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Chapter 1

Introduction

This thesis is developed within the framework of the PhD CIFRE (from french: Con-
vention Industrielle de Formation par la Recherche) from November 2019 till Oc-
tober 2022. Research work has been accomplished between the SAFE team (which
was previously Robust and Linear Systems team (SLR)) at the Gipsa-Lab laboratory
at Grenoble-Alpes University for research in robust control, in collaboration with
Renault research centre (from french: Technocentre).

Since the first foot-step in the world of automotive, huge number of scientists,
engineers and researchers were attracted to this basic field of land transportation.
During the 20th century, this field was subjected to many changes and developments
especially in the autonomous domain. Intelligent and autonomous vehicles are at
the heart of the societal concerns of future transportation. These cars, equipped
with numerous sensors and actuators, will enhance road safety, streamline traffic,
make transportation more accessible to people with disabilities, and participate in
the development of new modes of transportation.

The way an automated vehicle behaves, takes a vital role in rating its acceptabil-
ity. It is important as much as it is general since there exist infinite ways to travel a
vehicle from point A to point B. Specifically, the performance evaluation of any vehi-
cle is done by testing it in critical situations, i.e. how much it is able to deal with criti-
cal lane changes, collision avoidance, instability, sensor failure, autonomous starting
mode, low speed precision, driver emergency, high slipping motions, high oscilla-
tions, aggressive maneuvers, etc. For each automated system in the vehicle, a con-
troller is responsible to provide stability and performance for its motion.

In that context, the field of switching or multi-mode control architecture has been
opened to solve variant tasks and achieve different driving performances. Such an
architecture is resulted from a combination between several controllers to achieve
an interpolated performance. The main problem arises when the transition between
such control algorithms occurs, leading to undesirable instability responses. To cope
with such difficult situations, this PhD is focused on complex dynamic environment
that will lead to advanced control structures, enabling multi-controller transitions
while taking into account sensors failures or traffic circumstances. The motivation
of the thesis, objectives, manuscript organization, and its main contributions are
presented below.

1.1 Motivation

Nowadays, systems are getting more and more complex leading to control algo-
rithms able to consider online varying objectives for performance and safety. The
field of autonomous systems, in particular autonomous vehicles, is indicative of
such an evolution. Indeed, their driving capabilities have been recently improved
for highly, and even fully, autonomous driving thanks to advanced control theory. A
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fully autonomous car needs to perform several tasks including longitudinal control,
lateral control, chassis control, etc.

It is known that the lateral dynamics of an autonomous vehicle varies signif-
icantly with respect to its longitudinal speed. Specifically, at low speeds, the lat-
eral dynamics become harder to be controlled (due to approaching system singular-
ity), whereas at high speeds, robustness and system stability decrease. On the other
hand, even at nominal speeds, the lateral control aims to achieve various objectives
such as lane tracking, lane changing, obstacle avoidance, etc. Consequently, various
performances are required accordingly for different traffic situations that faces the
vehicle. However, it is difficult to design a single controller covering the full speed
range and achieving multiple objectives. This work focuses on developing advanced
switching/interpolating control structures that can guarantee several control objec-
tives over the full speed-range.

In the literature, various techniques have been proposed to obtain parameter-
varying switching/interpolating control structures. In this thesis, Linear Parameter-
Varying (LPV) control approaches and Youla-Kucera (YK) parameterization are in-
troduced to formulate different LPV-YK interpolating/switching control schemes,
guaranteeing stable transition under arbitrary switching.

1.2 Objectives

The main objective of this PhD work is to design a general control configuration able
to maintain different vehicle performances covering the low and high speed vehicle
dynamics. In addition, it can handle different situations including lane-keeping,
lane-changing, obstacle avoidance, etc.

Generally speaking, the focus is on obtaining interpolating/switching control
algorithms running in a real experimental research platform validating the efficiency
of the proposed solutions in a real traffic conditions. The main achievements of this
study are summarized below:

• Review of the state-of-the-art on the field of switching and interpolation of
LPV controllers, and its use in different control applications.

• Define and compare the design and implementation of the main LPV approaches
(polytopic, gridding, and LFT), with experimental validation on autonomous
vehicles. Advantages and disadvantages of each approach are presented also.

• Propose new LPV-YK switching/interpolating control structures to improve
the closed-loop performance and the stability during the switching instants.

• Implement the proposed LPV-YK controllers on lateral control of autonomous
vehicles, in simulation and experimental environments, showing the perfor-
mance improvement.

• The improvement caused by the LPV-YK control approaches on the vehicle lat-
eral performance is shown by either: 1) Adapting the closed-loop specification
regarding the performed lateral task; or 2) Maintaining a constant closed-loop
specification over the full speed range by switching between consecutive pa-
rameter subsets.
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1.3 Manuscript Organization

This PhD manuscript is organized in different eight chapters. A brief summary of
each of the next chapters is represented below:

• Chapter 2, Toward Switching / Interpolating LPV Control: A Review:
This chapter corresponds to a state-of-the-art review that was carried out on
the switching/interpolation of Linear Parameter-Varying (LPV) control ap-
proaches. These concepts have been used to develop theoretical tools solv-
ing many control problems ranging from closed-loop stabilization, robust con-
trol, gain-scheduling control, switching control to interpolating control. Recent
works are collected and classified providing the latest advances with main ap-
plications in different control fields. A final discussion is presented viewing
the time evolution of the described switching LPV techniques and classifies
them with respect to their applications.

• Chapter 3, Autonomous Vehicles Architecture:
A historical background of Renault projects on automated vehicles is first pre-
sented in this chapter. Then, the architecture of the vehicle platform that has
been used in our experiments is detailed. The vehicle modelling with the steer-
ing actuator dynamics are formulated. In addition, a brief literature review is
shown on the lateral control which has been mainly tackled in this thesis.

• Chapter 4, Application of LPV approaches to Vehicle Lateral Control:
This chapter presents the simulation and experimental implementation of the
polytopic, grid-based and LFT LPV approaches to solve the lateral control
problem on an electric Renault ZOE vehicle. A comparative analysis is shown
among the three LPV approaches to the autonomous vehicle lateral control.
The design of the three approaches from a theoretical point of view as well
as their application on a real vehicle are presented, including a comparative
analysis.

• Chapter 5, Advanced LPV-YK Control Structures: Theoretical Proofs:
Four switching/interpolating control architectures based on LPV and Youla-
Kucera (YK) parameterization are proposed in this chapter, aiming to achieve
robust and adaptive closed-loop specifications (rising time, steady-state error,
etc.). An LPV-YK control architecture incorporates multiple LPV or LTI con-
trollers which can switch/interpolate between them with ensuring stability. It
can be used to interpolate between different control performances aiming to
achieve different closed-loop specifications, or to switch over partitioned pa-
rameter subsets when dealing with systems having large parameter variations.

• Chapter 6, Application of the LPV-YK Structures on Vehicle Lateral Control:
This chapter uses the LPV-YK control structures, presented in the previous
chapter, to improve the vehicle tracking performance over a large speed range.
The performance of the vehicle lateral control is shown to be improved by
either adapting the closed-loop specification regarding the performed lateral
task, or by maintaining a constant closed-loop specification over the full speed
range by switching between consecutive parameter subsets. The chapter first
presents, for each approach, the implementation architecture with its design-
ing steps, then, simulation and experimental results are presented to validate
the efficiency of the proposed LPV-YK control structures.
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• Chapter 7, About The Interpolation Logic of LPV-YK Control: An Example
Using Reinforcement Learning:
An RL-based LPV-YK interpolation scheme is proposed in this chapter, aiming
to achieve an optimal performance with guaranteeing closed-loop quadratic
stability. First, it is shown how the interpolating signals affect the closed-loop
specifications by analyzing the closed-loop step responses. Then, the RL model
is trained and simulated using our Renault’s simulation environment. Simula-
tion results are presented to validate the efficiency of the RL-based interpola-
tion logic.

• Chapter 8, Discussion:
This chapter includes conclusions and most important remarks, with respect
to the problems addressed in the current PhD manuscript. In addition, future
research perspectives that could be derived from the results of this PhD work
are mentioned.

1.4 Contributions

The main contributions in this thesis concern the LPV and YK control concepts with
their implementation on the lateral control of autonomous vehicles, including:

1.4.1 Comparison of LPV approaches concerning modelling, control de-
sign, and experimental implementation on vehicle lateral control

1. Quasi-LPV models are structured using the three LPV approaches from the
nonlinear bicycle model that vary with respect to the longitudinal velocity.

2. To limit the control input effort and to achieve the noise/disturbance rejection
performance, LPV/H∞ problems are solved using a set of LMIs.

3. The design and experimental validation of grid-based and LFT approaches is
carried out for the first time on the lateral control of autonomous vehicles.

4. Input reference is adjusted as a function of the speed and lateral error, mod-
ifying the look-ahead parameter accordingly to deal with large lateral errors
(lane changing) and the small ones (lane tracking).

5. Simulation and experimental results (on a Renault ZOE vehicle) are shown
to compare the performance of the controllers concerning tracking, actuator
limitations and noise/disturbance rejection.

1.4.2 Novel LPV-YK control structures design with stability proofs

Four LPV-YK control structures are proposed. The closed-loop stability of each ap-
proach is analyzed and proved.

1. The first two structures are designed to maintain several control objectives
over the full speed-range. Such structures are considered to be more efficient
than the LPV switching control systems since: 1) There is no limitation on the
switching/interpolating signals; 2) The interpolated LPV controllers are pre-
defined and designed separately without requiring any common condition or
re-design; and 3) The generalized LPV-YK interpolation scheme is defined and
proved to achieve closed-loop quadratic stability with smooth assumptions
and LMI conditions. More details on both structures are shown below:
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• Interpolation of polytopic-based LPV controllers: It is used to interpo-
late between already designed LPV controllers, knowing that all the in-
terpolated LPV controllers should quadratically stabilize the LPV model
for any parameter variations.

• Interpolation of YK-based LPV controllers: This structure uses the LTI-
YK parameterization to first design multiple quadratically stabilizing LPV
controllers. Then interpolates between these YK-based LPV controllers
providing a whole closed-loop quadratic stability.

2. The other two LPV-YK control structures are grid-based and partitioned polytopic-
based LPV-YK. Their main objective is to switch smoothly between local YK-
based LPV controllers, each is designed to be suitable over a certain parameter
subregion. Their interest is to decrease the control design conservatism and
limitations compared to the standard LPV control approaches, and improving
the closed-loop performance. For more details:

• Switching of partitioned YK-based LPV controllers: It is designed aim-
ing to solve the conservatism of the quadratic stability problem due to
overbounding (in convex regions), large number of varying parameters,
and their large range of variations. A YK-based LPV controller is de-
signed in each parameter subset, and the switching appears at the inter-
section boundary between each two consecutive subsets.

• Switching of grid-based LPV controllers: This structure is formulated to
switch between multiple grid-based LPV controllers, each is designed to
be useful over its subset. Each parameter subset is gridded and the local
LPV controllers are required to be exponentially stabilizing.

1.4.3 Implementation of the proposed LPV-YK controllers on lateral con-
trol

1. The implementation steps of each LPV-YK control structure are detailed and
some of them are simulated using our Renault simulator.

2. For the first time, the LPV-YK control structures are implemented and ex-
perimentally validated on a real Renault ZOE vehicle. Experimental tests on
the vehicle lateral control enhance the stability of the closed-loop system, and
show the different performances achieved by the vehicle.

1.4.4 Propose an RL-based LPV-YK interpolation scheme

An RL-based LPV-YK interpolation scheme is proposed aiming to achieve an opti-
mal performance with guaranteeing closed-loop quadratic stability. Specifically:

1. Analyze how the interpolating signals affect the closed-loop specifications us-
ing step response analysis.

2. The RL model is trained and simulated using the Renault simulator for succes-
sive lane changes at different vehicle speeds.

1.5 Publications

The scientific contributions derived as a result of the developed research work are
listed below:
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1.5.1 Journals

Title: Interpolation of Multi-LPV Control Systems Based on Youla-Kucera
Parameterization
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Journal: Automatica
Status: Published by Elsevier. Volume: 134
Reference: Hussam Atoui, Olivier Sename, Vicente Milanes, John J. Martinez,
Interpolation of multi-LPV control systems based on Youla–Kucera parameterization,
Automatica, Volume 134, 2021, 109963, ISSN 0005-1098.

Title: LPV-Based Autonomous Vehicle Lateral Controllers: A Comparative
Analysis
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Journal: IEEE Transactions on Intelligent Transportation Systems
Status: Published by IEEE. Volume: 23 . Pages: 13570 - 13581 .
Reference: H. Atoui, O. Sename, V. Milanés and J. J. Martinez, "LPV-Based
Autonomous Vehicle Lateral Controllers: A Comparative Analysis," in IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 8, pp. 13570-13581, Aug. 2022.

Title: Toward Switching / Interpolating LPV Control: A Review
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Journal: Annual Reviews in Control
Status: Published by Elsevier.
Reference: Hussam Atoui, Olivier Sename, Vicente Milanes, John-Jairo Martinez,
Toward switching/interpolating LPV control: A review, Annual Reviews in
Control, 2022, ISSN 1367-5788.

Title: Multi-Variable and Multi-Objective Gain-Scheduled Control Based on
Youla-Kucera Parameterization: Application to Autonomous Vehicles
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Journal: International Journal of Robust and Nonlinear Control
Status: Submitted and under review

Title: Advanced LPV-YK Control Design with Experimental Validation on
Autonomous Vehicles
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Journal: Automatica
Status: Submitted and under review
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1.5.2 Conferences

Title: Design And Experimental Validation Of A Lateral LPV Control Of
Autonomous Vehicles
Authors: H. Atoui, V. Milanes, O. Sename, J. Martinez
Conference: 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC)
Place: Rhodes, Greece. Date: September 20 - 23

Title: Real-Time Look-Ahead Distance Optimization for Smooth and Robust
Steering Control of Autonomous Vehicles
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Conference: 2021 29th Mediterranean Conference on Control and Automation
Place: Puglia, Italy. Date: June 22 - 25

Title: Intelligent Control Switching for Autonomous Vehicles based on
Reinforcement Learning
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Conference: 2022 33rd IEEE Intelligent Vehicles (IV) Symposium
Place: Aachen, Germany. Date: June 5 - 9

Title: Smooth Switching of Multi-LPV Control Systems Based on
Youla-Kucera Parameterization
Authors: H. Atoui, O. Sename, V. Milanes, J. Martinez
Conference: 2022 5th IFAC Workshop on Linear Parameter Varying Systems
(LPVS)
Place: Montreal, Canada. Date: September 27 - 30

Title: Design and experimental Validation of anH∞ Adaptive Cruise
Control for a Scaled Car
Authors: W. Sayssouk, H. Atoui, A. Medero, O. Sename
Conference: 2021 10th International Conference on Mechatronics and Control
Engineering (ICMCE 2021)
Place: Lisbon, Portugal. Date: July 26 - 28

1.5.3 Patents

Because of the CIFRE opportunity at Renault, I had the opportunity to collaborate
in several projects, leading to different patents submissions. Below includes a list of
my cooperation within my working time at Renault.



8 Chapter 1. Introduction

Title: Procédé de supervision du fonctionnement d’un véhicule automobile.
Authors: H. Atoui, V. Milanes, O. Sename, J. Martinez
Status: Accepted by Renault SAS.
Year: 2021

Title: Méthode de supervision pour le contrôle d’un véhicule automobile
autonome.
Authors: H. Atoui, I. Mahtout, V. Milanes, O. Sename, J. Martinez
Status: Accepted by Renault SAS.
Year: 2020

Title: Méthode de contrôle pour contrôler le déplacement d’un véhicule
automobile autonome.
Authors: H. Atoui, I. Mahtout, V. Milanes, O. Sename, J. Martinez
Status: Accepted by Renault SAS.
Year: 2020

Title: Dispositif et procédé d’évaluation d’un système d’aide à la conduite
pour véhicule automobile, le système d’aide à la conduite mettant en oeuvre
un réseau neuronal.
Authors: N. Fernandez, H. Atoui
Status: Accepted by Renault SAS.
Year: 2021

Title: Méthode d’aide à la conduite d’un véhicule automobile autonome sur
une route.
Authors: V. Milanes, I. Mahtout, D. Gonzalez, H. Atoui
Status: Accepted by Renault SAS.
Year: 2020
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Chapter 2

Toward Switching / Interpolating
LPV Control: A Review

This chapter corresponds to a state-of-the-art review that has been carried out on
the switching/interpolation of Linear Parameter-Varying (LPV) control approaches.
These concepts have been used to develop theoretical tools solving many control
problems ranging from closed-loop stabilization, robust control, gain-scheduling
control, switching control to interpolating control. This chapter collects the recent
works and classifies them providing the latest advances with main applications in
different control fields. A final discussion presents the time evolution of the de-
scribed LPV techniques and classifies them with respect to their applications.

This chapter presents the literature review shown in:

• Toward Switching/Interpolating LPV Control: A Review, see [1].

The rest of the chapter is organized as follows: Section 2.1 presents the funda-
mentals of the LPV modelling, control, and its applications. In Section 2.2, LPV-
switched systems are represented including the switching methods: hysteresis and
Average Dwell-Time (ADT). To solve the aggressive transient switching, the smooth
LPV switching technique is explained in Section 2.3. Section 2.4 introduces the LPV
control interpolation based on bumpless transfer. The fundamental of Youla-Kucera
(YK) parameterization is depicted in Section 2.5 including some of its applications.
In Section 2.6, the LPV-YK control interpolation is presented with its new appli-
cations in different domains. Finally, the concerned LPV switching/interpolating
approaches as represented in a timeline with application classification in the last
section.

2.1 LPV Systems

Since 1970s, robust control research field started [2]. From a practical point of view,
linearization at different operating points was deeply investigated in the literature
[3]. Linear systems are of several types such as Linear Time-Invariant (LTI), Linear
Time-Varying (LTV), and Linear Parameter-Varying (LPV) systems. These systems
can be formulated as LPV system which can be considered the most generalized
form. LPV concept surged as a control technique that can use LTI synthesis tools to
control a nonlinear model. The studies tended to improve robustness in addition to
the optimal performance which can handle parameter variations in the plant model.

Consider the following LPV system:

G(ρ) :


ẋ(t) = A(ρ)x(t) + B1(ρ)w(t) + B2(ρ)u(t)
z(t) = C1(ρ)x(t) + D11(ρ)w(t) + D12(ρ)u(t)
y(t) = C2(ρ)x(t) + D21(ρ)w(t) + D22(ρ)u(t)

(2.1)
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where x(t) ∈ Rnx , y(t) ∈ Rp, u(t) ∈ Rm, z(t) ∈ Rnz are the state, output, input,
controlled output vectors respectively. w(t) contains the exogenous inputs, and ρ ∈
Rnp is a vector of np measurable varying parameters that belongs to P . P is the
parameter space which can be represented by the below set:

P := {ρ(.) := [ρ1 . . . ρnp ]
T ∈ Rnp and ρi ∈ [ρ

i
, ρi]∀i = 1, ...., np}

It can be shown that according to the following cases of ρ, different types of
systems can be achieved:

• ρ=constant, the system is Linear Time-Invariant (LTI).

• ρ = ρ(t), where the variation of ρ with respect to time is known explicitly, the
system is Linear Time-Varying (LTV).

• ρ = ρ(x(t)), the system is called quasi-Linear Parameter Varying (Quasi-LPV)
system.

• ρ = ρ(t), which is an external parameter, the system is Linear Parameter-
Varying (LPV).

Notice that if the model parameters can be measured online, a gain-scheduling
between LTI controllers, designed at different operating points, can be used [4]. Oth-
erwise, the unmeasurable parameters are considered as model uncertainties in the
control design to reduce their effects on the closed-loop performance [5].

For time-varying systems, it may not be possible to find a single Linear Time-
Invariant (LTI) controller that can perform well for all operating conditions. There-
fore, the Linear Parameter-Varying (LPV) control concept has been successfully de-
veloped to achieve a stable gain-scheduling [6], self-scheduling [7] or interpolation
[8] between LTI systems synthesized at different operating points. The importance
of the LPV approach to control general nonlinear systems comes from the fact that
the system can be written in the form of a quasi-LPV, where the parameter can vary
as a function of states, inputs or outputs and not just considered as exogenous inputs
[9]. [10] and [11] present successful application example of LPV/robust techniques
to different domains. In the last decades, research studies have developed multi-
variable control systems using gain-scheduling techniques, see for instance the pio-
neering works [12], [13]. Gain-scheduling control is used when a plant changes sig-
nificantly among different operating conditions; which is actually the case in many
real applications, see [14] and references therein.

