Et voilà, ma thèse se termine, enfin ! Déjà ! Car une thèse n'est pas seulement un travail scientifique de haute volée, c'est aussi, et surtout, j'ai l'impression, une course d'endurance, épuisante, mais dont le bout arrive plus vite qu'on ne croit. C'est qu'il faut se coltiner trois ans un seul et même projet, toujours dans la même optique ! Le tout en un seul et même endroit : Orsay. Une petite ville un peu verte assez sympa, mais qui a la longue, et surtout en période de COVID, tend à provoquer l'ennui. J'ai pu le combattre de bien des manières, mon travail scientifique bien sûr, qui s'est avéré assez divers, mais aussi et surtout en rencontrant des personnes remarquables que j'ai eu l'occasion de découvrir.

Ces véritables personnages sans qui rien n'aurait pu être fait sont assez nombreux, mais je vais tout de même prendre la peine de citer quelques-uns, ils le méritent. À tout saigneur tout honneur, Denis est celui qui sans conteste a eu la plus grosse empreinte. Évident me dira-t-on, c'est mon directeur de thèse. On a pas mal mouliné ensembles. Il y a même eu des périodes de découragement de mon côté. Malgré ça, Denis a su non seulement me guider d'un point de vue scientifique, mais aussi me coacher de manière à me relancer dans le rodéo. Son pragmatisme m'impressionnera toujours. Ça et ses anecdotes de vie un peu loufoques innocemment balancées aux pauses-café. C'est grâce à lui que je suis arrivé là, et pour ça, merci, merci du fond du coeur.

Une autre part du lion dans ces remerciements est à tailler pour les petits camarades du groupe théorie et de ceux d'à côté : Florian, David, Sully et Yann (trouvez l'intrus) sont ceux qui viennent immédiatement à l'esprit. Les innombrables pauses-café (ou thé) où nous avons parlé de tout et de rien, à refaire le monde ou à discuter physique, et où quantité de blagues douteuses et de remarques sur la maison des fous qu'est l'administration de Paris-Saclay resteront longtemps dans ma mémoire. Vous avez apporté une certaine joie de vivre dans l'équipe théorie durant la rude période COVID. Merci à vous pour tout ce que vous m'avez apporté (et aussi m'avoir été très utiles quand je ne voulais pas travailler !).

Il manque parmi les petits copinous encore deux personnes remarquables. Avec Sarah, on s'est rencontrés en M1 et depuis on s'est jamais quittés. On en a traversé des épreuves ! Et pour être honnête les mots me manquent un peu pour exprimer ma joie de te connaître. J'ai confiance que tu réussiras tous tes objectifs, et qu'on mangera des sushis ensembles encore longtemps ! J'ai aussi, au cours de la thèse, découvert un panda autoproclamé en la personne de Julien, qui est devenu rapidement un de mes amis les plus proches. Comme Sarah, son apport, particulièrement en matière de Gulden Draak, de memes de haut niveau et de discussions dans des moments assez sombres pour lui comme pour moi, a été déterminant pour ce que je suis maintenant. Vous faites tous deux partie de mes êtres humains préférés.

Ce groupe assez restreint a été assez chamboulé par mon introduction au serveur Discord "Le Neurchibre", dans lequel j'ai rencontré des gens très variés, tous incroyables de personnalité (sauf un). Je n'aurais pas cru à l'époque qu'un verre de gin me mènerait à découvrir autant de choses et à dissiper définitivement cet intense et insistant sentiment de solitude qui me pesait depuis si longtemps que j'en étais venu à penser qu'il faisait simplement partie de la vie. Merci, merci pour tout, que ce soit les verres improvisés quand un d'entre vous passe sur Paris, les accueils un peu partout en France, les recettes CONTENTS de cuisine en vocal le dimanche matin, ou les blagues d'une qualité encore plus basse que celles de feu l'IPN. Je suis fier de pouvoir compter ses membres parmi mes amis. CONTENTS À ma famille, que j'aime d'amour.

C H A P T E R 0

Résumé en français

La description exacte de l'évolution d'un ensemble de fermions en interaction est un problème fondamental de la physique et de la chimie. Des exemples de tels systèmes sont les noyaux atomiques ou les systèmes électroniques. Ce problème devient extrêmement difficile à traiter avec précision lorsque le nombre de particules augmente et dépasse quelques dizaines. L'une des principales difficultés est le nombre de degrés de liberté à suivre dans le temps qui s'échelonne de façon exponentielle avec le nombre de particules. L'équation de Schrödinger contient formellement tout ce qui est nécessaire pour décrire tout type de comportement microscopique dans la limite non relativiste. Cependant, la fonction d'onde à N corps |Ψ⟩ s'avère être un objet très complexe, qui dépendant d'un grand nombre de degrés de liberté internes au système. De nombreuses théories plus ou moins sophistiquées ont été développées au cours des dernières décennies pour approximativement traiter ce genre de problèmes [START_REF] Pines | The Theory of Quantum Liquids: Normal Fermi Liquids[END_REF][START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF][START_REF] Khan | Continuum quasiparticle random phase approximation and the time-dependent Hartree-Fock-Bogoliubov approach[END_REF][6][START_REF] Vretenar | Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure[END_REF][START_REF] Lipparini | Modern Many-Particle Physics -Atomic Gases[END_REF][START_REF] Fetter | Quantum Theory of Many-Particle Systems[END_REF][START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF][START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF][START_REF] Verriere | The time-dependent generator coordinate method in nuclear physics[END_REF][START_REF] Bender | Future of nuclear fission theory[END_REF]. Cela a permis de traiter avec un succès variable un large éventail de tailles de système, avec parfois différents degrés d'excitations internes. Le problème devient encore plus difficile lorsque l'on considère la dynamique des systèmes fermioniques. Une stratégie typique pour réduire la complexité et éviter le "mur" du nombre exponentiel de degrés de liberté consiste à se concentrer sur des degrés de liberté spécifiques qui sont censés contenir la partie la plus pertinente de l'information sur le système. En raison de leur importance et de leur simplicité par rapport aux autres, les degrés de liberté à un corps sont souvent, voire toujours, retenus comme point de départ pour le traitement des systèmes à plusieurs corps. Ceci conduit à l'image dite des particules (ou quasi-particules) indépendantes qui, en raison de sa simplicité pratique, est un outil puissant et polyvalent. Il s'agit de l'essence de la théorie Hartree-Fock dépendante du temps (TDHF) et, dans une certaine mesure, de l'approche de la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT), bien que cette dernière inclue plus de corrélations que la TDHF. Nous discuterons de la TDHF, et de certaines de ses extensions, de manière plus détaillée au Chap. 2.

Malheureusement, de nombreux aspects de l'évolution d'un système sont mal décrits lorsque l'on isole complètement les degrés de liberté à un corps. C'est le cas par exemple des fluctuations quantiques qui sont liées aux degrés de liberté à deux corps, des effets dissipatifs et/ou du chemin vers la thermalisation dans les systèmes à plusieurs corps. Le traitement de tels processus est un grand défi pour les théories de transport actuelles. L'inclusion de ces effets nécessite de traiter, au moins dans une certaine mesure, le couplage des degrés de liberté à un corps et des autres degrés de liberté qui ont été négligés au départ. Le problème devient ainsi similaire à un système quantique ouvert, où les degrés de liberté complexes deviennent un environnement auquel le système CHAPTER 0. RÉSUMÉ EN FRANÇAIS Surroundings: two-,. . . , many-body DOFs Relevant part: one-body DOFs Figure 1: Illustration schématique de l'interaction (flèches pleines) entre les degrés de liberté pertinents (c.-à-d. degrés de liberté à un corps), qui sont en général isolés des degrés de liberté à deux, trois, . . . , N corps. Cette décomposition entre les parties pertinentes et moins importantes du système peut être considérée, du point de vue de la théorie des systèmes quantiques ouverts, comme une sélection d'un sous-système à un corps en interaction avec son environnement à plusieurs corps. formé par les degrés de liberté à un corps est couplé (voir Fig. 1.1). Le traitement correct de ce problème reste aujourd'hui encore extrêmement difficile. Il y a plusieurs raisons à cela. La première est que le système d'intérêt et l'environnement proviennent du même système de particules. La deuxième est que les différents aspects du couplage doivent a priori être reliés aux interactions à deux corps, ce qui n'est pas toujours parfaitement connu comme c'est le cas en physique nucléaire. Enfin, le couplage lui-même peut être assez complexe avec la présence d'effets non-markoviens non-négligeables.

Cette complexité est à l'origine d'une riche faune de phénomènes observés expérimentalement. Cela inclut, dans un contexte de physique nucléaire, à la fois des effets de structure et des effets dynamiques. De nombreux aspects de la physique nucléaire sont affectés par la dissipation ou les fluctuations quantiques. Pour en citer quelques-uns : les résonances géantes, la superfluidité, la spallation, la fission nucléaire spontanée, la fusion, l'échange de nucléons . . . le but de cette thèse est de fournir des méthodes précises pour la description de la dynamique des fermions corrélés, avec pour principe directeur de conserver des méthodes à la fois simples et numériquement le moins coûteux possible.

Les lacunes de la théorie du champ moyen ont conduit à la construction d'un large ensemble d'approches. Deux grandes familles de techniques dynamiques fondées sur cette approximation ont été développées : la première branche est fondée sur des méthodes déterministes, c'est-à-dire des techniques pour construire des équations de mouvement déterministes afin d'approcher au mieux l'équation de Schrödinger à plusieurs corps. Certaines d'entre elles sont fondées sur la hiérarchie Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Yvon | La théorie statistique des fluides et l'équation d'état. Théories mécaniques (hydrodynamique-acoustique)[END_REF][START_REF] Kirkwood | The Statistical Mechanical Theory of Transport Processes I. General Theory[END_REF][START_REF] Bogolyubov | Kinetic equations in quantum mechanics[END_REF][START_REF] Born | A general kinetic theory of liquids; the molecular distribution functions[END_REF], qui offre des extensions naturelles de l'image du champ moyen. Dans cette thèse, j'ai exploré une méthode qui a été historiquement proposée pour prendre en compte les effets dissipatifs, à savoir l'approche dite du champ moyen étendu (ETDHF) où les collisions entre particules dans le milieu sont traitées approximativement tout en considérant un problème à un corps. L'implémentation de la méthode ETDHF reste, encore aujourd'hui, extrêmement difficile malgré le fait qu'elle ne suit que les degrés de liberté à un corps. En l'absence d'un moyen approprié de le traiter numériquement, il convient également de mentionner que son pouvoir prédictif ne peut guère être testé. Une partie de la présente thèse a été consacrée à la recherche d'un schéma pratique pour la mise en oeuvre de la méthode ETDHF incluant les effets non-markoviens. L'approche ETDHF, et son implémentation pratique, sont discutées en détail dans le Chap. 3.

La seconde branche des méthodes dépendantes du temps, parfois utilisée comme alternative aux méthodes déterministes, consiste essentiellement à inclure au-delà des effets de champ moyen en introduisant des fluctuations aléatoires dans la dynamique. La deuxième partie de la thèse est consacrée aux méthodes dynamiques basées sur l'introduction de fluctuations aléatoires en plus du champ moyen. Plusieurs de ces approches sont discutées à partir du Chap. 4. La méthode TDHF fournit des solutions approximatives du problème à plusieurs corps, partant d'un état initial bien défini et conduisant à un état final unique. Cette approche est appropriée pour décrire les valeurs moyennes des observables à un corps, mais généralement ne décrit pas bien les fluctuations dans l'espace collectif. Pour traiter le mouvement quantique du point zéro dans l'espace collectif, on peut par exemple tenir compte du mélange de configurations par la méthode dite des coordonnées génératrices dépendantes du temps (TDGCM) [START_REF] Verriere | The time-dependent generator coordinate method in nuclear physics[END_REF][START_REF] Griffin | Collective Motions in Nuclei by the Method of Generator Coordinates[END_REF][START_REF] Wong | The generator-coordinate theory as a flexible formulation of the many-body Schrödinger equation[END_REF][START_REF] Reinhard | The generator coordinate method and quantised collective motion in nuclear systems[END_REF][START_REF] Verrière | Description de la dynamique de la fission dans le formalisme de la méthode de la coordonnée génératrice dépendante du temps[END_REF]. Une telle approche qui conserve toute la cohérence quantique dans l'espace collectif est cependant assez complexe numériquement, ce qui impose une utilisation quelque peu restrictive. Elle a été utilisée avec succès pour la description de phénomènes importants, par exemple la dynamique de fission.

Dans cette approche, une possibilité est d'ajouter du bruit tout en long de l'évolution. C'est, par exemple, la technique utilisée dans la méthode du champ moyen stochastique (STDHF) pour inclure au-delà des effets de champ moyen : [START_REF] Reinhard | Stochastic TDHF and large fluctuations[END_REF][START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Lacombe | A collisional extension of time-dependent Hartree-Fock[END_REF][START_REF] Lacombe | Stochastic TDHF in an exactly solvable model[END_REF][START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Vincendon | Introduction de la relaxation dans la théorie de la fonctionnelle de la densité dépendant du temps[END_REF]. Pour ce faire, on considère des sauts aléatoires entre les déterminants de Slater. Ces sauts, dont les probabilités sont données par la règle d'or de Fermi, sont supposés être de nature deux-particules-deux-trous (2p2h), et décrivent la dissipation dans les systèmes excités à plusieurs corps induite par des collisions à deux corps. Elle est donc étroitement liée à la méthode ETDHF. Plusieurs autres méthodes ont été développées, souvent fondées sur des fluctuations ajoutées au niveau d'une particule (c.-à-d. fluctuations dans l'évolution de la matrice de densité à un corps) avec un certain succès. Une autre façon d'incorporer les fluctuations dans la dynamique est de les introduire au temps initial seulement et de propager les trajectoires résultantes. Cela permet de traiter approximativement à la fois les fluctuations quantiques du point zéro et les éventuelles fluctuations statistiques thermiques initiales. Un schéma stochastique, appelé théorie du champ moyen stochastique (SMF), a été proposé avec cette idée en tête. L'approche SMF part de l'hypothèse qu'un problème dynamique quantique peut parfois être remplacé par une superposition d'évolutions classiques avec des conditions initiales correctement choisies. Une telle approche entre dans la classe des méthodes d'espace des phases. Cette technique est largement étudiée dans la thèse, et appliquée avec un certain succès à un modèle de Fermi-Hubbard au Chap. [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF]. Un deuxième objectif majeur de ma thèse était d'analyser si et comment une telle approche de l'espace de phase appliquée à des problèmes fermioniques à plusieurs corps peut être améliorée. Une extension CHAPTER 0. RÉSUMÉ EN FRANÇAIS de la méthode est proposée dans le Chap. 5. Le succès de ces approches nous a convaincus d'étudier plus systématiquement la dynamique de l'espace de phase, et plus particulièrement comment un problème quantique peut être remplacé par un ensemble de trajectoires de type classique. Certains aspects et méthodes de cette correspondance générale quantique-classique utilisant des méthodes d'espace de phase sont analysés de manière critique dans le Chap. 6 (voir App. C.2).

Dans cette thèse de doctorat, j'ai présenté et étudié plusieurs méthodes pour décrire la dynamique des systèmes fermioniques corrélés. L'objectif principal de cette étude exploratoire était de développer de nouvelles méthodes pour traiter l'évolution des systèmes fermioniques au-delà de l'image du champ moyen, en capturant autant de physique que possible, tout en restant simple à mettre en oeuvre tant sur le plan conceptuel que numérique. Ce travail s'est plus précisément concentré sur l'inclusion de deux effets spécifiques au-delà du champ moyen : les collisions à deux corps dans le milieu et la possibilité de décrire la dissipation et les fluctuations en utilisant des méthodes d'espace des phases. Les méthodes développées et étudiées dans cette thèse ont été fortement guidées par la hiérarchie BBGKY et les bijections entre opérateurs et objets classiques, qui ont été les pierres angulaires de la plupart de nos approches.

Après une brève introduction, nous avons discuté au Chap. 2 comment la dynamique d'un système à plusieurs corps peut être décrite. Ceci a conduit à la présentation de la hiérarchie BBGKY, qui est un outil standard pour ce problème. Plusieurs approximations de la hiérarchie ont été introduites par la méthode dite TD-kRDM, qui consiste à tronquer les équations du mouvement à un ordre donné k. Il est important de souligner que des troncations sans précautions conduisent souvent à de graves instabilités numériques et à des comportements non physiques. Les troncations sont généralement réalisées au second ordre, car elles permettent déjà de rendre compte d'importants phénomènes physiques tels que l'appariement ou les collisions à deux corps dans le milieu. Ce dernier effet intervient dans la dynamique par le biais du terme de Born, qui a été largement étudié dans le Chap. 3. Son traitement perturbatif conduit à la théorie ETDHF. Le Chap. 3 est consacré au développement d'une méthode précise pour mettre en oeuvre cette théorie. Une méthode numérique pour l'évolution des états et des nombres d'occupation a été dérivée, fondée sur la notion d'équation maîtresse. Cette méthode numérique est testée avec succès sur un problème simple de deux fermions en interaction confinés dans un double puits de potentiel. Je montre que la méthode peut décrire de manière appropriée l'évolution des observables à un corps, y compris les effets dissipatifs dans diverses gammes d'excitations internes du système. La méthode numérique reste assez coûteuse numériquement en raison de l'intégration temporelle apparaissant dans les équations du mouvement. Il est montré, dans le cas du modèle considéré, que les effets non-markoviens ne peuvent être négligés. Un traitement approprié des effets non-markoviens dans le terme de collision empêche en général d'utiliser l'approche numérique décrite au Chap. 3 dans des systèmes plus complexes à plusieurs corps en interaction. Une étape importante de la thèse est l'introduction d'un ersatz analytique pour capturer autant d'effets non-markoviens que possible tout en allégeant considérablement le coût numérique de la méthode. Un deuxième aspect important étudié dans la thèse, qui est également lié aux collisions dans le milieu, est la possibilité de traiter de manière cohérente le fait que les états des particules uniques acquièrent des durées de vie finies en raison de leurs interactions CHAPTER 0. RÉSUMÉ EN FRANÇAIS mutuelles. Je montre comment les durées de vie peuvent être estimées numériquement en fonction du temps en résolvant un ensemble d'équations séculaires. Cette méthode ne donne pas seulement accès à des propriétés physiques importantes, mais aide aussi à rendre la solution de la méthode ETDHF autonome sans l'inclusion ad-hoc d'un paramètre d'amortissement. Les différentes méthodes discutées dans le Chap. 3 sont capables de décrire la réorganisation des nombres d'occupation vers l'équilibre. La nouvelle hypothèse a fortement réduit l'effort numérique tout en n'affectant pas le pouvoir prédictif dans l'exemple illustratif. En outre, les résultats sont dans tous les cas bien meilleurs que ceux obtenus à l'aide de l'approximation du champ moyen, même pour des temps très longs. L'estimation de l'intégrale temporelle dans la méthode du champ moyen étendu est une des difficultés majeures de l'implémentation de cette approche aux systèmes en 3D et/ou avec plus de particules. L'approche numérique proposée ici offre une solution pratique pour éviter l'estimation explicite de l'intégrale, et, par conséquent, ouvre de nouvelles opportunités pour des applications plus réalistes.

L'utilisation d'équations maîtresses sur des occupations à une seule particule est le pivot de cette approche. Pour cette raison, j'ai réalisé une étude supplémentaire sur la façon dont elles pourraient émerger dans un problème à plusieurs corps. Certains aspects sont résumés dans l'App. B, en mettant l'accent sur les conditions de conservation de l'énergie et la diffusion dans un espace de phase à plusieurs corps.

Une théorie comme celle du champ moyen étendu se concentre sur les degrés de liberté à un corps et corrige l'évolution de la densité à un corps pour tenir compte de manière efficace des effets à deux corps. Dans la présente thèse, j'ai également étudié la possibilité de décrire les effets à deux corps liés aux fluctuations quantiques des observables à un corps. Comme mentionné ci-dessus, une méthode intuitive est de suivre dans le temps la densité à deux corps de manière explicite avec une équation du mouvement fondée sur la hiérarchie BBGKY tronquée. Cependant, deux difficultés majeures apparaissent : (i) la matrice de la densité à deux corps est elle-même une grande matrice dans les cas réalistes dont les équations du mouvement sont difficiles à résoudre, et (ii) Les incertitudes sur les troncations possibles compromettent fortement les résultats. Comme alternatives à cette stratégie, j'ai exploré des méthodes dynamiques centrées sur la notion d'espace des phases à partir du Chap. 4. Dans ce chapitre, la méthode dite du champ moyen stochastique (SMF) est introduite. Cette méthode consiste à décrire la dynamique des systèmes fermioniques en échantillonnant un ensemble de conditions initiales, se propageant à travers des évolutions de type champ moyen. L'un des principaux avantages de cette approche est sa simplicité, puisqu'elle ne nécessite que la résolution d'équations de type TDHF indépendantes les unes des autres.

Un deuxième avantage important de la méthode est qu'elle s'avère avoir un assez bon pouvoir de prédiction, en particulier dans le régime de couplage faible. Une illustration de cet aspect est faite au Chap. 4, où la méthode SMF est appliquée au modèle de Fermi-Hubbard à une dimension. Il est montré que l'évolution et les fluctuations à un corps sont plutôt bien reproduites. Une partie de ce succès est due au fait que cette approche correspond à une hiérarchie infinie d'équations de degrés de liberté à un corps qui s'avère assez similaire à la hiérarchie BBGKY. L'un des objectifs de la thèse était de voir si le pouvoir prédictif de cette approche pouvait être encore amélioré. Une analyse minutieuse de la hiérarchie déduite de SMF a montré que des différences importantes CHAPTER 0. RÉSUMÉ EN FRANÇAIS apparaissent dès le second ordre avec la BBGKY, p. ex., l'absence d'antisymétrisation qui conduit à l'absence de tout terme de type Born. Malgré cela, les applications de la méthode au modèle de Fermi-Hubbard dans un régime perturbatif ont montré que la dynamique du système est mieux décrite que dans le cadre du champ moyen, même en dehors du régime de couplage faible. En comparant les deux hiérarchies, j'ai proposé une stratégie pour améliorer la méthode SMF. Cette stratégie est présentée au Chap. 5, et consiste à corriger systématiquement la hiérarchie des moments en utilisant des termes inspirés de BBGKY. Cette approche améliorée, appelée approche hybride de l'espace de phase (HPS), a été construite en analysant de près la relation entre les objets semi-classiques et leur contrepartie entièrement quantique. Cela a conduit à définir de nouvelles quantités fluctuantes qui remplissent le rôle des matrices de densité à deux, trois, . . . , N corps pour chaque trajectoire. À partir de là, chaque événement aléatoire est propagé dans le temps en résolvant des équations de mouvement de type BBGKY tronquées à un ordre donné. En pratique, une troncation au second ordre a été effectuée. Dans cette approche, le mouvement à un corps est complété par l'évolution d'un opérateur à deux corps qui agit comme un terme correcteur des évolutions stochastiques à un corps. La méthode HPS a été appliquée au modèle de Fermi-Hubbard et, pour les couplages faibles, elle a été capable de suivre la dynamique exacte même à des temps longs et améliore donc la description par rapport à l'approche SMF originale.

La méthode HPS telle que proposée ici, bien que réussie, reste plutôt empirique. Son succès nous a conduit à explorer plus génériquement les reformulations de la mécanique quantique dans l'espace des phases, avec pour leitmotiv de trouver un cadre plus systématique pour une cartographie quantique-classique. Dans ce travail, présenté au Chap. 6, les efforts se sont concentrés sur les corrections à apporter aux techniques classiques d'espace de phase et à la notion de trajectoire en mécanique quantique. Nous nous sommes intéressés à la prise en compte de l'effet tunnel. Dans le but de trouver des approches simples à partir d'une image quasi-classique, nous avons d'abord introduit une probabilité de saut P pour qu'une trajectoire classique saute d'un côté d'une barrière de potentiel à l'autre. Cette probabilité a été donnée dans un premier temps par l'approximation WKB du coefficient de transmission. Cette méthode plutôt empirique a été appliquée avec un certain succès à un puits de potentiel gaussien, bien que les échelles de temps caractéristiques aient été un peu sous-estimées. Une étude plus systématique a été menée pour déterminer si une probabilité de saut pouvait être construite pour décrire au mieux la dynamique. Nous avons utilisé un test de χ 2 pour discriminer les distributions de probabilité. Notre conclusion est qu'une telle probabilité pourrait effectivement être construite, mais qu'elle manque malheureusement de fondement physique.

Enfin, nous avons systématiquement exploré comment un problème quantique dans l'espace des opérateurs pouvait être mis en correspondance avec l'espace classique et comment construire des corrections quantiques systématiques aux trajectoires classiques. L'imposition d'une correspondance non ambiguë entre les deux espaces définit les propriétés de la distribution semi-classique utilisée dans l'espace des phases. La distribution de Wigner, conduisant à une connexion naturelle avec les équations classiques du mouvement, a été utilisée dans cette étude. Cette distribution présente l'inconvénient d'être négative dans certaines régions de l'espace des phases en raison du principe d'incertitude d'Heisenberg, ce qui empêche la construction rigoureuse de CHAPTER 0. RÉSUMÉ EN FRANÇAIS trajectoires quantiques. Une méthode consistant à lisser la distribution de Wigner avec des fonctions gaussiennes a été testée de manière à ce qu'elle soit toujours positive. Les équations du mouvement déduites de cette approche sont telles que les corrections quantiques à la mécanique classique correspondent à des interactions entre les trajectoires. Par conséquent, les trajectoires ne sont plus indépendantes. On peut montrer qu'elles échangent en fait de l'énergie, ce qui permet à certaines d'entre elles de passer de l'autre côté d'une barrière de potentiel pour le problème du tunnel. Un test sur un double puits de potentiel montre que malgré les raffinements de la théorie, les résultats ne sont pas particulièrement améliorés par rapport à la méthode de force brute de l'espace de phase avec des trajectoires indépendantes. En plus du travail sur la distribution de Wigner, j'aimerais mentionner qu'une étude parallèle sur la mécanique de Bohm a été réalisée dans l'App. C.2, où le mapping est effectué de l'espace des opérateurs à l'espace des configurations. Cela a conduit à des équations de mouvement de type Newton avec un nouveau potentiel Q codant les effets quantiques. Ce potentiel dépend de la matrice de densité, c'est-à-dire d'un terme d'interaction entre les trajectoires bohmiennes. Bien que celle-ci aient été utilisées avec succès pour décrire l'effet tunnel quantique dans le cas d'un puits gaussien, la théorie reste numériquement difficile à mettre en oeuvre dans la pratique.

Deux objectifs de l'étude des problèmes généraux de la mécanique quantique dans l'espace des phases étaient (i) de comprendre la notion de trajectoires quantiques et (ii) d'obtenir des indications pour de futures améliorations systématiques des approches SMF ou HPS. L'étude faite au Chap. 6 tend à indiquer que les méthodes d'espace des phases peuvent être améliorées en relâchant les hypothèses de trajectoires classiques indépendantes. Les résultats obtenus dans ce chapitre montrent, malheureusement, que cette méthodologie pourrait être difficile en pratique. Les études numériques sont loin d'être convaincantes, et peuvent devenir complexes à résoudre numériquement. Résoudre un ensemble de trajectoires couplées, chacune d'entre elles étant décrite par une matrice de densité à un corps, est extrêmement complexe et pourrait être plus compliquée que de résoudre le problème quantique dans un espace de Hilbert tronqué. De ce point de vue plutôt pessimiste, nous concluons qu'une bonne voie pour améliorer la description des systèmes quantiques dynamiques pourrait simplement consister à revenir à des méthodes entièrement quantiques, telles que la méthode des coordonnées génératrices dépendant du temps (TDGCM), dans laquelle un ensemble d'états déterminants de Slater évolue dans le temps.
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Introduction

En essayant continuellement on finit par réussir. Donc : plus ça rate, plus on a de chance que ça marche.

Jacques Rouxel, Les Shadoks

The accurate description of the evolution of an ensemble of interacting fermions is a fundamental problem of physics and chemistry. Examples of such systems are atomic nuclei or electronic systems. This problem becomes extremely challenging to treat exactly when the number of particles increases and exceeds a few tens. One of the main difficulties is the number of degrees of freedom (DOFs) to be followed in time that scales exponentially with the number of particles. The Schrödinger equation formally contains everything needed to describe any kind of microscopic behavior in the non-relativistic limit. However, the many-body wave function |Ψ⟩ turns out to be a very complicated object, depending on a large number of internal degrees of freedom of the system. Over the past decades, many approximate theories with various levels of sophistication have been developed to handle this kind of objects [START_REF] Pines | The Theory of Quantum Liquids: Normal Fermi Liquids[END_REF][START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF][START_REF] Khan | Continuum quasiparticle random phase approximation and the time-dependent Hartree-Fock-Bogoliubov approach[END_REF][6][START_REF] Vretenar | Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure[END_REF][START_REF] Lipparini | Modern Many-Particle Physics -Atomic Gases[END_REF][START_REF] Fetter | Quantum Theory of Many-Particle Systems[END_REF][START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF][START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF][START_REF] Verriere | The time-dependent generator coordinate method in nuclear physics[END_REF][START_REF] Bender | Future of nuclear fission theory[END_REF]. This allowed the treatment of a broad range of system sizes and, sometimes, with different internal excitations with varying success. The problem becomes even harder when the dynamics of fermionic systems is considered, as new problems arise. A typical strategy to reduce the complexity and avoid the exponential scaling "wall" is to focus on specific degrees of freedom (DOFs) that are expected to contain the most relevant part of the information of the system. Because of this importance, and their simplicity compared to other DOFs, the one-body DOFs are often, if not always, retained as a starting point for the treatment of many-body systems. This leads to the so-called independent particle or quasi-particle picture that, due to its practical simplicity, has become a very powerful and versatile tool. This is the essence of the time-dependent Hartree-Fock (TDHF) theory, and to some extent to the time-dependent density function theory (TDDFT) approach, although the latter includes more correlations than TDHF. We will discuss TDHF, and some of its extensions, in more details in Chap. 2.

Unfortunately, many aspects of a system evolution are poorly described when fully isolating one-body DOFs. This is the case for instance of quantum fluctuations that are linked to two-body DOFs, dissipative effects and/or the path to thermalization in CHAPTER 1. INTRODUCTION Surroundings: two-,. . . , many-body DOFs Relevant part: one-body DOFs Figure 1.1: Schematic illustration of the interplay (solid arrows) between the relevant DOFs (i.e. one-body DOFs), that are standardly isolated from two-, three-, . . . , manybody DOFs. This decomposition between relevant and less important parts of the system can be seen from an open quantum system point of view as a selection of a onebody subsystem in interaction with its many-body environment.

many-body systems. The treatment of such processes is a great challenge of many-body transport theories. Including these effects requires treating at least to some extent the coupling of the one-body DOFs and the rest of the DOFs that were neglected in the first place. The problem becomes thus similar to an open quantum system, where the complex DOFs become an environment to which the system formed by the one-body DOFs is coupled (see Fig. 1.1). The proper treatment of this problem, still remains today, extremely challenging in many-body systems. There are several reasons for this. The first one is that both the system of interest and the environment stem from the very same system of particles. Second, the different aspects of the coupling should a priori be connected to the two-body interactions that is not always perfectly known as it is the case in nuclear physics. Last, the coupling itself can be rather complicated with the presence of non-negligible non-markovian effects.

This complexity is at the origin of a rich fauna of phenomena observed in experiments. This includes, in a nuclear physics context, both structure effects and dynamical effects. Many aspects of nuclear physics are affected by dissipation or quantum fluctuations. To quote some of them, I mention: giant resonances, superfluidity, spallation, spontaneous nuclear fission, fusion, nucleons exchange . . . The goal of this thesis is to provide accurate methods for the description of the dynamics of correlated fermions dynamics, with the guiding principle to keep the methods both simple and numerically tractable. The shortcomings of mean-field theory have driven the construction of a large set of approaches. Starting from the mean-field picture, two main families of dynamical techniques were developed: the first branch is based on deterministic methods, i.e., refined techniques to construct deterministic equations of motion to best approximate the many-body Schrödinger equation. Some of them are based on the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Yvon | La théorie statistique des fluides et l'équation d'état. Théories mécaniques (hydrodynamique-acoustique)[END_REF][START_REF] Kirkwood | The Statistical Mechanical Theory of Transport Processes I. General Theory[END_REF][START_REF] Bogolyubov | Kinetic equations in quantum mechanics[END_REF][START_REF] Born | A general kinetic theory of liquids; the molecular distribution functions[END_REF], which offers natural extensions of the mean-field picture. In the present thesis, I have explored one of the method that has been historically proposed to treat dissipative and equilibrating effects, namely the extended TDHF (ETDHF) approach where in-medium collisions between particles are approximately treated while still considering a one-body problem.

CHAPTER 1. INTRODUCTION

The implementation of ETDHF remains, even today, extremely difficult despite the fact that it follows one-body DOFs only. Without a proper way to treat it numerically, it is also worth mentioning that its predictive power can be hardly tested. Part of the present thesis was devoted to the search of a practical scheme for the implementation of ETDHF including the non-markovian effects. The ETDHF approach, and its practical implementation, are extensively discussed in Chap. 3.

The second branch of time-dependent methods, sometimes used as an alternative to deterministic methods, basically consists in including beyond mean-field effects by introducing random fluctuations in the dynamics. The second part of the thesis is devoted to dynamical methods based on the introduction of random fluctuations on top of the mean-field. Several such approaches are discussed starting from Chap. [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF]. TDHF provides approximate solutions of the many-body problem, starting from a welldefined initial state and leading to a unique final state. This approach is appropriate to describe mean values of one-body observables, but generally misses fluctuations in collective space. To treat the quantum zero point motion in collective space, one can for instance account for configuration mixing through the so-called time-dependent generator coordinate method (TDGCM) [START_REF] Verriere | The time-dependent generator coordinate method in nuclear physics[END_REF][START_REF] Griffin | Collective Motions in Nuclei by the Method of Generator Coordinates[END_REF][START_REF] Wong | The generator-coordinate theory as a flexible formulation of the many-body Schrödinger equation[END_REF][START_REF] Reinhard | The generator coordinate method and quantised collective motion in nuclear systems[END_REF][START_REF] Verrière | Description de la dynamique de la fission dans le formalisme de la méthode de la coordonnée génératrice dépendante du temps[END_REF]. Such an approach that keeps the full quantum coherence in collective space is, however, rather involved numerically, which imposes a somewhat restrictive use. It has been successfully used for the description of important phenomena, e.g., fission dynamics [START_REF] Schunck | Theory of nuclear fission[END_REF].

In this approach, one possibility is to add noise regularly during the evolution. This is, for instance, the technique used in stochastic TDHF (STDHF) to include beyond mean-field effects [START_REF] Reinhard | Stochastic TDHF and large fluctuations[END_REF][START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Lacombe | A collisional extension of time-dependent Hartree-Fock[END_REF][START_REF] Lacombe | Stochastic TDHF in an exactly solvable model[END_REF][START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Vincendon | Introduction de la relaxation dans la théorie de la fonctionnelle de la densité dépendant du temps[END_REF]. This is done by considering random jumps between Slater determinants. These jumps, with probabilities given by the Fermi Golden rule, are assumed to be of two-particle two-hole (2p2h) nature, and describe dissipation in manybody excited systems induced by two-body collisions. It therefore is closely related to ETDHF. Several other methods have been developed, often based on fluctuations added at the one particle level (i.e., fluctuations in the one-body density matrix evolution) with some success. Another way of incorporating fluctuations into the dynamics is to introduce them at initial time only and propagate the resulting trajectories. This allows approximately treating both quantum zero-point fluctuations and possible initial thermal statistical fluctuations. A stochastic scheme, called stochastic mean-field (SMF) theory, has been proposed with this idea in mind. The SMF approach starts from the hypothesis that a quantum dynamical problem can be sometimes replaced by a superposition of classical evolutions with properly chosen initial conditions. Such an approach enters into the class of phase-space methods. This technique is extensively studied in the thesis, and applied with some success to a Fermi-Hubbard model in Chap. 4. A second major goal of my thesis was to analyze if and how such phase-space approach applied to many-body fermionic problems can be improved. An extension of the method is proposed in Chap. 5. The success of these approaches convinced us to more systematically investigate phase-space dynamics, and more specifically how a quantum problem can be replaced by a set of classical-like trajectories. Some aspects and methods of this general quantum-classical matching using phase-space methods are critically analyzed in Chap. 6 (see App. C.2). 

CHAPTER 2. TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS

Introduction

In the present chapter, I start from the Liouville equation on the many-body density and derive from it the standard BBGKY hierarchy on the k-body density matrices [START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Kirkwood | The Statistical Mechanical Theory of Transport Processes I. General Theory[END_REF][START_REF] Born | A general kinetic theory of liquids; the molecular distribution functions[END_REF][START_REF] Reinhard | Correlations in nuclei and nuclear dynamics[END_REF][START_REF] Tohyama | Relation between Density-Matrix Theory and Pairing Theory[END_REF]. This method is a natural way to introduce an ensemble of approximations, where the leading order is the so-called mean-field theory, i.e. the time-dependent Hartree-Fock (TDHF) method. The BBGKY method can naturally give a focus on degrees of freedom up to given orders (one-body, two-body . . . ) while neglecting higher order correlations. Many-body methods based on truncation schemes of the BBGKY hierarchy have been extensively studied and applied in the literature [START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Bonche | One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation[END_REF][START_REF] Negele | Nuclear Dynamics: The Time-Dependent Mean-Field Approximation and Beyond[END_REF][START_REF] Flocard | Three-dimensional time-dependent Hartree-Fock calculations: Application to O16 + O16 collisions[END_REF][START_REF] Krieger | Time-dependent Hartree-Fock calculations of fusion cross sections for the reactions O16 + O16 and Ca40 + Ca40[END_REF][START_REF] Balian | Fluctuations in a time-dependent mean-field approach[END_REF][START_REF] Cusson | Density as a constraint and the separation of internal excitation energy in TDHF[END_REF][START_REF] Balian | Time-dependent variational principle for the expectation value of an observable: Mean-field applications[END_REF][START_REF] Blaizot | Quantum theory of finite systems[END_REF][START_REF] Balian | Static and dynamic variational principles for expectation values of observables[END_REF][START_REF] Umar | Heavy-ion interaction potential deduced from density-constrained time-dependent Hartree-Fock calculation[END_REF][START_REF] Simenel | Microscopic approaches for nuclear Many-Body dynamics: applications to nuclear reactions[END_REF][START_REF] Simenel | Time-dependent hartree-fock description of heavy ions fusion[END_REF][START_REF] Sekizawa | Enhanced nucleon transfer in tip collisions of U 238 + Sn 124[END_REF][START_REF] Sekizawa | TDHF theory and its extensions for the multinucleon transfer reaction: A mini review[END_REF]. One objective of the present thesis is to see how beyond mean-field correlations can be approximately treated, at least to some extent. I give here an overview of the type of theories that should a priori incorporate some beyond mean-field effects that are supposed to be important in nuclear systems. First is discussed how more general equations of motion can be obtained using the time-dependent-k-reduced density matrix approach (TD-kRDM), with k the order of the truncation scheme. [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Schmitt | Truncation of time-dependent many-body theories[END_REF][START_REF] Gherega | Dynamics of correlations in a solvable model[END_REF][START_REF] Peter | Microscopic analysis of two-body correlations in light nuclei[END_REF][START_REF] Mazziotti | Complete reconstruction of reduced density matrices[END_REF][START_REF] Tohyama | Density-matrix formalism with three-body groundstate correlations[END_REF][START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF][START_REF] Tohyama | Truncation scheme of time-dependent densitymatrix approach[END_REF][START_REF] Lackner | Propagating two-particle reduced density matrices without wave functions[END_REF][START_REF] Lackner | Time-dependent two-particle reduced density matrix theory: application to multi-electron atoms and molecules in strong laser pulses[END_REF][START_REF] Lackner | High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory[END_REF], also called Time-Dependent Density Matrix approach (TDDM) in the nuclear context, where BBGKY is truncated at a given order. Several theories are then discussed and derived from the TD-1RDM equation of motion. We show for instance how the TDHF Bogolyubov (TDHFB) approach (see Sec. 2.4.2), suitable to treat superfluidity, is obtained. Another important source of departure from the mean-field picture are the direct in-medium two-body collisions, described in the Extended TDHF (ETDHF) theory (see Sec. 2.4.3).

