
HAL Id: tel-03991629
https://theses.hal.science/tel-03991629v1

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum machine learning approaches for graphs and
sequences : application to nuclear safety assessment

Ahmed Zaiou

To cite this version:
Ahmed Zaiou. Quantum machine learning approaches for graphs and sequences : application to
nuclear safety assessment. Mathematical Physics [math-ph]. Université Paris-Nord - Paris XIII, 2022.
English. �NNT : 2022PA131048�. �tel-03991629�

https://theses.hal.science/tel-03991629v1
https://hal.archives-ouvertes.fr


N◦ d’Ordre :
EDSPIC :

Université Sorbonne Paris Nord
ÉCOLE DOCTORALE GALILÉE

Ph.D. Thesis
by

Ahmed ZAIOU

for the dgree of
Doctor of Computer Science

Quantum Machine Learning Approaches for Graphs
and Sequences

Application to Nuclear Safety Assessment

defended on 9th december 2022 in front the following jury:

Thesis supervisors :

Younès Bennani Professor, Université Sorbonne Paris Nord
Basarab Matei Associate professor HDR, Université Sorbonne Paris Nord
Mohamed Hibti Expert, EDF Lab Saclay

Reporters :

Cyrille Bertelle Professor, Université du Havre
Michel Verleysen Professor, Ecole Polytechnique de Louvain

Examiners :

Stefano Guerini Professor, Université Sorbonne Paris Nord
Maria Malek Associate professor HDR, CY Tech Cergy Paris Université
Nicoleta Rogovschi Associate professor HDR, Université Paris Cité
Ali Yahyaouy Professor, Sidi Mohamed Ben Abdellah University



“If you are not completely confused by quantum mechanics, you do not understand it.”

John Wheeler
“I think I can safely say that nobody understands quantum mechanics.”

Richard Feynman
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Résumé

Dans cette thèse, notre objectif est de fournir des solutions moins complexes en util-
isant des algorithmes purement quantiques ainsi que des algorithmes d’apprentissage
automatique quantiques pour traiter des problèmes dans le domaine des Études Prob-
abilistes de Sécurité (EPS) avec un temps raisonnable. Nous abordons les deux
aspects du problème des EPS, statique et dynamique. Pour le problème statique, où
nous sommes intéressés à trouver toutes les combinaisons d’événements de base
du système qui peuvent générer des accidents graves, nous proposons d’obtenir
ces combinaisons d’événements de base par un algorithme quantique, en utilisant
des graphes orientés au lieu de chercher toutes les solutions d’un problème SAT.
Notre contribution est un algorithme quantique qui utilise un nombre linéaire de
qubits et grâce à un filtre classique, nous pouvons trouver toutes les combinaisons
d’événements de base qui peuvent générer ces accidents. Dans le cas dynamique, où
nous sommes intéressés à trouver toutes les séquences accidentelles d’un système,
notre principal intérêt est le traitement de ces séquences. Dans le cas classique, afin
de trouver toutes ces séquences, nous utilisons le graphe d’état du système et nous
cherchons tous les chemins entre l’état courant et tous les états critiques. Comme ce
problème est NP-complet, nous proposons une solution quantique pour trouver tous
ces chemins. Nous proposons deux algorithmes quantiques, tous les deux basés sur la
philosophie des marches quantiques. Le premier algorithme permet de trouver tous
les chemins entre un sommet source et plusieurs sommets destination dans un graphe
orienté a-cyclique. Cet algorithme utilise N qubits et M portes afin de trouver tous
les chemins. Le second est une version hybride du premier, il est capable de traiter
de grands graphes même avec un nombre réduit de qubits. Une autre contribution
consiste une approche quantique de l’algorithme Dynamic Time Warping (DTW) afin
de calculer la similarité entre ces séquences, ainsi qu’une version capable de trou-
ver la meilleure correspondance entre les séquences en utilisant des sous-séquences
dont la longueur varie dynamiquement. Nous proposons également une stratégie
d’apprentissage pour les Modèles de Markov Cachés Quantiques (QHMM) afin de
générer des scénarios accidentels à partir de n’importe quel état initial du système et
également pour gérer le système en temps réel. Nous proposons enfin une version
améliorée de k-means quantique. La complexité de chaque itération de la version
classique de k-means est deO(K×M× N). Dans notre cas, le calcul de toutes les dis-
tances entre les observations et les centres des clusters avec un seul circuit quantique,
et l’utilisation de l’algorithme de recherche quantique de Grover, nous permet de
réduire la complexité à O(log(K×M× N)) . Une autre version de l’algorithme de
k-means équilibrés quantiques est aussi proposé en utilisant le quantique adiabatique.
Enfin, nous proposons une version quantique de l’algorithme Convex-NMF qui est
plus rapide que la version classique. Nous concluons cette thèse par une application
de nos approches proposées sur un système réel dans le domaine des EPS.
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Abstract

In this dissertation, our goal is to provide less complex solutions using pure quantum
algorithms as well as quantum machine learning algorithms, to deal with problems
in the field of Probabilistic Safety Assessment (PSA) within a reasonable time. We
address both aspects of the PSA problem, static and dynamic. For the static issue,
where we are interested in finding all the combinations of basic events of the system
that can generate severe accidents (which could be the meltdown of the core of the
nuclear power plant), we propose to obtain these combinations of basic events by
a quantum algorithm, using directed graphs instead of looking for all solutions of
a SAT problem. Our main contribution is a quantum algorithm, that uses a linear
number of qubits and, using a classical filter, we can find all those combinations of
basic events that can generate these accidents. In the dynamic issue, where we are
interested in finding all the accidental sequences of a system, our main interest is
the treatment of these sequences, wherein the classical case, in order to find all these
sequences we use the state graph of the system and we look for all the paths between
the current state and all the critical states. This problem is NP-complete, therefore
we propose a quantum solution to find all these paths. We propose two quantum
algorithms, both based on the philosophy of quantum walks. The first algorithm
allows us to find all the paths between a source vertex and several destination vertices
in a directed a-cyclic graph (the state graph of the system). This algorithm uses N
qubits and M gates in order to find all the paths. The second one is a hybrid version of
the first one, it is able to process large graphs even with a reduced number of qubits.
Another contribution consists of a quantum approach to the Dynamic Time Warping
(DTW) algorithm, in order to calculate the similarity between these sequences, as well
as, a version able to find the best match between sequences by using sub-sequences
with dynamically varying lengths. We propose also a learning strategy for Quantum
Hidden Markov Models (QHMMs) to generate accidental scenarios from any initial
state of the system and also to manage the system in real time. We propose finally a
version of quantum k-means. The complexity of each iteration of the classical version
of k-means is O(K × M × N). In our case, computing all the distances between
observations and cluster centers with a single circuit and using Grover’s quantum
search algorithm allows us to reduce the complexity toO(log(K×M× N)). Another
version of the quantum Balanced k-means algorithm is proposed using quantum
annealing. Finally, we propose a quantum version of the convex-NMF algorithm that
is faster than the classical version. We conclude this dissertation with an application
of our proposed approaches to a real system in the PSA field.
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1

Avant Propos

Les ordinateurs quantiques et l’informatique quantique ont récemment attiré une
attention considérable dans l’industrie et dans les milieux universitaires. La com-
mercialisation d’ordinateurs quantiques "efficaces" et le fait que les technologies de
l’information basées sur les principes de la physique quantique deviennent une réalité
ont poussé un certain nombre d’acteurs à explorer ce domaine et ses conséquences sur
la manière dont de nombreux problèmes complexes peuvent être résolus et l’impact
qu’il peut avoir sur différentes activités.

Dans le domaine des Noisy Intermediate-Scale Quantum (NISQ)1, un certain nombre
de résultats encourageants ont montré l’intérêt d’explorer de nombreux problèmes
complexes, et différentes approches ont été spécifiquement introduites pour tirer
parti de l’accélération quantique lorsque cela est possible, même avec des ordinateurs
quantiques à petite échelle, en utilisant une approche hybride. Certains problèmes
peuvent cependant être résolus efficacement non pas avec des machines quantiques
universelles2, mais en utilisant la simulation quantique ou le recuit quantique.

Les algorithmes d’apprentissage automatique ont prouvé leur puissance et leur
utilité dans le monde à travers leur domaine d’application. Ces algorithmes se retrou-
vent dans presque tous les secteurs, comme la médecine, la finance, le marketing,
l’environnement, la sécurité et bien d’autres domaines très intéressants.

L’un des défis les plus importants des applications d’apprentissage automatique
est la complexité de leurs algorithmes. La majorité d’entre eux ont une complexité
NP-hard ou NP-complet, notamment les algorithmes suivants : K-means [Alo+09],
Réseau de neurones [BR93] et arbre de décision [LR76]. En outre, avec l’explosion des
données dans le monde au cours des dernières années, le problème de la complexité
est devenu très important, ce qui a motivé les chercheurs à se concentrer de plus
en plus sur la recherche de la meilleure approche pour traiter ces énormes bases de
données le plus rapidement possible. La complexité de ces algorithmes et la taille des
bases de données dans le monde d’aujourd’hui font de l’apprentissage automatique
l’un des domaines qui nécessitent une accélération quantique.

Le domaine des Études Probabilistes de Sûreté (EPS) est un candidat potentiel pour
l’exploration de l’informatique quantique. Pour les centrales nucléaires, il s’agit
d’un problème présentant de nombreuses complexités dues à différents aspects

1Le terme "intermediate-scale" fait référence à la taille des ordinateurs quantiques actuels, qui sont
suffisamment grands pour surpasser les ordinateurs classiques dans certains problèmes appropriés. Le
terme "Noisy" fait référence au fait que nous ne disposons pas encore de technologies matures pour
contrôler les qubits pendant les "longs" calculs, ce qui entraîne des erreurs ou du "bruit" de petite à
grande taille.

2Il existe plusieurs types de machines de calcul quantique, notamment le modèle de circuit quantique,
parmi lesquels la machine de Turing quantique (universelle) et l’ordinateur quantique adiabatique.
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: la nature des systèmes en question avec leurs dimensions techniques et socio-
organisationnelles, la complexité des modèles sous-jacents aux différentes représenta-
tions du système et de sa dynamique, et en particulier sa complexité informatique qui
peut empêcher d’utiliser efficacement ces modèles pour la prise de décision en temps
opérationnel. En outre, la complexité de calcul est l’un des problèmes majeurs concer-
nant ce candidat. C’est le cas aussi bien pour les approches statiques conventionnelles
(traitant uniquement de la logique des événements sans aucune considération du
temps ni des aspects dynamiques) que pour les approches dynamiques (considérant
les phénomènes physiques, l’ordre des événements et leur chronologie).

Dans cette thèse, nous nous sommes concentrés sur la proposition de solutions en util-
isant des algorithmes purement quantiques ainsi que des algorithmes d’apprentissage
automatique quantiques afin de traiter des problèmes dans le domaine des EPS, à la
fois pour la problématique statique et dynamique. Nous proposons des algorithmes
purement quantiques pour traiter les problèmes fondamentaux du domaine EPS,
avec ses deux grands aspects, statique et dynamique. Pour la problématique statique,
dans lequel nous sommes intéressés à trouver des combinaisons d’événements de
base du système qui peuvent générer des accidents graves, nous proposons comment
obtenir ces combinaisons d’événements de base par un algorithme quantique, en
utilisant des graphes dirigés au lieu de chercher toutes les solutions d’un problème
SAT. En ce qui concerne la problématique dynamique, nous nous concentrons sur le
traitement des scénarios de défaillance, où nous proposons une solution quantique
pour trouver ces scénarios de défaillance et créer une base de données de scénarios
pour chaque système. Nous proposons deux algorithmes quantiques, le premier
permet de trouver tous les chemins entre un sommet source et plusieurs sommets
de destinations dans un graphe orienté a-cyclique, le second est une version hybride
du premier afin de traiter de grands graphes même avec un nombre réduit de qubits.
Ces chemins représentent les scénarios de défaillance du système et peuvent être
appelés des séquences accidentelles. Pour les traiter correctement, nous proposons
notre approche quantique de l’algorithme Dynamic Time Warping (DTW) afin de
calculer la similarité entre deux séquences, et nous proposons également une version
capable de trouver la meilleure correspondance entre les séquences en utilisant des
sous-séquences dont la taille varie dynamiquement. L’utilisation de ces deux versions
quantiques de DTW nous permettent de classifier ces séquences en prenant en compte
les sous-séquences dans chaque séquence avec une variation dynamique de la taille
des sous-séquences. Nous proposons également une stratégie d’apprentissage des
Modèles de Markov Cachés Quantiques pour générer des scénarios accidentels à
partir de n’importe quel état initial du système et aussi pour detecter les séquences
probables et non probables. En plus de cela, nous traitons plusieurs problèmes dans
le domaine de l’apprentissage automatique quantique, nous commençons par le
calcul de distance avec des circuits quantiques, et comme conséquence de ce travail,
nous proposons notre version améliorée de k-means quantique. Une autre version de
l’algorithme k-means équilibré quantique est proposée en utilisant le recuit quantique.
Finalement, nous proposons une version quantique de l’algorithme Convexe-NMF
qui est plus rapide que la version classique. Enfin, nous terminerons cette thèse par
une application de nos approches proposées dans un système dans le domaine des
EPS.

Guide pratique de la thèse

Cette thèse est organisée comme suit :
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Chapitre 1 : Études Probabilistes de Sûreté

Les Études Probabilistes de Sûreté (EPS) est un domaine connu pour étudier la
sûreté des centrales nucléaires et également pour évaluer la nature des défaillances et
la performance des systèmes installés dans ces centrales. Ce premier chapitre donne
d’abord quelques généralités sur ce domaine, comment il est apparu dans le monde,
ainsi que son histoire. De plus, le problème général et les objectifs sont présentés,
ainsi que quelques méthodes et algorithmes permettant de répondre à ces problèmes
dans le monde de l’informatique classique.

Chapitre 2 : Informatique Quantique : Concepts de Base et État de l’Art

L’informatique quantique occupe aujourd’hui un grand intérêt, grâce à ses résul-
tats en termes de complexité et d’accélération. Afin de comprendre comment leurs
algorithmes fonctionnent et pourquoi ils sont plus efficaces que les algorithmes clas-
siques, dans ce chapitre nous présentons les notions de base du calcul quantique,
telles que les notions mathématiques de base de la physique quantique, les systèmes
quantiques, soit à un qubit, à deux qubits ou à n qubits, et nous montrons comment
nous pouvons manipuler les qubits dans chacun de ces cas. En plus de ces notions,
nous présentons les classes de la complexité classique et nous ajoutons les classes
de la complexité quantique. Les algorithmes quantiques généraux qui montrent une
accélération quantique sont également présentés dans ce chapitre. De plus, il contient
un état de l’art sur quelques algorithmes d’apprentissage automatique quantique,
supervisés et non supervisés.

Chapitre 3 : Une approche quantique du séparateur de sommets pour les graphes
orientés

Le principal défi dans le domaine des EPS consiste à identifier les causes des ac-
cidents qui peuvent être provoqués dans le système étudié. La recherche de ces
causes, ou en d’autres termes, ces combinaisons de défaillances qui peuvent générer
une conséquence inacceptable, qui peut être un accident grave et qui peut aller jusqu’à
la fusion du cœur de la centrale nucléaire, est un défi très important à résoudre et
il est également très nécessaire de connaître toutes les possibilités. Afin de trouver
ces combinaisons d’événements de base, nous utilisons des graphes orientés et nous
recherchons tous les séparateurs de sommets qui peuvent arrêter le flux entre la
source et le terminal du graphe. Ainsi, au cours de ce chapitre, nous décrivons en
premier lieu comment nous pouvons représenter le diagramme de fiabilité d’un sys-
tème par un graphe orienté. Ensuite, nous abordons le problème du séparateurs des
sommets d’un graphe orienté qui n’a pas encore été résolu par un algorithme quan-
tique précis. Nous proposons un algorithme quantique pour résoudre ce problème
et nous montrons également que cet algorithme est facilement applicable dans les
cadres existants des ordinateurs quantiques et qu’il est également faisable sur le plan
informatique. Pour le démontrer, nous effectuons un cas d’étude dans lequel nous
utilisons un petit graphe à titre d’exemple, puis nous expliquons chaque itération de
notre algorithme en indiquant les résultats trouvés dans un ordinateur quantique
après chaque itération.

Chapitre 4 : Approches quantiques pour le traitement des séquences
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Le traitement des séquences est un défi très populaire dans plusieurs domaines
tels que : les données vidéo, audio et graphiques. Pour notre problématique en
EPS, il est utilisé pour traiter des scénarios de défaillance de centrales nucléaires.
Dans ce chapitre, nous abordons ce défi de manière quantique à travers trois ques-
tions : Comment trouver tous les scénarios de défaillance possibles d’un système ?
Comment calculer la similarité entre eux et comment les classifier ? Comment créer
un modèle génératif à partir de ces scénarios ? Afin de répondre à ces questions,
nous représentons les états du système par un graphe orienté, chaque sommet de ce
graphe représente un état du système et chaque arête représente une des deux actions
: "réparation" ou "défaillance" d’un élément de base du système. L’état critique est
représenté dans le graphe par un sommet marqué. Afin de trouver les scénarios
qui peuvent être la cause pour atteindre cet état critique, nous recherchons tous les
chemins entre le sommet qui représente l’état actuel et le sommet marqué (l’état
critique) dans le graphe. Nous explorons le graphe en utilisant des marches quan-
tiques, est une stratégie quantique permettant de réduit la complexité de l’exploration
du graphe, et aussi ne laisse pas la chance influencer le choix de trouver ou non le
sommet désiré comme dans le cas des marches aléatoires. Grâce aux marches quan-
tiques, nous pouvons traverser les graphes de manière parallèle et aborder tous les
chemins possibles en même temps. Ainsi, nous proposons notre approche basée sur
les marches quantiques pour trouver tous les chemins entre un sommet source et
tous les sommets marqués dans le graphe. Nous proposons également une approche
hybride pour traiter les grands graphes avec le nombre de qubits disponibles dans
l’ordinateur quantique utilisé. De cette façon, nous pouvons répondre au premier défi
qui consiste à trouver les scénarios de défaillance d’un système. Ces deux approches
que nous avons proposées sont testées et comparées à l’approche classique de marche
aléatoire sur 6 graphes de taille différentes.

Pour la deuxième question, mesurer la distance entre les objets est l’une des tâches
essentielles dans le domaine de l’apprentissage automatique et dans divers autres
domaines du traitement des données. Lorsque les objets sont des séries temporelles,
nous utilisons le Dynamic Time Warping (DTW) pour mesurer la distance entre eux.
Donc, nous proposons notre approche quantique de la méthode DTW et nous pro-
posons aussi une approche quantique pour le cas de l’utilisation des sous-séquences.
Ces deux approches sont testées et comparées avec l’approche classique et aussi
l’approche quantique proposée par [Fel+20].

En considérant les scénarios de défaillance comme des séquences, afin de créer un
modèle génératif à partir d’un ensemble de données de séquences, nous utiliserons
des Modèles de Markov Cachés Quantiques (QHMMs). Ceux-ci nous permettront
d’apprendre des modèles capables de nous fournir davantage de scénarios et égale-
ment de détecter les scénarios probables et non probables.

Chapitre 5 : Estimation de la distance pour le clustering basé sur les prototypes
quantiques

Le calcul de la distance entre les observations et la recherche d’un élément dans
une liste donnée sont les deux principales étapes de presque tous les algorithmes
classiques d’apprentissage automatique. Ce sont également les étapes les plus gour-
mandes en mémoire et en temps pour trouver les résultats finaux. C’est pourquoi,
dans ce chapitre, nous allons répondre aux questions suivantes : Comment estimer
les distances entre les différentes données et les centroïdes ? Comment rechercher le
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centroïde le plus proche d’une donnée ? En plus de répondre à ces deux questions,
nous proposons notre version quantique de l’indice de Davies-Bouldin, et nous pro-
posons une version améliorée de l’algorithme k-means quantique.

Chapitre 6 : Clustering en utilisant le recuit quantique

L’un des plus grands défis que nous avons rencontrés en combinant les tailles des
systèmes traiter dans le domaine des EPS et le progrès des ordinateurs quantiques
aujourd’hui est que, d’une part, nous avons des systèmes avec des très grands tailles
à traiter, et d’autre part, nous n’avons que de petits ordinateurs quantiques. La ques-
tion qui se pose ici est la suivante : quelles sont les orientations que nous pouvons
prendre pour rendre possible l’utilisation de petits ordinateurs quantiques pour les
grands systèmes ? L’une des solutions possibles consiste à diviser les graphes qui
représentent le système en plusieurs graphes plus petits et à les traiter séparément.
Plusieurs algorithmes d’apprentissage automatique peuvent être utilisés pour diviser
ces graphes en plusieurs petits graphes. La taille des modèles que nous souhaitons
traiter avec des ordinateurs quantiques dans nos problèmes est très grande, et de plus,
ils sont représentés par des graphes dirigés. Le traitement de ces graphes par des
algorithmes d’apprentissage automatique nécessite une représentation matricielle,
habituellement nous utilisons la matrice de connexion entre les sommets du graphe,
ce qui nous donne une grande matrice carrée. Pour pouvoir traiter ces matrices avec
une certaine facilité, il est nécessaire d’en réduire la dimension. La deuxième question
est donc la suivante : comment pouvons-nous réduire les dimensions de ces matrices ?

Pour répondre à la première question, nous n’avons dans notre cas qu’une seule
contrainte, la taille des clusters trouvés ne doit pas dépasser la taille maximale du
système. Cette taille peut être donnée en une seule requête à un ordinateur quantique.
L’algorithme qui permet de spécifier les tailles des clusters en fonction de la taille
de la base de données est l’algorithme k-means équilibré. Pour la seconde question,
nous utilisons la version convexe de l’algorithme de factorisation de matrices non
négatives (Convex-NMF). Dans ce chapitre, nous nous concentrons donc sur les
deux algorithmes : k-means équilibré et Convex-NMF. Nous améliorons la version
quantique de l’algorithme k-means équilibré dans le recuit quantique pour trouver
des résultats optimaux. Nous proposons une version quantique du Convex-NMF,
pour trouver le minimum global de la fonctionnelle ∥X− XWG∥2

F pour une matrice
à valeur réelle X.

Chapitre 7 : Cas d’application : Système de refroidissement des piscines de com-
bustible

Dans ce chapitre, nous considérons un système dans le domaine des EPS, le sys-
tème de refroidissement des piscines de combustible, comme une application et nous
appliquons les algorithmes que nous avons proposés dans les chapitres précédents
pour traiter l’analyse de la sûreté de ce système. Nous utilisons le premier algorithme
pour trouver les combinaisons d’événements de base qui peuvent générer des ac-
cidents graves, puis nous utilisons notre algorithme pour trouver les scénarios de
défaillance de ce système. Ces scénarios sont classifiés par k-NN en utilisant QDTW
comme distance. Finalement, la base de données est utilisée pour apprendre un
Modèle de Markov Caché Quantique afin de créer un modèle génératif des scénarios.
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Introduction

Quantum computers and quantum computing attracted recently huge attention in the
industry and academic sides. The commercialization of "effective" quantum comput-
ers and the fact that information technologies based on principles of quantum physics
are becoming a reality pushed several actors to explore the field and its consequences
on the way many complex problems can be solved and the impact that it may have
on different activities.

In this Noisy Intermediate-Scale Quantum (NISQ) 3 era, many encouraging results
showed the interest of exploring many complex problems, and different approaches
were specifically introduced to take advantage of the quantum speedup when pos-
sible even with small-scale quantum computers using a hybrid approach. Some
problems, however, could be solved efficiently not in universal quantum machines 4

but using quantum simulation or quantum annealing.

Machine learning algorithms have proven their power and usefulness in the world
through their application domain. These algorithms can be found in almost every
sector, such as medicine, finance, marketing, environment, security, and many other
very interesting fields.

One of the most important challenges of machine learning applications is the com-
plexity of their algorithms. The majority of them have NP-hard or NP-complete
complexity, including the following algorithms: K-means [Alo+09], Neural Network
[BR93] and decision tree algorithm [LR76]. Furthermore, with the explosion of data
in the world over the past few years, the problem of complexity has become very
important, which has motivated researchers to focus more and more on finding the
best approaches to process these huge datasets as quickly as possible. The complexity
of these algorithms and the size of the datasets in the world today make Machine
Learning one of those areas that require quantum speedup.

Probabilistic Safety Assessment (PSA) is a candidate for quantum computing ex-
ploration. For nuclear power plants, it is a problem with many complex issues due
to different aspects: the nature of the systems at hand with their technical and socio-
organizational dimensions, the complexity of the models underlying the different
representations of the system and its dynamics, and particularly its computational
complexity which may prevent from efficiently using such models for decision mak-
ing in operational times. Moreover, computational complexity is one of the major
issues regarding this candidate. It is the case for both the conventional static ap-
proaches (dealing only with the logic of the events without any consideration of

3The term “intermediate-scale” refers to the size of nowadays quantum computers, they are large
enough to outperform classical computers in some suitable problems (see. [Ped+19a]). The term
“Noisy” refers to the fact that we still do not have mature technologies to control qubits during "long"
computations, which results in small to large errors or noise.

4There are several types of quantum computing machines including the quantum circuit model
among which, quantum Turing machine (universal), and adiabatic quantum computer.
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time or any dynamic aspects) and dynamic approaches (considering the physical
phenomena, the order of events, and their timing).

In this dissertation, we focused on providing solutions using pure quantum algo-
rithms as well as quantum machine learning algorithms, to deal with problems in the
PSA field, both static and dynamic problems. We propose pure quantum algorithms
to deal with the fundamental problems of the PSA field, with its two main aspects,
static and dynamic. For the static problem, in which we are interested in finding
combinations of basic events of the system that can generate serious accidents, we
propose how to obtain these combinations of basic events by a quantum algorithm,
using directed graphs instead of looking for all solutions of an SAT problem. Regard-
ing the dynamic problem, we focus on the processing of failure scenarios, where we
propose a quantum solution to find these failure scenarios and create a dataset of
scenarios for each system. We propose two quantum algorithms, the first one allows
us to find all paths between a source vertex and several destination vertices in a
Directed Acyclic Graph (DAG). The second one is a hybrid version of the first one, to
deal with large graphs even with a reduced number of qubits. These paths represent
the failure scenarios of the system and can be called accidental sequences. To handle
them properly, we propose our quantum approach to the Dynamic Time Warping
(DTW) algorithm, to compute the similarity between two sequences, and we also
propose a version able to find the best match between sequences using subsequences
whose size varies dynamically. The use of these two quantum versions of DTW
allows us to classify these sequences by taking into account the subsequences in each
sequence with a dynamic variation of the size of the subsequences. We propose a
learning strategy for Quantum Hidden Markov Models to generate accidental scenar-
ios from any initial state of the system, and also to detect probable and non-probable
sequences. In addition to that, we deal with several problems in the field of quantum
machine learning, we start with the computation of distances with quantum circuits,
and as a consequence of this work, we propose our improved version of quantum
k-means. Another version of the balanced quantum k-means algorithm is proposed
using quantum annealing. Lastly, we propose a quantum version of the Convex
Non-negative Matrix Factorization (Convex-NMF) algorithm that is faster than the
classical version. Finally, we will end this dissertation with an application of our
proposed approaches in a system in the PSA field.

Guide to the Dissertation

This dissertation is organized as follows:

Chapter 1: Probabilistic Safety Assessments

Probabilistic Safety Assessments (PSA) is a field known for studying the safety of
nuclear power plants, evaluating the nature of failure and also the performance of the
systems installed in them. In this first chapter, we start by giving some generalities
about this field and how it appeared in the world with some history. We present
the general problem, the objectives, and some methods and algorithms to solve the
problems in the world of classical computer science.

Chapter 2: Quantum Computing: Basics and State of the Art

Quantum computing is taking a large space today, thanks to its results in terms
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of complexity and speedup. To understand how the algorithms work and why they
are more efficient than classical algorithms, in this chapter, we present the basic advice
of quantum computing, such as the basic mathematical notions of quantum physics,
quantum systems, either by one qubit, two qubits or n qubits and we show how we
can handle qubits in each of these cases. In addition to these notions, we present
the classes of classical and quantum complexity. General quantum algorithms that
show quantum speedup are presented in this chapter. Also, it contains state-of-the-art
machine learning algorithms, both supervised and unsupervised algorithms.

Chapter 3: A Quantum Vertex Separator Approach for Directed Graphs

The first problem in the PSA field is the identification of the causes of accidents
that can be generated in the studied system. The search for these causes, or in other
words, these combinations of failures that can generate an unacceptable consequence,
which can be a serious accident, and it can go up to the fusion of the core of the
nuclear power plant, is a very important challenge to solve, and it is very necessary to
know all the possibilities. To find these combinations of basic events, we use directed
graphs, and we look for all the vertex separators that can stop the flow between
the source and the terminal of it. In this chapter, firstly, we describe how we can
represent the reliability diagram of a system by a directed graph. After that, we
address the problem of vertex separators of a directed graph, which has not yet been
solved by an accurate quantum algorithm. We provide a quantum algorithm to solve
this problem, and we show that it is easily applicable in the existing frameworks
of quantum computing, and that is also computationally feasible. To show this, we
make a study case, where we use a small graph as an example, then we explain each
iteration of our algorithm by indicating the results found in the quantum computer
after each iteration.

Chapter 4: Quantum Approaches for Sequences Processing

Sequence processing is a very popular challenge in several fields, such as video,
audio, and graphic data. For our problem in the PSA field, it is used to process failure
scenarios of nuclear power plants. In this chapter, we approach this challenge in a
quantum manner through three questions: how to find all possible failure scenarios
of a system? How to calculate the similarity between them and how to classify them?
How to create a generative model from them? In order to answer these questions, we
will represent the states of the system by a directed graph, each vertex of this graph
represents a state of the system, and each edge represents one of two actions: "repair"
or "failure" of a basic component of the system. The critical state is represented in
the graph by a marked vertex. In order to find the scenarios that can be the cause to
reach this critical state, we look for all the paths between the vertex that represents
the current state in the graph and the marked vertex (the critical state). We explore
the graph by using quantum walks, which is a quantum strategy that reduces the
complexity of exploring the graph and doesn’t let luck influence the choice of finding
or not the desired vertex as in the case of Random Walks. Thanks to quantum walks,
we can traverse the graphs in a parallel way, and approach all possible paths at the
same time. So, we propose our quantum walk-based approach, to find all the paths be-
tween a source vertex and all the marked vertices in a Directed Acyclic Graph (DAG).
Also, we propose our hybrid approach to handle large graphs with the number of
qubits available in the used quantum computer. In this way, we can address the first
challenge of finding the failure scenarios of a system. These two approaches are tested
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and compared with the classical random walk approach on 6 graphs of different sizes.

For the second question, measuring the distance between objects is one of the essential
tasks in the field of machine learning and others fields of data processing. When
the objects are time series, we use Dynamic Time Warping (DTW) to measure the
distance between them. So, we propose our quantum approach to the DTW method,
and we propose a quantum approach for the case of using sub-sequences. These two
approaches are tested and compared with the classical approach and the quantum
one proposed by [Fel+20].

By considering the failure scenarios as sequences, to create a generative model from a
sequence dataset, we will use Quantum Hidden Markov Models (QHMMs) to learn
models that can provide us more scenarios, and also detect probable and no-probable
scenarios.

Chapter 5: Distance Estimation for Quantum Prototypes Based Clustering

Distance calculation between observations and finding an element in a given list are
the two main steps in almost all classical machine learning algorithms. They are also
the most memory and time consuming steps to find the final results. That is why in
this chapter, we will answer the questions: how to estimate the distances between the
different data and centroids? How to search for the closest centroid to a given data?
In addition to answering these two questions, we propose our quantum version of
the Davies–Bouldin index, and we propose an improved version of the quantum
K-means algorithm.

Chapter 6: Clustering using Quantum Annealing

One of the biggest challenges that we have encountered in combining system sizes
in the PSA field and the advances of quantum computers today is, on the one hand,
we have very large systems to deal with, and on the other hand, we only have small
quantum computers. So, the question here is: what are the directions that we can
take to make the use of small quantum computers for large systems feasible? One of
the possible solutions is to divide the graphs that represent the system into several
smaller graphs and treat them separately. Several machine learning algorithms can be
used to divide these graphs into several small graphs. The size of the models that we
wish to process with quantum computers in our problems is very large, and they are
represented by directed graphs. The processing of these graphs by machine learning
algorithms requires a matrix representation, usually, we use the adjacency matrix of
the graph, which gives us a large square matrix. To be able to process these matrices
with some ease, it is necessary to reduce the dimension. So the second question here,
is how we can reduce the dimension of these matrices.

To answer the first question, in our case, we have only one constraint, the size
of the clusters found must not exceed the maximum size of the system that can be
given in a single request to a quantum computer. The algorithm that allows speci-
fying the sizes of the clusters according to the size of the database is the Balanced
K-means algorithm. For the second question, we use the convex version of the Non-
negative Matrix Factorization algorithm (Convex-NMF). So, in this chapter, we focus
on two algorithms: The balanced K-means clustering algorithm and Convex-NMF.
We improve the quantum version of the Balanced K-means algorithm in the quantum
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annealing to find the best results. We propose a quantum version of the Convex-NMF,
to find the global minimum of the functional ∥X−XWG∥2

F for a real valued matrix X.

Chapter 7: Application case: Fuel Pool Cooling System

In this chapter, we take a system in the PSA field, the Fuel Pool Cooling System, as an
application and we apply our algorithms proposed in the previous chapters to process
the safety analysis of this system. We use the first algorithm to find the combinations
of basic events that can generate serious accidents. After that, we use our algorithm
to find the failure scenarios of this system. These scenarios are clustered by k-NN
using QDTW as a distance. Finally, these datasets are used to learn Quantum Hidden
Markov Models (QHMMs) to create generative models of the scenarios.
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Chapter 1

Probabilistic Safety Assessments

Probabilistic Safety Assessments (PSA) are increasingly used internationally as a
means of assessing and improving the safety of nuclear and non-nuclear installations.
The first PSA was performed on the nuclear units of SURRY1 and PEACH BOTTOM2

in the USA from 1972 to 1975. It resulted in the WASH 1400 report, also known as
the RASMUSSEN1 report [BI80]. This PSA was initiated by the U.S. Atomic Energy
Commission, the forerunner of the Nuclear Regulatory Commission (NRC). It was
based on preliminary work done by the UKEA in England and presented in 1967 by
Dr. Farmer to the International Atomic Energy Agency (IAEA).

Then, the report that came out was NUREG-1150 [Ort+91], a report of about 3000
pages. In this report, the event tree method was used to link system fault trees to
the initiating events and the core meltdown criteria. The use of event trees was a
response to the difficulties encountered in analyzing an installation using fault trees
alone.

A German study [Ker80], similar to the RASMUSSEN report, aimed to evaluate
the individual and collective risks resulting from the operation of nuclear power
plants and to compare them with other natural and industrial risks. These two stud-
ies have shown the importance of Loss Of Coolant Accidents (LOCA) due to small
breaks in Pressurized Water Reactors (PWR). In addition, the main lessons of the
RASMUSSEN report are that the consequences of a core meltdown would remain
limited (no deaths, evacuation area less than 20 ha...).

This latter report was criticized by Professor Kendall, which led the NRC to ini-
tiate a critical analysis of WASH 1400 in 1977. The result of this study is summarized
in the following:

• Underestimation of the uncertainties and their propagation,

• Underestimation of common cause failures (CCFs),

• Lack of completeness of the studied accidental sequences,

• Not taking into account the recovery of human errors,

• but a recommendation for the increasing use of predictive analytics techniques
in nuclear safety: there will be a before and after WASH 1400.

The TMI accident occurred in 19793. The WASH 1400 had already demonstrated the
importance of accidents originating from small breaches in the main primary circuit,

1A nuclear power plant located in Surry County, Virginia.
2A nuclear power plant situated on the Susquehanna River, 90 km south of Harrisburg.
3Partial meltdown of the reactor core, with almost no effects outside the plant site.
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while the reference accident, considered the most serious, was the rupture of the
Tank-Pressurizer Connection.

In 1980, the NRC launched its work on the introduction of probabilistic safety goals
into US regulations. At the same time, all the US administrations concerned with
nuclear safety (NRC, DOE, and EPRI) launched the development of a guide for the
use of probabilistic methods for the PRA Procedures Guide or NUREG-2300 [Hic83].
This report defines the three levels of study for a PSA:

• PSA level 1: The objective is to identify and analyze the accident scenarios, in
order to quantify the frequency of reactor core meltdown. Unlike PSA Levels
2 and 3, supporting physical studies are not explicitly incorporated into PSA
Level 1, which is based on a functional representation,

• PSA level 2: The objective is the analysis of the physical processes related to
the progression of the accident following the degradation of the core and the
failure modes of the confinement, in order to quantify the frequency of release
of radioactive products from the confinement,

• PSA level 3: The objective is the analysis of the transport of radioactive products
in the environment and the socio-economic consequences, in order to quantify
the safety risk. The WASH 1400 is a PSA level 3.

Any intermediate model between a PSA level 1 and a PSA level 2 is called a PSA
level 1+. Practically speaking, a PSA level 1+ model complements the level 1 model
in such a way as to:

• Grouping the sequences leading to the core meltdown according to their char-
acteristics, in particular, to distinguish the sequences leading to high-pressure
meltdown, and the sequences with confinement bypass and/or, determining
the status of the systems related to the confinement function, or the possible
severe accident management functions according to the characteristics of the
releases.