2.1.1 LPV/H∞ Control Design

LPV/H∞ controllers have been widely used for different objectives: noise rejection,
parameter uncertainties, significant parameter variations, vibration control, track-
ing control, etc. This section defines the design of an LPV/H∞ controller based on
Linear Matrix Inequality (LMI) satisfying the closed-loop stability. The robust H∞
control approach is usually used to design an LPV control. The main objective of the
H∞ control is to minimize the L2 induced gain from the external input w to the con-
trolled output z. This is achieved by solving the following L2 induced minimization
problem:

∥z∥2 ≤ γ∞ ∥w∥2

and γ∞ > 0, to be minimized, represents how much the demanded performance is
achieved. If γ∞ < 1, the demanded performance is totally achieved by the controller.
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Among the three approaches, each controller is designed by solving its correspond-
ing LMI-based optimisation problem. For each approach, the complexity of LPV
controller existence conditions is determined in terms of the size of LMIs and the
number of decision variables.

Consider a generalized plant P(ρ) as follows:

P(ρ) =


ẋ(t) = Ap(ρ)x(t) + B1(ρ)w(t) + B2(ρ)u(t)
z(t) = C1(ρ)x(t) + D11(ρ)w(t) + D12(ρ)u(t)
y(t) = C2(ρ)x(t) + D21(ρ)w(t) + D22(ρ)u(t)

(2.2)

−→

 ẋ
z
y

 =

 Ap(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

 x
w
u

 (2.3)

The LMI-based LPV/H∞ control design in Appendix A shows infinite optimization
problem due to the infinite possibilities of values of the scheduling parameters. Usu-
ally, the formulation of an LPV control problem requires to solve an infinite number
of Linear Matrix Inequalities (LMIs) due to the parameter space. Methods have been
proposed to reduce the problem to a finite set of LMIs: polytopic [7], [15], grid-based
[16], and Linear Fractional Transformation (LFT) [6] approaches that have been dis-
cussed in the literature. An informative review on the three approaches is drawn in
[14]. Currently, there exists a commercial LPV toolbox [17] for use in MATLAB that
focuses on model reduction and gridding-based LPV control.

The synthesis of an LPV control can be formulated as an LMI optimization prob-
lem using a single Lyapunov function, either quadratic [12] or parameter-dependent
[18]. Early synthesis methods have been limited to slow parameter variations [19],
however, methods have been proposed over the years allowing arbitrarily fast pa-
rameter variations [7]–[20]. Moreover, it has been shown how incorporating bounds
on the parameters’ rate of variation can reduce control design conservatism, see for
instance, [5] and [21]. A recent significant survey on LPV control approaches for
suspension systems is shown in [22].

2.1.2 Polytopic Approach

The polytopic approach is the most popular among the LPV control approaches [14].
In many fields, engineers are interested in applying the gain-scheduling method
based on optimized designs at different operating points. However, the application
of this approach is limited to only a few scheduling parameters. This is due to the
exponential growth of the vertices with the number of parameters. In many appli-
cations, it is unnecessary to consider the full hyperbox spanned by all combinations
of extrema of the scheduling parameter values, as some portions are physically in-
admissible. It may then be possible to find tighter convex sets that require fewer
vertices.

Overbounding of the parameter set is considered as a main cause of conser-
vatism. The operating region of the underlying LPV model is defined by a convex
polytope containing the parameter trajectories. This convex parameter region may
include vertices that are not attained by the real plant, resulting in conservatism.
The reason is that the construction of the polytope is based on the assumption that
all parameters vary independently, whereas they could be related to each other by
inherent couplings. For example, the known bicycle model describing the lateral
dynamics of an autonomous vehicle is parameterized by the scheduling parameters
"vx" and "1/vx" [23] (being vx the longitudinal speed). Such a situation might cause
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unstable models at the vertices of the polytope. In addition, the parameters could
be physically correlated with each other, such that some combinations of extreme
values of the parameters do not occur in real operation. For example, an LPV model
describing the vertical flight dynamics of an aeroplane might be parameterized by
the external scheduling signals (i.e., parameters) “speed” and “altitude.” But usu-
ally, the maximum speed is not reached for minimum altitude and vice versa [24].

Several solutions have been investigated in the literature to find a reduced con-
vex parameter region. Several solutions has been investigated in the recent survey
[25]. [26] suggests to construct convex polyhedrons along given parameter trajecto-
ries, and solve the control design problem using affine parameter-dependent LMIs.
Unfortunately, these methods often result in a huge number of vertices or nonconvex
parameter sets and thus in increased computational burden. Scheduling Dimension
Reduction (SDR) approach based on principal component analysis is proposed in
[24], [27], [28] which changes the coordinate basis. This method could be used to
reduce the parameter set based on experimental data [24], and yields the benefit
of tailoring a control design to specific trajectories. Gridding the signal range can
also be done [27],[28], to obtain a more comprehensive approximate representation
without experimental data, which is especially useful if the plant is unstable. The
multiconvexity approach has been proposed, extended to polynomial parameter-
dependent LMIs (PLMIs), and relaxed by incorporating slack variables in [29]. Other
approaches are convex approximations and so-called difference convex representa-
tions [30]. In [31], a Deep Neural Network (DNN) approach is used to develop the
SDR methods and achieve higher model accuracy under scheduling dimension re-
duction. In [32] and [33], authors develop an LPV switching controller and prove
its stability when switching among the overlapped subsets of a polytopic parameter
region.

Another reason, which makes the polytopic LPV synthesis conservative, is that it
requires a constant Lyapunov function to ensure quadratic stability, which increases
the problem conservatism. For more illustration, consider a closed-loop LPV system
CL(ρ), where ρ belongs to a polytopic parameter region P . Then, the closed-loop
quadratic stability is achieved according to the following theorem.

Theorem 1. Define Acl(ρ) as the state matrix of the closed-loop system CL(ρ). The closed-
loop quadratic stability is achieved for every ρ ∈ P , and for any parameter variation ρ̇, if
there exists a constant, positive definite Lyapunov matrix P satisfying condition (2.4).

PAcl(ρ) + AT
cl(ρ)P < 0 (2.4)

Later, a solution has been proposed in the literature to design LPV controllers
based on parameter-varying Lyapunov function [18].

2.1.3 Grid-based Approach

The grid-based approach is based on the definition of a mesh on the parameter re-
gion. A grid-based LPV system is formulated using a linear or nonlinear interpo-
lation between the corresponding LTI systems at the gridded operating points. It
is known that a higher density of gridded points is required for better interpola-
tion performance. An advantage of this technique is that it is applicable for any LPV
plants with general parameter-dependency, requiring neither polytopic nor LFT rep-
resentations. Moreover, model elements like lookup tables can be introduced in the
design, since gridding is not restricted to convex regions. Consequently, the Lya-
punov variable can be parameterized by general parameter dependency [18].
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The implementation of the controller is computationally inexpensive, but may
require large amounts of memory, to store the local controllers. The implementation
scheme may consider an interpolation or a switching between local controllers. In
general, this approach is limited to a few scheduling signals because of the exponen-
tial increase in grid points, hence memory requirements or interpolation complexity.
Note, however, that if observer-based synthesis is performed, parameter-dependent
state-feedback matrices of both observer and controller can be computed online each
by a single matrix inversion without the need to store multiple controllers in mem-
ory [34], [35], [36].

Consider a closed-loop LPV system CL(ρ), where ρ belongs to a gridded param-
eter region P . Then, the closed-loop exponential stability is achieved according to
the following theorem.

Theorem 2. Define Acl(ρ) as the state matrix of the closed-loop system CL(ρ). The closed-
loop exponential stability is achieved for every ρ ∈ P , and for a bounded parameter variation
ρ̇ ∈ [ν, ν], if there exists a positive definite, parameter-dependent Lyapunov matrix P(ρ)
satisfying condition (2.5).

Ṗ(ρ) + P(ρ)Acl(ρ) + AT
cl(ρ)P(ρ) < 0 (2.5)

2.1.4 LFT Approach

An LPV-LFT system is formulated as a Linear Fractional Representation (LFR) con-
taining the nominal LTI system and the model uncertainties block (see [6] for more
illustration). LFT control synthesis using D-scalings is presented in [6] and [37],
which is then refined to D/G-scalings in [38], [39], and [40]. The underlying theory
to LFT LPV controller synthesis essentially relies on the S-procedure [41], and its
variants and extensions, most notably the so-called full-block S-procedure (FBSP),
[42], [43]. A general unifying approach to both LFT and grid-based LPV synthe-
sis was presented in [20]. Historical surveys of the S-procedure can be found in
[44] and [45]. The S-procedure was also used early on for robust/LPV analysis
problems, already extending to less conservative results using parameter-dependent
Lyapunov functions [46], [47]. It was much later, that LFT LPV synthesis was ex-
tended to parameter-dependent Lyapunov functions [21], while the basic idea was
first presented in [48]. A general framework for the synthesis of uncertain dynami-
cal systems described by standard linear fractional representations, and robust gain-
scheduling controllers by convex optimization techniques has been investigated in
[49].

2.1.5 LPV Control Applications

The three LPV control approaches have been widely used and experimentally vali-
dated in different applications. Knowing that most of the real systems are accurately
modeled as nonlinear, the LPV approaches have been chosen to simplify the control
design problems providing both stability and multi-objective performance. Such
an advantage has encouraged researchers and engineers to apply the LPV control
approaches on real systems such as aircrafts, aero-engines, vehicles, and different
electronic and mechatronic systems. Recently, the three LPV approaches have been
compared and experimentally validated on a real automated vehicle in [23].
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Polytopic Approach:

Since the polytopic controller has been considered to be the simplest to design and
implement, plenty of works have investigated its application to several kinds of sys-
tems. Active Magnetic Bearing (AMB) system has been modelled and controlled
using the polytopic approach in [50],[51],[52], [53], [54], [55], [56]. The polytopic
approach has been mainly chosen due to its high robustness in dealing with input
disturbances and parameter uncertainties.

An example of a more complex LPV model can be a three degrees-of-freedom
(3-DOF) robotic manipulator that is introduced in [57]. A polytopic controller that
is scheduled affinely on 16 different scheduling parameters has been designed and
simulated in MATLAB on an accurate nonlinear model. In [57], [58], [59], [60], [61],
[62], [63], [64], [65], the design complexity of the robotic manipulators, due to its high
number of scheduling parameters, has been tackled by employing different methods
such as a principle component analysis-based reduction of parameter set.

Additionally, the polytopic controller has been widely used in different kinds
of applications, including engine control [66], [67], [68], miscellaneous mechatronic
systems [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], vehicle motion control
[79], [80], [11], [81],[82], academic test benches [83], [84], [85], [86], [87], noise can-
celling headsets and vibration control test benches, [88], [89], [90], [91], aerospace
flight control [92], aero-engine systems [93] temperautre control [94], and computer
sciences [95].

Grid-based Approach:

The grid-based approach has been raised since the pioneering works [16] and [5]
and the experimental results in flight control shown in [96], with interesting results.
This approach has been mainly used for systems that have shown high conservatism
when using the polytopic approach, in particular, aircraft motion control [97] and
[98]. The grid-based approach has been used also in vehicle control for: 1) Auto-
mated lane guidance [99]; 2) Automated driving via visual feedback [79]; 3) Longi-
tudinal and lateral tracking controls [100]; 4) Brake control [101]; 5) Electric steering
system [102]; and 6) Car engine control [103].

Moreover, several applications are introduced in the literature using the grid-
ding approach including AMB [104], robotics [105], [106], engine control [107], [108],
[109], wind turbine [110], and the control of a control moment gyroscope [111], [112],
and aero-engine control [113].

LFT Approach:

LFT LPV synthesis with full-block multipliers has been successfully applied in [114],
validating simulation results shown in [115]. Even though the LFT controllers have
not been widely used compared to the polytopic and the gridding approaches, ex-
perimental results with industrial relevance were published between 2001 and 2014.
These include CD players [116], [117], induction motors [118], [119], engine control
[120], [121], [122], and a wafer stage [123]. In addition, it is worth mentioning that the
LFT approach has been experimentally validated on lateral control of autonomous
vehicles [124].

Like the polytopic and gridding approaches, the LFT control synthesis has been
tested on the AMB system [125], [126], flight control [127],[128], and aero-engine
[129]. It has been widely used in the field of active noise cancellation headsets and
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vibration control [6] that is also followed by [130], [131], [132], [133], [134]. In [135],
a diesel engine controller has been designed using the LFT approach.

2.1.6 LPV complexity

The application of LPV techniques on robotic manipulators has been always chosen
to validate methods aiming to solve the high LPV complexities with large number
of scheduling parameters [27], [57], [136], [137]. Moreover, negative examples of
applied LPV controllers that do not show an increase in performance are given in
[75], [76]. [75] compares the LPV technique against a classical gain-scheduled PI
control approach, which consists in designing LTI controllers for several operating
points and then applying an interpolation strategy. In [76], a comparison is shown
between an LPV control with a classical gain-scheduling approach and constant non-
scheduled LTI controllers. The performance increase obtained by the LPV controller
is considered insignificant. In both works, possible reasons are stated in the conser-
vatism due to parameter-independent Lyapunov functions, which is not a restriction
when classical gain-scheduling is applied [75].

Nowadays, systems are getting more and more complex leading to control al-
gorithms able to consider online varying objectives for performance and safety. For
instance, the field of autonomous systems, in particular autonomous vehicles, is in-
dicative of such an evolution. Indeed, their driving capabilities have been recently
improved for highly, and even fully, autonomous driving thanks to advanced control
theory. A fully autonomous car needs to perform several tasks including longitudi-
nal control, lateral control, chassis control, etc. Moreover, the lateral dynamics of an
autonomous vehicle varies significantly with respect to its longitudinal speed [138],
[139]. Specifically, at low speeds, the lateral dynamics becomes harder to be con-
trolled (due to approaching system singularity), whereas at high speeds, robustness
and system stability decrease [140]. On the other hand, even at nominal speeds, the
lateral control aims to achieve various objectives such as lane tracking, lane chang-
ing, obstacle avoidance, etc. Consequently, various performances are required ac-
cordingly for different traffic situations that faces the vehicle. However, it is difficult
to design a single controller covering the full speed range and achieving multiple
objectives. As shown below, some solutions have been investigated in the literature
to design LPV switched/interpolated control systems.

2.2 Switching LPV Systems

Describing system dynamics over a large scheduling parameter region by a sin-
gle LPV model would lead to significant modeling errors, and hence inevitably
degrades the closed-loop system performance [141]. In addition, it could be very
conservative to design a single LPV controller that aims to shape the closed-loop
performance over a certain operating condition, or according to critical/fault situa-
tions.

Fig. 2.1 shows a parameter region P divided into multiple subregions, so that
P =

⋃
i∈[1,4]

Pi. The ith subregion is denoted by Pi(ρ) (i ∈ ZN = {1, 2, . . . , N}).

The sub-systems for adjacent subregions are to be switched according to different
laws, including scheduling-parameter-dependent laws, state-dependent laws or ex-
ternal switching signals. In 2004, Lu and Wu [142] have proposed a switching LPV
control design based on multiple parameter-dependent Lyapunov functions, each
suitable for a specific parameter subregion, the switching allowing to achieve better
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FIGURE 2.1: Multiple parameter subregions

performance. The switching stability has been studied for hysteresis switching and
switching with average dwell-time strategies [142].

Later, several research studies have been focused on relaxing the LPV switching
stability constraints [143], [144], [145], [146], [147], [148], [149], [150]. It is worth
mentioning that, in the literature, it has been often proposed to design the multiple
LPV controllers in the same form and order. Even though the local LPV controllers
can have different order and form, however switching stability conditions will be
difficult to derive. The assumption of same-order controllers has been always taken
into consideration to primarily simplify the stability issue and controller synthesis.

The switching LPV controllers are usually designed offline, and their switching
logic is determined in terms of scheduling parameter region division. The switching
stability is often proved by non-increasing Lyapunov functions in the switching se-
quence. In [142], hysteresis switching and average-dwell-time switching strategies
have been introduced, and different control synthesis conditions have been proved
for each strategy. In addition, the minimum switching strategy has been reported
in [151]. These switching strategies impose constraints on Lyapunov matrices or
switching signals on switching surfaces and achieve guaranteed switching stability.
The switching strategies are illustrated more in the next section.

2.2.1 Switching strategies

Switching systems can be seen as a hybrid system of the continuous-time system
and discrete-time switching signal. The neighboring controllers to be switched are
always assumed to be in the same form and order to simplify the stability prob-
lem and controller synthesis complexity. It is noted that this dissertation also fol-
lows this assumption. In the literature, there are many studies about the switching
strategies and switching stability conditions, in particular, for linear systems [152],
[148], [153]. These switching strategies have been extended to switching LPV sys-
tems [154], [142]. In this section, the state-of-art research about switching LPV sys-
tem and control will be covered, then popular switching strategies and associated
switching stability conditions of LPV systems will be given. Consider the closed-
loop autonomous LPV system without external inputs in (2.6) for analysis of switch-
ing stability,

CLi(ρ) : {ẋ(t) = Acl,i(ρ)x(t) (2.6)
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FIGURE 2.2: Hysteresis switching

Hysteresis Switching

Hysteresis switching requires to have an overlapped subregion between any two
neighboring subregions. Referring to Figure 2.2, when ρ crosses the switching sur-
face P1,2, the sub-system CL1(ρ) is switched to CL2(ρ), and when ρ crosses the
switching surface P2,1, CL2(ρ) is switched back to CL1(ρ). Direct Lyapunov method
is often used to prove the switching stability. Since the multiple controllers are de-
signed on subregions, it is supposed that there is a family of positive definite Lya-
punov matrices Pi(ρ) dependent on the scheduling parameter ρ. Then parameter-
dependent Lyapunov functions are formulated as quadratic functions as

Vi(x, ρ) = xTPi(ρ)x, ∀i (2.7)

where i represents the local active controller on the ith subregionPi , and its corre-
sponding Lyapunov matrix Pi(ρ) is used in formulating the Lyapunov function. The
switching stability can be achieved by non-increasing Lyapunov functions during
each switching event [142]. The non-increasing condition is proved to be a sufficient
condition but not a necessary condition. In literature, there are proven results to re-
lax this conservative result, in which the multiple Lyapunov functions may increase
its value during a time interval, only if the increment is bounded by certain kinds
of continuous functions. Interested readers are recommended to the reference [155],
[156]. Consider a switching event on a surfacePi,j from ith subregion to jth subregion,
if the hysteresis switching is used, the sufficient condition of globally exponentially
stability of switching system is given by the following Theorem.

Theorem 3. Consider the closed-loop LPV system in (2.6), if there exists a family of parameter-
dependent Lyapunov matrices satisfying condition (2.8), then the closed-loop exponential
stability is achieved within local subsystems CLi(ρ) with (ρ, ρ̇) ∈ Pi×V . Moreover, if con-
dition (2.9) is satisfied on the switching surface, then global exponential stability is achieved
on entire scheduling parameter region (ρ, ρ̇) ∈ P × V .

Ṗi(ρ) + Pi(ρ)Acl,i(ρ) + AT
cl,i(ρ)Pi(ρ) < 0 (2.8)

Pi(ρ) ≥ Pj(ρ), ρ ∈ Pi,j, i, j ∈ NJ , i ̸= j (2.9)

Proof is illustrated in [142].

Average-Dwell-Time (ADT) switching

The Average-Dwell-Time (ADT) switching strategy enforces the "slow-switching"
property of switching signals so that the closed-loop system achieves global stability
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under the switching sequence. By ADT switching strategy, only a limited number
of switches are allowed within a finite time interval [142], [157], [152]. [158], [159],
[160], [161]

We assume that switching signal σ(t) renders Nσ(T, t), the number of switching
events within the time interval [t, T]. If there exist two positive numbers N0 and τa
such that

Nσ(T, t) ≤ N0 +
T − t

τa
, ∀T ≥ t ≥ 0 (2.10)

where N0 is the chatter bound to avoid chattering phenomenon, then a sufficient
condition for ADT switching stability is given in the next Theorem.