Density matrix formulation of many particles systems and BBGKY hierarchy

In this section, we consider a many-body state |Ψ⟩, from which the many-body density D = |Ψ⟩ ⟨Ψ| is constructed. Quantum mechanics may be entirely rewritten in terms of the density D [START_REF] Neumann | Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik[END_REF][START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]. The formulation in terms of D is more general than that with |Ψ⟩ [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Neumann | Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik[END_REF][START_REF] Breuer | The Theory of Open Quantum Systems[END_REF] since it allows considering systems that are not described by a pure state.

All information about a given many-body system is contained in the total density matrix D. The dynamics of a quantum system is then given by the Liouville-von Neumann equation [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Neumann | Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik[END_REF][START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]:

iℏ∂ t D = Ĥ, D , (2.1) 
with Ĥ the many-body Hamiltonian of the system. We derive here the standard steps leading to the BBGKY hierarchy. We assume that the Hamiltonian writes:

Ĥ = t + v12 = i t i + i<j v ij , (2.2) 
where i labels single particles, while T and V 12 are the kinetic and two-body interaction terms, respectively. In the following, it will be useful to write the Hamiltonian in second CHAPTER 2. TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS quantization form:

Ĥ = ij t ij â † i âj + 1 4 ijkl ṽijlk â † i â † j âk âl , (2.3) 
where â † i , âi are a set of creation/annihilation operators associated to a single-particle basis |i⟩. v 12 is the two-body interaction with matrix elements v ijlk = ⟨ij| v 12 |kl⟩. ṽ12 denotes the antisymmetrized interaction with ṽijlk = ⟨ij| v 12 |lk⟩ -⟨ij| v 12 |kl⟩. The t ij terms correspond to the kinetic part of the Hamiltonian with t ij = ⟨i| t |j⟩.

The equation of motion (2.1) is completely equivalent to the Schrödinger equation for a pure state. The accurate description of the evolution of interacting fermions is an extremely challenging problem when the number of particles increases. One of the difficulties is the number of degrees of freedom (DOFs) to be followed in time, that scales exponentially with the number of particles. It is often convenient to consider simpler quantities, i.e., the reduced density matrices D 1...k , k < N , and to assume that some DOFs are more relevant than others. Matrix elements of the reduced density matrices are defined by:

⟨1 ′ , . . . , k ′ | D 1...k |1, . . . , k⟩ = â † 1 . . . â † k âk ′ . . . â1 ′ = Tr Dâ † 1 . . . â † k âk ′ . . . â1 ′ . (2.4)
Each reduced density contains information on a reduced set of degrees of freedom. For instance, D 1 , hereafter denoted R 1 , contains information on one-body DOFs, while D 12 contains information on the one-body and two-body degrees of freedom, and so on, until the complete N -body density that contains all information on the system [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Reinhard | Correlations in nuclei and nuclear dynamics[END_REF][START_REF] Neumann | Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik[END_REF]. These sets of densities are linked to each other by the set of relations:

D 1...k = 1 N -k Tr k+1 D 1...(k+1) = N ! (N -k)! Tr (k+1)...N D, (2.5) 
where Tr k+1 [•] denotes the partial trace of the k + 1 th particle, and Tr (k+1)...N [•] the partial trace over particles of label i ≥ k + 1. Starting from Eq. (2.1), and performing successive partial traces, it can be shown that the reduced density matrices follow an ensemble of coupled equations of motion known as the BBGKY hierarchy [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Kirkwood | The Statistical Mechanical Theory of Transport Processes I. General Theory[END_REF][START_REF] Born | A general kinetic theory of liquids; the molecular distribution functions[END_REF]. The equations of motion take the form [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Reinhard | Correlations in nuclei and nuclear dynamics[END_REF]:

iℏ Ḋ1...k = k i=1 t i + 1 2 k j<i ṽij , D 1...k + 1 2 k i=1 Tr k+1 ṽi(k+1) , D 1...(k+1) . (2.6)
Note that the equations always take the form of k-body DOFs dynamical effects, plus additional effects caused by the (k + 1)-body DOFs. Such coupled equations are extremely complicated to solve, and most applications focus on the first few equations.

In the present work, I will essentially try to treat the action of 2-body DOFs on 1-body DOFs. Here, we discuss more specifically the first two equations. We use below the specific notations R 1 , D 12 and T 123 for the one-, two-, and three-body density matrices, respectively.

Explicit form of the first and second equations EXTENSIONS

The two first equations of motion of the BBGKY hierarchy write explicitly as (see App. A): both refers to the one-body density but act on the first and second particle, respectively, e.g.,

i ∂R 1 ∂t = [t 1 , R
⟨ij| R 1 R 2 |kl⟩ = ⟨i| R 1 |k⟩ ⟨j| R 2 |l⟩ . (2.9) 
The BBGKY hierarchy can be expressed in the so-called cluster expansion [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF] in the form of an antisymmetric product of all lower body densities R 

D 12 = R 1 R 2 -R 2 R 1 + C 12 = R 1 R 2 (1 -P 12 ) + C 12 , (2.10) 
T 123 = R 1 C 23 (1 -P 12 -P 13 ) + R 2 C 13 (1 -P 21 -P 23 ) + R 3 C 12 (1 -P 31 -P 32 ) +R 1 R 2 R 3 (1 -P 13 ) (1 -P 12 -P 23 ) + C 123 . (2.11)
Physically, the presence of C 12 in the last equation means that a pair of particles will not always be expressible as a Slater determinant: the matrix C 12 measures the departure from the independent particles picture. With this definition, Eqs. (2.7) and (2.8) can then be rewritten as:

iℏ Ṙ1 = [h 1 [R] , R 1 ] + 1 2 Tr 2 [ṽ 12 , C 12 ] , (2.12 
)

iℏ Ċ12 = [h 1 [R] + h 2 [R] , C 12 ] + 1 2 {(1 -R 1 )(1 -R 2 )ṽ 12 R 1 R 2 -R 1 R 2 ṽ12 (1 -R 1 )(1 -R 2 )} + 1 2 {(1 -R 1 -R 2 )ṽ 12 C 12 -C 12 ṽ12 (1 -R 1 -R 2 )} +Tr 3 [ṽ 13 , (1 -P 13 ) R 1 C 23 (1 -P 12 )] +Tr 3 [ṽ 23 , (1 -P 23 ) R 1 C 23 (1 -P 12 )] + 1 2 Tr 3 [ṽ 13 + ṽ23 , C 123 ] . (2.

13)

The quantity

h 1 [R] = t 1 + 1 2 Tr 2 [R 1 ṽ12 ] (2.14) EXTENSIONS
is the so-called mean-field Hamiltonian. In Eq. (2.13), C 123 is the three-body correlation operator that includes effects of higher order correlations. C 123 also follows an equation that is not shown here. Most of the theories discussed in this section will be based on the first two equations (2.12) and (2.13). The latter contains five terms:

• The first term of Eq. (2.13) corresponds to the mean-field propagation of C 12 itself,

• The second term is the only term that induces a departure from an independent particle picture, i.e., when C 12 (t) = 0. If the initial state is a Slater determinant, this term leads to 2p2h excitations with respect to the initial state [START_REF] Lacroix | Nuclear collective vibrations in extended mean-field theory[END_REF]. It actually acts as a perturbative term on top of the mean-field. This term is the one accounting for in medium two-body collisions, and is generally referred to as the Born term (see Sec. 2.4.3),

• The third term, is harder to interpret. As we will see, it can be used to rederive the TDHFB theory [START_REF] Tohyama | Relation between Density-Matrix Theory and Pairing Theory[END_REF] and includes the coupling of the one-body density R to the anomalous density κ (see Sec. 2.4.2). It therefore can include the highly non-perturbative effects associated with superfluidity in Fermi systems,

• The last two terms have no simple interpretation, but as we will see in Sec. 2.4.1, they have to be treated appropriately when trying to approximate C 123 and get a closed set of equations for R 1 and C 12 .

The properties of the two equations on R 1 and D 12 will be discussed in more details in the following sections. Solving both Eqs. (2.12) and (2.13) can prove to be quite hard because of, e.g., the system's size or numerical difficulties. However, since each equation of motion in the BBGKY hierarchy encodes specific physical effects, it can be truncated by keeping the assumed relevant degrees of freedom of the system only. This leads to a varied ensemble of approximations of many-body dynamics. Some of them that are relevant for the work done in the present thesis will be discussed below.

Mean-field theory

The simplest approximation that can be made using the BBGKY hierarchy is the meanfield approximation, leading to the TDHF method by neglecting the two-,. . . , many-body correlations at all times C 12 (t), . . . , C 1...N (t) ≈ 0 [START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Bonche | One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation[END_REF][START_REF] Krieger | Time-dependent Hartree-Fock calculations of fusion cross sections for the reactions O16 + O16 and Ca40 + Ca40[END_REF][START_REF] Simenel | Microscopic approaches for nuclear Many-Body dynamics: applications to nuclear reactions[END_REF][START_REF] Simenel | Time-dependent hartree-fock description of heavy ions fusion[END_REF][START_REF] Sekizawa | TDHF theory and its extensions for the multinucleon transfer reaction: A mini review[END_REF][START_REF] Lacroix | Nuclear collective vibrations in extended mean-field theory[END_REF][START_REF] Umar | Three-dimensional unrestricted time-dependent Hartree-Fock fusion calculations using the full Skyrme interaction[END_REF]. This equivalently means that all information on the system is contained in the one-body density. For instance, all k-body densities writes as an antisymmetric product of the one-body density. For D 12 , we have:

D 12 = R 1 R 2 (1 -P 12 ).
(2.15)

The TDHF equation is then given by (the index on R is dropped in this section for simplicity): 

iℏ Ṙ = [h [R] , R] . ( 2 
iℏ ∂ ∂t |ϕ i (t)⟩ = h [R] |ϕ i ⟩ , (2.17) 
with fixed occupation numbers. The case n i = 0, 1 is the specific case where R is associated to a pure Slater determinant. Using the single-particle states, we see that we end up with the time-dependent self-consistent scheme:

|ϕ i (t)⟩ → R i (t) → h [R i (t)] → |ϕ i (t + ∆t)⟩ ,
and the system can be regarded as the evolution of a set of quantum single-particles evolving in a common self-consistent mean-field. The mean-field theory has been widely used in the many-body context, and has experienced important successes [START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF][START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF][START_REF] Bonche | One-dimensional nuclear dynamics in the time-dependent Hartree-Fock approximation[END_REF][START_REF] Umar | Heavy-ion interaction potential deduced from density-constrained time-dependent Hartree-Fock calculation[END_REF][START_REF] Simenel | Microscopic approaches for nuclear Many-Body dynamics: applications to nuclear reactions[END_REF][START_REF] Umar | Three-dimensional unrestricted time-dependent Hartree-Fock fusion calculations using the full Skyrme interaction[END_REF][START_REF] Klüpfel | Self-consistent mean-field models for nuclear structure and dynamics[END_REF][START_REF] Lacroix | Review of mean-field theory[END_REF]. However, the mean-field validity holds as long as the two-body correlations are weak vis-à-vis the one-body effects. In nuclear systems, the two-body correlations build up with time and end up becoming non-negligible. The TDHF equation therefore cannot be accurate for long times, as its predictions depart rather rapidly from the real dynamics, even when the initial state is a Slater determinant [START_REF] Lichtner | Evolution of a quantum system: Lifetime of a determinant[END_REF]. This can easily be seen, as the exact wavefunction can be decomposed using the eigenfunctions of the system, which are usually complex combinations of its degrees of freedom.

In the following, when we will specifically discuss the extended TDHF, we will assume that the beyond mean-field effects could be described as a weak perturbation. Furthermore, the TDHF equation being reversible, it cannot describe all dissipative effects taking form in many-body dynamics. Indeed, in a Slater determinant picture, the occupation numbers are constant. This entails that the entropy of the system is constant, and that the mean-field theory cannot take into account thermalization effects. Including such effects is one of the main objective of the so-called beyond mean-field approaches.

We finally would like to mention that the nuclear many-body problem is highly non-perturbative. Starting from a bare nucleon interaction and using TDHF would lead to very bad results, as shown at the Hartree-Fock level in ab initio theory. Still, equations similar to Eq. (2.16) are used by replacing the Hartree-Fock mean-field by a phenomenological potential leading to a density functional theory (DFT) description [START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF][START_REF] Bender | Future of nuclear fission theory[END_REF][START_REF] Tohyama | Relation between Density-Matrix Theory and Pairing Theory[END_REF][START_REF] Flocard | Three-dimensional time-dependent Hartree-Fock calculations: Application to O16 + O16 collisions[END_REF][START_REF] Krieger | Time-dependent Hartree-Fock calculations of fusion cross sections for the reactions O16 + O16 and Ca40 + Ca40[END_REF][START_REF] Klüpfel | Self-consistent mean-field models for nuclear structure and dynamics[END_REF][START_REF] Schunck | Microscopic theory of nuclear fission: A review[END_REF][START_REF] Schmidt | Review on the progress in nuclear fission -Experimental methods and theoretical descriptions[END_REF]. However, the very notion of going beyond mean-field is ill-defined in this context, since effects out of the reach of the usual independent particles picture are already included in the DFT theory. Here, we will only consider cases where we start from a true Hamiltonian.

Beyond mean-field theories

The mean-field theory cannot take into account several important dynamical correlations. A natural way to tackle this problem is to depart from the simple single-particle picture, i.e., to add new correlations beyond the mean-field. The BBGKY hierarchy can fortunately be used as the foundation for several new theories, which will be reviewed below. Here, it is assumed that the system is properly described at the mean-field level at initial time. The mean-field approach (dashed line) provides an approximate description of the exact evolution projected on the relevant one-body DOFs. As time increases, due to accumulated effects of correlations, the mean-field evolution deviates more and more from the projected exact evolution (thin solid line). One motivation to go beyond mean-field is to try to correct from this deviation (dot-dashed line). This can be done either by adding a correction term to the one-body evolution (ETDHF) or enlarging the space of relevant DOFs (TDHFB or TD-2RDM).

Time-dependent 2reduced-density-matrix

We have seen that TDHF can be obtained by assuming that D 12 is a function of R 1 . A natural extension of this is to try to truncate the first two equations of the BBGKY hierarchy by assuming that the three-body density or higher densities are functions only of R 1 and D 12 . A possible choice for this is to take C 123 (t) = 0 at all times. This amounts to write [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF] (see Eqs. (2.10) and (2.11)): 

T 123 = R 1 D 23 (1 -P 12 -P 13 ) + R 2 D 13 (1 -P 21 -P 23 ) + R 3 D 12 (1 -P 31 -P 32 ) -2R 1 R 2 R 3 (
iℏ Ḋ12 = [h[R 1 ] + h[R 2 ], D 12 ] + 1 2 (1 -R 1 -R 2 )ṽ 12 D 12 - 1 2 D 12 ṽ12 (1 -R 1 -R 2 ) -Tr 3 [ṽ 13 + ṽ23 , R 1 R 2 R 3 (1 -P 12 ) (1 -P 13 -P 23 )] + 1 2 Tr 3 [(ṽ 13 + ṽ23 ), R 2 D 13 (1 -P 21 -P 23 )] + 1 2 Tr 3 [(ṽ 13 + ṽ23 ), R 1 D 23 (1 -P 12 -P 13 )] . (2.20) 
This strategy can possibly be extended step-by-step by propagating higher order correlations matrices. However, it remains impractical due to the increase of the matrix size to consider. A difficulty is that the truncation scheme is not unique and often leads to uncontrolled effects on the numerical implementation [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]. Re-expressing the two-body density as a function of R 1 and C 12 allows recovering it:

iℏ Ṙ1 = [h [R 1 ] , R 1 ] + 1 2 Tr 2 [ṽ 12 , C 12 ] , (2.21 
)

iℏ Ċ12 = [h 1 [R] + h 2 [R] , C 12 ] + 1 2 {(1 -R 1 )(1 -R 2 )ṽ 12 R 1 R 2 -R 1 R 2 ṽ12 (1 -R 1 )(1 -R 2 )} + 1 2 {(1 -R 1 -R 2 )ṽ 12 C 12 -C 12 ṽ12 (1 -R 1 -R 2 )} +Tr 3 [ṽ 13 , (1 -P 13 ) R 1 C 23 (1 -P 12 )] +Tr 3 [ṽ 23 , (1 -P 23 ) R 1 C 23 (1 -P 12 )] . (2.22)
Both formulations a priori contain the same physics, e.g., two-body collisions, short range particle-hole (ph) interactions. . . Solving either of the two systems of equations of motion presented above is usually much more difficult than solving the TDHF equation, since it requires treating much larger matrices. Besides the numerical effort, one of the fundamental difficulties is that one or several symmetries and conservation laws might be broken when closing the equations of motion. The absence of a clear truncation scheme strongly jeopardizes the results in practice [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]. We illustrate this important aspect here since it is one of the motivations of the thesis to provide efficient methods for many-body dynamics. Among the difficulties, we mention first that a direct truncation of the BBGKY hierarchy can lead to the breaking of hierarchical compatibility:

Tr 3 [T 123 (t > t 0 )] ̸ = (N -2)D 12 (t > t 0 ), (2.23) Tr 2 [D 12 (t > t 0 )] ̸ = (N -1)R 1 (t > t 0 ), (2.24) 
where N is the number of particles. Some challenges in truncating the BBGKY hierarchy have been summarized in [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF], and illustrated by studying the effects of the truncation on the evolution of a 1D Fermi-Hubbard model. This model describes electrons hopping on a doubly-degenerated lattice and repulsing each other through a local Coulomb CHAPTER 2. TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS interaction when two electrons are on the same site. The Hamiltonian of this model is given by:

Ĥ = J i,σ â † i+1,σ âi,σ + â † i,σ âi+1,σ + U i â † i↑ â † i↓ âi↑ âi↓ . (2.25)
This model will serve as a benchmark for methods studied and developed in Chap. [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF], where its properties will be discussed in more details. In Ref. [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF], different approximation schemes for T 123 are discussed, leading to closed equations of motion on the oneand two-body density matrices. The following cases were considered:

• Three-body collision-integral-free (3b-CIF) approximation. It is the simplest possible approximation, where T 123 (t) = 0 at all times (see Eq. (2.8)).

• Three-body non-interacting approximation (3b-NIA). This approximation is obtained by considering that T 123 is a functional of R 1 only. It then takes the form: Comparisons of the exact solution obtained for the Hubbard model with N = 4 particles are shown in Fig. 2.2. All approximations, including TDHF, yield satisfactory results for short times but then deviate from the exact dynamics. Still, beyond meanfield approximations show considerable improvement with respect to TDHF, since they capture some dissipative effects at intermediate times (t ≈ 40) and a revival of the oscillations that are beyond the scope of mean-field theory. However, the different approximations presented above do not yield equivalent results for long times. For instance, the 3b-CIF and 3b-NIA approximations are more accurate for longer times than the WC approximation, and yield somewhat correct amplitudes at long times (t ≥ 60), contrary to the latter. They however display a strong dephasing with the exact result, while the WC approximation does not. This shows that, counterintuitively, incorporating more and more terms does not necessarily yield a better description of system properties, and that it can have unpredictable effects on the dynamics, even for one-body observables.

T 123 = R 1 R 2 R 3 (
Furthermore, truncation schemes are oftentimes the cause of violent unphysical behavior, such as occupation numbers that are not between zero and one [START_REF] Schmitt | Truncation of time-dependent many-body theories[END_REF][START_REF] Gherega | Dynamics of correlations in a solvable model[END_REF][START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]. From that point of view, Eqs. (2.20) and (2.22), although similar, are not equivalent. Approaches consisting in closing the two-body density matrix equation of motion and propagate it alone have been proposed to solve these deficiencies in the TDDM context [START_REF] Lackner | Propagating two-particle reduced density matrices without wave functions[END_REF][START_REF] Lackner | Time-dependent two-particle reduced density matrix theory: application to multi-electron atoms and molecules in strong laser pulses[END_REF][START_REF] Lackner | High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory[END_REF]. It has led to the development of purification techniques to avoid singularities and respect conservation laws. These approaches seem quite promising, but also rather involved so far.

For these reasons, treatment of two-body correlations that consists in including one term at a time, such as TDHF Bogolyubov theory or ETDHF, are sometimes preferred. These approaches will be presented below. 

TDHF Bogolyubov from BBGKY

The TDHF theory is able to catch some effects of the particle-hole interaction. This comes from the dependence of the mean-field h [R] on the two-body interaction. It is not able, however, to tackle long range particle-particle effects [START_REF] Ring | The Nuclear Many-Body Problem[END_REF]. These interactions are the origin of superfluidity in quantum systems [START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Bardeen | Theory of superconductivity[END_REF][START_REF] Bogoljubov | On a new method in the theory of superconductivity[END_REF], and are essential to the global description of the nuclear properties or more generally of superconducting systems. Many nuclear phenomena are heavily influenced by pairing effects, e.g., shell structure, deformation, fission, fusion, transfer reactions. . . For these reasons, it has been extensively investigated in the literature [START_REF] Klüpfel | Self-consistent mean-field models for nuclear structure and dynamics[END_REF][START_REF] Avez | Pairing vibrations study with the timedependent Hartree-Fock-Bogoliubov theory[END_REF][START_REF] Stetcu | Isovector giant dipole resonance from the 3D time-dependent density functional theory for superfluid nuclei[END_REF][START_REF] Scamps | Pairing dynamics in particle transport[END_REF].

In the TDHF framework, the state is approximated by a Slater determinant, i.e., products of independent particles states, inducing C 12 (t) = 0 at all time. Let us restart from Eq. (2.13) and keep only the mean-field propagation and the third term. We further assume that C 12 takes a separable form such that: 

⟨ij| C 12 |kl⟩ = κ ij κ * kl . ( 2 
     iℏ Ṙ = [h [R] , R] + κ∆ * -κ * ∆, iℏ κ = h [R] κ + κh * [R] -R∆ -∆R * + ∆, (2.28a) 
(2.28b)

where ∆ = -1 2 Tr 2 [ṽ 12 κ 2 ]. Remarkably enough, these expressions are nothing but the TDHFB equations of motion that are used to treat the dynamics of superfluid systems. Then, κ identifies with the anomalous density matrix and ∆ is the pairing field. These equations can be written in a compact form using the generalized matrix R:

R = R κ -κ * 1 -R * .
(2.29)

The equation then takes the form:

iℏ d dt R = [H, R] , (2.30) 
with a generalized Hamiltonian:

H = h ∆ -∆ * -h * .
(2.31)

These equations generalize the TDHF equation of Sec. 2.3. Similarly to TDHF, one can introduce a set of so-called quasi-particles wave-functions such that R = α |w α ⟩ ν α ⟨w α |.

Then the equation of motion can be solved using:

iℏ ∂ ∂t |w α ⟩ = H |w α ⟩ , (2.32) 
while keeping the occupation numbers ν α constant at all times [START_REF] Blaizot | Quantum theory of finite systems[END_REF]. We then recover the TDHFB theory that is currently used in nuclear physics. In the context where pairing is important and the TDHFB framework is required:

1. Pairing correlations are included at the price of breaking particle number symme-

try, i.e. N 2 -N 2 = 2Tr (R 2 -R) = 2Tr κκ † ̸ = 0,
2. We mention a specific limit called TDHF+BCS approach where the particle states, labelled by k, are coupled to their initial time-reversed only (denoted k) [START_REF] Ring | The Nuclear Many-Body Problem[END_REF][START_REF] Bardeen | Theory of superconductivity[END_REF][START_REF] Scamps | Pairing dynamics in particle transport[END_REF][START_REF] Ebata | Canonical-basis time-dependent Hartree-Fock-Bogoliubov theory and linear-response calculations[END_REF]. In that case, the equations of motion (2.28a) and (2.28b) reduce to:

         iℏ ṅk = κ k k∆ * k k -κ * k k∆ k k, iℏ κk k = ∆ k k (1 -2n k ) , iℏ ∂ ∂t |φ k ⟩ = h [R] |φ k ⟩ . (2.33a) (2.33b) (2.33c)
A detailed study of the differences between the TDHFB and TDHF+BCS theory has been performed in [START_REF] Scamps | Pairing dynamics in particle transport[END_REF], where it was concluded that BCS theory violates the continuity equation. However, while TDHFB obviously yields a better description of the dynamics, TDHF+BCS is still used despite its inherent problems because of its simplicity. CHAPTER 2. TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS

Extended TDHF from BBGKY

Correlations that are not linked to pairing arise when the internal excitation of the system increases. Collisions between particles are then expected to dominate the beyond-mean field effects as the accessible phase-space becomes bigger with increasing internal excitation of the system, and the Pauli blocking becomes less effective. It then has significant effects on the dynamics. Starting from those considerations, a way to incorporate these in-medium two-body collisions effects in Fermi systems is to keep a one-body point of view, and assume that an additional dissipative term treating 2-body effects as a correction to the mean-field (see Fig. 2.1). Such a correction can be obtained starting from the BBGKY hierarchy and keeping only the Born term. This term is expected to yield a dissipative behavior through 2-body collisions because of its 2p-2h structure [START_REF] Bonitz | Quantum kinetic theory[END_REF][START_REF] Reinhard | Correlations in nuclei and nuclear dynamics[END_REF][START_REF] Wong | Extended time-dependent hartree-fock approximation with particle collisions[END_REF][START_REF] Wong | Dynamics of nuclear fluid. V. Extended timedependent Hartree-Fock approximation illuminates the approach to thermal equilibrium[END_REF]. Keeping only the first 2 terms in Eq. (2.22) leads to:

           iℏ Ṙ = [h [R] , R] + 1 2 Tr 2 [ṽ 12 , C 12 ] , iℏ Ċ12 = [h 1 [R] + h 2 [R] , C 12 ] + 1 2 {(1 -R 1 )(1 -R 2 )ṽ 12 R 1 R 2 -R 1 R 2 ṽ12 (1 -R 1 )(1 -R 2 )} .
(2.34a)

(2.34b)

Note that since the Born term is not proportional to C 12 , correlations arise during the evolution even if the initial state is a Slater determinant. Its inclusion will be the origin of the departure from the independent particle picture when propagating the system. It is possible to solve directly this set of equations. Several difficulties arise, however: (i) a truncation in the BBGKY hierarchy causes numerical instabilities, and (ii) the size of the matrices grows quadratically, as the number of elements contained in C 12 is around Ω 4 , with Ω the size of the one-body Hilbert space. It is possible, however, to find workarounds to these problems. Indeed, integrating Eq. (2.13) and replacing the last term in Eq. (2.12), one gets: 

iℏ Ṙ = [h [R] , R] - i 2ℏ
U 1/2 (t, t ′ ) = T exp - i ℏ t t ′ h 1/2 [R(s)] ds , (2.36) 
T being the time-ordering operator. Note that U 1 (t, t ′ ) already includes some correlations through the accumulated effects of A 12 in R 1 , with the kernel A 12 of the form:

A 12 = ṽ12 , 1 2 {(1 -R 1 )(1 -R 2 )ṽ 12 R 1 R 2 -R 1 R 2 ṽ12 (1 -R 1 )(1 -R 2 )} . (2.37)
In Eq. (2.35), the first term, dependent on A 12 (s) for s < t, expresses the build up of correlations, while the last term corresponds to the effects of initial 2-body correlations.
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The former will hereafter be called the dissipator, denoted by K[R]. The presence of a time integral shows that 2-body correlations are non-markovian in nature, i.e., this term will depend on the entire history of the system before time t. The latter is usually a very complex quantity, that has been extensively studied through the lenses of statistical arguments, leading to a stochastic description of the problem [START_REF] Lacroix | Nuclear collective vibrations in extended mean-field theory[END_REF][START_REF] Ayik | Stochastic one-body transport and coupling to meanfield fluctuations[END_REF]. The resulting equations of motion are then oftentimes treated in a semi-classical way in a heavy-ion collision context, leading to the BUU/BNV theory [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF][START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Uehling | Transport phenomena in Einstein-bose and fermi-dirac gases. II[END_REF][START_REF] Toepffer | Relaxation of some fermion nonequilibrium momentum distributions[END_REF][START_REF] Ayik | Fluctuations of single-particle density in nuclear collisions[END_REF][START_REF] Lang | A new treatment of Boltzmann-like collision integrals in nuclear kinetic equations[END_REF][START_REF] Domps | Theoretical Estimation of the Importance of Two-Electron Collisions for Relaxation in Metal Clusters[END_REF][81]. A way to simplify Eq. (2.35) is to assume that the initial correlations cancel out in average in the so-called molecular chaos hypothesis. The dissipator can then be treated pertubatively, yielding the ETDHF theory [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][83][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF][START_REF] Lacroix | Collective response of nuclei: Comparison between experiments and extended mean-field calculations[END_REF]. The properties of the dissipator and the thermalization process will be extensively studied in Chap. 3.

The ETDHF theory has been extensively studied in the present thesis. One of the reasons is that this approach remains, even today, extremely hard to solve in practice because of the integral in time in the dissipator. Approximate description of the collision integral will be discussed in details in Chaps. 3 and App. B. We only give here some highlights on these approximations. There are also currently many works trying to simulate the collision term using quantum jumps between Slater determinants, leading to the STDHF method [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF][START_REF] Reinhard | Stochastic TDHF and large fluctuations[END_REF][START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Lacombe | A collisional extension of time-dependent Hartree-Fock[END_REF][START_REF] Lacombe | Stochastic TDHF in an exactly solvable model[END_REF][START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Suraud | Stochastic time-dependent hartree-fock for heavyion collisions at fermi energies[END_REF]. This approach will also be slightly highlighted in Chap. 4 when we will discuss stochastic methods.

Conclusion

Starting from the exact BBGKY hierarchy on the density matrices, methods accounting for beyond mean-field correlations have been introduced. For instance, the TDHFB method will be useful to describe superfluid systems. The Extended TDHF is expected to be useful when the Pauli principle becomes less effective at blocking in-medium collisions of particles, i.e., when the system is excited. Very few applications of the ETDHF theory including full non-markovian effects have been attempted so far. Additional approximations are usually needed for practical applications, leading to the master equation or relaxation time approximation (RTA) formalism.

These examples illustrate the difficulty to incorporate two-body effects in the quantum dynamics of interacting fermions. This is usually done by simply adding new terms into the equations of motion and solving these equations directly. Most notably, dissipation in a fermionic system has been shown to be taken into account by stochastic treatments [4, 10, 23, 25-27, 45, 75, 86-91].

In the present thesis, I first studied in more details the deterministic method introduced in the present chapter. More specifically, I worked on the ETDHF approach and tried to simplify the treatment of non-markovian effects using master equations. This will be discussed in Chaps. 3 and App. B. A second direction has been explored, that is, the possibility to use phase-space methods leading to a stochastic description. This will be discussed in the second part of the thesis (Chap. 6 and 7).

C H A P T E R 

Introduction

As underlined in the previous chapter, the study of nuclei in out-of equilibrium configurations using many-body quantum theory is a very complex problem. In the mean-field theory, particles interact only through the mean-field and collisions between them are neglected. This framework is only able to reproduce the gross properties of a given dynamical system, while missing many important effects of two-,three-,. . . , many-body nature. One of such effects is dissipation in an excited system and its eventual thermalization. These processes will be studied in detail in this chapter, by taking into account in-medium two-body collisions through the inclusion of the Born term in the equations of motion, leading to the ETDHF framework briefly presented in Sec. 2.4.3. In practice, the ETDHF theory is hampered by its numerical costs coming from the inclusion of non-markovian effects. Due to the numerical complexity, applications of this theory on realistic situations remain a difficult problem. Some approximation schemes have been developed to apply the ETDHF theory in practice [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF]. The aim of this chapter is to present the basic features of the ETDHF approach and see, starting from [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF], if and how a such theory can be further simplified in practice without losing the important physics. In this chapter, I first recall some important aspects of ETDHF as well as the underlying equations. Then, a large part of the chapter is devoted to the practical implementation of this theory and the possibility to make simplifying approximations that will be crucial for future applications.

Equations of motion

I discuss here in more details the hypotheses behind the ETDHF theory. I then write the equation of motion explicitly in a single-particle basis. I analyze the equation of motion and its properties, and then show that inclusion of the Born term can lead to the thermalization of the system. Following [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF], I present a practical way of solving the equations through the use of a master equation.

ETDHF transport equation

The Born term in a single-particle basis

As explained in Chap. 2, the inclusion of the Born term leads to Eq. (2.35). It shows that the time evolution of the one-body density matrix R 1 depends on the self-consistent field h [R], the two-body residual interaction v 12 , the initial two-body correlations C 12 (t 0 ), and the one-body reduced density matrix itself through the presence of the commutator and the A 12 matrix, written explicitly as:

A 12 (s) = [v 12 (t), {(1 -R 1 )(1 -R 2 )v 12 R 1 R 2 -R 1 R 2 v 12 (1 -R 1 )(1 -R 2 )} s ] , (3.1)
where {•} s denotes the time at which the matrices are evaluated. Supposing that CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS C 12 (t 0 ) = 0, we obtain the transport equation:

iℏ ∂R ∂t -[h [R] , R] = K [R] , (3.2) 
with:

K [R] = - i ℏ Tr 2 t t 0 U (t, s)A 12 (s)U † (t, s)ds . (3.3) 
We introduce a general, complete single-particle basis denoted by |α(t)⟩. This basis depends explicitly on time, assuming that it evolves through:

|α(t)⟩ = exp - i ℏ t t 0 h [R(s)] ds |α(t 0 )⟩ , (3.4) 
where h [R] is the mean-field that includes the effects of past collisions through the density R. In this basis, Eq. (3.2) reads:

iℏ∂ t R αα ′ = λ (h αλ [R] R λα ′ -R αλ h λα ′ [R]) + K αα ′ [R] , (3.5) 
with:

K αα ′ [R] = - i ℏ (F αα ′ + F * αα ′ ) , (3.6) 
and

F αα ′ (t) = 1 2 t t 0 βλδβ ′ λ ′ δ ′ γ ⟨αδ ′ | v 12 |λβ⟩ t ⟨λ ′ β ′ | v 12 |γδ⟩ s R γα ′ R δδ ′ R λλ ′ R ββ ′ -R λλ ′ R ββ ′ R γα ′ R δδ ′ s ds, (3.7) 
with R = 1 -R and ⟨•⟩ t indicates that the matrix element is taken at time t. This expression is the most general ETDHF equation of motion where the Born term is implicated. It shows that one of the essential effects of the Born term is to mix the single-particle states at different times. Equation (3.5) is rather complex because of the time-integral appearing in F . Indeed, the ETDHF equation of motion not only takes into account the instantaneous effects of a collision, but also depends on the entire history of the system, i.e., the self-consistent evolution of the single-particle states and the previous collisions. Effects that are non-local in time have often been neglected in nuclear physics applications because of this complexity. A transposition of the problem in a semi-classical approximation context is often performed [START_REF] Chomaz | Nuclear spinodal fragmentation[END_REF]. In this work, however, the fully quantum mechanical problem is studied to construct a suitable approximation of the dynamics while trying to have reasonable numerical cost.

Discussion of the validity of ETDHF

Several conditions need to be respected for the proposed truncation scheme to be valid. First, the system must be both diluted enough to neglect the three-body CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS correlations at all times C 123 (t) = 0, and excited enough so that the Pauli blocking is less effective and in-medium two-body collisions become possible. Second, keeping the Born term only is equivalent to a perturbative scheme, with the two-body interaction v 12 as a parameter. This supposes that we place ourselves in the weak coupling regime beyond mean-field. The main dynamical effects are then supposedly already included in the mean-field, while the Born term acts as a corrective term. Finally, the system must have no memory of the past correlations C 12 (t 0 ) = 0. This supposes implicitly that collisions have only short time effects on the system. This last hypothesis have been extensively discussed in the literature [START_REF] Suraud | Physique des collisions nucléaires[END_REF]. As I will discuss and illustrate in the following, the proper treatment of the timeintegral in Eq. (3.7) can be decisive to properly treat collisions effects. Some of its aspects will now be discussed, along with possible approximation schemes.

Perturbative treatment of the problem

As complex as it may seem, the non-markovian properties of Eq. (3.2) can be further studied by writing it in a suitable basis. We denote by |Ψ α (t)⟩ the basis that diagonalizes the one-body density matrix at all times, hereafter called natural basis:

R(t) = α n α (t) |Ψ α (t)⟩ ⟨Ψ α (t)| . (3.8) 
In this basis, F αα ′ is expressed as:

F αα ′ = 1 2 βλδ t t 0 v αβλδ (t)v * α ′ βλδ (s) {n λ n δ n α ′ n β -n β n α n δ n λ } s ds, (3.9) 
where

v αβλδ (t) = ⟨Ψ α (t)Ψ β (t)| v 12 |Ψ λ (t)Ψ δ (t)⟩. The dissipator K [R]
induces a mixing of the single-particle states. Contrary to a TDHF evolution, the knowledge of the occupied states is not enough, since some mixing takes place between particle (unoccupied) and hole (occupied) states. In practice, it is often hardly possible to propagate the system taking into account the entire single-particle Hilbert space. A discussion about this problem and how the system is propagated in practice is made in Sec. 3.3. It is important to note that finding which single-particle states will have an important impact on the dynamics is not easy [START_REF] Tohyama | Application of quantum theory of particle collisions to 16 O + 16 O reactions[END_REF]. I make a discussion on the relevant single-particles states, assuming the collision terms have a perturbative effect. We denote:

|Ψ α (t)⟩ = U MF (t, s) |Ψ α (s)⟩ , (3.10) 
the states of the natural basis propagated by the mean-field propagator only, with t > s. As said earlier, the truncation of the BBGKY hierarchy is valid if the two-body interaction is treated in the pertubative regime. Following [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF], a possible strategy to solve approximately the ETDHF equations is as follows. The idea is to first propagate the states using the mean-field only, and then correct the evolution using K [R] every ∆t. ∆t is a coarse-grained time that is larger than the numerical time step and smaller than the time over which the perturbative assumption breaks down. From t to t + ∆t, the ETDHF evolution of the one-body density takes the form:

CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS R(t) = α n α (t) |Ψ α (t)⟩ ⟨Ψ α (t)| → R(t + ∆t) ≈ R ′ (t + ∆t) + ∆R. (3.11)
Here, R ′ (t + ∆t) corresponds to the mean-field evolution of the one-body density without the collision term, i.e.,

R ′ (t + ∆t) = α n α (t) |Ψ α (t + ∆t)⟩ ⟨Ψ α (t + ∆t)| , (3.12) 
while ∆R accounts for the collision effect between t and t + ∆t. Here, it is simply assumed to be given by:

∆R(t + ∆t) = ∆t iℏ K [R ′ (t + ∆t)] . (3.13) 
The correction ∆R affects both the occupation numbers and the single-particle states. Time-dependent perturbation theory gives for the single-particle state correction:

|Ψ α (t + ∆t)⟩ ≈ |Ψ α (t + ∆t)⟩ + α ′ ̸ =α |Ψ α ′ (t + ∆t)⟩ ⟨Ψ α ′ (t + ∆t)| ∆R |Ψ α (t + ∆t)⟩ n α (t) -n α ′ (t) . (3.14) 
The correction on the occupation numbers follows from the equation:

iℏ∂ t n α = K αα [R] = - 2i ℏ Re [F αα ] , (3.15) 
with F αα given by Eq. (3.9). Note that F αα contains an integral of the form:

t t 0 dt ′ A(t)B(t ′ ) = t-t 0 0 dsA(t)B(t -s). (3.16) 
For t → +∞, this integral can be interpreted as an auto-correlation function of the twobody potential and is weighted by the occupation numbers that is averaged over the 2p-2h phase-space. The sum here is completely unrestricted and runs over all possible combinations of (β, λ, δ). From expression (3.9), we deduce that two main characteristic times intervene in this integral:

1. The memory time of the system τ mem , defined by:

v 12 (t)v 12 (s) ∝ exp - |t -s| 2 2τ 2 mem , (3.17) 
where • represents the average over the 2p-2h space. It can be linked to the average energy exchange ∆ between particles during a collision through the relation τ mem = ℏ/∆. Its classical interpretation would be the averaged duration of a collision.

