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Introduction

Chapter 1

Overview of PCNSL

1.1 PCNSL in the context of large B-cell lym-
phomas and CNS tumors

The definition of primary CNS lymphoma has evolved along with the development
of modern morphological, immunological, and molecular cytogenetic techniques.
The most recent revised World Health Organization (WHO) classification of Tu-
mours of Haematopoietic and Lymphoid Tissues (Steven H. Swerdlow et al., 2008;
Steven H. Swerdlow et al., 2016) identifies PCNSL as a separate entity defined as
diffuse large B-cell lymphoma (DLBCL) arising exclusively within the brain, spinal
cord, leptomeninges, or eye. This excludes other lymphoma entities involving the
CNS such as intravascular large B-cell lymphomas, low grade lymphomas, T cell
CNS lymphomas, Burkitt’s lymphoma, ALK lymphoma of the CNS, and CNS
lymphomatoid granulomatosis. Moreover, immunodeficiency-associated PCNSL,
normally associated to Epstein-Barr virus (EBV), has been recently proven to be
a rare PCNSL subtype (< 10% of cases) (Gandhi et al., 2021).

DLBCL is defined as a neoplasm of medium or large B lymphoid cells whose
nuclei are the same size as, or larger than, those of normal macrophages, or more
than twice the size of those of normal lymphocytes, with a diffuse growth pattern
(Steven H. Swerdlow et al., 2008).

While DLBCL constitutes 25—35% of adult non-Hodgkin lymphomas (NHLs),
PCNSL is estimated to account for up to 1-2% of NHLs, 4-6% of all extranodal
lymphomas, and about 2-3% of all CNS tumors (Hoang-Xuan et al., 2015; Teras
et al., 2016) (Figure 1.1). If immunodeficiency is a well known risk factor, PCNSL
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in immunocompromised patients has become rare. Indeed, the incidence of AIDS
related PCNSL has been dramatically reduced since the introduction of Highly Ac-
tive Antiretroviral Therapy (HAART) in the late 90’s. The prevalence of PCNSL
is less than 10% in human immunodeficiency virus (HIV) patients (Gandhi et al.,
2021). Today, patients receiving prolonged immunosuppressive agents represent
the major at risk population (solid organ transplantation, autoimmune disorders)
(Franca et al., 2020).
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Figure 1.1: Relative frequency of lymphomas and of primary
brain and central nervous system tumours. The left figure shows
the NHLs neoplasms estimated cases from the North American Association
of Central Cancer Registries (NAACCR, from 1995 to 2016); while the right
figure shows the Central Brain Tumour Registry of the United States (CB-
TRUS) statistical report by histological groupings (n = 343,175). Adapted
from Teras et al., 2016, Ostrom et al., 2014, and Weller, et al., 2015.

Despite being regarded for a long time as DLBCL in the CNS, mainly because it
shows histology of DLBCL, PCNSL has been proved to be molecularly a different
biological entity (Yoshida et al., 2016). As PCNSL in the immunocompetent
population represent the vast majority of the patients, with a lymphomagenesis
distinct from that related to immunodeficient PCNSL (involving EBV), my thesis
is focused on PCNSL in immunocompetent patients.

1.2 Epidemiology of PCNSL
The incidence of PCNSL in France and in the United States of America (USA) is
very similar, being 0.45 and 0.44 per 100,000 persons in the periods of 1990-2006
and 2009-2015, respectively. Nevertheless, the incidence rate in the United states
(based on the SEER registry database) has grown continuously from 1975 to 2017
with a 5 fold increase, reaching an incidence of up to 4.32/100 000 in patients aged
70-79 years (reported by the Central Brain Tumor Registry) (Eloranta et al., 2018;
Farrall & Smith, 2021; Haldorsen et al., 2007; Lv et al., 2022; Makino, Nakamura,
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Kino, Takeshima, & Kuratsu, 2006; Mendez et al., 2018; Meulen, Dinmohamed,
Visser, Doorduijn, & Bromberg, 2017; Ostrom et al., 2017; Shiels et al., 2016;
Shin et al., 2015; Villano, Koshy, Shaikh, Dolecek, & McCarthy, 2011). This
lymphoma can be presented at any age but has a peak incidence at 65 years with
a male-to-female ratio of 1.5 in both France and the USA (Eloranta et al., 2018;
Le Guyader-Peyrou et al., 2019; Ostrom et al., 2017; Steven H. Swerdlow et al.,
2008). When removing the immunodeficient PCNSL patients, the overall rates of
PCNSL in the immunocompetent population were stable during 1992–2011, on the
contrary, rates among patients aged over 65 increased regardless of gender about
1.7% per year (Shiels et al., 2016). The median age at diagnosis is approximately
67 years in recent large cohorts while the prevalence of patients older than 60 years
is between 60 and 70% (Eloranta et al., 2018; Farrall & Smith, 2021; Houillier et
al., 2020; Meulen, Dinmohamed, Visser, Doorduijn, & Bromberg, 2017; Shin et
al., 2015).

Prognosis, of PCNSL is significantly worse than that of DLBCL, with a median
overall survival (OS) and 5 year survival of 26 months and 22% for PCNSL versus
124 months and 51% for systemic DLBCL (Horvat et al., 2018; Houillier et al.,
2020; Yoshida et al., 2016). However there is a wide heterogeneity within PCNSL
and the underlying physiopathological reasons of the clinical behavior of the tumors
are not yet elucidated.

1.3 PCNSL clinical presentation and diagnosis
PCNSL more frequent symptoms include cognitive dysfunction, psychomotor slow-
ing, focal neurological deficits, increased intracranial pressure, personality changes,
and weakness, which might be explained by lymphoma cells infiltration into the
white matter tracts of the corpus callosum and internal capsule. Seizures are less
frequent (10%) compared to gliomas (Hoang-Xuan et al., 2015; Houillier et al.,
2020; Shao et al., 2021; Steven H. Swerdlow et al., 2008). Additionally, when a
PCNSL is found it is rarely the result of a systemic lymphoma’s metastasis (only
5% of cases) (Houillier et al., 2020).

Diagnosis starts with magnetic resonance imaging (MRI) which typically shows
hypointense on T1-weighted and isointense to hyperintense on T2-weighted images
and enhancing single lesions (70%) or multiple lesions (30%) with modest sur-
rounding edema, usually located in periventricular areas and/or deep gray matter
(Figure 1.2). Meningeal involvement may present as foci of abnormal contrast en-
hancement. Furthermore, the use of corticosteroids is highly discouraged since it
has been proved to make lesions vanish within hours, hence the term ghost tumors
(Houillier et al., 2020). Regarding the localization, about 60% of PCNSLs are
supratentorial lesions happening in the frontal lobe (15% of cases), temporal lobe
(8%), parietal lobe (7%), occipital lobe (3%), basal ganglia, and periventricular
brain parenchyma (10%), corpus callosum (5%), posterior fossa (13%), and spinal
cord (in 1%) (Steven H. Swerdlow et al., 2008).

MRI findings, although suggestive, are not specific enough and need to be com-
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plemented with pathological confirmation which in most cases relies on stereotactic
needle biopsy in the absence of corticosteroids. The biopsy can only be avoided
when lymphoma cells are discovered in the cerebrospinal fluid (CSF) (10–30%)
or a vitreous-body biopsy (uveitis found by slit-lamp examination in 10–20% of
cases).

Pathologically, PCNSL cells present frequent perivascular infiltration and con-
sist, cytomorphologically speaking, of atypical cells with medium-sized to large
round, oval, irregular, or pleomorphic nuclei and distinct nucleoli, correspond-
ing to centroblasts or immunoblasts (Figure 1.2) (Ricard et al., 2012; Steven H.
Swerdlow et al., 2008).

Immunohistochemistry (IHC) helps histology to yield the diagnosis of PCNSL
where almost all PCNSL cells express pan-B-cell markers like CD20, CD19, CD22,
CD79A, IgM, and IgD but not IgG. B-cell differentiation markers, BCL-6 (60–80%)
for germinal-center (GC) B-cells, and IRF4/MUM1 (90%) for late GC B-cells and
plasma cells, are also important for PCNSL diagnosis. PCNSL, hence, has been
defined immunophenotypically as post-GC B-cells. Moreover, cells have a very high
proliferative activity since the Ki-67 proliferation index is usually >70% and can
even be >90%. Surprisingly, even though the loss of the major histocompatibility
complex (MHC) happens in approximately 50% of PCNSL, HLA-A, HLA-B, HLA-
C, and HLA-DR are variably expressed (Figure 1.2) (Baumgarten et al., 2018;
Steven H. Swerdlow et al., 2008). Of note, these IHC analyses are performed
on formalin-fixed, paraffin-embedded (FFPE) tissues but, for research purposes,
collecting fresh-frozen (FF) samples and/or developing strategies to account for the
genetic material degradation due to the fixation process, should be encouraged.
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D E F

Figure 1.2: PCNSL diagnosis by MRI, histopathology and IHC.
Computed tomography scan showing mild hyperdense lesion (Panel A). Pe-
ripheral oedema shown by a fluid attenuated inversion recovery (FLAIR)-
weighted (Panel B) and by a T1-weighted MRIs (Panels C). Hematoxylin-
eosin staining showing accumulation of PCNSL cells within the perivascular
space (Panels D and E). IHC of CD20 positive PCNSL cells (Panel F).
Adapted from Ricard et al., 2012, von Baumgarten et al., 2018, and Kluin,
et al., 2008.



Chapter 2

PCNSL cell biology, tumor
microenvironment, and
treatments

2.1 Tumor cells origin

2.1.1 The normal counterpart
The true nature of any cancer can only be evident in the light of its normal coun-
terpart which, for most B-cell lymphomas including PCNSL and DLBCL, has
been GC-experienced B-cells (Milpied et al., 2018; Steven H. Swerdlow et al.,
2008; Steven H. Swerdlow et al., 2016). B-cells are key central elements that pro-
tect against an almost unlimited variety of pathogens thanks to their antibodies;
unfortunately, defects in B-cell development, selection, and function can lead to
malignancy. The B-cell lymphopoiesis is a multi-stage process with the expression
of different transcription factors (TFs) and microenvironmental influences that
starts in the bone marrow (BM) where hematopoietic stem cells (HSCs) differen-
tiate into multipotent common lymphoid progenitors. Long-term HSCs have the
ability to self-renew and reconstitute the entire immune system by differentiating
into short-term HSCs which can then differentiate into multipotent progenitors
(MPPs) that branch later into common myeloid progenitors and lymphoid-primed
multipotent progenitors, having the latest one the potential to differentiate into
natural killer (NK) cells, T or B lymphocytes (Barrios, Meler, & Parra, 2020;
Pieper, Grimbacher, & Eibel, 2013). After commitment to the B-cell lineage, ad-
ditional differentiation steps lead to the formation of pro-B and pre-B cells, which
are the early B-cell precursors for immature and GC B-cells (Figure 2.1, I).

The pro-B cell stage is the initial paddle for the recombination of the non-
contiguous germline variable (V), diversity (D), and joining (J) immunoglobulin
(IG) gene segments; such process is refereed as V(D)J recombination. V(D)J re-
arrangements of the heavy chain (H-chain) together with those of the light chain
(L-chain) generate a B-cell repertoire expressing antibodies capable of recognizing
more than 5 × 1013 different antigens (Figure 2.2) (Menzel et al., 2014). The
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DH and JH gene segment’s rearrangements happen at pro-B which is followed by
a joining upstream VH change that leads to the early pre-B cell stage. During
this stage and after 1-2 cell divisions, the pre-B-cell receptor (BCR) is formed by
linking functional VDJ-constantµ pair with V-preB and λ-like, however, it is not
yet detected on the surface. The pre-BCR has two roles, the first being to stop
the H-chain rearrangements (allelic exclusion) and the second to initiate the rear-
rangement of the L-chain genes. The rearrangement of VL and JL segments allows
replacing the V-preB/λ of the pre-BCR pair with the H-chain to form and express
IgM on the cell surface of, now, immature B-cells. Immunoglobulin M generates
drastic expression changes and initiates egress into the circulation system where
immature B-cells will eventually reach the spleen. Within this secondary lymphoid
organ, these now called transitional B-cells have increased IgM/D expression and
receive survival signals through B-cell activating factor receptor (BAFF-R) which
dictate their subsequent fate (naive, follicular, or marginal zone B-cells) (Barrios,
Meler, & Parra, 2020; Pieper, Grimbacher, & Eibel, 2013). Interestingly, these
transitional B-cells were found to express specific IgVH regions, such as V4-30-2,
V1-8, V3-11, V4-61, and V4-31 (Wu et al., 2010) (Figure 2.1, I and II).
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Figure 2.1: B-cell development and differentiation. B-cell commit-
ment starts in the bone marrow, where hematopoietic stem cells differentiate
into multipotent progenitors and common lymphoid progenitors, which then
commit to the B-cell lineage and give rise to precursor B-cells (I). These
precursors gradually rearrange their immunoglobulin genes and differenti-
ate into mature naive B-cells, which leave the bone marrow to enter the
bloodstream. Resting naive B-cells transit through lymph nodes and (II),
eventually, they are activated by specific antigens via activation of the BCR,
which induces the GC reaction. GC B-cells further rearrange and mutate
their IG genes, rapidly proliferate and differentiate. Finally, the GC reaction
gives rise to plasma cells producing large amounts of high-affinity antibodies
and memory B cells (III). AID motifs of action are shown in IV.
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Upon activation by a cognate antigen driven by T-helper (TH) cells, naive
B-cells transiently express MYC due to the transcriptional inhibition of BCL6
(thanks to IRF4 and IL2) which ultimately leads to entering the germinal centers
and to expressing activation-induced cytidine deaminase (AID) during the G2-M
phases of the cell cycle. AID (encoded by AICDA) acts during the G1-S phases
of the cell cycle and is responsible for somatic hypermutation (SHM), happening
within the dark zone (DZ) of the GC, and class-switch recombination (CSR),
happening within the light zone (LZ), having a role in further diversification of
the variable or switch domains of IG genes (Endo et al., 2007; Muramatsu et al.,
2000; Q. Wang et al., 2017). GC B-cells can undergo several rounds of affinity
maturation by cycling through the DZ and LZ, with the help of follicular dendritic
cells (FDC) and follicular helper T-cells (TFH), until high-affinity plasmablasts
or memory B-cells are produced. On the contrary, low affinity or self-reactive
cells fate apoptosis (Barrios, Meler, & Parra, 2020) (Figure 2.1, III). Finally, B-
lymphocyte-induced maturation protein 1 (BLIMP1) suppresses MYC expression
in plasmablasts and induces plasma cells differentiation. Regarding the use of
IgVH regions, V3-43, V3-30-3, V4-30-2, and V4-34 are frequently found in naive B-cells,
meanwhile V3-9, V1-18, V3-23, and V3-74 in mature B-cells (Wu et al., 2010).

AID deamination of cytosine to uracil happens during the transcription of the
IG genes and within specific deoxyribonucleic acid (DNA) motifs (Figure 2.1, IV)
(Branton et al., 2020). When these lesions are resolved by the error-prone DNA
polymerase-η, mutations can arise as A->C at WA motifs (W = A/T), which has
been defined as non-canonical AID (Catalogue Of Somatic Mutations In Cancer
(COSMIC) signature 9), or as C->T/G at WRCY motifs (R = purine; Y = pyrim-
idine) when resolved by base excision repair (BER) or mismatch repair (MMR)
pathways, defined as canonical-AID (c-AID) throughout this thesis (Australian
Pancreatic Cancer Genome Initiative et al., 2013; Delgado et al., 2020; PCAWG
Mutational Signatures Working Group et al., 2020). The tight control of AICDA
expression and AID activity is of primordial importance not only to ensure an
antigenic fingerprint but to avoid AID off-target mutations, which have been ad-
dressed as blameworthy of lymphomagenesis (Chapuy et al., 2018; Fukumura et
al., 2016).
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Figure 2.2: B-cell repertoire diversity. Germline configuration of
antibody gene locus that can give a total diversity of 5x1013 different
antigens. Adapted from Menzel et al., 2014.

From a molecular point of view, recent studies have demonstrated that the
B-cell maturation process undergoes intensive gene methylation and expression
changes to finally give rise to plasma cells and memory B cells that play an es-
sential role in adaptive immunity. Kulis et. al. performed whole-genome bisulfite
sequencing (WGBS) and high-density microarrays on ten subpopulations span-
ning the entire B-cell differentiation program and found that early differentiation
stages mainly displayed enhancer demethylation, which was associated with up-
regulation of key B-cell TFs (e.g. ARID3A, BCL2, BLK, EBF1, and IRF4 ) and
affected multiple genes involved in B-cell biology. On the contrary, late differentia-
tion stages have extensive demethylation of heterochromatin and methylation gain
of polycomb-repressed areas and did not affect genes with apparent functional im-
pact in B-cells. Interestingly, the authors also showed that the changes went into
accumulative patterns in which each B-cell maturation stage, although character-
ized by a particular signature, kept an epigenetic memory of past differentiation
stages (Kulis et al., 2015).

2.1.2 The abnormal counterpart
The correct identification of the B-cell maturation stage and of the location of
the related cell type within the lymphoid follicle, from which a B-cell neoplasm
derived, is the main principle behind the WHO classification of these tumors.
Additionally, it is known that cancer cells, although victims of dramatic cellular
identity alteration, maintain molecular imprints of the cellular lineage and the
maturation stage from which they originated (Duran-Ferrer et al., 2020). For
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example, B-cell acute lymphoblastic leukemia derives from pre B-cells, follicular
lymphoma (FL) from the lymphoid follicle, marginal zone lymphoma (MZL) from
the follicle’s marginal zone, mantle cell lymphoma (MCL) from the mantle zone,
DLBCL from the GC, Burkitt lymphoma (BL) from DZ B-cells, and multiple
myeloma (MM) from terminally differentiated plasma cells (Figure 2.3) (Carbone
et al., 2019). Initial understanding of B-cell malignancies assumed that they are
“frozen” at a given B-cell differentiation stage arising in a particular location of
the B-cell follicle, defined as cell of origin (COO) on the basis of classic histological
definitions and gene expression profiling. Regarding PCNSL COO classification,
the WHO termed it as a “late germinal centre exit B-cell arrested in terminal
B-cell differentiation that shares genetic characteristics with both activated B-
cells and germinal centre B-cells,” previously defined in DLBCL as activated B-
cell–like (ABC) or germinal center B-cell–like (GCB), respectively (Alizadeh et
al., 2000; Steven H. Swerdlow et al., 2008; Steven H. Swerdlow et al., 2016). The
GCB subtype corresponds to B-cells that are arrested at various stages of the GC
transit (from dark zone to light zone B cells), whereas, the ABC to GC B-cells en
route to plasma cell differentiation, resembling plasmablasts (Alizadeh et al., 2000;
Carbone et al., 2019). Furthermore, as these definitions were found to be clinical
predictors to response in DLBCL (GCB has better response than ABC), they are
routinely used in the clinics (mainly for DLBCL since most PCNSL are ABC) with
the help of either the Hans’ algorithm (IHC profiling of CD10, BCL6, and MUM-1)
or gene expression profiling (GEP) (Alizadeh et al., 2000; Camilleri-Broët et al.,
1998; Hans, 2004).
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Figure 2.3: Normal-abnormal origin of mature B-cell lymphomas.
B-cell neoplasms are the result of acquired malignancy at various stages of
ontogeny. Most B-cell differentiation steps are associated with a malignant
B cell subtype (defined as the cell of origin). The COO model assumes that
FL is a follicle-related GC-derived B-cell, unmutated mantle cell lymphoma
(UM-MCL) originates from mantle zone B cells, MZL resembles marginal
zone B cells whereas Burkitt lymphoma (BL) resembles dark zone B cells.
In the case of DLBCL, hence PCNSL, COO subtypes can either be ABC or
GCB. TCR, T cell receptor. Taken from Carbone et al., 2019.

Thanks to next-generation sequencing (NGS) profiling of B-cell lymphomas,
molecular precisions or improvements of these COO definitions have arisen. For
example, it has been found that lymphomas “frozen” in the GC, that is FL, DL-
BCL, and PCNSL, present a higher number of mutations provoked by AID than
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other types of lymphoma (Chapuy et al., 2018). BCL2/BCL6 gene translocations
with IGH regulatory regions lead to an ectopic overexpression of the protein, ul-
timately provoking iterative GC re-entries and hence clonal expansions, genomic
instability, mutation acquisition (AID off-targets), and lymphomagenesis (Car-
bone et al., 2019; Chapuy et al., 2018). Furthermore, more recent studies using
single-cell RNA-sequencing (scRNA-seq) of FL and DLBCL have found that ma-
lignant cells are not ‘frozen’ at a particular GC maturation stage but are rather
‘dynamic,’ as they showed functional diversity and consisted of multiple cell states
that are co-existing within a single patient’s tumor (Holmes et al., 2020; Milpied
et al., 2018; Roider et al., 2020). Moreover, immunodeficiency-associated PCNSL
have been recently found to have a more GCB-like phenotype instead of ABC
(commonly found in immunocompetent PCNSL) in conjunction with a tolerogenic
tumor microenvironment (TME) to adapt to an immunogenic virus (Gandhi et al.,
2021). Additionally, Duran-Ferrer et. al. analyzed methylation data from normal
and tumoral human cells from the B-cell lineage finding disease-specific hyper-
and hypomethylation imprints. The authors then proposed a machine learning-
based diagnostic algorithm named epigenetically-determined Cumulative MIToses
(epiCMIT) which reflects the relative accumulation of mitotic cell divisions of a
particular sample, including the mitotic history associated with normal cell devel-
opment as well as with malignant transformation and progression (Duran-Ferrer
et al., 2020).

2.2 Molecular definitions of PCNSL
Throughout the years, there has been accumulating progress in the understanding
of the molecular parthenogenesis of PCNSL. In the light of NGS massive adop-
tion, scientists have been able to gather more molecular data, such as genetic al-
terations (e.g. indels, mutations, amplifications, deletions, translocations), methy-
lation, RNA expression (e.g. mRNA, miRNA, lncRNA), and protein expression,
which enabled them coming up with molecular definitions of the disease. Three
main molecular definitions of PCNSL, which are complementary as more data is
obtained, have been proposed: I) The 2001 WHO classification that was later re-
vised in 2017, II) Chapuy et. al. definition in 2018, and III) the 2020 definition
by Wright et al (adapted from Schmitz 2018) (Chapuy et al., 2018; Schmitz et al.,
2018; Steven H. Swerdlow et al., 2008; Steven H. Swerdlow et al., 2016; G. W.
Wright et al., 2020).

The WHO classification defines PCNSL as B-cells blocked at terminal differen-
tiation stages (see Chapter 2.1.2) with ongoing SHM that leads to aberrant somatic
hypermutation (ASHM) (i.e. AID off-target’s mutagenesis) of IGH, PIM1, PAX5,
TTF, MYC, KLH14, OSBPL10, SUSD2, BCL2, and BCL6 (master regulator of
the GC reactions). Moreover, the finding of BCL6 as recurrent translocation
partner with the IG loci (17-47%) along with PRDM1 point mutations (19%)
would stop plasmacytic differentiation. PCNSL also presents fixed IgM/lgD phe-
notype in part due to miscarried IG class-switch rearrangements during which the
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sµ region was deleted. PCNSL is characterized by constitutive Nuclear Factor-
κβ (NF-κβ) activity driven by alterations in genes of the BCR pathway (CD79B
in 20%, SHIP-25%, CBL-4%, and BLNK -4%), of the toll-like receptor (TLR)
pathway (MYD88 L265P-50%) and others (CARD11 -16%, MALT1 -43%, BCL2 -
43%). The BCR complex, consisting of the IG H/L-chains as well as of CD79A
and CD79B subunits, is indispensable for B-cell survival since it induces differenti-
ation, proliferation, and apoptosis of B-cells. The BCR pathway also transmits its
signals to the CARD11–BCL10–MALT1 (CBM) signalosome complex. Given its
immune-privileged location, PCNSL escapes immune recognition by inducing loss
of the 6p21 (37%) region harboring the MHC encoding genes. Finally, attributed
genetic changes includes hypermethylation of DAPK1 (84%), CDKN2A (75%),
MGMT (52%), and RFC (30%) (Figure 2.4) (M. Deckert et al., 2011; Martina
Deckert, Montesinos-Rongen, Brunn, & Siebert, 2014; King et al., 2020; Steven H.
Swerdlow et al., 2008).

Figure 2.4: Pathogenesis of PCNSL. WHO recapitulation of PCNSL
genetic alterations that ultimately lead to uncontrolled proliferation, impair-
ment of apoptosis or B-cell differentiation, and immune escape. Taken from
Kluin, et al., 2008.

The second definition was introduced in 2018 by Chapuy et. al. as result,
principally, of one Blood (2016) and one Nature Medicine (2018) article (Chapuy
et al., 2016, 2018). Their first publication, along with corroboration of previ-
ous molecular findings, described mutations in IRF4 (29%), ETV6 (21%), BTG1
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(43%), and TBL1WR1 (36%); copy gains of 3q12.3 (59%), 9p24.1 (52%) and
19q13.42 (32%); copy losses of 9p21.3 (71%); and chromosomal rearrangements
of ETV6 (13%) and PD-L1/PD-L2 (13%). Interestingly, while NFKBIZ (3q12.3
copy gain) encodes a Iκβ-z which coactivates canonical and noncanonical NF-κβ
pathways, CDKN2A (50% biallelic loss) encodes for p16 which is a cyclin D in-
hibitor necessary for the cell cycle arrest (Chapuy et al., 2016). In 2018, the same
group carried out a comprehensive consensus clustering using recurrent mutations,
copy-number alterations (CNAs), and structural variants (SVs), coming from 304
primary DLBCLs (FFPE tissue), that allowed them to identify five robust DLBCL
subsets. They pinpointed cluster 5 (C5) to be systemic DLBCLs with CNS or tes-
ticular involvement since it showed characteristic molecular features of extranodal
tropism (e.g. MYD88L265P, CD79B clonal mutations). Moreover, they also noted
C5 to have the highest contribution of c-AID activity, to practically be ABC COO
subtype (96%), and to have the less favorable outcome compared to the others
(Chapuy et al., 2018).

One caveat of the C5 definition is the lack of gene expression data which was
later amended by Wright et. al. with their work “A Probabilistic Classification
Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic
Implications.” Using mutations, translocations, and CNA, the authors identified
seven probabilistically defined DLBCL subtypes, to which gene expression, B-cell
differentiation, IgVH expression, and TME profiles, were later added. PCNSL
belongs to the so-called “MCD” (based on the co-occurrence of MYD88L265P and
CD79B mutations) genetic subtype whose added molecular features are: TFs over-
expression (IRF4, OCT2 ), increased oncogenic signatures activity (proliferation,
NF-κβ, JAK1 kinase, and MYC induction), heterogeneous B-cell differentiation
signatures (DZ, LZ, and intermediate zone GC programs), increased IgM expres-
sion, self-antigen-dependent chronic active BCR signaling (high IgVH4-34 expres-
sion), and a cold TME (see Chapter 2.3) (G. W. Wright et al., 2020). The most
important contributions of each definition are summarized in Table 2.1, while the
most extensively studied signaling pathways alterations are illustrated in Figure
2.5.

https://www.sciencedirect.com/science/article/pii/S1535610820301550?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1535610820301550?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1535610820301550?via%3Dihub
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Figure 2.5: Main signaling pathways disrupted in PCNSL. NF-κβ
signaling can be activated via MYD88, JAK/STAT (via IL-10/IL-4 increased
levels), CBM complex, and/or BCR pathway alterations. Altogether, these
aberrations lead to increased pro-survival, proliferation, and invasion. Taken
from King, et al., 2020.

In spite of the molecular insights these definitions have brought, PCNSL het-
erogeneity has not been properly addressed mainly due to the lack of a large
number of patients and multi-omic data integration, i.e. having distinct types of
molecular information (e.g. methylation, mutations, CNAs, gene expression, tu-
mor location, TME, etc) for the same cohort. The WHO classification compiles
the findings of different scientists on the field, but unfortunately, their cohort’s
size did not exceed 40 patients, had only one-omic level of information and some
lacked clinical information. Additional molecular features were included with the
introduction of the C5 and MCD molecular definitions, however, the studies were
done in the context of DLBCLs to better stratify DLBCLs and not to address the
PCNSL heterogeneity since their studies pulled together all types of extranodal
lymphomas. Moreover, due to the difficulty of acquiring FF tissue, most of the
studies have been performed after genetic material obtention from FFPE tissue
which is subject to chemical degradation.
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2.3 The tumor microenvironment
The TME plays an ineluctable and remarkable role in tumor biology and is defined
as a cellular (i.e. blood vessels, immune cells, and fibroblasts), molecular (i.e. inter-
cellular signaling molecules, extracellular matrix (ECM)), and dynamic network
surrounding tumor cells. Substantial accumulating proof suggests that tumor de-
velopment is not only due to the accumulation of intrinsic abnormalities but also
to extrinsic signals from the TME. Both the tumor and the TME are engaged in
a continuous, interactive, and dynamic cross-talk via various signaling pathways
(Broekman et al., 2018). PCNSL represents a special scenario as the immune
reactions to the malignant B-cells happen within an “immuno-privileged” organ
(i.e. region less subject to triggering immune responses), where the presence of
the blood-brain barrier (BBB) greatly limits the exchanges, of cells and molecules,
between the brain and the blood vessels (Martina Deckert, Montesinos-Rongen,
Brunn, & Siebert, 2014). The present chapter aims to give a general overview of
the antitumor immune response, describe the tumor escape mechanisms in general
and within lymphomas, and recapitulate the most relevant findings of the TME
in DLBCL and PCNSL.

2.3.1 The antitumor immune response
The accumulation of genetic alterations giving rise to cancer cells can also trigger
the integrated response between the innate and adaptive. Proteasome-mediated
degradation of cancer proteins generates 8- to 12-mer peptides which can be bound
to MHC-I molecules on the surface of cancer cells, so-called neoantigens (Schmidt
et al., 2021). These neoantigens are distinguishable from their normal counterparts
as they are the result of encoding mutated genes that initially gave a biological
advantage to the tumor cells. It is known that these cancer-specific peptide-MHC-
I complexes can be recognized by CD8+ T-cells to initiate an immune response,
however, they rarely provided protective immunity nor could they be mobilized to
provide a basis for therapy (D. S. Chen & Mellman, 2013). To produce an effective
antitumor response (endogenously or therapeutically) a series of stepwise events
must take place (Figure 2.6): the produced neoantigens are detected and captured
by dendritic cells (DCs) for later presentation (step 1). Of note, pro-inflammatory
molecules and chemokines released by the tumor cells themselves will recruit innate
immune cells to this local source of “danger.” DCs present the neoantigens on MHC
molecules to T-cells (step 2), triggering the activation and the priming of effector
T-lymphocytes against tumor-specific antigens (step 3). The ratio of T-effector
lymphocytes to T-regulatory lymphocytes presents a critical determinant in the
response. Finally, these cytotoxic T-lymphocytes (CTLs) exit lymph nodes and
travel through the bloodstream (step 4) to infiltrate the tumor bed (step 5). CTLs
recognize antigenic peptide-MHC complexes by T-cell receptor (TCR) interactions
(step 6) and proceed to cancer cells destroying by means of releasing perforin and
granzyme (step 7). The death of cancer cells releases additional tumor antigens
that re-initiates the cycle to amplify the T-cell response (D. S. Chen & Mellman,
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2013; Y.-T. Liu & Sun, 2021).

Figure 2.6: Cancer immunity cycle and cancer immunepheno-
types. Antitumor immunity is mediated to a large extent by CTLs and can
be divided into seven major steps. Tumors with the immune-desert pheno-
type (yellow) cannot pass steps 1-3 due to the absence of CTLs in both the
tumor and its margins. Tumors with the immune-excluded phenotype (blue)
cannot exceed steps 4-5 due to a lack of CTLs in the tumor bed. Tumors
with the immune-inflamed phenotype (red) cannot exceed steps 6-7 due to
T-cell exhaustion and checkpoint activation. Taken from Liu and Son, 2021.

Furthermore, according to the spatial distribution of CTLs within the tumor
and the TME, tumors can present one of three immunophenotypes: immune-
inflamed, immune-excluded and immune-desert. “Hot” or “immune-inflamed” tu-
mors present high T-cell infiltration, increased interferon-γ (IFN-γ) signaling, ex-
pression of PD-L1 and high tumor mutational burden (TMB). Most commonly
known as “Cold” tumors, immune-excluded tumors and immune-desert tumors,
are characterized by low TMB, low MHC/PD-L1 expression, and presence of im-
munosuppressive cell populations such as tumor-associated macrophages (TAMs),
T-regulatory cells (Tregs), and myeloid-derived suppressor cells (MDSCs). The
difference between immune-excluded and immune-desert tumors is that CTLs are
localized at invasion margins, for the first one, but absent in the latter (Y.-T. Liu
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& Sun, 2021) (Figure 2.7).

Figure 2.7: Characteristics of cancer immunephenotypes. Spatial
distribution of CTLs within the TME distinguishes three immunephenotypes
with different response rates to immune checkpoint inhibitors. Taken from
Liu and Son, 2021.

Depending on the specific TME and immunophenotype (cold or hot), tumors
interrupt or slow down the cancer immunity cycle through different tumor escape
mechanisms (Y.-T. Liu & Sun, 2021).

2.3.2 Tumor escape mechanisms
The breach of the host’s immune defenses is likely provoked by genetic/epigenetic
changes induced by the tumor cells that confer resistance to detection and elim-
ination by the immune system. Tumor cells possess a menu of choices to escape
from the immune system that can be generally categorized according to the can-
cer immunity cycle step they are bypassing in (Figure 2.6). The objective of this
section is to present the escape mechanisms used by cold/hot tumors that have
actually been found to be used by DLBCL or PCNSL tumors.

Cold tumor mechanisms

As cold tumors lack T-cell infiltration, there are many factors that can influence T-
cell priming and T-cell homing to the tumor bed (steps 1-5 of the cancer immunity
cycle), leading to a noninflamed T-cell phenotype and failed antitumor immunity.

Antigens production
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The release of tumor antigens (step 1) can be disrupted in terms of quan-
tity and quality (affects mostly step 3 and 6). Antigens can either be nonmutated
self-antigens or neoantigens generated by nonsynonymous somatic mutations. Self-
antigens come from overexpressed nonmutated proteins that are commonly unde-
tected by the immune system given that they could be also produced by their
normal counterpart. On the other hand, neoantigens are more tumor-specific and
hence may promote T-cell priming and infiltration which can lead to a response.
It has been long recognized that high TMB (i.e. total nonsynonymous single-
nucleotide mutations in coding regions) leads to higher neoantigen load which
makes the tumor more likely to prime the immune system. Furthermore, this
high neoantigen burden has been positively correlated with CTL infiltration in
different tumor types including DLBCL (Fangazio et al., 2021; Rooney, Shukla,
Wu, Getz, & Hacohen, 2015). Choosing inducing methylation or gene expression
changes while maintaining a low TMB is one option in the menu to reduce, but
not eliminate, immune recognition.

Another aspect to consider is the quality of the neoantigen produced, which
can be affected by the clonality of the mutation and the sequence of the peptide.
Regarding clonality, a mutation can be seen as clonal or subclonal depending on
the temporal acquisition of the mutation, that is, during the early cancer evolution
or at late times of cancer evolution. Clonal mutations, hence clonal neoantigens,
are present in >= 95% of the total cancer cell population; while subclonal muta-
tions happen in a minority of cells (subpopulations) (Shinde et al., 2018). These
concepts are important given that immune recognition of clonal neoantigens is pre-
ferred by the immune system as it would be able to target and kill a broader range
of cancer cells. The sequence of the neoantigen affects the affinity to both the
MHC molecule on the surface of the antigen presenting cell (APC) or the cancer
cell and the TCR on the surface of CD4+ or CD8+ T-cells (Schmidt et al., 2021).

Antigen presentation and priming of T-cells
MHC class I and class II molecules on APC present peptides at the cell sur-

face to CD8+ and CD4+ T cells, respectively. Because CD8+ T-cells are mostly
associated with cancer cells’ destruction and response, we will only focus on them.
Forming a stable peptide-HLA-I (pHLA) complex depends on the neoantigen affin-
ity to the HLA-I molecules which are encoded by highly polymorphic genes (HLA-
A/B/C). Binding affinity and stability of the pHLA complex are affected by signals
from cleavage and antigen transport, hotspots’ presentation, gene expression of the
source protein, clonality of the mutations for cancer neo-epitopes, and affinity of
the non-mutated counterpart (competence) (Neefjes, Jongsma, Paul, & Bakke,
2011). After successful pHLA formation, the TCR needs to engage a stable im-
mune synapse with the APC in which the peptide sequence also plays a role. A
recent bioinformatic-experimental study using immunogenic and non-immunogenic
peptides, experimental testing, and X-ray structures showed that TCR binding and
recognition improves with the presence of hydrophobic amino acids (aromatic W,
F, Y followed by V, L, and I) at specific “MIA” positions (position P4-PΩ-1) due
to increased structural avidity, stacking interactions, hydrogen bond acceptance
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and limited rotational freedom with the TCR (Schmidt et al., 2021).
Another escape mechanism of cancer cells is immunoediting which is the nega-

tive selection of mutations giving rise to immunogenic neoantigens. The main idea
behind immunoediting is that cancer cells “know” the host’s HLA repertoire, so
they avoid giving rise to mutations that could, after the complex antigen process-
ing, give rise to peptide sequences with higher probabilities of immune detection
(Schmidt et al., 2021). In addition, alterations in the antigen processing and pre-
sentation machinery (APM) such as downregulation of MHC-I molecule expression,
and absence of beta-2-microglobulin (B2M) or transporter associated with antigen
processing (TAP) proteins can affect the antigen presentation process which fur-
ther affects the priming of T lymphocytes. Tumor cells can affect the expression
of these proteins by secreting products like NBR1, and IL-10 (Yamamoto et al.,
2020).

The TME immunosuppressive cells and factors
T-cell priming and infiltration can also be disrupted by the presence of dense

stroma and immunosuppressive cells and factors. Cancer-associated fibroblasts
(CAFs) are predominantly located at the infiltrating edges of tumors, regulat-
ing tumor metastasis and influencing angiogenesis by synthesizing and remodeling
the ECM and producing cytokines and transforming tumor margins into immune
“cold” zones. Firstly, CAFs can produce TGFβ which limits the proliferation
of CD4+ T lymphocytes, induces its conversion into Tregs, and negatively af-
fects DC differentiation and antigen-presenting functions (Brabletz et al., 1993;
Shimabukuro-Vornhagen et al., 2012). Secondly, they can impede T-cells infil-
tration via ECM formation and CXCL12 production (Feig et al., 2013). At the
same time, TAMs can affect T-cell recruitment by promoting abnormal angiogen-
esis through the production of VEGF and matrix metalloproteinase-9 (MMP9)
(Lin & Pollard, 2007). Myeloid cell differentiation towards an immunosuppressive
M2 macrophage phenotype can be achieved by either TAMs’ secretion of cytokine
colony-stimulating factor-1 or B-cells’ secretion of GABA (Xia et al., 2020; Baihao
Zhang et al., 2021). In the DLBCL context, CAFs were found to be part of a
mesenchymal-like TME along with vascular endothelial cells (VECs) and fibrob-
lastic reticullar cells (FRCs). In this context, CAFs produced a restrictive ECM
composed mainly of collagens and proteoglycans which influenced DLBCL growth
(Kotlov et al., 2021).

Hot tumor mechanisms

Already granted of an immune-inflamed phenotype, hot tumors escape options
are bypassing steps 6 and/or 7 through inducing defects in tumor APM, reducing
neoantigens quality for TCR engaging disruption, or promoting T-cell exhaustion.

Defects in recognition of cancer cells by T-cells
Immunoediting does not only serve to avoid antigen presentation and priming

of T-cells by APC but also to avoid cancer cell recognition in later stages. Nev-
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ertheless, on top of this, the most frequently described and opted mechanism in
DLBCL and PCNSL is the induction of mutations or deletions in the APM. Around
50% and ~37% of DBLCL and PCNSL, respectively, present aberrant MHC-I ex-
pression mainly induced by monoallelic HLA disruptions (43% and 37%), biallelic
HLA disruptions (9.4%, 1%), B2M focal deletions (14% and 20%), B2M biallelic
disruption (26%, 0%) and/or TAP1/2 monoallelic loss (21% and 5%) (Chapuy
et al., 2016; Fangazio et al., 2021). Moreover, the HLA loss has been proven to
be haplotype-specific as the loss attends to eliminate the HLA haplotypes bearing
the highest affinity for relevant tumor neoantigens’ recognition. The lower biallelic
loss of the MHC-I in PCNSL could be a defense mechanism to avoid NK elimina-
tion (Fangazio et al., 2021). Another recent study in DLBCLs demonstrated that
MHC-I expression, negatively regulated by IRF4 and the PRC2 complex (tran-
scriptional repressor involved in methylating the lysine in the position 27 (K27) of
histone H3), can be restored with thymidylate synthase and EZH2 inhibitors to
enhance tumor peptide presentation (Dersh et al., 2021).

T-cell exhaustion
After proper cancer recognition by TCR engaging to the pHLA complex, can-

cer cells can still escape by means of T-cell/NK exhaustion which is the loss of
T-cell/NK effector function, including proliferation, the release of cytokines, and
secretion of cytolytic molecules, due to continuous antigen stimulation (Saleh et
al., 2020). Besides TME immunosuppressive cells and factors, T-cell/NK exhaus-
tion can be induced by the overexpression of multiple immune checkpoint (IC)
molecules such as PD-1, TIM-3, CTLA-4, GITR, TIGIT, ICOS, LAG3, CD28,
CD27, VISTA, (inhibitory receptors on T-cells), CD96, CD94, TIGIT, LAG3 (on
NK cells), and/or PD-L1, PD-L2, CD155, CD111, CD112, CD40L, ICOSL, CD80,
CD86, and CD70 (associated ligands on APC or cancer cells, Figure 2.8) (Pardoll,
2012; Wherry & Kurachi, 2015).

Importantly, while T cell exhaustion prevents optimal control of infections and
tumors, targeting these IC by immune checkpoint inhibitors (ICIs) can reverse
this dysfunctional state and reinvigorate immune responses. While the use of ICIs
(specially anti-CTLA-4, anti-PD-1, and anti-PD-L1) have revolutionized cancer
therapy, heterogeneous responses are still observed across different cancer types,
including PNCSL (see Chapter 2.4) (Garcilazo-Reyes et al., 2020; Pardoll, 2012).
Today, because several previous studies found high TMB to be correlated with ICI
response, the USA Food and Drug Administration (FDA) have approved it as a
predictive biomarker. Moreover, a recent 2021 bioinformatic study combined with
scRNA-seq analysis found clonal TMB along with CXCL9/CXCL13 expression
to be the strongest predictors of ICI response. CXCL13 was observed to be ex-
pressed in clonal neoantigen-reactive CD8+ tumor-infiltrating lymphocytes (TILs)
(Litchfield et al., 2021).
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Figure 2.8: Immune checkpoint receptors and ligands associated
with T/NK cells exhaustion. Co-inhibitory and co-stimulatory im-
mune checkpoint signaling within T, NK, cancer and antigen-presenting cells.
Taken from InvivoGen at www.invivogen.com/immune-checkpoints.

2.3.3 The TME in DLBCLs
Due to its biological similarity with PCNSL, it results incumbent to describe cur-
rent knowledge about the DLBCL TME. Data from patients with lymphoma and
animal models indicate that in the lymphoma niche, external stimuli provided by
microenvironmental cells and the ECM contribute to disease development, pro-
gression, and response to treatment. However, the majority of the molecular and
therapeutic studies of this disease have been focused on the characterization of the
DLBCL cell as an isolated entity. By using genomic data from 4,655 DLBCLs,
an early 2021 study revealed the existence of four different TME that exhibited
distinct clinical behaviors. The found subtypes, termed GC-like, mesenchymal,
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inflammatory, and depleted, have many hot-cold tumor characteristics and share
some inter-tumoral genetic alterations per group (Figure 2.9A).

The GC-like subtype was characterized by lymphatic endothelial cells (LECs),
FDCs, TFHs, and Tregs in the TME, along with TNFRSF1, CD83, STAT6, and
HSF1 genetic alterations. The mesenchymal subtype had a higher presence of
VECs, CAFs, FRCs, and macrophages M1 (pro-inflammatory) in the TME; in ad-
dition, they also presented mutations in E2H2, B2M, GNA13, GNAI2, and P2RY8.
The depleted subtype had genomic alterations leading to decreased p53 activity,
perturbation of cell-cycle regulation (e.g. CDKN2A deletions), and high prolifera-
tive activity. Finally, the hot-like tumor (inflammatory subtype) was enriched in
neutrophils, TAMs, macrophages M1, Tregs, TFHs, CD8+ T-cells with high PD-1
expression (exhausted), and also NK, MHC-I, ICs, NF-κβ, JAK/STAT, and TNF
activities (Kotlov et al., 2021).

Regarding clinical outcome at univariate level, Kaplan-Meier (KM) survival
models using OS and progression-free survival (PFS) showed improved prognosis
in GC-like followed by mesenchymal, inflammatory, and depleted subtypes (Figures
2.9B and C). The impact of TME remained as an independent prognostic factor
even after adjustment by multivariate correction using the international prognostic
index (IPI) (includes age and Karnofsky score) and the COO (Kotlov et al., 2021).
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A

B C

Figure 2.9: DLBCL TME subtypes have a distinct clinical impact.
Heatmap of the transcriptional activity of distinct gene signatures denoting
four major TME clusters termed GC-like, mesenchymal, inflammatory, and
depleted (Panel A). Chemoimmunotherapy response in a balanced cohort (n
= 105) with responsive and nonresponsive (refractory and relapsed) DLBCL
using OS (Panel B) or PFS (Panel C). Adapted from Kotlov et. al., 2021.

2.3.4 The TME in PCNSLs
Even though the TME of certain brain/lymphoid tumors is starting to be un-
raveled, little is known about the cellular and molecular immune composition in
PCNSL. The precise location of a PCNSL tumor likely drives the TME composi-
tion since it can develop in the brain parenchyma, but also the perivascular and
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meningeal spaces (Figure 2.10). PCNSL is considered a tumor confined within
an “immuno-privileged” zone because of the presence of the BBB. Nevertheless,
recent studies have described a network of lymphatic vessels running parallel to
the dural venous sinuses which allow for the drainage of cells and CSF into deep
cervical lymph nodes. These CNS lymphatic vessels express all of the molecular
hallmarks of LECs and carry around 24% of all sinusal T cells and 12% of all
sinusal MHC-II+ cells (Louveau et al., 2015). Additionally, the glymphatic system
clears and carries the interstitial fluid (contains solutes and antigens) into the CSF
to potentially elicit anti-tumor responses. In the steady-state, the immune system
of the CNS is composed mainly of different types of macrophages such as microglia,
meningeal, perivascular, and choroid plexus macrophages. Moreover, direct vas-
cular connections between the meninges and the skull bone marrow have recently
been demonstrated to serve as a private reservoir of myeloid cells and B-cells in the
event of homeostasis and CNS injury (Alcantara, Fuentealba, & Soussain, 2021).
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Figure 2.10: PCNSL TME configuration. There are three potential
sources of immune cells within PCNSL TME: derived from resident popu-
lations, from the blood, and also from skull bone marrow reservoirs. PC-
NSLs developing within the CSF compartments (perivascular and meningeal
spaces) interact directly with border macrophages, lymphocytes, the glia lim-
itans (formed by astrocytic endfeet), endothelial cells, and mural cells (per-
icytes and smooth muscle cells). Inside the CNS parenchyma, tumor cells
are in close contact with microglia, astrocytes, and infiltrating immune cells:
lymphocytes and peripheral myeloid cells. Arrows indicate the directional-
ity of CSF/Interstitial fluid bulk flow, which is facilitated by Aquaporin-4
expressed on astrocytes. Adapted from Alcantara et. al., 2020.
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Several retrospective studies using either classical or high-plex IHC have
pointed out correlations between the TME and outcome (Table 2.3). While initial
studies have found a link between improved survival with perivascular T-cells or
TILs, recent ones (using RNA-seq data) have found these TILs to be expressing
IC receptors like PD-1 and TIM-3 (Alame et al., 2021; Four et al., 2017; He et
al., 2013; Komohara et al., 2011; Kumari, Krishnani, Rawat, Agarwal, & Lal,
2009; Marcelis et al., 2020; Ponzoni et al., 2007). Interestingly, even though
previous studies have found 9p24.1 amplification (involves PD-L1) recurrent,
Marcelis et. al. did not find such amplification by means of FISH methodology;
this demonstrates the need for a bigger PCNSL cohort. Furthermore, a globally
increased ratio of M1/M2-like TAMs has been associated with a better outcome
using either IHC or RNA-assisted immune deconvolution (H. Cho et al., 2017;
Marcelis et al., 2020; Miyasato et al., 2018; Sasayama et al., 2016).

On the other hand, a recent transcriptomic analysis combining RNA-seq (n
= 20) and microarrays (n = 34) described three immunophenotypes termed as
rich, intermediate, and poor with OS implications. While the immune-rich group
had the best OS and was characterized by a high number of CD4+, CD8+, Tregs,
TAMs, and DCs, the immune-poor group was practically a cold-like tumor, and
the intermediate group presented immune cells heterogeneity. Besides the TME,
the authors found high STAT3, IFN-γ, TNF-α, MHC-I, and PD-L1 activity in the
hot-like tumor; whereas, WNT/β-catenin, HIPPO, and NOTCH activity in the
cold-like tumors (Alame et al., 2021).

The accumulative information provided by these studies has improved our
understanding of the origin and characteristics of the PCNSL TME, however,
the link between the intrinsic causative biologic factors of the disease (e.g. ge-
netic/epigenetic alterations) is still missing.

2.4 PCNSL treatments and prognosis
The present section intends on describing the prognosis and current therapeutic
strategies of PCNSL in light of the understanding of the previously described in-
trinsic and extrinsic factors encircling the biology of PCNSL. Firstly, this section
describes the two major scoring systems widely used for PCNSL and compiles the
prognostic markers associated with the disease. The second part briefly describes
the current therapeutic strategy which can be divided into induction, consolida-
tion, and maintenance phases. These phases primarily rely on high-dose (HD)
methrotexate (MTX)-based regiment followed by either whole-brain radiotherapy
(WBRT) or autologous hematopoietic stem cell transplantation (ASCT); how-
ever, the current understanding of PCNSL genetic alterations and its TME has
allowed the inclusion of additional emerging maintenance/salvage therapies such
as targeted therapies (e.g. ibrutinib, temsirolimus, buparlisib, thalidomide, temo-
zolomide, and CAR-T therapy), TME-modulating therapies (e.g. ICIs, and im-
munomodulators), and BBB-permeabilizing therapies (Figure 2.11) (Hoang-Xuan
et al., 2015; Schaff & Grommes, 2021; Steven H. Swerdlow et al., 2008; Steven H.
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Table 2.3: Overview of published studies investigating the TME
in PCNSL. Adapted from Marcelis et. al. 2020.

Study (Year) Patients Conclusions
Ponzoni et. al. (2007) 96 Presence of reactive perivascular CD3+ T-cell infltrate is associated with

↑ OS. Presence of tumor necrosis has no prognostic signifcance.

Kumari et al. (2009) 30 Reactive perivascular CD3+ T-cell infltrate shows no correlation with the
diferent IELSG risk score groups. Tumor necrosis shows no correlation
with the diferent IELSG risk score groups.

Komohara et al. (2011) 43 The number of infltrating CD68+, CD163+ and CD204+ TAMs has no
prognostic signifcance.

He et al. (2013) 62 Presence of reactive perivascular CD3+T cell infltrate is associated with
↑ OS. Presence of aggregative perivascular tumor cells, stained with
XBP1 and CD44, is associated with ↓ OS.

Chang et al. (2015) 62 PCNSL shows ↓ HLA-DR expression, ↓number of S100+dendritic cells, ↓
number of CD45RO+ efector or memory T-cells in comparison with DLBCL.
↓ number of infltrating granzyme B+ CTL correlated with ↓ OS.

Four et al. (2016) 32 PD-1 expression in CTLs correlated with PD-L1 expression in tumor cells.
Presence of PD-1+ CTLs is associated with ↓ OS

Sasayama et al. (2016) 47 ↑ number of CD68+TAMs correlates with ↓ PFS on univariate analysis but
not on multivariate analysis.

Cho et al. (2017) 76 ↑ expression of CD68+ TAMs is associated with ↓ OS and ↓ PFS. FoxP3
expression in Tregs has no prognostic signifcance.
PD- 1 expression is associated with inferior OS

Miyasato et al. (2018) 5 PD-L1 and IDO1 were overexpressed by macrophage/microglia in PCNSL

Marcelis et. al. (2020) 36 CD8+ infiltrate and M1/M2 macropahges ratio are associated with ↑ OS.
CD8+ infiltrate expresses PD-1 and TIM-3.

Alame et. al. (2021) 54 Finding of 3 immunophenotypes: rich, intermediate and poor.
Rich has is a hot-like tumor expressing MHC-I, PD-L1 and STAT3.
Poor and intermediate are cold-like with WNT, HIPPO and NOTCH activity.

Note:
IELSG, International Extranodal Lymphoma Study Group
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Swerdlow et al., 2016; Y. Yuan et al., 2021).

Figure 2.11: PCNSL biology, TME and therapeutic strategies.
The BBB, limiting drug penetration to the tumor tissue, is formed by en-
dothelial cells connected by tight junctions, basal lamina, pericytes, and
astrocytes. Multi-signaling pathways relating to B-cell development and ac-
tivation are involved. Besides HD-MTX chemotherapy during induction and
ASCT or WBRT during consolidation, more specific targets in B cells and
the BCR signaling pathway, immune microenvironment regulation and BBB
permeabilization are currently being exploited. Adapted from Yuan et. al.,
2021.

2.4.1 Prognostic factors
PCNSL has a less favorable prognosis than DLBCL as it has been reported to
have 25.3 months OS with HD-MTX-based chemotherapy regimens (the current
standard initial treatment) (Houillier et al., 2020). Second-line salvage therapies,
including HD-MTX rechallenge, temozolomide, platine/cytarabine, topotecan,
WBRT, lenalidomide, or intensive chemotherapy followed by ASCT showed het-
erogeneous response rates (range, 14%–85%) and survivals (range, 4–59 months)
(Langner-Lemercier et al., 2016). Despite PCNSL being chemosensitive, 33% of
the patients are refractory to first-line treatment, and up to 60% of the patients
will eventually relapse after 2-5 years of the initial diagnosis (Houillier et al.,
2020; Langner-Lemercier et al., 2016). Today there is no standard chemotherapy
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salvage therapy for refractory/relapsed (R/R) PCNSL, this results in a 2.2 month
(range, 0–29.6) PFS and 3.5 months (0–29.6) OS following recurrence (Houillier
et al., 2020; Jahnke et al., 2006; Langner-Lemercier et al., 2016; Y. Yuan et al.,
2021).

Age and Karnofsky performance score (KPS) have been long established as
treatment-independent prognostic factors in PCNSL (Hoang-Xuan et al., 2015;
Steven H. Swerdlow et al., 2008; Steven H. Swerdlow et al., 2016). The KPS,
defined as the standard evaluation of a patient’s capacities to perform an ordinary
activity, ranges from 0-100 where a score of 70 is normally used as a threshold since
it dictates that the patient can perform daily life activities at home but is unable
to work. Today two major scoring systems, the Memorial Sloan-Kettering Can-
cer Center (MSKCC) and the International Extranodal Lymphoma Study Group
(IELSG) prognostic models, that use age and KPS as factors are routinely used
in the clinics (Table 2.5 and Table 2.7). With the evolution in the knowledge of

Table 2.5: Memorial Sloan-Kettering Cancer Center prognostic
model in PCNSL. Adapted from Liu et. al. 2021.

Parameters (Age, KPS) Median OS (years)
Age <= 50 years 8.5
Age > 50 years 3.2
Age > 50 years & KPS < 70 1.1

Table 2.7: International Extranodal Lymphoma Study Group
prognostic model in PCNSL. Adapted from Liu et. al. 2021.

Parameters Prognostic groups 2-year OS (%)
(each factor = 1 point) (according to the score)

Age>60 years; ECOG 0-1 80
PS > 1; LDH > normal 2-3 48
High CSF protein level; deep brain lesions 4-5 15
Note:
ECOG, Eastern cooperative oncology group; PS, performance status; LDH, lactate dehydrogenase.

the PCNSL’s molecular biology, several prognostic markers have been reported in
patients with PCNSL (Table 2.9) (Cambruzzi, 2020; C. Chen, Zhuo, Wei, & Ma,
2019; I. Cho et al., 2020; Chunsong et al., 2006; Sehui Kim et al., 2019a, 2019b;
Kondo et al., 2019; Le et al., 2019; Levy, DeAngelis, Filippa, Panageas, & Abrey,
2008; Makino et al., 2015; Mondello et al., 2020; Nayyar et al., 2019; Niparuck et
al., 2019; Preusser et al., 2010; Tabouret et al., 2016; Takano et al., 2018; Villa et
al., 2019; X. Yang et al., 2020; W. Yin et al., 2019; X.-G. Yuan et al., 2020) some
of which were already mentioned in Chapter 2.3.4. Of note, potential prognostic
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markers need to be adjusted by multivariate analysis (normally by the MSKCC’s
prognostic groupings) to avoid confounders. For example, Complete remission
(CR) after HD-MTX plus ASCT has been identified as independent prognostic
predictors for OS (Kondo et al., 2019).

Table 2.9: Prognostic markers associated with PCNSL. Adapted
from Liu et. al. 2021.

First author, year Prognostic markers
Favorable markers

Makino, 2015 Completion of 3 HD-MTX cycles
Kondo, 2019 CR status at HD-MTX/ASCT
Levy, 2008 Bcl-6
Preusser, 2010 High KPS & high Bcl-6 expression
Niparuck, 2019 ECOG score <=2, multiple brain lesions, MTD <5 cm, CD10+
Chen, 2019 GLCM-homogeneity (<0.2864)
Alame, 2020 PD-1 on TILs and PD-L1 on TAMs
Cho, 2020 Serum level of soluble PD-L1 (<0.432 ng/ml)
Cambruzzi, 2020 Expression of MHC II genes, expression of bcl-6, IMO2 and CD10
Nayyar, 2019 CD79b mutations
Kim, 2019 TPD-L1- patients with a large number of CD8+ or PD-1+ TILs

Unfavorable markers
Yuan, 2020 ECOG >3 and multifocal lesions
Tabouret, 2017 Infratentorial location and large tumor volume (>11.4 cm3)
Chunsong, 2006 CXCL13
Le, 2019 Anemia
Yang, 2020 Elevated CSF IL-10 and STAT3 phosphorylation
Yin, 2019 Bcl-2 gene aberrations and DH
Villa, 2019 Bcl-6 rearrangements
Takano, 2018 MYD88 mutations
Mondello, 2020 Tumor expression of activated STAT6, and elevated levels of IL-4 and IL-10
Kim, 2019 TPD-L1+ patients with a small number of CD8+ or PD-1+ TILs
Note:
MTD, maximum tumor diameter; GLCM, grey-level co-occurrence matrix; tPD-L1, tumoral PD-L1.

2.4.2 Induction phase
Because of the BBB impediments, the majority of the chemotherapeutics currently
used to treat PCNSL are small molecules (400-600 daltons) that are capable of
penetrating the BBB (Y. Yuan et al., 2021). Since the 1990s, the mainstay of
treatment for patients with PCNSL is induction chemotherapy, which aims for
CR, followed by consolidation therapy that aims to eradicate residual disease and
improve OS (Figure 2.12) (Y. Liu, Yao, & Zhang, 2021).

HD-MTX

According to the National Comprehensive Cancer Network (NCCN) (2020) guide-
lines, HD-MTX chemotherapy (1–8 g/m2) followed by WBRT consolidation ther-
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Figure 2.12: Key points in the treatment of PCNSL. rdWBRT,
reduced-dose whole brain radiotherapy; TMZ, temozolomide; CIT, contin-
uous intrathecal injection therapy; BTK, Bruton’s tyrosine kinase. Taken
from Liu et. al., 2021.
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apy, is the systemic therapy for newly diagnosed patients with PCNSL. Concerning
the optimum dose of methotrexate, although there is no clear evidence of a dose-
response, a dose of 3 g/m2 or above in a rapid infusion is recommended. MTX
is an antifolate that suppresses DNA synthesis by inhibiting dihydrofolate reduc-
tase activity in purine and thymidine synthesis, which controls the expression of
glucocorticoid receptors in blood cells (Houillier et al., 2020; Ricard et al., 2012;
Y. Yuan et al., 2021). Moreover, based on disappointing experiences with HD-
MTX as a single agent, polychemotherapy is recommended since it offers a better
prognosis. Polychemotherapy includes HD-MTX combined with prednisone, vin-
cristine and temozolomide (TMZ). Additionally, while HD-MTX-based treatment
is widely accepted in clinical settings, 50% of patients may have a risk of progres-
sion or recurrence (Y. Liu, Yao, & Zhang, 2021).

2.4.3 Consolidation phase
Because even after intensive MTX treatment a total of 20-30% of patients with
PCNSL relapse within 6 months, consolidation therapy is required to eliminate
minimal residual disease. Consolidation options include WBRT, HDT/ASCT,
and intensive HD chemotherapy (Y. Liu, Yao, & Zhang, 2021).

2.4.4 Maintenance treatment
Maintenance treatment serves as an alternative approach to prolonging remission,
delaying relapses, and maintaining tumor dormancy when patients wish to avoid
WBRT neurotoxicity or cannot tolerate consolidation therapies. Options include
agents, such as TMZ, procarbazine, lenalidomide and ibrutinib (Y. Liu, Yao, &
Zhang, 2021).

2.4.5 Salvage treatment
Even with the advances in the induction and consolidation options, 10-15% of
patients with PCNSL become refractory to initial treatment, and 35-60% relapse
within 1-2 years (Hoang-Xuan et al., 2015; Y. Liu, Yao, & Zhang, 2021). Salvage
treatments for R/R PCNSL patients depend on age, KPS, site of relapse within the
CNS, prior treatments, and time duration from last response (Hoang-Xuan et al.,
2015). Options include HDT/ASCT, chimeric antigen receptor T-cell (CART-cell)
therapy, BTKis, and lenalidomide.

2.4.6 Other treatments
Thanks to recent molecular information other potential treatments are under on-
going clinical trials, such as ICIs, PI3K/AKT/mTOR signaling inhibitors, and
cyclin-dependent kinase (CDK) 4/6 inhibitors.
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2.4.7 Future perspectives
Understanding PCNSL biology has allowed incorporating target therapies and im-
munotherapies, but unfortunately, heterogenous responses are still observed for
most of the current treatment strategies. Therefore, identifying subgroups of PC-
NSL patients with shared causative biologic factors of disease and outcome is
of extreme importance to tailor treatment strategies. However, such molecular
subgroups’ identification is extremely challenging mainly due to high genetic, phe-
notypic, and TME heterogeneity. Consequently, there is an unmet need to perform
large multi-omics studies with a view to personalizing clinical care and to improv-
ing patients’ outcomes.



Chapter 3

Multi-omic era for molecular
subtyping

Thanks to the advent of NGS technology, collection of data from different molec-
ular compartments (e.g. genetic alterations, gene expression, DNA methylation
status, protein abundance) have been possible, ultimately resulting in multiple
omics (multi-omics) data obtainment with a view to a comprehensive understand-
ing of cancer (Huang, Chaudhary, & Garmire, 2017). The addition of “omics” to a
molecular term implies a comprehensive, or global, assessment of a set of molecules;
for example, transcriptomics refers to the study of RNA levels genome-wide, both
qualitatively (which transcripts are present, identification of novel splice sites,
RNA editing sites) and quantitatively (how much of each transcript is expressed)
(Hasin, Seldin, & Lusis, 2017). Bioinformatic analyses of single-omic data have
increased disease comprehension, which is the case of the PCNSL molecular defini-
tions described in Chapter 2.2; however, this approach often misses the complexity
of the landscape of molecular phenomena underlying the disease. On the other
hand, multi-omic approaches consider interactions between omics layers, hence
providing a more accurate reconstruction of molecular networks. Both single- and
multi-omics approaches have the ultimate goal of finding biomarker signatures of
a specific disease, discovering disease subtypes, and predicting response to ther-
apy or survival time (Momeni, Hassanzadeh, Saniee Abadeh, & Bellazzi, 2020).
Therefore, recent cancer research has been eager to build more complex models
by means of multi-omic data analysis; nevertheless, this comes with three major
challenges which are acquisition, reduction, and integration of the multi-omic data
(Figure 3.1).