Theorem 4. Given positive scalar λ0 and µ, if there exists a family of parameter-dependent
Lyapunov matrices Pi(ρ) satisfying condition (2.11) on each subregion (θ, θ̇) ∈ Pi × V
and condition (2.12) on switching surface, then the exponentially stability is achieved by
switching signal with average dwell time τa > lnµ

λ0
within the entire scheduling parameter

region (θ, θ̇) ∈ P × V .

Ṗj(ρ) + λ0Ṗj(ρ) + Pj(ρ)Acl,j(ρ) + AT
cl,j(ρ)Pj(ρ) < 0 (2.11)

1
µ

Pj(ρ) ≥ Pi(ρ) ≥ µPj(ρ), ρ ∈ Pi,j, i, j ∈ NJ , i ̸= j (2.12)

The proof is illustrated in [148], [152].

2.2.2 Applications

Since 2004, the switched LPV control has augmented the use of the LPV control ap-
proaches achieving better performance and lower conservatism. They have been
simulated and experimentally validated in several applications, mainly in aircraft
flight control [162], [163], [164], [165], [166], [167], [168], [169], [170], [171], [172],
[173], and aero-engine control [174], [175], [176], [177], [178], [179], [180], [181],
[182], [183], [184], [185], [186]. In addition, [187], [149], [188], [188], [149] apply the
switched-LPV control on the Exhaust Gar Re-circulation (EGR) system.

In mechatronics, the LPV-switched controller has been designed for different sys-
tems such as quadrotors [189], [190], vehicle lateral dynamics [191], robotic manipu-
lators [192], suspension control [193], [194], microsatellite [195]. In addition to other
applications as AMB [142], [196], [197], wind turbine [198], [199], hard disk drives
[200], flexible ball-screw drives [201], mass-spring-damper [202],[203], glucose [204],
[205], [206], and academic simulation [207].

2.3 Smooth LPV switching

It has been shown in [142] that the switched LPV controllers may not provide a
smooth transient response during switching, when aggressive performance is ob-
tained at switching instants. Such a case may lead to mechanical damage, decrease
material lifetime, or signal saturation which is out of real application objectives. Fol-
lowing this work, challenges have been raised to smooth the control response dur-
ing switching, and to relax the limitations on the switching signals. Several research
studies have been involved in solving the switching smoothness.

The leading cause of un-smooth switching control response is due to the sud-
den change of control variables during switching events. The ultimate reason is that
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FIGURE 2.3: Smooth LPV switching

un-smooth switching LPV control optimizes closed-loop system performance over
each subregion, nevertheless switching smoothness between adjacent controllers is
not considered. The system performance optimization over each subregion, but ig-
noring switching often leads to high-gain controllers with jumped controller gains.
This can be easily validated by checking the control gain difference between two
neighboring subregions over the switching surface.

The smooth switching LPV controller aims to minimize the gap between con-
troller gains and achieves smooth switching, whereas the conventional LPV con-
troller only considers the switching stability but not the switching smoothness. To
this purpose, a new small subregion is considered between each two consecutive
subregions which plays the role of smooth switching. Fig. 2.3 shows the developed
partitioning expressed in the smooth LPV switching where:

Pi :=
{

ρ ∈ R : ρ(i) < ρ < ρ(i)
}

, i ∈ ZN

Pi,i+1 :=
{

ρ ∈ R : ρ(i) < ρ < ρ(i+1)}, i ∈ ZN−1
(2.13)

Consequently, the smooth switching LPV controller can be described as:

K(ρ) =
{

Ki(ρ), if ρ ∈ Pi, i ∈ ZN
Ki,i+1(ρ), if ρ ∈ Pi,i+1, i ∈ ZN−1

(2.14)

Here, the controller Kj is interpreted as a local LPV controller, to which the LPV
controller K is switched when the parameter ρ lies in the sub-interval Pi. On the
other hand, the controller Ki,i+1 plays a role in smoothly switching between two local
LPV controllers Ki and Ki+1 while the parameter ρ is in a transitional sub-interval
Pi,i+1.

2.3.1 Smooth LPV switching control design

In this section, an example of the requirements demanded to design a smooth LPV
switching control is introduced, the conditions are illustrated more in [208].

For a given LPV plant in (2.1), with ρ ∈ P , ρ̇ ∈ V (V := { ν ∈ R : ν ≤ ν ≤ ν }),
and the subintervals in (2.13), the objective is to design an LPV controller with the
switching rule in (2.14) that satisfies the following requirements for any trajectory
ρ(.) with ρ(t) ∈ P and ρ̇(t) ∈ V for all t ≥ 0.

1. The closed-loop system containing the plant G(ρ) and the switching LPV con-
troller K(ρ) (2.14) is exponentially stable.



20 Chapter 2. Toward Switching / Interpolating LPV Control: A Review

2. For zero initial condition, the L2-gain of the closed-loop system from the ex-
ternal input w to to the controlled output z is bounded by a specified value
γ > 0.

3. The controllers switch continuously and smoothly between Ki and Ki,i+1, as
well as between Ki,i+1 and Ki+1, i.e., for i ∈ ZN−1, and for m = 0, 1, . . . , M for a
specified integer M ≥ 0,{

dm

dtm Ki(ρ(t)) = dm

dtm Ki,i+1(ρ(t)), at ρ(t) = ρ(i),
dm

dtm Ki+1(ρ(t)) = dm

dtm Ki,i+1(ρ(t)), at ρ(t) = ρ(i+1) (2.15)

4. The rate of change of the controller matrix is bounded by a specified value
η > 0 in the transitional subintervals, i.e.,∥∥∥∥ d

dt
K(ρ(t))

∥∥∥∥ < η, (2.16)

for any ρ ∈ Pi,i+1, i ∈ ZN−1, and any ρ̇ ∈ V . Here, ∥.∥ denotes the l2-induced
matrix norm, i.e., the largest singular value of a matrix.

An iterative descent algorithm has been introduced in [208] to solve a series
of convex optimization problems by fixing a part of optimization variables. This
method is used to find a feasible solution numerically for a non-convex optimiza-
tion problem. The problem has been also augmented to two dimensional parameter
regions.

In [209], two smooth switching techniques, simultaneous design and sequential
design, have been illustrated. These two approaches are discussed briefly as follows:

• Simultaneous design approach : All the switching controllers are designed at
the same time to formulate a convex optimization problem [210]. Using the
norm of deviation of controller parameters between two consecutive switch-
ing surfaces, a numerically tractable smoothness index is introduced into the
cost function. The minimization of this smoothness index helps in reduc-
ing significantly the sharp changes in control states and outputs, but at the
cost of degraded H2 and H∞ system performance. This means that there ex-
ists a trade-off relationship between switching smoothness and system perfor-
mance. Thus, a tunable weighting coefficient is introduced in the cost function
to balance the system performance and switching smoothness. This weighting
coefficient is tuned until finding an optimal trade-off which provides smooth-
switching LPV controller with acceptable system performance. In the simul-
taneous design approach, the control synthesis conditions depend on the ad-
jacent subregions due to the switching stability condition. Consequently, a
higher-dimensional optimization problem, with a higher amount of LMI con-
straints, decision variables, online computational load, and memory require-
ment are obtained when increasing the number of subregions [211], [14]. As a
result, the simultaneous design would be practically infeasible for high-order
systems with many divided subregions.

• Sequential design approach: This approach is proposed in [212], [213] to re-
duce the computational complexity found in the previous approach. Over
each subregion, PLMIs for H∞ are used to synthesize switching LPV con-
trollers separately. While for each overlapped subregion, the Lyapunov matrix
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is formulated by convexly combining Parameter-Dependent Lyapunov Matrix
(PDLM) on adjacent subregions. In addition, this method guarantees that the
overlapped subregion has intermediate performance between its neighboring
subregions. An individual LPV controller is designed for each subregion in se-
quential order, instead of synthesizing all controllers simultaneously. By itera-
tively solving the reduced-dimensional optimization problem for each subre-
gion, switching controllers with guaranteedH∞ performance on all subregions
and overlapped subregions can be obtained.

Moreover, other methods have been proposed in the literature for switching
smoothness. In [32] and [33], the authors develop an LPV switching controller and
prove its stability when switching among the overlapped subsets of a polytopic pa-
rameter region. More recently, [214] proposes a more developed smooth LPV switch-
ing control design. On the other hand, it is worth noticing that such algorithms
have increased the complexity and the design constraints of the local controllers to
achieve their objectives. These methods rely heavily on iterative computations to
solve multi-objective convex or non-convex problems. In addition, the introduced
smoothness index lacks physical meaning, and the smoothness constraints on con-
troller matrices are selected through trial and error.

2.3.2 Applications

The additional smoothness to the transient response of the LPV switched controllers
has encourages more researchers and engineers to implement it on simulated and
real environments. The concerned applications include aircraft flight control [211],
[215], [216], [217], [218], [219], [220], [221], [222], [161], aero-engine control [223],
[224], [225], wind turbine [226], missile control [227], flexible ball-screw [228], and
TORA (Translational Oscillator with Rotational Actuator) systems [229], [230].

In addition to the smooth switching approaches, an extensive research on bump-
less transfer-based switching controllers has been investigated. The following sec-
tion illustrates briefly the bumpless transfer method and its applications.

2.4 LPV Control Interpolation Based on Bumpless Transfer

A bumpless transfer aims to improve the transient switching behavior for a switched
system. In order to reduce switching bumps, a bump constraint method has been
contributed to realize bumpless transfer. The main objective is to study the switching
bumps problem by modifying the original controllers, while the switching design is
neglected. A description of most popular strategies for bumpless transfer can been
found in [231], [232], [233] and [234]. One of the first schemes is proposed by Hanus
for nonlinear plants [235]. The idea consists in pre-setting the off-line controller
state for reducing the transient behavior at the switching time. Turner and Walker
have generalized the results of Hanus for controllers which are not bi-proper [236],
[237]. For instance, a bumpless transfer of switching controllers is proposed in [238]
followed by some developments in [239] and [240].
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A bumpless transfer method can be used also to overcome the problem of switch-
ing jumps in a scheduled robust model predictive control approach [241]. A sched-
uled robust model predictive controller implements a set of local robust model pre-
dictive controllers based on an on-line switching strategy. This method could en-
large the domain of attraction efficiently but the transient response might be ham-
pered by spikes appearing at the moment of switching between adjacent local con-
trollers. The algorithms based on bumpless transfer could enhance the transient
response by implementing some intermediate controllers augmented to the main
control scheme to solve the problem without needing more computation.

Figure 2.4 represents a bumpless-transfer switching between the pre-designed
off-line controllers controller1 and controller2 using two on-line controllers Q̄1 and
Q̄2. Let us define the signal

z̄i
e(k) = αi(k)− e(k), (2.17)

which represents the difference between the ith off-line controller input αi(k) ∈ Rm

and the on-line controller input e(k) = r(k)− y(k), where r(k) ∈ Rm is the reference;
and the signal

z̄i
u(k) = ui(k)− u(k), (2.18)

that represents the difference between the ith off-line controller output ui(k) and the
on-line controller output u(k), for any i ∈ I and for all k ∈ Z+. The idea in [237] is
to minimize the following LQ criterion:

J̄i = ϕ̄i(T̄i
f ) +

1
2

T̄i
f−1

∑
k=ti

[z̄iT

u (k)W̄
i
u z̄i

u(k) + z̄iT

e (k)W̄
i
e z̄i

e(k)], (2.19)

where

ϕ̄i(T̄i
f ) =

1
2

z̄iT

u (T̄
i
f )X̄i z̄i

u(T̄
i
f ),

W̄ i
e = W iT

e > 0 and W̄ i
u = W iT

u > 0 are the weighting matrices. ti is the switch-
ing time to the sybsystem corresponding to the mode i ∈ I , T̄i

f is the terminal time

and X̄i = X̄iT
is a terminal weighting matrix ∀i ∈ I . Since reference signals are

not known a priori, an extension to an infinite horizon is required for practical im-
plementation. This leads to a constant feedback matrix Q̄i that adds a condition on
the ith off-line controller to achieve the desired transient behavior at the switching
instant (Fig. 2.4).

In particular,

αi(k) = Q̄i

xc(k)
u(k)
e(k)

 , (2.20)

with

Q̄i = (Im − ΓiBiT

c ΠiBi
c)
−1Γi

 (DiT

c W̄ i
uCi

c + BiT

c Πi Ai
c)

T

−(DiT

c W̄ i
u + BiT

c (Ip −Mi)−1Ui)T

−(W̄ i
e + BiT

c (Ip −Mi)−1Ei)T


T

More details can be found in [242].
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FIGURE 2.4: Bumpless Transfer with I = {1, 2} [242]

LQ bumpless transfer has been one of most celebrated bumpless transfer meth-
ods on industrial MIMO applications [243], [244]. This success is due to different
factors: the existence of several reliable numerical solvers for Riccati equations, the
excellent convergence properties of LQ based feedback controllers, and the fact that
no plant knowledge is needed. Nevertheless, the extension to an infinite horizon
assumes that the tracking error e and the control signal u are constant. This approx-
imation is effective only if these signals vary slowly enough, with reference to the
system dynamics. Another drawback is concerned with the fact that this strategy
guarantees the closed loop stability only around a specific operating point. In gen-
eral, it is assumed that the closedloop stability of the whole process is maintained, if
both on-line and off-line control loops are stable. This assumption is justified only if
the operating point is subject to "slow" variations.

2.4.1 Applications

Several research studies have concerned the application of the LPV bumpless-transfer
approach to AMB [245], aircraft flight control [246], [247], [248], aero-engine control
[249], [250], [251], [252], [253], [254], [255], [256], and wind turbine [257]. In addition,
it has been implemented on inverted pendulum [258], water-tank level control [241],
academic examples [259], [260], [261], and on electronic systems [262], [263].

2.5 YK Parameterization

Recently, a new smooth LPV switching technology is proposed based on Youla-
Kucera (YK) parameterization [264]. Compared with the literature [142], the nov-
elty of this method is to introduce a parameter overlap division method to improve
the smoothness of switching. The flexibility and freedom of the switching controller
are increased, and the transient response disturbance during the switching is sup-
pressed. The next section introduces a general review on YK parameterization.

The fundamentals of YK parameterization started in 1970s, developed by Youla
[265], [266] and Kucera [267]. The interest behind YK concept is to parameterize a
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FIGURE 2.5: Negative feedback loop

set of linear stabilizing controllers K(Q) for a given LTI plant in a feedback control
loop (see Fig. 2.5). Each one is parameterized by its corresponding YK dynamical
parameter Q(s) [268]. The stability is guaranteed depending on the parameter Q(s).
Similarly, the dual YK parameterization provides all the linear plants stabilized by a
given controller. The class of all the plants stabilized by a controller depends on the
transfer function called dual YK dynamical parameter S(s), so G(S). This parame-
ter could represent any plant variations. Hence, this useful way of parameterizing
either plants, controllers or both is employed to solve many control issues.

According to the control objectives, three main configurations can be targeted:

• Controller parameterization: allows stable controller reconfiguration when
some change occurs. It is also widely used in disturbance and noise rejec-
tion control. A number of successful applications can be found in the last two
decades, being the most used approach in different control fields [269].

• Plant parameterization: is employed to solve the problem of closed-loop iden-
tification. Some successful implementation can be found in Plug & Play con-
trol where the dynamics of new sensors or actuators are identified on real-time
without system disconnection [268].

• Simultaneous control and plant parameterization: provides a new control
structure that changes according to new identified dynamics on the plant. This
principle is mainly used in fault tolerant control and adaptive control [270].

The current review mainly focuses on the controller parameterization part. Con-
sider a SISO LTI plant G(s) connected to a controller K(s) in a stable feedback struc-
ture (see Fig. 2.5 for details). The closed-loop transfer function is obtained as:

CL(s) =
G(s)K(s)

1 + G(s)K(s)
(2.21)

Moreover, let’s define a transfer function Q(s) from the reference r to the control
input u, then:

Q(s) =
K(s)

1 + G(s)K(s)
(2.22)

Thus, if G(s) and Q(s) are known, the controller K(s) can be expressed as:

K(s) =
Q(s)

1− G(s)Q(s)
(2.23)

From (2.22), it is shown that if K(s) stabilizes G(s), then Q(s) is stable and proper.
Equivalently, if Q(s) is stable and proper, then K(s) given by (2.23) stabilizes G(s).

In addition, reformulating the closed-loop expression to be written in terms of
Q(s), the closed-loop transfer function is affine with respect to Q(s) expressed as:

CL(s) = Q(s)G(s) (2.24)
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From this point, the concept of a controller parameterized by a YK transfer function
Q(s) is opened. Then, a set of stabilizing controllers can be parameterized in terms
of all stable and proper functions Q(s) for any LTI plant G(s). The LTI-YK parameter
Q(s) is designed using the doubly coprime factorisation [271], [272].

YK parameterisation uses the doubly coprime factorisation concepts to reduce
the algebraic complexity of Q computation [271],[272]. Let an LTI controller K stabi-
lizes the LTI plant G, then they can be factorized (from left and right) as a product of
a stable transfer function matrix and a transfer function matrix with a stable inverse
as shown below:

2.5.1 Doubly Coprime Factorisation

YK parameterisation uses the doubly coprime factorisation concepts to reduce the
algebraic complexity of Q computation [271],[272]. Let an LTI controller K stabilizes
the LTI plant G, then they can be factorized (from left and right) as a product of a
stable transfer function matrix and a transfer function matrix with a stable inverse
as shown below:

G = NM−1 = M̃−1Ñ

K = UV−1 = Ṽ−1Ũ ∀j
(2.25)

Lemma 1. If the coprime factors M, N, M̃, Ñ, U, V, Ũ, Ṽ ∈ RH∞ (stable and proper),
and they satisfy the following Bezout Identity:[

Ṽ −Ũ
−Ñ M̃

] [
M U
N V

]
=

[
M U
N V

] [
Ṽ −Ũ
−Ñ M̃

]
=

[
I 0
0 I

] (2.26)

then, all the factorized LTI controller K stabilize G (proof in [269]).

2.5.2 LTI-Q Parameterisation

Consider the LTI-YK parameter Q as a transfer function which characterizes the dy-
namic mapping of a controller K that stabilizes the plant G.

Lemma 2. Assume an LTI plant G = NM−1 stabilized by the LTI controller K = UV−1,
with M and N are coprime and ∈ RH∞, U and V are coprime and ∈ RH∞. Then the set
of all stabilizing controllers K̃, for G, as a function of a stable filter YK parameter Q with
appropriate dimensions is defined as:

K̃ = K̃(Q) = (U + MQ)(V + NQ)−1

= (Ṽ + QÑ)−1(Ũ + QM̃)
(2.27)

where Q ∈ RH∞ by construction[269].

Control reconfiguration is important to improve system performance, especially
for multi-variable and multi-objective systems. Such complex systems may require
some specifications which is difficult to handle using a single controller, such as
desired bandwidth, time response, or robustness against modeling errors. an H∞
multi-objective controller can hold several specifications in a single controller, how-
ever, it is known to be conservative when complexity increases. In addition to the
previously mentioned switching methods: 1) Gain-scheduled approach [37]; Ad-
hoc technique [13]; and 2) Bumpless transfer [273], YK parameterization has been
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also used for switching objective, where a set of linear stabilizing controllers can be
mapped onto a Q-based controller [274].

On the other hand, YK parameterization for switching/interpolating controllers
has shown several advantages: 1) It allows stable interpolation between unstable
controllers [275]; 2) Interpolated controllers can be designed and tuned separately
using different techniques (H∞, LQR, PID, ...) [269]; 3) It facilitates adding new parts
to an existing system online as Plug&Play control theory [276]; and 4) The closed-
loop stability is guaranteed under arbitrary continuous/discontinuous interpolating
signals between different stabilizing controllers without requiring a common Lya-
punov function [274]. In 80s, the first application of YK-based control parameteri-
zation has been performed [277]. Specifically, two controllers K1 and K2 have been
designed satisfying reference tracking and disturbance rejection respectively. Both
controllers have been parameterized with respect their corresponding YK parame-
ters Q1 and Q2 respectively.