2. The characteristic time associated to the time evolution of the occupation numbers τ ev .
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As we will see below in an example, this time is much larger than τ mem : τ ev ≫ τ mem . A consequence of this is that we can approximate n α (s) ≈ n α (t) in the integral, leading to the approximation of F matrix elements:

F αα ′ (t) = βλδ t t 0 v αβλδ (t)v * α ′ βλδ (s)ds {n λ n δ n α ′ n β -n β n α n δ n λ } t , (3.18) 
with:

|Ψ α (t)⟩ ≈ |Ψ α (t)⟩ . (3.19)
We observe that the approximated integral reduces to a weighted auto-correlation function of the two-body potential. Although essential, the non-markovian effects are often neglected when transposing the Born term in semi-classical frameworks. This yields a far simpler expression to deal with, but also misses important non-markovian effects that can change the asymptotic occupation weights and transitionary properties of the system drastically.

Properties of the ETDHF equation

The ETDHF equation follows several important properties. It has been shown [START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF], that among them, the conservation of particle number and the conservation of energy are satisfied. Below, we present in more details the behavior of the one-body entropy as a function of time and the asymptotic properties of the ETDHF solution.

Irreversible dynamics

As explained above, the collision integral induces a complex mixing of the singleparticle states (see Eq. (3.2)). This mixing is at the origin of dissipation at the one-body level in this framework. It can be more precisely investigated by analyzing the timeevolution of the one-body entropy S, given by:

S(t) = -k B α (n α (t) ln n α (t) + [1 -n α (t)] ln [1 -n α (t)]) . (3.20) 
By deriving with respect to time this quantity and using Eqs. (3.15) and (3.18), one gets:

Ṡ(t) = -k B α ṅα (t) log n α (t) 1 -n α (t) , (3.21) 
= k B ℏ 2 αβλδ t t 0 Re v αβλδ (t)v * αβλδ (s) ds {n λ n δ n α n β -n β n α n δ n λ } t ln n α (t) 1 -n α (t)
.

By relabelling the indices and taking advantage of the properties of the ln function, we can rewrite this equation:

Ṡ = - k B 4ℏ 2 αβλδ t t 0 Re v αβλδ (t)v * αβλδ (s) ds {n λ n δ n α n β -n β n α n δ n λ } t × ln n α n λ n β n δ n λ n α n δ n β . (3.22) SYSTEMS
We recognize in the time derivative expression a function of the form f (x, y) = (xy) ln y x , which is always positive. Hence, ETDHF respects the second law of thermodynamics and is able to describe irreversible dynamics. In particular, contrary to the TDHF framework, it will induce a time-dependent evolution of the entropy.

Asymptotic behavior of the system and link to thermalization

At the mean-field equilibrium, h and R commute and can be diagonalized in a common basis. The asymptotic behavior of a given quantum system predicted by the ETDHF equation can then be studied by writing the equation of motion:

iℏ Ṙ = 0 = [h [R] , R] .
(3.23

)
The system is in a steady state if ṅα = 0, in which case the dissipator K [R] is equal to zero. Starting from Eq. (3.23), and assuming that (i) the mean-field propagation takes the form:

|Ψ α (t)⟩ = exp - i ℏ ε α (t -s) |Ψ α (s)⟩ , (3.24) 
and (ii) the time-integral bounds can be expanded to [-∞, +∞], we then obtain:

F αα ∝ δ(ε α + ε β -ε λ -ε δ ), (3.25) 
leading to the two conditions:

n β n α (1 -n λ )(1 -n δ ) = (1 -n β )(1 -n α )n λ n δ , (3.26) ε α + ε β -ε λ -ε δ = 0.
(3.27)

The conditions come from assuming stationary statistics, leading to a Dirac delta function that ensures that the energy is conserved δ (ε α + ε βε λε δ ). Supposing that the energy levels are sufficiently close to each other to consider that the energy is a continuous variable, Eqs. (3.26) and (3.27) imply [START_REF] Wong | Extended time-dependent hartree-fock approximation with particle collisions[END_REF]:

n α (t → +∞) = 1 1 + e β(ε i -µ) .
(3.28)

Identifying β with the inverse temperature and µ with the chemical potential, we recover the standard thermal occupation numbers of a Fermi system formed by independent particles.

Master equation and correction to the occupation numbers

The weak coupling limit ensures that, at any given time, |Ψ α (t + ∆t)⟩ and n α (t + ∆t) can be computed from the states |Ψ(t + ∆t)⟩ using perturbation theory (see Eqs. (3.11 -3.14)). However, a direct diagonalization of the one-body density at each time step can sometimes lead to an accumulation of numerical errors, giving, e.g., occupation numbers that are not between 0 and 1. Fortunately, it is possible to reexpress the problem in terms CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS of a master equation for the occupation numbers [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF][START_REF] Lacroix | Aspects quantiques et dissipatifs dans la structure et la dynamique nucléaires[END_REF], ensuring the numerical stability of the solution. Injecting Eq. (3.18) into the expression of the dissipator, and introducing G α (t) and L α (t), the gain and loss terms respectively, the equation of motion for the occupation numbers can be written in the form:

∂ t n α = (1 -n α (t)) G α (t) -n α (t)L α (t), (3.29) 
with:

             G α (t) = 1 ℏ 2 βλδ t t 0 Re [v αβλδ (t)v αβλδ (s)] ds {n β n λ n δ } t , L α (t) = 1 ℏ 2 βλδ t t 0 Re [v αβλδ (t)v αβλδ (s)] ds {n β n λ n δ } t . (3.30a) (3.30b)
The master equation, as we will see, is one of the most important tools we use below for the practical resolution of the ETDHF equation. It already includes some approximations compared to the original equation. However, as we will illustrate, these approximations appear to be reasonable for physical systems. A way of introducing a one-body master equation from a many-body problem will be further discussed in App. B. Before applying the master equation method, I underline some interesting aspects of it. Eq. (3.29) automatically ensures that the occupation numbers are between 0 and 1. It also puts forward the notion of particle decay time and asymptotic limit of the occupation numbers. These two quantities evolve in time in the master equation approach. If ∆t is small enough to neglect the time-evolution of the gain and loss terms over the time interval [t, t + ∆t], it becomes possible to integrate Eq. (3.29) and obtain the correction to the occupation numbers after a time ∆t of purely mean-field propagation:

n α (t + ∆t) = (n α (t) -n eq α (t)) e -∆t/τα(t) + n eq α (t), (3.31) 
with:

         τ α (t) = 1 G α (t) + L α (t) , n eq α (t) = G α (t) G α (t) + L α (t) = τ α (t)G α (t). (3.32a) (3.32b)
It is interesting to note that Eq. (3.29) can be recast as:

∂ t n α = - [n α (t) -n eq α (t)] τ α (t) . (3.33)
This resembles the relaxation time approximation (RTA) equation [START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF]. The RTA equation of motion is often added on top of a mean-field evolution to take dissipation into account, and derived from a first order expansion of the Born term in n eq α [START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Wong | Approximate treatment of particle collisions in the time-dependent mean-field theory[END_REF][START_REF] Reinhard | A quantum relaxation-time approximation for finite fermion systems[END_REF]. Although Eq. (3.33) seems very simple, it is important to note that this simplicity is only apparent, since it can be counterbalanced by the complex refinements that the estimation of τ α (t) and n eq α (t) requires. The RTA-like equation is oftentimes transposed CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS in a semi-classical framework, and τ α and n eq α estimated through semi-classical calculations and purely numerical procedures, respectively. The former consists in refined adjustment techniques of the state of the system on Fermi-Dirac distributions. This method consists, furthermore, in constraining the evolution towards a thermalized state instead of letting the system attain it on its own [START_REF] Wong | Dynamics of nuclear fluid: (I). Foundation[END_REF]. Such an attempt can only be justified a posteriori, if a reasonable agreement between experiment and theoretical results can be obtained in terms of asymptotic behavior and relaxation rates. Here we have derived an approximation of τ α and n eq α microscopically.

Practical solution of the master equation and result

Compared to the mean-field case, there are two aspects that significantly increase the numerical effort to solve the Eq. (3.29):

(i) The number of states to follow. Indeed, here, not only hole states should be considered but also particle states too.

(ii) The time-integral in Eq. (3.9).

We first follow here the method proposed in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF][START_REF] Lacroix | Aspects quantiques et dissipatifs dans la structure et la dynamique nucléaires[END_REF] and then propose some methods to reduce the numerical efforts.

Numerical scheme with varying single-particle states: construction of a truncated particle and hole basis

Assume that we know the density at time t. We show here how the states retained to evaluate the collision term can be constructed. In realistic problems, the number of single-particle states (particle and hole) of the system can be large since it corresponds a priori to a complete single-particle basis, making the calculations intractable for large systems. The weak coupling limit hypothesis supposes that the occupied states at a given time t contain most of the information about the system. Physically, we also expect that only unoccupied states close to the Fermi energy will contribute to the collision. In practice, only the hole states are needed during the mean-field propagation of the system. Then, at each collision, low-energy particle states with zero occupation numbers, relevant for the evaluation of the collision term, are reconstructed by an imaginary time propagator U β (t):

U β (t) = exp [-β (h [R ′ (t)] + δh)] , (3.34) 
where δh is a random number between 0 and 1 following the uniform law. This random potential is introduced because the excited states do not necessarily follow the same symmetries as the mean-field h. Successive applications of this imaginary time propagator allow selecting the low energy eigenstates of h [R(t)]. Assuming that the high frequency components of the spectrum of h [R(t)] do not significantly contribute to the collisions, the completed basis can then be used as a subspace where h [R(t)] is diagonalized and where collisions can occur. The reconstructed basis can then be truncated again if the mean-field matrix elements are too high to be relevant SYSTEMS for the computation of the collision term. The numerical stability of this scheme can be improved by increasing the number of applications of U β . The dissipator is then calculated using this enriched basis. Since the closure relation was used to derive the expressions of the transport equation and F , it is possible that problems with the conservation laws (e.g., continuity equation) will arise.

Cutoff of the time-integral

Supplementary correlations, supposedly out of the scope of the Born term, may furthermore intervene, leading to a finite lifetime for single-particle states. This is neglected in the collision term evaluation, because single-particle states are propagated by the mean-field only in the time-integral. Following [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF], we simply assume an additional damping in the integral so that F αα ′ (t) takes the form:

F αα ′ (t) = t t 0 βλδ v αβλδ (t)v * α ′ βλδ (s)e -Γ(t-s)/ℏ ds {n λ n δ n α ′ n β -n β n α n δ n λ } t , (3.35) 
We tested possible values of Γ empirically and observed that it should be small enough to obtain a good reproduction of the exact case in the model discussed below. This is an indication that memory effects are important. Relaxing the ad-hoc assumption on the value of Γ will be discussed in Sec. 3.4.3.

Evaluation of the time-integral in practice

The time-integral appearing in the expressions of the gain and loss terms is very costly to compute. In practice, following [START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF], at each coarse-grained time step ∆t, a backpropagation of the single-particle states is considered using the precedent method from time t to time t 0 with the mean-field. This becomes tedious when tt 0 increases. In practice, the resolution of the equation is made in five steps:

1. Propagate the single-particle states |Ψ α (t)⟩ using mean-field like propagation from time t to time t + ∆t with the propagator (2.36). From this, the states |Ψ α (t + ∆t)⟩ are obtained.

2. Complete the propagated states by a set of unoccupied particle states using the imaginary time propagator (3.34).

3. Backpropagate the relevant single-particle states to compute the time-integral and evaluate the dissipator 5. Iterate the procedure every ∆t.

K [R ′ (t + ∆t)] in the |Ψ α (t + ∆t)⟩ α basis.
In the next section, we discuss the application of this algorithm to a confined two particle system. CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS

Application to two interacting fermions

I show here an application on a simple 1D model of two interacting fermions that was used as a test in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF][START_REF] Lacroix | Aspects quantiques et dissipatifs dans la structure et la dynamique nucléaires[END_REF]. The first goal was to reproduce the result of these references. The second goal was to try to find further approximations that could help to solve the problem numerically.

Hamiltonian and initial conditions

Following [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF], we apply the numerical method to solve ETDHF for two interacting fermions coupled to a total projected spin equal to zero in one dimension. The two particles are confined in a potential and are subject to a repulsive Gaussian two-body interaction. The Hamiltonian is given by:

Ĥ = i p 2 i 2m + 1 2 k (x i -x 0 ) 2 + 1 4 k ′ (x i -x 0 ) 4 + i<j v 0 exp (x i -xj ) 2 2σ 2 .(3.36)
Numerical values for the parameters are given by: k = -0.404 MeV/fm 2 , k ′ = 0.08 MeV/fm 4 and x 0 = 9.3 fm. Furthermore, the interaction parameters are chosen so v 0 = -4 MeV and σ = 20 fm. We chose the same initial conditions as in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][START_REF] Lacroix | Aspects quantiques et dissipatifs dans la structure et la dynamique nucléaires[END_REF].

The system is initially constrained, and we consider different initial temperatures T = 1, 5, 10 MeV. The two-body density matrix at initial time is then written:

D 12 (t 0 ) = i |Ψ i ⟩ exp [-βE i ] Z ⟨Ψ i | , (3.37) 
with β = 1/k B T and Z is the partition function, adjusted so that Tr [D 12 ] = 1. For this particular problem, one can obtain the exact density for the two-body states by direct diagonalization of the Hamiltonian. Here, the system's center of mass is initially shifted using a constraint at initial time. The eigenenergies and their eigenstates under constraints are obtained by solving the exact eigenvalue problem:

( Ĥ -Q) |Ψ i ⟩ = E i |Ψ i ⟩ . (3.38) 
The operator

Q = i λ(x i )(x i -x 0 ) 2
is the one-body constraining term. Here, λ = -0.24 MeV/fm 2 for x i > x 0 and λ = -0.12 MeV/fm 2 for x i < x 0 . At t = 0, the constraint is removed. The exact solution is obtained by solving directly the exact Schrödinger equation:

iℏ d dt |Ψ i ⟩ = Ĥ |Ψ i ⟩ . (3.39)
This equation for two fermions is equivalent to a 2D time-dependent Schrödinger equation. It is in practice solved using a split operator method [START_REF] Hermann | Split-operator spectral method for solving the time-dependent Schrödinger equation in spherical coordinates[END_REF]. From its solution, hereafter qualified of "exact", the occupation numbers are extracted by diagonalizing the one-body density directly. These occupation numbers are expected to depend on time because all effects beyond mean-field are included. For the three initial temperatures, the equations of motion are solved on a discretized grid [0, 20] fm with steps ∆x = 0.2 CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS fm while the time step is 0.5 fm/c. In the ETDHF case, the corrections to the mean-field like dynamics is applied every ∆t = 6 fm/c and a value Γ = 3.07 MeV is retained. In the following, we compare the results obtained from the resolution of the Schrödinger equation with the TDHF and ETDHF solutions. In both cases, the one-body density matrix R 1 (t 0 ) = Tr for T = 5 MeV by Fig. 3.2, displaying the entropy of the system as a function of time, showing that the initial stages of the dynamics are correctly reproduced. Note that at long times, the entropy converges asymptotically towards a maximum, indicating that the system has an asymptotic stationary point. We note, however, that the exact solution displays oscillations at intermediate times for i = 1, 2, 3 for all initial temperatures that are not reproduced by the ETDHF solution. These oscillations are the result of effects out of the scope of the Born term, and seem to be somewhat localized in time for i = 1, 2 for all temperatures. Interestingly enough, their amplitudes do not seem to be influenced by the initial temperature.

n i (t) (a) (d) (g) (b) (e) (h) (c) (f) (i) 
The case T = 1 MeV is, as expected since the Pauli blocking effectively blocks the two-body collisions, more difficult to treat. ETDHF fails at low temperature to follow the exact dynamics as soon as t ≈ 400 fm/c. From this, we deduce that initial temperature T ≈ 1 -2 MeV can be interpreted as the lower boundary of the validity domain in temperature of the ETDHF framework in this model. This interpretation is confirmed by Figs. 3.3 and 3.4, which are respectively displaying the center of mass q and its fluctuations σ x (both in fm) as functions of time respectively (see captions). We clearly see major improvements for the center of mass q and its fluctuations over TDHF for every temperature presented. However, if the center of mass is accurately reproduced up to t ≈ 500 -600 fm/c for all temperatures, its fluctuations are more difficult to tackle, and important deviations start to appear as soon as t ≈ 500 fm/c in the T = 5, 10 MeV cases, and t ≈ 300 fm/c in the T = 1 MeV case. We observe that, whatever the temperature, ETDHF still shows a big improvement over TDHF when describing these two observables. Indeed, TDHF deviates from the exact result as soon as t ≈ 300 fm/c, while ETDHF accurately follows the dynamics up to t ≈ 700 fm/c.

The result obtained first in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF] and confirmed here with applications at various temperatures shows that the ETDHF method can be applied with some success to describe dissipative aspects beyond the mean-field picture. One key aspect behind this success was the proper treatment of the time-integral, i.e., of the non-markovian effects. The numerical effort is however strongly increased compared to TDHF due to the necessity to propagate backward in time single-particle states at each coarse grained time step ∆t. Two important remarks should be made. First, as an alternative to the SYSTEMS backward propagation, one could think of storing the properties of the single-particle states in time. However, such a storage becomes prohibitive when the number of singleparticle states increases, and we cannot a priori guess which particle states might become important during the time evolution. The second important remark is about a damping factor e -Γ(t-s)/ℏ added in the integral. This a priori helps to reduce the numerical effort for long times such that Γ(tt 0 )/ℏ ≪ 1. However, in practice, we observe that only small Γ (i.e., long memory times) leads to satisfactory results. Results shown in the application are for Γ = 3.07 MeV that corresponds to τ = ℏ/Γ ≈ 64 fm/c. The conclusion is that, for the present model, the memory effect is important and the treatment of the time-integral is decisive to properly describe in-medium collisions. Such a time-integral becomes extremely difficult to compute when the number of particles increases and when realistic 3D applications are considered. This is one of the CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS reasons why the method proposed in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF] was never used in more complex cases. This also motivates the study I made during the thesis to find an efficient approximation of the time-integral while remaining non-markovian.

A practical method for the evaluation of the timeintegral in ETDHF

As said in the precedent section, the ETDHF method as applied in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF] provides a practical way of solving the ETDHF equations. It still has a high numerical cost. This mainly comes from the time-integral appearing in the equations of motion. The aim of the work presented in this section is to find a simplification to this numerical procedure.

After a careful analysis, we show that an analytical ansatz for the time-integral can be constructed that encodes most of the non-markovian effects while significantly simplifying the numerical procedure.

Approximation schemes

The memory integral appearing in Eq. (3.7) is numerically costly, while encoding much of the thermalization process. The construction of an approximation of the time-integral requires a careful analysis of v αβλδ (s), and the properties of h [R]. The quantity v αβλδ (s) can be rewritten as:

v αβλδ (s) = ⟨Ψ α (s)Ψ β (s)| v 12 |Ψ λ (s)Ψ δ (s)⟩ = ijkl Ψ α (s)Ψ β (s) Ψ i (t)Ψ j (t) v ijkl (t) Ψ k (t)Ψ l (t) Ψ λ (s)Ψ δ (s) = ijkl Π αi (s, t)Π βj (s, t)Π * kλ (s, t)Π * lδ (s, t)v ijkl (t), (3.40) 
where we introduced the notation:

Π αi (s, t) = Ψ α (s) Ψ i (t) . (3.41)
Here, we used Greek labels for states evaluated at time s and Latin letters for states evaluated at time t. Note that at all times we have:

α |Ψ α (s)⟩ ⟨Ψ α (s)| = 1, (3.42) 
that we used to obtain (3.40). The memory integral entering the collision term and defined above can be recast as:

A αβλδ (t) = t t 0 ds ⟨Ψ α (s)Ψ β (s)| v 12 |Ψ λ (s)Ψ δ (s)⟩ , = t t 0 ds ijkl Π αi (s, t)Π βj (s, t)Π * kλ (s, t)Π * lδ (s, t)v ijkl (t). (3.43) SYSTEMS
Starting from here, approximations can be analyzed in the light of a new quantity of interest: the overlaps Π αi (s, t). We see in particular that the dependence on time s only appears in this term. This quantity directly depends on the propagator and h [R],

indicating the need for an investigation of the mean-field properties. Our goal is to see if some approximation can be found for the time-evolution of the integral. To that end, we first suppose that the mean-field is slowly varying over the interval of integration (recall that at first order in perturbation theory,

|Ψ i (t)⟩ ≈ |Ψ i (t)⟩). Accordingly, ⟨Ψ i (t)| h [R ′ (t)] |Ψ j (t)⟩ = h ij (t) ≈ h ij .
The overlap then takes the simple form:

Π αi (s, t) = Ψ α (s) Ψ i (t) = ⟨Ψ α (t)| U (s, t) |Ψ i (t)⟩ ≈ ⟨Ψ α (t)| exp i ℏ h αi (s -t) |Ψ i (t)⟩ . (3.44)
Starting from here, we considered two possible simplifications and tested them:

1. In the simplest approximation, we assumed that the non-diagonal part of the mean-field is negligible. This allows us to write: yielded by the original ETDHF framework using the full meanfield propagation are displayed in blue solid line. This result is considered as the reference case here. In case 1, the off-diagonal elements of the mean-field are neglected. The obtained result with this approximation is displayed in yellow solid line.

Π iα (s, t) = δ iα ⟨Ψ α (t)| exp i ℏ h αα (s -t) |Ψ α (t)⟩ . (3.45) 
2. The second approximation takes into account the off-diagonal contribution of the mean-field. In this approximation, h is diagonalized in the truncated subspace |Ψ α (t)⟩, leading to a new set of states |φ i (t)⟩ with energies ε i (t) ≈ ε i such that:

|Ψ α (t)⟩ = i |φ i (t)⟩ φ i (t) Ψ α (t) , (3.46) 
leading to: We simply deduce that:

|Ψ α (s)⟩ ≈ i e -iε i (t-s)/ℏ |φ i (t)⟩ φ i (t) Ψ α (t) . ( 3 
Π αi (s, t) = ⟨Ψ i (t)| exp i ℏ h αi (s -t) |Ψ α (t)⟩ ≈ γ e iεγ (s-t)/ℏ Ψ i (t) φ γ (t) φ γ (t) Ψ α (t) = γ e -iεγ (t-s)/ℏ P iγ (t)P * αγ (t), (3.48) 
with P iγ (t) = Ψ i (t) φ γ (t) that depends only on time t. The main approximation here is to assume that h(s) ≈ h(t) for s ̸ = t in the integral and the fact that a truncated basis is used.

To test these two hypotheses, we show in Figs. 3.5 and 3.6 the real (top panel) and imaginary (bottom panel) parts of the overlap Π 11 (s, t) = Π 11 (t back ) as functions of t back = ts in fm/c for case 1 and case 2 respectively and compare them to the same quantity evaluated with the full mean-field propagation. We see that approximation 1 fails to reproduce the evolution of Π αi (t, s). In contrast, a very good agreement is observed in case 2. We systematically investigated different overlaps Π αi (s, t) and compared them with the results obtained with the direct backward propagation, and overall observed very good agreement.

From this discussion, we conclude the overlaps Π appearing in the integrals can be accurately described using approximation 2. We show below how this property can be used to obtain an analytical expression of the F matrix and avoid the explicit evaluation of the integral in time.

Analytical ansatz for F

Starting from the slowly varying mean-field hypothesis and the basis |φ i (t)⟩, we can CHAPTER 3. EXTENDED TDHF AND DISSIPATION IN QUANTUM SYSTEMS rewrite the matrix elements of the two-body interaction in Eq. (3.7) under the form:

v αβλδ (s) = ⟨Ψ α (s)Ψ β (s)| v 12 |Ψ λ (s)Ψ δ (s)⟩ = ⟨Ψ α (t)Ψ β (t)| exp - i ℏ t s h(s ′ )ds ′ v 12 exp i ℏ t s h(s ′ )ds ′ |Ψ λ (t)Ψ δ (t)⟩ = ijkl Ψ α (t)Ψ β (t) φ i (t)φ j (t) ⟨φ i (t)φ j (t)| exp - i ℏ (ε i + ε j )(t -s) v 12 × exp i ℏ (ε k + ε l )(t -s) |φ k (t)φ l (t)⟩ φ k (t)φ l (t) Ψ λ (t)Ψ δ (t) = ijkl P αi (t)P βj (t)P * λk (t)P * δl (t)v MF ijkl (t) exp - i ℏ ∆ε ijkl (t -s) , (3.49) 
with v MF ijkl the two body interaction expressed in the basis |φ i (t)⟩ and

∆ε ijkl = ε i + ε j - ε k -ε l .
The key aspect in this equation is that the dependence on time s only appears in the time exponential. Because of this, the time-integral can be evaluated analytically. The integral in Eq. (3.7) becomes:

t t 0 exp - i ℏ (∆ε ijkl -iΓ)(t -t ′ ) dt ′ = ℏ i∆ε ijkl + Γ 1 -e -1 ℏ (i∆ε ijkl +Γ)(t-t 0 ) = ζ ijkl Γ (t), (3.50) 
where, like in the last section, the time-integral has been performed assuming that the single-particle energies do not vary appreciably over the interval [t 0 , t]. In practice, the mean-field is diagonalized at each coarse-grained time ∆t, and the time-integral is replaced by the ansatz reference (3.50).

The real part of expression (3.50) is of special importance since it appears in the expressions of the gain and loss terms of the master equation. We obtain explicitly:

Re ζ ijkl Γ (t) = 1 ∆ε 2 ijkl + Γ 2 (3.51) × Γ + e -Γ(t-t 0 )/ℏ -Γ cos ∆ε ijkl ℏ (t -t 0 ) + ∆ε ijkl sin ∆ε ijkl ℏ (t -t 0 ) .
Note that for t → +∞, Re ζ ijkl Γ (t) reduces to a Lorentzian distribution. Setting Γ → 0, one recovers the Dirac delta function of ∆ε ijkl : the Γ parameter can be interpreted as a relaxation of the energy conservation condition to allow more transitions between the single-particle states. Injecting expression (3.50) into the dissipator, it is now written:

⟨Ψ α (t)| K [R] |Ψ α ′ (t)⟩ = - i 2 βλδ;ijkl v αβλδ (t)v MF ijkl (t)ζ ijkl Γ (t)P λi (t)P δj (t)P * βl (t) × P * α ′ k (t) {n λ n δ n α ′ n β -n β n α n δ n λ } t -P * αk (t) {n λ n δ n α n β -n β n α ′ n δ n λ } t . (3.52)
Provided that we diagonalize the mean-field at each time step ∆t, we obtained a timelocal expression of the collision term that includes non-markovian effects. From this expression, all quantities required to solve the ETDHF theory can be computed. Re(F 1α ) (MeV 2 

• fm/c) (a) (b) (c) (d)

Numerical study of F

For the moment, I discussed an accurate approximation for the time integral. I then show how this approximation affects the different quantities in ETDHF. I now analyze the behavior of the dissipator K [R] as a function of the lower bound of the memory integral t back . In practice, it is simpler to work with the matrix F since the dissipator depends on this quantity only. To this end, the values of the matrix elements of F have been computed with a parameter Γ = 3.07 MeV.

In Figs. 3.7 and 3.8 are displayed the real and imaginary parts of F 1α at t = 6 fm/c with α running over the four levels of lowest energy (see captions). The F matrix behavior is usually well reproduced at short times, with even very good asymptotic accordance for the imaginary part of F . The real part presents much more contrasted results: the analytical ansatz quickly deviates from the ETDHF with increasing α, and the asymptotes are off by around 50% for the α = 3, 4 cases. These deviations can be imputed to the change of frequencies of the mean-field in the ETDHF integral. This change is neglected in the analytical approximation (3.52). It is important to note that in practice the F matrix is evaluated at time t and that a correct description up to t back = tt 0 only is necessary to reproduce the original ETDHF results with the analytical ansatz, since we take in practice t 0 = 0 fm/c, and the Figs. 3.7 and 3.8 have been made at t = ∆t = 6 fm/c. However, we assumed that similar conclusions could be made for subsequent times t.

It has been observed that the diagonal of the real part of F is overall better reproduced than the non-diagonal part, indicating that the evolution of the occupation numbers, especially for short times, should not be too different from the original ETDHF result whereas the deviations on the states themselves are anticipated to occur, affecting the evolution of the observables. 

Im(F 1α ) (MeV 2 • fm/c) (a) (b) (c) (d)

Observable evolution with the approximation on the time-integral

In Sec. 3.4.1, we have proposed a simplified expression for the collision term. We see above that this approximation works for short backward time propagation, but leads to deviations at long times. Despite these deviations, we show here that the resulting evolution of the observables reproduces well the full ETDHF evolution shown previously. In this section, are presented several results on the occupation numbers and the one-body entropy at T = 5 MeV for (i) the original ETDHF scheme, (ii) the ETDHF scheme combined with the analytical ansatz 1 . The resulting center of mass dynamics and its fluctuations are then discussed.

Occupation numbers and irreversible dynamics

One important aspect of ETDHF is its ability to describe the evolution of the occupation numbers n i . An accurate tracking of the occupation numbers dynamics is therefore a minimal requirement to assess the validity of the ansatz.

In Fig. 3.9 are displayed the occupation numbers n i of the 3 lowest energy levels as a function of time. In the interval shown in Fig 3 .9, the dynamics obtained with scheme (i) is very accurately reproduced, with slight deviations that become more important with increasing single-particle energy. Despite some deviation observed in the evaluation of F (see Figs. 3.7 and 3.8), we see that a good agreement is finally obtained for the occupation numbers.

We also show a comparison of the exact and approximated entropy of the system in Fig. 3.10. The one-body entropy is computed using formula (4.35) (i) and (ii). All approximations correctly describe an increase of the entropy, with a very good qualitative agreement up to t ≈ 1300 fm/c. After this stage, the approximation using the analytical ansatz (3.50) deviates from both the exact and the original ETDHF scheme. They present a more steady increase of the entropy. We consider it to be a side effect of using the analytical ansatz since some mixing effects have been neglected, resulting in different timescales of saturation.

One-body observables

We finally show in Figs. 3.11 and 3.12 the center of mass q and its fluctuations σ x evolution, respectively. We observe that all strategies give a very good agreement at the initial stages of the dynamics with the exact result. Overall, we conclude that the analytical expression does not degrade the comparison with the exact result compared to the previous ETDHF case. This is very encouraging for future applications because the new approximation is much less costly numerically than performing the backward propagation.

Introducing single-particle lifetimes

We have shown that part of the difficulty in implementing ETDHF can be avoided by the method we proposed above. The last aspect of ETDHF that was studied in this thesis is the possibility to release the assumption regarding the empirical parameter Γ. This parameter was firstly introduced to simplify the evaluation of the time-integral (3.18). It can physically be interpreted as a way of treating the fact that the backward propagation with mean-field neglects beyond mean-field effects. effect is that due to collisions, single-particles acquire a finite lifetime, denoted hereafter by τ α . Consistently with the ETDHF method, this lifetime is actually nothing but the one estimated by Eq. (3.32a). Accordingly, one can introduce a decay width Γ α = ℏ/τ α for each particle and include it in the integral evaluation. This actually provides a physically motivated way to avoid the introduction of a fictitious parameter Γ. The proper estimate of Γ α and the possibility to include it in the backward propagation is however not easy. Indeed, we see in practice that the evaluation of Γ α in Eq. (3.32a) is itself dependent on the width of all other particles involved in the process and should lead to a set of coupled secular equations.

The strategy assumed in this work is that (i) the width Γ is the sum of the widths of the individual single-particle states involved in a given transition and (ii) the width Γ α at time s can be replaced by the one at time t:

Γ αβλδ (t) = Γ α (t) + Γ β (t) + Γ λ (t) + Γ δ (t), (3.53) 
with Γ α (t) given by Eq. (3.32a):

Γ α (t) = ℏ τ α (t) = ℏ (G α (t) + L α (t)) (3.54) = βλδ;ijkl v αβλδ (t)v MF ijkl (t)P λi (t)P δj (t)P * αk (t)P * βl (t)Re ζ ijkl Γ αβλδ (t) {n β n δ n λ + n β n δ n λ } t .
Note that here, the replacement Γ → Γ αβδγ (t) was performed. Since the truncation of the single-particle Hilbert space ensures that only states near the Fermi sea are involved in the calculations consistently with Fermi liquid theory [START_REF] Fetter | Quantum Theory of Many-Particle Systems[END_REF][START_REF] Pines | Theory of Quantum Liquids, Volume I: Normal Fermi Liquids[END_REF], we finally make the approximation that Γ αβδγ (t) ≈ 4Γ α (t). The final equation obtained is of the form:

Γ α (t) = βλδ;ijkl v αβλδ (t)v MF ijkl (t)P λi (t)P δj (t)P * αk (t)P * βl (t) {n β n δ n λ + n β n δ n λ } t Re ζ ijkl 4Γα(t) (t) . (3.55)
We see that the evaluation of Γ α is a secular equation involving Γ α only. This equation, called the secular equation hereafter, allows estimating the cutoff parameter intervening in the gain and loss terms.

Results

We have tested the use of the set of secular equations instead of using an arbitrary value of Γ. This leads to a third strategy for the implementation of ETDHF, referred to as strategy 3. In this strategy, the ansatz (3.52) is used for the integral and the secular equation for each Γ α is solved using an iterative method at each time step ∆t. We show in Fig. 3.13 some examples of Γ α (t) evolutions obtained as functions of time. In this figure, we see that: • The widths Γ α change with time, which is at variance with the constant Γ assumption. This variation can be understood from the evolutions of the n α . At initial time, the Pauli effect is more effective to block the collisions. As the n α varies, the Pauli blocking is reduced and, accordingly, the lifetime decreases (Γ α increases).

• We also see that the asymptotic values of Γ α slightly depends on the state. This is expected since, at least asymptotically, we expect that single-particle lifetimes depend on how close a particle is to the Fermi energy [START_REF] Fetter | Theoretical mechanics of particles and continua[END_REF].

• Last, it is interesting to compare the values of Γ α to the Γ that was fixed empirically. It was observed that the ETDHF evolution reproduces approximately the exact case as soon as Γ < Γ threshold where the threshold is around 6 MeV. Results shown before were obtained with Γ ≈ 3.07 MeV. We see that the Γ α are of the order of magnitude of the Γ retained empirically.

• Finally, we used this third method to simulate ETDHF. Results are systematically shown in Figs. 3.9-3.12 in green lines. We essentially found a perfect agreement with the case where Γ is imposed empirically. Only for the asymptotic evolution of S can we see that a slightly larger entropy is obtained. A detailed numerical SYSTEMS analysis has shown that this discrepancy stems from the lifetime of unoccupied states obtained using the secular equation that is hard to converge at large time.

Conclusion

In this chapter, the basic properties of ETDHF theory were presented. We discussed its practical implementation that was previously studied in [START_REF] Lacroix | Quantal extension of mean-field dynamics[END_REF][83][START_REF] Lacroix | On the simulation of extended TDHF theory[END_REF]. It is shown that the inclusion of the Born term in perturbation theory leads to a great improvement of the results over the TDHF predictions for a wide range of temperatures for a model case of a two interacting particles. Some effects are now described that were completely missing in a TDHF description, e.g. evolution of the occupation numbers dissipation and entropy increase. This is, however, done at a high numerical cost because of the time-integral that necessitates a backward propagation of the single-particle states.

An analytical ansatz was proposed to compute the time-integral after a careful study of the mean-field properties. This ansatz allows describing accurately the physics tackled by ETDHF theory, while dramatically reducing the computation time, opening the way to applications on bigger and more realistic systems. Finally, a method is proposed to include the effects of single-particle lifetimes in the ETDHF approach, relaxing previously ad-hoc approximations. The present study also points out the usefulness of the master equation on occupation numbers. For this reason, we decided to explore how such master equations can be derived from a general many-body problem. A specific discussion of this aspect is made in App. B.

Introduction

The BBGKY hierarchy constitutes the basis upon which many approximations of the many-body dynamics can be made. They consist in enriching the mean-field picture by considering two-body correlations on top of the TDHF equation. As we have seen in Sec. 2.2, this could be done by developing truncation schemes of the hierarchy and considering two-body (or higher order) correlations, leading to the TD-nRDM method. As we have seen, however, there is no clear prescription for this truncation, despite extensive work in the past. Developing truncation schemes remains a delicate endeavor since it can lead to instabilities and yield non-trivial results, see Fig. 2.2. Unphysical behavior of the observables is often observed at long time, although some truncation schemes lead to stable equations of motion with physically interpretable results (TDHFB and ETDHF). Furthermore, these methods can be rather involved numerically because of the quadratic dependence of the two-body density/correlation matrix size with the single-particle Hilbert space size. An illustration of this complexity in application was given in Chap. 3 with the ETDHF case.

TDHF or TDHFB, starting from a well-defined initial state and leading to a unique, well-defined final state, are usually rather predictive, and describe the mean value of observables of interest (i.e., one-body observables). However, they usually underestimate dissipative effects and quantum fluctuations of one-body observables [START_REF] Negele | The mean-field theory of nuclear structure and dynamics[END_REF]. Deterministic methods like ETDHF provides a way to partially account for dissipation.

Stochastic methods can provide an alternative way to incorporate effects beyond the independent particle picture. Several stochastic approaches have been proposed in the last decades to include at least partially or fully two-body correlation effects [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF]. The underlying idea behind these stochastic methods is to replace a complex problem by a set of evolutions, where a simpler problem is solved along each path. In the context of the many-body problem, "simple" almost always means mean-field or mean-field-like evolution. Here, we are interested in introducing a stochastic approach that can incorporate effects that are either included in ETDHF, i.e., in medium two-body collisions, or the effects of two-body fluctuations. We mention here two approaches that aim at achieving one of these two goals: the stochastic TDHF (STDHF) method [START_REF] Abe | On stochastic approaches of nuclear dynamics[END_REF][START_REF] Reinhard | Stochastic TDHF and large fluctuations[END_REF][START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Lacombe | A collisional extension of time-dependent Hartree-Fock[END_REF][START_REF] Lacombe | Stochastic TDHF in an exactly solvable model[END_REF][START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF][START_REF] Suraud | Stochastic time-dependent hartree-fock for heavyion collisions at fermi energies[END_REF] and the stochastic mean-field (SMF) method [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF][START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF][START_REF] Washiyama | Mass dispersion in transfer reactions with a stochastic mean-field theory[END_REF][START_REF] Yilmaz | Nucleon exchange mechanism in heavy-ion collisions at nearbarrier energies[END_REF][START_REF] Lacroix | Quantal corrections to mean-field dynamics including pairing[END_REF][START_REF] Yilmaz | Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions[END_REF][START_REF] Simenel | Challenges in description of heavy-ion collisions with microscopic time-dependent approaches[END_REF][START_REF] Lacroix | A simplified BBGKY hierarchy for correlated fermions from a stochastic mean-field approach[END_REF][START_REF] Yilmaz | Multinucleon transfer in Ni 58 + Ni 60 and Ni 60 + Ni 60 in a stochastic mean-field approach[END_REF][START_REF] Regnier | Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques[END_REF][START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF][START_REF] Ulgen | Impact of initial fluctuations on the dissipative dynamics of interacting Fermi systems: A model case study[END_REF][START_REF] Lacroix | Large amplitude collective dynamic beyond the independent particle/quasiparticle picture[END_REF]. The philosophy of the SMF approach is illustrated in Fig. 4.1.