This chapter aims to present an overview of the main bioinformatic concepts
and tools needed for acquiring, analyzing, and applying multi-omic data in the
context of cancer research. Subchapter 3.1 covers which are the most relevant
features to extract from each single-omic data (e.g. genomics, epigenomics, tran-
scriptomics, clinicOmics) but only focusing on the omic data used for this thesis.
In subchapter 3.2, methods for reducing single-omic’s features are presented. Fi-
nally, subchapter 3.3 focuses on how multi-omic data integration can be used to
answer biological questions that have clinical relevance.
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Figure 3.1: Illustrative diagram of multi-omic data analysis for
molecular subtyping. Different layers of single-omic data have to be pro-
cessed to acquire various features which can be related to either the tumor,
the TME, or the patient. The result of combining all the features from these
layers is termed "multi-omics". As thousands of features are recovered, the
next challenge is to subset those that can effectively describe the system
and its complex interactions. Finally, multi-omic data integration, although
challenging, can be used to find molecular subtypes of disease with shared
causative biologic factors.
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3.1 Adquisition of multi-omic data
Prior to acquiring any single-omic layer of information, a lot of collaborative and
organized effort has to take place to recover enough genetic material from each pa-
tient comprising a cohort. Such effort includes the study design, ethical approval,
patients’ diagnosis, biopsies extraction, the signature of informed consents, sample
preservation, among others. Afterwards, depending on the nature of the omic in-
formation different parameters have to be considered to firstly, obtain high-quality
raw data (eg. raw sequencing files), and secondly, extract distinct features from
that data. Here, a feature is defined as a distinctive attribute that can be ex-
tracted from an omic data, for example, information concerning single nucleotide
variants (SNVs), CNAs, gene fusions, mutational signatures, and HLA-variations
can be indirectly obtained from genomic data by means of whole-exome sequenc-
ing (WES) or whole-genome sequencing (WGS) bioinformatic analysis. Moreover,
the nature of the omic information also dictates the origin of the features that
can be extracted; for example, transcriptomic information can render both tumor
and TME related features (Figure 3.1). Features from different single-omic layers
can also be combined to extract additional information; for example, the SNPs
and CNA from the genomics can be combined with the MHC expression from
the transcriptomics to obtain a list of neoantigens that can possibly be present
at the surface of the cancer cell (Schmidt et al., 2021). This section covers the
definition of the different types of features that can be extracted from the genomic,
epigenomic, transcriptomic, and clinicomic layers.

3.1.1 Genomic data
A vast majority of cancer genomes contain many nucleotide sequence changes com-
pared with the germline of the cancer patient. Some of such variations can cause
or promote cancer, referred colloquially as “drivers,” while others seem not to
present obvious advantages to the cancerous cells, those are referred to as “pas-
sengers.” These alterations give rise to genomic tumoral features such as SNVs,
insertions/deletions (indels), CNAs, gene fusions, that can be produced by differ-
ent mutational processes (e.g. ultraviolet radiation) (Australian Pancreatic Cancer
Genome Initiative et al., 2013; Chin, Hahn, Getz, & Meyerson, 2011; PCAWG Mu-
tational Signatures Working Group et al., 2020).

SNV, indels & CNA

WES or WGS generate raw files named FASTQ which are a text-based format for
storing nucleotide next-generation sequence reads and their corresponding per-base
quality scores as well as information relating to whether reads are single-end or
paired-end. Those raw reads need to be mapped to the human reference genome,
from which various versions exist,using, for example, the BWA-MEM software (H.
Li & Durbin, 2009). Sequence alignment/map (SAM) or BAM (binary version of
SAM) files result from this alignment and contain details of aligned and unaligned
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reads are stored along with associated mapping qualities. Then, there is a rigorous
process of data cleanup that includes marking PCR duplicates, realigning indels,
and recalibrating bases (reduces mismatches, degradation, and sequencing arti-
facts); the tools needed for this process are integrated into the Genome Analysis
Toolkit (GATK) software (DePristo et al., 2011; McKenna et al., 2010; Van der
Auwera et al., 2013). Resulting “cleaned BAMs” are subsequently used for the
variant discovery phase after which a variant call format (VCF) file, containing
somatic mutations along with read depths for the reference and alternate alleles,
is produced. VCFs can be produced by only one calling algorithm (e.g. Mutect);
however, a combination of at least 3 (e.g. Mutect2, Strelka, VarScan, Lofreq, So-
maticSniper) is preferred to reduce false-positive rates (Fang et al., 2015; Sangtae
Kim et al., 2018; Koboldt et al., 2012; Larson et al., 2012; McKenna et al., 2010;
Wilm et al., 2012). Of note, during the variant calling process, germline variants
need to be filtered out by using either sequencing files from a matched normal coun-
terpart (normally DNA from blood) or a panel of normals (PON) when only the
tumoral sequences are available (Van der Auwera et al., 2013). Next, the SNVs
and indels contained with a VCF file are annotated, this means adding meta-
information about the likely effect on genes, transcripts, and protein sequence.
Annotation, which generates a mutation annotated format (MAF) file, cab be
achieved using Variant Effect Predictor (VEP) program from Ensembl (McLaren
et al., 2016) (Figure 3.2).

Figure 3.2: MAF generation workflow.

Besides SNPs and indels, CNA can also be retrieved using “cleaned BAMs”
as input and the help of software like FACETS, CNVkit, copynumber, among
others (Nilsen et al., 2012; Shen & Seshan, 2016; Talevich, Shain, Botton, &
Bastian, 2016). The CNAs found in cancer include whole-chromosome or regional
alterations spanning part to whole arms of chromosomes, as well as focal events in-
volving one or a few genes. Moreover, one can infer cancer clonal heterogeneity by
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using CNAs, read depths, B-allele fractions (BAFs), and SNVs coupled with hid-
den Markov models. Clonal heterogeneity is given by the presence of a collection
of subclones within the fraction of cancerous cells where each subclone population
presents a set of private and shared mutations related by their joint evolutionary
history going back to the most recent common ancestor (Fischer, Vázquez-García,
Illingworth, & Mustonen, 2014). Determining mutations’ clonality has important
biological and medical implications; for example, one can infer driver mutations
arising at very early stages or late mutations being acquired after disease recur-
rence (PCAWG Evolution & Heterogeneity Working Group et al., 2020; Touat et
al., 2020). Softwares for inferring clonality include MutationTimer, Palimpsest,
and cloneHD (Fischer, Vázquez-García, Illingworth, & Mustonen, 2014; PCAWG
Evolution & Heterogeneity Working Group et al., 2020; Shinde et al., 2018) (Figure
3.3).
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B

A

Figure 3.3: Clonal heterogeneity reconstruction. Panel A shows the
schematic illustration of the CNA and SNV information needed for inferring
clonality. Panel B shows a schematic view of subclonal diversification where
a point mutation occurs early on with a subsequent gain of a chromosome
arm and a short deletion at a later stage, each followed by clonal expansion
(subclones 1, 2, and 4). A short-lived lineage arises independently (subclone
3). Adapted from Fischer et. al., 2014.
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Gene fusions

Gene fusions are genomic rearrangements leading to structural translocations,
chromosomal inversions, or interstitial deletions that can have an important clinical
impact (e.g. BCL6, BLCL2, and IG translocations) (Chapuy et al., 2016). Detect-
ing gene fusions is challenging mainly because they resemble common sequencing
and alignment arteficts. Typically, they are detected by looking for changes in
read depth, identifying clusters of discordantly aligned paired-end reads or split
read, constructing some form of assembly or a combination of these approaches.
Some callers include Pindel, BreakDancer, manta, BreakPointer, among others
(Cameron, Di Stefano, & Papenfuss, 2019). Moreover, even though fusions can be
formed during cancer progression their expression is not always activated, hence
complementary programs for detecting their expression are highly recommended
(Uhrig et al., 2021).

Mutational signatures

By looking at the trinucleotide context flanking somatic mutations (96 possible
combinations called mutation spectra), recent research has suggested the existence
of different mutational processes (also called signatures) of both exogenous (i.e. UV
light exposure, smoking, chemotherapy) and endogenous (i.e. DNA damage, DNA
repair/replication deficiencies) origin. Initially, 21 distinct validated mutational
signatures were described in 2013; for example, C>T substitutions at NpCpG
trinucleotides was related to spontaneous deamination of 5-methyl-cytosine (age-
related, Figure 3.4) (Australian Pancreatic Cancer Genome Initiative et al., 2013).
Seven years later, Alexandrov et. al. extended the single base substitution (SBS)
signature catalog to 96 by using two software based on nonnegative matrix fac-
torization (NMF) SigProfiler and SignatureAnalyzer (a Bayesian variant of NMF)
(Bergstrom, Barnes, Martincorena, & Alexandrov, 2020; PCAWG Mutational Sig-
natures Working Group et al., 2020). NMF receives the matrix of mutation spectra
as input to determine the signature profiles and contributions of each signature
to each cancer genome; however, the mutations observed in a particular sample
can be reconstructed in multiple ways due to signatures’ overfitting/underfitting
or high heterogeneity in the cohort (Maura et al., 2019). Interestingly, those mu-
tational signatures leave imprints associated with the biological/epidemiological
origin of a particular cancer type; for example, while malignant melanoma is char-
acterized by the presence of the signature SBS7 (UV related), DLBCL shows a
high SBS9 signature which is related to non-canonical AID activity (Chapuy et
al., 2018; PCAWG Mutational Signatures Working Group et al., 2020). Addi-
tionally, combining clonality information with mutational signatures have been
recently used to determine the relative time when a mutational process is more or
less active; for example, in chronic lymphoid leukaemia (CLL) the signature SBS9
is 20 times more present at early times (clonal) than at late times (subclonal)
(PCAWG Evolution & Heterogeneity Working Group et al., 2020).
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Figure 3.4: Mutational signatures. As time passes, DNA alterations,
such as carcinogens or DNA repair pathway defects, leave fingerprints re-
flected in an individual’s mutational spectra. Adapted from Ma et. al.,
2018.

Neoantigens production

As previously discussed in Chapter 2.3.2, neoantigens production and presentation
to CD8+ T cells are affected by many factors; however, from the bioinformatic’s
perspective, it is reduced to programs calculating the pHLA complex binding
affinity and those calculating the TCR affinity to the pHLA complex. Gener-
ally speaking, programs like pVACtools, MuPeXI, and TIminer, take a VCF, gene
expression estimates (from RNA-seq data), and HLA haplotypes (from RNA-seq
or WES data, depending on the method) to compute, firstly, a list of possible
8- to 12-mer peptide list for each mutation contained within the VCF; and sec-
ondly, the MHC I affinity for each of the previously calculated peptide sequences
(Figure 3.5) (Boegel, Castle, Kodysh, O’Donnell, & Rubinsteyn, 2019; Hundal et
al., 2020). On the other hand, TCR affinity to the pHLA complex has been so
far only implemented by PRIME which takes the neoantigen’s peptide sequence
and the HLA haplotypes as the input. PRIME calculates immunogenicity (i.e. the
ability of a molecule or substance to provoke an immune response) by computing
a %rank score which is the fraction of random 700,000 8- to 14-mers that would
have a score higher than the peptide provided in input. Neoantigens are classified
as “Immunogenic” if having a PRIME %rank score lower or equal to 0.5% for the
corresponding HLA haplotype of the patient where the neoantigen occurred, or as
“Non-Immunogenic” otherwise (Schmidt et al., 2021). Moreover, neoantigens data
can also be combined with clonality and mutational signatures to give insights into
biological processes or genes producing highly immunogenic neoantigens.
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Figure 3.5: Bioinformatic overview of neoantigens’ characteriza-
tion. Patient sequences are analyzed to determine human HLA hap-
lotypes, somatic variants, and their corresponding RNA expression. Next,
the corresponding peptide sequences are analyzed concerning their predicted
expression, processing, and ability to bind the patient’s MHC complexes.
Candidates are then selected for vaccine design and additional analyses are
performed to assess the T-cell response. Specific exemplar bioinformatics
tools for each step are indicated in italics. Taken from Richters et. al., 2019.
IEDB, Immune Epitope Database.

3.1.2 Epigenomic data
Generally speaking, epigenetics acts through two mechanisms: (1) modifications
to chromosomal proteins that alter the 3D conformation of the genome and/or
protein-DNA interactions and (2) chemical modification of the DNA strand itself.
The first mechanism can lead to either tightly packed and inactive conformations
or open and accessible DNA (termed heterochromatin and euchromatin respec-
tively); whereas the second, is the methylation of cytosine to 5-methylcytosine
(5mc) at CpG sites through the action of the DNA methyltransferase enzymes
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(DNMTs) (Locke et al., 2019). Cytosine methylation of DNA is an important
epigenetic mechanism to control gene expression, silencing, genomic imprinting,
cancer development, and regulation of the immune system. Today, WGBS consti-
tutes the current gold standard for DNA methylation profiling due to its genome-
wide coverage and single-basepair resolution. WGBS, like most DNA methylation
profiling assays, rely on bisulfite treatment to selectively convert unmethylated
cytosines (including 5-formyl-cytosine and 5-carboxy-cytosine) into uracil (which
is subsequently replaced by thymine) while leaving methylated cytosines uncon-
verted (Krueger & Andrews, 2011; Müller et al., 2019). Within the normal con-
text, most CpG sequences in the genome are methylated, but CpG islands and the
nearby CpG island shores (the region within 2 kb of the islands) are exceptionally
hypomethylated. Furthermore, it has been reported that CpG methylation can di-
rectly repress transcription by preventing binding of some TFs to their recognition
motifs which are frequently observed within tumor suppressor genes (TSGs). Con-
versely, gene bodies of highly expressed genes are heavily methylated (Nishiyama
& Nakanishi, 2021; Y. Yin et al., 2017) (Figure 3.6).

Figure 3.6: DNA methylation profiles within the normal and the
tumoral contexts. DNMTs catalyze the addition of a methyl group to the
fifth carbon position of cytosines primarily within CpG contexts (Panel A).
Tumorigenesis drives changes in DNAm distribution causing hypermethy-
lation of tumor suppressor genes and hypomethylation of oncogenes (Panel
B). Taken from Skvortsova et. al., 2019.
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Differential DNA methylation

Differential methylation (DM) analysis starts by aligning FASTQ files to the ref-
erence human genome using the software Bismark to generate BAM files which
are subsequently used to exclude any duplicate calls from overlapping read ends
of short inserts (Krueger & Andrews, 2011). After obtaining coverage files, DM
analysis can be performed on genes, promoters (defined as the 1,500 bases up-
stream and 500 bases downstream of the transcription start sites of corresponding
genes), CpG islands or regions. The most commonly used software for DM include
RnBeads, Methrix, bsseq, and methylKit (Mayakonda et al., 2021; Müller et al.,
2019; Y.-H. Zhou, Xia, & Wright, 2011).

TF binding

DM results are normally divided as hypermethylated or hypomethylated for subse-
quent downstream enrichment analysis. For example, DM promoters can be used
as input for the R-based program Locus Overlap enrichment Analysis (LOLA)
which computes the enrichment of the input data against reference Transcription
factor binding sites (TFBS) databases. LOLA analysis comprises three compo-
nents, the query set—one or more lists of genomic regions to be tested, a region
universe—the background set of regions that could potentially have been included
in the query set, and a reference database of genomic region sets that are to be
tested for overlap with the query set (Figure 3.7 A). LOLA evaluates enrichment
using Fisher’s exact test with false discovery rate correction to assess the signifi-
cance of overlap in each pairwise comparison; next, it ranks each region set using
the p-value, log odds ratio, and the number of overlapping regions (Figure 3.7 B
and C). Moreover, this same principle can be further applied to other databases
such as polycomb-associated zones (Sheffield & Bock, 2016).

Mitotic activity

As stem cell divisions and populations increase within a tissue, so does the chrono-
logical age of an individual and the error in the maintenance of DNAm. In addition,
increased mitotic rate due to cancer risk factors such as inflammation or viral in-
fection has been suggested to fuel epigenetic cellular heterogeneity and to lead to
increased epigenetic activity. In the light of these findings, efforts have been done
to construct mitotic clocks based on DNAm, for example, Horvath constructed
an epigenetic clock that uses 353 CpG sites associated with chromatin states and
tissue variance while Yang et. al. developed epiTOC to demonstrate that methy-
lation is universally accelerated in cancer (Horvath, 2013; Z. Yang et al., 2016).
More specifically in the context of B-cells, Duran-Ferrer et. al. developed a mitotic
clock, called epiCMIT, that represents a relative measure of the total proliferative
history of normal and neoplastic B-cells (Duran-Ferrer et al., 2020).

epiCMIT is an R-based program that takes a DNAm matrix as input to return
two underlying hyper- and hypomethylation-based mitotic clocks (called epiCMIT-
hyper and the epiCMIT-hypo, respectively), and a last one which is the highest

https://github.com/Duran-FerrerM/Pan-B-cell-methylome
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Figure 3.7: LOLA workflow. Example of LOLA input requirements
(A), calculations (B), and enrichment results (C). Taken from Sheffield and
Bock, 2016.

value between the other two (called epicMIT). All of them range from 0 to 1,
depending on low or high relative proliferative history (Duran-Ferrer et al., 2020).

3.1.3 Transcriptomic data
The ~ 22,000 protein-coding genes and many regulator elements in the human
body, comprised within the transcriptome, add an extra layer of complexity for
understanding cancer. Over the past few decades, transcriptome profiling has
evolved from microarrays to high-throughput sequencing at different resolution
levels such as bulk RNA sequencing (RNA-seq), scRNA-seq, and spatial RNA-seq.
As a versatile tool, bulk RNA-seq can retrieve features from both the tumor and
the TME such as RNA expression (gene, transcripts, exons, or fusions), master
regulators’ and specific pathways’ activity, TME composition, neoantigens, and
TCR/BCR clonotypes (Figure 3.1).

mRNA expression

Similar to WES/WGS data processing, RNA-seq produces FASTQ files which are
submitted to alignment after they passed quality control using programs such as
FASTQC (preferred) and NGSQC (Andrews, 2010; Patel & Jain, 2012). The next
step is to trim adapter sequences, which can greatly impact alignment efficiency,
using programs like Trimmomatic, CutAdapt, or PRINSEQ (Bolger, Lohse, &
Usadel, 2014; Martin, 2011; Schmieder & Edwards, 2011). Adapter trimming de-
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pends on the sequencing technology used, for example, poly-A tails need to be
trimmed when using 3’ RNA-seq (Martin, 2011). Cleaned FASTQ files are then
aligned to the reference transcriptome to produce BAM files, where, depending on
the desired information, there are distinct programs and parameters to be used.
For example, the STAR software allows FASTQ mapping with subsequent read-
counts quantification for genes, transcripts, and even gene fusions (Dobin et al.,
2013). On the other hand, DEXSeq is a software focused on exon level quantifi-
cation (Anders, Reyes, & Huber, 2012), while tools such as Kallisto, Sailfish, and
Salmon are some alignment-free quantification tools (they do not produce BAM
files) (Bray, Pimentel, Melsted, & Pachter, 2016; Patro, Duggal, Love, Irizarry,
& Kingsford, 2017; Patro, Mount, & Kingsford, 2014). Moreover, only the infor-
mation stored in BAMs from pair-ended sequencing data can be properly used
by downstream analysis programs (e.g. MixCR, immunearch, arriba) to obtained
additional features such as TCR/BCR clonotypes, gene fusions expression, splic-
ing isoforms, among others (Anders, Reyes, & Huber, 2012; Bolotin et al., 2015;
ImmunoMind Team, 2019; Uhrig et al., 2021). Another aspect to take into ac-
count is tissue origin since it is not the same to align reads coming from “intact”
FF tissue as those coming from “degraded” FFPE origin. DegNorm is a recently
developed program that can correct the degradation contribution due to the paraf-
fin fixation process (Xiong, Yang, Fineis, & Wang, 2019). Next, raw counts are
used as input for generating a normalized expression matrix and finding differen-
tially expressed genes (DEGs) (Love, Huber, & Anders, 2014; M. D. Robinson,
McCarthy, & Smyth, 2010). Finally, the DEGs can be used to discover potential
cancer theranostic biomarkers. An overview of these bioinformatic tools and steps
is illustrated in Figure 3.8 (Hong et al., 2020).

Figure 3.8: Bioinformatics tools commonly used in RNA-seq data
analysis. Taken from Hong et. al., 2020.
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Gene fusions expression

Gene fusions play a major role as oncogenic drivers in many cancer types and as
therapeutic targets (Uhrig et al., 2021). Although gene fusions can be detected
as SVs using WES/WGS data, RNA/protein expression corroboration is normally
preferred. However, reliable prediction of gene fusions from short-read RNA-seq
can be difficult mainly owing to a myriad of artifacts being introduced during
library preparation and sequence alignment. Algorithms to detect gene fusions
include Arriba (preferred), STAR-Fusion, pizzly (compatible with kallisto pseudo
alignments), and defuse (Haas et al., 2019; McPherson et al., 2011; Melsted et al.,
2017; Uhrig et al., 2021).

Pathways activity

Despite differential gene expression analysis being one of the most common appli-
cations of RNA-seq, gaining insights into the biological processes underlying phe-
notypic differences can become difficult when looking at individual genes. gene set
analysis (GSA) methods use DEGs and incorporate pre-existing biological knowl-
edge (in a form of functionally related gene sets or known biological pathways) to
gain insights into molecular processes. Among GSA methods, gene set overrepre-
sentation analysis is widely used with the help of annotated gene sets such as Gene
Ontology (GO) or Kyoto Encyclopedia of genes and genomes (KEGG), using stan-
dard statistical tests for enrichment (e.g. Fisher test); however, it does not account
for genes with small changes in expression that might be biologically relevant. Al-
ternative techniques that consider the differential expression of gene sets and do
not require a priori selected genes include Gene Set Enrichment Analysis (GSEA),
single sample Gene Set Enrichment Analysis (ssGSEA), and Gene Set Variation
Analysis (GSVA). GSEA tests the null hypothesis that the genes (normally the
DEGs) in a gene set (manually curated or from databases) are randomly associ-
ated with the phenotype by performing weighted Kolmogorov–Smirnov statistics.
On the other hand, the GSVA and ssGSEA methods can be applied to normal-
ized gene expression matrices to calculate sample-wise enrichment scores where
the statistics behind these calculations differ. GSVA compares the cumulative
distribution function, resulting from Kolmogorov rank statistics, of all the genes
in a gene set from Samplei versus the empirical distribution resulting from all the
samples within the dataset. ssGSEA sample-wise enrichment score is calculated as
a sum of the differences between two weighted empirical cumulative distribution
functions of gene expressions inside and outside the gene set (Barbie et al., 2009;
Hänzelmann, Castelo, & Guinney, 2013; Rahmatallah, Emmert-Streib, & Glazko,
2016; Subramanian et al., 2005).

Additionally, since the major difference between various GSA approaches re-
mains in the null hypothesis they test and is unaffected by the data type being
used, they can be used with other data sources like DNAm, protein expression,
or lists of genetic alterations. Software to perform these analyses include R-based
GSVA, clusterProfileR, webgestalt, and enrichR (Hänzelmann, Castelo, & Guin-
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ney, 2013; Kuleshov et al., 2016; G. Yu, Wang, Han, & He, 2012; B. Zhang, Kirov,
& Snoddy, 2005).

TFs and master regulators (MRs)

In addition to epigenetic control, gene expression programs, which are fundamental
for cell development, differentiation, tissue homeostasis, and disease, can be further
regulated by TFs through their interaction with specific DNA regulatory regions
(Garcia-Alonso, Holland, Ibrahim, Turei, & Saez-Rodriguez, 2019). A TF regu-
lates the activity of a collection of target genes (the so-called regulon) and, within
each TF network, such regulons may overlap with those of other TF since they
can be regulated by different “branches.” Furthermore, within a specific pathway,
TFs can be regulated by other TFs which receive the name of master regulators if
they are at the top of a gene regulation hierarchy. Consequently, given the biolog-
ical importance of MRs and TFs and because high-throughput measurements of
their activities are not available, various computational and biological approaches
have been constructed to estimate their activities from the gene expression levels
of their regulons (Fletcher et al., 2013; Garcia-Alonso, Holland, Ibrahim, Turei,
& Saez-Rodriguez, 2019). From a practical bioinformatics point of view, two R-
based software (DoRothEA and RTN), which are complementary, are commonly
used to estimate TFs/MRs activity using normalized gene expression matrices as
input (M. A. A. Castro et al., 2016; Garcia-Alonso, Holland, Ibrahim, Turei, &
Saez-Rodriguez, 2019).

DoRothEA uses the Wald statistic results from the DEGs (retrieved from run-
ning DESeq2), retrieved human TF–target interactions for 1,541 TFs (from ex-
perimental and literature-curated resources), and statistical methods from virtual
inference of protein activity by enriched regulon analysis (VIPER) R-package to
compute TF regulon normalized enrichment scores (NESs). Briefly, unlike other
GSA methods like GSEA, Fisher’s exact test, GSVA, VIPER incorporates direc-
tionality by integrating different likelihoods of representing activated, repressed, or
undetermined targets and probabilistic weighting of low vs. high-likelihood protein
targets (Alvarez et al., 2016) (See Figure 3.9 A&B).

Unlike DoRothEA, the RTN package comes with a less extensive list of TF–
target interactions but provides better graphical outputs by internally using the
RedeR package and provides MRs’ activity calculation. Regulator-target associa-
tions are identified using: I) mutual information (MI) which indicates whether or
not a regulator is well informative of the status of a target gene and II) the direc-
tion of the association (positive or negative) evaluated by Spearman’s correlation.
Furthermore, associations can be filtered first by retaining only edges with a BH-
adjusted P-value < 0.01 (recommended but can be adjusted) after permuting the
MI matrix 1000 times; secondly by eliminating unstable interactions by 1000 times
resamples’ bootstrapping (consensus bootstrap > 95%); and finally by removing
indirect TF-target edges applying the Data Processing Inequality (DPI) filter with
a 0 tolerance. MRs analysis is performed by evaluating the overlap between each
given regulon and the listed “hits” (Top DE genes) by two-side GSEA analysis.
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In general, for each MR, the approach divides the MR’s targets into positive (A)
and negative (B) that were previously defined using Spearman’s correlation, then
plots on top, the DE (log2-FC of all genes) observed when comparing the experi-
mental condition versus the control (this is called phenotype) in which genes are
ranked from higher to lower log2-FC values. The observed differential enrichment
scores (dES) is the difference of the GSEA statistics in the ranked phenotype of
A minus B where large positive dES indicates an induced regulon status while a
large negative dES indicates the opposite case (M. A. A. Castro et al., 2016; M.
A. Castro, Wang, Fletcher, Meyer, & Markowetz, 2012; Groeneveld et al., 2019)
(See Figure 3.9 C&D).

TME

Since the importance of the TME, the steps in the antitumor immune response,
and the specific components and findings within the DLBCL or PCNSL context,
has already been covered in Chapter 2.3, this section is rather focused on viewing
the TME through the lens of RNA-seq analysis to unravel features such as the
immunological composition of the infiltrate, immune expression signatures, and
the immune repertoire (TCR/BCR repertoire).

Deciphering the TME composition as well as the relative contribution of each
immune cell to it has been traditionally achieved, albeit expensive, by using IHC
or flow cytometry. However, since transcriptome-wide sequencing data captured
on bulk biopsies contain information from both the tumor and its infiltrates, so-
phisticated analyses can be applied to expression data to determine the presence
or absence and relative abundance of CD8 T-cells and other immune cell types.
Current RNA-seq methods for determining the TME composition use either a de-
convolution approach (e.g. CIBERSORT, CIBERSORTX, TIMER, MCP-counter)
or a GSA analysis (GSEA or GSVA) on curated gene lists (Becht et al., 2016; B.
Li et al., 2016; Aaron M. Newman et al., 2015; Aaron M. Newman et al., 2019).
The deconvolution approaches use a reference matrix composed of representative
expression signatures for specific immune cells. The intuition is that the immune
infiltrate is a mixture of different immune cell types that have distinct RNA ex-
pression profiles. If the RNA expression profiles of these immune cells are known,
the RNA expression profile of the mixture can be modeled as a linear combina-
tion of the RNA expression profiles of the component cells (Lau, Bobe, & Khan,
2019). Nevertheless, their performance is highly affected by how the immune RNA
profile was constructed since this can be cancer-specific. A practical example of
this approach in the context of PCNSL is the TME study done by Marcelis et.
al. covered in Chapter 2.3.4 (Marcelis et al., 2020).

On the contrary, GSA methods compute enrichment scores based on the ranked
expression of curated gene lists which were previously associated with a specific
cell type. Such enrichment scores allow for inter-sample comparison of the size of
particular immune cell populations but are typically not directly interpretable as
relative fractions of different cell types (Lau, Bobe, & Khan, 2019). Examples of
this approach include the study of the DLBCL’s TME by Kotlov et. al. (Chapter
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A B

C D

Figure 3.9: TFs and MRs activity calculation by DoRothEA and
RTN. Example of DoRothEA’s output showing the top 25 TFs NES (A),
the expression of targets for IRF2 is later shown as a volcano plot (B).
Example of the regulatory network of three TFs resulting from RTN-Reder
packages (C) from which the MR activity of PTTG1 is later estimated by
two-tailed GSEA (D). Panel D shows an overall induced regulon status for
PTTG1 since most of its positive targets are upregulated. Adapted from
Garcia-Alonso et. al. (2019) and Groeneveld et. al. (2019).
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2.3.3) and another of PCNSL by Alame et. al. (Alame et al., 2021; Kotlov et al.,
2021).

Immune expression signatures

Besides the relative abundance of immune cells in a tumor, the identification of
specific phenotypic states of the immune microenvironment can also be achieved
through the same GSVA/GSEA methods. Obtaining an immunological gene sig-
nature related to a specific phenotypic state is relatively simple; the idea behind it
is identifying and characterizing DEGs between a condition of interest and a con-
trol condition. Examples of such signatures include the cytolytic index (CYT), the
T-cell-inflamed phenotype, and the exhausted T-cell phenotype (Rooney, Shukla,
Wu, Getz, & Hacohen, 2015; Schubert et al., 2018).

TCR/BCR features

Thanks to the capture of both expression and sequence information, RNA-seq
can resolve the TCR and BCR immunological repertoires which have been asso-
ciated with effective immunotherapy responses (Lau, Bobe, & Khan, 2019; Riaz
et al., 2017; G. W. Wright et al., 2020). RNA-seq analysis on TCR can identify
clonal expansion or reduction of T-cells which could be used as indicative of a
productive or nonexistent antitumor immune response. On the other hand, BCR
analysis can provide information about B-cell density, immunoglobulin rearrange-
ments, and B-cell differentiation stages (Bolotin et al., 2015; Riaz et al., 2017; G.
W. Wright et al., 2020). However, the TCR and BCR genes have been challenging
regions to analyze using short-read NGS techniques due to their genetic diver-
sity and variability. TCR/BCR receptors are encoded by three gene segments
(VDJ, see Chapter 2.1.1), of which there are hundreds of alleles, that undergo
recombination to generate a full-length receptor gene that is unique to that cell
(the so-called clonotype) (Lau, Bobe, & Khan, 2019). Although being challeng-
ing, bioinformatic approaches to assembly TCR/BCR repertoires from short-read
RNA-seq data, such as MiXCR and immunoseq have been reported (Bolotin et
al., 2017; Morin et al., 2016). Typically, such methods involve aligning the reads
to the TCR/BCR genes, performing further short-read assembly, finding identi-
cal sequences to group-specific clonotypes, correcting PCR/sequencing errors, and
generating final clonotypes’ counts (Figure 3.10) (Bolotin et al., 2017). Down-
stream analysis tools, such as immunarch and VDJtools, require the TCR/BCR
clonotypes as input to generate information such as normalized unique clonotype
counts, clonotype frequency distribution, rarefaction curves, clonotype tracking,
repertoire overlap (between samples), and the total repertoire diversity which re-
flects the ability of our immune system to effectively withstand a multitude of
encountered pathogens (Figure 3.11) (ImmunoMind Team, 2019; Shugay et al.,
2015).
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Figure 3.10: MiXCR pipeline. Example of a bioinformatic workflow
for processing TCR/BCR data to extract clonotypes. Taken from Bolotin
et. al. (2017).
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Figure 3.11: Overview of VDJtools downstream analyses. After
generating clonotypes’ reading, post-analysis options include general statis-
tics (clonotype and read count, number and frequency of non-coding clono-
types, convergent recombination of CDR3 amino acid sequences, insert size
statistics, etc), spectratyping (distribution of clonotype frequency by CDR3
length), Variable and Joining segment usage profiles, repertoire overlap anal-
ysis, among others. Taken from Shugay et. al. (2015).
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3.1.4 ClinicOmic data
The ultimate objective of acquiring thousands of omic features is finding their
clinical relevance, e.g. follow how patients respond to treatment over time given
the presence of one or multiple omic features which is impossible in the absence
of clinicOmic data. This term comprises the multiple features that are routinely
evaluated in a clinical assessment of a patient such as the age, KPS, sex, diet,
family history, treatments, OS, PFS, among others (Rennard, 2005). Given that
the KPS and age definitions and implications in PCNSL were covered in Chapter
2.4.1, as well as the PCNSL treatments in Chapter 2.4, this sections aims to
describe the most important concepts and methods in survival analysis for cancer
research.

Time-to-event studies evaluate the long-term effects of new therapeutic regi-
mens (or drugs) through a surrogate endpoint such as disease progression (i.e. PFS)
or death (i.e. OS). A requirement of new drug approvals in oncology by the FDA
and other regulatory bodies is showing direct/indirect clinical benefit when using
either PFS or OS as endpoint, though the last one is universally more accepted
(Hess, Brnabic, Mason, Lee, & Barker, 2019). Furthermore, time-to-event studies
typically employ two closely related statistical approaches, KM and Cox propor-
tional hazards (CoxPH) model analyses which are univariate and multivariate
approaches, respectively (Dudley, Wickham, & Coombs, 2016).

KM analysis

KM, which is the most frequent survival analysis method used in randomized
(phase III and some phase II) medical clinical trials, calculates how long after
starting a particular treatment that the studied event (e.g. death, disease progres-
sion) occurred for individuals who were not otherwise censored. Patients from a
sample become censored when investigators cannot determine if or when a subject
ultimately experiences the event or otherwise drops out or is lost from the study)
or at the end of the study (right censoring of all remaining subjects because no
further data will be collected). Censoring is a major difference between KM and
more traditional parametric analyses since missing data is a problem that can
potentially bias data analysis and statistics (Figure 3.12 A&B).

The statistical output of a KM analysis can be graphed as a stair-step plot
in which the x-axis represents the time variable expressed in a linear fashion
(i.e. weeks, months, years, etc.) and the y-axis indicates the sample proportion
that has not experienced the studied event. The length of each horizontal line
represents the survival duration for that interval, and all survival estimates to a
given point represent the cumulative probability of surviving to that time. The
length of each interval is determined the appearance of an event which forms a
downward step, whereas the tick marks indicate censored subjects. The probabil-
ity of surviving an interval is related to the number of patients in that interval:
Both the numerator and the denominator decrease by the number of patients who
experienced the event plus those who were censored. Each of these probabilities
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contributes to the subsequent and final probability of not experiencing the event.
Moreover, the patients at risk at a specific time point is determined by the number
of remaining patients that haven’t experienced an event (Figure 3.12 C). Another
advantage of KM curves is the rapid visualization of median survival which is the
amount of time from the start of treatment that half of the patients from a cohort
are still alive (Dudley, Wickham, & Coombs, 2016).

Statistically speaking, KM estimates are commonly calculated with the log-
rank test in which chi-squares (χ2) for each event time are summed to calculate
an ultimate chi-square for each arm (or group). Log-rank results compare the full
curves of each group and generate a significance level (p-value). For example, the
KM curves in Figure 3.12D show a significant difference in outcome (p < 0.01)
between cohort A (median survival = 11 months) and cohort B (median survival
= 6.5 months). However, it is important to remark that the log-rank test allows
between-group comparisons of survival estimates but not the size of a potential
difference or of confounding variables such as age, sex or KPS (Dudley, Wickham,
& Coombs, 2016). Programs to estimate survival by KM models include survminer,
survival, and survtype (Terry M. Therneau & Patricia M. Grambsch, 2000).
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A B

DC

Censoring event

Hypothetical resulting KM curve

Event 1

Event 2

Censors do not 
affect the interval

Survival probability is 8/9 = 88.8%

3 patients at risk: 
10 -3 vents - 4 censored

p-value < 0.01

Figure 3.12: Interpreting a KM plot. Panel A shows each patient’s
serial time from a cohort (in sequential order) and whether they experienced
the event (E) or were censored (C). Patient 2 has a continuing serial line
since neither the endpoint for data collection nor an event has occurred.
Panel B shows the same hypothetical patients arranged from the shortest to
the longest serial time needed for plotting the KM graph (blue line). Panel C
shows a hypothetical KM curve (cohort of 10 patients) along with some basic
concepts such as survival probability and patients at risk. Panel D shows a
significant difference in outcome (p < 0.01) where the median survival is 6.5
months in cohort B and 11 months in cohort A. Adapted from Dudley et.
al. (2016).

CoxPH model analysis

As several confounding variables can potentially affect the interpretation of KM
results, CoxPH is generally preferred since it allows adjusting survival with respect
to several factors simultaneously while providing the effect size for each factor
(hence the so-called multivariate survival model). The model permits examining
how covariates influence the rate (so-called hazard rate) of the event happening
at a particular point in time. Moreover, the Cox PH model uses only the rank
ordering of the failure and censoring times and thus is less affected by outliers in
the failure times than fully parametric methods. Briefly, the hazard function, h(t),
can be interpreted as the risk of dying at time t and can be estimated as follows:

h(t) = h0(t)exp(β1x1 + β2x2 + ...βnxn) (3.1)

where t is the survival time, h(t) is the hazard function determined by a set of n
covariates (x1, x2, ...xn), β1, β2 are the coefficients measuring the effect size of the
covariates, and h0(t) is the baseline hazard function (for x = 0).
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Interpreting the hazard ratio (HR) is counter-intuitive because a HR greater
than one indicates that the value of the ith covariate increases hence decreasing
the length of survival. HRs are normally represented along with their upper and
lower 95% confidence intervals which help determine if the observed effect is sig-
nificant or not; if the 95% confidence interval (CI) “touches” a HR = 1, then the
effect is considered not significant. The statistical significance by itself, calculated
by Wald statistics, corresponds to the ratio of each regression coefficient to its
standard error (z = βn/se(βn)) and evaluates whether the βn coefficient of a given
variable is statistically significantly different from 0 (Bender, Augustin, & Blet-
tner, 2005). Programs for CoxPH modeling also include survminer, survival, and
survtype (Terry M. Therneau & Patricia M. Grambsch, 2000).

Evaluating goodness of fit in survival models

Evaluating the performance of prognostic models is commonly achieved by using
the concordance index (C-index) since it accounts for risk, outcome occurrence,
and timing which enables distinguishing between well-behaved models and quasi-
random ones. If we define M as the “risk score,” i.e. the probability that an event
might happen, T as some time point, and i/j as two generic subjects, then one can
define the C-index as the following probability, conditioned on the relative order
of events:

C = P (Mj > Mi|Tj < Ti) (3.2)

This results in C-index values ranging from 0 to 1 where a “good” model, in
the eyes of the C-index (C = 1), is one that always assigns higher scores to the
subjects who experience the earlier events. Note that this may not always be the
most appropriate definition of goodness of fit (e.g., when the highest risk is, in fact,
related to long-term outcomes); nevertheless, it is the most common in survival
analysis, where many techniques (KM, CoxPH, etc) assume the existence of a
monotonic map between event probabilities and onset times (Longato, Vettoretti,
& Di Camillo, 2020).

The de-facto standard way to compute the C-index is using Harrell’s estimator
(Ĉ) which works by estimating the ratio between the number of concordant and
comparable pairs. A pair of subjects (i, j) is “comparable” if we can determine
which of them (i or j) was the first to experience an event. A comparable pair is
also “concordant” if the subject who experiences the earlier event is identified as
the one having the greater risk, while “discordant” otherwise. It is defined as:

Ĉ =
∑N

i=1 ∆i
∑N

j=i+1 I(Ti < Tj)I(Mi > Mj)∑N
i=1 ∆i

∑N
j=i+1 I(Ti < Tj)

(3.3)

where I(Mi > Mj) is the indicator function that can be equal to either 1 (results
in Ĉ = 1), if all comparable pairs (i, j) have been assigned scores that reflect
the correct order of events, or 0 (results in Ĉ = 0) if all pairs are discordant.
Intermediate cases producing Ĉ = 0.5 denote a model that generates completely
random assignments.
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It is important to remark that interpreting intermediate values of the Harrell’s
C-index (0.5 < Ĉ > 1) is not as straightforward as those resulting from binary
classifications or even area under the ROC curve (AUROC), because the rela-
tionship between Ĉ and the proportion of subjects with incorrectly assigned risk
scores (we) is not linear. For instance, while for AUROC an improvement from
0.75 to 0.80 means that a lower number of subjects (5% of the total) has been
ranked incorrectly, for Harrell’s C-index the interpretation depends in which area
such increment falls. More precisely, the same change from 0.75 to 0.80 but in Ĉ
decreases we by 8% (from we = 0.71 to we = 0.63); while improving Ĉ from 0.94
to 0.99 requires a 21% change (∆we = 0.35 − 0.14) (Longato, Vettoretti, & Di
Camillo, 2020).

3.2 Reduction of multi-omic features
Each layer of omic data offers a large number of features which further increases
when passing to the multi-omic step, hence making data manipulation a difficult
and computationally demanding task. Finding the most effective features among
thousands of other ones in a feature selection/reduction process is a fundamental
challenge in the field of omics data analysis. Common techniques for data reduction
can be classified as feature reduction (i.e. select a subset of features with the least
redundancy and the most relevance to the target class in order to obtain the
highest classification accuracy) and feature extraction (i.e. produce new features
with lower dimensions than the main features). The feature reduction method
provides a better understanding of the system by selecting the best not redundant
feature sets at a low computational cost (Momeni, Hassanzadeh, Saniee Abadeh,
& Bellazzi, 2020). Given that feature reduction methods are often preferred, this
section is focused on overviewing the main approaches (filter, wrapper, embedded,
and ensemble; see Figure 3.13).

Filter approach
This approach is particularly useful for huge datasets, it measures the char-

acteristics of features based on four types of evaluation criteria: Dependency,
Information, Distance, and Compatibility. Filtering methods can be further di-
vided into uni-variate which uses the standard deviation (sd), the median absolute
deviation (mad), the mutational frequency or specific manual cut-off based on the
literature, and multivariate methods which aim to find relationships between fea-
tures. An example of multivariate methods is combining clinicomic data (outcome,
sex, age) with gene expression data to evaluate which genes are associated with
survival when performing a multivariate or univariate CoxPH analysis (Lu, Meng,
Zhou, Jiang, & Yan, 2021; Momeni, Hassanzadeh, Saniee Abadeh, & Bellazzi,
2020). Other methods first reduce the dimensions of feature space and then apply
filter methods such as the principal component analysis (PCA).

Wrapper approach
Wrapper approaches, which demand a higher computational cost compared

to filter approaches, select a subset of discriminating features by minimizing the
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prediction error of a particular classifier. Because the number of subsets of features
expands exponentially as a function of the initial input, this approach can become
highly demanding when having thousands of features. Moreover, the approach
has the potential to overfit on data with a small number of samples (Momeni,
Hassanzadeh, Saniee Abadeh, & Bellazzi, 2020).

Embedded approach
Based on learning algorithms, the embedded approach results more efficiently

and computationally less complicated than the wrapper approach because it avoids
duplicate execution and examines each feature subset in the learning process. The
most popular embedded method is support vector machine-recursive feature elimi-
nation (SVM-RFE) which uses an iterative backward selection approach to remove
least-weighted features between two “classes” during each iteration; however, it
depends on the manual labeling of each “class” (Momeni, Hassanzadeh, Saniee
Abadeh, & Bellazzi, 2020).

Ensemble approach
The idea behind this approach is to reduce the dataset into a number of smaller

subsets and then rely on different feature selection strategies for each subset to
produce a merged result from these groups. Sub-setting allows less tendency to
overfitting, more stability, and less dependency on the algorithms (Momeni, Has-
sanzadeh, Saniee Abadeh, & Bellazzi, 2020).

3.3 Multi-omic data integration
Despite combining several different omics data to discover coherent biological sig-
natures being considered the most challenging step, it is inevitable to mention
that it relies on how well data acquisition and reduction were conducted. The
objective of multi-omic data integration is to incorporate the different biological
single-omic layers of information to reconstruct the complex interdependent inter-
actions shared within a molecular subtype of the disease and to predict phenotypic
outcomes (tumor/normal, early/late stage, survival, etc.) (Huang, Chaudhary, &
Garmire, 2017; Lu, Meng, Zhou, Jiang, & Yan, 2021). The clustering algorithms
to be presented in this section have the ultimate goal of finding such molecular sub-
types, however, it is important to note that finding the “correct” method/result
requires a profound biological and bioinformatic background of the disease for
achieving an integrated interpretation of the findings.

3.3.1 Clustering methods
The first and most important parameter when applying any clustering algorithm
is estimating the optimum number of clusters k for the data, where k needs to
be small enough to reduce noise but large enough to retain important information
(Lu, Meng, Zhou, Jiang, & Yan, 2021). The most used estimators of k are the
Gap-statistics and the Cluster Prediction Index (CPI) (Chalise & Fridley, 2017;
Tibshirani, Walther, & Hastie, 2001). The idea behind Gap-statistics is finding
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Figure 3.13: Comparison between feature reduction methods.
Adapted from Momeni et. al. (2020).
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a k value which maximizes the Gapn(k) estimate by comparing the change in
within-cluster dispersion with that expected under an appropriate reference null
distribution. Gapn(k) is defined as:

Gapn(k) = E∗
n{log(Wk)} − log(Wk) (3.4)

where E∗
n denotes expectation under a sample of size n from the reference distri-

bution and Wk is the error measure (within-cluster dispersion) which is affected
by n data points under p dimensions (Tibshirani, Walther, & Hastie, 2001).

A practical example of its interpretation (in the genomic area) is given by
Tibshirani et. al. where they applied hierarchical clustering to DNA microarray
data coming from nine different tumor types (Figure 3.14 A). Their gap-statistic
methodology estimated the best k value to be 2, 6, or 8 as the Gap(k) function
rises when finding both values (Figure 3.14 B). However, the authors remark that
it is important to examine the entire gap curve rather than only taking the highest
position (Tibshirani, Walther, & Hastie, 2001).

The CPI is the average of adjusted rand indices which are calculated iteratively
by comparing clustering assignments between the “observed” clusters (from train-
ing data) and the “predicted” clusters (from the test data). CPI values range from
0 to 1 where a higher value indicates a good consensus between the predicted and
the observed clustering assignments (Figure 3.14 C). The integrative non-negative
matrix factorization (intNMF), which is an extension of the NMF algorithm and
is the behind CPI calculation, is integrated into an R package named “intNMF”
(Chalise & Fridley, 2017). After finding the optimum number of clusters, the next
step is properly applying either one or a combination of clustering methods such as
NMF, iCluster, iCluster+, ConsensusClustering, and Perturbation clustering for
data INtegration and disease Subtyping (PINSPlus) (Hoadley et al., 2014; Huang,
Chaudhary, & Garmire, 2017; Lu, Meng, Zhou, Jiang, & Yan, 2021; Monti, 2003;
Nguyen, Shrestha, Draghici, & Nguyen, 2019).

NMF
This method is based on decomposing a non-negative matrix into non-negative

loadings (coefficients) and non-negative factors:

min||X − WH||2, W ≥ 0, H ≥ 0 (3.5)

where X is the matrix a layer of omic data that has M × N dimensions, W is
the common factor for M × K dimension matrix and H is the K × N dimension
coefficient matrix. Of note, this method requires previous data normalization of
each layer and/feature (Huang, Chaudhary, & Garmire, 2017).

iCluster and iCluster+
Unlike NMF, these methods do not require non-negative input data and add,

besides the W and H, an E value to represent the error/noise term. Additionally,
the iCluster+ assumes different modeling assumptions for each omic layer (e.g. lo-
gistic, normal linear, multilogit, and Poisson distributions) and integrates least
absolute shrinkage and selection operator (LASSO) to address the sparsity issue
in H (Huang, Chaudhary, & Garmire, 2017).
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A

B C

Figure 3.14: Gap-statistics and CPI methods for finding opti-
mal cluster number. Dendrogram from hierarchical clustering of DNA
microarray data coming from nine different tumor types (Panel A) and gap-
statistic as a function of the number of clusters (Panel B). CPI plot resulting
from running the intNMF algorithm on glioblastoma TCGA multi-omic data
(CNA, methylation, and mRNA). Adapted from Tibshirani et. al. (2001)
and Chalise and Fridley (2017).
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ConsensusClustering
The idea behind the ConsensusClustering is to represent the consensus over

multiple runs of a clustering algorithm with random restart (such as K-means,
model-based Bayesian clustering, self-organizing map (SOM), among others), to
account for its sensitivity to the initial conditions (Hoadley et al., 2014; Monti,
2003).

PINSPlus
Nguyen et. al. developed an unsupervised two-step approach for subtype dis-

covery without using any a priori knowledge. When integrating multi-omics data,
the first step aims to identify subgroups that are strongly connected across all data
layers by merging connectivities (i.e. features) of all data layers into a similarity
matrix that represents the overall connectivity between patients. Step two splits
each discovered group individually to avoid over-splitting in the first step but only
if either stage I clustering was extremely imbalanced or there are not strong signals
across all data layers within a subtype (Nguyen, Shrestha, Draghici, & Nguyen,
2019).

Cluster Ensembles
Similar to ConsensusClustering, this method’s goal is to improve clustering by

finding consensus results from different clustering methodologies. Cluster Ensem-
bles selects the best solution for a given situation from three different techniques
including reclustering based on similarity measures from the partitionings (I), from
hypergraph partitionings (II), and from collapsing meta-clusters (Strehl & Ghosh,
2002).



Chapter 4

Thesis objectives

This thesis aims to characterize the multi-omic landscape of PCNSL, including
genomics, epigenomics, transcriptomics, and clinicomics, and to integrate such
data to find molecular PCNSL subgroups with biological and clinical relevance.
Ergo, the objectives are divided into three parts:

• Chapter 4.1: To review the literature to understand the HLA struc-
ture/diversity and genetic susceptibility in PCNSL and other B-cell NHLs.

• Chapter 4.2: To develop a code to track c-AID mutations and to
explore their implications at pan-cancer level (~ 50,000 samples).

• Chapter 4.3: To extract, analyze, and integrate multi-omic data
to find and characterize molecular PCNSL subgroups with shared causative
biologic factors of disease and outcome.
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4.1 Review of the literature to understand the
HLA structure/diversity and genetic suscep-
tibility in PCNSL and other B-cell NHLs

B-cell NHLs’ main subtypes include DLBCL, FL, CLL and extra-nodal lymphomas
(i.e. brain, eyes, leptomeninges, spinal cord, etc.). Their risk associations had been
mainly attributed to family history of the disease, inflammation, and immune
components including HLA genetic variations. Nevertheless, a broad range of
genome-wide association studies (GWAS) have shed light into the identification
of several genetic variants presumptively associated with B-cell NHL etiologies,
survival or shared genetic risk with other diseases.

In this review, I used published articles to overview the HLA structure and
diversity and summarize the evidence of genetic variations, by GWAS, on five
NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma FL,
chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and primary
central nervous system lymphoma PCNSL).

The review article was published at the International Journal of Molecular
Sciences (10.3390/ijms22010122) and is listed in the Results section.

https://www.mdpi.com/1422-0067/22/1/122/htm


4.2. Exploring the implications of AID-related mutations at pan-cancer level 69

4.2 Exploring the implications of AID-related
mutations at pan-cancer level

Activation-induced cytidine deaminase, AID (encoded by AICDA), is a driver of
somatic hypermutation and class-switch recombination in immunoglobulin related
genes within naive B-cells. This AID deamination of cytosine to uracil also oc-
curs during IG gene transcription and inside particular DNA patterns such as WA
motifs (W = A/T) or WRCY motifs (R = purine; Y = pyrimidine). Mutations
arising at WA motifs are defined as non-canonical AID (COSMIC signature 9),
whereas those arising at WRCY motifs as canonical-AID. Furthermore, within
hematological cancers off-target AID activity has been reported responsible of
lymphomagenesis, maninly through the mutations activating NF-κβ pathway. In
addition, this deaminase belonging to the APOBEC family may have off-target
effects genome-wide, but despite this, no detailed characterization of the involve-
ment of AID-related mutations at the pan-cancer level, as well as their potential
mutational and clinical implications, has been performed.

Here, I used more than 50.000 samples covering more than 80 tumor types at
the bulk level and close to 2.5 million cells at single-cell resolution to thoroughly
describe the landscape of AID-related mutations. Furthermore, the developed
and validated code to track the c-AID mutations served to fully characterize such
mutations in PCNSL for the following section.

The original research article is currently under revision in the Cell Reports
journal (Pre-print available) and is listed in the Results section.

https://www.biorxiv.org/content/10.1101/2021.06.26.447715v1
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4.3 Integrating multi-omic data to characterize
PCNSL molecular and clinical diversity

PCNSL is a rare subtype of extranodal non-Hodgkin’s lymphoma, in the vast
majority of cases consist of diffuse DLBCLs histologically, but has a less favorable
prognosis (median OS of 26 months versus 124 months) and has been proved to be
molecularly a different biological entity (Chapuy et al., 2018; Schmitz et al., 2018;
Sehn & Salles, 2021; Yoshida et al., 2016). The gold standard treatment, high-dose
methotrexate regimen, is often associated with neurotoxicity and eventual relapse
(up to 60% of the patients) (Houillier et al., 2020; Y. Zhou et al., 2018). Moreover,
recurrent/relapsed PCNSLs have shown heterogeneous responses in diverse clinical
trials with different treatment strategies (Garcilazo-Reyes et al., 2020).

In addition, PCNSL was initially found to be at late B-cell germinal center
stages and to have constitutive NF-κβ activity due to mutations in genes of the
BCR pathway (CD79B, SHIP, CBL, and BLNK ), of the TLR pathway (MYD88 )
and CARD11 ; however, recent studies have pinpointed it to belong to the so-
called “MCD” or Cluster 5 (C5) DLBCL which converge in the presence of fre-
quent MYD88 (L265P), CD79B, PIM1, BTG2 mutations, IgH-BCL6 transloca-
tions, copy gains of 3q12.3, 9p24.1 (PD-L1/PD-L2), 11q and copy losses of 6p21-22
(HLA locus), 6q21, and 9p21.3 (CDKN2A biallelic loss). Interestingly, the AID
has a higher off-target mutagenic activity in PCNSL compared to other DLBCL
(Chapuy et al., 2018; Schmitz et al., 2018; G. W. Wright et al., 2020).

Although DLBCL classification based on genomics has improved clinical deci-
sion making, PCNSL heterogeneity has not been properly addressed mainly due
to the lack of multi-omic data integration and the limited number of patients.

Here, I extracted and integrated distinct multi-omic features, such as muta-
tions, copy-number alterations, fusions, gene expression, TCR/BCR clonotypes,
TME, methylation, radiological characteristics, OS times, and PFS times, from
a total of 147 immunocompetent, treatment naïve PCNSL patients. This data
allowed me to find and thoroughly characterize PCNSL molecular subtypes which
I validated in a second FFPE cohort of 93 patients. Additionally, to facilitate rou-
tine clinical implementation, I developed an algorithm (RBraLymP) that uses gene
expression data from either FFPE or FF tissue, to identify the PCNSL molecular
subtypes associated with multi-omic features.

The original research article is currently under revision at Nature Medicine
(Pre-print available) and is listed in the Results section.

https://www.researchsquare.com/article/rs-1438980/v1
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Abstract
B-cell non-Hodgkin’s lymphoma (NHL) risk associations had been mainly at-

tributed to family history of the disease, inflammation, and immune components
including human leukocyte antigen (HLA) genetic variations. Nevertheless, a
broad range of GWAS have shed light into the identification of several genetic
variants presumptively associated with B-cell NHL etiologies, survival or shared
genetic risk with other diseases. The present review aims to overview HLA struc-
ture and diversity and summarize the evidence of genetic variations, by GWAS, on
five NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma
FL, chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and pri-
mary central nervous system lymphoma PCNSL). Evidence indicates that the HLA
zygosity status in B-cell NHL might promote immune escape and that genome-
wide significance variants can give biological insight but also potential therapeutic
markers such as WEE1 in DLBCL. However, additional studies are needed, espe-
cially for non-DLBCL, to replicate the associations found to date.

Keywords: B-cell non-Hodgkin’s lymphoma, GWAS, cancer risk, HLA
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5.1.1 Introduction

Malignant lymphomas are among the most common head and neck neoplasm from
lymphoreticular system origin and can be defined as Hodgkin’s or non-Hodgkin’s
lymphoma (NHL), in which approximately 25% arises from extra-nodal locations
like Waldeyer’s ring, oral cavity, salivary glands, thyroid, larynx, nasal cavity,
paranasal sinuses, skin, brain, eyes, leptomeninges, or spinal cord (Bowzyk Al-
Naeeb, Ajithkumar, Behan, & Hodson, 2018; Hoang-Xuan et al., 2015). According
to the 2016 World Health Organization classification there are around 60 distinct
subtypes of NHL with diffuse large B-cell lymphoma (DLBCL, about 30%), fol-
licular lymphoma (FL, about 20%) and chronic lymphocytic leukemia/small lym-
phocytic leukemia (CLL/SLL) among the most common (Ekström-Smedby, 2006;
Singh et al., 2020; Steven H. Swerdlow et al., 2016). Along with the wide location
distribution of the lymphomas, this group of diseases has varying etiologies and
prognosis, for example the five-year survival is 85% for CLL, 80% for FL, 76.5% for
marginal zone lymphoma (MZL), but <50% for more aggressive lymphomas such
as DLBCL or even 30% for primary central nervous system lymphoma (PCNSL)
(Braggio et al., 2015; Olszewski & Castillo, 2013; Zhong, Cozen, Bolanos, Song, &
Wang, 2019). Furthermore, there have been vast population studies to associate
the presence of different etiologies, such as smoking, height, weight, autoimmune
conditions, alcohol consumption, viral infections, and genetics, with the risk of de-
veloping any subtype of NHL (Ekström-Smedby, 2006; Moore et al., 2020; Morton
et al., 2014). Nevertheless, despite these efforts, there are only few established
risk factors including autoimmune conditions (e.g., Sjögren disease, rheumatoid
arthritis, systemic lupus erythematosus, and multiple sclerosis), immunodeficiency
syndromes, organ transplants, breast implants and specific infections (e.g., Heli-
cobacter pylori for mucosa-associated lymphoid tissue lymphoma of the stomach,
immunodeficiency virus, and mononucleosis) (Din et al., 2019; Hjalgrim et al.,
2010; K. E. Smedby & Ponzoni, 2017).

More recently, sequencing technologies like next generation sequencing (NGS)
and genome-wide association studies (GWAS), have broaden the possible can-
didates by using thousands of genetic variants for multiple genetic risk factors
identification (Mills & Rahal, 2019). GWAS combining the population structure
(Q) jointly with the genetic marker based kinship matrix (K) mixed linear model,
also called linear mixed model, where the test statistic for significance is drawn
from the central Chi-square distribution by comparing the allele frequencies of the
cases to the controls. A variant is said to be significant at genome-wide level if the
p value is ≤ 5×10-8 , which was set by taking a 0.05 significance level and roughly
dividing by the total number of independent blocks of linked genes in Europeans
(thought to be 1,000,000) (M. Wang & Xu, 2019; Zhong, Cozen, Bolanos, Song,
& Wang, 2019). Regarding GWAS within the B-cell NHL context, most studies
have focused on genetic variants at chromosome 6p21, specifically human leukocyte
antigen (HLA) variants, since that region is critical for innate and adaptive im-
mune responses, but there have been also efforts to find associations with variants
outside this chromosome and other etiologies (Bernatsky et al., 2017; Di Paolo et
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al., 2019; Din et al., 2019; Mathilde R. W. de Jong et al., 2018; Kleinstern, Camp,
et al., 2020; Moore et al., 2020; Zhong, Cozen, Bolanos, Song, & Wang, 2019).

In this review, we give an overview of HLA structure and diversity, and then we
summarize the most recent GWAS presented in five B-cell NHL subtypes: DLBCL,
FL, CLL, MZL, and PCNSL in the light of loci (HLA and others) diversity and
zygosity specific associations in addition to further clinical evaluations when suit-
able. Furthermore, we present the genetic overlap between B-cell NHL subtypes
and autoimmune diseases, height, lipid traits, or other lymphomas.

5.1.2 HLA Overview
The association found between Hodgkin’s lymphoma (HL) and HLA-B gene vari-
ation allowed to the later discovery that the major histocompatibility complex
(MHC) is the genomic region with the highest number of associated human dis-
eases (Amiel, 1967; Trowsdale & Knight, 2013). The MHC, a hyper gene-dense
region located at chromosome 6p21.3, encodes a set of 21 protein-coding loci that
gives rise to three different types of HLA molecules. Firstly, class I, encoded by
the highly polymorphic HLA-A, HLA-B, and HLA-C genes (“classical”); but also
HLA-E, HLA-F, and HLA-G genes (“nonclassical”) both of which are composed
of a single α chain non-covalently bound to a small β2-microglobulin polypep-
tide encoded by another chromosome (15q21). Secondly, class II, encoded by
the HLA-DPA1, HLA-DQA1, HLA-DQA2, HLA-DRA, HLA-DPB1, HLA-DQB1,
HLA-DQB2, HLA-DRB1, HLA-DRB2, HLA-DRB3, HLA-DRB4, and HLA-DRB5
genes which are composed of α-β heterodimer. Thirdly, class III, encoded by 61
genes (ex. MIC, SKI2W ) involved in inflammation, leukocyte maturation and
complement cascade (Deakin et al., 2006; Dendrou, Petersen, Rossjohn, & Fugger,
2018; Sanchez-Mazas, 2020; Zhong, Cozen, Bolanos, Song, & Wang, 2019). These
HLA genes comprise approximately four million base pair region, giving rise to
more than 15,000 different classical HLA class I and II alleles which can, theo-
retically, serve for presenting over 1012 different peptides if the antigen-presenting
cell (APC) is heterozygous at each of the six classical class I or II HLA loci (J.
Robinson, Soormally, Hayhurst, & Marsh, 2016; Sewell, 2012).

Nucleated cells express HLA class I molecules where small peptides (8–10 amino
acids) are bound to the α1-α2 domains at the HLA peptide-binding site for later
recognition by αβ T-cell receptors (TCRs) on CD8+ T cells. On the other hand,
monocytes/macrophages, dendritic cells and B cells express HLA class II recep-
tors which can present larger peptides (13–25 amino acids) to TCRs on CD4+ T
cells, hence inducing the orchestrated immune response against the pathogen due
to cytokines releasing either by helping B cells to secrete high affinity antibodies
or by inducing macrophage activation (Dendrou, Petersen, Rossjohn, & Fugger,
2018; Sanchez-Mazas, 2020; Zhong, Cozen, Bolanos, Song, & Wang, 2019). Fur-
thermore, HLA class I molecules can bind to natural killer (NK) cells through
immunoglobulin-like receptors and C-type lectin-like CD94/NKG2 receptors (Fig-
ure 5.1) (Saunders et al., 2015).

Along with the extreme gene density and polymorphism at the MHC locus,
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linkage disequilibrium, low-throughput methodologies and samples sizes made
HLA-disease associations complicated. However, with the advent of both high-
throughput whole-genome-based methodologies (example GWAS) and the evolu-
tion of big data analysis, researchers can measure the contribution of a single
genetic variation across the genome on a disease risk by leveraging linkage dise-
quilibrium (M. Wang & Xu, 2019).

5.1.3 GWAS in B-Cell NHL
DLBCL

Representing around 30% of NHL and affecting preferentially older adults, diffuse
Large B-cell lymphoma is the most common type of NHL. During the last two
decades, treatment with immunochemotherapy consisting of cyclophosphamide,
doxorubicin, vincristine, and prednisolone combined with the anti-CD20 mono-
clonal antibody rituximab (R-CHOP) has become the gold standard. This regi-
men results in a cure rate of 60% and a five-year survival rate of 60% for germinal
center B-cell (GCB) subtype or 35% for activated B-cell (ABC) subtype; how-
ever, clinical course is heterogeneous, even after elucidation of cell of origin (ABC
or GCB), thus requiring new biomarkers for elucidating patient outcome and for
adapting treatment strategies (Ghesquieres et al., 2015; G. Wright et al., 2003).
Different risks factors have been identified. A stepwise logistic regression meta-
analysis of 4667 cases and 22,639 controls, found that DLBCL is associated with
B-cell activating autoimmune diseases (odds ratio [OR] = 2.36, 95% confidence
interval [CI] = 1.80 to 3.09), hepatitis C virus seropositivity (OR = 2.02, 95%
CI = 1.47 to 2.76), family history of NHL (OR = 1.95, 95% CI = 1.54 to 2.47),
and higher young adult body mass index (OR = 1.58, 95% CI = 1.12 to 2.23,
for 35+ vs 18.5 to 22.4 kg/m2). Conversely, different potential presumptive pro-
tective factors have been proposed, such as higher sun exposure (OR = 0.78 and
0.80, 95% CI = 0.69 to 0.89 and 0.71 to 0.90), in two studies, and lifetime alcohol
consumption (OR = 0.57, 95% CI = 0.44 to 0.75, for >400 g vs nondrinker) in one
study. Vitamin D deficiency has been suggested as negative prognostic factor in
patients with aggressive DLBCLs but was not found to be associated with dietary
intake (OR = 1.03, 95% CI = 0.90 to 1.19), hence indicating that other factors
rather than vitamin D may be involved (J. R. Cerhan et al., 2014; Park, Hong,
Lee, & Koh, 2019). More recent studies evaluating DLBCL risk, one using lipid
trait variants in 2661 cases and 6221 controls found positive association with high
density lipoproteins (OR = 1.14; 95% CI, 1.00–1.30), while another study evalu-
ating height as variable; however, neither of them were significant after adjusting
for multiple testing (Kleinstern, Camp, et al., 2020; Moore et al., 2020).