• Building an interface between a PSA level 1 and a PSA level 2.

Figure 1.1 shows these three levels of analysis.

Since 1990, in France, several PSA level 1 studies have been published for each
level by the operator EDF, and the technical support of the Safety Authority (IRSN);
they are regularly updated as part of safety reviews after analysis of all the elements
resulting from feedback, and unit operation (reliability data, analysis of incidents,
latest batches of unit modifications, stabilized set of PSA procedures).

1.1 PSA Level 1

PSA Level 1 consists of an evaluation of the design and operation of the plant and
focuses on the sequences that can lead to the failure of the core [Inta]. Figure 1.2
schematizes the main steps of a PSA level 1, and Figure 1.3 describes the structure of
a PSA in a Boolean structure. It should be noted that these different steps are highly
dependent on each other and that the process is essentially iterative.

The international consensus for modeling methods is the use:
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FIGURE 1.1: The three levels of PSA

FIGURE 1.2: Steps of development of the PSA level 1

• Event Tree method, which is a logical scheme for defining accident sequences
starting from an initiating event, considering the success or failure of the sys-
tems implemented to stop the progression of the accident, for modeling the
sequence of scenarios from the occurrence of an initiating event, to the achieve-
ment or not of the core meltdown. This method was used for the first time
for the realization of the WASH 1400: it allows to elaborate and evaluate the
sequences of events leading to the core meltdown, also called accidental se-
quences;

• Fault Trees, which is a logical scheme allowing linking by a deductive method,
the failure of the system to the elementary events likely to cause it, for the
modeling of systems, unavailability, and Common Cause Failures (CCF). These
fault trees are associated with events in the event trees. This method appeared
in 1961-62 and is widely used in many industrial fields (chemistry, aeronautics,
space, nuclear).
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FIGURE 1.3: Structure of a PSA level 1

1.2 PSA Level 2

The objective of PSA Level 2 is to evaluate the frequency and level of releases to the
environment resulting from severe accidents leading to the melting of the core [Intb].

Practically, these studies often follow a PSA Level 1 carried out beforehand (the
probability of the core meltdown is therefore assumed to be known, as well as the
main sequences leading to it). A preliminary work of interfacing allows us to define
the different degraded states of the installation (IDE) from the results of the PSA
Level 1. The IDEs associated with their frequency of occurrence constitute the input
data for the PSA Level 2.

A PSA Level 2 is an analysis of the physical processes related to reactor core meltdown
accidents and containment failure modes (response to induced loads on structures,
transport of radioactive materials to the environment, and corium progression). This
analysis is carried out from a single generic event tree for all IDEs. All the paths of
this tree constitute the sequences of the PSA Level 2, for which the probability of
occurrence, the inventory, and the number of radioactive materials released into the
environment (or source term) are determined.

1.3 PSA Level 3

In addition to the aspects analyzed in PSA Level 2, PSA Level 3 also deals with
the dispersion of radionuclides in the surrounding environment and with potential
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environmental and health effects [Intb]. Once the PSA Level 2 has been carried out,
a PSA Level 3 or Probabilistic Risk Assessment (PRA) must be carried out. It takes
into account meteorological and population data, as well as the characteristics of
agriculture around the site. Therefore, a PSA Level 3 cannot be standardized like PSA
Levels 1 and 2.

The WASH 1400 went so far as to estimate the number of potential deaths. The
interest of these studies lies in the evaluation of the cost (of a nuclear accident) -
benefit (of the use of nuclear energy) ratio for society. There is currently no PSA level
3 studies in France. In the rest of this document, PSA refers to a PSA Level 1.

1.4 Methods of operational safety

In this section, we present some of the above-mentioned methods for analyzing
operational safety. We present the Reliability Block Diagram technique, Fault Tree
method, Dynamic Reliability Diagram method, Petri Net, and Markov Chains.

1.4.1 The Reliability Block Diagram technique

The Reliability Block Diagram (RBD) technique is a schematically based technique for
showing how components contribute to the success and failure of an overall system.
This method is widely used because of its simplicity and practicality. This model
consists of having an input point, an output point, and a set of blocks connected
in parallel or series. Each block represents a physical component, that functions
normally. If one of the components fails, it behaves like an open switch. The diagram
remains functional, if there is a path connecting the start point to the endpoint other-
wise the diagram will be non-operational [Tal+09; RH03]. In Figure 1.4, we present
an example of a reliability diagram.

FIGURE 1.4: Reliability diagram

The main advantage of this approach is its simplicity. Engineers from a variety
of professions may utilize and comprehend it with ease. However, this approach also
has a significant drawback: a lack of knowledge about how the system behaves.

1.4.2 Fault Tree method

The Fault Tree (FT) method is a deductive approach (top-down), i.e. from the most
general to the most detailed. It has gone through several stages since its birth until
now. First, this method was implemented in 1962, the birth of this method in the Bell
Telephone Company by Watson. Then, in 1965, Haasl succeeded in formalizing these
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construction rules. Then Wasley started to put the basis of quantitative evaluation in
the 1970s. Finally, in 1992, by coding Binary Decision Diagrams (BDD), Madre and
Rauzy achieved high computational efficiency [PE10]. The goal of this method is to
identify the possible combinations that cause the adverse event.

The FT is composed of three types of events: leaf events, intermediate events, and
undesirable events. These events are linked together by logic gates that define the
relationship and subsequently the nature of the possible failure.

This method has several advantages, such as the ease of editing because it is a
graphical method that uses symbols and the ease of inserting a modification. In
addition, it is very simple to understand and read the FT, even for people who are not
familiar with operational safety. Also, as already mentioned, this method presents a
deductive approach that allows the intuitive construction of the tree. An example of
a fault tree structure is shown in Figure 1.5.

FIGURE 1.5: Fault Tree

Like any other method, the fault tree method also has some drawbacks. Indeed, FT
doesn’t allow the evaluation of the operational availability of repairable systems. In
addition, it is necessary to redo the construction of the tree in case of system evolution.

FT allows for both qualitative and quantitative analysis. Qualitative analysis is
used to identify the necessary and sufficient combination(s) of leaf events giving rise
to the adverse event. The most common techniques used in qualitative fault tree
analysis are Minimal Cut Set (MCS), Minimal Path Set (MPS), and Common Cause
Failure (CCF). A Cut Set (CS) is a combination of component failures that cause the
system to fail. An MCS is a cut set that, if one element is removed from the set, the rest
is no longer a cut set. The Path Set (PS) is the opposite of CS. The PS is a combination
of components that, if they do not fail, the system remains functional. An MPS is a set
of paths that, if one element is removed from the set, the rest is no longer a defined
path. CCF is dependent and residual failures in which two or more failure events
exist at the same time due to the same cause shared. The identification of the latter
helps the designer to identify the weak points of the system [RS15].

Quantitative analysis is performed to calculate the probability of the adverse event.
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There are two different approaches to quantitative analysis: discrete-time quantita-
tive analysis and continuous-time quantitative analysis. Discrete-time quantitative
analysis is an approach that considers the entire life of the system as a singular event.
In other words, each component can fail only once in a fixed time. In contrast, quanti-
tative continuous-time analysis is an approach that considers the evolution of system
failures over time. It is generally characterized by a probability function.

The fault tree can also be transformed into a success tree. The latter shows how
to prevent the undesired event from occurring. The conditions applied to the success
tree guarantee that the undesirable event does not occur. Therefore, the success tree
is a valuable tool that gives equivalent information to the fault tree but from a success
point of view.

1.4.3 Dynamic Reliability Block Diagram method

Given the limitations of RBD in analyzing dynamic and complex systems, the Dy-
namic Reliability Block Diagram (DRBD) method, which is the derivative of RBD,
allows the resolution of these systems. Indeed, a DRBD is obtained by extending RBD
with new tools that allow dynamic modeling and behavioral dependence between
components [XXR09].

1.4.4 Petri Net

In the presence of failures, the Petri net [Mur89] allows the dynamic modeling of
repairable systems. It is mainly developed for the study of dynamic systems. These
systems go from one state to another for each transition of the components (repair,
failure). The Petri net is a bi-part graph that contains circles and rectangles. The
circles represent the states and the rectangles represent the transitions. The states
are connected by two arcs and a transition. The Petri net allows the search for non-
reachable states, blockages, loops, causes of expectations, and conflicts. It allows the
sequential analysis of a system. This network is easier to master than other methods.
But, for a very large number of states (thousands), the network will be complex and
the generation of a Markov graph is almost impossible.

FIGURE 1.6: Petri Net

1.4.5 Markov chains

Markov chains are widely used in the literature to model the dysfunctional behavior
of systems and are recommended by several industrial standards. For this type of
modeling, dysfunctional behavior is seen as a stochastic process verifying the Markov
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property. This hypothesis is valid for many cases of non-systematic material failures
and is translated, among other things, by not taking into account the aging phenom-
ena. The hypothesis seems more difficult to justify for repairs, but it is nevertheless
accepted for the sake of the homogeneity of the models, and the ability to carry out
numerical calculations.

Despite this assumption, the Markov chain remains a tool allowing behavioral mod-
eling of incomparable precision compared to the formalism of the first category.
Moreover, it is defined in a mathematical framework that allows the development of
efficient analysis techniques. Unfortunately, the representation of each state being
explicit, this type of modeling is subject to the classical problem of combinatorial
explosion. The manual construction of such models for large systems is impossible.
Therefore, Markov chains are either built manually to describe very specific local
behaviors or generated automatically from another model, to facilitate quantitative
analysis.

A Markov chain modeling the dysfunctional behavior of two components A and B,
which can only be repaired in the order of their failures, is shown in Figure 1.7.

e0

e1

e2

e3

e4

λBµB

λA

µB

λA

µB

λB

µA

FIGURE 1.7: Example of a Markov chain for two components

1.5 Issues and motivations

In France, since 1990, EDF has allowed a systematic investigation and division
of the undesirable event (also called a critical event) into several initiating events
(which may cause the undesirable event). Then, for each of these initiators, the
PSA identifies the accidental sequences that go through the failure or success of the
backup missions put in place to reduce the risk and bring the installation back to a
safe state called acceptable consequence (AC). By studying the nuclear installation as
an integrated system, including both technical and human aspects, PSA contributes
to risk management, identifies accident sequences, determines how often they may
occur, and studies for each scenario the set of potential consequences.

1.5.1 Construction of a PSA

The first step in the construction of a PSA is the identification of the list of initiating
events that can cause the critical event, which is the core meltdown. An initiator can
be an internal accident (explosion, fire, etc), or an external accident (flood, tornado,
etc) affecting the facility site.
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The second step in a PSA is to perform a Qualitative Sequence Analysis (QSA), which
models all possible scenario sequences based on the evolution of the facility’s re-
sponse to the initiator’s effects. Each scenario begins with the initiator under study
and runs through the successes and failures of the safety systems, and human actions
put in place to minimize the effects of the initiator.

These accidental scenarios are then translated into event trees (one tree for each
initiator, with potential references to other initiators). The failures of system missions
are studied through the analysis of fault trees, while those of human actions are point
values injected in the PSA model, but which come from the results of human reliabil-
ity analyses. Regarding the sequences that lead to unacceptable consequences, their
frequencies are calculated and the cut lists are established using the RiskSpectrum
software.

Note that the fault tree analysis allows us to model the causes of the failure of a
system in detail. This type of analysis is used to identify the potential causes of failure
of a system through a cascade of logical gates (OR, AND,..) of component failures.
It also allows us to calculate the probability of failure of each mission because a
fault tree can be seen as a Boolean expression linking the undesirable event to the
basic events. It has been demonstrated that any Boolean expression admits a unique
representation (canonical form) in the form of a union of minimal cuts. The minimal
cuts are the conjunction of several basic events. Thus, the probability of each minimal
cut is calculated, then, the probability of the undesirable event is estimated from the
probabilities obtained by the application of the formula of Poincaré according to the
following formula:

P(UE) =
n

∑
i=0

P(Ci)−∑
i<j

P(Ci, Cj) + ∑
i<j<k

P(Ci, Cj, Ck)− · · ·+ (−1)nP(C1, C2, . . . , Cn)

(1.1)
such that UE is the Undesired Event, and Ci are the minimum cuts.

In practice, the cross basic probabilities are often low, so we are satisfied with the first
term of the Poincaré formula:

P(UE) =
n

∑
i=0

P(Ci) (1.2)

1.5.2 Motivation

In the industry, the running time or the time needed to obtain the results plays a
very important role, it can prevent the delay of a very important decision, such as
the shutdown of the electricity production in nuclear power plants. For this reason,
finding methods or technologies to respond quickly and precisely to our problem, is
a field of research still open to improving the running time situation. Today, although
being a powerful tool for calculation and risk analysis, PSA has several limitations.

In the static part, PSA calculations are based on boolean formulas, which must
be reduced to a disjunctive normal form. This type of calculations are known to
be NP-hard [BW96] [FS87]. To overcome these limitations, several truncations are
performed to obtain results. A truncation can establish a probability threshold or
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a cut length threshold. Then, it eliminates the cuts that are below the chosen threshold.

In the dynamic case, it is a question of exploring accidental sequences (with dy-
namic behaviors linked to physical phenomena and kinetic aspects linked to driving
sequences, system recovery, and the order of solicitation of backup systems) which
are similar to the paths of very large graphs that can include circuits and make the
probabilistic evaluation of undesirable events very complicated.

On the other hand, quantum Computing [Jae07] is becoming increasingly a solution
for complex problems that are hard to solve with classical computers [Pre12]. This
computational ability has been demonstrated theoretically by several papers, which
suggests very interesting algorithms such as Grover’s algorithm [Gro96], Shor algo-
rithm [Sho99a] and several others such as [Ped+19b; Zho+20]. In this dissertation, we
look at our problem in the context of quantum computing to propose solutions that
can be efficient in terms of computation time and computational complexity.

1.6 Conclusion

Some of the probabilistic safety assessment principles employed in this dissertation
are presented in this chapter. Several justifications for using quantum computing to
address issues in the PSA sector.
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Chapter 2

Quantum Computing: Basics and
State of the Art

Quantum computing [NC02] has attracted enormous interest in recent years, and
attracted many researchers in different disciplines. This excitement followed the two
main revolutionary algorithms introduced by Grover and Shor. The first algorithm
introduced by Grover [Gro96], manages to reduce the complexity of finding an
element in an unstructured dataset of size N to O(

√
N), the second by Shor [Sho99a],

which can break the RSA code in a polynomial time. One of the main goals of this
new research area is to solve problems that can’t be solved in the classical framework
to break the computational complexity of many hard problems, and sometimes find
good shortcuts and new approaches to solving them. In 2012, John Preskill introduced
the term "quantum supremacy", a concept to describe that quantum computers can
do some things that classical computers can’t [Pre12]. Various algorithms were then
proposed to achieve this goal (sycamore [Ped+19b], Chinese [Zho+20]). Others have
shown significant acceleration compared to the best results of classical computers.
In this chapter, we describe in detail what a quantum system is according to the
mathematical notions, what is a system of one qubit, two qubits, and n qubits, and
how we manipulate them in each case. Then, we discuss what is a quantum circuit,
we explain what is the quantum annealing computation with the QUBO (Quadratic
Unconstrained Binary Optimization) problem, as well as how to solve an optimization
problem through the D-wave system. After that, we talk about the computational
complexity in the quantum case. Finally, We give a state-of-the-art on quantum
algorithms and then describe some quantum algorithms in the field of machine
learning.

2.1 Mathematical View of a Quantum System

The quantum state of a quantum system is completely described by a wave function
associated with a state vector (we call it by ket ψ) |ψ⟩, which is described by a unitary
column vector. The latter belongs to a complex space having a scalar product, called
state space. This is a Hilbert space which we will denote H and describe as follows.

Definition 1 A Hilbert space is a Banach space having the norm ||.|| deriving from a
Scalar or Hermitian product ⟨., .⟩ according to the formula ||ω|| =

√
⟨ω, ω⟩. It is the

generalization into any dimension of a Euclidean or Hermitian space. Following the
theorem of M. Fr’echet, J. von Neumann and P. Jordan, a Banach space (respectively
named vector space) is a Hilbert space (respectively pre-Hilbert space) if and only if
its norm checks the equality:

∥ω1 + ω2∥2+∥ω1 −ω2∥2= 2(∥ω1∥2+∥ω2∥2) (2.1)
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This means the satisfaction of the rule of the parallelogram, the sum of the squares of
the sides of a parallelogram is equal to the sum of the squares of the diagonals.

The evolution of a quantum system is described by a unitary transformation. Let |ψ⟩
be the state of a system at time t1 and |ψ⟩′ its state at t2, then there exists a unitary
transformation U such that:

|ψ⟩′ = U |ψ⟩ (2.2)

where U is a function that allows to change of the state of the system at time t1 to
the state of the system t2. U is Hermitian if all its eigenvalues are real and, if it is
Hermitian, it is measurable and it is observable. Otherwise, only the name of the
operator is appropriate.

The evolution of the operator associated with a quantum system is governed by
the Schrodinger equation:

ih̄
d |ψ⟩

dt
= H |ψ⟩ (2.3)

the operator H here is the Hamiltonian of the system, it is the observable associated
with the total energy of the system. Moreover, h̄ = h

2π where h is Planck’s constant.
We consider the eigenvalue equation of an observable O:

O |ψn⟩ = λn |ψn⟩ (2.4)

with |ψn⟩ as complete base. We can then define |ψ⟩ on this base:

|ψ⟩ = ∑
n

cn |ψn⟩ (2.5)

The probability of measuring λn is |cn|2. The result is random: λ1, λ2, λ3, ... except
in the case where the state |ψ⟩ is of the form |ψn⟩ (in which case, |cn|2 = 1 and the
measurement gives the value λn).

The space of states of a composed physical system is the direct product of the spaces
of states associated with the subsystems that compose it. Technically, if a subsystem i
is represented by |ψi⟩, and the total system is constituted by n kets numbered from 1
to n, then the state of the system is:

|ψ1⟩ ⊗ · · · ⊗ |ψi⟩ ⊗ · · · ⊗ |ψn⟩ (2.6)

2.2 One qubit system

Before starting to explain how this qubit is used in quantum computing, we start by
addressing the question: what is a qubit?

2.2.1 Qubit

Let’s begin with the word qubit, this term came after the combination of the two
words Bit and Quantum, also it can be called Quantum bit, the qubit represents the
quantum analog of the classical bit. It is the " computer description " of the state of a
particle, an elementary quantum system. In contrast to the classical bit that can take
only one value at a time, the qubit can exist in a superposition of states.
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2.2.2 Superposition

The principle of superposition in quantum mechanics specifies that a quantum state
can have several values for a certain observable quantity. This is because the state
- any state - of a quantum system is described by a vector in a space called Hilbert
space. This vector, like any vector of any vector space, can be decomposed into a
linear combination of other vectors according to a given basis. In quantum mechanics,
a given observable corresponds to a given basis of the Hilbert space. Therefore, if we
are interested in the position of a particle, the positional state must be described as
a sum of a finite number of vectors, each vector representing a specific position in
space. The norm of each of these vectors represents the probability that the particle is
present at a given position.

Example 1 Example An electron can simultaneously take two orbits of an atom.

Using Dirac notation, the concept of Qubit has been formally introduced in the context
of quantum information transmission theory as a two-level system, whose state can
be written as a superposition of two fundamental states: |0⟩ and |1⟩.

|ψ⟩ = β0 |0⟩+ β1 |1⟩ =
(

β0
β1

)
(2.7)

Here β0 and β1 are two complex numbers (β0, β1) ∈ C2, called the amplitudes of
the two classical states |0⟩ and |1⟩. Where the following normalization condition is
verified:

|β0|2 + |β1|2 = 1 (2.8)

When we measure the state |ψ⟩, we observe |0⟩ or |1⟩, with the two probabilities β0
and β1 respectively. Moreover, the measurements are not reversible: the state of the
system becomes |0⟩ or |1⟩ and it is impossible to return to the values of β0 and β1.

2.2.3 Handling a qubit

Before visualizing the Bloch sphere, it is necessary to introduce some formality. We
consider a Hilbert space H of dimension 2 with an orthogonal basis {|0⟩ , |1⟩}. This
basis must be orthogonal in order to distinguish the states during the measurement.
The base is also normalized because the kets are normalized. It is obvious, from
the dimension of H, that the operations that will be performed on its elements are
modeled in 2× 2 matrices.

Let’s assume that we have a generic operator:

U =

(
a b
c d

)
(2.9)

and we have two elements of the space H represented as follows:

|ψ⟩ = β0 |0⟩+ β1 |1⟩ (2.10)

and
|ψ⟩′ = β′0 |0⟩+ β′1 |1⟩ (2.11)
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with the effect of the operator U on the qubit |ψ⟩ produces as a result the state |ψ⟩′ as
follows:

|ψ⟩′ = U |ψ⟩ (2.12)

which can be calculated as a matrix multiplication as follows:(
β′0
β′1

)
=

(
a b
c d

)(
β0
β1

)
(2.13)

=

(
aβ0 + bβ1
cβ0 + dβ1

)
(2.14)

According to the fact that the sum of the probabilities (amplitude normalization
condition) must always be equal to 1, we must have:

|β0|2 + |β1|2 = |β′0|2 + |β′1|2 = 1 (2.15)

This is the only condition to be satisfied and it corresponds to a unitary U, that is, by
definition, such that:

U†U = UU† = I2 (2.16)

where I2 is the 2× 2 unit matrix and U† is the conjugate transpose of U. This condi-
tion implies that any unitary transformation is reversible, so any calculation, in the
absence of measurements, is reversible. One consequence is that the determinant of
U is equal to eiα0 where α0 ∈ R, which greatly simplifies the set of transformations to
be considered.

In order to describe the unitary transformation that can be applied to a qubit, we start
by representing the qubit using the Bloch sphere. The angles θ and ϕ correspond to
the polar spherical coordinates of |ψ⟩.

FIGURE 2.1: Bloch sphere

In this representation, we can establish the basic rotations around the X, Y, and Z
axes using Pauli operators (We also say Pauli gates), which are defined as follows.
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Pauli-X (X)

For the rotation around the X axis, we use the operator: σx =

(
0 1
1 0

)
X

FIGURE 2.2: X gate

Pauli-Y (Y)

For the rotation around the Y axis, we use the operator: σy =

(
0 −i
i 0

)
Y

FIGURE 2.3: Y gate

Pauli-Z (Z)

For the rotation around the Z axis, we use the operator: σz =

(
1 0
0 −1

)
Z

FIGURE 2.4: Z gate

also those operators can be named by X, Y, and Z respectively.

General quantum gate U(θ, ϕ, λ)

The most general quantum gate is represented by the following matrix:

U(θ, ϕ, λ) =

(
cos (θ/2) −eiλ sin (θ/2)

eiϕ sin (θ/2) ei(ϕ+λ) cos (θ/2)

)
(2.17)

with the three parameters θ, ϕ and λ, we can make any relation of |ψ⟩ with respect to
X, Y, and Z axis.

U(θ, ϕ, λ)

FIGURE 2.5: U(θ, ϕ, λ) gate

The identity is defined by the operator: I2 =

(
1 0
0 1

)
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I

FIGURE 2.6: I2 gate

Hadamard gate

The most important example of these unitary transformations is the Hadamard gate
because it is the way to exploit the quantum superposition. It is defined as follows:

H =
1√
2
(σx + σz) =

1√
2

(
1 1
1 −1

)
(2.18)

H

FIGURE 2.7: H gate

This gate allows to take a known basic quantum state, |0⟩ or |1⟩, in a superposi-
tion of states β0 |0⟩ + β1 |1⟩ or β0 |0⟩ − β1 |1⟩. It also allows if we apply it twice
(H2 = I2), to keep any state (because it is a unitary gate).

2.3 Two qubits system

The switch to a two-qubit system implies that we are using two qubits to build our
problem or perform our calculation. Following this passage, we simply start by
asking the following questions:

• What states can be handled by a two-qubit system?

• How does the connection between these two qubits work?

• How we can apply transformations on these two qubits?

A fundamental property, purely quantum, appears under certain conditions as soon
as we consider a system with 2 qubits: entanglement.

2.3.1 Entanglement

The entanglement is a quantum phenomenon in which two particles or more share
the same properties. When one of them is measured, the other entangled particles
instantly take the same value, independently of the distance between them. Mathe-
matically, it allows us to define the following formalism, let be two distinct Hilbert
spaces H1 and H2 with 1 qubit, provided with two orthogonal bases:

BH1 = {|0H1⟩ , |1H1⟩} and BH2 = {|0H2⟩ , |1H2⟩} (2.19)

The total system then consists of the following base:

{|0H1⟩ ⊗ |0H2⟩ , |0H1⟩ ⊗ |1H2⟩ , |1H1⟩ ⊗ |0H2⟩ , |1H1⟩ ⊗ |1H2⟩} (2.20)
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by reducing the notations we find {|00⟩ , |01⟩ , |10⟩ , |11⟩}.

In order to create the matrices that act on two qubits, we must first define the tensor
product.

Definition 1 Let A and B be two matrices where:

A =

(
a00 a01
a10 a11

)
, B =

(
b00 b01
b10 b11

)
(2.21)

The tensor product of A and B is defined as follows:

A⊗ B =

(
a00B a01B
a10B a11B

)
(2.22a)

=


a00b00 a00b01 a00b00 a01b01
a00b10 a10b11 a00b10 a01b11
a00b00 a01b01 a00b00 a01a01
a10a10 a11a11 a00a10 a01a11

 (2.22b)

In the same way, for the vectors |ψ1⟩ = β1 |0⟩+ β2 |1⟩ and |ψ2⟩ = β′1 |0⟩+ β′2 |1⟩ the
tensor product is defined as follows:

|ψ1ψ2⟩ =
(

β1
β2

)
⊗

(
β′1
β′2

)
=


β1β′1
β1β′2
β2β′1
β2β′2

 (2.23)

A priory, we could decompose a very large complex quantum system into tensor
products of smaller and simpler subsystems. However, this is far from always being
the case, and this is as soon as we consider two qubits: let |ψH1⟩ and |ψH2⟩ be two
qubits, a quantum state with two qubits is said to be entangled if it is not of the form
|ψH1⟩ ⊗ |ψH2⟩. The most famous example is the "Bell states", which are defined as
follows:

|B0⟩ =
1√
2
(|00⟩+ |11⟩) (2.24)

|B1⟩ =
1√
2
(|00⟩ − |11⟩) (2.25)

|B2⟩ =
1√
2
(|01⟩+ |10⟩) (2.26)

|B3⟩ =
1√
2
(|01⟩ − |10⟩) (2.27)

This means that the 2 qubits are maximally correlated, maximally correlated meaning
that the correlation does not depend on anything. In the classical case, when two
values are correlated, the correlation function associated with them depends on
various parameters, for example, some decrease when the distance between two
variables increases. On the other hand, in the quantum case, the correlation does not
depend on any parameter. This property is very surprising because if we make a
measurement in H1, and we find for example the value 0, everything will happen
as if we colleagues of H2 knowing that we took this value to switch instantly in the
same state, and this even if it is millions of light years away!
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2.3.2 Handling two qubits

Now, let’s look properly at the possible manipulations on 2 qubits. Even if, in general,
any unitary matrix of dimension 4 × 4 can be a unitary transformation on two qubits,
unitary operations on 2 qubits most often follow from the following question: if c
then U . Indeed, as this one revealed great importance in classical logic, the idea came
to define a quantum counterpart, known under the name Controlled-U and noted
C-U. Its action is the following: we consider a control qubit, |c⟩, and a target qubit,
|ψ⟩. If the control qubit is at 0, (i.e. in the state |0⟩), the target qubit keeps its state;
otherwise (|1⟩), the operation U is applied to the target qubit.

C-U gate

The C-U gate allows to operate the U gate on the second qubit if the first qubit is
equal to |1⟩, otherwise, the second qubit is left unchanged. The matrix of this gate is
represented as follows:

C-U =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

 (2.28)

And for a state |ψ⟩ = β1 |00⟩+ β2 |01⟩+ β3 |10⟩+ β4 |11⟩, the C-U transformation is:

C-U(|ψ⟩) = β1 |00⟩+ β2 |01⟩+ β3 |1⟩ ⊗U |0⟩+ β4 |1⟩ ⊗U |1⟩ (2.29)

The gate U here can be changed by any Pauli gate. Graphically, we show the gate
C-U as follows:

U

FIGURE 2.8: C-U gate

C-Not gate (C-X gate)

The C-Not gate (Controlled Not, knowing that it can be noted C-X) allows to operate
a Not gate (X gate) on the second qubit, if the first qubit is equal to |1⟩, otherwise, the
second qubit is left unchanged. The first qubit is usually called the control qubit. The
second one is usually called target qubit. This quantum gate is used in particular to
realize the quantum entanglement between the control and the target qubits. The
matrix of this gate is represented as follows:

C-Not =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.30)

And for a state |ψ⟩ = β1 |00⟩+ β2 |01⟩+ β3 |10⟩+ β4 |11⟩, the C-Not transformation
is:

C-Not(|ψ⟩) = β1 |00⟩+ β2 |01⟩+ β3 |11⟩+ β4 |10⟩ (2.31)
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Graphically, we show the gate C-Not as follows:

FIGURE 2.9: C-Not gate

SWAP gate

The SWAP gate, is the gate that allows to swap of the states of two qubits. This gate is
represented graphically in Figure 2.10 and mathematically with the following matrix:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.32)

FIGURE 2.10: SWAP gate

It can be built also with three C-Not gates as in Figure 2.11.

SWAP

FIGURE 2.11: SWAP gate with three C-Not

For a state |ψ⟩ = β1 |00⟩ + β2 |01⟩ + β3 |10⟩ + β4 |11⟩, the SWAP transformation
is:

SWAP(|ψ⟩) = β1 |00⟩+ β2 |10⟩+ β3 |01⟩+ β4 |11⟩ (2.33)

2.4 n qubits system

n qubits system is a system where we use n qubits entangled between them. Mathe-
matically, let us suppose that we have n Hilbert spaces H1, H2, . . . , Hn, of one qubit
for each one, each Hi provided by the orthogonal base:

BHi = {|0Hi⟩ , |1Hi⟩} (2.34)

the total system of these bases is a base of 2n different states.
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2.4.1 Quantum computing with oracles

A quantum oracle or we can sometimes call it a black box, is a unitary transformation
that represents a boolean function. Suppose that we have a boolean function, f :
{0, 1}n ← {0, 1}m, with n and m are the numbers of inputs and outputs respectively.
We can describe this function by using a quantum oracle O, where the oracle O acts
on the input as follows:

O(|x⟩ ⊗ |y⟩) = |x⟩ ⊗ |y⊕ f (x)⟩ (2.35)

O
x x

y y⊕ f (x)

FIGURE 2.12: The general structure of the Oracle O

2.5 Quantum circuit

A quantum circuit is a computational routine consisting of coherent quantum oper-
ations on quantum states, combined with real-time classical computation. It is an
ordered sequence of quantum gates, measurements, and resets, all of which can be
conditioned by data from classical computation in real time.

A set of quantum gates is said to be universal if any unitary transformation of
quantum data can be efficiently approximated arbitrarily as a sequence of gates in
the set. Any quantum program can be represented by a sequence of quantum circuits
and non-concurrent classical calculations.

FIGURE 2.13: Example of a quantum circuit composed of three qubits
and two classical bits.
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There are four main components in the quantum circuit 2.13:

• Initialization and reset: we need to start our quantum computation with a
well-defined quantum state. This is achieved using the initialization and reset
operations. The resets can be performed by a combination of single-qubit gates,
and concurrent real-time classical computation that monitors whether we have
successfully created the desired state through measurements. The initialization
of q0 into the desired state |ϕ⟩ can then follow by applying single-qubit gates.

• Quantum gates: we apply a sequence of quantum gates that manipulate the
three qubits according to the needs of the objective algorithm. In this case, we
only need to apply single-qubit Hadamard (H) and two-qubit C-Not gates.

• Measurements: we measure two of the three qubits. A classical computer
interprets the measurements of each qubit as classical outcomes (0 and 1) and
stores them in the two classical bits.

2.6 Quantum annealing

The quantum annealing is used to find the global minimum of an objective function.
It has been proposed for the first time by B. Apolloniet all in [ADFCB88] [ACDF89]
and was later reformulated in [KN98][Fin+94]. It uses quantum physics to search for
low energy states, in order to find the optimal combination that solves the original
optimization problem. It uses quantum bits (Qubits), that can be in state |0⟩, or state
|1⟩, or both states at the same time, which gives a new strategy for representing
and processing data. This quantum physics strategy provides sufficient power and
speedup to process very complex optimization problems.

The company D-wave announced in 2012 the launch of the first computer for quantum
annealing with 128 qubits. This adiabatic quantum computer prepares a Hamiltonian,
in other words, prepares a quantum system with several connected qubits. At the
beginning of the treatment, these qubits are superposed. Then, the computer will
make this Hamiltonian evolve in an adiabatic way in order to find the resolution of
the problem. Currently, we can go up to 2000 qubits, thanks to the D-wave 2000Q
quantum computer. The latter is made available by D-wave in open source, it con-
tains the necessary tools for quantum annealing and allows to solve the Quadratic
Unconstrained Binary Optimization problem (QUBO) in a hybrid way on quantum
processors and classical hardware architectures with the software Qbsolv.

The D-Wave quantum annealer handles QUBO problems natively [McG14]. It starts
with a set of superposed qubits, each qubit having the same probability of |0⟩ and |1⟩
states. After a few microseconds, we find the classical states, which correspond to the
minimum energy of the problem, or a state very close to it.

In order to use this computer, we simply need to transfer the problem to a QUBO and
perform the embedding to give the problem as input to the D-wave 2000Q in order to
find the global minimum.
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2.6.1 QUBO problems

The Quadratic Unconstrained Binary Optimization (QUBO) problem became a very
generic model, which can be used to represent a large range of combinatorial opti-
mization problems. It’s an NP-complete problem and can be solved by a quantum
computer after being embedded in the chimera graph of the quantum computer.

The generic QUBO problem has the following form:

∑
b

ψ(b)qb + ∑
b<b′

ψ′(b, b′)qbqb′ (2.36)

with ψ(b) ∈ R are the linear coefficients, ψ′(b, b′) ∈ R are the quadratic coefficients
of the problem and qb, qb′ ∈ B for all i, j ∈ [0, n] where B = {0, 1} and 0 ⩽ j ⩽ i ⩽ n.
n is the number of binary variables of the problem.

The problem can be formulated using matrix notation as follows:

min
q∈Bn

qTΨq (2.37)

with Ψ ∈ Rn×n is a symmetric n × n matrix containing the coefficients ψ(b) and
ψ′(b, b′), and q it’s a binary vector.

2.6.2 D-Wave Systems

D-Wave Systems is a Canadian private company founded in 1999. Its main activity
is the creation and distribution of quantum computers. Indeed, it is known for
being the first company in the world that sold quantum computers. As mentioned
before, D-Wave Systems follows the Quantum Annealing approach to design its
supercomputers. Their two last supercomputers are: "D-Wave 2000Q", which was
released in January 2017 with 2048 qubits in a Chimera architecture; and "Advantage",
released in 2020 with 5640 qubits in a Pegasus architecture [Zbi+20].

1. Ocean Software

D-Wave Systems(D-Wave for short) has its own APIs1, IDE2, and software tools
in general to use their computers. The documentation is constantly evolving
according to the new functionalities that are introduced. D-Wave offers an
online service called Leap that enables users to connect to D-Wave supercom-
puters remotely and run their own programs on them. Each user has at least
1 minute per month of quantum computation time for free, which has been
more than enough for the development of this research project. Although all
the implementation of the code can be done with online tools, D-Wave also
offers the possibility to download their Git Hub repository, and all the software
necessary to use the tools locally with a connection to Leap service. Ocean
software includes multiple solvers and samplers as well as connection protocols
for D-Wave supercomputers. This makes it possible to model a QUBO problem
in this case and run it on their supercomputers easily using the different solvers.

2. Steps of a problem solving

1Application Programming Interface
2Integrated Development Environment
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In order to get a general idea about how a problem is solved with D-Wave’s
quantum supercomputers, let’s explain the steps that are followed: First, the
mathematical problem has to be modeled into a QUBO. It is usually modeled
into a QUBO instead of an Ising because it is easier and more intuitive for
the user. QUBO is more orientated to computer science problems, while Ising
is traditionally used in statistical mechanics. Secondly, either manually by
the users or automatically by Ocean software tools, the problem is translated
into an Ising formulation. Once the problem has been modeled, it can be
represented as a graph where vertices are qubits and weighted edges between
them are couplers with different strengths (edges weights). This graph has
to be embedded into the QPU architecture, which is often represented as a
bigger graph of the same kind. After embedding the problem, each qubit and
coupler receives a weight that will influence the result according to the problem
formulation. Once the problem is properly setted and adjusted in the QPU, the
Quantum Annealing process starts. The device uses Quantum Annealing to
sample from low-energy eigen states of the Hamiltonian and seek the minimum
of the resulting energy landscape, which is the solution for the problem. Some
problems require a post-processing of the results. These can include several
sampling to get better statistical probability about which is the optimal result.
The solution may need to be adapted to a meaningful expression (for example,
adding the constant terms of the function gives sense to the final result).