The aim of the STDHF method is to provide a reformulation of the many-body problem, assuming that the stochastic process is mainly due to two-body collisions. The evolution is then replaced by a set of mean-field trajectories associated with a set of Slater determinants. Each Slater determinant then encounter jumps during the evolutions due to the coupling with 2p2h excitations. The Fermi-golden rule [START_REF] Dirac | The quantum theory of the emission and absorption of radiation[END_REF] is oftentimes used to obtain the jump probabilities. Strong efforts have been made to render this theory as a practical tool [START_REF] Lacombe | On dynamics beyond time-dependent mean-field theories[END_REF][START_REF] Vincendon | Introduction de la relaxation dans la théorie de la fonctionnelle de la densité dépendant du temps[END_REF].

In the present thesis, we have explored an alternative stochastic approach, where the stochastic process only stems from a set of initial conditions. In this method, random fluctuations are introduced at t = 0. The random fluctuations mimic quantum fluctuations at the initial time. Instead of a Slater determinant state, a set of one-body densities is considered at initial time, and each density is propagated independently of one another using mean-field-like EOMs. This is the stochastic mean-field (SMF) The SMF method consists in sampling the initial conditions at time t 0 with Gaussian random numbers whose statistical properties are the same as the initial quantum fluctuations. Each event is then propagated using TDHF-like equations of motion with its own self-consistent mean-field. The average of the observables is then computed by taking the statistical average of the ensemble.

(a) R(t 0 ) R(t f ) (b) R (n) (t 0 ) R (n) (t f )
method [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF][START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF]. It allows departing from the mean-field picture while keeping rather simple equations of motion that are numerically both stable and tractable. One of the objectives of the present thesis was to further study its predictive power, understand its connection with more traditional theories, and try to improve this approach. In the present chapter, we summarize the basic ingredients of the SMF theory, its link to the BBGKY hierarchy and show applications with the Fermi-Hubbard model.

Illustration of mean-field limitations

The Fermi-Hubbard model I illustrate here the SMF predictive power. I follow Ref. [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF] and apply the approach to the 1D Fermi-Hubbard model. The reason we specifically focused on this model is that it was one of the most difficult to describe within the SMF phase-space approach compared to other applications [START_REF] Lacroix | Quantal corrections to mean-field dynamics including pairing[END_REF][START_REF] Yilmaz | Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions[END_REF][START_REF] Lacroix | Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of initial quantum fluctuations[END_REF] and, even in the weak-coupling regime, the long-time evolution was impossible to reproduce. It is therefore a good benchmark for quantifying the departure from the exact evolution and/or for testing possible improvements beyond SMF, as discussed in Chap. [START_REF] Khan | Continuum quasiparticle random phase approximation and the time-dependent Hartree-Fock-Bogoliubov approach[END_REF].

In this model, the Hamiltonian describes interacting fermions of spin σ that can move in a set of doubly-degenerated sites labelled by i and associated with creation/annihilation operators (â † iσ , âiσ ). The Hamiltonian is given by [START_REF] Jafari | Introduction to Hubbard Model and Exact Diagonalization[END_REF]:

Ĥ = -J i,σ â † iσ âi+1σ (1 -δ iNs ) + â † iσ âi-1σ (1 -δ i1 ) +U i â † i,↑ â † i↓ âi↓ âi↑ , (4.1) 
The Hubbard model is a prototype for strongly correlated many-particle systems, including electrons in condensed matter and molecules, as well as for fermions or bosons in optical lattices. It is of particular interest how the dynamics depend on the coupling strength and on the particle number, see for instance [START_REF] Jaksch | Cold bosonic atoms in optical lattices[END_REF][START_REF] Greiner | Quantum phase transition from a superfluid to a Mott insulator in an ultracold gas of atoms[END_REF][START_REF] Schneider | Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms[END_REF]. The description of finite correlated quantum lattice systems out of equilibrium is very challenging in general.

Exact solutions using direct configuration interaction methods are possible only for very small system size [START_REF] Jafari | Introduction to Hubbard Model and Exact Diagonalization[END_REF], and the use of quantum Monte-Carlo methods [START_REF] Whitlock | Quantum Monte Carlo Simulations of Solid 4He[END_REF] only slightly increases the accessible system size. These approaches are hampered by the exponential increase of the computational effort with the system size. For these reasons, the SMF technique was tested on the fermionic Hubbard model in the same conditions as in [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]. Comparison is then made with the results of the different TD-2RDM truncation schemes, shown in Fig. 2.2.

Symmetries, mean-field equations of motion, and initial conditions

It is useful to recall the symmetries of the Hubbard Hamiltonian to derive the mean-field equations of motion:

• The number of particles

N = i (n i↑ + n i↓ ) is conserved, i.e. N , Ĥ = 0,
• The projection on the z-axis of the total spin

S z = 1 2 i (n i↑ -n i↓ ) is conserved: Ŝz , Ĥ = 0.
• As a consequence of the two symmetries above, the number of +1/2 particles and -1/2 particles are both conserved.

These symmetries imply that the Hamiltonian matrix will be block diagonal, where a given block corresponds to a given value of N and S z . In particular, if the system has a given particle number and S z at initial time, its time-evolution only requires the corresponding part of the Hamiltonian in this sub-block, reducing significantly the numerical effort for the exact solution. The EOMs in the Fermi-Hubbard model with sharp boundary conditions (see the Hamiltonian (4.1)) can conveniently be written in the basis set of site orbitals with spin associated with the fermionic operators (â † iσ , âiσ ). I denote by N = N ↑ + N ↓ the total number of particles where N ↑ (resp. N ↓ ) is the number of particles with spin up (resp. down). For N s sites, the size of the Hilbert many-body space, is given by

N s N ↑ × N s N ↓ , where A B denotes the combinatorial coefficient.
For instance, N s N ↓ is the number of Slater determinants having exactly N ↓ on N s sites. This scaling is already very challenging for exact solutions. Denoting the spin up (resp. spin down) with a + (resp. -), and considering that the initial state corresponds to the CHAPTER 4. STOCHASTIC MEAN-FIELD APPROACH S z = 0 (symmetry spin up/spin down) case, we have schematically:

R ++ = R --, R +-= R -+ = 0, D +-+-= D -+-+ , (4.2) D ++++ = D ----= D +-+-+ D +--+ , D +--+ = D -++-,
where R and D denote respectively the one and two-body density matrices (note that here the labels associated to site number are implicit). We can see that for a spinsymmmetric case, one only needs to propagate R ++ or R --. Omitting the spin indices on R for clarity since no confusion can be made, and considering that the Latin subscript i, j, . . . denote the ith, jth, . . . , site starting from the left of the 1D lattice, one can write the EOMs for the TDHF theory (here ℏ = 1) [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]:

i Ṙij = -J [R i+1j (1 -δ iNs ) + R i-1j (1 -δ i1 ) -R ij+1 (1 -δ jNs ) -R ij-1 (1 -δ j1 )] + U R ij (R ii -R jj ) . (4.3) 
Note that here, the different δs appearing in the right hand-side accounts for the sharp boundary conditions. We consider below that the initial state is a Slater determinant where particles with spins up and down are located on the left side of the lattice, the initial density is given by:

R ij (t 0 ) =    1 if i = j and i ≤ N/2, 0 otherwise. (4.4) 
Following Ref. [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF], we consider the case where the number of particles N is equal to the number of sites N s (assumed to be even in the following) and suppose that all particles are initially located on one side of the mesh. These occupation probabilities are related to the one-body density through n iσ ≡ R σσ ii , where we used the notation

R σσ ′ ij = ⟨â † jσ ′ âiσ ⟩.
For a few sites, the problem can be solved exactly by solving the manybody Schrödinger equation. It can then be confronted to approximate treatments. We compare in Fig. 4.2 the exact solution obtained for 4 (resp. 8) particles on 4 (resp. 8) sites with the mean-field solution for a coupling strength U/J = 0.1. In the following, we will use the convention ℏ = 1 and time will be given in J -1 units, while the numerical applications are performed using N time = 4000 time steps of δt = 0.025J -1 .

TDHF results on the Hubbard model

We show in Fig. 4.2 a comparison between the exact solution and the TDHF solution. The exact solution is obtained by solving directly the time-dependent equation in the total configuration space. This is possible when N s is not too large. We consider here the case N = 2N ↑ = 2N ↓ = 4 and 8. This corresponds, for the coupling space, to a total of 36 and 4900 Slater determinants, respectively. The mean-field solution is solved using a second order Runge-Kutta method that ensures reasonable precision. The results shown In both panels, the exact solution is displayed by a black solid line, the TDHF solution is shown by a green dotted line. Note that here we have n 1↑ (t) = n 1↓ (t) = n 1 (t), and we simply omit the spin. in Fig. 4.2 are obtained for a weak two-body interaction. We observe a typical situation of TDHF when compared to the exact case. The TDHF usually reproduces the collective oscillation and rather well the short time evolution. However, for longer times, TDHF is not able to describe the dissipation of the collective oscillations.

Stochastic mean-field

Mapping quantum and statistical averages

In the SMF approach, the system is described by a set of initial conditions with fluctuating one-body density, followed by deterministic TDHF [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] or TDHFB trajectories [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF]. An important aspect of this approach is that the quantum problem is replaced at initial time by a statistical ensemble. More precisely, a statistical ensemble (in the classical sense) of N evt one-body densities R (n) is considered, where (n) labels the specific "event" or set of the ensemble with n = 1, . . . , N evt . The statistical properties of the initial ensemble are chosen to reproduce the initial quantum properties of the system to be simulated. In SMF, all one-body observables denoted generically by A are treated as classical fluctuating objects that are given along each trajectory by:

A (n) (t) = ij A ij R (n) ji (t), (4.5) 
where R

(n) ji (t) are the densities with initial fluctuations. In the following, we will use the notation A (n) for the statistical average, defined as:

A (n) (t) = 1 N evt k,ij A ij R (k) ji (t) = ij A ij R (k) ji (t), (4.6) 
while  is used as before to denote the quantum average. When more than one observable is considered, denoted by Â, B, Ĉ, ..., the following correspondence between quantum and statistical average is considered:

⟨ Â⟩ ⇐⇒ A (n) = ij A ij R (n) ji , ⟨{ Â, B} + ⟩ ⇐⇒ A (n) B (n) = ijkl A ij B kl R (n) ji R (n) lk , ⟨{ Â, B, Ĉ} + ⟩ ⇐⇒ A (n) B (n) C (n) = ijklmn A ij B kl C mn R (n) ji R (n) lk R (n) nm , . . . , (4.7) 
where we have used the notation:

⟨{ Â, B} + ⟩ ≡ 1 2 ⟨ Â B + B Â⟩, ⟨{ Â, B, Ĉ} + ⟩ ≡ 1 6 ⟨ Â B Ĉ + Â Ĉ B + B Â Ĉ + B Ĉ Â + Ĉ B Â + Ĉ Â B⟩.
. . .

Mapping a quantum problem into a classical one for Fermi systems is not easy [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF].

The SMF approach as proposed in [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] simplifies the mapping by considering solely the first and second moments and by assuming Gaussian initial fluctuations. The first moment of an observable is given by Eq. (4.6). The correlation between two observables Â, B is denoted by Σ 2 AB . It is given by:

Σ 2 AB (t) = A (n) (t)B (n) (t) -A (n) (t) B (n) (t). (4.8) 
It is convenient to introduce the notation:

δR (n) ij = R (n) ij -R (n) ij . (4.9)
Then, the quantum correlation reads:

Σ 2 AB (t) = ijkl A ij B kl δR (n) ji δR (n) lk . (4.10) 
There are two important ingredients in the SMF phase-space method: (i) the statistical properties of the initial ensemble and (ii) the choice of the equation of motion. In [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF][START_REF] Davidson | Semiclassical approach to dynamics of interacting fermions[END_REF], Gaussian probabilities are assumed for the matrix elements of the one-body density, such that their first and second moments match the quantum fluctuations at initial time.

Assuming that the initial state is an independent particle state at zero or finite temperature, the information on the system is contained in its one-body density matrix that is given in the natural basis denoted by {|ϕ α ⟩} α by R 1 (t 0 ) = α |ϕ α (t 0 )⟩n α (t 0 )⟨ϕ α (t 0 )|. To reproduce the properties of the initial state, it was shown in Ref. [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] that the initial ensemble of one-body densities R (n) should fulfill the following conditions at initial time (omitting t 0 for simplicity): In SMF, as standardly assumed in "phase-space" methods, each initial condition is assumed to be evolved using a "classical-like" equation of motion. It is known that the mean-field equation leads to quasi-classical motion in collective space. For this reason, it was proposed in [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] to simply assume that mean-field equations given by Eq. (2.12) can directly be assumed for each trajectory, i.e.:

     R (n) αβ = δ αβ n α , δR (n) αβ δR (n) γδ = 1 2 δ αδ δ βγ [n α (1 -n β ) + n β (1 -n α )] .
iℏ Ṙ(n) 1 = h 1 [R (n) ], R (n) 1 . (4.12) 
Such an equation can be solved directly as it was done for simple models. Alternatively, it can be done by decomposing the initial state as:

R(n) (t 0 ) = ij |ϕ i (t 0 )⟩ R (n) ij ⟨ϕ j (t 0 )| , (4.13) 
where {|ϕ i ⟩} i is the complete single-particle basis. Then, the evolution (4.12) can be simulated by evolving the single-particle states:

iℏ ∂ ∂t |ϕ (n) α (t)⟩ = h R (n) (t) |ϕ (n) α (t)⟩ , (4.14) 
where

R(n) ij (t) = ij |ϕ (n) i (t)⟩ R (n) ij ⟨ϕ (n) j (t)| while keeping the R (n) ij coefficients constant in time.
The underlying principle of the SMF technique is illustrated schematically in Fig. 4.1. An important feature is that, even if the amplitude of the initial fluctuations is small, the mean-field evolution can enhance the fluctuations because of its non-linearity, and hence events can substantially deviate from one another. Among the interesting aspects of the SMF approach, one can mention that beyond mean-field effects are incorporated, although only mean-field type evolution is needed. One important result is that the SMF technique can sometimes provide a better approximation compared to some TD-2RDM approaches, where two-body degrees of freedom are explicitly introduced in the equations of motion [START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF] (see also below). Furthermore, the choice of a mean-field-like equation seems quite natural when trying to develop a phase-space approach for the many-body problem since the TDHF equation is not able to describe several fundamental quantum phenomena, e.g., quantum tunneling, and can therefore be seen as a "classical" approximation of the many-body problem. It has furthermore the advantage of being simple to implement in practice, since it only requires to solve TDHF equations that are standardly used nowadays.

The replacement of a quantum problem by a statistical ensemble of "classical" ones has been shown to be exact in some cases. Applications of the SMF approach [START_REF] Kay | Numerical study of semiclassical initial value methods for dynamics[END_REF][START_REF] Kay | Semiclassical propagation for multidimensional systems by an initial value method[END_REF][START_REF] Walton | Application of the frozen Gaussian approximation to the photodissociation of CO2[END_REF] have shown several appealing features. One of the attractive aspects is that it is able to catch beyond mean-field effects while being simple to implement. In general, it was found that the approach is competitive when the interaction between particles is not too strong, and, whatever the strength of the interaction, it properly describes the short time evolution as well as the average asymptotic limit of the observables. I will illustrate this aspect below after a general discussion of selected aspects of SMF.

Some aspects of the SMF approach

Some properties of SMF have already been discussed extensively in the literature [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF][START_REF] Yilmaz | Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions[END_REF][START_REF] Lacroix | A simplified BBGKY hierarchy for correlated fermions from a stochastic mean-field approach[END_REF][START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF]. We briefly recall below some of the most important ones.

Conservation laws

First, let us prove that the particle number N is conserved in the SMF framework.

iℏ Ṅ = Tr iℏ∂ t R (n) = Tr 1 h R (n) , R (n) + Tr 2 [ṽ 12 , C 12 ] = Tr 12 [ṽ 12 , C 12 ] = 0. (4.15) 
This immediately shows that particle number is conserved Now, let us show that the energy of each stochastic event is conserved through time. The energy E HF of the system is written:

E HF = Ĥ = ij t ij R ji + 1 4 ijkl ṽijlk (R li R kj -R ki R lj ) , (4.16) 
where we consider that the average is taken using Slater determinants. In the SMF framework, the 1-body density matrix is fluctuated, and its evolution follows the meanfield approximation. The evolution of the energy of one event E

(n) MF (t) is therefore written as:

iℏ Ė(n) MF = ij t ij h R (n) , R (n) ji + 1 4 ijkl ṽijlk h R (n) , R (n) li R (n) kj + R (n) li h R (n) , R (n) kj -h R (n) , R (n) ki R (n) lj -R (n) ki h R (n) , R (n) lj . (4.17)
Since h is a real symmetric matrix, a simple relabel of the summation indices shows that the first term is equal to zero. The 2-body terms can be dealt with similarly, one has to be careful with the relabeling since ṽijkl is antisymmetric. As expected, we find back that the energy is conserved as long as the mean-field EOMs are used:

iℏ Ė(n) MF = 0. (4.18) CHAPTER 4. STOCHASTIC MEAN-FIELD APPROACH Then, E (n) MF = 1 N evt E (n) MF (4.19)
From this, we conclude that the average energy E

(n) MF of the system is conserved with time.

Distribution of initial fluctuations

In the original formulation of SMF [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF], it was assumed that the initial quantum fluctuations are mapped to a Gaussian statistical ensemble. Such a Gaussian approximation has several advantages. One of them is its simplicity, since it requires only to compute the first two moments of the hierarchy, as it implicitly assumes that all moments of the initial quantum fluctuations of the observable interest can be obtained using the first two moments only. This assumption has been extensively investigated in [START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF], where the authors tried different initial conditions and studied the effect on observable evolution. Writing explicitly the higher order centered moments:

Σ m A (t) = i 1 ...im j 1 ...jm A i 1 j 1 . . . A imjm δR (n) j 1 i 1 . . . δR (n) jmim , (4.20) 
it is possible to find the conditions on δR (n)

j 1 i 1 . . . δR (n)
jmim for which the initial quantum fluctuations are best mimicked. The Gaussian assumption, although rather crude, has the merit that it can always be obtained from second moments without any difficulties. It was explored in SMF [START_REF] Yilmaz | Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions[END_REF][START_REF] Lacroix | Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of initial quantum fluctuations[END_REF] or in its equivalent for bosons (see truncated Wigner approximation (TWA) [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Davidson | Semiclassical approach to dynamics of interacting fermions[END_REF][START_REF] Walls | Quantum optics[END_REF][START_REF] Steel | Dynamical quantum noise in trapped Bose-Einstein condensates[END_REF][START_REF] Sinatra | The truncated Wigner method for Bosecondensed gases: limits of validity and applications[END_REF][START_REF] Blakie | Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques[END_REF][START_REF] Pucci | Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories[END_REF][START_REF] Orioli | Nonequilibrium dynamics of spin-boson models from phase-space methods[END_REF]) that one can also directly construct a quantum distribution through a phase-space analysis, see discussion in Chap. 6. The use of more realistic distributions can improve the SMF results in the weak coupling regime. To use such a distribution, one should a priori at least smooth slightly the distribution so that it is positive everywhere and can be used for Metropolis sampling of the initial conditions.

Spontaneous symmetry breaking

The mean-field approach cannot describe physical effects related to spontaneous symmetry breaking, e.g., molecule dissociation or spontaneous fission in nuclei. Both dynamical symmetry breaking and lack of fluctuations are related to the absence of quantum effects in collective space, and consequently collective motion appears nearly classical in the mean-field dynamics. It has been shown on a generalized Lipkin model that the SMF approach, in contrast, is able to describe bifurcation effects [START_REF] Lipkin | Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory[END_REF][START_REF] Meshkov | Validity of many-body approximation methods for a solvable model: (II). Linearization procedures[END_REF][START_REF] Glick | Validity of many-body approximation methods for a solvable model: (III). Diagram summations[END_REF][START_REF] Agassi | Validity of many-body approximation methods for a solvable model: (IV). The deformed Hartree-Fock solution[END_REF]. This stems from the fact that some initial conditions can break the mean-field symmetries while respecting it in average [START_REF] Lacroix | Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of initial quantum fluctuations[END_REF]. The SMF calculations provide a very good agreement for complex oscillations during early evolution of mean values and fluctuations of one-body operators. Over the long time interval, SMF simulations also provide a satisfactory description of the gross properties, i.e., time-averaged behavior of the mean values and its fluctuations. The advantageous scaling of the SMF technique makes it a suitable framework beyond mean-field for describing the dynamics of fluctuations and for understanding spontaneous symmetry breaking in complex quantum systems from a quasi-classical perspective. This is again a very attractive feature of this approach.

Impact of the initial fluctuations on the dynamics: a simplified BBGKY hierarchy

One of the important reasons for the success of SMF is that it corresponds to a truncated hierarchy of equations, very similar to BBGKY. This aspect was an important guidance when trying to improve the SMF method, as we will discuss in Chap. 5. For this reason, I give here more details on this aspect in the present section.

The propagation of the initial fluctuations can be investigated further by analyzing the average equation of motion, and deriving the equations of motion for many-body observables. The SMF technique allows to approximate many-body observables using a quasi-classical mapping (see Sec. 4.3.1). Indeed, considering k one-body operators {A(i)} 1≤i≤k , their expectation values are given by:

A(1) (n) . . . A(k) (n) = α i β j A α 1 β 1 (1) . . . A α k β k (k)R (n) β 1 α 1 . . . R (n) β k α k . (4.21) 
Following [START_REF] Lacroix | A simplified BBGKY hierarchy for correlated fermions from a stochastic mean-field approach[END_REF], we observe that the knowledge of any one-, two-, . . . , k-body observable is equivalent to the knowledge of the time evolution of the set of moments M 1 , M 12 , . . . , M 1...k defined through:

⟨β 1 , . . . β k |M 1...k |α 1 , . . . , α k ⟩ = R (n) β 1 α 1 . . . R (n) β k α k . (4.22)
The explicit evolution of the set of moments can be obtained from Eq. (4.12). Using the expression of the mean-field Hamiltonian (2.14), Eq. (4.12) can be rewritten under the form:

iℏ Ṙ(n) 1 = t 1 , R (n) 1 + Tr 2 ṽ12 , R (n) 1 R (n) 2 . ( 4.23) 
Note that here we used the fact that

Tr 2 ṽ12 R (n) 2 = Tr 2 R (n) 2 ṽ12
. Taking the average, we directly obtain the first equation of a hierarchy of equation of motion on R (n) 1 , given by:

iℏ Ṁ1 = [t 1 , M 1 ] + Tr 2 [ṽ 12 , M 12 ] . (4.24) 
We note that this equation is very similar to the exact equation on the one-body density matrix with the great difference that M 12 is symmetric with respect to the exchange of indices. More generally, with this equation, one can show that the moments M 1 , . . . , M 1...k evolutions are coupled with each other. These higher order equations are immediately CHAPTER 4. STOCHASTIC MEAN-FIELD APPROACH obtained by deriving with respect to time the product R

(n) 1 . . . R (n) k : iℏ d dt [R (n) 1 . . . R (n) k ] = k α=1 R (n) 1 . . . t α , R (n) α . . . R (n) k + k α=1 R (n) 1 . . . Tr (k+1) ṽα(k+1) R (n) k+1 , R (n) α . . . R (n) k . (4.25)
Introducing the notation

M (n) 1...k = [R (n) 1 . . . R (n) 
k ] for the fluctuating moments, we then end up with the fact that the equation of motion of

M (n) 1...k is coupled to M (n) 1...(k+1) . iℏ d dt M (n) 1...k = k α=1 t k , M (n) 1. 
..k + k α=1 Tr k+1 ṽα(k+1) , M (n) 1...(k+1) 
.

The set of equations (4.27) then corresponds to the average version of the above coupled equations. On average, this gives:

iℏ d dt M 1...k = k α=1 t k , M 1...k + k α=1 Tr k+1 ṽα(k+1) , M 1...(k+1) . (4.27) 
This set of equations of motion resembles the BBGKY hierarchy, with the main difference being that the propagated quantities are now the moments of the one-body density matrix instead of the k-body densities. Furthermore, the moments are completely symmetric with respect to the exchange of indices, meaning that some fermionic correlations are lost in the SMF framework while the densities entering the BBGKY hierarchy are fully antisymmetric and properly treat the fermionic nature of particles.

The fact that the SMF technique is equivalent to an unrestricted hierarchy, while in practice solving an ensemble of mean-field-like trajectories, is a clear advantage of this method. It includes at least to some extent not only two-body effects, but also higher order correlations. These considerations might explain the relative competitiveness of SMF in comparison to other many-body techniques. For instance, in the TD-2RDM approach, the BBGKY hierarchy is truncated at second order only. The connection to the BBGKY hierarchy can be rewritten using Eq. (4.27) and the centered moments

C 1...k = δR (n) 1 . . . δR (n)
n . After some calculations made in App. A.5.1, the hierarchy of CHAPTER 4. STOCHASTIC MEAN-FIELD APPROACH equations then takes the explicit form (for k ≥ 2): Equation (4.28) is similar to the first equation of the BBGKY hierarchy, with the twobody correlation matrix C 12 replaced by C 12 . This equation clearly points out that effects beyond the standard mean-field are accounted for in the SMF approach. If we write explicitly Eq. (4.29) for k = 2, we see some differences with the second equation of the BBGKY hierarchy. We have explicitly:

iℏ d dt R (n) = h R (n) , R (n) + Tr 2 [ṽ 12 , C 12 ] , (4.28 
iℏ d dt C 12 = h 1 [R (n) ] + h 2 [R (n) ], C 12 + Tr 3 ṽ13 + ṽ23 , C 13 R (n) 2 + C 23 R (n) 1 +Tr 3 [ṽ 13 + ṽ23 , C 123 ] . (4.30)
Because of the replacement of the quantum average by a classical average, it is not expected that all many-body effects are accounted for in the SMF framework. We see that Eq. (4.30) corresponds to a simplified version of the second BBGKY equation for correlation [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF]. Looking at Eq. (4.30), and comparing with its exact quantum counterpart Eqs. (2.12) and (2.13), we first observe that there is no pendant to the Born term, although it is responsible for direct in-medium collisions. This is caused by the absence of antisymmetrization of the moments. Regarding in-medium collisions, it is anticipated that the SMF approach is only valid at low internal excitation of the system, where they are strongly hindered due to the Pauli exclusion principle. The pairing term is also missing, and it is expected to play a key role. It is possible to include at least some of its effects by constructing an SMF analog over TDHFB-like trajectories [START_REF] Lacroix | Quantal corrections to mean-field dynamics including pairing[END_REF]. Finally, we would like to point out that tests were performed over truncation schemes of the moments' hierarchy on a generalized Lipkin model [START_REF] Lacroix | A simplified BBGKY hierarchy for correlated fermions from a stochastic mean-field approach[END_REF], with the interesting result that they can be used as an alternative to the complete SMF theory in the weak coupling regime. Unstable behavior is however observed in the strong coupling regime as in the TD-2RDM approach, suggesting that it is preferable in the SMF case to solve explicitly the stochastic evolution instead of some approximate average obtained from the average.

Application of SMF to the Hubbard model

In this section, results of the SMF method applied to the Hubbard model as described by the Hamiltonian (4.1) obtained using the same numerical parameters as in Sec. 4.3.1 are presented. They are computed using N evt = 10000 trajectories. The results are compared to the exact and TDHF solutions, already presented above.

Equations of motion and initial conditions

In the SMF phase-phase approach, the EOM remains the TDHF one, except that the initial density is fluctuating at initial time. We then have:

i Ṙ(n) ij = -J R (n) i+1j (1 -δ iNs ) + R (n) i-1j (1 -δ i1 ) -R (n) ij+1 (1 -δ jNs ) -R (n) ij-1 (1 -δ j1 ) + U R (n) ij R (n) ii -R (n) jj , (4.31) 
where the initial time:

R (n) ij (t 0 ) = R (n) ij (t 0 ) + δR (n) ij (t 0 ), (4.32) 
R (n) ij (t 0 ) = R ij (t 0 ).
Since we consider the same initial condition as in TDHF we have presented above, we have:

R (n) ij (t 0 ) =    1 if i = j and i ≤ N/2, 0 otherwise, (4.33) 
while The properties of δR (n) ij (t 0 ) are obtained from the general prescription (4.11a) and (4.11b). We would like to mention that we assume in the present SMF application that the spin up / spin down symmetry is respected along each path. Fluctuations that break the spin symmetry at initial time are allowed by the statistical properties of the one-body density R (n) ij within SMF. For the SMF, this was tested and discussed in Ref. [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF]. The conclusion is that allowing the breaking of spin symmetry at initial time increases the numerical effort while not having sensible effects on the results. For this reason, we consider here the case where the spin symmetry is respected event-by-event.

δR (n) ij (t 0 )δR (n) ij (t 0 ) =    1 if i ≤ N/

Discussion of the results

Results of the SMF approach are shown on Fig. 4.3 and compared to both the exact and mean-field evolution. We clearly see that a significant improvement in the description of the evolution is achieved in the SMF approach compared to the TDHF In both panels, the exact solution is displayed by a black solid line, the TDHF solution is given by a green dotted line and the average over the SMF phase-space trajectories is given by a blue dashed line. The average occupation number is obtained here by averaging over 10000 trajectories. Note that here we have n 1↑ (t) = n 1↓ (t) = n 1 (t), and we simply omit the spin. case. For instance, the damping of n 1 (t) is remarkably well reproduced up to t ≃ 40J -1 and deviation from the exact solution is only observed for long time evolution. In general, it is found [START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF] that the predictive power of SMF is rather good in the weak coupling regime and degrades when the coupling increases. Furthermore, we can see that the predictive power of SMF slightly increases with particle number because of the washing out of initial quantum fluctuations with increasing system size. It also competes with the results obtained in Fig. 2.2, where SMF is able to perform better than every truncation schemes of the BBGKY hierarchy proposed in [START_REF] Akbari | Challenges in truncating the hierarchy of time-dependent reduced density matrices equations[END_REF]. In contrast to the TD-2RDM methods, it is observed that the SMF technique is neither numerically challenging nor unstable at long time since propagating N evt events is equivalent to a complete, non-truncated, hierarchy of EOMs.

Furthermore, it is found that SMF predicts a damping of the occupation numbers for long time evolution. As a result, it is not able to reproduce the revival of the oscillations in the time-evolution of the occupation numbers. Consequently, it predicts a damping of all one-body observables. This situation is illustrated in Fig. 4.4, where the exact (a) and SMF-approximated (b) time evolution of all occupation numbers is shown for N = N s = 8 sites. It can be seen that the dynamics is decomposed into at least three stages: (i) the set of fermions relaxes and bounces several times on the boundaries of the system, (ii) quantum fluctuations impose a somewhat uniform distribution of the probability on the lattice for a short time, and finally (iii) a slight revival of the oscillations can be observed with damped pattern similar to that of stage (i). The SMF technique accurately tracks the initial stages of the dynamics, but leads to an overall damping of all occupation numbers without any revival of the oscillations. The damping is furthermore slightly delayed, in comparison to the exact case. Remarkably, it is observed that the occupation numbers relax towards their average values in time, i.e. n i (t → +∞) = 1/2. This situation corresponds to an average of one electron per site of the lattice, i.e., a state of maximum one-body entropy. This is illustrated in Fig. 4.5, where the one-body entropy S is computed from the exact and SMF results for (a) N ↑ = N s /2 = 4 and (b) N ↑ = N s /2 = 8. The one-body entropy is computed using the formula:

S(t) = -k B Tr {R 1 (t) ln R 1 (t) + (1 -R 1 (t)) ln(1 -R 1 (t))} . (4.35)
In the SMF case, R 1 (t) is simply replaced by R

(n)

1 and the entropy is obtained by averaging over all SMF trajectories. We can see that the exact dynamics is here again decomposed into three phases in both cases: (i) an initial increase of the one-body entropy, stemming from the initial diffusion of the particles on the lattice, (ii) a slight decrease coinciding with a revival of the oscillations of the occupation numbers (see Fig. 4.4 for the case N = 8), and finally (iii) an increase of the entropy with the system seemingly relaxing towards equilibrium. The SMF method is able to accurately track the time evolution of the one-body entropy at initial time, but as illustrated in Figs. 4.3 and 4.6, it does not display any revival of the oscillations, and the system directly relaxes towards a state of maximum entropy. This seems to be a feature of the SMF method, since this has been observed in all tests performed with the method. Still, reasonable agreement with the exact solution is observed. Finally, it is worth noting that the SMF technique has been applied to 2D and 3D Hubbard lattice, and compared with the nonequilibrium Green functions (NEGF) formalism [START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF] for different coupling strengths. Results for a 1D lattice are shown in Fig. 4.6 for U/J = 0.25 and U/J = 0.5. Revival of the occupation numbers, observed at long times in the NEGF result (t ∼ 80, 90, 95[J -1 ]), are absent in the SMF results. In most cases, the results are also more accurate than the NEGF ones. When the interaction U/J increases, the overall behavior is still correctly reproduced, in contrast to TDHF. Furthermore, the SMF results show quantitative agreement with the exact solution for (very) short times. At long times, a qualitative agreement is observed, cf. Fig. 4.6. Interestingly, its validity range seems to be bounded by the correlation time τ cor of the system [START_REF] Hermanns | Hubbard nanoclusters far from equilibrium[END_REF], t ≲ τ cor ≈ 1/U . A new generation of NEGF techniques has been developed recently, that is able to outperform the SMF method [START_REF] Schlünzen | Ultrafast dynamics of strongly correlated fermions-nonequilibrium Green functions and selfenergy approximations[END_REF]. They, however, have the major drawback of relying on non-markovian effects, i.e., increasing significantly the numerical effort.

Since only a mean-field-like evolution is required, the numerical effort for SMF essentially scales as for TDHF and, therefore, SMF can be applied to cases where other methods would either require supercomputing facilities or cannot be applied at all because of system size.

Conclusion

In this chapter, limitations of the mean-field framework have been presented using the fermionic Hubbard model. It has shown the ability to catch the oscillatory behavior of the occupation numbers, and shows a good description of the early dynamics. However, it cannot describe important effects such as the dissipation observed in the exact solution, nor, consequently, the revival of these oscillations. This is illustrative of its incapacity to catch important quantum correlations. The stochastic mean-field method has been introduced to solve some of these problems. This method has the double advantage of catching beyond mean-field correlations while keeping the simple TDHF-like equations, and therefore being numerically simple to implement. It has been observed that the former usually leads to dissipative mechanisms that come from fluctuating initial conditions alone. For this reason, the SMF technique is expected to better work in the weak coupling regime and at low excitation energy, so that the Pauli blocking shields the system from 2p2h excitations. We observed that the ability of the SMF method to catch beyond mean-field correlations can be explained by the fact that solving the N evt mean-field-like equations is equivalent to solving a non-truncated simplified BBGKYlike hierarchy of equations of motion on the one-body density and the moments of its fluctuations. It is possible to solve the SMF coupled moments hierarchy. Although supposedly equivalent to solving Eq. (4.12), it is often simpler and more efficient to solve the TDHF trajectories directly. For instance, this can be seen in [START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF], where the SMF technique's advantageous scalability allows using it for 2D, 3D systems, while other methods, such as the non-equilibrium Green functions become costly numerically. SMF yields in that case satisfactory results, being able to compete with the NEGF. This leads us to conclude that the SMF technique is a powerful tool, its simplicity allowing to us consider applications to complex systems, and perhaps a generalization to handle realistic description of nuclear phenomena. Some investigations have already been performed [START_REF] Washiyama | Mass dispersion in transfer reactions with a stochastic mean-field theory[END_REF]. As a last remark, we would like to point out that the recent introduction of memory effects in NEGF [START_REF] Schlünzen | Ultrafast dynamics of strongly correlated fermions-nonequilibrium Green functions and selfenergy approximations[END_REF] led to new results, outclassing the ones obtained by SMF. This is done, however, at a great numerical cost. In the next chapter, we will construct an extension of SMF to catch more correlations, with the objective of keeping a simple approach.

C H A P T E R
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Beyond the stochastic mean-field method: a hybrid phase-space method 

Introduction

Phase-space approaches offer an alternative scheme to the BBGKY hierarchy or to more sophisticated techniques [START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF][START_REF] Hermanns | Hubbard nanoclusters far from equilibrium[END_REF][START_REF] Schlünzen | Ultrafast dynamics of strongly correlated fermions-nonequilibrium Green functions and selfenergy approximations[END_REF], allowing one to describe beyond mean-field correlations. In these approaches, a complex dynamical problem is replaced by a set of simpler dynamical evolutions. Then, the complexity of the dynamics can possibly be described by a proper weighted average over the simpler evolutions [START_REF] Gardiner | Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic with Applications to Quantum Optics[END_REF]. An example of such an approach that has been applied in bosonic interacting systems with some success is the truncated Wigner approximation [START_REF] Sinatra | The truncated Wigner method for Bosecondensed gases: limits of validity and applications[END_REF] or, as shown in the last chapter, the SMF theory that was proposed already some times ago [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] for Fermi systems and tested with some success [START_REF] Lacroix | Stochastic quantum dynamics beyond mean-field[END_REF][START_REF] Lacroix | Quantal corrections to mean-field dynamics including pairing[END_REF][START_REF] Lacroix | Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach[END_REF][START_REF] Lacroix | Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of initial quantum fluctuations[END_REF]. Another approach, that turns out to be rather close to the SMF technique, is the fermion-TWA (f-TWA) of Ref. [START_REF] Davidson | Semiclassical approach to dynamics of interacting fermions[END_REF].

In the SMF phase-space approach proposed in Ref. [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF], the initial quantum fluctuations in many-body space are mimicked by a Gaussian statistical ensemble of initial one-body densities. Then, each initial condition follows a TDHF-like trajectory that plays the role of the "simple" evolution. The aim of this chapter is to explore if alternative equations of motion for individual trajectories can be proposed, that would improve the predictive power of this phase-space method. To further progress, we realized that a more careful analysis of the connection between the phase-space approach proposed in Ref. [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] and the BBGKY hierarchy was desirable, since it provides strong guidance to go beyond the mean-field approximation by including gradually higher order effects related to two-body, three-body, . . . DOFs [START_REF] Kirkwood | The Statistical Mechanical Theory of Transport Processes I. General Theory[END_REF][START_REF] Born | A general kinetic theory of liquids; the molecular distribution functions[END_REF][START_REF] Schmitt | Truncation of time-dependent many-body theories[END_REF][START_REF] Cassing | Towards selfconsistent relativistic transport theories[END_REF][START_REF] Gong | Application of a time-dependent density-matrix formalism -I. Small-amplitude collective motions[END_REF]. For this reason, we start the discussion below by recalling some basic aspects of this hierarchy that will be useful later. Then, we propose a novel phase-space approach inspired from both SMF and BBGKY, that we called hybrid phase-space (HPS). We show that it indeed improves the description of interacting systems.

Qualitative discussion of a naive extension of SMF

One of the objectives of the thesis is to extend the SMF framework with the hope to get a better description of the dynamics for longer times. Several leads were explored to this end, with the BBGKY hierarchy serving as a guide. The first natural step in that direction was to try to combine the TDHF-like evolution of SMF trajectories with two-body DOFs. This has been done by completing the TDHF-like EOM of each trajectory using BBGKY terms. This led to coupled equations of motion on both R 1 and D 12 (or, alternatively, C 12 ). We faced two major problems, the first one being which terms to include, since TD-2RDM instabilities may depend on the retained terms. The second problem is the definition and properties of the random initial conditions, as well as their interpretation. Indeed, now both the one-and two-body densities are fluctuating quantities. Careful testing of several truncation schemes have shown that the interplay between the two is not trivial and needs special care for it not to induce strong numerical instabilities, leading to unphysical results. For these reasons, we have decided to include the Born term only, a truncation scheme that is known to be numerically stable (see Chap. 3). We simplified the problem further by considering that only the one-body density has fluctuations at initial time, i.e., denoting δD 12 (t 0 ) is set to zero. Starting from these two conditions, we constructed a new approximation of a quantum system dynamics that is described in the next section.

