θ n
Table 3.1: Simplified LW3 schemes. We note 'yes' when the term is present in the version proposed, and 'no' when it is removed.

In particular, seven versions of simplified LW3 schemes are defined in Table 3.1 by neglecting some of the three µ 2 ∆t 2 terms in equations :

µ 2 ∆t 2 6 ∂ x ψ 1 , µ 2 ∆t 2 6 ∂ xx ϕ 1 and µ 2 ∆t 2 6 θ 1 .
The objective of the remainder of this chapter is to provide some initial insight into the stability and accuracy properties of each scheme. To this end, we will perform a spectral analysis to evaluate the dispersion and dissipation error of the schemes. As a preliminary step, we will evaluate which of the simplified LW3 formulas to retain.

Space continuous analysis

In this section, we analyze the schemes by means of a time-continuous Fourier analysis. We will compare the spectral properties of the schemes to those of both the Boussinesq equations, and the Airy theory. We will evaluate the influence of the time step and of the frequential dispersion parameter on the accuracy of the schemes for a range of 50 values of the reduced wavenumber kd = 2πµ between 0 and 4. Numerical dispersion error of schemes is evaluated by analyzing ω for kd values in the range [0,4]. We consider in the spectral analysis a global L 2 error defined as :

err L 2 f (kd) = 50 i=1 (f i -f ex (k i d)) 2 50 i=1 (f ex (k i d)) 2
For the damping, the exact value for both the Airy and Boussinesq equations is zero. We will use its absolute value as an error measure. We also denote N c = 1/∆t (∆t is the dimensionless time step) the number of time steps needed for a wave to propagate over a single wavelength at the dimensionless celerity c. The discrete dispersion relations are also reported in Appendix B for completeness.

As shown in Appendix B, the full order RK and LW scheme have the exact same dispersion relation, both at second and third order. For this reason, only the Runge-Kutta results appear in the figures and tables.

Preliminary study of the simplified LW3 versions

As a preliminary step, we investigate the spectral properties of the different versions of the simplified LW3 presented in Table 3.1. 6 θ 1 (version 3 in Table 3.1) produces better results. As regards enhanced Boussinesq Equations, only the simplified LW3 scheme version 3 produces better results than the explicit Euler scheme for all the range of kd values. As regards standard Boussinesq equations, this version produces more accurate results than the explicit Euler scheme for most of kd values, but not for the shorter waves. Version 3 (without term including θ 1 ) is selected here and is referred to hereafter as the "simplified LW3 scheme". As regards the calculation of ψ 1 in the simplified LW3 scheme, any attempt to replace the inversion of matrix used to calculate ψ 1 (Eq 3.12 in Appendix A) by an approximation produces poor results. These finite difference discretizations (of order up to the fourth) result in schemes which are more dispersive than the Explicit Euler scheme for short waves. To conclude this preliminary study, we will only consider in the following the version 3 of the simplified LW3 method, and keep the inversion of the matrix to evaluate ψ (Eq 3.12).

Spectral analysis of the schemes for the standard Boussinesq equations

Compared to the enhanced Boussinesq equations, the standard Boussinesq equations coarsely approximate the Airy equations, as discussed in Chapter 2. As already said, these equations can be obtained from Eqs 3.1,3.2 and 3.3 by setting α = 1/3 and β = 0.

Numerical schemes are compared, firstly to Airy equations (Table 3.2 and 3. 3.2). We consider in the spectral analysis an L 2 error.

As shown in Table 3.2, we observe a certain error reduction when increasing the number of points. The residual error with reference to the Airy theory is about 7% and is attributed to the Numerical diffusion error of schemes for N c = 5, 10, 20 and 40 is evaluated by analyzing ω in the same range of kd values (Table 3.3). As shown in Table 3.3, all the schemes converge in time to a null diffusion. The first order Explicit Euler scheme is the most diffusive. Among the second-order schemes, the LW2si 3 scheme is the most diffusive and the LW2e 1 scheme is the less diffusive scheme. The most diffusive third-order scheme is the LW3si scheme. The least diffusive ones are the RK3 and LW3e schemes.

In addition to Tables 3. In Fig 3 .3, numerical dispersion of schemes for N c = 10 is further evaluated by analyzing ω as a function of kd. While the simplified-third order scheme is more accurate for small kd than for great kd, the Runge-Kutta and Explicit Euler schemes have an opposite behaviour. Surprisingly, the curves corresponding to the LW2e 1 , LW3e and simplified LW3 schemes have points of inflexion. Across these values, the schemes go from an underestimation to an overestimation of celerities, compared to the analytical solution. Concerning the second-order schemes, RK2 and LW2si 2 (where the second matrix inversion is replaced by FD temporal derivatives of ϕ) produce the same results.

Similarly to the phase error, the numerical diffusion of the schemes for N c = 10 is further evaluated in Fig 3 .4 by analyzing ξ as a function of kd. As in Fig 3 .3, not all schemes provide a monotone behaviour. In particular, some show a change in the sign of the amplification rate, which however tends to zero for all schemes as kd increases. The Explicit Euler one is far more diffusive than the other schemes. In terms of diffusion, the results of the LW2si 2 scheme are close to those obtained by the RK2 dispersion relation.

In summary, solving the standard Boussinesq equations, the spectral analysis shows that :

The explicit Euler scheme produces the worst results in terms of dispersion and diffusion results.

The implicit forward LW2si 3 and LW2si 1 schemes are two of the most diffusive schemes.

Despite their good accuracy in dispersion compared to the Airy equations, they generate poor results compared to the Boussinesq equations. We attribute this difference to the numerical error, which tends to bring the numerical results nearer to the Airy results.

LW2 and RK2 schemes generate identical results, since their dispersion relations are the same.

The implicit centered LW2si 2 scheme produces similar results to the LW2 and RK2 schemes.

Results of third-order schemes are close to each other in terms of dispersion and diffusion. These schemes converge faster to the solution than the second order schemes.

The simplified third-order scheme, which has diffusion properties similar to the third-order schemes, generates a dispersion error similar to the third-order schemes for long waves and to the second-order schemes for short waves.

Solving Enhanced Boussinesq Equations

Dispersion and diffusion errors of schemes are calculated in this section for the enhanced Boussinesq equations. These equations approximate more closely the Airy equations.

As before, we compute the numerical dispersion error of the schemes for N c = 5, 10, 20 and 40 in the range [0,4] of kd values. The results in Table 3. 4 show that all schemes converge to the Airy equations dispersion relation with an error less than 1%. The Explicit Euler, LW2si 3 and LW2si 1 show the slowest reduction in error and can be considered as less accurate. On the other hand, all the third order formulations, including the simplified one, quickly provide a discretization error below the truncation of the model.

The amplification rates for N c = 5, 10, 20 and 40 are evaluated by analyzing ω in the same range of kd values (Table 3 In summary, this study of the schemes solving the enhanced Boussinesq equations shows that :

While solving the enhanced Boussinesq equations, the LW2si 3 and LW2si 1 schemes are the least accurate compared to Airy equations' dispersion relation.

The third order schemes generally provide improved spectral accuracy. Among them, the LW3si and LW3e seem to be the most promising simplified formulations. 

Preliminary conclusion on the choice of the schemes

Lax-Wendroff and Runge-Kutta schemes of second and third order have been implemented. The explicit Euler method has also been implement. Seven simplifications of the third-order Lax-Wendroff methods have been studied. The only simplication found interesting is the one supposing that the only term negligible is the one containing θ 1 = ∂ tt ϕ 1 . The other simplifications are less accurate than the second-order Runge-Kutta scheme for the half of the domain of wavelength studied which corresponds to the shortest waves.

Seven interpolations of the Lax-Wendroff methods have also been studied : two explicit and third implicit schemes of second-order accuracy, and one explicit and one implicit scheme of third-order accuracy.

As expected, the explicit Euler scheme provides the worst results, both in term of diffusion and dispersion.

The Lax-Wendroff and Runge-Kutta methods of same order having the same dispersion relation, they generate identical results.

When it comes to the second-order schemes, the LW2si 3 and LW2si 1 schemes are the least accurate compared to Airy equations' dispersion relation. The implicit centered LW2si 2 scheme produces also similar results to the LW2 and RK2 schemes.

Results of third-order schemes are close to each other in terms of dispersion and diffusion. These schemes converge faster to the solution than the second order schemes with the refinement of the mesh. Among them, the LW3si and LW3e seem to be the most promising simplified formulations.

The simplified third-order scheme that was deemed interesting (version 3) has diffusion properties similar to the third-order schemes, and generates a dispersion error similar to the third-order schemes for long waves and to the second-order schemes for short waves.

As a result of these observations, we will not consider further the explicit Euler, the LW2si 1 and the LW2si 3 schemes. To distinguish the remaining schemes from the ones giving similar results, we will have to study their other properties.

Chapter summary

This chapter proposes several novel families of time marching methods for the linearized dimensionless 1D Boussinesq equations.

To characterize the accuracy of the methods proposed, a spectral analysis is performed comparing the dispersion relations of several temporal discretizations to the Airy's and Boussinesq's one, which can only be done on a flat bathymetry. The numerical dispersion and diffusion errors of these temporal schemes are assessed and compared.

The new schemes proposed are Lax-Wendroff-type schemes of second and third order. To reduce their computational cost, some extrapolated and interpolated discretizations of Lax-Wendroff schemes have been proposed. Simplified versions of the third-order Lax-Wendroff method have been tested to assess the negligibility of the terms present in the third-order Lax-Wendroff method. As a reference, the Runge-Kutta schemes up to third order have also been implemented.

The results of this study are that only the term containing θ = ∂ tt ϕ is negligible, and that the explicit Euler, the LW2si 1 and the LW2si 3 schemes are far less accurate than the other schemes implemented, and thus are not considered adequate for our aim of modelling short dispersive waves. Most schemes of same order give similar results, and will need further study to determine which one would be the most suitable.

If this spectral analysis enables us to assess the accuracy of schemes on a flat bathymetry, it does not give any information on the results of these schemes performed on a arbitraty bathymetry. Moreover, it is hard to understand which impact a numerical error can have an a modelling when it is evaluated in percentage. Which maximum percentage of error can we accept to retain enough accuracy ?

Chapter 4

Extension to the full 1D equations and validation

If the spectral analysis has allowed us to put in evidence the less accurate schemes in linear cases with flat bottoms, it is difficult to know which consequences these differences of accuracy between the remaining schemes will have on the modelling of benchmarks, which are nonlinear and on random bathymetries.

Is the third-order of accuracy really required ? Is there notable difference between the results obtained performing the modelling with different temporal methods ? What of their CPU-time ?

This chapter is devoted to the simulation of four benchmarks to evaluate the accuracy and computational cost of the temporal schemes deemed accurate enough in Chapter 3. The ones deemed unaccurate enough have been performed on these benchmarks and confirm this assertion. To clarify the figures and tables, results will not be given here.

For the modelling, we use in this chapter the nonlinear dimensionless 1D system of enhanced Boussinesq Equations written as :

∂ t ζ + ∂ x (Hw) = 0 (4.1) ∂ t w + ∂ x ζ = ϕ (4.2) 1 - µ 2 d 2 ∂ xx d ϕ -µ 2 d∂ x d∂ x ϕ -µ 2 αd 2 ∂ xx ϕ = -µ 2 R(d, ζ) -w∂ x w (4.3) where R(d, ζ) = d 1 2 ∂ xx d∂ x ζ + (1 -2β)∂ x d∂ xx ζ + γd∂ xxx ζ .
We remind that ζ is the dimensionless surface elevation, w is the dimensionless velocity in the x-direction, d is the dimensionless water depth and H is the dimensionless water height. γ = α -β, µ is the frequential dispersion parameter and is the nonlinearity parameter.

In the non-linear case, Eq 4.2 and Eq 4.3 show a coupling between the value of ϕ n+1 and w n+1 . Replacing w n+1 with w n introduces an O(∆t) error we minimize performing sub-iterations of the scheme, re-evaluating both ζ n+1 and w n+1 with the updated ψ and ϕ values.

The difference between the linearized 1D system presented in Section 3.1 and the nonlinear 1D system used in this chapter is the additional nonlinear term in Eq 4.3. For the Runge-Kutta schemes and the approximations of the Lax-Wendroff method presented in Chapter 3, the evaluation of ϕ requires modifications. This leads to modifications in all the auxiliary elliptic problems solved in the full Lax-Wendroff schemes, and written as :

ϕ -µ 2 αd 2 ∂ xx ϕ = -µ 2 R(d, ζ) -w∂ x w ψ -µ 2 αd 2 ∂ xx ψ = -µ 2 R(d, ∂ t ζ) -(∂ t w∂ x w + w∂ xt w) θ -µ 2 αd 2 ∂ xx θ = -µ 2 R(d, ∂ tt ζ) -(∂ tt w∂ x w + 2∂ t w∂ xt w + w∂ xxt w)
where the temporal derivatives of ζ and w are replaced by time-independent expressions. These expressions (detailed in Section 3.2.1) are not modified by the additional nonlinear term in Eq 4. 3.

For all benchmarks, we use a constant time step calculated from a CFL condition. This condition is defined by c∆t = CFL ∆x where c is the celerity based on the average initial depth and ∆x the space step. We define a constant CFL such that CF L = √ gh∆t/∆x < 1. This type of setting is not uncommon in tsunami analysis and CFL is set by default to 0.5 in this paper.

In the figures, all results are made non-dimensional. For the undular bore (Section 5.3), it is made dividing the dimensional values by d 0 . For the other benchmarks, it is made as discussed in section 2. We note n the number of points in the discretized domain and use as values of d 0 and a 0 the mean of η and d respectively. All results are compared to a high-resolution numerical solution calculated by a RK3 scheme.

The L 2 error is here defined as :

err L 2 f (kd) = i (f i -f ref (k i d)) 2 i (f ref (k i d)) 2
where f i = f (x i ) is a modelled value and f ref is the reference solution.

Gaussian wave

The first benchmark consists in simulating the propagation of a gaussian wave with an amplitude of 10 cm and a standard deviation of 60 m over a distance of 24,000 m. The water depth is 10 m, the initial velocity is null and the characteristic wavelength is l = 250 m. This benchmark is characterized by a linear propagation of strongly dispersive waves. In order to generate significant differences between the schemes, a large space step has been selected (n = 2001), so that the initial wave is described by about 10 points. We compare the results to a high-resolution computed solution (or reference solution) calculated by the RK3 scheme with 8004 points (∆x 3 m) and CFL = 0.5.

Fig 4.1 shows the water surface calculated by the second and third-order schemes at t = 17.43 and t = 34.86. The results show that the resolution of the secondary waves gets worse as their distance from the main front increases. We also see that the second order schemes produce increasing wave amplitudes, which is a sign of a numerical instability. These schemes also introduce large numerical dispersion which results in increasing time advance of the wave train compared to the reference solution.

By contrast, the third order schemes are stable and generate a wave train with progressively decreasing amplitudes. For all third-order schemes, this decrease is stronger than in the reference solution, which is a consequence of the damping of the schemes. The phase error is much reduced, and is relatively small up to the fourth or fifth peak from the main wave.

The same simulations are performed by dividing by two the space step (n = 4001) while keeping the CFL equal to 0.5 (Fig 4 .2). The third order schemes give results very close to the reference solution for roughly 10 peaks, and then show a slight dumping with a small phase error, still much smaller than that of the second order methods.

We further investigate the errors (Table 4.1) and the computational times ( 4.2 show that the LW2e 1 is the least CPU-expensive scheme and the most accurate one. Among the third order schemes, all the formulations considered give results with similar accuracy but, as expected, the CPU-time of the simplified scheme is about 6% lower than the LW3 CPU-time, and about 30% lower than the RK3 CPU-time. The least expensive third-order scheme for a given error level is the explicit LW3e. The L 2 error and the CPU-time are plotted in Fig 4 .3 for the six spatial resolutions. Results show that all the schemes of same order converge with the expected second and third order rates. The LW2e 1 scheme converges faster than the other second-order schemes. As one may expect, the convergence rate of the simplified LW3 scheme, in which some of the terms in the Taylor series in time are missing, is slightly below 3. Results also show that for a given accuracy, the LW2e 1 and LW3e schemes are faster than the other second-order and third-order schemes, respectively.

Solitary wave

The second benchmark consists in the propagation in the positive direction of a solitary wave 2 m high centered at x mean = 1000 m over a 10 m deep bottom in a 5000 m long domain. The space step is 10 m (which corresponds to 501 points) and the characteristic wavelength is l = 400 m.

The solitary wave is described by the approximate formulas:

η = a[sech(C(x -x mean ))] 2 u = c × η η + d
where a is the maximum amplitude of the wave, x mean is the position of the wave center, C = 3a 4(d+a)d 2 and c = 9.81(d + a). Note that this solitary wave is not an exact solution of the enhanced Boussinesq equations. However the error is expected to be of the order of the truncation of the model.

With this case, we check and evaluate the discretization of nonlinear terms. We remind that their absence results in the formation of a wave train. Reference solution is produced using the RK3 scheme in a mesh of 3000 points (∆x 1.6 m) and a CFL of 0.49. Fig 4.4 shows a comparison between the computed solution and results calculated by the second and third-order schemes at t = 10.89 for two different spatial resolutions (n = 501, 1001). This figure shows that the schemes of same order generate similar results and that the simplified LW3 scheme produces similar results to the third order ones. For coarse resolutions, the second order underestimate it. Among the second-order schemes, the LW2e 1 scheme generates the most accurate results and the LW2e 2 scheme the worst ones.