3. QPU Architectures

QPU architectures are essential to compute different problems. Quantum prob-
lems need to be embedded in a grid of physical connected qubits. The layout
design determines the QPU architecture. To understand this architecture let’s
define some essential terms. Quantum processors have a set of qubits Q. There
is also a set of couplers C that connects some pairs of qubits. The QPU archi-
tecture is represented as a graph formed by small cells (sub-graphs) which are
connected between them.

In the Chimera topology, whose cells are 4x4 bipartite graphs that are con-
nected by external couplers. D-Wave 2000Q QPU supports a Chimera graph
C16, that is to say, it has a grid of 16x16 cells of 8 qubits each. The graph of that
specific QPU has 2048 physical qubits (16× 16× 8) with 6, 016 couplers that
connect them. Chimera qubits have a degree of 6 (are coupled to 6 different
qubits) and a nominal length of 4 (qubits are connected to 4 other qubits of the
same cell). In the Figure 2.14 we show a C3 Chimera graph.

4. Embedding and qubit chains

Knowing that the mathematical function is correctly modeled as a graph, this
graph must be embedded in the QPU topology. This process is called "minor
embedding". The objective of this process is to find a sub-graph (a minimal
graph) of the QPU topology which represents the problem graph. The objective
is to assign one physical qubit to each variable of the problem paying attention
to the connection between them. However, as QPU topologies Chimera and
Pegasus are not fully connected graphs, it is necessary to associate multiple
physical qubits to one logical qubit in order to fit the problem graph into a
topology graph. This association of different physical qubits to represent ate the
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FIGURE 2.14: A C3 Chimera graph

same logical value is called a "qubit chain". The objective of qubits chains is to
force different qubits to have the same value and preserve problem consistency.

5. Solvers and Samplers

According to D-Wave’s description, solvers are resources that run problems.
Some of these solvers are an interface to use QPU, whereas other solvers lever-
age CPU and GPU resources. Solvers are a set of functions (an API) that facili-
tates developing and running problems on D-Wave’s supercomputers. Solvers
run processes called "samplers". These processes sample from low energy states
of the problem’s objective function.

2.7 Quantum Complexity Theory

Before defining quantum algorithms, we start by defining the quantum complexity,
and its classes. To do this, we start by defining the classes of classical complexity in
the following:

• P: Defined for decision problems that are solved efficiently in polynomial
time with the number of data to be processed N (N is the problem size). The
problems in this class are said to be easy to solve (e.g., searching in lists, finding
a path in a directory, etc.).

The computational time required to solve problems in this class is simply
proportional to NM with M an integer that does not depend on the problem
and does not require significant computational resources (at least for problems
in the same class).

• NP: This class is defined for problems in which it is easy to check the validity
of a solution efficiently (a valid solution can be obtained in polynomial time)
but not always solved efficiently. In theory, some of the problems associated
with this class are more complex than the previous ones, and they have at best
an exponential computation time when the method used is simply to test all
possibilities. In practice, this type of problem is adapted to quantum computers
since these computers are theoretically able to handle 2N combinations.

• NP-Complet: The class of problems is defined as a subset of the class NP.
One of the reasons why we think that P ̸= NP is the existence of this class.
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Indeed, if only one problem in NP-complete is solved in polynomial time,
then all problems in NP can be solved in polynomial time so P = NP. But
no polynomial algorithm has ever been discovered for any problem in NP-
complete. NP-complete problems are, in a sense, the most difficult problems to
solve in NP. In this class, more than 3000 NP-complete problems are identified,
including the SAT problem. This problem is defined as a Boolean formula
composed of variables x1, . . . , xn and connectors (and, or, not).

• NP-Hard: This class of problems corresponds to the optimization counterpart
of NP-complete problems. Currently, the vast majority of practical problems
belong to this class, including fundamental problems in many related disciplines
(scheduling, Sudokus, etc.) [AB09]. There is a catalog of NP-hard properties
[GJ79] that includes a large number of problems from 1979 and several websites
maintain the most recent optimization problems [CKH95]. This class is also
used for optimization problems whose objective is to find a global minimum
(or maximum) in a large set of solutions.

In the context of the theory of complexity, the class of problems known as NP is
particularly important. Of these problems, we can distinguish those with polynomial
complexity named P. Moreover, a particularly important subset of NP problems is
called NP-complete [Big86] and has the property that any problem in NP can be
transformed into a problem in NP-complete in polynomial time. In Figure 2.15 we
show the classification of the different classes.

FIGURE 2.15: Classes of complexity

In the quantum part, there are also specific complexity classes for quantum algorithms.
We can then add a classification of problems by level of difficulty for quantum
computers even if the correspondence with the above classes is still clear.

• Bounded error Quantum Polynomial time (BQP): Introduced in the 90’s when
the first quantum algorithms appeared, this class is intended for problems that
can be handled in polynomial time by a quantum computer. Theoretically, under
certain conditions, there would be a correspondence between BQP problems
and P problems. The first analyses have shown that the P-class of polynomial
problems is well within the BQP class [BV97]. It is in this class that many of
the well-known quantum algorithms like Grover and Shor are defined. These
problems are at the center of current research on quantum algorithms and their
uses. Indeed, the question is whether P ̸= BQP? It is already established that
P ⊆ BQP which itself is a subset (strict or not) of NP.



38 Chapter 2. Quantum Computing: Basics and State of the Art

The representation of the complexity classes becomes as follows:

FIGURE 2.16: Classes of complexity with quantum complexity

2.8 Quantum algorithms

In this section, we review the state of the art of the most well-known quantum
algorithms.

2.8.1 Deutsch-Jozsa algorithm

We start with the Deutsch-Jozsa algorithm and define its problem [DJ92]. Suppose that
we have N = 2n Boolean variables, such that x ∈ {0, 1}N with the two possibilities:

1. Constant: the value of xi stays always the same, all xi have the same value 0 or
1,

2. Balanced: the number of xi that have a value of 1 is equal to the number of xi
that have a value of 0,

The main objective of Deutsch-Jozsa’s algorithm is to answer the question: x is bal-
anced or constant?

In order to answer this question, the steps of the Deutsch-Jozas algorithm are the
followings:

• Step 1: Following the Deutsch-Jozas algorithm, we start by initializing n qubits
to the state |0⟩n as follows:

|ψ⟩ = |ψ0 . . . ψn−1⟩ = |0⟩⊗n (2.38)
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• Step 2: After that, we apply a Hadamard transformation on each qubit |ψi⟩ to
create a uniform superposition as a result:

H⊗n |ψ⟩ = H⊗n |0⟩n (2.39)

=
1
√

2
n ∑

ψi∈{0,1}n

|ψi⟩ (2.40)

Now, we have a superposition containing all the elements of x. Then, we define
the following oracle Ox which represents the following function:

f (ψ0 . . . ψn−1) = 0 or 1, where ψk = 0 or 1, ∀k (2.41)

We apply this oracle to the results found in the previous step to find the follow-
ing:

Ox H⊗n |ψ⟩ = Ox H⊗n |0⟩n (2.42)

=
1
√

2
n ∑

ψi∈{0,1}n

(−1)xi |ψi⟩ (2.43)

• Step 3: After the oracle we add another call of Hadamard’s on all the qubits to
find the following outputs:

H⊗nOx H⊗n |ψ⟩ = H⊗nOx H⊗n |0⟩n (2.44)

=
1
2n ∑

ψi∈{0,1}n

(−1)xi ∑
ψj∈{0,1}n

(−1)i.j |ψj⟩ (2.45)

with ψi.ψj = ∑n
k=1 ψikψjk, since ψi.0n = 0, ∀ψi ∈ {0, 1}n, we can observe that the

amplitude of the state |0⟩n at the end of the experiment is:

1
2n ∑

i∈{0,1}n

(−1)xi =


1 if xi = 0 for all i
−1 if xi = 1 for all i
0 if x is balanced

(2.46)

Finally, if we observe the state |0n⟩ at the end, we can conclude that x is constant and
balanced otherwise. Therefore, the Deutsch-Jozsa problem can be solved with only
one quantum query and O(n) other operations. The general circuit of the Deutsch-
Jozsa algorithm is shown in Figure 2.17.

|ψ0⟩ H

Ox

H

|ψ1⟩ H H

|ψn−2⟩ H H

|ψn−1⟩ H H

FIGURE 2.17: Deutsch-Jozsa Algorithm
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2.8.2 Quantum Fourier transform

Fourier transformation has been very powerful in many areas of science, in addition,
to be an elegant tool, it often transformed a difficult problem into an easier one.

Similarly to its classical version, the quantum Fourier transform acts on a quan-
tum state ∑N−1

i=0 xi |i⟩ and maps it to the quantum state ∑N−1
i=0 yi |i⟩ where

yk =
1√
N

N−1

∑
j=1

xjw
j
Nk (2.47)

which is the discrete Fourier transform of the amplitude xk. This transformation is
unitary and can be implemented as the dynamics for a quantum computer (cf. [NC11]
p. 217). Moreover, it maps the computing basis states |k⟩k∈Zd

to another basis as
follows:

|wk⟩ = F |k⟩ = 1√
d

d−1

∑
l=0

e2πikl/d |l⟩ (2.48)

The new basis |wk⟩k∈Zd
is called the quantum Fourier basis.

2.8.3 Quantum phase estimation

Quantum phase estimation is one of the important routines of quantum computing
as it is convened in many quantum computing algorithms (e.g. state separation
[Zha+19], accelerating variational quantum eigensolver [WHB19], tensor principal
component analysis [Has20], . . . etc).

Given a unitary operator U with |ψ⟩ an eigenvector and e2πiθ its corresponding
eigenvalue (U |ψ⟩ = e2πiθ |ψ⟩) since θ is not known a priory, the quantum phase
estimation algorithm will serve to estimate it.

The quantum phase estimation procedure uses two registers. The first register con-
tains t qubits3 initially in the state |0⟩ we call this the counting register. The second
register will serve to store the eigenvector.

In the computational basis, we store numbers in binary form using the states |0⟩ and
|1⟩, but in the Fourier Transform basis, we store numbers using different rotations
around the Z-axis. This is used by the quantum phase estimation algorithm to write
the phase of U (in the Fourier basis) to the t qubits in the counting register, then again
using the inverse quantum Fourier transform to go back to the computational basis
to be measured.

Recall that to represent a number in a binary form we use the following scheme:

a0 × 20 + a1 × 21 + a2 × 22 + a3 × 23 + a4 × 24 + ... + an × 2n

Where coefficients a0, a1, a2, . . . are bits and, the power i corresponding to a bit ai is
called its weight.

3The choice of t depends on the number of digits of accuracy we wish to have in our estimate for θ,
and with what probability we wish the phase estimation procedure to be successful (cf. [NC11]).
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For instance, we can encode 5 as in Figure 2.18.

FIGURE 2.18: 5 as a binary string

There is another way of coding numbers using "phases". For instance, we can encode
5 as in Figure 2.19.

FIGURE 2.19: 5 as a phase superposition

Indeed, to count to a number, x between 0 and 2t, we rotate this qubit by x2t around
the z-axis. For the next qubit we rotate by 2x2t, then 4x2t for the third qubit.

Therefore, in the Fourier basis, the topmost qubit completes one full rotation when
counting between 0 and 2t.

When we use a qubit to control the U gate, the qubit will turn (due to kickback)
proportionally to the phase e2iπθ . We can use successive C-U gates to repeat this
rotation an appropriate number of times until we have encoded the phase θ as a
number between 0 and 2t in the Fourier basis.

Then we use QFT† to convert this into the computational basis before measurement
(Cf. Figure 2.20).

FIGURE 2.20: Quantum Phase Estimation Circuit (src Qiskit documen-
tation)

https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html#overview
https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html#overview
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2.8.4 Grover search

Grover’s search algorithm allows to search for an element in a set of unstructured
data. In Figure 2.21 it is considered to begin the algorithm in the starting state |α⟩ and
the objective is reaching the final state |β⟩.

FIGURE 2.21: Geometrical representation of the effect of Grover search.
the state |β⟩ is assumed to be the solution of a given problem.

Each step of the algorithm consists in 2 rotations, which practically is implemented by
working on the amplitudes of the state. In particular, the aim is the maximization of
the "good" state’s amplitude. The method has been generalized in [Bra+00] and called
quantum amplitude amplification; maximize such amplitude, first, a rotation around
the initial state is done by a given angle θ

2 and then a second rotation, that will be
performed by the so called Grover operator which will rotate around the new state |ψ⟩
by a full angle θ. The key parameter here is the angle of rotation θ: it is needed to be
the largest in order to reach with the smallest amount of operations the final state but
without exceeding it. The problem is indeed that an excessive rotation would lead the
amplitude to decrease, thus decreasing the probability of having a good result.

If we consider |α⟩ as the superposition of vectors that are not solutions of the prob-
lem we deal with, and |β⟩ the superposition of the vectors that are solutions of our
problem. A Grover iteration is the space spanned by |α⟩ and |β⟩ is a rotation of an
angle θ (cf. Figure 2.21). This rotation can be described as a matrix with eigenvalues
eiθ and ei(2π−θ).

Definition 2 The Quantum Oracle is a black box used to estimate a function using
qubits. It allows to transform a system from a quantum state |x⟩ to a state | f (x)⟩, by
the evolution of quantum states.

O |x⟩ = | f (x)⟩

As in the case of quantum phase estimation, Grover search is based on the possibility
of building oracles to implement the U2x (or at least polynomial time subroutines
to solve some yes/no questions). There are many ways to implement the oracle
effects [NC11]. In the Quantum Learning Machine of Atos QLM the "phase oracle" that
changes the vector signs are considered.

The relationship between the angle θ and the number of solutions M is determined
by the formula sin2(θ/2) = M/N. (N being the number of all potential candidates).
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2.8.5 Quantum walk

Quantum walks are the correspondence of the classical random walks in quantum
mechanics. Their main difference is that quantum walks do not converge to some
limiting distribution. Thanks to quantum interference, quantum walks can propagate
much faster than classical random walks. The current literature offers an explicit
and complete introduction to quantum walks [ADZ93], [Kem03], [VA12], [BCA03].
The concept of quantum walking was first proposed by Aharonov et al [ADZ93] in
1993. Kempe [Kem03] presents two types of quantum walks including discrete time
quantum walks and continuous time quantum walks. We will present a simple exam-
ple in a one-dimensional space to help readers quickly understand the basic ideas
of discrete-time quantum walks in the next subsection and a comparison between
quantum and classical walks in a graph in the next.

Generality of quantum walk

We define a spaceH = Hp⊗Hc for one-dimensional quantum walks [Kem03]. Hp
denotes the Hilbert space that is encompassed by the positions of the particle. For a
one-dimensional Hilbert space, it can be represented by:

Hp = {|i⟩ : i ∈ Z} (2.49)

For an N-dimensional Hilbert space, it can be represented by:

Hp = {|i⟩ : i = 0 . . . N − 1} (2.50)

where |i⟩ is a particle located at position i. Hc denotes the coin space that is covered
by two basic states {|↑⟩ , |↓⟩} (spin up and spin down respectively).

The unitary operation S defines the conditional translation on the spaceH:

S = |↑⟩ ⟨↑| ⊗∑
i
|i + 1⟩ ⟨i|+ |↓⟩ ⟨↓| ⊗∑

i
|i− 1⟩ ⟨i| (2.51)

where i ∈ Z, ⊗ is the tensor product that separates two degrees of freedom, spin, and
space, and will allow us to visualize more clearly the resulting correlations between
these two degrees of freedom [Kem03]. S can realize the following equations:

S(|↑⟩ ⊗ |i⟩) = |↑⟩ ⊗ |i + 1⟩ (2.52)

S(|↓⟩ ⊗ |i⟩) = |↓⟩ ⊗ |i− 1⟩ (2.53)

This means that the particle jumps to the right if it has a spin up, and to the left, if it
has a spin down.

One of the most frequently used unitary transformations is the Hadamard trans-
formation H [Kem03]. Here is an example of H:

H ≡ 1√
2

[
1 1
1 −1

]
(2.54)
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Hadamard’s walk on Z is:

|↑⟩ ⊗ |0⟩ H−→ 1√
2
(|↑⟩+ |↓⟩)⊗ |0⟩ (2.55)

S−→ 1√
2
(|↑⟩ ⊗ |1⟩+ |↓⟩ ⊗ |−1⟩) (2.56)

Then the one-step quantum walk transformation can be defined as follows:

U = S(C⊗ I). (2.57)

Where C is a unitary transformation allowing the rotation of the spin in Hc. A
quantum walk of t steps is defined as the transformation Ut.

Quantum walk on a graph

The quantum walks on a graph G, is introduced in [Mon05], where the spaceHp has
a dimension equal to the number of vertices of the graph G. And for each vertex vi,
we have a spaceHc of d dimension where d is the number of edges coming out of the
vertex vi. The matrix C is to operate the spins inHc and S is to apply the walk in each
vertex. Finally, the unitary operation U allows to apply a single walk in the graph
G. With this strategy, we can propagate in the graph at each time t in all directions,
contrary to the random walk, we must choose each time a destination in a random
way.

FIGURE 2.22: Quantum
walks

FIGURE 2.23: Random
walks

In Figures 2.22 and 2.23, we show the general difference between the quantum
and random walks. In Figure 2.22, we show the quantum walks in the graph with
different colors in each arc, each one represents a quantum walk applied by a unit
operation Ut where t = 0, . . . , 4. In this example, after five walks we will find the
probability of reaching each vertex vi, i = 15, 16, . . . , 20 with the probability of the
states that represent the vertices in the output superposition. With this propagation
strategy on the graph. We are assured to have walked through all paths between the
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vertex s and the destinations, because, at each time t, all the available destinations are
processed at the same time, instead of choosing one at each time randomly.

On the other hand, in Figure 2.23, we begin with the source s, and at each instant
t, we throw a coin, if we find pile we move to the right and if face we move to the
left. With the random walk strategy, at each call of the algorithm, we find a path, in
order to find the probability of reaching each vertex, we run the algorithm a number
of times and calculate the probability of finding each one. With this approach, we
are not sure that we have processed all possible paths between s and the destination
vertices. For example, in order to get the red path of Figure 2.23, we need to find 5
times successively the face, the probability of finding this is very small, and if we
increase the size of the graph, the probability of finding these types of paths is very
low.

2.8.6 Other algorithms

1. Shor’s Factoring Algorithm [Sho99b]: Shor’s algorithm aims at solving the
factorization problem, which is used in most of our computer security systems.
Specifically, given a number N, how can we find two prime numbers p and
q such that N = p× q? Today, this problem becomes impossible to solve for
numbers with more than 500 digits. Peter Shor demonstrated in 1994 that with a
quantum computer, it would be possible to factor numbers that have thousands
or millions of digits. Shor uses the link between the factorization problem and
the search for a period in a functional. By using quantum superposition, he
shows how to make quantum states resonate around the period of the function
to find it, and then use this result to factor quickly.

2. HHL algorithm [Llo10]: The HHL algorithm is used to solve linear equations.
Under some assumptions, this algorithm can solve linear equations with an
exponential speedup compared to the classical algorithm.

2.9 Quantum Machine Learning

In this section, we give a brief overview of Quantum Machine Learning algorithms,
both in the supervised and unsupervised categories, as well as a description of the
quantum version of the PCA algorithm, and Quantum Neural Networks.

2.9.1 Quantum K-means algorithm

We start with the most famous algorithm in the field of unsupervised machine
learning, K-means. It allows to partition the data into K clusters, based on the
similarity between data, where each cluster contains the most similar data. The
classical version of this algorithm requires three steps in each iteration:

1. Calculate the similarity between each individual data and each center,

2. Assign each individual data to the nearest cluster,

3. Update the centers.

The complexity of this algorithm according to the version of Lloyds [SMR08] is
O(NM), with N as the dimension of data and M as the number of observations in
the dataset.
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The quantum version of this algorithm has been published in the paper [Ker+19],
which proposes an approach with an exponential speed-up according to the number
of observations in the dataset, compared to the classical K- means algorithm. This
quantum version requires a mechanism to compute the similarity between the data in
a quantum manner, and also a method to search for the nearest cluster in a quantum
manner for the assignment.

Before showing the algorithm directly, we start by explaining the procedure to calcu-
late the similarity between two data in the next subsection, and in order to search the
nearest center we use Grover’s algorithm already described in 2.8.4.

SwapTest

The SwapTest circuit (see Figure 5.1) has three inputs: a control qubit and two reg-
isters, the first register |α⟩ to represent the first vector α and the second |β⟩ for the
vector β. This small circuit 5.1, allows to compute the overlap ⟨α|β⟩ by measuring the
control qubits. It has been used to compute the similarity between two vectors for
the first time in the paper [ABG06]. To clearly understand how this circuit allows us
to find the similarity between to vectors we describe in the following mathematical
analysis.

FIGURE 2.24: SwapTest Circuit

Let us suppose that we have two vectors α and β represented by the two quan-
tum states |α⟩ and |β⟩ with n qubits for each one. The mathematical progress of the
circuit is as follows:

1. As input of the circuit we have these two quantum states |α⟩, |β⟩, and a control
qubit initialized to the state |0⟩ as follows:

|ψ0⟩ = |0, α, β⟩ (2.58)

2. After the initialization, we apply the Hadamard gate to the first control qubit
which gives:

|ψ1⟩ = (H ⊗ I⊗n⊗ I⊗n) |ψ0⟩ =
1√
2
(|0, α, β⟩+ |1, α, β⟩) (2.59)

3. We apply the swap gate on the two registers |α⟩ and |β⟩ under the control with
|1⟩ of the first qubit:

|ψ2⟩ =
1√
2
(|0, α, β⟩+ |1, β, α⟩) (2.60)
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4. We apply a second Hadamard to the control qubit:

|ψ3⟩ =
1
2
|0⟩ (|α, β⟩+ |β, α⟩) + 1

2
|1⟩ (|α, β⟩ − |β, α⟩) (2.61)

5. We measure the control qubit, and the probability of measuring the state |0⟩ is
computed as follows:

P(|0⟩) = |1
2
⟨0|0⟩ (|α, β⟩+ |β, α⟩) + 1

2
⟨0|1⟩ (|α, β⟩ − |β, α⟩)|2 (2.62)

=
1
4
|(|α, β⟩+ |β, α⟩)|2 (2.63)

=
1
4
(⟨β|β⟩ ⟨α|α⟩+ ⟨β|α⟩ ⟨α|β⟩+ ⟨α|β⟩ ⟨β|α⟩+ ⟨α|α⟩ ⟨β|β⟩) (2.64)

=
1
2
+

1
2
| ⟨α|β⟩ |2 (2.65)

According to the probability P(|0⟩), we can decide that |α⟩ and |β⟩ are orthogonal if
P(|0⟩) = 0.5 and identical if P(|0⟩) = 1.

Lloyd et al in the paper [LMR13] demonstrate how we can calculate the Euclidean
distance using SwapTest, the method is named DistCalc and described as follows:

1. We encode each vector x in a quantum state as [NDW16] [Mot+04]:

|x|−1x → |x⟩ =
N

∑
i=1
|x|−1xi |i⟩ (2.66)

with this encoding we use only log2N qubits with N is the dimension of x, and
the state |x⟩ is normalized because ⟨x|x⟩ = |x|−2x2 = 1.

2. In order to use SwapTest, we initialize the two states as follows:

|ψ⟩ = 1√
2
(|0, α⟩+ |1, β⟩) (2.67)

|ϕ⟩ = 1√
Z
(|α| |0⟩+ |β| |1⟩) (2.68)

with Z = |α|2 + |β|2

3. We use SwapTest and calculate the Euclidean distance as follows:

|a− b|2 = 2Z| ⟨ϕ|ψ⟩ |2 (2.69)

Algorithm

Using SwapTest and Lloyd et al’s method to compute the distance between the data
and also with Grover’s algorithm shown in section 2.8.4, we can illustrate the general
Quantum K-means algorithm as follows:

2.9.2 Quantum K-medians algorithm

The K-medians algorithm is the same as the K- means algorithm except on the side of
updating the centroids, instead of calculating the mean to find the new centroids in
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Algorithm 1: Quantum K- means algorithm
Input : A set of data X = {x1, x2, . . . , xM}, where each data is of

dimension N. The number of clusters K
Initialization Initialized K centers µ1, µ2, . . . , µK ∈ RN in a random way or
with any initialization used in the classical case of the K- means algorithm.

while Not converged, ||µs+1
j µs

j || < ν do

1. For each data xi, i = 1, . . . , M, calculated K distances di,k = ||xi − µk|| using the
quantum method proposed by Lloyd.

2. Used the GroverOption algorithm to find the closest cluster to each data:

ci := arg{min
k
||xi − µk||2} (2.70)

3. Update the centroids by calculating the average data of each cluster. The new
centroids become as follows:

µj =
1
|Cj| ∑

i∈Cj

xi (2.71)

where Cj is the set of data of the cluster j and |Cj| is the number of data
belonging to the cluster j.

end

each iteration, we calculate the median between data. To do that, the paper [ABG07]
allows us to present the following method to calculate the median in a quantum way.

Let {x1, x2, . . . , xM} be a set of M points of dimension N, the median of this set
is represented by the element xi that minimizes the distance with all other data of
this set. So to find the median, we compute the following distance for each data xi:

di =
M

∑
j=1
||xi − xj|| (2.72)

and we take as median the element xi which has the smallest di.

Then, the method to calculate the median quantically, called MedianCalc, is rep-
resented by two instructions:

1. Calculate the distances di using DistCalc,

2. Use GroverOption to find the smallest distance and the median.

Now, we have the method of calculating the median in a quantum way, it only re-
mains to present the general quantum algorithm K-medians:

The complexity of this algorithm is identical to that of the quantum K-means al-
gorithm, except that here there is an additional quadratic gain for the calculation of
the median.
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Algorithm 2: Quantum K-medians algorithm
Input : A set of data X = {x1, x2, . . . , xM}, where each data is of

dimension N. The number of clusters K
Initialization: Choose K centers µ1, µ2, . . . , µK ∈ RN in a random way from
the training set X.

while Not converged, µs+1
j ̸= µs

j do

1. For each data xi, i = 1, . . . , M, calculated K distances di,k = ||xi − µk|| using the
quantum method proposed by Lloyd.

2. Used the GroverOption algorithm to find the closest cluster to each data:

ci := arg{min
k
||xi − µk||2} (2.73)

3. Update the centroids by calculating the median of each cluster using
MedianCalc.

end

2.9.3 Quantum Support Vector Machines

In the part of supervised machine learning, the most known quantum algorithm until
today is the quantum version of the Support Vector Machines (SVM) algorithm. It
allows us to find a hyperplane that allows us to separate the classes between them
with a maximum margin with the data points. This hyperplane is used for future
data classification as a frontier decision.

This quantum version of SVM is proposed in the paper [Ang+03], and it allows
to use Grover’s algorithm to minimize the following objective function:

min
α(i)
{1

2 ∑
i,j

α(i)α(j)y(i)y(j)K(x(i), x(j))−
M

∑
i=1

α(i)} (2.74)

with K(x(i), x(j)) is the kernel function. The general algorithm is 3.

2.9.4 Quantum Principal Component Analysis

The Principal Component Analysis (PCA) algorithm allows to reduce the dimension
of the data from N to R. The paper [LMR14], proposes a quantum approach to
this algorithm with an exponential complexity faster than the classical approach.
The quantum version of this algorithm is based on the quantum phase estimation
algorithm presented in the section 2.8.3. The steps of this algorithm are as follows:

1. Encode the data using the method proposed in [NDW16] [Mot+04]: for each
data x of X:

x → |x⟩ (2.77)

2. Representation of the covariance/correlation matrix as a density matrix

ρ =
1
M

M

∑
i=1
|x(i)⟩ ⟨x(i)| (2.78)
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Algorithm 3: Quantum SVM algorithm
Input : A set of data X = {x1, x2, . . . , xM}, where each data is of

dimension N.
Initialization:
Initialized all parameters and the kernel function
Start:

1. Encoding the data, for each data x we use the binary representation as follows:

x → a = (a1, a2, . . . , ak)
T (2.75)

with ai = {1, 0}, ∀i = 1, . . . , k. After that, we use this direct binary encoding as
a quantum state:

|a1, a2, . . . , ak⟩ (2.76)

2. Encode the objective function as a quantum oracle and use the Grover
algorithm presented in section 2.8.4 to find the optimal solution.

3. Use the approach introduced in [LMR14] to construct an unitary matrix U = eiρt

from the matrix ρ.

4. Use the unitary matrix U = eiρt and try to find eigenvectors and eigenvalues by
the algorithm Quantum Phase Estimation.

2.9.5 Quantum Neural Networks

Classical Neural Networks are built by a series of neurons connected between them
with each layer at a matrix of weights, where this matrix of weights minimizes the
objective function. The quantum version of the feedforward neural networks algo-
rithm is based on the paper [Wan+17]. where inputs and outputs are represented by
quantum states, and the objective function by a unitary transformation, the general
architecture of a quantum neural network is as follows:

FIGURE 2.25: Quantum Neural Network

The objective function to be minimized by the quantum neural network is the follow-
ing:

C = −
M

∑
j=1
⟨y(j)

model |y
(i)⟩ (2.79)
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2.10 Conclusion

This chapter gives a general mathematical review of quantum computing and allows
to define what is a system of one qubit, two qubits, and n qubits. In each case, it allows
to present how we can apply some transformations to these qubits. It presents the
concept of quantum annealing, with the QUBO problem, gives the different classes
of classical complexity, and positions the classes of quantum complexity in advance.
The most well known and used quantum algorithms and quantum machine learning
algorithms are presented in this chapter.
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Chapter 3

A Quantum Vertex Separator
Approach for Directed Graphs

The Vertex Separator Problem of a directed graph consists in finding all combinations
of vertices which can disconnect the source and the terminal of the graph, these
combinations are minimal if they contain only the minimal number of vertices. This
chapter is based on our contribution in the paper [Zai+22], in which we introduce
a new quantum algorithm based on a movement strategy to find these separators
in a quantum superposition with a linear number of qubits and a linear number of
movements. Our quantum algorithm is tested on small directed graphs using a real
Quantum Computer made by IBM.

3.1 Modeling the reliability diagram of a PSA system using a
directed graph

In the field of Probabilistic Safety Assessment (PSA), according to the paper [Hib13],
we can use a directed graph to model the reliability diagram of a system, using for
each component of the system a vertex of the graph, and the connection between two
components an edge. For example, if we take a system with three missions, where
the reliability diagram is represented as follows:

FIGURE 3.1: Reliability diagram of a 3 missions system

Each mission represents a part of the system, which is composed of several compo-
nents. Each mission has a specific task, which can be a primary or a backup mission,
i.e. replacing the failure of another mission. The three missions: Mission 1, Mission
2 and Mission 3 are represented by the three structures in Figures 3.2, 3.3 and 3.4
respectively.
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FIGURE 3.2: Mission 1

FIGURE 3.3: Mission 2

FIGURE 3.4: Mission 3

To build the directed graph of the system 3.1, we use for each component of the
system a vertex and each connection an edge between the vertices. Then, the general
graph of the system is represented in Figure 3.5. Each subgraph encapsulated by a
rectangle represents a mission.

FIGURE 3.5: Directed graph of a 3 missions system
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The graph 3.5 can be simplified by using some collection techniques [Hib13], we
collect all the vertices in succession that have the same impact on the system, for
example in the graph 3.5, the three components V1, V2, and V3 have the same impact
on the system, if one or two or all three components fail. So, these three components
can be replaced by a single global vertex. After simplifying the graph we will find for
this system the simplified graph 3.6.

FIGURE 3.6: Simplified directed graph of a 3 mission system

Now, in order to identify the combinations of basic events that can generate unac-
ceptable consequences in the system 3.1, it is enough to find all the vertex separators
that can stop the flow in the graph 3.6 between the source v0 and the terminal v16.
In order to find these vertex separators, we start by posing the problem using the
directed graph.

In graph theory, the Vertex Separator Problem (VSP) consists of finding a subset
of vertices (called a vertex separator) that allows the set of vertices in the graph to be
divided into two related components. The VSP is NP-hard [BJ92]. There are a num-
ber of algorithms that can find these vertex separators. We mention [KL70], which
presents a heuristic method for partitioning arbitrary graphs that is both efficient in
finding optimal partitions and fast enough to be practical in solving large problems.
The paper [FM82] presents a linear time heuristic method for improving network
partitions. Both papers [KL70; FM82] are adapted by [AL94; HR98] to generalize
the methods and improve the runtime. According to [HH15], the vertex separator
problem can be formulated by a bilinear quadratic programming problem. And,
recently, several works [Dav+19; HHS18; KD16] and [Kol19] have combined the
traditional combinatorial method and the optimization-based method to improve
the performance and quality of the separator. We mention the result of [KD20] who
introduced a new hybrid algorithm for computing vertex separators in arbitrary
graphs using computational optimization.

In the classical approach of the vertex separator problem for a planar graph with n
vertices, Lipton and Tarjan [LT79] provided a polynomial time algorithm for finding
a single vertex separator. This algorithm was improved in [LT80] for other families of
graphs such as fixed genus graphs. These families of graphs include trees, 3D grids,
and meshes that have small spacers. To obtain all minimal vertex separators of a
graph, Kloks and Kratsch [KK98] provided an efficient algorithm listing all minimal
vertex separators of an undirected graph. The algorithm requires a polynomial time
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for every single separator found. In this chapter, we are interested in the vertex
separator problem (VSP) in a directed graph that has a source s and a bound t, we
search in this graph for all vertex separators that separate the source s and the bound
t. In order to do this, let us first define a directed graph and a vertex separator:

Definition 3 A directed graph or network is a graph in which the edges are oriented.
More precisely, a directed graph is an ordered pair (V, E) including: (i) V a set of
vertices and (ii) E ⊂ {(x, y)|(x, y) ∈ V ×V, x ̸= y} a set of oriented edges or arcs that
are ordered and distinct pairs of vertices.

Example 2 Take the directed graph of the Figure 3.7, this graph contains 9 vertices,
V = {s, v1, v2, v3, v4, v5, v6, v7, t} and 11 edges E = {(s, v1), (s, v2), (v1, v7), (v1, v5),
(v2, v3), (v2, v4), (v3, v5), (v4, v6), (v4, t), (v5, v6), (v6, v7), (v7, t)}.

FIGURE 3.7: Example of a directed graph

Definition 4 A vertex separator s − t noted (S, C, T) is a partition of V such that
s ∈ S and t ∈ T. Then the s− t-cut for us is a division of the vertices of the graph
into three independent subsets S, C, and T, with the source s in the subset S, the
terminal t in T and the subset C representing the vertex separator (the cut). The cut C
is minimal, which means that the number of vertices existing in C is minimal, that is
to say if we remove only one vertex from C the remainder is not sufficient for a cut.

Example 3 Consider the cut {v1, v2} shown in the Figure 3.8. This cut allows to
divide the set of vertices V on three subsets: S = {s}, C = {v1, v2} and T =
{v3, v4, v5, v6, v7, t}. We say a cut because it breaks the connection between the source
s and the terminal t of the graph. In addition to that, if we remove one of the two
elements of the subset C (of the cut), we find a path between s and t, which means
that removing a single element from C (any element) requires the cut to disappear,
which implies that the cut C is minimal.

FIGURE 3.8: Minimal cut {v1, v2}
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Example 4 Now for the cut {v3, v4, v5, v6, v7} illustrated in Figure 3.9. It allows to
divide the set of vertices V on three subsets: S = {s, v1, v2}, C = {v3, v4, v5, v6, v7}
and T = {t}. But if we remove the vertex v6, the remaining part is always a cut
between s and t, which means that the cut C is not minimal.

FIGURE 3.9: Cut non-minimal

For a single directed graph, we can find several minimal cuts between the source
and the terminal. In the rest of this chapter, we propose our quantum algorithm to
determine all the minimal cuts of a directed graph.

3.2 Quantum approach for the search of minimal cuts

In this section, we will describe our quantum algorithm for finding all the minimal
cuts that can stop the flow between the source and the terminal of a directed graph.
This algorithm is based on a movement strategy that uses movement oracles to
construct a quantum superposition that contains all these minimal cuts. The first
question that arrives here is how to represent all the sets of vertices with quantum
qubits. For a graph with n vertices, we will find 2n different subsets of these vertices.
In the quantum framework, with n qubits, we can represent 2n possible states. In
both cases with n elements, we have 2n possibilities, so we represent the subsets by
the quantum states of these n qubits. To do this, we use for each vertex of the graph a
qubit, and each state of these qubits represents a subset of the vertices.

Example 5 Taking the directed graph shown in the Figure 3.7, if we use a qubit for
each vertex (see Figure 3.10), we can use the states of these qubits to represent all the
possible combinations of the elements of V. For example, with the state |000111010⟩
we can represent the cut {v3, v4, v5, v7} where |vi⟩ = |1⟩ if i = 3, 4, 5, 7 and |vi⟩ =
|0⟩ , ∀i ̸= 3, 4, 5, 7.

FIGURE 3.10: The representation of a graph by qubits
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Before starting to explain the functioning of our algorithm, we start with the defini-
tion of a movement in a directed graph, and how these movements are applied by
quantum circuits.

Definition 5 Let G = (V, E), a directed graph, the movement of a vertex v ∈ V
corresponds to the move from v to its successors Succ(v).