Extending the SMF framework: hybrid phase-space method

The clear advantage of the SMF theory highlighted in Chap. 4 is its predictive power, despite the fact that only the mean-field machinery is involved. The approach is however not exact and leads to deviations with the exact results, for instance for long time evolution with the absence of revival of the oscillations even in the weak coupling regime (see Fig. 4.3). Its predictive power degrades when the strength of the two-body interaction increases. The building blocks of the approach are the two assumptions made for the Gaussian approximation for the initial statistical ensemble and the mean-field like dynamics of R (n)

1 along each path, respectively. These issues have been discussed in Sec. 4.3.1. In recent years, the possibility to relax the Gaussian approximation for the initial probabilities has already been explored in Refs. [START_REF] Yilmaz | Importance of realistic phase-space representations of initial quantum fluctuations using the stochastic mean-field approach for fermions[END_REF][START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF]. The conclusion is that, although a systematic way of deciding the form of the initial probabilities is still missing, non-Gaussian probabilities that are better optimized to reproduce the initial system can lead to some improvements in the description of its evolution. Unfortunately, the alternative prescription proposed in Ref. [START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF] leads to only small improvement compared to the Gaussian case for the Fermi-Hubbard model. The original motivation of the present work was to use the BBGKY hierarchy as a guidance to propose an equation of motion for R (1) that could provide an alternative to the mean-field like equation used in SMF and eventually increase the predictive power. A first hint in this direction was given in Ref. [START_REF] Pucci | Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories[END_REF][START_REF] Orioli | Nonequilibrium dynamics of spin-boson models from phase-space methods[END_REF] for bosonic systems where higher-order equations of the BBGKY hierarchy were used to extend the TWA approach and led to an improved description of the evolution. It turns out that the method we propose below not only reaches this goal, but might also be useful to better describe the initial state. The work presented here has paid off and has led to a publication [START_REF] Czuba | Combining phase-space and time-dependent reduced density matrix approach to describe the dynamics of interacting fermions[END_REF].

Exploring the mapping further: an SMF approximation of the k-reduced density matrices

The strategy we follow to change the EOMs used in SMF is to make a connection between the hierarchy of equations on the moments obtained from the average SMF evolution (see Sec. 4.3.3) and the BBGKY hierarchy obtained for the k-body densities in the quantum many-body problem (see Sec. 2.2). As we have seen in the SMF approach, the hierarchy of dynamical equations on moments is relatively simple. In parallel, in the BBGKY hierarchy, the set of equations on the densities is relatively simple too.

Unfortunately, the opposite is not true. Starting from the SMF averaged moments, we can obtain the corresponding average density. The expressions and as a consequence the equation of motion for the average density is complex. On the other hand, starting from the BBGKY hierarchy, one can express the quantum symmetric moments in terms of the densities (see discussion in the appendix A.5.2), but in this case, it is the EOMs on the quantum moments that become rapidly extremely complex. This complexity has CHAPTER 5. BEYOND THE STOCHASTIC MEAN-FIELD METHOD: A HYBRID PHASE-SPACE METHOD prevented us from finding a systematic, constructive way to improve the EOMs to be used in the phase-space approach. Below, we propose a more pragmatic approach.

The SMF phase-space approach can be interpreted as the following mapping of symmetric moments at initial time (see Sec. 4.3.3):

Nij + -→ R (n) ij , Nij , Nkl + -→ R (n) ij R (n) kl , . . . ( 5.1) 
where Nij = â † j âi and where {•, • • • , •} + denotes the quantum expectation value of the fully symmetric moments (for further details, see appendix A.5.2). In the quantum problem, these quantum symmetric moments contain the same information as the density matrices. This is illustrated for the one-, two-and three-body densities: (5.4)

R ij = Nij , (5.2) 
D ik,jl = Nij , Nkl + - 1 2 (δ il R kj + δ kj R il ) , (5.3) 
T jln;ikm = Nji , Nlk , Nnm + - 1 
- 1 6 (δ jk δ lm R ni + δ li δ jm R nk + δ lm δ ni R jk + δ nk δ li R jm + δ ni δ jk R lm + δ jm δ nk R li ) , . . .
where R 1 , D 12 and T 123 denote the one-, two-, three-body density matrices respectively. We see in particular that the information content of the symmetric moments

⟨N ij ⟩, Nij , Nkl + , Nji , Nlk , Nnm + , .
. . is equivalent to the information content of the one-, two-, three-body, . . . density matrices. For a Gaussian distribution of the initial fluctuations, the mapping is exact at initial time only for the first two moments and only approximate for higher moments. From this mapping, one can also define properly the equivalent to the density matrices within the SMF framework. The expression of the event-by-event two-body and three-body density matrices are respectively given by Eq.

(5.5) and (5.6) below. In particular, consistently with the Gaussian approximation, we again deduce that the average one-and two-body densities match the exact quantum densities at initial time. These relationships on the quantum densities and quantum symmetric moments and the mapping between these moments and the density R (n) show that the equivalent of the two-, three-. . . body densities can also be constructed in the SMF theory. Based on the above relationships, we introduce the fluctuating matrices 

123 , . . . that are defined from the quantity R (n) used in SMF using:

D (n) ik,jl = R (n) ij R (n) kl - 1 2 δ il R (n) kj + δ kj R (n) il , (5.5) 
T (n) jln;ikm = R (n) ji R (n) lk R (n) nm - 1 2 δ jk R (n) il R (n) mn + δ lm R (n) kn R (n) ij + δ jm R (n) in R (n) kl +δ li R (n) kj R (n) mn + δ ni R (n) mj R (n) kl + δ nk R (n) ml R (n) ij + 1 3 δ jk δ lm R (n) ni + δ li δ jm R (n) nk + δ lm δ ni R (n) jk +δ nk δ li R (n) jm + δ ni δ jk R (n) lm + δ jm δ nk R (n) li , (5.6) 
. . .

The density matrices D (n) and T (n) defined in Eq. ( 5.5) and (5.6) do automatically fulfill some important properties. For instance, after a rather lengthy but straightforward calculation (see App. A.5.2), it is possible to show that we have1 :

TrR (n) 1 (t) = N, (N -1)Tr 2 D (n) 12 (t) = R (n) 1 (t), (N -2)Tr 3 T (n) 123 (t) = R (n) 12 (t), . . .
These are important properties that hold for the exact evolution and are automatically fulfilled on an event-by-event basis and therefore also hold when averaging over events. Such requirements are known to be a critical issue when performing TD-kRDM calculations [START_REF] Lacroix | Description of non-Markovian effect in open quantum system with the discretized environment method[END_REF]. In SMF, the statistical properties of the initial conditions are constructed to ensure that the first and second moments of the quantum fluctuations match the ones obtained through the statistical average. This automatically implies that we have the properties:

R (n) 1 (t = 0) = R 1 (t = 0), D (n) 12 (t = 0) = D 12 (t = 0).
(5.7)

However, the three-body average density does not a priori match the quantum threebody density, especially if a Gaussian approximation is made for the initial statistical ensemble (see for instance the discussion in [START_REF] Ulgen | Dissipative dynamics within stochastic mean-field approach[END_REF]). It is possible to show that the equations of motion obtained with these expressions of the k-body reduced density matrices are not the same as the BBGKY hierarchy. Their properties will however be useful as a guide to construct a new method to approximate the dynamics of fermionic systems. We make a detailed discussion of this aspect below. HYBRID PHASE-SPACE METHOD (a) immediate to verify that the two first constraints in (5.10) are fulfilled while for the third one we have:

R(t 0 ) R(t f ) (b) R (n) (t 0 ) R (n) (t f ) (c) R (n) (t 0 ) R (n) (t f ) D 12 (t 0 ) D (n) 12 (t f )
T (n) 123 (t 0 ) = D 12 (t 0 )R (n) 3 (t 0 )(1 -P 13 -P 23 ), = D 12 (t 0 )R 3 (t 0 )(1 -P 13 -P 23 ).
Therefore if T 123 (t 0 ) = D 12 (t 0 )R 3 (t 0 )(1 -P 13 -P 23 ) in the initial conditions, the third constraint in (5.10) is also fulfilled. This of course restricts the type of initial conditions that can be considered. For instance, this will not allow treating systems with initial residual non-zero three-body correlations. But systems that are initially described as a Slater determinant or a statistical ensemble of independent particles or eventually with only residual two-body correlations can be considered in the present approach.

An important remark is that, in the HPS method, we keep the spirit of the SMF phase-space approach here. Indeed, all one-body quantities will be calculated using the equation (4.5) and will be considered as classical objects. In particular, fluctuations or equivalently correlations between observables will still be performed using classical average over the sampled trajectories. Accordingly, as shown in the appendix A.5.2, one can define a fluctuating two-body or three-body density (D

(n) 12 (t) or T (n) 123 (t))
along each path that are given by Eq. (5.5) and (5.6), and the only meaningful two-body density one could extract from the present formalism is the average of these quantities. In particular, D 123 (t) obtained by using Eq. (5.11) should not be confused in average with the two-and three-body densities obtained by the phasespace method. Note that, even if at initial time we have

D (n) 12 (t 0 ) = D (n) 12 (t 0 ) = D 12 (t 0 ),
there is no reason that this equality is preserved for t > t 0 . We prefer to interpret these quantities as intermediate objects leading to a source term in Eq. (5.8) that has the role of introducing effects beyond the mean-field. The present method, by using an initial statistical ensemble and where quantities are obtained by performing a classical statistical average, clearly enters into the category of phase-space approaches. However, because we use intermediate quantities that do not fluctuate at initial time, we do not HYBRID PHASE-SPACE METHOD follow fully the strategy of the original SMF approach and for this reason it will hereafter be called the hybrid phase-space (HPS) method.

Application of the HPS method

In the present section, we apply the HPS method to the 1D Fermi-Hubbard model with different particle numbers and two-body interaction strengths, considering the same initial conditions as in previous TDHF and SMF applications in Chap. 4. As we mentioned previously, this model is a perfect test-bench for improving the SMF phasespace method because, even in the weak coupling limit, the SMF approach presents differences with the exact evolution. We recall the equations of motion used for the TDHF and SMF evolutions are given by Eqs. (4.3) and (4.31). The HPS evolution is performed using the same numerical parameters as in the previous chapter and N evt = 10000 trajectories. Omitting the spin indices on R for clarity since no confusion can be made, and considering that the Latin subscript i, j, . . . denotes the i th , j th , . . . , site starting from the left of the 1D lattice, one can write the EOMs for the HPS theory. The properties of δR n) . For this reason, we use the compact notations D

HPS equations of motion

+-+-(n) is coupled to R (n) = R ++(n) = R --(
(n) ijkl = D +-+-(n) ijkl
. The EOMs then read:

i Ṙ(n) ij = -J R (n) i+1j (1 -δ iNs ) + R (n) i-1j (1 -δ i1 ) -R (n) ij+1 (1 -δ jNs ) -R (n) ij-1 (1 -δ j1 ) +U D (n) iiji -D (n) ijjj , (5.16) i Ḋ(n) ijkl = -J D (n) i+1jkl (1 -δ iNs ) + D (n) i-1jkl (1 -δ i1 ) + D (n) ij+1kl (1 -δ jNs ) + D (n) ij-1kl (1 -δ j1 ) -D (n) ijk+1l (1 -δ kNs ) -D (n) ijk-1l (1 -δ k1 ) -D (n) ijkl+1 (1 -δ lNs ) -D (n) ijkl-1 (1 -δ l1 ) +U R (n) ii + R (n) jj -R (n) kk -R (n) ll D (n) ijkl + U δ ij D (n) iikl -R (n) ij D (n) jjkl -R (n) ji D (n) iikl -U δ kl D (n) ijkk -R (n) kl D (n) ijkk -R (n) lk D (n)
ijll .

(5.17)

For an initial state that corresponds to a Slater determinant, we have the initial conditions:

R (n) ij (t 0 ) = R (n) ij (t 0 ) + δR (n) ij (t 0 ), R (n) ij (t 0 ) = R ij (t 0 ), D (n) ijkl (t 0 ) = R ik (t 0 )R jl (t 0 ).

Results

Relaxation of particles on a 1D lattice

We compare the exact and approximate phase-space evolutions in Figs. 5.2 and 5.3 obtained respectively for the case where N = N s = 4 and N = N s = 8 in the weak coupling regime (U/J = 0.1) and when all particles are located on one side of the mesh at initial time. Therefore, the initial condition in the mean-field consists in a Slater determinant with initial spin symmetry. In panel (a) of these figures, we display the occupation probability of the leftmost site. In the exact case, the occupation probability of the site i verifies n iσ (t) = R σσ ii . Due to the initial condition, it verifies n i↑ (t) = n i↓ (t), allowing us to denote it simply by n i (t). In the phase-space approach, the occupation probability has the same spin symmetry and is defined through the average over events

n i (t) = R σσ(n) ii (t).
In panel (b) of these figures, we show a quantity q(t) that could be interpreted as the equivalent to the center of mass of the particles. This quantity is defined as:

q(t) = 1 2N s i,σ i - 1 2 R σσ ii (t).
(5.18)

The factor 1/2 comes from the fact that we sum over spins. Finally, in panel (c), we show the one-body entropy defined by Eq. (4.35). 3, we see that the new phase-space method proposed here is much better than the original SMF approach. It not only reproduces the short time evolution but also the evolution over much longer time. In the case of weak coupling, we observe that the HPS evolution is almost on top of the exact evolution and only at very large time U/J > 60, very small deviations with the exact results are observed. In particular, the new phase-space approach does not suffer from the over-damping that is generally observed in SMF [START_REF] Lacroix | Symmetry breaking and fluctuations within stochastic mean-field dynamics: Importance of initial quantum fluctuations[END_REF] and that is clearly seen in Fig. 5.2. By comparing the two figures, we also see that the agreement with the exact solution is improved when the number of particles increases. Indeed, in the HPS approach as in the original SMF, the different trajectories are independent of each other. As shown in [START_REF] Regnier | Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques[END_REF][START_REF] Regnier | From asymmetric to symmetric fission in the fermium isotopes within the time-dependent generator-coordinatemethod formalism[END_REF], the long-time evolution of small systems can be treated in terms of a set of mean-field trajectories only if the quantum interferences between the trajectories are accounted for. Such interferences are indeed present in the Fermi-Hubbard model, as illustrated in Fig. 5.4. In this figure, we show the evolution of the local density n i (t) as a function of time, corresponding to the initial condition used in Fig. 5.3. In this figure, the exact evolution seems to present interference patterns and revival of oscillations that are most probably due to the quantum wave that is bouncing back at the boundary. Such long time interferences are not reproduced by SMF but are nicely reproduced in the HPS method. This actually is a surprise in a method where trajectories are solved independently of each other. It should however be kept in mind that the HPS approximation goes beyond the independent particle motion by including part of the correlations that build up in time through the use of Eq. (5.13).

Effects of increasing the two-body interaction strength

In Figs. 5.5 and 5.6 for N = 4 and Figs. 5.8 and 5.9 for N = 8, we show the evolution of the leftmost site occupation probability n 1 (t) and the center of mass q(t) when the two-body coupling strength increases. In all cases, we observe that the HPS method reproduces much better the exact evolution than the SMF approach. However, when the two-body strength increases, we see after some time τ HPS some deviations with the exact evolution. The timescale over which HPS is predictive decreases as U/J increases, as clearly illustrated in Figs. 5.5 and 5.6. A similar observation can be made for the SMF approach, with a timescale τ SMF over which the approach is reproducing the exact evolution. We clearly see in these figures that whatever the coupling U/J is, we always have τ SMF < τ HPS .

"Collision" of two packets of fermions

Finally, as a further illustration of the complex correlations that were missing in the SMF and that could be grasped by the HPS method, we also tried slightly different initial conditions. We assumed for N = 8 particles that initially half the particles (here 4) are on the left site of the lattice while the other half is located on the right side (see Eq. U/J = 0.6. In each case, all particles are initially located on one side of the mesh. The exact solution is displayed using a black solid line, the result of the original SMF phase-space approach is shown by a blue dashed line and the results of the HPS approach are shown with red filled circles. (c) Center of mass q(t) The dynamics can be seen as a minimal version for two colliding Fermi systems. We show in Fig. 5.7 the local density evolution for the weak coupling regime with U/J = 0.1. We compare in this figure the exact evolution (a) with the SMF (b) and HPS (c) results.

The most striking feature is that HPS catches on the exact dynamics up to intermediate time (50J -1 ) and then displays an underdamping of the oscillations in comparison with the exact dynamics. SMF deviates significantly from the exact case for t ≥ 20 -25J -1 . We see with this figure the increase in predictive power of the HPS approach compared to the original phase-space method, since it is able to accurately track the dynamics for longer times, and even qualitatively for very long times.

Our conclusion is therefore that the novel phase-space method has globally a much better predictive power than the original phase-space approach based on the mean-field propagation. In particular, it seems excellent in the weak coupling regime, even for the long time evolution. The increase of predictive power, as discussed in section 5.3, can directly be traced back to the better account of the initial conditions with in particular the three-body density that is properly reproduced and a partial account for the twobody correlations in the evolution of each trajectory. Note finally that we also applied the HPS to higher coupling strength (U/J ⩾ 1) but we observed that some trajectories are hard to converge unless a very small numerical time step is used. Therefore, in its HYBRID PHASE-SPACE METHOD (c) Center of mass q(t) present form, the HPS method is essentially restricted to weak to intermediate coupling (U/J ⩽ 0.4) regimes.

Conclusion

In this chapter, we explored the possibility of improving the predictive power of the SMF phase-space approach by relaxing the assumption that the equation of motion in this phase-space approach identifies with the TDHF one. Our strategy was to use the BBGKY hierarchy as a guidance and improve the evolution along each trajectory by including, at least partially, effects beyond the mean-field approximation. To do so, it was rather natural for us to assume that we consider not only a one-body density with initial fluctuations but also a two-body density that can fluctuate at initial time as proposed in Eq. (5.14). Then, the two densities would follow a set of coupled equations that could be inspired from the TD-2RDM approach. Unfortunately, the different attempts we made were unsuccessful and having both the one-and two-body densities that fluctuate led to unstable trajectories, preventing from performing the statistical average. We then propose here an alternative method where a set of one-body densities is still considered initially, but where the TDHF approximation is corrected by an additional term that approximately describes the effect of correlations that build up in time on the one-body evolution. This method mixes concepts taken from phase-space and BBGKY techniques and is called, for this reason, hybrid phase-space approach. The applications of the novel approach to the one-dimensional Fermi-Hubbard model clearly demonstrates that the predictive power is improved compared to the original SMF technique. In particular, the new method is very effective in the weak coupling regime and can even predict the long-time evolution. This long-time evolution description was not possible with the original SMF technique. Overall, we see that the predictive power is increased for all coupling strengths that are considered in this work, while deviations from the exact solution increases with bigger two-body interaction strength. Despite the extra numerical effort, the improved results obtained here are rather encouraging, and the possibility to mix fluctuating with non-fluctuating initial conditions might open new perspectives. We think it might be possible to extend the HPS framework, either finding an appropriate expression for ∆ (n) (t) or by extending the set of equations of motion to solve by following the BBGKY hierarchy equations. This last option would however have the disadvantage of increased numerical cost in comparison with the original SMF technique.

The method proposed here is physically guided, but rather empirical. It points out the necessity to understand more systematically and with a clear scheme how the phase-space approach can lead to a set of approximations of a quantum problem with increasing precision. This is why at the intermediate stage of the thesis I dedicated some time to general quantum problems and their phase-space description. This work, although rather academic, was very useful to get more sensibility on the reformulation of a quantum problem in phase-space. An overview of this aspect is given in Chap. 6 and App. C.2.

Introduction

In the previous section, we have seen that SMF method with independent trajectories and the HPS method, are useful tools in the many-body (MB) context. Such methods replace the complex MB problem by a set of independent trajectories (SMF) with a distribution of initial conditions mimicking the initial quantum fluctuations. These mean-field-like trajectories are much simpler than solving the full MB problem. The SMF method can be considered as a phase-space approach where a quantum problem is mapped to a statistical problem and where the mean-field evolutions are interpreted as "classical-like" trajectories in collective space with respect to the original problem.

The HPS method is an attempt to improve SMF by changing the EOM of individual trajectories. We have shown that, indeed, it can help to obtain better results in the perturbative regime. The method used to design HPS is however very empirical, and it is important to understand if a more systematic framework can be proposed. Addressing this problem for MB problems is complex. During the thesis, we have made a survey of methods that introduce the notion of trajectories and phase-space (Wigner, Bohm . . . ) in general quantum mechanics problems and tried to understand how the same type of approaches appears, with a focus on the possibility to trajectories.

The present chapter is a study of a trajectory-based formulation of quantum mechanics in terms of phase-space, i.e., using canonical variables such as position q and momentum p. The objective is (i) to see how a quantum problem can be mapped to a set of independent trajectories and (ii) to find systematic corrections to the evolution by adding coupling terms accounting for quantum effects. Section 6.2 is dedicated to the definition of quantum trajectories in phase-space from a theoretically grounded framework, while Section 6.4 contains applications on typical quantum effects such as quantum tunneling.

Hydrodynamical quantum mechanics and clear definition of quantum trajectories

Phase-space methods are rather standard tools in quantum mechanics [START_REF] Lang | A new treatment of Boltzmann-like collision integrals in nuclear kinetic equations[END_REF][START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Davidson | Semiclassical approach to dynamics of interacting fermions[END_REF][START_REF] Orioli | Nonequilibrium dynamics of spin-boson models from phase-space methods[END_REF][START_REF] Gardiner | Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic with Applications to Quantum Optics[END_REF][START_REF] Heller | Wigner phase space method: Analysis for semiclassical applications[END_REF][START_REF] Richert | Numerical solution of onedimensional TDHF equations without and with a collision term[END_REF][START_REF] Lee | Wigner phase-space description of a Morse oscillator[END_REF][START_REF] Lee | The Wigner phase-space description of collision processes[END_REF][START_REF] Carruthers | Quantum collision theory with phase-space distributions[END_REF][START_REF] Takahashi | Chaos and Husimi distribution function in quantum mechanics[END_REF][START_REF] Wootters | A Wigner-function formulation of finite-state quantum mechanics[END_REF][START_REF] Feldmeier | Molecular dynamics for fermions[END_REF][START_REF] Donoso | Solution of phase space diffusion equations using interacting trajectory ensembles[END_REF][START_REF] Wong | Explicit solution of the time evolution of the wigner function[END_REF][START_REF] Cabrera | Efficient method to generate time evolution of the Wigner function for open quantum systems[END_REF]. Here, we give an excerpt of selected concepts that will be useful for the thesis. For the sake of simplicity, we focus here on 1D problems. We consider a quantum system described by a wavefunction |Ψ⟩ whose timeevolution is given by the Schrödinger equation:

iℏ ∂ ∂t |Ψ⟩ = Ĥ |Ψ⟩ , (6.1)
where Ĥ is the Hamiltonian operator. There are many ways to connect the Schrödinger equation with the notion of trajectories. Here, we use one standard way, consisting in reinterpreting this equation in a hydrodynamical approach [START_REF] Bohm | A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I[END_REF][START_REF] Dewdney | A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells[END_REF][START_REF] Burghardt | Hydrodynamic equations for mixed quantum states. I. General formulation[END_REF][START_REF] Burghardt | Quantum dynamics for dissipative systems: A hydrodynamic perspective[END_REF][START_REF] Trahan | Evolution of classical and quantum phase-space distributions: A new trajectory approach for phase space hydrodynamics[END_REF][START_REF] Wyatt | Quantum dynamics with trajectories: introduction to quantum hydrodynamics[END_REF][START_REF] Goldfarb | Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics[END_REF][START_REF] Chou | Quantum trajectories in complex space: Onedimensional stationary scattering problems[END_REF][START_REF] Oriols | Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology[END_REF][START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF][START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF].

The probability ρ(q, t) that a particle is at a position q at time t can be obtained from the wavefunction through the formula: ρ(q, t) = ρ(q, q, t) = Ψ * (q, t)Ψ(q, t), (6.2)

where we introduced the local density matrix ρ(q, t). More generally, the time-evolution of the non-local density matrix ρ(q, q ′ , t) = Ψ * (q, t)Ψ(q ′ , t) can be deduced from the Schrödinger Equation (6.1):

iℏ∂ t ρ(q, q ′ , t) = - ℏ 2 2m ∇ 2 -∇ ′2 ρ(q, q ′ , t) + R
{V (q, q ′′ )ρ(q ′′ , q ′ , t)ρ(q, q ′′ , t)V (q ′′ , q ′ )} dq ′′ , (

where ∇ 2 and ∇ ′2 represent the Laplacian operators acting on the coordinates q and q ′ , respectively. This equation is explicitly non-local because of the integral on position in the second term, and shows that the diagonal of the density matrix ρ(q, t) is coupled to its non-diagonal elements. If the potential is itself local:

V (q, q ′ ) = V (|q -q ′ |) = V (q ′ , q), (6.4) 
then the equation of the probability density can be simplified under the form:

iℏ∂ t ρ(q, t) = - ℏ 2 2m ∇ 2 qa -∇ 2 q b ρ(q a , q b , t)| qa=q b =q . (6.5) 
Using Eq. ( 6.2) leads to the well-known continuity equation in its usual form:

∂ t ρ(q, t) = -∇j(q, t), (6.6) 
with the current j(q, t) expressed as: j(q, t) = iℏ 2m [Ψ * (q, t)∇Ψ(q, t) -Ψ(q, t)∇Ψ * (q, t)] . (6.7)

Note that the dependence on the potential is now hidden in the equation of motion for the current j. This equation is more complex and is given in App. C.1.

In the hydrodynamical point of view of quantum mechanics, ρ(q, t) is the probability of a particle to be at position q at time t. It can be replaced in a classical framework by the average of a set of trajectories q i (t) such that:

ρ(q, t) = 1 N i δ (q -q i (t)) , (6.8) 
with N the number of trajectories. Such particles will be called test-particles hereafter.

In classical mechanics, the current writes as: j ′ (q, t) = ρ(q, t)v(q, t), (6.9)

with v(q, t) the velocity field followed by the test-particles. It is related to the momentum through the relation v(q, t) = p(q, t)/m. In quantum mechanics, it is useful to rewrite the wavefunction Ψ(q, t) in polar coordinates, i.e., Ψ(q, t) = ρ(q, t)e -iS(q,t) , (6.10)

where S can be interpreted as the action. Injecting Ψ(q, t) in the Schrödinger equation, it is possible to obtain an equation of motion for both ρ(q, t) and S(q, t):

         ∂ t ρ = 1 m ∇ [ρ∇S] , ∂ t S = ℏ 2 4m ∇ 2 ρ ρ - 1 2 ∇ρ ρ 2 + (∇S) 2 2m -V = -(Q + V ) + (∇S) 2 2m . (6.11a) (6.11b) 
These are the quantum Hamilton-Jacobi equations, with a new term Q, acting as a potential-like quantity. It is written under the compact form:

Q(q, t) = - ℏ 2 2m ∇ 2 q ′ ρ 1/2 (q ′ , t) q=q ′ ρ 1/2 (q, t) . (6.12) 
Finally, identifying the current with the action:

j(q, t) = ρ(q, t) ∇ q ′ S(q ′ , t)| q ′ =q , (6.13) 
one gets the Madelung equations controlling the dynamics in an exact hydrodynamical description of quantum mechanics:

       ∂ t ρ(q, t) = 1 m ∇ q ′ [ρ(q ′ , t)v(q ′ , t)]| q ′ =q , m d dt v(q, t) = -∇ q ′ (V (q ′ ) + Q(q ′ , t))| q ′ =q . (6.14a) (6.14b) 
Knowing ρ(q, t) and its equation of motion, we can simulate its dynamics by propagating a set of particles q i (t) which will follow the velocity field v(q, t). It can be constructed by identifying the true quantum probability current with the flux of testparticles: j(q, t) = j ′ (q, t), (6.15) leading to the Newton-like equation of motion for each trajectory:

m d dt v(q i , t) = -∇ q ′ (Q(q ′ , t) + V (q ′ ))| q ′ =q i . (6.16) 
This is the idea behind the Bohmian formulation of quantum mechanics [START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF][START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF], where a wave is guiding test-particles. One difficulty of this approach of "particle position" is that the equation above can only be solved if Ψ(q, t) is known, i.e., if the problem is already solved [START_REF] Poirier | Bohmian mechanics without pilot waves[END_REF][START_REF] Hall | Quantum phenomena modeled by interactions between many classical worlds[END_REF]. Another approach to Bohmian mechanics is to solve both the set of Eqs. 6.11a and 6.11b on the hydrodynamical fields ρ(q, t) and the action S(q, t) along with the equations of motion of the trajectories. A detailed description of this approach can be found in [START_REF] Wyatt | Quantum dynamics with trajectories: introduction to quantum hydrodynamics[END_REF]. Both these strategies are at variance with our strategy to develop phase-space techniques.

A second drawback is that this description of quantum mechanics corresponds to a dynamics in configuration space rather than phase-space, since it doesn't take into account the concept of canonically conjugated variables. In the thesis, I studied the possibility to extract particle trajectories in this framework. Some illustrations of the Bohmian trajectories are given in App. C.2 together with further discussion on Bohmian mechanics.

Phase-space methods

To make contact with classical mechanics and the concept of canonical variables, one should a priori define a probability distribution to have both (q, p) simultaneously. Phase-space formulations of quantum mechanics can be regarded as methods to introduce a quantity ρ PS (q, p, t) that should be interpreted as a probability distribution [START_REF] Cahill | Density operators and quasiprobability distributions[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. A generalized wick theorem and multitime mapping[END_REF]. Because in general [q, p] ̸ = 0, we know from quantum mechanics first principles that the two quantities cannot precisely be known simultaneously, leading to fundamental or practical difficulties like the fact that ρ PS (q, p, t) can become negative.

A typical example [START_REF] Wigner | On the Quantum Correction For Thermodynamic Equilibrium[END_REF][START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF] of phase-space reformulation of quantum mechanics is the Wigner-Weyl framework. It leads to the so-called Wigner function W(q, p) and yields the simplest possible equations of motion in phase-space [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF] (see Fig. 6.1). The Wigner function can, however, be negative because of the Heisenberg uncertainty principle and therefore cannot be easily interpreted as a real probability distribution. Distributions as averages of trajectories Figure 6.1: Schematic view summing up the formulations of quantum mechanics presented in this document. Starting from the Schrödinger equation, one can either reformulate the problem in a hydrodynamical or phase-space framework. Note that these are exact reformulations of quantum mechanics. From there, the concept of trajectories in quantum mechanics can be introduced either in the so-called Bohmian mechanical framework or in phase-space. It is however done in both cases at the cost of introducing non-local interactions between the trajectories.

We discuss in the following some aspects of Wigner-Weyl theory to see how quantum trajectories are derived from it.

Challenges in defining a phase-space quantum probability density

In this section, operators in the quantum framework will be denoted by Ô. Their Wigner transforms will be denoted by O w , while classical quantities will simply be noted by O.

The strategy behind phase-space formulations of quantum mechanics consists in constructing a distribution ρ PS (q, p) from which the quantum expectation value of an observable Ô can be calculated:

Ô = R R
O PS (q, p)ρ PS (q, p)dqdp.

(6.17)

Here, O PS is a functional that will depend on the phase-space method used. One can interpret ρ PS as a probability distribution only if it satisfies some properties. Two major ones are [START_REF] Cahill | Density operators and quasiprobability distributions[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. A generalized wick theorem and multitime mapping[END_REF][START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF]]:

1. Marginal laws of the distribution can be obtained from the total distribution, i.e.,

R ρ PS (q, p, t)dq = |Ψ(p, t)| 2 , R ρ PS (q, p, t)dp = |Ψ(q, t)| 2 .
(6.18)

2. The distribution ρ PS satisfies: 0 ≤ ρ PS ≤ 1 for all (q, p).

The Heisenberg uncertainty principle prevents both properties from being respected at the same time (even though the distribution ρ PS can always be renormalized so that it is always lesser than 1). Another problem arise when defining ρ PS . Indeed, any mapping between non-commuting operators, e.g., q, p and real numbers q, p is ambiguous since:

⟨q p⟩ = R R qpρ PS (q, p)dqdp = R R pqρ PS (q, p)dqdp = ⟨pq⟩ , (6.19) 
which is obviously not true if the operators are not commuting. This ambiguity can be solved by imposing an ordering of the operators for a given mapping. This imposes the form of the distribution ρ PS and defines its properties. This topic is discussed in [START_REF] Cahill | Density operators and quasiprobability distributions[END_REF][START_REF] Agarwal | Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space[END_REF][START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF][START_REF] Hillery | Distribution functions in physics: Fundamentals[END_REF].

There are many possible ways to introduce ρ PS [START_REF] Cahill | Density operators and quasiprobability distributions[END_REF][START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF][START_REF] Hillery | Distribution functions in physics: Fundamentals[END_REF][START_REF] Kirkwood | Quantum statistics of almost classical assemblies[END_REF][START_REF] Glauber | The quantum theory of optical coherence[END_REF][START_REF] Glauber | Coherent and incoherent states of the radiation field[END_REF], and only two will be presented in this section:

1. the Wigner quasi-probability distribution W, which follows property 1, but not property 2. It corresponds to a symmetrization of any product of non-commuting operators [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF][START_REF] Hillery | Distribution functions in physics: Fundamentals[END_REF] i.e., 1 2 (q p + pq) → q w p w , (

2. We also studied the Husimi distribution H which corresponds to the normal ordering of the creation and annihilation operators [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Harriman | Some properties of the Husimi function[END_REF]. Its definition relies on the introduction of Gaussian coherent states. The Husimi distribution is positive everywhere, but violates property 1 since the coherent states form an overcomplete basis and the events predicted are not independent of one-another. The Husimi function has been studied in App. C.64.

An important aspect is that both distributions are closely related by a convolution with a Gaussian function, and allow for smooth transition from quantum to classical mechanics when taking the limit ℏ → 0 [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF][START_REF] Case | Wigner functions and Weyl transforms for pedestrians[END_REF].

Wigner-Weyl framework

In the 1D case, the Wigner-Weyl transform of an arbitrary operator Ô is given by the expression [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Wigner | On the Quantum Correction For Thermodynamic Equilibrium[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF]:

O w (q w , p w ) = R dx ′ q w - x ′ 2 Ô q w + x ′ 2 exp i ℏ p w x ′ , (6.21) 
with q w and p w the Wigner-Weyl transform of the position operator q and the momentum operator p. Note that if Ô is hermitian, then the integrand is invariant by the change of variable x ′ → -x ′ and O w is a real function. The Wigner-Weyl transform F w of the position and momentum operators is then given by:

F w [q] = q w , F w [p] = p w . (6.22) 
Furthermore, if any product of non-commuting operators (in this case q, p) is completely symmetrized (i.e., invariant by any permutation), one can directly replace it by the product of their Wigner-Weyl transform [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF], for instance:

F w 1 2 (q p + pq) = q w p w , (6.23) 
F w Ĥ = F w p2 2m + V (q) = p 2 w 2m + V (q w ), (6.24) 
where Ĥ is a given Hamiltonian associated to a potential V . The central quantity in this formulation of quantum mechanics is the Wigner transform of the density matrix ρ, corresponding to previously introduced ρ PS and now denoted by W, the so-called Wigner distribution:

W(q w , p w ) = R dx ′ ρ q w - x ′ 2 , q w + x ′ 2 exp i ℏ p w x ′ . (6.25) 
This distribution encodes in a phase-space framework all the information contained within the fully non-local density ρ(q, q ′ , t). It appears as a try to mix information on both position and momentum:

W(q w , p w ) = 1 2πℏ R dye -i ℏ pw(qw-y) ⟨q w | ρ |y⟩ = 1 √ 2πℏ ⟨q w | e -i ℏ pw q ρ |p w ⟩ . (6.26)
In the Wigner-Weyl framework, the expectation value of an observable Ô is now written:

Ô = R R dq w dp w 2πℏ W(q w , p w )O w (q w , p w ). (6.27) 
It is important to note that the Wigner function W is based on the non-local density, and that its dynamics contains the same information as the Schrödinger equation. The present properties are general aspects of the Wigner function. In the next section, we discuss how the dynamics of a system can be described in this framework and more specifically how the notion of trajectories of particles can be introduced.

Dynamical aspects

Two equivalent points of view are possible when describing the dynamics in phasespace: (i) the operators O w evolve in time with a fixed Wigner distribution, or (ii) W(q w , p w , t) depends on time while the O w are fixed. Those two points of view will hereafter be called Heisenberg representation and Ehrenfest representation, respectively. Here, we focus on the Ehrenfest representation.

In the Ehrenfest case, the equation of motion of the Wigner distribution directly reads [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF][START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF]:

∂ ∂t W(q w , p w , t) = - p w m ∇ qw W(q w , p w ) + R dηJ (q w , η -p w ) W(q w , η), (6.28) 
with

J (q w , p w ) = i 2πℏ R V q w + z 2 -V q w - z 2 exp - i ℏ zp w dz. (6.29) 
In the right-hand side of Eq. (6.28), the first term can be interpreted as a flux with j q ∝ pw m W, leading to a term -∇ q j q (q, t)| q=qw . The second term is more complicated, since it corresponds to the non-local effects of the potential. Assuming a local potential V (q), the evolution of particles' momentum in classical mechanics will only depend on j p ∝ -∇ q V (q). A natural way to recover classical mechanics is to Taylor expand:

∂ ∂t W(q w , p w , t) = - p w m ∇ qw W(q w , p w ) + +∞ s=0 (-1) s ℏ 2 2s 1 (2s + 1)! ∇ 2s+1 qw V (q w ) × ∇ 2s+1 pw W(q w , p w ) , = -{W(q w , p w , t), H w (q w , p w )} M , (6.30) 
with {•, •} M the Moyal bracket [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF]Quantum mechanics as a statistical theory[END_REF]. This expansion in powers of ℏ yields in the limit ℏ → 0 the equation of motion for a distribution of classical particles:

∂ ∂t W(q w , p w , t) = - p w m ∇ q W(q, p w , t)| q=qw + ∇ q V (q)| q=qw ∇ p W(q w , p, t)| p=pw . (6.31) 
Explicit quantum corrections to classical mechanics are therefore written in a compact way in Eq. (6.28), and the usual classical Poisson brackets appear as lowest order in ℏ.

Note that a practical method to solve Eq. (6.28) have been developed in the literature [START_REF] Cabrera | Efficient method to generate time evolution of the Wigner function for open quantum systems[END_REF][START_REF] Bondar | Operational Dynamic Modeling Transcending Quantum and Classical Mechanics[END_REF][START_REF] Bondar | Wigner phase-space distribution as a wave function[END_REF].

The goal of a phase-space approach based on test-particle trajectories is to replace the solution of the equation of motion W(q w , p w , t) by an average over a set of particle evolutions. These particles will be hereafter called "test-particles". Starting from here, a strategy [START_REF] Donoso | Solution of phase space diffusion equations using interacting trajectory ensembles[END_REF][START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Donoso | Quantum tunneling using entangled classical trajectories[END_REF][START_REF] Donoso | Simulation of quantum processes using entangled trajectory molecular dynamics[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF] to construct quantum trajectories is as follows:

1. Identify Eq. (6.28) as a continuity equation with probability flux in a hydrodynamical framework, 2. rewrite the Wigner function as an average over trajectories, CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS 3. identify the exact quantum probability flux with the flux of trajectories in phasespace, and derive from this relation a velocity field followed by the test-particles.