HLA-B (rs2523607) locus has been associated with DLBCL risk, initially de-
scribed in a GWAS study with 3857 cases/7766 controls from European population
(OR = 1.32; 95% CI = 1.21–1.44; p = 2.40 × 10-10) and then reported in 1124
patients and 3596 controls from Asian population (OR = 3.05; 95% CI = 1.32–
7.05; p = 9.0 × 10-3), though not reaching genome-wide significance (Bassig et al.,
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2015; James R. Cerhan et al., 2014) (Table 5.1). Regarding pleiotropy of DLBCL
with other diseases, a European population study found that variant rs10484561
(HLA-DQB1*01:01 DQA1*01:01 DQB1*05:01 extended haplotype, Linkage Dis-
equilibrium (LD) r2 = 1.0) is associated with both DLBCL risk (OR = 1.36; 95%
CI = 1.21–1.52; p = 1.40×10-7) and FL risk (OR = 1.64; 95% CI = 1.45–1.86; p =
5.0 × 10-15) using independent cohorts (Karin E. Smedby et al., 2011). Addition-
ally, a GWAS of 3857 DLBCL cases and 7666 controls used previously systemic
lupus erythematosus (SLE) associated loci to evaluate the risk of DLBLC, finding
HLA risk allele rs1270942. Another study evaluated multiple sclerosis (MS) and
rheumatoid arthritis (RA) with DLBCL risk, but not genome-wide significance
was reached (Bernatsky et al., 2017; Din et al., 2019). Moreover, HLA homozy-
gosity was found to be associated with increased DLBCL risk for HLA-B, HLA-C
and HLA-DRB1 alleles among Europeans (S. S. Wang et al., 2018).

GWAS have been also widely used for non-HLA alleles associations, more
remarkably susceptibility risk have been found in different studies for: PVT1
(rs4733601 and rs13255292) in three different GWAS studies in which one also
found to be associated with MS risk (p = 5×10-8); EXOC2 (rs116446171) (James
R. Cerhan et al., 2014; Din et al., 2019; Park, Hong, Lee, & Koh, 2019) and CD86
(rs2681416 and rs9831894) (James R. Cerhan et al., 2014; Kleinstern, Yan, et al.,
2020). PVT1 is a non-coding RNA affecting MYC activation, a driver gene in lym-
phomas; EXOC2 functions at the interface between host defense and cell death
regulation and CD86 is well known for its role in T-cell activation (Aslan et al.,
2020; James R. Cerhan et al., 2014). Other, implicated loci are 2p23.3 (NCOA1 ),
3p24.1 (EOMES-AZI2 ), 5q31.3 (ARAP3 ) and 3q27 (BCL6-LPP); interestingly
the BCL6 has been vastly documented to be involved in B-cell lymphomagenesis
due to its role as critical regulator of germinal centers and rs6773363 (EOMES-
AZI2 ) is indirectly involved in the activation of the NF-κβ signaling pathway
(Basso & Dalla-Favera, 2010; James R. Cerhan et al., 2014; Kleinstern, Yan, et
al., 2020). Another study (399 DLBCL cases and 4243 controls) of Japanese pop-
ulation, identified risk for a variant within intron 3 of CDC42BPB (OR = 3.5;
95% CI = 2.13–5.88; p = 3.30 × 10-7), a gene with cell migration and cytoskeletal
reorganization functions, a variant on LNX2 (OR = 1.43; 95% CI = 1.23–1.67;
p = 6.57 × 10-6), which indirectly mediates the NOTCH signaling and variant on
POU6F2 (OR = 1.57; 95% CI = 1.32–1.88; p = 7.05 × 10-7), a transcriptional
regulator (Kumar et al., 2011). In addition to PVT1, other overlapping risk vari-
ants for DLBCL and MS were rs1270942 (RDBP), rs3130557 (PSORS1C1 ), and
rs2425752 (NCOA5 ) (Din et al., 2019).

Another GWAS approach, using 491 DLBCL WGS data (31% discovery cohort;
69% validation cohort) and 1000 control WGS data, found NF-κβ pathway activa-
tion by 3’ cis-regulatory mutations on NFKBIZ but only on ABC DLBCL subtype
which was later correlated with increasing expression on different DLBCL cell lines
when compared to the non-mutated ones. GCB subtype, on the other hand, was
associated with poor overall survival for FCGR2B over expressing patients (HR =
2.18; p = 5.7 × 10-3) (Arthur et al., 2018). Furthermore, though it has not been
fully explored, some studies have shown that the presence of activation-induced cy-
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tidine deaminase (AICDA) targeting motifs (WRC/GYW) within different point
mutations, for example provoking induced translocations of PD-L1/PD-L2 with
PIM1, TP63 and IGH or changes on the general mutational signatures across ger-
minal center subtypes (Arthur et al., 2018; Georgiou et al., 2016; Muramatsu et
al., 2000).

GWAS studies with survival data provided some evidence to finding potential
prognostic or therapeutic targets in DLBCL, for example, a two-stage French study
comprising four different cohorts in European population led to the discovery of
two non-coding variants. The first one was rs7712513 at 5q23.2 (near SNX2 and
SNCAIP). The second one was rs7765004 at 6q21 (near MARCKS and HDAC2 )
that reached genome-wide significance for overall-survival association but not for
progression free survival (PFS; Table 5.2). SNX2 expression is reduced in human
colorectal carcinoma and has been identified as a fusion partner of ABL1 in B-
cell acute lymphoblastic leukemia; meanwhile, SNCAIP has been only reported in
medulloblastoma studies. On the other hand, MARCKS has been widely studied
for its role in invasion, proliferation, and drug resistance within different types
of cancers (Duclos et al., 2017; Fong, Yang, & Chen, 2017; Ghesquieres et al.,
2015; Y. Li et al., 2018). Another study using data recovered from the Genome
Expression Omnibus (GEO) from 1804 DLBCL patients and performed a guilt-
by-association analysis of only the 500 top-ranked CD20-associated gene probes.
This study found WEE1, a replication checkpoint kinase that arrests cells at the
G2/M checkpoint to give time for DNA repair, and PARP1, a repairing protein
involved in high genomic instability and NF-κβ activation, as potential candidates
for DLBCL treatments. They further evaluated these targets using inhibiting
drugs (AZD1775 for WEE1 and olaparib for PARP1) on different cell lines finding
increased cytotoxic effects. Furthermore, a later study from the same group led to
the discovery that combined WEE1 and anti-apoptotic protein inhibition enhances
premature mitotic entry and DNA damage which may benefit genomic unstable
DLBCL cells (Carrassa, Colombo, Damia, & Bertoni, 2020; Mathilde R. W. de
Jong et al., 2018). Moreover, there are over 20 clinical trials exploring adavosertib,
the most potent and selective WEE1 inhibitor, as a single agent or in combination
for different indications (clinicaltrials.gov, October 2020).

FL

Follicular lymphoma is an indolent B-cell malignancy with higher five-year survival
than DLBCL, though a subset of tumors can transform into more aggressive forms
of lymphomas. FL is characterized by variable clinical outcomes, multiple relapses,
and risk associations that includes family history of NHL (OR = 1.99; 95% CI =
1.55 to 2.54) and greater body mass index (OR = 1.15; 95% CI = 1.04 to 1.27
per 5 kg/m2 increase) (Baecklund et al., 2014; Linet et al., 2014; C. F. Skibola
et al., 2012). Two different three-stage GWAS studies in European populations,
found that variant rs10484561 is associated with FL risk (OR1 = 1.95; OR2 =
1.64; 95% CI1 = 1.72–2.22; 95% CI2 = 1.45–1.86; p < 1×10-8) which, in addition,
was later found to be implicated in DLBCL risk and in complete linkage disequi-
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librium with the HLADRB1*01:01 DQA1*01:01 DQB1*05:01 haplotype (LD-r2 =
1.0). Additional HLA-DQB1 variants associated with FL risk were, rs7755224 and
rs2647012. The first one was in complete LD with variant rs10484561 suggesting
that the effect was related to this. The last one was found 962 base pairs away
from rs10484561. However, they were not in LD (r2 < 0.1) and the association
was protective and genome-wide significant after mutual adjustment (rs2647012-
OR = 0.70; 95% CI = 0.67–0.78; p = 4 × 10-12; rs10484561-OR = 1.64; 95% CI =
1.45–1.86; p = 5 × 10-15), suggesting a totally different evolutionary origin (Conde
et al., 2010; Karin E. Smedby et al., 2011). This last variant was later found on
additional studies in different populations (Caucasians and Chinese) at genome-
wide significance (James R. Cerhan et al., 2012; Qiao et al., 2013). Additional
protective variants, found in another study with 699 cases and 2222 controls, were
rs9275517 (OR = 0.63; 95% CI = 0.55–0.73; p = 4.03 × 10-11) and rs3117222 (OR
= 0.66; 95% CI = 0.57–0.77; p = 1.45×10-7); furthermore, the second variant was
correlated with higher HLA-DPB1 expression in lymphoblastoid cell lines by using
mRNA expression from MuTHER and Gen Cord datasets (Christine F. Skibola et
al., 2012). In 2014, Skibola et al. identified two variants within the HLA-II class
to be significantly associated with increased FL risk (rs12195582-OR = 1.78; 95%
CI = 1.68–1.88; p = 5.36 × 10-100; rs17203612-OR = 1.43; 95% CI = 1.32–1.57; p
= 4.59 × 10-16) (Christine F. Skibola et al., 2014). In addition to pleiotropy with
DLBCL, HLA variants associated at genome-wide significance with FL has also
been found for SLE, specifically two variants at HLA-DOB allele (rs1894406 and
rs2071475) and one at HLA-DRB1 allele (rs9271775) (Din et al., 2019). In respect
to homozygosity, HLA-DRB1 and HLA-DRQ1 alleles were found to be associated
with increased FL risk (S. S. Wang et al., 2018).

A two-stage study with 238 FL cases and 1233 controls from United States
found a variant in TAP2 gene (rs241447) to be associated with increase FL risk
(OR = 1.82; 95% CI = 1.46–2.26; p = 6.9 × 10-8) but also with DLBCL (189
cases) risk, though DLBCL being not at genome-wide significance. TAP2 is part
of the multidrug resistance protein (MRP)/TAP subfamily of ATP-binding cas-
sette transporter, having an essential role for HLA class I protein loading on the cell
surface and it is said that down-regulation or loss of function allows tumors to es-
cape immune recognition (James R. Cerhan et al., 2012). One variant (rs6457327)
near the psoriasis susceptibility locus (PSORS1 ) was found to be significantly as-
sociated to higher FL risk (OR = 1.69; 5% CI = 1.43–2.00; p = 4.7×10-11) among
Europeans (Christine F. Skibola et al., 2009). Skibola et al. recompiled informa-
tion from 22 studies (4523 cases and 13,344 controls) from European populations
and found five significant associated loci: rs6444305 (OR = 1.21; 95% CI = 1.14–
1.28; p = 1.10 × 10-10) located in LPP which encodes a LIM domain containing
protein that has cell adhesion, migration and proliferation roles and also found
836.4 kb upstream of BCL6 ; rs13254990 (OR = 1.18; 95% CI = 1.11–1.24; p =
1.06 × 10-8) located intronic to PVT1, a frequent translocation site in aggressive
B-cell lymphomas; rs4938573 (OR = 1.34; 95% CI = 1.26–1.46; p = 5.79 × 10-20)
located 12.6 kb upstream CXCR5, involved in B-cell migration; rs4937362 (OR
= 1.19; 95% CI = 1.13–1.25; p = 6.76 × 10-11) located near ETS1, a transcrip-
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tion factor for B-cell differentiation; rs17749561 (OR = 1.34; 95% CI = 1.22–1.47;
p = 8.28 × 10-10) located near BCL2, an anti-apoptotic oncogene. Furthermore,
another interesting, though not genome-wide significant, rs2681416 variant (near
CD86 ) showed increased risk of FL (Christine F. Skibola et al., 2014). A Chinese
study evaluating 792 cases and 1542 controls used additive genetic models adjusted
with the false-positive rate probability to evaluate GWAS significance. This study
found a variant on IRF4 (rs872071), a crucial gene for B-cell development, to be
associated with increased FL risk (Qiao et al., 2013). Moreover, this variant was
found to be also associated with CLL risk in two additional European population
studies (Crowther-Swanepoel, Broderick, et al., 2010; Di Bernardo et al., 2008).
Additionally, five more variants (CFB, MSH5, TNXB, LOC649925, and UBE2L3 )
on chromosome 6 were associated with FL and SLE risk (Din et al., 2019).

ABC transporter variants associated with FL with worse PFS are ABCA10
and ABCA6 (rs10491178; HR = 3.17; 95% CI = 2.09–4.79; p = 5.24 × 10-8)which
is in high LD (r2 > 0.8) with another variant within the binding site of a tran-
scription factor, PAX5, that has been correlated with aggressive subsets of B-cell
NHL. These results were found among Europeans along with a variant on CD46
(rs2466571; HR = 0.73; 95% CI = 0.58–0.91; p = 6 × 10-3), IL8 (rs4073; HR =
0.78; 95% CI = 0.62–0.97; p = 0.02), and MTHFR (rs1801131; HR = 0.59; 95%
CI = 0.45–0.77; p = 1 × 10-4), albeit positively associated with event-free survival
after adjusting for age, sex and population stratification (Baecklund et al., 2014).

CLL

Another indolent lymphoma is CLL since the five-year survival rate is ~85% and
it is characterized by a very rare incidence among Asian descendants compared
to Caucasians and nearly double in males compared to females. Risk factors with
CLL were previously identified to be family history of NHL (OR = 1.92; 95% CI =
1.42 to 2.61), hepatitis C virus infection (OR = 2.08; 95% CI = 1.23 to 3.49), and
height (OR = 1.08, 95% CI = 1.00–1.17, p = 0.049) showing a slightly stronger
trend among women (OR = 1.15, 95% CI: 1.01–1.31, p = 0.036). Conversely,
immune function through allergy had a protective effect (OR = 0.87; 95% CI
= 0.77 to 0.98) (Moore et al., 2020; S. L. Slager et al., 2014). Additionally,
an analysis of 13 cancer types including 49,492 cancer case patients and 34,131
control patients found that individuals with a high risk score for CLL were at an
increased relative risk of DLBCL (RR = 1.12, 95% CI = 1.07 to 1.16) (Sampson
et al., 2015). HLA associations to CLL were mainly reported for the expanded
haplotype DRB4*01:01 DRB1*07:01 DQB1*03:03 in Caucasians (OR = 1.49; p
= 1.79 × 10-7), African Americans (OR = 28.03; p = 2 × 10-16), and Hispanics
(OR = 13.86; p = 9.59 × 10-9) and HLA-DRB4*0103 in a German study (RR
= 2.74; p = 0.0025) (Gragert et al., 2014; Machulla et al., 2001). Other study
from Caucasian population, found five variants from which two were associated
with increase disease risk at genome-wide significance, one located near HLA-
DRB5 (rs674317) and the other near HLA-DQA1 (rs9272535) (Susan L. Slager
et al., 2011). On the other hand, so far there are no indicators of HLA zygosity
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associations with CLL risk (Mueller & Machulla, 2002; S. S. Wang et al., 2018).
Because there have been several studies accessing CLL risk outside the HLA

region, some variants have been validated across GWAS, for example variant
rs17483466 (2q13; ACOXL and BCL2L11 ; p1 = 2.36 × 10-10; p2 = 5 × 10-9;
p3 = 4 × 10-17), rs735665 (11q24.1; GRAMD1B; p1 = 3.78 × 10-12; p2 = 4 × 10-24)
and rs210142 (6p21.31; BAK1 ; p1 = 9.47 × 10-16; p2 = 2.28 × 10-16) (Sonja I.
Berndt et al., 2013; Di Bernardo et al., 2008; Susan L. Slager et al., 2012; Speedy
et al., 2014). Some biologically interesting variants include one encoding a protein
involved in the signal transduction downstream of Ras, PCEF1, which happens to
reside within a strong enhancer element (rs2236256; OR = 1.23; p = 1.5 × 10-10);
a telomer protecting protein, POT1 (rs17246404; OR = 1.22; p = 3.40 × 10-8)
(Speedy et al., 2014); a member of the tumor necrosis factor which is essential
for the signaling cascade in apoptosis, ACTA2/FAS (rs4406737; OR = 1.27; p =
1.22 × 10-14); a lymphocyte’s apoptosis blocker, BCL2 (rs4987855; OR = 1.47; p
= 2.66 × 10-12) (Sonja I. Berndt et al., 2013); a member of the T-box gene fam-
ily that regulates CD8+ T-cell differentiation and immunity, EOMES (rs9880772;
p1 = 3×10-11; p2 = ×10-9; p3 = 2×10-9), which is also critical during Fas deficiency
for lymphoproliferation (Sonja I. Berndt et al., 2016; Law, Berndt, et al., 2017;
Law, Sud, et al., 2017); a B-cell specific scaffold protein involved in B-cell antigen
receptors, BANK1 (rs71597109; OR = 1.17; p = 1.37 × 10-10); a master regulator
of lymphocyte fate (B-cell vs T-cell) which is also involved in NOTCH pathway
activation, ZBTB7A (rs7254272; OR = 1.17; p = 4.67 × 10-8) (Law, Berndt, et
al., 2017) and a regulator of the PI3K/Akt pathway, NCK1 (rs11715604; p =
1.97 × 10-8) (Law, Sud, et al., 2017).

Other implicated loci by GWAS include: 2q33.1 (rs3769825; CASP10/CASP8 ;
p = 2.5 × 10-9), 2q37.1 (rs13397985; SP140 ; p = 5.40 × 10-10), 2q37.3 (rs757978;
FARP2 ; OR = 1.39; p = 2.11 × 10-9), 3q25.2 (rs10936599; MYNN ; p = 1.74 ×
10-9), 4q25 (rs898518; LEF1 ; p = 4.24 × 10-10), 4q26 (rs6858698; CAMK2D; p =
3.07 × 10-9), 6p25.3 (rs872071 and rs9378805; IRF4 ; p = 1.91 × 10-20), 8q24.21
(rs2456449; p = 7.84 × 10-10), 11q24.1 (rs735665; GRAMD1B; p = 3.78 × 10-12),
12q24.13 (rs10735079; OAS3 ; p = 2.34 × 10-8), 15q23 (rs7176508; DRAIC ; p
= 8 × 10-18), 15q21.3 (rs7169431; IRF8 ; p = 4.74 × 10-7), 15q23 (rs7176508; p =
4.54×10-12), 16q24.1 (rs305061; NEDD4 and RFX7 ; p = 3.60×10-7), and 19q13.32
(rs11083846; PRKD2 ; p = 3.96 × 10-9) (Sonja I. Berndt et al., 2016; Crowther-
Swanepoel, Mansouri, et al., 2010; Di Bernardo et al., 2008; Sava et al., 2015; Susan
L. Slager et al., 2012). Slager et al. found four additional IRF8 variants associated
to both decreased CLL risk and increased IRF8 expression (using lymphocytes
cell lines data) which is opposite to the previous finding by Crowther et al. one
year earlier (Crowther-Swanepoel, Broderick, et al., 2010; Susan L. Slager et al.,
2011). IRF4 and IRF8 are a strong finding due to its role as key regulator of B-
cell development, proliferation, and lymphogenesis; furthermore, associations for
variant (rs872071) were also found for FL (Crowther-Swanepoel, Broderick, et al.,
2010; Qiao et al., 2013).

In spite of these findings several CLL associated risk variants have been also
found for SLE, MS, and RA, only few have reached genome-wide significance; for
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example, a variant on gene BCL2 (rs4987855) which has anti-apoptotic activity
(Din et al., 2019).

MZL

Marginal zone lymphoma, which comprises 10% of NHL cases, originate from
marginal zone B cells present as three different types: extranodal MZL of mucosa-
associated lymphoid tissue (EMZL) and splenic MZL (SMZL) and nodal MZL
(NMZL) (Sonja I. Berndt et al., 2016; Susan L. Slager et al., 2012; Vijai et al.,
2014, 2015). Risk factors for MZL include autoimmune conditions (EMZL OR
= 6.40, 95% CI = 4.24–9.68; NMZL OR = 7.80, 95% CI = 3.32–18.33; SMZL
OR = 4.25, 95% CI = 1.49–12.14), hepatitis C virus seropositivity (EMZL OR
= 5.29, 95% CI = 2.48–11.28), self-reported peptic ulcers (EMZL OR = 1.83,
95% CI = 1.35–2.49), or family history NHL (NMZL OR = 2.82, 95% CI = 1.33–
5.98). On the contrary, triglycerides levels were found as protective factor (OR
= 0.90; 95% CI, 0.83–0.99) (Bracci et al., 2014; Kleinstern, Camp, et al., 2020;
Speedy et al., 2014). GWAS studies in MZL, which are less extensive. One study
comprised 1281 cases and 7127 controls of European ancestry in which a variant
in HLA-B allele (rs2922994; OR = 1.64; 95% CI = 1.39–1.92; p = 2.43 × 10-9) was
found to be associated with increased MZL risk taken together with a variant on
BTNL2 (rs9461741; OR = 2.24, 95% CI = 1.64–3.07; p = 3.95 × 10-15), a gene
involved lymphocyte activation and antigen presentation (Susan L. Slager et al.,
2012; Vijai et al., 2015). A second study assessing the role of HLA homozygosity in
MZL risk (increased for HLA-B, HLA-C, and HLA-DRB1). A third study assessed
the pleiotropy with SLE (RDBP, PSORS1C1, and HLA-DQA1 ) and RA (CDH8 )
(Din et al., 2019).

PCNSL

Recognized as mature post-germinal B cells (ABC subtype like), the central ner-
vous system (CNS) DLBCL represents only ≤ 1% of all lymphomas and approx-
imately 2% of all primary CNS tumors; furthermore, 95% of tumors have a com-
parative histology with systemic DLBCL (Sonja I. Berndt et al., 2016; Labreche
et al., 2019). Since the blood brain barrier impedes R-CHOP treatment, high
dose methotrexate (HD-MTX, >3 g/m2) based regimens are the gold standard
for PCNSL patients resulting in a five year survival rate of 30% and high risk of
clinical neurotoxicity specially in patients > 60 (Garcilazo-Reyes et al., 2020; Law,
Berndt, et al., 2017). Furthermore, PCNSL is less frequently associated with any
atopic disorder (OR = 0.54, 95% CI = 0.33 to 0.87), but it is strongly associ-
ated with a family history of NHL (OR = 4.11, 95% CI = 1.58 to 10.66) and less
clearly with lifetime cigarette exposure (OR = 1.51, 95% CI = 0.83 to 2.74, for
1–10 pack-years vs. nonsmoker) (J. R. Cerhan et al., 2014). The only study that
has reported associations between genetic variants and PCNSL risk, evaluated 475
cases and 1134 controls from French population. This study found one variant at
loci 6p25.3 (rs116446171; EXOC2 ; p = 1.95×10-13) previously found to be associ-
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ated with DLBCL risk, other at loci 3p22.1 (rs41289586, ANO10, p = 2.17 × 10-8)
and one strongly associated at HLA allele (rs2395192; between HLA-DRA and
HLA-DRB5; p = 1.81 × 10-7). ANO10 is a calcium-activated chloride channel
transmembrane protein that might be involved in the innate immune defense and
indirect activation of the Ras/Raf/MEK/ERK signaling pathway which affects cell
proliferation (Sonja I. Berndt et al., 2016; Labreche et al., 2019; Law, Sud, et al.,
2017; C. Yu et al., 2020).

5.1.4 Conclusions
Initially data suggested increased risk of any DLBCL, FL, CLL, MZL, or PCNSL if
family history of NHL was present, though specific genetic attributions for specific
risk or prognosis had been lacking (Bracci et al., 2014; J. R. Cerhan et al., 2014;
Linet et al., 2014; S. L. Slager et al., 2014). The decreasing cost and bioinformatics
limitations for NGS and GWAS have augmented the ability to detect the genetic
risk for NHL etiologies, pleiotropy with other diseases and, more importantly,
clinical applications. Despite that many HLA alleles have been found to be not
only associated to specific lymphoma subtypes but also within subtypes (DLBCL
and FL) or with autoimmune diseases (MS, SLE, or RA), today they remain just
informative for prognosis since no clinical use has been made (Din et al., 2019;
Mills & Rahal, 2019; Zhong, Cozen, Bolanos, Song, & Wang, 2019). Peptide
diversity reduction can increase tumoral escape from immune surveillance, which
can be partially a consequence of HLA homozygosity, which was found to be a
risk factor for most of the reviewed lymphomas (Mueller & Machulla, 2002; S. S.
Wang et al., 2018).

On the other hand, GWAS findings outside HLA loci have led to the discovery
of B-cell NHLs shared genetic risk with autoimmune diseases leading to finding
of genes involved in cell cycle, apoptosis and telomere length, though studies are
limited and total risk is still modest at genome wide-significance.

Taken together that hepatitis seropositivity is associated with DLBCL, CLL
and MZL risk and that AICDA promiscuous off-target activity, highly present in
lymphomas and induced by viral infection, can provoke important alterations (ex-
ample translocations of PD-L1/PD-L2 with PIM1, TP63, and IGH loci). Further
efforts should be made to find correlations between these variables (Casellas et
al., 2016; Georgiou et al., 2016; Kasar et al., 2015; Kohli et al., 2010). Future ef-
forts should also be directed to extend studies among non-Caucasian populations,
in order to clarify differences in susceptibility variants, and among B-cell NHLs
subtypes since most studies have focused on DLBCL. Furthermore, there is an un-
met need to translate theoretical information into clinical practice which has been
done, for example, with the use of adavosertib, an WEE1 inhibitor, to increase
response in DLBCL patients. In line with this, the incorporation of single-cell
sequencing technology can help identify B-cell stages (dark/light zone) and cell
cycle phases to further amplify the possibilities for therapy options (Holmes et al.,
2020; Mathilde R. W. de Jong et al., 2018; Mathilde Rikje Willemijn de Jong et
al., 2019).
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Figure 5.1: Schematic map of the human leukocyte antigen (HLA)
genomic region showing the distribution of HLA genes along with
the summarized mechanism of antigen presentation.



Table 5.1: Risk associations summary for diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic
lymphocytic leukemia (CLL), marginal zone lymphoma (MZL) and primary central nervous system lymphoma (PCNSL)
with different loci identified by genome-wide association studies (GWAS).

Study Year Race / ethnicity # cases/ #controls SNP/alteration Chr Gene(s) OR (95% CI) p-value Reference
DLBCL risk 2009 European 783/3,377 rs6457327 6p21.33 PSORS1* 1.69 (1.43-2.00) 7.0x 10-5 [Skibola 2014]

2011 European 1,592/6,581 rs10484561 6p21.32 HLA-DQB1 1.36 (1.21-1.52) 1.4x10-7 [Smedby 2011]
2011 Asian 399/4,243 rs751837 14q32 CDC42BPB 3.5 (2.127–5.88) 3.3x10-7 [Kumar 2011]

rs7097 13q12 LNX2 1.437 (1.23–1.67 6.5x 10-6

rs4551233 7 POU6F2 1.57 (1.32-1.88) 7.05x 10-7

rs4443228 4 -- 2.43 (1.70-3.45) 7.03 x 10-7

2013 Asian 1,328/6,930 rs6773854 3q27 BCL6*, LPP* 1.47 (1.32-1.65) 1.14 x 10-11 [Law 2017, Tan 2013]
2014 European 3,857/7,666 rs2523607 6p21.33 HLA-B 1.32 (1.21–1.44) 2.40x 10-10 [Cerhan 2014]

rs116446171 6p25.3 EXOC2* 2.20 (1.87–2.59) 2.33x10-21

rs79480871 2p23.3 NCOA1 1.34 (1.21–1.49) 4.23x10-8

rs13255292 8q24.21 PVT1 1.22 (1.15–1.29) 9.98x 10-13

rs4733601 1.18 (1.11–1.25) 3.63x 10-11

rs79464052 5q31.3 ARAP3 1.34 (1.21-1.49) 5.57x 10-8

rs2681416 3q13.33 CD86 1.16 (1.10-1.23) 8.17x 10-8

2015 Asian 1,124/3,596 rs116446171 6p25.3 EXOC2* 2.04 (1.63–2.56) 3.9x10-10 [Bassig 2015]
rs13255292 8q24.21 PVT1 1.34 (1.19–1.52) 2.1x10-6

rs2523607 6p21.33 HLA-B 3.05 (1.32–7.05 9x 10-3

2018 European 3,617/8,753 Homozygosity 6p21.33 HLA-B, HLA-C 1.31 (1.06-1.60) 8x 10-4 [Wang 2018]
Homozygosity HLA-DRB1 2.10 (1.24-3.55) 1x 10-4

2019 European 5,662/9,237 rs9831894 3q13.33 CD86*, ILDR1* 0.83 3.62x 10-13 [Kleinstern 2019]
5,510/12,817 rs6773363 3p24.1 EOMES*, AZI2* 1.20 2.31x 10-12

DLBCL-SLE 2017 European 3,857/7,666 rs4810485 20q13 CD40 1.09 (1.02-1.16) 0.013 [Bernatsky 2017]
rs1270942 6p21.33 HLA 1.17 (1.01-1.36) 0.036

2019 European 3,617/46,436 rs1270942 6 RDBP NA 5x 10-8 [Din 2019]
rs3130557 6 PSORS1C1 NA
rs4733601 8 PVT1 NA

DLBCL-MS rs2425752 20 NCOA5 0.91 3.4x10-2

FL-risk 2009 European 645/3,377 rs6457327 6p21.33 PSORS1* 1.69 (1.43-2.00) 4.7x 10-11 [Skibola 2014]
2010 European 1,465/6,958 rs10484561 6p21.32 HLA-DQB1 1.95 (1.72-2.22) 1.12x 10-29 [Conde 2010]

rs7755224 6p21.32 2.07 (1.76-2.42) 2.0x10-19

2011 European 1,428/ 6,761 rs10484561 6p21.32 HLA-DQB1 1.64 (1.45-1.86) 5x 10-15 [Smedby 2011]
rs2647012 6p21.32 0.70 (0.67-0.78) 4x 10-12

2012 Caucasians 699/2,222 rs9275517 6p21.32 HLA-DRB1* 0.63 (0.55-0.73) 4.0x 10-11 [Skibola 2012]
rs3117222 HLA-DPB1* 0.66 (0.57-0.77) 1.45x 10-7

2013 Caucasians 238/1,233 rs2647012 6p21.32 HLA-DQB1 0.56 (0.45-0.69) 8.03x10-8 [Cerhan 2012]
rs241447 6p21.3 TAP2 1.82 (1.46-2.26) 6.9x10-8

Asian 792/1,542 rs2647012 6p21.32 HLA-DQB1 1.20 (1.03–1.39) 0.018 [Qiao 2013]
rs872071 6p25.3 IRF4 1.20 (1.05–1.38) 0.009

2014 European 4,523/13,344 rs12195582 6p21.32 HLA-DRB5 1.78 (1.68-1.88) 5.36x 10-100 [Skibola 2014]
rs17203612 6p21.32 HLA-DRB1 1.43 (1.32-1.57) 4.59x 10-16

rs4938573 11q23.3 CXCR5* 1.34 (1.26-1.43) 5.79x 10-20

rs4937362 11q24.3 ETS1* 1.19 (1.13-1.25) 6.76x 10-11

rs6444305 3q28 LPP 1.21 (1.14-1.28) 1x 10-10

rs17749561 18q21.33 BCL2* 1.34 (1.22-1.47) 8.28x 10-10

rs13254990 8q24.21 PVT1* 1.18 (1.11-1.24) 1.06 x 10-8

rs3751913 17q25.3 CYBC1 1.23 (1.14-1.33) 2.24x 10-7

rs2681416 3q13.33 CD86 1.16 (1.09-1.22) 2.33x 10-7

rs11082438 18q12.3 SLC14A2 1.33 (1.19-1.48) 4.01x 10-7

2018 European 2,686/8,753 Homozygosity 6p21.32 HLA-DRB1 1.54 (1.31-1.82) 1x10-4 [Wang 2018]
Homozygosity 6p21.32 HLA-DQB1 1.42 (1.23-1.65) 1x10-4

FL-DLBCL 2011 European 1,428/6,581 rs2647012 6p21.32 HLA-DQB1 1.36 1.4x10-7 [Conde 2010]
FL-SLE 2019 European 2,686/46,436 rs1015166 6 TAP2 NA 5x10-8 [Din 2019]

rs1894406 6 HLA-DOB NA
rs2071475 6 HLA-DOB NA
rs2072634 6 CFB NA
rs2293861 6 MSH5 NA
rs7774197 6 TNXB NA
rs9271775 6 HLA-DRB1 NA
rs4938573 11 LOC649925 NA
rs7444 22 UBE2L3 NA

CLL-risk 2001 European 101/157 --- 6 HLA-DRB4*0103 2.74 2.5x10-3 [Gragert 2014]
2008 European 1,529/3,115 rs17483466 2q13 ACOXL, BCL2L11 1.39 (1.25–1.53) 2.36×10-10 [Skibola 2009]

rs13397985 2q37.1 SP140*, SP110* 1.41 (1.26–1.57) 5.40x10-10

rs872071 6p25.3 IRF4 1.54 (1.41–1.69) 1.91x10-20

rs9378805 6p25.3 IRF4 1.51 (1.38–1.65) 4.62x10-19
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Table 5.1: Risk associations summary for diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), chronic
lymphocytic leukemia (CLL), marginal zone lymphoma (MZL) and primary central nervous system lymphoma (PCNSL)
with different loci identified by genome-wide association studies (GWAS).

rs735665 11q24.1 GRAMD1B 1.45 (1.31–1.61) 3.78x10-12

rs7176508 15q23 --- 1.37 (1.26–1.50) 4.54x10-12

rs11083846 19q13.32 PRKD2 1.35 (1.22–1.49) 3.96x10-9

2010 European 824/850 rs872071 6p25.3 IRF4 1.42 (1.23-1.63) 9.96x10-7 [Di Bernardo 2008]
rs735665 11q24.1 GRAMD1B 1.59 (1.34–1.88) 1.23x10-7

2010 2,503/5,789 rs757978 2q37.3 FARP2 1.39 2.11 x 10-9 [Slager 2011]
rs2456449 8q24.21 --- 1.26 7.84 x 10-10

rs7169431 15q21.3 IRF8* 1.36 4.74 x 10-7

rs305061 16q24.1 NEDD4*,
RFX7*

1.22 3.60 x
10-7

2011 Caucasians 690/1,295 rs305077 16q24.1 IRF8 0.66 (0.57-0.77) 3.37 x
10-8

[Slager 2011]

rs391525 0.64 (0.55-0.74) 3.16 x
10-9

rs2292982 0.65 (0.56-0.75) 6.48 x
10-9

rs2292980 0.66 (0.56-0.76) 1.89x
10-8

rs615672 6p21.3 HLA-DRB5 1.42 (1.22-1.67) 1.29x 10-5

rs674313 1.69 (1.41-2.01) 6.92x 10-9

rs502771 1.61 (1.36-1.91) 5.58x 10-8

rs9272219 HLA-DQA1 1.59 (1.34-1.90) 1.84x 10-7

rs9272535 1.61 (1.35-1.92) 9.31x 10-8

2012 European/American 1,982/5,778 rs210142 6p21.33 BAK1 1.40 (1.25-1.57) 9.47x 10-16 [Slager 2012]
2012 European/American 1,196/2,410 rs210142 6p21.33 BAK1 0.73 (0.68-0.79) 2.28x 10-16 [Slager, Camp, 2012]
2013 European 3,100/7,667 rs4406737 10q23.31 ACTA2*, FAS* 1.27 (1.19–1.33) 1.22x 10-14 [Berndt 2013]

rs4987855 18q21.33 BCL2 1.47 (1.32–1.61) 2.66x 10-12

rs4987852 1.41 (1.27–1.56) 7.76x 10-11

rs7944004 11p15.5 C11orf21,*
TSPAN32* 1.20 (1.13–1.27) 2.15x 10-10

rs898518 4q25 LEF1 1.20 (1.14–1.27) 4.24x 10-10

rs3769825 2q33.1 CASP10, CASP8 1.19 (1.12–1.25) 2.50x 10-9

rs1679013 9p21.3 CDKN2B-AS1 1.19 (1.12–1.27) 1.27x 10-8

rs4368253 18q21.32 PMAIP1 1.19 (1.12–1.27) 2.51x 10-8

rs8024033 15q15.1 BMF 1.22 (1.15–1.30) 2.71x 10-10

rs3770745 2p22.2 QPCT*, PRKD3* 1.24 (1.15–1.33) 1.68x 10-8

rs13401811 2q13 ACOXL*,
BCL2L11* 1.41 (1.30–1.52) 2.08x 10-18

2014 Europeans 3,748/8,574 rs10735079 12q24.13 OAS3 1.18 (1.12-1.26) 2.34x 10-8 [Sava 2014]
2014 Europeans 2,883/8,350 rs2236256 6q25.2 IPCEF1 1.23 (1.15-1.30) 1.5x 10-10 [Speedy 2014]

rs10936599 3q26.2 MYNN 1.26 (1.17-1.35) 1.74x 10-9

rs6858698 4q26 CAMK2D 1.31 (1.20-1.44) 3.07x 10-9

rs17246404 7q31.33 POT1 1.22 (1.14-1.31) 3.40x 10-8

rs1439287 2q13 ACOXL 1.37 5x 10-15

rs13397985 2q37.1 SP140 1.43 5x 10-13

rs872071 6p25.3 IRF4 1.39 3x 10-16

rs735665 11q24.1 GRAMD1B 1.64 4x 10-24

rs7176508 15q23 DRAIC 1.42 8x 10-18

rs1044873 16.q24.1 IRF8 1.29 1x 10-9

2014 Caucasian 3,616/50,000 --- 6 HLA-DRB4*01:01 1.49 1.79x 10-7 [Gragert 2014]
African-American 413/50,000 6 DRB1*07:01 28.03 2x10-16

Hispanic 97/50,000 6 DQB1*03:03 13.86 9.59x10-9

2016 Europeans 5,058/13,197 rs9880772 3p24.1 EOMES 1.19 (1.13–1.25) 2.5x 10-11 [Berndt 2016]
rs73718779 6p25.2 SERPINB6 1.26 (1.16–1.36) 1.97x 10-8

rs9815073 3q28 LPP 1.18 (1.11–1.25) 3.26x 10-8

rs9308731 2q13 BCL2L11 1.19 (1.13–1.26) 1x 10-11

rs10028805 4q24 BANK1 1.16 (1.10–1.22) 7.19x 10-8

rs1274963 3p22.2 CSRNP1 1.18 (1.11–1.25) 2.12x 10-7

2017 Europeans 6,200/17,598 rs34676223 1p36.11 MDS2 1.19 (1.14-1.25) 5.04x 10-13 [Law 2017]
rs41271473 1q42.13 RHOU 1.19 (1.13-1.26) 1.06x 10-10

rs71597109 4q24 BANK1 1.17 (1.11-1.22) 1.37x 10-10

rs57214277 4q35.1 MYL12BP2*,
LINC02363* 1.13 (1.08-1.18) 3.69x 10-8

rs3800461 6p21.31 ILRUN 1.20 (1.13-1.28) 1.97x 10-8

rs61904987 11q23.2 TMPRSS5*, DRD2* 1.24 (1.16-1.32) 2.46x 10-11

rs1036935 18q21.1 AC105227.1*,
AC105227.2* 1.15 (1.10-1.21) 3.27x 10-8
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rs7254272 19p13.3 ZBTB7A*, MAP2K2* 1.17 (1.10-1.23) 4.67x 10-8

rs140522 22q13.33 ODF3B 1.15 (1.10-1.20) 2.7x 10-9

2017 Europeans 1,842/7,324 rs11715604 3q22 NCK1 NA 1.97x 10-8 [Law 2017]
rs131821 22q13.33 NCAPH2 NA 7.49x 10-8

CLL-SLE 2019 European 2,492/46,436 rs10028805 4 BANK1 NA 5x10-8 [Din 2019]
rs1270942 6 RDBP NA
rs17587 6 PSMB9 NA
rs3130557 6 PSORS1C1 NA
rs4987855 18 BCL2 NA
rs1439112 2 MGAT5 0.88 4.7x10-2

rs10936599 3 MYNN, ACTRT3,
TERC, LRRC34 0.86 2.7x10-2

rs1317082 3 1.5x10-2

rs13069553 3 1.07x10-2

rs7621631 3 1.8x10-2

rs10069690 5 TERT 1.16 3.06x10-2

CLL-MS rs140522 22 ODF3B 0.90 4.32x10-4

rs6793295 3 LRRC34 0.90 1.24x10-2

CLL-RA rs3731714 2 CASP10, PPIL3,
CFLAR 0.87 4.69x10-2

MZL-risk 2015 European 1,281/7,127 rs2922994 6p21.32 HLA-B 1.64 (1.39-1.92) 2.43x10-9 [Mueller 2002]
rs9461741 6p21.32 BTNLA 2.24 (1.64-3.07) 3.95×10-15

2018 European 741/8,753 Homozygosity 6p21.33 HLA-B 1.34 (1.01-1.78) 0.012 [Wang 2018]
Homozygosity 6p21.33 HLA-C 1.33 (1.04-1.70)
Homozygosity 6p21.33 HLA-DRB1 1.45 (1.05-1.91)

MZL-SLE 2019 European 741/46,436 rs1270942 6 RDBP NA 5x10-8 [Din 2019]
rs3130557 6 PSORS1C1 NA
rs532098 6 HLA-DQA1 NA

MZL-RA rs16947122 12 FBXW8, HRK, TESC 1.86 3.35x10-2

rs1364229 16 CDH8 1.35 1.10x10-3

rs7192064 16 CDH8 0.76 4.36x10-2

rs2131402 16 CDH8 0.75 1.01x10-2

PCNSL-risk 2013 European 475/1,134 rs41289586 3p22.1 ANO10 3.82 (2.39-6.09) 2.17×10-8 [Speedy 2014]
rs116446171 6p25.3 EXOC2* 4.99 (3.26-7.65) 1.95x10-13

rs2395192 6p21 HLA-DRA*,
HLA-DRB5* 1.51 (1.29-1.76) 1.81×10-7

* Closest related gene; SLE: lupus erythematosus; MS: multiple sclerosis; RA: rheumatoid arthritis; NA: not available.
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Table 5.2: Associations of different loci by GWAS with survival for DLBCL and FL

Study Year Race / ethnicity # cases SNP/alteration Chr Gene(s) HR (95% CI) p-value Outcome Reference
DLBCL 2015 European 1,537 rs7712513 5q23.2 SNX2*, SNCAIP* 1.49 (1.29-1.72) 3.53x10-8 ↓ OS [Ghesquieres 2015]

1.39 (1.23-1.57) 2.08x10-7 ↓ PFS
rs7765004 6q21 MARCK*, HDACS2* 1.47 (1.27-1.71) 5.36x10-7 ↓ OS

1.38 (1.22-1.57) 7.09x10-7 ↓ PFS
2018 European 210 --- 1q23.3 FCGR2B 2.18 5.7x10-3 ↓ OS [Arthur 2018]

FL 2014 European 586 rs10491178 17q24 ABCA10*, ABCA6* 3.17 (2.09-4.79) 5.24 ×10-8 ↓ PFS [Baecklund 2014]
rs2466571 1q32.2 CD46 0.73 (0.58-0.91) 6x10-3 ↑ EFS
rs4073 4q13.3 IL8 0.78 ( 0.62-0.97) 0.02 ↑ EFS
rs1801131 1p36.22 MTHFR 0.59 ( 0.45-0.77) 1x10-4 ↑ EFS

* Closest related gene; OS: overall survival; PFS: progression free survival; ↓: inferior; EFS: event free survival; ↑: superior
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In Brief
A combined bulk and single cell multi-omic analysis of over 50,000 patients

and 2.5 million cells across 80 tumor types reveals oncogenic acquired AICDA
expression inducing composite mutations and clonal immunogenic neoepitopes that
are associated with favorable outcome in patients treated by immune-checkpoint
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Highlights
• Pan-cancer analysis of AID mutations using > 50,000 samples, 2,000 ICI

treated cases and 2.5 million cells with genome, exome and transcriptome
data

• Oncogenic transient AICDA expression induces mutations mainly during
transcription of its off-target genes in virtually all cancers

• AID is implicated in composite mutations on weakly functional alleles and
immunogenic clonal neoepitopes at hotspots with greater positive selection

• AID mutational load predicts response and is associated with favorable out-
come in ICI treated patients
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Abstract
Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic

hypermutation and class-switch recombination in immunoglobulins. In addition,
this deaminase belonging to the APOBEC family may have off-target effects
genome-wide, but its effects at pan-cancer level are not well elucidated. Here, we
used different pan-cancer datasets, totaling more than 50,000 samples analyzed by
whole-genome, whole-exome or targeted sequencing. AID synergizes initial hotspot
mutations by a second composite mutation. Analysis of 2.5 million cells, normal
and oncogenic, revealed AICDA expression activation after oncogenic transforma-
tion and cell cycle regulation loss. AID mutational load was found to be indepen-
dently associated with a favorable outcome in immune-checkpoint inhibitors (ICI)
treated patients across cancers after analyzing 2,000 samples. Finally, we found
that AID-related neoepitopes, resulting from mutations at more frequent hotspots
if compared to other mutational signatures, enhance CXCL13/CCR5 expression,
immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.

Keywords: AICDA; AID; pan-cancer; single-cell; composite mutations;
clonal; immunotherapy; immune-checkpoint inhibitors; neoepitopes.
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5.2.1 Introduction

Naive B-cells enter the germinal centers (GC) of secondary lymphoid organs
after being activated by a cognate antigen, where they induce the production
of Activation-induced cytidine deaminase (AICDA), especially during the G2-M
phases of the cell cycle (Figure 5.2A, I).

AID (encoded by AICDA) is involved in the diversification of the variable (V)
or switch domains of immunoglobulin (IG) genes during the G1-S phases of the
cell cycle. It is responsible for somatic hypermutation (SHM) in the dark zone
of the GC and class switch recombination (CSR) in the light zone (Figure 5.2A,
II) (Honjo, Kinoshita, & Muramatsu, 2002; Honjo, Muramatsu, & Fagarasan,
2004; Q. Wang et al., 2017). AID deamination of cytosine to uracil also oc-
curs during IG gene transcription and inside particular DNA patterns (Figure
5.2A, III) (Branton et al., 2020). Mutations can arise as A->C at WA motifs
(W = A/T ) when resolved by the error-prone DNA polymerase-η, which has been
defined as non-canonical AID (COSMIC signature 9), or as C->T/G at WRCY
motifs (R = purine; Y = pyrimidine) when resolved by base excision repair (BER)
or mismatch repair (MMR) pathways, which has been defined as canonical-AID
(c-AID, Figure 5.2A, III) (Delgado et al., 2020). Although the single-base substi-
tution (SBS) COSMIC somatic signatures SBS84 and SBS85 (v3.2) have recently
been linked to c-AID activity, they were discovered in a trinucleotide context
(specifically at RCY motifs), which does not always correspond to the observed
tetranucleotide context in which c-AID acts (WRCY motifs) (Australian Pancre-
atic Cancer Genome Initiative et al., 2013; Kasar et al., 2015; PCAWG Muta-
tional Signatures Working Group et al., 2020). Furthermore, AID belongs to the
same enzyme family as APOBEC3A and APOBEC3B, which are known to be
a source of somatic mutations in a variety of malignancies and are designated
by the SBS2 and SBS13 signatures according to Alexandrov, but unlike c-AID,
act in trinucleotide context (TCW motifs) (Australian Pancreatic Cancer Genome
Initiative et al., 2013; Roberts et al., 2013; Swanton, McGranahan, Starrett, &
Harris, 2015). Off-target AID activity has also been reported in lymphomas and
other hematological cancers (Pasqualucci et al., 2008; Rustad et al., 2020), but
only in a few solid tumors (Komori et al., 2008; Sapoznik et al., 2016; Sawai et
al., 2015; Shimizu et al., 2014). Despite this, no detailed characterization of the
involvement of AID-related mutations at the pan-cancer level, as well as their po-
tential mutational and clinical implications, has been performed. To test this, we
analyzed 18 tumor types spanning 41 research, as well as three studies covering
the human and mouse of normal cells, all at single-cell resolution, to show that
AICDA expression is acquired during malignant transformation (Han et al., 2018,
2020; Zheng et al., 2017). The c-AID mutations were then characterized across 49
thousand tumoral samples (9 human cohorts and 3 non-human cohorts, see STAR



94 Chapter 5. Results

methods), revealing that: i) they are found at a frequency of 5.2% (5.1-5.3%) in
virtually all cancers (human and non-human); ii) they show stronger activity at
transcriptionally active domains; and iii) they synergize initial hotspot mutations
by a second composite mutation.

Additionally, since the APOBEC mutational signature (SBS2 and SBS13) has
been proposed as a biomarker for ICI response in some cancers (Litchfield et al.,
2021; S. Wang, Jia, He, & Liu, 2018), we used more than 2.000 ICI-treated samples
(Miao et al., 2018; Pender et al., 2021; Samstein et al., 2019), finding AID-related
fraction of mutations as an independent prognostic value to ICI after adjusting by
TMB and APOBEC signature.

Overall, we used more than 50.000 samples covering more than 80 tumor types
at the bulk level and close to 2.5 million cells at single-cell resolution to thoroughly
describe the landscape of AID-related mutations (see Figure 5.2, Figure 5.3A, and
Supplementary Tables 1-2).

5.2.2 Results
AICDA expression is activated under oncogenic conditions, according
to scRNA studies

The first step we took was to improve the characterization of AICDA expres-
sion across normal tissues and cells by analyzing scRNA-seq data from ~ 600, 68,
and 350 thousand cells from the human cell landscape (HCL), peripheral blood
mononuclear cells (PBMCs), and the mouse cell atlas (MCA), respectively (Han
et al., 2018, 2020; Zheng et al., 2017). AICDA expression was observed primarily
in adult epityphlon and adult pleura (Supplementary Figure 1A) in human sam-
ples and adult small intestine, ovary, pleura, and spleen in mouse samples when
examined by tissue (Supplementary Figure 1B).

The expression was significantly stronger in adult stages than in fetal or em-
bryonic stages (Supplementary Figure 1C). Using the cell type annotation, in the
HCL, we observed the highest expression in B-cells followed by fibroblasts (Sup-
plementary Figure 1A). Further analysis of only PBMCs led to the finding that
AICDA is also expressed in CD8 T-cells and induced regulatory T-cells, but at
lower levels than that of B-cells (Figure 5.2B) as expected. Interestingly, the ex-
pression of the BER gene UNG and the MMR genes MSH2/MSH6, involved in
downstream reparation of AID mutations, were expressed altogether with AICDA
only within B-cells, CD8 T-cells, and induced regulatory T-cells (Tregs).

The next steps were addressing whether or not AICDA is expressed under onco-
genic conditions, deciphering the cell subtypes’ contribution to AICDA expression,
and evaluating its regulation through the cell cycle. We gathered information from
41 oncogenic single-cell studies comprising around 1.5 million cells and 18 tumor
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types (see STAR Methods) and found that malignant cells express AICDA across
all but one tumor type basal cell carcinoma (BCC), being stronger within skin
cutaneous melanoma (SKCM), medulloblastoma (MB), non-small cell lung cancer
(NSCLC), non-small cell lung cancer (HNSC), and glioma. Furthermore, the ex-
pression was lost when tumoral cells were removed from the samples, and it was
not found in Tregs. Interestingly, AICDA is expressed by a fraction of immune
population cells, including B-cells and fatigued CD8 T-cells in SKCM, diffuse large
B cell lymphoma (DLBCL), and NSCLC, as well as monocytes/macrophages in
some SKCM and glioma studies, as well as fibroblasts and endothelial cells from the
stromal population (Figure 5.2C). Surprisingly, its expression was observed across
all cell cycle phases. However, it was slightly higher at G2/M; on the other hand,
BER and MMR related genes are markedly more expressed at the S phase, mean-
while, the expression of nonhomologous end joining (NHEJ) related genes (NHEJ1,
TP53BP1, or Trp53bp1 in mouse) remained practically unchanged. Additionally,
the expression was higher in SKCM, DLBCL and gliomas independently of treat-
ment (Figure 5.2D). Altogether, these results suggest that cells activate AICDA
expression after malignant transformation without cell cycle regulation and whose
levels vary upon tumor type.

Landscape of AID-related mutations at pan-cancer level

Given that AICDA is expressed in different cancer types, we next identified the
mutations induced by c-AID activity by tracking the C to G/T mutations within its
specific WRCY motifs. We discovered AID-related mutations in the great major-
ity of malignancies investigated while evaluating the PCAWG data (ICGC; 2,775
cancer patients and 35 cancer types) (Figure 5.3). Overall, AID-related mutations
were detected in 5.2% (5.1−5.3% at 95% confidence interval [CI]), while APOBEC
mutations (SBS2+SBS13) were found in 6.5% (6.4−6.7% at 95% CI; Figure 5.3B).
Using the TCGA, MSKCC cohorts, and various pediatric datasets, we observed
similar results at the pan-cancer level (Supplementary Figures 2-3). Conversely, as
expected, the frequency of AID-related mutations was slightly higher in hemato-
logical cancers at approximately 8% (Supplementary Figure 3D). Intriguingly, the
AID mutations were also identified in canine melanoma, glioma, and osteosarcoma
at a frequency of 6.0%, 4.7%, and 2.9%, respectively (Supplementary Figure 3E).
Moreover, to discard an association of our tetranucleotide-based c-AID mutations
(using ICGC cohort) with other COSMIC somatic signatures (v3.2) we computed
the cosine similarity scores and observed SBS84, SBS9, and SBS85 showing low
cosine scores of 0.497, 0.157, and 0.039, respectively. Next, we simulated each
sample’s mutations 1,000 times, while maintaining the mutational patterns at pen-
tanucleotide resolution (SBS-1536) and mutation load, to generate a distribution
of mutations and a null hypothesis about the number of c-AID related mutations
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generated by chance (globally and per tumor type). We observed a 2.69 (2.67−2.71
at 95% CI) enrichment of observed versus expected c-AID related mutations glob-
ally, and only 3/2727 samples having significantly more c-AID mutations by chance
(two-sided Fisher exact test; Supplementary Figure 4). These observations indi-
cate that it is very unlikely that the majority of the observed c-AID mutations are
the result of chance or an already reported mutational signature.

Concerning the genomic distribution of AID motifs in the normal genome, the
quantity is not different across chromosomes when adjusting the motifs’ number
by chromosome length (FDR corrected p-value Wilcoxon-test; Supplementary Fig-
ure 5A-B). Regarding AID-related mutations, in DLBCL most commonly affected
chromosomes involved the presence of either immunoglobulin related genes: IGH
(chr14), IGL (chr22), IGK (chr2), or genes already related with off-target AID
activity: PIM1, IRF4, HIST1H1C (chr6; Supplementary Figure 5C-F) (Lossos,
Levy, & Alizadeh, 2004). Globally speaking, for the majority of tumor types the
highest density of AID mutations were located in chromosome 5, in which GPR98
and DNAH5 were frequently affected, followed by chromosomes 17 and 2 (Supple-
mentary Figures 6-9).

Interestingly, within the driver genes context, hematological cancers (i.e. non-
Hodgkin’s lymphoma (Lymph-BNHL), DLBCL) and MB had the highest signature
contribution of AID provoked mutations. Furthermore, among the involved tar-
gets, TP53, in all cohorts; IDH1, in hematological cancers, GBM and LGG; and
PIK3 genes (TCGA and ICGC cohorts), were recurrently altered (Supplementary
Figure 10). These results were also confirmed using a selection intensity approach
of every somatic mutation within the ICGC dataset, showing a higher selection in-
tensity of PIK3CA, NFE2L2 but also in “minor” IDH1 mutations (i.e. not R132H)
and PTEN (Figure 5.3C).

AICDA expression and AID-related mutations were not correlated, and only
in thyroid cancer (THCA) were slightly positively correlated (Rho = 0.18, padj =
0.01), suggesting that AICDA is not constitutively activated in any cancer. The
AID mutations were more frequently negatively correlated with the tumor muta-
tion burden (TMB) of cancers from TCGA (i.e. in adenoid cystic carcinoma (ACC),
kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma
(KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),
ovarian cancer (OV), and THCA; Supplementary Figure 11). In brief, we found
AID activity leaves important DNA footprints across human and not-human tu-
mors, including driver genes.
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Relationship of AID-related mutations with immune-related signatures
and the presence of viral genome

Taking together that normal APOBEC expression is induced after viral exposi-
tion, recent findings of oncogenic APOBEC expression correlating with positive
human papillomavirus (HPV) infection in HNSC (Cannataro et al., 2019) and
studies showing a correlation between AID-related mutations with chronic infec-
tions (i.e. not viral), like with Helicobacter pylori (H. pylori) in precancerous stages
of stomach cancer or Plasmodium infection in B cell lymphoma (Robbiani et al.,
2015; Shimizu et al., 2014), we sought to analyze the potential relationships be-
tween the presence of AID-related mutations, the AICDA expression and the pres-
ence of different oncogenic viruses at pan-cancer level using the TCGA dataset
(Figure ??A-B). In addition, we also analyzed their relationship with different
immune-related cells, obtained by deconvolution. The AID-related mutations only
showed significant enrichment in stomach adenocarcinoma (STAD) tumors with
negative Epstein-Barr virus (EBV) infection (Figure ??B). Intriguingly, AICDA
expression was significantly higher in bladder cancer (BLCA), HNSC, and cervi-
cal squamous cell carcinoma (CESC) with HPV infection (2.68 versus 2.52; 2.62
versus 2.51; 2.50 versus 2.45; respectively, Wilcoxon-test, Figure ??A). We did
not find other remarkable differences in AICDA gene expression or when we con-
sidered the AID-related mutations (Figure ??), suggesting that AICDA is rarely
constitutively expressed and is rather transient at pan-cancer level. In some can-
cer types, we discovered a link between AID-related mutations and the presence
of M1 macrophages, T CD4, and CD8 cell populations (Figure ??C; Spearman
correlations with FDR-adjusted p-values). Furthermore, the existence of these
immune cell populations was co-expressed in the same cancer types in the same
direction in the vast majority of cases (Figure ??C). AICDA gene expression, on
the other hand, was not co-expressed with these three immune cell types but was
positively correlated with B cell naive and different properties of B cell receptor
(BCR), as well as a lymphocyte cell infiltration signature (Supplementary Figure
12; Spearman correlations with FDR-adjusted p-values).

This suggests that only HPV infection, in general, does trigger AICDA expres-
sion but does not correlate with AID-related mutations.

AID and APOBEC activity is higher at transcriptionally active domains
but their relation with the MMR activity is contrariwise

Initial studies have revealed that the mutation frequency is increased in late-
replicating regions (G2/M phases), mainly, due to increased MMR activity on
early zones (G1/S phases) (Tomkova, Tomek, Kriaucionis, & Schuster-Böckler,
2018). However, recent works have found 3D chromatin organization to be bet-
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ter correlated with the mutational load than with the replication time alone
but the direction, towards active or inactive domains, is shaped by the muta-
tional signature (Akdemir et al., 2020). By using replication timing alone we
found that the AID and SBS2 signatures have a clear late replication enrich-
ment (global p-values = 3.09e-35 and 3.83e-3, respectively; Supplementary Fig-
ure 13). However, the enrichment zone changes across tumor types, being more
“early” in Bladder transitional cell carcinoma (TCC), Cervix squamous cell carci-
noma (SCC), Uterus adenocarcinoma (AdenoCa), thyroid adenocarcinoma (Thy-
AdenoCA), Lung cancers, and others which are mostly already reported APOBEC-
prone cancer types (Supplementary Figure 14A-B). On the other hand, the SBS13
signature is not enriched globally (p-value = 0.88) but it is in the early zone
for the same tumors as SBS2, which is consistent with previous reports (Supple-
mentary Figure 14C) (Morganella et al., 2016; Tomkova, Tomek, Kriaucionis, &
Schuster-Böckler, 2018). In B-cells AID is mostly active in G0/G1 phase and has
been proved to induce mutations before malignant transformation (Kasar et al.,
2015). Alternatively, our findings indicate that it might change to be able to in-
duce mutations at late replicating zones on hematological cancers and others (kid-
ney renal cell carcinoma (Kidney-RCC), pancreatic neuroendocrine tumors (Panc-
Endocrine), and Stomach adenocarcinoma; Supplementary Figure 14A), which
is in line with our previous findings of the cell cycle regulation loss for AICDA
expression. Next, we used topologically associated domains (TADs) boundary in-
formation of active and inactive domains, in terms of transcription, to see the dis-
tribution of AID/APOBEC mutations across chromatin folding domains (Akdemir
et al., 2020). We found AID mutations occurring more towards active domains
than inactive (FC = 3.63; p-val = 5.01×10-98), especially at the TADs boundaries
(Figure 5.5A). As previously described, we found that APOBEC signatures are also
causing mutations towards active domains but the active/inactive ratio is notably
higher for the SBS13 than the SBS2, indicating distinct molecular underpinnings
(Supplementary Figure 15).

Meanwhile, in normal B-cells, the MMR is in charge of repairing the AID-
canonical related mutations, thus reducing its mutagenesis; within the oncogenic
context, previous studies have demonstrated that it is the MMR machinery itself
that can increase mutagenesis indirectly because when it is repairing any mutation
it creates 800 bp fragments that are targets of APOBEC mutagenesis (Mas-Ponte
& Supek, 2020). To further test these reported observations at pan-cancer scale,
we attempted to see the differences of AID/APOBEC mutagenesis between MSI
or MSS tumors; additionally, considering that MMR activity has been reported to
be higher on early replicating zones (Tomkova, Tomek, Kriaucionis, & Schuster-
Böckler, 2018), we separated mutations falling within early or late replicating
zones. We observed that tumors having impaired MMR machinery (MSI samples)
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had higher AID mutations in early replicating zones compared to MSS tumors
(p-value = 0.0043; Wilcoxon test), but there was no significant difference in AID
mutations falling in late replicating zones (MSI vs MSS; p-value = 0.3029). Like-
wise, when we compared early vs late within MSI tumors we found higher AID
mutations falling in early (p-value = 0.0059) but the opposite for MSS tumors
(p-value = 2e-16; Figure 4B). Furthermore, we also validated this hypothesis by an-
alyzing 19,936 additional tumors (MSKCC cohort) finding a significant increment
in the global number of AID mutations in MSI tumors or APOBEC mutations in
MSS tumors (p-value = 2e-16 & 6e-10; Wilcoxon test; Supplementary Figure 16A).

Therefore, our analyses suggest that both APOBEC and AID mutations have
a higher preference at transcriptionally active domains, though the effect is more
marked for AID. Moreover, as expected, AID mutations are repaired by the MMR
machinery while APOBEC mutations are enhanced by the MMR activity.

Oncogenic AID activity differs according to transcription direction

AID activity within the normal context takes place especially during transcrip-
tion elongation, when the polymerase becomes stalled, and requires a licensing
step to regulate over-activity which can be bypassed when abnormal high nuclear
levels of AID are present. On the other hand, R-loops, a hybrid structure of
B-form double-stranded DNA and A-form dsRNA, are formed during transcrip-
tion which increases DNA exposure and has been linked to AID activity (Ginno,
Lott, Christensen, Korf, & Chédin, 2012; Methot et al., 2018). By using genomic
coordinates of R-loop associated regions and the ICGC cohort (WGS data), we
attempted to answer if, within the tumoral context, AID mutations were more lo-
calized in or out these regions compared to either APOBEC mutations (COSMIC
SBS2/SBS13) or other mutations. Surprisingly, only 0.18% (1130/629,871) of all
AID mutations were “in R-loops” which was not significantly different to those
caused by SBS2 (0.19%; 456/241,695; p-value = 0.37; two-sided Fisher exact test)
or SBS13 (0.19%; 400/204,922; p-value = 0.15) (Supplementary Table 3). Overall,
this suggests that within the oncogenic context, AID promiscuous activity is not
related to R-loop formation.