Mov(v) = Succ(v) (3.1)

The movement of a vertex v ∈ θ where θ ⊂ V is the substitution of v by its successors
Succ(v) in the set θ.

Movθ(v) = {θ \ v} ∪ Succ(v) (3.2)

Example 6 Let’s take the graph of Figure 3.7. The movement of the vertex s is
represented in Figure 3.11.

Example 7 Consider the movement results of s in the previous example as a set
θ = {v1, v2}. Suppose that we need to apply the movement of v2 in this set θ,
therefore, it is enough to replace v2 by its successors v3 and v4 in θ, then the result is:
Movθ(v2) = {v1, v3, v4}. These results are presented graphically in Figure 3.12.

FIGURE 3.11: Example
Mov(s)

FIGURE 3.12: Example
Mov{v1,v2}(v2)

In the quantum setting, to apply these moves, we use quantum oracles called move-
ment oracles. Each vertex has a movement oracle, which allows to apply the move-
ment if the vertex of the movement exists in the input subset, and provides in the
output the input as well as the subsets after the movement.

For a vertex v and a given subset of vertices θ, such that v ∈ θ. We assume that
the subset θ is represented by the quantum state |ψθ⟩. To apply the movement of
v, we give the quantum state |ψθ⟩ to the oracle as an input, and in the output of
the oracle we find a superposition which contains two states: |ψθ⟩ and |ψθ′⟩, with
θ′ = (θ \ v) ∪ Succ(v).

More generally, suppose that the input set is the union of two subsets θ = θ1 ∪ θ2
represented by the quantum superposition |ψθ⟩ = α1 |θ1⟩+ α2 |θ2⟩, where the state
|θ1⟩ represents the subset θ1 and the state |θ2⟩ represents the subset θ2. Consider
a vertex w ∈ θ1 and w /∈ θ2. The output of the movement oracle of w ∈ θ
is |ψout⟩ = α1√

2
|θ1⟩ + α2 |θ2⟩ + α1√

2
|θ3⟩, where the state |θ3⟩ represents the subset

θ3 = Movθ1(w) = {θ1 \ w} ∪ Succ(w).

To provide a general formula for a movement oracle, let v ∈ V be a vertex, Ov
be the movement oracle of v, and |ψθ⟩ = ∑i βi |ψθi⟩ is a quantum superposition
which represents N subsets of vertices {i = 1, . . . , N}. The general formula for the
movement oracle of a vertex v is:
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|ψ′θ⟩ = Ov |ψθ⟩ = ∑
e

αe fv(e) |ψθe⟩ (3.3)

with

fv(e) =


1 if θe ∈ {θi}i=1,...,N
1 if θe ∈ {Movθi(v)}i=1,...,N
0 else

and
{

αe = 0 if fv(e) = 0
∑e αe = 1

In order to represent an oracle with a simple quantum circuit, we need to add two
additional control qubits |c0⟩ and |c1⟩. The qubit |c0⟩ is used to check if the vertex
of the movement exists in the input set or not, it will be in the state |1⟩, if it exists
in the input set, and in |0⟩ otherwise. For this, we use the C-X gate with the qubit
corresponding to the vertex of the movement as control and the |c0⟩ qubit as a target.
If the vertex is in the input set, we add another set to the collection of cuts. In
other words, if the vertex qubit is in the state |1⟩, we add a new state to the input
superposition. To do this, we use the C-H gate with the qubit |c0⟩ as control and the
qubit of the vertex of the movement as a target. Then, we use the C-X gate to apply
the movement to the new set. To add all the successors of the movement vertex to
the new set, we use the circuit of Figure 3.13 which allows us to flip the qubit of the
successor into the state |1⟩ if it is in the state |0⟩ and to do nothing if it is in the state
|1⟩.

FIGURE 3.13: The movement circuit from vi to vj, this circuit uses three
qubits: |vi⟩ , |vj⟩ the movement vertex and the successor respectively

and |c1⟩ for the control.

3.2.1 Algorithm description

Let G = (V, E) be a directed graph, with V being the set of vertices such that |V| = n
and E the set of edges, the source of the graph is the vertex s and the terminal is
the vertex t. The first step of our algorithm consists in preparing the necessary
number of qubits to represent all the possible subsets of vertices of the graph. The
graph has n vertices, so we use n quits. These n qubits are initialised in the state
|0⟩, so the quantum state it initialized to |ψ⟩ = |0 . . . 0⟩ = |0⟩n. With the first qubit
corresponding to the source vertex s, the second qubit for the second vertex until the
last qubit for the last vertex (the sink vertex t). There are only zeros in the state |ψ⟩,
which means all the vertices are absent in the set represented by |ψ⟩.

|ψ⟩ = |tvn . . . v1s⟩ = |00 . . . 00⟩ ⇐⇒ ψ = {} (3.4)

To start with a set ψ containing only the input vertex s, we apply the Not gate on the
first qubit, which gives us |ψ⟩ = |0 . . . 01⟩ as a result, with the qubit |s⟩ is in the state
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|1⟩.

In the second step, for each vertex, we have an oracle of movement, so we call
all these oracles of movement. The first oracle corresponds to the movement of the
vertex s to its successors:

|ψ1⟩ = O1 |ψ⟩ = α1 |ψ⟩+ α2 |Movψ(s)⟩ (3.5a)
= α1 |ψ⟩+ α2 |Succ(s)⟩ (3.5b)

After this iteration, the oracle O1 adds to the superposition the state |Succ(s)⟩ which
represents the first cut of the graph. After that, we apply all the remaining oracles:

|ψ f in⟩ = OnOn−1 . . . O2 |ψ⟩ (3.6)

Each one of these oracles adds a number of states to the superposition, which means
it adds a number of cuts to the set of cuts represented by the superposition.

|ψ f in⟩ = α1 |cut1⟩+ · · ·+ αk |cutk⟩ (3.7)

After the n oracles, in the output superposition |ψ f in⟩ = ∑i αi |cuti⟩, we find all
the possible minimal cuts represented by the states |cuti⟩. Finally, we use a simple
classical filter to eliminate non-minimal cuts. The algorithm 4 represents the steps to
generate the quantum circuit to find all the possible minimal cuts.

Algorithm 4: All Minimum cuts sets
Input :Graph G = (V, E), with n = |V| is the number of vertices of the

graph, source vertex s, sink vertex t
Output :Min-cuts Cs
Start:
Initialized n qubits,

|ψ0⟩ = |0 . . . 0⟩

Apply the not gate X in the first qubit which represents the source s

|ψ1⟩ = |0 . . . 01⟩

Make the movement of s we apply the oracle Os

|ψ2⟩ = Os |ψ1⟩

for each v ∈ V and v != s and t is not a successor of v do

|ψi+1⟩ = Ov |ψi⟩

end
Cs = measured |ψn−1⟩ and eliminate non-minimal cuts.
return Cs

3.2.2 Complexity Analysis

Suppose that we have a graph G = (V, E), with V the set of vertices and E the set
of edges such that |V| = n and |E| = m. To build the circuit, we need n qubits to
represent all the possible states of the graph and 2 auxiliary qubits for the control.
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For n oracles of movements we need n gates C-H, 2n − 2 gates C-X, m + 2 gates
X and 2m gates CC-X. Therefore, our algorithm has a linear complexity either in
terms of memory (number of qubits used) or in terms of computation (n oracles of
movements).

3.3 The progression of the algorithm through a case study

In this section, we present a detailed version of the case study of our algorithm. For
that, let us take the graph G = (V, E) represented in Figure 3.14, where V is the
set of vertices of size 9 (n = |V| = 9), which is labeled from v0 to v8 as follows:
V = {v0, v1, v2, v3, v4, v5, v6, v7, v8}. And the set of edges between these vertices is
noted E and is presented like the following: E = {(v0, v1), (v0, v2), (v1, v5), (v1, v7),
(v2, v3), (v2, v4), (v3, v5), (v4, v6), (v4, v8), (v5, v6), (v6, v7), (v7, v8)}. We have also fixed
the source s in the vertex v0 and the terminal t in the vertex v8.

FIGURE 3.14: Directed graph of 9 vertices

Visually, we can identify the set of vertex separators defining the minimal cuts : Cs =
{C1 = {v1, v2}, C2 = {v2, v7}, C3 = {v4, v7}, C4 = {v1, v4, v5}, C5 = {v1, v3, v4}, C6 =
{v1, v4, v6}}, with each subset Ci, i = 1, . . . , 6 is a vertex separators of the graph with
a minimal number of vertices. In the following, we want to find this set of minimal
cuts Cs by our quantum algorithm. To do this, we use IBM’s quantum simulator
to show the intermediate results of our algorithm. In the graph G we have n = 9
vertices, to represent all the possible combinations of these vertices we use 9 qubits.
The source s is represented by the first qubit |v0⟩ and each vertex vi, i = 1, . . . , 7 is
associated to the qubit |vi⟩ , i = 1, . . . , 7 and the sink t is associated to the last qubit
|v8⟩. These 9 qubits |vi⟩ , i = 0, . . . , i = 9 can represent 29 possibles states, therefore,
these qubits can represent the superposition |v8v7v6v5v4v3v2v1v0⟩ = ∑29−1

i=0 αi |Ci⟩,
which represent all possible subsets of vertices of the graph G. Each state |Ci⟩ in the
superposition |v8v7v6v5v4v3v2v1v0⟩ represent a subset of vertex, we say the vertex vi
belongs to the subset |Ci⟩ (or the vertex separator |Ci⟩) if the corresponding qubit |vi⟩
in the state |Ci⟩ is in the state |1⟩. For example, the vertex separator C = {v1, v2} can
be encoded by the quantum state |000000110⟩.

Suppose now that all the successors of the source s = v0 are down, then there
is no other way to go to the next vertices, so the subset of the successors of the vertex
s = v0 is a vertex separator. In addition, if one of these successors is in good condition,
we will find a way to go to the next vertices. Therefore, the subset of successors of
s = v0 is a vertex separator with a minimal number of vertices, in other words, a
minimal cut. Then, to find this first minimal cut, we apply the first oracle of the
movement Os on the state |ψ0⟩. It is represented in Figure 3.15, this oracle starts by
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FIGURE 3.15: The Oracle of the movement of s towards the two suc-
cessors v1 and v2.

applying the gate X on the qubit |v0⟩ that represents the source of the graph s, this
gate allows to make it in the state |1⟩ in order to represent the presence of the source
s in the next operations. After that, it allows to apply two sub-circuits of movement
towards the successors as shown in Figure 3.15, the first sub-circuit "Mov: v0 to v1",
applied the movement towards the first successor v1 of the source s, and the second
one "Mov: v0 to v1" for the movement towards the second successors v2. It means
that the first sub-circuit allows to make the qubit |v1⟩ in the state |1⟩ and the second
to make the qubit |v2⟩ in the state |1⟩. Finally, it applies the X gate on the qubit v0 to
remove the source s from the new state.

That is, we take |ψ0⟩ as the input state and apply the motion of the vertex v0 = s to
its successors v1 and v2, as in the Figure 3.16.

FIGURE 3.16: The movement of s towards the two successors v1 and
v2

Applying the oracle Os on the state |ψ0⟩ gives us the output state |ψ1⟩ = |000000110⟩
with the probability 1 (see Figure 3.17), which represents the first minimal cut {v1, v2}.

Now, suppose that one of the successors v1 and v2 is in a good condition, then there is
a way to go to the following vertices. For example, if vertex v1 is in a good condition
we can find a path to the terminal through the successors of v1. If these successors
of v1 are out of order, we cannot find a path to the terminal. Therefore, the subset
Succ(v1) ∪ C1 \ {v1} is a cut. So, if we apply the movement of v1 in the state |ψ1⟩, we
find a new minimal cut containing the successors of v1 and the vertex v2. The oracle
that allows to apply the movement of v1 is represented in Figure 3.18.
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FIGURE 3.17: The result of the execution gives the state |000000110⟩
which represents the first minimal cut {v1, v2}.

FIGURE 3.18: The Oracle of the movement of v1 towards the two
successors v5 and v7.

The oracle uses the Hadamard gate to keep the first cut and add the new state
corresponding to the new cut. The Figure 3.19 shows the results of the execution of
the oracle Ov1 , on the input |ψ1⟩. The Figure 3.20 shows the two cuts found until this
step.

FIGURE 3.19: The result of the run gives two states: |000000110⟩
represents the input and |010100100⟩ represents the new cut after the

movement.

At step k, we apply the oracle Ok on the output superposition of step k− 1, therefore,
we apply the movement of the vertex vk corresponding to the oracle Ok, which adds
new states in the superposition |ψk⟩, if the qubit corresponding to the vertex vk is in
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((A)) ((B))

FIGURE 3.20: (A) cut {v1, v2}, (B) cut {v2, v5, v7}

the state |1⟩ for each state of the superposition |ψk−1⟩.

|ψk⟩ = Ok |ψk−1⟩
= Ok ∑

j
αj |Cj⟩ = ∑

j
αjOk |Cj⟩

= ∑
j

β j |Cj⟩+ ∑
j

β j Movvk(|Cj⟩)

with ∑j αj = 1 and ∑j β j = 1.

The general circuit that represents all these oracles is shown in Figure 3.21:

FIGURE 3.21: The circuit uses 11 qubits: 9 to represent all possible
subsets of vertices, 2 for the control. And also it uses 7 movement
oracles separated by vertical separators. Each oracle represents the
movement of a vertex. At the end of the circuit, we measure the 9
qubits to find the superposition which represents all the minimal cuts.

After all the possible movements, we found the superposition |ψ f inal⟩.

|ψ f inal⟩ = ∑
i

αi |vi⟩ = ∑
i

αi |vi8 vi7 vi6 vi5 vi4 vi3 vi2 vi1 vi0⟩ (3.9)

where ∑i αi = 1 and each state |i⟩ = |vi8vi7vi6vi5vi4vi3vi2vi1vi0ci1 ci0⟩ of the state |ψ f inal⟩
represents a cut, with |vij⟩ = |1⟩ if the vertex j is in the cut i and |vij⟩ = |0⟩ in the
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otherwise.

In our graph example, after the execution of the circuit 3.21 in IBM’s simulator
and the quantum computer IBM Q 16 Melbourne, we present the results in the Figure
3.22.

((A)) ((B))

FIGURE 3.22: The histograms represent the superposition of the output
|ψ f inal⟩. (a) The results of the execution in IBM’s Qasm simulator.
(b) The results of the execution in IBM Q 16 Melbourne quantum

computer.

Finally, we remove the non-minimal cuts. For this, for each (i, j) we eliminate the
cut Cj if Ci ⊂ Cj. To verify the results, we visualized each state of the superposition
3.22 in an independent graph 3.23, with red color if the vertex qubit in the state |1⟩
(present in the minimal cut) and black if it’s in the state |0⟩.

FIGURE 3.23: The set of all minimal cuts found. In each graph, the cut
is represented by the vertices in red.
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3.4 Conclusion

We have proposed a quantum algorithm to find all the minimal cuts of a directed
graph. More precisely, we propose a quantum algorithm that uses movement oracles
to generate as output a superposition of all states that represent the minimal cuts. In
this chapter, cuts are represented by a set of vertices, which can separate the source
and the terminal of the graph, and they are minimal if they contain just the minimal
number of vertices to represent a cut. Also, the complexity of our algorithm is linear,
because: it uses only n + 2 qubits, n to represent all the possible combinations of
vertices and 2 for the counter, and it uses n oracles of movements, n being the number
of vertices of the graph.
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Chapter 4

Quantum Approaches for Sequence
Processing

One of the main challenges in the field of Probabilistic Safety Assessment (PSA)
resides in the search for all possible failure scenarios of the system components. This
research helps to calculate the probability of the reliability of the system and also
through this investigation, we find the weakness of our installation. In this chapter,
we approach this challenge in a quantum manner, we approach it through the answer
to three main questions:

1. How we can find all possible failure scenarios of a system from an initial state?

2. How can we calculate the similarity between these failure scenarios and how
we can classify them?

3. If the initial state of the system changes, how we can find the most probable
scenarios from the new state pending the search of all possible scenarios?

In order to answer the three questions in this chapter, we will represent the states
of the system by a directed graph, each vertex of this graph represents a state of the
system and each edge represents one of two actions: "repair" or "failure" of a com-
ponent of the system. The critical state is represented in the graph by a marked vertex.

In order to find the scenarios that can be the cause to reach this critical state, we look
for all the paths between the vertex that represents the current state in the graph
and the marked vertex (the critical state). We explore graphs, by using quantum
walks [ADZ93], which is a quantum strategy that reduces the complexity of explor-
ing the graph and also doesn’t let luck influence the choice of finding or not the
desired vertex as in the case of random walks. Thanks to quantum walks, we can
traverse the graphs in a parallel way and approach all possible paths at the same
time. We propose our quantum walk-based approach to find all the paths between
a source vertex and all the marked vertices in a graph. We also propose our hybrid
approach to handle large graphs with the number of qubits available in the used
quantum computer. In this way, we can address the challenge of finding the fail-
ure scenarios of a huge system. These two approaches that we proposed are tested
and compared with the classical random walk approach on 6 graphs of different sizes.

For the second question, calculating the distance between two time series is a well-
known challenge in machine learning domains such as in natural language processing
and also for studying failure scenarios in nuclear power plants. The best technique
to compute this distance is Dynamic Time Warping (DTW), this method has been
used in the case where we process sequences element by element and also in the
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case of processing sub-sequences. In the case of sub-sequences, the complexity of
the problem is NP-complete which makes the processing of large sequences with
this technique very difficult. Therefore, it is very important to provide an algorithm
that can find results with less complexity or more speedup. So, we propose two
quantum approaches for the DTW algorithm, the first algorithm as in the classical
case we process the sequences element by element, and in the second, we process the
case of sub-sequences in each sequence. We are the first to propose this algorithm in
the field of quantum computing with the processing of sub-sequences. We evaluate
both algorithms according to the results and we compare them with the existing
approaches in the state of the art.

For question 3, in order to create a generative model we will use the Hidden Quan-
tum Markov Models (HQMMs). Therefore, we will study and compare the results of
HQMMs and classical Hidden Markov Models HMM on real datasets generated from
real small systems in the field of PSA. As a quality metric, we will use Description
accuracy DA and we will show that the quantum approach gives better results com-
pared with the classical approach, and we will give a strategy to identify the probable
and no-probable failure scenarios of a system.

4.1 Research of the failure scenarios of a system

In data science, finding the paths between two vertices in a graph is a very important
problem. It is used in almost every field, such as transportation, chemistry, computer
networks, etc. The problem of finding all paths between two vertices in a Directed
A-cyclic Graph (DAG) is known as NP-complete [Val79]. This problem can be solved
by many algorithms like the BFS algorithm [DAGa] in which we use a backup method
at each step where we find the searched vertex, this method can be improved with the
backtracking algorithm [Cat15], also, using dynamic programming [Man15],[DAGb].

Today with the explosion of information and also with the growth of datasets, the use
of these algorithms becomes an obstacle to find results faster. As in the field of PSA,
where we seek to find scenarios of failures of a system through a graph of states. The
use of these algorithms is a very great weakness to our strategy in order to analyze
the safety of our installation.

One of the main obstacles for a dynamic PSA is the difficulty to envisage an evo-
lution of the state of a system in time and its transitions with stochastic failures.
One of the main difficulties is the modeling of the different transitions because of
the combinatorial explosion and the exploration of the different sequences in an
exhaustive way. The multiple bifurcations of the sequences lead to very long explo-
ration times for industrial exploitation. This is the reason why approximations are
given up so that the exploration algorithm can finish. For example, if we want to
model the transitions of a system of two redundant components A and B. We ob-
tain the graph in Figure 4.1. With 3 components we obtain the graph of the Figure 4.2.

We can see the combinatorial explosion of the transitions that result from this. The
use of classical algorithms does not allow to do the computation in a reasonable time
and reduces the interest of these methods in the context of reliability or safety compu-
tation, or dynamic sequence exploration. To this end, we propose in the following a
quantum approach to solve the problem of finding all paths between two vertices in
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FIGURE 4.1: The graph of the transitions of the states of a graph of
two redundant components

FIGURE 4.2: The graph of the transitions of the states of a graph of
three redundant components

a DAG.

As we have explained in the section 2.8.5, with the concept of quantum walks we can
propagate a graph in a parallel and fast way, and at the end we find the probability
of reaching each searched vertex of the graph. In addition to that, with the concept
of parallelism, we have the guarantee that we have processed all the paths between
the source and the desired destinations. On the other hand, with this approach, we
do not find the history of each path, that is to say, we do not find the order of the
vertices that we have crossed for each path. For the problem that we are trying to
solve, it is necessary to find all these paths with the order of the vertices in each path,
as well as the probability of each one, where the probability is not only based on the
configuration of the graph but rather it is based on the weights of the edges of it. So
the questions that arise are:

1. How can we find the order of the vertices in each processed path?

2. How can we take the weights of the graph into account to find the exact proba-
bility of each path found?

To answer these two questions, in the following subsection, we suggest our approach
based on the philosophy of quantum walks. We propose a new configuration of
qubits to find the order of vertices in each path and we propose our quantum oracle
which allows us to advance in each path according to the weights in the graph.

4.1.1 Quantum approach to find paths in a directed a-cyclic graph

Let G = (V, E, C) be a graph of n vertices V = {v1, . . . , vn} connected by edges
defined in the set E, where each ei,j ∈ E represents the connection from the vertices
vi to vj and has a weight Pi,j . C is the set of marked vertices in the graph.
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A path λ in the graph is a succession of steps in the graph that reach a marked
vertex c ∈ C, where the probability of λ is calculated as follows:

P(λ) = ∏
ei,j∈λ

Pi,j (4.1)

The objective of this subsection is to find all paths λ from a given vertex to some
marked vertices using quantum walks. For that, in order to create the space in which
this quantum walks pass, we represent the vertices of the graph by qubits, and we
build with the help of these qubits a superposition containing all paths λ from the
source of the graph v0 to all marked vertices c ∈ C.

In order to apply quantum walks and to store the steps of the walks, we propose our
approach based on a path saving strategy using for each vertex of the graph a qubit
and each state of these qubits is a path in the graph.

4.1.2 How can we encode paths with quantum states?

In quantum walks 2.8.5, we can traverse the graph through all paths simultaneously
and with deterministic steps, we don’t miss any possibility of a path between two
vertices. This strategy allows us to walk through all possible paths between two
vertices, but unfortunately, we can’t keep these paths and we can’t extract them. So,
we suggest a strategy to encode these paths in order to extract them at the end of all
the steps. In what remains in this chapter, the path is encoded in the quantum state
as follows:
Suppose that we have a state |λ⟩ = |v0v1 . . . vn⟩ which represents the path λ.

• We say that the vertex vi is in the path if and only if the qubit vi of the state |λ⟩
is in the state |1⟩.

• We say that the edge ei,j = (vi, vj) is in the path if and only if the two qubits vi
and vj are in states |1⟩ and |1⟩ respectively and the qubits vk for i < k < j are
all in state |0⟩.

With this encoding of vertices using qubits, we can keep the history of each path.
Take the example of Figure 4.3, in it, we represent 3 different paths, each path is
represented by a colo,r and the quantum state that represents it is also represented
with the same color.
The first path in red e0 → e3 → e11 → e12 is represented by the state |1001000000011⟩,
where the qubit that represents e0 is in state |1⟩, after that, we have the second element
is e3, then we find the two qubits that represent e1 and e2 in states |0⟩ , |0⟩ respectively,
and the qubit e3 is in the state |1⟩. Then, the qubits from e4 to e10 are in state |0⟩⊗7 and
the two qubits e11 and e12 are in state |11⟩. For the two paths, blue and green, we find
the qubits that represent the elements of paths in state |1⟩ and the others in state |0⟩.

The two principal differences between our approach and that of the quantum walks
represented in the section 2.8.5 are:

• with our approach we can find the order of the vertices in the paths and with
the approach presented in 2.8.5 we can’t;
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FIGURE 4.3: The representation of paths with quantum states

• the second difference is in the number of used qubits, with our approach for a
graph with N vertices we use N qubits versus with the approach presented in
2.8.5 we use only log2N qubits.

4.1.3 How can we manage loops in the graph?

The configuration that we propose to encode paths doesn’t allow us to handle the
loops in graphs, which can cause some problems if we have graphs with loops. The
solution that we can use, is to remove these loops and change the structure of the
graph to keep the possibility of having a single loop configured with more vertices.
In the PSA field, assuming that a component can be repaired only once in a scenario.
So, to remove these loops and improve the structure of the graph, we propose this
small transformation: Consider a graph G = (V, E, C), if (vi, vj) ∈ E and (vj, vi) ∈ E

(there is a loop between vi and vj).

1. We remove the edge (vj, vi) from the set E;

2. we add a new vertex v∗i in the set of the vertices V;

3. we add the edge (vj, v∗i ) in E and also we add the edges (v∗i , vl), ∀vl ∈ Succ(vi) \
vj. Where Succ(vi) is the set of successors of vi.

With the removal of the edge (vj, vi) from the set E, we have ensured the removal of
the loop, and adding the vertex v∗i and the edges (vj, v∗i ) and (v∗i , vl), ∀vl ∈ Succ(vi) \
vj makes it possible to keep the loop only one time on the paths of the graph, where
the loop vi −→ vj −→ vi can be represented in the new graph structure by vi −→
vj −→ v∗i . In the Figure 4.4, in order to remove the loop between vi and vj we add the
vertex v∗i and the edges (vj, v∗i ), (v

∗
i , vj+1) and (v∗i , vj−1).

4.1.4 How we can use the weights of the graph?

The question that remains now is how we can apply quantum walks in a weighted
graph and with our configuration? To answer this question, we begin by defining
exactly the challenge that we are addressing.

Let us suppose that we have done t steps (we have already done t walks in the
graph) and that we want to go to the step t + 1. Therefore, there are a number of
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((A)) ((B))

FIGURE 4.4: Example of the deletion of a loop

paths, we suppose k paths, λi, i = 0, . . . , k. The goal is then to advance in the paths
at the time t, it is necessary to advance towards the successors of each end of paths
(the last summit of the path). Let’s take the example of Figure 4.5 where we show an
example of a path at time t.

FIGURE 4.5: Example of processing a path at time t

Suppose that this path is represented by the state |λ⟩ = |v0 . . . vt⟩ ⊗ |vt+1vt+2vt+3⟩ ⊗
|vt+k+1 . . . vn⟩. At the time t we have already successfully built the path to vt and
have nothing after vt. Therefore the quantum state that represents the path at time
t is |λ⟩ = |v0 . . . vt⟩ ⊗ |000⟩ ⊗ |0 . . . 0⟩. The vertex vt has three successors, so if we
walk through the three successors we get 3 different paths, where each path contains,
in addition, one of the 3 successors. So, quanticaly speaking, from the state |λ⟩ we
will extract 3 different states, where each state has a probability βi. Formally, we are
looking for an oracle O that allows us to perform the following transformations:

|λ′⟩ = O |λ⟩ (4.2)

=
β1

β1 + β2 + β3
|λ1⟩+

β2

β1 + β2 + β3
|λ2⟩+

β3

β1 + β2 + β3
|λ3⟩ (4.3)

with the three qubits |vt+1⟩,|vt+2⟩ and |vt+3⟩ are in the state |1⟩ respective in the states
|λ1⟩,|λ2⟩ and |λ3⟩ as follows:

|λ1⟩ = |v0 . . . vt⟩ ⊗ |100⟩ ⊗ |0 . . . 0⟩ (4.4)

|λ2⟩ = |v0 . . . vt⟩ ⊗ |010⟩ ⊗ |0 . . . 0⟩ (4.5)

|λ3⟩ = |v0 . . . vt⟩ ⊗ |001⟩ ⊗ |0 . . . 0⟩ (4.6)
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In quantum walks, we use the Hadamard gate to advance through the graph, the
problem with using this gate is that we can’t specify the probability for each step of
progress and we can’t deal with the case where vertices have 3 or more successors.

Then, to specify the probabilities and to handle the case of more than two successors
for each vertex of the graph, we define the general quantum gate U(θ, ϕ, λ). This gate
is represented by the following matrix:

U(θ, ϕ, λ) =

(
cos (θ/2) −eiλ sin (θ/2)

eiϕ sin (θ/2) ei(ϕ+λ) cos (θ/2)

)
(4.7)

with the three parameters θ, ϕ and λ, we can make any rotation of |ψ⟩ with respect to
x, y and z axis. If we set ϕ to 0 and λ to 0 we find the matrix:

U(θ) = U(θ, 0, 0) =
(

cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)
(4.8)

With this matrix, if we are in the state |0⟩, we can exactly specify the probability of
shifting to the state |1⟩ with the θ rotation angle as follows:

U(θ) |0⟩ =
(

cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)(
1
0

)
=

(
cos (θ/2)
sin (θ/2)

)
(4.9)

We use the U(θ) gate and we apply the following sub-circuit 4.6 to find the state |λ′⟩.
In this circuit, we take the qubit |vt⟩ as a control to apply the walk to all the paths
that have reached the vertex vt, the first gate U(β1) applies the walk to the vertex
vt+1 according to the weight β1 of the edge between vt and vt+1. After that, we apply
the gate X on the qubits vt+1 and we use it also as a control to apply the walk to the
second successor vt+2 and similarly for the third successor vt+3. At the end, we apply
the two X gates on the two qubits vt+1 and vt+2 to return to the state after the walk.

FIGURE 4.6: Sub-circuit to generate the state |λ′⟩

4.1.5 Quantum Oracle for quantum walks

In the general case, suppose that we have k vertices {vt, . . . vt+k} and each vi, i ∈
{t, . . . , k} has the successors vs

i , s ∈ N and each edge e = (vi, vs
i ) has a probability
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β(vi ,vs
i )

, the oracle is defined as follows 4.7:

FIGURE 4.7: The architecture of our oracle

This quantum oracle takes k inputs, and it allows to apply the walks to all the
successors of each input while keeping the memory of each path.

4.1.6 Quantum algorithm to obtain all paths in a directed a-cyclic graph

We use the general purpose oracle in Figure 4.7 to introduce the algorithm 5, it allows
us to find all the paths between a source and all the marked vertices in a DAG.

Algorithm 5: Quantum algorithm to obtain all paths in a DAG (QAPAG)
Input : Graph G = (V, E, C), source v0.
Initialization
Initialize n = |V| qubits in the state |0⟩⊗n.
Apply the gate X into the qubit |v0⟩.
Initialize the set of steps to be handled M with the initial state M = {v0}
while M ̸= ∅ do

Apply the oracle O(M, {Succ(vt), ∀vt ∈ M}).
Empty M, M = {}.
For each vi ∈ Succ(vt) add vi to M if Succ(vi) ̸= ∅ and vi /∈ C.

end
Measure the circuit and extract the set of paths Ps.
Return : Ps

The algorithm 5 takes as input the graph G = (V, E, C), and the source v0, with
V is the set of vertices, E the set of edges, and C the set of marked vertices in the
graph. We start by initializing n qubits to the state |0⟩⊗n, where n = |V | is the
number of vertices. We apply the gate X on the first qubit in order to indicate the
source of the graph, and we initialize the list M by the source v0.

After the initialization step, we apply the quantum walks with our configuration and
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the oracle that we have presented previously. In each iteration, we go to the successors
of each element of M in order to add a step in each path toward all successors. In this
step, for each path λi and its last step vt at time t, we will add k (k is the number of suc-
cessors of vt) similar paths up to step t, and in each path of its, we will add a successor.

With the quantum oracle, just calling the gate that allows the target qubits to ro-
tate by a specified angle around the base axes allows us to create and add these steps.
After that, we remove all the elements of M and we add the new vertices of the
instant t + 1 if they are not part of the set of the marked vertices C. We repeat these
three iterations as long as the set M is different from the empty set.

At the end, we measure the circuit to find the superposition that contains all the
states that represent the paths. For each state of this superposition, we extract the
corresponding path.

We take for example the graph of the Figure 4.8, with the circuit 4.9 we can ap-
ply all the possible steps in the graph to attract the marked vertices. In the graph, we
show with the colors of each oracle the step that applies.

FIGURE 4.8: Example of a quantum walks

Each oracle Mi represents a specific case of the general circuit that we have shown in
Figure 4.7. In the circuit of the Figure 4.9, we see that the oracle M1 takes only the
source S and allows to go to the two qubits v1 and v2 in order to apply the rotation
that we have shown with the gate U(θ). The second oracle takes as inputs the two
output qubits of the first oracle and the third takes the outputs of the second oracle
and so on, until the end. By measuring the circuit we find the superposition that
includes all the paths between the source S and all the red vertices of the graph 4.8.
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FIGURE 4.9: The general circuit to find the warping path between two
sequences

4.1.7 Complexity analysis

For the memory complexity, for the graph G = (V, E, C), we use N = |V | qubits
(for each vertex we use a single qubit). For the computational complexity, we use
at most M Multi control U(β) (Mc−U(β)) gates, M = |E | is the number of edges.
These gates are used to build oracles, they are a combination of gates with a single
control qubit and Ms control qubits, where Ms is the maximum number of successors
of the vertices of the graph. Also we use at most 2M X gates.

4.1.8 Hybrid approach to find paths in an a-cyclic directed graph

The biggest limitation of the above approach is that it requires a lot of qubits com-
pared to the latter one, the approach that we have presented in the section 2.8.5. For
us, we need N qubits instead of Log2N of the previous approach. In addition to
that, the number of qubits currently available in quantum computers or quantum
simulators is very small, which makes the hybridization of our approach even more
necessary. The hybridization process means that we should find an approach that
allows us to use our algorithm in a way that benefits from the advantage of quantum
computers according to the number of qubits available today for large problems. We
divide the large circuit into several small circuits using a classical computer, we run
these small circuits one by one on a quantum computer, and we aggregate the results
in a classical way.

In our case, we need to divide the large circuit generated by the algorithm 5 into
several smaller circuits and we process them separately, then we combine the results
at the end. The questions that should be asked are:
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• How we can divide the large circuit?

• How we can aggregate their results?

To answer these two questions, we propose our approach in this section. Let’s sup-
pose that we have a weighted graph G = (V, E, C), with the number of vertices as
N = |V |, and Nq is the number of qubits available in the quantum computer that
we are using. Suppose that N is very large compared to the number of qubits Nq,
(N >> Nq). Then, finding the results with algorithm 5 only becomes impossible.

We start by defining a filter for the search, we define Pmin as the minimal proba-
bility for the paths, i.e. we search for all the paths that have a probability greater than
Pmin. Of course, if we want to search all the paths without taking into account the
probability Pmin, we search with Pmin = 0.

Now we start processing the graph G, we begin with the source of the graph s
and suppose that we have Nq qubits available in the quantum computer, we extract a
graph of Nq vertices from the source s. This extraction is done as follows: we take
the Nq vertices which are close to the source s. We start by adding the source and the
successors of s to the set of vertices, then for each successor, we do the same thing as
long as we have the number of selected vertices less than Nq. The algorithm 6 allows
us to do this extraction.

Algorithm 6: Extraction of a sub-graph
Input : Graph G = (V, E, C), n = |V |, Nq, source s
Initialisation
Initialize a new graph G′ = (V′ = ∅, E′ = ∅, C′ = ∅)
Initialize a list Todo = [s]
while |V′ | < Nq and |Todo| > 0 do

Take an element v from the list Todo.
if |Succ(v)|+ |V′ | < Nq then

for all element vi in Succ(v) do
Add vi to V′

Add (v, vi) to E′

if vi ∈ C then
Add vi to C′

end
Add vi to the Todo list if it doesn’t already exist

end
end
Delete v from Todo list

end
Return :G′ = (V′, E′, C′)

Then we use the algorithm 5 of the previous approach to find all the paths of this
sub-graph. From the results obtained after this first step, we eliminate the paths that
have a probability lower than Pmin, and we add to the result list the paths that have a
probability higher than Pmin and that arrived at a marked vertex ci ∈ C. For the rest of
the paths, i.e., the paths that have a probability higher than Pmin and they haven’t yet
arrived at a marked vertex (the current paths), we take the end of each path among
these current paths and extract a sub-graph from each item of these vertices, and
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use the algorithm 5 with the first oracle of it take all these output vertices as inputs.
Of course, if the number of qubits allows us to do these tasks at the same time, if
not, we can process all the outputs individually. And we do this again until all the
paths arrive at the marked vertices or the end of the graph. This whole process is
summarized in the algorithm 7.

Algorithm 7: Hybrid algorithm to obtain all paths in a DAG (HQAPAG)
Input : A DAG G = (V, E, C), source v0, number of qubits available in

the quantum computer Nq, and the minimal probability of the
paths Pmin.

Initialisation
Initialize the set of walks to be processed M with the source M = {v0}
Initializes the set of paths that arrived at a given vertex marked at Pg = ∅ and
the current paths at Pt = ∅.

while M ̸= ∅ do
vt is the first item of M
Extract a sub-graph Gi of G from vt such that the number of vertices of Gi
is less than Nq.

Extract the paths Psi from Gi using the algorithm 5
Calculate the exact probability of each path
Remove the item vt from the list M
Update the two path sets Pg,Pt and the set M with the new list of found
paths Psi according to Pmin.

end
Return : Pg

In the algorithm 7, we proposed to use for each iteration a single source since the
number of qubits today in quantum computers is very small. If the number of qubits
is a little bit larger, we can simply process all the elements of the list M at the same
time in each step. In order to make it clear, we show the circuit in the general case of
a large graph in Figure 4.10.