In practice, this could be done as follows. We introduce j = (j q , j p ) where j q and j p are fluxes in q and p space. Then, Eq. (6.28) can be rewritten under the form:

∂ ∂t W(q w , p w , t) = -∇j, (6.32) 
where [START_REF] Donoso | Solution of phase space diffusion equations using interacting trajectory ensembles[END_REF][START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Donoso | Quantum tunneling using entangled classical trajectories[END_REF][START_REF] Donoso | Simulation of quantum processes using entangled trajectory molecular dynamics[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF] :

j q = p w m W(q, p w , t), (6.33) 
j p = - R dp ′ Θ (q w , p ′ -p w ) W(q w , p ′ , t), (6.34) 
and

Θ (q w , η -p w ) = pw -∞ J (q w , η -Z) dZ,
with J given by Eq. (6.29).

For the sake of completeness, we mention that Eq. ( 6.32) can be complemented by the equations:

∂ t j q = - p 2 w m ∇ qw W(q w , p w , t) + p w m R dp ′ J(q w , p w -p ′ )W(q w , p ′ , t), (6.35) 
∂ t j p = R dp ′ p ′ m Θ(q w , p ′ -p w ) ∇ q W(q, p ′ )| q=qw - R R
dp ′ dηΘ(q w , p ′p w )J(q w , ηp ′ )W(q w , η, t), (

giving a closed set of equations for the variables (W, j = (j q , j p )).

The notion of trajectory can now be introduced in the Wigner approach. Assuming that the Wigner distribution is an average probability over trajectories [START_REF] Donoso | Solution of phase space diffusion equations using interacting trajectory ensembles[END_REF][START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Donoso | Quantum tunneling using entangled classical trajectories[END_REF][START_REF] Donoso | Simulation of quantum processes using entangled trajectory molecular dynamics[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF]:

W(q w , p w ) = 1 N evt i δ(q w -q i (t))δ(p w -p i (t)), (6.37) 
its time-derivative is given by:

∂ t W(q w , p w , t) = - 1 N evt i δ(p w -p i (t)) ∇ x δ(q w -x)| x=q i (t) dx dt x=q i (t) + δ(q w -q i (t))∇ p δ(p w -p)| p=p i (t) dp dt p=p i (t) , (6.38) 
from which we can identify the test-particle current j part = (j q,part , j p,part ):

j q,part (q w , p w , t) = - 1 N evt i δ(p w -p i (t))δ(q w -q i (t)) dq i (t) dt , j p,part (q w , p w , t) = - 1 N evt i δ(q w -q i (t))δ(p w -p i (t)) dp i (t) dt .
The exact Wigner evolution will be recovered from particles trajectories if we impose that particles at the point (q w , p w ) are subject to the exact probability current j given by Eqs. (6.33) and (6.34). This amounts to impose that the particles obey the velocity field:

v(q w , p w ) = (v q , v p ) = 1 W(q w , p w , t) (j q , j p ). (6.39) 
We can then deduce the equations of motion for the test-particles' position and momentum (q i (t), p i (t)):

       dq i (t) dt = p i (t) m , dp i (t) dt = - 1 W(q i (t), p i (t), t) R Θ(q i (t), p i (t) -p ′ )W(q i (t), p ′ , t)dp ′ . (6.40a) (6.40b) 
It is interesting to observe that the equations of motion change only in the momentum part of the propagation in comparison to their classical counterpart, i.e., quantum corrections arise in Eq. (6.40b) only. It is visibly non-local because of the integral over momentum and its dependence on W. This non-locality encodes interactions between the trajectories, implying that the energy along a given trajectory is a priori not conserved. The total average energy is conserved in time, however (see App. C.4). Furthermore, since the trajectories depend on W, the knowledge of the Wigner distribution at all times (i.e., of the wavefunction |Ψ⟩ itself) allows studying the trajectories, as in the Bohmian framework. It is possible to develop the potential V in powers of q w using its Taylor series in Eq. (6.40b) and to rewrite the right-hand side (RHS) of this equation as a power series to recover classical mechanics and get an explicit form of the quantum corrections. This gives:

                   dq i (t) dt = p i (t) m , dp i (t) dt = -∇ x V (x)| x=q i (t) + +∞ s>0 ℏ 2 2s (-1) s+1 (2s + 1)! ∇ 2s+1 x V (x) x=q i (t) ∇ 2s p W(q i (t), p) p=p i (t) W(q i (t), p i (t)) . (6.41a) (6.41b) 
At lowest order, Eq. (6.41a) and (6.41b) identify with the usual Hamilton equations [START_REF] Goldstein | Classical Mechanics[END_REF]:

       dq i (t) dt = p i (t) m , dp i (t) dt = -∇ x V (x)| x=q i (t) . (6.42a) (6.42b) 
Still, quantum effects can be included through the initial set of conditions. Assuming that W(q, p, t) > 0, a set of (q i (t = 0), p i (t = 0) is then obtained by simple Metropolis sampling. This method is known as the truncated Wigner approximation [START_REF] Polkovnikov | Phase space representation of quantum dynamics[END_REF][START_REF] Davidson | Semiclassical approach to dynamics of interacting fermions[END_REF][START_REF] Orioli | Nonequilibrium dynamics of spin-boson models from phase-space methods[END_REF].

It is similar to the SMF approach discussed in Chap. 4. The Wigner-Weyl method includes the opportunity to correct the lowest order and was therefore interesting to study as possible a guidance for HPS. We illustrate below in simple cases how corrections can be implemented.

Phase-space trajectories in a model case of tunneling

The primary goal here is to study how corrections to classical mechanics accounting for quantum effects can be implemented. Our aim is to test the complexity behind including quantum corrections to the leading-order phase-space method. We study here a simple situation where quantum effects are important. We use a 1D model with barrier tunneling. We first implement the phase-space method with non-interacting trajectories and then try to correct them to catch missing quantum effects.

The benchmark for this will be quantum tunneling, with an asymmetric potential of the form:

V (q) = α 1 e - (q-Q 1 ) 2 2σ 2 1 + α 2 e - (q-Q 2 ) 2 2σ 2 2 . ( 6.43) 
We use the parameters:

α 1 = 1000 MeV, Q 1 = 0 fm/c, σ 1 = 10 fm/c, α 2 = 1000 MeV, Q 2 = 40 fm/c, σ 2 = 70 fm/c.
A schematic vision of this potential is shown in Fig. 6.2 together with some specific variables that are used below. As we can see, this potential has a similar shape to the one used for fission of nuclei.

We consider an initial Gaussian state |Ψ(t 0 )⟩ with a wavefunction of the form:

Ψ(q, t 0 ) = 1 √ 2πσ 2 exp - (q -q 0 ) 2 4σ 2 + i p 0 q ℏ . (6.44) 
We consider here the case where q 0 ≈ q min and p 0 = 0 with a Gaussian state localized in the potential pocket on the left side of Fig. 6.2. Several types of evolution are treated below.

Exact evolution

We call hereafter "exact" the results obtained by solving numerically the Schrödinger equation:

iℏ∂ t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ = p2 2m + V (q) |Ψ(t)⟩ , (6.45) 
with Ĥ the Hamiltonian of the system. In practice, Eq. (6.45) is solved by using the standard Split operator method [START_REF] Glowinski | Splitting Methods in Communication, Imaging, Science, and Engineering[END_REF] with ∆t = 0.05 fm/c. At each time-step, we will define the decay probability P ex decay (t), referred to as "exact" in the following, that is, defined through:

P ex decay (t) = +∞ qmax |Ψ(q, t)| 2 dq, (6.46) 
with q max the position of the barrier V (q max ) = V max . In a fully quantum mechanical framework, a wave-packet, if given enough time, will escape from the potential by tunneling. In the classical case, the particles of energy E < V max will be trapped in the well forever.

We show in Fig. 6.3a the evolution of P ex decay as a function of time (solid line). We see that after a fast increase, the decay tends to one. Figure 6.2: Schematic drawing of the asymmetric potential V (q) as a function of the position q. At energy E < V (q max ) = V max , below the barrier, the particles are trapped in the well of minimum V (q min ) = V min = ℏω. Their trajectories inside the well present two turning points q 1 , q 2 , while a third one exists on the other side of the barrier (q 3 ) and is classically unattainable. We give in Table 6.1 the values of different parameters defined in the figure.

V (q) q V max E V min q 1
q 2 q 3 q max q min Parameter Value q max 39.07349779 fm q min 33.01528319 fm V max 1000.39628287 MeV V min = ℏω 999.33029294 MeV 

σ 2 = σ 2 q = 4 ℏ 2 σ 2 p 1.

Phase-space approach

We now consider the phase-space method with a set of trajectories. The first task is to obtain a set of (q i (t 0 ), p i (t 0 )) that reproduces accurately the Wigner-Weyl transform of the initial density matrix. For a Gaussian, coherent initial state, it corresponds to:

W(q, p) = 1 2πσ q σ p exp - (q -q 0 ) 2 2σ 2 q - (p -p 0 ) 2 2σ 2 p , (6.47) 
with σ 2 q = σ 2 and σ 2 p = ℏ 2 4σ 2 . Here σ q and σ p are adjusted to match the initial conditions of the exact quantum case as in SMF.

The classical phase-space method consists in the following strategy. The decay probability in the classical case was obtained by sampling a number N evt of initial conditions (q i (t 0 ), p i (t 0 )) using distribution (6.47), and then propagating them using 

P (E) (b) 
Figure 6.3: The different phase-space results without (red box) or with jump (symbols) are shown. In the latter case, the green circles and blue triangles correspond to the use of the WKB approximation and the formula (6.53) for the jump probabilities, respectively.

In the right panel, we show the corresponding jump P (E) probability. Note that the case without jump corresponds to the P (E) shown with red line.

classical mechanics:

qi = ∂H ∂p i = p i m , (6.48 
) ṗi = - ∂H ∂q i = -∇ q V (q)| q=q i , (6.49) 
with H = p 2 2m + V (q) the Hamiltonian of the system. In this framework, trajectories can be interpreted as classical trajectories, which therefore do not interfere with each other.

The classical approximation of P decay is then taken as the portion of test-particles that passed q max as a function of time:

P decay (t) = 1 N evt Nevt i=0 Θ (q i (t) -q max ) , (6.50) 
with Θ being Heaviside's step function. Results are shown by red boxes in Fig. 6.3a. We see that the initial evolution is well reproduced, while the long term evolution differs from the exact one. The evolution of P decay at short time is due to the rapid emission of fast test-particles. They verify H w (q i (t), p i (t)) = E > V max for which a set of classical evolutions seem to reproduce the Schrödinger results. The long time evolution, however, stems from slow particles for which E ≤ V max . In the quantum case, these particles all escape from the potential well by tunneling. In the phase-space approach where particles obey classical equations of motion, such a tunneling is impossible, and the particles are trapped forever. This explains why phase-space leads to asymptotic P decay that is strictly lower to 1. The relative success of the phase-space method can be explained by the fact that many test-particles have energy greater than the barrier. 

= (E -V min )/(V max -V min ).
The initial distribution for our problem is displayed in black solid line.

The kinetic contribution to the total energy distribution is shown in green solid line, and the potential contribution is displayed in red solid line. The vertical black dashed line corresponds to V max . This is illustrated in Fig. 6.4 in solid line, and we can see that a good amount of the test-particles can indeed freely escape the well.

During the thesis, several methods have been explored to account for at least a partial quantum tunneling while trying to keep the phase-space as the leading order.

Improved phase-space approach

We have explored two methods to extend the phase-space approach described in the previous section:

1. The first approach is based on phenomenological arguments [START_REF] Makri | A semiclassical tunneling model for use in classical trajectory simulations[END_REF][START_REF] Babamov | Dynamics of hydrogen atom and proton transfer reactions. Symmetric case[END_REF]. It starts from the assumption that the tunneling might be described by assuming that classical test-particles have a non-zero probability to jump instantaneously across the barrier from q 2 to q 3 (see Fig. 6.2). Then, after some time, it is expected that a particle with energy below the barrier will escape from the well. This approach has the advantage that the trajectories are independent of each other while including part of the tunneling.

2. The second approach makes directly use of the corrections terms in Eqs. (6.41a) and (6.41b), leading to interfering trajectories.

The two approaches are discussed and tested below.

Classical mechanics with jumps across the barrier

The main idea proposed in [START_REF] Makri | A semiclassical tunneling model for use in classical trajectory simulations[END_REF] is to allow a classical particle with energy E < V max below the barrier to jump from q 1 to q 2 outside of the barrier (see Fig. 6.2). This scheme has the advantage to be rather simple and keep the simplicity of non-interacting trajectories. The following steps are applied:

1. N evt initial conditions are sampled according to the initial Wigner distribution (6.47). These initial conditions are then propagated using to Eqs. (6.48) and (6.49). CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS 2. Particles with energies E = p 2 2m + V (q) > V max will escape the potential and go to infinity while following a purely classical trajectory.

3. Particles below the barrier are treated as follows. We assume that each time a particle reaches q 2 , it has a probability P to jump to q 3 , and a probability 1 -P to stay in the pocket. P is the main quantum ingredient for the jump process. One natural assumption consists in supposing that P depends only on the classical energy E of the particle. One possibility is to assume that the probability P (E) identifies simply with the WKB approximation of the transmission coefficient [START_REF] Makri | A semiclassical tunneling model for use in classical trajectory simulations[END_REF][START_REF] Babamov | Dynamics of hydrogen atom and proton transfer reactions. Symmetric case[END_REF], i.e.:

P (E) = e -2θ(E) , (6.51)

θ(E) = 1 ℏ Im q 3 q 2 2m (E -V (q))dq, , (6.52) 
For the present asymmetric potential, the probability cannot be analytically calculated, but can be found numerically. The corresponding jump probability P is shown in Fig. 6.3b, while the resulting decay probability P decay obtained with this method is shown in Fig. 6.3a, both with green dots.

We see that P decay is improved compared to the previous case. WKB results allow for an accurate tracking of the exact probability decay up to intermediate times (t ≈ 500 fm/c), and then deviates from it. Prolonging the time-evolution to a larger time-window shows that there is a discrepancy between the two predicted timescales, although both converge to 1 for t → +∞.

Despite the improvement, we see that some differences persist. Some possible origin of the differences might be:

(i) The WKB transmission is only an approximation and differs from the exact one (ii) The description of tunneling is beyond the scope of a theory with independent evolutions of the test-particles.

To investigate further, the possibility of an alternative jump probability P (E) has also been explored. In quantum mechanics, a particle above the barrier has a non-zero chance to be reflected instead of joining the continuum. This is not the case when working with the probability P (E) proposed above, where P (E) = 1 if E > V max . For this reason, we tried to modify the probability P (E) by performing the replacement:

P WKB (E) → P smooth (E) = P WKB (E) 1 + P WKB (E) , (6.53) 
yielding a continuous probability distribution, displayed in blue triangles in Fig. 6.3b. We call hereafter this procedure probability smoothing, or simply smoothing. In practice, P WKB is prolonged by fitting the probability with formula (6.53), since it is defined only for E ∈ [V min , V max ]. Note that, formula (6.53) is inspired by the WKB approximation of the transmission coefficient for a harmonic barrier to perform the smoothing.

The propagation is then modified accordingly: if the particles of energy higher than the barrier get to the point q max i.e., the position of the maximum of the potential, it will CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS be reflected with probability 1 -P (E) and transmitted with a probability P (E). The corresponding jump probability (results) are shown in blue triangles on Fig. 6.3b (6.3a). It clearly worsens the timescale problem. This is actually an unsurprising result since P smooth ≤ P WKB over the whole energy range.

As we see from Fig. 6.3a, results obtained with the present scheme strongly depend on the choice of P (E). An important question is "Does a probability P (E) exist that would ultimately reproduce the quantum results, or is the scheme doomed to fail ?". To answer this question, we have (i) made an in-depth analysis of the trajectory properties and (ii) investigated more systematically possible choices of P (E).

Analysis of trajectory properties

We investigate here phenomenologically the origin of long timescales for particle decay in the method described above. In particular, we would like to investigate what are the initial particles that take very long times to decay. For this, we have made a more in depth investigation of the classical particles' behavior by classifying the particles into bins of initial energy E i ± δE, with δE = (V max -V min )/10 = ℏω 10 MeV populated with N (E i ) events such that i N (E i ) = N evt . If a particle of energy E i ± δE escapes, then it is subtracted from N (E i ). The time evolution of those populations was then monitored. Snapshots of N (E i )/N evt at different times of the evolution are displayed on Fig. 6.5 at 3 different times (see caption). Populations of purely classical particles are shown using red boxes, while particles jumping with probabilities given by P WKB (E) or P smooth (E) are shown in green dots and blue triangles, respectively. As expected, we see in the original phase-space approach without jump that N (E i ) does not evolve for energies below the barrier. When the probability to jump is plugged in, we see that N (E) decays for all energy bins below the barrier.

We observe that the smoothed P (E) delays the escape of some particles of energy near V max , but do not particularly change the asymptotic behavior. Using either probability seems to underestimate the low-energy particles' ability to perform quantum tunneling.

The escape time of a particle below the barrier during the time propagation is controlled by three main ingredients:

1. The energy E of the particle, given simply by E = p 2 2m + V (q), where (q, p) are sampled from Eq. (6.47).

2.

A particle can escape the potential each time it touches the point q 2 . In between 2 times it tries to jump, a certain time elapses. We call this time process a cycle and associate to it a cycle duration, denoted by τ c (E). This duration is defined as the time a classical particle takes to go from q 1 to q 2 , and come back to q 1 :

τ c (E) = 2 q 2 q 1 dq p(q, E) = 2 q 2 q 1 dq 2m(E -V (q)) . (6.54) 
This quantity cannot be easily derived analytically except, e.g., in the harmonic approximation, but can be computed numerically. 2π (no units), of a particle inside the potential well as a function of its reduced energy ε (no units). In green dots is displayed the result in the non-smoothed case, defined for V min ≤ E < V max , whereas the smoothed case is displayed with blue triangles. Both are on top of each other, since this time is independent of P (E). The vertical black (horizontal blue) dashed line corresponds to the barrier maximum. then, with s > t, we can write:

∆P in (τ c (E)) = P int (t) 1 -e -βτc(E) . (6.57) 
Together with Eq. (6.55), Eq. (6.57) leads to:

β(E) = - 1 τ c (E) log (1 -P (E)) , (6.58) 
with β -1 being the characteristic decay time of the bin population. The total decay probability is then given by:

P decay (t) = 1 N R + P in (t, E)dE, (6.59) 
∝ R + exp - 1 τ c (E) log(1 -P (E))t dE. (6.60) 
The reduced population P(t, E) = P in (t, E)/P in (0, E) is shown in Fig. 6.7 for different energies in the WKB (solid lines) or smoothed probability (dashed lines) cases. Note that, as expected, the smoothed probability case displays longer characteristic decay times for a given population with energy E compared to the WKB case.

To further characterize the decay process, we assume that the time evolution of those populations can be written:

P in (t, E) ≈ P in (0, E)e -β(E)t .
(6.61)

The quantity β -1 (E) is an effective decay time of the population of particles:

β(E) = - 1 τ c (E) log (1 -P (E)) . (6.62) 
The characteristic time β -1 , given by Eq. (6.62) is displayed in Fig. Small fluctuations come from the finite particle number in the sampling. Here, N evt = 20000 is used.) triangles) cases. As expected, β -1 increases exponentially with decreasing energy. The approximation (6.62) was compared to the exact case displayed in Fig. 6.7. In practice, the particles have been grouped into bins of reduced energies ε = 0, 0.05, 0.1, . . . , 1.

A fit was then performed with Eq. (6.61) to find the decay times of the populations of those bins, and the results are displayed in thick green line (WKB case) and thick blue line (smoothed probability case) on Fig. 6.8. Although Eq. (6.61) overestimates slightly the exact case, we see that it reproduces globally the behavior of the exact evolution. That strong increase of β -1 at ε → 0 indicates that particles at low energy will be trapped inside the potential well for very long times, probably explaining the discrepancy between the quantum result and the present jump method at long times.

From this, we can conclude that:

(i) The particles that stay inside the well for long times are indeed those with low energy, E ≈ V min as shown on Fig. 6.5 on panel (c). The approximate results with or without jump are obtained using the different P (E) displayed in Fig. 6.9, keeping the same conventions for the curves.

• There exist indeed probabilities P (E) that reproduce rather well the decay time. This gives actually some hope to get the physics in a rather simple framework with independent trajectories and jump processes on top of them.

• If we focus on the WKB case and on the fit with reasonable physical assumptions, i.e. those with P (E) above the barrier, we see that the simple WKB case already gives a significant improvement compared to the case without jump. We also see that the use of a second-order polynomial gives rather similar a shape as the WKB, except that P (E) is slightly higher. This small increase improves further the description.

Summary

In this first study of the tunneling process with classical trajectories, we have analyzed in detail the method proposed in Refs. [START_REF] Makri | A semiclassical tunneling model for use in classical trajectory simulations[END_REF][START_REF] Babamov | Dynamics of hydrogen atom and proton transfer reactions. Symmetric case[END_REF]. We show here that quantum effects such as tunneling can be partially accounted for by allowing classical particles to jump across the barrier. We observe that the use of the WKB approximation, that is quite natural, already helps to account for tunneling effects. However, the timescale of decay is slightly underestimated. We have more systematically investigated P (E) by optimizing it directly to reproduce P ex decay . We show that such jump probabilities can indeed be constructed. They are, however, problem-dependent, and maybe nonphysical. Our objective is to find a more general way to account for quantum effects without the massive computational constraints of a fully quantum mechanical framework or the subtleties of complex frameworks.

Although promising, the technique discussed above has only been tested in a onedimensional framework. Its generalization to 2D and 3D raises several questions as to how the jumps would be performed in practice. Indeed, there is no clear prescription as to where an instantaneous jump to the other side of the potential barrier would land. Several possibilities could be tested. What we think is the most natural would be: a test-particle jumps to the other side of the barrier at a point that is on the prolongation of its trajectory inside the well. It is unclear how one prescription or another would affect the dynamics.

Quantum trajectories in practice: double-well potential

We have presented in Sec. 6.3.3 basic aspects of the Wigner-Weyl theory. This approach can be a priori simulated with test-particles using Eqs. (6.40a) and (6.40b) provided that we know W at all times, that it can be interpreted as a probability distribution, and that a set of (q i (t), p i (t)) can be sampled at initial time.

Smoothed Wigner function

One difficulty is that rewriting the dynamics of a quantum system as an average of an ensemble of trajectories supposes that the Wigner function can be interpreted as a probability distribution, i.e., that Eq. (6.37) holds at all times. However, we know that W is generally not positive everywhere, and thus that this trajectory-based framework won't always work.

A proposed solution to this problem [START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Donoso | Quantum tunneling using entangled classical trajectories[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF] that we have explored below CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS consists in smoothing the Wigner distribution using Gaussian kernels ϕ:

ϕ(q w , p w ) = 1 2πh q h p exp - q 2 w 2h 2 q - p 2 w 2h 2 p = ϕ(q w )ϕ(p w ), (6.64) 
h q = hσ q , h p = hσ p , (6.65)

with (h q , h p ) parameters optimized on the initial state. A new smooth Wigner function W ′ is obtained from the convolution of W with the Gaussian function:

W ′ (q w , p w ) = 1 N evt i ϕ(q w -q i (t))ϕ(p w -p i (t)). (6.66)
This smoothing of the Wigner function will ensure that the new distribution W ′ is positive if h is chosen sufficiently large. Provided that W ′ is positive (i.e., that the smoothing is large enough), one can introduce a set of positions and momenta such that:

W ′ (q w , p w ) ≈ R W(x, p, t)ϕ(x, p)dxdp. (6.67)
Performing the replacement W → W ′ in Eq. (6.40b), the following equations are obtained [START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF] (see App. C.4.1):

       qi = p i m , ṗi = - j ϕ q,ij Λ ij k ϕ q,ik ϕ p,ik , (6.68a) (6.68b) 
where

ϕ q,ij = 1 2πh 2 q exp - (q i -q j ) 2 2h 2 q , ϕ p,ij = 1 2πh 2 p exp - (p i -p j ) 2 2h 2 p , (6.69) 
and

Λ ij = R dz V q i + z 2 -V q i -z 2 z exp - h 2 p z 2 2ℏ 2 + i(p i -p j )z ℏ . (6.70)
In practice, the imaginary part of the integrand appearing in Λ ki is antisymmetric and will cancel out. We can therefore introduce the quantity F ij (z):

F ij (z) = 2 V q i + z 2 -V q i -z 2 z cos p i -p j ℏ z exp - h 2 p z 2 2ℏ 2 , (6.71) 
and perform the integration over R + only. This leads to the equations of motion:

       qi = p i m , ṗi = -2 j ϕ q,ij R F ij (z)dz k ϕ q,ik ϕ p,ik . 
(6.72a) (6.72b) CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS

In this general set of equations, all trajectories are explicitly coupled though the F ij kernels, and therefore we do not have a priori a set of independent trajectories. Expression (6.71) is an oscillating integral with frequency p i -p j ℏ . Since fast oscillating integrals cancel out, we expect that non-local effects between trajectories of similar momentum will be negligible. Furthermore, it is interesting to note that the coupling depends directly on h p = hσ p through expression (6.71). The greater h, the lesser F ij will be, indicating that the coupling strength between the trajectories depends directly on the smoothing parameter h. This supposes that there is a trade-off between having a positive Wigner function and having a correct coupling between the trajectories.

It is possible to Taylor expand the integrand (6.71) to derive explicitly the quantum corrections to classical mechanics. The set of Eqs. (6.72a) (6.72b) can then be written:

         qi = p i m , ṗi = -∇ q V (q)| q=q i + +∞ s=1 ∇ 2s+1 q V (q) q=q i (2s + 1)!4 s j ϕ q,ij I s,ij k ϕ q,ik ϕ p,ik , (6.73a) 
(6.73b) with:

I s,ij = R z 2s exp i p i -p j ℏ z - h 2 p z 2 2ℏ 2 dz, ∝ ℏ h p 2s H 2s p i -p j √ 2h p exp - p i -p j √ 2h p 2 , (6.74) 
where the integral representation of the n th Hermite polynomial H n was used. These equations show that smoothing the Wigner function does not fundamentally change our paradigm: we can still write the time-evolution as a classical contribution plus quantum corrections. It is unknown if the sum of all quantum contribution can be summed in an analytical form.

Applications

This technique described above and proposed in [START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF] is illustrated by working with the double-well potential (see Fig. 6.11):

V (q) = a -bq 2 + cq 4 , (6.75) 
and with the initial Gaussian state (C.15), giving the initial probability distribution (6.47).

We take the parameters a = 3, c = 0.1, b = 2 √ ac, as in [START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF] for the potential, M = 2000, p w,0 = 0, σ 2 q = ℏ 2M ω , σ 2 p = ℏM ω 2 and ω = 0.01 MeV/fm 2 to perform the numerical calculations. The potential is represented in black solid line on Fig. 6.11.

For a potential given by a finite polynomial of q w , it is possible to derive the RHS of Eq. (6.40b) analytically and assess simply the effects of the quantum corrections and the impact of the parameters h q , h p on the dynamics. CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS Using the ansatz W ′ , we obtain the EOMs for (q k (t), p k (t)) given by (see App. C.4.1):

         qk = p k M , ṗk = 2bq k -4cq 3 k + ℏ 2 cq k h 2 p i ϕ(q k (t) -q i (t), p k (t) -p i (t)) (p k (t)-p i (t)) 2 h 2 p -1 j ϕ(q k (t) -q j (t), p k (t) -p j (t))
. V (q) (a.u.)

Figure 6.11: Potential V (q) (a.u.) as a function of the position q (a.u.).

In practice, the starting time is set to zero with the set of initial conditions (q k (t = 0), p k (t = 0)). From these, W ′ is reconstructed from formula (6.66). Eqs. (6.76a) and (6.76b) are then solved using a RK2 procedure. Reconstructing W ′ (t) requires following all trajectories simultaneously, resulting in a numerical cost proportional to N time × N 2 evt . This scaling of the approach can be very problematic when trying to work with large N evt .

Considering an initial Gaussian state given by Eq. (C.15), the present technique was used to estimate the probability P (t) to detect particles for q > 0. Results have been simulated by propagating N evt = 1000 initial conditions (q k (t 0 ), p k (t 0 )) distributed according to Eq. (6.47). Using Eq. (6.67), P decay (t) is given by:

P (t) = +∞ 0 R dq w dp w W ′ (q w , p w , t) = 1 2 1 + 1 N evt k erf q k (t) √ 2h q . (6.77)
This quantity will be compared to (i) the exact solution obtained by solving the Schrödinger equation and (ii) the TWA approach where particles evolve classically and trajectories are not coupled i.e., when the second term in the RHS of Eq. (6.76b) is neglected. In this last approach, and to reduce statistical noises to a maximum, N evt = 10 6 trajectories were used. On Fig. 6.12 are displayed snapshots of two trajectories in (ai) (q, E) space and (bi) phase-space for i = 1, 2, 3 at times t = 0 (i = 1), t = 500 (i = 2) and t = 1300 (i = 3).

Calculations are performed with h = 4 Nevt(D+2) 1 D+4 ≈ 0.266, with D = 1 the dimension of the system, to investigate the effects of quantum corrections on individual trajectories, which is the prescription given in [START_REF] Donoso | Solution of phase space diffusion equations using interacting trajectory ensembles[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF][START_REF] Silverman | Density estimation: For statistics and data analysis[END_REF].

Since particles have conserved classical energies during the evolution in the absence of the coupling term, particles with E < V B (with V B the height of the barrier), will stay forever on one side of the potential. We see in Fig. 6.1 that, however, due to coupling with surrounding particles, the energy is not conserved anymore along each trajectory and the particle can pass to the other side even if E < V B at initial time.

It appears that non-local effects intervening in the dynamics allow for the energy of an individual trajectory to vary with time. This in turn permits a trajectory to pass the potential barrier, and possibly to be trapped into the other potential well (see green solid line).

Predicted values of P (t) are shown in Fig. 6.12 as a function of time t for different values of the smoothing parameter h (see caption). As a comparison, we also displayed the results yielded by solving the Schrödinger equation and implementing TWA. The exact and TWA results are very close from each other, while the method with W ′ also matches well the TWA when h ≥ 1 (here we show h = 5), but more important discrepancies appear as soon as the initial stages of the dynamics with decreasing h.

In [START_REF] Wang | Quantum tunneling dynamics using entangled trajectories: General potentials[END_REF][START_REF] Wang | Quantum tunneling process for double well potential[END_REF], a prescription for h was given h = 4 Nevt(D+2) 1 D+4 (case (b)) with N evt the number of trajectories used. We see here a difficulty of the method. The prescription of h degrades the results compared to the TWA case. The results improve if h increases, but then identifies with TWA, i.e., trajectories becomes independent. .12: Snapshots of two trajectories in (ai) (q, E) space and (bi) phase-space for i = 1, 2, 3 at times t = 0 (i = 0), t = 500 (i = 2) and t = 1300

(i = 3) in the case h = 4 Nevt(D+2) 1 D+4 ≈ 0.266.
Trajectories that were trapped on the left side of the potential and passed to the other side are displayed up to these points of time in red and green respectively.

From this, we can draw at least two conclusions. The benchmark calculation taken in [START_REF] Wang | Quantum tunneling process for double well potential[END_REF] to validate the smoothing approach has very little "true" quantum effects. The fact that the TWA works very well points out that for most trajectories, E > V B . Trajectories with E < V B as those shown in Fig. 6.12 are very marginal in the initial distribution of (q i , p i ). Here we also point out no clear advantage in using the smoothing techniques. 

W ′ (q w , p w ) = R W(q w -x, p w -p)ϕ(x, p)dxdp (6.78) = exp - 1 2 h 2 q ∇ 2 x + h 2 p ∇ 2 p W(x, p) x=qw,p=pw , (6.79) 
= exp - h 2 2 σ 2 q ∇ 2 x + σ 2 p ∇ 2 p W(x, p) x=qw,p=pw . (6.80) 
where the Fourier transform and inverse Fourier transform to evaluate Eq. (6.78) (see App. C.4.2) was used. This shows that it is not possible to simply perform the replacement W → W ′ , as new terms composed of cross derivatives of the Wigner distribution will appear in the equations of motion. Eq. (C.4.2) turns out to be similar to the definition of the Husimi function discussed in App. C.64.

Conclusion

In the present chapter, we have investigated the possibility to improve phase-space methods similar to the SMF or TWA approach for general QM problems. Several techniques have been explored. One of the advantages of the TWA or SMF approach is that the problem is reformulated as a set of independent trajectories. In 6.5.1 we have tried to see if such a picture can be kept while trying to introduce a jump process for the tunneling problem. A first study was made on the ability to catch quantum effects (i.e., quantum tunneling) by adding by hand a correction on top of classical trajectories in the form of a probability for a test-particle to jump instantaneously from one side of the barrier to the other, allowing for classically trapped particles to escape from the potential well. We have shown that the deep-tunneling regime is usually not well accounted for using standard methods such as the WKB approximation as an estimation for the jump probability, since it yielded a different characteristic timescale than the exact solution predicted by the Schrödinger equation. We then showed by inference that a probability jump yielding the exact asymptotics with reasonably good timescales could be constructed, at least in principle.

We have seen that the use of WKB theory for the jump probability already improved the description of tunneling, although this probability seems underestimated. We more systematically investigated if such a simple approach can precisely describe the decay process, either using correction to WKB or inference techniques. Our conclusion is that it is indeed possible.

A second attempt to obtain improved phase-space methods is based on the more systematic Wigner-Weyl approach. The work was focused on how trajectories can be defined from a Wigner theory. At leading order, the TWA is recovered. Inclusion of quantum corrections induces recoupling between trajectories. A method has been tested using a smoothing procedure to avoid the problem of negative Wigner function. This method was implemented, but tends to degrade the results compared to the TWA when the prescribed smoothing parameter is used. One difficulty is that the use of larger h essentially leads to the TWA result, despite the strong complexity in using the technique.

Finally, I would like to mention that the Bohm and Husimi techniques have been studied. We however did not used the former one that is delicate to solve with trajectories when the wavefunction is no known. The Husimi technique is very attractive, but leads to very complex equations of motion to solve that seem hard to solve for the many-body problem.

C H A P T E R
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Conclusions

Tout avantage a ses inconvénients, et réciproquement.

Jacques Rouxel, Les Shadoks

In this PhD thesis, I have presented and studied several methods to describe the dynamics of correlated fermionic systems. The primary aim of this explorative study was to develop new methods to treat the evolution of fermionic systems with a beyond the mean-field picture, catching as much physics as possible, while remaining simple both conceptually and numerically to implement. This work has more precisely been focused on the inclusion of two specific effects beyond mean-field: the in-medium two-body collisions and the possibility to describe dissipation and fluctuations using phase-space-based methods. The methods developed and studied in the thesis have been strongly guided by the BBGKY hierarchy and mappings between operators and classical objects, that acted as cornerstones of most of our approaches.

After a short introduction, we discussed in Chap. 2 how the dynamics of a general many-body system can be described. This led to the presentation of the BBGKY hierarchy, which is a standard tool for this problem. Several approximations of the hierarchy have been introduced through the so-called TD-kRDM method, which consists in truncating the equations of motion at a given order n. It is important to emphasize that imprudent truncation schemes often lead to serious numerical instabilities and unphysical behaviors. Truncation schemes are usually performed at second order, since it already allows accounting for important physical phenomena such as pairing or in-medium two-body collisions. The latter effect intervenes in the dynamics through the Born term, which has been extensively studied in Chap. 3. Its perturbative treatment leads to the ETDHF theory. Chap. 3 is dedicated to the development of an accurate method to implement this theory. Using master equations, a numerical scheme for the evolution of the states and the occupation numbers was derived. This numerical method is successfully tested on a simple problem of two fermions in interaction. I showed that the method can appropriately describe the evolution of one-body observables, including dissipative effects in various range of internal excitations of the system. The numerical method remains rather numerically expensive because of the time-integral appearing in the equations of motion. It is shown, in the model case considered, that non-Markovian CHAPTER 7. CONCLUSIONS effects cannot be neglected. The proper treatment of the non-Markovian effects in the collision term prevents in general from using the numerical approach described in Chap. 3 in more complex many-body interacting systems. One milestone of the thesis is to introduce an analytical ansatz to catch as much of the non-markovian effects as possible while drastically alleviating the numerical burden of the method. A second important aspect that is studied in the thesis, that is also related to in-medium collisions, is the possibility to consistently treat the fact that single-particle states acquire finite lifetimes due to their mutual interactions. I show how the lifetimes can be estimated numerically as functions of time by solving a set of secular equations. This method not only give access to important physical properties, but also helps to render the solution of the ETDHF self-contained without the ad-hoc inclusion of a damping parameter. The different methods discussed in Chap. 3 are able to describe the occupation numbers reorganization towards equilibrium. The new assumption strongly reduced the numerical effort while not affecting the predictive power in the illustrative example. Furthermore, results are in any case far better than TDHF, even for very long times. The estimation of the time-integral in ETDHF is one of the difficulties in the implementation of this approach to systems in 3D and/or with more particles. The numerical approach proposed here offers a practical solution to avoid the explicit estimate of the integral, and, therefore, opens new opportunities for more realistic applications.

The use of master equations on single-particle occupations is the pivot of this approach. For this reason, I made an additional study of how such master equations in single-particle space might emerge in a many-body problem. Some aspects are summarized in App. B, with an emphasis on energy conservation conditions and diffusion in a many-body phase-space.

A theory like ETDHF focus on one-body degrees of freedom and corrects the evolution of the one-body density to account in an effective way for two-body effects. In the present thesis, I also studied the possibility to describe two-body effects linked to quantum fluctuations of the one-body observables. As mentioned above, a natural way is to follow in time the two-body density explicitly with an EOM based on the truncated BBGKY hierarchy. However, two major difficulties appear: (i) the two-body density matrix itself is a large matrix in realistic cases and the EOMs are hard to solve. (ii) The uncertainties on the possible truncation schemes strongly jeopardize the results. As alternatives to this strategy, I explored dynamical methods centered on the notion of phase-space, starting from Chap. 4. In this chapter, the so-called stochastic mean-field (SMF) method is introduced. This method consists in describing the dynamics of fermionic systems by sampling a set of initial conditions, propagating through mean-field-like evolutions. One of the main advantage of the approach is its simplicity, since it only requires to solve TDHF-like equations that are independent of one another. A second strong advantage of the method is that the SMF method turns out to have rather good predictive power, especially in the weak-coupling regime. An illustration of this aspect is made in Chap. 4, where the SMF method is applied to 1D Fermi-Hubbard model. It is shown that both one-body evolution and fluctuations are rather well reproduced. Part of this success is due to the fact that this approach corresponds to an infinite hierarchy of equations of one-body DOFs. This hierarchy is very akin to the BBGKY hierarchy. One of the objective of the thesis was to see if the predictive power of the approach can be further improved. A careful analysis of the BBGKY-like hierarchy deduced from SMF has shown that important differences arise already at second order with the true BBGKY hierarchy, e.g., the absence of antisymmetrization leads to the absence of any Born-like term. Despite this, applications of the method to the Fermi-Hubbard model in a perturbative regime have shown that the dynamics of the system is better described than in the mean-field framework, even outside the weak-coupling regime. By comparing the two hierarchies, I proposed a strategy to improve the SMF method. This strategy is presented in Chap. 5, and consists in systematically correcting the hierarchy of moments using BBGKY-inspired terms. This improved approach, coined hybrid phase-space approach (HPS), has been constructed by closely analyzing the relationship between semi-classical objects and their fully quantum counterpart. This led to define new fluctuating quantities that fulfill the role of the two-,three-, . . . , many-body density matrices for each trajectory. From this, each random event is propagated in time by solving BBGKY-like equations of motion truncated at a given order. In practice, a truncation at second order was performed. In this approach, the one-body motion is complemented by the evolution of a two-body operator that acts as a correcting term to the one-body stochastic evolutions. The HPS method was applied on the Fermi-Hubbard model, and for weak couplings was able to track the exact dynamics even at long times and therefore improves the description compared to the original SMF approach.