Since the R-loop forming regions do not cover all the transcription start sites
(TSS), we next analyzed the AID mutation’s distribution around the TSS as pre-
vious studies showed recruitment of AID to those sites (Methot et al., 2018). By
dividing mutated genes based on strandness, we found a very particular pattern for
the AID mutations falling on the negative strand compared to the positive strand.
Mutations accumulate near the TSS and towards the gene body while maintaining
a more constant mutational load compared to the opposite direction, the positive
strand (Figure 5.5C), or even if compared to APOBEC signatures at either strand
(Supplementary Figure 16B and C).
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Next, we wondered if the AID mutations of a specific gene were produced
during transcription of that same gene. To answer this we used 1,130 samples
(comprising 24 tumor types) from which the mutations and expression data were
available (ICGC cohort) and correlated the number of AID induced mutations oc-
curring in gene i (AID_Mutsgi) to the expression of the same gene i (Expgi) within
each tumor type since the expression and mutations vary greatly in this con-
text. Only 6.6% of the total different mutated genes (21,341) were expressed from
which 6.0% (81/1,403, not repeated genes) were correlated with its corresponding
gene expression per tumor type (p.adj < 0.05, Spearman Rho > 0); additionally,
more than one-third of these genes were found in hematological cancers (Lymph-
BNHL and Lymph-CLL). Gene set enrichment analysis revealed immunoglobulin V
region-related genes (adjusted p-value = 1.2 × 10-11) within hematological cancers
(Supplementary Figure 16D). Altogether, our analysis suggests that AID activity
is coupled to the transcription process with immunoglobulin genes in hemato-
logical cancers following the line of “normal” context as the expression is more
constitutive. However, the mutations in other genes are probably produced during
short-term transcription of both the affected gene and AICDA whose dynamics
depend on the strand location of the gene and hence the direction of transcription.

AID temporal mutations vary across tumor types and are independent
of replication timing

Point mutations, within a cell, arising before a chromosomal locus duplication will
give rise to different cell lineages compared to the mutations happening after the
duplication. WGS data can be used to infer the number of allelic copies and hence
the ratio of duplicated to non-duplicated mutations within a gained region can
be used to estimate the time point when the gain happened and define variants
as clonal (happening at early points) or as subclonal (happening at more recent
time points) (PCAWG Mutational Signatures Working Group et al., 2020). By
combining 13 million point mutations (SNVs only) and available copy number vari-
ations (CNV) data from the PCWAG dataset (2,707 samples), we evaluated the
molecular timing of AID provoked mutations and compared them to APOBEC
signatures (SBS2 and SBS13) and the hypermutation attributed signature (SBS9,
non-canonical AID). We found that 90.5% of mutations were clonal and 9.5% sub-
clonal but, when stratifying by APOBEC (SBS2 and SBS13) or AID mutations,
the proportion was slightly higher within subclonal mutations (2.8% versus 1.6%
in SBS2, 2.5% versus 1.3% in SBS13 & 5.2% versus 4.4% in AID; P ∼ 0, respec-
tively; fisher exact test; Supplementary Figure 17A). However, when looking only
at samples with significant change within the mutational spectra of clonal versus
subclonal mutations (404/2,707 samples; P < 0.05, Bonferroni-adjusted likelihood-
ratio test), we found that even though AID-related mutations are slightly more
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subclonal globally (median fold change = 1.06; IQR = 0.85 − 1.31), it has dif-
ferent temporal preference across tumor types. For example, there was a 9.6 fold
change towards clonal mutations (IQR = 3.9 − 33.8) in Skin-Melanoma but a
1.3 fold change towards subclonality (IQR = 0.83 − 1.61) in Breast adenocarci-
noma. On the other hand, we found more stable behaviors towards APOBEC
(SBS2 and SBS13, more subclonal) or non-canonical AID (SBS9, more clonal)
associated COSMIC signatures across tumor types and in the same direction,
as previously described (Nicholas McGranahan et al., 2015; PCAWG Mutational
Signatures Working Group et al., 2020) (Figure 5.5D). Furthermore, separating
mutations by replication zones, globally and per tumor type, showed no evident
change suggesting that this temporal preference is independent of the replication
timing (Supplementary Figure 17B). Next, we checked if there were genes enriched
for clonal or subclonal mutations globally or if AID provoked only, by calculating
the odds ratio (OR) and corrected p-value of observed clonal/subclonal muta-
tions versus the expected adjusting by various genetic covariates. Only a limited
number of genes emerged as significantly enriched towards subclonality that were
AID-induced (Supplementary Figure 17C). Summing up, we found that for some
cancers like skin melanoma AID-mutations probably contribute to oncogenesis at
early times meanwhile for others it might promote oncogenic fitness by late muta-
tions.

AID synergizes initial hotspot mutations through late mutations on
weakly functional alleles

Since recent studies have unraveled that composite mutations, pair of driver–
driver, driver–passenger, or passenger–passenger mutations on the same gene, can
synergize the functional impact compared to their single-mutated counterpart, we
analyzed the contribution of AID induced mutations within this phenomenon by
analyzing 31,353 samples comprising 41 tumor types from the MSKCC cohort
(Figure 5.6). As previously described, using a panel of 353 oncogenes (168 genes)
or tumor suppressor genes (TSGs, 185 genes), we found that composite mutations
occur more frequently in TSGs than in oncogenes (12.2% versus 6.0% of all mu-
tations; P = 2e-278, two-sided two-sample Z-test) (Gorelick et al., 2020; Saito et
al., 2020) but interestingly when separating by AID induced compared to those
of other origins, we observed a global contribution to the composite mutations of
6.9%; furthermore, within oncogenes, 9% consisted of at least one AID induced
mutation, compared to 5% within TSGs (Supplementary Figure 18A). We fur-
ther verified that biallelic loss was also enriched for AID composite mutations, as
it was reported from global composite mutations, within TSGs since there were
more truncating variants compared to oncogenes (64% versus 8%; P ∼ 0; Fisher
exact test; Supplementary Figure 18B). Next, we calculated gene enrichment for
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AID composite mutations globally and per tumor type to discard that the ob-
servations were due to randomness by modeling the AID composite mutational
burden as a function of genetic covariates (see Methods). Surprisingly, we found
enrichment for six genes including FGFR3 especially among HNSCC with 20%
corresponding to AID composite mutations, and lower lineage-specific proportions
for EGFR (8.9% in Glioma), PIK3CA (∼ 4% in Breast, Endometrial, Cervical,
and Skin cancers), FBXW7 (∼ 7% in Colorectal and Esophagogastric cancers);
PTEN (2.5 and 4% in Endometrial and Cervical cancers) but not TP53 since
it was present across different tumor types (Q < 0.01; Figure 5.6A and Supple-
mentary Figure 18C, Supplementary Tables 4-5). We used a similar approach for
residue’s enrichment to avoid missing residues not enriched at the gene level and
observed that PIK3CA E726 was the most enriched (q = 2.59e-58, Fisher’s ex-
act test) followed by TP53 R213, EGFR A289, and PIK3CA R88 (Figure 5.6B,
Supplementary Table 6). Since most found residues happened to be of lesser pos-
itive selection, we next checked the cumulative proportion moving from frequent
hotspots (greatest positive selection) to less frequent ones finding that AID com-
posite mutations are five times more likely to happen than AID singleton mutations
(P = 2e-109, two-sample Z-test for equal proportion) which has higher than the
fold change (FC) between composite mutants (other than AID) to singleton mu-
tants (FC = 2.3; P ∼ 0). Furthermore, any AID mutation was absent from the
highest positive selective hotspots (i.e. KRAS G12, PIK3CA H1047, TP53 R273 )
suggesting that AID mutations have a preference towards weakly functional alleles
after the acquisition of high positive hotspots (Figure 5.6C, Supplementary Table
7). To further evaluate this hypothesis, we added the allelic configuration and
clonality to subset to mutations arising from the same tumor cell population and
retain molecular timing information. We observed that both globally (69% versus
31%, P = 7e-4, two-sided binomial test, Supplementary Figure 18D) and within
AID composites (73% versus 27%, P = 0.03, two-sided binomial test, Figure 17E)
the most frequent hotspot mutation occurs first and is followed by a synergizing
second mutation but only within oncogenes, which was the case of the minor mu-
tation PIK3CA E726, between the kinase and the PI3KA domains, that occurs
significantly after (p = 0.039, one-sided binomial test) than other stronger mu-
tations (i.e. PIK3CA E542, PIK3CA E545 at helical domain or PIK3CA H1047
at the kinase domain) (Figure 5.6D, Supplementary Table 8) and is a product of
AID promiscuous activity. When looking only at phase-able mutations (without
the molecular timing variable) we observed that 88% of composite mutations on
PIK3CA occur in cis from which 26% were AID provoked; other genes with a
high percentage of cis AID composite mutations were EGFR, KMT2D, and APC
(Supplementary Figure 18F, Supplementary Table 9). Some PIK3CA composite
mutations have already been proved to increase cell proliferation, tumor growth



5.2. Pan-cancer landscape of AID-related mutations, composite mutations and
their potential role in the ICI response 103

but also PI3K inhibitor sensitivity in human breast epithelial cell lines, but to the
best of our knowledge, it has not been linked to being the product of AID activity
(Saito et al., 2020; Vasan et al., 2019).

Additionally, we analyzed the contribution of other mutational processes to the
composite mutations. Besides the aging signature, AID contributed more to the
composite mutations than other signatures (Supplementary Figure 19), opening
the possibility of further research on the molecular implications of these mutations.

The impact of AID-related mutations with ICI response

Because several recent studies pinpointed a potential role of APOBEC related mu-
tations on the efficacy of ICI (Litchfield et al., 2021; S. Wang, Jia, He, & Liu, 2018),
we sought to use the fraction of AID as a surrogate marker of ICI response. We
used different available datasets analyzed (see Methods). We performed a random-
effects meta-analysis comparing the overall survival (OS) of all these studies and
comparing the impact of AID, to the APOBEC signature and the different single
nucleotide variants (SNV). The details of this analysis are provided in the methods.
Strikingly, the AID-related mutations were associated with the best OS in all of
the studies and the random-effects model showed also a favorable prognosis (me-
dian as the cut-off, Figure 5.7A). Moreover, the effect was still significant across
almost all the studies independently of either decile chosen as cut-off at univariate
(Supplementary Figure 20A) or multivariate adjusting for TMB (Supplementary
Figure 20B). Accordingly, the APOBEC signature was associated with a favorable
prognosis, but not in all datasets. However, the random-effects model also indi-
cated an overall favorable prognosis associated with APOBEC. The rest of SNV
showed much more heterogeneous results and only T>A and T>G mutations were
associated with favorable prognosis in the random-effects model (Figure 5.7A).

Interestingly, within the largest study of IMPACT-MSKCC, the fraction of
AID-related mutations (top 50% of all histologies as the cut-off) was also inde-
pendently associated with both better OS (Hazard ratio [HR] = 0.715; 95%CI =
0.61-0.839; p = 3.81 × 10-5) and predictive value compared to TMB or APOBEC
after adjusting by TMB (top 20% of each histology as the cut-off), APOBEC signa-
ture (top 50% of all histologies as the cut-off) age and sex (Figure 5.7B). It should
be noted, that when using a univariate Cox proportional Hazards ratio model per
every cancer type or adjusting by TMB ≥ 10, the results were also similar in the
overall population of this study, but the clinical impact of AID-related fraction
of mutations was only found in metastatic melanoma and cancer with unknown
primary (Figure 5.7C; Supplementary Figures 20C and 20D). Additionally, there
was practically no correlation between the fraction of AID mutations with the
APOBEC signature neither globally nor by tumor type in this cohort and in the
ICGC and TCGA datasets (Supplementary Figures 21A-C). Similarly, by using
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four additional studies across different tumor types, we also found an association
of high AID mutations with improved OS after adjusting by age, gender, and TMB
using the multivariate Cox model (Hugo et al., 2016; D. Liu et al., 2019; Miao et
al., 2018; Pender et al., 2021).

Overall, all the studies confirmed the independent prognostic value of the high
fraction of AID mutations according to the median in the univariate and multi-
variate analyses.

Landscape of AID-related neoepitopes and its relation with ICI response

Having found an association between AID activity and ICI benefit, we hypothe-
sized that AID mutations might generate highly immunogenic neoepitopes. We
addressed this by analyzing the neoepitopes that were products of AID activity on
the TCGA cohort and on melanoma patients treated with Nivolumab (anti-PD-1)
(Riaz et al., 2017). A recent bioinformatic-experimental study using immuno-
genic and non-immunogenic peptides, experimental testing, and X-ray structures
showed that TCR binding and recognition improves with the presence of hydropho-
bic amino acids (aromatic W, F, Y followed by V, L, and I) at specific “MIA”
positions (position P4 − PΩ−1) due to increased structural avidity, stacking inter-
actions, hydrogen bond acceptance and limited rotational freedom with the TCR
(Schmidt et al., 2021). Additionally, as a previous study showed that APOBEC
promiscuous activity increases neopeptide hydrophobicity (Boichard et al., 2018),
we wondered if AID-related mutations led to the production of not only more hy-
drophobic neoepitope but more “Immunogenic” in terms of amino acid changes (W,
F, Y, V, L, I over others) at MIA positions and if these effects were different due
to clonality, histology, or mutational processes. We computed the PRIME %rank
score and used it to classify neoepitope as “Immunogenic” or “Non-Immunogenic”
(see Methods), on a list comprising 2,143 patients (TCGA) from which RNA-seq,
HLA haplotyping, clonality, and mutational process origin data were correctly as-
sessed; we also restricted the analysis to only patients with >1 FPKM expression
on the genes originating the neopeptide, microsatellite stability, and intact anti-
gen presentation related genes. We analyzed 286,909 neoepitopes from which only
17.75% were predicted to be immunogenic but interestingly they occur more fre-
quently within clonal neoepitope than in subclonal (38% versus 30%, P = 1×10-27;
two-sided Fisher-exact test; Figure 5.8A). Because our results suggested a higher
presence of immunogenic neoepitope, in terms of numbers, provoked by mutations
occurring earlier, we restricted the subsequent analyses to only ICNs.

Strikingly, albeit a global higher number of APOBEC induced ICNs was
present, the proportion of samples having at least one ICN produced by AID
(classified as “Present”) was practically three times higher than those provoked
by APOBEC globally (32% versus 11%, P = 1 × 10-65; two-sided Fisher-exact
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test; Figure 5.8A). We next sought to compare the cumulative distribution of the
AID/APOBEC ICNs in terms of population hotspot mutations recurrency finding
that AID produces ICNs at hotspots with greater positive selection (FC = 1.59;
P = 3e-41, two-sample Z-test for equal proportion, Figure 5.8A) which could give
rise to higher possibilities of immune recognition and improved tumor control.
By comparing tumors harboring at least one AID ICN (“Presence”) to those
which did not (“Absence”), we found an increased fraction of CD8, CD4 memory
activated and follicular helper T-cells that were “exhausted” by higher expression
of the inhibitory immune checkpoint molecules PD-1, PD-L1, PD-L2, CTLA-4,
and LAG3. Furthermore, these observations were seen in the majority of tumor
types but the increment was only significant when accounting for all the samples
(n = 2,143) or for LUAD (Figure 5.8B, two-sided Wilcoxon test).

Since these findings suggested that AID mutations inducing ICN as a pos-
sible explanation of ICI response, we next analyzed a cohort of 68 melanoma
patients treated with anti-PD-1 (Nivolumab) from which WES, neoepitopes, and
RNA-seq data were available prior treatment (pre) or 4 weeks after initiation of
Nivo (on) (Riaz et al., 2017). Through all the analysis we separated patients
as Ipi-Prog (n = 35), which had previously progressed on anti-CTLA-4 treat-
ment (Ipilimumab), or as Ipi-Naive, which only received Nivo (n = 33). First,
we looked at the distribution and effect of AID mutational load on survival com-
pared to UV-related mutations. We found that the responders (CP/PR) had
a higher number of AID-related mutations compared to the PD or SD groups
(Ipi-Prog median = 0.094; Ipi-Naive median = 0.108), but was not significantly
different and was also observed for UV mutations (Ipi-Prog median = 0.354;
Ipi-Naive median = 0.349). Conversely, the effect on OS was markedly different,
being associated with prognosis only when using AID mutations within Ipi-Naive
patients (log-rank p = 0.026) but not with UV mutations in neither naive nor pro-
gressive patients (log-rank p = 0.93 & p = 0.34; Supplementary Figure 22A-B).
The AID ICN load improved survival prediction better (log-rank p = 0.0016) than
if using global clonal neo-epitopes load (log-rank p = 0.0042), global ICN load
(log-rank p = 0.0025) or UV ICN load (log-rank p = 0.0071; Figure 5.8C). As the
effect was tightly marked only in Ipi-Naive patients, we focused the subsequent
analysis on only this group.

When coupling RNA-seq data (n = 20), we found 64 upregulated and 110 down-
regulated genes comparing patients with high AID ICN load versus low within pre-
therapy samples (q < 0.20; Supplementary Table 10). Gene Ontology (GO) analy-
sis identified downregulation of antigen presentation and TNF signaling pathways
(q-value < 0.05; Figure 5.8D & Supplementary Figure 22C). We also observed an
increased expression of the inhibitory immune checkpoint molecules PD-1, PD-L1,
PD-L2, CTLA-4, ICOS, LAG3, and cytolytic activity (Supplementary Figure 23).
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These results are consistent with both our previous analysis on TCGA data and
previous studies (N. McGranahan et al., 2016; Riaz et al., 2017; Van Allen et al.,
2015).

Next, we endeavored to identify expression changes on patients that responded
(according to AID ICN load) after 4 weeks of Nivo treatment by comparing pre-
therapy to on-therapy data from the patients (npre = 20; non = 20). From the
811 genes found to be differentially expressed (q < 0.20; Supplementary Table
11), 404 were upregulated and involved in antigen processing and presentation, T-
cell activation (e.g. PRKCQ, CD8B, CD38, CD151, MALT1 ), leukocyte cell-cell
adhesion, response to oxidative stress (STK24, GSS, GCLC, PDK1 ) and T-cell
reactivity to clonal neoepitopes (CXCL13 and CCR5 ) (q-value < 0.05), the last
ones being recently described (Litchfield et al., 2021). On the other hand, down-
regulated pathways included mainly (407 genes; q-value < 0.05) cell growth, B-cell
differentiation, and some chemokines (CXCL11, CCL4, and CCL14 ) or chemokine
receptors (CCR3 and CCR8 ) (Figure 5.8D). Furthermore, we also observed an in-
creased expression of CXCL13 and CCR5 on the TCGA samples with high AID
ICN load (Figure 5.8B). Altogether, these results show possible explanations of
why AID mutations reflect a more straightforward approach to predict response
to ICI naive treatment.

5.2.3 Discussion
By integrating more than 50.000 bulk level samples and 2.5 million cells at single-
cell resolution across 80 tumor types and different data levels, we present, to the
best of our knowledge, the first study shedding light on the oncogenic and clinical
implications of AID at pan-cancer scale. Our results point to the idea that AICDA
expression, which is activated after malignant transformation, is no longer tied to
the cell cycle regulation and, albeit transient, it induces traceable mutations with
important functional and clinical implications that are mainly produced during
the transcriptional activity of the mutated gene. Firstly, our single-cell RNA-seq
analysis revealed that only a selected number of tissues (e.g. adult pleura, small
intestine) express AICDA under normal conditions, which is consistent with pre-
vious studies at bulk level (Lonsdale et al., 2013; Uhlen et al., 2015); however,
after acquiring malignancy the expression is seen independently of tissue origin as
already reported for some tumor types (Endo et al., 2007; Kasar et al., 2015; Ko-
mori et al., 2008; L. Li et al., 2019; Lossos, Levy, & Alizadeh, 2004; Matsumoto et
al., 2007; Nonaka et al., 2016; Sawai et al., 2015; Shimizu et al., 2014) . Moreover,
our single-cell data analysis shows that B-cells within the TME of some cancer
types are expressing AICDA which correlates with our findings on the TCGA
data showing correlations of AICDA expression with the B-cell and lymphocyte
infiltrate populations.
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It was previously reported that in germinal center B-cells the AICDA expres-
sion is higher at G2/M cell cycle phases but its mutational effects are mostly active
in early G1 (after being transported to the nucleus). However, this regulation is
lost in lymphoma cells (Milpied et al., 2018; Q. Wang et al., 2017). On the other
hand, UNG expression is most abundant at the S phase meanwhile MSH2/MSH6
at G1/S, both implicated in repairment of AID-induced mutations (Álvarez-Prado
et al., 2018; Delgado et al., 2020; Kasar et al., 2015). The oncogenic single-cell
datasets analyzed proved that this cell cycle regulation is globally lost in all tumor
types and that cells at G2/M phases are more susceptible to AID promiscuous
activity given that: i) AICDA expression is higher; ii) the BER and MRR related
genes are less expressed and iii) global transcriptional activity is also increased.
This hypothesis is supported by our findings, using WGS data, that AID muta-
tional load is increased: at transcriptionally active TAD domains (compared to
the background), close to TSS, and in MSI tumors. Regarding the different AID
mutational behavior depending on the strand location of the gene, we propose
a model where the negative strand is more prone, than the positive strand, to
AID attack at naked transcribed breathing dsDNA (normally located near TSS)
and is followed by attack at DNA stem-loops and transcription bubbles (but not
at R-loops) being generated as the RNA polymerase transcribes (Branton et al.,
2020).

Summing up to those findings plus that AICDA expression and AID related
mutations were not correlated in the TCGA nor in ICGC datasets and that only
expression but not the mutations correlated with viral infection in some cancers,
it is tempting to speculate that the genotoxic effect of AID might be due to short
term activation of AICDA, which have been seen in APOBEC (Langenbucher et
al., 2021). Indeed, in a fate-mapping study, AICDA expression was present in
a fraction of non-lymphoid embryonic cells (Rommel et al., 2013). Furthermore,
AICDA transcripts in lymphocytes have a half-life of only one hour (Dorsett et
al., 2008), supporting the lack of correlation between AID-related mutations and
AICDA expression.

Despite, ephemeral, AICDA expression mutational footprints are widespread
across cancers, and presumptively across mammals, with similar mutational fre-
quency compared to APOBEC but a higher contribution to driver oncogenes, to
composite mutations, and to the production of higher quality neo-epitopes. Al-
ready reported AID off-target activity, outside lymphomas, is limited especially to
TP53, KRAS, and MYC in gastric, colorecta,l and skin melanoma (Hanjie Li et
al., 2019; Nonaka et al., 2016; Shimizu et al., 2014). We thoroughly extended this
data and found that AID activity has a preference towards least positive selection
hotspots that synergizes with previous stronger hotspot mutations; this is the case
for the minor mutation PIK3CA E726, especially present in SKCM and BRCA,
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that might confer higher PI3K inhibitor sensitivity (Saito et al., 2020; Vasan et
al., 2019).

Finally, we found that the AID-related fraction of mutations is an indepen-
dent prognostic value to ICI response using > 2,000 samples even after adjusting
by TMB. AID-related neoepitopes exhibited distribution towards clonal hotspots
with a greater positive selection which could result in improved immune recogni-
tion; however, this is avoided by tumor-induced immune exhaustion. It should be
noted that the statistical power in individual histologies is reduced, and as sample
sizes increase, additional histology-specific associations may appear in future larger
prospective studies that may lead to a formal validation of the predictive value of
AID-related signature on ICI response and the results regarding the AID-related
neoepitopes. It is also important to highlight that there could be some analytical
bias related to the combination of different datasets using different mutation call-
ing approaches. However, the signal associated with the AID-related mutations
was similar throughout the studies and the pipelines, and results of the different
included studies are public and well standardized, limiting in part this mutation
call bias.

We propose a model in which AID ICN has higher probabilities of being rec-
ognized by T-cells, triggering selective expression CXCL13, previously found to
be a marker of antigen reactive CD8 T-cells, for recruitment of CXCR5+ T and
B cells (Litchfield et al., 2021). These recruited cells, subsequently exhausted
by the continuous expression of inhibitory immune checkpoint molecules, can be
reinvigorated after ICI treatment.

Overall, we pieced together an immense part of the oncogenic AID puzzle but
many parts still need to be found, especially filling gaps with biological validations
as the results, here presented, hold the promise of important clinical applications.
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Figure 5.2 (preceding page): scRNA analysis reveals activation
of AICDA expression under oncogenic conditions. Panel A, illus-
trative representation of AICDA expression and AID activity within nor-
mal B-cells. For AID motifs, W = A/T; R = Purine; Y = Pyrimidine; K
= G/T; M = C/A. Panel B, normal PBMCs expression heatmap showing
AICDA expression only in B-cells, CD8 T-cells, and induced regulatory T-
cells. Panel C, AICDA expression heatmap as a function of the cell subtypes
across different oncogenic single-cell studies (n = 41; top), barplot of cell sub-
types proportions (middle), and the number of cells in each study (bottom).
AICDA is expressed in malignant cells in most tumor types but only in some
for the immune and stromal cell populations. Panel D, expression heatmaps
of AICDA and genes involved in the repair of AICDA-related mutations as
a function of the cell cycle stage across different oncogenic single-cell studies
(n = 40). AICDA expression is slightly higher in the G2M phase and the
repair genes are more expressed during the S phase; additionally, expression
is dropped when tumoral cells are depleted by sorting.
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Figure 5.3 (preceding page): Pan-cancer landscape of AID-
related mutations. Panel A, samples’ distribution of the different cohorts
used in the study (51,631 tumors) where each bar is a tumor type or sub-
group (only Riaz et al cohort); for the ICI cohort stacked bars represent the
different studies. The complete 88 tumor types’ abbreviations are presented
in Supplementary Table 2. Panel B, frequency of the fraction of mutations
attributed to AID motifs or APOBEC motifs for each tumor type in the
ICGC cohort; dotted lines indicate median values across all samples. Panel
C, AID mutations produce higher selection intensity on driver genes on mi-
nor hotspot residues but there is a higher number of affected genes/residues
than the ones generated by the APOBEC related signatures.



114 Chapter 5. Results

Tumor type

p = 0.82
STAD

− +
2.0

2.5

3.0

3.5

EBV infection

Lo
g 2

 (A
IC

D
A

 e
xp

re
ss

io
n 

+ 
1)

p = 0.98
LIHC

−

HBV infection

p = 0.14

− +
HCV infection

p = 0.035 p = 0.044 p = 0.0076 p = 0.00016 p = 0.45
BLCA CESC COAD HNSC UCEC

− + − + − + − + − +
HPV infection

Infection Status
−

+

LIHC

− −+ − − − − −

+

p = 0.033
STAD

− +
0

3

6

9

Lo
g 2

 (A
ID

 m
ut

at
io

n 
nu

m
be

r 
+ 

1)

p = 0.64
LIHC

− +

p = 0.49
LIHC

− +

p = 0.23 p = 0.056 p = 0.11 p = 0.097 p = 0.84
BLCA CESC COAD HNSC UCEC

− + − + − + − + − +

InfectionStatus
−

++−

EBV infection HBV infection HCV infection HPV infection

A)

B)

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

** ** ** ***** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

AI
CD

A_
ex

p

AP
O

BE
C3

A_
ex

p

AP
O

BE
C3

B_
ex

p

UN
G

_e
xp

SM
UG

1_
ex

p

In
tra

tu
m

or
.H

et
er

og
en

ei
ty

Pr
ol

ife
ra

tio
n

An
eu

pl
oi

dy
.S

co
re

Ho
m

ol
og

ou
s.

Re
co

m
bi

na
tio

n.
De

fe
ct

s

B.
Ce

lls
.M

em
or

y

B.
Ce

lls
.N

ai
ve

De
nd

rit
ic.

Ce
lls

.A
ct

iva
te

d

De
nd

rit
ic.

Ce
lls

.R
es

tin
g

Eo
sin

op
hi

ls

M
ac

ro
ph

ag
es

.M
0

M
ac

ro
ph

ag
es

.M
1

M
ac

ro
ph

ag
es

.M
2

M
as

t.C
el

ls.
Ac

tiv
at

ed

M
as

t.C
el

ls.
Re

st
in

g

M
on

oc
yt

es

Ne
ut

ro
ph

ils

NK
.C

el
ls.

Ac
tiv

at
ed

NK
.C

el
ls.

Re
st

in
g

Pl
as

m
a.

Ce
lls

T.
Ce

lls
.C

D4
.M

em
or

y.
Ac

tiv
at

ed

T.
Ce

lls
.C

D4
.M

em
or

y.
Re

st
in

g

T.
Ce

lls
.C

D4
.N

ai
ve

T.
Ce

lls
.C

D8

T.
Ce

lls
.F

ol
lic

ul
ar

.H
el

pe
r

T.
Ce

lls
.g

am
m

a.
de

lta

T.
Ce

lls
.R

eg
ul

at
or

y.
Tr

eg
s

Ly
m

ph
oc

yt
es

BC
R.

Ev
en

ne
ss

BC
R.

Sh
an

no
n

BC
R.

Ri
ch

ne
ss

TC
R.

Sh
an

no
n

ACC

BLCA

BRCA

CESC

COAD

DLBC

GBM

HNSC

KICH

KIRC

KIRP

LGG

LIHC

LUAD

LUSC

OV

PRAD

READ

SKCM

STAD

THCA

UCEC

UCS

AID number of mutations (Log2+1) spearman correlation with
different variables across cancer types

p-adjusted
values

*** <= 0.001
** <= 0.01
* <= 0.05

C)
− − − −−−−−

−



5.2. Pan-cancer landscape of AID-related mutations, composite mutations and
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Figure 5.4 (preceding page): AID-mutations and AICDA ex-
pression relation with immune features. Panel A, distribution of the
expression of AICDA according to the presence of different viral genomes
per cancer type. Panel B, distribution of the number of AID-related mu-
tations according to the presence of viral genomes per cancer type. Panel
C, heatmap showing the correlation according to the number of AID-related
mutations and the expression of different immune cell types, genes of inter-
est, or the presence of different viral genomes; circle size/color indicates the
direction of association (Spearman correlation) and the annotation inside
the circles indicate the significance (FDR-adjusted p-values).
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Figure 5.5 (preceding page): AID-mutations interplay with
replication, transcription, and clonality. Panel A, average profile
of AID somatic mutations accumulation in 2,775 cancer samples and repli-
cation timing across 500 kb of TAD boundaries delineating active to inactive
domains (left); dot plots representing the distribution of the mutations in dif-
ferent domain-types (right; Wilcoxon rank-sum test). Panel B, distribution
of the number of mutations associated with AICDA according to the repli-
cation time when considering MSS or MSI samples (panels at right). Panel
C, average profiles of AID induced mutations accumulation in 2,775 cancer
samples across 500 kb of TSS for negative-strand genes (left) or positive-
strand genes (right). Panel D, fold change of signature activities (subclonal
to clonal) across tumor types for AID, APOBEC (SBS2 and SBS13), and
SBS9 mutational signatures for samples with measurables changes in their
mutation spectra (n = 404) where box plots indicate the first and third quar-
tiles of the distribution, with the median shown in the center and whiskers
covering data within 1.5x the IQR from the box. Panel H, volcano plot
showing the clonality enrichment per gene (FDR-adjusted from one-sided
Fisher’s exact test) against odds ratio where color indicates enrichment for
AID or global somatic mutations. All panels were produced using the ICGC
cohort.
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Figure 5.6 (preceding page): Impact of AID mutations on com-
posite mutations. Panel A, AID composite mutations in enriched genes
by lineage (n = 31,353 samples). Cases with global composite mutations and
the expected value based on cohort size and mutational burden (top). Sig-
nificant enrichment for AID composite mutations in cancer genes per cancer
type (FDR-adjusted P values from a one-sided binomial test for enrichment;
bottom, n = 29,461). Panel B, residue versus gene enrichment arising from
AID composite mutations (FDR-adjusted from one-sided Fisher’s exact test
for residues or one-sided binomial test for genes). Panel C, cumulative sum
of the percentage of hotspot mutation utilization by decreasing frequency
of population-level hotspot mutations among composite or single mutations
(AID or not AID provoked). Two-sided Mann–Whitney U test, fold-change
(FC) of max composite to singleton values. Top inset, percentage of hotspots
attributable to composite/singleton mutations (Two-sided two-sample Ztest
for equal proportions, color indicates comparison for AID or not AID pro-
voked); Error bars indicate 95% binomial confidence intervals (CIs). Panel
I, occurrence of PIK3CA AID composite mutations where arcing lines indi-
cate the composite pairs (≥ 2 tumors, black color for AID enriched residues)
and numbers indicate the amino acid position. Residue PIK3CA E726, lo-
cated between the kinase and PI3KA domains, is highly enriched as an AID
composite. Significance values for the composite mutants (FDR-adjusted
P-value, one-sided binomial test) are shown at the bottom.
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Figure 5.7: The impact of AID mutations on ICI response. Meta-
analysis of the survival impact of the fraction of AID mutations in differ-
ent studies. Panel A, effect of using AID/APOBEC (5th decile as cut-off)
or SNV substitutions where AID remains significant across all the studies.
Panel C, forest plot of a Cox model of the global impact, after adjustment
by TMB (top 20%), median APOBEC mutations, age, and gender. Panel
D, forest plot of the Cox model of the impact of AID mutations per cancer
subtype.
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Figure 5.8 (preceding page): Landscape of AID-related neoepi-
topes and its relation with ICI response. Panel A, percentage of
neoepitopes originating from clonal/subclonal mutations in which color in-
dicates comparison for immunogenic or non-immunogenic (top left; Two-
sided two-sample Ztest for equal proportions), calculated by Prime. Top
right shows the comparison of the percentage of samples having at least
one AICDA ICN versus APOBEC ICN (“Presence”; Two-sided two-sample
Ztest for equal proportions). Bottom plot shows the cumulative sum of
hotspot mutation utilization that gives rise to ICN by decreasing the fre-
quency of population-level hotspot mutations due to AID or APOBEC sig-
natures (Two-sided Mann–Whitney U test, FC of median AID to APOBEC
values). Panel B, heatmap of gene expression comparison between AID ICN
“Presence” versus “Absence” groups across tumor types/all tumors (n =
2,143; two-sided Wilcoxon test) measured as log2 FC. Panel C, OS predic-
tion within Ipi-Naive patients improves when using AID ICN load (top right),
ICN UV load (bottom right), ICN load (middle), or clonal neoepitopes load
(left), lowest to highest log-rank p-values. Panel D, DEGs (p-adj <0.20)
between high ICN load patients versus low ICN load for pre-therapy, where
increasing negative values on the x-axis shows higher significance (+Log10[p-
adj]), or on-therapy, where increasing positive values on the x-axis means
higher significance (-Log10[p-adj]). The y-axis shows upregulated (FC > 0)
or downregulated genes (FC < 0) and colors indicate genes enriched in a
specific pathway by GO analysis. Panels A and B correspond to the TCGA
cohort (n = 2,143) meanwhile panels C and D to ICI treated melanoma
cohort (Riaz et al., n = 68).
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Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and distinct

entity within diffuse large B cell lymphoma with variable response to treatment
and outcome despite homogenous pathological presentation. The clinical impact
of its molecular aberrations and the presence of molecular heterogeneity are poorly
understood.

We performed genome-wide analysis of 147 PCNSL from fresh-frozen tumor
tissue from immunocompetent, treatment naïve patients, incorporating exome se-
quencing, DNA copy number, DNA methylation, and RNA expression. These
data were integrated and correlated with the clinico-radiological characteristics
and outcomes of the patients. We validated our results in an independent series
of 93 PCNSL formalin-fixed, paraffin-embedded (FFPE) samples.

Consensus clustering of multi-omics data uncovered concordant classification
of four robust, non-overlapping, prognostically significant clusters (CS). The CS1
group, characterized by high proliferation and PRC2 complex activity, had an in-
termediate outcome between CS2/CS3 and CS4. Patients who had PCNSL with
an “immune-hot” (CS4) profile had the most favorable clinical outcome. How-
ever, the immune-cold hypermethylated CS2 and the heterogenous-immune CS3
groups had a poor prognosis. Nearly all PCNSL patients with meningeal infiltra-
tion harbored HIST1H1E mutations, enriched in the CS3 group. The integrated
analysis suggests that the CS4 group may be more susceptible to immunotherapy
than the other groups. The integration of genome-wide data from multi-omics
data revealed four molecular patterns in PCNSL with a distinctive prognostic im-
pact that significantly improved the current clinical stratification. This molecular
classification using FFPE samples facilitates routine use in clinical practice and
provides potential precision-medicine strategies in PCNSL.
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5.3.1 Introduction
Primary central nervous system lymphoma (PCNSL) is a rare subtype of extran-
odal non-Hodgkin’s lymphoma within diffuse large B cell lymphoma (DLBCL), but
has a less favorable prognosis that its systemic counterpart and has been proved
to be molecularly a different biological entity (Chapuy et al., 2018; Schmitz et al.,
2018; Sehn & Salles, 2021; Yoshida et al., 2016). The standard treatment relies
on high-dose methotrexate (HD-MTX) regimen with or without consolidation and
is associated with treatment resistance or relapses in up to 60% of the patients
(Houillier et al., 2020; Y. Zhou et al., 2018).

Biologically, initial studies have found PCNSL to be at late B-cell germinal
center (GC) exit stages and to have constitutive NF-κβ activity driven by muta-
tions in genes of the B-cell receptor (BCR) pathway, of the toll-like receptor (TLR)
pathway (MYD88 ) and CARD11. Recently, DLBCL has been divided in different
molecular clusters and PCNSL have been related to the so-called “MCD” (based
on the co-occurrence of MYD88L265P and CD79B mutations) or Cluster 5 (C5)
DLBCL, both converging in the presence of frequent MYD88L265P, CD79B, PIM1,
BTG2 mutations, IgH-BCL6 translocations, copy gains of 3q12.3, 9p24.1 (PD-
L1/PD-L2), and copy losses of 6p21-22 (HLA locus), 6q21, and 9p21.3 (CDKN2A
biallelic loss) (Chapuy et al., 2016, 2018; Fukumura et al., 2016; Schmitz et al.,
2018). Currently, PCNSL heterogeneity has not been properly addressed mainly
due to the lack of multi-omic data integration and the limited number of patients
(Fukumura et al., 2016).

Here, we performed an integrative analysis of mutations, copy-number alter-
ations (CNA), fusions, gene expression, TCR/BCR clonotypes, tumor microen-
vironment (TME), methylation, tumor localization, and clinical data to identify
molecular subtypes of PCNSL with clinically distinct behaviors. Additionally, to
facilitate routine clinical implementation, we developed an algorithm that uses
gene expression data from either formalin-fixed, paraffin-embedded (FFPE), or
fresh-frozen (FF) tissue, to identify the PCNSL molecular subtypes associated
with multi-omic features.

5.3.2 Methods
Patients

A total of 147 FF (discovery cohort) and 93 FFPE (validation cohort) tumor
samples from immunocompetent Epstein-Barr negative PCNSL were recollected
from different French hospitals (see Table S1 in Supplementary Appendix 1) af-
ter written informed consent and ethics approval (Pitié Salpêtrière Hospital ethics
committee) were obtained. All the tumors were newly diagnosed PCNSL, patho-
logically confirmed according to the World Health Organization classification and
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were treated with standard HD-MTX based chemotherapy regimen according to
LOC network recommendations (Houillier et al., 2020).

Sequencing platforms and multi-omic data integration for PCNSL
molecular subtyping

We performed, on the FF cohort, exome sequencing (n=115) to call mutations
and obtain CNA events, RNA sequencing (n=123) to analyze gene expression,
immune cell proportions, TCR/BCR clonotypes, and fusion transcripts, and DNA
methylation profiling (n=64). High robust clustering was obtained by consensus
clustering resulting from 10 different multi-omics clustering algorithms that are
integrated in the R package “MOVICS” (Lu, Meng, Zhou, Jiang, & Yan, 2021).

Statistical analyses

Differences in proportions and binary/categorical variables were calculated from
Fisher’s exact test. Kruskal-Wallis test was used to test for a difference in distri-
bution between three or more independent groups, and Mann Whitney U test was
used for differences in distributions between two population groups unless other-
wise noted. Overall Survival (OS) analysis was assessed using log-rank Kaplan-
Meier curves and multivariate Cox proportional hazards regression modeling. See
Supplementary Appendix 1 for full details.

5.3.3 Results
Multi-omic data integration reveals PCNSL molecular subtypes with
clinical outcome implications

We performed a cluster of clusters analysis using six levels of omic information
(Figure 5.9A and Fig. S1-S3) to identify four PCNSL subtypes (CS1 to CS4) that
display different clinical outcomes in OS (Global log-rank p < 0.001, Figure 5.9B).
Patients in CS4 had the longest OS (median = 66.8 months; 95% confidence in-
terval [CI]= 19.8 − 67.2) and lived significantly longer than those in both clusters
CS2 (median=18 months; CI95% = 8.3 − 53.4; p = 0.024) or CS3 (median = 13.8
months; CI95% = 6.1−16.7; p = 0.003), and slightly longer, but not significantly, to
those in CS1 (median = 26.2 months; CI95% = 13.3 − 63.9; p = 0.094). Addition-
ally, these observations remained significant after adjusting by age and Karnofsky
Performance Status (KPS) in Cox proportional hazard ratio multivariate models
(Fig. S4A). Interestingly, CS4 was independently associated with a better response
when considering progression free survival in univariate and multivariate models
(Fig. S4B-C). Finally, we did not observe significant differences in the median
number of predicted immunogenic neoantigens (p = 0.44, Table S2 and Fig. S5).
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Transcriptomic data correctly assign multi-omic defined PCNSL sub-
types in FF and FFPE samples

Given the difficulty of acquiring FF tissue and of analyzing and implementing
multi-omic data into routine clinical practice, we sought to evaluate the use of
only RNA expression, obtained from FFPE or FF tissue, to categorize patients
into the four PCNSL CS (Table S3). We obtained a Cohen’s kappa coefficient of
0.90 (p < 0.001) when evaluating the accuracy of correctly assigning patients from
the multi-omic cohort. Additionally, when expanding to the FF-RNA complete
set or when using the FFPE cohort, we observed the same behaviors regarding
clinical outcome (Global p < 0.001) across molecular subtypes in both univariate
and multivariate models (Figure 5.9C and Fig. S6-S12).

Next, we evaluated the contribution of each omic-level data to outcome pre-
diction models by using Harrell’s concordance index (C-index) (Goeman, 2009).
A C-index of 0.60 (0.56 − 0.65 at CI95%) in FF and 0.71 (0.68 − 0.74 at CI95%)
in FFPE was observed using KPS and age, which are the clinical features cur-
rently used in the Memorial Sloan Kettering Cancer Center prognostic score for
PCNSL (Abrey et al., 2006). When adding different omic-data to the FF cohort
modeling, we observed higher predictive power using mRNA expression compared
to the other omic data (C-index = 0.91 ± 0.02 at CI95%). We further validated
these observations in the FFPE cohort obtaining a C-index of 0.83 (0.80 − 0.85
at CI95%) and 0.93 (0.91 − 0.95 at CI95%) when adding the mRNA level or the
TME and RNA levels to the model, respectively (Figure 5.9D). Altogether, these
results show that RNA-seq data from FFPE or FF tissue can be used to correctly
identify PCNSL subgroups.

Mutational landscape of PCNSL

We identified 32, 544 mutations in the 115 PCNSL samples analyzed (median =
3.23 mutations/Mb; range = 0.02−85.49; Table S4 and Fig. S13). We applied the
dNdScv (Martincorena et al., 2017) algorithm to identify driver mutations identify-
ing the hallmark mutations of PCNSL like MYD88 (64%), PIM1 (59%), PRDM1
(57%), GRHPR (50%), HLA-A/B/C (49%, 30%, and 13%), BTG2 (47%), CD79B
(43%), CDKN2A (28%), TBL1XR1 (25%), KLHL14 (25%), CARD11 (22%), and
HIST1H1E (18%) which are involved in BCR-TLR mediated NF-κβ signaling,
antigen presentation, cell-cycle, histone modification and B-cell differentiation reg-
ulation (Bruno et al., 2014; Chapuy et al., 2016; Fukumura et al., 2016) (Figure
5.10A, Table S5 and Fig. S14). Moreover, we detected canonical activation-
induced cytidine deaminase (c-AID) off-target mutations and found they repre-
sent 7.9% (6.8 − 8.5% at 95% CI) of SNV mutations and fall within driver genes
like PIM1 (47%), CD79B (10%), IRF4 (9%), and HIST1H1E (6%) (Table S6,
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Fig. S15-S16). Interestingly, both c-AID and non c-AID (Cosmic signature SBS9)
mutations are significantly more active at clonal stages (p = 0.007 and 0.018, re-
spectively), hence reflecting the importance of AID activity in the early stages of
PCNSL tumorigenesis (Fig. S17-18).

Regarding focal CNA, we identified significant recurrent amplifications in
18q21.33 (42%), and 19p13.13 (34%), and deletions in 6p21 (39%), 6q21 (65%),
6q27 (49%), and 9p21.3 (28%) which have a higher frequency than those observed
in systemic DLBCL (Figure 5.10B) (Chapuy et al., 2016, 2018). Furthermore, we
found additional, not previously described, amplifications in 1q32.1 (33%, IL10 ),
and 11q23.3 (26%, CD3G), and deletions in 6p25.3 (21%, IRF4 ), 22q11.22 (29%,
GGTLC2 ) and 14q32.33 (84%) that produce significant expression changes in
CD3G (FC = 1.25), IRF4 (FC = −1.03) and GGTLC2 (FC = −1.76, FDR
q-value < 0.1), respectively (Table S7, Fig. S19-S22).

Distinct genetic signatures within PCNSL subtypes and systemic DL-
BCL

Afterwards, we aimed to characterize the differences in genetic alterations across
groups for each mutation, focal CNA, and fusion. The CS4 cluster presents ten
enriched events that included mutations in SOCS1, which is a negative regulator of
the JAK-STAT3 pathway, MPEG1, PIM2, and deletion of 17q25.1 involving GRB2
that indirectly regulates the NF-κβ pathway. We observed 43 events within the
CS1 cluster including mutations involved in NF-κβ pathway (RIPK1 via 6p25.3
deletion), B-cell differentiation (IRF4 via 6p25.3 deletion, TOX, and BCL6 ), pro-
liferation via interruption of cell cycle arrest (CDKN2A/2B fusions and FOXC1 ),
and B-cell lymphomagenesis (e.g., ETV6, OSBPL10 ). Patients within the CS3
cluster exhibit 12 events from which HIST1H1E arises as the top enriched, and
has been proved to enhance self-renewal properties and disrupt chromatin archi-
tecture in B-cell lymphomas (Chapuy et al., 2016, 2018; Schmitz et al., 2018; G.
W. Wright et al., 2020; Yusufova et al., 2021). The CS2 cluster did not present any
genomic characteristic events. Furthermore, most of these distinctive events ar-
rived as early events (clonal) in tumorigenesis like IRF4 and BCL6 in CS1 (Figure
5.10C, Table S8-S9). Of note, most of these mutations were not observed in the
clusters previously defined by Chapuy et al. (e.g., 9p11.2 del; Figure 2D) (Chapuy
et al., 2018).

B-cell differentiation stages, pathways, and TME distinctions between
PCNSL molecular subtypes

We recovered and analyzed the expression of different previously curated gene sig-
natures (Schubert et al., 2018; G. W. Wright et al., 2020) (see Methods). CS1 was
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characterized by the upregulation of PI3K, glycolytic activity, and cell prolifera-
tion signatures; additionally, it presented hyperactivation of the PRC2 complex
which has been proved to inhibit MHC-I expression, through histone methylation
(Figure 5.11A, p < 0.05, and Fig. S23-S25) (Fangazio et al., 2021). Moreover, p53
activity was enriched in the CS2 cluster (Holland, Szalai, & Saez-Rodriguez, 2020;
Schubert et al., 2018). Interestingly, even though all clusters presented mutations
within the NF-κβ pathway, it was transcriptionally active only in clusters CS3 and
CS4. Additionally, MAPK and JAK-STAT pathways were upregulated in those
clusters, respectively (Figure 5.11A).

Regarding B-cell differentiation programs, CS1 expressed a mixture of GC cells
which is consistent with the 6p25.3-19q13.12 deletions, and BCL6 mutations (Fig-
ure 5.10C). On the other hand, cluster CS4 presents an enrichment in terminally
differentiated plasma cells that goes in line with BCL6 downregulation, the ab-
sence of MYC induction, and BCL6 mutations. The most heterogeneous cluster
was the CS3, presenting features of both GC and mature B-cells (plasma cells and
memory B-cells). Intriguingly, the cluster CS2 did not present any B-cell stage
enrichment but instead a lymphatic endothelial cell (LEC) gene signature (Figure
5.11A and Fig. S26-27).

Then, we aimed to describe the TME differences between subtypes by us-
ing CIBERSORTx derived immune deconvolution and B-cell lymphoma specific
TME gene signatures (Kotlov et al., 2021). CS1 cluster is immunologically “neu-
tral” meanwhile the CS2, which is immunologically depleted, exhibits expression
of vascular endothelial cells (VEC), memory resting CD4+ T-cells, monocytes,
and activation of GABA synthesis, which has been recently linked to B-cells that
inhibit CD8+ T-cells’ killer function and promote monocyte differentiation into
anti-inflammatory macrophages (Baihao Zhang et al., 2021). The CS4 cluster has
a hot-inflammatory TME due to the presence of active CD8+ T-cells and NK
cells (with high cytolytic activity score) (Rooney, Shukla, Wu, Getz, & Hacohen,
2015). Conversely, heterogeneity was again observed for the CS3 subtype, being
only inactivated macrophages M0 more significantly enriched (Figure 5.11A, Fig.
S28-S41, and Table S9-S10).

CS3 subtype is associated with meningeal infiltration to cerebrospinal
fluid

Here, we investigated if brain MRI analysis (n = 90, FFPE cohort) could provide
more insights on the molecular subtypes. We observed no brain lobe preference
between PCNSL subgroups but, in general, tumors arose less in the occipital lobe
(4/90 cases versus 86/90, p < 0.001). In addition, CS4 tumors arose more in the
isthmus of the corpus callosum (7/34 cases versus 0/56, p < 0.001). Conversely,
CS2/CS3 were more frequent in the brainstem (4/16 and 3/19 cases versus 1/55,
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p = 0.005), when compared to the other clusters. Strikingly, we found no associ-
ation with tumor size nor multiple lesions. However, meningeal infiltration of the
cerebrospinal fluid (CSF) was only found within CS3 tumors (6/16 cases versus
0/74, p < 0.001, Figure 5.11B and Table S11).

Epigenetic attributes across PCNSL subtypes

We proceeded to investigate epigenetic differences among subtypes (n = 64). The
CS2 displayed higher hypermethylation globally (p = 0.006, Fig. S42-S43). Inter-
estingly, GO analyses on differentially methylated promoters revealed B-cell dif-
ferentiation programs to be hypomethylated in CS1 but hypermethylated in CS2;
while interleukin-1 was hypermethylated in CS4 (Figure 5.12A and Table S12). Ge-
nomic region enrichment analysis on hypermethylated promoters identified strong
enrichment of binding sites for the histone/chromatin proteins H3K27me3 and
EZH2 in CS1, and NF-κβ, IRF4, and BCL6 in CS2 (Figure 5.12B, Fig. S44 and
Table S13).

From multi-omics to potential therapeutic targets

To generate an explanatory bridge between the different multi-omic layers and
ultimately potential therapeutic targets across subtypes, we integrated all multi-
omic data and evaluated their contribution to specific pathways. Even though
the hallmark PCNSL alterations targeting My-T-BCR protein supercomplex,
CD79A/B BCR subunits, TNFAIP3, RIPK1, TAB2, and the CBM (CARD11-
BCL10-MALT1) complex were relatively constant across subgroups, the NF-κβ
hyperactive group (CS4) presented more GRB2/LYN deletions and absence of
PLCG2 mutations, which either represses the BCR complex or affects the CBM
complex activation. Furthermore, NF-κβ activity could not be explained by
self-antigen-dependent chronic active BCR signaling upregulation since IgVH4-34
expression was similar across groups (Figure 5.13) (Jang et al., 2011; Phelan et
al., 2018; G. W. Wright et al., 2020). These observations suggest that CS4 and
CS3 may be more sensitive to BTK inhibitors (e.g., ibrutinib). The CS4 cluster
also presented high JAK-STAT activity and mutated SOCS1 (a JAK1 repressor),
making it potentially responsive to JAK1 inhibitors (e.g., INCB040093) (Linossi
& Nicholson, 2015; Phillips et al., 2018). Regarding antigen presentation-related
genes, we observed only monoallelic deletions in HLA-A, B2M, and CD58 but
not in HLA-B or HLA-C. Moreover, the absence of PRC2 complex activity and
presence of MHC-I and checkpoint molecules expression indicate a potential use of
immune checkpoint inhibitors (ICI) for CS4. On the other hand, EZH2 inhibitors
(e.g., tazemetostat) in combination with ICI could potentially increase MHC-I
expression and immune detection in CS3 (Dersh et al., 2021). Interestingly, the
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CS3 cluster is enriched with HIST1H1E/C mutations which have been recently
demonstrated to confer enhanced fitness, and self-renewal properties to B-cells
(Yusufova et al., 2021).

Additionally, we observed a higher frequency of cases with genetic alterations
involved in the cell cycle for CS1 (97%, p < 0.001, e.g., CDKN2A/2B fusions);
hence, cyclin D-Cdk4,6 plus PI3K inhibitors could be beneficial for CS1 patients.

Despite not presenting enriched genetic signatures, the CS2 cluster may be
potentially susceptible to inhibition of the TFs IRF4 (e.g., lenalidomide), SPIB,
and MEIS1 (e.g., MEISi-1), and/or inhibition of GAD67 (G. W. Wright et al.,
2020; Baihao Zhang et al., 2021).

5.3.4 Discussion
Identifying groups of patients with shared biologic and prognostic markers is ex-
tremely challenging mainly due to high genetic, phenotypic and TME hetero-
geneity. We identified four PCNSL molecular subtypes with specific oncogenic
pathways, gene expression phenotypes, methylation profiles, TME, tumor loca-
tion, outcome, and potential therapeutic targets (Figure 5.13). Moreover, our
study gives plausible explanations to the PCNSL response heterogeneity based on
finding that many previously PCNSL characteristic features, based on MCD or C5
DLBCL subtypes (Chapuy et al., 2018; G. W. Wright et al., 2020), are cluster-
specific (C1-C4) and not shared across all PCNSL tumors. For example, PCNSLs
(MCD/C5 DLBCLs) are mainly characterized by mutations leading to constitu-
tive NF-κβ activation but this was only observed, transcriptionally, for CS4 and
CS3; however, the outcome for these clusters is very different mainly due to tumor
location, TME, and B-cell differentiation program differences.

Moreover, we propose different tailored treatments according to the pathway
activation of each CS, suggesting, for example, that CS4 might be more likely to
respond to ICI treatment.

On top of this and given the importance of routine clinical implementation,
we propose RNA-based Brain Lymphoma Profiler (RBraLymP), which uses gene
expression data from either FFPE or FF tissue, to identify the PCNSL molecu-
lar subtypes associated with multi-omic features. The RBraLymP algorithm is
publicly accessible at https://github.com/iS4i4S/PCNSL-RBraLymP such that
existing and new therapy efforts can be directed to the most appropriate patients.

In summary, our multi-omics analysis builds on the current classification of
DLBCL by the addition of the molecular heterogeneity within PCNSL that may
inform on its pathogenesis. Our study discovered a link between genetic and
neoplastic signaling pathways, pointing to potential treatment targets. Selecting
treatment for PCNSL based on individual genetic changes is not desirable from
the standpoint of precision medicine, as it is likely that combinations of genetic

https://github.com/iS4i4S/PCNSL-RBraLymP
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aberrations influence therapeutic response. The genetic subgroups we define could
serve as a conceptual foundation for developing targeted therapeutic approaches
for these poorly understood and with high mortality malignancies.
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Figure 5.9 (preceding page): Multi-omic data integration re-
veals PCNSL molecular subtypes with clinical outcome implica-
tions. Panel A shows the resulting consensus heatmap based on 10 in-
tegrative clustering algorithms to define the clusters (CS1 to CS4) where
each of the 10 algorithms uses cluster of clusters analysis to integrate six
levels of omic information (y-axis) in the order: i) mRNA expression (2,087
variables), ii) mutations (31 variables), iii) CNA (40 variables), iv) fusion
transcripts (43 variables), v) TCR/BCR clonotypes (19 variables), and vi)
immune cell fractions (22 variables). Additional genomic and clinical fea-
tures are annotated at the top. Panel B shows Kaplan-Meier estimates of
overall survival among patients belonging to each cluster that resulted from
the Consensus cluster of clusters analysis. Panel C shows Kaplan-Meier es-
timates of overall survival among patients belonging to each cluster using an
FFPE validation cohort (n=93). Age and KPS multivariate models for both
cohorts are shown in Fig. S4-S13 in Supplementary Appendix 1. Panel D
shows the Harrell’s concordance index (value annotated at top of each bar)
obtained when evaluating each omic-level data to outcome prediction models
using Cox proportional hazards regression. The prediction was overfit when
using ALL omic data on the FF cohort. Observations were validated (same
direction and effect) using RNA and TME data from the FFPE cohort.
Error bars indicate the 95% confidence intervals.
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Figure 5.10 (preceding page): Distinct genetic signatures within
PCNSL subtypes and systemic DLBCL. Panel A shows the number
of affected samples within the top driver genes (identified by dNdScv algo-
rithm) in the cohort of 115 PCNSL patients. Barplots are filled according
to mutation type (missense, nonsense, splice site, frameshift, multihit, or
other) or CNA events (gain, deletion, or deep deletion). The frequency of
affected samples within the cohort is annotated at the top of each barplot
for each driver gene. Panel B shows the GISTIC2.0-defined recurrent copy
number focal deletions (blue, left) and gains (red, right) as mirror plots in
DLBCL (n=296 from Chapuy et al., 2018) and PCNSL (n=108 from this
study). Chromosome position is on the y-axis, and significance is on the
x-axis. CNAs are labeled with their associated cytoband/arm followed in
brackets by the frequency of the alteration (DLBCL | PCNSL). Panel C
shows the landmark genetic alterations for each PCNSL subtype (boxed for
each cluster) identified by a one-sided Fisher test (event within-cluster vs
outside-cluster) and ranked by significance (FDR corrected q-value ≤ 0.1
selected, red line, bar plot to the right). The left bar plot shows the relative
contribution of temporal acquisition for each alteration event (only within
the enriched cluster) to indicate how early or late during tumorigenesis the
event might have happened. Additional genomic and clinical features are
annotated at the top. COO, cell of origin; F, female; M, male; DEL, dele-
tion; AMP, amplification; Mut, mutation; Fusion, fusion transcript. Panel D
shows a mirror bar plot with the frequencies of recurrent genetic alterations
in PCNSL’s clusters (n=85) compared to those in DLBCL’s clusters (n=304,
Chapuy et al., 2018). Asterisks denote the known driver events in DLBCL
and colors the alteration type (mutation = black; gain = red; loss = blue;
structural variant = green).
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Figure 5.11 (preceding page): Phenotypic and tumor location
distinctions of the multi-omic defined PCNSL subtypes. Panel A
shows a heatmap with either gene signature activity (measured by GSVA)
or immune cell proportions (CiberSortx deconvoluted) across molecular sub-
types. P-values indicate higher expression of the colored group when com-
pared against the others (Wilcoxon-test, left side of plot). FRC, Fibroblastic
reticular cells; FDC, follicular dendritic cells. Panel B shows the tumor lo-
cation of 90 PCNSLs (FFPE cohort) in the human central nervous system
grouped by molecular subtype where the number of cases is indicated within
the circles. Tumors occurring in midline locations are depicted in the sagittal
view (left panel), meanwhile, tumors occurring in the cerebral and cerebellar
hemispheres are depicted in the exterior view (right panel). P-value refers
to a one-sided Fisher test (event within-cluster vs outside-cluster).
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Figure 5.12 (preceding page): Epigenetic attributes across PC-
NSL subtypes. Panel A shows GO enrichment analysis on DMP across
subtypes where the log(OddsRatio) is annotated next to its associated p-
adjusted value. Panel B shows the locus overlap (LOLA) region set enrich-
ment analysis for hypermethylated promoters across the four PCNSL sub-
types. The CS3 group is characterized by enrichment of H3K27me3 probably
resulting from the high PRC2 complex transcriptomic activity, whereas the
CS2 by enrichment of BCL11A, NF-κβ, and IRF4 which is in line with the
observed low transcriptomic activity of the related targets (Figure 3A). X-
axis presents the targets followed by the database. P-values were calculated
using a two-sided Fisher’s exact test and then adjusted for multiple testing
by the FDR method. The complete lists of GO and LOLA enrichments
results are provided in Tables S12 and S13.
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Figure 5.13 (preceding page): From multi-omics to potential
therapeutic targets. Shown is a schematic representation summarizing
the major molecular findings and proposed potential therapeutic targets.
Contribution of each molecular subtype to the indicated alteration where
color bar width indicates the prevalence of each subtype (Mutational alter-
ations section). Asterisks indicate if a genetic alteration is enriched in any
CS subtype (related to Figure 2C). Arrows indicate transcriptional gene sig-
nature activity where the height indicates the relative up or downregulation
(according to Figure 3A). DEL, deletion; AMP, amplification; Mut, muta-
tion; SV refers to fusion transcripts. NF-κβ activity could not be explained
by self-antigen-dependent chronic active BCR signaling upregulation since
IgVH4-34 expression was not significantly different across groups. The IgVH
regions more expressed in CS4 (p < 0.05) were the V1-18, V1-46, and V3-9 that
have been associated with more differentiated B-cell stages; meanwhile, the
naive-transition stage-related, V3-43 and V4-30-2 regions, were upregulated in
CS3. HIST1H1E/C mutations confer self-renewal properties to B-cells and
induce shifts from compartment B to compartment A chromatin. Analyses
for determining the TCR/BCR diversity, the immunoglobulin heavy-chain
variable (VH) and constant regions expression, and the master regulators
(MEIS1, IRF4, and SPIB) listed as potential CS2 targets are provided in
Supplementary Appendix 1.



Chapter 6

General discussion and conclusion

6.1 General discussion
The major focus of this thesis has been to identify and characterize molecular
PCNSL subtypes with shared pathogenesis which will ultimately give plausible
explanations to the PCNSL response heterogeneity. While Chapter 5.1 served to
this major focus by covering HLA structure and diversity, which has been proved
to be constantly disrupted (e.g., by deletions or mutations) in PCNSL (Chapuy
et al., 2016, 2018; Schmitz et al., 2018); Chapter 5.2 helps by developing and
validating a code to identify c-AID mutations which are fundamental in B-cell
biology and B-cell lymphomagenesis (Chapuy et al., 2018).

HLA structure/diversity and genetic susceptibility in PCNSL and other
B-cell NHLs

B-cell NHLs’ (including PCNSL) risk associations were initially attributed to fam-
ily history of the disease, inflammation, and immune components including HLA
genetic variations; however, recent GWAS have broad more information into the
subject. In Chapter 5.1, I review the HLA structure and its diversity and summa-
rized all the original articles showing evidence of genetic variations on five NHL
subtypes (DLBCL, FL, CLL, MZL, and PCNSL).

In the literature review article, we showed that the HLA variants are the most
studied within the B-cell NHL context since that region is critical for innate and
adaptive immune responses. Interestingly, HLA status has been proved to be a risk
factor in B-cell NHL by promoting immune escape, this has also been observed
specifically for PCNSL (Chapuy et al., 2016, 2018; Din et al., 2019; Moore et
al., 2020; Schmitz et al., 2018; Zhong, Cozen, Bolanos, Song, & Wang, 2019).
As reviewed in Chapter 2.3.2, antigens/neoantigens production is an important
tumor escape mechanism from immune surveillance, this can be disrupted as a
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consequence of HLA homozygosity as seen in most of the reviewed lymphomas
(including PCNSL) (Mueller & Machulla, 2002; S. S. Wang et al., 2018).

Moreover, specifically speaking of PCNSL, the only study evaluating associa-
tions between genetic variants and PCNSL risk, was done by our group in a French
cohort (Labreche et al., 2019). Though this study found some additional variants
associated with PCNSL risk, it is clear that additional studies are needed to better
elucidate PCNSL pathogenesis.

Implications of AID-related mutations at pan-cancer level

As reviewed throughout this thesis (see Chapters 2.1.1 and 2.1.2), AID off-target
activity is in the context of B-cell biology and lymphomagenesis. In this study,
which is the largest to date, I integrated more than 50,000 bulk level samples and
2.5 million cells at single-cell resolution across 80 tumor types (including B-cell
malignancies) and different data levels. The main objective, within the article, was
to thoroughly describe the oncogenic and clinical implications of AID off-target
mutations at pan-cancer scale; however, the major goal of this section regarding
this thesis was to develop and validate the code to target the c-AID mutations.

Firstly, we demonstrated that AICDA expression is only present in normal B-
cells by using a series of single-cell RNA-seq studies; nevertheless, this changes after
malignant transformation since we observed its expression across different cancer
types at single-cell resolution. Next, we evaluated our code for tracking c-AID
mutations using tetranucleotide motifs by firstly, applying it to a series of hemato-
logical cancers and finding already reported AID targets (e.g., PIM1, HIST1H1C ),
secondly, evaluating that our code does not identify the same mutations as other
COSMIC somatic signatures, and finally, ruling out that the observed AID muta-
tions were generated by chance. Moreover, we also described, as expected, that
the frequency of c-AID mutations is higher in hematological cancer compared to
others.

After validating the code, we described the landscape and implications of c-AID
mutations. We found that c-AID activity occurs mainly during the transcription
of its off-target genes and is increased in MSI tumors. Additionally, we showed
that in some cancer types AID promiscuous activity aims for least-positive selection
hotspots that synergize with previous stronger hotspot mutations (minor mutation
PIK3CA E726, especially present in SKCM and BRCA). Finally, we demonstrated
that the AID-related fraction of mutations is an independent prognostic value to
ICI and presented different analyses to explain such findings.