FIGURE 4.10: Subdivision of the big circuit for a big graph
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Each box marked in blue in the circuit 4.10 is an iteration of our algorithm 7, where
each box takes no more than Nq qubits as input, in the circuit |ψ⟩ is the superposition
found after the first step and |ψ f ⟩ is the superposition of the execution at the last step.

With this hybrid approach, we can handle large graphs with our algorithm 5. That
means, we can get all paths from the source (or any vertex) to the marked vertices in
a DAG. The weights in this case play the role in the probability of each state in the
superposition at the end, where we find the order of importance of each path. The
exact probability of each path with our approach is calculated in a classical way along
the running of our hybrid algorithm 7.

4.1.9 Results and tests

In this section, we analyze and compare the results obtained by each approach
proposed in the previous section with the classical approaches.

4.1.10 Results of the approach HQAPAG

We start by comparing our proposed approach in 4.1.1 with the classical Random
walk algorithm. To do this, we set the maximum running time to 20s, and the minimal
probability of sequences to Pmin = 10−8. We have randomly generated 6 graphs of
different sizes and we have chosen the marked vertices in these graphs in a random
way. We have applied our algorithm and the classical algorithm to find the paths to
these marked vertices and we have represented the results in the Table 4.1.

Graph 1 2 3 4 5 6
Number of vertices 50 60 70 80 100 120
Number of edges 235 285 335 385 485 585

NP founded by RW 2060 5182 6682 7726 8762 9405
NP founded by our approach 2463 17134 50989 317324 389869 1475909

TABLE 4.1: Number of found paths with our approach and the Ran-
dom Walk approach (NP: Number of paths)

In Table 4.1, we can see that in all 6 cases, our approach finds more paths than the
classical approach. Also, when we increase the size of the graph, we find a very large
number of additional paths compared to the random walk approach.

To find these results we have used the IBM quantum simulator with 32 qubits, then,
used our algorithm 7 with the setting Nq = 30. In order to compare the time spent for
each approach, we present the comparative results in Figure 4.11.

FIGURE 4.11: The running time spent for each approach
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In the Figure 4.11, we can see that the classical time expects the maximum time given
for each approach (20s) and that nevertheless, it doesn’t succeed to find the number
of paths found by our approach, as we have already shown in the Table 4.1, and for
our approach, we can see that the time passed to run the quantum circuits is very
small compared to the classical time, which shows that even if we use a simulator
with a very small number of qubits (32 qubits) we can get better results than the
classical one and our hybrid approach works perfectly well, so we can see in these
results that the classical time for our approach (orange color) is increasing with the
size of the graphs, which means, we find several partitions and to combine all those
results to get the global results we spend too much time in the classical one. But, even
with this time, we are still much less than the classical approach. This classical time
spent in our approach will decrease with the increase of the number of qubits in the
simulator that we use. In order to compare the functionality of our approach, we
show the results of the number of paths found, according to time in the Figure 4.12.

((A)) Graph 1 ((B)) Graph 2

((C)) Graph 3 ((D)) Graph 4

((E)) Graph 5 ((F)) Graph 6

FIGURE 4.12: Number of paths founded according to time

In the Figure 4.12, for all 6 graphs, we can see that the search for paths starts with
a small advance from the classical random walk, then our approach goes up very
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quickly and remains stable, contrary to the classical approach which goes up very
slowly all the time.

The classical approach has advanced in the first iteration because it searches the
paths one by one and our approach propagates the graph in a parallel way, to look for
all the paths at the same time, which requires some time to reach the marked vertices.
But when our approach arrives, it arrives with a large number of paths, which implies
an increase in the number of paths in this manner. In the case of our approach, the
results after some time remain unchanged, which means that our approach converges
toward all the possible paths to these marked vertices.

Obviously, by using a classical deterministic algorithm on these small graphs, we
are better than in the quantum case, these results are just found using a simulator
and the primary objective is to show the differences between classical random walks
and quantum walks on our problems. The challenge of finding better results than
the classical one is related to the availability of real quantum computers with a large
number of qubits in order to test on large graphs.

4.2 Quantum approach to calculate the similarity between
sequences

Measuring the distance between objects is one of the essential tasks in the field of
machine learning. When the objects are time series, we use Dynamic Time Warping
(DTW) to measure the distance between them. This method was first proposed in
the 60’s by R. Bellman and R. Kalaba in [BK59], and has been used extensively in the
following years in the field of speech recognition [MRR80], [SC78]. Recently, it is used
in [EFV07] to measure the similarity that tries to capture the "spirit" of the dynamic
temporal deformation while being defined on continuous domains. [KZ07] uses DTW
to classify the hands into one of the 21 possible classes of Croatian sign language.
Also, it is used by [Cor01] to recognize human activity in the form of hand and arm
movements from a small pre-defined vocabulary. It is used in several papers [NR07]
[GJ06] [BB04] [KS01] [KSG02] [ER08] for the clustering of time series. Furthermore,
in other fields such as computer vision and computer animation [Mül07a]. [Fel+20]
proposes a Quadratic Unconstrained Binary Optimization (QUBO) formulation of
DTW adapted to the execution on Quantum Annealing (QA) hardware. In addition
to this, in many other fields [HLT11], [Bar+15], [SFY07], [Ros+17], [GHZ12], [Che+09],
scientists are interested in finding the similarity between sub-sequences. The best
measure of similarity between sequences is DTW [Din+08], which has been improved
by Müller et al in [Mül07b] to find multiple similar sub-sequences between two
sequences. To find a sequence within a large sequence we find the SPRING version
[SFY07].

The overall problem considered here is to match optimally several sub-sequences of
different lengths of the sequence X with several target sub-sequences of the sequence
Y, taking into account that the sub-sequences of each large sequence are indepen-
dent of each other and that the whole sequence is divided into sub-sequences. The
sub-sequences can change their size from an iteration to another within the same
sequence and the match can also be passed between two different sub-sequences of
different sizes (see the Figure 4.13).
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FIGURE 4.13: The matching between two sequences using sub-
sequences

The total cost of alignment between the sub-sequences of X and the sub-sequences of
the sequence Y is the sum of the distances between all pairs of matched elements of
the sub-sequences. The distance between two elements is a domain-specific measure,
such as the absolute difference between the scalars associated with these elements.

The optimal alignment is the one that finds a match between all the sub-sequences of
X with the sub-sequences of Y with a minimal distance.

It has been proved by Wang and Jiang in [WJ94] that this problem is NP-complete.
Moreover, it can be solved by applying DTW in an h-dimensional space (see Figure
4.14). This is an algorithm of O(∏h

l=1) operation within an exponential space with
n1, . . . , nh are the dimensions of h sub-sequences. [PKG11] shows that this calculation
is impossible in most cases when h is large.

FIGURE 4.14: The problem of finding the matching between two
sequences using subsequences in an h-dimensional space

On another side, quantum computing [Jae07] is a very interesting future solution for
complex problems that are hard to solve with conventional calculators [Pre12]. In
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order to reduce the complexity of the classical DTW, we propose our quantum DTW
approach to measure the distance between two time series, we propose our algorithm
to create the quantum circuit to measure this distance, and in addition to that, we
demonstrate how we can deal with sub-sequences and answer our problem. We test
our algorithm in the IBM quantum simulator, and we compare our results with the
results found by the quantum approach in [Fel+20] and also the classical approach.

4.2.1 Classical Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm to measure the similarity between
two time sequences whose speed can vary. DTW can be applied to time sequences of
video, audio, and graphic data. In fact, all data that can be transformed into a linear
sequence can be analyzed with DTW. Generally, it is a method that computes an
optimal match between two given sequences with some restrictions. Let’s say that we
have two sequences X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yN}, with M, N ∈ N

and we want to check whether these two sequences match or not. To do this, we first
construct the distance matrix D ∈ RM×N (see the Table 4.2), where each element dm,n
represents the Euclidean distance between the two data xm and yn:

d(xm, yn) = ||xm − yn||2 = |xm − yn| (4.10)

ym d0,m d1,m d2,m . . . dn,m
. . . . . . . . . . . . . . . . . .
y2 d0,2 d1,2 d2,2 . . . dn,2

y1 d0,1 d1,1 d2,1 . . . dn,1
y0 d0,0 d1,0 d2,0 . . . dn,0

x0 x1 x2 . . . xn

TABLE 4.2: The distance matrix between the two sequences X and Y

This distance can be changed by any distance, and it is chosen according to the
nature of the data.

The objective of the DTW algorithm is to find a Warping Path (WP) that connects
the two elements d1,1 and dM,N of the matrix D with a minimal distance. The WP
indicates how the elements of a sequence are assigned to the elements of the other
one. Mathematically, we try to find the WP: p = (p1, p2, . . . , pL) with pl = (ml , nl) ∈
[1; M]× [1; N] for l ∈ [1; L] under the following constraints [Mül07b]:

1. The starting point of WP is d1,1 and the end point is dM,N .

2. The WP should be monotonous in time. A backward movement, i.e. to the left
or downward, is not possible:

n1 ≤ n2 ≤ · · · ≤ nL and m1 ≤ m2 ≤ · · · ≤ mL

3. Maintaining the continuity of the WP elements:

pl + 1− pl ∈ {(0, 1), (1, 0), (1, 1)}, for l ∈ [1; L− 1]
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4.2.2 Quantum Dynamic Time Warping

Following the classical approach described above, we map all the possible distances
between elements of the two sequences into a distance matrix D and search in this
matrix for the WP between the two elements d1,1 and dM,N that has the smallest dis-
tance. This matrix can be seen as a DAG, with the vertices of this graph representing
the elements of the matrix and the edges representing the possible transition of the
graph following the constraint of the classical DTW algorithm [Mül07b]. In section 7
of this chapter, we have proposed an algorithm that allows us to find all the paths
between two vertices of a DAG. Therefore, we can modify this algorithm according
to the objective sought here, i.e. modeling this algorithm in such a way as to seek
the WP having the smallest distance between the two elements d1,1 and dM,N of the
graph.

Construction of the walking graph

We would like to use the quantum walks philosophy to propose a quantum version of
the DTW algorithm, this quantum walk takes place in a DAG. In this paragraph, we
explain how to build this DAG from the distance matrix D between two sequences
X and Y. In this sense, we use N ×M vertices, for each element di,j of the matrix D
we use a vertex vi,j. Following the constraint 3 of classical DTW, we can step in the
matrix from an element xm,n either to xm+1,n , xm,n+1 or xm+1,n+1 and this steps must
be continuous. Then, to ensure this constraint, for each vertex vi,j with i = 0, . . . , n− 1
and j = 0, . . . , m− 1 we add three edges:

(vi,j, vi+1,j), (vi,j, vi,j+1), (vi,j, vi+1,j+1) (4.11)

with the three weights di+1,j, di,j+1 and di+1,j+1 respectively. Each vi,m has an edge to
vi+1,m with the weight di+1,m for each i = 0, . . . , n− 1, and vn,j has an edge to vm,j+1
with the weight dm,j+1 for each j = 0, . . . , m− 1. To take the distance d0,0 into account,
we add to the three edges {(v0,0, v0,1), (v0,0, v1,0), (v0,0, v1,1)} the weight d0,0. In Figure
4.15 we show the equivalent graph of the general matrix presented in Table 4.2.

FIGURE 4.15: The graph of the distance matrix between the two se-
quences X and Y



4.2. Quantum approach to calculate the similarity between sequences 85

The process to build this DAG is generalized in the algorithm 8, it takes as input the
two sequences X and Y, and it allows to perform a DAG.

Algorithm 8: Building a DAG for QDTW
Input : Two sequences X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yM}.
Initialisation
Initialize the sets: V = {vi,j, for i = 0, . . . , M and j = 0, . . . , N}, E = ∅ and

C = ∅.
for all vi,j ∈ V do

Add to E the edge (vi,j, vi+1,j) with the weight d(xi+1, yj) if i < n.
Add to E the edge (vi,j, vi,j+1) with the weight d(xi, yj+1) if j < m.
Add to E the edge (vi,j, vi+1,j+1) with the weight d(xi+1, yj+1) if i < n and

j < m.
end
Add to E the edge (vi,m, vi+1,m) with the weight di+1,m and i = 0, . . . , n− 1
Add to E the edge (vn,j, vm,j+1) with the weight dm,j+1 and j = 0, . . . , m− 1
Add the weight d0,0 for each edge e ∈ {(v0,0, v0,1), (v0,0, v1,0), (v0,0, v1,1)}
C = {vM,N}
Return :G = (V, E, C)

As a consequence, in order to find the optimal WP that matches the two sequences X
and Y, we need to find the path that has the smallest accumulated distance between
the source v0,0 and the end vn,m.

QDTW Algorithm

Suppose that we have two sequences X and Y, and we want to find the matching
between these two sequences with a quantum algorithm as in the classical case with
the DTW algorithm. We start by constructing the graph that represents the distance
matrix between these two sequences using the algorithm 8, and we apply our quan-
tum walks approach to this graph with a storage strategy while keeping only the
path with the smallest distance.

In order to have the possibility of using our approach on large sequences, we present
directly a hybrid approach that allows us to make calls to the algorithm 7 and find
this path with the smallest distance, this approach is summarized in the algorithm 9.

The update of the warping path WP and the sets Pt and M is done as follows:

• If any path λj ∈ Λi arrives at one of the marked vertices ci ∈ C, for each path
λk ∈ Pt if the last element of λk is vt, concatenate the two paths λi+k = λj + λk
and compute the sum of their distances, if this cumulated distance is less than
the distance of the current WP replace WP by λi+k otherwise λi+k is ignored.

• Updating Pt, for each λj ∈ Λi and for each λk ∈ Pt with the last item of λk is
vt, we add to Pt the concatenation λi+k = λj + λk if the end vt of λj not in C,
vt /∈ C, we remove λk from Pt.

• Finally, all the ends of the paths of the set Pt are added to M if they are not
already in M.
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Algorithm 9: Quantum Dynamic Time Warping (QDTW)
Input :Two sequences: X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yN},

number of qubit available in the quantum computer Nq.
Initialisation
Construct the graph G = (V, E, C) corresponding to the two sequences using
the algorithm 8

Initialize the set of walks to be processed M with the source M = {v0,0}
Initializes the warping path at WP = ∅ and the set of current paths at Pt = ∅.
while M ̸= ∅ do

vt is the first item of M
Extract a sub-graph Gi of G from vt such that the number of vertices of Gi
is less than Nq.

Extract the set paths Λi from Gi using the algorithm 5
Calculate the exact distance of each path λj ∈ Λi as follows:

d(λj) = ∑
e∈λj

de, with e denoting the edges of the path

Remove the item vt from the list M
Update WP, Pt and M with the new list of found paths Λi.

end
Return :WP

Complexity analysis

For calculating the quantum complexity of our approach, let us assume that we
have a quantum computer with a large number of qubits that doesn’t require the
hybridization of our algorithm. Let us also suppose that we have two sequences X
and Y of size N and M respectively. The graph that represents the distance matrix
between these sequences is of N ×M vertices because we use for each element of the
matrix a vertex. For each vertex, we have three edges to the successors, except for
the vertices of the extremity we have only one (look at the general architecture of the
graph in Figure 4.15). Then in this graph, we have 3((N − 1)× (M− 1)) + N + M
edges. With our algorithm, we use for each vertex of the graph a qubit which signifies
we use for the totality of our algorithm N ×M qubits. For the number of the used
gates, it is necessary to calculate them according to the edges that exist in the graph.
We have (N − 1)× (M− 1) that they have three successors, then for constructing
the oracles it is necessary to use (N − 1)× (M− 1) gates CU(β), (N − 1)× (M− 1)
gates CCU(β) and (N − 1) × (M − 1) gates CCCU(β) in addition to that N + M
gates CU(β) for the vertices of the extremity.

Discussions

With the algorithm 9, we have proposed a quantum algorithm that gives the same
results as the classical algorithm of DTW, this algorithm takes as input two sequences
X and Y and it allows to return a WP with a minimal distance. It can be used in the
case where we have a quantum computer enough to find these results with only one
iteration (in the case where we have N ×M < Nq), also it can be used with a hybrid
strategy to find these results using a small quantum computer (a number of qubits Nq
is very small). This algorithm allows to make calls to the algorithm 5, which finds all
the paths between two vertices, for QDTW, it allows to make calls to the algorithm5,
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using the graph that represents the distance matrix between the two sequences X
and Y. The latter is constructed with the algorithm 8 and the two vertices v0,0 and
vm,n. Thus, as we are guaranteed to have processed all the paths, we are guaranteed
to have found the WP that has the smallest distance.

The complexity of the classical DTW is O(MN), and for us, in the quantum case
we use N ×M qubit and 3N ×M gates if we generalize, which means that with this
approach we don’t really see a gain in the complexity, except that with the use of
the quantum computers we have the possibility to execute the circuit faster than
a classical algorithm in a classical computer. With this approach we have treated
the case of one to one, i.e. we have not taken the case of using sub-sequences in
each sequence as we have presented in the problem. So, what remains now is to
find out how we can make our algorithm valid to deal with the problematic with
sub-sequences, and also whether we have a gain of complexity or not. Next to this,
we address this problem with more details.

4.2.3 Quantum Dynamic Time Warping with sub-sequences

In the above discussion, we have proposed a quantum version of the DTW algorithm,
where we deal only with the case of matching an element of the first sequence with
an element of the second sequence at each time. In what follows, we focus on the case
of matching an element xi of X to an element yi of Y, and the case of a sub-sequence
{xk, xk+m} of X to a sub-sequence {yk, yk+n} of Y, where subsequences can be of
different sizes (n ̸= m or n = m).

Sub-sequences matching

In order to define the issue here, let’s take two general sequences, X and Y, and let’s
define the limit of the size of the sub-sequences by β. The objective is to find the
matching that has the smallest distance between X and Y, where at each iteration
we progress in X with a sub-sequence of size k with 1 ≤ k ≤ β, and in Y with a
sub-sequence of size k′ with 1 ≤ k′ ≤ β. k and k′ here can be different, (k = k′ or
k ̸= k′), in the same iteration and also can be changed from an iteration to another.
Figure 4.13 shows a case of two sequences matched by different sub-sequences at
each time. In this figure, we can see that the sub-sequence (with different colors in
the same sequence) can change the size from one sub-sequence to another and that
two sub-sequences (in the same color) can be matched even if they don’t have the
same size.

FIGURE 4.16: Example of matching between two sequences taking
into account the sub-sequences

In the classical case, we can do this with the DTW algorithm in β-dimensional space,
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where it searches in this space for the WP that has the smallest distance between the
first element in the bottom corner and the last element in the top corner (see fig. 4.17).

FIGURE 4.17: The problem of finding the matching between two
sequences using sub-sequences

As we have already mentioned, this problem is NP-complete [PKG11] and it’s impos-
sible to solve it when β is large [WJ94].

Construction of the walking graph

In the case that one element can be matched by another at each time, we have for
each vertex of the graph three successors (three edges).

1. The first edge (vi,j, vi+1,j) allows us to advance with only one element in the
sequence X with the weight di+1,j and do not advance in the sequence Y,

2. The second edge (vi,j, vi,j+1) allows us to advance with only one element in the
sequence Y with the weight di,j+1 and do not advance in the sequence X,

3. The third edge (vi,j, vi+1,j+1) to advance in the two sequences with a single
element with the weight di+1,j+1.

With this strategy, we treat the case of one to one, we just advance with an element
to the successors. In order to make it possible to treat sub-sequences, it’s necessary
to give our algorithm the possibility to advance directly to other vertices (not only
the three nearest). For example, if we want to advance with three elements in each
sequence, in the first iteration, we can go from the first vertex v0,0 to the vertex v3,3
directly with the weight equal the distance between the two first sub-sequences of
size 3. In Figure 4.18 we add the edge that gives this possibility with the green color.

FIGURE 4.18: Add the possibility to process the forward with 3 ele-
ments in each sequence with an edge in the graph
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In order to add the possibility to go forward with any sub-sequence size less than
β, it’s enough to add to the graph all possible edges to represent them. To do
that, for each vertex vi,j we add the following edges: (vi,j, vi+K,j+k′) with the weight
d(xi,...,i+k, yj,...,j+k′) if i + k < n and j + k′ < m for each k = 1, . . . , β and k′ = 1, . . . , β.
β is the maximum size of the sub-sequences.

Therefore, the algorithm to build the graph for the case of QDTW with sub-sequences
becomes the algorithm 10. This latter takes as input two sequences X and Y and
the maximum size of the sub-sequences β, it allows to apply the construction of the
graph exactly like the algorithm 8 and adds all the possible edges that represent all
the possible matching between two sequences. At the end, it gives a DAG that gives
us the possibility to find the best matching between two sequences by processing
sub-sequences. The value of β is chosen according to each application, it represents
the maximum size that can be taken in a sub-sequence. In our problem in the PSA
field, we can affirm that we try to find the similarity between the sequences and we
take into consideration that we can have a maximum of five successive failures in a
very short time, so we can choose β = 5.

Algorithm 10: Building graph for QDTW with sub-sequences
Input : Two sequences X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yM}

the maximum size of the sub-sequences β.
Initialisation
Initialize the sets: V = {vi,j, for all i = 0, . . . , M and j = 0, . . . , N}, E = ∅
and C = ∅.

for all vi,j ∈ V do
Add to E the edge (vi,j, vi+1,j) with the weight d(xi+1, yj) if i < n.
Add to E the edge (vi,j, vi,j+1) with the weight d(xi, yj+1) if j < m.
Add to E the edge (vi,j, vi+1,j+1) with the weight d(xi+1, yj+1) if i < n and

j < m.
for k′ = 0, . . . , β do

for k = 0, . . . , β do
Add to E the edge (vi,j, vi+K,j+k′) with the weight

d(xi,...,i+k, yj,...,j+k′) if i + k < n and j + k′ < m and
(vi,j, vi+K,j+k′) /∈ E and k ̸= k′ ̸= 0.

end
end

end
Add to E the edge (vi,m, vi+1,m) with the weight di+1,m and i = 0, . . . , n− 1
Add to E the edge (vn,j, vm,j+1) with the weight dm,j+1 and j = 0, . . . , m− 1
Add the weight d0,0 for each edge e ∈ {(v0,0, v0,1), (v0,0, v1,0), (v0,0, v1,1)}
C = {vM,N}
Return :G = (V, E, C)

In Figure 4.19, we show the edges that we have added to the vertex v0,0, in the
case of using β = 2 with the green color. We have added 5 edges:

1. (v0,0, v2,2) with the weight d0 = dist(X{:,2}, Y{:,2}) to represent the case of taking
one sub-sequence of size 2 in each sequence among X and Y,
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2. (v0,0, v1,2) with the weight d1 = dist(X{:,1}, Y{:,2}) to represent the case of a
sub-sequence of size 1 in X and of size 2 in Y,

3. (v0,0, v2,1) with the weight d2 = dist(X{:,2}, Y{:,1}) to represent the case of a
sub-sequence of size 1 in Y and of size 2 in X,

4. (v0,0, v0,2) with the weight d3 = dist(X{0}, Y{:,2}) to represent the case of a sub-
sequence of size 2 in Y and and doesn’t move forward in X,

5. (v0,0, v2,0) with the weight d4 = dist(X{:,2}, Y{0}) to represent the case of a sub-
sequence of size 2 in X and and doesn’t move forward in Y,

The distance dist(x, y), it can be chosen at any distance depending on the application
domain.

FIGURE 4.19: Example of added edges to process sub-sequences

QDTW-β Algorithm

Finally, to find the matching between the two sequences X and Y taking into account
the case of sub-sequences, we use the algorithm 10 to construct the graph and we
propose the algorithm 11.

All the characteristics of the algorithm 9, remain present in this algorithm, except that
here we have an additional parameter, the beta value that represents the maximum
size of sub-sequences. This algorithm uses the algorithm 10 that allows to add the
edges that give the possibility of processing sub-sequences. Also, if we have a quan-
tum computer able to process the two sequences X and Y, it finds the results in a
single iteration, if not, it works with a hybrid strategy to find it.

Complexity

As in the case of QDTW, let us suppose that we have a quantum computer able to
process any size of sequences. And suppose that we have two sequences X and Y of
size N and M respectively. Following the graph used in the first algorithm 9, we did
not add any vertex to the graph for the algorithm 11. According to the complexity of
the algorithm 9, in the algorithm 11 we use N ×M qubits. For the number of edges,
we added for each vertex a set of edges depending on the value β. For each vertex of
the graph we add ββ! + 1 edges. Therefore, to build the walking oracles in this graph,
we use 3N ×M + N ×M(ββ! + 1) quantum gates.
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Algorithm 11: QDTW with sub-sequences (QDTW-β)
Input :Two sequences: X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yN},

number of qubits available in the quantum computer Nq, β value.
Initialisation
Construct the graph G = (V, E, C) corresponding to the two sequences X and
Y using the algorithm 10

Initialize the set of walks to be processed M with the source M = {v0,0}.
Initializes the warping path at WP = ∅ and the set of current paths at Pt = ∅.
while M ̸= ∅ do

vt is the first item of M.
Extract a sub-graph Gi of G from vt such that the number of vertices of Gi
is less than Nq.

Extract the set paths Λi from Gi using the algorithm 5.
Calculate the exact distance of each path λj ∈ Λi as follows:

d(λj) = ∑
e∈λj

de, with e denoting the edges of the path

Remove the item vt from the list M.
Update WP, the set Pt and the set M with the new list of found paths Λi.

end
Return :WP

Discussion

In this section, we proposed the first quantum algorithm that can handle the problem
of calculating the similarity between two sequences taking into account the case of the
matching between sub-sequences. The great difficulty in dealing with this problem in
classical computing is the complexity, it is impossible to process it in the case where
the value of β is very large [PKG11]. In our contribution, we propose a quantum ver-
sion to improve this computation time and to find the results quickly. The proposed
algorithm QDTW-β, doesn’t use more than N ×M qubits as the case of QDTW, the
only addition here is the number of used gates. This is a very positive point for our
algorithm because it makes easier the use of our algorithm in the near future with
a slightly larger number of qubits and does not wait for a quantum computer with
a very big number of qubits. Also, it can be used in a hybrid way according to the
available number of qubits. Thanks to the quantum walks (a deterministic approach),
we have the guarantee of processing all possible matching between X and Y, and we
have selected the matching with the smallest distance.

4.2.4 Results of the two algorithms QDTW and QDTW-w

In this section, we compare the results obtained for each proposed algorithm. We start
by defining the distance used to construct the matrix of distances D of the classical
DTW algorithm, and the DAG in the quantum case. After that, we compare the
obtained results with the three algorithms: QDTW, the quantum approach proposed
in the paper [Fel+20], and the classical DTW. Secondly, we compare the results found
by the QDTW-β approach with two other sub-sequence approaches.
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Distance

In all the tests of this section, and the following section, we will use accidental
sequences that represent failure scenarios of a system in the PSA field, to do this, we
define how to calculate the distance in this application case. Let’s suppose that we
have two sequences X = {x1, . . . , xN} and Y = {y1, . . . , yM}, the distance between X
and Y is defined as follows:

dist(X∗, Y∗) =
|X∗∆Y∗|
|X∗|+ |Y∗| (4.12)

with ∆ represents the symmetric difference, X∗ all the elements that build X, Y∗ all
the elements that build Y, |X∗| the number of independent elements that build X,
and |Y∗| the number of independent elements that build Y.

Comparative results of the QDTW approach

Starting by testing and comparing our approach presented in 4.2.2 with the approach
of [Fel+20]. In contrast to the latter, which uses adiabatic quantum computers, we
use universal quantum computers. Therefore, in order to test our approach, we need
to find a universal quantum computer able to apply the general gate U defined in
??. For this purpose, we use the IBM quantum simulator with 32 qubits, which is
currently able to perform this task. So, we randomly took 100 sequences for each size
L = 5, . . . , 30 and we performed a series of tests to calculate the distances between
these sequences and represented the results in the Table 4.3.

Sequence length (N×M) 5× 5 10× 10 15× 15 20× 20 from 20× 20
Classical approach 100% 100% 100% 100% 100%
[Fel+20] approach 92% 90% 60% 70% 20%

Our approach 100% 100% 100% 100% 100%

TABLE 4.3: The results of comparing our approach with [Fel+20]’s
approach and the classical approach.

FIGURE 4.20: Number of qubits used by each approach

In Table 4.3 we can see clearly that our approach is more powerful compared to
the approach of [Fel+20]. In addition to that, our approach uses only N ×M qubits
instead of (N − 1) ∗ (M − 1) ∗ 3 + (N − 1) + (M − 1) qubits from the approach
of [Fel+20]. In Figure 4.20, we show the number of qubits used by this approach
and our approach, we can clearly see that the number of qubits used by [Fel+20]
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increases more quickly with the increasing of the size of the sequence compared to
our approach.

Comparative results of the QDTW-β algorithm

In most of the papers that deal with the case of using sub-sequences to find the
optimal matching between sequences, a learning algorithm (1-NN algorithm) is used
to choose the best size of sub-sequences used for the whole dataset. This provides
a result of a fixed size of sub-sequences. In our contribution, instead of using this
learning strategy to find the best size of this sub-sequence, we will process all the
possible cases and compare the results with our approach.

Consider two different sequences A = {3, 4, 11, 14, 5, 6, 7, 10, 13, 14, 15, 3, 4, 11, 14, 5, 6, 7,
10, 13, 14, 15} and B = {3, 4, 11, 11, 3, 4, 11, 11, 7, 14, 5, 13, 14, 15, 10, 3, 4, 11, 14, 5, 6, 7},
and compare the results found by the 4 different approaches:

1. Classical approach without sub-sequences (Classical DTW),

2. Classical approach with sub-sequences of fixed size k and moving forward in
the sequence with one element at each time (DTW1-k),

3. Classical approach with sub-sequences of fixed size k and moving forward in
the sequence with the size k of the sub-sequence at each time (DTWk-k).

4. Our quantum approach QDTW-β with β = 5

The results of these tests on the two sequences A and B are shown in Table 4.4.

Approche Result
Classical DTW 11.02

DTW2-2 13.0
DTW3-3 10.33
DTW4-4 7.625
DTW5-5 6.8
DTW1-2 35.5
DTW1-3 36.66
DTW1-4 36.0
DTW1-5 35.94

QDTW-5 1.84

TABLE 4.4: Results of the test of the QDTW-β approach

In this table, we can see that our approach (QDTW-β) finds the best matching between
the two sequences A and B. For the other two approaches, we find that the best is
the classical DTW for the first and the second is DTW5-5. This matching for the three
cases is shown in Figure 4.21. Each matching is represented by an identical color and
an arrow.

Regarding the result of our QDTW-5 approach in the Figure 4.21, we can see that the
size of sub-sequences changes from one iteration to another, and that the matching
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((A)) Classical DTW

((B)) DTW5-5

((C)) QDTW-5

FIGURE 4.21: The matching between A and B: (a) using the classical
DTW. (b) using classical DTW5-5. (c) using QDTW-5.

can be done between two sub-sequences of different sizes, which makes our approach
more realistic and more suitable for data in any domain. This richness of changing
sizes, both within the sub-sequences in each sequence and between the two sequences,
allows our approach to find the best matching between sequences. In the classical
case, we can’t process the sub-sequences and for the DTWk-k case, unfortunately, it
can work very well in the ideal case where we know the size of the sub-sequence at
100%.

Classification of sequences using QDTW-β and 1-NN

In order to check the impact of our QDTW-β approach on the classification results
of sequences, we use the K-NN algorithm with k = 1. Therefore, we present in
the following the testing datasets and the results found for the three approaches:
Classical-DTW, DTWk-k and QDTW-β with k = 2, 3, 4, 5, and we consider that the
sub-sequences cannot exceed the size of 5. So, for our approach QDTW-β β = 5.

Datasets

We have 6 systems, each system has a dataset of sequences and each class of each
dataset represents the scenarios that can drive the system to an unacceptable conse-
quence. The details related to these datasets are represented in the Table 7.3.
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Dataset SC1 SC2 SC3 SC4 SC5 SC6

Length of each scenario 8 7 9 8 9 9
Length of training dataset 44 44 44 64 16 16

Length of test dataset 24 24 16 16 12 9
Number of classes 3 3 3 3 3 3

TABLE 4.5: 6 datasets of 6 systems

Result of classification

We use the K-NN algorithm with k=1 and Accuracy as a metric, and we test the 3
approaches on the 6 datasets mentioned in the previous subsection. The results that
we found are shown in Table 7.4.

Method SC1 SC2 SC3 SC4 SC5 SC6

Classical DTW 0.25 0.25 0.25 0.81 0.25 0.58
Quantum DTW 0.25 0.25 0.25 0.81 0.25 0.58
Faster DTW-2 0.67 0.44 0.88 0.50 0.44 0.50
Faster DTW-3 0.46 0.25 0.38 0.31 0.19 0.42
Faster DTW-4 0.29 0.25 0.19 0.25 0.19 0.33
Faster DTW-5 0.25 0.25 0.19 0.25 0.25 0.33

QDTW-w 0.75 0.67 0.88 0.81 0.75 0.67

TABLE 4.6: Classification results of sequences with different ap-
proaches

In the Table 7.4, we can see that our approach has the highest metric in all datasets,
which demonstrates that using our approach to calculate the distance between sce-
narios in our particular problem is the best choice.

4.3 A quantum learning approach based on Hidden Markov
Models for failure scenarios generation

One of the most studied models recently in quantum computing [Jae07] is the Quan-
tum Hidden Markov Models (QHMMs), the paper [Adh+20] demonstrates that
QHMMs are a special subclass of the general class of Observable Operator Models
(OOMs) and also provides a learning algorithm for HQMMs using the constrained
Gradient Descent method. It also demonstrates that this approach is faster and more
suitable for larger models compared to previous learning algorithms. In addition,
there are other learning algorithms of QHMMs like [SGB18], this work demonstrates
some theoretical advantages of QHMMs compared to HMMs and also that each
HMM of finite dimension can be modeled by a QHMM of finite dimension.

4.3.1 Classical Hidden Markov Models

We begin by briefly recalling the definition of the classical Hidden Markov Model
(HMM). A hidden Markov model is a tool for representing probability distributions
over sequences of observations. It is assumed that each observation Xt was generated
by some process whose state St ∈ [1..K] is unknown (hence the name hidden).

Definition 6 (HMM) An HMM is made of five key elements:
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1. An alphabet Σ = {o1, · · · , oM}.

2. A set of index of states Q = {1, · · · , K}

3. A transition probability matrix A = (akk′), A ∈ RK×K, ∀k ∑k′ akk′ = 1, akk′ is
the probability of transition from state k to state k′.

4. Emission probabilities within each state: ek(x) = P(x|Q = k), ∑x∈Σ ei(k) = 1.

5. Starting probabilities: π1, · · · , πK, ∑k πk = 1.

Therefore a HMM model is denoted M = {A, B, π}, where: A is the transition
probability matrix, B contains the emissions probability laws ek(x), π the starting
probabilities.

The Forward-Backward algorithm

Given an HMM, we can generate a sequence of length n as follows:

1. Start at state Q1 according to π1

2. Emit observation x1 according to eQ1(x1)

3. Go to state Q2 according to aQ1,Q2

4. ... until emitting xn

More precisely, given the model M, we want an algorithm that can compute the
following probabilities:

• P(X) the probability of X

• P(xi · · · xj) the probability of a substring of X

• P(Qi = k|X) the posterior probability that the ith state is k, given X

In order to calculate P(X), the probability of the whole sequence given the HMM,
we sum all possible ways of generating X:

P(X) = ∑
Q

P(X, Q) = ∑
Q

P(X|Q)P(Q) (4.13)

To avoid summing over an exponential number of paths Q, we define the forward
probability:

fk(i) = P(x1 · · · xt, Qt = k) (4.14)

This represents the probability of observing the sequence x1 · · · xt and having the tth

state being k. Straightforward computations give:

fk(t) = P(x1 · · · xt, Qt = k) = ek(xt)∑
l

fl(t− 1)alk (4.15)

The Equations (4.15) represent the key of the so-called "Forward Algorithm" since we
can compute all the fk(t) using dynamic programming as follows:

1. firstly we initialize f0(0) = 1 and ∀k > 0 fk(0) = 0,

2. secondly we iterate fk(i) = ek(xt)∑l fl(t− 1)alk,
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3. we terminate by putting P(X) = ∑k fk(N).

In order to compute P(Qt = k|X) the probability distribution on the tth position
given X, we proceed as follows: since we have P(Qt = k|X) = P(Qt=k,X)

P(X)
, we start by

computing P(Qt = k, X) = P(x1 · · · xt, Qt = k, xt+1 · · · xN), we obtain:

P(Qt = k, X) = fk(t)bk(t),

where bk(t) are the backward probability bk(t) = P(xt+1 · · · xN |Qt = k). It follows
that:

bk(t) = ∑
l

el(xt+1)aklbl(t + 1). (4.16)

The Equations (4.16) represent the key of the so-called "Backward Algorithm" since
we can compute all the bk(t) using dynamic programming as follows:

1. firstly we initialize ∀k bk(N) = 0,

2. secondly we iterate bk(i) = ∑l el(xt+1)aklbl(t + 1),

3. we terminate by putting P(X) = ∑l πlel(x1)bl(1).