2.5.3 Applications

A significant literature review on YK work including applications can be found in
[278]. The YK parameterization has been successfully used in several domains. A
Q-based YK controller has been applied on the roll angle of an aircraft to compen-
sate the well-known trade-off between performance and robustness [274]. Another
work has formulated a YK-based switching architecture to switch between a high
performance controller when the measured angle is not noisy, to a robust controller
when there are model uncertainties and external disturbances [279]. In [280], two
classes, Irrigation systems and Hypersonic vehicles have been controlled based on
YK parameterization. Both classes are formulated by hyperbolic partial differential
equations. The YK controller switches between different LTI controllers to regulate
time-domain specifications (i.e. peak value of control signal, overshoot). Thanks to
YK parameterization, [281] and [282] were able to introduce new components to the
control control loop without affecting system stability. The controller reconfigura-
tion is implemented on a livestock stable climate system, where a new temperature
measurement come out during system operation and a new controller is added to
the existent control loop.

In [283], the YK concept has been proposed for a steam boiler to switch between
two controllers with different objectives; the first aims to regulate the water level
within min and max bounds, and the second control objective is to keep the feed
water flow steady. In addition, noise/vibration control domains have investigated
the YK controllers to attenuate noises and disturbances [284]. Moreover, it has been
also applied for different applications requiring high control precision and noise
sensitivity such as: wafer scanning in semiconductors [285], data storage systems
(reading/writing) [286], [287], [288], mechatronics [289], active suspension systems
[290], [291] and biochemistry [292] where the regulation problem is to maximize the
biomass productivity in the fed-batch fermentation of a specie of yeasts and the cell
growth is an undesirable consequence and considered as an unstable disturbance.
An application on steamboiler is represented in [283].

Moreover, YK control schemes have been successfully used for Intelligent Trans-
portation Systems (ITS) in the last years. A steering control of autonomous vehicles
considering two LTI controllers designed separately (one for lane-changing and one
for lane-tracking) [293]. The YK control scheme of both controllers has shown in-
teresting performance for small and large lateral errors. Moreover, [294], [295] have
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experimentally validated the YK control structure by switching between Coopera-
tive Adaptive Cruise Control system (CACC) and ACC when the communication
between vehicles fails.

2.6 LPV-YK Parameterization

Consider an LPV plant G(ρ) (2.1), with ρ is a scheduling parameter within a prede-
fined range ρ ∈ [ρ, ρ], is formulated using either polytopic or grid-based approach.
Let K(ρ) be an LPV controller designed to stabilize G(ρ) over the whole parameter
region. Then, at each vertex or grid point ρi, the local LTI controller Ki is known to
stabilize the local plant Gi. Using YK parameterization, it is possible to parameterize
each local LTI controller Ki by a corresponding local LTI-YK parameter Qi, obtaining
a parameterized LTI-YK local controller K̃i. The interpolation or gain-scheduling be-
tween the obtained K̃i (i ∈ [1, N]) achieves a gain-scheduling LPV-YK control scheme
K̃(ρ) satisfying:

1. Stability of the closed-loop including LPV system under fast changes of the
varying parameter ρ.

2. Recovering the local controllers Ki in the operating points.

In [296], conceptions of doubly coprime factorisation and Youla parameterization
of LTI systems have been extended to LPV systems with respect to quadratic stability
using a state-space expression:

2.6.1 LPV Doubly Coprime Factorization

YK parameterization uses the doubly coprime factorization concepts to reduce the
algebraic complexity of Q-computation. Assume an LPV controller K(ρ) stabilizes
the LPV plant G(ρ), then they can be factorized (from left and right) as a product of
a stable transfer function matrix and a transfer function matrix with a stable inverse
as shown below:

G(ρ) = N(ρ)M−1(ρ) = M̃−1(ρ)Ñ(ρ)

K(ρ) = U(ρ)V−1(ρ) = Ṽ−1(ρ)Ũ(ρ)
(2.28)

Lemma 3. If the coprime factors M(ρ), N(ρ), M̃(ρ), Ñ(ρ), U(ρ), V(ρ), Ũ(ρ), Ṽ(ρ) are
stable and proper, and they satisfy the following Bezout Identity:[

Ṽ(ρ) −Ũ(ρ)
−Ñ(ρ) M̃(ρ)

] [
M(ρ) U(ρ)
N(ρ) V(ρ)

]
=

[
M(ρ) U(ρ)
N(ρ) V(ρ)

] [
Ṽ(ρ) −Ũ(ρ)
−Ñ(ρ) M̃(ρ)

]
=

[
I 0
0 I

] (2.29)

then, the factorized LPV controller K(ρ) stabilizes G(ρ) [296].

2.6.2 LPV-Q Parameterization

Consider the LPV-YK parameter Q(ρ) that maps its corresponding LPV controller
K(ρ) to a parameterized Q-based LPV-YK controller K̃(ρ). Then, the following Lemma
is proved to be satisfied [278].
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FIGURE 2.6: Parameterized LPV-YK control scheme

Lemma 4. Assume an LPV plant G(ρ) = N(ρ)M−1(ρ), and an LPV controller K(ρ) =
U(ρ)V−1(ρ) that has been designed to stabilize G(ρ) for every ρ ∈ P . M(ρ) and N(ρ)
are coprime, stable, and proper, U(ρ) and V(ρ) are coprime, stable, and proper. Then, it is
possible to obtain a family of LPV controllers K̃(ρ) formulated as (Fig. 2.6):

K̃(ρ) = (U(ρ) + M(ρ)Q(ρ))(V(ρ) + N(ρ)Q(ρ))−1

= (Ṽ(ρ) + Q(ρ)Ñ(ρ))−1(Ũ(ρ) + Q(ρ)M̃(ρ))
(2.30)

where Q(ρ) is designed to be quadratically stable (see [296] for details).

In addition, [296] has designed an observer-based state-feedback LPV controller
based on Youla parameterization. It has been proved that any quadratically sta-
bilizing LPV controller can be parameterized based on YK concept, providing the
closed-loop quadratic stability.

On the other hand, some works have proposed the YK concept to design a poly-
topic gain-scheduling controller with lower conservatism than the standard LPV de-
sign. [297] proposes a YK-based gain-scheduled controller by interpolating LTI con-
trollers designed separately at the different vertices of a polytopic parameter region.
The interpolation is performed as a function of the varying parameters of the LPV
model. Closed-loop quadratic stability and performance are guaranteed at interme-
diate interpolation points of the convex domain. However, the proposed interpo-
lation is preferably used when the system often remains at the designed operating
points with rarely transitions from one to another. As a conclusion, the polytopic
LPV controllers could perform better in fast parameter changes where a uniform
performance is obtained in the designed convex region.

In [298], a YK configuration is proposed to improve the performance of a poly-
topic LPV control. It introduces an LPV system which switches between a minimum-
phase and nonminimum-phase dynamics as a function of the parameter variations.
An LPV controller based on the polytopic approach is designed as a nominal con-
troller in the full parameter region. Then, two different LTI controllers (H∞ and PID)
are designed separately at certain operating conditions (one in minimum-phase re-
gion and another in nonminimum-phase region). These LTI controllers are then in-
terpolated with the nominal LPV controller using an LTI-YK configuration. In [299],
a fixed pole-assignment application is introduced using an LPV YK-based method
to preserve the closed-loop poles at the same location by interpolating between dif-
ferent controllers regardless the variations in the LPV system. Therefore, a unique
performance is obtained along the variation of the parameters while keeping stabil-
ity.
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Recently, [300] proposes a YK-based interpolation scheme between two LPV con-
trollers, designed separately, to achieve a multi-objective control system. Each LPV
controller is designed over a convex domain with a common Lyapunov function (fol-
lowing the approach in [12]), to quadratically stabilize the plant model. However,
this approach may be conservative since it requires all the local LPV controllers to
be designed based on standard polytopic-based LPV approach.

2.6.3 Applications

LPV-YK control schemes have not been widely used in applications yet. However,
some works have implemented them with remarkable results. In [296], an LPV
model of mass-spring-damper system (with a varying stiffness) is controlled using
quadratically stabilizing LPV-YK controller. Another application has been perfor-
maed on a MIMO LPV system of a quadruple tank [298]. The objective is to control
the water height in four tanks using two valves; the plant changes from minimum
phase to a non minimum-phase with respect to the operating points (valves val-
ues). Two LTI-YK controllers are designed; one corresponding to a PID controller
designed in the minimum phase operating point, and another H∞ controller in the
non-minimum phase operating point. These two controllers are parameterized on
two significant operating points with respect to a polytopic LPV controller. The
overall interpolation control scheme shows optimal performance in both operating
conditions.

In [299] the LPV Q-based controller is used in fixed pole assignment application,
the Q-based controller switches among different controllers to place the closed-loop
poles always at the same location independently of the varying parameter. Thus,
the LPV closed-loop system achieves the same performance in the range of the vary-
ing parameter without loosing stability. A YK based feedback controller rejecting
bounded disturbances is extended to cover LPV systems using LMI computation
toolbox in [301].

To validate the smoothness of the LPV-YK control structure compared to the pre-
vious approaches, it has been implemented on the known AMB system in [264],
[302], [303], [304], [305], [306], [307], and aircraft flight control [308], [309]. Different
applications have been also concerned including wind turbine [310], hydro-active
gas bearings [311], damping control [312], and several academic examples [313],
[314], [315], [316], [317].

2.7 Discussion

This chapter has reviewed the evolution of the smooth LPV switching/interpolating
control starting from the basic gain-scheduled LPV control, switched-LPV control,
smooth LPV switching control, bumpless-transfer-based LPV switching, and the
most recent LPV-YK interpolating control. From the beginning of 90s till the cur-
rent year, different kinds of applications have been controlled based on them. The
timeline of LPV switching/interpolating concepts is presented in Fig. 2.7, where the
column represents the time evolution and the row shows the studied switching and
interpolating LPV controls.

2.7.1 Time evolution of the theoretical contributions

In 90s, the LPV control approaches have been proposed referring to the known
works: polytopic [7], grid-based [18], and LFT [6]. The LMI approaches have been
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FIGURE 2.7: Timeline of known applications using LPV switch-
ing/interpolating approaches

used to achieve either quadratic stability over convex parameter region (using con-
stant Lyapunov function), or exponential stability over gridded parameter region
(using parameter-dependent Lyapunov function). It is worth mentioning that the
LPV approaches have shown lower closed-loop performance, than a local LTI one,
and conservatism in some applications having large parameter regions, large num-
ber of parameters, or significant dynamic uncertainty. Since 2000, researchers have
been involved in solving the conservatism problem using switching/interpolating
concepts.

In [237], the first step to design a gain-scheduled LPV control based on bumpless-
transfer has been raised. The advantage of bumpless-transfer is to reduce the differ-
ence of the control input just before and just after switching. [142] has proposed a
switched-LPV control design using multiple parameter-dependent Lyapunov func-
tions. It shows good performance over each parameter sub-region, however, an un-
smooth performance appears at the transient switching. Later, switching smooth-
ness conditions have been added to the LMI optimization problem [229]. These three
LPV switching approaches have increased the design complexity and stability stud-
ies. A parameterization approach has been also used to design a gain-scheduling
LPV controller in [296]. It shows several advantages compared to the previous
ones including lower design complexity, closed-loop stability can be proved eas-
ier, smooth switching, and most important that the local controllers can be designed
separately with different state dimensions.

The importance of LPV control approaches, switched-LPV control, bumpless-
transfer LPV interpolating, smooth-LPV switching, and LPV-YK control interpola-
tion is shown regarding their implementation to several applications mainly Active
Magnetic Bearing (AMB), aircraft motion, aero-engine, wind turbine, and others.
Fig. 2.7 presents the applications with different colors and their time evolution.
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2.7.2 LPV control

Several applications of the LPV control approaches are shown in the first column
of the timeline in Fig. 2.7. Researchers have been interested in applying them to
nonlinear models, by reformulating them to LPV models. For instance, the AMB
system is nonlinear with respect to the rotor speed, which has been considered as a
parameter varying. AMB systems are known to be highly nonlinear, multi-variable
and inherently unstable systems. The nonlinearity is described in the relationship
between the electro-magnetic force, current and length of the air gap. Moreover, The
system (vibrational) dynamics depend on the rotational speed due to gyroscopic
and electro-magnetic coupling. The AMB has been controlled using the three LPV
approaches: polytopic [51], [52], grid-based [104], and LFT [125]. Moreover, the air-
craft speed and altitude have been chosen as varying parameters for aircraft motion
control. In 2000, it has been first applied using the gridding approach [96], then
using the LFT approach in 2006 [247], and the polytopic in 2013 [92].

In 2012, the grid-based approach has been applied on wind turbine control [110].
The nonlinearity in the wind turbine model is due to the aerodynamic interaction of
the wind and the rotor blades. Therefore, the LPV model is formulated considering
the rotor speed, absolute wind speed, and pitch angle variables as varying parame-
ters. Since 2016, the three LPV approaches have been implemented on aero-engine
control using the polytopic in 2016 [93], the grid-based in 2019 [113], and most re-
cently in 2021 the LFT [129]. The high pressure rotor speed is chosen as a varying
parameter that changes over time. Furthermore, other domains have been interested
in LPV control including electro-hydraulic servo system (2002) [74], induction motor
(2003) [119], canal control (2005) [75], active-noise cancellation (2011) [91], mechani-
cal systems (2014) [136], and real experiment on autonomous driving (2020) [124].

2.7.3 Switching LPV control

The second column of the timeline concerns the switched-LPV control applications.
As already mentioned, this approach has been contributed by Fen Wu in 2004 [142]
to decrease the conservatism of the LPV control design using multiple parameter-
dependent Lyapunov function. The application on the AMB system in [197] and
[196] shows the performance improvement over the parameter subregions. More-
over, this approach has been widely used for aircraft flight motion between 2006 and
2020 in [173], [171], [169], [167], [163], and [162]. Similarly, it has been implemented
on aero-engine control such as in [184] (2012), [182] (2016), [179] (2018), [176] (2021).
In addition to wind turbine control [199], [198], and other domains like flexible ball-
screw drives [201], glucose control in type 1 diabetes [206], and engine Exhaust Gas
Recirculation (EGR) [188].

2.7.4 Bumpless-Transfer LPV control Interpolation

Some applications on bumpless-transfer LPV interpolation are shown in the third
column of the timeline. In 2002, an implementation on the AMB is shown [245].
Later in 2006, two works have proposed the bumpless-transfer approach for aircraft
flight control [247], [246]. Recently, bumpless-transfer LPV interpolation has been
widely implemented on the aero-engine control starting from 2014 [249], then 2019
[250], then 2020 [253], and the newest in 2021 [254]. Others applications are men-
tioned including electronics [263], inverted pendulum [258], and academic examples
[261], [259].
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2.7.5 Smooth LPV switching control

In the fourth column of the timeline, the applications on smooth LPV switching
control are represented. This approach has been mostly applied on aircraft motion
control since 2012 [221], and later in 2015 [222], 2018 [218], and the last one in 2019
[211]. In 2016 and 2017, [224] and [223] have proposed the smooth LPV switching
control for aero-engine control. Moreover, it has been implemented on different ap-
plications such as wind turbine [226] (2016), missile control [227] (2010), and TORA
[230] (2014).

2.7.6 LPV-YK control Interpolation

The last column in the timeline shows the applications on the LPV-YK control inter-
polation. This approach has not been yet applied to aero-engine control. However,
it has been widely used for AMB in [304] (2010), [305] (2012), [306] (2018), [307]
(2020), and recently in [264] (2021). It has been also implemented on aircraft con-
trol [308] (2012), [309] (2014), and wind turbine [310] (2022). In addition to different
applications including hydroactive gas bearings [311], flexible-link robot [317], and
academic examples [313], [316].

Table 2.1 lists the main advantages and disadvantages of each studied switch-
ing/interpolating approach.

TABLE 2.1: Overview of discussed approaches

Switching/Interpolating
approach

Advantages Disadvantages

LPV control Simple and fast design conditions
High conservatism for large number

of parameters and large ranges

Switching LPV control
Decreased conservatism and providing

better performance at each parameter subset
Aggressive transient response

at switching instants

Bumpless-Transfer LPV
control Interpolation

Continuity of the control input is
ensured at switching instants

Local controllers are blended to guarantee
closed-loop and switching stability

Smooth LPV switching
control

Smoothness can be guaranteed from
the design by a matrix norm

Complex design conditions including the design
of the switching signals for switching stability

LPV-YK control
Interpolation

Controllers are designed separately, new
parts can be added to an existing system

online, no constraints on the switching signals

Transient response is directly affected
by the designed YK parameter
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Chapter 3

Autonomous Vehicles Architecture

3.1 Introduction

First, it is worth noting that the work in this thesis is not starting from scratch but
it is a long work that has been carried out in the research department at Renault for
developing an autonomous driving architecture. Fig. 3.1 shows the projects timeline
achieved by Renault since 2013 to the present time. The main general objective of
these projects was to offer a taxi pool for people transportation to their work, home
or a Mall. Before the beginning of this thesis work, Renault has already developed
several autonomous driving prototypes such as: PAMU (in 2013), KAIROS (in 2014),
TRAJAM (in 2015), SYMBIOZ (in 2017), and ROUEN Autonomous Lab (in 2018).
The current thesis has been done by the time of the running projects TORNADO
and SAM Saclay. The prototype of TORNADO has been used for the experimental
validation of the work presented here.

Even if we focus on the control part, it is worthy to review the full autonomous
driving architecture to understand the input/output connections of our work by
describing the connected modules.

The current chapter presents the architecture of the vehicle platform that has
been used in our experiments. In addition a brief literature review is shown on
the lateral control system which has been mainly tackled in this thesis. The field
of autonomous vehicles has been expanding rapidly in the last decade, in order to
meet road safety and environmental objectives. Most of the definitions and details
that we present here are issued from [318], the readers that would like to have more
details can refer to it.

To validate the contributions raised by this thesis, a RENAULT ZOE robotized
car has been used. The following Section 3.2 presents the Autonomous Vehicle (AV)
architecture including its subsystems perception, map service, localization, world
model, decision-making, navigation, supervisor, and control. In addition, a brief
review on vehicle control is depicted in Section 3.3. Section 3.4 discusses the main
parts in the AV architecture that are tackled and concerned in the later chapters.

3.2 Experimental Platform Description

This section presents the test vehicle concerning the scientific and technical develop-
ment especially from perception, navigation and control point of view. The platform
is a fully robotized Renault ZOE car (see Fig. 3.2) that has been prepared for Renault
project available for the use in the Rambouillet Territory in France [318].

Autonomous driving is computationally demanding and requires integrating
different functions such as perception, map service and localization, world model,
decision-making, navigation, and vehicle control into a unified system achieving in-
telligent behavior. The interaction and organization of these functional components
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FIGURE 3.1: Renault’s History on Autonomous Vehicles

FIGURE 3.2: Renault ZOE automated vehicle

FIGURE 3.3: Functional components of the automated ZOE
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FIGURE 3.4: Sensor setup in the automated ZOE Vehicle [318]

FIGURE 3.5: Pipeline for 3D object detection. Objects are detected in
the images from the cameras. Later, LiDAR data is included to infer
the geometrical properties of the objects. Finally, all the detections
are merged, and a tracking stage adds temporal consistency across

consecutive frames [318]

play a vital role on the robustness and reliability of the vehicle operation. FIGURE
3.3 represents the connections and interactions of the components of the vehicle.
Notice that the next sections are easily identified in FIGURE 3.3.

3.2.1 Perception

The automated car is equipped by five evenly distributed cameras and a 32-layer
LiDAR located in the center of the roof rack, providing a 360° field of view as shown
in Fig. 3.4, see [319] for more details. Through a low-level fusion, the sensors in-
formation is fused to provide obstacle detection, classification, 3D box estimation,
and tracking. Briefly speaking, the perception system uses a robust state-of-the-art
framework and feeds the vision-based detections to a 3D box estimation method that
makes use of LiDAR information to know their size and location. Then, the tracking
algorithm exploits this spatial reasoning to add time consistency and enhance the
reliability of the final detections, refer to Fig. 3.5.

Vision-based detection and classification

Computer vision approaches are used to take advantage of the feature-rich appear-
ance information delivered by the cameras. Notice that thanks to the multi-camera
setup, the system can identify agents in the entire range of interest, without blind
spots. To improve the data fusion between images and LiDAR data, detections with
a pixel-wise semantic mask is chosen, knowing that accurate extrinsic calibration is
available.