The recompilation of all the public datasets along with the findings and the
code to detect c-AID mutations, provide the basis for testing the potential role of
c-AID mutations in hematological and non-hematological cancers. However, due
to the bioinformatic nature of the study, several biological validations of the results
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have to be performed.

Multi-omic data integration reveals PCNSL molecular subtypes with
shared pathogenesis and clinical outcome implications

To the best of our knowledge, the study presented in Chapter 5.3 represents the
largest multi-omic study of PCNSL conducted to date. Our study builds on the
current classification of DLBCL, the MCD/C5 DLBCLs (see Chapter 2.2), by
the addition of the molecular heterogeneity within PCNSL that may inform on
its pathogenesis and ultimately give potential therapeutic targets. Here, I found
four PCNSL subtypes with shared multi-omic features such as distinct oncogenic
pathways, gene expression phenotypes, methylation profiles, TME, and clinico-
radiological characteristics.

Our findings help to elucidate the highly heterogeneous response in PCNSL by
connecting different multi-genomic layers with the clinicOmic information. Here
we showed that the CS4 group shares a constitutive NF-κβ activation, which is
one of the main features of the MCD or C5 DLBCL subtypes (Chapuy et al.,
2016, 2018; Schmitz et al., 2018; G. W. Wright et al., 2020), with the CS3 group,
however, their clinical outcomes in both OS and PFS are totally opposite. We
showed that such variations are mainly due to the more aggressive tumor locations
for CS3 and a hot TME for CS4. Regarding the potential therapeutic targets, even
though both groups could be potentially more sensitive to BTK inhibitors (e.g.,
ibrutinib), the CS4 group could also benefit from JAK1 and immune checkpoint
inhibitors either because it presents high JAK-STAT transcriptional activity or
high MHC-I expression with the absence HLA biallelic deletions. Moreover, the
CS3 group could also benefit from ICI but only after exposure to EZH2 inhibitors
since it could restore its missing MHC-I expression.

Interestingly, the CS1 and CS2 PCNSL subtypes were largely hypermethylated
when compared to the others, which has been previously associated with a cold
TME (Kotlov et al., 2021), as observed transcriptionally. For the CS1, the high
PRC2 complex activity and proliferation (driven by genetic alterations involved in
the cell cycle) were directly “seen” in its hypermethylator phenotype. On the other
hand, the “disrupted” B-cell differentiation programs observed transcriptionally
in CS2 were corroborated at the epigenetic level. We proposed that the CS1
immune cold group could be responsive to cyclin CDK4 and CDK6 plus PI3K
inhibitors; while the CS2 group may be potentially susceptible to inhibition of the
TFs IRF4 (e.g., lenalidomide), SPIB, and MEIS1 (e.g., MEISi-1), and/or inhibition
of GAD67.

Regarding c-AID off-target activity, even though we did not observe any dif-
ference in the global number of c-AID mutations across the molecular subtypes,
we showed that globally (using all the PCNSL cohort) both c-AID and non c-AID
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(Cosmic signature SBS9) mutations occurs at early stages of PCNSL tumorigene-
sis, thus reflecting its importance for PCNSL pathogenesis.

Since acquiring FF tissue for PCNSL is not routinely performed in the clinics,
we validated our results in an additional FFPE cohort. Additionally, we developed
RBraLymP (RNA-based Brain Lymphoma Profiler), which uses gene expression
data from either FFPE or FF tissue, to identify the PCNSL molecular subtypes
associated with multi-omic features. We made the code publicly accessible to
incentive researchers around the world directing new therapy efforts to the most
appropriate PCNSL patients.

6.2 General conclusion
The understanding of the molecular and clinical response heterogeneity in PCNSL
had not been properly addressed since it was built on the current classification
of DLBCL which consisted of a low number of PCNSL samples. The collective
findings of my thesis amend this gap by linking the integrated multi-omic features
within each molecular PCNSL subtype to potential treatment targets. Moreover,
the RNA-based algorithm, RBraLymP, can facilitate future efforts for developing
and evaluating targeted therapeutic approaches for these poorly understood and
highly deadly malignancies.

Finally, during my thesis, I contributed to the bioinformatic analysis on differ-
ent glioblastoma studies which are listed in APPENDIX 2.

https://github.com/iS4i4S/PCNSL-RBraLymP
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Supplementary Appendix

Methods

Patient samples

A total  of  147 biopsies  from treatment-naive  fresh-frozen (FF;  discovery  cohort)  and 93

formalin-fixed,  paraffin-embedded  (FFPE;  validation  cohort)  tumor  samples  from

immunocompetent Epstein-Barr negative PCNSL were recollected from different hospitals

across France (see Table S1). All patients had a complete systemic evaluation to rule out

secondary  central  nervous  system  (CNS)  diffuse  large  B-cell  lymphoma  (DLBCL).

Diagnoses  were established  at  the  reference  institution  by  specialized  pathologists.  We

obtained appropriate consent from relevant institutional review boards, which coordinated

the consent process at each tissue-source site; written informed consent was obtained from

all participants. The Pitié Salpêtirère Hospital ethics committee approved the study (Ile-de-

France  VI,  N°  DC-2009-957)  and  CNIL  (DR-2013-279).  All  patients  received  high-dose

methotrexate (HD-MTX) regimens according to French national “Lymphome oculo-cérébral,

LOC”  PCNSL  network1.  Moreover,  19/134 (14.2%;  FF cohort)  and  24/93  (25.8%;  FFPE

cohort) received intensive chemotherapy with autologous stem cell rescue (IC-ASCR). 

Summary  of  clinical  data  results:  The  median  age  in  both  the  FF  cohort  (68;  95%

confidence  interval  [CI]=66-72)  and  the  FFPE  cohort  (median=67;  CI95%=63-70)  is  not

significantly different (p=0.24; Wilcoxon-test). The male/female proportions in both cohorts

resulted in the same 49/51%; as well as the median Karnofsky Performance Status (KPS)

(70;  CI95%=60-70).  There  was  no  significant  difference  between  cohorts  in  either  overall

survival (OS; 19.9 months versus 22.4 months; p=0.274; Wilcoxon-test) or progression-free

survival (PFS; 9.7 months versus 10.9 months; p=0.522; Wilcoxon-test). See Table S1. 
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Immunohistochemical analysis

FFPE  tumor  tissues  from  both  FF  and  FFPE  cohorts  were  available  to  perform

immunohistochemistry on 4-μm thick sections. In brief, sections were deparaffinized andm thick sections.  In brief,  sections were deparaffinized and

antigen retrieval  was carried out by microwaving.  Sections were then incubated with the

working dilution of each antibody raised against the following proteins: CD20, CD10, BCL6,

CD3, Ki67, and MUM1/IRF4 (see Table S1).

In situ hybridization for EBV

Epstein-Barr  virus  (EBV)-encoded  small  RNAs  (EBERs)  EBER-in  situ  hybridization  was

performed in a routine  manner  for  detection  of  EBER1 and EBER2 small  nuclear  EBV-

encoded RNA (800-2842, Ventana Medical Systems, Roche Diagnostics GmbH, Mannheim

Germany), as previously described on FFPE tissue2. 

Multi-omic data integration for PCNSL molecular subtyping 

We used six levels of omic-data (85 samples) for the identification of four PCNSL molecular

subtypes with clinical implications including expression data from mRNA, somatic mutations,

copy number aberration (CNA) events (per chromosomal arm),  genes involved in fusion

events,  TCR/BCR  clonotypes,  and  immune  cell  proportions  (obtained  by  mRNA  based

immune  deconvolution).  Expression  data  were  first  transformed  to  variance  stabilizing

transformation (VST) counts representing 35,995 genes which were reduced to 2,087 genes

by evaluating the univariate Cox regression effect on OS (p < 0.05). Immune cell fraction

(values 0-1, obtained by Cibersortx)3,4 was reduced from 22 variables to five by univariate

Cox regression effect on OS. T-cell receptor (TCR) / B-cell receptor (BCR) clonotypes had a

total of 166 variables, including the number of unique B/T clonotypes; IGHV, IGHK, TRBV,

TRAV locus gene usage and different repertoire diversity estimator indexes, that were first z-

scored and then reduced to 19 variables by univariate Cox regression. Average segments

per chromosome arm were calculated using svpluscnv R package (v0.99.1)5. For the gene
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mutation  matrix,  we  considered  mutations  if  classified  as  damaging  according  to

PolyPhen/SIFT  predictions6–9 (‘‘probably_damaging’’/‘‘possibly_damaging’’  or

‘‘deleterious’’/‘‘deleterious_low_confidence’’, respectively); we additionally added  CDKN2A,

HLA-A, and B2M gene deletion status since it is important in lymphomas. mRNA expressed

fusion partners were separated by the originating genes (independently of the direction) and

a binary fusion matrix was constructed with 1 if the sample expressed a fusion in the gene or

0 otherwise. We reduced the gene mutation matrix from 6,061 variables to 31 by mutation

frequency higher than 10%; meanwhile, the fusion matrix was reduced from 1,276 to 43 by

filtering if present in at least 3 samples. The most appropriate cluster number was obtained

by clustering  prediction  index  (CPI)  and  Gaps-statistics  analyses  (Fig.  S1).  High  robust

clustering was obtained by consensus clustering (Fig. S2  from main article) resulting from

10 different multi-omics clustering algorithms (iClusterBayes,  moCluster,  CIMLR, IntNMF,

ConsensusClustering, COCA, NEMO, PINSPlus, SNF, and LRA)10–19. Silhouette score20 was

calculated to measure sample similarity across the detected molecular subtypes (Fig. S3).

Most of the above analyses are integrated in the R package “MOVICS”21. 

Summary of clustering results. Even though the CPI and Gaps-statistics analyses showed

a  higher  average  statistical  value  at  3  or  6  number  of  subtypes,  the  best  consensus

ensembles and average silhouette width results (Fig. S2-S3) were obtained using a multi-

omic cluster number of 4. 

Summary  of  survival  results  (FF  multi-omic  cohort).  We  identified  four  significant

clusters (CS1 to CS4) that display different clinical  outcomes in OS (Global log-rank p <

0.001, Figure 1B from main article). These observations remained significant after adjusting

by age and KPS in  Cox  proportional  hazard  ratio  multivariate  models;  for  example,  the

cluster CS3 was independently associated with the worst prognosis (Hazard ratio [HR] =

17.98; CI95% = 2.3-140.3; p = 0.006; Fig. S4A). Moreover, the four PCNSL subtypes also

display a distinct global progression-free survival (PFS; global log-rank p = 0.045). However,
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unlike  OS,  the  only  group  presenting  a  clear  difference  was  CS4  (median=42  months;

CI95%=16.6-66.8) when compared against the other subtypes with univariate and multivariate

models (Fig. S4B-C and Table S2).

Summary of clinical data results (FF multi-omic cohort).  The tumor mutational burden

(TMB) and the fraction of genome altered (CNA losses and gains) was significantly inferior

only in CS2 compared to the others (median=1.72 mutations/Mb, p=0.03), but we did not

observe  significant  differences  in  either  the  median  number  of  predicted  immunogenic

neoantigens, fraction of canonical-AID (c-AID) mutations or number of patients receiving IC-

ASCR (p=0.44, p=0.25, and p=0.32; Table S2 and Fig. S5).

Correction of paraffin fixation process degradation from FFPE RNA-seq data

Given  that  the  use  of  sequencing  data  from large  biorepositories  of  FFPE tissues  can

alleviate the limited availability of FF samples and also facilitate routine clinical diagnostics,

we have performed supplemental analysis to determine whether 3’ RNA-seq data obtained

from FFPE PCNSL samples were comparable, to RNA-seq and WES data from paired FF

samples from the same tumor (n=5),  in terms of  mapping quality,  gene expression,  and

activated B-cell  (ABC) or  germinal  center B-cell  (GCB) molecular  subtyping (see Cell-of-

origin assignment section). We evaluated these terms using either the FFPE RNA-seq data

directly or after a correction of the degradation due to the fixation process (using DegNorm

software)22.

Only  3’  RNA-seq samples  (FFPE)  were subjected to  trimming  in  which  the quality  and

mapping of the reads were assessed before and after using the program FASTQC23 and

STAR  (v2.7.2a)24,  respectively.  Cutadapt  (v1.18)25 allowed  trimming  poly  (A)  sequences

having a length from 10-19 (mismatch error of 10%) at the 3' site only,  then we filtered

sequences  with  less  than  20  bases  length  to  avoid  alignment  error  during  subsequent

analysis. This process allowed us to visualize the data and was used to confirm the good

quality of  the reads before usage.  RNA fastq files were aligned to the human reference
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genome (GRCh38, release 97) using  STAR (version 2.7.2a) for the remaining downstream

analyses. For FF samples (pair-ended sequences), only the forward (R1) fastq files were

used for  alignment  to  reduce the batch effect.  Mapping parameters were obtained from

STAR outputs and compared for  each FF-FFPE pair  using Fisher's  exact  test.   Median

transcript  integrity  number  (TIN)  across  all  the  transcripts,   gene  body  coverage,  and

distribution of mismatches across reads were assessed with RSeQC26. TIN means between

conditions were compared using a t-test. Then, read counts from FFPE data were divided

into two sets: i) read counts obtained directly from aligning with STAR, and ii) corrected read

counts obtained after adjusting degradation using DegNorm22 (inputs are the resulting bams

from STAR). Correlation plots within each FF-FFPE pair (FFPE corrected and not corrected

for  degradation)  were  done  using  log2 VST  transformed  reads.  Principal  Component

Analysis (PCA) and covariance heatmap were performed using the ‘plotPCA’ function of the

DESeq2  package  (default  parameters)27 or  using  ComplexHeatmap28 (default  Euclidean

distance).

Summary of results. First, we looked at the alignment efficiency between 3’ FFPE RNA-seq

data and the FF RNA-seq data. We observed that the percentage of correctly mapped reads

was not significantly different in the samples (except for sample 7833, Fig. S6A). Next, we

evaluated the RNA-seq reads coverage over the gene body (Fig. S6B) and found all FFPE

samples having higher degradation (lower coverage) towards the 5’ region and up to the 75

percentile;  on the other hand, FFPE samples had low coverage up to the 15 percentile.

Furthermore,  when we looked at  the mismatch profiles (Fig.  S6C),  we observed a clear

higher number of G>A and C>T transitions for the FFPE samples, indicative of chemical

artifacts  caused  during  the  paraffin  fixation  process.  Furthermore,  sample  7833_FFPE

shows a completely different pattern indicating, along with the found low unique mapping

reads and total reads, that this sample was highly degraded. 

Having found that the fixation process produces a high number of artifacts, we sought to

apply an RNA-seq normalization pipeline to correct transcript degradation bias. To do so,

187



first, we performed Spearman correlation analyses using the VST gene read counts between

the FF-FFPE pairs with either the uncorrected FFPE data or the corrected FFPE data. The

not corrected FFPE data showed a median Spearman Rho of 0.66 while the corrected data

had a median of 0.84 (p-value < 0.05, Figure S7); furthermore, as expected the sample 7833

had the lowest correlation value. Then we evaluated if the corrected/uncorrected data could

be used to correctly assign the Cell-of-origin (COO, ABC or GCB subtypes) of each tumor

and found that all  samples with both data types can be correctly assigned (Figure S8A).

Finally, by using PCA analysis we found that FF and FFPE samples clustered together when

applied to uncorrected FFPE data. Interestingly, when correcting for degradation FF-FFPE

pairs are clustered together (Figure S8B-C). In summary, we showed that DegNorm can

correct most of the degradation signal from the FFPE process in PCNSL samples and that

mismatch profiles can help discriminate against highly degraded samples. 

Using transcriptomic data for assigning multi-omic defined PCNSL subtypes in FF

and FFPE samples

Top 100 unique upregulated biomarkers (no overlapping across subtypes, Table S3) were

identified for each molecular subtype (Deseq2 package v1.32.0) with a threshold of adjusted

p-value < 0.05. For extrapolating molecular classification using one level omic-data, on one

hand, these biomarkers were further used to apply the nearest template prediction (NTP)29

method on mRNA expression data coming from a validation FFPE cohort  (n = 93,  data

previously  corrected  for  paraffin  fixation  process  degradation);  on  the  other  hand,  the

partition around medoids (PAM) method was applied on mRNA coming from the complete

set of FF-RNA (n = 123)29.

Summary of results.  A Cohen’s kappa coefficient of 0.90 was obtained (p<0.001) when

evaluating the accuracy of correctly assigning patients from the multi-omic cohort (Fig. S9).

Next, we assigned the corresponding cluster subtype to the complete set of FF-RNA (n=123)

finding 55 CS1, 26 CS2, 18 CS3 and 24 CS4 PCNSL subtypes which showed the same
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clinical  outcome behaviors. Specifically,  they exhibited a global log-rank p-value of 0.002

(Fig.  S10A)  from which patients  in  the CS4 had the longest  OS (median=24.3  months;

CI95%=16.5-59.9) and those in the CS3 had the shortest (median=13.8 months; CI95%=5.1-

16.2).  Such  observations  remained  significant  after  adjusting  by  age  and  KPS  in  Cox

proportional hazard ratio multivariate models (Fig. S10B). Assigning a molecular subtypes

using FFPE-RNA data was also possible in a cohort of 93 samples (Fig. S11), we found 21

CS1 and CS2, 16 CS3, and 35 CS4 PCNSL subtypes. Again, CS4 patients showed to have

the  longest  survival,  followed  by  CS1,  CS2  and  finally  CS3  at  both  univariate  and

multivariate models (Figure 1C from main article and Fig. S12A). Additionally, in this cohort

the  CS4  subtype  was  also  independently  associated  with  a  better  response  when

considering PFS in univariate and multivariate models (Fig. S12B-C).

Whole exome sequencing (WES)

DNA extraction and Exome sequencing

DNA  was  extracted  using  Blood  &  Cell  culture  DNA  mini  kit  (Qiagen)  following  the

manufacturer's instructions. WES libraries were generated using the KaPa hyperprep kit in

combination with  the HyperExome capture kit  (Roche).  Libraries were sequenced on an

illumina Nova-seq 6000 sequencing system using 2x100 bp paired-end sequencing (43 Mb

couverture).

Alignment and quality control

Preprocessing  of  read  alignments  for  analysis  was  done  using  Broad  Institute’s  data

processing  pipeline  with  Picard’s  tools  30.  Fastq  data  were  aligned  using   BWA-MEM31

(version 0.7.17) with the same reference genome (GRCh38). The resulting aligned reads

were processed to add read groups, sort, mark duplicates, create an index, realign around

known indels, reassign mapping qualities, and recalibrate base quality scores 32–34. 

Mutation calling
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Variant calling was done using five different software (MuTect2 v4.1.9.0, Strelka2 v2.9.10,

VarScan2  v2.4.4,  Lofreq  v2.1.3.1,  and  SomaticSniper  v1.0.5.0)32,35–38,  then  for  common

variants between all software were picked using SomaticSeq (v3.5.1)39, and finally the indel

and SNV vcfs were merged with GATK32. 98 samples were tumor-normal pairs from which a

panel  of  normals  (PON,  GATK function  from version 3.8.1.0)32 was constructed to  filter

germline variants from this set or the Tumor-only samples (n=17). Mutations were annotated

using Variant Effect Predictor (VEP, v98.2)40, then transformed into a mutation annotation

format (MAF) file and annotated with CNA data using facetsSuite (v2.0.8)40,41. The annotated

MAF was further analyzed with maftools42. 

Summary of results.  We identified 32,544 mutations in the 115 PCNSL samples analyzed

of which 80.6% were nonsynonymous exonic variants (median=3.23 mutations/Mb; range =

0.02-85.49).  Samples  exhibited  more  deletions  (median=1,045;  range=0-4,863)  than

amplifications (median=285; range=0-959; (Table S4 and Fig. S13).

Attributing mutations as driver genes

Positively-selected  genes  were  obtained  by  calculating  dN/dS  likelihood  ratios  (dNdScv

package)43 that quantifies the mode and strength of selection by comparing synonymous

substitution  rates  (dS)—assumed  to  be  neutral—with  nonsynonymous  substitution  rates

(dN).  This  analysis  is  done  through  a  negative  binomial  regression  modeling  of  the

background mutation rate of each gene using distinct genomic covariates including variation

in mutation density across genes, context-dependent substitutions (mutational signatures),

transcriptional strand bias, chromatin state, expression and replication time. Additionally, we

removed ultra-hypermutator samples and extremely mutated genes per sample,  to avoid

loss of sensitivity. Genes were considered as drivers (n = 466) if having q-values < 0.001

(Benjamini-Hochberg’s multiple testing correction of p-values) 43.

Summary  of  results.  We  identified  driver  mutations,  on  the  one  hand,  the  hallmarks
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mutations of PCNSL like MYD88 (64%), PIM1(59%),  PRDM1 (57%), GRHPR (50%), HLA-

A/B/C (49%, 30% and 13%),  BTG2 (47%),  CD79B (43%),  TOX (39%),  OSBPL10 (33%),

IRF4 (30%),  CDKN2A (28%),  CD58 (27%),  ETV6 (26%),  MPEG1 (26%),  TBL1XR1 (25%),

KLHL14 (25%), BTG1 (23%), KMT2D (23%), CARD11 (22%), and HIST1H1E (18%) which

are  involved  in  BCR-TLR  mediated  NF-kB  signaling,  antigen  presentation,  cell-cycle,

histone modification and B-cell differentiation regulation (Fig. S14)44–46.

Tracking AICDA-related mutations

We used a code to detect AID-related mutations over *wrCy/rGyw* (+/- strand, where "W"

stands to either adenine or thymine, "R" to purine, and "Y" to pyrimidine) motifs, giving a

total of 8 motifs per strand (positive-strand = AACC, AACT, AGCC, AGCT, TACC, TACT,

TGCC,  TGCT;  negative-strand  =  TTGG,  TTGA,  TCGG,  TCGA,  ATGG,  ATGA,  ACGG,

ACGA), and its enrichment around a 60 bp flanking sequences (the code allows other bp

windows for the user). Mutations were tagged as AICDA or not AICDA if overlapping or not with

the mutations found in the output MAF after applying the function, as previously described 47.

Summary of  results.  We detected c-AID off-target  mutations and found they represent

7.9% (6.8-8.5% at  95% CI)  of  SNV mutations  which  is  higher  than  those  provoked  by

APOBEC (p < 0.001, Wilcoxon-test, Fig. S15). Regarding their distribution, they fall within

driver  genes  like  PIM1 (47%),  OSBPL10 (22%),  BTG1 (17%),  KLHL14  (15%),  CD79B

(10%), IRF4 (9%), and  HIST1H1E (6%) (Table S6 and Fig. S16). Furthermore, mutations in

PIM1 and KLHL14 were found to be consecutive with an average mutational distance ≤1 Kb

in some samples (named as Kataegic target in Fig. S16).

Attributing mutations to mutagenic processes

Mutations previously tagged as not AID were subjected to signature attribution to 46 (we

excluded the single base substitution (SBS) signatures: 27, 39, 43, 45-60 since they are

attributed to sequencing  artifacts)  of  the  65 COSMIC mutational  signatures  (v3.0)  using
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Palimpsest  package  with  default  parameters  48–50.  Signatures  were  initially  decomposed

using non-negative matrix  factorization with the Brunet  algorithm51 to  extract  the optimal

number of signatures and then compared to the COSMIC signatures. To avoid over-fitting,

the resulting signatures not showing a cosine score > 0.6 were removed and mutations were

re-fitted using the remaining signatures49. Furthermore, signatures proportions per sample

were re-calculated adding the number of previously identified AID mutations to the signature

data. For double base substitutions (DBS) and indels (ID), signatures not contributing with at

least one mutation within 50% of the samples per tumor type (Median-Signaturen < 1) were

removed and mutations were re-fitted using the remaining signatures. CNV signatures were

derived  using  the  sigminer  R  package  (v2.0.4)52 where  the  number  of  signatures  was

determined using the indication of stability from the cophenetic correlation coefficient plot

(performing 30 runs); furthermore, samples were clustered into four different groups based

on the consensus matrix resulting from multiple NMF runs where each group is specified by

the  most  enriched  copy  number  signature  derived  previously52.  The  attribution  was  run

separately for hypermutated samples (n = 18).

Kataegic events

Kataegic events were identified using the KataegisPortal (v1.0.3)53 and defined as having

four or more consecutive mutations with an average mutational distance ≤1 Kb, excluding

immune hypermutated regions53. Moreover, if the event was produced by only AID mutations

it was classified as an AID kataegic event.

Timing of mutations and copy number gains

Timing categorization of mutations and copy number gains was done only for samples from

which allele-specific integer copy numbers, ploidy, and purity estimates were available (n =

115). We used MutationTimeR (v1.00.2; n bootstraps = 200) as previously described54, in

brief  for  each  mutation,  assuming  read  counts  follow  a  beta-binomial  distribution,  the

mutation copy number (m) along with the clonal frequency (f) was determined inputting the
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variant allele fraction, tumor purity, minor allele copy numbers (c), total copy numbers (C),

sex and tumor heterogeneity (mutations clusters determined by FACETS v0.5.14)55, then a

mutation was assigned as subclonal (f < 1), early clonal (f = 1; m > 1), late clonal (f = 1; m =

1;  C  >  2:  c  =  0)  or  clonal  (unspecified)  otherwise.  Timing  of  copy  number  loss  of

heterozygosity (LOH), mono-allelic,  and bi-allelic  gains was inferred using the number of

mutations occurring at each allelic copy number54. Next, we used this calculated clonal allelic

status for each mutation along with the mutational process that probably originated them to

gain information about the relative timing of these processes. We performed a Wilcoxon

matched-pairs signed rank test for paired data (per sample) to compare the proportion of

mutations happening in clonal vs subclonal pairs, or early clonal vs late clonal pairs.

Summary of results.  We observed that defective homologous recombination-based DNA

damage repair  (Cosmic signature SBS3),  SBS5,  and non c-AID (SBS9)  are significantly

more active at early clonal stages (p = 0.002 and 0.018, respectively), meanwhile, c-AID and

cell division related signature (SBS1) are significantly more active at clonal stages (p = 0.007

and < 0.001, respectively) (Fig. S17-18).

Neoepitope analysis

Variant  call  format  (VCF)  files  (n=91)  were  prepared  according  to  pVAC-Seq’s

recommendations:  1) annotate them using Variant Effect Predictor (VEP, v98.2) with the

Down-stream, Wildtype VEP plugins and transcript version parameter; 2) add expression

data using the vatools’ ‘vcf-expression-annotator‘ 56,57.  pVAC-Seq (v4.0.8) was run for each

patient and allele combination using tumor and normal protein epitopes of 8, 9, 10, and 11

amino acids in length (produced by reconstructing the nucleotide sequence surrounding the

mutation  using  its  coordinates  from  the  VCF  file)  and  using  the  human  major

histocompability  complex  (MHC)  binding  predictions  generated  by  the  Immune  Epitope

Database and Analysis Resource (IEDB, version 3.10.0) MHC class I and II prediction tools,

MHCflurry and  MHCnuggets (I and II)58–60. The median of all prediction values was used for
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alleles with multiple prediction methods. We further filtered using a cutoff for the mutant IC50

binding score of  500 nmol/L.  To account  for  immunogenicity  based on the prediction  of

neopeptide TCR recognition and neopeptide HLA binding,  PRIME software was run with

default parameters. Neoepitopes were classified as “Immunogenic” if having a PRIME %rank

score (the fraction of random 700,000 8- to 14-mers that would have a score higher than the

peptide provided in input) lower or equal to 0.5% for the corresponding HLA haplotype of the

patient where the neopeptide occurred, or as “Non-Immunogenic” otherwise 61. 

Copy number alterations calling

We calculated absolute copy number calling  with segmentation values,  tumor purity and

ploidy  using  FACETS  (v0.5.14,  input  GATK  common  SNP  locations:

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/GATK/00-common_all.vcf.gz)  for

paired samples where heterozygous sites were called from the paired normal, while for the

tumor-only samples the log-ratio noise was minimized using a pool panel of normals  (n =

98) through CNVkit (v0.9.9)  55,62. Chromosome instability index was calculated as the fold

change  ( 0.2  segmean)  CNV  log-ratio  between  each  sample  and  the  reference  using∓0.2 segmean) CNV log-ratio between each sample and the reference using

svpluscnv R package5.

Significance analysis of recurrent SCNAs using GISTIC2.0

Arm-level  and focal  peaks of  recurrent  copy number  alterations  were identified from the

results of Allelic Capseg using GISTIC2.0 (version 23) as previously described63. Regions

with germline copy number variants were excluded from the analysis. Events with a q-value

of less than 0.1 were reported as significant.  We specified a 95% confidence interval to

determine wide peak boundaries. Samples were run separately if belonging to the low or

high mutated group, for a total of 108 samples with available information. 

Summary  of  results.  We identified  significant  recurrent  amplifications  in  12q15  (53%),

11p15.4  (40%),  18q21.33  (42%),  19p13.13  (34%),  11q23.3  (27%),  and  deletions  in
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14q32.33 (84%), 2p11.2 (55%), 6p21 (39%), 6q21 (65%), 6q27 (49%), and 9p21.3 (28%).

Such events affected genes like CD58, IL10, IL20, IL24, BTG2, IRF4, CD83, CD24, PRDM1,

MAP3K5, HLA-A/B/C, CARD11, IL6, TOX, CDKN2A, CXCR5, ETV6, CD3G, B2M,  among

others (Fig. S19).

PCNSL recurrent alterations comparisons with systemic DLBCL 

We directly  compared  the  genetic  landscape  of  our  cohort  to  the  previously  published

DLBCL data46.  Using mirror bar plots (Figure 2D from main article), the frequencies of the

recurrent genetic alterations in PCNSL were compared to those in DLBCL46.  An asterisk

denotes  the  known  genetic  driver  events  in  DLBCL  (Figure  2D  from  main  article).

Additionally, we also compared the recurrent CNAs in the PCNSL and DLBCL cohorts using

GISTIC63 mirror plots (Figure 2B from main article). 

Summary of results.  PCNSL and DLBCL samples exhibited significant arm 6q deletions

along  with  amplifications  in  arms  1q,  7p,  7q,  11q,  12q,  18q,  19p,  and  21q.  We found

additional,  not previously described, amplifications in 1q32.1 (33%,  IL10),  11q23.3 (26%,

CD3G),  and  deletions  in  6p25.3  (21%,  IRF4),  22q11.22  (29%,  GGTLC2)  and  14q32.33

(84%; Fig. S20)

Integrative analysis of gene expression and copy number data

Samples with RNA-seq normalized gene counts (VST method, DESeq2 package) and SCNA

GISTIC data were used (n=80) to infer gene expression alterations due to CNA events. For

each of the 66 GISTIC-defined alteration peaks (false discovery ratio [FDR] q-value <0.1),

samples were grouped as “affected” or “not affected” and genes were subset to the ones

altered  by  the  evaluated  peak,  then  a  differential  expression  analysis  using  R package

DESeq2 was launched (FDR correction for p-values)  27. We filtered out genes having an

opposite  association  since  we  were  interested  in  gene  expression  up-regulation  among

samples with copy gain and gene expression down-regulation among samples with copy
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loss.  Genes  with  FDR<0.1  and  absolute  fold  change >1.0  were considered  significantly

affected. Representation of this information along with mutated genes in regions of SCNA

was done using a modified gisticChromPlot function from maftools R package (Fig. S19 and

S21)42. 

Summary of results.  Genes affected by either gains or losses include CD3G (FC= 1.25),

IRF4 (FC=-1.03),  CCL21  (FC=  -1.39),  and  GGTLC2 (FC=-1.76,  FDR q-value<0.1).  The

complete list of genes is given in Table S7 and a representation in Fig. S19 and S21.

Distinct genetic signatures within PCNSL subtypes 

Marker genes associated with each molecular  cluster  were identified using a Fisher test

(one-sided) where we evaluated the presence or absence of an event (mutation, CNA, or

fusion) within-cluster vs outside-cluster  and corrected the observed p-values by FDR (q-

value ≤0.1 selected, Figure 2C from main article). SBS, DBS, and ID signature activity were

tested across groups (Wilcoxon-test).

Summary of results.  We only found the mutational processes DBS4 and ID8 to be more

active in clusters CS4 and CS3, respectively (Wilcoxon-test; Fig. S22).

RNA-seq

RNA-extraction and sequencing

Total  RNA  from  FF  samples  (n  =  123)  were  extracted  using  trizol  and  Guanidine

Isothiocyanate  and quality  was assessed using a NanoDrop spectrophotometer  (Thermo

Fisher  Scientific)  and  electropherogram  profiles  on  an  Agilent  Bioanalyzer  (Agilent

Technologies),  as previously  described64.  For the validation FFPE cohort  (n = 93) tissue

sections were deparaffinized and processed with the RSC RNA FFPE Kit (Maxwell cat #

AS1440) to recover a final elution of 50 μm thick sections. In brief, sections were deparaffinized andL in nuclease-free water. RNA quantity and quality

was measured via Agilent 2200 TapeStation R6K ScreenTape assay (cat # 5067–5367).
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RNA integrity, determined by the RNA integrity number (RIN), was determined with the 2100

Bioanalyzer (Agilent).

mRNA (20 ng) from FF samples was used for whole-transcriptome libraries preparation with

the KAPA mRNA HyperPrep Kits (KAPA Biosystems/Roche). Equal concentrations of cDNA

library  from  each  sample  were  pooled  for  sequencing  on  an  illumina  Nova-seq  6000

sequencing system using 2x150 bp paired-end sequencing.

For the validation FFPE cohort 3’ RNA-seq was performed where libraries were constructed

using  QuantSeq  3’  mRNA-Seq  Library  Prep  Kit  (Lexogen,  Austria)  according  to  the

manufacturer’s instructions. The pooled 3′mRNA-Seq libraries were loaded to an illumina

Nova-seq 6000 sequencing system using single-end 100 bp sequencing.

Alignment and quantification

RNA fastq files were aligned to the human reference genome (GRCh38, release 97) using

STAR (version 2.7.2a) for mapping quality assessment after trimming of adaptor sequences

(Cutadapt  v1.18)  24,25.  Gene  read  counts  were  corrected  for  paraffin  fixation  process

degradation using DegNorm, only for the FFPE validation cohort22, or used directly as input

for differential expression analysis using DESeq2 (FDR p-value <0.05, absolute fold change

>1 and average read count  >4).  Counts were transformed using the variance-stabilizing

transformation (VST) function in DESeq2 for downstream analyses27. 

Cell-of-origin (COO) assignment

Two sets  of  previously  described gene panels  were used to  classify  samples  into  ABC

(SH3BP5, IRF4, PIM1, ENTPD1, BLNK, CCND2, ETV6, FUT8, BMF, IL16, PTPN1) or GCB

(ITPKB,  MMEBCL6,  MYBL1,  DENND3,  NEK6,  LMO2,  LRMP,  SERPINA9)  subgroups65.

Gene expression, from VST transformed reads, was quantile normalized, log2 transformed,

and then z-normalized for all genes. Then ABC/GCB genes were separated and scores were

computed for each sample by taking the average of the z-scores for each gene panel.  The

difference in the ABC-specific score to the GCB-specific score is computed to obtain the
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RNAseq subtype score which is used to classify the samples as ABC if the RNAseq subtype

score is >0.25 and its GCB score is <0.75, and it is classified as GCB if the RNAseq subtype

score is < -0.25 and its ABC score<0.75. Otherwise, the samples belong to an unclassified

group66.

Summary of results.  From the 123 FF samples 108 were ABC subtype, 5 GCB, and 10

unclassified; on the other hand, from the 93 FFPE samples 80 were ABC, 7 GCB, and 6

unclassified. 

HLA haplotyping

Each sample, three-digit class I and II HLA type, was determined from FASTQ files using

arcasHLA (default parameters, version 3.24.0, assembly GRCh38)67.

Pathway analysis 

Gene set enrichment analysis (GSEA)

GSEA  analysis  was  performed  using  the  GO/Reactome/Hallmark  database  through  R

package clusterProfiler 68 and applying Bonferroni correction (q-value <0.05).

Gene set variation analysis (GSVA)

GSVA69 was applied through MOVICS using a list 23 of tumor microenvironment (TME) gene

set list previously described for lymphoma (Fges) 70; the cytolytic activity was done using the

expression of  GZMB and PRF171; PCR2 complex activity was scored using EED, PCGF1,

EZH2,  PCL,  SUZ12,  PCL, and  JARID272,73;  glycolytic  activity,  MYC  induction,  B-cell

differentiation, and transcription factors activity gene signatures were described by Wright et

al. and Milpied et al.74,75. Biological oncogenic pathways were calculated using activity scores

from PROGENy package (v1.14.0)76. These signatures were used, in both the FF multi-omic

cohort (n = 85) and the FFPE cohort (n = 93), to determine whether or not the observed

distinct mutations within each molecular subtype could affect oncogenic pathways and B-cell
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differentiation programs transcriptionally. Scores were compared by Wilcoxon test where p-

values were adjusted for multiple testing by FDR. 

Summary of results. From the Fges signatures we observed the CS1 cluster with higher B-

cell content, cell  proliferation, and PRC2 complex activity while the CS2 cluster exhibited

higher gamma-Aminobutyric acid (GABA) synthesis and expression of vascular endothelial

cells (VEC). The CS4 group showed higher expression of signatures related to inflammation

such as immune checkpoints, MHC-I, MHC-II, cytolytic activity, macrophages M1, NK cells,

fibroblastic reticular cells (FRC), and follicular  dendritic  cells (FDC), and tumor infiltrating

lymphocytes (TILs) (Fig. S23). Regarding oncogenic (Fig. S24) and PROGENy’s (Pathway

RespOnsive GENes, Fig. S25) signatures, the CS1 group showed higher MYC induction,

glycolytic and PI3K activity; the CS2 group was characterized by higher p53 activity; and the

CS3/CS4 groups exhibited higher MAPK, NF-kB, and JAK-STAT activities. Concerning the

B-cell  differentiation  programs,  the  CS1  group  expressed  a  mixture  of  GC  cells  (ligh,

intermediate and dark zone) which is consistent with the observed MYC induction activity but

not  with  the  expression  of  transcription  factors  (TFs)  that  upregulates  IRF4,  TCF3 and

downregulates BCL6. However, these genes are preferentially disturbed in CS1 by 6p25.3,

19q13.12 deletions,  and  BCL6 mutations (Figure 2D from main article).  The cluster CS4

presents  an  enrichment  in  terminally  differentiated  plasma  cells  that  goes  in  line  with

upregulated BCL6 repression and the absence of MYC induction and BCL6 mutations. The

most heterogeneous cluster was the CS3, presenting features of both GC and mature B-

cells (plasma cells and memory B-cells). Intriguingly, the cluster CS2 did not present any B-

cell  stage  enrichment  but  instead  a  lymphatic  endothelial  cell  (LEC)  gene  signature,

suggesting wide transcriptomic or epigenetic changes (Fig. S26-S27). Finally, we aimed to

confirmed  the  observed  specific  lymphoma’s  TME  by  using  the  CIBERSORTx  derived

immune deconvolution.  The CS1 cluster  was enriched in  naive and memory B-cells  but

depleted in other immune populations; on the other hand, the other immune cold cluster

(CS2) was only enriched in memory resting CD4+ T-cells and monocytes. The CS3 cluster
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was only enriched in inactivated macrophages M0. In line with the observed inflammatory

phenotype observed using the Fges signatures, the CS4 cluster was enriched with CD8+ T-

cells, NK cells, activated macrophages M1, and memory activated CD4+ T-cells (Fig. S28). A

summary of these results is presented in Figure 3A for the FF cohort and in Fig. S29 for the

FFPE cohort.

 

Immune deconvolution

VST transformed reads were used as input to determine immune cell types fractions using

CIBERSORTx (B-mode batch correction; bootstrapping = 1000)3. 

TCR/BCR clonotypes

MiXCR  (v3.0.3)  was  used  to  detect  T-cell  and  B-cell  clonotypes  where  concordant

clonotypes were determined based on CDR3 amino acid sequence77. Gene usage, diversity

estimation,  and  repertoire  overlapping  were  estimated  using  immunarch  (v0.6.6)78.  The

analyses were performed using the FF-RNA cohort (n=123).

Summary  of  results.  To  further  characterize  T-cells,  BCR  clonotypes,  and  the

immunoglobulin  (Ig)  heavy-chain  variable  (VH)  and  constant  regions  expression  across

clusters,  we  analyzed  TCR/BCR-sequences  in  the  complete  set  of  FF-RNA  (n=123).

Concerning TCR-sequences, we found significantly higher T-cell clonotype diversity in the

CS4 versus the others (p < 0.05), followed by CS3 and CS2, and then CS1 clusters (Fig.

S30-S31). Regarding BCR-sequences analysis, we observed, even though not significantly

different  across  clusters,  the  presence  of  BCR  clones’  diversity  (Fig.  S32)  and  IgVH4-34

expression (Fig. S33) which further supports the presence of tumoral B-cells across clusters.

However, there was a higher expression of IgM in the CS1/CS3 clusters compared to the

CS4 which is characteristic  of  B-cells  reentering the GC79.  Additionally,  the IgVH regions

more expressed in CS4 (p < 0.05) were the V1-18, V1-46, and V3-9 that have been associated

with more differentiated B-cell  stages;  meanwhile,  the naive-transition stage-related,  V3-43
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and V4-30-2 regions, were upregulated in CS3 (Fig. S33)80. 

Fusion transcripts expression

Fusion transcripts were then detected using arriba (v2.1.0) with previously generated STAR

outputs81. Fusions were filtered according to the recommended “high fidelity” settings which

correspond  to  having  supporting  split  reads  (split_reads1 + split_reads2 > max(1,

discordant_mates/10));  plotting  was  done  with  circlize  (v0.4.13)82.  The  analyses  were

performed using the FF-RNA cohort (n=123).

Summary of results.  We proceeded with extending the fusion transcripts analysis across

subtypes by analyzing the RNA-seq data from the whole FF cohort (n = 123). After filtering

for  “high  fidelity”  fusions,  we  identified  some  already  described  events  involving  BCL6

(23.6%) and  ETV6 (14.6%) that happen mostly with the  IgH super-enhancer (62.1% and

27.8%, respectively)44,83. Other frequent fusions involved  RNF213-ENDOV (11.4%),  GRB2

(8.9%), and KANSL1 (7.3%). Of note, we confirmed fusion enrichment of CDKN2A/2B and

CREBBP in CS1 (p =  0.001 and 0.014, respectively);  OVOS in CS3 (p = 0.004); and an

additional of CD274 (PD-L1) in CS2 (4/28 cases, p = 0.009, Fig. S34-S35).

Transcription factors regulon activity and master regulators

To  determine  TFs  regulating  the  expression  of  subtype-specific  genes,  we  applied

DoRothEA  to  the  gene  expression  matrix  of  each  molecular  PCNSL  subtype  (nCS1=54;

nCS2=28; nCS3=20; nCS4=21)  using the genes that are differentially  expressed within each

cluster  by  DESeq2  R software  (BH adjusted  P-value  <  0.05 and  |Log2FC|>1.5)27,84.  We

selected the most reliable interactions from the curated collection of TF-targets provided by

DoRothEA to compute TF activities, reported as TF regulon normalized enrichment scores

(NESs), using the Wald statistic (retrieved from running DESeq2) on VIPER85. In VIPER, we

set the eset.filter parameter to FALSE and consider five as the minimum number of targets

allowed per regulon. We inferred the master regulators within each molecular subtype by
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running RTN package (v2.16.0)86 using the same gene expression matrices explained above

and  the  regulators  (TFs)  obtained  from  DoRothEA.  Regulator-target  associations  are

identified using: I) mutual information (MI) which indicates whether or not a regulator is well

informative of the status of a target gene and II) the direction of the association (positive or

negative) evaluated by Spearman’s correlation. Associations were filtered first by retaining

only edges with a BH-adjusted p-value < 0.01 after permuting the MI matrix  1000 times;

secondly  by  eliminating  unstable  interactions  by  1000  times  resamples’  bootstrapping

(consensus bootstrap > 95%); and finally, by removing indirect TF-target edges applying the

Data Processing Inequality (DPI) filter with a 0 tolerance. The above computations do not

consider  associations’  direction  since  it  is  later  calculated.  Master  regulators  (MRegs)

analysis  was  performed  using  the  tna.mra  ‘RTN’  function  which  evaluates  the  overlap

between each given regulon and the listed “hits” (Top 600 DE genes within each molecular

subtype). MRegs were filtered to those having a BH adjusted p-value < 0.0586.

Master regulator activity estimated by two-tailed GSEA

We performed a two-side GSEA analysis using the tni.gsea2 function in the RTN package

with 1000 permutations and selecting the MRegs with a BH adjusted p-value < 0.0586. In

general,  for  each MRegs, the approach divides the MRegs’ targets into positive (A) and

negative (B) that were previously defined using Spearman’s correlation, then plots on top the

DE (log2-FC of all genes) observed when comparing the evaluated molecular subtype (CS1

to CS4) versus the other subtypes (this is called phenotype) in which genes are ranked from

higher to lower log2-FC values. The observed differential enrichment scores (dES) are the

difference of the GSEA statistics in the ranked phenotype of A minus B where large positive

dES indicates an induced regulon status while a large negative dES indicates the opposite

case.

Summary  of  results.  We  found  increased  TF  activity  of  TEAD1  (in  CS1  and  CS2);

PRDM14 (CS1) which has roles as histone methyltransferase and leukemia initiator 87; IRF4,
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MYC, SPIB, and PROX1 (CS2); E2F1, SIX5, and IRF3 (CS3); and STAT3, STAT1, NFKB1

and TBX21 (CS4, Table S9, and Fig. S36-S39). Interestingly, given that the homeobox gene

PROX1 is a master regulator of LEC differentiation88, together with the observed increased

LEC gene signature and TF activity of IRF4 and MYC in the CS2 cluster, support the idea of

a phenotypic shift to more LEC-like in this PCNSL subtype. The next step was to integrate

the association  directionality  for  each target  gene per TF by adding the expression fold

changes and then to estimate the master regulator activity by two-tailed GSEA, as previously

described86. CS2 exhibits induced regulon status for MEIS1 whose targets include genes like

GNAI1 and KCNJ2; meanwhile, CS4 for  STAT1 which regulates important immune-related

genes like CXCL9, CD96, PD-LD2, and CD3G (Table S10, and Fig. S40-S41).

Brain magnetic resonance imaging (MRI) analysis

MR images of PCNSL at time of first  diagnosis  and recurrence in sufficient  quality were

available for 90 of the PCNSL patients included in the validation cohort. Both T1-weighted

images with contrast enhancement (CE) and fluid-attenuated inversion recovery (FLAIR)/T2-

weighted axial images were reviewed for topographic tumor location. Image pre-processing

encompassed N4 bias-field correction and linear co-registration using the open-source ANTs

packages  (https://stnava.github.io/ANTs/)89.  The  MRI  were  affine  registered  to  the  T1

sequence with ANTs and resampled to 1x1x3mm voxel size prior to segmentation. Tumor

segmentation was performed semi-automatically for the contrast-enhancing portion using a

region-growing segmentation algorithm implemented in ITK-SNAP v3.8 (by manually setting

the parameters and initial seeds for two active contour algorithms)90,91. The tumor locations

per cluster is given in Table S11 and represented in Figure 3B from the main article.

Methyl-seq

Sequencing

Methylation was performed by using the TruSeq Methyl Capture EPIC (Illumina)92. In total,

203



500 ng genomic DNA was used as input material, and the DNA was fragmented into around

150–200 bp by Covaris, followed by end-repair, 3  A-tailing, and adaptor ligation. Librariesʹ A-tailing, and adaptor ligation. Libraries

were then pooled in groups of four in equal aliquot, on which two rounds of hybridization and

capture using Illumina-optimized EPIC probe sets (covering >3.3 million targeted CpG sites),

bisulfite conversion, and amplification were performed. Construction of DNA libraries and

subsequent  processing and DNA sequencing of paired-end reads (2 × 100nt  reads) were

performed according to the standard Illumina protocol  using the Illumina Nova-seq 6000

sequencing system.

Alignment and quantification

Fastq data (n=68 from which: 27 were CS1; 17 CS2; 11 CS3; 9 CS4; 4 control normal blood

samples)  were  aligned  using  Bismark  (v0.23.1)93, with  the  same  reference  genome

(GRCh38)  as  for  the  WES  data.  The  resulting  aligned  reads  were  used  to  generate

methylation calls which excluded any duplicate calls from overlapping read ends of short

inserts. Methylation percentages and read coverage for each CpG was calculated running

the corresponding Bismark scripts93. Bismark coverage files were used as input for RnBeads

(v2.12.2)  analysis94.  Sites  that  overlapped  with  SNPs,  targeted  sex  chromosomes,  had

unreliable  measurements  (unknown  chromosomes)  and  had  exceptionally  high/low

coverage, were filtered. Imputation was performed by calculating the mean methylation level

for each CpG site across all samples and replacing all missing values for this CpG site in

individual  samples  with  the  mean across  all  samples.  Imputation  replaced  a  median  of

16,540,067.5  missing  values  per  sample  by  estimations.  In  total  21,934,824  out  of

23,133,115 sites were retained. Differential methylation analysis (DMA) on gene promoters,

CpG  islands  and  regions  was  assessed  by  hierarchical  linear  models  from  the  limma

package, then p-values were adjusted by FDR. Gene promoters were defined as the 1,500

bases upstream and 500 bases downstream of the transcription start sites of corresponding

genes and the differentially methylated promoters (DMP) were selected using the top 500

rank of RnBeads. Chromosome ends’ beta-values were defined as the mean methylation
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values within 4 Mb to the chromosome end considering chromosomes 1 to 22. Beta-values

from all sites, CpG islands, promoters, genes and chromosome ends were compared across

subtypes by using a two-sided Wilcoxon test (Fig. S42A-B). The top 1,000 most variable

methylation  sites  were  obtained  using  the  median  absolute  deviation  to  observe  the

differences in a heatmap across subtypes and normal blood samples (Fig. S43).

Summary  of  results.  The  CS2  displayed  higher  hypermethylation  globally,  within

promoters,  and at  chromosome ends (p=0.006,  <0.001,  and <0.001);  however,  the CS1

subtype  presented  higher  methylation  within  CpG  islands  (p=0.001,  Fig.  S42A-B).

Interestingly, an hypermethylator phenotype has been previously associated with a depleted

TME in systemic DLBCL70.

epiCMIT analysis

CpGs  methylation  β-values  (per  sample)  were  used  as  input  to  estimate  de  epiCMIT,

epiCMIT-hyper,  and  epiCMIT-hypo  scores  according  to  the  script  “Estimate.epiCMIT.R”

(https://github.com/Duran-FerrerM/Pan-B-cell-methylome),  as  previously  described95.

epiCMIT  is  the  highest  score  between  the  hyper/hypo  scores  and  reflects   the  relative

accumulation of  mitotic  cell  divisions  of  a particular  sample,  including the mitotic  history

associated with normal B-cell  development as well  as with malignant  transformation and

progression (including proliferation).

Summary of results.  In line with the observed hypermethylation of CpG islands for CS1,

this  cluster  exhibited  the highest  epiCMIT score (p < 0.001,  Fig.  S42C) which  probably

reflects its high proliferation rather than B-cell development. Moreover, since high epiCMIT

scores were previously  associated with worse OS in  systemic DLBCL,  we evaluated its

clinical impact in PCNSL finding no association (log-rank p=0.42, Fig. S42D).

GO and LOLA enrichment analyses
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GO enrichment analysis on DMP was performed using the GOstats R package as described

in the RnBeads manual where enrichments were considered significant if having an FDR

adjusted p-value <0.0196. Transcription factor binding sites (TFBs) enriched in the promoter

regions  across  PCNSL  molecular  subtypes  were  identified  by  conducting  enrichment

analysis using the Bioconductor package LOLA (Locus Overlap enrichment Analysis, version

1.22.0)97. Specifically, all assessed promoters were used as background (universe) while the

sets were divided for hypo or hypermethylated promoters per cluster type, all cell types in

the  LOLA  Core  database  were  included,  and  enrichments  with  a  FDR-corrected  p-

value<0.01 were considered significant.

Summary of results.  The complete list of enrichments is provided is Table S12-S13 and

some are plotted in Fig. S44.

DNA methylation-transcriptome integrated analysis

For the integrated analysis of gene expression with DNA methylation, we either took the

gene expression for all genes and all samples (for global analysis) or identified the DEGs

(BH adjusted  p-value  <  0.05  and  |Log2FC|>1.5)  per  molecular  subtype  and  then  ran  a

Spearman’s correlation analysis between the normalized expression count of each DEG with

the  methylation  intensity  (β-values)  of  its  corresponding  promoter  or  gene  (covers

methylation along the full gene). We then calculated the FDR using a permutation approach

for each p-value.

Summary of results.  Taking all PCNSL samples (n=64) and a total of 27,111 gens with

available expression and methylation data, only 12.4% were correlated with their promoter

methylation  (FDR  p.adjusted  <  0.05  and  Rho  <  0).  Interesting  genes  included  TERT,

CD79A,  and  CD79B  (Rho=-0.50,  -0.59,  and  -0.58  respectively;  p.adjusted<0.001).

Regarding the molecular subtypes, from the total 5,547 DE genes (95.4% down; 4.6% up) in

CS1,  4,222  had  available  β-values  from  which  only  0.4%  were  associated  with  their
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promoter  methylation  (FDR  p.adjusted  <  0.05  and  Rho  <  0)  and  0.2%  with  full  gene

methylation. For CS2 a total of 10,235 genes were DE (13.6% down; 86.4% up) from which

7,509 had β-values, furthermore, 0.2% were associated with the promoter and 0.1% with the

full gene methylation. Regarding CS3, 194 genes were DE (71.6% down; 28.4% up) and 142

had β-values. For CS4, 401 genes were DE (32.9% down; 67.1% up) from which 339 had β-

values. However, there was no correlation for any gene after p-value correction for the CS3/

CS4  groups.  Genes  affected  in  CS2  include  CCL22,  CD1C,  CDCA7L,  and  CDK20.

Remarkably,  CCL22, which is a chemoattractant for primary activated T-lymphocytes98, is

downregulated in the CS2 cluster and associated with gene hypermethylation. The complete

list of spearman correlations is provided in Table S14.

Statistical analyses and figures

All  statistical  analyses  were performed using the R statistical  programming environment

(version  4.0).  Figures  were  generated  using  either  base  R  or  the  ggplot2  library99.

Differences in proportions and binary/categorical variables were calculated from two-sample

Z-tests  or  Fisher’s  exact  tests.  Kruskal-Wallis  test  was  used  to  test  for  a  difference  in

distribution between three or more independent groups, and Mann Whitney U test was used

for differences in distributions between two population groups unless otherwise noted. P-

values were corrected for multiple comparisons using the Benjamini-Hochberg method when

applicable.  For  heatmap representation  (ComplexHeatmap  package)28,  VST  gene

expression values were first quantile normalized and log2 transformed and then converted to

Z-scores.  Overall  and  progression-free  survival  analysis  was  assessed  using  log-rank

Kaplan-Meier  curves  and  univariate/multivariate  Cox  proportional  hazards  regression

modeling. For each omic-level data (Fusions, CNV, TME, BCR/TCR clonotypes, RNA-seq,

and mutations) the Least Absolute Shrinkage and Selection Operator (LASSO)-Cox method

was implemented to select  variables  associated with the OS. We used an L1 penalized

(alpha = 1) model where the performance score and age were kept unpenalized and then

evaluated  each  prognostic  model  by  Harrell’s  concordance  index  (C-index)  in  both  the
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discovery (n=85) and validation FFPE cohort (n = 93; only TME and RNA-seq data)100.

Data and Code Availability

Genomic  data  will  be  deposited  at  the  European  Genome-phenome  Archive  (EGA;

http://www.ebi.ac.uk/ega/), which is hosted by the EBI.

The  RBraLymP  algorithm  is  publicly  accessible  at  https://github.com/iS4i4S/PCNSL-

RBraLymP. All other materials are available upon request from the authors. 
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S7* CNA and RNA correlations differential expression analysis

S8* Distinct genetic signatures within PCNSL subtypes

S9* DoRothEA NES activities
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S12* Promoter’s methylation GO enrichment analysis

S13* Promoter’s methylation LOLA analysis

S14* DNA methylation-transcriptome spearman correlations
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Supplemental Tables Legends

(*See online links to Excel spreadsheets for other than Table S2)

Table S1. Clinical data, including median overall survival, median progression free survival,

and number of  patients  who received intensive  chemotherapy with autologous stem cell

rescue in the FF and FFPE cohorts (S1A). Immunohistochemical panel of antibodies used

for PCNSL diagnosis that includes the company, clone and dilution (S1B).

Table S2. Summary of clinical features such as OS, PFS, IC-ASCR, sex, age, immunogenic

neoantigens,  TMB, fraction of  c-AID mutations,  Memorial  Sloan Kettering Cancer Center

(MSKCC)  classification,  Karnofsky  index  (IK),  and  purity  across  the  detected  PCNSL

significant clusters (CS1 to CS4). 

Table S3.  List of top 100 unique upregulated biomarkers (no overlapping across subtypes)

used for extrapolating molecular classification using one level omic-data (RNA-seq) in either

FF  or  FFPE  samples.  Biomarkers  were  identified  for  each  molecular  subtype  (Deseq2

package v1.32.0) with a threshold of adjusted p-value < 0.05.

Table S4. Summary per sample in the FF cohort (n=115) of mutations and indels obtained

from WES. 

Table S5. Results from running ddNdScv to obtain driver genes in PCNSL samples (n=115)

were ultra-hypermutator samples and extremely mutated genes per sample were filtered to

avoid  losing  sensitivity.  Genes were considered as  drivers  (n=466)  if  having  q-values <

0.001  (Benjamini-Hochberg’s  multiple  testing  correction  of  p-values;  column  named  as

“qglobal_cv”).

Table S6.  AID off-target mutated genes and frequency and number of samples affected in
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the FF cohort (n=115).

Table  S7.  Differential  expression  analysis  (Deseq2  package  v1.32.0)  resulting  from

comparing samples having a specific focal deletion or amplification versus those samples

not having the event (Related to Fig. S21). 

Table S8. Number of samples in each cluster (CS1 to CS4) presenting an event (mutation,

fusion, amplification or deletion) and their corresponding p-value using a Fisher one-sided

test within-cluster vs outside-cluster. P values were corrected by FDR (“q.value” column).

Related to Figure 2C from the main article.

Table  S9.  Normalized  enrichment  scores  (NESs)  for  the  TF  activities  computed  by

DoRothEA for each molecular cluster.

Table S10. Differential enrichment scores to measure the master regulator activity estimated

by two-tailed GSEA. 

Table  S11.  Number  of  tumors  per  cluster  associated  with  different  MRI  location  (e.g.,

splenium, insula, etc.) or characteristic (important tumor size, meningeal infiltration, etc.). P-

values were calculated by a one-sided Fisher test.

Table  S12.  Go enrichment  results  from using  the  differentially  methylated  promoters  in

clusters CS1 (S12A), CS2 (S12B), CS3 (S12C), and CS4 (S12D).

Table S13.  LOLA enrichment results from using the differentially methylated promoters in

clusters CS1 (S13A), CS2 (S13B), CS3 (S13C), and CS4 (S13D).

Table  S14.  Spearman’s  Rho,  p-value  and  FDR  adjusted  p-value  resulting  from  DNA
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methylation (promoters or gene body) and transcriptome expression correlations using all

samples (n=64; S14A) or samples corresponding to the different clusters (S14B-14I). 
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Table S2. Summary of clinical features within clusters

Level CS1 CS2 CS3 CS4 p-value Test

n 39 19 18 9

censor (%) 0 22 ( 56.4) 6 ( 31.6) 3 ( 16.7) 8 ( 88.9) <0.001 exact

1 17 ( 43.6) 13 ( 68.4) 15 ( 83.3) 1 ( 11.1)

OS (days)
(median

[IQR])

799.10
[407.17,
1948.95]

549.00
[253.15,
1630.23]

419.38
[187.57,
510.11]

2037.40
[603.90,
2049.60]

<0.001 log-rank

PFS (days)
(median

[IQR])

366.00
[183.00,
610.00]

146.40
[103.70,
750.30]

181.48
[100.65,
472.75]

1281.00
[506.30,
2037.4]

0.045 log-rank

PFS status
(censor %)

0 11 ( 31.4) 3 ( 20.0) 4 ( 22.2) 6 ( 66.7) 0.98 exact

1 24 ( 68.6) 12 ( 80.0) 14 ( 77.8) 3 ( 33.3)

NA 4 4 0 0

IC-ASCR
(%)

0 31 ( 79.5) 14 ( 87.5) 15 ( 88.2) 9 ( 100) 0.323 exact

1 8 ( 20.5) 2 ( 12.5) 2 ( 11.8) 0 ( 0)

NA 0 3 1 0

Sex (%) F 27 ( 69.2) 10 ( 52.6) 5 ( 27.8) 5 ( 55.6) 0.031 exact

M 12 ( 30.8) 9 ( 47.4) 13 ( 72.2) 4 ( 44.4)

Immunogeni
c Neoags

(median
[IQR])

9.00 [4.75,
20.50]

10.00 [3.50,
12.25]

6.00 [3.75,
11.75]

14.00 [6.00,
24.00]

0.439 nonnorm

TMB per Mb
(median

[IQR])

3.86 [2.92,
5.85]

1.72 [0.19,
3.97]

3.86 [2.99,
7.41]

4.30 [3.77,
4.84]

0.012 nonnorm

KPS (%) 0 2 ( 5.3) 1 ( 5.3) 1 ( 5.6) 0 ( 0.0) 0.768 exact

10 1 ( 2.6) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)

20 1 ( 2.6) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)

30 2 ( 5.3) 0 ( 0.0) 2 ( 11.1) 0 ( 0.0)

40 6 ( 15.8) 3 ( 15.8) 1 ( 5.6) 0 ( 0.0)

50 3 ( 7.9) 3 ( 15.8) 4 ( 22.2) 0 ( 0.0)

60 5 ( 13.2) 4 ( 21.1) 2 ( 11.1) 1 ( 11.1)

70 10 ( 26.3) 2 ( 10.5) 3 ( 16.7) 3 ( 33.3)

80 5 ( 13.2) 3 ( 15.8) 5 ( 27.8) 4 ( 44.4)

90 3 ( 7.9) 3 ( 15.8) 0 ( 0.0) 1 ( 11.1)

Fraction c-
AID

mutations

0.08 [0.06,
0.10]

0.06 [0.04,
0.09]

0.09 [0.07,
0.10]

0.08 [0.06,
0.09]

0.249 nonnorm
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(median
[IQR])

CNV
sigGroup

(%)

CNV_Sig1 20 ( 51.3) 5 ( 26.3) 4 ( 22.2) 2 ( 22.2) 0.002 exact

CNV_Sig2 1 ( 2.6) 8 ( 42.1) 2 ( 11.1) 2 ( 22.2)

CNV_Sig3 5 ( 12.8) 0 ( 0.0) 1 ( 5.6) 2 ( 22.2)

CNV_Sig4 13 ( 33.3) 6 ( 31.6) 11 ( 61.1) 3 ( 33.3)

Age 67.21 ±
12.70

64.74 ±
15.66

67.83 ±
12.39

70.67 ± 6.75 0.523

MSKCC (%) Class1 4 ( 10.8) 2 ( 10.5) 4 ( 23.5) 0 ( 0.0) 0.144 exact

Class2 17 ( 45.9) 11 ( 57.9) 5 ( 29.4) 8 ( 88.9)

Class3 16 ( 43.2) 6 ( 31.6) 8 ( 47.1) 1 ( 11.1)

Purity
(median

[IQR])

0.78 [0.66,
0.88]

0.48 [0.29,
0.70]

0.70 [0.63,
0.78]

0.60 [0.39,
0.77]

0.010 nonnorm

KPS binary
(%)

<70 20 ( 52.6) 11 ( 57.9) 10 ( 55.6) 2 ( 22.2) 0.326 exact

>=70 18 ( 47.4) 8 ( 42.1) 8 ( 44.4) 7 ( 77.8)

Age binary
(%)

<median 21 ( 53.8) 11 ( 57.9) 7 ( 38.9) 2 ( 22.2) 0.250 exact

>=median 18 ( 46.2) 8 ( 42.1) 11 ( 61.1) 7 ( 77.8)

Note: OS, overall survival. PFS, progression-free survival. MSKCC, Memorial Sloan Kettering Cancer Center. KPS, Karnofsky
Performance Status. CNV sigGroup, copy number variation signature group. Purity was obtained from WES estimations using
copy-number inferences. Exact, Fisher-exact test. Nonnorm, Wilcoxon-test.
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Supplementary Figures

Table of contents

Figure Description

S1 Number of multi-omic clusters prediction

S2 Consensus heatmap of multi-omic clusters

S3 Silhouette plot of consensus clusters

S4 OS cox model and PFS univariate and multivariate models in the FF cohort

S5 Fraction of genome altered across clusters

S6  3’ FFPE RNA-seq and FF RNA-seq paired data comparisons

S7 Spearman correlations of FF-FFPE pairs before and after degradation correction

S8 Validation of FFPE degradation correction using FF-FFPE pairs

S9 Consistency heatmap between CMOIC and PAM methods

S10 Univariate and multivariate models in the FF-RNA cohort

S11 Heatmap of NTP method for cluster prediction in the FFPE cohort

S12 OS cox model and PFS univariate and multivariate models in the FFPE cohort

S13 Frequency of mutations in the FF cohort

S14 Oncoplot of top driver genes in the FF cohort

S15 Comparison of the fraction c-AID and APOBEC induced mutations

S16 Distribution of the c-AID mutations across the genome

S17 Mutational processes comparison at clonal early versus clonal late

S18 Mutational processes comparison at clonal versus subclonal
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S21 Integrative analysis of gene expression and copy number data
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S23 Fges signatures comparison across PCNSL subtypes
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S25 PROGENY signatures comparison across PCNSL subtypes

S26 B-cell differentiation signatures comparison across PCNSL subtypes

S27 B-cell TFs signatures comparison across PCNSL subtypes

S28 CIBERSORTx derived immune cells comparison across PCNSL subtypes

S29 Phenotypic distinctions in the FFPE validation cohort

S30 B-cell and T-cell clonotype’s diversity

S31 Chao diversity for TCR clones

S32 Chao diversity for BCR clones

S33 Immunoglobulin heavy variable segments comparison across the PCNSL
subtypes

S34 Fusion transcripts expression across the PCNSL molecular subtypes

S35 CDKN2A/2B fusion transcript schematic illustration

S36 CS1 DoRothEA TFs NES activities

S37 CS2 DoRothEA TFs NES activities

S38 CS3 DoRothEA TFs NES activities

S39 CS4 DoRothEA TFs NES activities

S40 Master regulators targets in the CS groups

S41 Two-way GSEA activity for MEIS1 and STAT1

S42 Mean methylation and epiCMIT differences across CS groups

S43 Methylation heatmap  across CS groups and controls

S44 LOLA enrichment results across PCNSL molecular subtypes
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Supplemental Figures Legends

Figure S1. Prediction of optimal cluster number of multi-omics clusters by cluster prediction

index and Gap-statistics in the multi-omic FF cohort (n=85).