The Baum-Welch algorithm

The Forward-Backward algorithm can be adapted into an EM like procedure to learn
the model. This is known as the Baum-Welch algorithm.

Repeat until convergence:

• Compute the probability of each state at each position using forward and
backward probabilities. This gives the expected distribution of the observations
for each state using the Bayes Theorem.

• Compute the probability of each pair of states at each pair of consecutive posi-
tions t and t + 1 using forward(t) and backward(t+1). This gives the expected
transition counts.

4.3.2 Quantum Hidden Markov Models

The quantum version of HMM is the Quantum Hidden Markov Model (QHMM). To
represents a QHMM we use quantum circuits.

Definition 7 (Quantum Hidden Markov Model) A K-dimensional Quantum Hid-
den Markov Model (K− HQMM) is made by :

1. An alphabet, a set of discrete observations Σ = {o1, · · · , oM}.

2. A set of index of states Q = {1, · · · , K}

3. A set of Kraus operators {ψx,µx}x∈Σ,µx∈N ∈ CK×K where ∑x,π ψ†
x,πψx,π = I and

† denotes the complex conjugate transpose.

4. An initial state π0 ∈ CK×K where π0 is a Hermitian positive semidefinite matrix
of arbitrary rank and tr(π0) = 1.
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Therefore a K − HQMM model is denoted qM = (CK×K, {ψx,µx}x∈Θ, π0) where
π0 ∈ CK×K is the initial state, and {ψx,µx}x∈Θ,µx∈N ∈ CK×K are the Kraus operators.
In classic context the 3) in Definition 6, we use linear map A and B to define different
actions: emission and transition. In the quantum context, we use Kraus operators
which characterize completely any positive map. Moreover, by Kraus Theorem any
action Φ to a quantum state ρ writes Φ(ρ) = ∑i Bi ρ B†

i , with ∑i B†
i Bi = I, the

complex matrix B are the Kraus operators. In the quantum context, both emission
and transition are written as action by using Kraus operators. Therefore the update
status πt rule is computed as follows:

πt =
∑µx

ψx,µx πt−1ψ†
x,µx

tr(∑µx
ψx,µx πt−1ψ†

x,µx
)

(4.17)

and probability of a given sequence is given by:

P(X) = tr(∑
µxt

ψxt ,µxt
, ..(∑

µx1

ψx1,µx1
π0ψ†

x1,µx1
), ..ψ†

xt ,µxt
)) (4.18)

Definition 8 The Learning Problem

• Given: The sequence of observations:
X = {x1, . . . , xL}

• Question: How do we learn Kraus operators {ψx,µ} to model X using an
QHMM?

Both approaches [SGB18; Adh+20] use the negative L log-likelihood of the data as a
loss function. This function can be written as a function of the set of Kraus operators
{ψx,µ} as follows:

L = − ln(∑
µxt

ψxt,µxt
, ..(∑

µx1

ψx1,µx1
π0ψ†

x1,µx1
), ..ψ†

xt,µxt
)) (4.19)

with the following constraint ∑x,µ ψ†
x,µψx,µ = I.

An equivalent formulation to the problem of learning a set of N trace-preserving k× k
Kraus operators can be the problem of learning a matrix Ψ ∈ CkN×k where N = Mµ
(M = |Σ| and µ is the number of Kraus operators for each observation) and Ψ†Ψ = I,
where the blocks of Ψ represent the Kraus operators {ψx,µ} that parametrize the
QHMM. The initialization of the matrix Ψ0 is done randomly, provided that it is
unitary. The goal is to update this matrix until we find a matrix Ψ∗ that minimizes
the function L in Equation (4.19).

Srinivasan’s approach [SGB18] seeks iteratively to find a series of Givens rotations
that locally increase the log-likelihood. But, a Givens rotation only modifies two
rows at a time, which leads to the fact that this approach is too slow for learning
large matrices. [Adh+20] proposes to solve this problem using gradient descent. It
proposes to learn Ψ directly with the gradient descent method where G denotes the
gradient of the loss function L in Equation (4.19) where the update function is:

Ψi+1 = Ψi − τUi(I +
τ

2
V†

i Ui)
−1 V†

i Ψi (4.20)

where Ui = [G|Ψi], Vi = [Ψi| −G], and G is the gradient at Ψi. Algorithm 12 sum-
marizes the approach performed by [Adh+20] to learn the parameters of QHMMs
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using gradient descent.

Algorithm 12: Learning QHMMs [Adh+20]

Input :Training dataset X ∈Nm×l , learning rate τ, learning rate decay α,
number of batchs β, number of epochs υ.

Output :{ψi}
Mµ
i=1

Initialisation
Complex orthonormal matrix on Stiefel manifold Ψ ∈ CMµn×n and partition
into Kraus operators {ψi}

Mµ
i=1 whith ψi ∈ Cn×n

for epoch = 1:υ do
Partition training data X into β batches Xβ

for b=1:β do
Compute gradient Gi ← ∂l

∂Ψi
for batch {Xβ} and loss function l.

Compute ∂l
∂Ψ = G← [G1, . . . , GM µ]T

Construct U← [G |ψ],V← [ψ| −G]
Update Ψ← Ψ− τU(I+ τ

2 V† U)−1 V† Ψ
end
Update learning rate τ = ατ Re-partition Ψ into {Ψi}

end
Return :{Ψi}

4.3.3 Highlights of our contribution

Suppose that we have a system S = (Ξ, Φ, Λ) of |Ξ| = n basic events, and we search
for the failure scenarios of this system Λ that have the probability greater than a fixed
probability Pmin (P(λi) > Pmin) to reach a serious failure state ϕi ∈ Φ.

In order to answer this question, we represent the states of the system by a state
graph, and we search in this graph for this subset of path Λ between the current state
ϕt of the system and all the states of the serious failures ϕi ∈ Φ, using our algorithm
11. If we have a system with n basic events, automatically we will have 2n states of
the system, which gives a graph of states with 2n vertices. The problem here is that
the complexity of finding k paths between two vertices of this graph is NP-complete
[AZCN21]. So, for each element of Φ, it takes a lot of time to find only k paths instead
of all paths. Also, if the initial state ϕt is changed, all calculations must be performed
again. This approach becomes impossible if we have a system with a very large
number of basic events, which leads us to look for other methods to find these failure
scenarios. For this reason, we have proposed the algorithm 11.

Instead of using this approach, we propose to learn QHMMs to represent the set of
failure scenarios Λ of the system, which allows us to handle these scenarios in a better
way, and also to create some predictive models that can be exploited dynamically to
generate different possible scenarios from a given state of the system. This approach
gives us the possibility to process the failure scenarios to all severe failures instead of
processing them one by one, and it also gives us the possibility to process only the
possible scenarios with a high probability. In addition, this approach gives us the
possibility to see if a failure scenario is probable or not for a serious accident.
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4.3.4 Experimental validation

In this section, we will show the results of the test on real small systems. Firstly, we
start by comparing the results of QHMMs and HMMs using as metric DA described
in the following.

Metric

Description accuracy is a scaled log-likelihood independent of sequence of length L
[ZJ10],[SGB18]. Consider a non linear function f : (−∞, 1] → (−1, 1], the metric is
defined as the following:

DA = f (1 +
logs P(Y/D)

L
) (4.21)

where
f (x) =

{
x, if x ≥ 0
1−exp (−x/4)
1+exp (−x/4) , if x < 0.

Where L is the length of the sequence, s is the number of output symbols in the
sequence, Y is the data, and D is the model. When DA = 1, the model predicted the
sequence with perfect accuracy, and when DA > 0, the model performed better than
random. On the real-world dataset, we report the average accuracy for a classification
problem.

Complexity

The complexity of computing the loss L using the Equation (4.19) is O(µMLK3),
with M the number of sequences in the batch, L the length of sequences and for
the complexity of the update function (4.20) is O(µMK3). On the other hand, in the
classic case, we need to do K operations for each cell which gives the complexity
analysis O(MLK2) for the Forward and Backward algorithms, and we need to store a
matrix of size K×M for each cell which gives O(MLK) for space complexity.

Test results

In this section, we will show the results of the tests on four datasets D1, D2, D3 and
D4 of two small PSA systems S1 and S2. Where D1 and D2 is the dataset of probable
and no-probable scenarios of S1 respectively, D3 and D4 is the dataset of probable
and no-probable scenarios of S2 respectively.

Firstly, we compare the classical HMMs and the quantum QHMMs methods by
using the DA metric. For this purpose we compute the average of DA metric in the
results obtained by training and tests for the four datasets D1, D2, D3, D4, and both
approaches HMMs and QHMMs, the results are shown in Figure 4.22.

From the results in 4.22, we can see that the average DA metric for QHMMs is always
higher than HMMs, which means that QHMMs are more efficient than HMMs.
In order to identify the probable and no-probable scenarios of a system, we use the
following strategy: For each system, we learn two QHMMs, the first to identify the
probable scenarios, and the second to identify the no-probable scenarios. When we
have a new scenario, we use these two models to decide if it is probable or not, we
choose the model that gives the greatest metric DA. In Figure 4.23, we show the
results of the two models of the first system S1 where the blue color represents the
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FIGURE 4.22: A comparison between HMMs and QHMMs according
to the average DA metric. Figure at left for the training dataset and at

right for the test dataset.

no-probable failure scenarios dataset, red color for the training dataset of the probable
scenarios, young for the test dataset of the probable scenarios and green color for the
test dataset of the no-probable scenarios. The same thing for the second system S2,
we show the results in Figure 4.24.

FIGURE 4.23: Results of the two models of the system S1.

FIGURE 4.24: Results of the two models of the system S2.

In these results, we can see clearly that Model 1 and Model 3 are able to detect the
probable scenarios, and Model 2 and Model 4 are able to detect the no-probable
scenarios for both systems. After that, we use those two models of each system in
order to get the probable or not probable scenario, to do that, we calculate the metric
of that sequence for each model and we decide whether the sequence is probable or
not according to the biggest metric found. In addition, we use these two models of
the system to directly generate the probable and no-probable scenarios from a given
state of the system, instead of searching for new ones. To do this, we simply give the
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current state of the system as input to the two models and generate the requested
scenarios.

4.4 Conclusion

In this chapter, we have discussed one of the most important challenges in several
fields, which is the problem of sequence processing. In the PSA area, the sequences
represent the failure scenarios of systems. In order to process them in a reasonable
time for the industry, we have prepared for each objective a quantum algorithm. The
objective is to seek results more quickly in the near future with quantum computers.
For this purpose, we have answered three general questions: How to find the failure
scenarios of a system? how to calculate the similarity between them? how to create a
generative model from a dataset of sequences?

For the first question, we use the graph of states of the system to represent all
possible scenarios. In it, we look for paths between the current state of the system
and the critical failure states. We proposed a quantum algorithm that finds all the
paths between two vertices in a DAG with N qubits and M gates (N is the number
of vertices of the graph and M is the number of edges). This algorithm also allows
us to search for all the paths to several destinations from a source vertex at the same
time. Unfortunately, due to the size of the quantum computers available today, it is
not yet possible to use this algorithm alone to find these paths with a single quantum
circuit. This is why we have proposed a second hybrid algorithm that allows to call
the first algorithm to deal with large graphs. These two algorithms are tested in an
IBM quantum simulator with 32 qubits, to show how well our algorithms work and
also to show the effect of the convergence of our algorithm to a set of fixed paths, as
opposed to the classical random walk method.

For the second question, the problem of calculating the similarity between two
sequences. We proposed two quantum algorithms, the first one, Quantum Dynamic
Time Warping (QDTW), is a quantum version of the DTW algorithm to compute
the similarity between two sequences, by treating the scenarios element by element.
This algorithm uses N ×M qubits and 3N ×M gates to build the circuit that finds
the warping path between two sequences of sizes N and M. The second algorithm
QDTW-β allows us to find this similarity between two sequences using in addition to
the case of one to one the case of treating the sub-sequences. These sub-sequences
can take different sizes in each sequence, and the matching can be passed by two
sub-sequences of different sizes. The biggest advantage of this algorithm is that we
use only N × M qubits which allows us to have a speedup in finding the results
compared to the classical approach ( NP-complete approach). The number of gates
increases depending on the β value. Both algorithms are tested and compared with
the classical approaches. The first, QDTW gives the same results as the classical ap-
proach, except that here it is a quantum algorithm. The second QDTW-β, gives better
results than the classical, either for finding the best matching or for classification.

For the third question, we have proposed a strategy to learn failure scenarios for PSA
systems. We have proposed to use QHMMs models to generate failure scenarios from
a given state of the system and also to identify the probable and no-probable failure
scenarios of a system. This strategy gives us several advantages compared to the
current approaches used in the field of PSA, among them, by doing the learning only
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once and we can find the failure scenarios from any state of the system. In addition,
it allows us to generate new scenarios that we do not have in the dataset. To test this
approach, we have used four datasets for two small real systems. The results show
that the QHMMs are more efficient than the HMMs. Furthermore, it shows that the
models are able to detect probable and no-probable failure scenarios.
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Chapter 5

Distance Estimation for Quantum
Prototypes Based Clustering

Computing distances between vectors is a very important task in most areas of
data science. In machine learning algorithms (clustering and classification), the
computation of similarity is a key step and it requires a lot of complexity. On the
other hand, the complexity of most machine learning algorithms is NP-complete, and
finding solutions for these problems with less complexity is still an open question,
particularly with the explosion of datasets in the world. Quantum computing is
a field that has found its place these last years to solve these kinds of problems
with less complexity, and it continues to have the attention of researchers in all
fields, especially with the possibility of having quantum computers with very large
numbers of qubits in the future. In several recent papers, we find more configurations
to calculate the similarity between two vectors with quantum circuits. In this chapter
we use our contribution in the paper [Ben+19] as a basis and compare these proposals
in terms of stability to get a general idea about each approach. To clearly see the
difference between each method, we improve the quantum k-means (QK-means)
algorithm with a quantum update of the centroids. Also, we present how we can
compute the distance between several vectors in a single quantum circuit. To measure
the performance of the improved QK-means we propose a quantum version of the
Davies-Bouldin index.

5.1 How to estimate the distances between the different data
and centroids?

In the classical case, the distance calculation is very simple, in each specific domain,
we can calculate a distance, for example for real vectors we use the Euclidean distance.
The data are stored as vectors in the live memory of the computer (RAM), where we
have easy access to it. In the quantum case, the data are encoded with quantum states,
so how we can calculate the distance between two vectors encoded with quantum
states? To answer this question, fortunately, there are a lot of papers that deal with
this case using fidelity. In the following, we will present the quantum fidelity, and
how we can compute it with quantum gates. And we will present several proposals
to encode these classical vectors in quantum states.

Fidelity as a similarity measure

Since the 70’s, there are some scientific papers [Alb83] [Uhl76] that focus on quantum
fidelity. In the context of quantum communication, [Joz94] and [Sch95] are interested
in quantum fidelity. For the quantum phase transition, we find [Gu10].
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Suppose that we have two quantum states, |ψ⟩ and |ϕ⟩, the fidelity between these
two quantum states is calculated as follows:

Fid(|ψ⟩ , |ϕ⟩) = | ⟨ψ|ϕ⟩ |2 (5.1)

Lloyd et al in the paper [LMR13] demonstrate how can compute the Euclidean dis-
tance using the fidelity between two states. In order to begin, we give the properties
of fidelity:

1. Symmetry: Fid(|ψ⟩ , |ϕ⟩) = Fid(|ϕ⟩ , |ψ⟩).

2. Bounded values: The fidelity varies between 0 and 1, 0 ≤ Fid(|ψ⟩ , |ϕ⟩) ≤ 1.

If the states are orthogonal Fid(|ψ⟩ , |ϕ⟩) = 0 (that’s to say, perfectly distinguish-
able), and Fid(|ψ⟩ , |ϕ⟩) = 1 if the states are identical.

3. Invariance under unitary transformation: Fid(|Uψ⟩ , |Uϕ⟩) = Fid(|ϕ⟩ , |ψ⟩).
This means that if we apply the same unitary transformation U to two quantum
states this does not change their fidelity.

4. Convexity: For any three quantum states |ψ⟩, |ϕ⟩ and |γ⟩ and given p1 and
p2 such that p1 + p2 = 1, then Fid(|ψ⟩ , p1 |ϕ⟩ + p2 |γ⟩) = p1Fid(|ψ⟩ , |ϕ⟩) +
p2Fid(|ψ⟩ , |γ⟩).

5. Multiplicativity: Fid(|ψ1⟩⊗ |ψ2⟩ , |ψ3⟩⊗ |ψ4⟩) = Fid(|ψ1⟩ , |ψ3⟩)Fid(|ψ2⟩ , |ψ4⟩).

We can obtain the fidelity | ⟨ψ|ϕ⟩ | [ABG06] of two quantum states |ψ⟩ and |ϕ⟩ as a
measure of similarity through the presented quantum circuit swap test.

SwapTest
The SwapTest circuit 5.1 has three inputs: a control qubit and two registers, the first
register |α⟩ to represent the first vector α and the second |β⟩ for the vector β. This

FIGURE 5.1: SwapTest Circuit

small circuit 5.1, allows to compute the overlap ⟨α|β⟩ by measuring the control qubits.
It has been used to compute the similarity between two vectors for the first time
in the paper [ABG06]. To clearly understand how this circuit allows us to find the
similarity between to vectors we describe in the following mathematical analysis.

Let us suppose that we have two vectors α and β represented by the two quan-
tum states |α⟩ and |β⟩ with n qubits for each one. The mathematical progress of the
circuit is as follows:

1. As input of the circuit we have two quantum states |α⟩, |β⟩, in addition, a
control qubit initialized to the state |0⟩ as follows:

|ψ0⟩ = |0, α, β⟩ (5.2)
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2. After the initialization, we apply the Hadamard gate to the first control qubit
which gives:

|ψ1⟩ = (H ⊗ I⊗n⊗ I⊗n) |ψ0⟩ =
1√
2
(|0, α, β⟩+ |1, α, β⟩) (5.3)

3. We apply the swap gate on the two registers |α⟩ and |β⟩ under the control with
|1⟩ of the first qubit:

|ψ2⟩ =
1√
2
(|0, α, β⟩+ |1, β, α⟩) (5.4)

4. We apply a second Hadamard to the control qubit:

|ψ3⟩ =
1
2
|0⟩ (|α, β⟩+ |β, α⟩) + 1

2
|1⟩ (|α, β⟩ − |β, α⟩) (5.5)

5. We measure the control qubit, and the probability of measuring the state |0⟩ is
computed as follows:

P(|0⟩) = |1
2
⟨0|0⟩ (|α, β⟩+ |β, α⟩) + 1

2
⟨0|1⟩ (|α, β⟩ − |β, α⟩)|2 (5.6)

=
1
4
|(|α, β⟩+ |β, α⟩)|2 (5.7)

=
1
4
(⟨β|β⟩ ⟨α|α⟩+ ⟨β|α⟩ ⟨α|β⟩+ ⟨α|β⟩ ⟨β|α⟩+ ⟨α|α⟩ ⟨β|β⟩) (5.8)

=
1
2
+

1
2
| ⟨α|β⟩ |2 (5.9)

According to the probability P(|0⟩), we can decide that |α⟩ and |β⟩ are orthogonal if
P(|0⟩) = 0.5 and identical if P(|0⟩) = 1.

Lloyd et al in the paper [LMR13] demonstrate how can calculate the Euclidean
distance using SwapTest, the method is named DistCalc and described as follows:

1. We encode each vector x in a quantum state as [NDW16] [Mot+04]:

|x|−1x → |x⟩ =
M

∑
i=1
|x|−1xi |i⟩ (5.10)

with this encoding we use only log2M qubits with M is the dimension of x, and
the state |x⟩ is normalized because ⟨x|x⟩ = |x|−2x2 = 1.

2. In order to use SwapTest we initialize the two states as follows:

|ψ⟩ = 1√
2
(|0, α⟩+ |1, β⟩) (5.11)

|ϕ⟩ = 1√
Z
(|α| |0⟩+ |β| |1⟩) (5.12)

with Z = |α|2 + |β|2
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3. We use SwapTest and we calculate the Euclidean distance as follows:

|a− b|2 = 2Z| ⟨ϕ|ψ⟩ |2 (5.13)

Here Lloyd et al are prepare the inputs of the SwapTest with their configuration, this
initialization can be changed with other methods, in the following we introduce,
other approaches to initialize these inputs.

States construction to estimate the distance-type measurements

Building quantum states from classical data is the first step in order to profiting from
the power of quantum computers. This construction of states must be done in a clean
way that keeps the information clean and easy to use. For the case of calculating the
similarity between two vectors, there are several methods to build the two inputs of
the SwapTest circuit. Here we present three different methods for the preparation and
construction of |ψ⟩ and |ϕ⟩ states.

Wiebe et al. approach

1. Data Preparation

Given N = 2n dimensional complex vectors x⃗ and w⃗ with components xj = |xj|e−iαj

and wj = |wj|e−iβ j respectively. Assume that {|xj|, αj} and {|wj|, β j} are stored
as floating point numbers in quantum random access memory.

2. Construction of the states

An alternative representation of the states was suggested by Wiebe, Kapoor and
Svore [WKS18]. It aims to write the parameters into amplitudes of the quantum
states.

|ψ⟩ = 1√
d

∑
j
|j⟩

√
1−
|xj|2
r2

max
e−iαj |0⟩+

xj

rmax
|1⟩

 |1⟩

|ϕ⟩ = 1√
d

∑
j
|j⟩|1⟩

√
1−
|wj|2
r2

max
e−iβ j |0⟩+

wj

rmax
|1⟩


Where j = {1, ..., n}, and rmax is an upper bound on the maximum value of any
feature in the dataset. The input vectors are d-sparse, i.e., contain no more than
d non-zero entries.

Using the swap test, the inner product is evaluated by:

dq1(|x⟩ , |w⟩) = d2r4
max(2P(|0⟩)− 1) (5.14)

Lloyd et al. approach

1. Data Preparation

For the future of quantum machine learning, it may be vital to find quantum
ways of representing and extracting information. To use the forces of quantum
mechanics without being limited to the classical ideas of data encoding; Lloyd,
Mohseni, and Rebentrost [LMR13] proposed a way to encode the classical
vectors into a quantum state.
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Consider N = 2n dimensional complex vectors x⃗ and w⃗, we have:

|x⟩ = x⃗
|⃗x| , |w⟩ = w⃗

|w⃗|

2. Construction of the states

Seth Lloyd and his co-workers proposed a way to construct the state |ψ⟩ and
|ϕ⟩. The idea is to adjoin an ancillary qubit to states creating an entangled state
|ψ⟩. The greater the difference between the states |x⟩ and |w⟩, the more the
resulting state is entangled [Cai+15].

|ψ⟩ = 1√
2
(|0⟩ |x⟩+ |1⟩ |w⟩)

|ϕ⟩ = 1√
Z
(|⃗x| |0⟩ − |w⃗| |1⟩)

Where Z = |⃗x|2 + |w⃗|2

After applying the SwapTest circuit, the distance is evaluated by:

dq2(|x⟩ , |w⟩) = 2Z(2P(|0⟩)− 1) (5.15)

We can verify that the desired distance |⃗x− w⃗| =
√

2Z| ⟨ϕ|ψ⟩ |2.

| ⟨ψ|ϕ⟩ |2 =
1

2Z
|(|⃗x| ⟨0| − |w| ⟨1|)(|0⟩ |x⟩+ |1⟩ |w⟩)|2

=
1

2Z
||⃗x| ⟨0|0⟩ |x⟩+ |⃗x| ⟨0|1⟩ |w⟩ − |w| ⟨1|0⟩) |x⟩ − |w| ⟨1|1⟩) |w⟩|2

=
1

2Z
|(|⃗x| |x⟩ − |w⃗| |w⟩)|2

=
1

2Z
|⃗x− w⃗|2

The desired distance is dq2 = 2Z(2P(0)− 1), we can see that if vector x⃗ is identical
to the centroid of the cluster w the state |ψ⟩ is orthogonal to |ϕ⟩ and the success
probability of projective measurement is P(0) = 1/2, therefore the distance dq2 = 0.

Anagolum approach

1. Data Preparation

For simplification, we assume that we are in 2-dimensional space. Let’s consider
that we have two vectors x⃗(x0, x1) and w⃗(w0, w1).

We can map data values to θ and α values using these equations.

For x we get:

α0 = (x0 + 1)
π

2
, θ0 = (x1 + 1)

π

2
(5.16)

Similarly for w we get:

α1 = (w0 + 1)
π

2
, θ1 = (w1 + 1)

π

2
(5.17)

2. Construction of the states
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To construct the two states |ψ⟩ and |ϕ⟩ we use U gate as follows:

|ψ⟩ = U(θ0, α0, 0)|0⟩ (5.18)

|ϕ⟩ = U(θ1, α1, 0)|0⟩ (5.19)

Indeed, U gate implements the rotations we need to perform to encode our data
points.

U(θ, α, λ) =

 cos θ
2 −eiλ sin θ

2

eiαsin θ
2 eiλ+iα cos θ

2


This instruction would cause the qubit to move θ radians away from the positive
z-axis, and α radians away from the positive x-axis.

Using the swap test, the distance is evaluated by:

dq3(|x⟩ , |w⟩) = P(|1⟩) (5.20)

5.2 How to search for the closest centroid to a given data?

As we have already explained in chapter 2, Grover’s algorithm is one of the most
successful in the field of quantum computing, is an algorithm that allows to search
for an element in a dataset with a complexity O(

√
N) instead of O(N) in the classical

case. Therefore, to minimize the complexity of searching the nearest centroid in the
quantum k-means algorithm we use this algorithm for the search of the smallest
distance. In this section, we first present Grover’s algorithm in detail, and then we
explain the approach proposed by [DH96] to find the nearest centroid using Grover’s
algorithm.

5.2.1 Grover’s Algorithm

In quantum computing, Grover’s algorithm allows to search for one or more elements
in an unsorted dataset with N elements in O(

√
N) time. Grover’s algorithm begins

with a quantum register of n qubit initialized to |0⟩ when n is the number necessary
to represent the search space, we have 2n = N which means |0⟩⊗n = |0⟩.

Equal superposition: The first step is to apply the Hadamard transform H⊗n to
put the system into an equal superposition of states:

|ψ⟩ = H⊗n|0⟩⊗n =
1√
2n

2n−1

∑
x=0
|x⟩

Quantum oracle O: An oracle is a black-box function and a quantum oracle is a
quantum black box, which means that it can observe and modify the system without
collapsing it to a classical state. It will recognize if the system is in the correct state: if
the system is in the correct state, then the oracle will rotate the phase by π radians,
otherwise, it will do nothing. To create the circuit that represents this oracle it is
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necessary to implement this transformation of |x⟩:

|x⟩ → (−1) f (x)|x⟩

where f (x) = 1 if x is the correct state, and f (x) = 0 otherwise.

Diffusion transform: It performs inversion about the average, transforming the
amplitude of each state so that it is as far above the average as it was below the
average before the transformation, and vice versa. This part consists of another
application of the Hadamard transform H⊗n, followed by a conditional phase shift
that shifts every state except |0⟩ by −1, followed by another Hadamard transform.
The diffusion transform can be represented by this equation, using the notation |ψ⟩:

H⊗n[2|0⟩⟨0| − I]H⊗n = 2H⊗n|0⟩⟨0|H⊗n − I = 2|ψ⟩⟨ψ| − I

Giving the entire Grover iteration:

[2|ψ⟩⟨ψ| − I]O

The total run-time of a single Grover iteration is Θ(2n) from the two Hadamard
transforms, plus the cost of applying O(n) gates to perform the conditional phase
shift, is O(n). It follows that the runtime of Grover’s entire algorithm, performing
O(
√

N) = O(2
n
2 ) iterations each with a runtime of O(n), is O(2

n
2 ).

Algorithm 13: Grover’s algorithm
Input: A quantum oracle O which performs the operation

O|x⟩ = (−1) f (x)|x⟩, where f (x) = 0 for all 0 ≤ x < 2n except x0, for
which f (x0) = 1, n qubits initialized to the state |0⟩

Runtime: O(
√

N) operations, with O(1) probability of success.
Output: x0
Procedure:
Initial state

|0⟩⊗n

apply the Hadamard transform to all qubits

H⊗n|0⟩⊗n =
1√
2n

2n−1

∑
x=0
|x⟩ = |ψ⟩

apply the Grover iteration R ≈ π
4

√
2n times

[(2|ψ⟩⟨ψ| − I)O]R|ψ⟩ ≈ |x0⟩

measure the register x0

5.2.2 Search for the minimal with Grover’s algorithm

In the literature, Grover’s algorithm is used to solve optimization problems, it is used
to find the global minimum of an optimization problem. The problem is represented
by a function f(X) and with Grover’s algorithm we look for the global minimum that
solves this problem. For us, we are interested in the version that deals with the case
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of finding the minimum proposed by the paper [DH96]. In this paper, the authors
use Grover’s search algorithm with quantum oracles indicating which elements are
smaller than an arbitrary threshold.

Thanks to quantum parallelism, the global minimum is always found, which has
great implications for machine learning procedures, as they often get blocked in local
optima.

Let’s assume that we have an optimization problem represented by the following
objective function:

f (x) : {0, 1}n → R (5.21)

Let us suppose that we also have a quantum oracle O which acts on n qubits. The
steps of the algorithm to find the minimum of f (x) are described as follows:

1. The first step is to choose an input x1 in a random way where y1 = f (x1)

2. In the quantum circuit, we will process the inputs (the xi) and the corresponding
inputs by the function f (x) (the yi). Then the algorithm needs two quantum
registers: the first one to encode the xi and the second one to encode the yi. The
first register contains n qubits and the second one m qubits.

3. In order to create a quantum superposition that represents all possible inputs in
the first register, we apply Hadamard gates on all qubits of the first register.

4. We apply Grover’s algorithm on the first register and we find y = f (x).

5. In a classical computer, we use y to model yi, if y < yi then xi = x.

Following [AK99] [DH96], we repeat items 2-5
√

2n times to find the global minimum..

5.3 Comparison of different quantum distances

In this section, we compare the different quantum distances explained before in terms
of relevance and stability by answering these two questions through some empirical
evaluations:

• Which quantum distance has a high probability of finding the right nearest
center?

• Which quantum distance has a high probability of finding the nearest centers in
the right order with a good stability?

5.3.1 Which quantum distance has a high probability of finding the right
nearest center?

Because of the noise of quantum computers, the distance between two states is hard
to compute as we will get a probabilistic result; the distance is unstable. However,
it’s easier to assign data points to different groups because we don’t need the exact
distances to each one but only the closest centroid. Thus, we can just put the new
data point in the cluster associated with the smallest value that our parameter takes.
To illustrate more our idea, we gave an example of two distributions. Figure 5.2 and
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Figure 5.3 represent two distributions where the black dot X is the test data and the
three crosses are the centers (C1, C2, C3).

FIGURE 5.2: Distribution 1

FIGURE 5.3: Distribution 2

From table 5.1, we can notice that the distance changes from an iteration to another
but the assignment to the closest centroid is correct. Comparing the three approaches
in terms of the confidence interval, we can notice that the Wiebe et al. approach gives
a higher confidence interval in a time lower than other approaches.

Distance Dist Green Blue Black Probability of
success

Wiebe et al. 1 665 times 9322 times 13 times [92.71%, 93.70%]
approach (dq1) 2 0 times 0 times 10000 times [99.96%, 100%]
Lloyd et al. 1 2190 times 7620 times 190 times [75.35%, 77.02%]
approach (dq2) 2 0 times 515 times 9485 times [94.40%, 95.26%]
Anagolum 1 2722 times 6530 times 748 times [64.36%, 66.22%]
approach (dq3) 2 2486 times 2175 times 5339 times [52.41%, 54.36%]

TABLE 5.1: Distance-types Comparison
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5.3.2 Which quantum distance has a high probability of finding the nearest
centers in the right order with a good stability?

After analyzing the performance of the different quantum distances in terms of
the stability of the values allowing the choice of the right center, we will study the
behavior of these quantum distances, but this time in terms of the stability of the
order of the nearest centers. In other words, how far away is it possible to find the
nearest centers in the right order whatever the iteration? To do this, we carried out
10,000 searches for the nearest centers for the two distributions studied. We analyzed
the stability of the order of the nearest centers found by each quantum distance. The
results show that the distance dq1 is the best one which offers a very good stability in
the order of the nearest centers in the case of the two distributions studied. As shown
in table 5.1, the distance dq1 shows a very good stability in the order of the nearest
centers compared to the other two quantum distances. For distribution 1, the correct
order of the nearest centers is [C2 C1 C3]. The distance dq1 finds this order with a
probability of 85.32% (8532 times out of 10,000 searches), while the distance dq2 and
dq3 find the order with a probability of 53.26% (5326/10,000) and 26.10% (261/10,000)
respectively. In the case of distribution 2, the situation is more complicated because
the test point is almost halfway between the two centers. This situation is confirmed
by the results obtained in Figure 5.5. Indeed, the distance dq1 always finds the right
order of the nearest centers [C3 C1 C2]. Nevertheless, this distance continues to
provide the right solution but the order changes significantly [C3 C2 C1]. Compared
to the other two quantum distances, the distance dq1 seems much more stable in
the order of the nearest centers. As can be seen in both Figure 5.4 and Figure 5.5,
the other two quantum distances dq2 and dq3 change order quite often compared to
the distance dq1 . Order stability is a very relevant information on the behavior of
quantum distances.

FIGURE 5.4: Order of belonging distribution 1
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FIGURE 5.5: Order of belonging distribution 2

5.4 Validation criteria

As we have already described, the notion of distance in quantum mechanics is not
stable. Therefore, the estimation of the distance in the classical version it’s not the
same as in the quantum version. For example, if we take the distance between two
quantum states, after each measurement we get different values but the belonging of
the state to a cluster it would be all the time the same. This is a totally different way
of thinking about the way we estimate distances between points which can make the
quantum clustering algorithms faster than its classical counterpart.

Our purpose is to efficiently define the validation criteria in the context of quan-
tum learning in order to evaluate the goodness of clustering in quantum algorithms.

One of the most important considerations regarding the machine learning model is
assessing its performance which means the quality of the model. In the case of su-
pervised learning algorithms, evaluating the quality of the model is easy because we
already have labels for every example. However, in the case of unsupervised learning
algorithms, we are not that much blessed because we deal with unlabeled data. But
still, we have some metrics that give the practitioner insight into the happening of
change in clusters depending on the algorithm.

Indeed, there are several indices that are used to measure cluster validity. In our case,
we chose the Davies Bouldin index which is an internal index that used clustering and
the underlying data set to assess the quality of the clustering. It places similar objects
in the same cluster and dissimilar objects in different clusters. In what follows, we
give the Davies-Bouldin (DB) index as a criteria of validation, and we transform the
classical Davies-Bouldin index into the quantum version; quantum Davies-Bouldin
(QDB) index. This transformation is basically done by transforming the classical
distance to the quantum version.

In fact, a good clustering algorithm aims to create clusters whose:

• The intra-cluster similarity is high (The data that is present inside the cluster is
similar to one another)

• The inter-cluster similarity is less (Each cluster holds information that isn’t
similar to the other)
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5.4.1 Classical Davies-Bouldin index

The Davies Bouldin index introduced by David L. Davies and Donald W. Bouldin in
1979 is a metric for evaluating clustering algorithms [DB79] that can be calculated
with the following formula:

DB =
1
K

K

∑
k=1

max
k ̸=k′

dn(wk) + dn(wk′)

d(wk, wk′)
, (5.22)

where K is the number of clusters, dn is the average distance of all elements from the
cluster Ck to their cluster centre wk, d(wk, wk′) is the distance between clusters centres
wk and wk′ . Just like the Silhouette score, Calinski-Harabasz index, and Dunn index,
the Davies-Bouldin index provides an internal evaluation schema. I.e. the score is
based on the cluster itself and not on external knowledge such as labels. This index
well evaluates the quality of unsupervised clustering because it’s based on the ratio
of the sum of within-clusters scatter to between-clusters separation. More the value
of DB is lower, means that we have a better cluster. The main objective is to evaluate
how well the clustering has been done.

5.4.2 Quantum Davies-Bouldin index

As we have already mentioned before, the notion of distance in quantum approaches
is different from the classical case. Quantum distance does not need to be proportional
to the real distance, but only has a positive correlation with it. We need only the
nearest centroid, not the exact value of the real distance. To evaluate the quality
of quantum clustering with a Davies-Bouldin index-type based on intra- and inter-
cluster distances, we propose to adapt it to the quantum case. To do this, we will
define the Quantum Davies-Bouldin (QDB) quality index as follows:

QDB =
1
K

K

∑
k=1

max
k ̸=k′

δn(wk) + δn(wk′)

δ(wk, wk′)
, (5.23)

where

δn(wk) =
1
|Ck|

|Ck |

∑
i=1

dq2(|xi⟩xi∈Ck
, |wk⟩) and δ(wk, wk′) = dq2(|wk⟩ , |wk′⟩)

This index has been done by transforming the classical distances to the quantum
one as we have explained previously. Where K is the number of clusters, δn is the
quantum version of the distance dn and δ(wk, wk′) is the quantum distance between
clusters centres wk and wk′ .

In fact, the estimation of Davies-Bouldin in the context of quantum learning is totally
different from the classical learning.