Relative error of schemes is studied in The CPU-time corresponding to the different schemes is provided in Table 4.4. As expected, the explicit LW2e 1 , LWe2 2 and LW3e schemes are the fastest ones, compared to the schemes of same order. The simplified LW3 scheme is slightly slower than the explicit LW3e scheme, and faster than the other third-order schemes. The Runge-Kutta and implicit LW2si 2 and LW3si schemes are the slowest ones, compared to the schemes of same order. While being less accurate than the schemes of higher order, the RK2 and LW2si 2 schemes have a CPU-time similar or greater than the LW3e and simplified LW3 schemes, which highlights their computational cost. As in the linear benchmark of the gaussian wave, the LW3si and RK3 schemes are far more expensive than the LW3e and simplified LW3 schemes, and show no notable improvement of accuracy. In particular, the CPU-time savings obtained with the LW3e and LW3 schemes compared to the RK3 scheme are of the order of 26% and 6% respectively.

The relative error is plotted in Fig 4 .5 as a function of the spatial resolution (n = 250, 501, 1002, 1503, 2004, 2505) and of the CPU-time. Results show that all schemes converge to their respective convergence rates. The LW2e 1 scheme converges faster than the other second-order schemes. Results also show that for a given accuracy, the LW2e 1 and LW3e schemes are faster than the other secondorder and third-order schemes, respectively. We see that for a give error level, the LW3e scheme provides a computational saving of the order of 26% compared to RK3.

Undular bore

As a third benchmark, we study the propagation over a flat bottom of an undular bore entering at the left of a domain of 100 meters. The spatial step (n = 2100) has been chosen to describe the physical oscillations with about 10-20 points. The indexes 1 and 2 correspond to the left and right sides of the undular bore at t = 0, respectively. The following parameters are those of the paper of Wei et al [START_REF] Wei | A fully nonlinear boussinesq model for surface waves. part 1. highly nonlinear unsteady waves[END_REF] :

h 2 = 0.16 and u 2 = 0 f r = 1.22 and h 1 = 1/2 × h 2 (-1 + 1 + 8f r 2 ) c b = u2 + gh 1 /h 2 × (h 1 + h 2 )/2 and u 1 = c b -h 2 /h 1 (c b -u 2 )
where h is the water depth, u is the velocity, fr is the Froude number and c is the celerity.

The aim of this benchmark is to highlight the differences between second and third-order schemes, and to study the influence of the Froude number on the numerical results. As in the solitary wave case, nonlinear terms cannot be neglected since their absence results in aberrant oscillations at the front of the bore. Results are compared to a high-resolution computed solution calculated by the RK3 scheme with 2500 points (∆x = 0.04 m) and CFL = 0.45. For our tests, we take a characteristic length of l = 4 m.

Results of second and third-order schemes are presented in Fig 4 .6 at t = 0.94, 1.88, 2.82. We see that for a given order, the schemes produce similar results. As expected, numerical error increases with the propagation time. The less the order of the scheme, the fastest the numerical error increases. We note that the simplified LW3 scheme gives similar results to the third-order schemes.

The results obtained are similar to the ones calculated with a third order SSP Runge-Kutta or with a fourth order Adams-Bashforth/Adams-Moulton predictor corrector method by Chassagne et al. 2019 [START_REF] Chassagne | Dispersive and dispersive-like bores in channels with sloping banks[END_REF].

In Fig 4 .7, we present the results obtained with the LW3e, RK3 and simplified LW3 v3 schemes after the simulation of 60 s (t = 18.79) of propagation of the wave, a duration long enough for the extreme amplitudes to stabilize (it corresponds to t ∼ 400 for Chassagne [START_REF] Chassagne | Dispersive and dispersive-like bores in channels with sloping banks[END_REF]). In Fig 4 .7a, we report the heights of the first peak and through of the wave, and compare them to the experimental data of Favre [START_REF] Favre | Étude théorique et expérimentale des ondes de translation dans les canaux découverts[END_REF] and Treske [START_REF] Treske | Undular bores (favre-waves) in open channels -experimental studies[END_REF] for Froude numbers below the transition of wave breaking. All the schemes provide a very good approximation of the date, with only a slight over-prediction of the peak amplitudes from the RK3 schemes for high Froude numbers.

On order of 37% for the LW3e scheme and 27% for the simplified LW3 v3 one, or even better for some Froude numbers. As expected, Fig 4 .7a puts in evidence the good accuracy of the numerical results compared to experimental data. We can also see that the differences between the schemes increase with the Froude number. The Fig 4.7b shows that the Froude number has in general few influence on the computational time, and does not modify the classification of the schemes in term of computational cost.

Dambreak on an ascending slope

As a fourth benchmark, we simulate a dambreak-generated wave propagating over a flat bottom then over a positive slope. The 5 m high wave generated at x = 15000 m firstly propagates over a flat bottom 50 m deep and then propagates over a slope from x = 22000 m until reaching a flat bottom 18 m deep at x = 26000 m. These parameters are close to those of Michel Benoit [5].

The aim of this benchmark is to test the ability of schemes to propagate strongly nonlinear waves over a variable bottom. Two small spatial steps (n = 801, 1601) have been selected to avoid numerical oscillations. Simulations are performed with CFL = 0.5 and l = 300 m, and compared to a high-resolution computed solution calculated with 3101 points (∆x 10m) and CFL = 0.35.

Results for two resolutions are plotted in Fig 4 .8. For a given order and a given resolution, the schemes of same order generate similar results. Surprisingly, second-order schemes tend to be more accurate for the first wave while third-order and simplified LW3 schemes are more accurate for the following wave train. Despite the absence of shock-capturing methods, schemes do not introduce aberrant errors and finally converge to the high-resolution reference solution.

Chapter summary

In this chapter, we compare the accuracy and computational time of some Lax-Wendroff schemes of second and third-order, a simplified third-order Lax-Wendroff scheme and Runge-Kutta methods of second and third order applying them to four benchmarks.

We evaluate these schemes on two criterions : their accuracy, comparing their results to reference solutions. These reference solutions are high-resolution RK3 solutions. The undular bore (Section 2.3) has also been compared to experimental results. their computational time, using the RK3 scheme as a reference.

Simulations of these four benchmarks show that:

The RK2, LW2 and LW2si 2 schemes give similar results. Amongst these schemes, the RK2 scheme is the slowest one, while the LW2 scheme is the most efficient one.

The inflection points observed in the dispersion curves of the LW2e 1 , LW3e and simplified LW3 schemes seem to have no effect on the results obtained on physical benchmarks.

The explicit LW2e 1 and LW2e 2 schemes are the fastest second-order schemes. The CPUtime savings of the LW2e 1 and LW2e 2 schemes compared to the RK2 scheme are respectively of the order of 40% and 48% for a given resolution. While the LW2e 1 scheme is the most accurate second-order scheme compared to the Airy and computed solutions, LW2e 2 is the least accurate one of those tested on the benchmarks.

Despite of its higher dispersion error, the simplified LW3 scheme gives often results comparable to the third order schemes in the four physical benchmarks studied. Among these, the best scheme in terms of both error levels and performance is the LW3e scheme, which outperforms RK3 with CPU reductions up to 37%. The second best scheme is the simplified LW3 v3 scheme with CPU-times reductions compared to the RK3 scheme of the order of 30%. The LW3 and RK3 schemes come after.

This study shows that some terms in Boussinesq equations may be neglected and that inversion of matrices may be replaced by the calculation of temporal derivatives. For large space steps and some benchmarks, this calculation may even produce more accurate results compared to the reference solutions.

As regards second-order schemes, temporal derivatives of ϕ are discretized for the schemes LW2e 1 , LW2e 2 and LW2si 2 . The LW2e 1 is probably the best compromise between the CPU-time and the accuracy. The CPU-time and accuracy of the LW2e 2 scheme being sometimes better the LW2e 1 ones, it would need further investigation.

As regards third-order schemes, we can immediately remark that they have generally superior performances than second order ones. Concerning the LW schemes, temporal derivatives of ϕ are discretized for the schemes LW3e and LW3si. We also define a simplified LW3 scheme in which the third temporal derivative of the velocity is approximated. Results of LW3 and simplified LW3 schemes are similar in the benchmarks, even in the case of propagation with coarse resolution. In terms of computational time, the most efficient schemes are the LW3e scheme and simplified LW3 scheme. The simplified LW3 scheme is sligthly slower and less accurate than the LW3e scheme in the benchmarks. It would be interesting to further investigate the results generated by the LW3e and simplified LW3 schemes for very different benchmarks to assess the limitations of the simplified LW3 scheme. The LW3e scheme, the simplified LW3 scheme and the LW3 scheme require respectively one, two and three matrix inversions at each time step. Compared to the RK3 scheme, the computational time of the LW3e and simplified LW3 schemes is reduced by up to 37% and about 30%, respectively. As a consequence, I chose the LW3e scheme as the best candidate for 2D simulations of real cases.

Chapter 5 Extension to 2-dimensions space

After our monodimensional study of different temporal schemes, we want to implement a bidimensional method able to simulate real cases such as a transmediterranean or transpacific tsunami.

During our 1D analysis, we proved that the enhanced Boussinesq equations are far more accurate than the standard ones. We will then conserve the enhanced equations for the bidimensional modelling. What we have not studied in the monodimensional analysis is the influence of the formulation of the equations and of the discretization on the results. In order to study the difference between the conservative and non-conservative forms, we will introduce the two bidimensional formulations in a tsunami modelling code and compare their results in terms of accuracy and computational time.

As in all this dissertation, we consider the movement of the bathymetry negligible. We remind here the non-conservative form of Boussinesq equations we use, denoting S1 (η, u, v, ϕ v ) and S2 (η, u, v, ϕ u ) the right-side terms of the Eqs 2.2 and 2.3 :

                   ∂ t η + ∂ x (hu) + ∂ y (hv) = 0 ∂ t u + g∂ x η + u∂ x u + v∂ y u = gϕ u ∂ t v + g∂ y η + u∂ x v + v∂ y v = gϕ v 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
where ϕ denotes the dispersive terms, α = 0.39 and β = 0.057. Denoting M = M u + gh 2 /2 et Ñ = N v + gh 2 /2, the corresponding conservative formulation is written as :

                   ∂ t η + ∂ x M + ∂ y N = 0 ∂ t M + ∂ x M + ∂ y (N u) = gh(∂ x d + ϕ u ) ∂ t N + ∂ x (M v) + ∂ y Ñ = gh(∂ y d + ϕ v ) 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
where M = hu, N = hv are the moments. We keep the two last equations in a non-conservative form to reduce the computational time.

The monodimensional study having proved a better efficiency of an explicit approximated Lax-Wendroff method called LW3e compared to the third order accurate Runge Kutta method, we chose 65 to implement this explicit method.

In this chapter, we firstly present the bidimensional Lax-Wendroff method and its explicit approximation LW3e. We focus on the discretization applied to the models and their effect on the stability of the methods.

Lax-Wendroff procedure for the 2D Boussinesq equations

The principle of a Lax-Wendroff procedure consists in performing a truncated Taylor series development to approximate the unknowns at time t n+1 = (n + 1) × ∆t, and in approximating the temporal derivatives by replacing them with expressions not containing time derivatives.

Here, we consider the third-order truncated series, which writes as (for the non-conservative form):

η n+1 = η n + ∆t∂ t η n + ∆t 2 /2 × ∂ tt η n + ∆t 3 /6 × ∂ ttt η n u n+1 = u n + ∆t∂ t u n + ∆t 2 /2 × ∂ tt u n + ∆t 3 /6 × ∂ ttt u n v n+1 = v n + ∆t∂ t v n + ∆t 2 /2 × ∂ tt v n + ∆t 3 /6 × ∂ ttt v n
For the non-conservative form, temporal derivatives are written as :

∂ t η = -∂ x (hu) -∂ y (hv) ∂ t u = -g∂ x η -u∂ x u -v∂ y u + gϕ u ∂ t v = -g∂ y η -u∂ x v -v∂ y v + gϕ v ∂ tt η = -∂ x u∂ t η -u∂ xt η -∂ x h∂ t u -h∂ xt u -∂ y h∂ t v -h∂ yt v -∂ y v∂ t η -v∂ yt η ∂ tt u = -g∂ xt η -∂ t u∂ x u -u∂ xt u -∂ t v∂ y u -v∂ yt u + gψ u ∂ tt v = -g∂ yt η -∂ t u∂ x v -u∂ xt v -∂ t v∂ y v -v∂ yt v + gψ v ∂ ttt η = -2∂ t η(∂ xt u + ∂ yt v) -∂ tt η(∂ x u + ∂ y v) -2∂ t u∂ xt η -u∂ xtt η -∂ x h∂ tt u -h(∂ xtt u + ∂ ytt v) -2∂ yt η∂ t v -∂ y h∂ tt v -v∂ ytt η ∂ ttt u = -g∂ xtt η -∂ x u∂ tt u -u∂ xtt u -2∂ t u∂ xt u -∂ tt v∂ y v -2∂ t v∂ yt v -v∂ ytt v + gθ u ∂ ttt v = -g∂ ytt η -∂ tt u∂ x v -2∂ t u∂ xt v -u∂ xtt v -∂ y v∂ tt v -v∂ ytt v -2∂ t v∂ yt v -+gθ v
where ψ and θ are the second and third temporal derivatives of ϕ.

In the conservative form, they write as :

∂ t η = -∂ x M -∂ y N ∂ t M = -∂ x M -∂ y (N u) + gh (∂ x d + ϕ u ) ∂ t N = -∂ y Ñ -∂ x (M v) + gh (∂ y d + ϕ v ) ∂ tt η = -∂ xt M -∂ yt N ∂ tt M = -∂ xt M -∂ y (u∂ t N + N ∂ t u) + ∂ t η (∂ x d + ϕ u ) + ghψ u ∂ tt N = -∂ yt Ñ -∂ x (v∂ t M + M ∂ t v) + ∂ t η (∂ y d + ϕ v ) + ghψ v ∂ ttt η = -∂ xtt M -∂ ytt N ∂ ttt M = -∂ xtt M -∂ y (2∂ t u∂ t N + u∂ tt N + N ∂ tt u) + ∂ tt η (∂ x d + ϕ u ) + 2ψ u ∂ t η + ghθ u ∂ ttt N = -∂ ytt Ñ -∂ x (2∂ t v∂ t M + v∂ tt M + M ∂ tt v) + ∂ tt η (∂ y d + ϕ v ) + 2ψ v ∂ t η + ghθ v
In both formulations, the time derivatives are replaced by their corresponding time-independant expressions to fully apply the Lax-Wendroff method.

The main difference with the monodimensional cases is that in the bidimensional system, the equations are interdependent, which complicates the problem resolution.

LW3 and LW3e schemes in 2D

The most genuine method presented in this chapter would obviously be to solve the third-order Lax-Wendroff method (noted LW3). That would nevertheless mean to inverse four matricial products at each time step to evaluate the temporal derivatives of ϕ, in addition to the two matrix inversions required to evaluate ϕ u and ϕ v themselves.

The second and third temporal derivatives ψ and θ would then be calculated solving the equations obtained derivating the Eqs 2.2 and 2.3, and written as:

1 - d 2 ∂ xx d ψ u -d∂ x d∂ x ψ u -αd 2 ∂ xx ψ u = S1 (∂ t η, ∂ t u, ∂ t v, ψ v ) 1 - d 2 ∂ yy d ψ v -d∂ y d∂ y ψ v -αd 2 ∂ yy ψ v = S2 (∂ t η, ∂ t u, ∂ t v, ψ u ) 1 - d 2 ∂ xx d θ u -d∂ x d∂ x θ u -αd 2 ∂ xx θ u = S1 (∂ tt η, ∂ tt u, ∂ tt v, θ v ) 1 - d 2 ∂ yy d θ v -d∂ y d∂ y θ v -αd 2 ∂ yy θ v = S2 (∂ tt η, ∂ tt u, ∂ tt v, θ u )
where the temporal derivatives of η, u and v are replaced by time-independent expressions. While accurate, the complete Lax-Wendroff method is hard to implement and really expensive in terms of computation. We look for a method more efficient for our modelling.

We have presented in Chapters 3 and 4 an approximative Lax-Wendroff method, noted LW3e, which has been proved to be as accurate and more efficient than the full Lax-Wendroff method in monodimensional modelling. We then chose to apply this explicit approximation in bidimensional modelling too, using the following approximations :

ψ n u/v = ∂ t ϕ n u/v = 3ϕ n u/v -4ϕ n-1 u/v + ϕ n-2 u/v 2∆t and θ n u/v = ∂ xx ϕ n u/v = ϕ n u/v -2ϕ n-1 u/v + ϕ n-2 u/v ∆t 2
The LW3e method reduces greatly the computational time of modelling in reducing to two the number of required matrix inversions. It also simplifies the implementation.

Fully discrete multi-dimensional dispersive propagation model

When replacing the monodimensional implementation by a bidimensional implementation, we discovered some instabilities in the modelling of a 2D gaussian wave after some duration of propagation. What is the origin of these instabilities ? Is the model or scheme unstable ? Is it some error in the implementation ? Was it already there in the monodimensional case, and not noticed ?