Figure S2. Consensus heatmap based on the 10 integrative clustering algorithms to refine

the clusters (CS1 to CS4) where each of the 10 algorithms uses cluster of clusters analysis

to integrate six levels of omic information (y-axis) in the order:  i) mRNA expression (2,087

variables),  ii)  mutations  (31  variables),  iii)  CNA  (40  variables),  iv)  fusion  transcripts  43

variables),   v)   TCR/BCR  clonotypes  (19  variables),  and  vi)  immune  cell  fractions  (22

variables).  

Figure  S3.  Quantification  of  sample  similarity  using  silhouette  score  based  on  the

consensus ensembles result. Each line in the y-axis represents a sample.

Figure S4.  Panel A shows a forest plot of a Cox model of the cluster's impact in OS after

adjustment by IK (<70 or ≥ 70) and age (<median or ≥ median). Panel B shows Kaplan-

Meier estimates of PFS among patients belonging to each cluster that resulted from the

Consensus cluster of clusters analysis. Panel C shows a forest plot of a Cox model of the

cluster's impact in PFS after adjustment by IK (<70 or ≥ 70) and age (<median or ≥ median).

All the results were obtained using the multi-omic FF cohort (n=85).

Figure S5.  Bar plot  of fraction genome altered among clusters.  Error  bars indicate 95%

binomial confidence intervals. Asterisks denote significant difference by Kruskal-Wallis rank

sum test for multiple subtypes. 

Figure S6. Panel A shows the alignment efficiency comparison between 3’ FFPE RNA-seq
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and FF RNA-seq paired data (coming from the same samples). Asterisks denote significant

differences by Wilcoxon test. Panel B shows the RNA-seq reads coverage over the gene

body in  3’  FFPE RNA-seq and FF RNA-seq paired data where numbers in  parenthesis

indicates  the  transcript  integrety  number  (0-100  where  lower  values  indicates  more

degradation). Panel C shows the different mismatch profiles (number of mismatches in y-

axis) across the read position 5’ to 3’ (x-axis) in the 3’ FFPE RNA-seq and FF RNA-seq

paired  data.

Figure S7. Spearman correlations of VST gene read counts between FF (x-axis) and FFPE

(y-axis) pairs with either the uncorrected FFPE data (Panel A) or the degradation corrected

FFPE data (Panel B). “R” indicates Spearman Rho values and “p” the associated p-values.

Figure S8.  Panel A shows the cell-of-origin (COO, ABC or GCB subtypes) assignment of

each tumor using either the uncorrected FFPE data (left) or corrected FFPE data (right).

Panel B shows a correlation heatmap between FF-FFPE pairs. Panel C shows PCA plots for

FF-FFPE  pairs.

Figure S9.  Consistency heatmap between samples (n=85) assigned by using consensus

multi-omic  clustering  (CMOIC,  y-axis)  or  transcriptomic-based  PAM  method  (x-axis).

Numbers in the diagonal indicate the samples correctly assigned by PAM which was 100%

for  CS1 (39/39),  84% for  CS2 (16/19),  83% for  CS3 (15/18),  and 100% for  CS4 (9/9).

Accuracy of assignment evaluated by Cohen’s kappa coefficient.

Figure S10.  Panel  A shows Kaplan-Meier estimates of  OS among patients belonging to

each cluster that resulted from assigning patients using only transcriptomic data by the PAM

method. Panel B shows a forest plot of a Cox model of the cluster's impact in OS after

adjustment by IK (<70 or ≥ 70) and age (<median or ≥ median). These results were obtained

using the FF-RNA cohort (n=123).
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Figure S11. Heatmap of NTP method in the FFPE cohort (n=93) using the top 100 subtype-

specific upregulated biomarkers to predict the CS groups.

Figure S12. Panel A shows a forest plot of a Cox model of the cluster's impact in OS after

adjustment by IK (<70 or ≥ 70) and age (<median or ≥ median). Panel B shows Kaplan-

Meier estimates of PFS among patients belonging to each cluster that resulted from the

Consensus cluster of clusters analysis. Panel C shows a forest plot of a Cox model of the

cluster's impact in PFS after adjustment by IK (<70 or ≥ 70) and age (<median or ≥ median).

All the results were obtained using the FFPE cohort (n=93).

Figure S13.  Frequency of mutations according to different classifications (e.g. missense,

nonsense, etc), types (TNP, SNP, etc) or class (T>G, T>A, etc). Frequency of top mutated

genes (bottom right). Results from WES of the PCNSL FF cohort (n=115).

Figure S14.  Oncoplot of the top 27 driver genes in PCNSL (n=115) where each column

represents a sample and each row a gene. Top bar plot shows the TMB per sample filled

according to mutation type (missense, nonsense, splice site, frameshift, multihit, or other).

Right bar plot shows the number of affected samples filled according to mutation type.

Figure  S15.  Boxplot  comparison  of  the  fraction  of  c-AID  mutations  versus  APOBEC

mutations detected in the FF cohort. Dash lines indicate the median of each variable. P-

value computed by Wilcoxon test.

Figure S16. Rainfall plots of the AID mutations’ distribution across chromosomes on PCNSL

samples as a function of logarithmic (10 scale) genomic distance. Black points represent C

to G mutations and red points C to T mutations. Middle barplot shows the sum of mutations

(density) across chromosomes. Top barplot shows examples of c-AID off-targets followed by
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the frequency of affected samples where genes are marked as bold if they are driver genes.

Genes were marked as “Kataegic targets” if they had consecutive mutations with an average

mutational distance ≤1 Kb within the same patient.

Figure  S17.  Boxplot  comparison  of  the  proportion  of  mutations  attributed  to  different

mutational processes when occurring at clonal-early times versus clonal-late times. P-values

calculated by Wilcoxon matched-pairs signed rank test for paired data (per sample).

Figure  S18.  Boxplot  comparison  of  the  proportion  of  mutations  attributed  to  different

mutational  processes  when  occurring  at  clonal  times  versus  subclonal  times.  P-values

calculated by Wilcoxon matched-pairs signed rank test for paired data (per sample).

Figure S19. GISTIC 2.0 results of significantly recurring (events with a q-value of less than

0.1) focal amplifications (red) and deletions (blue) where the chromosomes are plotted in the

x-axis and the GISTIC-scores (G-score) are plotted in the y-axis. Genes affected for each

focal event are annotated followed by the percentage of altered samples (n=108). Genes are

underlined if they are driver genes or in bold if they are transcriptionally affected by the focal

event (Related to Fig. S21 and Table S7). FC, fold-change. 

Figure S20. GISTIC mirror plots showing the significantly recurring CNAs in the PCNSL (n

=108, right side) and DLBCL (n=296, left side) cohorts. Global arm deletions (Panel A), focal

arm deletions (Panel B), global arm amplifications (Panel C), and focal arm amplifications

(Panel D). Y-axis corresponds to chromosome number and x-axis to significant association

as -log10 q-value.

Figure S21.  Volcano plot showing the gene expression up-regulation among samples (FF

cohort  with  available  RNA-seq  data,  n=80)  with  copy  gain  and  gene  expression  down-
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regulation among samples with copy loss for specific focal CNAs. Genes with FDR<0.1 and

absolute fold change >1.0 were considered significantly affected. Complete list of affected

genes is given in Table S7. 

Figure S22. Boxplot comparison of the mutational processes’ (SBS, DBS, and ID) signature

activity across the PCNSL molecular subtypes (n=85). P-values calculated by Wilcoxon test. 

Figure S23.  Boxplot comparison of the Fges score of different gene signatures across the

PCNSL molecular  subtypes (n  = 85).  P-values calculated  by  Wilcoxon test.  Fges score

calculated by GSVA analysis. LEC, lymphatic endothelial cell; VEC, vascular endothelial cell;

CAF,  cancer-associated  fibroblasts;  FRC,  fibroblastic  reticular  cells;  ECM,  extracellular

matrix;  FDC,  follicular  dendritic  cells;  TFH,  follicular  helper  T-cells,  TIL,  tumor infiltrating

lymphocytes.

Figure S24. Boxplot comparison of the GSVA score of different oncogenic signatures across

the PCNSL molecular subtypes (n=85). P-values calculated by Wilcoxon test. 

Figure S25. Boxplot comparison of the PROGENy’s score of different oncogenic signatures

across the PCNSL molecular subtypes (n=85). P-values calculated by Wilcoxon test.

Figure  S26.  Boxplot  comparison  of  the  GSVA  score  of  different  B-cell  differentiation

signatures across the PCNSL molecular subtypes (n=85). P-values calculated by Wilcoxon

test.

Figure S27. Boxplot comparison of the GSVA score of different B-cell TFs signatures across

the PCNSL molecular subtypes (n = 85). P-values calculated by Wilcoxon test.
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Figure S28.  Boxplot  comparison of  the CIBERSORTx derived immune cells’  proportions

across the PCNSL molecular subtypes (n=85). P-values calculated by Wilcoxon test.

Figure S29.  Heatmap with either gene signature activity (measured by GSVA) or immune

cell proportions (CiberSortx deconvoluted) across molecular subtypes in the FFPE cohort

(n=93).  LEC,  lymphatic  endothelial  cell;  VEC,  vascular  endothelial  cell;  CAF,  cancer-

associated  fibroblasts;  FRC,  fibroblastic  reticular  cells;  ECM,  extracellular  matrix;  FDC,

follicular dendritic cells; TFH, follicular helper T-cells, TIL, tumor infiltrating lymphocytes.

Figure S30.  Boxplot  comparison of  the number of  unique B-cell  (top)  or  T-cell  (bottom)

clonotypes  across  the  PCNSL  molecular  subtypes  (FF-RNA  cohort,  n=123).  P-values

calculated by Wilcoxon test.

Figure S31.  Boxplot comparison of the Chao diversity for TCR clones across the PCNSL

molecular subtypes (FF-RNA cohort, n=123). P-values calculated by Wilcoxon test.

Figure S32.  Boxplot comparison of the Chao diversity for BCR clones across the PCNSL

molecular subtypes (FF-RNA cohort, n=123). P-values calculated by Wilcoxon test.

Figure S33.  Boxplot  comparison of  the  gene usage fraction  of  different  immunoglobulin

heavy variable segments across the PCNSL molecular subtypes (FF-RNA cohort, n=123).

P-values calculated by Wilcoxon test.

Figure  S34.  Circos  plot  showing  the  fusion  transcripts  expression  across  the  PCNSL

molecular subtypes (FF-RNA cohort, n=123). Fusions found to be enriched (according to

Figure 2C from the main article) or present in at least 5 different samples were annotated
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along with their frequency within each CS group. Fusions present in more than 8 samples

are marked in bold.

Figure S35. Examples of CDKN2A and CDKN2B fusions detected.

Figure S36. TF regulon normalized enrichment scores (NESs) in the TFs found in the CS1

group by DoRothEA analysis. 

Figure S37. TF regulon normalized enrichment scores (NESs) in the TFs found in the CS2

group by DoRothEA analysis.

Figure S38. TF regulon normalized enrichment scores (NESs) in the TFs found in the CS3

group by DoRothEA analysis.

Figure S39. TF regulon normalized enrichment scores (NESs) in the TFs found in the CS4

group by DoRothEA analysis.

Figure S40. Detected master regulators and their targets for each CS group.

Figure S41.  Master regulator  activity  for  MEIS1 (CS2 cluster,  Panel  A)  or  STAT1 (CS4

cluster, Panel B) estimated by two-tailed GSEA (left) and the regulated targets (right). The

top plot indicates the DE (log2-FC of all genes) observed comparing the evaluated molecular

subtype (CS2 or CS4) versus the other subtypes (called phenotype) in which genes are

ranked from higher  to lower log2-FC values.  The bar beneath the phenotype shows red

marks for activated and blue marks for repressed members of the MRegs. The GSEA plots

show the running enrichment score for positive (red line) and negative (blue line) targets

where the differential  enrichment score (dES) indicates an induced or repressed MRegs

status.
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Figure S42.  Boxplot comparison of either CS2 versus other clusters (Panel A) or across

molecular  subtypes  (Panel  B)  using  the  mean  methylation  levels  (mean  beta-values)

globally, on CpG islands, on promoters, on gene body (“genes”) and at chromosome ends (4

Mb).  Panel  C  shows  a  boxplot  comparison  across  molecular  subtypes  of  the  epiCMIT,

epiCMIT-hyper, and epiCMIT-hypo scores. Panel D shows Kaplan-Meier estimates of OS

among patients belonging to each molecular  PCNSL subtype using the median epiCMIT

score to stratify. P-values calculated by Wilcoxon test. Results from methylation data of the

PCNSL FF cohort (n=64).

Figure S43. Heatmap of the 1,000 most variable methylated sites across PCNSL molecular

subtypes and blood control samples. Each row represents a site and each column a patient

sample. The level of DNA methylation (beta-value) is represented with the color scale as

depicted.  Hierarchical  clustering  (Euclidean  distance  followed  by  complete-linkage

agglomeration algorithm) was used to group rows and samples within subtypes.  Results

from methylation data of the PCNSL FF cohort (n=64 PCNSL and 4 controls).

Figure S44. LOLA analysis results of the targets of the enriched transcription factor binding

sites  retrieved  using  the  differentially  methylated  promoters  across  PNCSL  molecular

subtypes. Y-axis denotes the log(p-value) and x-axis the target. Top annotation indicates the

database from which the targets were found.
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Figure S3
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Figure S5
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Figure S7
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Figure S9
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Figure S15
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Figure S17
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Figure S20
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Figure S21
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Figure S22
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Figure S23
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Figure S24
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Figure S25
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Figure S26
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Figure S27
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Figure S28
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Figure S29
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Figure S30
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Figure S31
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Figure S32
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Figure S33
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Figure S36
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Figure S37
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Figure S38
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Figure S39
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ACTIVATION-INDUCED CYTIDINE DEAMINASE AS A NEW BIOMARKER 

 

FIELD OF INVENTION  

[1] The present invention relates to an activation-induced cytidine deaminase 

(AICDA) as a new biomarker for cancer.  5 

 

BACKGROUND OF INVENTION 

[2] According to the World Health Organization, a biomarker is any substance, 

structure or process that can be measured in the body or its products and influence or 

predict the incidence of outcome or disease. In the field of cancer, a biomarker can be 10 

used for assessing multiple factors including determining the risk of developing cancer, 

monitoring cancer progression, determining the survival prognosis of cancer patients, or 

predicting potential response to therapy. Therefore, robust cancer biomarkers are 

increasingly needed. 

[3] Activation-induced cytidine deaminase (AID, encoded by AICDA) belongs to a 15 

large family of enzymes called apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like (APOBEC) which are considered as a source of somatic mutations in the 

genome. AID was initially described as the driver of somatic hypermutation (SHM), 

which diversifies the variable (V) domains of immunoglobulin genes in activated B cells 

in germinal centers. Furthermore, AID is also involved in class-switch recombination 20 

(CSR) in immunoglobulins. These processes are related to the conversion of 

deoxycytidines into deoxyuridines.   

[4] The present invention describes the use of AID-related mutations as a new 

biomarker for cancer. More specifically, the present invention relates to the use of AID-

related mutations for prognosing survival in cancer patients treated with immune 25 

checkpoint inhibitors, but also to identify cancer patients susceptible to respond to 

immune checkpoint inhibitor therapy. 
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SUMMARY 

[5] The present invention relates to an in vitro method for identifying a subject with 

cancer as being susceptible to respond to a treatment with an immune checkpoint inhibitor 

(ICI) or for prognosing survival of a subject with cancer and being treated with ICI, the 

method comprising assessing the fraction of AID-related mutations in a sample, wherein 5 

the fraction of AID-related mutations is the ratio of the number of AID-related mutations 

over the total number of mutated single nucleotide variants. 

 

[6] In one embodiment, said AID-related mutation is a mutation falling into an AID 

hotspot sequence, wherein said AID hotspot sequence includes the nucleic sequence 10 

WRCY or its reverse RGYW. 

[7] In one embodiment, said AID hotspot sequence includes AACC, AACT, AGCC, 

AGCT, TACC, TACT, TGCC, TGCT or the reverse TTGG, TTGA, TCGG, TCGA, 

ATGG, ATGA, ACGG, ACGA. 

[8] In one embodiment, said sample is a tumor tissue. 15 

[9] In one embodiment, said method is for identifying a subject with cancer as being 

susceptible to respond to a treatment with an ICI. 

[10] In one embodiment, said method is for prognosing survival of a subject with 

cancer and being treated with ICI. 

[11] In one embodiment, the ICI is selected from the group comprising an inhibitor of 20 

PD-1, an inhibitor of PD-L1, an inhibitor of CTLA-4 and a combination thereof. 

[12] In one embodiment, the cancer is selected from the group comprising melanoma, 

non-small-cell lung carcinoma (NSCLC), renal cell carcinoma, head and neck cancers, 

merkel-cell carcinoma, gastric cancer, small-cell lung carcinoma (SCLC), Hodgkin 

lymphoma, breast cancer, cervical cancer, colorectal cancer, endometrial cancer, 25 

hepatocellular cancer, esophageal cancer, mesothelioma, MSI (microsatellite instability)-

high solid tumors, TMB (tumor mutation burden)-high tumors, breast cancer and 

urothelial carcinoma.  
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[13] In one embodiment, said method further comprising the step of comparing the 

fraction of AID-related mutations with a reference value.  

[14] In one embodiment, said reference value is the median of the fractions of AID-

related mutations measured in a reference population. 

[15] In one embodiment, said reference value is a decile of the fractions of AID-5 

related mutations measured in a reference population. 

[16] In one embodiment, the reference population is a population of subjects having 

or having had a cancer, which are or have been treated with ICI, and which respond or 

have responded to ICI. 

[17] In one embodiment, a fraction of AID-related mutation above the reference value 10 

is indicative of a subject as being susceptible to respond to a treatment with ICI, or 

prognosed with a high survival.  

 

DEFINITIONS 

[18] In the present invention, the following terms have the following meanings: 15 

[19] “About” preceding a figure encompasses plus or minus 10%, or less, of the value 

of said figure. It is to be understood that the value to which the term “about” refers is 

itself also specifically, and preferably, disclosed. 

[20] “Activation-induced cytidine deaminase” or “AID” belongs to a large family 

of enzymes called apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 20 

(APOBEC), encoded by AICDA. 

[21] “Comprise” is intended to mean “contain”, “encompass” and “include”. In 

some embodiments, the term “comprise” also encompasses the term “consist of”. 

[22] “Biomarker” refers to any substance, structure or process that can be measured 

in the body or its products and influence or predict the incidence of outcome or disease. 25 

[23] “Quantile(s)” refers to (a) cut-off value(s) dividing the observations/measures 

made in a population into equal-sized groups, each group comprising an equal percentage 

of said observations/measures. As used herein, “quantile(s)” thus refer to cut-off fraction 
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of AID-related mutations dividing the fractions of AID-related mutations measured in a 

biological sample from each of the human subjects of a reference population into equal-

sized groups each comprising an equal percentage of said measures of fractions of AID-

related mutations. In other words, “quantile(s)” refers to cut-off fractions of AID-related 

mutations below or above which lies a determined percentage of the fractions of AID-5 

related mutations measured in a reference population. For example, as used herein, 

“median” refer to the cut-off fraction of AID-related mutations dividing the fractions of 

AID-related mutations measured in a reference population into two groups, each 

comprising 50% of the fractions of AID-related mutations measured in the reference 

population. It should be noted that “quantiles” may also sometimes refer to the groups so 10 

defined by said cut-off value. For example, “median” may also sometimes refer to the 

two groups defined by the cut-off fraction of AID-related mutations dividing the fractions 

of AID-related mutations measured in a reference population. However, as used herein 

and unless otherwise specified, the term “quantile” refers to a cut-off value. 

[24] “Prognosis”: refers to the likely outcome or course of a disease, for example a 15 

cancer; the chance of remission or recurrence. 

[25] “Single nucleotide variant”: refers to a variation in a single nucleotide. 

[26] “Subject”: refers to an animal, preferably a mammalian subject, more preferably 

a human subject. Among the non-human mammalian subjects of interest, one may non-

limitatively mention pets, such as dogs, cats, guinea pigs; animals of economic 20 

importance such as cattle, sheep, goats, horses, monkeys. In one embodiment, a subject 

may be a “patient”, i.e. a warm-blooded animal, more preferably a human, who/which is 

awaiting the receipt of, or is receiving medical care or was/is/will be the object of a 

medical procedure, or is monitored for the development of a disease, disorder or 

condition. In one embodiment, the subject is an adult (for example a human subject above 25 

the age of 18). In another embodiment, the subject is a child (for example a human subject 

below the age of 18). In one embodiment, the subject is a male. In another embodiment, 

the subject is a female. 

[27] “Susceptible to respond to a treatment” refers to the likelihood of a response 

to the treatment. 30 
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[28] “Treating” or “treatment” or “alleviation” refers to both therapeutic treatment 

and prophylactic or preventative measures, wherein the object is to prevent or slow down 

(lessen) cancer; Those in need of treatment include those already with cancer, as well as 

those prone to develop cancer or those in whom cancer is to be prevented. An individual 

is successfully “treated” for cancer, if, after receiving a therapeutic amount of the immune 5 

checkpoint inhibitor, the individual shows observable and/or measurable reduction in or 

absence of one or more of the symptoms associated with cancer; reduced morbidity and 

mortality, and improvement in quality of life issues. The above parameters for assessing 

successful treatment and improvement of cancer are readily measurable by routine 

procedures familiar to physician or authorized personnel. 10 

[29] “Therapeutically efficient amount” refers to the level or the amount of the 

active agent, in particular an immune checkpoint inhibitor, which is aimed at, without 

causing significant negative or adverse side effects to the target, (1) delaying or 

preventing the onset of cancer; (2) slowing down or stopping the progression, 

aggravation, or deterioration of one or more symptoms of cancer; (3) bringing about 15 

amelioration of the symptoms of cancer; (4) reducing the severity or incidence of cancer; 

or (5) curing cancer. A therapeutically effective amount may be administered prior to the 

onset of cancer, for a prophylactic or preventive action. Alternatively, or additionally, the 

therapeutically effective amount may be administered after the onset of cancer for a 

therapeutic action. In one embodiment, a therapeutically effective amount of the 20 

pharmaceutical composition is an amount that is effective in reducing at least one 

symptom of cancer.  
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DETAILED DESCRIPTION 

[30] The present invention relates to an in vitro method for identifying a subject with 

cancer as being susceptible to respond to a treatment with an immune checkpoint inhibitor 

(ICI) or for prognosing survival of a subject with cancer and being treated with ICI, the 

method comprising assessing the fraction of AID-related mutations in a sample, wherein 5 

the fraction of AID-related mutations is the ratio of the number of AID-related mutations 

over the total number of mutated single nucleotide variants. 

[31] In one embodiment, the AID-related mutation is a mutation falling into an AID 

hotspot sequence. 

[32] In one embodiment, the number of AID-related mutations is the number of 10 

mutated cytosines (and guanines) falling into an AID hotspot sequence. In one 

embodiment, the mutated cytosines (and guanines) are converted into uraciles. 

[33] In one embodiment, the AID hotspot sequence includes the nucleic sequence 

WRCY or its reverse RGYW. 

[34] According to the invention, R is purine, G is Guanine (G), C is Cytosine (C), Y 15 

is pyrimidine, and W is Adenine (A) or Thymine (T). According to the invention, purines 

include Adenine and Guanine, while pyrimidines include Cytosine, Uracile, and 

Thymine.  

[35] In one embodiment, the AID hotspot sequence includes AACC, AACT, AGCC, 

AGCT, TACC, TACT, TGCC, TGCT for the positive strand and TTGG, TTGA, TCGG, 20 

TCGA, ATGG, ATGA, ACGG, ACGA for the negative strand. 

[36] In one embodiment, the AID-related mutation is located in tumours, i.e. in 

tumoral cells. 

[37] In one embodiment, the AID-related mutation can be located in any genomic 

region. In one embodiment, the AID-related mutations are in a higher density in 25 

chromosome 5, chromosome 17 and/or chromosome 2 of the subject. 
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[38] In one embodiment, the fraction of AID-related mutations is the ratio of the 

number of AID-related mutations over the total number of mutated single nucleotide 

variants measured in a sample. 

[39] In one embodiment, the sample is a tumor tissue. In one embodiment, the tumor 

tissue is obtained by a biopsy. 5 

[40]  In one embodiment, the fraction of AID-related mutations is the ratio of the 

number of AID-related mutations over the total number of mutated single nucleotide 

variants measured in the whole genome of the tumoral cell. In one embodiment, the whole 

genome sequence is obtained by whole genome sequencing (WGS). 

[41] In one embodiment, the fraction of AID-related mutations is the ratio of the 10 

number of AID-related mutations over the total number of mutated single nucleotide 

variants measured in the whole exome of the tumoral cell. In one embodiment, the whole 

exome sequence is obtained by whole exome sequencing (WES). 

[42] In one embodiment, the fraction of AID-related mutations is the ratio of the 

number of AID-related mutations over the total number of mutated single nucleotide 15 

variants measured in a set of around 400 genes associated with tumors of the tumoral cell. 

In one embodiment, the sequence of the set of genes is obtained by targeted next 

generation sequencing (NGS). 

[43] In one embodiment, the method as described hereinabove is for identifying a 

subject with cancer as being susceptible to respond to a treatment with an immune 20 

checkpoint inhibitor. 

[44] In one embodiment, the cancer is a solid cancer. As used herein, a solid cancer 

encompasses cancers that form an abnormal mass of tissues that usually does not contain 

cysts or liquid areas. Different types of solid tumors are named for the type of cells that 

form them. Examples of solid tumors are sarcomas, carcinomas, and lymphomas. 25 

[45] In one embodiment, the cancer is a blood cancer. As used herein, a blood cancer 

or a hematological cancer is a cancer that begins in blood-forming tissue, such as the bone 

288 Appendix . Second Appendix



 
 

8 

 
 

marrow, or in the cells of the immune system. Examples of blood cancer are leukemia, 

lymphoma, and multiple myeloma. 

[46] In one embodiment, the cancer is selected form the group comprising melanoma, 

non-small-cell lung carcinoma (NSCLC), renal cell carcinoma, head and neck cancers, 

merkel-cell carcinoma, gastric cancer, small-cell lung carcinoma (SCLC), Hodgkin 5 

lymphoma, breast cancer, cervical cancer, colorectal cancer, endometrial cancer, 

hepatocellular cancer, esophageal cancer, mesothelioma, MSI (microsatellite instability)-

high solid tumors, TMB (tumor mutation burden)-high tumors, breast cancer and 

urothelial carcinoma. 

[47] In one embodiment, the cancer is melanoma, preferentially metastatic melanoma. 10 

[48] In one embodiment, the cancer is a cancer with unknown primary. As used 

herein, cancers of unknown primary (CUPs) are histologically confirmed, metastatic 

malignancies with a primary tumor site that is unidentifiable on the basis of standard 

evaluation and imaging studies. Standard evaluation and imaging studies for detecting 

tumors are well-known by the skilled artisan in the art. 15 

[49] In one embodiment, the cancer is a carcinoma, preferentially a renal cell 

carcinoma. 

[50] In one embodiment, the subject suffers from a cancer. 

[51] In one embodiment, the subject has been previously diagnosed with cancer by 

authorized personnel skilled in the art. 20 

[52] In one embodiment, the subject is or has been under cancer treatment. In one 

embodiment, the subject is or has been under a cancer treatment that is not an immune 

checkpoint inhibitor. In one embodiment, the subject is or has been under a cancer 

treatment that is an immune checkpoint inhibitor. 

[53] In one embodiment, the subject is or has been treated by chemotherapy and/or 25 

radiotherapy, depending on the type of cancer. 
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[54] In one embodiment, the immune checkpoint inhibitor is selected from the group 

comprising an inhibitor of PD-1, an inhibitor of PD-L1, an inhibitor of CTLA-4 and a 

combination thereof.     

[55] In one embodiment, the inhibitor of PD-1 is an anti-PD-1 antibody. In one 

embodiment, the inhibitor of PD-L1 is an anti-PD-L1 antibody. In one embodiment, the 5 

inhibitor of CTLA-4 is an anti-CTLA-4 antibody. 

[56] Examples of PD-1 inhibitors include, without limitation, pembrolizumab and 

nivolumab. 

[57] Examples of CLTA-4 inhibitors include ipilimumab. 

[58] In one embodiment, the method previously described further comprises the step 10 

of comparing the fraction of AID-related mutations with a reference value. 

[59] Typically, a reference value may be either implemented in the software or an 

overall median or other arithmetic mean across measurements may be built. 

[60] In one embodiment, the reference value is obtained from a reference population.  

[61] In one embodiment, the reference value is derived from the measurement of the 15 

fraction of the AID-related mutations according to the invention, in a reference 

population. 

[62] In one embodiment, the reference value can be relative to a value derived from 

population studies defining a reference population, including without limitation, such 

subjects having similar age range, subjects in the same or similar ethnic group, similar 20 

cancer history and the like. 

[63] In one embodiment, the reference value is derived from the measurement of the 

fraction of the AID-related mutations according to the invention, in a reference sample 

derived from one or more subject(s) in a reference population.  
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[64] In one embodiment, the reference population comprises subjects, preferably at 

least 50, more preferably at least 100, more preferably at least 200 subjects. In one 

embodiment, the reference population comprises at least 500 subjects. 

[65] In one embodiment, the reference population comprises subjects having or 

having had a cancer, which are or have been treated with ICI, and which respond or have 5 

responded to the ICI.  

[66] In one embodiment, the subject responds to the ICI if the administration of said 

ICI induces a positive response, i.e. a clinical benefit. Said positive response may a partial 

or a complete response. As used herein, a clinical benefit is a favorable effect on a 

meaningful aspect of how a subject feels (e.g., symptom relief), functions (e.g., improved 10 

mobility) or survives as a result of the treatment. Clinical benefit may be measured as an 

improvement or delay in the progression of a disease or condition. 

[67] In one embodiment, the response to the ICI is evaluated by the RECIST 

(Response Evaluation Criteria In Solid Tumors) criteria. RECIST is a standard way to 

measure how well a cancer patient responds to treatment. It is based on whether tumors 15 

shrink, stay the same, or get bigger. To use RECIST, there must be at least one tumor that 

can be measured on x-rays, CT scans, or MRI scans. The types of response a patient can 

have are a complete response (CR), a partial response (PR), progressive disease (PD), and 

stable disease (SD). 

[68] The iRECIST approach allows responses not typically observed in traditional 20 

systemic treatment to be identified and better documented. The guideline describes a 

standard approach to solid tumor measurement and definitions for objective change in 

tumor size which can be used in immunotherapy clinical trials. In addition, it defines the 

minimum amount of data to be collected in order to facilitate the creation of a data 

warehouse that can be used to later validate iRECIST. 25 

[69] According to one embodiment, the predetermined fraction of AID-related 

mutation (i.e. the reference value) is obtained from a reference population as described 

hereinabove, wherein the fractions of AID-related mutations measured in a biological 

sample from each of the human subjects of the reference population are divided into 
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equal-sized groups by cut-off values referred to as “quantiles”, each group corresponding 

to a determined percentage of the fraction of AID-related mutations measured in the 

reference population. Examples of quantiles include, without being limited to, the median 

(defining 2 groups each comprising 50% of the fractions of AID-related mutations 

measured in the reference population), the terciles or tertiles (defining 3 groups each 5 

comprising a third of the fractions of AID-related mutations measured in the reference 

population), the quartiles (defining 4 groups each comprising 25% of the fractions of 

AID-related mutations measured in the reference population), the quintiles (defining 5 

groups each comprising 20% of the fractions of AID-related mutations measured in the 

reference population) and the deciles (defining 10 groups each comprising 10% of the 10 

fractions of AID-related mutations measured in the reference population). In one 

embodiment, the “quantiles” are measured for each tumor type in a reference population  

[70] According to the present invention, “quantiles” refer to the cut-off fraction of 

AID-related mutations below or above which lies a determined percentage of the fractions 

of AID-related mutations measured in the reference population. Therefore, the human 15 

subjects with a measured fraction of AID-related mutations below the first quantile are 

the human subjects with the lowest fractions of AID-related mutations, while the human 

subjects with a measured fraction of AID-related mutations above the last quantile are the 

human subjects with the highest fractions of AID-related mutations. For example, the 1st 

decile is the fraction of AID-related mutations below which 10% of the fractions of AID-20 

related mutations measured in the reference population lie and above which 90% of the 

fractions of AID-related mutations measured in the reference population lie. 

[71] Additionally, the term “quantiles” may also sometimes refer to the group so 

defined by said cut-off value. Thus, applied to the present invention, the term “quantiles” 

may also refer to the groups of the fractions of AID-related mutations measured in the 25 

reference population defined by the cut-off fraction of AID-related mutations. For 

example, the 1st decile may refer to the group of the fractions of AID-related mutations 

measured in the reference population corresponding to the lowest 10% of the fractions of 

AID-related mutations measured in the reference population. Accordingly, the 9th decile 

refers to the group of the fractions of AID-related mutations measured in the reference 30 
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population corresponding to the highest 10% of the fractions of AID-related mutations 

measured in the reference population. It follows that a fraction of AID-related mutations 

that is in the 1st decile is a fraction of AID-related mutations comprised in the lowest 10% 

of the fractions of AID-related mutations measured in the reference population and that a 

fraction of AID-related mutations that is in the 9th decile is a fraction of AID-related 5 

mutations comprised in the highest 10% of the fractions of AID-related mutations 

measured in the reference population.  

[72] In one embodiment, the predetermined fraction of AID-related mutations is 

obtained from a reference population as described hereinabove, wherein the fractions of 

AID-related mutations measured in the reference population are divided into two equal-10 

sized groups each corresponding to 50% of the fractions of AID-related mutations 

measured in the reference population.  

[73] According to this embodiment of the present invention, the median of the 

fractions of AID-related mutations corresponds to the fraction of AID-related mutations 

below which 50% of the fractions of AID-related mutations measured in the reference 15 

population lie and above which 50% of the fractions of AID-related mutations measured 

in the reference population lie. 

[74] Thus, in one embodiment, the predetermined fraction of AID-related mutations 

(i.e the reference value) is the median of the fractions of AID-related mutations of a 

reference population as described hereinabove. In one embodiment, the median is 20 

calculated for each tumor type. 

[75] In one embodiment, the predetermined fraction of AID-related mutations is 

obtained from a reference population as described hereinabove, wherein the fractions of 

AID-related mutations measured in the reference population are divided into ten equal-

sized groups each corresponding to 10% of the fractions of AID-related mutations 25 

measured in the reference population. As mentioned above, the cut-off values 

(“quantiles”) so dividing the fraction of AID-related mutations measured in the reference 

population are called “deciles”. Thus, in one embodiment, the predetermined fraction of 

AID-related mutations (i.e. the reference value) is a fraction of AID-related mutations 
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decile (i.e. first, second, third, fourth fifth, sixth, seventh, eighth or ninth decile) of a 

reference population as described hereinabove. 

[76] According to this embodiment of the present invention: 

- the fraction of AID-related mutations first decile corresponds to the fraction of 

AID-related mutations below which 10% of the fractions of AID-related mutations 5 

measured in the reference population lie and above which 90% of the fraction of AID-

related mutations measured in the reference population lie;  

- the fraction of AID-related mutations second decile corresponds to the fraction 

of AID-related mutations below which 20% of the fractions of AID-related mutations 

measured in the reference population lie and above which 80% of the fractions of AID-10 

related mutations measured in the reference population lie;  

- the fraction of AID-related mutations third decile corresponds to the fraction of 

AID-related mutations below which 30% of the fractions of AID-related mutations 

measured in the reference population lie and above which 70% of the fractions of AID-

related mutations measured in the reference population lie;  15 

- the fraction of AID-related mutations fourth decile corresponds to the fraction 

of AID-related mutations below which 40% of the fractions of AID-related mutations 

measured in the reference population lie and above which 60% of the fractions of AID-

related mutations measured in the reference population lie; 

- the fraction of AID-related mutations fifth decile corresponds to the fraction of 20 

AID-related mutations below which 50% of the fractions of AID-related mutations 

measured in the reference population lie and above which 50% of the fractions of AID-

related mutations measured in the reference population lie; 

- the fraction of AID-related mutations sixth decile corresponds to the fraction of 

AID-related mutations below which 60% of the fractions of AID-related mutations 25 

measured in the reference population lie and above which 40% of the fractions of AID-

related mutations levels measured in the reference population lie; 
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- the fraction of AID-related mutations seventh decile corresponds to the fraction 

of AID-related mutations below which 70% of the fractions of AID-related mutations 

measured in the reference population lie and above which 30% of the fractions of AID-

related mutations measured in the reference population lie; 

- the fraction of AID-related mutations eight decile corresponds to the fraction of 5 

AID-related mutations below which 80% of the fractions of AID-related mutations 

measured in the reference population lie and above which 20% of the fractions of AID-

related mutations measured in the reference population lie; 

- the fraction of AID-related mutations ninth decile corresponds to the fraction of 

AID-related mutations below which 90% of the fractions of AID-related mutations 10 

measured in the reference population lie and above which 10% of the fractions of AID-

related mutations measured in the reference population lie. 

[77] In one embodiment, the predetermined fraction of AID-related mutations is 

obtained from a reference population as described hereinabove, wherein the fractions of 

AID-related mutations measured in the reference population are divided into three equal-15 

sized groups each corresponding to a third of the fractions of AID-related mutations 

measured in the reference population. As mentioned above, the cut-off values 

(“quantiles”) so dividing the fraction of AID-related mutations measured in the reference 

population are called “terciles” (or “tertiles”). Thus, in one embodiment, the 

predetermined fraction of AID-related mutations is a fraction of AID-related mutations 20 

tercile (or tertile) (i.e. first or second tercile) of a reference population as described 

hereinabove. 

[78] In one embodiment, the predetermined fraction of AID-related mutations is 

obtained from a reference population as described hereinabove, wherein the fractions of 

AID-related mutations measured in the reference population are divided into four equal-25 

sized groups each corresponding 25% of the fractions of AID-related mutations measured 

in the reference population. As mentioned above, the cut-off values (“quantiles”) so 

dividing the fraction of AID-related mutations measured in the reference population are 

called “quartiles”. Thus, in one embodiment, the predetermined fraction of AID-related 
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mutations is a fraction of AID-related mutations quartile (i.e. first, second or third 

quartile) of a reference population as described hereinabove. 

[79] In one embodiment, the predetermined fraction of AID-related mutations is 

obtained from a reference population as described hereinabove, wherein the fractions of 

AID-related mutations measured in the reference population are divided into five equal-5 

sized groups each corresponding to 20% of the fractions of AID-related mutations 

measured in the reference population. As mentioned above, the cut-off values 

(“quantiles”) so dividing the fraction of AID-related mutations measured in the reference 

population are called “quintiles”. Thus, in one embodiment, the predetermined fraction 

of AID-related mutations is a fraction of AID-related mutations quintile (i.e. first, second, 10 

third or fourth quintile) of a reference population as described hereinabove. 

[80] In one embodiment, the subject is considered as being susceptible to respond to 

an ICI if the fraction of AID-related mutations of said subject is above the reference value 

as defined hereinabove. 

[81] Thus, in one embodiment, the method as described hereinabove comprises the 15 

following steps:  

a) assessing the fraction of AID-related mutations, wherein the fraction of AID-

related mutations is the ratio of the number of AID-related mutations over the total 

number of mutated single nucleotide variants, 

b) comparing the fraction of AID-related mutations with a reference value,  20 

wherein a fraction of AID-related mutations above the reference value is indicative of the 

subject with cancer as being susceptible to respond to a treatment with an immune 

checkpoint inhibitor. 

[82] In one embodiment, the method as described hereinabove comprises the 

following steps: 25 
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a) assessing the fraction of AID-related mutations, wherein the fraction of AID-

related mutations is the ratio of the number of AID-related mutations over the 

total number of mutated single nucleotide variants, 

b) comparing the fraction of AID-related mutations with a reference value, 

wherein the reference value is the median of the fractions of AID-related 5 

mutations measured in a reference population,  

wherein a fraction of AID-related mutations above the reference value is indicative of the 

subject with cancer as being susceptible to respond to a treatment with an immune 

checkpoint inhibitor. 

[83] In one embodiment, the method as described hereinabove further comprises 10 

treating the subject identified as being susceptible to respond to a treatment with ICI, by 

administering a therapeutically effective amount of an ICI.  

[84] Thus, in one aspect, the invention further relates to an in vitro method for 

identifying a subject with cancer as being susceptible to respond to a treatment with an 

immune checkpoint inhibitor, the method comprising: 15 

a) assessing the fraction of AID-related mutations, wherein the fraction of AID-

related mutations is the ratio of the number of AID-related mutations over the 

total number of mutated single nucleotide variants, 

b) comparing the fraction of AID-related mutations with a reference value,  

c) identifying a subject with cancer as being susceptible to respond to a treatment 20 

with ICI when the fraction of AID-related mutations is above the reference 

value as assessed in b), and 

d) treating the subject being susceptible to respond to a treatment with ICI 

identified at step c), by administering a therapeutically effective amount of an 

ICI. 25 
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[85] In one aspect, the invention also relates to the use of the AID-related mutations, 

in particular the fraction of AID-related mutations, as a biomarker for identifying a 

subject with cancer as being susceptible to respond to a treatment with an ICI.  

[86] In one aspect, the invention relates to a method for preventing and/or treating 

cancer in a subject identified by the method as described hereinabove, comprising the 5 

administration of a therapeutically efficient amount of an ICI. 

[87] In one embodiment, the ICI is to be administered at a therapeutically effective 

amount to the subject identified by the method as described hereinabove. 

[88] In one embodiment, the therapeutically effective amount is defined according to 

the treatment of the subject, the type of cancer and the ICI used. 10 

[89] In one embodiment, the ICI is formulated as a pharmaceutical composition. 

[90] Within the meaning of the invention, the expression “pharmaceutical 

composition” refers to a composition comprising an active principle in association with a 

pharmaceutically acceptable vehicle or excipient. A pharmaceutical composition is for 

therapeutic use, and relates to health. 15 

[91] Within the meaning of the invention, the expression “pharmaceutically 

acceptable excipient" refers to an inert vehicle or carrier used as a solvent or diluent in 

which the pharmaceutically active agent is formulated and/or administered, and which 

does not produce an adverse, allergic or other reaction when administered to an animal, 

preferably a human. This includes all solvents, dispersion media, coatings, antibacterial 20 

and antifungal agents, isotonic agents, absorption retardants and the like. For human 

administration, preparations must meet standards of sterility, general safety and purity as 

required by regulatory agencies, such as the FDA or EMA. 

[92] In one embodiments, the ICI, or the pharmaceutical composition may be 

administered to a subject in need thereof by any suitable route, i.e., by an oral 25 

administration, a topical administration or a parenteral administration, e.g., by injection, 

including a sub-cutaneous administration, a venous administration, an arterial 
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administration, in intra-muscular administration, an intra-ocular administration and an 

intra-auricular administration. 

[93] In one embodiment, the method as described hereinabove is for prognosing 

survival of a subject with cancer and being treated with ICI. 

[94] In one embodiment, the cancer is a solid cancer. In one embodiment, the cancer 5 

is a blood cancer. 

[95] In one embodiment, the cancer is as described previously. In one embodiment, 

the cancer is selected form the group comprising melanoma, non-small-cell lung 

carcinoma (NSCLC), renal cell carcinoma, head and neck cancers, merkel-cell 

carcinoma, gastric cancer, small-cell lung carcinoma (SCLC), Hodgkin lymphoma, breast 10 

cancer, cervical cancer, colorectal cancer, endometrial cancer, hepatocellular cancer, 

esophageal cancer, mesothelioma, MSI (microsatellite instability)-high solid tumors, 

TMB (tumor mutation burden)-high tumors, breast cancer and urothelial carcinoma. 

[96] In one embodiment, the subject suffers from a cancer. 

[97] In one embodiment, the subject has been previously diagnosed with cancer by 15 

authorized personnel skilled in the art. 

[98] In one embodiment, the subject is or has been under cancer treatment. In one 

embodiment, the subject is or has been treated with chemotherapy and/or radiotherapy. 

[99] In one embodiment, the subject is or has been treated with ICI as described 

hereinabove. In one embodiment, the ICI is selected from the group comprising an 20 

inhibitor of PD-1, an inhibitor of PD-L1, an inhibitor of CTLA-4 and a combination 

thereof. 

[100] In one embodiment, the method previously described further comprises the step 

of comparing the fraction of AID-related mutations with a reference value. 

[101] Typically, a reference value may be either implemented in the software or an 25 

overall median or other arithmetic mean across measurements may be built. 
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[102] In one embodiment, the reference value is obtained from a reference population.  

[103] In one embodiment, the reference value is derived from the measurement of the 

fraction of the AID-related mutations according to the invention, in a reference 

population. 

[104] In one embodiment, the reference value can be relative to a value derived from 5 

population studies, including without limitation, such subjects having similar age range, 

subjects in the same or similar ethnic group, similar cancer history and the like. 

[105] In one embodiment, the reference value is derived from the measurement of the 

fraction of the AID-related mutations according to the invention, in a reference sample 

derived from one or more subject(s) in a reference population.  10 

[106] In one embodiment, the reference population comprises subjects, preferably at 

least 50, more preferably at least 100, more preferably at least 200 and even more 

preferably at least 500 subjects. 

[107] In one embodiment, the reference population comprises subjects having (or 

suffering) or having had cancer, which are or have been treated with ICI, and which 15 

respond or have responded to the ICI.  

[108] In one embodiment, the predetermined fraction of AID-related mutation (i.e. the 

reference value) is measured as described previously. 

[109] In one embodiment, the predetermined fraction of AID-related mutations (i.e. the 

reference value) is the median of the fractions of AID-related mutations of a reference 20 

population as described hereinabove. In one embodiment, the median is calculated for 

each tumor type. 

[110] In one embodiment, the predetermined fraction of AID-related mutations (i.e. the 

reference value) is a fraction of AID-related mutations decile (i.e. first, second, third, 

fourth, fifth, sixth, seventh, eighth or ninth decile) of a reference population as described 25 

hereinabove. 
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[111] In one embodiment, a fraction of AID-related mutations above the reference 

value is associated with a high prognosis (i.e. after receiving ICI).  

[112] In one embodiment, a fraction of AID-related mutations below the reference 

value is associated with a low prognosis (i.e. after receiving ICI).  

[113] Thus, in one embodiment, the method as described hereinabove comprises the 5 

following steps:  

a) assessing the fraction of AID-related mutations, wherein the fraction of AID-

related mutations is the ratio of the number of AID-related mutations over the total 

number of mutated single nucleotide variants, 

b) comparing the fraction of AID-related mutations with a reference value,  10 

wherein a fraction of AID-related mutations above the reference value is indicative of the 

subject with cancer and being treated with ICI as having a high prognosis (i.e. after 

receiving ICI). 

[114] In one embodiment, the method as described hereinabove comprises the 

following steps: 15 

a) assessing the fraction of AID-related mutations, wherein the fraction of AID-

related mutations is the ratio of the number of AID-related mutations over the 

total number of mutated single nucleotide variants, 

b) comparing the fraction of AID-related mutations with a reference value, 

wherein preferably the reference value is the median of the fractions of AID-20 

related mutations measured in a reference population,  

wherein a fraction of AID-related mutations above the reference value is indicative of the 

subject with cancer and being treated with ICI as having a high prognosis (i.e. after 

receiving ICI). 

 25 
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[115] In one embodiment, the subject identified by the method of prognosis survival as 

described hereinabove is treated with an adapted care. In one embodiment, the adapted 

care is a cancer treatment adapted depending on the prognosis of the subject. 

[116] In one embodiment, the subject associated with a low prognosis is treated with 

aggressive cancer treatments such as radiations, chemotherapies. 5 

[117] In one embodiment, the subject associated with a high prognosis is treated with 

less aggressive cancer treatments. 

[118] In one aspect, the present invention further relates to the use of AID-related 

mutations, preferably the fraction of AID-related mutations, in an in vitro method for 

prognosing survival of a subject with cancer and being treated with ICI as described 10 

hereinabove. 

[119] The present invention also relates to a computer system for prognosing survival 

in a subject affected with a cancer and being treated with ICI, using AID-related 

mutations, in particular the fraction of AID-related mutations, as described hereinabove. 

The present invention also related to a computer-implemented method for prognosing 15 

survival in a subject, using AID-related mutations, in particular the fraction of AID-

related mutations, as described hereinabove. 

[120] The present invention also relates to a computer system for determining a 

personalized course of treatment in a subject affected with a cancer and being treated with 

ICI, using AID-related mutations, in particular the fraction of AID-related mutations, as 20 

described hereinabove. The present invention also relates to a computer-implemented 

method for determining a personalized course of treatment in a subject affected with a 

cancer and being treated with ICI, using AID-related mutations, in particular the fraction 

of AID-related mutations, as described hereinabove. 

[121] As used herein, the term “computer system” refers to any and all devices capable 25 

of storing and processing information and/or capable of using the stored information to 

control the behavior or execution of the device itself, regardless of whether such devices 

are electronic, mechanical, logical, or virtual in nature. The term “computer system” can 
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refer to a single computer, but also to a plurality of computers working together to 

perform the function described as being performed on or by a computer system. A method 

implemented using a computer system is referred to as a “computer-implemented 

method”. 

[122] In one embodiment, the computer system according to the present invention 5 

comprises: 

- at least one processor, and 

- at least one computer-readable storage medium that stores code readable by the 

processor. 

[123] As used herein, the term “processor” is meant to include any integrated circuit or 10 

other electronic device capable of performing an operation on at least one instruction 

word, such as, e.g., executing instructions, codes, computer programs, and scripts which 

it accesses from a storage medium. However, the term “processor” should not be 

construed to be restricted to hardware capable of executing software, and refers in a 

general way to a processing device, which can for example include a computer, a 15 

microprocessor, an integrated circuit, or a programmable logic device (PLD). The 

processor may also encompass one or more graphics processing units (GPU), whether 

exploited for computer graphics and image processing or other functions. Additionally, 

the instructions and/or data enabling to perform associated and/or resulting functionalities 

may be stored on any processor-readable medium, including, but not limited to, an 20 

integrated circuit, a hard disk, a magnetic tape (including floppy disk and zip diskette), 

an optical disc (including Blu-ray, compact disc and digital versatile disc), a flash memory 

(including memory card and USB flash drive) a random-access memory (RAM) 

(including dynamic and static RAM), a read-only memory (ROM) or a cache. Instructions 

may be in particular stored in hardware, software, firmware or in any combination thereof. 25 

[124] Examples of processors include, but are not limited to, central processing units 

(CPU), microprocessors, digital signal processors (DSPs), general purpose 

microprocessors, application specific integrated circuits (ASICs), field programmable 

logic arrays (FPGAs), and other equivalent integrated or discrete logic circuitry. 
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[125] The present invention also related to a computer program comprising software 

code readable by the processor adapted to perform, when executed by said processor, the 

computer-implemented methods as described herein. 

[126] The present invention also relates to a computer-readable storage medium 

comprising code readable by the processor which, when executed by said processor, 5 

causes the processor to carry out the steps of the computer-implemented methods as 

described herein. 

[127] Examples of computer-readable storage medium include, but are not limited to, 

an integrated circuit, a hard disk, a magnetic tape (including floppy disk and zip diskette), 

an optical disc (including Blu-ray, compact disc and digital versatile disc), a flash memory 10 

(including memory card and USB flash drive) a random-access memory (RAM) 

(including dynamic and static RAM), a read-only memory (ROM) or a cache. 

[128] In one embodiment, the computer-readable storage medium is a non-transitory 

computer-readable storage medium. 

[129] In one embodiment, the code stored on the computer-readable storage medium, 15 

when executed by the processor of the computer system, causes the processor to: 

- receive an input level, i.e. the fraction of AID-related mutations determined in a 

sample previously obtained from the subject, 

- analyze and transform the input level by organizing and/or modifying each input 

level to derive a probability score and/or a classification label via at least one 20 

machine learning algorithm, 

- generate an output, wherein the output is the classification label and/or the 

probability score, and 

- provide a prognosis of survival of the subject based on the output; or 

- provide a personalized course or information to determine a personalized course 25 

of treatment for the subject based on the output. 
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[130] In one embodiment, the code stored on the computer-readable storage medium, 

when executed by the processor of the computer system, causes the processor to: 

- receive an input level, the fraction of AID-related mutations determined in a 

sample previously obtained from the subject, 

- analyze and transform the input level by organizing and/or modifying each input 5 

level to derive a probability score and/or a classification label via at least one 

machine learning algorithm, 

- generate an output, wherein the output is the classification label and/or the 

probability score, and 

- provide a prognosis of survival of the subject based on the output; or 10 

- provide a personalized course or information to determine a personalized course 

of treatment for the subject based on the output. 

[131] As used herein, the terms “learning algorithm” or “machine learning algorithm” 

refer to computer-executed algorithms that automate analytical model building, e.g., for 

clustering, classification or profile recognition. Learning algorithms perform analyses on 15 

training datasets provided to the algorithm. Learning algorithms output a “model”, also 

referred to as a “classifier”, “classification algorithm” or “diagnostic algorithm”. Models 

receive, as input, test data and produce, as output, an inference or a classification of the 

input data as belonging to one or another class, cluster group or position on a scale, such 

as diagnosis, stage, prognosis, disease progression, responsiveness to a drug, etc.  20 

[132] “Datasets” are collections of data used to build a machine learning mathematical 

model, so as to make data-driven predictions or decisions. In “supervised learning” (i.e., 

inferring functions from known input-output examples in the form of labelled training 

data), three types of machine learning datasets are typically dedicated to three respective 

kinds of tasks: “training”, i.e., fitting the parameters; “validation”, i.e., tuning machine 25 

learning hyperparameters (which are parameters used to control the learning process); 
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and “testing”, i.e., checking independently of a training dataset exploited for building a 

mathematical model that the latter model provides satisfying results. 

[133] A variety of learning algorithms can be used to infer a condition or state of a 

subject. Machine learning algorithms may be supervised or unsupervised. Learning 

algorithms include, but are not limited to, artificial neural networks (e.g., back 5 

propagation networks), discriminant analyses (e.g., Bayesian classifier, Fischer analysis), 

support vector machines, decision trees (e.g., recursive partitioning processes, such as 

classification and regression trees [CART]), random forests, linear classifiers (e.g., 

multiple linear regression [MLR], partial least squares [PLS] regression, principal 

components regression [PCR]), hierarchical clustering and cluster analysis. The learning 10 

algorithm generates a model or classifier that can be used to make an inference, e.g., an 

inference about a disease state of a subject. 

[134] In one embodiment, the at least one machine learning algorithm was previously 

trained with at least one training dataset. 

[135] In one embodiment, the at least one training dataset comprises information 15 

relating to the level, the fraction of AID-related mutations from samples previously 

obtained from reference subjects. 

[136] In one embodiment, the at least one training dataset comprises information 

relating to the level, the fraction of AID-related mutations from samples previously 

obtained from a reference population having cancer. 20 

[137] In one embodiment, the at least one machine learning algorithm is selected from 

the group comprising an artificial neural network (ANN), a perceptron algorithm, a deep 

neural network, a clustering algorithm, a k-nearest neighbors algorithm (k-NN), a 

decision tree algorithm, a random forest algorithm, a linear regression algorithm, a 

logistic regression algorithm, a linear discriminant analysis (LDA) algorithm, a quadratic 25 

discriminant analysis (QDA) algorithm, a support vector machine (SVM), a Bayes 

algorithm, a simple rule algorithm, a clustering algorithm, a meta-classifier algorithm, a 

Gaussian mixture model (GMM) algorithm, a nearest centroid algorithm, a gradient 

boosting algorithm (such as, e.g., an extreme gradient boosting [XG Boost] algorithm or 
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an adaptative boosting [AdaBoost] algorithm), a linear mixed effects model algorithm, 

and a combination thereof. 

 

BRIEF DESCRIPTION OF THE DRAWINGS 

[138] Figure 1 is a forest plot from Miao et al. study showing the overall impact 5 

estimated using multivariate Cox proportional hazard model of the fraction of AID 

mutations after adjustment by TMB (top 20%), age and gender. 

[139] Figure 2 is a combination of three forest plots showing the meta-analysis of the 

survival impact of the fraction of AID mutations in different studies. Figure 2A represent 

the effect of using AID/APOBEC (5th decile as cut-off) or SNV substitutions where AID 10 

remains significant across all the studies. Assessment of the prognostic value of the 

fraction of AID mutations in the IMPACT study. Symbols are filled if reaching 

significance or empty otherwise. Figure 2B represents a forest plot of a Cox model of the 

global impact, after adjustment by TMB (top 20%), median APOBEC mutations, age and 

gender. Figure 2C represents a forest plot of the Cox model of the impact of AID 15 

mutations per cancer subtype. 

[140] Figure 3 is a combination of a Kaplan-Meier plot, a forest plot and two 

histograms showing the impact of AID-related mutations in metastatic melanoma from 

Liu et al. study. Figure 3A is a Kaplan-Meier plot showing a better overall survival in 

patients with higher fraction of AID mutations (according to the median). Figure 3B 20 

shows the distribution using boxplots of the fraction of AID mutations according to the 

best response under ICI treatment, PD (progression disease), PR/CR (partial 

response/complete response) and SD/MR (stable disease/mixed response). Figure 3C 

shows the distribution using boxplots of the fraction of AID mutations according to the 

localization of the melanoma. Figure 3D is a forest plot of the Cox proportional hazards 25 

ratio multivariate model adjusting the potential prognostic impact on overall survival 

(OS) of the fraction of AIDA mutations (according to the median) with tumor purity and 

gender. 
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[141] Figure 4 is a combination of a forest plot and one histogram showing the impact 

of AID-related mutations from Pender et al. study. Figure 4A is a forest plot of the Cox 

proportional hazard ratio multivariate model to assess the prognostic impact on OS of the 

fraction of AID mutations (according to the median), adjusted by TMB, age and gender. 

Figure 4B is the distribution of the fraction of AID mutations according to the clinical 5 

benefit of using ICI, defined using NCB (no clinical benefit) and DCB (durable clinical 

benefit). 

[142] Figure 5 is a combination of a Kaplan-Meier plot and a forest plot showing the 

impact of AID-related mutations from Hugo et al. study. Figure 5A is a Kaplan-Meier 

plot comparing the OS according to the fraction of AID mutations (cut-off median). 10 

Figure 5B is a forest plot of the Cox proportional hazard ratio multivariate model to 

assess the prognostic value of the fraction of AICDA mutations on OS adjusting by TMB 

(cut-off ≥ 10). 

[143] Figure 6 is a combination of a Kaplan-Meier plot and a forest plot showing the 

impact of AID-related mutations from the Braun et al. study. Figure 6A is a Kaplan-15 

Meier plot comparing the OS according to the fraction of AID mutations (cut-off media). 

Figure 6B shows a forest plot of the Cox proportional hazard ratio multivariate model to 

assess the prognostic value of the fraction of AID mutations on OS adjusting by gender, 

age (cut-off median) and PBRM1 mutations. 

[144] Figure 7 is a forest plot showing the meta-analysis of the survival impact of the 20 

fraction of AID mutations in different studies. It represents the effect using all the deciles 

of the fractions of AID mutations (adjusting every decile of fractions of AID mutations 

per TMB ≥ 10 mut / Mb), the overall impact of AID with a better OS is present 

independently of the cut-off. Symbols are filled if reaching significance or empty 

otherwise. 25 

[145] Figure 8 is a forest plot showing the meta-analysis of the survival impact of the 

fraction of AID mutations in different studies. It represents the effect using all the deciles 

of the fractions of AID mutations at univariate level, the overall impact of AID with a 
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better OS is present independently of the cut-off. Symbols are filled if reaching 

significance or empty otherwise. 

[146] Figure 9 is a combination of two forest plots showing the assessment of the 

prognostic value of the fraction of AID mutations in the IMPACT study. It shows the 

forest plot of a Cox model of either the global impact, after adjustment by TMB (≥10 5 

mut/Mb), median APOBEC mutations, age and gender (Figure 9A) or the impact by 

tumor subtype (Figure 9B). 

 

EXAMPLES 

[147] The present invention is further illustrated by the following examples.  10 

Materials and Methods 

Subject details 

[148] The total cohort consisted of 50,631 tumor samples representing more than 80 

cancer types. TCGA information consisted of: mutational data in Mutation Annotation 

Format (MAF) included 9,264 cancer patients (24 cancer types) and 741 normal samples; 15 

RNA-seq data (read counts, n = 9,101); immune data (i.e. cibersort calculated immune 

populations, n = 8,983), allele-specific integer copy numbers (ABSOLUTE calculated, n 

= 7,216), available viral counts (n = 5,741) and previously predicted neo-epitopes (n = 

2,143; cancer types = 14). The PCAWG data (ICGC) included 2,775 cancer patients along 

35 different cancer types with WGS information (SNV and CNV) from which 1,522 had 20 

the expression data available. Composite mutations data included 31,353 cancer patients 

from the MSKCC comprising 41 tumor types by the MSK-IMPACT assay (sizes 

depending on the date of sequencing comprising 341, 410, and 468 cancer-associated 

targeted genes) downloaded from CBioPortal for the general maf or their github 

repository (https://github.com/taylor-lab/composite-mutations/tree/master/data) for the 25 

clinical, mutational burden classification, mutational signatures, composite mutation 

annotation, phasing information and molecular timing (Gorelick et al., Phase and context 

shape the function of composite oncogenic mutations, 2020, Nature 582, 100–103). 
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Additionally, hematological cancers cohort (AML, DLBCL, Myelodysplastic Syndromes 

and other leukemias; n = 3,859) (for The St. Jude Children’s Research Hospital–

Washington University Pediatric Cancer Genome Project et al., The landscape of somatic 

mutations in infant MLL-rearranged acute lymphoblastic leukemias, 2015, Nat. Genet. 

47, 330–337; Holmfeldt et al., The genomic landscape of hypodiploid acute 5 

lymphoblastic leukemia, 2013, Nat. Genet. 45, 242–252; Landau et al., Evolution and 

Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia, 2013, Cell 152, 714–

726; Landau et al., Mutations driving CLL and their evolution in progression and relapse., 

2015, Nature 526, 525–530; Lohr et al., Widespread Genetic Heterogeneity in Multiple 

Myeloma: Implications for Targeted Therapy, 2014, Cancer Cell 25, 91–101; Nangalia et 10 

al., Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2, 

2013, N. Engl. J. Med. 369, 2391–2405; Papaemmanuil et al., Genomic Classification 

and Prognosis in Acute Myeloid Leukemia, 2016, N. Engl. J. Med. 374, 2209–2221; 

Puente et al., Non-coding recurrent mutations in chronic lymphocytic leukaemia, 2015, 

Nature 526, 519–524; Quesada et al., Exome sequencing identifies recurrent mutations 15 

of the splicing factor SF3B1 gene in chronic lymphocytic leukemia, 2012,  Nat. Genet. 