At the end, a set of 2D bounding boxes with information about the category (e.g.,
car, pedestrian, bus etc.) is provided as an output. Each one contains a pixel-wise
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FIGURE 3.6: Satory private test track

mask that defines the contour of the object. Note that each camera gives a different
set of detections.

3D box estimation

The LiDAR scanners is known to be highly accurate in measuring distances. So, it is
used here to obtain geometrical information about the previously identified objects.
A frustum PointNet approach [320] is used to recover the geometrical structure be-
hind the raw LiDAR representation of the obstacle. This approach provides the size,
location, and orientation of each obstacle using LiDAR information, and taking into
consideration the missing parts due to occlusions or perspective.

This stage outcomes positioned cuboids representing the real geometry and dis-
tance from the ego-vehicle to every obstacle.

Tracking

The main objective of this stage is to add consistency to the 3D detections that have
been expressed in the same frame. It is composed of three steps: 1) Movement es-
timation based on an Unscented Kalman Filter [321] for different pedestrians and
vehicles movement models; 2) Ego-vehicle movement compensation, due to its dis-
placement, is important to correct the misalignments on the subsequent detections.
This is achieved using the GPS/INS system available in the vehicle; and 3) Data as-
sociation aiming to correlate the detection in the current cycle with the set of already
tracked agents, adding new instances whenever it is necessary.

3.2.2 Map Service

The map database is a High Definition Map that has been created specially for a
certain experimentation. It represents the road network and includes topological,
geometrical and semantic information. It is mainly composed of details about the
interactions existing between roads at a lane level. The center and the boundaries
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of each lane is also found in the stored map with centimeter accuracy. In addition,
information such as speed limit, marking types, and driving directions are also as-
sociated with each lane as attributes. Moreover, different information are included
in the map service such as: 1) Intersection type, shapes or priority order; and 2) Traf-
fic lights location and association to lanes. All these information are compiled as a
geographical database within the vehicle. For the experimental tests in this thesis,
the private test track in Satory is used, see FIGURE 3.6

3.2.3 Localization

The Localization component is responsible for centralizing the ego vehicle within the
available map information. It provides position, heading, velocity and timing infor-
mation, together with integrity information. To achieve its objective, it receives infor-
mation from the perception, map service, and the GPS. The accuracy of localization
is improved by performing map matching with landmarks detected. For instance,
the localization system identifies detected lane markings with the corresponding
lane markings found in the map database. After this identification, it corrects abso-
lute pose estimation so that relative position of detected landmarks correspond with
absolute position of lane markings in the map. Consequently, the system upgrades
its covariance matrix. In order to prevent localization leaps, these corrections can be
smoothed, preserving both requirements on absolute and relative accuracy. Finally,
the output localization information includes position, heading, velocity and timing
information, together with integrity information.

3.2.4 World Model

The main objective of the World Model component is to understand the situation
of the ego-vehicle with its surrounding by combining the information from the per-
ception and the map service. Since the perception system does not consider context
information while providing the surrounding situation, it is important to associate
it with the map service to better understand the current scene. The map service is
used to:

• Find the global path to transport from the departure location A to the final
destination B.

• Assist the navigation system module to generate a real time local trajectory
while operating in autonomous mode.

• Provide context in which the vehicle navigates.

The World Model component is composed of four modules: Contextualization,
Interaction, Intention, and Coherence module. For more illustration:

• Contextualization Module: The perceived objects from the perception system
are matched with the map to identify their position with respect to the road
and to enrich them with semantic information. For instance, it labels the per-
ceived objects (received from the perception system) as pertinent or not per-
tinent. The objects are labelled as pertinent, such as pedestrians, if they can
be located within the navigable space. On the other hand, the vehicles and
other obstacles are considered as not pertinent when they are not located on the
navigable space of the ego vehicle. In addition, it can deal with traffic lights
detected using Vehicle to Infrastructure (V2I) communication since the percep-
tion system in our platform does not return traffic lights information.
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• Interaction Module: It identifies the maneuvers that the ego vehicle is allowed
to perform and determines the perceived objects with which it would interact.
This process is performed with respect to the context in which the ego vehicle
navigates and applicable traffic laws that are stored in a map database.

• Intention Module: It estimates the intention of the road users with respect to
the other entities with which they may interact. For this purpose, it uses the
state of the entities provided by the contextualization module and the data
from the interaction module. While the interaction module identifies the possi-
ble entities that might interact with each other, the intention module estimates
the behaviors that those entities are likely adopting.

• Coherence module: It computes whether any conflicting intentions are present.

3.2.5 Decision-Making

After a global route plan has been found, the autonomous vehicle must be able to
navigate the selected route and interact with other traffic participants according to
driving conventions and rules of the road. Given a sequence of road segments spec-
ifying the selected route, the Decision-Making system is responsible for selecting an
appropriate driving behavior at any point of time based on the perceived behavior of
other traffic participants, road conditions, and signals from infrastructure. To obtain
a comfort and safe vehicle behaviour, the driving plan is modified to the expected
interaction between the ego vehicle and the detected obstacles. The decision is taken
according to several criteria: 1) the relative position of the obstacle: same lane as ego
vehicle, opposite lane, partially on ego lane, side walk; 2) obstacle direction: mov-
ing along and backward or forward, moving perpendicular and to or away from the
driving plan; and 3) obstacle type: pedestrian, vehicle.

For example, when the vehicle is reaching the stop line before an intersection, the
decision-making system will command the vehicle to come to a slow down, observe
the behavior of other vehicles, bikes, and pedestrians at the intersection, and let
the vehicle proceed once it is its turn to go. The maneuver associated with each
perceived obstacle is created in an expert system manner. So, the computational
complexity is kept low and a deterministic behaviour is obtained. Every maneuver
adds constraints on the longitudinal (slow down, follow, stop) and lateral (avoid)
dimensions which are taken into account in the local trajectory planning process.

3.2.6 Navigation

After the driving behavior is decided, which could be cruise-in-lane, change-lane,
or turn-right, a path or trajectory that can be tracked by the low-level feedback con-
troller is constructed. The main role of the Navigation system is to generate the
local trajectory of the ego vehicle in real time. The resulting trajectory should be
dynamically feasible for the ego vehicle, comfortable for the passengers, and avoid
collisions with the existing obstacles. The trajectory generation data includes the ge-
ometric description of the desired path, lateral error tolerance and associated speed
profile. This process can be described in three stages:

• Space definition: The high definition vector map provides a geometric descrip-
tion of each lane which is used to create lateral boundaries (i.e., a driving cor-
ridor) limits to the vehicle. According to the closest obstacle, a longitudinal
boundary is set so that the decision system chooses a stop maneuver. Spatio-
temporal footprint of each obstacle combined with an avoidance maneuver is
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FIGURE 3.7: Sampling of driving space with vertices (blue dots) ar-
ranged in layers. An example of a circle spline that connects second
and third layer is shown in solid black. Continuity with first and

fourth layer are shown in dotted black lines. [318]

computed based on estimated position and speed. The available driving space
is therefore reduced according to the set of perceived obstacles.

• Path optimization: It aims to optimize the driving space in the short term
horizon. The driving space is discretized into a set of vertices along regularly
spaced. These vertices are then used to construct the path by connected splines
as shown in Fig. 3.7. A second order geometric continuity [322] is applied to
compute a convenient optimized path after splines combination.

• Speed profile: After constructing the geometric path, a speed profile is associ-
ated to the optimal path considering road geometry and vehicle dynamic con-
strains (i.e. maximum allowed speed or desired lateral acceleration in turns).
Additional constraints such as pedestrian lines, approaching intersections, and
obstacle avoidance are considered to modify the speed profile. The final trajec-
tory including the path and speed profile is then sent to the control system as
a set of way-points with information about vehicle position, heading, speed,
acceleration and road curvature within a speed-based horizon.

3.2.7 Supervisor in System Management

The purpose of the Supervisor system is to monitor and control the components to
ensure the safety and robustness of the operational components and to facilitate the
integration, deployment, and for graceful degradation of software components. It
selects the discrete behavior of the components, that is, to determine which continu-
ous behavior each of the functional components must have at each moment of time.

The supervisor maintains different operational modes (e.g. autonomous/manual
mode) and sends signals to the operational components to switch their states accord-
ingly. Its main functions are as follows:

1. Safely deploys the software components and brings the system to the safe op-
erational state.

2. Interacts with the driver to start or stop the autonomous mode.

3. Monitors the states of all the operational components.

4. Identifies the problems in the components and switches to alternative modes
of operation to keep the system under safe state and to request the driver to
take back the control.
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FIGURE 3.8: Vehicle Bicycle Model

5. Facilitates the integration and maintenance of the overall system.

3.2.8 Vehicle Model

The main dynamics which are usually considered in the vehicle model are the longi-
tudinal, lateral and vertical dynamics [138], [139]. Thus, simplified models are taken
at the beginning such as the bicycle model (two-wheels model), without considering
the suspension system (see FIGURE 3.8). Notice that the vehicle model contains two
types, the kinematic model and the dynamic model. The kinematic model assumes
that the tire-slip of the vehicle with the ground is null. It is derived geometrically
where no forces and tire-slips are considered, as if it is a point-object. This kind of
models is mainly used at low speed systems such as mobile-robots as well as for
the vehicles in automatic parking tasks. Moreover, kinematic model is very useful
for motion planning (reference tracking or path-following) [323]. Considering the
tire-slips in the model is vital for high speed vehicles. Thus, the dynamic model is
used to introduce the side-slip angle with the applied forces from the vehicle and
on it. This model can better use the vehicle’s capabilities for executing aggressive
maneuvers that will be significant in planning motions with high accelerations and
jerks.

This section represents the kinematic and dynamic models of both longitudinal
and lateral vehicle motions that have been briefly derived and verified in [138] and
[139].

Kinematic Model

As mentioned before, the kinematic model is derived geometrically as a point-object.
Thus, observing the marked center of gravity in FIGURE 3.8, the longitudinal and
the lateral vehicle motions in the global reference can be computed as:

ẋ = v cos θ
ẏ = v sin θ
θ̇ = w

(3.1)

where
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• x and y are the cartesian coordinates of the vehicle’s center of gravity in the
global frame (x,y). (m)

• θ represents the rotation of the vehicle with respect to the x − axis and called
the yaw angle. (rad)

• w is the yaw rate that represents the rotation rate of the vehicle. (rad/s)

Since the equations in (3.1) are derived in the global frame, the following rotation
matrix is used to write them in terms of the vehicle’s frame as follows:xe

ye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xd − x
yd − y
θd − θ

 (3.2)

where

• xd, yd and θd are the coordinates of the reference to be tracked.

• xe, ye and θe represent the longitudinal, lateral and rotational errors of the ve-
hicle with respect to the demanded trajectory.

From (3.2), the kinematic-error model differential equations are derived to obtain:
ẋe = wye + vre f cos θe − vx
ẏe = −wxe + vre f sin θe
θ̇e = wre f − w

(3.3)

where vre f and wre f are the longitudinal and rotational velocity references in the
vehicle’s frame. Derivations can be found in [324].

Dynamic Model

The dynamic model is derived using physical concepts, the side-slip angle α will be
considered from now on. Applying Newton’s 2nd law to the vehicle’s longitudinal
and lateral motions we get:

v̇x =
−Fy f sin δ−µmg

m + wvy + a
v̇y =

Fy f cos δ+Fyr
m − wvx

ẇ =
Fy f l f cos δ−Fyr lr

I

(3.4)

where

• vx, vy and w are the body frame velocities, i.e. longitudinal, lateral and rota-
tional velocities in the vehicle’s frame.

• δ and a are the control inputs, steering angle and longitudinal acceleration
respectively.

• Fy f and Fyr are the lateral forces applied on the front and rear tires respectively.

• I, m, l f and lr are the vehicle’s inertia, mass and the distance from the center of
gravity to the front and rear wheel axes respectively.

• µ and g are the friction coefficient and the gravity acceleration constant respec-
tively.
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FIGURE 3.9: Control system architecture

Fy f and Fyr can be modelled using Pacejka’s tire model [138] as follows:

Fy f = c3 sin(c2 tan−1(c1α f )), α f = δ− tan−1(
vy
vx
− l f w

vx
)

Fyr = c3 sin(c2 tan−1(c1αr)), αr = − tan−1(
vy
vx
− lrw

vx
)

(3.5)

where c1, c2 and c3 are constants.

It is worth mentioning that the above tire model shows a nonlinear-dependency
of Fy f and Fyr with respect to α. Notice that the objective of this thesis, related to
the internal project at RENAULT, concerns the passenger vehicles (or daily vehicles)
which constrains the lateral acceleration, and consequently small slipping angle α.
Thus, assuming small α, one can linearize it resulting the following relation:

Fy f = C f (δ−
vy
vx
− l f w

vx
)

Fyr = Cr(−
vy
vx
+ lrw

vx
)

(3.6)

where C f and Cr represent the tires’ stiffness of the front and rear wheels.

Steering Actuator Model

The dynamics of the steering actuator affects significantly the vehicle dynamics,
leading to model uncertainties in the vehicle model. Thus, the steering actuator
model is identified at the nominal longitudinal speed vx = 12 m/s as an LTI model.
A second order transfer function has been obtained in the following form:

Gact =
k

s2 + 2ζwns + w2
n

e−Tds (3.7)

where k, ζ, wn, and Td are the static gain, the damping, the natural frequency and
the time delay, respectively. The second order Padé approximation is chosen for the
time delay. Consequently, the time delay term is then represented as:

e−Tds =
1− Tds

2 + (Tds)2

12

1 + Tds
2 + (Tds)2

12

(3.8)

3.2.9 Control System

The first functionality of the Control system is to ensure stability when switching
from manual to autonomous mode and vice-versa. During autonomous mode:
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FIGURE 3.10: Lateral control closed-loop scheme

FIGURE 3.11: Lateral control based on look-ahead concept

1. It monitors a set of vehicle accessories such as lights, wipers, horn and warning
light.

2. It observes continuously the health state of the surrounding systems and inner
modules, and executes specific fail-safe policies or emergency actions triggered
using vehicle safety devices (emergency stop button, override key, etc.).

3. It receives the vehicle localization and the planned trajectory to achieve accu-
rate, safe, and comfort tracking.

The general control architecture is shown in FIGURE 3.9 including the longitu-
dinal and lateral controllers.A dSPACE MicroAutoboxII (MABx) is used to embed
the control algorithms using MATLAB/Simulink turning at 100 Hz. The MABx is
connected to the vehicle via a CAN network. On-board sensors provide the system
with information such as vehicle localization, speed, longitudinal acceleration, yaw
rate, etc. The maximum capacity (100 Hz) is used for the communication with the
steering, throttle, and brake actuators.

Longitudinal Control

A low-level, longitudinal controller is designed to control the throttle and brake ac-
tuators according to the speed reference received from the navigation system. Since
the speed reference could include discontinuities which can affect the stability and
performance of the low-level control. A high-level longitudinal controller is de-
signed achieving high robustness and tracking capabilities. This is obtained using a
Linear Parameter-Varying (LPV) control concept, considering the rate of the speed
reference as a scheduling parameter.

Lateral Control

The lateral control is responsible to control the steering actuator aiming to track the
required path maneuvers. To maintain human steering behavior, the look-ahead
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concept is used by measuring the lateral displacements from the reference trajectory
at a distance in front of the vehicle. Such concept mainly uses the GPS, where a high
integrity navigation system of an automated vehicle, based on the fusion between
the Inertial Measurement Unit (IMU) and the GPS, is developed and implemented.
This allows to predict the future lateral error and try to minimize it smoothly as the
human driver does.

The used scheme for the lateral control, as shown in Fig. 3.10, consists of:

1. A feedforward term which concerns the reference trajectory by considering
the road curvature and vehicle speed (see Fig. 3.11). The road curvature is
estimated at a target point chosen in front by a look-ahead distance in order to
predict the future lateral displacement.

2. A feedback compensator which activates the steering actuator to minimize the
current vehicle errors and correct its lateral and heading positions..

The lateral controller, applied to the automated ZOE, is designed using the LPV
concept, having the vehicle longitudinal speed as the scheduling parameter. It can
be designed using any control concept (pole-placement, PID, H∞, ...). The aim is to
track the yaw rate reference wre f and respecting the actuator limitations.

The Look-Ahead System (LAS) block represented in Fig. 3.10 aims to generate
a coherent yaw-rate reference wre f . The LAS uses the current vehicle situation mea-
sured by the sensors and the information from the navigation system. The main role
of LAS is to improve the lane-tracking accuracy and driving comfort at the same
time. wre f can be approximated as:

wre f =
2vxyL

L2 (3.9)

where yL is the predicted lateral error at the look-ahead distance L (see Fig. 3.11).

3.3 Related works on vehicle control

Vehicle automation was leveled from 0 to 5 according to the SAE J3016 standard. In
this standard, levels were distributed as follows: Level 0, where the human driver
has the full responsibility of all driving actions. Level 1 contains basic driving as-
sistance like adaptive cruise control (ACC), anti-lock braking systems and electronic
stability control [139]. Level 2 is more assisted than level 1, by considering advanced
assistance such as hazard-minimizing lateral/longitudinal control, e.g., [325], or
emergency braking, see e.g., [326], [327]. At level 3, the system is fully automatic
in driving with environment monitoring under specific conditions. However the
human driver is still able to take control when the driving actions are out of au-
tonomous system’s operational circumstance. Level 4 represents the vehicle with
full automation as in the previous level but in addition to safe control of the vehicle
in in case that the operator fails to control the intervention request. Finally, level 5
performs all the driving situations as fully autonomous, i.e. the vehicle moves with-
out a driver. Autonomous driving aims to avoid accidents, reduce fuel consump-
tion, improve traffic flow. It also provides passenger comfort in critical situations
and make it possible to car travelling for everyone regardless of their abilities or
conditions.

Several studies in the literature have focused on the path tracking performance
of the vehicle, their references differ by taking either online or offline motion plan.
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FIGURE 3.12: Adaptive Cruise Control (ACC) scheme

The topic of motion planning is taking a wide range of interest discussing different
strategies to design a plan feasible to the vehicle dynamics (see [323]).

Different vehicular models (linear or not) can be considered for control design
objectives. For example, in [323], the authors neglect the dynamics of the vehicle
for path-planning design. In [328], an LTI model is used including the dynamics of
the vehicle, whereas in [82] and [329], the authors prefer to use a Linear Parameter
Varying (LPV) bicycle model to track normal and racing car references, respectively.
However, in the field of heavy vehicles, the vertical dynamics cannot be neglected,
as observed in [330]. In [100], a more complete model, considering kinematic and
dynamic equations, rewritten in the LPV form, is proposed. In addition to increasing
accuracy, the LPV approach allows the use of linear-like control design tools. In
[331] and [82], the authors design a cascaded control scheme for the kinematic and
the dynamic controls. This strategy adds some limitations and constraints into the
control design.

Vehicle control methodologies that include the vehicle, the path, and the driver
are currently being developed at several research centers and automotive suppliers.
The importance of the used control strategy lies in its simplicity and the achieved
performance. The main objective in [100] is to track an offline trajectory safely by
minimizing the external disturbances and noises (from the driver, sensors, etc.), and
dealing with uncertainties due to some neglected (or unmodeled) dynamics or fixed
parameters. Referring to these demanded performances, robust control is a suitable
technique to achieve their goal where it is able to deal with model uncertainties and
disturbance rejection, see [332]. In [82], the authors use the LMI-based LPV-LQR/H2
cascaded controllers with an LPV UIO observer to estimate the road friction force
and achieve less tracking error. The controller is computed offline using the poly-
topic approach. Moreover, in [329], the authors apply the LPV-MPC approach, for a
racing car, where the controller is computed online with reducing the computational
cost.

3.3.1 Longitudinal control

Longitudinal control has been studied considering energy efficiency, fuel consump-
tion and traveling time. For instance, Adaptive Cruise Control (ACC) strategies
have been contributed for automated car-following. Recent results have proposed
new spacing policies and new control architecture to decrease the time gap between
vehicles, while ensuring the string stability [333]. Concerning the cruise control per-
formances, the speed control algorithm [334] has been augmented to enhance road
stability and safety of the vehicle, see [335]. In addition, the look-ahead cruise con-
trol has been improved using a parameter-dependent model describing the traffic
flow in terms of the velocity trajectory design. Hence, the design of a longitudinal
control strategy becomes challenging.