We consider now the finite difference approximation of the system. We denote by D k x and D k y the one-dimensional centered fourth order finite difference approximations of the k-th derivative in the direction x and y respectively. As an example, we define a mesh of size N x × N y , where we evaluate a variable X. Denoting X i,j the value calculated in (i∆x, j∆y) and applying the operator D k x to the variable X, we obtain :

D 1 x X i,j = X i-2,j -8X i-1,j + 8X i+1,j -X i+2,j 12∆x D 2 x X i,j = -X i-2,j + 16X i-1,j -30X i,j + 16X i+1,j -X i+2,j 12∆x 2 D 3 x X i,j = X i-3,j -8X i-2,j + 13X i-1,j -13X i+1,j + 8X i+2,j -X i+3,j 8∆x 3
The operators D k y are defined similarly following the direction y. Note that when considering usual one-dimensional formulas, the y and x direction derivatives are trivially shown to commute, in other words :

D 1 y D 1 x h = D 1 x D 1 y h
Note also that to discretize the derivative of a product of different variables a and b, we develop the derivative before applying the discretization operator :

D k (ab) = a × D k b + b × D k a
In this section, we detail the effect of the discretization on the stability of the method. We begin by explaining in the first subsection how we modify the conservative method to acquire the well-balancing ability. The second subsection deals with two differents discretization methods. The last one contains the results obtained performing simulations of two benchmarks using these two discretization methods.

Well-balanced schemes

A first possible source of instabilities is the treatment of the bathymetry terms. In this section, we discuss the well-balancing property and how we achieve it with our models.

We focus on the preservation of lake at rest equilibria η = η 0 = constant and u = v = 0. In this case, the right hand side of the elliptic subproblem, depending on spatial derivatives of η and of the velocities, is zero and the solution ϕ = 0 is provided by the iterative procedure employed in this work.

The non-conservative model is well-balanced by definition. Concerning the shallow part of the conservative model, we have for each mesh node : x d for a lake at rest state, we obtain using the relation h -d = η 0 :

dh dt +D 1 x (hu) + D 1 y (hv) = 0 d(hu) dt +D 1 x (hu 2 + gh 2 /2) + D 1 y (huv) = (gh∂ x d) D + hϕ u d(hv) dt +D 1 x (huv) + D 1 y (hu 2 + gh 2 /2) = (gh∂ y d) D + hϕ v
d(hu) dt = -gD 1 x (h 2 /2) + ghD 1 x h = 0 d(hv) dt = -gD 1 y (h 2 /2) + ghD 1 y h = 0
which means the scheme is not well-balanced. To construct a well-balanced approximation we use a strategy similar to the one proposed by Xing and Shu [START_REF] Xing | High order finite difference weno schemes with the exact conservation property for the shallow water equations[END_REF] and set

(gh∂ x d) D = gηD 1 x d + gD 1 x (d 2 /2)
and similarly in the y direction. With this definition we can easily check that for a lake at rest state

d(hu) dt = -gD 1 x (h 2 /2) + gη 0 D 1 x d + gD 1 x (d 2 /2) = -gD 1 x (η 0 + d) 2 /2 + gη 0 D 1 x d + gD 1 x (d 2 /2) = --gη 0 D 1 x d -gD 1 x (d 2 /2) + gη 0 D 1 x d + gD 1 x (d 2 /2) = 0
and similarly in the y direction. This property carries on to the high order Lax-Wendroff terms which are expressed as derivatives of the evolution operator in (5.1).

Symmetric and non-symmetric FD approximations

Performing simulations of 2D gaussian waves propagating on a flat bottom, we discover that when the dispersion was strong enough, instabilities can be generated at the center of the gaussian waves and lead to blowing up. We then focused our reasearch on the dispersive equations. The benchmark used here is described in Section 5.3.3. We observe that these instabilities don't appear in 1D cases. We thus suppose that the unstable terms are or in the terms containing ϕ u/v in the second members, or in terms containing both u and v, or in terms containing crossed derivatives such as ∂ x y, ∂ x xy or ∂ x yy.

We then restrain the errors to the crossed derivative terms. What was more difficult to understand was that the crossed derivatives of the velocities do not generate unstabilities, while the crossed derivatives of the surface elevation do. We have then localised the source of these instabilities in ∂ xxy η and ∂ xyy η.

First of all, the most important question we had was : Is the instability due to an error, or is it numerical instability ?

We have firstly tried to improve the accuracy in time and space to see if the instabilities are due to a lack of precision. The mesh chosen (see Section 5.3.3 with ∆x = 12m) is in effect coarse, and has been chosen in such a way to assess the efficiency of the calculations in extreme cases. Reducing the size of the time and space steps only increases the velocity of apparition of the instabilities, which leads us to think of numerical instabilities and not of an error in the implementation.

To verify this hypothesis, we tried to replace FD4 by FD2. It delays the apparition of instabilities, that leads us furthermore into thinking of numerical instabilities.

We had also the hypothesis that the inversion method (here a Gauss-Seidel's method, see Chapter 6) could be wrong, and verified it replacing it with another one. In this case, we used a program called MUMPS, which is a well-known program of matrix inversion. We firstly thought that it erased completely the errors, before denoting that after a greater duration of modelling, the instabilities finally appeared and then blew up. Knowing that MUMPS has some means to stabilize results obtained inversing a not-well-defined matrix, we suppose that it is the reason why the generation of instabilities takes more time using MUMPS.

In this section, we detail two methods to evaluate spatial derivatives and how this evaluation is crucial both for the accuracy of the results and for the stability of the schemes.

To simplify the explanations, we study the enhanced Boussinesq system in the constant bathymetry linear case, which reads :

∂ t h + d∂ x u + d∂ y v = 0 ∂ t u + g∂ x h = gϕ u ∂ t v + g∂ y h = gϕ y
with the auxiliary variables obtained from the elliptic system

ϕ u -αd 2 (∂ xx ϕ u + ∂ xy ϕ v ) = (β -α)d 2 (∂ xxx η + ∂ xyy η) ϕ v -αd 2 (∂ yy ϕ v + ∂ xy ϕ u ) = (β -α)d 2 (∂ yxx η + ∂ yyy η) (5.2)

Two methods of discretization

In this part, we look at different formulations for the approximation of the auxiliary system (5.2) in the linear case.

A first straightforward approach (the one which was implemented when the simulations of gaussian waves blow up) would be to use standard second order derivative operators in all the terms on the left hand side, and in the Laplacian of the depth appearing on the right hand side. This leads to the following discrete approximation :

ϕ u -αd 2 (D 2 x ϕ u + D 1 x D 1 y ϕ v ) = (β -α)d 2 (D 3 x h + D 1 x D 2 y h) ϕ v -αd 2 (D 2 y ϕ v + D 1 y D 1 x ϕ u ) = (β -α)d 2 (D 2 x D 1 y h + D 3 y h) (5.3)
This straightforward and simple approximation has a major drawback that the symmetry of the operator in the right hand side is broken. This can be seen in the terms D 1 x D 2 y h and D 1 y D 2 x h which are approximations of ∂ xxy h and ∂ xyy h with however a different treatment of the mixed derivative operator in the x and y direction. This lack of symmetry introduces mesh dependent modes which may pollute the solution.

For this reason, we have defined embedded formulas which allow to retain the symmetry of the operator in the right hand side :

ϕ u -αd 2 (D 2 x ϕ u + D 1 x D 1 y ϕ v ) = (β -α)d 2 (D 3 x h + D 1 x D 1 y D 1 y h) ϕ v -αd 2 (D 2 y ϕ v + D 1 y D 1 x ϕ u ) = (β -α)d 2 (D 1 y D 1 x D 1 x h + D 3 y h)
An alternative variant is to use a fully embedded finite differencing strategy on the right hand side which reads :

ϕ u -αd 2 (D 2 x ϕ u + D 1 x D 1 y ϕ v ) = (β -α)d 2 (D 1 x D 1 x D 1 x h + D 1 x D 1 y D 1 y h) ϕ v -αd 2 (D 2 y ϕ v + D 1 y D 1 x ϕ u ) = (β -α)d 2 (D 1 y D 1 x D 1 x h + D 1 y D 1 y D 1 y h) (5.4)
This is this formulation that we finally chose to stabilize our methods.
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Rotational of dispersive terms

A significant difference can be observed between the discretization methods calculating the rotational of dispersive terms ϕ.

To evaluate rot(ϕ) in linear cases with flat bottom, we simply evaluate ∂ y (Eq 5.2.1)-∂ x (Eq 5.2.2).

The left side of this calculation is :

∂ y ϕ u -∂ x ϕ v -αd 2 [∂ y (∂ xx ϕ u + ∂ xy ϕ v ) -∂ x (∂ yy ϕ v + ∂ xy ϕ u )]
which can be simplified as

∂ y ϕ u -∂ x ϕ v = rot(ϕ).
The right side of this calculation is :

(β -α)d 2 [∂ y (∂ xxx η + ∂ xyy η) -∂ x (∂ yxx η + ∂ yyy η)]
which is null. These calculations prove that in linear cases on flat bottom, the dispersive terms rotational is supposed to be null. What do we obtain with the non-embedded (5.3) and fully embedded (5.4) formulas ?

For the left side, both the methods write :

D 1 y ϕ u -D 1 x ϕ v -αd 2 D 1 y (D 2 x ϕ u + D 1 x D 1 y ϕ v ) -D 1 x (D 2 y ϕ v + D 1 x D 1 y ϕ u )
which can be rewritten as

D 1 y ϕ u -D 1 x ϕ v -αd 2 D 1 y (D 2 x ϕ u -D 1 x D 1 x ϕ u ) -D 1 x (D 2 y ϕ v -D 1 y D 1 y ϕ v )
Due to the fourth-order accurate of the D 1 and D 2 operators, D 1 D 1 and D 2 are close, thus the sum in parentheses is near zero. The big difference between the non-embedded and fully embedded formulas is in the right side of this calculation, that we write :

(β -α)d 2 D 1 y (D 3 x η + D 1 x D 2 y η) -D 1 x (D 2 x D 1 y η + D 3 y η) for the non-embedded formulation (β -α)d 2 D 1 y (D 1 x D 1 x D 1 x η + D 1 x D 1 y D 1 y η) -D 1 x (D 1 x D 1 x D 1 y η + D 1 y D 1 y D 1 y η)
for the embedded formulation and can be simplified as

(β -α)d 2 D 1 y (D 3 x η -D 1 x D 2 x η) + D 1 x (D 2 y D 1 y η -D 3 y η)
for the non-embedded formulation 0 for the embedded formulation While for the non-embedded formation, the right side cannot be simplified and thus generate numerical error, it is null for the embedded formulation. The fourth-order accuracy of the discretization operators is here not sufficient to ensure that the numerical error generated with the non-embedded formula is negligible. The condition rot(ϕ) ∼ 0 is then fulfilled only by the fully embedded method, which explains the difference of stability between the methods. The non-embedded formula would require a higher order of accuracy of the discretization operators to fulfill the same condition.

Numerical results

In this section, we study the impact of the method used to evaluate the second and third derivatives. Two benchmarks are modelled solving the enhanced Boussinesq equations in conservative formulation with the LW3e and RK3 schemes, that we denote respectively LW3eC-FD4 and RK3C-FD4 methods. Results obtained with the fully embedded (5.3) and non-embedded (5.4) discretizations are then studied and compared.

The first benchmark we study is the 40 s-propagation of a 2D gaussian wave with an amplitude of 10 cm and a standard deviation of 60 m in both direction over a square flat bottom of 720 m-long side. The water depth is 10 m and the initial velocity is null. The gaussian wave is centered at (x,y) = (12000,12000) and initially defined for the point (i,j) by the formula :

η i,j|t=0 = amp × e - (x i -x) 2 2σ 2 x × e - (y j -ȳ) 2 2σ 2 y (5.5)
with the amplitude amp, x and ȳ the median points (here both equal to 12000) along the x and y axis, and the standard deviations σ x and σ y . This benchmark is characterized by a linear propagation of strongly dispersive waves. These strongly dispersive waves have a major impact on the stability of the modelling, depending on the method used to evaluate the dispersive terms.

We plot in Fig 5 .1 the water surface elevations obtained modelling the 40s-propagation of this gaussian wave with a space step ∆x = 12m and a time step ∆t = 0.5s. The LW3eC-FD4 and RK3C-FD4 methods generate similar results with the embedded formulation (Fig 5 .1a and 5.1b). With the non-embedded formulation, both the methods blow up before reaching 40s, the RK3C one faster than the LW3eC one. It proves that the third derivatives evaluation is crucial, no matter the temporal scheme we use to perform the modelling. We can also denote that the blowing of the LW3eC method is not symmetric, as it seems to be in the RK3C one.

In linear cases over a flat bottom, the rotational of the dispersive terms in supposed to be null. We plot in Fig 5 .2 the rotational of ϕ obtained modelling the 40s-propagation of this gaussian wave with a space step ∆x = 12m. As expected, the LW3eC and RK3C schemes generate similar results with the embedded formulation (Fig 5 .2a and 5.2b) and the roational remains small. With the nonembedded formulation, LW3eC results are asymmetric and the rotational values are greater than those calculated with the embedded formulation. While the RK3C version generates symmetrical results, its rotational has already clearly blown up while the LW3eC one blows up slightly later. It clearly shows that with the non-embedded formulas, the condition rot(ϕ) = 0 is not fulfilled, and that the RK3C-FD4 method is more sensitive to the discretization formulas employed than the LW3eC-FD4 method.

What happens to these observations performing simulations with higher resolution ? In Fig 5 .3, we study the water surfaces obtained modelling the 40s-propagation of this gaussian wave with a space step ∆x = 6m. To keep a constant CFL value, the time step is divided by two compared to the one used in Fig 5 .1. With the embedded formulation, the under-estimations of the wave amplitude in cardinal directions has been improved with the accuracy for the LW3eC-FD4 method (Fig 5 .3a), and has been totally erased for the RK3C-FD4 scheme (Fig 5 .3b). With the non-embedded formulation, the modelling of the LW3eC-FD4 method has retained its symmetry, but the blowing up has been accelerated for both methods.

In Fig 5 .4, we study the rotational of the dispersive terms ϕ u obtained modelling the 40spropagation of this gaussian wave with a space step ∆x = 6m. To keep a constant CFL value, While the rotational generated by the LW3eC method is null in the center of the mesh, where there are no waves, it is not the case for the RK3C method, which seems to generate unrealistic small values. We also denote in the rotational the same default of evaluation in the cardinal directions that we see in the amplitudes (Fig 5 .3) with the LW3C-FD4 method. With the non-embedded formulation, both methods generate symmetric results and blown up rotationals. The unrealistic values generated in the center of the mesh by the RK3C method could be a possible source of the faster blowing up of this method compared to the LW3eC one in non-embedded simulations.

In the second benchmark, we study how these two discretizations formulas handle a given bathymetry. We then perform simulations of the 40s propagation of the same gaussian wave modifying only the bathymetry. As bathymetry, we define a bidimensional slope (plotted in Fig 5 .5) using the following expression :

d = 10 -6e - (x -x max ) 2 2 × 250σ 2 x × e - (y -y max ) 2 2 × 250σ 2 y
In Fig 5 .6, we study the water surfaces obtained modelling the 40s-propagation of this gaussian wave over a slope with a space step ∆x = 6m and using the same CFL as in Figures 5.3 and 5.4. In contrast to the modelling on flat bottom with embedded formulation, we can here denote a difference between the results generated by both schemes. The small variations in RK3C results at the center of the mesh, which were only noticeable in the rotational on flat bottom, generate here small variations in the amplitude and even an additional wave. As expected, both methods blow up with the non-embedded formulations.

In Fig 5 .7, we study the rotational of the dispersive terms ϕ obtained by modelling the 40spropagation of this gaussian wave over a slope with a space step ∆x = 6m. As on flat bottom, the RK3C scheme with embedded formulation generates some perturbations of the rotational in the center of the mesh, which are not present in LW3eC rotational. As in our previous simulations, the RK3C scheme blows up faster than the LW3eC one with non-embedded formulation.

In Fig 5 .8, we study the water surfaces obtained by modelling the 40s-propagation of this gaussian wave over a slope with a space step ∆x = 3m and the same CFL as in the previous simulations of this section. The increased accuracy has erased the parasite amplitudes generated by the RK3C In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method.

scheme in the center of the mesh with the embedded formulation, and accelerated the blowing up of both methods with the non-embedded one. In Fig 5.9, we study the rotational of the dispersive terms ϕ obtained by modelling the 40spropagation of this gaussian wave over a slope with a space step ∆x = 3m. The embedded simulations (Fig 5 .9a and 5.9b) highlights that firstly, the rotational has unrealistic values at the boundaries that we attribute to the non-flat bathymetry, and secondly, that the LW3eC method is more sensitive to the bathymetry than the RK3C one, as proved by the noise noticeable only in Fig 5 .9a. As seen in the previous simulations, both methods with non-embedded formulation blow up faster with the increased accuracy. We can also denote noise at the mesh boundaries which is not significant in the cases ∆x = 6m or in the surface elevations.

Chapter summary

In this chapter, I present the non-conservative and conservative models that I have implemented in the framework of my thesis. I then present the temporal integration method used then I discuss the discretization method applied to the system. I firstly reexplain the application of the Lax-Wendroff procedure in bidimensional cases, then the differences between the full Lax-Wendroff method and its explicit approximation LW3e, which according to the 1D study, should be as accurate and require far less computational time than the full method.

I then discuss the discretization applied to the models to obtain stable methods. The first discretization discussed is the one applied to the bathymetry term, which allows a scheme to be well-balanced. This ability is garanteed by definition in the non-conservative method, but requires a particular formulation of the bathymetry term in the conservative method.

Modelling the propagation of a gaussian wave, we put in evidence that the third derivatives of η are particularly sensitive to the spatial discretization and can easily lead to blowing up, no matter the temporal integration method used.