44, 47–52; Reddy et al., Genetic and Functional Drivers of Diffuse Large B Cell 

Lymphoma, 2017, Cell 171, 481-494.e15; the St. Jude Children’s Research Hospital–

Washington University Pediatric Cancer Genome Project et al., Deregulation of DUX4 

and ERG in acute lymphoblastic leukemia, 2016 Nat. Genet. 48, 1481–1489; Tyner et al., 20 

Functional genomic landscape of acute myeloid leukaemia, 2018, Nature 562, 526–531; 

Welch et al., TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic 

Syndromes, N. Engl. J. Med. 375, 2023–2036; Yoshida et al., Frequent pathway 

mutations of splicing machinery in myelodysplasia, 2011, Nature 478, 64–69) and 

pediatric cancers cohort (20 tumor types; n = 1,051) (Gröbner et al., The landscape of 25 

genomic alterations across childhood cancers, 2018, Nature 555, 321–327) were used. 

ICI cohort consisted of 2,261 samples coming from: MSKCC-IMPACT dataset (n = 

1,472; 11 tumor types), Pender et al. cohort (n = 98, 19 tumor types), Miao et al. cohort 

(n = 249, four six tumor types),  Liu et al. (n = 144, melanoma), Hugo et al (n = 37, 

melanoma) and Braun et al (n = 261; ccRCC) (Braun et al., Interplay of somatic 30 

alterations and immune infiltration modulates response to PD-1 blockade in advanced 

clear cell renal cell carcinoma, 2020, Nat. Med. 26, 909–918; Hugo et al., Genomic and 
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Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma, 

2016, Cell 165, 35–44; Liu et al., Integrative molecular and clinical modeling of clinical 

outcomes to PD1 blockade in patients with metastatic melanoma, 2019, Nat. Med. 25, 

1916–1927; Miao et al., Genomic correlates of response to immune checkpoint blockade 

in microsatellite-stable solid tumors, 2018, Nat. Genet. 50, 1271–1281; Pender et al., 5 

Genome and Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors 

in Advanced Solid Tumors, 2021, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 27, 

202–212; Samstein et al., Tumor mutational load predicts survival after immunotherapy 

across multiple cancer types, 2019, Nat. Genet. 51, 202–206). Riaz et al. melanoma cohort 

consisted of 68 patients treated with Nivolumab (anti-PD-1) from which 35 had 10 

previously progressed on Ipilimumab (anti-CTLA-4) treatment from which data was 

obtained prior treatment (pre) or 4 weeks after initiation of Nivo (on). Data consisted of 

WES, neo-epitopes (npre = 68; non = 41) and RNA-seq (npre = 45; non = 41) (Riaz et 

al., Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab, 

2017, Cell 171, 934-949.e16). 15 

Tracking AICDA-related mutations 

[149] A code was develop to detect AICDA-related mutations over *wrCy/rGyw* (+/- 

strand, where "W" stands to either adenine or thymine, "R" to purine and "Y" to 

pyrimidine) motifs, giving a total of 8 motifs per strand (positive strand = AACC, AACT, 

AGCC, AGCT, TACC, TACT, TGCC, TGCT; negative strand = TTGG, TTGA, TCGG, 20 

TCGA, ATGG, ATGA, ACGG, ACGA), and its enrichment around a 60 bp flanking 

sequences (the code allows other bp windows for the user). The enrichment strength over 

the wrCy/rGyw motifs was calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀 𝐸𝐸 𝑀𝑀𝑤𝑤 𝐺𝐺
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸 𝑀𝑀𝑤𝑤 𝐺𝐺 𝑋𝑋 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 

[150] Then a Fisher’s exact test was applied to evaluate the over-representation of AID 25 

mutations in each samples by comparing the ratio of substitutions in and out of the AID 

preferred motifs to the ratio of all cytosines and guanines occurring within the provided 

genome window around the mutation (60 bp by default), similar to what was previously 

described for APOBEC (Roberts et al., An APOBEC cytidine deaminase mutagenesis 
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pattern is widespread in human cancers, 2013, Nat. Genet. 45, 970–976). The code was 

developed under R, takes a maf (mutation annotation format) object as input and outputs 

a S3 class object containing: i) a matrix of the 768 possible tetranucleotide substitutions 

across the samples; ii) a data table with all the needed values for enrichment calculation, 

the enrichment score, Fisher exact-test p-value and fdr for enrichment, fraction of AID 5 

mutations, among others; and iii) a maf like data table, with the same format as the input, 

containing only the attributed AID mutations. Finally, mutations were tagged as AID or 

not AID if overlapping or not with the mutations found in the output maf after applying 

the function. 

AICDA motifs distribution across the genome 10 

[151] The AICDA motifs, i.e. WRCY motifs W=adenine or thymine, R=purine, 

C=cytosine, Y=pyrimidine, that is: AACC, AGCC, AACT, AGCT, TACC, TGCC, 

TACT and TGCT. A R script was used to find these patterns in the GRCh38 genome 

using the Biostrings package v2.60.0. In addition, the number of these AICDA motifs 

was also calculated in 20kb binned windows throughout the genome using bedtools, 15 

adjusting by the chromosome size. 

Attributing mutations to mutagenic processes 

[152] Mutations previously tagged as not AICDA were subjected to signature 

attribution to 46 (signatures SBS: 27, 39, 43, 45-60 were excluded since they are 

attributed to sequencing artefacts) of the 65 COSMIC mutational signatures (v3.0) using 20 

Palimpsest package with default parameters (Alexandrov et al., Signatures of mutational 

processes in human cancer, 2013, Nature 500, 415–421; Alexandrov et al., The repertoire 

of mutational signatures in human cancer, 2020, Nature 578, 94–101; Shinde et al., 

Palimpsest: an R package for studying mutational and structural variant signatures along 

clonal evolution in cancer, 2018, Bioinformatics). To avoid over-fitting, signatures not 25 

contributing with at least one mutation within 50% of the samples per tumor type 

(Median-SBSnTumorX < 1) were removed and mutations were re-fitted using the 

remaining signatures. Furthermore, signatures proportions per sample were re-calculated 

adding the number of previously identified AICDA mutations to the signature data. 
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Signatures were not calculated from the MSKCC-Composites, and ICI cohorts because it 

was already available or not used. 

Attributing mutations as driver genes 

[153] Positively-selected genes per tumor type within each cohort were obtained by 

calculating dN/dS likelihood ratios (dNdScv package) through negative binomial 5 

regression modeling of the background mutation rate of each gene using distinct genomic 

covariates including variation in mutation density across genes, context-dependent 

substitutions (mutational signatures), transcriptional strand bias, chromatin state, 

expression and replication time. Additionally, ultra-hypermutator samples and extremely 

mutated genes per sample were removed, to avoid loss of sensitivity. Genes were 10 

considered as drivers if having q-values < 0.01 (Benjamini-Hodgberg’s multiple testing 

correction of p-values) (Martincorena et al., Universal Patterns of Selection in Cancer and 

Somatic Tissues, 2017, Cell 171, 1029-1041.e21). In addition, in the ICGC cohort, the 

selection intensity of every particular mutation related with APOBEC or AICDA 

signatures by deconvolution of prevalence by mutation rates was used for recurrent amino 15 

acid mutations within three oncoproteins caused by single-nucleotide changes using 

cancereffectsizeR v2.1.3 package. The observed substitution rates were divided by the 

expected substitution rates in the absence of selection. The expected substitution rates in 

the absence of selection were calculated as the average per-site synonymous mutation rate 

of the gene, normalized for the average weight of trinucleotide mutational signature 20 

burden for that signature. The quotient of observed to expected numbers of substitutions 

was the selection intensity, as previously described (Cannataro et al., Effect Sizes of 

Somatic Mutations in Cancer, 2018, JNCI J. Natl. Cancer Inst. 110, 1171–1177). 

Statistical analyses and figures 

[154] All statistical analyses were performed using the R statistical programming 25 

environment (version 4.0). Figures were generated using either base R or the ggplot2 

library.  Mann Whitney U test was used for differences in distributions between two 

population groups, unless otherwise noted.  Overall survival analysis to ICI was assessed 

using log-rank Kaplan-Meier curves and univariate/multivariate Cox proportional 
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hazards regression modeling. Several Cox proportional models were assessed for every 

study (i.e. analyzing the deciles, from 10th to 90th, of the fraction of AID induced 

mutations in every included study, unadjusted, using the median of the fraction of AID 

mutations, and also these models were adjusted by TMB >= 10mut/Mb). To combine the 

different survival models, a random-effects model was used with the meta v4.18-1 5 

package (Schwarzer et al., Fixed Effect and Random Effects Meta-Analysis, 2015, In 

Meta-Analysis with R, G. Schwarzer, J.R. Carpenter, and G. Rücker, eds. (Cham: 

Springer International Publishing), pp. 21–53), using log hazard ratio and standard errors 

of each model per study. The inverse variance method was used for pooling. The random-

effects estimate was based on the DerSimonian-Laird method (DerSimonian and Laird, 10 

Meta-Analysis in Clinical Trials Revisited, 2015, Contemp. Clin. Trials 45, 139–145). 

The meta-analysis results were represented in a forestplot using the forestplot function of 

the ggforestplot v0.1.0 package. 

Results  

Landscape of AID-related mutations at pan-cancer level 15 

[155] AID-related mutations were found in the vast majority of cancers studied. 

Overall, the AID-related mutations were found in roughly 5.2% (5.1-5.3% at 95% 

confidence interval[CI]) and 6.6% (6.5-6.8% at 95% CI) in APOBEC mutations. When 

the AID-related to the Single-Base Substitution (SBS) somatic signature according to 

Alexandrov (Alexandrov et al., The repertoire of mutational signatures in human cancer, 20 

2020, Nature 578, 94–101) were included, similar results were found at pan-cancer level 

using the WGS ICGC dataset. Interestingly, the distribution of the somatic signature 

related to AID was homogeneously identified in the vast majority of cancers. Likewise, 

a similar frequency was found in the pan-cancer TCGA, MSKCC cohort and different 

pediatric dataset. Conversely, as expected, the frequency of AID-related mutations was 25 

slightly higher in hematological cancers at approximately 8%. Additionally, in regard to 

the genomic distribution of AICDA motifs (in the normal genome) and mutations (within 

tumors), for the majority of tumor types the highest density of mutations were located in 

chromosome 5, in which GPR98 and DNAH5 were frequently affected, followed by 

chromosome 17 and 2, though the number of AICDA motifs in the genome is higher in 30 

the latest (0.01 and 3.2x10-4, respectively; FDR corrected p-value Wilcoxon-test) but due 
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to its chromosome length. In diffuse large B-cell lymphoma (DLBCL), most commonly 

affected chromosomes involved the presence of either immunoglobulin related genes: 

IGH (chr14), IGL (chr22), IGK (chr2) or genes already related with off-target AID 

activity: PIM1, IRF4, HIST1H1C (chr6). Interestingly, within the driver genes context 

hematological cancers (i.e. Lymph-BNHL, DLBCL) and medulloblastoma had the 5 

highest signature contribution of AID provoked mutations. Furthermore, among the 

involved targets, TP53, in all cohorts; IDH1, in hematological cancers, GBM and LGG; 

and PIK3 genes (TCGA and ICGC cohorts), were recurrently altered. These results were 

also confirmed using a selection intensity approach of every somatic in the ICGC dataset, 

showing a higher selection intensity of PIK3CA, NFE2L2 but also in “minor” IDH1 10 

mutations (i.e. not R132H) and PTEN.  

  

[156] The AID signature was more frequently negatively correlated with the tumor 

mutation burden (TMB) of cancers from TCGA (i.e. in adenoid cystic carcinoma (ACC), 

kidney renal papillary cell carcinoma (KIRP), kidney renal clear cell carcinoma (KIRC), 15 

liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), ovarian cancer 

(OV) and thyroid cancer (THCA)). Conversely, only in bladder carcinoma (BLCA) the 

AID signature was slightly positively correlated with TMB, p=0.01, R=0.13. 

Furthermore, AICDA expression was not associated with age, and was slightly negatively 

associated in colon adenocarcinoma (COAD) (Rho=-0.18, p=7.1e-05) and KIRP (Rho=-20 

0.12, p=0.04). 

[157] AID mutations were found in younger patients when compared to APOBEC 

mutations (median age 61 years vs 65 years p = 0.009). However, within AID mutations, 

no difference of age was found according to gender, but only in the APOBEC related 

mutations where these mutations were found in elderly men compared to women (p = 25 

7.3x10-7, Wilcoxon-test). 

The impact of AID-related mutations with immune checkpoint inhibitor (ICI) response 

[158] Different available datasets analyzed by different sequencing approaches were 

used: WGS, a pan-cancer dataset with 19 different types of cancers (n=98) using virtually 

all types of ICI or combinations (i.e. anti-PD-1, anti-PD-L1, anti-CTLA-4, anti-PD-1 + 30 
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CTLA-4, anti-PD-L1 + CTLA-4, among others) (Pender et al., Genome and 

Transcriptome Biomarkers of Response to Immune Checkpoint Inhibitors in Advanced 

Solid Tumors, 2021, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 27, 202–212), 

WES in 6 types of MSS cancers (n=249) treated with anti-PD-1, anti-PD-L1, anti-CTLA-

4, or a combination of these therapies (Miao et al., Genomic correlates of response to 5 

immune checkpoint blockade in microsatellite-stable solid tumors, 2018, Nat. Genet. 50, 

1271–1281), WES in metastatic melanoma (n=144) treated with anti-PD-1 (Liu et al., 

Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in 

patients with metastatic melanoma, 2019, Nat. Med. 25, 1916–1927), targeted next 

generation sequencing (NGS), IMPACT-MSKCC, of 10 different cancer types (n=1472), 10 

WES in metastatic melanoma (n=37) treated with anti-PD-1 (Hugo et al., Genomic and 

Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma, 

2016, Cell 165, 35–44) and WES in clear cell renal cell carcinoma (ccRCC) (n=261) 

treated with anti-PD-1 (Braun et al., Interplay of somatic alterations and immune 

infiltration modulates response to PD-1 blockade in advanced clear cell renal cell 15 

carcinoma, 2020, Nat. Med. 26, 909–918), with overall more than 2000 patients analyzed 

with sequencing data treated with ICI. A random-effects meta-analysis comparing the 

overall survival (OS) of all these studies was performed and compared the impact of AID, 

to the APOBEC signature and the different single nucleotide variants (SNV), Figure 2. 

The details of this analysis are provided in the methods. Strikingly, the AID signature was 20 

associated with the best OS in all of the studies and the random-effects model showed 

also a favorable prognosis (median as the cut-off), Figure 2A. Moreover, the effect was 

still significant across almost all the studies independently of either decile chosen as cut-

off at univariate (Figure 8) or multivariate adjusting for TMB (Figure 7). Accordingly, 

the APOBEC signature was associated with a favorable prognosis, but not in all datasets. 25 

However, the random-effects model also indicated an overall favorable prognosis 

associated with APOBEC, Figure 2A. The rest of SNV showed much more heterogeneous 

results and only T>A and T>G mutations were associated with favorable prognosis in the 

random-effects model, Figure 2A. 

[159] Interestingly, within the largest study of IMPACT-MSKCC, the fraction of AID-30 

related mutations (using the top 50% of all histologies as a cut-off) was also 
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independently associated with both better OS (Hazard ratio (HR)  0.715 [95% CI 

0.61−0.839] with a p=3.81e10−5) and predictive value compared to TMB or APOBEC, 

after adjusting by TMB (top 20% of each histology as the cut-off), APOBEC signature 

(top 50% of all histologies as the cut-off) age and sex, Figures 2B. It should be noted, that 

using an univariate Cox proportional Hazards ratio model per every cancer type or 5 

adjusting TMB ≥10, the results were also similar in the overall population of this study. 

In addition, the clinical impact of AID-related fraction of mutations was found in 

metastatic melanoma and cancer with unknown primary (Figure 2C, Figures 9A-B). 

Additionally, there was practically no correlation between the fraction of AID mutations 

with the APOBEC signature neither globally nor by tumor type in this cohort and in the 10 

ICGC and TCGA datasets (Spearman correlation). 

[160] In the study of Miao et al. (Miao et al., 2018), the fraction of AID-related 

mutations was associated with an improved OS using the overall population, HR=0.241 

[95% CI 0.126−0.46] and p=3.81e10−5, after adjusting by age, sex and TMB (Figure 1). 

Likewise, in the study of Liu et al. with metastatic melanoma, the presence of high 15 

fraction of AID-related mutations was also associated with a better OS, in univariate 

analysis using Kaplan-Meier plot with log-rank p=0.0025, but also in a multivariate Cox 

model, HR=0.5 [95% CI 0.31-0.8] p=0.004, after adjusting by tumor purity and gender 

(Figures 3A;D). Noteworthy, when the response in this study was stratified according to 

the best response under anti-PD-1, the patients showing a response (either partial 20 

response, PR or complete response, CR) had a significantly higher fraction of AID-related 

mutations compared to the patients with progressive disease, PD or with patients with 

stable disease, SD, Figure 3B. Interestingly, the localization of the melanoma (i.e.  acral, 

mucosal, occult and skin) was stratified and the only subtype with significant higher level 

of fraction of AID-related mutations in responders versus non-responders was the skin, 25 

Figure 3C. Furthermore, in the Pender et al study (Pender et al., 2021) using WGS of a 

pan-cancer dataset, the results were also in the same line with a statistically significant 

effect of the fraction of AID mutations with better OS, HR=0.62 [95% CI 0.38-0.99], 

p=0.048, in the multivariate Cox model, after adjusting by TMB, gender and age, Figure 

4A. Importantly, the clinical benefit (durable clinical benefit, DCB, versus non-durable 30 

clinical benefit, NCB) according to the described provided in this study (Pender et al., 
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2021), was also enriched in patients with higher value of AID mutations, p=5.3e-10, Figure 

4B. The study from Hugo et al. (Hugo et al., 2016), also confirmed this favorable 

association between higher fraction of AID mutations (cut-off according to the median) 

in patients with better OS treated with ICI in the univariate model, with log-rank p=0.018, 

and also in the multivariate Cox model, HR=0.37 [95% CI 0.37-0.99], p=0.048, Figures 5 

5A-B. Finally, the Braun et al. study (Braun et al., 2020), also allowed to validate this 

prognostic association in univariate analysis, p=0.011, and in a Cox model after adjusting 

by age, gender and the presence of PRBM1 mutations, HR=0.68 [95% CI 0.51-0.92] 

p=0.012, Figures 6A-B.  

[161] Overall, all the studies confirmed the independent prognostic value of high 10 

fraction of AID mutations according to the median in the univariate and multivariate 

analyses.  
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CLAIMS 

 

1. An in vitro method for identifying a subject with cancer as being susceptible to 

respond to a treatment with an immune checkpoint inhibitor (ICI) or for prognosing 

survival of a subject with cancer and being treated with ICI, the method comprising 5 

assessing the fraction of AID-related mutations in a sample, wherein the fraction of 

AID-related mutations is the ratio of the number of AID-related mutations over the 

total number of mutated single nucleotide variants. 

2. The in vitro method according to claim 1, wherein an AID-related mutation is a 

mutation falling into an AID hotspot sequence, wherein said AID hotspot sequence 10 

includes the nucleic sequence WRCY or its reverse RGYW. 

3. The in vitro method according to claim 2, wherein the AID hotspot sequence 

includes AACC, AACT, AGCC, AGCT, TACC, TACT, TGCC, TGCT or the 

reverse TTGG, TTGA, TCGG, TCGA, ATGG, ATGA, ACGG, ACGA. 

4. The in vitro method according to any one of claims 1 to 3, wherein the sample is a 15 

tumor tissue. 

5. The in vitro method according to any one of claims 1 to 4, wherein said method is 

for identifying a subject with cancer as being susceptible to respond to a treatment 

with an ICI. 

6. The in vitro method according to any one of claims 1 to 4, wherein said method is 20 

for prognosing survival of a subject with cancer and being treated with ICI. 

7. The in vitro method according to any one of claims 1 to 6, wherein the ICI is 

selected from the group comprising an inhibitor of PD-1, an inhibitor of PD-L1, an 

inhibitor of CTLA-4 and a combination thereof. 

8. The in vitro method according to any one of claims 1 to 7, wherein the cancer is 25 

selected from the group comprising melanoma, non-small-cell lung carcinoma 

(NSCLC), renal cell carcinoma, head and neck cancers, merkel-cell carcinoma, 
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gastric cancer, small-cell lung carcinoma (SCLC), Hodgkin lymphoma, breast 

cancer, cervical cancer, colorectal cancer, endometrial cancer, hepatocellular 

cancer, esophageal cancer, mesothelioma, MSI (microsatellite instability)-high 

solid tumors, TMB (tumor mutation burden)-high tumors, breast cancer and 

urothelial carcinoma.  5 

9. The in vitro method according to any one of claims 1 to 8, the method further 

comprising the step of comparing the fraction of AID-related mutations with a 

reference value.  

10. The in vitro method according to claim 9, wherein the reference value is the median 

of the fractions of AID-related mutations measured in a reference population. 10 

 
11. The in vitro method according to claim 9, wherein the reference value is a decile of 

the fractions of AID-related mutations measured in a reference population. 

 
12. The in vitro method according to claim 10 or claim 11, wherein the reference 15 

population is a population of subjects having or having had a cancer, which are or 

have been treated with ICI, and which respond or have responded to ICI. 

13. The in vitro method according to any one of claims 9 to 12, wherein a fraction of 

AID-related mutation above the reference value is indicative of a subject as being 

susceptible to respond to a treatment with ICI, or prognosed with a high survival. 20 
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ABSTRACT 

 
 

ACTIVATION-INDUCED CYTIDINE DEAMINASE AS A NEW BIOMARKER 

The present invention relates to an activation-induced cytidine deaminase (AID) as a new 

biomarker for cancer. 

 

 

 

 

Figure of abstract: Fig. 1
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Treating central nervous system lymphoma in the era of precision medicine
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France; cSorbonne Université, Paris, France; dRéseau Expert National LOC (Lymphomes Oculo-Cérébraux), Groupe Hospitalier Pitié Salpêtrière, Paris, 
France

ABSTRACT
Introduction: Primary central nervous system lymphoma (PCNSL) is a rare extra-nodal non-Hodgkin 
lymphoma that in the vast majority of cases belongs to diffuse large B-cell lymphoma (DLBCL) 
histology. The standard first-line treatment is based on high-dose methotrexate (HD-MTX) regimens. 
However, the majority of patients will relapse, leading to a poor prognosis of the disease.
Areas covered: Reviewed are the potential new therapeutic approaches in PCNSL. With the advent of 
tailored treatment, immunomodulators and immunotherapies are appearing as new promising ther-
apeutic approaches for this orphan disease. This review seeks to summarize the novel approaches 
currently under evaluation.
Expert opinion: The therapeutic management of PCNSL is rapidly evolving with the description of 
PCNSL molecular alterations. However, due to the rarity of this disease, phase III clinical trials using new 
therapeutic drugs are still lacking. In addition, the vast majority of newly diagnosed PCNSL affect elderly 
patients, and specific and adapted clinical trials for this fragile population are warranted.

Currently, the use of targeted therapies or immune-mediated treatments is only studied in relapsed/ 
refractory (R/R) PCNSL, but the use of these approaches as a first-line treatment (compared with HD- 
MTX) could also be used as new promising approaches to decrease the toxicity associated with MTX 
regimens.
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1. Introduction

PCNSL is a rare subtype of lymphoma, representing roughly 
2% of primary central nervous system (CNS) tumors [1]. It is 
a challenging form of non-Hodgkin lymphoma restricted to 
the CNS or eyes [2]. Close to 90% of PCNSL cases are Diffuse 
Large B-cell Lymphomas (DLBCLs); the remainder are T-cell 
lymphomas, indolent B-cell lymphomas, Burkitt’s lymphomas, 
and poorly characterized low-grade lymphomas. Despite the 
important therapeutic improvement in the past decades, the 
prognosis of PCNSL remains poor with a median overall survi-
val (OS) of 26 months [3]. However, a substantial number of 
patients may hope to be cured since the 5-year and 10-year 
survival rates for PCNSL are 29.9% and 22.2%, respectively [4]. 
About one third of patients are refractory to first-line treat-
ment, and up to 60% of the patients will eventually relapse [5]. 
There is no standard chemotherapy regimen for R/R PCNSL. 
The prognosis is poor even with salvage therapy, the median 
progression-free survival (PFS) after recurrence is around 
2.2 months (range, 0–29.6) and the median OS is approxi-
mately 3.5 months (range, 0–29.6) [6].

DLBCLs are a heterogenous group of tumors with different 
pathogenic mechanisms [7]. Therefore, to understand the effi-
cacy and failures of the new drugs is important to dissect the 
molecular background of this disease. Recently, the molecular 

alterations that characterize the PCNSL have been deeply 
described but using small numbers of patients.

1.1. Lymphomagenesis and tumor microenvironment

DLBCLs of the CNS are recognized as mature post-germinal 
B cells, this is the called activated B-cell (ABC) immunopheno-
type. This phenotype traduces cell positivity to CD19, CD20, 
CD79a-, BCL-6, and MUM1/IRF4. These cells carry rearranged 
and somatically mutated immunoglobulin (Ig) genes with evi-
dence of ongoing somatic hypermutation (SHM) [8]. For a brief 
recall, when B lymphocytes are activated, they undergo rapid 
proliferation and simultaneously initiate two genome remo-
deling reactions, termed SHM and class-switch recombination 
(CSR). SHM introduces point mutations in the variable region 
of Ig genes, which can increase antibody affinity, whereas CSR 
is a DNA deletion event that replaces one Ig constant region 
gene for another [9].

PCNSLs exhibit several types of low-frequency genetic 
alterations including somatic mutations, copy number altera-
tions (CNAs), and chromosomal rearrangements [10]. These 
genetic alterations may lead to activation of the B-cell recep-
tor (BCR), Toll-like receptor (TLR), and NF-kβ pathways in more 
than 90% of cases [11].
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Aberrant SHM is not confined to its physiological targets 
but extends to other genes that have been implicated in 
tumorigenesis [8,12]. Somatic mutations particularly lead to 
oncogenic TLR and BCR signaling pathway alterations. 
Mutations affect the Ig genes in 38% of cases and BCL6 in 
17–47% of cases, MYD88 in 38–75% of cases, BCL2 in 42–90% 
of the cases and CD79B in approximately 20% of cases [3,13– 
15]. Oncogenic mutations of the TLR adaptor protein MYD88 
and/or NFKBIZ copy gain are common genetic features of 
Epstein Bar Virus (EBV) PCNSL [11]. MYD88 mutations have 
also been identified in vitreous aspirates in primary vitreoret-
inal lymphomas (PVRL) [13]. The crosstalk between TLR and 
BCR signaling pathway allows an interesting target inhibition 
of pathway components such as IRAK1/4, IRF4, and/or BTK. 
A subset of PCNSLs exhibits activating CARD11 mutations in 
association with MYD88 and CD79B, which may limit the effi-
cacy of proximal BCR pathway inhibitors [16].

CNAs may lead to genomic instability and less favorable 
outcomes. PCNSL can alter the p53 pathway via upstream of 
CDKN2A loss [17]. It has been described the presence of 
9p24.1/PD-L2 copy gains in association with 9p21.3/CDKN2A 
copy loss and increased genomic instability [11]. CNAs of 
9p24.1 and translocations of 9p24.1 lead to overexpression 
of the programmed cell death 1 receptor (PD-1) ligands, PD- 
L1, and PD-L2 [4]. Besides immune evasion, another mechan-
ism affecting the prognosis is a suppressed tumor immune 
microenvironment.

Recent studies have highlighted the significant roles of the 
tumor microenvironment in driving tumor progression and 
the development of chemo/radio-resistance. Lymphoma cells 
in an important percentage of the cases (>60%) seem to lack 
cell surface expression of the MHC class I complex, which is 
necessary for the recognition by cytotoxic T lymphocytes 
[10,18]. Tumor-associated macrophages/microglia (TAMs) are 
a major stromal cell component in PCNSL [19], these TAMs 
preferentially express PD-L1 and that high expression of PD-L1 
by TAMs shows a trend toward a correlation with a poor out-
come [20,21].

1.2. Treatment strategies

1.2.1. Immuno-chemotherapy
HD-MTX (>3 g/m2) has been combined with other chemother-
apeutic agents such as cytarabine, procarbazine, temozolo-
mide, ifosfamide, etoposide, and thiotepa. According to the 
latest PCNSL guidelines, HD-MTX in combination with cytara-
bine is recommended for a combination treatment for newly 
diagnosed PCNSL [22].

The role of the chimeric monoclonal anti-CD20 antibody, 
rituximab, in association with the standard therapy is still 
controversial, and conclusions of two prospective studies 
show different results [23–25]. The international IELSG32 trial 
had three induction chemotherapy arms. The first arm HD- 
MTX and cytarabine, the second arm had the same regimen 
combined with rituximab, and the third arm had the same as 
the second in addition to thiotepa, known as MATRix regimen. 
It was demonstrated that the addition of rituximab alone and 
the MATRix regimen increased CR rates compared to the first 
arm. The addition of rituximab also proved better objective 
response rates (ORR). The addition of thiotepa to rituximab 
further improved ORR rate and outcome [25]. These encoura-
ging results were not confirmed by the group of Bromberg, 
their patients received induction therapy either with HD-MTX 
therapy, associated with carmustine, etoposide, and rituximab 
or induction chemotherapy without rituximab. No improve-
ment in the event-free survival (EFS), OS and response rate 
(RR) in the arm of rituximab was demonstrated, apparently 
patients 60 years and younger may be the subgroup that 
could benefit [23]. Therefore, a further analysis focusing on 
the benefit by age group for the use of rituximab may result 
interesting.

1.2.2. Target therapies (BCR/TLR pathway and PI3 K/mTOR 
pathway)
Knowing that BCR signaling plays a major role in these tumors. 
It can be targeted upstream or downstream. Upstream inhibi-
tion could target the spleen tyrosine kinase (SYK), phosphati-
dylinositol – 4,5 – bisphosphate 3 – kinase (PI3 K), Bruton 
Tyrosine Kinase (BTK), or Interleukin-1 receptor-associated 
kinase (IRAK). Downstream the pathway could be inhibited 
by immunomodulatory drugs (IMIDs) like thalidomide and its 
analogs lenalidomide and pomalidomide which inhibit IRF4, or 
inhibitors of mucosa-associated lymphoid tissue lymphoma 
translocation protein 1 (MALT1) [26].

Ibrutinib, a small molecule that binds permanently to BTK, 
resulted in a promising candidate drug for assessment in 
PCNSL [27]. BTK links BCR activity to NF-κβ and is essential 
for the survival of ABC lines with chronic active BCR signaling 
[16]. The efficacy of ibrutinib is noteworthy with high response 
rates and interesting PFS. A preclinical study demonstrated the 
high level of ibrutinib brain distribution, which supports the 
clinical potential value of this drug in the PCNSL treatment 
armamentarium [28]. Ibrutinib demonstrated significant clin-
ical activity particularly in tumors harboring both CD79B and 
MYD88 hotspot mutations. This was demonstrated in a phase 
Ib study, which objective was to assess the response rate 
according to the different molecular subtypes of DLBCL, PFS, 
and OS, and the association of ibrutinib response with geno-
mic aberrations that alter BCR and NF-κβ signaling in ABC 
DLBCL (CD79B, MYD88, CARD11, and TNFAIP3). Overall 
responses (OR) were observed in 25% of the patients, median 
PFS and OS were 1.64 months and 6.41 months, respec-
tively [29].

Several studies have also assessed the tolerance and the 
potential efficacy of ibrutinib in PCNSL either alone or in 
combination. In monotherapy, response was observed in 
77% of 13 patients with PCNSL with a median PFS of 

Article highlights

● Half of PCNSL present hotspot somatic mutations in MYD88 and 
CD79B leading to activation of TCR and BCR signaling pathways.

● Ibrutinib, an inhibitor of the BCR pathway, is a promising therapeutic 
agent in PCNSL.

● The use of immune-related regimens is an interesting approach but 
its efficacy in PCNSL should be confirmed in future clinical trials.
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4.6 months. This was an open-label dose-escalation study of 
ibrutinib in patients with PCNSL or secondary central nervous 
system lymphoma (SCNSL), with R/R disease. The maximum 
tolerated dose (MTD) of ibrutinib was 840 mg demonstrating 
higher concentrations in cerebrospinal fluid (CSF) on day 29. 
Ibrutinib also confirmed higher response rates in PCNSL than 
reported for DLBCL outside the CNS, suggesting a divergent 
molecular pathogenesis. Mutations of CARD11 were found in 
the only patient with resistance and in some patients with 
partial response (PR). Patients with complete response (CR) did 
not have CD79B mutations either [30]. A phase Ib conducted in 
18 PCNSL patients, ibrutinib was used as a first-line treatment 
(alone or in combination) and/or as a treatment of R/R disease. 
Ninety-four percent showed tumor reductions with ibrutinib 
alone, including patients having PCNSL with CD79B and/or 
MYD88 mutations, and 86% of evaluable patients achieved 
CR with DA-TEDDi-R (temozolomide, etoposide, doxil, dexa-
methasone, ibrutinib, and rituximab) with a median PFS of 
15.3 months [31]. An important limitation of this article was 
the fact that it was not possible to know if some patients 
might have eventually reached CR on ibrutinib monotherapy 
alone.

Another recent phase Ib study combining ibrutinib with 
high-dose methotrexate and rituximab regimen in R/R PCNSL 
reported responses even in PCNSL without MYD88 or CD79B 
mutations. In this study, six out of nine (67%) patients 
achieved CR, and these patients mostly corresponded to an 
ABC subtype (85.7%), they reached a median PFS of 9.2 months 
[32]. The LOC network has conducted a phase II trial enrolling 
52 patients with refractory and relapsed PCNSL (including 8 
PVRL) using 560 mg daily dosed ibrutinib. The primary end- 
point was the disease control (DC) rate, including complete 
and unconfirmed complete response (CR and uCR), partial 
response (PR) and stable disease (SD) after two cycles of 
treatment. Ibrutinib was detected in the CSF, DC was achieved 
in 70% of patients, treatment failed in 13 patients, ORR was 
observed in 59%, with a median PFS of 4.8 months and OS of 
19 months [33].

A shared complication seen in the studies of ibrutinib was 
the risk of aspergillosis (pulmonary and/or CNS). It is worth 
mentioning a higher frequency in combination regimens com-
pared to monotherapy with ibrutinib. The hypothesis behind 
these infections is that this treatment impairs fungal immune 
surveillance, a deficit that may be exacerbated by co- 
administration of dexamethasone and/or chemotherapy. In 
their murine model (Btk knockout and wild-type mice) asper-
gillosis was linked to BTK-dependent fungal immunity. 
Macrophages provide the first line of defense against fungi 
and the exposure of macrophage TLRs to fungal pathogens 
initiates downstream signaling, including activation of BTK, 
promoting adaptive immune responses. Macrophage TLR acti-
vation is required for immunity and inflammatory responses to 
Aspergillus fumigatus [34].

On the other hand, it has been suggested the interest in 
blocking the PI3 K/mammalian target of rapamycin (PI3 K/ 
mTOR) pathway to overcome resistance in CD79B mutated 
tumors. The PI3 K signaling pathway plays a critical role in 
oncogene-mediated tumor growth and proliferation and has 

regulatory functions in cell survival, apoptosis, protein synth-
esis, and glucose metabolism [35,36]. Down in this signaliza-
tion pathway, it is found a serine-threonine protein kinase, 
mTOR. Temsirolimus is an mTOR inhibitor, that has been 
studied in R/R PCNSL, mTOR is now recognized as a unique 
and important target for cancer therapeutics. There is only one 
prospective study that investigated the mTOR inhibition in R/R 
PCNSL using temsirolimus. This phase II nonrandomized, 
open-label study used temsirolimus as a single-agent with 
a two-stage design. In the first stage, patients were treated 
with temsirolimus 25 mg intravenously once per week, if no 
common toxicity criteria grades 3 to 4 were observed, all 
following patients were treated with 75 mg once per week. 
Korfel and colleagues demonstrated a high radiographic 
response of 54%, but a low median PFS of only 2.1 months, 
suggesting a transient effect [37]. Even less encouraging 
results were reported with buparlisib. Buparlisib is an oral pan- 
PI3 K inhibitor that had shown antitumor activity in lymphoma 
cell lines and induced apoptosis in DLBCL [38]. However, in 
a phase II trial, there was a response rate of 25% a median PFS 
of 39 days an 100% of relapses [39].

1.2.3. Immunotherapy
Nivolumab, pembrolizumab (anti-PD1), and durvalumab (anti- 
PDL1), the so-called immune checkpoint inhibitors (ICIs), have 
also been assessed [40]. Today no prospective trial has been 
completed, and only case reports or series of cases have been 
described. Terziev et al. reported the first documented case of 
treatment with nivolumab after high-dose chemotherapy with 
autologous stem cell transplant (HD-CT/ASCT) in a PCNSL 
patient, this patient showed a sustained CR [41]. Nivolumab, 
a human IgG4 monoclonal antibody that targets PD-1 and 
blocks engagement of the PD-1 ligands, was used in four 
patients with refractory or recurrent PCNSL and in one 
SCNSL and a response was seen in all of them [42]. Results 
of prospective trials are expected in the near future 
[NCT02857426]. The use of nivolumab in combination with 
dendritic cell vaccination has been described [43]. Dendritic 
cell vaccination is a cancer immunotherapy in which dendritic 
cells are cultured and loaded with tumor antigen ex vivo 
activate T-cell to attack tumor cells by presenting tumor anti-
gen [44].

Pembrolizumab also binds to the PD-1 receptor, blocking 
both immune-suppressing ligands, PD-L1 and PD-L2, from 
interacting with PD-1 to help restore T-cell response and 
immune response [45]. Two pembrolizumab clinical trials 
[NCT02779101, NCT03012620] are currently evaluating ORR 
in patients treated with pembrolizumab for relapsed PCNSL 
after MTX-based first-line therapy. There is evidence of expres-
sion of PD-L1 and/or PD-L2 in a subset of non-Hodgkin lym-
phomas as well as in the tumor microenvironment, making 
this pathway a promising target [46]. A phase II clinical trial 
[NCT03212807] using durvalumab plus lenalidomide for R/R 
DLBCL, PCNSL, and PTL is currently ongoing. Durvalumab is 
a high-affinity human IgG1 monoclonal antibody that binds to 
PD-1 and CD80, blocking PD-L1, but not PD-L2. The primary 
endpoint of this study is to evaluate the ORR after 6 months of 
follow up. Because the PD-L1 ligand is located on the tumor 
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cells, a PD-L1 inhibitor should penetrate both the blood-brain 
barrier (BBB) and the blood-tumor barrier effectively. Albeit 
challenging, due to the low prevalence of these lymphomas 
and the uncertain pharmacokinetic properties of these anti-
bodies with regard to the BBB, their clinical use should be 
actively be explored in this population [46].

Adoptive cell therapy (ACT) has been tested in different types 
of R/R B-cell cancers [47–51]. This immunotherapy strategy 
includes the use of chimeric antigen receptor (CAR)-T cells. 
CAR-T cells treatment is based on the incorporation of T cells 
that have been genetically engineered to express a CAR for the 
pan–B-cell CD-19 antigen [52]. Single-center studies of anti-CD19 
CAR-T cells in refractory DLBCL have shown encouraging results, 
with rates of complete remission of more than 50% and some 
durable remissions in a subset of patients [48,53]. One explana-
tion for the different response rates among tumor types is that 
CAR-T functionality may be inhibited by an immunosuppressive 
tumor microenvironment. All available CAR-T cells trials have 
excluded patients with CNS involvement. Neelapu et al. and 
Schuster et al. reported with axicabtagene ciloleucel and 

tisagenlecleucel, respectively, important ORR of 82% and 56% 
in patients followed by systemic DBLCL. It is worth to mention 
the neurologic adverse reactions informed in the previous stu-
dies (12–28%) using this strategy and sensitize the neurologist 
and neuro-oncologist in charge. CAR-T cell therapy has demon-
strated the ability to cross the BBB and induce responses in the 
CNS [53,54]. A case report of primary refractory DLBCL involving 
the brain parenchyma achieved CR with JCAR017, a CD19- 
directed CAR-T cell product [51]. There is currently an ongoing 
phase II clinical multi-cohort in adults with aggressive B-cell non- 
Hodgkin lymphoma, including R/R PCNSL [NCT03484702]. 
Recently ongoing clinical trials mentioned above are summar-
ized in Table 1.

1.2.4. Immunomodulators
The group of IMIDS is headed by lenalidomide and pomalidomide, 
oral agents derived from thalidomide, with antiproliferative prop-
erties. Lenalidomide has antiproliferative properties that modify 
the microenvironment and activates cytotoxic T cells and NK cells 
[55]. Lenalidomide has been studied as monotherapy, in 

Table 1. Ongoing clinical trials in PCNSL.

Drug(s) NCT identifier
Type of 

study Population Primary endpoint Secondary endpoint(s)

Ibrutinib 
Ibrutinib + HD-MTX

NCT02315326 Phase I/II R/R PCNSL and SCNSL Establish MTD of 
ibrutinib * 

MTD of Ibrunib + 
HD-MTX

Safety/tolerability 
PFS 
DOR

Ibrutinib/copanlisib NCT03581942 Phase Ib/ 
II

R/R PCNSL MTD and ORR Adverse effects 
PFS 
DOR 
OS

Ibrutinib/rituximab/ 
lenalidomide

NCT03703167 Phase Ib R/R PCNSL and SCNSL MTD PFS

Nivolumab NCT02857426 Phase II Relapsed/Refractory PCNSL or relapsed 
refractory PTL

ORR PFS 
OS 

DOR
Pembrolizumab NCT02779101 Phase II Relapsed PCNSL after MTX-based first 

line therapy
ORR -

Pembrolizumab NCT03012620 Phase II Multi-cohort study with a dedicated 
cohort of R/R PCNSL

ORR PFS 
OS 

DOR
Nivolumab/ 

pomalidomide
NCT03798314 Phase I r/r PCNSL and PVRL MTD ORR 

PFS
Rituximab+Lenalidomide 

+ Nivolumab
NCT03558750 Phase I/II R/R Non-Germinal Center Type DBCL or 

PCNSL
MTD and toxicity 
Efficacy

Tolerability, Time to progression, ORR with 
and without MYD88

Durvalumab + 
Lenalidomide

NCT03212807 Phase II R/R EBV+ associated DLBCL Subtypes, 
PCNSL and PTL.

ORR PFS 
OS

Pomalidome/ 
dexametasone

NCT01722305 Phase I Dose-escalation study for R/R PCNSL Stablish MTD 
Efficacy and safety

DOR 
Safety

Lenalidomide/rituximab NCT01956695 Phase II R/R PCNSL Efficacy measured 
by ORR

Safety 
Duration of response 

PFS 
OSS 

Quality of life
Buparlisib (BKM120) NCT02301364 Phase II R/R PCNSL and R/R SCNSL PFS AE 

OS 
ORR

PQR309 NCT02669511 Phase II R/R PCNSL ORR AE
Temsirolimus NCT00942747 Phase II R/R PCNSL ORR Safety 

Time to progression 
Penetration in CSF

CAR-T cells‡ NCT03484702 Phase II R/R PCNSL and other aggressive B-NHL ORR Safety 
PFS 
OS

PCNSL: Primary Central Nervous System Lymphoma, PTL: Primary Testicular Lymphoma, SCNSL: Secondary Nervous System Lymphoma, DBCL: Diffuse B-cell 
Lymphoma, R/R: Relapsed/Refractory, EBV: Epstein Barr Virus, B-NHL: B-cell non-Hodgkin lymphoma; MTX: Methotrexate, HD-MTX: High-Dose Methotrexate, AE: 
adverse events, PFS: progression-free survival, ORR: overall response rate, OS: overall survival, DOR: duration of response, MTD: Maximum-tolerated dose, CSF: 
cerebrospinal fluid, ‡Autologous T-cells expressing anti-CD19 chimeric antigen receptor. 
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combination with rituximab and as maintenance therapy. In 
a proof of concept that with aging T cells, B cells, dendritic cells, 
and NK cells change, this drug has been assessed in elderly 
patients, proving that it suppresses apoptosis of stimulated 
T cells via interleukin 2-dependent mechanisms [56] and that it 
has a moderate activity with a good tolerability in this population.

As a single agent, lenalidomide has been used in patients 
with recurrent PCNSL, with a description of two patients 
achieving CR [57]. In a phase I study by Rubenstein et al., it 
was reported an MTD of lenalidomide of 15 mg/day in a 21- 
day/28 schema, and radiographic responses were observed in 
64% (9/14 R/R PCNSL) with a median PFS of 6 months [58]. 
A phase II French study recently suggested the efficacy of 
lenalidomide in 50 R/R PCNSL patients (lenalidomide 20 mg/ 
21 days was combined with rituximab), an ORR at the end of 
induction of 35.6% was observed, responding patients fol-
lowed a maintenance with lenalidomide, and the median 
PFS was 7.8 months (3.9–11.3), the OS was 17.7 months (12.9 
to not reached), and a good toxicity profile was observed as 
well [59]. Low dose lenalidomide (5–10 mg/day) as mainte-
nance treatment in patients older than 70 years, demonstrated 
to be well tolerated, and with a median overall follow up of 
31.6 months the median PFS had not been reached [60].

Pomalidomide is a third-generation IMID that has shown 
a good CNS penetration [61]. In a phase I study, Tun et al. 
assessed the efficacy of pomalidomide in R/R PCNSL and in 
PVRL patients. The ORR reported was 48% and a median PFS 
of 9 months for responders, and it was well tolerated in terms 
of side effects [62].

1.2.5. Associating strategies
As aforementioned, we discussed the association of IMIDS and 
monoclonal antibodies, BTKi, and conventional chemotherapy, 
but a question that may arise is the possibility of associating 
immunotherapy strategies, for example, CD19 CAR-T cells, 
IMIDS, and/or ICIs. Indoleamine 2,3-dioxygenase (IDO) is an 
intracellular enzyme induced by inflammatory mediators that 
intervenes on the metabolism of immunosuppressive metabo-
lites, which blocks antigen-specific T-cell proliferation and 
induces T-cell death. IDO´s activity antagonizes CD19 CAR-T 
cell therapy [63]. One study proved the overexpression of PD- 
L1 and IDO1 by macrophage/microglia in PCNSL tissues. 
Suggesting that the expression of immunosuppressive mole-
cules, including PD-1 ligands and IDO1, by macrophage/micro-
glia may be involved in immune evasion of lymphoma cells 
[64]. Rubenstein provides evidence for the activation of the 
IDO pathway in CNS lymphomas, raising the possibility that 
IDO may contribute to early resistance to lenalidomide [58]. 
Further evaluation of this treatment approach is needed.

2. Conclusion

There has been an enormous progress in the last decades in 
understanding this pathology. HD-MTX-based chemotherapies 
remain the standard induction strategy. There are still contro-
versies in the induction therapies, notably regarding the use of 
rituximab. Forconsolidation therapy, novel therapies are 
encouraged. Understanding PCNSL biology has allowed to 
incorporate target therapies and immunotherapies, but with 

every new drug, challenges will appear. In a global vision, 
these strategies have not reached durable desired responses 
and have short PFS. However, among these molecules, ibruti-
nib and lenalidomide have demonstrated promising results. It 
is important to highlight that ibrutinib could be associated 
with unexpected adverse effects like a potential arrhythmo-
genic risk and a higher risk of aspergillosis. IMIDs might also 
help to improve outcomes, particularly in the elderly. The role 
of ICIs is not yet clear. Some small case series of R/R PCNSL 
had shown a high rate of radiological responses. 
Corticosteroids increase the risk of life-threatening infections 
and may interfere with the efficacy of ICIs. CAR-T cell therapy 
has been proved to penetrate the CNS, the concern of neuro-
toxicity exists, there are no completed clinical trials for PCNSL, 
so far. Current ongoing trials will give more resources to the 
clinician in the years coming.

3. Expert Opinion

The standard of care for newly diagnosed PCNSL patients is 
based on HD-MTX regimens. However, there is a broad range 
of unanswered therapeutic questions that should be consid-
ered. For instance, whether it is necessary to consolidate HD- 
MTX to improve the response rate or whether the efficacy of 
immune-related or targeted therapies will be different if they 
were used as first-line treatments instead of at disease recur-
rence. Several clinical trials are currently ongoing to try to 
answer this clinically relevant question.

It is worth mentioning that the therapeutic management of 
PCNSL is rapidly evolving with the description of PCNSL mole-
cular alterations. However, due to the rarity of this disease, 
phase III clinical trials using new therapeutic drugs are still 
lacking. In addition, the vast majority of the newly diagnosed 
PCNSL affect elderly patients and specific and adapted clinical 
trials for this fragile population should be conducted.

Currently, the use of targeted therapies or immune- 
mediated treatments is mainly studied in R/R PCNSL, but the 
use of these approaches as a first-line treatment (compared 
with HD-MTX) should be encouraged as the new promising 
approaches may decrease the toxicity associated with HD-MTX 
regimens.

Another important point with potential therapeutic conse-
quences is the role of the brain tumor microenvironment in 
the evolution and therapeutic response of PCNSL. In this line, 
the boost of immune response using ICIs, immunomodulators, 
or CAR-T cell therapy could be a promising therapeutic 
approach.

Furthermore, it is necessary to perform high-throughput mole-
cular studies using a larger number of samples. The vast majority 
of molecular studies in PCNSL have been performed in small 
cohorts (n < 25) or using only a high-throughput approach (i.e. 
either whole-exome or RNA-seq) and large multi-omics studies 
are still lacking. Indeed, there is virtually no molecular alteration 
that has robustly been associated with the clinical evolution or 
the prognosis of PCNSL. Moreover, the comprehensive molecular 
portrait of PCNSL using multi-omics approaches could allow to 
identify new clinically relevant therapeutic or theranostic targets.

In the next years, there will certainly appear different clinical 
trials combining targeted therapies associated with immune- 
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related therapeutic agents in PCNSL tailored according to the 
genetic and molecular background of this CNS lymphoma.
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Abstract

Therapeutic  antibodies  targeting  immune  checkpoints  have  shown

limited efficacy in clinical trials in glioblastoma (GBM) patients. Ultrasound-

mediated  blood-brain  barrier  (BBB)  opening  (UMBO)  using  low-intensity

pulsed ultrasound (LIPU) improved drug delivery to the brain. We explored

the safety and the efficacy of LIPU plus immune checkpoint inhibitors (ICIs) in

preclinical  models  of  GBM.   BBB  opening  was  performed  using  a  1  MHz

preclinical ultrasound system in combination with 10µl/gram microbubbles.

The penetration of programmed death-1 (anti-PD-1) and programmed death-

ligand 1 (anti-PDL-1) checkpoint inhibitors were measured by nano‐surface

and  molecular‐orientation  limited  (nSMOL)  proteolysis  followed  by  liquid

chromatography‐mass  spectrometry  (LC‐MS/MS)  bioanalysis  and

immunohistochemistry. 

The  impact  of  repeated  treatments  on  survival  were  determined.  In

syngeneic  GBM-bearing  immunocompetent  mice,  we  showed  that  UMBO

safely and repeatedly open the BBB. BBB opening was confirmed visually and

microscopically  using  Evans’s  blue  dye  and  magnetic  resonance  imaging.

UMBO plus anti-PDL-1 was associated with a significant improvement of the

overall survival compared to anti-PD-L1 alone. Using mass spectroscopy, we

showed that the penetration of a therapeutic antibody can be increased by

28-fold  when  delivered  intravenously  compared  to  non-sonicated  brains.

Furthermore,  we  observed  an  enhancement  of  the  of  activated  microglia

percentage  when  combined  with  anti-PD-L1.   Here,  we  report  that  the
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combination of UMBO and anti-PD-L1 therapeutic antibody increases GBM-

bearing mice's survival dramatically compared to their counterparts treated

with  anti-PD-L1  alone.  Our  study  highlights  the  BBB  as  a  limitation  to

overcome to increase the efficacy of ICIs in GBM and supports clinical trials

combining UMBO and anti-PD-L1 in GBM patients.

Keywords: SonoCloud, GL261 mouse model, BBB, ultrasound-mediated drug

delivery, glioblastoma, checkpoint inhibitor, PDL1

Importance of the Study

Here,  we  used  orthotopic  murine  GBM  models  to  investigate  the

therapeutic  combination  of  PD-L1  checkpoint  blockade  with  ultrasound-

mediated blood-brain barrier opening (UMBO). Our data confirm the ability of

UMBO to increase antibody delivery to the brain. Interestingly, this increased

delivery was associated with an increased anti-tumor efficacy of anti-PD-L1.

The antitumor effect of UMBO plus anti-PD-L1 could be explained in part by

an increase in  microglia  activation.  This  work opens new avenues for  the

efficacy of UMBO plus ICIs in the treatment of GBM. 

350 Appendix . Second Appendix



Introduction

Glioblastoma (GBM) is the most malignant primary brain tumor in adults,

with a median overall survival of less than 18 months after initial diagnosis1. 

Despite significant efforts in the neuro-oncology field to develop new 

therapeutic alternatives, temozolomide (approved in 2005) remains today 

the standard first-line chemotherapy in GBM treatment1,2. For over five 

decades, research has been focused on developing new anti-cancer therapies

for GBM, including anti-neoplastic agents3, molecular targeted drugs4, 

immunotherapeutic approaches5, and angiogenesis inhibiting compounds6; 

however, the prognosis of patients has hardly improved and temozolomide 

remains the only chemotherapy shown to improve patient survival in 

randomized clinical trials7. 

The existence of the blood-brain barrier (BBB), which is specific to the 

blood vessels in the central nervous system (CNS), prevents most systemic 

therapeutic compounds from reaching the brain parenchyma and GBM cells8 

although it is disrupted in some areas (i.e. blood tumor barrier). 

Several innovative strategies have been studied to enhance the delivery 

of chemotherapeutic agents and antibodies to the brain8. Ultrasound-

mediated blood-brain barrier opening (UMBO) using low-intensity pulsed 

ultrasound (LIPU) has now been studied in preclinical9 and clinical settings10. 

LIPU is delivered to the brain simultaneously with an intravenous injection 
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(IV) of micron-sized bubbles for a few minutes, allowing the microbubbles to 

oscillate. Microbubble oscillation produces a mechanical stretching on vessel 

walls that allows a transient BBB opening11. UMBO has shown a good safety 

profile for BBB opening in recurrent GBM patients10,12 and is now being 

studied in dozens of clinical trials using a range of transcranial 13or 

implantable ultrasound devices14 for treating both primary and secondary 

brain tumors as well as neurodegenerative diseases15

The choice of therapeutic agents to deliver after UMBO is crucial and 

remains a point of discussion among researchers. Direct stimulation of the 

immune system with immune checkpoint inhibitors (ICI, e.g., PD-1/PD-L1) 

showed promising effects alone or with other chemotherapies in multiple 

cancers. Ipilimumab was the first humanized anti-CTLA-4 approved to treat 

inoperable melanoma16. Five years later, Atezolizumab was the first 

humanized anti-PD-L1 approved to treat advanced or metastatic urothelial 

carcinoma17. PD-L1 proteins are expressed as surface molecules by 

cancerous cells such as GBM cells18 and provide a tumor escape mechanism 

when bound to PD-1 proteins at the surface of activated T-lymphocytes 

leading to their exhaustion19. Despite their promise in other cancers, 

nivolumab (anti-PD-1) has shown no additional efficacy over bevacizumab in 

phase III clinical trials in recurrent GBM patients20. Similarly, Avelumab (anti-

PD-L1) in combination with molecular targeted drugs did not improved 

outcome of GBM patients21
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In the present study, we evaluated the effect of anti-PD-L1 and anti-

CTLA-4 alone and in combination with UMBO in syngeneic Gl261 and Nfpp10 

mouse models.  

Materials and Methods

Cell culture and in vivo studies

GL261 cells were cultured in Dulbecco's modified essential medium 

(DMEM) supplemented with 10% fetal bovine serum and 1% 

Penicillin/Streptomycin. Cells were passaged twice weekly according to their 

confluence. Nfpp10-luciferase cell line (NF1, PTEN, and TP53 deficient) as 

previously described22 were maintained in culture using DMEM/F12 (Gibco; 

Life Technologies) culture medium supplemented with 1% penicillin-

streptomycin, EGF (20 ng/mL), and FGF (20 ng/mL; Preprotech), Heparin 2 

µg/mL (Sigma H33930) and N-2-supplement 1/100 (Gibco 17502-048). The 

animal ethics committee at the Ministry of Higher Education and Research in 

Paris approved all protocols involving live mice (protocol #17503 and 

#26137). C57BL/6 mice were purchased from Charles River and were given a

week of acclimation before starting any experiment. 

GL261 was transduced with a luciferase/mKate2 vector as described 

before23. GL261-luciferase and Nfpp10-luciferase cells (1.4 x 105 cells/2µL) 

were inoculated into the right caudate nucleus-putamen (AP +10 mm, DV 

+0.25 mm, ML +0.15 mm) of 7-8 weeks old C57BL/6 females using a 

stereotactic injection frame (David Kopf Instruments Tujunga, CA). Mice were 
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imaged using the IVIS Spectrum (PerkinElmer) 10 minutes following a 2 mg 

subcutaneous injection of luciferin (Sigma, L9504). The growth of GL261-

luciferase and Nfpp10-luciferase cells was confirmed by two IVIS imaging one

week apart of intracranial cell injection. We observed that mice with 

bioluminescence values lower than 5.00+E05 photon/second would not 

develop GBM tumors during the characterization of tumor growth in our 

mouse models. Therefore, we have included mice with bioluminescence 

values over 5.00+E05 photon/second. Mice were randomly placed into 

treatment arms once they passed the bioluminescence cutoff value.

Animals were treated with 200 µg of anti-CTLA-4 (Bristol-Myers Squibb, 

G1-XAS-Ab), anti-PD-L1 (Genentech, 6E11), and IgG1 (BXCELL, BE0083) and 

InVivoPure pH 6.5 Dilution Buffer (BXCELL, IP0065) for four doses. Unless 

stated otherwise, animals were sacrificed when they showed signs of tumor-

associated illness (20% body weight loss or changes in behavior or posture).

Low-intensity pulsed ultrasound preclinical device

The pre-clinical ultrasound system (CarThera, Paris, France) was 

identical to that described in other studies24 and shown in Fig. 2D. The 

system consisted of a 1 MHz, 10-mm diameter acoustic transducer that was 

coupled to the head of the mouse at a distance of 15-mm from the 

transducer. Sonications were performed for 120 seconds using a 25,000 cycle

burst at a 1 Hz pulse repetition frequency and an acoustic pressure of 0.3 

MPa as measured in water.
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Ultrasound-mediated blood-brain barrier opening (UMBO)

UMBO was delivered to both UMBO and UMBO plus anti-PD-L1 groups. 

Anti-PD-L1 (6E11 Genentech) was administered intraperitoneally in all 

experiments at a dose of 200 µg sixty minutes before UMBO application. Mice

were maintained under anesthesia with isoflurane (2%, 2L/min O2). For each 

UMBO application, 10 ml/kg SonoVue® was injected through the retro-orbital 

route less than 10 seconds before the start of the ultrasound application. For 

each session, UMBO was validated using an additional control mouse. Each 

control mouse was injected intravenously with a solution of 2.7% Evans blue 

(Sigma, E2129) in phosphate buffer saline (PBS) at a dose of 4 mL/kg ten 

minutes post-sonication. All mice received 10 mL/kg warm saline injection in 

each treatment protocol before anesthesia to prevent any possible 

hypothermic effect. Intraperitoneal injection of anti-PD-L1 injection was given

60 min before sonication to ensure anti-PD-L1 absorption. UMBO test mice 

were sacrificed 15 minutes following Evans’ blue injection, and their brain 

was harvested. The passage of Evans blue was assessed both visually and by

ZEISS Axio-Scan fluorescence imaging of cryo-sectioned brains. 

Pharmacokinetic (PK) analysis of therapeutic antibodies with and 

without UMBO

The PK analysis was performed using an identical molecular weight with 

similar conformational structure IgG1 isoform. Thirty-six mice were used in 

the pharmacokinetic experiment. Mice were separated in control and UMBO 

groups. Six-time points were selected as follows: 0.15, 0.3, 3, 6, 24, 48 and 
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96 hours. Each mouse received a 200 µg of nivolumab (Bristol-Meyers 

Squibb, New York, NY, USA) intravenous injection 10 minutes following the 

BBB opening. 100 μL of blood was collected through cardiac puncture using aL of blood was collected through cardiac puncture using a

pre-heparinized syringe. The serum was collected by centrifugation of the 

blood at 3500 rpm for 10 minutes. 

All  samples  (plasma  and  brain)  were  then  analyzed  using  ultra-

performance  liquid  chromatography  (UPLC)  system  coupled  to  mass

spectrometry (LC-MS/ MS; MS-8060, Shimadzu, Japan). Peak integration and

quantification  were  performed  using  LabSolutions  Insight  LC-MS  software.

Nivolumab was quantified with signature peptide ASGGITFSNSGMHWVR by

nSMOL (Shimadzu, Japan)25. 

MRI data acquisition

Two GL261-bearing mice were used in the experiment. Two sessions per 

mouse were completed in 2 consecutive days to decrease any distress effect 

of long isoflurane exposure. MRI acquisitions were performed using a 

preclinical 11.7 T MRI scanner (Biospec, Bruker BioSpin, Germany) equipped 

with a CryoProbe dedicated to mouse brain imaging (Biospec, Bruker BioSpin,

Germany). The total MRI experiment time was approximately 80 min per 

mouse (including MRI settings, acquisitions, and gadolinium injection), during

which the animals were anesthetized with 1% isoflurane in O2 (2 L/min). 

Respiratory rate and body temperature were monitored while mice were 

restrained. For each animal, the protocol consisted in: (i) acquiring pre-

gadolinium enhancement anatomical T1-weighted (T1w) images using a Multi-
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Slice Multi Echo (MSME) sequence with the following parameters: T.R. = 400 

ms, T.E. = 5 ms (one single echo), four averages, 14 slices, and resolution = 

60x60x500 μL of blood was collected through cardiac puncture using am3, (ii) following injection of a total volume of 100 µL of 

gadolinium (DOTAREM®,Guerbet, Aulnay-sous-Bois, France) at 0.5 mM and at 

physiological temperature in the tail vein of the mouse outside the MRI 

scanner, (iii) acquiring post-gadolinium T1w images using the same sequence 

as used for (i) and, (iv) acquiring post-gadolinium injection T2*-weighted 

(T2*w) images using a multi gradient echo (MGE) sequence. MGE sequence 

was acquired with the following parameters: T.R.= 80 ms, ten echoes ranging

from T.E. = 2.7 ms to 35.1 ms (echo spacing = 3.6 ms), and isotropic 

resolution of 60x60x60 μL of blood was collected through cardiac puncture using am3. Gd enhancement volume was estimated on T1w 

MRI pre and post BBB opening. On each T1w, the hyper-intensity area 

corresponding to the Gd enhancement was segmented manually on FSLeyes.

The volume of the Gd enhancement was measured as the total number of 

voxels multiplied by the spatial resolution and reflects the extent of the BBB 

opening.

mRNA sequencing

Six mice with a confirmed tumor of comparable sizes (as measured by

bioluminescence  imaging)  were  included  in  this  experiment.  Mice  were

divided into two groups (UMBO group and vehicle group). The vehicle group

was treated with inVivoPure pH 6.5 Dilution Buffer (BXCELL, IP0065).  Two

treatment sessions (days 21 and 24) were applied in this experiment. Mice

were sacrificed 24 hours after the last treatment by cervical dislocation, and
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the right hemisphere was stored in 5 mL RNALater (Thermofisher AM7020).

Lysing Matrix D (MBio, 6913050) was used to homogenize the collected brain

tissues. mRNA was extracted using Maxwell RSC simply RNA automated RNA

purification  kit  (Promega,  AS1340).  RNA quality  was  analyzed using  high-

sensitivity  RNA  chips  (TapeStation).  For  RNA  sequencing,  NovaSeq  6000

sequencer (200 cycles, 800 million reads) and reagent kit  were used. The

reads (202 bp length, 100 million input reads) were mapped with the STAR

v2.7.2a  (default  parameters)  software  to  the  reference  genome  (version

GRCm38)  on  new  junctions  and  known  annotations.  Mapping  parameters

were obtained from STAR outputs obtaining around 90% of unique mapped

reads  for  all  samples.  Read  counts  from  STAR  were  used  as  input  for

differential  expression  analysis  using  DESeq2.  Furthermore,  normalized

counts  were  obtained  using  the  variance-stabilizing  transformation  (VST)

method from DESeq2 to  be used as input  for  gene set  variation  analysis

(GSVA)26 to evaluate signature enrichment of microglia expression (Slc2a5,

Siglech,  P2ry12,  Gpr34,  P2ry13,  Olfml3,  Tmem119,  Fcrls)27,  microglia

sensome (96 genes)28 or antigen presentation related genes (Ciita, Psme2b,

Erap1,  Irf1,  Tapbp,  Psme2,  Psme1,  Pdia3,  Psme3,  Tap1,  B2m,  Calr,  Tap2,

Hspa1a,  H2-Ab1k,  H2-K1,  H2-D1)29.  For  heatmaps  representation

(ComplexHeatmap  R  package),  VST  gene  expression  values  were  first

quantile  normalized and log2 transformed;  then converted to  Z-scores  by

substracting the average expression value of gene i (Gi) of all samples from

the gene expression the same Gi within sample x(Sx), the resulting value was
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divided  by  the  SD  of  Gi,  the  formula  is:  Z-scoreGiSx  =  (Expression

GiSx-μL of blood was collected through cardiac puncture using aGi)/σGiGi

Immunohistochemistry (IHC)

A  150  KDa  rat  IgG2  antibody  targeting  PD-L1  was  used  in  our  IHC

staining (BXCELL, #BE0101). A Goat anti-rat secondary IgG (H+L) antibody

(BA-9400) was used to detect the anti-PD-L1. Iba1 protein was detected using

1:1000  (Abcam,  #ab178846).  Mouse  brains  were  fixed  overnight  in  4%

paraformaldehyde  (PFA),  then  immersed  in  30%  sucrose  overnight  for

cryoprotection. Next, brains were stored in Tissue-Tek® O.C.T and stored at -

80° Celsius. 10 µm cryosections were harvested using Leica CM1950 cryostat.