The HPS method as proposed here, although successful, remains rather empirical. Its success has led us to explore more generically phase-space reformulations of quantum mechanics with the leitmotiv of finding a more systematic framework for a quantum-classical mapping. In this work, presented in Chap. 6, efforts were focused on corrections to classical phase-space techniques and the notion of trajectories in quantum mechanics. We got interested in accounting for quantum tunneling. With the objective to find simple approaches starting from a quasi-classical picture, we first introduced a jump probability P for a trajectory to hop from one side of a potential barrier to the other side. This probability was given at first by the WKB approximation of the transmission coefficient. This rather empirical method was applied with some success to a Gaussian potential well, although the characteristic timescales were a bit underestimated. A more systematic investigation was performed to figure out if a jump probability could be constructed to best describe the dynamics. We used a χ 2 test to discriminate between probability distributions. Our conclusion is that such a probability could indeed be constructed, but unfortunately lacks physical background.

Finally, we systematically explored how a quantum problem in operator space could be mapped into classical space and how to construct systematic quantum corrections to classical trajectories. Imposing a non-ambiguous mapping between the two spaces defines the properties of the semi-classical distribution used in phase-space. The Wigner distribution, leading to a natural connection with the classical equations of motion, was used in this study. This distribution has the disadvantage that it can be negative in some regions of phase-space because of the Heisenberg uncertainty principle, preventing the rigorous construction of quantum trajectories. A method consisting in smoothing the Wigner distribution with Gaussian functions was tested such that it will always be positive. The equations of motion deduced from this approach are such that the quantum corrections to classical mechanics correspond to interactions between the trajectories. Therefore, the trajectories are not independent anymore. It can be shown that they actually exchange energy, allowing for some trajectories to pass to the other side of a potential barrier for the tunneling problem. Results on a two well potential show that in spite of the refinements of the theory, the results are not particularly improved in comparison to the brute force phase-space method with independent trajectories. Besides the work on the Wigner distribution, I would like to mention that a side study on Bohmian mechanics was performed in App. C.2, where the mapping is made from operator space to configuration space. This has led to Newtonlike equations of motion with a new potential Q encoding quantum effects. Such a potential is dependent on the density matrix, i.e., is an interaction term between Bohmian trajectories. Although Bohmian trajectories were used with success to describe quantum tunneling in a Gaussian well case, the theory remains numerically difficult to implement in practice.

Two goals of the study of general problems of quantum mechanics in phase-space were (i) to understand the notion of quantum trajectories and (ii) to get some guidance for future systematic improvements of the SMF or HPS approaches. The study made in Chap. 6 tends to indicate that phase-space methods can be improved by relaxing the hypotheses of independent classical trajectories. The results obtained in this chapter show, unfortunately, that this methodology might be difficult in practice. Numerical studies are far from being convincing, and can become extremely complicated to solve numerically. Solving a set of coupled trajectories, each of them being described by a one-body density matrix, is extremely complex and might be more complicated than solving the quantum problem in a truncated sub-space of channels. From this rather pessimistic point of view, we conclude that a good path to enhance the description of dynamical quantum systems might simply be to go back to fully quantum methods, such as time-dependent generating coordinate method (TDGCM), in which a set of Slater determinant states is evolved in time.

In case I don't see ya . . . good afternoon, good evening, and good night ! Truman Burbank, The Truman Show
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where the property Tr [ABC] = Tr [CAB] is used. The conservation of energy imposes:

Tr 3 T R 123 = (N -2)D 12 , (A.22)
to obtain the general equation of motion (valid for k ≥ 2):

iℏ d dt δR (n) 1 . . . δR (n) k = α≤k t α , δR (n) 1 . . . δR (n) k + k α=1 Tr k+1 ṽαk+1 , δR (n) 1 . . . δR (n) k R k+1 + k α=1 Tr k+1 ṽαk+1 , δR (n) 1 . . . R α . . . δR (n) k δR (n) k+1 + k α=1 Tr k+1 ṽαk+1 , δR (n) 1 . . . δR (n) k+1 + k α=1 Tr k+1 ṽαk+1 , δR (n) 1 . . . C α(k+1) . . . δR (n) k . (A.31)
Taking the average over the initial conditions, we deduce Eq. (4.29).

A.5.2 Hierarchical compatibility of the SMF approximations of the k-reduced density matrices

The expression of D ij;kl conserve the trace hierarchy that is so much discussed in the TD-2RDM approach. It is essential to have this property since it allows for better stability of the propagation. It otherwise diverges quite quickly. Here the compatibility is assured for all time for each event:

Tr 2 D (n) = p D (n) ip;jp = p R (n) ji R (n) pp - 1 2 δ ip R (n) pj + δ pj R (n) ip = N R (n) ji -R (n) ij = (N -1) R (n) ij , (A.32)
where the facts that the one-body density matrix is hermitian and that the traceless fluctuations are used. Taking the partial trace over the 3 rd particle space leads to:

Tr 3 T (n) = p T (n) jlp;ikp = p R (n) ji R (n) lk R (n) pp (A.33) - 1 2 δ jk D (n) lp;ip + δ lp D (n) pj;ki + δ jp D (n) pl;ik + δ li D (n) jp;kp + δ pi D (n) jl;pk + δ pk D (n) lj;pi - 1 6 δ jk δ lp R (n) pi + δ li δ jp R (n) pk + δ lp δ pi R (n) jk + δ pk δ li R (n) jp + δ pi δ jk R (n) lp + δ jp δ pk R (n) li = R (n) ji R (n) lk × N - 1 2 (N -1)δ jk R (n) li + D (n) lj;ki + D (n) jl;ik + (N -1)δ li R (n) jk + D (n) jl;ik + D (n) lj;ki - 1 2 δ jk R (n) li + δ li R (n) jk = N D jl;ik -2D jl;ik = (N -2)D jl;ik , (A.34)

B.1 Introduction

We saw in Chap. 3 that master equations are a powerful tool to get a beyond-mean field description of fermionic systems. In this appendix, we investigate in more details how these one-body equations can arise from a complex many-body problem. Their properties are systematically explored to understand their general behavior.

To this end, we consider a many-body problem of A single-particle states and N particles formulated in Fock space. We then try to understand how a one-body master equation on single-particle states can be deduced from the many-body equations of motion.

B.2 Diffusion in Fock space

In this section, we show how a Pauli master equation can be derived from a general many-body problem by considering transitions between general Fock states by partially following [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF]. We then deduce a one-body master equation on the occupation numbers by following the strategy exposed in [START_REF] Gudima | Cascade-exciton model of nuclear reactions[END_REF].

B.2.1 Notations

We describe the system using Fock states and occupation numbers representation. We assume a set of particles {â i } i=1,A associated to a set of occupation numbers {n i }. This representation is discussed in details in the case of quasi-particles in [START_REF] Esebbag | Number projected statistics and the pairing correlations at high excitation energies[END_REF]. A given configuration in the Fock space will be denoted by:

|{n i }⟩ = |n 1 , . . . , n A ⟩ , (B.1)
with n i = 0 or 1. In particular, denoting by Ni the operator counting the number of occupied pairs â † i âi , we have:

â † i âi |n 1 , . . . , n A ⟩ =    0 if n i = 0, 1 |n 1 , . . . , n A ⟩ if n i = 1 . (B.2)

B.2.2 Decoherence and derivation of a many-body Pauli equation

The exact evolution of the problem can always be formulated in the original basis of particles (i.e. Slater determinants). In this case, two-body terms of the form â † i â † j âk âl will intervene in the dynamics. The effect of this quadrilinear operator can readily be evaluated on the state |n 1 , . . . , n i , . . . , n A ⟩, since it will give non-zero values only if n k = n l = 1 and n i = n j = 0. This leads to:

â † i â † j âk âl |. . . , n i , . . . n j , . . . , n k , . . . , n l , . . .⟩ = n k n l (1 -n i )(1 -n j ) (B.3) × |. . . , n i + 1, . . . n j + 1, . . . , n k -1, . . . , n l -1, . . .⟩ .
contain important information about the system, e.g., the conservation of energy, the characteristic times of the transitions authorized by the residual interaction between the many-body states, . . . Note that Eq. (B.10) is not invariant by time-reversal operation, i.e., the dynamics it describes is irreversible. The evaluation of the gain and loss terms is usually a complex endeavor. A prescription is often used in practice. A possible choice is given in [START_REF] Bohr | Nuclear structure. 1, Single-particle motion[END_REF], where it is assumed:

W Λ,Γ = W Γ,Λ = |V ΛΓ | 2 2πℏ 2 Γ Γ (E Λ -E Γ ) 2 + (Γ Γ /2) 2 , (B.11)
where E Λ,Γ is the energy of the many-body state |Λ, Γ⟩, V ΛΓ = ⟨Λ| V |Γ⟩ and Γ is the width of the many-body state |Γ⟩, that depends on the energy through the widths of the single-particle states induced by the 2p2h coupling V .

B.3 One-body master equation

From Eq. (B.10), we will now derive a one-body master equation on the occupation numbers. The occupation numbers n k (t) = â † k âk follow the equation of motion:

d dt ⟨n k ⟩ = α ⟨Λ| nk |Λ⟩ ṖΛ (t), (B.12) 
with:

ṖΛ (t) = Γ W Λ,Γ P Γ (t) - Γ W Γ,Λ P Λ (t). (B.13)
Introducing the notation ⟨n k ⟩ Λ = ⟨Λ| nk |Λ⟩, we see that we can immediately rewrite the occupation number evolution as:

d dt ⟨n k ⟩ = Λ,β ⟨n k ⟩ Λ W Λ,Γ P Γ (t) - Λ,Γ ⟨n k ⟩ Γ W Γ,Λ P Λ (t)
These two terms are nothing but the loss and gain term. Starting from here, we follow the fully probabilistic approach proposed by Gudim et al. [START_REF] Gudima | Cascade-exciton model of nuclear reactions[END_REF] is fully probabilistic, where the key step is to realize that Λ represents a state in Fock space with variables n i that take value zero or one only. Then, one can reinterpret the many-body weight P Λ as the probability of a given configuration of the occupation numbers:

P Λ (t) = P (n 1 , . . . , n A ; t). (B.14)
From this, the gain and loss terms can be rewritten using the moments generating function of P (n 1 , . . . , n A ; t) [START_REF] Gudima | Cascade-exciton model of nuclear reactions[END_REF], yielding the following equation of motion for the occupation numbers:

d dt ⟨n k ⟩ = ijl {A ij→kl ⟨n i n j (1 -n k )(1 -n l )⟩(t) -A kl→ij ⟨n k n l (1 -n i )(1 -n j )⟩(t)} , (B.15)

C.1 Quantum hydrodynamics

Here we introduce some aspects leading to quantum hydrodynamics from a Schrödinger picture.

C.1.1 Derivation of the Madelung equations

We start from the Schrödinger equation, and introduce the polar coordinates as in Chap. 6:

Ψ(q, t) = ρ(q, t)e iS(q,t) . (C.1)

We see that we have ρ(q, t) = |Ψ(q, t)| 2 corresponding to the probability that the particle is in q at time t, while j(q, t) = ∇S(q,t) m ρ(q, t). In analogy with classical mechanics where j(q, t) = v(q, t)ρ(q, t), we can introduce a quantum field for the velocity:

v(q, t) = ∇S(q, t) m . (C.2)
The Schrödinger equation can be recast as a coupled set of equations between ρ(q, t) and S(q, t) given by Eqs. (6.11a) and (6.11b):

∂ t ρ = (C.3) ∂ t S = ℏ 2 4m ∇ 2 ρ ρ - 1 2 ∇ρ ρ 2 + (∇S) 2 2m -V ρ = -(Q + V ) + (∇S) 2 2m . (C.4)
These are the quantum Hamilton-Jacobi equations, with the quantum potential Q written under the compact form:

Q(q, t) = - ℏ 2 2m ∇ 2 ρ 1/2 (q, t) ρ 1/2 (q, t) . (C.5)
This term is absent in classical mechanics. Finally, S can be replaced by the velocity field, giving the Madelung equations:

       ∂ t ρ = 1 m ∇ [ρv] , m d dt v = -∇ (V + Q) . (C.6a) (C.6b)
It is always possible to replace the velocity field with the probability current j. For the sake of completeness, the equation on j given by:

∂ t j(q, t) = - ρ(q, t) m ∇ [V (q) + Q(q, t)] -∇ j(q, t) ρ(q, t) 2 . (C.7)
This property is guaranteed by the Madelung equations and the equivalence to the Schrödinger equation. It is interesting to examine the energy of each Bohmian trajectory of the ensemble, since they depend on the potential Q(t). The energy E i (t) of a trajectory is given as a function of time by:

E i (t) = 1 2 mv 2 (q i (t) , t)) + V (q i (t)) + Q (q i (t) , t) . (C.13)
Taking its time-derivative gives:

d dt E i (t) = mv (q i (t) , t)) d dt v (q i (t) , t)) + qi (t) ∇ q V (q)| q=q i (t) + qi (t) ∇ q Q (q, t)| q=q i (t) + ∂ ∂t Q (q i (t) , t) , = -v (q i (t) , t)) ∇ q (Q(q, t) + V (q))| q=q i (t) + v (q i (t) , t) ∇ q (Q(q, t) + V (q))| q=q i (t) + ∂ ∂t Q (q i (t) , t) , = ∂ ∂t Q (q i (t) , t) . (C.14)
Therefore, we see that the energy is not conserved for individual trajectories. There is however one case where Ėi = 0, it is the specific case where |Ψ⟩ is an eigenstate of the problem, in which case ρ(q, t) is constant, leading to Q = 0. Since in average the energy is conserved, this implies that the change of energy of an individual trajectory is compensated by the change of energy in the other.

C.2.2 Some illustrations of Bohmian mechanics

In this section, we illustrate the notion of trajectory in Bohmian mechanics in three simple situations: a Gaussian wavepacket (i) evolving freely, (ii) trapped inside a harmonic oscillator and (iii) escaping from a Gaussian well.

Free particle case

We start with an initial Gaussian wavepacket evolving freely (V = 0):

Ψ(q, t 0 ) = 1 2πσ 2 1/4
exp -(qq 0 ) 2 4σ 2 + i p 0 (qq 0 ) ℏ , (C. [START_REF] Yvon | La théorie statistique des fluides et l'équation d'état. Théories mécaniques (hydrodynamique-acoustique)[END_REF] where q 0 = q(t 0 ) and p 0 = p(t 0 ). The Schrödinger equation can be solved analytically [START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF][START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF] and yields at all times:

Ψ(q, t) = 1 2πσ 2 α 2 t 1/4
exp -(qq(t)) Here, q(t) is the center of the Gaussian wavepacket as a function of time. Reporting in Eq. (C.5), this expression gives a quantum potential Q(q, t) given by:

Q(q, t) = - ℏ 2 2m 1 4σ 2 |α t | 2 (q -q(t)) 2 4σ 2 |α t | 2 -1 . (C.18)
We recognize here two main contributions to the dynamics:

1. An inverted harmonic oscillator contribution that will spread away the trajectories from their center of mass.

2. A deformation factor coming directly from the spreading of the distribution of the trajectories through α t .

Denoting q i (t) the position of a trajectory in time t, the time-evolution of the velocity is given by: v (q i (t) , t) = qi = 1 m ∇S (q, t)| q=q i (t) = p 0 m + ℏ 2 t 4m 2 σ 2 |α t | 2 (q i (t)q(t)) . (C. [START_REF] Griffin | Collective Motions in Nuclei by the Method of Generator Coordinates[END_REF] Integrating in time, we finally obtain: q i (t) = q(t) + |α t | (q [t 0 ]q 0 ) = q 0 + p 0 m t + 1 + ℏt 2mσ 2 2 (q (t 0 )q 0 ) . (C.20)

Here, we clearly see the two contributions discussed above. In the classical limit (ℏ → 0) the trajectory is simply the free classical motion with q i (t) = q i (t 0 ) + p 0 m t. It is interesting to note that a particle with initial position q i (t 0 ) = q 0 (i.e., initially at the center of mass of the wavepacket) will follow strictly the classical path. In Fig. C.1 are displayed examples of freely evolving Bohmian trajectories for various values of q i (t 0 ) in black solid lines. The black dashed line corresponds to the motion of the center of the Gaussian wavepacket. This application is performed with q 0 = 0 (fm), p 0 = 1000 (MeV•fm 2 /c), m = 999.3303 MeV, σ 2 = 1.4400 fm 2 , and ℏ = 197.3271 MeV • fm / c.

We can distinguish three phases in the test-particle dynamics:

1. At short time, a linear regime where ℏt 2mσ 2

2 ≪ 1, and where the particles follow Newtonian trajectories : q i (t) ≈ q i (t 0 ) + p 0 m t.

2. At intermediate time, a non-linear phase where t ≤ 2mσ 2 ℏ , so that ℏt 2mσ 2 2 ≤ 1 and the test-particles undergo a uniform acceleration: q i (t) ≈ q i (t 0 ) + p 0 m t + q i (t 0 ) ℏ 2 8m 2 σ 2 t 2 .

3. At long time, a completely linear phase where ℏt 2mσ 2

2 ≫ 1 and q i (t) ≈ q i (t 0 ) + in black solid lines for different q i (t 0 ). The effective potential V eff (t) = V +Q(t) is shown in MeV in colors. The black dashed line corresponds to the free motion of a classical particle whose initial position is at q i (t 0 ) = 0 and p 0 ̸ = 0 (see text). It also corresponds to the motion of the center of the Gaussian wavepacket.

We now suppose that the wavepacket is trapped inside a harmonic potential of the form:

V (q) = 1 2 mω 2 q 2 + V min = 1 2 a 2 q 2 + V min . (C.21)
The exact probability density obtained for the initial Gaussian state (C.15) at time t is now given by: ρ(q, t) = |Ψ(q, t)| 2 = 1 2πσ 2 |β t | 2 exp -(qq(t)) β t = cos(ωt) + i ℏ 2mωσ 2 sin(ωt), q(t) = q 0 cos(ωt) + p 0 mω sin(ωt).

The quantum potential is then given by:

Q(q, t) = - ℏ 2 4mσ 2 |β t | 2
(qq(t)) We find again an inverted harmonic potential that competes with the potential V (q). Its strength is controlled by the oscillatory factor |β t | 2 . Here, the action is written:

S(q, t) = mω 2 cot(ωt) q 2 - (q -q(t)) 2 |β t | 2 , (C.25)
Reporting in Eq. (C.2), this gives the velocity field for test-particles:

v(q i (t) , t) = qi (t) = ω cot(ωt) q i (t) -q i (t)q(t)

|β t | 2 .
(C. [START_REF] Lacombe | Stochastic TDHF in an exactly solvable model[END_REF] trajectories implies that numerical errors in the reconstruction procedure can easily lead to pathologies, such as unphysical behaviors and divergences. In this section, I present a practical strategy to propagate a quantum system in time using trajectories only: the many interacting world method [START_REF] Hall | Quantum phenomena modeled by interactions between many classical worlds[END_REF][START_REF] Rodriguez | Trajectory-based methods for the study of ultrafast quantum dynamics[END_REF]. It relies on approximating the density and quantum potential at any given time t on a dynamical grid using the positions of the trajectories at time t only.

Approximation of density in a 1D case

Introducing an observable φ(q), the MIW approximation ρ of the density ρ is constructed by matching the average ⟨φ⟩ traj of its value along each trajectory x i (t) with the quantum average ⟨φ⟩: ⟨φ⟩ traj = R ρ(q)ϕ(q)dq ≈ ⟨ϕ⟩ = R ρ(q)ϕ(q)dq.

(C.29)

The true quantum average can itself be approximated by:

⟨ϕ⟩ = 1 N R ρ(q)ϕ(q)dq ≈ 1 N R N i=1 δ(q -x i (t))ϕ(q)dq = 1 N N i=1
ϕ(x i (t)), (C.30) while, if the density ρ and the observable φ(q) do not appreciably vary over the interval [x i-1 (t), x i (t)], then:

⟨φ⟩ traj = R ρ(x)ϕ(x)dx = N i=1
x i (t)

x i-1 (t) ρ(x)ϕ(x)dx = N i=1 ρ(x i )

x i (t) where we choose for simplicity that x 0 = -∞, x N = +∞, and x 0 < x 1 < • • • < x N . The matching (C.29) finally imposes that:

ρ(x i (t)) = 1 N (x i (t) -x i-1 (t)) , (C.32)
which turns out to be a rather simple expression. It is important to note that special care is needed for the evaluation of the difference in the denominator of expression (C.32), since it can obviously lead to important numerical instabilities in practice.

Approximation of the quantum potential

Following a similar strategy, we match the total average energy ⟨E⟩ with the average of the energy of the individual trajectories H N . It can be shown by integration by part that: R dqρ(q)Q(q) = ℏ 2 8m R dq ∇ρ ρ In this section, we apply the MIW strategy on the Gaussian well case (see Chap. 6) and Sec. C.2.2. We use here the same initial Gaussian state as before to perform the time-evolution.

On figure C.6 are represented a set of Bohmian trajectories obtained by propagating the density ρ and trajectories obtained with the MIW method in blue dashes. In the background is given the total effective potential V eff (t) = V + Q(t). Note that the system has been shifted globally in comparison to the original figures in Chap. 6 and Sec. C.2.2, but that it doesn't alter the dynamics. We observe that the trajectories are well reproduced using the MIW method in the initial stages of the dynamics, except for the furthest from the center of mass of the initial state at initial time. Most discrepancies arise starting t ≈ 80 fm/c but do not change the qualitative behavior of the trajectories. The MIW trajectories instead simply pass the barrier more quickly than the trajectories obtained using the knowledge of the wavefunction. From this, we can conclude that the MIW strategy will overestimate the probability decay of the wavefunction initially entrapped inside the potential well. It is possible, however, that this probability does not tend towards 1 with time. Indeed, some outlying trajectories move very slowly for long times, and the MIW approximation of the quantum potential induces only repulsive effects.

C.2.5 Conclusion

We have seen that it is possible to define a concept of trajectory in Quantum mechanics without ambiguities by reformulating the Schrödinger equation as the hydrodynamical Madelung equations and identifying the probability density ρ as an average over trajectories in configuration space. Trajectories are propagated using Newton-like equations of motion, with an effective potential V eff (q, t) = V (q) + Q(q, t). Q is the Bohmian potential, encoding the quantum effects in the equations of motion. Since it is a function of ρ and its derivatives, Q can be interpreted as a non-local interaction between the trajectories. Although Bohmian mechanics yields the same results as the Schrödinger equation (up to statistical noise), difficulties arise when trying to solve the equations of motion in practice, mainly tied to the non-linearity of Q and its rather sudden time-evolution. For instance, important instabilities appear when ρ approach zero because of the ratio between ρ and its space derivatives. This can lead to errors in the estimation of Q and the calculation of the trajectories themselves. This numerical instability could be rather problematic when dealing with more realistic applications, e.g., along with density functional theories, even though it has already been discussed at length in quantum chemistry literature [START_REF] Oriols | Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology[END_REF]. In the light of these difficulties, we decided to investigate other frameworks in which the concept of trajectories can be clearly defined while retaining quantum mechanical properties (see main text in Chap. In the Ehrenfest point of view, the equation of motion on W can be linked to the Moyal brackets. Indeed, starting from Eq. (6.28), the potential in the non-local part can be developed by its Taylor series:

V q w + y 2 -V q w -y 2 = j∈N j s=0 v j q j-s j s y 2 s 1 + (-1) s+1 , = j∈N 2s+1≤j 1 2 2s v j q j-2s-1 y 2s+1 , (C.39) then the kernel Θ takes the form:

Θ(q w , η) = 1 2πℏ j∈N 2s+1≤j R v j q j-2s-1 y 2 ∇ 2s+1 qw V (q w ) × ∇ 2s+1 pw W(q w , p w ) , = -{W(q w , p w , t), H w (q w , p w )} M .

(C.41)

Taking the limit ℏ → 0, we obtain the following EOM:

∂ ∂t W(q w , p w , t) = -p w m ∇ q W(q, p w , t)| q=qw + ∇ q V (q)| q=qw ∇ p W(q w , p, t)| p=pw , (C.42) which we recognize as the equation of motion of a classical distribution of particles.

C.4 Energy conservation in Ehrenfest picture

The average energy E av = ⟨E⟩ of the system is given by:

E av = R R
dq w dp w p 2 w 2m + V (q w ) W(q w , p w , t). where the time-derivative was separated into two part, the average kinetic contribution ⟨T ⟩ and the average potential ⟨V ⟩:

∂ t ⟨T ⟩ = R R
dq w dp w p 2 w 2m ∂ t W(q w , p w , t).

(C.46)

∂ t ⟨V ⟩ = R R
dq w dp w V (q w )∂ t W(q w , p w , t).

(C.47)

Kinetic part

The first term in the integral equals zero by integration by parts and the assumption that the Wigner distribution is equal to zero at infinity. Furthermore, Therefore, the kinetic contribution is written:

∂ t ⟨T ⟩ = - p w m ∇ q V (q)| q=qw . (C.50)

Potential contribution

As before, we can decompose the integrand into two contributions, coming from the kinetic and potential parts of the Wigner function EOM. The first term yields:

- R R dq w dp w V (q w ) p w m ∇ Q W(Q, p w , t)| Q=qw = R R
dq w dp w p w m W(q w , p w , t)

× ∇ Q V (q w )| Q=qw = p w m ∇ Q V (Q)| Q=qw . (C.51)
The second contribution is equal to zero by successive integrations by parts on p w . This finally gives:

Ėav = ∂ t ⟨T ⟩ + ∂ t ⟨V ⟩ = p w m ∇ q V (q)| q=qw - p w m ∇ q V (q)| q=qw = 0, (C.52)
and the total average energy of the system is conserved.

C.4.1 Trajectories equation derivation in the quartic potential case

Developing Eq. ( 6.41b) with the potential Taylor series, we obtain:

ṗk = -∇ Q V (Q)| Q=q k + ℏ 2 cq k ∇ 2 P W ′ (q k , P )| P =p k W ′ (q k , p k ) . (C.53)
Using the ansatz W ′ and taking its second derivative regarding the momentum p k gives: i ϕ(q k (t)q i (t), p k (t)p i (t)) (p k (t)-p i (t)) 2 h 2 p -1 j ϕ(q k (t)q j (t), p k (t)p j (t))

∇ 2 P W ′ (q k (t
. (C.56)

giving the following equations of motion for each trajectory (q k (t), p k (t)) in the quartic potential case.

C.4.2 Rewriting of the smoothing of the Wigner distribution

Recall the definition of the smoothed ansatz W ′ :

W ′ (q w , p w ) = R W(q w -Q, p w -P )ϕ(Q, P )dQdP, (C.57) with ϕ a Gaussian function given by Eq. (6.64). Taking the Fourier transform F of W ′ :

F [W ′ (q w , p w )] (A, B) = W ′ (A, B) = F R W(q w -Q, p w -P )ϕ(Q, P )dQdP (A, B) = F [W] (A, B) × F [ϕ] (A, B). (C.58)
The Fourier transform of the kernel ϕ is given by: F -1 A 2k = (iℏ) 2k √ 2πℏδ (2k) (q w ) = -ℏ 2k √ 2πℏδ (2k) (q w ).

F [ϕ] (A) = 1 √ 2πℏ exp - h 2 q A 2
(C.62)

We can rewrite the ansatz by now using the inverse Fourier transform F -1 :

W ′ (q w , p w ) = kl (-1) k+l 2πℏℏ 2(k+l) φk φl R R δ (2k) (Qq w )δ (2l) (Pp w )W(Q, P )dQdP

= kl (-1) k+l h 2k q 2 k k! h 2l p 2 l l! ∂ 2(k+l) ∂Q 2k ∂P 2l W(Q, P ) Q=qw,P =pw = exp - 1 2 h 2 q ∇ 2 Q + h 2 p ∇ 2 P W(Q, P )
Q=qw,P =pw .

(C. [START_REF] Schunck | Microscopic theory of nuclear fission: A review[END_REF] This relation between the ansatz W ′ and the original Wigner distribution W shows that one effect of the smoothing is that the correct equations of motion for the former is far more complex than the equation of motion on the latter.

C.5 Husimi framework C.5.1 Definition

The Husimi transform F h is another way to construct a Phase-Space representation of QM from coherent states spanning the space, widely used in for instance quantum optics. The Husimi transform of an operator Ô takes the form [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF]:

O h (q h , p h ) = F h Ô (q h , p h ) = R R ⟨α| Ô |α⟩ dαdα * . (C.64)
The Husimi transform of the position and momentum operators are now given by: This equation contains several crossed derivatives and higher order terms meant to account for the dependence on h q , h p . This indicates that the equations of motion for the trajectories are of complex nature, and might be numerically unstable.

F h [q] = q h + σ 2 q ∇ q h ,

C.5.2 Equation of motion of the Husimi function as a power series

General expression

Recall that the Husimi distribution follows the EOM:

∂ t H(q h , p h , t) = 2 ℏ exp h 2 q ∇ Q 1 ∇ Q 2 + h 2 p ∇ P 1 ∇ P 2 (C.77) × sin ℏ 2 (∇ Q 1 ∇ P 2 -∇ Q 2 ∇ P 1 ) H h (Q 1 , P 1 ) H(Q 2 , P 2 , t) Q 1 =Q 2 =q h ,P 1 =P 2 =p h .
It can be rewritten by using Taylor expansions and Leibniz rule:

sin ℏ 2 (∇ Q 1 ∇ P 2 -∇ Q 2 ∇ P 1 ) = +∞ i=0 2i+1 j=0 (-1) j-1 (2i + 1)! 2i + 1 j ℏ 2 2i+1 (C.78) × (∇ Q 1 ∇ P 2 ) j (∇ Q 2 ∇ P 1 ) 2i+1-j , exp h 2 q ∇ Q 1 ∇ Q 2 + h 2 p ∇ P 1 ∇ P 2 = +∞ k=0 k l=0 h 2l q h 2(k-l) p k! k l (C.79) × (∇ Q 1 ∇ Q 2 ) l (∇ P 1 ∇ P 2 ) k-l .
This gives:

∂ t H(q h , p h , t) = 

× ∇ l+j Q 1 ∇ l+2i+1-j Q 2 ∇ k+2i+1-l-j P 1 ∇ j+k-l P 2
H h (Q 1 , P 1 )H(Q 2 , P 2 , t) Abstract: The dynamics of a quantum system of interacting particles rapidly becomes impossible to describe exactly when the number of particles increases. This is one of the main difficulties in the description of atomic nuclei, which may contain several hundred of nucleons. A simplified approach to the problem is to assume that some degrees of freedom contain more information than others. A classical approximation is to focus on one-body degrees of freedom: the dynamics of the system can be approximately described by a set of particles propagating in an effective mean-field. While the mean-field approximation has allowed many advances in the theoretical understanding of the properties of nuclei, it is still unable to describe certain of their properties, for example the effects of direct collisions between nucleons or the quantum fluctuations of one-body observables. The objective of the thesis is to account for these correlations beyond the mean-field approximation in order to improve the dynamical description of quantum correlated systems.

Q 1 =Q 2 =q h ,P 1 =P 2 =p h
One component of the thesis has been to study methods to treat collisions between particles by including the Born term beyond the mean-field. This term is particularly complex because of non-local effects in time, the so-called non-Markovian effects. Possible simplifications of this term have been studied for future applications. Two simplifying approaches have been proposed, one allow-ing to treat the collision term with master equations, the other allowing to get rid of time integrals while keeping the non-locality in time. The second part of the thesis was devoted to the improvement of the mean-field approximation in order to describe the quantum fluctuations. Based on existing phase space methods, a new method, called "Hybrid Phase Space Method" (HPS) has been proposed. This method is a combination of the mean-field theory with initial fluctuations and a theory where the two-body degrees of freedom are propagated explicitly. This new approach has been successfully tested for the description of an ensemble of fermions on a lattice, i.e. the Fermi-Hubbard model, and has given much better results than the phase-space approaches previously used to describe correlated systems, in particular in a weak coupling case. If this new approximation gives interesting results, it remains numerically rather heavy and empirical. This led to a detailed study of the Wigner-Weyl and Bohm formalisms in order to explore phase-space methods in a more systematic way. The notion of trajectory in quantum mechanics has been systematically investigated. The conclusion of this study, where illustrations have been made on the tunneling effect, is that it is necessary that the trajectories interfere with each other in the course of time to reproduce the quantum effects.
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CHAPTER 2 .Figure 2 . 1 :

 221 Figure 2.1: Illustration of the philosophy used to treat beyond mean-field effects.Here, it is assumed that the system is properly described at the mean-field level at initial time. The mean-field approach (dashed line) provides an approximate description of the exact evolution projected on the relevant one-body DOFs. As time increases, due to accumulated effects of correlations, the mean-field evolution deviates more and more from the projected exact evolution (thin solid line). One motivation to go beyond mean-field is to try to correct from this deviation (dot-dashed line). This can be done either by adding a correction term to the one-body evolution (ETDHF) or enlarging the space of relevant DOFs (TDHFB or TD-2RDM).
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 2 TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS

Figure 2 . 2 :

 22 Figure 2.2: Time evolution of electronic density in the leftmost site of a N = 4 sites Hubbard model with (a) TDHF (b) 3b-CIF (c) 3b-NIA and, (d) WC approximations in red solid lines. The exact result is also given for comparison in dashed blue line. Here, m, ℏ are set to unity and the Hubbard parameters are U = 0.1 and J = 1 (see text). The four particles initially filled the two leftmost sites. (Taken from [51]).
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 4 Find the new occupation numbers n α (t + ∆t) and the new states |Ψ α (t + ∆t)⟩ using Eqs. (3.31) and (3.14).

  2 [D 12 (t 0 )] is used as an initial condition.
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 3132 Figure 3.1: Occupation numbers n i of the levels of lowest [panels (a), (b) and (c)], second lowest [panels (d), (e) and (f)] and third lowest [panels (g), (h) and (i)] single-particle energy as a function of time t in fm/c for different initial temperatures: T = 1 MeV [(a), (d) and (g)], T = 5 MeV [(b), (e) and (h)], T = 10 MeV [(c), (f) and (i)]. The exact solution is displayed with black dots and the results yielded by the ETDHF are displayed in blue solid line. Note that the TDHF solution is not shown, since the occupation numbers are fixed in time to their initial value.
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 3334 Figure 3.3: Center of mass q of the particles in fm as a function of time in fm/c for different initial temperatures: T = 1 MeV (a), T = 5 MeV (b) and T = 10 MeV (c). The exact result is displayed in black solid line, while the results yielded by solving the TDHF and ET-DHF equations are displayed in green dotted line and blue dashed line, respectively.
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 35 Figure 3.5: Real (a) and imaginary (b) parts of Π 11 as functions of t back = s in fm/c calculated for the first collision occurring in the dynamics at t = 5.4 fm/c. Resultsyielded by the original ETDHF framework using the full meanfield propagation are displayed in blue solid line. This result is considered as the reference case here. In case 1, the off-diagonal elements of the mean-field are neglected. The obtained result with this approximation is displayed in yellow solid line.
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 36 Figure 3.6: Same as Fig. 3.5 but this time with the results yielded by approximation 2 in red solid line.
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 37 Figure 3.7: Real part of F 1α with α running over the four levels of lowest energy α = 1 (a) in yellow lines, α = 2 (b) in black lines, α = 3 (c) in blue lines and α = 4 (d) in red lines. Solid lines display the results yielded by the original ETDHF scheme, whereas the results given by Eq. (3.52) are displayed in colored dashed lines.
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 38 Figure 3.8: Same as Fig. 3.7 for the imaginary part of F 1α instead.

Figure 3 . 11 :

 311 Figure 3.11: Center of mass q in fm as a function of time in fm/c. The exact result is displayed in black solid line, the ETDHF in blue solid line, the results of the analytical ansatz in case 2 in red solid line and finally the results of the ansatz with the secular equation in green solid line.
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 312 Figure 3.12: Same as Fig. 3.11 but displaying the fluctuations of the center of mass σ x (in fm) as a function of time in fm/c instead.
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 313 Figure 3.13: Widths Γ α of the 3 states of lowest energy involved in the dynamics in MeV as a function of time t in fm/c.
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 41 Figure 4.1: Schematic illustration of the mean-field (a) and of the stochastic mean-field techniques.The SMF method consists in sampling the initial conditions at time t 0 with Gaussian random numbers whose statistical properties are the same as the initial quantum fluctuations. Each event is then propagated using TDHF-like equations of motion with its own self-consistent mean-field. The average of the observables is then computed by taking the statistical average of the ensemble.
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 42 Figure 4.2: Time evolution of the occupation probability of the leftmost site, denoted by n 1 (t) = R 11 (t) for a ratio U/J = 0.1 and (a) N = N s = 4 or (b) N = N s = 8.In both panels, the exact solution is displayed by a black solid line, the TDHF solution is shown by a green dotted line. Note that here we have n 1↑ (t) = n 1↓ (t) = n 1 (t), and we simply omit the spin.

  resulting from Eqs. (4.11a) and (4.11b) is that the statistical average of the mean value and fluctuations matches the quantum mean and fluctuations of the quantum problem at initial time.

TrTr

  k+1 ṽα(k+1) , C 1...(α-1)(α+1)...(k+1) R k+1 ṽα(k+1) , C 1...(α-1)(α+1)...k C α(k+1) + k α=1 Tr k+1 ṽα(k+1) , C 1...(k+1) .(4.29)
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 2 and j ≥ N/2 or j ≤ N/2 and i ≥ N/2
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 43 Figure 4.3: Time evolution of the occupation probability of the leftmost site, denoted by n 1 (t) = R 11 (t) for a ratio U/J = 0.1 and (a) N = N s = 4 or (b) N = N s = 8.In both panels, the exact solution is displayed by a black solid line, the TDHF solution is given by a green dotted line and the average over the SMF phase-space trajectories is given by a blue dashed line. The average occupation number is obtained here by averaging over 10000 trajectories. Note that here we have n 1↑ (t) = n 1↓ (t) = n 1 (t), and we simply omit the spin.

Figure 4 . 4 :

 44 Figure 4.4: Time evolution of the local part of the one-body density n i (t) = R ii (t) for one of the spin orientations as a function of time, obtained for U/J = 0.1 and N = N s = 8 assuming that all particles are located on one side of the mesh initially. The exact solution (a) is compared to the SMF (b) method, obtained with a sample of N evt = 10000 events.
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 45 Figure 4.5: Time evolution of the one-body entropy S(t) (k B units), given by Eq. (4.35) as a function of time, obtained for U/J = 0.1 and (a) N = N s = 4 and (b) N = N s = 8 assuming that all particles are located on one side of the mesh initially. The exact solution (black solid line) is compared to the SMF method (blue dashed line), obtained with a sample of N evt = 10000 events.
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 46 Figure 4.6: Time evolution of the leftmost site occupation n 1 (t) for N s = N = 8, for U/J = 0.25 (top) and U/J = 0.5 (bottom). The exact solutions (black solid line), NEGF (green, dashes) and SMF (red, diamonds) for N evt = 10000 are shown. Extracted from [115].
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Figure 5 . 1 :

 51 Figure 5.1: Same as Fig. 4.1, but this time (c) represents a schematic illustration of the HPS method. In this technique, new terms that are inspired by the BBGKY are added to the equations of motion to correct the SMF trajectories. In practice, this amounts to propagating an approximate 2body density along each trajectory.

  obtained by solving the Eq. (5.13) or T

Figure 5 . 2 :

 52 Figure 5.2: Time evolution of the (a) occupation probability of the leftmost site (b) center of mass q(t) of the interacting particles and (c) one-body entropy for U/J = 0.1 and N = N s = 4 assuming that all particles are located on the left of the mesh initially. In each panel, the exact solution is displayed by a black solid line, the results of the original SMF phasespace approach are shown by a blue dashed line. The results of the HPS approach are shown with red filled circles. In the SMF and HPS phase-space techniques, results are obtained using 10000 trajectories.