Two ways to discretize the second and third derivatives are investigated. While the nonembedded formulation generates numerical instabilities that quickly lead to blowing up, the fully embedded one keeps the rotational of the dispersive terms small in linear cases on flat bottom, hence fulfills the condition rot(ϕ) = 0. This method does not generate instabilities. An article studying these two discretization methods and comparing the efficiency and accuracy of the LW3eC-FD4 and RK3C-FD4 methods is currently being drafted.

It is worth noting that while the derivatives in η generate instabilities using the non-embedded discretization, the corresponding velocity derivatives do not. We attribute that to the fact that the velocities are much smoother than the water surface elevation, which fluctuates a lot due to the dispersive effects. Figure 5.9: Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 3m and a time step ∆t = 0.125s. We plot the rotational of the dispersive terms in x-direction obtained after 5.9a,5.9b) 40s and 5.9c,5.9d) 5.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method.

Chapter 6

Solution of the algebraic equations

As explained before, we chose to apply an approximated Lax-Wendroff method which we proved [START_REF] Cauquis | Lax-wendroff schemes with polynomial extrapolation and simplified lax-wendroff schemes for dispersive waves: A comparative study[END_REF] to be more efficient than more famous methods such as the Runge-Kutta ones. To apply this method, we define a new formulation of Boussinesq equations that erases any space-time derivative. This formulation generates respectively one or two additional equations for the monodimensional and bidimensional cases, which are written in 2D as :

       1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
The operators S1 and S2 are written explicitly in Section 2.1.2. As shown in Chapter 5, the Finite Difference discretization of the time independent equations for the dispersive terms leads to a sparse linear system for the nodal values of ϕ u and ϕ v .

The implicit form of these two equations requires the use of matrix inversion to evaluate the dispersive terms ϕ u and ϕ v , whatever formulation of the system we may choose.

The Lax Wendroff approach proposed allows to minimize the number of inversions per time step. In this chapter, we discuss strategies to optimize this inversion to reduce the computational cost. All the results presented in this chapter have been obtained solving the non-conservative enhanced Boussinesq equations.

We start from a comparison of the one and two dimensional equations, allowing to underline the different structure of the associated algebraic systems. To propose an efficient resolution method, we then discuss ways to split the algebraic system. The most efficient of the two is almost equivalent of solving twice the 1D equations. Finally we discuss matrix inversion methods and the parallel implementation.

We recall (cf Chapter 5) that N x and N y denote the number of points in the x-and y-directions, and ∆x and ∆y the space steps in the same directions. We also denote the nodal space coordinates x i = x 1 + (i -1)∆x and y j = y 1 + (j -1)∆y.

Algebraic equations in 1D and 2D

In this section, we write the implicit equations to solve and explain the crucial differences between 1D and 2D.

In 1D, there is a single implicit equation to solve at each time step :

1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u) where S1 (η, u) = βd 2 ∂ xxx η + d 2 α∂ xx A u + d 2 [∂ x A u ∂ x d + ∂ x (A u ∂ x d)].
The equation above is then written in a matrix-vector product form

Gϕ u = S 1
where ϕ u and S 1 are vectors. The matrix G is then inversed once per time step to evaluate ϕ u . When using a centered fourth order finite differencing, the matrix G has a pentadiagonal structure.

In two space dimensions, the two components of the dispersive term are obtained as the solution of the elliptic PDE :

1 - d 2 ∇∇d ϕ + T (d, ϕ) = S(η, u, v)
with ϕ = (ϕ u , ϕ v ) t and S and T two operators.

The explicit operators T = (T 1 , T 2 ) t and S = (S 1 , S 2 ) t are written :

T 1 (d, ϕ) = -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u -d αd∂ xy ϕ v + 1 2 ∂ x d∂ y ϕ v + 1 2 ∂ x (ϕ v ∂ y d) T 2 (d, ϕ) = -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v -d αd∂ xy ϕ u + 1 2 ∂ y d∂ x ϕ u + 1 2 ∂ y (ϕ u ∂ x d) S 1 (η, u, v, ϕ v ) = βd 2 ∂ x (∂ xx η + ∂ yy η) + d 2 α∂ x D + ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d 2 D∂ x d + ∂ x A u - v g ∂ y u ∂ x d + A v - u g ∂ x v ∂ y d + d 2 ∂ x d ∂ x - v g ∂ y u + ∂ y - u g ∂ x v S 2 (η, u, v, ϕ u ) = βd 2 ∂ y (∂ xx η + ∂ yy η) + d 2 α∂ y D + ∂ x - v g ∂ y u + ∂ y - u g ∂ x v + d 2 D∂ y d + ∂ y A u - v g ∂ y u ∂ x d + A v - u g ∂ x v ∂ y d + d 2 ∂ y d ∂ x - v g ∂ y u + ∂ y - u g ∂ x v
We remind that g is the gravitational acceleration, d is the water depth, h = η + d is the flow depth and (u,v) are the depth-averaged velocities along the x-and y-directions. We also denote

A u = - u g ∂ x u -∂ x η, A v = - v g ∂ y v -∂ y η and D = ∂ x A u + ∂ y A v .
The operator T is of the gradient-divergence type, which means that the equations of the components of ϕ are fully coupled. Their discretization leads to a much more expensive system to invert. If block entries are considered, then a pentadiagonal block structure requiring vectorial iterations is obtained. For a scalar numbering, a much sparser structure than pentadiagonal is obtained, requiring less trivial methods.

Our main objective is to minimize as much as possible this overhead.

Different formulations to solve the sparse systems

Solving two independent equations results in solving twice a monodimensional equation. Our problem consists in solving two interdependent equations. We consider here two approaches. The first one consists in rewriting the discretized equations in a unique matrix-vector equation and solving it once per time step. The second one consists in defining some splitting of these two equations and use it as the basis for some iterative method. We present the choices tested in this work hereafter.

A complete formulation

The most straightforward way to discretize the dispersive system is to write it in the form of a matrix-vector product such as :

Gϕ = S.
In this case, we write ϕ = (ϕ u , ϕ v ) t and S = (S 1 , S 2 ) t in the form of arrays of size 2N x N y . The arrays ϕ u , ϕ v , S 1 and S 2 are of size N x N y , and organized according to the numbering X (j-1)Nx+i = X(x i , y j ) for a variable X.

The matrix G is then written :

G = G 1 G 3 G 4 G 2
where G k for k = 1, 2, 3, 4 are sparse matrices of N x N y coefficients by side. With the numbering described above, G 1 is a pentadiagonal matrix. The advantage of this formulation, which we refer to as Version 1 or v1, is that a unique matrix is inversed only once a time step.

Nevertheless, the matrix G having a very sparse nature, its inversion is in practice quite expensive. For large domains, the size of G may also be an issue.

Split formulations

The idea we propose to test here is to split the system in two equations, allowing the independent iterations for calculation of ϕ u and ϕ v . This splitting alone allows to reduce the size of the matrices involved in the iterations. The coupling terms are of course accounted for in the right hand side of the iterative process.

We propose to split the lines of the linear system so that each line of the two remaining matrices corresponds to the discretization, applied to a cell of the mesh, of one of these equations :

       1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u ),
where the new source terms S1 and S2 contain terms depending on ϕ v and ϕ u respectively. This splitting of the discrete equations leads to two independent linear systems which read :

G 1 ϕ u = S1d G 2 ϕ v = S2d
where ϕ u and ϕ v are now in a vectorial form. G 1 and G 2 are the same blocks present in the matrix G of the version 1. S1d and S2d are the operators S1 and S2 discretized using the fully embedded formulas presented in Section 5.3.2. Using the same numbering of the unknowns used in the v1 algorithm leads to a block pentadiagonal structure for G 1 , while G 2 has a much sparser structure. We will refer to Version 2A or v2A when speaking of the iterative method obtained with this numbering.

To further reduce the cost of the method, we introduce a renumbering of the unknowns. We rewrite G 2 in a pentadiagonal form using another numbering to define the vectorial forms of S2d and ϕ v : ϕ v (i-1) * Ny +j = ϕ v i,j .

In particular, we consider a numbering in which the entries of the dispersive terms ϕ u and ϕ v are counted following the mesh respectively line by line for ϕ u , and column by column for ϕ v . Let's take some indices i, j such that i = N x , j = N y and k = (j -1) × N x + i and m = (i -1) × N y + j. For example we have :

ϕ u k = ϕ u (x i , y j ) ϕ u k+1 = ϕ u (x i+1 , y j ) ϕ u k+Nx = ϕ u (x i , y j+1 ) ϕ vm = ϕ v (x i , y j ) ϕ v m+1 = ϕ v (x i , y j+1 ) ϕ v m+Ny = ϕ v (x i+1 , y j )
With this new numbering G 1 and G 2 have the same structure, and they are moreover identical on flat bathymetries. We call this formulation 'Version 2B' and denote it v2B.

In both these versions, the matrix G 1 is a matrix by blocs which can be written as :

G 1 =    G 1,1 0 . . . 0 G 1,Ny   
where G 1,k is the matrix corresponding to the k-th column of the mesh, for k = 1, N y . In the Version 2B, the matrix G 2 is written in a similar way, with G 2,k the submatrix corresponding to the k-th line of the mesh.

In both the versions 2A and 2B, the two equations are solved successively until convergence. The two systems are then solved successively until reaching the desired precision (the difference between two successive values of ϕ u/v being smaller than a parameter called precision) or the maximum number of iterations, noted nit max (See Algorithm 1, where H 1 and H 2 are the vectors corresponding to the source terms S1 and S2 ). These parameters are crucial to determine the convergence ratio. This ratio is then crucial to determine which of the split and non-split versions is the most efficient.

Matrix inversion methods

In addition to the formulation of the discretized scheme to inverse, the choice of the inversion method is also crucial. Four inversion methods have been implemented : the Gauss' and the Gauss-Seidel's methods, both implemented in two versions, respectively adapted to heptadiagonals or full matrices.

In this section, we compare the results of these inversion methods applied to the three formulations of the dispersive system presented above, in term of computational time.

All the implementations and results presented in this section have been obtained under the hypothesis of open boundary conditions, which can be sum up as : For each variable f discretized on a partition x i,i=1,...,Nx , we fix the fictitious values f -1 = f 0 = f 1 and f Nx+2 = f Nx+1 = f Nx .

We simulate the 10s-propagation of a 2D gaussian wave on an ascendant bathymetry whose culminant point is in a corner of the square domain. This benchmark is described in more details in Section 7.2. We then compare the CPU-time of the simulation depending on the formulation of the discretized dispersive system and on the method used to inverse it. These calculations have been performed solving the non-conservative Boussinesq equations on one processor. Results are presented in Table 6 6.1: CPU-time (in seconds) of the simulations performed with the three formulations of the dispersive system and the four matrix inversion methods implemented to model the 10s-propagation of a gaussian wave over a slope. In the version v2A, the methods adapted to heptadiagonal matrices are only applicable to the matrix G 1 . For the matrix G 2 , we apply the methods adapted to full matrices. For this example, we fix the desired precision of the inversion method to 10 -20 and the maximum number of iterations to 20. These parameters have been chosen so that the inversion is accurate enough to generate realistic results.

As supposed intuitively, the results in the Table 6.1 prove that when the matrix to inverse is heptadiagonal, using methods adapted reduces the computational cost. It seems that this acceleration of the code is great enough to overwhelm any difference of convergence velocity which could occur due to the different forms of the matrices, as the version v2B is always faster than the version v2A when we use the methods adapted to heptadiagonal matrices.

We also observe in Table 6.1 that the Gauss-Seidel's method is faster than the Gauss' one for the inversion of a unique matrix. It seems that is can nevertheless be slower than the Gauss' method when we have to inverse successively two matrices. We attribute it to a slower convergence with the Gauss-Seidel's method than with the Gauss' one. This difference of CPU-time is reduced or even inversed when we apply methods adapted to heptadiagonals methods. We thus obtain a reduction of the calculation duration of a factor about 480 when we use the Gauss-Seidel's method adapted to heptadiagonal matrices in place of the full method.

The smaller computational cost is obtained with the formulation v2B solved with the Gauss-Seidel's method adapted to heptadiagonal matrices. We have then chosen to apply the formulation v2B to discretize the dispersive system and the Gauss-Seidel's method adapted to pentadiagonal matrices as matrix inversion method. Some questions would nevertheless require further investigation. Is the Gauss-Seidel's method, which requires a diagonal dominant matrix, applicable in most test-cases ? When it comes to the Gauss-Seidel's method adapted to heptadiagonal matrices, what is the threshold of number of iterations at which the formulation v2B becomes slower than the formulation v1 ?

Parallelization

In the previous section, we determined which formulation and which inversion method would be the most efficient in sequential implementation.

The memory needs quickly exceeding the capacity of a unique processor when the mesh size increases, a parallelized method is required.

In the parallelized implementation, the matrix to inverse is divided in several submatrices dispatched on the processors. Some terms of the complete matrix corresponding to the cells at the boundaries of subdomains are then required to be transferred to the second member.

Let's take as example a given matrix G written below, and a matrix-vector product written as Gϕ = H. We make a subdivision in two of the domain, symbolized below with the cross in the matrix. The two subdomains both contains three cells. Thus, the matrix G is divided in two submatrices G p1 and G p2 , using the indices p1 and p2 for the first and second processors, respectively in the top-left corner and right-bottom corner of the full matrix G. We clearly see that some coefficients, here in red, could easily be lost in the parallelization. To insure the correct definition of the system, these terms are added to the corresponding second member values, thus writting the two new matrices and second members as :

G =         a 1 b 1 c 1 d 1 e 1 0 a 2 b 2 c 2
G p1 =   a 1 b 1 c 1 d 1 e 1 0 a 2 b 2 c 2 d 2 0 0 a 3 b 3 c 3   , G p2 =   c 4 d 4 e 4 0 0 b 5 c 5 d 5 e 5 0 a 6 b 6 c 6 d 6 e 6   H p1 =   h 1 h 2 -e 2 ϕ 6 h 3 -d 3 ϕ 6 -e 3 ϕ 7   , H p2 =   h 4 -a 4 ϕ 4 -b 4 ϕ 5 h 5 -a 5 ϕ 5 h 6  
where the transferred values are exchanged between processors.

The discretized system would then be :

G p1 ϕ u = H p1 G p2 ϕ v = H p2
The monodimensional example above shows how to treat cells at the unique boundary of the subdomains. In bidimensional cases, it is not one but multiple cells which must be treated in a similar way.

We denote here in details which of these cells can be concerned in the matrix G 1 defined in Section 7.2. As explained before, this matrix is a matrix by blocs composed of N y submatrices. For a centered FD4 spatial discretization, these submatrices are pentadiagonal. The matrix G 1 defining only derivatives in the x-direction, dividing the domain in subdomains depending on the j-values would not require to transfer values.

Let's divide the full domain [x 1 , x Nx ] × [y 1 , y Ny ] in two subdomains defined as [x 1 , x imax p1 ] × [y 1 , y Ny ] and [x i min p2 , x Nx ] × [y j min , y Ny ], with i min p2 = i max p1 + ∆x. In this case, each submatrix G 1,k of the matrix G 1 contains coefficients applying to values present in the other processor. We divise each of these submatrices in the same way as in the monodimensional case, denoting in red the coefficients which would be transferred in the second members :

G 1,k =                × × × × . . . . . . . . . 0 × . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . × 0 . . . . . . . . . × × × ×                G 1,k =                 G 1,k,p1 0 × × × × × × 0 G 1,k,p2                
The new matrices in each processor would then be written as :

G 1,p1 =    G 1,k,p1 0 . . . 0 G 1,jmax p1 ,p1    G 1,p2 =    G 1,j minp2 ,p2 0 . . . 0 G 1,Ny,p2   
Each additional subdivision of the bidimensional mesh following the same direction requires the transfert to the second members of six additional terms by column of the full mesh.

The Gauss-Seidel's method can be used separately on the submatrices dispatched on the processors until reaching convergence, exchanging only few values between the processors. This method has then been adapted to the pentadiagonal form of the matrices to inverse and been implemented in the tsunami code Taitoko.

Chapter summary

In this chapter, we firstly present the algebraic equations in mono-and bidimensional cases. While in monodimensional cases, evaluating the dispersive term only requires to inverse a matrix once a time step, it is not that simple in bidimensional cases, where the dispersive terms are coupled in a two interdependent equations-system.

To solve this bidimensional dispersive system, we implemented three different formulations of the discretized system : a complete formulation v1, and two splitted formulations v2A and v2B.

These three formulations are implemented in a sequential version and compared through simulations performed with four different inversion methods : the Gauss's and Gauss-Seidel's methods, both adapted to full and heptadiagonal matrices.

These comparisons put in evidence that the version v2B, in which the two matrices of discretization are pentadiagonal for a FD4 spatial discretization, generates similar accurate results to the other versions ones with a far smaller computational time when the Gauss-Seidel's method adapted to heptadiagonal matrices is applied.

What we retain as method to solve the dispersive system is the formulation v2B with matrices inversed through the Gauss-Seidel's method adapted to pentadiagonal matrices.