ACC systems adjusts vehicle speed and provides a specified distance to the pre-
ceding vehicle by automatically controlling the throttle and brake actuators [336].
ACC with the Stop&Go system offered by the Advanced Driver Assistance System
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(ADAS), makes driving easier and less stressful. Different control approaches have
been proposed for ACC. The Model Predictive Control (MPC) is largely and com-
monly used, where a high level controller is proposed based on MPC approaches,
taking into consideration the driver longitudinal ride comfort, driver permissible
tracking range, and rear-end safety [337]. In [338], a Fractional-Order Control (FOC)
approach has been presented to design a feed-forward structure for ACC to enhance
the car-following while ensuring the robustness/stability. A fuzzy longitudinal con-
trol is studied in [339] to control the throttle and braking pedals, this control ap-
proach is using (IF...THEN) conditions based on experience and experimental re-
sults. [340] introduces the Cooperative Adaptive Cruise Control (CACC), it is known
as the extension of the ACC by enabling the wireless communication between vehi-
cles (V2V) to control the time gap. An LPV control has been used to deal with the
variations of the time headway while ensuring the convergence of the spacing errors
towards zero and the attenuation of any disturbance propagating along the platoon.

3.3.2 Lateral control

Vehicle lateral control is a vital problem to achieve an on-road automated movement.
It is important as much as it is critical where it concerns lane-keeping, lane-changing,
obstacle avoidance, autonomous parking, etc. Most of the path-tracking methods in
practice encounter challenges when high accuracy and robustness are required [341].
The first role of the lateral control is to keep the vehicle within the boundaries of a
lane, which is performed by adjusting the steering actuator to minimize the lateral
error between the vehicle position and a target point in the generated reference. The
question comes on how to choose the target point. If the target point is chosen to
be the closest point (in the reference) to the vehicle, the actuator may not be able
to minimize the corresponding lateral error in case of high speeds, high curvature
changes, etc. This is due to delays in the used sensors and actuators. Then, a look-
ahead approach is raised to predict the future lateral error at a chosen look-ahead
distance. Look-ahead systems use sensors as machine vision, radar, and LiDAR, to
measure the lateral displacement in front of the vehicle.

Lateral control for overtaking or obstacle avoidance maneuvers has been also
tackled in the literature. This concept took a part of the studies concerning the steer-
ing rate and the forward distance to be covered by ensuring safety with respect to
the vehicles around. Fuzzy logic control [342] and different optimization techniques,
as in [343],[344], and [345], were used to maintain better scenarios for lane change
and collision avoidance.

3.3.3 Look-ahead based lateral control

In 90s, the control concepts based on look-ahead systems have been raised. These
concepts have been developed to mainly improve the efficiency and performance
of the longitudinal and lateral vehicle controls. [346] proposes a new approach to
improve the vehicle trajectory prediction for the Adaptive Cruise Control (ACC)
system. It concludes that the higher look-ahead distance, the greater the prediction
errors. Moreover, the look-ahead approach is also used to optimize traffic flow, min-
imize trip time [347], decrease fuel consumption and provide safety for heavy-duty
vehicles [348], [349], [350].

On the other hand, look-ahead systems are used for lateral objectives as shown
in the pioneering works [351], [352]. In [353] and [354], the authors have recognized
that the closed-loop stability is sensitive to the variation of speed. Specifically, when
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the vehicle speed increases, the closed-loop zeros and poles move toward the imag-
inary axis leading to poor damping of the poles. Increasing the look-ahead distance
moves the zeros closer to the real axis, improving the damping of the closed-loop
poles. As a result, the choice of a proper look-ahead distance is important for sta-
bility and performance of the closed-loop system. Practically, as much as the look-
ahead distance decreases, the vehicle will lose farer information which leads to pe-
riodic oscillations due to actuators and sensors delays. On the other hand, when the
look-ahead distance increases, the vehicle may not be able to deal with near obstacles
or maneuvers. The relation has been analyzed between the look-ahead distance and
the longitudinal velocity, the road curvature and the processing delay of the vision.
In [355], the authors introduce an equation which calculates the look-ahead distance
as a function of vehicle specifications and longitudinal speed taking into account the
distance between the vehicle and a bumper. [356] proposes a dynamic look-ahead
distance L(s) which varies with respect to speed. The aim was to obtain the lateral
acceleration independent of the longitudinal speed which makes the design of the
steering control much easier.

One of the most used schemes for the lateral control consists of:

1. A feedforward term which generates the desired yaw rate at a varying look-
ahead distance with respect to the vehicle’s speed.

2. A feedback compensator that minimizes the current vehicle yaw rate error to
reduce the lateral error.

In [357], the steering rate is defined to be proportional to both heading and lat-
eral errors, adapting look-ahead distance accordingly to vehicle speed. Thus, a Lin-
ear Time-Invariant (LTI) controller is designed for a fixed look-ahead distance and
speed. Each one of those obtained LTI controllers has a different performance to
be used in a certain situation. [293] uses this approach to design a switching LTI
controller based on Youla-Kucera (YK) parameterization. Two LTI controllers are
designed separately having the same speed but different look-ahead distance pa-
rameter d; the first one with d = 30m for managing larger lateral errors smoothly,
and the second with d = 15m to provide fast tracking capabilities. When the ab-
solute lateral error increases from 0.6 to 3m, the controller switches its performance
from the second to the first. A recent approach has been proposed in [23], solving
the same problem but by adapting the look-ahead distance within the generated
yaw rate reference in terms of the absolute lateral error, and using a single robust
LPV controller.

Recently, several studies aim to find the best tuning of the look-ahead distance
L with respect to the vehicle speed vx. The studies in [358], [359] and [360] pro-
pose to tune L from numerical analysis. [357] estimates L manually by analyzing
the closed-loop poles with respect to speed, look-ahead distance, and lateral control
feedback gains. In [361], the authors indicate three look-ahead distances (L1, L2, L3)
at a fixed speed. Then, a feedback lateral control uses vehicle lateral deviations at
the indicated look-ahead points to improve the performance of the vehicle at dif-
ferent road curvatures. In [362], the look-ahead distance is formulated as a linear
function of speed by choosing a suitable look-ahead time as a slope, with lower and
upper bounds. The same methodology is also introduced in [363] and [364]. [365]
and [366] propose a simplified adaptive method that tunes the look-ahead distance
from the commanded speed instead of the measured one to improve a path predic-
tion process. The tuning method parameters are obtained from a number of different
experiences. Other works employ the fuzzy logic approach to tune the look-ahead
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distance [367], [368]. They consider the road curvature and the current vehicle lateral
error for the selection of the look-ahead distance.

As an overall, the look-ahead distance may be determined based on at least one
of the following: vehicle speed, rotating speed, steering acceleration, steering angle,
heading angle, lane curvature, current lateral error, predicted lateral error, distance
to lane boundary, vehicle rotating performance, obstacle location. Tuning the look-
ahead distance based only on the vehicle speed is not sufficient, since it could face
some critical situations as large lateral errors for example. Recently, [369] proposes a
method to find, in real-time, an optimal look-ahead distance according to the vehicle
speed and steering acceleration, and taking into consideration the vehicle heading
error. This improves the vehicle performance when subjected to high noises at high-
ways, and to large lateral errors that may occur at the autonomous mode initializa-
tion or sudden lane-changes.

3.4 Discussion

The current thesis focuses on the Control system, mainly the look-ahead based lat-
eral control of autonomous vehicles. A general control architecture is formulated
based on LPV and YK parameterization aiming to switch/interpolate between mul-
tiple controllers. Its objective is to maintain different lateral motion capabilities, at
low and high speeds. The thesis contributions are validated using simulations and
real-time implementations:

• Simulation environment: The simulations are employed by a Renault sim-
ulator considering the electric Renault ZOE vehicle, developed in MATLAB
/ Simulink, and including nonlinear vehicle and tire models. They are per-
formed in discrete-time domain with a sampling time Ts = 10ms.

• Real-time experiment: The vehicle in FIGURE 3.2 is used for the performed
experiments. This automated vehicle is adapted for lateral and longitudinal
controls by computer-controlled steering and pedal actuators. Vehicle speed
and the global coordinates are measurable using GPS and IMU. The vehicle is
employed using a dSPACE MicroAutoBox. The tests are done in the private
closed track Satory shown in FIGURE 3.6.
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Chapter 4

Application of LPV Approaches to
Vehicle Lateral Control

4.1 Introduction

This chapter presents, the real implementation of the polytopic, grid-based and LFT
LPV approaches to solve the lateral control problem on an electric Renault ZOE ve-
hicle. A comparative analysis is shown among the three LPV approaches to the
autonomous vehicle lateral control. The design of the three approaches from a the-
oretical point of view as well as their application on a real vehicle are presented,
including a comparative analysis.

Specifically, comparison is carried out attending to the following criteria:

1. Designing procedure which is discussed in a theoretical point of view.

2. Controller performance when dealing with different situations (noise, distur-
bance, large lateral errors, low and high speeds, etc...). This is achieved by
analysing the lateral errors (to ensure safety) and the control input efforts (to
ensure comfortability and actuator limitation) from the simulation and real im-
plementation results.

3. Implementation complexities when applying them on real applications and
their effects on the computational costs.

The main contribution of this chapter is to develop, experimentally validate and
compare three distinct LPV controllers which can deal, comfortably, with both lane
change and lane tracking problems of a daily passenger vehicle. This can be sum-
marized as follows:

• Quasi-LPV models are structured for the three approaches from the nonlinear
bicycle model that vary with respect to the longitudinal velocity.

• To limit the control input effort and to achieve the noise/disturbance rejection
performance, LPV/H∞ problems are solved using a set of LMIs.

• The design and experimental validation of grid-based and Linear Fractional
Transformation (LFT) approaches is carried out for the first time on the lateral
control of autonomous vehicles.

• Input reference is adjusted as a function of the speed and lateral error, mod-
ifying the look-ahead parameter accordingly to deal with large lateral errors
(lane changing) and the small ones (lane tracking).
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• Simulation and experimental results (on a Renault ZOE vehicle) are shown
to compare the performance of the controllers concerning tracking, actuator
limitations and noise/disturbance rejection.

The simulation and experimental results shown in this chapter have been pre-
sented in:

• LPV-Based Autonomous Vehicle Lateral Controllers: A Comparative Analysis, pub-
lished in IEEE Transactions on Intelligent Transportation Systems (T-ITS), refer to
[23].

This chapter is organized as follows: In Section 4.2, a brief theoretical explana-
tion on how LPV structures are formulated for the different approaches. The used
control scheme of a full speed-range controller is represented in Section 4.3. Also, the
optimization problems of the LPV/H∞ control synthesis are discussed. Section 4.4
presents the implementation control scheme achieving multiple tasks (lane change
and path tracking). Then, simulation results obtained by the designed controllers
and the limitations of each approach are analysed. In section 4.5, experimental val-
idation is demonstrated to ensure the reliability of the comparison done. Section
4.6 summarizes the comparison in general concerning all the chosen criteria, and
some comments are introduced. Finally, section 4.7 collects some conclusions and
remarks.

4.2 Model Formulation

The lateral vehicle dynamics is modelled using the well-known bicycle model [138],
[139]. Next subsections describe the plant model and the design of each LPV model.

4.2.1 Lateral Bicycle Model

In [138] and [139], the nonlinear lateral bicycle model is derived as:{
v̇y =

Fy f cos δ+Fyr
m − wvx

ẇ =
Fy f l f cos δ−Fyr lr

I ,
(4.1)

where vx, vy and w are the longitudinal, lateral and rotational velocities in the vehi-
cle’s frame, respectively. δ is the control input, the steering front angle of the front
tire. I, m, l f and lr are the vehicle’s inertia, mass and the distance from the center of
gravity to the front and rear wheel axes respectively. Fy f and Fyr are the lateral forces
applied to the front and rear tires, respectively.

Considering small side-slip angles and constraint lateral acceleration (≤ 5m/s2).
Then, the lateral forces can be approximated as follows:

Fy f = C f (δ−
vy
vx
+

l f w
vx
),

Fyr = Cr(−
vy
vx
+ lrw

vx
),

(4.2)

where C f and Cr are the stiffness of the front and rear wheel-tires respectively. No-
tice that the linear bicycle model with constraint lateral acceleration has been stated
as a good approximation of the nonlinear model [370]. Then this model could be
sufficient for daily passenger vehicles.
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4.2.2 LPV Model Structures

After choosing ρ(t) = vx ∈ Rnρ as a varying parameter, and assuming small steering
front angles (sin(δ) ≈ δ), and small slip angles, the LPV state-space representation
is written as:

G(ρ)

{
ẋ(t) = A(ρ)x(t) + Bu(t)

y(t) = Cx(t) + Du(t) (4.3)

where:

x(t) =
[

vy
w

]
∈ Rnx , u(t) = δ, , y(t) = w, B =

[ 1
m C f

1
I C f l f

]
,

A(ρ) =

 −Cr+C f
mvx

− l f C f−lrCr
mvx

− vx

− l f C f−lrCr
Ivx

−
l2

f C f +l2
r Cr

Ivx

 .
(4.4)

The parameter-dependency of the LPV model differs from one approach to an-
other. Specifically, the control synthesis of the polytopic approach requires an affine
parameter-dependency. However, the gridding approach does not require such as-
sumption. Finally, the LFT model is defined to be a lower or upper Linear Fractional
Representation (LFR) between a known LTI model and a varying-parameter block.
The following discussion shows how each approach is formulated.

Polytopic Model

The polytopic model is defined in a convex hull bounded by the parameters ex-
tremums (see Fig. 4.1). It is formulated as a convex combination between the ver-
tices of the polytope. Two conditions must be satisfied: 1) the input and output
matrices should be independent of the varying parameters, this is usually solved by
pre-filtering the input or output; and 2) the model must be affine with respect to the
varying parameters. So, (4.4) is written as:

Apol(ρ) =

[
−Cr+C f

m ρ2 −C f l f−Cr lr
m ρ2 − ρ1

−C f l f−lrCr
I ρ2 −

C f l2
f +l2

r Cr

I ρ2

]
, (4.5)

where ρ1 and ρ2 are vx and 1
vx

respectively. Figure 4.1 shows the polytope formed
by the extremums of the two parameters. Notice that the parameter vector is rep-

resented as a convex combination between the 4 vertices, where ρ =
2np

∑
i=1

µiωi and

2np

∑
i=1

µi = 1, µi ≥ 0 ∀i being

ω1 = (ρ1, ρ2), µ1 = |ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω2 = (ρ1, ρ2), µ2 = |ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω3 = (ρ1, ρ2), µ3 =
|ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

ω4 = (ρ1, ρ2), µ4 =
|ρ1−ρ1|
|ρ1−ρ1| ×

|ρ2−ρ2|
|ρ2−ρ2|

(4.6)
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FIGURE 4.1: The polytope

FIGURE 4.2: The gridded matrices

The LPV model is then written as a convex combination of the LTI systems ob-
tained at the vertices of the polytope:[

Apol(ρ) Bpol
Cpol Dpol

]
=

2np

∑
i=1

µi(ρ)

[
A(ωi) B

C D

]
(4.7)

where np = 2 is the number of the varying parameters.

Grid-based Model

The grid-based LPV model is a model interpolated over a set of LTI models that
are linearized at different operating points. This approach can be considered when
the parameter dependency of the model is nonlinear (without model reformulation)
[14], [16]. So, the only needed parameter here is ρ = vx. The varying parameter is
gridded to a chosen number of ng grid points as shown in Fig. 4.2.

The gridding approach uses any kind of interpolation (linear or nonlinear) be-
tween the gridded models to compute the LPV model. Suppose that, at an instant,
the longitudinal velocity ρ ∈

[
ρk, ρk+1

]
m/s, the linear interpolation of the state-

space matrices: [
Agrid(ρ) Bgrid(ρ)
Cgrid(ρ) Dgrid(ρ)

]
=

k+1

∑
i=k

αi(ρ)

[
Ai Bi
Ci Di

]
, (4.8)

where,
αk =

ρk+1−ρ
ρk+1−ρk

and αk+1 = ρ−ρk
ρk+1−ρk

(4.9)
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FIGURE 4.3: Linear fractional representation of a parameter-varying
system

LFT model

The LFT approach defines the model as the upper LFR between a known LTI model
and a parameter block as shown in Fig. 4.3 [6]. At each instant, the parameters in
the block Θ are updated being the input of the LTI model M. In general, the upper
LFT interconnection of the shown model is written as: ẋ

zθ

y

 =

 A Bθ B
Cθ Dθθ Dθ1
C D1θ D

 x
wθ

u


wθ = Θzθ

(4.10)

where Θ is the time-varying operator block introduced as:

Θ = blockdiag(θ1 Ir1 , ..., θk Irk) (4.11)

being ri > 1 which presents the number of occurrences of the varying-parameter θi.
Notice that θi can be normalized to be always ∈ [−1, 1], which makes M represents
the nominal model when θi = 0 ∀i.

Let us consider the system model (4.3), considering the parameter vx varying as:

vx = vx0 + aθ (4.12)

where vx0 =
vxmin+vxmax

2 represents the nominal value of vx, and a =
vxmax−vxmin

2 repre-
sents the rate of variation when θ varies in [-1,1]. Then, (4.3) can be rewritten under
the LFT form (4.10) where:
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A =

 −Cr+C f
mvx0

− l f C f−lrCr
mvx0

− vx0

− l f C f−lrCr
Ivx0

−
l2

f C f +l2
r Cr

Ivx0



Bθ =

[
− a

vx0
0 − a2

vx0
0

0 0 0 − a
vx0

]

Cθ =


−Cr+C f

mvx0
− l f C f−lrCr

mvx0
+ vx0

0 1
0 0

− l f C f−lrCr
Ivx0

−
l2

f C f +l2
r Cr

Ivx0



Dθθ =


− a

vx0
0 − a2

vx0
0

0 0 0 0
0 1 0 0
0 0 0 − a

vx0


Dθ1 = 04×1, D1θ = 01×4, Θ = θ × I4

(4.13)

And finally, the state-space matrices of G(ρ) are scheduled as:

ALFT(ρ) = A + Bθ∆θCθ

BLFT(ρ) = B + Bθ∆θ Dθ1
CLFT(ρ) = C + D1θ∆θCθ

DLFT(ρ) = D + D1θ∆θ Dθ1
∆θ = Θ(I − DθθΘ)−1

(4.14)

It is worth noting that, in the LFT approach, the LPV model is converted as in Fig.
4.3 in a single LTI model feeded by a parameter dependent input. It differs from the
polytopic and grid-based approach where a set of LTI models is handled.

4.3 LPV/H∞ Control Design

Fig 4.4 presents the control design scheme where an LTI actuator model Gact (first
order transfer function + input delay) is added to the bicycle model dynamics (δc is
the controller output). Note that the input delay is described as a first order transfer
function, so as a result, Gact is a second order transfer function. Considering this
structure, the controller K(ρ) (in Fig. 4.4) is designed for the three approaches using
LPV/H∞ concept. Notice that wre f represents the yaw rate reference.

Control performance criteria in H∞ control theory are given by frequency do-
main functions (check Appendix B). Two weighting functions We and Wu are used to
achieve tracking and actuator limitations performances respectively. The objective is
to achieve both performances with a trade-off between minimizing the lateral error
and ensuring the driving comfort. Notice that the steering speed δ̇ could be related
to the driving comfort since it reflects how fast the front wheels are acting (e.g. at
high values of δ̇), and how noisy they appear (when δ̇ oscillates around zero at high
frequencies). We know that when δ̇ increases, the lateral acceleration increases, and
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FIGURE 4.4: Control design scheme

consequently more aggressive actions are achieved. Moreover, a highly frequent os-
cillation of the steering speed around zero leads to noises in the front wheels, which
encounters uncomfortable driving. As a result, Wu is designed in a way to achieve
low steering speeds with noise rejection.

4.3.1 Tracking specification (We)

The weighting transfer function is chosen as:

We(s) =
s

Ms
+ wb

s + wbϵ
(4.15)

where the parameters Ms, wb and ϵ are tuned as follows:

• Ms = 2, to ensure robustness at any frequency.

• wb ≥ 10, to choose the speed of rising time-response.

• ϵ ≤ 10−4, to represent the steady-state tracking error.

4.3.2 Specification on the control input limitations (Wu)

A filter is used to minimize the effort of the steering actuator control δc. This filter is
designed as:

Wu(s) =
s + wbu

Mu

ϵus + wbu

(4.16)

The parameters Mu, wbu and ϵu are adopted as:

• Mu represents the limitations on the maximum allowed effort of the actuators.