Slides were stored at -80°C until analysis. 

Quantitative digital droplet polymerase chain reaction (ddPCR) 

GL261 tumor-bearing mice  four  weeks  following  cell  inoculation  were

used in the ddPCR experiment. A single UMBO treatment was completed, and

30 minutes later, blood (100 µL) was collected in heparinized tubes through

cardiac  puncture.  Whole  blood  DNA  was  extracted  automatically  using

Maxwell® Blood DNA Purification Kit (AS1010). QX200 ddPCR EvaGeen®  was

utilized  to  detect  mKate2 and  Luciferase genes  in  the  extracted  DNA.

Primer3Plus  web  interface  was  used  to  design  mKate2,  and  Luciferase

primers and primers were purchased from Life Technologies. The following

forward  (FR)  and  reverse  (RV)  primers  were  used:  luciferase-FR,

TCCACGATGAAGAAGTGCTC;  luciferase-RV,  AGGCTACAAACGCTCTCATC;
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mKate2-FR,  GGTGAGCGAGCTGATTAAGG;  and  mKate2-RV,

GGGTGTGGTTGATGAAGGTT. 

Flow cytometry 

Twenty mice with a confirmed tumor of comparable sizes were included

in this experiment. Mice were separated into four groups: UMBO group, anti-

PD-L1 (Genentech, 6E11) group,  UMBO plus anti-PD-L1,  and vehicle group

(n=5/group). One treatment session was delivered in this experiment. Mice

were perfused using cold distilled phosphate buffer saline (DPBS) ~16 hours

after treatment. Brains were isolated immediately and stored in 2 mL ice-cold

Hanks'  balanced  salt  solution  (HBSS).  According  to  the  manufacturer's

protocol,  the right hemisphere was isolated and mixed in the enzyme mix

solution from the adult brain dissociation kit (Miltenyi Biotec, #130-107-677).

Cells  gentleMACS® Octo  Dissociator  with  Heaters  (#130-096-427)  and

gentleMACS  C  Tubes  (#130-093-237)  were  used  to  perform  mice  brain

dissociation. The number of dissociated cells was calculated using Scepter®

3.0 Handheld Cell Counter. 

Samples were acquired on a spectral flow cytometer (Aurora, Cytek) and

analyzed by FlowJo software (FlowJo, LLC). Briefly, cells were selected based

on  their  morphology,  doublets,  and  dead  cells  were  excluded  using

(Biolegend, #423107) while tumor cells were excluded based on their mKate

expression.  Monocytes  (Ly6C+ Ly6G-)  and  neutrophils  (Ly6C+ Ly6G+)  were

excluded from non-tumoral live cells using Ly-6C (Biolegend, #128036) and

Ly-6G  (Biolegend,  #127617).  Microglia  were  identified  based  on  their
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expression  of  CD11b+  and  CD45low using  CD45 (Biolegend,  #103131)  and

CD11b (Biolegend, #101255). Activated microglia were identified as CD68+

using (Biolegend, #137003). F4/80 marker (Biolegend, #123117) was used to

determine  macrophages  in  the  CD45high CD11b+ cell  population.  CD206

marker  (Biolegend,  #141729)  was  used  to  distinguish  between

subpopulations  of  macrophages.  Lymphocytes  CD4+ (Biolegend,  #100541)

and CD8+ (Biolegend, #100737) were identified on the CD45+ CD11b- fraction

of  non-tumoral  live  cells.  The  percentage  of  each  subpopulation  was

calculated and using in our flow cytometry analyses. 

Statistical tests

Statistical  analysis  was  performed  using  Prism  software  (GraphPad).

Data are shown as mean values plus and minus standard error of the mean

(SEM).  Statistical  significance  of  differences  between  groups  was  verified

using  appropriate  statistical  tests.  Significance  level  were  denoted  with

asterisks: * for p ≤ 0.05; ** for p ≤ 0.01; *** for p ≤ 0.001, and **** for p ≤

0,0001.

361



Results

Selection of GBM mouse model and immunotherapeutic antibody to

combine with UMBO

Pilot  studies  with  no UMBO using  both  GL261-luciferase  and Nfpp10-

luciferase  orthotopic  GBM  mouse  models  were  performed.  These  two

experiments aimed to determine the effect of anti-PD-L1 and anti-CTLA-4 in

our  GBM  mouse  model  and  select  the  best  candidates  to  combine  with

UMBO. 

Anti-PD-L1  antibody  alone  has  shown  an  early  regression  in  tumor

growth (Figure 1-A) and shown a limited effect on survival of GL261-bearing

(Figure 1-B), Anti-CTLA-4 treatment did not affect tumor growth (Figure 1-A)

or animal survival (Figure 1-B). No treatments had an impact on mouse body

weight (Figure 1-C). 

Interestingly, anti-PD-L1 antibody showed better efficacy in the Nfpp10

GBM  mouse  model  than  GL261-bearing  mice  (Figure  1-E).  Anti-PD-L1

treatment  did not  reduce tumor  growth (Figure  1-D)  yet  did  increase the

number of long-term survivors (3/6) (Figure 1-E).

We evaluated BBB integrity in both GBM mouse models. Assessment of

BBB  disruption  was  performed  using  1.2  mg  of  Hoechst  33342  (Sigma)
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diluted in PBS and injected intravenously 20 min prior to sacrifice. Hoechst

staining  was  not  detected in  normal  brain  tissue (Figure  2-A),  yet  higher

staining  intensity  was  observed  in  brain  tissue  harvested  from  Nfpp10-

bearing mice compared to GL261-bearing mice. Furthermore, using RT-PCR

we evaluated the quantitative expression of PD-L1 in GL261 and Nfpp10 cell

lines.  PD-L1  expression  was  significantly  higher  in  the  GL261  cell  line

compared  to  Nfpp10  (Figure  4-D).  Those  as  mentioned  earlier  indicate  a

higher  BBB  permeability  and  may  explain  higher  efficacy  of  anti-PD-L1

therapeutics antibodies in the Nfpp10 GBM mouse model. Additionally, the

BBB integrity is higher in GL261-bearing mice. Overall, this makes the anti-

PD-L1  antibody  the  best  candidate  to  combine  UMBO in  the  GL261  GBM

mouse model. 

Repeated UMBO is safe and effective in immunocompetent mice

UMBO  parameters  were  previously  optimized  in  our  setting  using

athymic  nude  mice30,  we  evaluated  UMBO  parameters  and  treatment

frequency in GL261 GBM mouse models. T1w MRI also (Figure 2-E) showed a

marked  gadolinium  contrast  enhancement  within  an  hour  following  the

ultrasound emission (Figure 2-E).

Biweekly UMBO (4 sonications in total without drug) was evaluated in

the GL261-bearing mice. Mouse weight was unaffected (Figure 3-B) and no

significant difference in the overall  survival (OS) between UMBO and non-

treated groups were observed (Figure 3-A). Overall,  the UMBO parameters
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used  for  repeated  BBB  opening  were  safe  and  well-tolerated  in  GL261-

bearing mice.

Using bulk RNA sequencing, we attempted to check whether UMBO 

modulates antigen presentation related genes compared to the vehicle 

group. We observed that UMBO did not influence antigen presentation 

(Figure 3-C) or affect microglia gene expression (Figure 3-D). Microglial ability

to sense changes in the cellular environment was recently termed as 

microglia sensome28. We attempted to use the same gene signature to 

evaluate microglial sensome with and without UMBO. Interestingly, UMBO 

significantly induced the expression of gene signatures for microglial 

sensome (Figure-3E). 

Additionally, we aimed to evaluate whether UMBO could enhance the 

leakage of circulating tumor DNA to the bloodstream. GL261-bearing mice 

four weeks following GL261 cell grafting were used in the experiment. We 

observed a significant elevation in the number of copies for both luciferase 

(Figure 5-D) and mKate2 (Figure 5-E) in the UMBO treated group compared to

the control.

UMBO dramatically increased the efficacy of anti-PD-L1 in GL261-

bearing mice

We next investigated the combined effect of  UMBO combined with anti-

PD-L1 in the GL261 GBM mouse model. Mice with comparable 

bioluminescence values were divided into five groups: (i) UMBO group, (ii) 
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anti-PD-L1 group, (iii) UMBO plus anti-PD-L1 group, (iv) IgG1 group, and (v) 

IgG1 plus UMBO group. 

We have not observed any toxic effect in UMBO plus anti-PD-L1 treated 

mice versus control mice (Figure 4-A). UMBO and anti-PD-L1 reduced tumor 

growth (Figure 4-B,E). Interestingly, mice who received an anti-PD-L1 

antibody with UMBO showed a (13/17) 76 % long-term survivors (over 100 

days) compared to (4/15) 26 % in anti-PD-L1 alone and (0/16) 0% in control 

groups. Kaplan-Meier estimate shows a significant difference in UMBO's 

overall survival plus anti-PD-L1 treated mice versus anti-PD-L1 alone treated 

mice (Figure 4-C). Furthermore, a higher significance difference (Figure 4-C) 

was observed in UMBO plus anti-PD-L1 treated mice compared to the IgG1 

plus UMBO treated mice in the GL261 GBM mouse model. 

UMBO increased the penetration of anti-PD1 and anti-PD-L1 

antibodies into the brain parenchyma 

The BBB blocks large therapeutic agents such as antibodies. With UMBO,

we attempted to measure delivery of antibodies to the brain parenchyma. 

IHC staining of anti-PD-L1 (BXCELL, BE0101) confirmed UMBO's ability to 

deliver anti-PD-L1 to the right hemisphere brain parenchyma (Figure 5-A). 

Furthermore, an already clinically optimized nSMOL25 method was used to 

compare a size-matched IgG1 antibody’s pharmacokinetics with and without 

UMBO. Three C57BL/6 mice per time point (six-time points) per group were 

used in the analysis. We observed a comparable serum concentration of 

nivolumab in control and UMBO-treated mice.
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Interestingly, higher concentrations of nivolumab were detected in mice 

brains treated with nivolumab plus UMBO. As expected, we detected a 

negligible concentration (≤0.2 µg/200mg brain) of nivolumab in control mice 

brains (Figure 5-C). The maximum concentration (Cmax) of nivolumab in 

normal brain tissue was detected at 24 hours and started to decline and 

reach a negligeable concentration at 96 hours. Therefore, a regimen of a 

biweekly antibody administration was performed. An analysis of the ratio 

changes in brain to plasma concentration shows that UMBO enhanced the 

ratio of nivolumab passage across the BBB at 3, 24, 48 hours but not at 96 

hours (Figure 5-B). 

UMBO plus anti-PD-L1 activates microglia and modulates microglial

phenotype

In order to further explore the potentialities of anti-PD-L1 efficacy with

UMBO, we studied the presence of the different immune populations in our

treatment groups by flow cytometry. Interestingly, we found that UMBO plus

anti-PD-L1  significantly  enhanced  the  percentage  of  activated  microglia

compared to anti-PD-L1 treatment alone (Figure 6-A). Additionally, although

UMBO alone was not associated with a significant enhancement of activated

microglia percentage compared to the vehicle group, a trend was observed

(p=0.150). On the other hand, we did not observe any significant changes in

the percentage of CD8+ and CD4+ T-lymphocytes or CD206+ macrophages in

all groups. Immunofluorescence staining of microglia in anti-PD-L1 plus UMBO

treated group confirmed this finding and showed a phenotype of activated
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microglia. In addition, using IHC we observed a double nucleus staining of

Iba1 in  the UMBO plus anti-PD-L1 treated GL261-bearing mice suggests a

possible induction of microglia cell division (Figure 6-G). 

Discussion

UMBO and several innovative strategies continuously evolve to 

overcome the BBB by increasing drug delivery8. Immunotherapies, including 

ICIs and cell therapies, have revolutionized multiple solid tumors’ treatments 

through activating the general antitumor immune response. The CheckMate-

143 phase 3 clinical trial was initiated to evaluate the effect of nivolumab 

versus bevacizumab. Unfortunately, nivolumab did not demonstrate higher 

efficacy compared to bevacizumab, which has been shown to have no effect 

on OS in GBM patients. Several reasons might explain the low efficacy of ICIs 

in GBM: (i) low tumor mutation load, (ii) lack of predictor of response and lack

of selection of patients, (iii) low penetration of ICIs within the brain 

parenchyma, (iv) low peripheral priming, (v) local immunosuppression and 

(vi) low penetration of T-lymphocytes31. 

We explored the BBB as the limitation for  antibody and lymphocytes

penetration and priming and attempted to evaluate UMBO's effect on the

penetrating  large  therapeutics  to  the  brain  and  modulating  the  immune

microenvironment  in  GBM  mouse  model.  Our  data  confirmed  the  limited

efficacy  of  ICIs  efficacy  in  the  Gl261-bearing  and  Nfpp10-bearing  mouse

models. Consistent with our data, Reardon et al. showed limited efficacy of

367



anti-PD-L1 and anti-CTLA-4 in GL261-bearing mice model although they used

a different treatment regimen32. 

To the best of our knowledge, this is the first research article that report

a  dramatic  increase  in  the  overall  survival  of  GL261-bearing  mice  when

treated  with  UMBO  plus  anti-PD-L1.  Indeed,  76%  of  GL261-bearing  mice

treated with anti-PD-L1 plus UMBO survive longer than 100 days compared to

26%  for  GL261  mice  treated  with  anti-PD-L1  alone.  Next,  we  tried  to

understand the mechanisms involved in  the anti-tumor effect.  We initially

hypothesized  that  the  BBB  was  responsible  for  the  limited  efficacy  by

blocking  anti-CTLA-4  and  anti-PD-L1  from  reaching  the  GBM  tumor.  This

hypothesis  is  consistent  with  a  recent  study  that  reported  an  enhanced

efficacy of  ICIs  following their  delivery  to brain tumors33.  Recently,  it  was

reported  that  focused  ultrasound  enhanced  the  delivery  of  intranasal

administration  of  anti-PD-L1   but  not  overall  survival  of  GL261-bearning

mice34. 

In our setting, we reported that UMBO enhanced antibody concentration 

up to 28-fold compared to control. UMBO was optimized to disturb one 

hemisphere; however, in our PK analysis, we used a whole-brain 

homogenization method; therefore, local concentrations of nivolumab could 

have been even higher. Consistent with our data, a study has shown that 

UMBO enhanced the delivery of bevacizumab ~149 KDa to the brain 

parenchyma by 5.7 to 56.7 folds compared to non-sonicated brain in a glioma

mouse model35. UMBO plus 200 µg of the anti-PD-L1 biweekly treatment 
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regimen was used to maintain the higher concentration of anti-PD-L1 within 

the brain parenchyma. Immune checkpoint blockade with anti-PD-L1 was 

performed on day 14 post-inoculation to allow for T-lymphocytes depletion36

GBM tumors have low chances of extracranial metastases with negligible

risk for GBM spreading after surgical brain biopsies. UMBO stimulates a 

detectable peripheral circulation of GL261 DNA37. Zhu et al., published article 

investigated the possibility of using UMBO for liquid biopsies in GBM models. 

They observed a detectable level of green fluorescent protein mRNA 20-mins 

following UMBO in the GL261-GFP expressing mouse model38 supports the 

passage of tumor material from the brain to blood flow stream.  

The priming effect of circulating DNA could activate naïve T-lymphocytes

through their exposure to new antigens. As mentioned previously, the BBB 

protects the tumor from T-lymphocytes infiltration and immune activation. 

Thus, detecting GL261 tumors in the peripheral circulation might activate the

global antitumor effect. Further functional demonstration of lymphocyte 

activation should be performed to evaluate any priming effect of UMBO. 

Our results  showing microglia  activation in the UMBO plus anti-PD-L1

treated GL261-bearing mice suggest a possible mechanism for the observed

enhanced therapeutic efficacy of anti-PD-L1. Our flow cytometry analysis is

consistent with a newly published article that observed a higher ratio of Iba-1

staining  in  sonicated  brain  regions  compared  to  non-sonicated  regions.

However, this difference was not statistically significant39. PD-L1 is expressed

on  the  cell  surface  of  both  GL261  and  microglia40.  A  possible  effect  on
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microglia phenotype might be related to the combined effect of UMBO and

anti-PD-L1 delivery to the brain parenchyma. Activated microglia might have

an impact on the cytotoxic effect against GL261 tumor cells41. Therefore, a

further investigation of the combined effect of UMBO and immune checkpoint

inhibitors on microglia phenotype should be addressed. 

To  date,  there  is  no  clear  evidence  on  the  effect  of  UMBO  on  T-

lymphocytes  passage to  the  brain.  We have not  observed any significant

elevation  in  the  percentage  of  CD8+  and  CD4+ T-lymphocytes  at  one

timepoint (~16 hours). This effect might be related to the timing of sample

collection.  We have not  evaluated the effect of  our  treatment regimen at

later time points. We have seen a delayed antitumor effect in UMBO and anti-

PD-L1 group which could be related to a delayed effect on T-lymphocytes.

Furthermore,  we  have  not  analyzed  any  subpopulations  of  CD8+  T

lymphocytes i.e., PD-1+ CD8+ T-lymphocytes.

Syngeneic mice models and especially the GL261 mouse model used in

our experiments is  one limitation  of  the current  study.  The GL261 mouse

model  :  (i)  has  a  high  mutation  load  which  is  not  consistent  with  GBM

patients and (ii) a variability in terms of responses to ICIs  in vivo36. Another

limitation of our findings is the inability to demonstrate functional analysis of

the role of UMBO in priming naïve T-lymphocytes through their exposure to

new antigens. Additional functional analysis on the effect of UMBO plus anti-

PD-L1 would  explain  the dramatic  effect  on OS that  was observed in  our

study. 
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Conclusions

Our  study  showed statistically  significant  increased  brain  penetration

and efficacy of anti-PD-L1 in GL261-bearing mice when delivered by UMBO.

We have  also  provided  clear  evidence  of  the  possible  safe  and  effective

delivery of large therapeutic agents using UMBO. Further investigations are

needed to confirm the impact of UMBO on brain penetration and efficacy of

chemotherapeutic agents and anti-PD-L1 to overcome the resistance of GBM

to the current treatments.  
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ABSTRACT: Background: Strategies to modulate the tumor microenvironment (TME) have opened new therapeutic avenues with dramatic
yet heterogeneous intertumoral efficacy in multiple cancers, including glioblastomas (GBMs). Therefore, investigating molecular actors of
TME may help understand the interactions between tumor cells and TME. Immune checkpoint proteins such as a Cluster of
Differentiation 80 (CD80) andCD86 are expressed on the surface of tumor cells and infiltrative tumor lymphocytes. However, their expression
and prognostic value in GBM microenvironment are still unclear. Methods: In this study, we investigated, in a retrospective local discovery
cohort and a validation TCGAdataset, expression of CD80 and CD86 at mRNA level and their prognostic significance in response to standard
of care. Furthermore, CD80 and CD86 at the protein level were investigated in the discovery cohort. Results: Both CD80 and CD86 are
expressed heterogeneously in the TME at mRNA and protein levels. In a univariate analysis, the mRNA expression of CD80 and CD86
was not significantly correlated with OS in both local OncoNeuroTech dataset and TCGA datasets. CD80 and CD86 mRNA high expression
was significantly associated with shorter progression free survival PFS (p < 0.05). These findings were validated using the TCGA cohort; higher
CD80 and CD86 expressions were correlated with shorter PFS (p < 0.05). In multivariate analysis, CD86 mRNA expression was an indepen-
dent prognostic factor for PFS in the TCGAdataset only (p < 0.05).Conclusion:CD86 could be used as a potential biomarker for the prognosis
of GBM patients treated with immunotherapy; however, additional studies are needed to validate these findings.
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Introduction

Glioblastoma (GBM) is the most common and aggressive glioma in
adults. The latestWorldHealthOrganization guideline classifies GBM
as grade IV glioma.1 Over the last years, massive efforts have led to a
better understanding of the pathology and the genetic of GBM.2 To
date, the most effective and approved standard therapeutic regimen
is maximum surgical resection of the tumor followed by concurrent
chemoradiation and adjuvant chemotherapy with temozolomide.1

Despite this very intensive therapeutic regimen, newly diagnosed
GBM patients have a dismal outcome with a median overall survival
(OS) below 18 months.3 The main known prognostic factors are
(i) age, (ii) Karnofsky performance status (KPS), (iii) MGMT pro-
moter methylation status, and (iv) IDH mutational status.4

Immunotherapies have dramatically improved melanoma prog-
nosis5 and other nonneurological solid tumors.5 In the setting of pri-
mary brain cancer, results from clinical trials are still disappointing.6

Nonetheless, specific GBM patients responded, supporting the

identification of biomarkers to stratify patients in the prescription
of immunotherapies. Immune checkpoint proteins such as Cluster
of Differentiation 80 (CD80; known as B7-1) and CD86 (known as
B7-2) are expressed on the surface of tumor7 and immune cells8

but not glial cells.9 CD80 protein expression was observed in infiltra-
tive tumor lymphocytes in melanoma.10

Cytotoxic T-lymphocyte-associated antigen–4 (CTLA-4) and
Cluster of Differentiation 28 (CD28) are located on T-lympho-
cytes. Both CD28 and CTLA-4 proteins bind to their ligands on
the antigen-presenting cells and major histocompatibility com-
plex.11 The interaction between immune checkpoint proteins
and their coreceptor at the surface of T-lymphocytes delivers
the signal to activate or inhibit T cells function, that is, CTLA-4
has a higher affinity to CD80 and CD86, and when bound to its
ligands, T cells remain exhausted.12

In preclinical studies, antibodies targeting CTLA-4 were used in
preclinical studies to block CTLA-4 from binding to its ligands.13
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Ipilimumab – anti-CTLA4 – has also shown responses in patients
with brain metastases, highlighting efficacy within the central
nervous system.14 Expression of the most studied immune check-
point proteins, programed death-ligand (PD-L1), was inversely
correlated with OS in GBM patients.15 However, the expression
of CD80 and CD86 in GBM tissues and their prognostic signifi-
cance in the tumor microenvironment (TME) of newly diagnosed
GBM patients has not been reported yet. This study investigated
the mRNA and protein expression of CD80 and CD86 in the
TME of newly diagnosed GBM patients, aged below 70 years
old and with KPS above 70% treated with the standard of care.
In addition, this study highlighted a possible correlation between
CD80 and CD86 expression and the immune cell populations in
the TME of newly diagnosed GBM patients.

Materials and Methods

Patient Samples

OncoNeuroTek (ONT) is a local brain tumor tissue bank collecting
samples from patients operated at the University Hospital La
Pitié-Salpêtrière. All samples were collected with informed con-
sent from patients. The inclusion criteria of the discovery local

cohort (47 patients) were as follows: (i) newly diagnosed and
histologically verified GBM, (ii) age at diagnosis is below 70
years, (iii) KPS above 70%, (v) known MGMT promoter
methylation status, (vi) known IDH status, (vii) treated with
the standard first-line therapeutic regimen including maximal
safe surgery, chemoradiation and adjuvant temozolomide,
and (viii) a documented clinical follow-up. The validation
cohort (121 patients, TCGA cohort) clinical information and
RNA-sequencing data (read counts) were downloaded from
the National Cancer Institute’s Genomic Data commons Data
portal and from the NCBI GEO GSE62944, respectively.
Similar inclusion criteria were used for both cohorts.

Immunohistochemistry Staining

Paraffin-embedded tissue blocks (5–7 μm) from biopsies of newly
diagnosed GBM patients were received from the ONT biobank.
The slides were obtained from diagnostic blocks and were selected
to get a homogeneous group of patients for prognostic studies.
Indeed, we have selected the patients aged below 70 years old, with
a KPS> 70% and treated with the standard of care to be in line with
inclusion criteria of the clinical trial that has established the

Figure 1: (A) Violin plot to visualize the data distribution of CD80 and CD86 mRNA expression in ONT database; (B) shows CD80 and CD86 protein expression in ONT database.
(C–D) Spearman correlations between CD86 protein values and CD86 RNA values. (C) represents CD86 protein quantification based on themean percentage of positive DAB signals
correlation with mRNA values. (D) shows CD80 protein values quantified based on the mean percentage of positive DAB signals correlation with mRNA values.
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standard of care.4 Tissue sections (two sections per patients) were
deparaffinized using xylene and rehydrated. For antigen retrieval,
each slide was embedded in citrate buffer at pH 4.0 and heated for
15 min in the microwave at 800 W. 10% goat serum with 5% fetal
bovine serum in 0.2% triton phosphate buffer saline was used as a
blocking buffer. 3% hydrogen peroxide was used to block tissue
peroxidation. Antihuman CD80 antibody (A16039; Abclonal)
and antihuman CD86 antibody (A2353; Abclonal) were used
at 1:500 dilution in blocking solution and incubated on the tis-
sue slides overnight at room temperature. Avidin–Biotin
Complex kit was used as a signal enhancer before the incubation
in 3,3 0-Diaminobenzidine (DAB). Slides were embedded in
hematoxylin dye and rinsed with tap water for nuclear staining;
gradual alcohol and xylene baths were used for dehydration and
mounted with a hydrophobic mounting medium (Sigma,
24845633). All stained tissues were scanned via ZEISS Axio
Scan 40× for bright field imaging.

Quantification of IHC Staining

Following all slides' imaging, three regions of interest with known
dimensions (528 * 528 μm) were randomly selected for each tissue
section and quantified using an in-house quantification Fiji code.
Shortly, each image was imported to the Fiji program.16 Using the
color deconvolution tool, the area positive for DAB staining was
isolated and quantified using a semiautomated in-house generated
code. The percentage of DAB positive areas was calculated, and the
mean value from the three images was calculated and used in the
survival analysis.

Quantitative Reverse Transcriptase Polymerase Chain
Reaction

RNA samples were obtained from ONT bank and used to synthe-
size cDNA. Reverse transcription of RNA samples was performed
using the Maxima First Strand cDNA Synthesis Kit (Thermo
Scientific, K1442) according to the manufacturer’s recommen-
dation with 100–250 ng of RNA. Quantitative reverse transcrip-
tase polymerase chain reaction was used to quantify the
expression levels of CD80 and CD86 in patients. PPIA gene
was used as a house reference gene for normalization as previ-
ously described.17 Primers were designed using Universal Probe
Library (UPL) for Human. Primer’s sequences were as follows:
PPIA (left: atgctggacccaacacaaat; right: tctttcactttgccaaacacc;
UPL probe 48) CD80 (left: gaagcaaggggctgaaaag; right: ggaa
gttcccagaagaggtca; UPL probe 10) and CD86 (left: cagaagcagc-
caaaatggat; right: gaatcttcagaggagcagcac; UPL probe 15). cDNA
samples were analyzed using the Light Cycler Probe Master mix
2× (Roche, 04887301001) and the UPL detection system (Roche,
04483433001) in a Light Cycler 96 (Roche). For each qPCR, two
independent experiments were completed with duplicate sam-
ples in each experiment. The mean of 2^-(CTgene of interest-
CTPPIA) from the two different experiments was used in all
analyses.

Statistical Analysis

A violin plot was used to visualize our data’s full distribution
(GraphPad Prism).14 Spearman correlation between the expres-
sion values (RNA or protein) and age was evaluated to discard

Figure 2: Represents the protein expression of
CD86 and CD80 proteins in paraffin sectioned
GBM samples. (A) High expression of CD86 pro-
tein. (B) Low expression of CD86. (C) High expres-
sion of CD80. (D) Low expression of CD80. Black
arrows (brown signals) highlight a positive stain-
ing for CD80 and CD86 proteins and represent the
signals that were used for quantifications, blue
staining correspond to hematoxylin dye which
was used as counterstaining.
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age bias. Survival analysis was performed by an open-source
validated approach18,19 by finding a supervised cutoff value for
the CD80 or CD86 expression independently using the
“survminer::surv_cutpoint” function, which determines the
cut point based on the highest/lowest value of the log-rank sta-
tistics (low or high expression values), and then using these cat-
egories for Kaplan–Meier analysis or Cox proportional hazard
regression modeling testing at each variable independently
or to adjust for multiple variables including CD80/CD86
expressions and MGMT promoter methylation status p-values
lower than 0.05 were considered significant.20,21 Furthermore,
we have used TCGA database to evaluate and profile tumor
infiltrating immune populations and whether it differ among
the highly expressed C86 tumor cells. TCGA immune data
(i.e., CIBERSORT calculated immune populations) was retrieved
from https://cavei.github.io/example-datasets/panCancerAnnotation.
RData. Comparisons were performed by two-side Wilcoxon-
test and p-values were corrected for multiple comparisons using
FDR method.

Results

Patients and Tumors Characteristics

Forty-seven patients with a confirmed GBM diagnosis fulfilled the
inclusion criteria: 14 men and 33 women (percentage 29.8%–
70.2%). The patients' median age at diagnosis was 55.9 years (range:
24.3–69.5 years). KPSwas 70 and above in all patients. ThemedianOS
is 559 days (range 31–2539), and the median PFS is 266 days (range
26–1355). The IDH status was evaluated as mutant for two patients
(4.3%) while wildtype for 45 (95.7%). Furthermore, the MGMT pro-
moter was methylated in 16 patients (34%) and unmethylated in 31
(66%). All patients were treated with the standard of care first-line
treatment including maximal safe surgery, radio chemotherapy,
and adjuvant chemotherapy with temozolomide.

CD80 and CD86 Expression at mRNA and Protein Level

At the mRNA level, CD86 expression was quantitatively higher
than CD80 expression in the TME (Figure 1A). In agreement with

Figure 3: CD80 and CD86 mRNA expression and outcome in GBM in both ONT and TCCA database. (A) Kaplan–Meier PFS estimates in GBM patients in relation to CD86 (ONT
database) (B) Kaplan–Meier PFS estimates in GBM patients in relation to CD80 (ONT database). (C) Kaplan–Meier PFS estimates in GBM patients in relation to CD86 (TCGA data-
base). (D) Kaplan–Meier PFS estimates in GBM patients in relation to CD80 (TCGA database).
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mRNA expression, immunohistochemistry (IHC) analysis showed
that the expression of CD86 is higher than CD80 in our discovery
cohort (Figure 1B). Based on the IHC staining, CD80 and CD86 are
observed in the cell membrane and/or the cytoplasm (Figure 2).
Following protein quantification, we observed a positive correla-
tion between RNA and protein expression for CD86 (Spearman
coefficient of correlation Rho = 0.28; p= 0.08; Figure 1C).
However, we observed a weaker correlation between mRNA and
protein expression for CD80 (p = 0.108; Rho = 0.25; Figure 1D).

Prognostic Value of CD80 and CD86 Expression

Our patient’s cohort was used as a discovery cohort, while the
TCGA dataset was used as a validation cohort. In a univariate
analysis, mRNA expression of CD80 and CD86 was not signifi-
cantly correlated with OS in both the ONT cohort and TCGA data-
set (Table 1). On the other hand, CD80 and CD86 mRNA high
expression was significantly associated with shorter PFS (p =
0.04 and p= 0.005, respectively; Figure 3A,B). Moreover, these
findings were validated using the TCGA cohort; higher CD80
and CD86 expressions were correlated with shorter PFS (p-value;
0.0428, 0.00283; Figure 3C,D). Interestingly, higher CD86 protein
expression was associated with shorter PFS in the ONT cohort
(p < 0.005; Table 2). CD80 and CD86 protein expression were
not available in the TCGA dataset for validation purposes.
However, we have used TCGA database to profile tumor-infiltrat-
ing immune cells in the selected cohort.

As expected,MGMT promoter methylation was associated with
longer PFS and longer OS in the ONT cohort (p < 0.05 and

p< 0.05, respectively) and TCGA dataset (p < 0.05 and p< 0.05,
respectively) (Tables 1 and 2). Furthermore, IDH mutations were
also associated with better OS and PFS in the TCGA database (p <
0.05 and p< 0.05, respectively); however, in the ONT cohort, the
limited number of IDH-mutant GBM did not allow a robust analy-
sis (n = 2). In multivariate analysis, CD80 mRNA expression did
not provide additional prognostic information to MGMT pro-
moter methylation in the ONT cohort. On the other hand, multi-
variate analysis of CD86 mRNA expression was an independent
prognostic factor for PFS in the TCGA dataset only (p < 0.05;
Figure 4). We have observed a similar trend (p = 0.27; Figure 4)
in the ONT cohort, yet the trend was not significant, which could
be related to the lower number of patients (n = 47) in the ONT
cohort compared to (n = 121) in the TCGA database.

The Relationship Between CD86 Expression and Immune Cell
Populations

Immune cell populations were evaluated using CIBERSORT, and
we compared the immune cell populations between patients
expressing both CD80 and CD86 as high and low expression.
CD80 and CD86 are expressed on the surface of tumor-associated
macrophages’ surface suggesting a role in immunosuppressive
TME. Immune cell population analysis showed low fraction of
classically activated macrophages (M1) and higher fraction of
immunosuppressive macrophages (M2). High CD86 expression
group contained more patients with high M2 macrophages frac-
tion (p = 0.00013; Figure 5). On the other hand, high CD86 expres-
sion group contained more patients with low tumor-infiltration

Figure 4: Cox-P (proportional hazards) multivariate analysis of CD86 protein expression and mRNA expression. CD86 was found to be an independent prognostic factor in TCGA
database (p = 0.0019); mRNA expression of CD86 is a more predictive prognostic factor than MGMT methylation. A nonsignificant trend was observed in our ONT cohort.
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lymphocytes fraction (p = 0.005; Figure 5). This effect was not
observed in CD80 expression patients. Additionally, high CD86
expression group containedmore patients with low CD8þ cell frac-
tion (p= 0.039; Figure 5) whereas, the low CD86 expression group
contained more patients with high CD8þ fraction. Although fur-
ther studies are warranted, these data suggest association between
high CD86 expression, immunosuppressive TME, and low activity
of CD8þ cytotoxic T lymphocytes.

Discussion

CD80 and CD86 molecules play an essential role in influencing the
immune recognition of GBM cells. They bind to the CD28 mol-
ecule with a costimulatory signal for T-lymphocytes activation.
On the other hand, they bind to CTLA-4, resulting in an immuno-
suppressive effect. CTLA-4 has a higher affinity to CD80 and
CD86, making these molecules' role in immunosuppressive effect
higher than their costimulatory effect.21 The current study has
linked CD80 and CD86 expression on GBM TME to PFS. We
observed a low correlation between mRNA and protein expression
of CD80. However, a better correlation was observed between

CD86 protein and mRNA expression. Low correlation between
the mRNA and protein expression might be due to posttranscrip-
tional mechanisms involved in turning mRNA into protein. Not to
mention, there is a possible error and noise in protein quantifica-
tion and mRNA extraction that could influence mRNA stability
and protein expression.20 In addition to DAB staining intensity
used in our study, quantification of protein using the number of
positive cells should also be evaluated in future IHC analyses to
better understand expression of proteins and mRNA of interest.

Number of patients (n = 47) in the ONT cohort is lower than
the number of patients in the TCGA dataset (n = 121). The higher
number of TCGA GBM samples could be one reason that affected
the statistical analysis and provided a better prognostic value than
the ONT cohort. Indeed, GBM samples' availability with compre-
hensive clinical and biological annotations and fulfilling the inclu-
sion criteria is a limitation for a larger cohort. Larger patient cohort
is needed to evaluate the prognostic value of CD86 expression in
the TME of GBM patients. Using TCGA data to profile immune
cell populations interestingly revealed that CD86 expression is
associated with an immunosuppressive TME with low activity
of cytotoxic T cells however protein analysis of immune cell

Figure 5: CIBERSORT calculated tumor infiltrating immune populations in TCGA database. Immune cell populations represented fraction of the X-axis immune cells to the whole
gene expressionmixture. Box plots depicting the estimated relative fractions of immune cell types by GBM category according to CD86 expression. The Y-axis here show the relative
proportion which can range from 0 to 1. Relative fraction estimates the percentage of a given cell population in the total tumor infiltrate. In our analyses immunosuppressive M2
macrophages and lymphocytes were the most frequently observed immune phenotypes.

Le Journal Canadien Des Sciences Neurologiques 7

388 Appendix . Second Appendix



populations is needed to validate our findings from TCGA
immune cell population profiling. Indeed, high CD86 expression
is associated with a cold immunemicroenvironment with a limited
antitumor immune response promoting tumor growth and poor
prognosis.

The expression of 50 immune checkpoint molecules was inves-
tigated in breast cancer. The study showed that high expression of
costimulatory immune checkpoint molecules was associated with
better PFS. However, no significant effect on prognosis was asso-
ciated with CD80 and CD86 expression in the selected cohort.22

Feng et al.23 reported that low expression of CD80 is a predictive
biomarker for poor prognosis in gastric adenocarcinoma.
Furthermore, CD80 and CD86 were found to be potential bio-
markers for better prognosis survival in nasopharyngeal carci-
noma.24 Additionally, the molecular characterization of PDL1
expression was correlated with other checkpoint proteins, that
is, CD80, highlighting that higher levels of immunosuppression
are associated with GBM than lower-grade gliomas (LGG).25 In
myeloma cell lines, silencing the CD28–CD86 pathway resulted
in myeloma cells' significant cell death.26 A recent study con-
structed a more robust model, using GBM and LGG data from
the TCGA and Chinese Glioma Genomic Atlas, and identified that
low expression of CD86 molecules is a good prognostic indicator
for OS. PFS analysis was not applied in this study.27

In 2017, Berghoff et al. described a specific signature to predict
the success of TMZ in MGMT-methylated patients. They showed
that the TME signature could be used to indicate an individual’s
TMZ sensitivity. The TME was identified to be different between
IDH-mutant and IDH-wildtype. A richer tumor infiltrative
lymphocyte and a higher expression of PDL1 were observed in
IDH-wildtype tumors.28 However, to date, no studies have linked
MGMT promoter methylation with the TME. A recent research
article has studied the expression of immune checkpoint inhibitor
Tim3 and MGMT methylated status. They identified that a high
expression of Tim3 in MGMT-unmethylated patients is linked
to poor prognosis.29 Pratt et al.30 have reported that the expression
of PD-L1 is a negative prognostic biomarker in recurrent IDH-
wildtype GBM. In line with these findings, our study supports that
the expression of immune checkpoint inhibitors may inhibit T-
lymphocyte and antitumor reaction. A recent integrated analysis
of the prognostic value of CD86 reveals that CD86 is hetero-
geneously expressed in gliomas and is an independent unfavorable
prognostic value in LGG.31

CD86 molecular status could be explored as a predictor of
response to immunotherapies in the setting of future clinical trials
dedicated to GBM patients. Our study suffers from the limitation
of retrospective studies with a limited number of patients.
Nonetheless, our results were validated in an independent dataset
and support investigations of immune checkpoint molecules as
potential prognostic biomarkers and potential predictive bio-
markers of response to immunotherapies in GBM.
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Introduction

Le lymphome primitif du système nerveux central (LPSNC) est un sous-type
rare de lymphome diffus à grandes cellules B (LDGCB) situé dans le SNC
avec un pronostic moins favorable. Alors que le LDGCB constitue 25 à 35%
des lymphomes non hodgkiniens (LNH) chez l’adulte, on estime que le PCNSL
représente jusqu’à 1 à 2% des LNH, 4 à 6% de tous les lymphomes extranodaux
et environ 2 à 3% de toutes les tumeurs du SNC. Bien qu’il ait été considéré
pendant longtemps comme un LDGCB dans le SNC, principalement parce qu’il
présente l’histologie d’un LDGCB, il a été prouvé que le LPSNC est une entité
biologique différente sur le plan moléculaire. Comme le LPSNC dans la popu-
lation immunocompétente représente la grande majorité des patients, avec une
lymphomagenèse distincte de celle liée au LPSNC immunodéficient (impliquant
le virus d’Epstein-Barr, < 10% des cas), ma thèse se concentre sur le LPSNC
chez les patients immunocompétents. De plus, le pronostic du LPSNC est sig-
nificativement plus mauvais que celui du LDGCB, avec une médiane de survie
globale (SG) et de survie à 5 ans de 26 mois et 22% pour le LPSNC contre
124 mois et 51% pour le LDGCB systémique. Cependant, il existe une grande
hétérogénéité au sein du LNPC et les raisons physiopathologiques sous-jacentes
du comportement clinique des tumeurs ne sont pas encore élucidées.

Le diagnostic de référence du LPSNC, après les symptômes initiaux évocateurs et
l’imagerie par résonance magnétique, est soit une biopsie stéréotaxique avec un
examen pathologique, soit un examen du liquide céphalorachidien (LCR) (en
cas d’atteinte leptoméningée), soit un examen du liquide vitré (en cas d’atteinte
oculaire). L’immunohistochimie (IHC) aide l’histologie à poser le diagnostic de
LPSNC, où presque toutes les cellules du LPSNC expriment des marqueurs
pan-cellulaires B comme CD20, CD19, CD22, CD79A, IgM et IgD mais pas
IgG. Les marqueurs de différenciation des cellules B, BCL-6 (60-80%) pour les
cellules B du centre germinal (CG), et IRF4/MUM1 (90%) pour les cellules B
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du CG tardif et les plasmocytes, sont également importants pour le diagnostic
du LPSNC. Le LPSNC a donc été défini immunophénotypiquement comme des
cellules B post-CG. De plus, les cellules ont une activité proliférative très élevée
puisque l’indice de prolifération Ki-67 est généralement >70% et peut même être
>90%. Il est surprenant de constater que, même si la perte du complexe majeur
d’histocompatibilité (CMH) se produit dans environ 50% des cas de LNPC, les
HLA-A, HLA-B, HLAC et HLA-DR sont exprimés de manière variable.

Sur le plan pathologique, les cellules du LPSNC présentent une infiltration péri-
vasculaire fréquente et consistent, sur le plan cytomorphologique, des cellules
atypiques avec des noyaux ronds, ovales, irréguliers ou pléomorphes de taille
moyenne à grande et des nucléoles distincts, correspondant à des centroblastes
ou des immunoblastes. Alors que l’OMS qualifiait le LPSNC de “cellule B
tardive de sortie du centre germinal arrêtée dans la différenciation terminale
des cellules B qui partage des caractéristiques génétiques à la fois avec les cel-
lules B activées (CBA) et les cellules B du centre germinal (BCG),” des études
récentes sur le LPSNC combinant des altérations génétiques et des données
d’expression transcriptomique ont révélé que les cellules du LPSNC étaient
arrêtées à différents stades du transit du CG (de la zone sombre à la zone
claire). En conséquence de cette permanence du CG, les cellules LPSNC présen-
tent, par rapport à d’autres malignités à cellules B, une hypermutation soma-
tique continue plus élevée qui conduit à une hypermutation somatique aber-
rante due à l’activité hors cible de l’enzyme cytidine désaminase induite par
l’activation (AID, codée par le gène AICDA). En outre, les translocations du
gène BCL2/BCL6 avec les régions régulatrices de l’IGH entraînent une surex-
pression ectopique de la protéine, provoquant finalement des réentrées itératives
de CG et donc des expansions clonales, une instabilité génomique, l’acquisition
de mutations (hors cible de l’AID) et la lymphomagenèse.

Le LPSNC se caractérise par une activité constitutive du facteur nucléaire-κβ (NF-
κβ), qui entraîne une prolifération cellulaire et une prévention de l’apoptose cel-
lulaire, induite par des altérations des gènes de la voie BCR (CD79B dans 43%,
SHIP-25%, CBL-4% et BLNK -4%), de la voie des récepteurs Toll-like (TLR)
(MYD88L265P-64%) et d’autres (CARD11 -22%, BCL2 -43%, MALT1 -43%). Le
complexe BCR (récepteur des cellules B), composé des chaînes lourdes/légères
de l’IG (immunoglobuline) ainsi que des sous-unités CD79A et CD79B, est
indispensable à la survie des cellules B puisqu’il induit la différenciation, la pro-
lifération et l’apoptose de ces dernières. De plus, alors que la voie BCR trans-
met également ses signaux au complexe signalosome CARD11-BCL10-MALT1
(CBM), la bruton tyrosine kinase (BTK) relie les voies de signalisation BCR
et TLR à l’activation en aval de NF-κβ. En outre, en 2018, les LPSNCs ont
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été rapprochés des LDGCB dits “MCD” ou “Cluster 5” (C5), tous deux con-
vergeant sur la cooccurrence de mutations MYD88L265P et CD79B, et la présence
de pertes de copies impliquant 6p21-22 (échappement immunitaire médié par
une perte HLA), 6q21 et 9p21.3 (perte bialélique CDKN2A). Les conséquences
transcriptomiques de ces altérations au sein du sous-type MCD ont été décrites
ultérieurement par Wright et al. (2020), qui ont constaté une augmentation
de la prolifération (induite par la perte bialélique de CDKN2A), de l’activité
NF-κβ (induite par les mutations MYD88L265P et CD79B), de l’activité de la ki-
nase JAK1, de l’expression des IgM et de la signalisation BCR active chronique
dépendant de l’auto-antigène (forte expression des IgVH4-34).

Le microenvironnement tumoral (MET) joue un rôle inéluctable et remarquable
dans la biologie des tumeurs et se définit comme un réseau cellulaire (c’est-à-dire
les vaisseaux sanguins, les cellules immunitaires et les fibroblastes), molécu-
laire (c’est-à-dire les molécules de signalisation intercellulaire, la matrice ex-
tracellulaire) et dynamique entourant les cellules tumorales. De plus en plus
de preuves suggèrent que le développement tumoral n’est pas seulement dû à
l’accumulation d’anomalies intrinsèques mais aussi à des signaux extrinsèques
provenant du MET. Dans le contexte du LDGCB, une première étude de 2021
a révélé l’existence de quatre MET différents présentant des comportements
cliniques distincts. Les sous-types découverts, appelés GC-like, mesenchymal,
inflammatory et depleted, présentent de nombreuses caractéristiques tumorales
chaudes et froides et partagent certaines altérations génétiques inter-tumorales
par groupe. Le sous-type GC-like se caractérise par la présence de cellules
endothéliales lymphatiques (CEL), de cellules dendritiques folliculaires, de cel-
lules T auxiliaires folliculaires (TFH), et de lymphocytes T régulateurs (Tregs)
dans le MET, ainsi que par des altérations génétiques de TNFRSF1, CD83,
STAT6, et HSF1. Le sous-type mésenchymateux présentait une présence plus
importante de cellules endothéliales vasculaires, de fibroblastes associés au can-
cer, de cellules réticulaires des fibroblastes (FRC) et de macrophages M1 (pro-
inflammatoires) dans le MET; en outre, il présentait également des mutations
dans E2H2, B2M, GNA13, GNAI2 et P2RY8. Le sous-type déplété présentait
des altérations génomiques entraînant une diminution de l’activité de p53, une
perturbation de la régulation du cycle cellulaire (par exemple, des délétions de
CDKN2A) et une activité proliférative élevée. Enfin, la tumeur de type chaud
(sous-type inflammatoire) était enrichie en neutrophiles, en macrophages asso-
ciés aux tumeurs, en macrophages M1, en Tregs, en TFHs, en cellules T CD8+

avec une forte expression de PD-1 (épuisé), et également en activités cellules
tueuses naturelles (NK), MHC-I, molecules de point de contrôle immunitaire
(IC), NF-κβ, JAK/STAT, et TNF.
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Dans le contexte du LPSNC, la localisation précise de la tumeur détermine
probablement la composition du MET puisqu’elle peut se développer dans le
parenchyme cérébral, mais aussi dans les espaces périvasculaires et méningés.
Le LPSNC est considéré comme une tumeur confinée dans une zone “immuno-
privilégiée” en raison de la présence de la barrière hémato-encéphalique.
Néanmoins, des études récentes ont décrit un réseau de vaisseaux lymphatiques
parallèles aux sinus veineux duraux qui permettent le drainage des cellules et
du LCR vers les ganglions cervicaux profonds. Ces vaisseaux lymphatiques
du SNC expriment toutes les caractéristiques moléculaires des CELs et
transportent environ 24% de toutes les cellules T sinusales et 12% de toutes les
cellules CMH-II+ sinusales. Alors que les premières études ont établi un lien
entre l’amélioration de la survie et les cellules T périvasculaires ou les lympho-
cytes infiltrant la tumeur (TILs en anglais), des études récentes (utilisant des
données RNA-seq) ont découvert que ces TILs exprimaient des molecules de
contrôle immunitaire (IC) comme PD-1 et TIM-3. Il est intéressant de noter
que, même si des études antérieures ont trouvé des amplifications récurrentes
du gène 9p24.1 (impliquant PD-L1), Marcelis et al. n’ont pas trouvé de telles
amplifications au moyen de la méthodologie FISH. Par ailleurs, une augmen-
tation globale du ratio de TAMs de type M1/M2 a été associée à un meilleur
résultat en utilisant l’IHC ou la déconvolution immunitaire assistée par ARN.
D’autre part, une analyse transcriptomique récente combinant l’ARN-seq (n =
20) et les microréseaux (n = 34) a décrit trois immunophénotypes appelés riche,
intermédiaire et pauvre avec des implications sur le système d’exploitation.
Alors que le groupe riche en immunité présentait la meilleure SG et était
caractérisé par un nombre élevé de CD4+, CD8+, Tregs, TAMs et cellules
dendritiques (DCs), le groupe pauvre en immunité était pratiquement une
tumeur de type froid, et le groupe intermédiaire présentait une hétérogénéité
des cellules immunitaires.

En ce qui concerne le traitement, le pilier pour les patients atteints de LPSNC
nouvellement diagnostiqué est, selon les directives du National Comprehensive
Cancer Network (NCCN) (2020), une chimiothérapie d’induction au méthotrex-
ate à haute dose (HD-MTX) (1-8 g/m2) suivie d’une radiothérapie du cerveau
entier comme thérapie de consolidation. Cependant, la neurotoxicité à long
terme dérivée de la chimiothérapie a conduit au développement de la poly-
chimiothérapie, comme le HD-MTX, le rituximab, la vincristine et la procar-
bazine; le HD-MTX et le témozolomide; le HD-MTX avec autogreffe de cellules
souches (ASCT). Bien que le LPSNC soit chimiosensible, 33% des patients sont
réfractaires au traitement de première ligne, et jusqu’à 60% des patients finis-
sent par rechuter 2 à 5 ans après le diagnostic initial.
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Malgré les altérations moléculaires et les perspectives de traitement que ces études
ont apportées, l’hétérogénéité de la réponse biologique et thérapeutique du LP-
SNC n’a pas été correctement prise en compte, principalement en raison de
l’absence d’un grand nombre de patients et de l’intégration de données multi-
omiques, c’est-à-dire l’existence de types distincts d’informations moléculaires
(par exemple, méthylation, mutations, alterations du nombre de copies, expres-
sion génique, localisation de la tumeur, MET, etc.) pour la même cohorte.
Par conséquent, l’identification de sous-groupes de patients atteints de LPSNC
ayant des facteurs biologiques communs de la maladie et de son issue clinique
est d’une extrême importance pour adapter les stratégies de traitement. Cepen-
dant, l’identification de tels sous-groupes moléculaires est extrêmement difficile,
principalement en raison de la grande hétérogénéité génétique, phénotypique et
MET. Par conséquent, il existe un besoin non satisfait de réaliser de grandes
études multi-omiques en vue de personnaliser les soins cliniques et d’améliorer
les résultats des patients.
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Objectifs

Cette thèse vise à caractériser le paysage multi-omique du LPSNC, y compris la
génomique, l’épigénomique, la transcriptomique et la clinicomique, et à intégrer
ces données pour trouver des sous-groupes moléculaires de LPSNC ayant une
pertinence biologique et clinique. Par conséquent, les objectifs sont divisés en
trois parties:

• Chapitre 4.1: Faire une revue de la littérature pour comprendre la
structure/diversité HLA et la susceptibilité génétique dans le LPSNC et les
autres LNH à cellules B.

• Chapitre 4.2: Développer un code pour suivre les mutations de
c-AID et explorer leurs implications au niveau pan-cancer (~ 50 000 échan-
tillons).

• Chapitre 4.3: Extraire, analyser et intégrer des données multi-
omiques afin de trouver et de caractériser des sous-groupes moléculaires de
LPSNC présentant des facteurs biologiques causaux communs de la maladie
et de l’issue clinique.
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Résultats

Structure/diversité HLA et susceptibilité génétique dans le LPSNC
et autres LNH à cellules B

Les associations de risque des LNH à cellules B (y compris le LPSNC) ont été ini-
tialement attribuées aux antécédents familiaux de la maladie, à l’inflammation
et aux composants immunitaires, y compris les variations génétiques HLA.
Cependant, de récentes études d’association pangénomique ont permis d’obtenir
davantage d’informations sur le sujet. Ici, je passe en revue la structure HLA
et sa diversité et résume tous les articles originaux montrant des preuves de
variations génétiques sur cinq sous-types de NHL.

Dans l’article de revue de la littérature, nous avons montré que les variants
HLA sont les plus étudiés dans le contexte du LNH à cellules B puisque cette
région est critique pour les réponses immunitaires innées et adaptatives. Il
est intéressant de noter que le statut HLA s’est avéré être un facteur de
risque dans les LNH à cellules B en favorisant l’échappement immunitaire, ce
qui a également été observé spécifiquement pour le LPSNC. La production
d’antigènes/néoantigènes est un important mécanisme d’échappement de la
tumeur à la surveillance immunitaire, qui peut être perturbé par l’homozygotie
HLA, comme c’est le cas dans la plupart des lymphomes étudiés (y compris le
LPSNC).

De plus, en ce qui concerne spécifiquement le LPSNC, la seule étude évaluant les
associations entre les variants génétiques et le risque de LPSNC a été réalisée
par notre groupe dans une cohorte française. Bien que cette étude ait trouvé
quelques variantes supplémentaires associées au risque de LPSNC, il est clair que
des études supplémentaires sont nécessaires pour mieux élucider la pathogenèse
du LPSNC.

Implications des mutations liées à l’AID au niveau pan-cancer

Comme nous l’avons vu tout au long de cette thèse, l’activité hors cible de AID
s’inscrit dans le contexte de la biologie des cellules B et de la lymphomagenèse.
Dans cette étude, qui est la plus importante à ce jour, j’ai intégré plus de 50 000
échantillons en vrac et 2,5 millions de cellules à résolution unicellulaire dans 80
types de tumeurs (y compris les tumeurs malignes à cellules B) et à différents
niveaux de données. L’objectif principal, dans l’article, était de décrire en détail
les implications oncogéniques et cliniques des mutations hors cible de c-AID à
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l’échelle pan-cancer ; cependant, l’objectif principal de cette section concernant
cette thèse était de développer et de valider le code pour cibler les mutations
c-AID.

Tout d’abord, nous avons démontré que l’expression de AICDA n’est présente que
dans les cellules B normales en utilisant une série d’études RNA-seq unicellu-
laires; néanmoins, cela change après une transformation maligne puisque nous
avons observé son expression dans différents types de cancer à une résolution
unicellulaire. Ensuite, nous avons évalué notre code de suivi des mutations c-
AID à l’aide de motifs tétranucléotidiques en l’appliquant tout d’abord à une
série de cancers hématologiques et en trouvant des cibles AID déjà signalées (par
exemple, PIM1, HIST1H1C ), en évaluant ensuite que notre code n’identifie pas
les mêmes mutations que d’autres signatures somatiques COSMIC, et enfin, en
excluant que les mutations AID observées soient générées par hasard. De plus,
nous avons également décrit, comme prévu, que la fréquence des mutations
c-AID est plus élevée dans les cancers hématologiques par rapport aux autres.

Après avoir validé le code, nous avons décrit le paysage et les implications des
mutations de c-AID. Nous avons constaté que l’activité de c-AID se produit
principalement pendant la transcription de ses gènes hors cible et qu’elle est
accrue dans les tumeurs MSI. De plus, nous avons montré que dans certains
types de cancer, l’activité promiscuous de c-AID vise les hotspots de sélection
les moins positifs qui entrent en synergie avec des mutations hotspot plus fortes
antérieures (mutation mineure PIK3CA E726, particulièrement présente dans
le carcinome de la peau et le cancer du sein). Enfin, nous avons démontré que
la fraction de mutations liées au AID est une valeur pronostique indépendante
de l’ICI (immune chekpoint inhibition en anglais) et avons présenté différentes
analyses pour expliquer ces résultats.

La recompilation de tous les ensembles de données publics, ainsi que les résultats
et le code pour détecter les mutations c-AID, fournissent la base pour tester
le rôle potentiel des mutations c-AID dans les cancers hématologiques et non
hématologiques. Cependant, en raison de la nature bioinformatique de l’étude,
plusieurs validations biologiques des résultats doivent être effectuées.

L’intégration de données multi-omiques révèle des sous-types molécu-
laires de LPSNC ayant une pathogenèse commune et des implications
en termes de résultats cliniques

A notre connaissance, l’étude présentée dans le Chapitre 5.3 représente la
plus grande étude multi-omique du LPSNC menée à ce jour. Notre étude
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s’appuie sur la classification actuelle des LDGCB, les LDGCB MCD/C5, en
ajoutant l’hétérogénéité moléculaire au sein du LPSNC qui peut informer
sur sa pathogenèse et finalement donner des cibles thérapeutiques poten-
tielles. Ici, j’ai trouvé quatre sous-types de LPSNC avec des caractéristiques
multi-omiques partagées telles que des voies oncogéniques distinctes, des
phénotypes d’expression génétique, des profils de méthylation, des MET et des
caractéristiques clinico-radiologiques.

Nos résultats aident à élucider la réponse hautement hétérogène dans le LPSNC
en connectant différentes couches multigénomiques avec les informations clinico-
omiques. Nous avons montré ici que le groupe CS4 partage avec le groupe CS3
une activation constitutive de NF-κβ, qui est l’une des principales caractéris-
tiques des sous-types MCD ou C5 du DLBCL, mais que leurs résultats cliniques
en termes de SG et de survie sans progression (SSP) sont totalement opposés.
Nous avons montré que ces variations sont principalement dues à des localisa-
tions tumorales plus agressives pour le CS3 et à un MET chaude pour le CS4. En
ce qui concerne les cibles thérapeutiques potentielles, même si les deux groupes
pourraient être potentiellement plus sensibles aux inhibiteurs de BTK (par ex-
emple, l’ibrutinib), le groupe CS4 pourrait également bénéficier d’inhibiteurs
de JAK1 et de points de contrôle immunitaire, soit parce qu’il présente une
activité transcriptionnelle JAK-STAT élevée, soit parce qu’il présente une ex-
pression élevée du CMH-I en l’absence de délétions bialélique HLA. En outre, le
groupe CS3 pourrait également bénéficier des ICI, mais seulement après exposi-
tion aux inhibiteurs d’EZH2, car il pourrait restaurer son expression manquante
du CMH-I.

Il est intéressant de noter que les sous-types CS1 et CS2 du LPSNC étaient large-
ment hyperméthylés par rapport aux autres, ce qui a été précédemment associé
à un MET froid, comme observé au niveau transcriptionnel. Pour le CS1, la
forte activité du complexe PRC2 et la prolifération (induite par des altérations
génétiques impliquées dans le cycle cellulaire) ont été directement “vues” dans
son phénotype hyperméthylateur. D’autre part, les programmes de différen-
ciation des cellules B “perturbés” observés au niveau transcriptionnel chez les
CS2 ont été corroborés au niveau épigénétique. Nous avons proposé que le
groupe CS1 de froid immunitaire pourrait être sensible aux cyclines CDK4 et
CDK6 ainsi qu’aux inhibiteurs de PI3K, tandis que le groupe CS2 pourrait
être potentiellement sensible à l’inhibition des facteurs de transcription IRF4
(par exemple, lénalidomide), SPIB et MEIS1 (par exemple, MEISi-1), et/ou à
l’inhibition de GAD67.

En ce qui concerne l’activité hors cible de c-AID, même si nous n’avons pas observé
de différence dans le nombre global de mutations c-AID entre les sous-types
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moléculaires, nous avons montré que globalement (en utilisant toute la cohorte
de LPSNC) les mutations c-AID et non c-AID (signature cosmique SBS9) se
produisent à des stades précoces de la tumorigenèse du LPSNC, ce qui reflète
son importance dans la pathogenèse du LPSNC.

Puisque l’acquisition de tissus fraîchement congelés (FC) pour le LPSNC n’est pas
effectuée de manière routinière dans les cliniques, nous avons validé nos résul-
tats dans une cohorte de tissus fixés au formol et inclus en paraffine (FFPE
en anglais) supplémentaire. De plus, nous avons développé RBraLymP (RNA-
based Brain Lymphoma Profiler), qui utilise les données d’expression génique
des tissus FFPE ou FC, pour identifier les sous-types moléculaires du LPSNC
associés à des caractéristiques multi-omiques. Nous avons rendu le code acces-
sible au public pour inciter les chercheurs du monde entier à orienter les efforts
de nouvelles thérapies vers les patients atteints de LPSNC les plus appropriés.

Conclusion

La compréhension de l’hétérogénéité de la réponse moléculaire et clinique dans
le LPSNC n’a pas été abordée de manière adéquate puisqu’elle a été constru-
ite sur la classification actuelle de LDGCB qui comprenait un faible nombre
d’échantillons de LPSNC. Les résultats collectifs de ma thèse comblent cette
lacune en reliant les caractéristiques multi-omiques intégrées dans chaque sous-
type moléculaire de LPSNC à des cibles thérapeutiques potentielles. De plus,
l’algorithme basé sur l’ARN, RBraLymP, peut faciliter les efforts futurs pour
développer et évaluer des approches thérapeutiques ciblées pour ces malignités
mal comprises et très meurtrières.
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déclenche physiologiquement l'hypermutation somatique et
la recombinaison de changement de classe dans les cellules
B du centre germinal, a une activité mutagène hors cible
plus élevée dans le LPSNC par rapport aux autres LDGCB.
Aujourd'hui, l'hétérogénéité du LPSNC. n'a pas été cor-
rectement abordée principalement en raison du manque
d'intégration de données multi-omiques et du nombre lim-
ité de patients. Cette thèse se concentre sur la caractéri-
sation et l'intégration du paysage multi-omique du LP-

SNC pour trouver des sous-groupes moléculaires du LP-
SNC ayant une pertinence biologique et clinique. Tout
d'abord, nous avons examiné la structure HLA et la suscep-
tibilité génétique dans le LPSNC et d'autres lymphomes à
cellules B. Deuxièmement, nous avons développé et validé
un code bioinformatique pour identi�er les mutations AID
et explorer leurs implications dans les lymphomes à cel-
lules B et d'autres cancers. En�n, nous avons intégré
des données multi-omiques pour délimiter quatre classes
moléculaires de LPSNC avec un impact pronostique remar-
quable et développé un algorithme qui utilise des données
d'expression génique provenant de tissus �xés au formol et
inclus en para�ne ou fraîchement congelés, pour identi�er
ces sous-types moléculaires de LPSNC. Collectivement, les
résultats de cette thèse donnent des explications plausibles
sur l'hétérogénéité de la réponse du LPSNC en trouvant
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Abstract: Primary central nervous system lymphoma
(PCNSL) is a rare subtype of di�use large B cell lym-
phoma (DLBCL) located in the CNS with a less favor-
able prognosis. Moreover, 60% of the patients that will
eventually relapse from the gold standard treatment (high-
dose methotrexate regimen), have shown heterogeneous re-
sponses in diverse clinical trials with di�erent treatment
strategies. Furthermore, the activation-induced cytidine
deaminase (AID), which physiologically triggers somatic
hypermutation and class-switch recombination in germinal-
center B-cells, has a higher o�-target mutagenic activity in
PCNSL compared to other DLBCL. Today, PCNSL het-
erogeneity has not been properly addressed mainly due to
the lack of multi-omic data integration and the limited
number of patients. This thesis is focused on character-
izing and integrating the multi-omic landscape of PCNSL

to �nd molecular PCNSL subgroups with biological and
clinical relevance. Firstly, we reviewed the HLA structure
and the genetic susceptibility in PCNSL and other B-cell
lymphomas. Secondly, we developed and validated a bioin-
formatic code to identify AID mutations and to explore
their implications in B-cell lymphomas and other cancers.
Finally, we integrated multi-omic data to delineate four
molecular classes of PCNSL with a remarkable prognostic
impact and developed an algorithm that uses gene expres-
sion data from either formalin-�xed, para�n-embedded, or
fresh-frozen tissue, to identify such PCNSL molecular sub-
types. Collectively the �ndings in this thesis give plausible
explanations on the PCNSL response heterogeneity based
on �nding a bridge between the di�erent multi-omic layers
and ultimately potential therapeutic targets across molec-
ular PCNSL subtypes.
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