Chapter 7

Verification and validation on multidimensional topographies

For 2D modelling, we use the new LW3eNC-FD4 and LW3eC-FD4 methods, which solve the enhanced Boussinesq models written respectively as :

                   ∂ t η + ∂ x (hu) + ∂ y (hv) = 0 ∂ t u + g∂ x η + u∂ x u + v∂ y u = gϕ u ∂ t v + g∂ y η + u∂ x v + v∂ y v = gϕ v 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
and

                   ∂ t η + ∂ x M + ∂ y N = 0 ∂ t M + ∂ x M + ∂ y (N u) = gh(∂ x d + ϕ u ) ∂ t N + ∂ x (M v) + ∂ y Ñ = gh(∂ y d + ϕ v ) 1 - d 2 ∂ xx d ϕ u -d∂ x d∂ x ϕ u -αd 2 ∂ xx ϕ u = S1 (η, u, v, ϕ v ) 1 - d 2 ∂ yy d ϕ v -d∂ y d∂ y ϕ v -αd 2 ∂ yy ϕ v = S2 (η, u, v, ϕ u )
where ϕ = (ϕ u , ϕ v ) t denotes the dispersive terms in the (x,y) directions, η is the water surface elevation, d is the water depth and h = η + d is the water height. M = hu, N = hv are the volume fluxes in the x-and y-directions. We also denote M = M u + gh 2 /2 et Ñ = N v + gh 2 /2. We remind that the operators S1 and S2 are described in Section 2.1.2. We also remind that the evaluation of the dispersive terms is performed writing the two last equations of the system in the v2B formulation (see Chapter 6) and evaluating the derivatives with the embedded method (see Chapter 5). The matrix inversion is performed using a parallelized Gauss-Seidel's method adapted to pentadiagonal matrixes.

This chapter is devoted to the simulation of five benchmarks to evaluate the accuracy and computational cost of the 2D extension of the LW3e-FD4 methods. Is the 2D extension as accurate as the 1D implementation ? Is the computational time reduction of the LW3e temporal integration 91 (a) (b) (c) Figure 7.1: Modelling of a centered Gaussian wave with a space step ∆x = 12m and a time step ∆t = 0.5s. We plot in meters the results obtained after 40s of propagation over a flat bottom. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. Results obtained through the LW3eNC-FD4 method are similar to those of the LW3eC-FD4 and thus not plotted here.

method modified, compared to the RK3 one ? What are the differences between the methods solving the non-conservative and conservative models ? For all benchmarks, we use a constant time step calculated from a CFL condition. This condition is defined by c∆t = CFL ∆x where c is the celerity based on the average initial depth and ∆x the space step. We define a constant CFL such that CF L = √ gh∆t/∆x < 1. This type of setting is not uncommon in tsunami analysis and CFL is set by default to 0.5 for the first three benchmarks.

A filter has been added to cancel the numerical error of the dispersive system inversion. At each time step, any velocity value smaller than the precision achieved by the system inversion is put to zero. An artificial viscosity is also required to deal with dry-wet boundaries in some benchmarks. It has been applied to benchmarks in coastal areas where water depth is smaller than a given value.

Results are compared to Taitoko's standard Boussinesq model ones, to experimental data or to results obtained using a RK3 method to solve the conservative enhanced Boussinesq model.

To simplify the differenciation between the methods solving the conservative and non-conservative enhanced Boussinesq models, we denote them respectively LW3eC-FD4 and LW3eNC-FD4. We also denote RK3C-FD4 the method use to solve the conservative enhanced Boussinesq model using a third-order accurate Runge-Kutta method.

Propagation of a Gaussian wave over a flat bottom

The first benchmark we study is the 40 s-propagation of a 2D gaussian wave with an amplitude of 10 cm and a standard deviation of 60 m in both directions over a square flat bottom of 720 m-long side. The water depth is 10 m, the initial velocity is null and the gaussian wave is centered at (12000,12000).

This benchmark is characterized by a linear propagation of strongly dispersive waves. These strongly dispersive waves have a major impact on the stability of the modelling, depending on the method used to evaluate the dispersive terms. We plot in meters the results obtained after 40s of propagation over a flat bottom. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. Results obtained through the LW3eNC-FD4 method are similar to those of the LW3eC-FD4 and thus not plotted here.

In Fig 7 .1, we plot the results obtained modelling 40s of propagation of this gaussian wave. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method with a space step of 12 m and a time step of 0.5 s. We have deliberately chosen a coarse mesh to put in evidence the behaviour of these schemes in extreme conditions. These extreme conditions, characterized by a small number of points per wavelength (about 10 points per wavelength), denote the unability of the standard Boussinesq model to handle short dispersive waves such as the ones which appear at the center of the mesh after the propagation of the longer waves. It also puts in evidence the attenuation of the waves in cardinal directions (along the x-and y-axis) in both the LW3eC-FD4, LW3eNC-FD4 and RK3C-FD4 methods. This attenuation is particularly marked in the center of the domain.

In Fig 7 .2, we plot the results obtained modelling 40s of propagation of the same gaussian wave, with a space and time steps divided by two, which gives the same CFL value as the previous simulations. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. With this refined mesh, Taitoko's standard model (Fig 7 .2a) is still unable to fully handle short dispersive waves, but shows improved results.

The results obtained using the LW3eC-FD4 and RK3-FD4 show improved results too with the refined mesh. The attenuation of the amplitude in cardinal directions has even totally disappeared in the RK3C-FD4 modelling. It proves the ability of these two methods to handle such short dispersive waves with a sufficiently refined mesh.

The differences between these simulations is more noticeable in Fig 7 .3, in which we plot a slice at x = 12000. We note in the figure that both the schemes generate similar results for the first waves. Significant differences may be seen beginning with the fifth wave. Both the enhanced and standard LW3e schemes generate the same number of waves in the wave train. Nevertheless, the enhanced scheme tends to generate a wave train whose heights decrease faster than the standard scheme. We attribute this difference to the additional terms of dispersion included in the enhanced scheme. This slice also perfectly highlights the unrealistic waves generated by Taitoko's standard Boussinesq method. These unrealistic waves are attributed to the dispersive terms calculated with the lesser (and insufficient) order, which results in calculating numerical dispersion. After a longer duration of modelling, these unrealistic waves finally blow up.

To further investigate the attenuation of water height present in cardinal directions, we plot in Fig 7 .4 the time series of the water surface elevation calculated at gages 1 and 9. These figures put in evidence that this attenuation is smaller with Taitoko's model than with the LW3e methods. These differences are numerical and decrease with the space and time steps. We suppose that the LW3e schemes being of a greater order than Taitoko's scheme, they are more sensitive to the coarsness of the mesh, which would explain why this attenuation disappear when the mesh is refined.

We study in Fig 7 .5 the computational time of the methods used to perform simulations with ∆x = 6m and ∆t = 0.25s. In all the simulations performed, the standard Boussinesq is far faster than the enhanced Boussinesq models. As expected, the RK3C-FD4 method is the slowest method. The LW3eNC-FD4 and LW3eC-FD4 methods require a computational time bigger than the standard Boussinesq method and about 60% smaller than the RK3C-FD4 one.

Propagation of a Gaussian wave over a slope

In this case, we study the impact of the bathymetry on the schemes. We then perform simulations of 40s of propagation of the same gaussian wave modifying only the bathymetry. We define a slope (plotted in Fig 7 .6) using the following expression :

d = 10 -6e - (x -x max ) 2 2 × 250σ 2 x × e - (y -y max ) 2 2 × 250σ 2 y
In Fig 7 .7, we plot the results obtained modelling the propagation of the same gaussian wave as in the previous benchmark over a slope. Simulations have been performed using 7.7a,7.7d) Taitoko's standard Boussinesq model, 7.7b,7.7e) the LW3eC-FD4 method and 7.7c,7.7f) the LW3eNC-FD4 method with space steps of 3 m,6 m and time steps of 0.125s,0.25 s, keeping the same CFL value as in the previous simulations. As expected, the accuracy improves with the refinement of the mesh. As expected too, Taitoko's scheme shows some instabilities in the modelling of shorter waves, on the opposite to the results obtained with the LW3e schemes. Using these later schemes, the figures 7.7 show a larger water height and a slower propagation in the right-top corner than in the left-bottom corner, which confirms the efficiency of LW3e schemes to model the impact of slopes. For the first time, we can denote a difference between the non-conservative and conservative LW3e schemes' results. The non-conservative method seems to generate noise at boundaries, as can be seen in Fig 7 .7f at the south and west boundaries, which leads to blowing up. It seems that the nonconservative form requires a particular treatment in cases of bathymetries variable at boundaries.

In order to compare the propagation of the wave climbing up or down the slope, we plot in Fig 7 .8 the time series of the surface elevations calculated at gages 9 and 11 performing simulations with four different methods. As expected, the wave is slower and higher at gage 9 ( 

Propagation of a Gaussian wave with an obstacle

Ths next benchmark includes a dry zone (an obstacle). To take into account the obstacles, we consider the velocities and momentums null in the dry cells and evaluate the spatial derivatives of η by using lower order derivatives and values of the neighbouring wet cells.

As initial wave, we describe a centered Gaussian wave with the same parameters as in the first two benchmarks. Instead of a 10m deep fully flat bathymetry, we add an obstacle 10 meters high in [11712m,11952m] × [11712m,11952m], the mesh having been expanded to [11520m,12480m] × [11520m,12480m] in order to neatly differentiate the interaction with the obstacle and boundary effects. All boundaries are considered open.

Let's write i min and i max the indexes of the first and last cells containing the obstacle in the x-direction. The height of this obstacle has been put to 10 meters, so that run-up of this obstacle is not allowed. As regards the velocities and momentum terms, the calculation of derivatives is unchanged taking into account null values in dry zones. As regards surface elevation or water depth, the calculation of derivatives is modified. For ∂ x k , the modification consists in : ∂ x k in the cells (x i min -2 , y) and (x imax+2 , y) are approximated through second ordered centered finite difference for k = 1, 2. ∂ x k in (x i min -1 , y) and (x imax+1 , y) approximated through first ordered finite difference for k = 1.

We plot in Fig 7 .9 the results obtained simulating the propagation of the gaussian wave using the LW3eC-FD4 method with ∆x = 3m. The island, here plotted as a square, is well-handled and does not induce instabilities.

With ∆x = 6m, results (not shown) obtained with the LW3eNC-FD4 method are similar to the ones obtained using the LW3eC-FD4 method. Fig 7.10 shows that instabilities are generated at mesh boundaries performing simulations using the LW3eNC-FD4 method with a halved-time step. It seems that using the non-conservative formulation, while reducing significantly the computational time, requires a particular treatment of the mesh and dry-wet boundaries. As concerns Taitoko's standard Boussinesq model with ∆t = 0.125s and ∆x = 3m, it blows up at the very beginning of the scheme, so we do not plot its results.

In Fig 7.11, we plot the time series of the surface elevation calculated at gages 13 and 15 with ∆x = 6m. As expected, the LW3eC-FD4 method generates results smoother than the standard Boussinesq model, which does not handle well short waves.

Solitary wave refracted on a cylinder

In this benchmark, we study the propagation of a solitary wave and its interaction with a vertical cylinder. The numerical domain used here is [0, 14m] × [0, 0.55m]. A vertical cylinder of diameter 0.16 m was placed at (8.5, 0.275). The solitary has amplitude A = 0.0375m and is initially located at x = 4m. The water depth is d = 0.15m.

We plot in Fig 7 .12 the results obtained simulating the propagation of the solitary wave. The simulation has been performed using the LW3e-DF4 method solving the conservative enhanced Boussinesq model with ∆x = 4cm. Using 56 processors, the computational time is around 30 minutes for a 8s propagation. The propagation of the solitary wave is accurate and the interaction with the cylinder is well-handled but the results around the cylinder show some noise generated by slightly coarse mesh. What happens when we take a more accurate mesh ?

We study the impact of a refined mesh in Fig 7 .13, where the simulation has been performed using the LW3e-DF4 method solving the conservative enhanced Boussinesq model with ∆x = 2cm. Our first simulations both blow up due to instabilities at the dry-wet boundary. It seems that rather than reducing the noise generated, the refinement boosts it. These instabilities have been turned off adding an artifical viscosity which was not required for simulations with ∆x = 4cm. With this artificial viscosity, the computational time required performing the modelling with 56 processors is around 2 hours for a 8s propagation and indeed erases the noise generated at the cylinder.

Preliminary results show a good handling of the dry-wet boundary with the method solving the conservative enhanced Boussinesq model. Some instabilities generated by the method at the dry-wet boundary increase with the mesh refinement and may require to add an artificial viscosity to avoid blowing up. The velocity of propagation of the solitary wave is also in accordance with what is expected. In the near future, these results will be compared to experimental data [START_REF] Antunes Do Carmo | Surface waves propagation in shallow water : a finite element model[END_REF] which have been used by [START_REF] Shi | A high-order adaptive time-stepping tvd solver for boussinesq modeling of breaking waves and coastal inundation[END_REF][START_REF] Shi | Funwave-tvd fully nonlinear boussinesq wave model with tvd solver -documentation and user's manual[END_REF] to validate numerical models.

The 2021 Alger's tsunami

On March 18, 2021 at 00:04 UT (01:04 Paris time), an earthquake of magnitude Mw = 6.0 occurred in northeastern Algeria in the Bay of Bejaia. The mechanism is inverse, in compression, with one of the nodal planes almost vertical and a fault oriented almost east-west.

Two aftershocks of magnitude 5.2 and 4.7 respectively occurred 13 minutes and 29 minutes after the main shock.

The epicenter of the main shock is located at sea, about 20 km northwest of Bejaia and about 200 km east of the epicenter of the Boumerdès earthquake of May 21, 2003 of magnitude Mw 6.9.

Focal mechanisms of this 2021 tsunami have been evaluated by several institutes and plotted in In this section, we perform a simulation of the tsunami generated near Alger by this earthquake on the bathymetry plotted in Fig 7 .15.

We plot in Fig 7 .16 the results obtained modelling the propagation of the 2021 Alger's tsunami using the LW3eC-DF4 method. Performed with 112 processors, a 4h-simulation requires about one hour of computational time. This method generates sometimes instabilities near the coast. To reduce the apparition of unrealistic values which lead to blowing up, we add in this benchmark an artifical viscosity for d < 500m. The viscosity allows to model the propagation of 4 hours without blowing up and to evaluate the amplitude of the first waves in coastal areas. Some instabilities are nevertheless generated later close to the coast and likewise lead to blow up.

Similar blowing up close the coast can happen performing simulations with Taitoko's standard Boussinesq model. With this standard Boussinesq model, blowing up is aborted switching off the dispersive terms for depths inferior to a chosen value, and solving NSWE instead. A possbility in Figure 7.15: Bathymetry of Mediterranean Sea the future would be to perform the same switch near the coast in the LW3eC-DF4 method and study its impact on these instabilities.

We plot in Fig 7 .17 the results obtained modelling the propagation of the 2021 Alger's tsunami using the Taitoko's dispersive method. Performed with 112 processors, a 4h-simulation requires only some minutes of computational time. As expected, Taitoko's standard model is far faster than our LW3eC-FD4 method. While the first waves propagated seem to be similar to the ones generated by the LW3eC-FD4 method, some unrealistic waves are generated by the standard model and not with the LW3eC-FD4 method after the first waves propagate. This difference is attributed either to noise generated by the model, which could in LW3eC-FD4 method be attenuated by the artifical viscosity, or to small wavelengths that are not simulated accurately by the standard model.

To further study these differences, we plot in Fig 7 .18 the results obtained on a gage near Nice, France. As expected, the first waves generated by the standard Boussinesq model and the LW3eC-FD4 method are in accordance. After four waves, they begin to diverge. While the amplitudes generated by the new method gradually decrease, Taitoko's standard model is more unstable. The end of the recording even begins to show the waves which are generated by the standard model and inexistant with the enhanced model.

Preliminary results obtained on this benchmark show good accordance of the new LW3eC-FD4 method with Taitoko's standard Boussinesq model for the first waves propagated, which are the ones we want to predict in tsunami alert context. These results will be compared in the future to data recorded during the event to fully validate the method. .17: Modelling of the 2021 Alger's tsunami using Taitoko's dispersive method solving the standard Boussinesq equations. We plot the results obtained after 7.17a) 10 minutes, 7.17b) 40 minutes, 7.17c) 60 minutes and 7.17d) 90 minutes. The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step. 

Conclusion and outlooks

In France, tsunami alerts are launched by the French Tsunami Alert Center (CENALT), which evaluates amplitude waves in near real time through modelling. To perform such simulations, the CENALT uses the tsunami code Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF], which contains five non-dispersive models solving the shallow water equations and one dispersive model solving the standard Boussinesq equations, which corresponds to the shallow water equations with an additional term taking into account the frequential dispersion and generates more accurate results.

Taitoko's Boussinesq model handles well the weakly dispersive and weakly nonlinear waves, but cannot handle strong nonlinearity or strong dispersion. It is therefore not accurate enough to model short water waves such as those generated by small earthquakes in the Mediterranean Sea or those generated by submarine landslides.

In this PhD, we implement in TAITOKO a new method able to handle short and weakly nonlinear waves. Standard Boussinesq equations cannot simulate the propagation of wave in deep-water ( λ < 2d ), we then choose to implement an enhanced Boussinesq model, whose domain of definition is larger than the standard Boussinesq model. Furthermore, in litterature, Boussinesq-type codes handles short wavelengths better than Navier-Stokes codes. [START_REF] Kazolea | Wave propagation, breaking, and overtopping on a 2d reef: A comparative evaluation of numerical codes for tsunami modelling[END_REF].