While in the classical version, the Davies Bouldin index gives a fixed value, in
quantum learning the quantum DB will give different values as the distance change
from an iteration to another. Therefore, instead of having only one value of DB, we
will get an interval of the QDB, this interval is due to the probabilistic nature of the
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qubits and it represents the different variations of this index while it is in the quantum
state.

5.5 Classical K-means

The k-means clustering [Mac+67] is a type of unsupervised clustering, one of the
most widely used clustering methods early developed by Lloyd [LLo82]. Let X =
{x1, x2, . . . , xN} be the data set, each row vector xn ∈ RM, 1 ≤ n ≤ N is composed of
M attributes (features). The k-means clustering allows to divide the set of data X into
K clusters C = {C1, . . . , CK} by minimizing the following sum of squared errors:

R =
K

∑
k=1

∑
n∈Ck

∥xn − wk∥2 =
K

∑
k=1

N

∑
n=1

gnk ∥xn − wk∥2 , (5.24)

where wk ∈ RM is the centroid of the data within the cluster Ck and G ∈ RN×K
+ is the

binary classification matrix defined by gnk = 1, if the data xn ∈ Ck, and 0 otherwise.
Firstly, the k-means algorithm initialize randomly K centroids w1, w2, ...., wK ∈ RM.
Then the algorithm usually iteratively unfolds in two phases:

1. at first we go over every point and assign each to the cluster of the nearest
centroid.

2. at the second phase, the centroid of each cluster is updated.

The algorithm converges when there is no further change in the assignment of
instances to clusters. The idea behind k-means clustering is very natural. It just puts
every new data point you ask it to classify into the group that it is closest to.

Algorithm 14: k-means algorithm

Input: Set of vectors xn ∈ RM, n = {1, 2, ..., N}, initial centroids
w1, w2, ...., wK ∈ RM.

Output: The set of K clusters Ck, |Ck| is the number of vectors within the
cluster k.

repeat
Assignment step (clustering): Assign each data to the cluster Ck∗ , k∗ is
computed by:

k∗ = argmin
k∈{1,2,...,K}

∥xn − wk∥2

Update step: For all k = {1, 2, ..., K}, update the centroid wk of each cluster Ck
by:

wk =
1
|Ck|

N

∑
n=1

gnkxn

until a stopping condition is satisfied.

5.6 Quantum k-means clustering

The first version of the quantum k-means algorithm was proposed by Lloyd et al
in their paper [LMR13], where they use their method to construct quantum states
to calculate the distance between data and centers. In the quantum case, with the
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quantum fidelity computation and the quantum distance finding, we have achieved
an exponential speedup compared to the classical case depending on M. In the
classical case, we need a complexity O(M) to compute the distance between vectors
instead of O(log2M) quantically. So, how can we get this speedup also depending on
the size of the dataset N? Here, we show how we can find this speedup depending on
the size of the dataset N, and propose an upgrade of the quantum version of k-means
proposed by [LMR13] with a quantum centroid upgrading.

5.6.1 Data preparation and states construction

Normally, there are several methods to prepare the data and construct the states.
According to the previous section, the method of Wiebe, Kapoor, and Svore [WKS18]
gives good results in terms of clustering and also stability.

As we have already shown in the previous section, in order to find more stable
results, it is better to use the method proposed by [WKS18] in order to build the
quantum states for the classical data. Then we can choose this method to build
the quantum states of data in order to do clustering using the quantum k-means
algorithm. The idea behind the method proposed by [WKS18] is to use a quantum
circuit for each observation and center, here we will propose an improvement of this
to calculate the distance between all the observations and all the centers in a single
circuit.

Suppose that we have N observations and K centers. To be able to calculate all
the distances between all the N observations and all the K centers with a single circuit,
we need to code everything in a single circuit. In total we have N ∗ K distance to find,
so we add the number of qubits that allows us to index these possibilities. Then, we
use three registers of qubits, the first one |ψ1⟩ to encode the indexes, |ψ2⟩ to encode
observations, |ψ3⟩ to encode the centers. We reserve, log2(N ∗ K) qubits for |ψ1⟩,
log2(M) qubits for |ψ2⟩ and log2(M) for |ψ3⟩. These registers are encoded as follows:

|ψ⟩ = |ψ1⟩ |ψ2⟩ |ψ3⟩ |c⟩ =
N

∑
i=0

k

∑
j=0
|i ∗ K + j⟩ |xi⟩ |cj⟩ |0⟩ (5.25)

Then we apply the SwapTest circuit on the last two registers with the control of the
last qubit. After that, we measure the first register and the last qubit. The general
circuit is represented as follows:

|ψ⟩

|ψ1⟩

|ψ2⟩

|ψ3⟩

|c⟩ H H

FIGURE 5.6: Calculate the distance between several observations

In order to get the distances, for each state of the superposition, we take the proba-
bility to be in the state |0⟩ for the last qubit. The states of the qubits in register |ψ1⟩
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are the indices and the last qubit |c⟩ is the result of the inner product between an
observation and a center related to each index. The output superposition is displayed
as follows:

|ψ1⟩ |c⟩ =
N∗K
∑
j=0

1√
2N∗k

|j⟩ |c⟩ (5.26)

=
N∗K
∑
j=0

1√
2N∗k

|j⟩ (α⌊ j
N ⌋,j−⌊

j
N ⌋
|0⟩+ β⌊ j

N ⌋,j−⌊
j

N ⌋
|1⟩) (5.27)

where ⌊x⌋ is the integer part of x, α⌊ j
N ⌋,j−⌊

j
N ⌋

is the probability of being in state |0⟩

for the qubit |c⟩ related to the observation ⌊ j
N ⌋ and center j − ⌊ j

N ⌋. We use the
α⌊ j

N ⌋,j−⌊
j

N ⌋
for all j = 0, . . . , N ∗ k and the equation (5.14) to find all the distances

between observations and centers.

5.6.2 Cluster assignment

After computing the distance between each training state and each cluster centroid.
We assign each state |xn⟩ to the closest centroid |wk⟩ by using Grover’s algorithm
[Gro98] and the algorithm proposed by [DH96] for the minimization problems. More
precisely, we should find the solution to the following minimization problem:

argmin
w

D(|x⟩ , |w⟩) = argmin
C

K

∑
k=1

∑
|xn⟩∈Ck

d2
q(|xn⟩ , |wk⟩) (5.28)

While the best classical algorithms for a search over unordered data requires O(N)
time, Grover’s algorithm performs the search on a quantum computer in onlyO(

√
N)

operations, which means a quadratic speed-up over its classical version. This speed is
done thanks to the superposition of states, in other words, the search is done globally,
which means a significant improvement in optimization routines.

5.6.3 Update the centroid

Assume that we have a set of quantum states |X⟩ = {|xn⟩ ∈ CM, n = 1, ..., N},
and a set of K clusters Ck, |Ck| is the number of vectors within the cluster k. k-
means clustering aims to partition the N observations into K clusters Ck with |W⟩ =
|w1⟩ , |w2⟩ , ...., |wK⟩ centroids, so as to minimize the within-cluster variance. Formally,
the objective is to find a solution for the minimization problem (5.28).

We compute the distance between each training state and each cluster centroid using
the SwapTest circuit. Then, we assign each state to the closest centroid using Grover’s
algorithm as explained before.

The second step of QK-means is updating the centroid of each cluster. To do so,
the updated centroid of each cluster is given by:

|w(t+1)
k ⟩ = |(Y(t)

k )TX⟩ (5.29)

where

|Y(t)
k ⟩ =

1√
|Ck|

N

∑
n=1

ynk |n⟩ and ynk =

{
1 if xn ∈ Ck
0 else
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We give the main steps of the proposed algorithm in the following. The distance
dqi(|xn⟩ , |wk⟩) is at the user’s choice, in our case we opt for the distance dq1 as it gives
the best result. For the stopping criterion, we use the relative distortion between two
iterations with respect to a threshold ϵ.

The algorithm of QK-means becomes as the following:

Algorithm 15: Quantum k-means algorithm

Input: |X⟩ = {|xn⟩ ∈ CM, n = 1, ..., N}, K number of clusters Ck, initial
centroids of the clusters at t = 0: |w(0)

1 ⟩ , |w(0)
2 ⟩ , ...., |w(0)

K ⟩.
Output: K clusters Ck.

repeat
Assignment step (clustering): Each data is assigned to the cluster with the
nearest center using Grover’s search:

C(t)
k ←− {|xn⟩ : d2

qi
(|xn⟩ , |w(t)

k ⟩) ≤ d2
qi
(|xn⟩ , |w(t)

j ⟩), ∀j, 1 ≤ j ≤ K}

where each |xn⟩ ∈ |X⟩ is assigned to exactly one C(t)
k , even if it could be assigned

to more of them.
Update step: The center of each cluster Ck is recalculated as being the average of
all data belonging to this cluster (following the previous assignment step):

|w(t+1)
k ⟩ ←− |(Y(t)

k )TX⟩

until Convergence is reached
Convergence can be considered as achieved if the relative value of the distortion
level D(|x⟩ , |w(t)⟩) falls below a small prefixed threshold ϵ:

D(|x⟩ , |w(t−1)⟩)− D(|x⟩ , |w(t)⟩)
D(|x⟩ , |w(t)⟩)

< ϵ

5.7 Experimental results

5.7.1 Datasets

The classical and quantum version of k-means was tested on three real world datasets
available for public use in the UCI Machine learning repository [DG17].

• Iris - Iris data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant.

• Wine - Wine is a dataset that is related to a chemical analysis of wines grown in
the same region in Italy but derived from different cultivars.

• Wisconsin Diagnostic Breast Cancer (WDBC) - This data has 569 instances with 32
variables (ID, diagnosis, 30 real-valued input variables). Each data observation
is labeled as benign (357) or malignant (212).

5.7.2 Clustering through quantum K-means

We used three different datasets to show the experimental results of QK-means.
Figures 5.7, 5.8, and 5.9 represent the projection of the datasets iris, wine, and breast
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cancer respectively using the principal component analysis. We can notice that
the algorithm of QK-means has identified the different clusters (groups) which are
significantly different (distant) from each other. Therefore, the quantum k-means
gives a good classification just like its classical version, but the advantage of the
quantum version is that it can deal with high dimensional spaces in a time much
more quickly than the classical version, which is crucial in nowadays.

FIGURE 5.7: QK-means clustering on Iris data

FIGURE 5.8: QK-means clustering on Wine data

FIGURE 5.9: QK-means clustering on Breast Cancer data

For each data set we compare the Davies-Bouldin (DB) index for both the classical
and the quantum version of K-means. These results are represented in table 5.2. DB
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and QDB indexes are not calculated with the same distances. Direct comparison
is therefore difficult, but we can see that QDB shows a decreasing behavior during
different iterations of the learning process, indicating an improvement in the quality
of quantum clustering. We can therefore consider that QDB is a good quality indicator
for quantum clustering.

Dataset K-means (DB) QK-means (QDB)
Iris 0.66 [0.37, 0.56]

wine 0.53 [0.40, 0.59]
Breast Cancer 0.50 [0.38, 0.57]

TABLE 5.2: k-means & QK-means using DB index

FIGURE 5.10: Davies-Bouldin Variation

FIGURE 5.11: QDavies-Bouldin Variation

5.8 Computational time complexity

Let us consider the k-means problem of assigning N vectors to K clusters such that the
average distance from each cluster centroid to all points of the cluster is minimized.

After randomly choosing the initial centroids, the standard method to solve this
minimization problem supposes two different steps (i) assign each vector to the
closest centroid and (ii) update all the centroids. This strategy is repeated until the
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assignment becomes stationary. The euclidian distance to the centroids in some M-
dimensional is obtained in O(M). Therefore each iteration of the classical algorithm
takes time O(K×M× N). The factor N arises since each vector is tested eventually
for some reassignment. This complexity analysis is valid for classical K-means.

Let us now analyze the quantum version of the k-means algorithm. In our strat-
egy, the assignment step in the quantum version is based on the application of several
quantum gates. Instead to compute the euclidean distance based on the coordinates
list of two different points in RM, in the quantum version we directly compare the
two quantum states. Also finding the problem of the closest centroid is optimized
since is based on Grover’s algorithm [Gro98].

The cluster assignment in the quantum context is no more a list of the different
cluster assignments as in the classical k-means problem. The assignment is a quan-
tum state which contains the different cluster labels correlated with the corresponding
cluster assignments by using a quantum superposition.

As we have shown in section 5.6.1, to compute the distance between two vectors
of size M, a complexity of log2(M) is required, and to compute the distance be-
tween N observations and K centers of size M a complexity of Log(N × K × N) is
required. Therefore the unsupervised quantum k-means has a complexity of order
O(log(K×M× N)).

5.9 Conclusion

In this chapter, we have implemented a new logarithmic time complexity quantum
algorithm for k-means clustering. We have analyzed three different methods to
estimate the distance for quantum prototypes based clustering algorithms. Through
this analysis, we noticed that the notion of distance in quantum computing is different
from the classical one. Because what counts in the quantum computation is the
correlation not the real values of the distance. This analysis is so crucial as it can
solve any prototype based clustering algorithm. To measure the quality of clustering,
we have adapted a classical criterion to the quantum case. This quantum version of
k-means has given a good classification just like its classic version, the only difference
is its complexity; while the classic version of k-means takes polynomial time, the
quantum version only takes logarithmic time, especially in large data sets.
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Chapter 6

Clustering using Quantum
annealing

Data clustering is an unsupervised task whose objective is to determine a finite set of
categories (clusters) to define a partition of a dataset based on the similarities between
its objects. There are several algorithms to perform this task, among them we find the
well know K-means, NMF, Semi-NMF, and Convex-NMF. All these algorithms are
based on some optimization problems, where some fixed functional defined by using
a fixed metric is minimized. The goal of this strategy is to minimize the distances
between data within the same cluster and maximize the distances between clusters.

In machine learning we deal with very high dimensional data. Therefore, solving
optimization problems in high dimensions has a huge interest. Optimization in very
high dimensions is a true challenge since the near-optimal optimization procedures
are very slow. In addition to that, one of the most important challenges of machine
learning applications is the complexity of their algorithms. The majority of them have
NP-hard or NP-complete complexity, including the algorithms: K-means [Alo+09],
Neural Network [BR93] and decision tree algorithm [LR76]. Furthermore, with the
explosion of data in the world over the past few years, the problem of complexity has
become very important, which has motivated researchers to focus more and more on
finding the best approach to process these huge datasets as quickly as possible.

One of the proposed solutions for these problems is Quantum Computing. This
last one has become a very interesting research area to solve problems of high com-
plexity, following the two main revolutionary algorithms introduced by Grover and
Shor. One of the main goals of this new area of research is to solve problems that
can’t be solved in the classical framework, reducing the computational complexity of
many difficult problems and sometimes finding good shortcuts and new approaches
to solve them.

This solution has been used by several researchers to find more powerful machine
learning algorithms. Most of these quantum algorithms are tested in the D-wave
2000Q quantum computer. Some of these works are: Support Vector Machines (SVM)
on the D-Wave quantum annealer [Wil+20] by D. Willsch et all, which introduce a
method to train SVM algorithm in D-wave 2000Q quantum annealer. Training and
Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q [Dix+20]
by V. Dixit et all. Adiabatic Quantum Linear Regression [DP20] by P. Date and T. E
Potok. Non-negative/binary matrix factorization with a D-wave quantum annealer
[O18] by D. OMalley et all and Low-Rank Non-Negative Matrix Factorization with
D-Wave 2000Q [OA18] by O. Daniele and A. Alfonso. The partitioning of the graph
into k parts is treated in the D-Wave 2X computer and the quantum annealing by
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Ushijima-Mwesigwa et all in [UMNM17]. The paper [NVDS18] uses the D-wave
2000Q quantum processing unit (QPU) and explains how the Quantum-assisted
cluster analysis algorithm can be represented by a quadratic unconstrained binary
optimization (QUBO) problem. K. Wereszczysk et all propose in [Wer+18] a new
method of data clustering by using quantum annealing. In addition, there are several
papers that propose QUBOs problems to solve the problems of clustering algorithms
such as [Bau+18] for binary clustering, [Bau+19] for K-medoids, [Kum+18] to approx-
imate K-means and [DAPN21] proposes QUBOs problems for the three algorithms:
linear regression, support vector machine (SVM) and balanced K-means clustering.
The clustering problem is addressed on another quantum computer called IBMQX2
by K. Sumsam Ullah [KAVL19], in this later, the authors allow to implement a similar
version of the classical K-means algorithm on the IBMQX2 quantum computer.

In this chapter, we address both algorithms, Balanced K-means and Convex-NMF,
based on our contributions in the two papers [Zai+21a] and [Zai+21b]. For the first
one, the Balanced K-means clustering algorithm, has already been treated in [Art+20].
This later presents a QUBO formulation equivalent to the Balanced K-means op-
timization problem. From our side, we will modify this formulation to get better
clustering results. We will use D-wave 2000Q quantum computer to test our approach
on the three datasets: Iris, Wine, and Breast cancer. Also, we will do a small study
about the number of qubits that we can use in D-wave 2000Q in order to justify the
usage of the small datasets. To compare the obtained results with our method and
the one proposed in the paper [Art+20] and classical Balanced K-means algorithms,
we will use the Davies-Bouldin quality index. For the second one, we propose a
quantum version of the Convex-NMF algorithm. This means we propose a quantum
version of the algorithm to find the global minimum of the functional ∥X− XWG∥2

F
for a real valued matrix X. We adopt an alternate optimization strategy for this
functional leading to two independent optimization problems for fixed G and W
respectively. As already mentioned, our quantum approach is based on the D-Wave
quantum annealer which deals with binary optimization problems. We explain here
how to construct the two QUBOs problems to find the two matrices W and G. Both
of these QUBOs will be executed in D-wave 2000Q to find the two matrices W and G
that minimize the Frobenius norm ∥X− XWG∥2

F. This is a constrained optimization
problem. The constraints are, on the one hand, on the non-negativity of all elements
of G and W respectively, and on the other hand, the sum of rows/columns of G/W is
always equal to 1.

6.1 Quantum annealing

In order to find the global minimum of an objective function we use the quantum an-
nealing, which was first proposed by B. Apolloni et all in 1988 in the following papers
[ADFCB88][ACDF89] and has been subsequently reformulated in [KN98][Fin+94]. In
2012, D-wave announced the first computer for quantum annealing with 128 qubits.
This adiabatic quantum computer prepares a Hamiltonian, i.e. prepares a quantum
system with several interconnected qubits. These qubits are superposed at the be-
ginning of the processing. The computer will then evolve this Hamiltonian in an
adiabatic way to find the solution of the problem. Today, it is possible to go up to
2000 qubits with D-wave 2000Q quantum computer. This computer is deposited by
D-wave in open source [Fin17], it contains the necessary tools for quantum annealing
and solves the QUBO problem in a hybrid way on quantum processors and classical
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hardware architectures using the Qbsolv software. D-Wave quantum annealer manip-
ulates the QUBO problems in a native way [McG14]. It starts with a set of superposed
qubits, with each qubit having the same probability of state 0 and state 1. After a few
microseconds, we found the classical states in the qubits that represent the minimum
energy of the problem, or a state very close to it.

In order to use this quantum computer we just need to transfer the problem to
a QUBO problem, and we do the embedding to give the problem as input to D-wave
2000Q, this later search for the global minimum of the QUBO.

The generic QUBO problem has the following form:

∑
b

ψ(b)qb + ∑
b<b′

ψ′(b, b′)qbqb′ (6.1)

where ψ(b) ∈ R are the linear coefficients, ψ′(b, b′) ∈ R are the quadratic coefficients
of the problem and qb, qb′ ∈ B for all i, j ∈ [0, n] where B = {0, 1} and 0 ⩽ j ⩽ i ⩽ n.
n is the number of binary variables of the problem.

The problem can be formulated using matrix notation as follows:

min
q∈Bn

qTΨq (6.2)

where Ψ ∈ Rn×n is a symmetric n× n matrix containing the coefficients ψ(b) and
ψ′(b, b′) and q it’s a binary vector.

6.2 Balanced K-means using Quantum annealing

Balanced K-means algorithm is a special case of K-means algorithm, with K-means
we try to divide the dataset into k clusters, and the clusters can be of different size,
with Balanced K-means, all the k clusters are of the same size N/k. In this section, we
propose a new quantum version of the Balanced K-means algorithm in the D-wave
quantum computer, we modify the QUBO formulation of Balanced K-means that has
been proposed in the paper [Art+20] and we demonstrate that our setup provides the
best results.

6.2.1 QUBO formulation of Balanced K-means

The QUBO of Balanced K-means has already been constructed in the paper [Art+20].
This latter demonstrates how we can write the Balanced K-means problem in the
following form :

min
q∈Bn

qTΨq (6.3)

The authors of this paper have started with the objective function of the classical
K-means:

min
C

K

∑
k=1

∑
x∈Ck

∥x− wk∥2 (6.4)

where X = {x1, x2, . . . xN} is the dataset, C = {c1, c2, . . . , cK} is the set of K clusters
and each wk is the centroid of the cluster ck where k = 1, . . . , K.

We can write the problem (6.4) as follows if we use the law of total variance:



128 Chapter 6. Clustering using Quantum annealing

min
C

K

∑
k=1

1
2|ck| ∑

x,x′∈ck

∥x− x′∥2 (6.5)

In the case of Balanced K-means, each cluster contains the same number of data, so
|ck| is the same for all clusters, so the equation (6.5) can be reformulated as follows :

min
C

K

∑
k=1

∑
x,x′∈ck

∥x− x′∥2 (6.6)

To construct the QUBO problem of problem (6.6), the paper [Art+20] defines a dis-
tance matrix D ∈ RNxN where each dij denotes the distance between xi and xj, also,
it defines a binary matrix Φ where ϕij = 1 if only if the element xi is in the cluster cj.

Using these two matrices D and Φ, we write the following formula :

∑
x,x′∈Ck

∥x− x′∥2 = ϕT
j Dϕj (6.7)

where ϕj is the jth column of the matrix Φ.

Through this equation, the paper starts the construction of the QUBO problem of the
Balanced K-means. It starts by converting the Φ matrix into a vector as follows:

ϕ = [ϕ11 . . . ϕN1ϕ12 . . . ϕN2 . . . ϕ1k . . . ϕNK]
T

So, the equivalent of (6.6) if we use the vector ϕ is:

min
ϕ

ϕT(Ik ⊗ D)ϕ (6.8)

Ik is the identity matrix of dimension K.

In general, when building QUBOs, the constraints are included in the form of penalty
terms. The paper [Art+20] includes the following penalty term (6.9) to add the con-
straint that guarantees that each cluster contains N/K elements at the end of the
clustering.

α(ϕT
j ϕj −

N
K
)2 (6.9)

In order to make sure that each data element belongs to a single cluster, the authors
of [Art+20] add the following constraint:

β(ϕT
j ϕj − 1)2 (6.10)

The two constants α and β are used to make the two penalties sufficiently large in
order to ensure that the two constraints are always respected.

The paper [Art+20] uses these penalties and proposes the QUBO corresponding
to the Balanced K-means (6.6) as follows:

min
ϕ

ϕT(IK ⊗ (D + αF) + HT(IN ⊗ βG)Q)ϕ (6.11)
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where
F = 1N −

2N
K

IN and G = 1K − 2IK (6.12)

1N is a matrix of ones of the dimension N × N.

The matrix H ∈ BNK×NK defined as follows:

hij =

{
1 if j = Nmod(i− 1, k) + i−1

k + 1
0 else

(6.13)

The problem (6.11) and the general representation of the QUBO (6.3) are equivalent if
we take:

q = ϕ and Ψ = (IK ⊗ (D + αF) + HT(IN ⊗ βG)Q) (6.14)

6.2.2 How we can set up the QUBO to find better results?

The two constants α and β are very important to get good results. The paper [Art+20]
chooses these two constants as follows:

α =
max(D)

2(N/K)− 1
and β = max(D) (6.15)

with max(D) denote the maximum distance in the matrix D.

The choice of β here is made in a very general manner on the whole dataset. In
some cases, it can generate problems to assign elements to clusters. For example,
consider the case of two variables ϕi and ϕj where we try to minimize α1ϕi + α2ϕj +
β(ϕiϕj − 1)2, to ensure that this equation evaluates the minimum that is possible and
that ϕi and ϕj aren’t both at 0 at the same time, we must choose the right value of β.

If we follow the proposal of β in (6.15), the problem of non-assignment of elements in
the clusters can be encountered. In order to solve this problem, we propose to use a
vector of weights instead of a general constant on the dataset. Each data element x in
the dataset is associated with a weight that is equal to the sum of distances of this
element with all elements divided by the sum of distances between all elements in
the dataset. So, the constant β for us is chosen as follows:

β = [β1, . . . , βN ] (6.16)

where

βi =
∑N

j=1 dij

∑N
i=1 ∑N

j=1 dij
(6.17)

On the other hand, for non-assigned elements, the paper [Art+20] proposes to auto-
matically add these elements to the first cluster. In our case, to get the best results, we
calculate the centroids of the founded clusters and then we assign each non-assigned
element to the closest cluster.

6.2.3 Results and analysis of Quantum Balanced K-means

The optimization problem (6.11) is equivalent to the following minimization problem:
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min
ϕ

k

∑
l=1

N

∑
j=1

N

∑
i=1

d

∑
m=1

ϕil(xim − xjm)
2ϕjl (6.18a)

+ α
k

∑
l=1

N

∑
j=1

N

∑
i=1

ϕil fijϕjl + β
N

∑
l=1

k

∑
j=1

k

∑
i=1

ϕligijϕl j (6.18b)

Therefore, in order to test and compare the results of our algorithm with the results
found by the approach of the paper [Art+20], we just change the constant β in this
last minimization problem (6.18). For the approach of the paper [Art+20] we use the
following constants:

α =
max(D)

2(N/k)− 1
and β = max(D) (6.19)

For our approach we use:

α =
max(D)

2(N/k)− 1
and β = [β1, . . . , βN ] (6.20)

where

βi =
∑N

j=1 dij

∑N
i=1 ∑N

j=1 dij
(6.21)

datasets

D-wave 2000Q handles a collection of qubits and a group of couplers between certain
pairs of qubits. The challenge is that there are some qubits in the quantum computer
that are not connected between them. The connectivity of those qubits is represented
by a chimera graph, each node of this chimera graph is a qubit and each edge is a
connexion between two qubits. This chimera graph has a very specific architecture
[Bun+14]. An example of a chimera graph is shown in Figure 6.1 with 512 qubits,
they are grouped by 8 and every group is connected to adjacent groups by 4 edges.
The same architecture is maintained for D-wave 2000Q but with 2048 qubits. The
architecture clearly shows that the chimera graph is not completely connected.

On the other hand, in the QUBO problem (6.18), all the coefficients of the quadratic
part are not equal to zero, which means that the qubits of the QUBO (6.18) are com-
pletely connected between them. Therefore, the chimera graph of our problem is
completely connected.

Consequently, running our problem directly in the D-wave 2000Q is not possible.
In order to make it possible, we use several qubits to represent each variable of our
problem. That means, we need to embed our chimera graph in the chimera graph of
D-wave 2000Q.
In Figure 6.2, we illustrate the number of qubits, that we can use in D-wave 2000Q for
our problem according to the number of data in the dataset and in the case of three
clusters K = 3.

According to this constraint, we have chosen the following datasets:
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FIGURE 6.1: A chimeric graph that interconnects the qubits of a
D-wave system. Every vertex of this graph represents a qubit and
the edges between the vertices represent the connection between the

qubits.

FIGURE 6.2: The number of used qubits in D-wave 2000Q after the
embedding of our problem according to the number of data in the

dataset processed in the case of 3 clusters.

• Iris: is a very well known dataset in the field of machine learning. This dataset
contains three classes. Each one has 50 elements. One cluster is linearly separa-
ble but the other two are not.

• Wine: is a dataset of three classes, where each cluster represents the chemical
analysis of a type of wine grown in the same region in Italy. This dataset has
178 instants with dimension 13.

• Breast Cancer: is a dataset of two classes and has 569 instants with dimension
32. Here we will use only a subset of this dataset.
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Used metric

To evaluate the performance of our approach and other approaches, we use the
Davies-Bouldin index [DB79]. This is a well-known index in the field of unsupervised
machine learning to evaluate the quality of clustering. This index can be formulated
as follows:

DB =
1
K

K

∑
k=1

max
k ̸=k′

dn(wk) + dn(wk′)

d(wk, wk′)
(6.22)

where K is the number of clusters, dn is the average distance of all elements from the
cluster Ck to their cluster center wk, d(wk, wk′) is the distance between clusters centers
wk and wk′ . More the value of DB is lower, more the clustering is better.

Assignment results

The first comparative study that we can do here is to determine which approach
assigns the most data to clusters. After running the problem (6.18) in D-wave 2000Q
with the two different β, we present the results obtained in the two Figures 6.3 and
6.4. In both Figures, clusters are represented by the three colors: green, yellow, and
blue, and unassigned elements are represented by the red color.

((A)) ((B)) ((C))

FIGURE 6.3: The assignment results of the Iris dataset (A), Wine dataset
(B) and Breast Cancer dataset (C) using the approach of [Art+20].

((A)) ((B)) ((C))

FIGURE 6.4: The assignment results of the Iris dataset (A), Wine dataset
(B), and Breast Cancer dataset (C) using our approach.

After analyzing the Figures 6.3 and 6.4, we see that our approach allows us to assign
all the elements of the Iris dataset except one, and the approach proposed by [Art+20]
gives back several elements not assigned. For the Wine dataset, we can see that
our approach also gives back more non-assigned elements but not so many as the
approach proposed by [Art+20]. For the breast cancer dataset, all data are assigned to
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the clusters by the two different approaches.

Based on these results, we can assume that our approach is better in the case of
data assignment to clusters.

Clustering results

Figures 6.5 and 6.6 represent the clustering results after the execution in D-wave
2000Q quantum computer. Figure 6.5 shows the results of the approach proposed by
the paper [Art+20] and Figure 6.6 shows the results of our approach.

((A)) ((B)) ((C))

FIGURE 6.5: The results of the clustering of the Iris dataset (A),
Wine dataset (B) and Breast Cancer dataset (C) using the approach of

[Art+20].

((A)) ((B)) ((C))

FIGURE 6.6: The results of the clustering of the Iris dataset (A), Wine
dataset (B), and Breast Cancer dataset (C) using our approach.

To compare the results found by our approach and the approach of the paper [Art+20]
and the classical approach of Balanced K-means we use the Davies-Bouldi index
introduced in the paragraph 6.2.3. Table 6.1 shows the obtained results for the three
datasets Iris, wine, and Breast cancer using the algorithms: Balanced K-means, classi-
cal K-means, Quantum Balanced K-means proposed by [Art+20] and our Balanced
K-means.
In Table 6.1 we can confirm that our approach is the most efficient than the others. It
has the smallest Davies-Bouldi index among the four treated approaches.

Concerning the execution time of the three approaches, our approach and the ap-
proach of [Art+20], no differences are apparent at the execution level in the D-wave
2000Q quantum computer, it’s less than 20ms for the three datasets. On the other
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Dataset BK-means K-means QBk-means Our Approach
Iris 0.69 0.66 0.73 0.67

Wine 0.525 0.53 0.93 0.44
Breast Cancer 0.75 0.50 1.04 0.48

TABLE 6.1: Davies-Bouldi results for Balanced K-means, K-means,
Quantum balanced K-means proposed by [Art+20] and our Quantum

balanced K-means

hand, concerning the classical approach, it’s 565ms for Iris, 501ms for Wine, and 7.04s
for Breast Cancer. This speed of the execution of our approach and [Art+20] approach
comes back from the computational power of the quantum computer. Unfortunately,
the number of qubits that can be used in D-wave 2000Q is limited, so we cannot test
our approach on large datasets to see the real difference between the classical and the
quantum approach.

6.3 Convex Non-negative Matrix Factorization Through Quan-
tum Annealing

In this section, we provide the quantum version of the Convex Non-negative Matrix
Factorization algorithm (Convex-NMF) by using the D-wave quantum computer.
More precisely, we use D-wave 2000Q to find the low-rank approximation of a
fixed real-valued matrix X by the product of two non-negative matrices factors W
and G such that the Frobenius norm of the difference X − XWG is minimized. In
order to solve this optimization problem we proceed in two steps. In the first step,
we transform the global real optimization problem depending on W, G into two
QUBOs problems depending on W and G respectively. In the second step, we use an
alternative strategy between the two QUBOs problems corresponding to W and G to
find the global solution. The running of these two QUBOs problems on D-wave 2000Q
need to use an embedding to the chimera graph of D-wave 2000Q, this embedding
is limited by the number of qubits of D-wave 2000Q. We perform a study on the
maximum number of real data to be used by our approach on D-wave 2000Q. The
proposed study is based on the number of qubits used to represent each real variable.
We test our approach on D-Wave 2000Q with several randomly generated datasets to
prove that our approach is faster than the classical approach and also to prove that it
gets the best results.

6.3.1 Classical and Convex NMF

We briefly describe below the classical version of non-negative matrix factorization
and its convex version. Let X = (X1, X2, . . . , XN) ∈ RM×N , be a data matrix with
M rows and N columns, here Xn ∈ RM×1 represents the nth column of X. In what
follows ∥ · ∥ stays for the Euclidean norm and ∥ · ∥F for the Frobenius norm. Let K be
a fixed input parameter. To refer to the (m, n) element of a matrix X, we either write
xmn or Xmn. Finally, subscripts or summation indices k will be understood to range
from 1 to K, subscripts or summation indices n will range from 1 up to N (the number
of data vectors), subscripts or summation indices m will range from 1 up to M (the
dimension of data vectors) and subscripts or summation primes indices will be used
to expand inner products between vectors or rows and columns of the same matrix.
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Classical NMF

In the classical NMF we consider that the data matrix has only non-negative ele-
ments. The classical NMF gives a low-rank approximation of X by the product of
two non-negative matrices FG where the factors are F = (F1, F2, . . . , FK) ∈ RM×K

+ ,
G = (G1, G2, . . . , GK)

T ∈ RK×N
+ and T denotes the transpose operator. The NMF

decomposition could be formulated as a constrained optimization problem by mini-
mizing the following error function:

(F, G) = argmin
F,G≥0

∥X− FG∥2
F. (6.23)

The non-negativity constraints problem in the matrix form are F, G ≥ 0.

Convex NMF

In the Convex-NMF we consider that the data matrix X is a real valued matrix.
The Convex-NMF problem can be solved if we find the two matrices W and G that
minimized the function:

(W, G) = argmin
W,G≥0

∥X− XWG∥2
F (6.24)

where X ∈ RM×N , W ∈ RN×K
+ and G ∈ RK×N

+ . In other words, the matrix W
represents the positive weights coefficients such that we have:

Fk =
N

∑
n=1

wnkXn = XWk.

All the elements in matrices W and G are non-negatives such that:

N

∑
n=1

wnk = 1 and
N

∑
n=1

gkn = 1. (6.25)

NMF algorithms

The NMF decomposition has been studied early by Golub and Paatero [PT94],[XHP99].
Several families of algorithms are proposed to solve this matrix approximation prob-
lem. The approach proposed by Lee and Seung [LS01] is based on a gradient descent
strategy that adaptively defines the gradient rates leading to multiplicative update
rules. Another solution is to use an alternate least square strategy. We start with
a random initialization of G and after that usually unfolds two phases: at first the
functional is minimized with respect to F while in the second phase, the functional
is minimized with respect to F, or W in the convex version. These algorithms could
converge to a stationary point which is not necessarily global minima. There is no
guarantee that we can exactly recover the original matrix from F and G or W and
G so we will approximate it as best as possible in terms of the approximation error
measured in the Frobenius norm. The work of Lee and Seung [LS01] reveals that NMF
has an inherent clustering property, i.e., it automatically clusters the columns of input
matrix X since the matrix columns vector factor (F1, F2, . . . , FK) could be considered
as cluster centroids while the the matrix rows vector factor (G1, G2, . . . , GK)

T could
be considered as cluster indicators. This fact brought much attention to NMF in
machine learning and data mining communities. The aim of clustering is to cluster
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the columns of X, so as to optimize the difference between X and the clustered matrix
revealing significant block structure. When G is an orthogonal matrix GTG = I, the
resulting non-negative matrix factorization (NMF) is equivalent to relaxed K-means
clustering (see [DHS05]). The K-means clustering is one of the most widely used
clustering methods early developed by Lloyd [LLo82]. To summarize, the K-means
clustering problem can be formulated as a matrix approximation problem [LS01]
where the clustering aim is to minimize the approximation error between the original
data X and the reconstructed matrix based on the cluster structures.

6.3.2 How we can deal with real values in QUBO problems?

In the QUBO problem, we use only binary variables, so we use the method described
by D. Ottaviani and A. Amendola in [OA18] to switch from a real representation to a
binary representation. In [OA18] a generic real element xmn is represented as follows:

xmn = α
B

∑
b=0

2bqb (6.26)

with α a constant and B + 1 is the number of binary variables used to represent the
element xmn.