• wbu , is related to the actuator bandwidth.

• ϵu ≤ 10−2, is concerned with the noise rejection from the control inputs at high
frequencies.

4.3.3 Generalized Plant

Using the plant model and the weighting functions, Fig. 4.4 is converted to build a
general control configuration as in Fig. 4.5a. The generalized plant P(ρ) is structured
to consider the chosen weights in addition to the LPV model (G(ρ) × Gact). Thus
the state vector of P(ρ) is xP =

[
x xact xWe xWu

]T, and the controlled output
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(A) General control configuration (B) LFT general control configuration

z =
[
e1 e2

]T represents the objective function to be optimized when designing the

controller. w =
[
r d n

]T is the exogenous input, where r, d and n are the desired
reference, input disturbance and the measurable noises respectively.

For the polytopic and the gridding approaches, the state-space representation of
P(ρ) (see Fig. 4.5a) has the form:


ẋP
e1
e2

r− y− n

 =


AP(ρ) B1 B2 B3 B4

0 We 0 −We −WeG(ρ)
0 0 0 0 Wu
0 1 0 −1 −G(ρ)




xPr
d
n


u

 . (4.17)

In the polytopic approach, there exist four generalized plants, each one is related
to a corresponding vertex of the polytope. However, a set of ng Pi’s are formulated
along the gridded points for the gridding approach.

Fig. 4.5b shows the generalized plant P(ρ) as an upper LFR between a parameter-
invariant P and the parameter block Θ for designing an LPV/LFT controller. Using
this approach, P is then structured as:


ẋP
zθ

e1
e2

r− y− n

 =


AP BΘ B1 B2 B3 B4
Cθ Dθθ Dθ1 Dθ2 Dθ3 Dθ4
0 0 We 0 −We −WeG(ρ)
0 0 0 0 0 Wu
0 0 1 0 −1 −G(ρ)





xP
wΘr
d
n


u

 . (4.18)

4.3.4 LPV/H∞ Control Synthesis

For the rest of the paper, the longitudinal speed is considered to be bounded as:

vx ∈
[
3, 30

]
m/s (4.19)

The main objective of theH∞ control is to minimize the L2 induced gain from the
external input w to the controlled output z =

[
e1 e2

] T. This is achieved by solving
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the following L2 induced minimization problem:

∥z∥2 ≤ γ∞ ∥w∥2

and γ∞ > 0, to be minimized, represents how much the demanded performance is
achieved. If γ∞ < 1, the demanded performance is totally achieved by the controller.
Among the three approaches, each controller is designed by solving its correspond-
ing LMI-based optimisation problem. A complete overview of the synthesis and
implementation complexity of LPV approaches can be found in [371]. For each ap-
proach, the complexity of LPV controller existence conditions is determined in terms
of the size of LMIs and the number of decision variables. Note that the obtained con-
troller K(ρ) is an LPV Dynamic Output Feedback Controller.

Polytopic Approach

Fig. 4.1 shows that the polytopic approach is considering the parameters vx and 1
vx

as two independent parameters. However, they depend on each other as a function
of the black curve (i.e. y = 1/x). Since the polytope is a very large set compared
to the real parameter variation rule (and mainly due to w4), this may lead to conser-
vatism when solving the optimisation problem on the 4 vertices. Thus, a solution to
this problem is drawn in [372], where the number of vertices is reduced from 2np to
np + 1. So, the polytope in Fig. 4.1 can be reduced to CO{w1, w2, w3}, and then, the
coefficients µ′is will be:

µ1 = 1− (µ2 + µ3), µ2 =
|ρ2−ρ2|
|ρ2−ρ2| , µ3 =

|ρ1−ρ1|
|ρ1−ρ1| (4.20)

In the polytopic approach, the problem is solved in the framework of quadratic
stability of the closed-loop system. This is obtained by solving a set of LMIs at the
vertices of the polytope with a constant Lyapunov function [7]. The existence condi-
tions of this approach show the number of LMIs to grow by O(2np). Also, the num-
ber of decision variables is computed to be nx(nx + 1) [371]. As a result, a controller
Ki is obtained at each vertex and K(ρ) is computed as (in the case of non-reduced
polytope and ∀ρ inside the polytope of Fig. 4.1):[

AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

2np

∑
i=1

µi(ρ)

[
AKi BKi

CKi DKi

]
(4.21)

Grid-based Approach

Grid-based approach formulates the problem in the context of robust stability [373]
by using a parameter-dependent Lyapunov function along the gridded axis [16].
Notice that a basis function is chosen to write the Lyapunov function in terms of
the varying parameters. An example on the lateral vehicle control problem, the Lya-
punov function X(ρ) is chosen to be linearly dependent (order 1) on the varying
parameter ρ = vx:

X(ρ) = X0 + ρX1, (4.22)

where X0 and X1 are unknown constant matrices to be computed from the LMIs.
From this point of view, one can see an advantage in the optimisation problem of
this approach where it reduces the conservatism of the polytopic approach. Notice
that the LMIs include the absolute maximum rate-change of the parameter. Study-
ing the existence conditions of this control approach, the number of LMIs grows
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with O(nnρ
g ). To determine the number of decision variables, let us assume that the

parameter-dependent Lyapunov matrix is parameterized as:

X(ρ) = X0 +
s

∑
i=q

ai(ρ)Xi, (4.23)

then the number of decision variables is 1
2 nx(nx + 1)(nX

ρ ++1), where nX
ρ = s− q +

1. For more details, the LMIs are derived in Theorem 4.3.1 in [16]. As a result, a set
of controllers is obtained where each one corresponds to a frozen value in the grid-
ded axis of the parameter. When ρ ∈ [ρk, ρk+1], the controller K(ρ) can be linearly
interpolated as [14]:[

AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

]
=

k+1

∑
i=k

αi(ρ)

[
AKi BKi

CKi DKi

]
, (4.24)

where,
αk =

ρk+1−ρ
ρk+1−ρk

and αk+1 = ρ−ρk
ρk+1−ρk

(4.25)

LFT Approach

The LPV/LFT controller synthesis mainly relies on the S-procedure [41]. The solu-
tion of the LMI-based optimization problem is detailed in [6], where continuous and
discrete-time LMI problems are discussed. The LMI size is typically smaller than
that in the polytopic approach since there is no anymore a set of LMIs to be solved
for a set of parameter values (see Fig. 2 in [14] for more details). However, a trade-off
is found where the number of decision variables of LFT is much bigger than the poly-
topic approach when nρ increases (nx(nx + 1) + 2nΘ(2nΘ + 1) where Θ ∈ RnΘ×nΘ ).
Control synthesis is formulated in two steps: 1) A quadruple (R, S, L3, J3) is found
- by solving 2 LMIs - to ensure the solvability of the control problem (check The-
orem 5.1 in [6]); and 2) The gain-scheduling controller is then computed using the
quadruple and solving another LMI with one decision variable containing the con-
troller matrices (Algorithm 6.1 in [6]). Then, the designed controller is written in the
form of a lower LFR Fl(K, Θ), and obtained as follows:

K(ρ) = Fl(K, Θ) = K11 + K12Θ(I − K22Θ)−1K21 (4.26)

being K(ρ) defined as: [
u
z̃θ

]
=

[
K11 K12
K21 K22

] [
r− y− n

w̃θ

]
(4.27)

where K11, K12, K21 and K22 are obtained from the LMI’s. Thus, the state-space ma-
trices of K(ρ) are computed as:

AK(ρ) = AK + BKθ
∆θCKθ

BK(ρ) = BK + BKθ
∆θ DKθ1

CK(ρ) = CK + DK1θ
∆θCKθ

DK(ρ) = DK + DK1θ
∆θ DKθ1

∆θ = Θ(I − DKθθ
Θ)−1

(4.28)
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4.3.5 Frequency Domain Analysis

This subsection analyses the designed controllers in frequency-domain in order to
check if the requirements are satisfied by the controllers. This is achieved using
several sensitivity functions compared to the weights designed previously. Addi-
tionally, an LTI controller designed at the fixed-nominal speed vx=14 m/s is added
to the analysis to show the benefits of using parameter-varying approaches.

To observe the tracking performance, the error sensitivity function S is drawn
as shown in Fig. 4.6. Sensitivity functions of the tracking error to the reference are
drawn with the required performance 1

We
. Notice that each of the LPV approaches

has several sensitivity functions where each one is referred to a corresponding value
of speed (in gridding and LFT approaches) or a corresponding vertex (in polytopic
approach). At low frequencies, all the controllers achieve the demanded steady-
state tracking error. Also, all the controllers are respecting the requirements at high
frequencies related to robust margin (max

∀w

∥∥∥ r−y
r

∥∥∥ < 6 dB).

On the other hand, the analysis of the control input is carried out to evaluate
the sensitivity to the noise. To do so, the control sensitivity function KS of each
controller is computed. Fig. 4.7 shows the sensitivity functions of the control input
δ with respect to the reference, and the requirements on the actuator limitations 1

Wu
.

It is shown that all the controllers are respecting the demanded limitations with a
small exceeding in the bandwidth of the LFT approach. One can appreciate how the
gridding approach shows the best noise rejection at high frequencies compared to
the others.

4.4 Simulation Results

The simulations are employed by a Renault simulator considering the electric Re-
nault ZOE vehicle, developed in MATLAB/Simulink, and considering nonlinear ve-
hicle and tire models. The simulations are performed in discrete-time domain with
a sampling time Ts = 10 ms. The proposed control strategies are implemented in
simulation following the scheme in Fig. 4.8. The look-ahead system block is added
to perform smoothly both lane-keeping and lane-changing (i.e. small and large lat-
eral errors respectively). It modifies the yaw rate reference when having large lateral
errors (initial error in autonomous starting mode, sudden lane-changes, etc.). Since
the desired curvature is inversely proportional to the look-ahead distance [357], a
smooth or aggressive steering can be obtained by changing the look-ahead distance.
Specifically, as much as the lateral error ye increases, the look-ahead distance d is
increased linearly as a function of the lateral error as follows:

d(vx, ye) = sat(
dnom(vx)

2
× (1 + abs(ye)), [dnom(vx), dmax]) (4.29)

where dnom(vx) is the nominal look-ahead distance tuned at each speed vx for small
lateral errors (ye ≤ 0.6m), dmax is the maximum saturation of look-ahead distance
chosen when ye ≥ 3m. dmax is chosen depending on the facing situation where it
should ensure that the vehicle is not losing forward information (we choose it here
as dmax = 40m).

As discussed in subsection 4.3.4, the LPV approaches have different ways of im-
plementation and interpolation. Each one differs with respect to its complexity and
time consuming, which makes it worthy to see how they can be simplified and what
will be the effects of such simplifications. Due to the limited number of real tests
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FIGURE 4.8: Control implementation scheme
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which can be done, this section discusses different ways of implementations for each
approach separately and their impact on the system performance. The trajectory in
Fig. 4.9 is used to test the lateral control performance. Vehicle speed input is recov-
ered from a real test (see Fig. 4.10). Some critical situations were chosen to show the
functionality of the look-ahead system and to compare the response of the different
designed controllers, where:

• a large lateral error is presented at the initialization time,

• the reference positioning system (X,Y) is recovered from a real test with noises.

• the rate of the varying parameter vx is increased to be large enough at some
times (t ∈ [70, 80]s),

• a high speed vx = 25 m/s is reached at time t = 80s,

• two successive aggressive maneuvers (with high lateral acceleration greater
than 5 m/s2) at high speed (around 23 m/s) are carried out between t = 105s
and t = 115s.

4.4.1 LPV Approaches Limitations

This subsection describes the main limitations of each approach from the implemen-
tation point of view.

Polytopic Approach

As mentioned in paragraph 4.3.4, the polytope is reduced to decrease its problem
conservatism. Thus, to analyse the benefit of this reduction, two polytopic LPV con-
trollers (one with four vertices and the other with three vertices) are designed. Both
of them are simulated separately and the results of the obtained lateral errors and
steering input angles are represented in Fig. 4.11 and 4.12.

Table 4.1, Fig. 4.11 and 4.12 show that both controllers achieve approximately the
same lateral error and steering performance. This result is due to the fact that the
bicycle model is not highly nonlinear in terms of the speed vx. Moreover, Fig. 4.11
and 4.12 show that the initial lateral error is minimized smoothly, thanks to the look-
ahead system which adapts the look-ahead distance as the lateral error increases (see
Fig. 4.13). Notice that the look-ahead distance is no more adapted for t > 6s, i.e.
d = dnom(vx) ∀t > 6s except when lateral error exceeds 0.6m.

Finally, Table 4.1 shows the lateral error RMS for both polytopic controllers.
One can appreciate the benefits of reducing the polytope, especially when having
varying-parameters that depend on each other.

TABLE 4.1: RMS of the lateral error using the polytopic approaches

4-Vertices Polytope Reduced Polytope
RMS 0.98 1.01

Gridding Approach

The gridding approach reduces the problem of conservatism by using a parameter-
varying Lyapunov function. Gridded controllers are often interpolated either lin-
early or nonlinearly to obtain the current-state controller. The benefit of this inter-
polation is that even if the parameter goes out of its extremum bounds that was
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considered in the control design (i.e. vx < 3 m/s), the controller still can be inter-
polated with negative coefficients. Designing a gridded-based LPV controller, the
gridded axis of the varying parameter should be drawn. This axis can be gridded
starting from two grid-points until infinity. Thus, it is worthy to study the effect of
increasing the number of gridding points on the performance of the system.

A set of tests is done at each chosen number of gridding points and the RMSs
of the lateral errors are computed. The chosen number of gridding points are the
even numbers from 2 to 40 grid-points (2,4,...,38,40). Fig. 4.14 shows the normalised
RMS of the lateral errors from each test. Notice that all of them are normalized with
respect to the test of ng = 2 to make it easier for comparison, being the first test RMS
equals to 0.263. It is clearly shown that increasing the number of gridding points
may not always improve the performance.

Thus, it can be concluded that, in the used model, the performance of the gridded
controller is not significantly affected by the number of gridding points.

LFT Approach

The implementation of the LFT controller (4.28) is simpler where it consists of a
state-space control system which varies with an input parameter ∆θ , unlike the pre-
vious approaches that have a set of controllers to be interpolated between each other.
However, an online inverse must be done at each sample time. This may lead to a
limitation during simulation or specifically in real implementations. Thus, a method
has been used in [374] to avoid online calculations. A look-up table of the inverted
matrix is computed at each chosen grid-point along the parameter range, and then,
an interpolation is done during simulation.

The controller with online inverse, the one with interpolation and the nominal
controller (at vx = 17.5m/s) are tested (see Fig. 4.15 and 4.16 for details). Table 4.2
presents the RMS lateral error, where there is no significant difference between the
tracking performances of the tested controllers. Fig. 4.15 shows that the performance
of the interpolated controller (yellow line) differs a bit from the one with online in-
verse (red line) when the parameter variation rate increases (i.e. t ∈ [40, 60]s). On
the other hand, it can be clearly observed that when the speed approaches the nom-
inal speed (vx = 17.5m/s), the nominal LFT controller (blue line) acts more closely
to the one with online inverse (red line) (t ∈ [135, 140]s). Notice that at high speeds
(t ∈ [90, 100]), the nominal LFT controller is showing a small difference in the lateral
error, whereas the other two controllers are having exactly the same performance
regarding also the steering action (see Fig. 4.16). As a result, the interpolated LFT
controller showed a similar performance as the actual one which may help in reduc-
ing the computational cost in real implementations.

TABLE 4.2: RMS of the lateral error using the LFT approaches

Nominal LFT LFT with online inverse Interpolated LFT
RMS 0.1849 0.1683 0.17

4.4.2 LPV Approaches Robustness Test

The most promising result of each LPV approach is retained and tested again with
the LTI one (at vx = 17.5m/s) by modifying some vehicle parameters (vehicle mass
and tire stiffness). The mass of the vehicle changes by the number of passengers.
Moreover, the tire stiffness is hard to be estimated (see [375] for instance), and it
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varies by time when the tire loses its quality. Then, the following test is important
to study the robustness of the designed controllers in terms of such uncertainties. In
this test, the mass of the vehicle is chosen arbitrarily to be increased by 400Kg and
each front and rear tire stiffness is adjusted by 30%.

The obtained results are shown in Fig. 4.17 and 4.18. Again, one can appreciate
the success of the look-ahead system which helps in minimizing the initial lateral er-
ror smoothly, i.e. low steering actuation (see Fig. 4.18). Fig. 4.17 and Table 4.3 show
that the tested controllers achieve comparable minimization of the lateral error, with
the best tracking performance achieved by the gridded controller. The interpolated
LFT seems to have the lowest robustness where it maintains the highest RMS lateral
error with more steering overshoots as observed in Fig. 4.18. The steering rate RMS
of the reduced polytopic controller shows the highest value in Table 4.3, and it has
the highest overshoot when performing the initial lateral error (Fig. 4.18). Finally,
all the compared controllers are considered to be robust to the injected uncertainties
thanks to the usedH∞ concept.

TABLE 4.3: RMS of the lateral error for robustness comparison

LTI Reduced Polytopic
Gridding
(ng = 16)

Interpolated LFT

RMS 0.257 0.266 0.251 0.33
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4.5 Real Implementation

The last four controllers, compared in simulation, are then tested on a robotized
electric Renault ZOE shown in Fig. 4.19. This automated vehicle is adapted for lat-
eral and longitudinal controls by computer-controlled steering and pedal actuators.
Vehicle speed and the global coordinates are measurable using GPS and IMU, see
more details in Chapter 3. The vehicle is employed using a dSPACE MicroAutoBox
in discrete time sampled by Ts = 10ms. As previously stated, actuator dynamics
are modelled using an LTI model which influence uncertain dynamics between the
real plant and the designed model. The test results of the designed controllers are
discussed concerning their implementation, the acceptability of the resulted perfor-
mance and the actuator limitations.

The tests are done in the closed track Satory shown in Fig. 4.20. This track con-
tains bad road conditions and road-inclinations which allows to evaluate the con-
troller robustness. The first part of the test describes the response of the controllers
at high speeds. The second part concerns the precision of lateral control at optimal
speeds chosen coherently depending on the road curvature. Fig. 4.21 shows the lon-
gitudinal speed evolution over time which is considered as an external parameter of
the LPV mode. For the coming analysis, the limitations of the used steering actuator
are as follows:

|δ̇|max = 0.2, |δ|max = 0.4, (4.30)

Fig. 4.22 and Table 4.5 show that all the controllers succeed to minimize the
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FIGURE 4.19: Renault ZOE automated vehicle
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TABLE 4.4: RMS of the steering front rate for robustness comparison

LTI Reduced Polytopic
Gridding
(ng = 16)

Interpolated LFT

RMS 0.017 0.018 0.017 0.017
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FIGURE 4.23: Experimental steering front angle of the LTI and LPV
controllers (rad)

lateral error, however Fig. 4.23 and 4.24 show that the control input effort is quiet
different. One can observe that both the polytopic and the LTI controllers are sen-
sitive to noises, especially at high speeds (when t ≤ 60 s). This can be justified by
the conservatism problem of the polytopic approach, and the highly uncertain dy-
namics reached at high speeds worsen the LTI performance. In fact, this uncertainty
is not caused only by the bicycle model, but by the actuator model. Since Gact is
used as an LTI system where actually it varies with speed and quiet changes at high
speeds. Then, reaching speeds around 13 m/s and below, both controllers perform
better with lower sensitivity to noises. On the other hand, the LFT and the gridding
controllers show better performance in all situations with a little difference in the
minimization of the lateral error. Regarding the steering front angle in Fig. 4.23,
these two controllers have the same evolution with less noises even at high speeds.

Fig. 4.24 shows the steering rate input for the tested controllers. Again the LFT
and the gridding controllers are less noisy than the one obtained by the LTI and the
polytopic controllers. Table 4.6 presents that the gridding approach shows the less
control effort. Notice that these results support the frequency domain analysis in
paragraph 4.3.5, especially the analysis of noise sensitivity at high frequencies.