Different approaches exist to solve Boussinesq equations. Some codes use a Finite Volume discretization ; it is the case for the codes Mike 21 [START_REF] Warren | Mike 21: a modelling system for estuaries, coastal waters and seas[END_REF], Taitoko [START_REF] Heinrich | Taitoko, an advanced code for tsunami propagation, developed at the french tsunami warning centers[END_REF] and FUNWAVE-TVD [START_REF] Shi | Funwave-tvd fully nonlinear boussinesq wave model with tvd solver -documentation and user's manual[END_REF]. The codes Nektar++ [START_REF] Cantwell | Nektar++: An open-source spectral/hp element framework[END_REF] and Uhaina [START_REF] Filippini | Uhaina : A parallel high performance unstructured adaptive near-shore wave model[END_REF] use a Finite Element discretization. Taitoko's standard Boussinesq model is solved using a Finite Differences discretization. Our objective is to propose more accurate methods in the same framework. We then use a Finite Difference discretization too. We choose the centered fourth-order accurate Finite Differences (FD4) to ensure that the discretization error remains smaller than the third order dispersive terms.

Boussinesq-type models always involve mixed spatial-temporal derivatives. In the best of cases, this requires the inversion of a sparse linear system at every evaluation of a new solution. In this PhD, we reformulate a 2D enhanced Boussinesq model in a formulation which erases the mixed spatial-temporal derivatives adding two implicit and interdependent equations to the model.

In linear cases, one way to assess the dispersive properties of a model or a scheme is to evaluate its dispersion relation. The spatial discretization depending of the available data, we focus our spectral analysis on the temporal integration methods and consider different schemes continuous in space.

According to Lu and Qiu [START_REF] Lu | Simulations of shallow water equations with finite difference lax-wendroff weighted essentially non-oscillatory schemes[END_REF] and Qiu and Shu [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF], LW-WENO methods are more efficient than RK-WENO methods with the same order of accuracy. Dispersion relations of Runge Kutta (RK) and Lax-Wendroff (LW) methods up to the third order result in the same dispersion relation, which leads to similar results in linear cases. These two methods being expensive in computational time, we define and compare several approximated LW methods in order to find a more efficient method. Simplified versions of the third-order Lax-Wendroff method have also been tested to assess the negligible terms present in the third-order Lax-Wendroff method. This study [START_REF] Cauquis | Lax-wendroff schemes with polynomial extrapolation and simplified lax-wendroff schemes for dispersive waves: A comparative study[END_REF] has been performed in dimensionless space so that its results can easily be applicable to other types of waves in different physical domains : acoustic waves, seismic waves...

According to the spectral study, only the term containing θ = ∂ tt ϕ is negligible. Most schemes of same order have similar dispersion and diffusion characteristics. The explicit Euler, and the implicit LW2si 1 and the LW2si 3 schemes are also far less accurate than the other schemes implemented.

To evaluate the accuracy and computational time of these temporal integration methods on a given bathymetry, simulations have been performed on 1D benchmarks using fourth-order accurate Finite Differences as spatial discretization. Results show that matrix inversions can be replaced by approximated evaluations of temporal derivatives to reduce the computational time. For large space steps and some benchmarks, these approximations may even produce more accurate results than the matrix inversions compared to the reference solutions.

As regards second-order schemes, the explicit LW2e 1 is probably the best compromise between the CPU-time and the accuracy. The CPU-time and accuracy of the explicit LW2e 2 scheme being sometimes better than the LW2e 1 ones, it would need further investigation. Nevertheless, none of the second-order schemes are able to handle the shortest wavelengths generated by the propagation of a gaussian wave, and thus neither are suitable.

Third-order schemes have generally superior performances to the second order ones. We have also performed simulations using a simplified LW3 scheme in which we neglect the term in θ. Results of LW3 and simplified LW3 schemes are similar in the benchmarks, even in the case of propagation with coarse resolution. In terms of computational time, the most efficient schemes are the explicit LW3e scheme and the simplified LW3 scheme. Compared to the RK3 scheme, the computational time of the LW3e and simplified LW3 schemes is reduced by up to 37% and about 30%, respectively. As a consequence, I choose the LW3e scheme as the best candidate for 2D simulations of real cases.

Having defined the most suitable temporal integration method in 1D, the implementation LW3e-FD4 has been extended to 2D. Two methods have been implemented to solve repectively the nonconservative and conservative formulations of the enhanced Bousinesq equations.

We put into evidence that the method used to evaluate the third derivatives of η present in the two additional equations is crucial for the stability of the modelling. While the embedded method seems to ensure the stabilitiy of the method, the discretization error of the straithforward nonembedded method is more important (See Chapter 5). This non-embedded method does not fulfill the criterion of a null rotational of the dispersive terms on a flat bathymetry in linear cases, and quickly blows up. Preliminary results comparing the LW3eC-FD4 and RK3C-FD4 methods show that the difference of results generated by these two methods is independent of the time scheme, and that the RK3C-FD4 method is even more prone the generation of such instabilities than the LW3eC-FD4 one. Simulations performed on the LW3eNC-FD4 method have shown a similar reaction to the two discretization formulas.

Furthermore, the two additional equations defined in our new formulation of 2D enhanced Boussinesq models are interdependent and implicit. We implement several formulations of the discretized system and several matrix inversion methods to study their efficiency in solving this two equationssystem. Results obtained with the sequential implementation show a better efficiency splitting the two-equations sytem splitted in the v2B formulation. We define in this formulation two pentadiagonal fourth-order accurate discretization matrixes. This pentadiagonal form is achieved using a different indexation for the two discretization matrixes. This formulation enables to perform matrixes inversions with matrix inversion methods adapted to pentadiagonal matrixes, which reduces significantly the computational time. Comparing the Gauss and Gauss-Seidel inversion methods, the best efficiency is obtained using a Gauss-Seidel method adapted to pentadiagonal matrixes.

The matrix inversion is then parallelized dividing the full matrix into several submatrixes distributed on the processors. The Gauss-Seidel method is applied simultaneously to each of these submatrixes, exchanging the values at subdomains boundaries between the processors until reaching convergence in the matrix inversion.

We then evaluate the accuracy and efficiency of the 2D LW3e-FD4 methods implemented to solve both the conservative and non-conservative formulations of the enhanced Boussinesq equations. These methods are compared to a RK3-FD4 method applied to the conservative enhanced Boussinesq equations or to Taitoko's standard Boussinesq model, depending on the benchmark studied. While the non-conservative method shows difficulties to handle mesh boundaries and dry-wet boundary, the conservative formulation has been validated on both these cases. An artificial viscosity has been added to the conservative formulation in order to treat particular dry-wet boundaries such as in the cylinder and Mediterranean Sea benchmark.

The preliminary results obtained comparing the LW3eC-FD4 and the RK3C-FD4 methods show generally similar results in terms of accuracy. Providing that there is no problem due to the boundaries with the LW3eNC-FD4 method, its results are also similar. As concerns the computational time, preliminary results show, compared to the RK3C-FD4 method, a reduction by about 60% for the LW3eNC-FD4 and the LW3eC-FD4 methods. The RK3C-FD4 method used for these comparisons having been implemented using the same methods as the LW3eNC-FD4 and the LW3eC-FD4 methods to reduce the computational time required to inverse the implicit system, we expect that this reduction would be more important compared to a classical RK3C-FD4 method.

To sum up : Two LW3e-FD4 methods solving the enhanced Boussinesq models have been implemented in the CENALT's code Taitoko. These methods effectively handle the short weakly dispersive and weakly nonlinear waves on flat bottom and handle several more general benchmarks.

The conservative formulation seems to handle most of the benchmarks. An artificial viscosity is required to erase the irregularities which sometimes appear near the coast.

The non-conservative formulation also generates some irregularities in presence of mesh boundaries and dry zones, which increase as the space step decreases. This is attributed to a wrong treatment of the boundaries.

Both of the LW3e-FD4 methods reduce the computational time of the modelling compared to the RK3C-FD4 method. Preliminary results show a time reduction of about 60%.

We summarize now some ideas of future investigations and developments :

In the case of Taitoko's standard Boussinesq model, the equations switch to shallow water equations near the coast to avoid instabilities. Applying the same switch to the enhanced Boussinesq equations could be another way to minimize the appearance of instabilities near the coast.

Some modifications are needed in the LW3eNC-FD4 method to fully handle the boundaries.

Further study is also needed to assess the differences between the two new methods. Particular attention will be paid to their computational time.

We have not defined yet the limitations of these new methods. A first step could be to study their stability performing a 2D Fourier analysis. Another possibility could be to compare their results in other multidimensional benchmarks.

The main part of the computational time resides in the matrixes inversions. While none of the solvers we found in the litterature to inverse matrixes are really adapted to pentadiagonal matrixes, some numerical methods are. It would be interesting in the future to reduce the computational time implementing such numerical methods.

However, none of the non-conservative and conservative methods handle discontinuous bathymetries. While shallow water models are by definition able to capture shocks, it is not the case for dispersive models, which require particular methods to acquire this ability. A shock-capturing method such as WENO could solve this problem, and could also cancel the need of an artificial viscosity. To explore this idea, a LW3e-WENO method detailed in Annex D is currently in progress of implementation.

These new methods could also be modified in order to model the shoaling and the run-up.

their definition. These smoothness indicators measure the smoothness of functions in a part of the domain.

The WENO method generates better results than the ENO one : it is more robust, shows better smoothness of fluxes and better steady convergence, has better provable convergence properties and is more efficient. They can keep high order and nonoscillatory characteristics for both continuous and discontinuous solutions.

The WENO method can be used in both Finite Elements or Volumes formulations. Both give similar results but have different characteristics. FD WENO schemes are very easy to extend to multidimensional cases, while FV WENO schemes are, on the contrary to FD WENO, applicable to non-uniform meshes, but have bigger computational cost.

There are two ways to perform a WENO reconstruction of (2r+1)-th order at a point :

Genuine 2D : 1) Construction of a polynomial of r-th order on each of the (r+1) stencils centered around the reconstructed point. 2) Construction of a polynomial of (2r+1)-order on the space defined combining all the stencils including the point.

Dimension by dimension : Apply firstly the WENO 1D method in the y direction, then the WENO 1D method in the x direction.

The dimension by dimension method is less expensive and requires less memory, and results are mostly similar to the ones obtained with the genuine method. It is only slightly less accurate and the order sligthly smaller than the genuine 2D method.

In WENO schemes, the choice of the linear weights is crucial since negative linear weights can generate oscillations which then blow up. Such negative weights are present in central WENO schemes with staggered meshs, high-order FV WENO 2D schemes, and FD WENO methods for second derivatives. They appear often in FV WENO5 with cartesian meshes and FV WENO3/4 with triangular meshes too, in which the optional linear weights are not unique. There are none in FD WENO schemes for conservative laws, FV WENO 1D schemes and some FV WENO multidimensional schemes for conservation laws.

In the presence of nonlinear weights, Li et al. [START_REF] Li | A well-balanced finite difference weno scheme for shallow water flow model[END_REF] use a procedure to construct a linear scheme which maintains the C-property. Another way to avoid negative linear weights is to use the SWENO (Simple WENO) scheme [START_REF] Lu | The simple finite volume lax-wendroff weighted essentially nonoscillatory schemes for shallow water equations with bottom topography[END_REF], which consists in chosing positive constants under the only condition that their summation is one. For a WENO method requiring a five-point big stencil, this new WENO is a convex combination of two linear polynomials with a fourth-degree polynomial using the same five-point big stencil. Another method to avoid the oscillations would be a splitting technique able to treat negative weights, like the one used by Shi et al. [START_REF] Shi | A technique of treating negative weights in weno schemes[END_REF].

A modified version of the WENO method has been evaluated by Lu et al. [START_REF] Lu | The simple finite volume lax-wendroff weighted essentially nonoscillatory schemes for shallow water equations with bottom topography[END_REF]. This scheme called SWENO-LW3 has more flexible mesh structure than the FD method, less procedure of local feature decomposition, and a simpler idea than the classical WENO. It has been proved able to simulate discontinuous flows for prebalanced SWE. It has also be shown that the SWENO5-LW3 method produces more accurate solutions than the WENO5-RK3 one for the same CPU-time, and requires less CPU time to achieve the same error. Both methods are good in shock-capturing. A SWENO-LW method is thus more efficient than a WENO-RK one.

Averaging the flux, the LW method has more flexibility than the FD one in term of mesh structure. Comparing WENO and RK methods, Lu et al. [START_REF] Lu | The simple finite volume lax-wendroff weighted essentially nonoscillatory schemes for shallow water equations with bottom topography[END_REF] showed that the LW WENO schemes escape nonphysical oscillations adjacent to strong shocks, while bringing less absolute truncation error. Agreeing with the work achieved by Lu and Qiu [START_REF] Lu | Simulations of shallow water equations with finite difference lax-wendroff weighted essentially non-oscillatory schemes[END_REF] and Qiu and Shu [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF] on the WENO5 schemes, the WENO-LW schemes obtain the same accuracy order and cost less CPU time than the RK ones for most problems : until 12% for the SWENO5 [START_REF] Lu | The simple finite volume lax-wendroff weighted essentially nonoscillatory schemes for shallow water equations with bottom topography[END_REF] and nearly 50% for the WENO5 scheme [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF]. According to Qiu and Shu [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF], both schemes are nonoscillatory and comparable. The complexity of the LW method increasing with its order, it is nevertheless possible that the difference of CPU-time between the WENO-LW and WENO-RK methods reduces until being reversed as the order of the scheme increases.

According to Qiu and Shu [START_REF] Qiu | Finite difference weno schemes with lax-wendroff-type time discretizations[END_REF], the FD WENO method and the local decomposition are not necessary for the temporal derivatives of order superior to one to avoid oscillations. We can obtain similar results and smaller CPU-time using FD for the higher-order time derivatives. We can also reduce the order of the finite difference discretization used to approximate the spatial derivatives while the order of the derivatives approximated increases.

We conclude that the LW method is more suitable than the RK one as time scheme for a WENO method. As proved in a previous study [START_REF] Cauquis | Lax-wendroff schemes with polynomial extrapolation and simplified lax-wendroff schemes for dispersive waves: A comparative study[END_REF] and in Chapters 3-4, using an explicit discretization of the few time-dependent terms in the LW method applied to the Boussinesq equations allows to reduce its computational cost while keeping its accuracy. We also chose not to use the local decomposition for temporal derivatives other than the first one, and thus avoid to increase the CPU time unnecessarily.

LW3eC-WENO formulation

In this section, we explain in details the WENO method of (2r+1)th order whose implementation in our tsunami code is currently in progress. We also explain how source terms are handled, and how applying a temporal scheme of order up to three.

We want here to solve an equation of the form ∂ t u + ∂ x (f (u)) = 0. A semidiscrete conservative high order FD scheme can then be formulated as du j (t) dt = -1 ∆x ( fj+0.5 -fj-0.5 ) where u j is the numerical approximation to u(x j , t) and the numerical fluxes fj+0.5 and fj-0.5 are used to approximate h j+0.5 = h(x j+0.5 ) and h j-0.5 = h(x j-0.5 ). h(x) is defined as f (u(x)) = 1 ∆x x+0.5

x-0.5 h(ξ)dξ.

The aim of the WENO method is to evaluate these numerical fluxes. With FD-WENO methods, they are calculated on points. With FV-WENO methods, we make a mean on the cells. We chose to use a non-centered WENO algorithm. For this reason, we have to verify the sign of the spatial derivative of f , of which depends the values of the coefficients of the reconstruction polynomials, in order to avoid spurious oscillations, especially in high-order WENO methods.

One of the most famous method is to look into the proper values, which implies to make a caracteristical decomposition, which can be made only locally on specific regions in order to reduce the computational cost. For hyperbolic systems, the local characteristic decomposition is more robust than the component by component version.

The local characteristic decomposition, while accurate, is also computationally expensive. Details about this procedure can be found in litterature [START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF] [START_REF] Jiang | Efficient implementation of weighted eno schemes[END_REF]. We chose to avoid these added calculations splitting the numerical fluxes rather than making a caracteristical decomposition.

Let's note k the index of a given stencil, for stencils numeroted from 0 to r. In this case, the FD-WENO algorithm of (2r+1)th order can be sum up as :

Initialization, for each of the (r+1) stencils numeroted from 0 to r -Definition of the coefficients a ± k,l of the (r+1) reconstruction polynomials q ± k of order r, which are of the form q ± k (g 0 , ..., g r ) = r l=0 a ± k,l g l . The coefficients of q + are symetrical to the ones of q -compared to i+0.5. It means that if f + i+0.5 = q + (...) = b c i+0.5+b ×f i+0.5+b then f - i+0.5 = q -(...) = b c i+0.5+b × f i+0.5-b . Example : v + i+0.5 = v i-1 + 2v i + 3v i+1 and v - i+0.5 = 3v i + 2v i+1 + v i+2 . The values of a r+ k,l are written by Jiang and Shu [START_REF] Jiang | Efficient implementation of weighted eno schemes[END_REF] for r = 0, 1.

-Definition of the (r+1) linear weigths C r k corresponding to the k-th stencil. They can be found in Shu 1997 [START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF] for r up to 6.

At each time step and for each spatial point (i,j) 1. Splitting of the function f to define f + (and f -). We chose to use the Lax-Friedrichs splitting : f ± (u) = 0.5 × (f (u) ± αu) . We fix α = max|f (u)| in order to assure that f + (u) ≥ 0 and f -(u) ≤ 0. To reduce the computational cost, we only look for the local maximum and define a local value of α. Another option than splitting is to make a caracteristical decomposition to insure the positivity/negativity of the function to reconstruct.

2.

For each stencil : Calculation of the (r+1) smoothness coefficients IS ± k , which evaluate the smoothness of the f ± on the k-th stencil S k = (x j+k-r , ..., x j+k ). We define the smoothness indicators as : IS k = r l=1 x j+0.5

x j-0.5 (∆x) 2l-1 (q (l) k ) 2 dx where q (l) k is the lthderivative of q k (x) and q k (x) is the reconstruction polynomial of f + (u) on stencil S k .