Therefore, to perform a general binary representation of a row of a matrix, we take
the matrix X ∈ RM×N where each Xm ∈ R1×N is the m-th row of this matrix. In order
to represent this vector with binary variables we represent each item of this vector by
B + 1 binary variables. To do that, we use the following set:

Qn ≡ {n(B + 1), n(B + 1) + 1, . . . , n(B + 1) + B} (6.27)

where n ∈ {0, 1, . . . , N}. If we take n = 0, then the first item of the vector Xm, is
represented by Q0 ≡ {0, 1, . . . , B} and if we take n = 1, then the second item of the
vector Xm, is represented by Q1 ≡ {(B + 1), (B + 2), . . . , 2B + 1} and so on. So, to
represent a row Xm we reformulate the general transformation as follows:

Xm =
N

∑
n=0

B

∑
b=0

βm
nbqb (6.28)

where

βm
nb =

{
α · 2b−n(B+1) if b ∈ Qn,
0 if b /∈ Qn.

(6.29)

Therefore, we use (B + 1)×M× N binary variables to represent a matrix X ∈ RM×N .
In the case where B = 9, α = 0.001, we can represent every real value xmn ∈ [0, 1.023].

6.3.3 Modeling the Convex-NMF problem by QUBOs problems

In this subsection we present our strategy to find the two matrices W and G. We will
use the alternate optimization idea to decompose the initial problem (6.24) into two
different optimization independent problems. This strategy gives us the possibility
to define two QUBOs problems which will be solved separately. Then we show the
procedure to get the linear and quadratic coefficients for our problems, at the end we
discuss the problem of embedding to the chimera graph of D-wave 2000Q and the
maximum size of data that we can use.
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Convex-NMF decomposition

Firstly, we fix the matrix W and we solve with respect to G the following minimization
problem:

min
G≥0
∥X− XWG∥2

F (6.30)

secondly, we fix the matrix G and we solve with respect to W the following minimiza-
tion problem:

min
W≥0
∥X− XWG∥2

F. (6.31)

In order to satisfy the conditions described in (6.25), we add two constraints on the
two problems described by (6.30) and (6.31) respectively. We rewrite these problems
as follows:

min
G

∥X− XWG∥2
F +

K

∑
k=1

[
1−

N

∑
n=1

gkn

]2
 (6.32)

and

min
W

∥X− XWG∥2
F +

K

∑
k=1

[
1−

N

∑
n=1

wnk

]2
 (6.33)

Regarding the squared Frobenius norm of a matrix, we recall the following properties:

∥X∥2
F =

M

∑
m=1

N

∑
n=1

x2
mn =

N

∑
n=1
∥xn∥2 (6.34a)

=
N

∑
n=1

xT
n xn =

N

∑
n=1

(XTX)nn = Tr(XTX) (6.34b)

By definition, note that the functional ∥X− XWG∥2
F takes this form:

∥X− XWG∥2
F = Tr(XTX− 2GXTXW + WTXTXWGGT) (6.35a)

= Tr(XTX)− 2Tr(XTXWG) (6.35b)

+ Tr(WTXTXWGGT) (6.35c)

In (6.35) the first term is constant with respect to G and W.

By direct computations of the second term, we get:

Tr(XTXWG) =
M

∑
m=1

N

∑
n=1

K

∑
k=1

N

∑
n′=1

xmnxmn′wn′kgkn (6.36)

The second term is a first order term with respect to G or W.

For the third term Tr(WTXTXWGGT), we obtain:

K

∑
k=1

N

∑
n=1

M

∑
m=1

N

∑
n′=1

K

∑
k′=1

N

∑
n′′=1

wnkxmnxmn′wn′k′gk′n′′gkn′′ (6.37)
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Minimization problem with respect to G

In this case, we fix the matrix W and we are interested to rewrite our functional with
respect to the matrix G as a variable. To this end, the equation (6.36) writes:

Tr(XTXWG) =
N

∑
n=1

K

∑
k=1

(XTXW)nkgkn (6.38)

while the equation (6.37) writes:

Tr(WTXTXWGGT) =
K

∑
k=1

K

∑
k′=1

N

∑
n=1

(WTXTXW)kk′gk′ngkn (6.39)

It follows that:

∥X− XWG∥2
F = Tr(XTX)− 2

N

∑
n=1

K

∑
k=1

Ankgkn (6.40a)

+
K

∑
k=1

K

∑
k′=1

N

∑
n=1

Bkk′gk′ngkn. (6.40b)

where A = XTXW and B = WTXTXW.

The constraint ∑K
k=1

(
1−∑N

n=1 gkn

)2
in (6.32) can be written as (6.41).

K

∑
k=1

1− 2
N

∑
n=1

gkn +
N

∑
n=1

N

∑
n′=1
n′ ̸=n

gkngkn′ +
N

∑
n=1

g2
kn

 (6.41)

Minimization problem with respect to W

In the case of the problem described by (6.33) we fix the matrix G and we are interested
to rewrite our functional with the matrix W as a variable. To this end the (6.36) writes:

Tr(XTXWG) = Tr(GXTXW) (6.42a)

=
N

∑
n=1

K

∑
k=1

(GXTX)knwnk (6.42b)

Tr(WTXTXWGGT) =
K

∑
k=1

N

∑
n=1

N

∑
n′=1

K

∑
k′=1

Dnn′Ek′kwnkwn′k′ (6.43a)

=
K

∑
k=1

N

∑
n=1

N

∑
n′=1
n′ ̸=n

K

∑
k′=1
k′ ̸=k

Dnn′Ek′kwnkwn′k′ (6.43b)

+
K

∑
k=1

N

∑
n=1

DnnEkkw2
nk (6.43c)
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It follows that:

∥X− XWG∥2
F = Tr(XTX)− 2

N

∑
n=1

K

∑
k=1

Cknwnk (6.44a)

+
K

∑
k=1

N

∑
n=1

DnnEkkw2
nk (6.44b)

+
K

∑
k=1

N

∑
n=1

N

∑
n′=1
n′ ̸=n

K

∑
k′=1
k′ ̸=k

Dnn′Ek′kwnkwn′k′ (6.44c)

where C = GXTX, D = XTX and E = GGT.

The constraint ∑K
k=1

(
1−∑N

n=1 wnk

)2
in (6.33) can be written as (6.45).

K

∑
k=1

1− 2
N

∑
n=1

wnk +
N

∑
n=1

N

∑
n′=1
n′ ̸=n

wnkwn′k +
N

∑
n=1

w2
nk

 (6.45)

Construction of the QUBOs of our problems

In what follows we describe how to transform the two problems described in (6.32)
and (6.33) to two independent QUBOs problems with respect to G and W. In both
equations (6.32) and (6.33), W and G are matrices with real values. Therefore we use
the method introduced in 6.3.2 to present these values with binary variables. After
that, it is enough to find the two coefficients of each QUBO (linear coefficients ψ(b)
and quadratic coefficients ψ′(b, b′)).

Binary minimization problem with respect to G

For the problem (6.32) we define the linear coefficients ψ(b) and the quadratic coeffi-
cients ψ′(b, b′) as follows:

ψ(b) =
N

∑
n=1

K

∑
k=1

(−2(Ank + 1)βk
nb + (Bkk + 1)(βk

nb)
2) (6.46a)

ψ′(b, b′) = 2
K

∑
k=1

K

∑
k′=1
k′ ̸=k

N

∑
n=1

Bkk′β
k′
nbβk

nb′ (6.46b)

+ 2
K

∑
k=1

N

∑
n=1

N

∑
n′=1
n′ ̸=n

βk
nbβk

n′b′ (6.46c)

+ 2
K

∑
k=1

N

∑
n=1

(Bkk + 1)βk
nbβk

nb′ (6.46d)

These formulations follow directly from (6.40) and (6.41).

Binary minimization problem with respect to W
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For the problem (6.33) we define the linear coefficients ψ(b) and the quadratic coeffi-
cients ψ′(b, b′) as follows:

ψ(b) =
N

∑
n=1

K

∑
k=1
−2(Ckn + 1)βn

kb (6.47a)

+
K

∑
k=1

N

∑
n=1

(DnnEkk + 1)(βn
kb)

2 (6.47b)

ψ′(b, b′) =
K

∑
k=1

N

∑
n=1

2(DnnEkk + 1)βn
kbβn

kb′ (6.47c)

+ 2
K

∑
k=1

N

∑
n=1

N

∑
n′=1
n′ ̸=n

(
K

∑
k′=1
k′ ̸=k

Dnn′Ek′kβn
kbβn′

k′b′ + βn
kbβn

kb′) (6.47d)

These formulations follow directly from (6.44) and (6.45).

Embedding in D-WAVE 2000Q

After having built the two QUBOs of our problems, we notice that the coefficient
for each pair of qubits b and b′ is not zero, ψ′(b, b′) ̸= 0. This remark allows us to
deduce that the qubits of our problem are completely connected between them. It
means that the chimera graph which represents the connection of the qubits of our
problem is completely connected. On the other hand, D-wave 2000Q processes a set
of qubits and a set of couplers between some pairs of qubits. The problem here is that
there exist qubits in the quantum processor of this computer that are not connected
between them. So, the execution of our problem directly in D-wave 2000Q is not
possible. To make it feasible we use multiple qubits to represent each variable b of
our problems. That means we need to embed our chimera graph into the D-wave
2000Q chimera graph. On the other hand, to calculate the maximum number of real
values that can be used in our problems, we consider these two conditions:

• According to 6.3.2, we use 10 qubits to represent all the real values xmn ∈
[0, 1.023].

• The chimeras graphs of our problems are completely connected.

FIGURE 6.7: The number of qubits used in D-wave 2000Q after the
embedding of a problem completely connected, in the case where each
real number is represented by 10 qubits (B = 9 and ψ′(b, b′)! = 0 for

each b ̸= b′).

The Figure 6.7 shows the maximum number of real values that we can process using
our approach in D-wave 2000Q. Unfortunately, until now, we can’t test our approach
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on a large dataset. The matrices that we can factorize using our approach in the
D-wave 2000Q quantum computer must not exceed 65 real values. In other words, if
we have a dataset X ∈ RM×N , it is necessary that M× N ≤ 65.

6.3.4 Results and test on D-wave’s quantum computer

In order to test our approach we generate randomly a dataset X ∈ RM×N with
M = 20 and N = 3. In this case we have N ×M = 60 ≤ 65. Therefore we can use
our approach in D-wave 2000Q to approximate the two matrices G and W. Firstly,
we build the QUBO of the problem (6.32) and we execute this QUBO in D-Wave
2000Q to find the matrix G. Secondly, we use this matrix G to build the QUBO of the
problem (6.33) and we execute this QUBO in D-wave 2000Q to find the matrix W.
After finding the two matrices, we represent the two best centers by the red color in
Figure 6.8 as follows:

FIGURE 6.8: Results of the test in D-wave 2000Q, each figure repre-
sents one of the best results returned by D-wave 2000Q. The red color

represents the centroids and each cluster is represented by a color.

In Figure 6.8, we can clearly see that our approach is able to find the right centroids
of clusters. These results are very interesting, even if it is on a small dataset because
it proves that our approach works well and that the D-wave quantum computer can
find the right results that minimize the two optimization problems (6.30) and (6.31)
with only one iteration for each problem.

The major limitation of our approach is the number of data that we can handle
for each of the two problems defined in the Equations (6.30) and (6.31) respectively.
Indeed the actual quantum computers cannot exceed 65 real values in the data matrix.
This limitation is related to the number of qubits that we can manipulate in the
D-wave quantum computer. However, our approach will be a very pertinent solution
to solve the problem of computation time if we have quantum computers with a
large number of qubits. This limitation will be a distant memory after a period of
time. Because with the results of the paper [Vah+21], we can move to silicon quantum
processors with millions of qubits instead of the current devices with a few qubits.

Run time analysis

In order to analyze and compare the computing time of our approach with the
classical approach, we made several executions on several small randomly generated
datasets (X1, X2, . . . , X12), each data of these datasets x ∈ Xi is a vector of R2. The
maximum number of real values that we can use in our approach is 65, so we have
generated 12 random datasets with different sizes and containing at most 64 reals
values. We have run our approach on these datasets and also the classical Convex-
NMF approach to compare the computing time of each approach. The results of this
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analysis are displayed in Figure 6.9 with the red color for classical Convex-NMF and
green for Quantum Convex-NMF and the blue color presents the time to find the
matrix G and orange to find W in D-wave 2000Q.

FIGURE 6.9: Total computing time of Classical Convex-NMF (red
color) and Quantum Convex-NMF (green color) as the number of
points of the dataset. The blue color is the total computing time to find

G and the orange to find W.

The green curve in the Figure is simply the sum of the two curves orange and blue.
This is intrinsically due to our alternative strategy, in order to find the results using
our approach, we solve the first QUBO to find G and then the last QUBO to find W.
Therefore, the total running time on D-wave 2000Q is simply calculated as the sum of
the running times of these two problems. By comparing the total time spent to solve
the problem with our approach (the green curve) and the time taken by the classical
convex-NMF approach (the red curve), we can see clearly that our approach is very
fast than the classical approach.

6.4 Conclusion

In this chapter, we have discussed the quantum version of the two algorithms Bal-
anced K-means and Convex-NMF. We have modified the Quadratic Unconstrained
Binary Optimization (QUBO) of the Balanced K-means algorithm proposed by Arthur
and Davis in the paper [Art+20], we have proposed a new constants that handle
the belonging of an element of data to two clusters. The constants proposed by the
paper [Art+20] are very generic, which leads the approach to give many non-assigned
elements. In our approach, we have proposed a vector of constants where each
element of the dataset is associated with an element of this vector. Moreover, we have
done a comparative analysis between the two approaches to prove that our approach
is able to assign the largest number of data to clusters, and we have shown that our
approach gives the best clustering by comparing the Davies-Bouldi index. We have
proposed a new approach for the Convex-NMF algorithm in D-wave 2000Q. In this
approach, we have proposed to decompose the Convex-NMF optimization problem
on two QUBOs problems: the first to find the matrix G and the second to find the
matrix W which minimizes the norm difference between the data matrix X and the
matrix product XWG where all elements of G and W are non-negative and on the
rows/columns they sum up to 1. To work with real values we used a transformation
proposed in [OA18], this transformation allows us to find a binary representation
of the problem from a problem with real variables. Before testing our approach on
D-wave 2000Q, we made a study to find the maximum number of real data to use
in our problems, this study is based on the number of qubits of D-wave 2000Q, the
connection of these qubits (chimera graph architecture) and according to the number
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of qubits used to represent each real variable in the QUBO. Our approach is tested on
a small dataset generated randomly, to demonstrate that our approach works well
and that the D-wave quantum computer is able to find the right clusters of the dataset.
Also, we have made several tests to demonstrate that our quantum approach is faster
than the classical method. Until today, we cannot test our approach on large datasets,
because the number of qubits in D-wave quantum computers is limited. We hope
that in the coming years the number of qubits in quantum computers will increase.
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Chapter 7

Application case: Fuel Pool Cooling
System

As an application, we will deal with the case of a small system of three trains, of
8 components, 5 pumps, 2 CCWS, and one CHRS. The diagram of reliability of
this small system is presented in Figure 7.1, and the descriptions of its components
are presented in Table 7.1 where the probabilities are randomly generated . The
constraints of breakdowns of the components are the following: (i) components of
train 2 can’t break down except if train 1 is already broken down, (ii) components of
train 3 can’t break down except if the two first trains are already broken down.

FIGURE 7.1: FPCS system reliability diagram

Index Component Probability of failure Probability of being repaired
0 Fuel Pool In 0.12 0
1 Pomp 1 0.12 0
2 Pomp 2 0.312 0
3 Pomp 3 0.192 0
4 Pomp 4 0.122 0
5 Pomp 5 0.12 0
6 CCWS 1 0.12 0.12
7 CCWS 2 0.2 0
8 CHRS 0.13 0
9 Fuel Pool Out 0.21 0

TABLE 7.1: Description of the FPCS components
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7.1 Research of combinations of basic events that can generate
serious accidents

In order to find the events that can generate unacceptable consequences if they break
down simultaneously, we need to find all the combinations of the basic events that
can stop the flow between the Fuel Pool In (FPI) and the Fuel Pool Out (FPO) in
the system. To do this, we represent the reliability diagram by an oriented graph
using the paper [Hib13], and we use our quantum approach that we have done in
the chapter [ch:QVSP] to find all the minimal cuts of this oriented graph. Using the
reliability diagram (Figure 7.1), we find the graph in Figure 7.2, each vertex of this
graph represents a system component, and each arc represents the flow between two
components.

FIGURE 7.2: Representation of the system by a directed graph

In order to simplify the notations, we code each component of the system by an
identifier vi, and the source FPI by the vertex s and FPO by the vertex t, in the Table
7.2 we show each component with its identifier vi.

Com Pomp 3 Pomp 2 Pomp 1 Pomp 4 Pomp 5 CCWS 1 CCWS 2 CHRS
Id v1 v2 v3 v4 v5 v6 v7 v8

TABLE 7.2: Components identification

After this encoding, we show the graph in Figure 7.3. Finding the combinations
of basic events that can cause a loss of flow between the FPI and FPO of the system is
as simple as finding the subset of vertices that can break the flow between the vertex
s and the terminal t of the graph 7.3.

In order to find the subset of vertices that can stop the flow between the source
s and the terminal t, we use our approach proposed in chapter 3. We start by creating
12 qubits:

|ψ0⟩ = |c0, c1⟩ ⊗ |s, v1, . . . , v8, t⟩ (7.1)
= |0, 0⟩ ⊗ |0, 0, . . . , 0, 0⟩ (7.2)

= |0⟩⊗12 (7.3)
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FIGURE 7.3: Directed graph of the system

the two first qubits |c0, c1⟩ for the control, the qubit |s⟩ represents the source, the qubit
|t⟩ represents the terminal, and each qubit |vi⟩ represents a vertex vi.

We apply the X gate in the qubit |s⟩ to represent the source in the following quantum
state:

|ψ1⟩ = I2⊗X⊗ I9 |ψ0⟩ (7.4)
= |c0, c1⟩ ⊗ X |s⟩ ⊗ |v1, . . . , v8, t⟩ (7.5)
= |0, 0⟩ ⊗ |1, 0, . . . , 0, 0⟩ (7.6)

We apply the oracle Os (see Figure 7.4) to make the movement to the successors
of s, which gives the first cut:

|ψ2⟩ = Os |ψ1⟩ (7.7)
= Os |c1, c2⟩ ⊗ |1000000000⟩ (7.8)
= |c1, c2⟩ ⊗ |0111110000⟩ (7.9)

FIGURE 7.4: The first oracle Os of the movement of s to its successors

This new state |ψ2⟩ is equivalent to |vi⟩ = |1⟩ for i = 1, 2, 3, 4, 5, |vi⟩ = |0⟩ for i = 6, 7, 8
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and |s⟩ = |t⟩ = |0⟩. If we note the set of cuts of the graph by Cs, in this step, with the
state |ψ2⟩, we have a first cut in the set of cuts Cs = {{v1, v2, v3, v4, v5}}.

The second step consists in applying a second oracle which allows to establish the
movement of the vertex v1 towards its successors starting with the state |ψ2⟩. So the
oracle Ov1 (see Figure 7.5) is applied:

|ψ3⟩ = Ov1 |ψ2⟩ (7.10)
= Ov1 |c1, c2⟩ ⊗ |0111110000⟩ (7.11)
= |c1, c2⟩ ⊗ |0111110000⟩+ |c1, c2⟩ ⊗ |0011110100⟩ (7.12)

FIGURE 7.5: The Oracle Ov1 for the movement of v1

After this oracle a new state is added to the superposition, which means that a new
cut is added to the set of cuts, this state is |s, v0, . . . , v8, t⟩ = |0011110100⟩ which
translates into the new cut {v2, v3, v4, v5, v7}. Then, the set of found cuts becomes:
Cs = {{v1, v2, v3, v4, v5}, {v2, v3, v4, v5, v7}}. We apply the remaining oracles on |ψ3⟩,
all the remaining oracles are represented in the circuit of Figure 7.6.

FIGURE 7.6: Oracles Ov8Ov7Ov6Ov5Ov4Ov3Ov2

The final superposition |ψ f ⟩ is obtained as follows:
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|ψ f ⟩ = Ov8Ov7Ov6Ov5Ov4Ov3Ov2 |ψ3⟩ (7.13)

= Ov8Ov7Ov6Ov5Ov4Ov3Ov2 |c1, c2⟩ ⊗ (|0111110000⟩+ |0011110100⟩) (7.14)
= |c1, c2⟩ (7.15)
⊗ (|0111110000⟩+ |0011110100⟩+ |0101111000⟩+ |0001111100⟩ (7.16)
+ |0110111000⟩+ |0010111100⟩+ |0100111000⟩+ |0000111100⟩ (7.17)
+ |0111010100⟩+ |0011010100⟩+ |0101011100⟩+ |0001011100⟩ (7.18)
+ |0110011100⟩+ |0010011100⟩+ |0100011100⟩+ |0000011100⟩ (7.19)
+ |0111100010⟩+ |0011100110⟩+ |0101101010⟩+ |0001101110⟩ (7.20)
+ |0110101010⟩+ |0010101110⟩+ |0100101010⟩+ |0000101110⟩ (7.21)
+ |0111000110⟩+ |0011000110⟩+ |0101001110⟩+ |0001001110⟩ (7.22)
+ |0110001110⟩+ |0010001110⟩+ |0100001110⟩+ |0000001110⟩) (7.23)

(7.24)

By filtering the non-minimal cuts, we found the following minimal cuts: Cs =
{{v1, v2, v3, v4, v5}, {v6, v1, v4, v5}, {v2, v3, v7, v5}, {v1, v2, v3, v4, v8}, {v6, v1, v4, v8},
{v2, v3, v7, v8}, {v6, v7, v5}, {v6, v7, v8}}. According to these results, we replace each
identifier with its corresponding name, which is the same as the one shown in Table
7.2. The final results obtained are:

• CCWS 2, CCWS 1, and Pomp 5

• CHRS, CCWS 2 and CCWS 1

• CHRS, CCWS 2, Pomp 2, and Pomp 1

• CCWS 2, Pomp 5, Pomp 2 and Pomp 1

• CHRS, CCWS 1, Pomp 4, and Pomp 3

• CCWS 1, Pomp 5, Pomp 4 and Pomp 3

• Pomp 5, Pomp 4, Pomp 3, Pomp 2 and Pomp 1

• CHRS, Pomp 4, Pomp 3, Pomp 2 and Pomp 1

7.2 Research of failure scenarios

In order to search the failure scenarios of the FPCS system, we use the above-
mentioned failure constraints to build the graph of states of the whole system (
the components of train 2 do not break down unless train 1 is down, and the compo-
nents of train 3 do not break down unless both train 1 and 2 are down). This graph of
states has 144 vertices (144 possible states of the system) and 434 edges between these
vertices (434 possible actions in the system). Each vertex of this graph represents a
state of the system, each edge represents an action in the system (a failure or a repair
of a component of the system), and the states that correspond to the minimal cuts are
indicated in the graph by marked vertices. We take the current state, as the starting
state, where all the elements of the system are in good condition and working well,
and we look for all the paths from this initial state to the marked states.
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In order to perform this research, we use the approach that we have proposed in
??, we compare the obtained results with the results from the classical random walk
approach and we show them in Figure 7.7.

FIGURE 7.7: Number of found scenarios as a function of time

In these results, we found with our approach in total 14135 scenarios and 4964
with the classical random walk approach. In Figure 7.7, we can see clearly that with
our approach we have found this number of scenarios only with 10s, on the other
hand, with the classical approach we have found less even if with 20s, and after
10s the number of paths found with our approach is still stable which shows the
convergence of our approach to a stable set of scenarios and that we have found all
possible scenarios.

7.3 How we can find the most similar scenarios?

In the previous section, we have found the scenarios that can be the cause of the
minimal cuts found in section 7.1. We have found 14135 scenarios. In this section,
we will use the two algorithms 8, 9 that we have proposed in 4.2.3, 4.2.2 and the
k-NN algorithm, to classify these scenarios. At present, it’s not possible to use large
quantum computers, in this work, we use IBM simulator with 32 qubits, which
doesn’t allow us to run tests on the whole dataset (14135 scenarios), so, in order to
test the DTW approaches that we have proposed in the previous chapter, we split
these scenarios into several datasets and use each one of them for the test. For each
dataset, we take a part for learning and the other for testing. These partitions are
made by a random choice:

Dataset SC1 SC2 SC3 SC4 SC5 SC6

Length of each scenario 8 7 9 8 9 9
Length of training dataset 44 44 44 64 16 16

Length of test dataset 24 24 16 16 12 9
Number of classes 3 3 3 3 3 3

TABLE 7.3: 6 datasets of scenarios

The results that we found are shown in Table 7.4.
In this table, we can see that our approach has the highest metric in all datasets, which
demonstrates that using our approach to calculate the distance between scenarios in
our particular problem is the best choice.
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Method SC1 SC2 SC3 SC4 SC5 SC6

Classical DTW 0.25 0.25 0.25 0.81 0.25 0.58
Quantum DTW 0.25 0.25 0.25 0.81 0.25 0.58
Faster DTW-2 0.67 0.44 0.88 0.50 0.44 0.50
Faster DTW-3 0.46 0.25 0.38 0.31 0.19 0.42
Faster DTW-4 0.29 0.25 0.19 0.25 0.19 0.33
Faster DTW-5 0.25 0.25 0.19 0.25 0.25 0.33

QDTW-w 0.75 0.67 0.88 0.81 0.75 0.67

TABLE 7.4: Results of k-NN algorithm using QDTW

7.4 FPCS system scenario generator

In the section 7.2, we searched all the scenarios from the initial state of the FPCS
system, this initial state is represented by the empty set, i.e. all the elements of the
system are working correctly. If this initial state changes, we must search again for all
scenarios from the new state. This search process is very long for large systems. In the
industry, it is necessary to take a decision as fast as possible to avoid the deterioration,
we will wait for the end of the research of all the possible scenarios. So, how can
get a general idea about the effects of the change of state? To answer this question,
we have proposed in 4, to learn Quantum Hidden Markov Models (QHMMs) able
to detect a probable or not probable scenario for a given objective and to generate
failure scenarios from any initial state of the system.

Consider the critical states of the system: C1, C2, . . . , C8. Assume that the datasets
X1, X2, . . . , X8, have all possible failure scenarios that can make the system go to the
critical states C1, C2, . . . , C8 respectively. In order to detect whether a scenario can
generate a specific severe accident based on the system history, we learn QHMMs,
for each dataset Xi we learn a model Mi with i = 1, . . . , 8.

After that, we use these models and at each change of state of the system, we calculate
the probability by each model, and with the model that gives the highest probability,
we can detect the most possible critical state from this transition.

We learn these 8 models using datasets Xi and we process the sequence
[0, 7, 102, 2, 24, 114, 90, 55] step by step, i.e. we start with the state where all is work-
ing well and follow the system at each switching of states. In the normal case of
the system, all the elements are in the operating state, so the state of the system is
represented by 0. Let’s assume that the system switches to state 7. Then, we have a
sequence represented by [0, 7]. We use the 8 models, calculate the probability of this
sequence [0, 7] and display the results in Figure 7.8.

FIGURE 7.8: The probability of the sequence [0, 7] using the 8 models
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In Figure 7.8, we can see that all models give a non-null probability, which indicates
that this switch of state can lead to the 8 various critical states. Also, we can see that
the model 6, gives the highest probability, which signifies that the most probable
critical state following this switch of the state is the one that is represented by the
model 6. We take the processed sequence and process each change of state, the
sequences become as follows:

• A: [0, 7, 102]

• B: [0, 7, 102, 2]

• C: [0, 7, 102, 2, 24]

• D: [0, 7, 102, 2, 24, 114]

• E: [0, 7, 102, 2, 24, 114, 90]

• F: [0, 7, 102, 2, 24, 114, 90, 55]

The results of each state transition are shown in Figure 7.9:

((A)) ((B)) ((C))

((D)) ((E)) ((F))

FIGURE 7.9: The probability found by each model after each state
transition.

In Figure 7.9, we can see the change of probabilities after each change of state, we can
see that both models M4 and M7 disappear from the iteration B, which means that
these changes of state can not generate the two critical states represented by the two
models M4 and M7. At iterations A, B, C, and D, we can see that the most probable
critical state is the one represented by the model M3 and can see that during these
iterations the probability by the model M6 increases compared to the other models.
At iteration E, we can see that all the models have disappeared except the two models
M6 and M8. At the last iteration, only the model M6 remains which classifies the
sequence at the critical state represented by model M6.
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7.5 Conclusion

In this chapter, we have treated the Fuel Pool Cooling System as a case study, we
have shown in detail how to determine the combinations of basic events that can
generate severe accidents in this system, and also showed how we can find all the
possible failure scenarios of this system to reach all the possible severe accidents by
using our quantum algorithm. We have used the QDTW-β method to classify the
sequences. We have shown how we can use the Quantum Hidden Markov Models to
track the changing state of the system in real time.
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Conclusion

The main objective of this dissertation is to propose quantum algorithms able to solve
complex problems in the field of Probabilistic Safety Assessment (PSA) of nuclear
power plants and to propose quantum algorithms equivalent to Machine Learning
algorithms but with less complexity and more performance.

In the first chapter, we have described some concepts related to PSA problems to pro-
vide a good basis to start this dissertation. We have started by giving some generality
and history of this field and present the three main levels of it. We have presented
the operational methods used in this field conventionally today, the problems, and
some motivations for treating this model in the light of quantum computing.

Quantum computing is the principal foundation of this dissertation, to introduce its
basics and to give a general idea about the difference between classical and quantum
information processing. In chapter two, we have given a mathematical review of
quantum computing in a general way and defined what is a quantum system of one
qubit, two qubits, and n qubits. In each case, we have presented how we can apply
transformations to the states of qubits. We have discussed the Quantum Annealing
with the QUBO problem and presented the D-wave system to find the results with
it. We have given the different classes of classical and quantum complexity. Some
well-known algorithms in the field of quantum computing are presented: Deutsch-
Jozsa algorithm, Quantum Fourier transform, Quantum phase estimation, Grover
search algorithm, Quantum Walks, and others algorithms. Several quantum machine
learning algorithms are presented in this chapter, including the Quantum k-means
algorithm, Quantum k-medians algorithm, Quantum Support Vector Machines, Quan-
tum Principal Component Analysis, and Quantum Neural Networks.

The objective of the static PSA problem is to find all the combinations of basic events
of a system that can generate serious accidents like the fusion of the core of the nuclear
power plant. To find these combinations, we can represent the system by a directed
graph and look in it for minimal cuts. So, in the third chapter, we have proposed a
quantum algorithm to find all the minimal cuts of a directed graph. More precisely,
we propose a quantum algorithm that uses movement oracles to generate as output a
superposition of all states that represent the minimal cuts. In this chapter, cuts are
represented by a set of vertices, which can separate the source and the terminal of the
graph, and they are minimal if they contain just the minimal number of vertices to
represent a cut. The complexity of our algorithm is linear, because: it uses only N + 2
qubits, N to represent all the possible combinations of vertices and 2 for the control,
and it uses N oracles of movements, N being the number of vertices of the graph.

The dynamic part of PSA consists in managing the failure scenarios of the system.
These scenarios are represented by sequences of states of the system. The search and
process of these sequences in a reasonable time is a very complex problem. Therefore,
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in the fourth chapter, we use the graph of states of the system to find all failure sce-
narios, in it, we look for paths between the current state of the system and the critical
failure states. We proposed a quantum algorithm that finds all the paths between
two vertices in a DAG with N qubits and M gates (N is the number of vertices of the
graph and M is the number of edges). This algorithm allows us to search for all the
paths to several destinations from a source vertex at the same time. Unfortunately,
due to the size of the quantum computers available today, it is not yet possible to use
this algorithm alone with a single quantum circuit. This is why we have proposed a
second hybrid algorithm that allows us to call the first one to deal with large graphs.
These two algorithms are tested in an IBM quantum simulator with 32 qubits to show
how well our algorithms work and to show the effect of our algorithms converging
to a set of fixed paths as opposed to the classical random walk.

To calculate the similarity between sequences. We proposed two quantum algo-
rithms, the first one QDTW is a quantum version of the DTW algorithm to compute
the similarity between two sequences, by treating the sequences element by element.
This algorithm uses N ×M qubits and 3N ×M gates to build the circuit that finds
the Warping Path between two sequences of sizes N and M. The second algorithm
QDTW-β allows us to find this similarity between two sequences using in addition to
the case of one to one the case of treating the sub-sequences. These sub-sequences
can take different sizes in each sequence and the matching can be passed by two
sub-sequences of different sizes. The biggest advantage of this algorithm is, we use
only N×M qubits which allows us to have a speedup in finding the results compared
to the classical approach ( NP-complete approach). The number of gates increases
depending on the β value. Both algorithms are tested and compared with the classical
approaches. QDTW gives the same results as the classical approach, except that here
it is a quantum algorithm. QDTW-β gives better results than the classical one, either
for finding the best matching or for classification.

Also, we have proposed a strategy to learn failure scenarios for a PSA system. We
have proposed to use QHMM models to generate failure scenarios from a given state
of the system and to identify the probable and no-probable failure scenarios of a sys-
tem. This strategy gives us several advantages compared to the current approaches
used in the field of PSA, among them, by doing the learning only once, we can find
the failure scenarios from any state of the system. In addition, it allows us to generate
new scenarios that we do not have in the dataset. To test this approach, we used
four datasets for two small real systems to show that the QHMMs are more efficient
than the HMMs. Furthermore, it shows that the models can detect probable and
no-probable failure scenarios.

Staying in problems that have high complexity, clustering algorithms are known
that are NP-complete, therefore it’s a good idea to find equivalent quantum algo-
rithms that can do these tasks with less complexity. For this purpose, in the fifth
chapter, we propose a quantum version of the k-means algorithm with logarithmic
complexity. It is an improvement of an existent quantum approach. This reduction of
the complexity comes after proposing a strategy to compute the distance between
the observations and centers of the clusters at the same time with a single quantum
circuit, as well as, the use of Grover’s algorithm to search the nearest centroid. We
have analyzed different methodologies to build quantum states from classical data to
compute distances, we have proposed a quantum version of the Davis-Bouldin index.
The quantum version of k-means gives results as in the classical case, except in the
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quantum version with less complexity. This algorithm belongs to the algorithms that
use universal quantum computers.

On the other hand, for the quantum annealing, in chapter six, we have discussed
the quantum version of the two algorithms Balanced k-means and Convex-NMF. We
have modified the Quadratic Unconstrained Binary Optimization (QUBO) of the Bal-
anced k-means algorithm proposed recently in the state of the art. We have proposed
new constants that handle the belonging of observation of data to two clusters. The
constants of the last proposed approach are very generic, which leads the approach
to give many non-assigned elements. In our approach, we have proposed a vector
of constants where each element of the data set is associated with an element of this
vector. Moreover, we have done a comparative analysis between the two approaches
to prove that our approach can assign the largest number of data to clusters, and we
have shown that our approach gives the best clustering by comparing the Davies-
Bouldin index. We have proposed a new approach for the Convex-NMF algorithm
in D-wave 2000Q. We have proposed to decompose the Convex-NMF optimization
problem on two QUBOs problems: the first to find the matrix G and the second to find
the matrix W which minimizes the norm difference between the data matrix X and
the matrix product XWG where all elements of G and W are non-negative and on the
rows/columns they sum up to 1. To work with real values, we used a transformation
to find a binary representation of the problem from a problem with real variables.
We have made several tests to demonstrate that our quantum approach is faster than
the classical one. Until today, we can’t test our approach on large datasets, because
the number of qubits in D-wave quantum computers is limited. We hope that in the
coming years the number of qubits in quantum computers will increase.

In the seventh and last chapter, we have treated the Fuel Pool Cooling System as
a case study, we have shown in detail how to determine the combinations of basic
events that can generate severe accidents in this system, and showed how we can
find all the possible failure scenarios of this system to reach all the possible severe
accidents by using our quantum algorithm. We have used the QDTW-β method to
classify the sequences. We have shown how we can use the QHMMs to track the
changing state of the system in real-time.

Future work

An important number of tracks are opened to be treated in the near future, either in
the static part of our problem or in the dynamic part. Among them, we mention the
following:

1. The problem of finding the combinations of basic events that can generate
unacceptable consequences in an installation is the essential basis for the safety
analysis of the installations in nuclear power plants. This problem is NP-
complete, we have proposed in chapter 3 a strategy based on directed graphs
to find all these combinations. Unfortunately, today, we can’t use this algorithm
to deal with large systems (systems with a large number of components) due to
the size of the available quantum computers (the number of available qubits).
Following this issue, the main question that appears is: how can we benefit
in our problem from the power of quantum computers even with a reduced
number of qubits? In answering this question, several other issues arise:
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• How can we make our algorithm Hybrid to handle large systems part by
part?

• How can we split the large system into several small systems and process
them separately? If we use the balanced K-means algorithm proposed
in chapter 6 to split the large directed graph, how can we aggregate the
results of each part to find the final results?

2. If we take the original representation of our problem with fault trees, the
question to be asked is: How to find a quantum circuit able to find all the
minimal cuts of a fault tree with the smallest number of qubits?

3. In the dynamic part of our issue, from the system failure scenarios, how can we
find the weaknesses in the system? and with the calculation of the similarity
between these scenarios, how to choose the most important repairs that should
be done quickly to avoid the greatest number of highly probable scenarios?

4. Testing all the algorithms on real quantum computers with an advanced number
of qubits, such as the IBM quantum computer with 127 qubits, thanks to the
possibility of a partnership between EDF R&D and IBM.
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