  (n) ij (t 0 ) are specified in section 4.3.1. As in the last chapter, we assume in the present HPS application presented below that spin up-spin down symmetry is respected along CHAPTER 5. BEYOND THE STOCHASTIC MEAN-FIELD METHOD: A HYBRID PHASE-SPACE METHOD each path. In the HPS equations of motion, only D
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 553 Figure 5.3: Same as figure 5.2 for N = N s = 8.
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 54 Figure 5.4: Time evolution of the local density part of the one-body density n i (t) = R σσ ii (t) for one of the spin orientation as a function of time, obtained for U/J = 0.1 and N = N s = 8 assuming that all particles are initially located on one side of the mesh. The exact solution (a) is compared to the SMF (b) and HPS (c) phase-space methods.
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 55 Figure 5.5: Time evolution of the occupation probability of the leftmost site for N = N s = 4 and different interaction strengths: (a) U/J = 0.2, (b) U/J = 0.4 and (c)U/J = 0.6. In each case, all particles are initially located on one side of the mesh. The exact solution is displayed using a black solid line, the result of the original SMF phase-space approach is shown by a blue dashed line and the results of the HPS approach are shown with red filled circles.
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 56571 Figure 5.6: Same as figure 5.5 except that the center of mass motion q(t) is shown instead of the leftmost site evolution.
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 58 Figure 5.8: Same as Fig. 5.5 for N = N s = 8.
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 59 Figure 5.9: Same as Fig. 5.5 except that the center of mass is now shown as a function of time for N = N s = 8 and varying interaction strength.
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 64 Figure 6.4: Distribution of energy of the particles ρ(E) as a function of the reduced energy ε = (E -V min )/(V max -V min ). The initial distribution for our problem is displayed in black solid line. The kinetic contribution to the total energy distribution is shown in green solid line, and the potential contribution is displayed in red solid line. The vertical black dashed line corresponds to V max .

εFigure 6 . 6 :

 66 Figure 6.6: Reduced cycle time τ c (E) ω HO2π (no units), of a particle inside the potential well as a function of its reduced energy ε (no units). In green dots is displayed the result in the non-smoothed case, defined for V min ≤ E < V max , whereas the smoothed case is displayed with blue triangles. Both are on top of each other, since this time is independent of P (E). The vertical black (horizontal blue) dashed line corresponds to the barrier maximum.

tFigure 6 . 7 :

 67 Figure 6.7: Reduced population P(t, E) of an ensemble of particles with energy E as a function of time in fm/c in the WKB (solid lines) or smoothed probability (dashed lines) cases for reduced energies ε = 0 (black lines), ε = 0.2 (blue lines), ε = 0.4 (red lines) and ε = 0.6 (green lines). Small fluctuations come from the finite particle number in the sampling. Here, N evt = 20000 is used.)

Figure 6 . 8 :

 68 Figure 6.8: Characteristic decay time β -1 (fm/c) as a function of the reduced energy ε in the WKB approximation (green dots) and smoothed probability (blue triangles) cases obtained with approximation (6.62). The black dashed vertical line corresponds to the position of the maximum of potential. The thick colored lines correspond to fits of the probabilities obtained by direct sampling in the WKB case (green) and in the smoothed probability case (blue).
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 66912610 Figure 6.9: Probability to jump obtained with the 3 optimization procedures discussed in the text. The red line and green circles are the previous P (E) with no jump and WKB approximation, respectively. The dash-dotted line, black crosses and black dashed dot line correspond to a fit with a polynomial interpolation between [0, 1] with a polynomial of degree a = 0, 1, 2. The optimal parameters are c 0 = 0.4 (a = 0), (c 0 , c 1 ) = (0, 1) (a = 1) and (c 0 , c 1 , c 2 ) = (0.1, 0.1, 0.8). The filled squares and filled circles are obtained using the Lagrange interpolation technique, using respectively 4 points in the interval [0, 2] or 7 in the interval [0, 4].
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 6 Figure 6.12: Snapshots of two trajectories in (ai) (q, E) space and (bi) phase-space for i = 1, 2, 3 at times t = 0 (i = 0), t = 500 (i = 2) and t = 1300 (i = 3) in the

FinallyFigure 6 . 13 : 1 D+4

 6131 Figure 6.13: Decay probability P as a function of time t (a.u). Results yielded by cases (a) h = 0.05, (b) h = 4 Nevt(D+2)
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Figure C. 1 :

 1 Examples of Bohmian trajectories evolving freely from the initial Gaussian state (C.15)

  i )ϕ(x i )(x ix i-1 ), (C.31)

2 .Figure C. 5 :

 25 Figure C.5: Center of mass in red (left scale) and spread in blue (right scale) in fm as a function of time t in fm/c in the free case. Obtained from the wave function (center of mass in solid line, spread in dashed line) or the MIW (center of mass in dashed line, spread in dotted line).

Figure C. 6 :

 6 Figure C.6: Example of trajectories x i (t) in fm versus time t in fm/c in a Gaussian well potential given by expression (6.43). The same conventions apply as in Fig. C.4.

  in the Ehrenfest picture and the Moyal bracket:

  2s+1) (η). (C.40) By injecting Eq. (C.40) into Eq. (6.28) and performing multiple integrations by parts on the non-local part, the equation of motion takes the form:∂ ∂t W(q w , p w , t) = -p w m ∇ qw W(q w , p w )

(C. 43 )(- 1 ) s ℏ 2 2s 1 (

 4311 Its time-derivative, in the Ehrenfest POV, is given by:∇ Q W(Q, p w , t)| Q=qw + +∞ s=0 2s + 1)! ∇ 2s+1 Q V (Q) Q=qw ∇ 2s+1 P W(q w , P ) P =pw = ∂ t ⟨T ⟩ + ∂ t ⟨V ⟩ , (C.45)

2 .

 2 w , P ) P =pw = -R dp w p w m ∇ 2s P W(q w , P ) P =pw . (C.48) 1. If s = 0 then one obtain -⟨pw⟩ m . If s > 0, supplementary integrations by parts can be performed: w , P ) P =pw =w , P ) P =pw = 0. (C.49)

2ℏ 2 ,

 2 (C.59) which can be developed in Taylor series:F [ϕ] (A, B) = kl φk φl A 2k B 2l , (C.60) φk = (-1) k √ 2πℏ h 2k q/p 2 k ℏ 2k k! . (C.61) APPENDIX C. COMPLEMENT ON PHASE-SPACE METHODS Note that:
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  Description des corrélations dans la dynamique des systèmes de fermions en interaction Mots clés : Physique Théorique, Physique Nucléaire et Dissipation Résumé: La dynamique d'un système quantique formée de particules en interaction devient rapidement impossible à décrire exactement lorsque le nombre de particules augmente. Ceci est une des principales difficultés dans la description des noyaux atomiques pouvant contenir plusieurs centaines de nucléons. Une approche simplifiée du problème consiste à supposer que certains degrés de liberté contiennent plus d'information que les autres. Une approximation classique est de se concentrer sur les degrés de liberté à un corps : la dynamique du système peut être approximativement décrite par un ensemble de particules se propageant dans un champ moyen effectif. Si l'approximation de champ moyen a permis de nombreuses avancées dans la compréhension théorique des propriétés des noyaux, il n'en reste pas moins qu'elle ne peut décrire un certain nombre de leurs propriétés, par exemple les effets des collisions directes entre les nucléons où les fluctuations quantiques des observables à un corps. L'objectif de la thèse est de rendre compte de ces corrélations au-delà de l'approximation de champ moyen afin d'améliorer la description dynamique des systèmes quantiques corrélés.Une composante de la thèse a été d'étudier les méthodes qui permettent de traiter les collisions entre les particules en incluant le terme de Born au-delà du champ moyen. Ce terme est particulièrement complexe à cause d'effets non-locaux en temps, effets dits non-markoviens. Des simplifications possibles de ce terme, en vue de fu-tures applications, ont été étudiées. Deux approches simplificatrices ont été proposées, l'une permettant de traiter ce terme à l'aide d'équations maîtresses, l'autre en s'affranchissant des intégrales en temps. La seconde partie de la thèse a été consacrée à l'amélioration de l'approximation de champ moyen afin de décrire les fluctuations quantiques. En se basant sur des méthodes d'espace des phases existantes, une nouvelle méthode, appelée «Hybrid Phase Space Method» (HPS) a été proposée. Cette méthode est une combinaison entre la théorie de champ moyen avec fluctuations initiales et une théorie où les degrés de liberté à deux corps sont propagés explicitement. Cette nouvelle approche a été testée avec succès pour la description d'un ensemble de fermions sur réseau, i.e, le modèle de Fermi-Hubbard et a donné de bien meilleurs résultats que les approches d'espace des phases précédemment utilisées pour décrire les systèmes corrélés, notamment dans un cas de couplage faible. Si cette nouvelle approximation donne des résultats intéressants, elle reste cependant numériquement assez lourde et empirique. Cela a conduit à étudier en détail les formalismes de Wigner-Weyl et de Bohm afin d'explorer de manière plus systématique les méthodes d'espace des phases et amené à la notion de trajectoire en mécanique quantique. La conclusion de cette étude, dont les tests ont été effectués sur l'effet tunnel, est qu'il est nécessaire que les trajectoires interfèrent entre elles au cours du temps pour bien reproduire les effets quantiques.Title: Description of correlations in the dynamics of interacting Fermi systems Keywords: Theoretical Physics, Nuclear Physics, Dissipation

  

  1 ] + Tr 2 [ṽ 12 , D 12 ]

								(2.7)
	iℏ	∂D 12 ∂t	= t 1 + t 2 +	1 2	ṽ12 , D 12 +	1 2	Tr 3 [(ṽ 12 + ṽ23 ) , T 123 ] .	(2.8)

I denote by P 12 , P 13 . . . the permutation operators that act on the states:

P 12 |ij⟩ = |ji⟩ , P 13 |ijk⟩ = |kji⟩ , . . .

and more generally, a general operator Ô will be written in such a way that the indices in O 1 , O 12 , . . . will identify on which particles the operator acts. For instance, R 1 or R 2

  .16) CHAPTER 2. TIME-DEPENDENT MEAN-FIELD APPROACH AND ITS EXTENSIONS Let us assume that the one-body density can be written at initial time in its canonical basis, i.e., R = i |ϕ i ⟩ n i ⟨ϕ i |, where the n i are the one-body occupation numbers. Then Eq. (2.16) is equivalent to the set of one-body Schrödinger equations:

  1 -P 12 ) (1 -P 13 -P 23 ) .

				EXTENSIONS
	Reporting directly into Eqs. (2.7) and (2.8) gives:	
	iℏ Ṙ1 = [t 1 , R 1 ] +	1 2	Tr 2 [ṽ 12 , D 12 ] ,	(2.19)
				(2.18)

  1 -P 12 ) (1 -P 13 -P 23 ) .

	(2.26)
	• Wang and Cassing (WC) approximation. It consists in taking T 123 as a functional
	of both R 1 and D 12 , given by Eq. (2.18). It has first been introduced in [65].

  .[START_REF] Dinh | On the inclusion of dissipation on top of mean-field approaches[END_REF] We note that this separation is not of the form C 12 = A 1 A 2 that would lead to ⟨ij| C 12 |kl⟩ = A ik A jl . Injecting this in Eq. (2.13) with only the mean-field and the third term, we obtain
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		4399836753170021 fm 2
	m	938.91897 MeV
	q 0	34.95 fm
	a 2 = mω 2 HO	0.22427264451400075 MeV• fm -2
	ℏ	197.327050000 MeV • fm / c

1: Numerical values of the parameters used in this study.

  2 2σ 2 |β t | 2 -1 , (C.23)|β t | 2 = cos 2 (ωt) +

	ℏ 2mωσ 2	2	sin 2 (ωt).	(C.24)

  ), P, t)P =p k = 1 N ev i ∇ 2 P ϕ(q k (t)q i (t), Pp i (t)) P =p k (C.54) = 1 h 2 p N ev i ϕ(q k (t)q i (t), p k (t)p i (t)) (p k (t)p i (t)) 2Combining this result with Eq. we obtain the EOMs for the trajectories in this system:

			h 2 p	-1 ,
	qk =	p k m	,	(C.55)
	ṗk = 2bq k -4cq 3 k + ℏ 2 cq k h 2 p	

  F h [p] = p h + σ 2 p ∇ p h . (C.65) It can be linked to the Wigner-Weyl transform by expressing the coherent states under the form: α = aq h + ibp h , where a and b are constant parameters used to ensure that α is dimensionless. Choosing a = 1 O w (x, p)| x=q h ,p=p h . The Husimi equivalent H of the Wigner function W is obtained by transforming the density ρ according to (C.64):the prohibitory complexity of the Husimi function equation of motion, even in simple systems. Indeed, in the simple case of a double well potential of the form:V (q) = abq 2 + cq 4 , (C.75)the EOM of the Husimi function writes (see App. C.5.2):∂ t H(q h , p h , t) = -p h M ∇ x 2 H(x 2 , p h , t)| x 2 =q h -h 2 p M ∇ x 2 ∇ p 2 H(x 2 , p 2 )| x 2 =q h ,p 2 =p h (C.76) + -2b + 6ch 2 q q 2 h q h ∇ p 2 + h 2 q ∇ x 2 ∇ p 2 H(x 2 , p 2 , t) x 2 =q h ,p 2 =p h + 4cq 3 h ∇ p 2 H(q h , p 2 ) p 2 =p h + 4ch 6 q ∇ 3 x 2 ∇ p 2 H(x 2 , p 2 , t) x 2 =q h ,p 2 =p h + 12ch 2 q q h ∇ 2 x 2 ∇ p 2 + q 2 h ∇ x 2 ∇ p 2 H(x 2 , p 2 , t) x 2 =q h ,p 2 =p h + cℏ 2 h 2 q h 2 p ∇ x 2 ∇ 4 p 2 + q h ∇ 3 p 2 H(x 2 , p 2 , t) x 2 =q h ,p 2 =p h .

	√	2hq and b = 1 √ 2hp :
	O h (q h , p h ) = exp -	h 2 2	σ 2 q ∇ 2 x + σ 2 p ∇ 2 p
	= exp -	h 2 2	σ 2 q ∇ 2 x + σ 2 p ∇ 2

H(q h , p h ) = F h [ρ] (q h , p h ) = R R W(x, p)ϕ(q hx, p hp)

dxdp, (C.66) p W(x, p) x=q h ,p=p h . (C.67)

Both of these schemes have been applied for τ = ℏ/Γ = 64 fm/c.

Note that we did not check for higher-order densities, but we anticipate that similar relations holds.

Remerciements

Hybrid phase-space (HPS) method guided by the BBGKY hierarchy

Besides the Gaussian assumption for the initial noise, the first evident source of errors in SMF can be seen by taking the average evolution of R

(n)

1 . Indeed, taking the average of the equations over the moments (see Eq. (5.3)) and using the relation between the average moment M (n) [START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF] and the average density D (n) [START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF] obtained by averaging Eq. (5.5), we immediately see that the evolution does not match the first BBGKY equation given by (2.7). Based on this observation and in order to improve the phase-space approach, we proposed in this new method to force the event-by-event one-body evolution (EOM) to take the form iℏ Ṙ(n)

12 .

(5.8)

Although we might be tempted to interpret

12 as a fluctuating two-body density, for the moment, the only constraint we impose is that it has some properties of the exact two-body density matrix (antisymmetry, hermiticity). We also assume that D (n) [START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF] evolves according to an equation of motion similar to the second BBGKY equation that is given by:

+ 1 2 Tr 3 (ṽ 13 + ṽ23 ), T

where T

(n) [START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF] is for the moment an intermediate quantity that has the same properties as the three-body density matrix, while H 12 is the two-body Hamiltonian of the system.

Obviously, if at all time we have D (n) [START_REF] Nakatsukasa | Time-dependent density-functional description of nuclear dynamics[END_REF] (t) = D 12 (t) and T (n) [START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF] (t) = T 123 (t) where D 12 (t) and T 123 (t) are the exact quantum densities, then the averages of the above two equations of motion match the exact evolution. However, constraining the one-, two-and three-body fluctuating quantities to match in average the exact evolution is an open problem by itself. A slightly simpler task, that follows the spirit of the SMF approach, is to impose constraints only at initial time. More precisely, our goal is to impose:

(5.10)

The first two constraints are already fulfilled in the original SMF formulation [START_REF] Ayik | A stochastic mean-field approach for nuclear dynamics[END_REF] using the statistical properties given by Eq. (4.11b) and the Gaussian assumption for the initial statistical ensemble. However, with this Gaussian approximation, T (n) [START_REF] Polkovnikov | Colloquium: Nonequilibrium dynamics of closed interacting quantum systems[END_REF] (t 0 ) obtained by averaging Eq. (5.6) does not match T 123 (t 0 ), even starting from a pure Slater determinant state.

Solving Eq. (5.9) also requires having the equation of motion for the quantity T ( 5.11) This expression holds at initial time for a statistical ensemble of independent particles at zero or finite temperature. In this case, we have:

(5.12)

Using this expression in Eq. (5.9), we obtain that the equation of motion on D

(n) 12 (t) can be recast as:

This equation, together with Eq. (5.8) will be the EOMs we will use in the following and that will replace the mean-field propagation in the phase-space method.

In order to generalize the SMF approach, we still need to specify the statistical properties to be used for R 12 (t 0 ). One of our goals is to fulfill the three requirements given by Eq. (5.10). In particular, the matching of the initial threebody density is not possible in the original phase-space approach when the Gaussian assumption is made on the initial ensemble. A natural generalization would be to assume that

where D

(n) 12 (t) can be, for instance, given by expression (5.5) while ∆ (n) 12 (t) has statistical properties chosen to ensure that, at time t 0 , the second and third equations in (5.10) are respected. One can also try to impose simultaneously that Tr 2 D (n)

This implies automatically Tr 2 ∆ (n) 12 (t) = 0 at all time. We explored this strategy and tried to find a convenient statistical initial ensemble for ∆ (n) 12 (t) with one or several of these constraints, but did not find any simple way.

In the absence of a clear prescription, we finally simplified the problem and assumed that R 

(5.15) for all events. Then each initial condition is propagated using the equations (5.8) and (5.13). It should be noted in particular that, although D 2π (no units), where ℏω HO , given in Table 6.1, is the pulsation of the harmonic approximation of the potential barrier. The reduced cycle time is shown as a function of the reduced energy ε in Fig. 6.6. The green dots display the WKB case, while the blue triangles display the smoothed probability case. The cycle time diverges at E = V max . An interesting point is that this divergence happens when ε → 1 -or ε → 1 + , which is a simple result from classical mechanics. In particular, we see that whatever P (E) is, the classical particle will take an infinite amount of time to perform the cycle if E = V max . Said differently, if E = V max , the time to escape for the particle becomes infinite whatever the chosen P (E).

3. The last ingredient is the jump probability P (E) itself. In the WKB approximation, P (E) properties are essentially determined by the behavior of the momentum p(q) = 2m(E -V (q)).

From the last 2 ingredients, τ c (E), P (E), it is interesting to estimate the probability P in (n, E) of a set of particles with energy E below the barrier to be still inside the well at time t = nτ c (E), with n being the n th time a particle hits the barrier at q 2 . Suppose that an ensemble of particles with energy E and initial population P in (0, E) hits the barrier at time τ c (E). A portion of them will escape the potential, while the others will continue their classical evolutions inside the well.

Suppose now that an ensemble of particles P in (E)(t 0 ) = P in (0, E) with energy E hit the barrier at a subsequent time s = (n + 1)τ c (E). In a rough approximation, after hitting the barrier, the average change ∆P in (E) in the population of particles that are kept in the well is given by:

with N int (t) the number of particles trapped in the well at time t. Assuming that the population of a bin decreases exponentially:

CHAPTER 6. EXPLORATORY STUDY OF PHASE-SPACE METHODS (ii) This is caused by an underestimation of the jumping probability P (E) at very low energy, leading to very high effective decay times, β -1 as E → V min (see Fig. 6.8).

This difficulty raises the question whether a well-behaved probability P (E) that reproduces the exact quantum result P ex decay even exists when propagating the initial conditions classically, or more fundamentally the proper description of P (E) for deep sub-barrier tunneling.

Systematic investigation of P (E)

To answer this question, a systematic investigation of possible P (E) using a χ 2 test was performed. Three strategies were considered:

1. The case where P (E) is a polynomial and is a function of ε in the interval [0, 1]:

and equal to 1 for ε ≥ 1.

We then choose the degree a of P (ε) by setting c n = 0 for n > a, and allow the coefficients to vary between 0 and 1. The relation

test is then performed to measure the quality of P decay with respect to the exact result.

We worked in the a = 0, 1, 2 cases. The optimal P in each case is shown on Fig. 6.9 in black dashed line (a = 0), for c 0 = 0.4, for black crosses (a = 1), with c 0 = 0, and in black dash-dotted line (a = 2), for c 0 = 0.1, c 1 = 0.2.

2. In the second strategy, a polynomial P (ε) is still assumed. We choose a set of values {ε i } in the interval ε ∈ [0, 2]. Then the P (ε i ) are varied freely. Intermediate values of P (ε) are then obtained by Lagrange polynomial interpolation. The ξ 2 are then minimized on the P decay . We used 4 values for ε i , leading to the optimal values ε i ) 0, 2 3 , 4 3 , 2 , corresponding respectively to P (ε i ) = {0.75, 0.5, 0.25, 1.0}. The results for P (ε) are shown in Fig. 6.9 by the squares.

3. We also tried using the same procedure with 7 equidistant points in [0, 4]. The result is shown in Fig. 6.9 in black triangles.

We finally show the results obtained using the different optimized P (E) for two time intervals in Figs. 6.10a and 6.10b respectively. We see that the different fitting procedures lead to a wide variety of energy dependence for P (E). Despite strong differences, we observe that most of P (E) give very reasonable P decay compared to the exact one. This, despite the fact that some of them do not seem to be physical, like the one displayed with triangles. Indeed, in the latter case, some very high-energy particles much above the barrier have significant probability to not be emitted immediately. For these particles, the cycle time is very small and the precise value of P (E) does not seem to influence much of the evolution.

Altogether, our conclusion is that P decay alone is not a stringent enough test to adjust P (E). Still, one can draw two positive conclusions from the present analysis: Here, some intermediate steps for the equations that are used in the main text are given.

A

Derivation of the BBGKY hierarchy

A.1 Conventions and preliminary results about the kbody densities

The many-body problem is fully described by the N -body density matrix D. If |Ψ⟩ is the many-body state, D can be expressed as:

The k-body density matrix R 1...k is then defined by:

with N k a normalization factor equal to N ! (N -k)! . By those definitions, we have the recurrence relation:

This property is called the hierarchical compatibility. It shows that all the information contained in the 1, 2, . . . , N -body matrices are contained in the N -body matrix D 1...N .

Another important property is the semi-definite positiveness. If λ

is the set of the eigenvalues of D 1...N , then:

Properties (2.5) and (A.4) are both important in the following discussion.

A.2 Derivation of the BBGKY hierarchy up to second order

Consider a general Hamiltonian

1-body evolution

Calculating the 1-body part of the equations of motion is straightforward:

which implies:

The 2-body part is longer to derive. In all generality, using the Wick theorem:

Replacing in the potential part of the Hamiltonian and taking the mean, one gets:

where I decomposed the 2-body density matrix under the form

Here, P 12 is an exchange operator and C 12 contains the 2-body correlations. We can rewrite the mean using the antisymmetrized potential, ṽ12 and the antisymmetric properties of C 12 and the 1-body density:

Relabelling the indices, one gets:

Finally,

, where U ij (R) = kl ⟨ik| ṽ12 |jl⟩ R lk . In the end, we obtain the following equation:

with h(R 1 ) the Hartree-Fock effective Hamiltonian. In this form, the equation of motion of the 1-body density matrix resemble very much those of mean-field theories. Indeed, if we neglect the 2-body correlations (i.e., set C 12 = 0), one find back the so-called Time dependent Hartree-Fock equation.

2-body evolution

Deriving the equations of motion of the 2-body density matrix D 12 is a bit longer. Let us begin by deriving the hopping part of the evolution:

We finally obtain:

The potential part is the longest part to calculate. Indeed, the commutator between 2 quadrilinear of fermionic operators, with the use of the Wick theorem, gives 4 terms with 1 contraction, and 6 terms with 2 contractions, resulting in 10 terms to be treated:

Rewriting those in terms of traces over the 2-body DOFs and 3-body DOFs, one gets: 

A.3 Conservation laws

Conservation of energy

If we note

the Hamiltonian of the system, with t i the kinetic parts and ṽ12 the 2-body interaction, and T R 123 the chosen approximation of T 123 , then the energy at all times is given by:

. Its time evolution is given by the equation:

which is none other than the partial trace relation between the 2-body density and the 3-body (reconstructed) density. This shows that fundamental relations between the densities must be respected in order to avoid unphysical behavior.

Consistency between D 12 and R 1 EOMs

The partial trace relation between the 1-body and 2-body densities yield:

where the indices were relabelled and the antisymmetry properties of the 3-body density have been used. To find back the 1-body density EOM, we have therefore to impose Eq. (A.22). This property is important, since breaking it would cause an ambiguity. Indeed, taking the trace of D 12 , one would obtain a matrix R ′ 1 that is different from the 1-body density. If we propagate both R 1 and D 12 using the coupled equations written above, one would have to decide arbitrarily of what matrix is the real physical one. This question doesn't need an answer in the works of Lackner et al. [START_REF] Lackner | Propagating two-particle reduced density matrices without wave functions[END_REF][START_REF] Lackner | Time-dependent two-particle reduced density matrix theory: application to multi-electron atoms and molecules in strong laser pulses[END_REF] 

A.4 BBGKY as a foundation for the inclusion of superfuidity in TDHF

Performing the replacement C 12 = κ 1 κ * 2 gives for the one-body density matrix:

Neglecting the collision term and the trace terms, the equation of motion can be written:

From this, we can identify the equation of motion of the one-body anomalous density κ:

The new equation of motion for the one-body density matrix is now given by:

which is nothing but the first of the TDHB equations of motion.

A.5 Auxiliary calculations for SMF and HPS

A.5.1 Simplified hierarchy of equations of motion for SMF

In order to get the equations of motion for the centered moments defined in Eq. (4.29), it is first convenient to obtain the evolution of the fluctuations δR (n) with respect to the average. Subtracting the average evolution of R (n) obtained above to the Eq. (4.23) gives:

.

Similarly, as in the previous section, we can then use the fact that: Note that the same discussion can be made for bosons be performing the replacement (1n i ) → (1 + n i ). In the following, I introduce the notation Λ = {n i } such that a state in Fock space simply writes |Λ⟩ to alleviate notations. The initial state then writes:

From this and the Schrödinger equation, we can deduce the standard coupled equations between coefficients:

The exact many-body density D(t) then writes:

with |Γ⟩ representing other configurations in Fock space. From this, one can use the standard perturbation theory and obtain the approached probabilities

The main idea of the "Random Phase approximation" or van Hove approach is that the density evolution is rapidly dominated by the diagonal part [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF][START_REF] Van Hove | The approach to equilibrium in quantum statistics: A perturbation treatment to general order[END_REF][START_REF] Van Hove | Energy corrections and persistent perturbation effects in continuous spectra[END_REF][START_REF] Petrosky | The derivation of the quantum kinetic equation and the two-time resolvent method[END_REF], such that:

The objective of this appendix is to find an equation in the form of a master equation for the state. With standard perturbation theory techniques, we expect that the density in the interaction picture will evolve according to an equation of motion of the form:

with V res (t) the residual interaction in interaction picture. It is possible to replace D(t) by D 0 (t) = Λ |Λ⟩ P Λ (t) ⟨Λ| in the time-integral, giving the equation of motion (we set D(t 0 ) = 0 for simplicity):

Considering that the weights P Λ do not change appreciably in time in comparison to the residual interaction, we finally find the Pauli equation:

where we recognize W Λ,Γ and W Γ,Λ as a gain and a loss term, respectively. This equation describes a general diffusion problem in the Fock space. The gain and loss terms with:

The A ij→kl and A kl→ij are none other than the gain and loss terms expressed in the single-particle basis. Their explicit form is not trivial, and it is often assumed:

Finally, the master equation for the occupation numbers can be derived by neglecting the quantum fluctuations appearing in Eq. (B.15):

and we finally get a one-body equation for the occupation numbers: [START_REF] Griffin | Collective Motions in Nuclei by the Method of Generator Coordinates[END_REF] with:

We see that the only ingredient that needs to be computed to describe the dynamics is now the coefficients A ij→kl . Note that it is possible that neglecting the quantum correlations has the far-reaching consequence of changing the statistical ensemble considered. Indeed, we so far worked in the microcanonical ensemble. Indeed, it can be shown using the moment generating function of P (n 1 , . . . , n A ; t) that, for a system respecting particle number conservation ad without neglecting the quantum fluctuations, the fluctuations in particle number are equal to N 2 , where N is the number of particles of the system. Neglecting the higher order correlations, however, leads to the following:

If we assume that ρ ij = δ ij n i , this gives:

The quantity above always verifies:

leading to the bound of the error:

Eq. (B. [START_REF] Griffin | Collective Motions in Nuclei by the Method of Generator Coordinates[END_REF]) is therefore written in the grand canonical ensemble context, i.e. it can eventually lead to the thermalization of the system.

C.2 Bohmian mechanics C.2.1 Bohmian trajectories

Below, we consider the specific case of particles in 1D. A more general discussion for all dimensions can be found in [START_REF] Wyatt | Quantum dynamics with trajectories: introduction to quantum hydrodynamics[END_REF].

Construction of the Bohmian trajectories

Let us consider a density obtained from a set of trajectories:

Then its time evolution can be obtained from the particle evolution:

where we recognize the particle current j(q, t):

Let us assume that these particles at q = q i (t) verifies qi = v(q, t), i.e., all particles are subject to the same velocity field. We then obtain: j(q, t) = ρ(q, t)v(q, t).

(C.11)

The density ρ(q, t) given by Eq. (C.8) has to follow only one condition to match its quantum counterpart: v(q, t) must be equal to its quantum value at all times given by Eq. (C.2). We therefore see that an attractive aspect of Bohm theory is the possibility to introduce the notion of test-particle trajectories in a quantum problem, provided that we know S(q, t) at all time at least approximately. In this case, it can be shown [START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF][START_REF] Sanz | A Trajectory Description of Quantum Processes[END_REF] that the test-particles q i (t) follow the quasi-Newtonian equation of motion:

which can be solved along with the continuity equation (C.6a).

Note that, if we exactly solve the Schrödinger equation, we can get S(q, t) from which we obtain the set of trajectories q i (t). Some illustrations are given in Sec. C.2.2.

Energetic considerations and stationary states

We found interesting to mention the following aspect related to energy conservation for individual trajectories. The total average energy of the system is obviously conserved. 

is shown in MeV in colors. Note that no trajectory crosses the line q = 0 apart, the center of the wave packet.

Solving this differential equation yields the following equation for the trajectories:

The trajectory (C.27) remarkably corresponds to a classical particle with initial position and momentum given by the average initial position and momentum of the wavepacket, corrected by a quantum effect arising from the spreading of the Gaussian wavepacket in time. Again, taking the limit ℏ → 0 leads to a constant |β t |. Reporting in Eq. (C.27) we recover, the classical equation of motion for the test-particles:

In Fig. C.2 are displayed in black solid lines examples of Bohmian trajectories as a function of time for different initial q i (t). The same parameters were used for the free case, for a potential given by (C.21) and a 2 = 0.2243 MeV/fm 2 . We see that although the effective potential V eff = Q + V follows a regular, periodic behavior, Fig. C.2 shows that Q has rather sudden variations.

Quantum tunneling in a Gaussian well case

Up to now, we have considered cases where analytical solutions of the Schrödinger equation exists. We now consider a more general situation where the problem is solved numerically by integrating the Schrödinger equation to obtain Ψ(q, t), from which the trajectories are constructed. We take as an example the particle decay case, where V is given by Eq. (6.43). We construct the corresponding Bohmian trajectories. This gives the scheme: Solution of the time-dependent Schrödinger equation → Ψ(q, t) → Q(t) → q i (t) . Bohmian trajectories q i (t) in fm (black solid lines) starting from different values of q i (t) over the total potential. These trajectories are constructed using a Bohmian potential V eff (q, t) = V (q) + Q(q, t), where Q(q, t) is obtained from Eq. (6.12). Ψ is deduced using a direct numerical solution to the time-dependent Schrödinger equation, The potential V eff is shown in colormap in MeV. The minimum of the potential well V is located at q = 35 fm.

Trajectories are presented in Fig. C.3 (see caption). We can clearly distinguish three main phases in the dynamics, unsurprisingly corresponding to the three main phases of the P decay (t) evolution, where P deccay is defined by (6.50) for test-particles:

1. At initial time, the wave-function is initially located inside the potential well.

During this initial stage of the dynamics, Bohmian trajectories behave almost as in the free or harmonic potential cases. Some of them already have passed the barrier (usually with q i (t) > q 0 ) while others (q i (t) < q 0 ) are evolved towards the left of the lattice.

2. After t ≈ 40 fm/c, the wavepacket has spread, and the effective potential V eff = V + Q yields a new barrier along with a potential well moving towards the right of the lattice, greatly changing the velocities and energies of the particles.

C.2.3 Bohmian trajectories in practice: the many interacting worlds approach

Bohmian mechanics, as presented in the last section, requires the explicit knowledge of the density ρ to construct trajectories. This is imposed by the dependence of the Bohmian potential Q on ρ. Knowing the density at all times is however equivalent to solving the problem exactly. From this point of view, Bohmian quantum trajectories seem to be confined to illustrative purposes. Efforts were made, however, in recent years [START_REF] Wyatt | Quantum dynamics with trajectories: introduction to quantum hydrodynamics[END_REF][START_REF] Poirier | Bohmian mechanics without pilot waves[END_REF][START_REF] Hall | Quantum phenomena modeled by interactions between many classical worlds[END_REF][START_REF] Schiff | Communication: Quantum mechanics without wavefunctions[END_REF][START_REF] Rodriguez | Trajectory-based methods for the study of ultrafast quantum dynamics[END_REF][START_REF] Cruz-Rodríguez | Quantum dynamics modeled by interacting trajectories[END_REF][START_REF] Scribano | Communication: Adiabatic quantum trajectory capture for cold and ultra-cold chemical reactions[END_REF] in order to dispense with the knowledge of the density, and solve the quantum problem using trajectories only. In the framework, it is not necessary to refer explicitly to any auxiliary equation on the density on top of the equations of motion of the trajectories anymore. This problem proved to be challenging, since it requires the reconstruction of the density at all times t using the trajectories: the complex interplay between the reconstructed density and the propagation of the Then, the average total energy is given by:

Finally, we get that:

where H N is the total Hamiltonian for N test-particles. Eqs. (C.34) and (C.35) allows deriving an approximation Q of the Bohmian potential:

with x 0 = -∞ and x N +1 = +∞. Note that this convention is equivalent to imposing boundaries to the support of the quantum potential. Eq. (C.36) finally allows writing

intervening in Eq. (C.12) explicitly:

with:

The approximation of the Bohmian potential Q is negative and therefore always repulsive. It diverges when two trajectories are too close from each other, which ensures that the trajectories do not cross. Just as per the approximated density ρ, it can diverge in practice if special care is not taken so that trajectories never cross each other. Time steps that are little enough usually ensure that such problem does not occur in practice.

C.2.4 Application to simple cases

In this section, two practical applications of the MIW strategy are presented. The first one is the free Gaussian wavepacket, with a comparison to the analytical result. The second one is the Gaussian well case, already discussed in Chap. 6 and in the precedent section.

Free particle

In well, with quantitative agreement in the initial stages of the dynamics. We observe that, trajectories farther from the center of the wavepacket deviate more quickly than trajectories near the center of mass of the Gaussian state. We would like to emphasize that the MIW approach does not take account of the term in ℏ 2 4m ∇ 2 ρ ρ , which is attractive in the free Gaussian case for |xq t | > σ t . This approximation will thus overestimate the spreading of the wavefunction. We observe that the trajectories near the center of mass of the wavepacket are rather well reproduced by the MIW approach. Furthermore, the effective potential shows discontinuities and divergences in the x > 20 fm area. This behavior is caused by Q the definition problems when ρ → 0. As such, regularization may be difficult to achieve. This behavior is, however, not really problematic, in the sense that by definition there are no trajectories in the areas where the density is near zero.

To further assess the ability of the MIW strategy to reproduce exact results, we show on Fig. C.5 the center of mass x and its fluctuations σ in fm as functions of time as provided by the analytical solution of the problem and its MIW approximation. The center of mass dynamics is perfectly reproduced, even at long time. Furthermore, the fluctuations obtained with the MIW strategy, are in qualitative agreement with the exact result. At the early stages of the dynamics, the approximation is even in quantitative agreement. These results show that, while the MIW approach, considerably alleviate the numerical burden of Bohmian mechanics.

Quantum tunneling

APPENDIX C. COMPLEMENT ON PHASE-SPACE METHODS

The core property of the Husimi function is that H(q h , p h ) ≥ 0 everywhere. Note that generally speaking, although containing the same information as the Wigner function, we have:

(C.68)

As with the Wigner function, the dynamics of a system in the Husimi framework can be understood in terms of the Heisenberg and Ehrenfest representations. Since we only need a practical way of treating the spurious terms appearing in the smoothed Wigner function dynamics, we present the Ehrenfest point of view only and construct a trajectory in phase-space approach using the same prescription as with the Wigner function. The EOMs writes [START_REF] Lee | Theory and application of the quantum phase-space distribution functions[END_REF][START_REF] Takahashi | Distribution Functions in Classical and Quantum Mechanics[END_REF]:

Generally O h ̸ = O w , and we have:

The effect of the smoothing is to force the appearance of cross-derivatives of the Husimi function in the EOMs.

Following the same procedure as with the Wigner function, we write the Husimi distribution as an average over Gaussian kernels: H(q h , p h , t) = 1 N evt i ϕ(q hq i (t), p hp i (t)), (C.71)

∂ t H(q h , p h , t) = -1 N evt i ∇ x ϕ(q hx, p hp i (t))| x=q i (t) dq i (t) dt (C.72)

We identify the currents: j q (q h , p h , t) = -1 N evt i ϕ(q hq i (t), p hp i (t)) dq i (t) dt , (C.73) j p (q h , p h , t) = -1 N evt i ϕ(q hq i (t), p hp i (t)) dp i (t) dt .

(C. [START_REF] Wong | Dynamics of nuclear fluid. V. Extended timedependent Hartree-Fock approximation illuminates the approach to thermal equilibrium[END_REF] Imposing that all trajectories obey the same velocity field v, we can deduce equations of motion for each trajectory in the Husimi framework. A major difficulty, however, is

The Husimi transform of the Hamiltonian is always of the form:

with V h the Husimi transform of the potential V . We can always decompose the Husimi function EOM as a kinetic contribution K and a potential non-local contribution P.

Kinetic contribution:

Since the kinetic contribution is proportional to p 2 h , k + 2i + 1lj ≤ 2, and that l + j = 0, and since they are both integers greater or equal to zero, then l = j = 0. The only two terms different from zero in the sum are then given by the couples of integers (i, k) = (0, 0), (0, 1). This allows to write:

where we recognize a first term that is very akin to the kinetic term in the equation of motion of the Wigner distribution.

Potential contribution:

In this case, k + 2i + 1 = l + j, a very useful condition when writing the EOM.

Application to the quartic potential case

The Husimi transform of the quartic potential

is of the form:

V h (q h ) = ab h 2 q + q 2 h + c 3h 4 q + 6h 2 q q 2 h + q 4 h .

(C.85)

The expression of P of motion is then given by: P = -2b + 6ch 2 q q 2 h q h ∇ P 2 + h 2 q ∇ Q 2 ∇ P 2 H(Q Eq. (C.87) is a complex equation because of the presence of several higher-order and crossed derivatives that might lead to numerical difficulties in practice.