They are defined such that 1 ∆x I i q k (x)dx = f + i for i = j+k-r,...,j+k. The explicit formulations are given by Li et al [START_REF] Li | A well-balanced finite difference weno scheme for shallow water flow model[END_REF].

3.

For each stencil : Calculation of the (r+1) nonlinear weigths ω ± k corresponding to the k-th stencil, using the formula :

w ± k = α ± k r l=0 α ± l with α ± k = C r k ( + IS ± k ) 2
where is a small constant avoiding the denominator to become null. Nonlinear weights have to satistfy the condition r k=0 w k = 1 4. Calculation of the numerical splitted fluxes f ± j+0.5 = r k=0 w ± k q k (f ± j+k-r , ..., f ± j+k ) 5. Calculation of the numerical fluxes fj±0.5 = f + j±0.5 + f -j±0.5 . 6. Replacement in the discretized equation.

The FD WENO7 and FV WENO procedures are described respectively by Balsara and Shu [4] and Shu [START_REF] Shu | Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[END_REF]. The FD WENO3 and FD WENO5 procedures are described by Jiang and Shu [START_REF] Jiang | Efficient implementation of weighted eno schemes[END_REF].

In many cases, the equation to solve cannot be written in such a conservative form due to the presence of source terms. We write such a relation as ∂ t u + ∂ x (f (u)) + s(d) = 0, d being the bathymetry.

In such a case, we can usually define functions s 1 , s 2 and H such that s(d) = ∂ x (s 1 (d)) + H∂ x (s 2 (d)). To apply the WENO reconstruction, we reconstruct the spatial derivatives ∂ x (s 1 (d)) and ∂ x (s 2 (d)) with the same reconstruction WENO method (and coefficients) as used in the reconstruction of ∂ x (f (u)), using d as variable instead of u. We thus obtain the semi-discrete equation :

du j (t) dt = -1 ∆x ( fj+0.5 -fj-0.5 + ŝ1j+0.5 -ŝ1j-0.5 + H j ŝ2j+0.5 -H j ŝ2j-0.5 )

The use of the same coefficients in the two reconstructions insures the same order of accuracy for the spatial derivatives and the source terms, and the well-balanced property of the reconstructed discretized scheme. Lu and Qiu [START_REF] Lu | Simulations of shallow water equations with finite difference lax-wendroff weighted essentially non-oscillatory schemes[END_REF] apply the WENO procedure to approximate the spatial derivatives using the local characteristic decomposition and the same nonlinear weigths to the vector in x-direction and the vector in y-direction. One half of the derivatives in source terms is approximated by the operator obtained from the computation of f + . The other half is computed by the operator obtained from the computation of f -with biaised stencils, so the approximation to source terms is of the same order of accuracy as the spatial derivatives. Nevertheless, neither of these two methods of handling source terms insure the positivity of the reconstructed surface elevation of water, that we have to nullify when negative.

These methods, if useful in presence of source terms, cannot be used to reconstruct mixed time-space derivatives that can be found in the Boussinesq Equations. It is why we apply the WENO method to the formulation of Boussinesq Equations implemented along this PhD, where the additional equations (Eqs 2.2 and 2.3) cancel the time-space derivativatives. However, the dispersive terms ϕ u and ϕ v thus defined cannot be expressed in the form of a spatial derivative, so none of the two methods presented above can handle these source terms. We thus chose to apply the WENO spatial discretization only to the SW terms and continue to use the central FD4 to solve the additional equations.

The algorithm above enables the calculation of the first temporal derivative of the variable u. In order to use the third order method in time that we call LW3e, we have to express the temporal derivatives of order up to three. For the conservative equation taken as example in the algorithm above, we express the successive temporal derivatives as:

∂ t u = -∂ x f (u) ∂ tt u = -∂ x (∂ t f (u) × u + f (u) × ∂ t u)
, where ∂ t f (u) is the jacobian matrix of the function f .

∂ ttt u = -∂ x (∂ tt f (u) × u + 2∂ t f (u) × ∂ t u + f (u) × ∂ tt u)
While really accurate, the WENO method is really expensive, furthermore when using it for three different temporal derivatives. To reduce the computational cost, Qiu and Shu 2003 [35] use the FD WENO scheme of (2r-1)th order only for the first temporal derivative. For the superior temporal derivatives, they use the FD WENO schemes with lower order of accuracy : for the k-th temporal derivative ∂t k u, they use the FD WENO scheme of (2r-k)-th order. We can then rewrite the temporal derivatives, denoting ∂ xW the discretization of a spatial derivative ∂ x through the WENO algorithm, as :

∂ t u = -∂ xW f (u) ∂ tt u = -∂ xW (∂ t f (u) × u + f (u) × ∂ t u)
, where ∂ t f (u) is the jacobian matrix of the function f .

∂ ttt u = -∂ xW (∂ tt f (u) × u + 2∂ t f (u) × ∂ t u + f (u) × ∂ tt u)
In this method, temporal derivatives are reconstructed successively in order to use the temporal derivatives of lower order in their reconstructed form.

The methods whose implementation is currently in progress are LW3e-WENO5 and LW3e-WENO7 methods. To reduce the computational cost, the second and third temporal derivatives of the unknowns are implemented as in Qiu and Shu 2003 [35].

5.3 Modelling of a centered Gaussian wave with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the surface elevation obtained after 5.3a,5.3b) 40s and 5.3c,5.3d) 9s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. . 5.6 Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the surface elevation obtained after 5.6a,5.6b) 40s and 5.6c,5.6d) 13.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.7 Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot the rotational of the dispersive term in x-direction obtained after 5.7a,5.7b) 40s and 5.7c,5.7d) 13.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. . . . . . . . . . . . . . . . . . . . . 79 5.8 Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 3m and a time step ∆t = 0.125s. We plot in meters the surface elevation obtained after 5.8a,5.8b) 40s and 5.8c,5.8d) 5.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.9 Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 3m and a time step ∆t = 0.125s. We plot the rotational of the dispersive terms in x-direction obtained after 5.9a,5.9b) 40s and 5.9c,5.9d) 5.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method. . . . . . . . . . . . . . . . . . . . . 82
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 11 Figure 1.1: Propagation of a wave approaching coast [1]
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 12 Figure 1.2: Tsunamigenic earthquakes identified by the CENALT. The most significant happened at Golfe of Cadiz, Lisbon (1531,1755), Messina strait (1683,1783,1908), Ligurian Sea (1887) and Algeria, Bourmerdès (2003).
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 13 Figure1.3: Modelling of the 2021 Alger's tsunami using Taitoko's dispersive method solving the standard Boussinesq equations. We plot the results obtained after 1.3a) 40 and 1.3b) 90 minutes. The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step.
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 2 Figure 2.1: Definition of the variables. Inspired from[START_REF] Florinsky | Theorical and numerical study of seismic tsunami dynamics[END_REF] 
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 22 Figure 2.2: Propagation of a 1D gaussian wave using a Shallow Water and a Boussinesq model.
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 23 Figure 2.3: Approximations of the dispersion relation of linear waves on a flat bottom. The blue and green lines correspond respectively to the standard and Nwogu's enhanced Boussinesq models.The black line corresponds to the Navier-Stokes model. Extracted from[START_REF] Benoit | Long-distance propagation of tsunamis and surface waves: on the relative importance of dispersion and nonlinearity[END_REF] 
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 3 Figure 3.1: Error in the 3.1a) dispersion and 3.1b) diffusion calculated using schemes solving the standard Boussinesq equations with N c = 5, compared to the standard Boussinesq equations' dispersion relation. While plotting the different simplified LW3 curves, we highlight that keeping or erasing the term in θ 1 does not change the curves, thus we plot only four simplified LW3 schemes.

  Fig 3.1 and Fig 3.2 show the a) dispersion and b) diffusion errors in the dispersion relations of the seven simplified LW3 schemes solving the standard and enhanced Boussinesq equations, respectively. Fig 3.1 and Fig 3.2 show that the version without µ 2 ∆t 2
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 32 Figure 3.2: Error in the 3.2a) dispersion and 3.2b) diffusion calculated using schemes solving the enhanced Boussinesq equations with N c = 5, compared to the enhanced Boussinesq equations' dispersion relation. While plotting the different simplified LW3 curves, we highlight that keeping or erasing the term in θ 1 does not change the curves, thus we plot only four simplified LW3 schemes.

  3), then to exact standard Boussinesq equations (Fig 3.3 and 3.4). All the dispersion relations are presented in Appendix B. Numerical dispersion error of schemes for N c = 5, 10, 20 and 40 is evaluated by analyzing ω for kd values in the range [0,4] (Table

Scheme N c = 5

 5 Scheme N c = 5 N c = 10 N c = 20 N c = 40Explicit Euler 0.24 0.12 0.09 0.08 RK2 0.10 0.08 0.08 0.08 LW2e 1 0.13 0.09 0.08 0.08 LW2e 2 0.10 0.08 0.08 0.08 LW2si 1 0.10 0.06 0.07 0.08 LW2si 2 0.10 0.08 0.08 0.08 LW2si 3 0.11 0.06 0.07 0.07 RK3 0.08 0.08 0.08 0.08 LW3e 0.11 0.08 0.08 0.08 LW3si 0.08 0.08 0.08 0.08 Simp. LW3 v3 0.12 0.09 0.08 0.08

  2 and 3.3, Fig 3.3 and 3.4 illustrate the influence of kd on the dispersion and diffusion errors.
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 33 Figure 3.3: Error in the dispersion calculated using 3.3a) explicit Euler, RK2, RK3 and simplified LW3 schemes, 3.3b) second-order schemes, 3.3c) third-order and simplified LW3 schemes, solving the standard Boussinesq equations with N c = 10, compared to the exact dispersion relation of the standard Boussinesq equations. The curves corresponding to the RK2 and LW2si 2 schemes are identical.
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 3435 Figure 3.4: Error in the diffusion calculated using 3.4a) Explicit Euler, RK2, RK3 and simplified LW3 schemes, 3.4b) second-order schemes, 3.4c) third-order and simplified LW3 schemes, solving the standard Boussinesq equations with N c = 10. The curves corresponding to the RK2 and LW2si 2 schemes are nearly totally identical.
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 36 Figure 3.6: Diffusion error calculated for 3.6a) explicit Euler, RK2, RK3 and simplified LW3 schemes, 3.6b) second-order schemes, 3.6c) third-order and simplified LW3 schemes solving the enhanced Boussinesq equations with N c = 5, compared to the exact Airy equations' dispersion relation.
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 41 Figure 4.1: Propagation of a gaussian wave simulated with n = 6001 by 4.1a,4.1c) LW2e 1 , LW2e 2 and LW2si 2 schemes, 4.1b,4.1d) third-order and simplified LW3 schemes. The enhanced nonlinear Boussinesq equations are solved at 4.1a,4.1b) t = 17.43 (top) and 4.1c,4.1d) t = 34.86 (bottom). Comp. Sol. denotes the reference solution obtained applying RK3 with n = 8004 and CF L = 0.5. RK2 and LW2 results are close to the LW2si 2 ones and then are not plotted. The same applies to LW3 and LW3si schemes since their results are nearly identical to the RK3 ones. Values on x-axis and y-axis are expressed in dimensionless form.
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 42 Figure 4.2: Propagation of a gaussian wave simulated with n = 4001 by 4.2a) LW2e 1 , LW2e 2 and LW2si 2 schemes, 4.2b) third-order and simplified LW3 schemes solving the enhanced nonlinear Boussinesq equations. Comp. Sol. denotes the reference solution obtained applying RK3 with n = 8004 and CF L = 0.5. The curves corresponding to the LW2si 2 , LW2e 1 and LW2e 2 schemes are identical. The curves corresponding to the RK2, LW3e and simplified LW3 schemes are identical. Values on x-axis and y-axis are expressed in dimensionless form.
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 43 Figure 4.3: Relative error (in L 2 norm) of the water height calculated in simulations of the propagation of the gaussian wave for n = 1001, 2001, 3001, 4002, 5002, 6003. The results are obtained solving the enhanced Boussinesq equations by 4.3a,4.3c) second-order schemes, 4.3b,4.3d) third-order and simplified LW3 schemes. The results are compared to a high-resolution computed solution and their error is expressed depending on 4.3a,4.3b) the number of points of discretization, 4.3c,4.3d) the CPU-time . The computational solution is obtained applying RK3 with n = 8004 and CF L = 0.5. Curves are plotted in logarithmic scale.

Figure 4 . 4 :

 44 Figure 4.4: Propagation of a solitary wave simulated by 4.4a,4.4c) second-order schemes 4.4b,4.4d) third-order and simplified LW3 schemes solving the nonlinear enhanced Boussinesq equations. The equations are solved with 4.4a,4.4b) n = 501 and 4.4c,4.4d) n = 1001. Values on x-axis and y-axis are expressed in dimensionless unities. Comp. Sol. denotes the reference solution obtained applying RK3 with n = 3000 and CF L = 0.49. RK2 and LW2 results are similar to the LW2si 2 ones and then are not plotted. In the same way, LW3 and LW3si results are similar to the RK3 ones and are not plotted. The curves of the RK3 and simplified LW3 schemes are identical.

Figure 4 . 5 :

 45 Figure 4.5: Relative error (in L 2 norm) of the water height calculated in simulations of the propagation of the solitary wave for n = 250, 501, 1002, 1503, 2004, 2505. The enhanced Boussinesq equations are solved by 4.5a,4.5c) second-order schemes, 4.5b,4.5d) third-order and simplified LW3 schemes, and compared to a high-resolution computed solution obtained applying RK3 with n = 3000 and CF L = 0.49. Results are plotted depending on 4.5a,4.5b) the number of points of discretization and 4.5c,4.5d) the CPU-time. Curves are plotted in logarithmic scale.

Figure 4 . 6 :

 46 Figure 4.6: Propagation of an undular bore at t = 0.94 (4.6a,4.6b), t = 1.88 (4.6c,4.6d) and t = 2.82 (4.6e,4.6f). Nonlinear enhanced Boussinesq equations are solved by 4.6a,4.6c,4.6e) second-order schemes, 4.6b,4.6d,4.6f) third-order and simplified LW3 schemes. Values on x-axis and y-axis are expressed in dimensionless values obtained dividing the dimensional values by d 0 . Comp. Sol. denotes the reference solution obtained applying RK3 with n = 2500 and CF L = 0.45. We have similar results solving the standard nonlinear Boussinesq equations. RK2, LW2si 2 and LW2 results are similar to the LW2e 2 ones and then not plotted. In the same way, LW3 and LW3si results (identical to the RK3 ones) are not plotted.

Figure 4 . 7 :

 47 Figure 4.7: Dependance on the Froude nomber of 4.7a) the extremum amplitudes and of the 4.7b) CPU-time/CPU-time RK3 . The amplitudes are expressed in dimensionless values obtained dividing the dimensional values by d 0 . The heights of the first peak and through of the wave are respectively plotted in blue and magenta in Fig 4.7a. Numerical results are obtained with n = 2500 and CF L = 0.5. The domain is extended by 10% in the right direction in order to contain the entirety of the wave. Results obtained through the RK3 -•, LW3e -and simplified LW3 v3 -schemes are plotted. We also plot data of Treske 1994 [42] -+ and data of Favre 1935 [14] -× in Fig 4.7a. In Fig 4.7b, a black line is plotted as the RK3 reference values.

Figure 4 . 8 :

 48 Figure 4.8: Propagation of a dambreak-generated wave simulated with 4.8a,4.8b) n = 1601 and 4.8c,4.8d) n = 801 by 4.8a,4.8c) LW2e 1 , LW2e 2 and LW2si 2 schemes, 4.8b,4.8d) LW3e, LW3 and simplified LW3 schemes solving the enhanced nonlinear Boussinesq equations. Values on x-axis and y-axis are expressed in dimensionless unities. Comp. Sol. denotes the reference solution obtained applying RK3 with n = 3101 and CF L = 0.35. RK2 and LW2 results are similar to the LW2e 2 ones and then not plotted. RK3 and LW3si results are identical to the LW3 scheme ones and then not plotted.
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 5152535455 Figure 5.1: Modelling of a centered Gaussian wave with a space step ∆x = 12m and a time step ∆t = 0.5s. We plot in meters the surface elevation obtained after 5.1a,5.1b) 40s and 5.1c,5.1d) 24s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulas. In the left figures, simulations were performed using the LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method.

Figure 5 . 6 :

 56 Figure5.6: Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the surface elevation obtained after 5.6a,5.6b) 40s and 5.6c,5.6d) 13.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method.

Figure 5 . 7 :Figure 5 . 8 :

 5758 Figure5.7: Modelling of a centered Gaussian wave propagating over a slope with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot the rotational of the dispersive term in x-direction obtained after 5.7a,5.7b) 40s and 5.7c,5.7d) 13.5s of propagation over a flat bottom. The top (resp. bottom) figures are obtained performing simulations with the embedded (resp. non embedded) formulation. In the left figures, simulations were performed using the conservative LW3eC-FD4 method. In the right figures, they were performed applying the RK3C-FD4 method.
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Figure 7 . 2 :

 72 Figure7.2: Modelling of a centered Gaussian wave with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the results obtained after 40s of propagation over a flat bottom. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. Results obtained through the LW3eNC-FD4 method are similar to those of the LW3eC-FD4 and thus not plotted here.

Figure 7 . 3 :

 73 Figure 7.3: Modelling of a centered Gaussian wave with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the results obtained after 40s of propagation over a flat bottom at the slice x = 12000m. Simulations were performed using Taitoko's and a standard (α = 1/3, β = 0) and a enhanced (α = 0.39, β = 0.057) LW3e schemes in non-conservative form.

  Fig 7.8a), climbing up the slope, than at gage 11 (Fig 7.8b), where the water depth is increasing. LW3e methods generate results close to the standard model and the RK3C-FD4 method. Standard model's results diverge slowly as the waves propagate, which was expected.
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 74 Figure 7.4: Time series of the surface elevation at gages 1 (Fig 7.4a) and 9 (Fig 7.4b) calculated for the propagation of the gaussian wave over a flat bottom. The gages 1 and 9 are respectively placed in (12000,12156) and (12144,12144). Simulations have been performed with ∆x = 6m and ∆t = 0.25s. Results have been obtained performing the enhanced (resp. standard) LW3e scheme are plotted in brown (resp. green). A reference solution calculated integrating the Airy's equations generates the results plotted in blue. The elevation is expressed in meters and the time in seconds.

Figure 7 .

 7 Figure 7.5: 7.5a) Computational time and 7.5b) Computational time over the RK3-FD4 one of the simulations performed for the modelling of the centered Gaussian wave with a space step ∆x = 6m and ∆t = 0.25s.
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 77778 Figure 7.6: Slope
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 79 Figure 7.9: Modelling of a centered Gaussian wave with a space step ∆x = 3m and a time step ∆t = 0.125s. Results are obtained using the LW3eC-FD4 scheme and plotted at six times of the simulation.
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 710 Figure 7.10: Modelling of a centered Gaussian wave with a space step ∆x = 3m and a time step ∆t = 0.125s. We plot the results obtained after 44s of propagation over a flat bottom with an obstacle. Results were obtained using the LW3eNC-FD4 method.

Figure 7 . 11 :

 711 Figure 7.11: Time series of surface elevation at gages 13 and 15 calculated for the gaussian wave propagating over a flat bottom with an obstacle. The gages 13 and 15 are respectively placed in (11988,11988) and (11988,12000). Results have been obtained performing simulations with ∆x = 6m and ∆t = 0.25s. The surface elevation is expressed in meters and the time in seconds.
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 712 Figure 7.12: Modelling of a solitary wave with a space step ∆x = 4cm and a time step ∆t = 0.01s. We plot the results obtained after 7.12a) 2.8s, 7.12b) 3.2s and 7.12c) 3.6s of propagation. These simulations were performed using the LW3e-DF4 method solving the conservative enhanced Boussinesq model.
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 713 Figure 7.13: Modelling of a solitary wave with a space step ∆x = 2cm and a time step ∆t = 0.005s. We plot the results obtained after 7.12a) 2.8s, 7.12b) 3.2s and 7.12c) 3.6s of propagation. These simulations were performed using the LW3e-DF4 method solving the conservative enhanced Boussinesq model.
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 714 Figure 7.14: Focal mechanisms of the 2021 Alger's tsunami. Source : CSEM

Figure 7 . 16 :

 716 Figure 7.16: Modelling of the 2021 Alger's tsunami using the LW3eC-FD4 method. We plot the results obtained after 7.16a) 10 minutes, 7.16b) 40 minutes, 7.16c) 60 minutes and 7.16d) 90 minutes.The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step.

Figure 7 . 18 :

 718 Figure 7.18: Time series of the surface elevation calculated at the coordinates (7.285°E,43°N) modelling the propagation of the 2021 Alger's tsunami. In this figure, the x-axis and y-axis are respectively in minutes and in meters.
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	Chapter 1

En revanche, aucune des méthodes implémentées n'est capable de gérer des bathymétries ou vagues discontinues. Alors que certains modèles shallow water le peuvent, ce n'est pas possible pour les modèles dispersifs, qui nécessitent une méthode particulière pour acquérir cette capacité. Les méthodes à capture de choc telles que les méthodes WENO permettent de régler ce problème et pourraient aussi endiguer la nécessité d'ajouter une viscosité artificielle. Une méthode LW3eC-WENO détaillée dans l'Annexe C est actuellement en cours d'implémentation afin d'explorer cette idée.

La possibilité de modéliser le déferlement et le run-up pourrait aussi être ajoutée dans le futur.
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Table 3 .

 3 2: Relative error of ω calculated solving the standard Boussinesq equations in L 2 norm compared to the exact solution of the Airy equations. We note N c = 1/∆t.
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Boussinesq approximation. For small values of N c, the simplified LW3 scheme, the LW2e 1 and the Explicit Euler schemes are the least accurate and the error of the Explicit Euler scheme is up to twice or thrice larger than the ones of other schemes. For large values of N c, all schemes converge to an error of about 7%. The LW2si 3 and LW2si 1 schemes converge slightly faster than the other schemes. Scheme N c = 5 N c = 10 N c = 20 N c = 40

Table 3 .

 3 3: Absolute error of ξ in L 2 norm obtained solving the standard Boussinesq equations. For both Airy and Boussinesq equations, the exact solution does not create diffusion (ξ = 0).

Table 3 .

 3 4: Relative error of ω calculated by solving the enhanced Boussinesq equations in L 2 norm compared to the exact solution of the Airy equations. We denote N c = 1/∆t.
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Table 3 . 5

 35 . Schemes without change of sign are accurate with an error monotonically tending to zero as the frequential dispersion reduces. The exception is the LW2si 3 which provides a dispersion error increasing with kd. As in the case of the standard Boussinesq equations, the RK2 and LW2si 2 schemes give the same results.With regards to diffusion, results (Fig 3.6) confirm that the Explicit Euler scheme is the most diffusive scheme and that RK2 and LW2si 2 schemes produce similar results.

: Absolute error of ξ in L 2 norm obtained by solving the enhanced Boussinesq equations. For the Airy and Boussinesq equations, the exact solution does not create diffusion, so we look for errors around zero. scheme
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 4 2) for six values of space steps (n = 1001, 2001, 3001, 4002, 5002, 6003). Concerning the second order schemes,

Table 4 .

 4 1: Relative error (in L 2 norm) of the water height calculated in simulations of the propagation of the gaussian wave through the enhanced Boussinesq equations, for six different space steps (n = 1001, 2001, 3001, 4002, 5002, 6003). We keep the CFL parameter to 0.5. The errors are obtained comparing the numerical results to those obtained applying RK3 with n = 8004 and CF L = 0.5.

		.89	1.82	1.54	1.24	0.91	0.69
	LW2e 1	1.75	1.78	1.45	1.14	0.81	0.61
	LW2e 2	2.00	2.32	1.73	1.30	0.93	0.69
	LW2si 2	1.89	1.82	1.54	1.24	0.91	0.69
	LW2	1.94	1.95	1.57	1.25	0.91	0.69
	RK3	0.83	0.70	0.53	0.18	0.10	0.04
	LW3e	0.84	0.71	0.56	0.19	0.10	0.04
	LW3si	0.83	0.69	0.52	0.18	0.10	0.05
	LW3	0.83	0.70	0.53	0.18	0.10	0.04
	Simp. LW3 v3	0.83	0.71	0.59	0.26	0.16	0.08
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Table 4 .

 4 2: Computational time (in seconds) of the schemes solving the enhanced Boussinesq equations to simulate the propagation of a gaussian wave, for six different values of the space step (n = 1001, 2001, 3001, 4002, 5002, 6003). We keep the CFL parameter to 0.5.

	Scheme	n = 1001 n = 2001 n = 3001 n = 4002 n = 5002 n = 6003
	RK2	7	52	176	389	799	1731
	LW2e 1	4	31	105	232	499	901
	LW2e 2	4	31	98	251	492	1002
	LW2si 2	6	48	145	402	762	1440
	LW2	6	45	132	339	691	1385
	RK3	10	77	260	602	1120	2322
	LW3e	6	49	146	380	719	1328
	LW3si	11	88	261	681	1298	2400
	LW3	9	70	204	528	1043	2100
	Simp. LW3 v3	7	56	161	434	821	1630

Table 4 .

 4 3. Amongst the second-order schemes, the LW2e 1

	Scheme	n = 250 n = 501 n = 1002 n = 1503 n = 2004 n = 2505
	RK2	0.99	0.88	0.57	0.20	0.11	0.08
	LW2e 1	0.88	0.71	0.45	0.16	0.09	0.07
	LW2e 2	0.88	1.22	0.63	0.21	0.11	0.08
	LW2si 2	0.90	0.92	0.57	0.20	0.11	0.08
	LW2	1.03	0.91	0.57	0.19	0.10	0.08
	RK3	1.22	1.06	0.32	0.12	0.05	0.02
	LW3e	1.22	1.04	0.27	0.10	0.04	0.02
	LW3si	1.22	1.06	0.33	0.13	0.05	0.02
	LW3	1.22	1.06	0.31	0.12	0.05	0.02
	Simp. LW3 v3	1.22	1.06	0.34	0.14	0.06	0.03

Table 4 .

 4 3: Relative error (in L 2 norm) of the water height calculated in the simulations of the propagation of a solitary wave, solving the enhanced Boussinesq equations for six different values of the space step. We keep the CFL parameter to 0.5. The resuts are compared to the ones obtained applying RK3 with n = 3000 and CF L = 0.9.is the most accurate and the LW2e 2 is the less accurate one. The third-order and simplified thirdorder schemes have similar accuracy, the LW3e scheme being slightly more accurate and the simplified LW3 scheme slightly less accurate than the others.

	Scheme	n = 250 n = 501 n = 1002 n = 1503 n = 2004 n = 2505
	RK2	0.1	0.9	11.7	39.9	96.7	183.0
	LW2e 1	0.1	0.5	6.2	23.6	56.7	97.6
	LW2e 2	0.0	0.4	6.2	23.6	56.9	97.8
	LW2si 2	0.1	0.6	10.3	36.4	88.2	151.4
	LW2	0.1	0.9	9.7	32.6	82.1	142.1
	RK3	0.1	1.3	17.6	59.6	140.7	254.6
	LW3e	0.1	0.6	10.1	37.6	90.4	154.3
	LW3si	0.1	1.2	18.6	65.6	158.8	273.7
	LW3	0.1	1.5	15.9	50.6	119.5	222.2
	Simp. LW3 v3	0.1	1.0	11.9	40.1	85.8	174.3

Table 4 .

 4 4: Computational time (in seconds) of the schemes simulating the propagation of a solitary wave for six different space steps. We keep the CFL parameter to 0.5.

  .1.

	Version	v1	v2A v2B
	Gauss	236	115 108
	Hepta. Gauss	Non applicable 90	65
	Gauss-Seidel	80	638 726
	Hepta. Gauss-Seidel Non applicable 319 1.5
	Figure		
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Chapter summary

In this chapter, we compare the accuracy and computational time of the new LW3eC-FD4 and LW3eNC-FD4 methods, of Taitoko's standard Boussinesq method and of the RK3C-FD4 method. Simulations of these five benchmarks show that:

On flat bottom, the two new LW3e-FD4 methods implemented generate results similar to those generated by Taitoko's model for the long waves, and handle well short waves not handled by Taitoko's model.

Providing the addition of an artificial viscosity in shallow water on some benchmarks, the LW3eC-FD4 method handles well short waves, for realistic bathymetries and interactions with objects or dry zones.

While the LW3eNC-FD4 method generates results similar to the LW3eC-FD4 ones, it seems to be much more sensitive to the bathymetry and presence of dry cells. While no problem has been detected on coarse meshes, noise is generated at mesh boundaries when the mesh is refined. It would require an additional treatment of mesh boundaries to perform such modelling accurately.

Compared to the RK3C-FD4 method, the LW3eNC-FD4 and the LW3eC-FD4 methods require a computational time reduced by about 60%. It would be interesting to compare again the computational time of the two LW3e-FD4 methods to RK3C-FD4 and RK3NC-FD4 methods once the boundary treatment is implemented in the LW3eNC-FD4 method.

Appendix A

In this appendix, I explain how the reformulation of the 1D Syst 2.1 generates the Equation 2.2. The 2D reformulation is similar and thus not written here. We remind that the bathymetry is considered fixed.

We start from the 1D Syst 2.1 :

The first step is to define the dispersive term ϕ u :

We then replace the temporal derivatives by an expression which do not require any temporel discretization. Denoting A u = -∂ x η, we replace ∂ t u by gϕ u + gA u . After a reorganisation of the terms, we obtain the system :

This new formulation erases the time-space derivatives adding one or two equations in 1D and 2D respectively.
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Appendix B

In this Appendix, we present the dimensionless dispersion relations of the schemes studied in Chapters 3 and 4.

The following relations are obtained for six numerical schemes by expressing each variable X (u and η) in the form X 0 e i(2πx-νt) , where X 0 is a constant, ν = ω + iξ, ω is associated to the dispersion and ξ is associated to the diffusion. We denote ω Bsq the dispersion value ω evaluated for the enhanced Boussinesq model.

Explicit Euler

where N c = 1/∆t.

LW2 and RK2

where D, E, H and J are constants expressed as : LW3 and RK3

Approximate LW3

where D, E, H, I, J and M are constants defined by

Appendix C

As a wave's amplitude increases and reaches a critical level, the wave crest steepens. When the front of the wave becomes vertical, the crest of the wave overturns. Depth-integrated models such as Boussinesq models do not describe overturning of the free surface, and thus cannot fully reproduce the wave breaking processes.

As regards Boussinesq type equations such as the two new methods implemented in this PhD, they are unable to describe a wave overturn since the FD discretization of the dispersive terms causes the generation of spurious oscillations if steep gradients are presented : a wave breaking mechanism has to be considered.

At discontinuities, high-order centered schemes generate high frequency oscillations that do not diminish with the space step. In these cases, we have to use shock-capturing methods that activate or deactivate numerical diffusion around discontinuities in order to limit ou erase Gibb's phenomenon [START_REF] Florinsky | Chapter 5 -errors and accuracy[END_REF] (boundary effect generated close to a discontinuity in a function derivable by parts). Their aim is to automatically capture discontinuities without tracking them.

Shock-capturing methods are organized in two categories : hybrid methods, and eddy-viscositytype breaking schemes, which are more accurate. In eddy-viscosity-type breaking schemes, criterions are applied to the wave to detect automatically a breaking wave and react. When a breaking wave is detected, the parameters of the 'post-break' wave are determined depending on the parameters of the 'pre-break' wave.

These methods' characteristics are well-known in monodimensional cases, but increasing the number of dimensions of a scheme from one to two can change its non-oscillatory characteristics. Kim et Kim [START_REF] Kim | Accurate, efficient and monotonic numerical methods for multidimensional compressible flows: Part i: Spatial discretization[END_REF] have shown that many multi-dimensional schemes are not monotone on multidimensional discontinuities, especially high-order schemes.

In this Appendix, we firstly discuss eddy-viscosity-type breaking schemes called WENO methods, then detail the LW3eC-WENO formulation whose implementation is currently in progress.

WENO methods

To approximate a space derivative at a point, we can use numerous schemes. Among the most famous ones are the ENO (Essentially NonOscillatory) and WENO (Weighted Essentially NonOscillatory) schemes. Both require to know the stencils including the point at which we want to make this approximation. ENO schemes use a convex combination of a unique optimal candidate stencil, while WENO schemes use a convex combination of all the candidate stencils. The WENO method consists in making a linear combination of lower order fluxes of reconstruction to obtain a higher order approximation. The coefficients (called linear weights) are determined by the local geometry of the mesh and the order of accuracy wanted. The WENO schemes are nonlinear due to the weights, which are nonlinear due to the nonlinearity of the smoothness indicators IS included in List of Figures 1 CPU-time (in seconds) of the simulations performed with the three formulations of the dispersive system and the four matrix inversion methods implemented to model the 10s-propagation of a gaussian wave over a slope. In the version v2A, the methods adapted to heptadiagonal matrices are only applicable to the matrix G 1 . For the matrix G 2 , we apply the methods adapted to full matrices. For this example, we fix the desired precision of the inversion method to 10 -20 and the maximum number of iterations to 20. These parameters have been chosen so that the inversion is accurate enough to generate realistic results. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modelling of a centered

Gaussian wave with a space step ∆x = 12m and a time step ∆t = 0.5s. We plot in meters the results obtained after 40s of propagation over a flat bottom. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. Results obtained through the LW3eNC-FD4 method are similar to those of the LW3eC-FD4 and thus not plotted here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modelling of a centered

Gaussian wave with a space step ∆x = 6m and a time step ∆t = 0.25s. We plot in meters the results obtained after 40s of propagation over a flat bottom. Simulations have been performed using 7.1a) Taitoko's standard Boussinesq model, 7.1b) the LW3eC-FD4 method and 7.1c) the RK3C-FD4 method. Results obtained through the LW3eNC-FD4 method are similar to those of the LW3eC-FD4 and thus not plotted here. . [START_REF] Filippini | Uhaina : A parallel high performance unstructured adaptive near-shore wave model[END_REF] Modelling of the 2021 Alger's tsunami using the LW3eC-FD4 method. We plot the results obtained after 7.16a) 10 minutes, 7.16b) 40 minutes, 7.16c) 60 minutes and 7.16d) 90 minutes. The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step. . . . . . . . . . . . . . . . . . . 108 7.17 Modelling of the 2021 Alger's tsunami using Taitoko's dispersive method solving the standard Boussinesq equations. We plot the results obtained after 7.17a) 10 minutes, 7.17b) 40 minutes, 7.17c) 60 minutes and 7.17d) 90 minutes. The space step is variable in the x-direction to take into account the Earth's curvature. We take ∆t = 2s as time step. .