4.6 Summary of Comparison

This section presents a general review on the comparison done between the three
approaches under the main proposed criteria. It is divided into two main parts,
each one discusses the main collected comparisons introduced above:

TABLE 4.5: RMS of the lateral error for experimental comparison

Polytopic LTI Gridding LFT
RMS 0.1473 0.1105 0.1025 0.1096
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FIGURE 4.24: Experimental steering front rate of the LTI and LPV
controllers (rad/s)

TABLE 4.6: RMS of the steering front rate for experimental compari-
son

Polytopic LTI Gridding LFT
RMS 0.0263 0.0149 0.0107 0.0129

4.6.1 About The Three LPV Approaches

LPV Formulations

In section 4.2, the nonlinear model was reformulated using the LPV approaches. It
has shown that the type of parameter-dependency of the model affects the shape
and the complexity of the LPV state-space representation.

For the polytopic approach, the system should be written in a way to be affine
with respect to the varying parameters, and the input and output matrices should
be constant. This may increase the number of parameters which increases the con-
servatism of the optimisation problem. Regarding the LFT model in (4.13), a varying
parameter leaded a 4-dimensional parameter block Θ by the cause of its number of
occurrences. This explains a real problem facing the applications of LFT approach.
Some research studies are done on how to reduce the LFT state-space model [376],
especially by the researchers working on aircraft control. Finally, the gridding ap-
proach showed a simplicity in model formulation where a set of state-space matrices
are obtained at a chosen number of operating points, regardless of the parameter-
dependency and its occurrences.

LPV/H∞ Control Design

Section 4.3 introduced theH∞ control design applied to the studied LPV approaches.
It has stated the complexity of the existence conditions of each approach in terms of
its LMI size and the number of decision variables. Regarding those LMIs, the poly-
topic approach has the simplest optimisation problem where the known concept of
LTI/H∞ is applied at the vertices of the polytope with a constant Lyapunov function.
However, its LMI size grows exponentially when np increases, O(2np). This leads to
conservatism which is decreased by reducing some vertices [372], but still can not
be totally erased. The LFT approach comes to decrease the size of LMIs in polytopic
approach, but it requires bigger number of decision variables [14]. The problem of
conservatism can be solved using a parameter-dependent Lyapunov function which
exists in the grid-based approach. The LMI size in this approach grows by Onρ

g , so it
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TABLE 4.7: Overview of discussed approaches

Controller
Parameter

dependency
Conservatism
with large np

LMI size/
memory growth

Number of decision variables Simulation results
Experimental

results

Polytopic Affine High O(22) 6
Polytopic reduction leads

better performance
High sensitivity

to noises

LFT Rational Medium O(2) 78
Matrix inverse can be replaced by
interpolation using a look-up table

Low sensitivity
to noises

Grid-based General Low O(ng) 9
Performance and ng
are not proportional

Low sensitivity
to noises

is much bigger than that in the polytopic and LFT approaches when having ng > 2.
Also, the complexity of the grid-based approach appears significantly when increas-
ing the order of the parameter-dependent Lyapunov function (nX

ρ ).

4.6.2 Implementation Part

This part plays a vital role in choosing the suitable controller of real applications,
where there are many limitations in terms of computer power and costs.

Simulation Results

Section 4.4 has presented the performance of each control approach with its imple-
mentation limitation. The main concluding remarks obtained are:

• The reduction of the polytope decreases the conservatism of the optimisation
problem, and thus obtaining better performance.

• Using the gridding approach, the system performance is independent from the
number of chosen grid-points.

• The interpolated LFT controller could be used instead of its gain-scheduling
(with inverse (4.28)) without losing its performance.

Real Implementation Procedure

Starting with the way of implementation of each approach, the polytopic controller
is known to be interpolated as a convex combination of the designed LTI controllers
at the polytopic vertices. Thus, those LTI controllers must be saved in a look-up
table and then interpolated at each sampling time. It is similar with the gridding ap-
proach, but the set of gridded controllers will be linearly interpolated. However,
the scheduling of the LFT approach is different, where the matrix ∆θ contains a
matrix which must be inverted online at each sample time, and this increases the
computational time. Since the interpolated LFT shows a performance close to the
gain-scheduling, it can be implemented using linear interpolation as the gridding
approach.

Experimental Results

The figures of the experimental results show how the studied controllers deal with
different situations. For example, the LTI and the polytopic controllers are more sen-
sitive to noises at high speeds, i.e. when the system dynamics change significantly.
However, the LFT and the gridding controllers are more robust to handle this kind
of uncertainty when the approximated model used in the control design differs from
the actual system.
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As a result, although the grid-based approach needs to solve more LMIs for more
decision variables compared to the polytopic one, it provides a general formulation
for any parameter-dependency, and it is has the lowest conservatism among the
three discussed approaches. On the other hand, the gain-scheduling structure of the
LFT approach seems to be the most complex, and its LMIs contain huge number of
decision variables compared to the other two. Thus, the grid-based approach could
be proposed as a powerful and performant for LPV control applications. That is why
it is widely used in aerospace applications [377], [378].

4.7 Conclusion

This chapter has proposed a theoretical and experimental comparison of the LPV
approaches for the lateral control of autonomous vehicle. The gridded-based model
has the simplest structure with less conservatism in optimisation among the others.
The weighting parameters used in control design can physically translate the real
actuator limitations to a filter added to the optimisation problem.

The practical limitations of each approach have been discussed by observing the
simulation results that have been obtained from different chosen critical scenarios.
Then the results obtained in real implementation have shown interesting results re-
garding the minimization of the lateral error, which encourages the application of
LPV/robust approaches on autonomous vehicles. In fact, such approaches help to
control parameter-variant systems and to handle with environmental disturbances
(wind speed, bad road conditions/slopes, etc...).

As a consequence of the practical limitations, mainly at high speeds, the next
chapters propose a switching scheme between multiple LPV controllers to improve
the vehicle performance over the whole speed range. The switching strategy is based
on Youla-Kucera (YK) Parameterization, where several LPV-YK control structures
are designed and validated on the ZOE car.
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Chapter 5

Advanced LPV-YK Control
Structures: Theoretical Proofs

5.1 Introduction

Previous chapter compared the polytopic and the grid-based approach on the auto-
mated robotized platform. It has been concluded that a single Lyapunov function
for models with large parameter variations (as ranging between low and fast vehi-
cle speeds) leads to degraded performance at some parameter subsets. In addition,
several kinds of lateral control performances may be needed such as lane-tracking,
lane-changing, urgent maneuvers, parking, etc.

The current chapter proposes several switching/interpolating control architec-
tures based on Youla-Kucera (YK) parameterization aiming to achieve robust and
adaptive closed-loop specifications (rising time, steady-state error, ...). The LPV-YK
control architecture incorporates multiple LPV or LTI controllers which can switch/
interpolate between them with ensuring stability. It can be used to interpolate be-
tween different control performances aiming to achieve different closed-loop spec-
ifications, or to switch over partitioned parameter subsets when dealing with large
parameter variations. Indeed, as introduced in Chapter 2, the interest behind YK
concept is to parameterize a set of linear stabilizing controllers K(Q) where each one
is parameterized by its corresponding YK parameter Q [268]. This kind of configu-
ration is structured by mapping a set of linear stabilizing controllers onto a Q-based
controller.

The main contributions in this chapter lie in the LPV world and are:

1. Design an interpolating LPV-YK control scheme to achieve different closed-
loop specifications.

2. Design a switching LPV-YK control scheme aiming to switch between parti-
tioned parameter subsets.

The theoretical results in this chapter have been represented in:

• Interpolation of Multi-LPV Control Systems Based on Youla–Kucera Parameteriza-
tion, published in Automatica, see [300].

• Multi-Variable and Multi-Objective Gain Scheduled Control Based on Youla-Kucera
Parameterization: Application to Autonomous Vehicles, under review in International
Journal on Robust and Nonlinear Control.

• Advanced LPV-YK Control Design with Experimental Validation on Autonomous
Vehicles, under review in Automatica.
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The following table summarizes briefly the LPV-YK structures presented in this
chapter:

• The first two structures are proposed to achieve multiple closed-loop speci-
fications, i.e. rising time, settling time, overshoot, etc. Both of them ensure
closed-loop quadratic stability regardless the parameter variations and inter-
polating signals. The difference is just that the interpolated LPV controllers
can be designed either using standard polytopic approach, or based on LTI-
YK parameterization. Refer to Sections 5.5.1 and 5.5.2 for more illustration.

• The other structures are introduced aiming to provide robust performance
over large parameter regions by designing a local LPV controller at each pa-
rameter subset. Quadratic or exponential closed-loop stability is possible de-
pending on the parameter partitioning. Sections 5.6.3 and 5.6.4 illustrates the
difference in more details.

TABLE 5.1: Overview of discussed approaches

Objective Section LPV-YK Structure
Closed-loop

stability

Multiple
closed-loop
specifications

Section 5.5.1
Interpolation of polytopic-based

LPV controllers
Quadratic

Section 5.5.2
Interpolation of polytopic-based

LPV controllers
Quadratic

Maintain
robust
performance

Section 5.6.3
Switching of partitioned YK-based

LPV controllers
Quadratic

Section 5.6.4
Switching of grid-based

LPV controllers
Exponential

The structure is as follows: Section 5.2 states the motivations behind designing
LPV-YK control structures. In Section 5.3, some fundamental lemmas are introduced
to be used later . Section 5.4 defines a general LPV model with its parameter-varying
region. Two LPV-YK control approaches for multi-objective control are presented
in Section 5.5. Section 5.6 introduces two switching LPV-YK control structures over
partitioned parameter regions. Finally, a discussion and summary is given in Section
5.7.

5.2 Motivation

YK parameterization has been successfully used for steering control of autonomous
vehicles considering two LTI controllers designed separately (one for lane-changing
and one for lane-tracking) [293]. The YK control scheme of both controllers has
shown interesting performance for small and large lateral errors. On the other hand,
the YK controller is parameterized for a fixed-speed (LTI lateral dynamics). The
objective in this chapter is to generalize the LPV-YK control structures that inter-
polates/switches between multiple LPV controllers obtaining a multi-variable and
multi-objective switched/interpolated controller.

The LPV-YK control approaches are proposed in this thesis to improve the per-
formance of the switched/interpolated LPV controllers, with lower conservatism
and design complexities. Indeed, previous works which have shown successful and
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smooth LPV switching controllers as in [142], [229], and [208], require the re-design
of the local LPV controllers using proposed LMIs, depending on the switching sig-
nals (e.g. hysteresis switching, switching with average dwell-time, etc.). It is worth
mentioning that the re-design of all local LPV controllers together may cause con-
servatism when increasing the number of controllers.

The theoretical developments presented here are of interest to:

1. Simplify the design of the LPV switching/interpolating control system by de-
creasing the complexity of the LMI conditions (no need to re-design the local
LPV controllers), using parameterization instead.

2. Avoid any limitation on the switching signals without requiring the use of a
constant Lyapunov function.

3. Smooth the control and state responses during the switching instants.

4. Ensure a Plug&Play structure, avoiding the re-design of the switching control
scheme if one needs to add or remove any of the local LPV controllers.

5.3 Preliminaries

This section introduces some notations and assumptions regarding LPV systems and
LTI-YK parameterization. In addition, useful concepts and several lemmas are re-
viewed.

5.3.1 State Transformation

The concept of state transformation is to transform the states of a system without
affecting its input/output property. Consider a state transformation matrix T (of
appropriate dimension) which transforms the state of system W (with state-space
matrices A, B, C, D). Then, the transformed system W̄ is computed as:

W̄ :
[

TAT−1 TB
CT−1 D

]
. (5.1)

Lemma 5. Consider a set of matrices Ai corresponding to each vertex of a convex hull
J = CO{ρ1, ..., ρnp}, The following statements are equivalent:

(i) Ai is Hurwitz ∀i ∈ I[1, np]

(ii) there exist np transformation matrices Ti such that the LPV matrix

Ā(ρ) =
np

∑
i=1

αi(ρ)Āi =
np

∑
i=1

αi(ρ)Ti AiT−1
i (5.2)

is quadratically stable ∀ρ ∈ J , where ρ =
np

∑
i=1

αi(ρ)ρi such that
np

∑
i=1

αi(ρ) = 1.

The proof is introduced in [297] as follows:
(i) ⇒ (ii). If Ai is Hurwitz, then ∃Xi > 0 such that Xi Ai + AT

i Xi < 0, i ∈ Inp .
According to [274], it is always possible to find state transformations Ti (e.g. Ti =

X1/2
i ) such that,

PĀi + ĀiP < 0, ∀i ∈ Inp (5.3)
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FIGURE 5.1: Negative feedback loop

for a common P > 0, with Āi = Ti AiT−1
i . Finding the coordinates αi(ρ), with ρ as

a convex combination of the vertices of J , the LPV matrix (5.2) can be constructed.
Based on αi ≥ 0, ∀i ∈ Inp , inequalities (5.3) and linearity,

P
( np

∑
i=1

αi(ρ)Āi
)
+

( np

∑
i=1

αi(ρ)Āi
)TP < 0, (5.4)

and thus the quadratic stability of Ā(ρ) is proved.
(ii) ⇒ (i). Take ρ = ρm, with ρm one of the vertices of J ; then αm = 1, and

αi = 0,∀i ̸= m. Therefore, Ā(ρ) = Ām, and from (5.4) it can be concluded that Ām is
Hurwitz, and thus Am.

5.3.2 YK Parameter Definition

Observing the control scheme in Fig. 5.1, assume a Single-Input-Single-Output (SISO)
LTI plant G(s) connected to a controller K(s) in a stable feedback structure. Then,
the closed-loop transfer function is obtained as:

CL(s) =
G(s)K(s)

1 + G(s)K(s)
(5.5)

Moreover, let’s define a transfer function Q(s) from the reference r to the control
input u, then:

Q(s) =
K(s)

1 + G(s)K(s)
(5.6)

Thus, if G(s) and Q(s) are known, the controller K(s) can be expressed as:

K(s) =
Q(s)

1− G(s)Q(s)
(5.7)

From (5.6), it is shown that if K(s) stabilizes G(s), then Q(s) is stable and proper.
Equivalently, if Q(s) is stable and proper, then K(s) given by (5.7) stabilizes G(s).

In addition, reformulating the closed-loop expression to be written in terms of
Q(s), we obtain a transfer function affine with respect to Q(s) expressed as:

CL(s) = Q(s)G(s) (5.8)

From this point, the concept of a controller based on YK parameter Q(s) which is
parameterized by a transfer function is opened. Then a set of stabilizing controllers
can be parameterized in terms of all stable and proper functions Q(s) for any LTI
plant G(s).

5.3.3 Doubly Coprime Factorisation

YK parameterisation uses the doubly coprime factorisation concepts to reduce the
algebraic complexity of Q computation. Consider the LTI plant G stabilized by a set
of LTI controllers Ki, then they can be factorized (from left and right) as a product of
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a stable transfer function matrix and a transfer function matrix with a stable inverse
as shown below:

G = NM−1 = M̃−1Ñ

Ki = UiV−1
i = Ṽi

−1Ũi, ∀i
(5.9)

Lemma 6. If the coprime factors M, N, M̃, Ñ, Ui, Vi, Ũi, Ṽi ∈ RH∞∀i, and if they satisfy
the following Bezout Identity:[

Ṽi −Ũi
−Ñ M̃

] [
M Ui
N Vi

]
=

[
M Ui
N Vi

] [
Ṽi −Ũi
−Ñ M̃

]
=

[
I 0
0 I

]
(5.10)

then, all the factorized controllers Ki stabilize G (proof in [269]).

5.3.4 Q Parameterisation

Consider the YK parameter Qi as a transfer function which characterizes the dy-
namic switching between a base controller K0 and Ki ∀i.

Lemma 7. Assume an LTI plant G = NM−1 stabilized by the LTI controllers Ki =
UiV−1

i , ∀i, which have been already designed separately, with M and N are coprime, Ui
and Vi are coprime, and M, N, Ui and Vi ∈ RH∞∀i. Let us choose K0 as a nominal con-
troller factorised as K0 = U0V−1

0 , then the set of parameterized LTI controllers K̃i (∀i ̸= 0)
is defined as:

K̃i = K̃(Qi) = (U0 + MQi)(V0 + NQi)
−1

= (Ṽ0 + QiÑ)−1(Ũ0 + Qi M̃)

where Qi ∈ RH∞ by construction [269].

5.3.5 Exponential Stability of A Triangular Matrix

The following Lemma shows that a triangular matrix is exponentially stable if its
diagonal elements are exponentially stable with bounded off-diagonal elements.

Notice that a matrix A(ρ) is said to be exponentially stable if there exists a posi-
tive definite matrix function X(ρ) such that

π = Ẋ(ρ) + X(ρ)A(ρ) + AT(ρ)X(ρ) < 0 (5.11)

Lemma 8. Assume that the matrices A11(ρ) and A22(ρ) are exponentially stable, every
continuous and bounded block triangular matrix whose diagonal matrices consist of A11(ρ)
and A22(ρ) is also exponentially stable.

To prove the following Lemma, consider an upper triangular matrix:

A(ρ) =

[
A11(ρ) A12(ρ)

0 A22(ρ)

]
(5.12)

According to the assumption, there exists bounded positive definite matrix functions
X1(ρ) and X2(ρ), positive real numbers α1 and α2, satisfying the following inequali-
ties [379]:

Ẋ1(ρ) + X1(ρ)A11(ρ) + AT
11(ρ)X1(ρ) ≤ −α1 I

−α2 I ≤ Ẋ2(ρ) + X2(ρ)A22(ρ) + AT
22(ρ)X2(ρ) < 0

(5.13)
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Since the off-diagonal matrix A12(ρ) is assumed to be bounded, there exists a posi-
tive real number α3 satisfying

X1(ρ)A12(ρ) ≤ α3 I (5.14)

Choose

X(ρ) =

[
X1(ρ) 0

0 λX2(ρ)

]
Then,

π =

[
Ẋ1(ρ) + X1(ρ)A11(ρ) + AT

11(ρ)X1(ρ) X1(ρ)A12(ρ)
AT

12(ρ)X1(ρ) λ
(
Ẋ2(ρ) + X2(ρ)A22(ρ) + AT

22(ρ)X2(ρ)
)]

Now, let us find a positive real number λ > 0 which satisfies (5.11) such that π is
negative definite. Using Schur complement, inequality (5.11) is equivalent to the
following two inequalities:

π(2, 2) < 0
π = π(1, 1)− π(1, 2)π(2, 2)−1π(2, 1) < 0

(5.15)

The first inequality holds for any λ > 0 (from (5.13)). Considering (5.13) and (5.14)
in (5.15), then

π ≤ −α1 I + λ−1α2π(1, 2)π(2, 1) ≤ −α1 I + λ−1α2α2
3 I (5.16)

Therefore, π < 0 for any λ > 0 satisfying α2α2
3/λ < α1. A similar proof could be

deduced for the lower triangular matrices.

Notations. For the rest of the thesis, general notations are considered as follows. I[a, b] de-
notes the integer set from a to b. R stands for the set of real numbers. Rm×n is the set of real
m× n matrices. The transpose of a real matrix M is denoted by MT. I and 0 denote an iden-
tity matrix and a zero matrix, respectively, of appropriate dimensions. diag(X1, X2, ..., XN)
denotes a matrix with matrices X1, X2, ..., and XN as diagonal blocks. It is worth noting that
γ∞ corresponds to the known γ-performance design, whereas γ is a switching/interpolating
signal.

5.4 LPV Model Definition

In this section, a general LPV model is defined to be used in the following sections.
Consider a Multi-Input-Multi-Output (MIMO) LPV system G(ρ) with m inputs and
p outputs:

G(ρ)


ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t) + B2(ρ(t))u(t)
z(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t) + D12(ρ(t))u(t)
y(t) = C2(ρ(t))x(t) + D21(ρ(t))w(t) + D22(ρ(t))u(t)

(5.17)

where x(t) ∈ Rnx , y(t) ∈ Rp, u(t) ∈ Rm, z(t) ∈ Rnz are the state, output, input,
controlled output vectors respectively. w(t) =

[
r n d

]T ∈ Rnw contains the exoge-
nous inputs of the tracking reference r, measurable noise n and input disturbance d.
ρ(t) := ρ ∈ Rnp is a vector of np measurable time-varying parameters.
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5.4.1 Polytopic-based LPV Model

To design quadratically stabilizing LPV controllers, the LPV model should be de-
fined based on the polytopic approach, i.e. assuming affine parameter-dependency.
Define a convex polytopic region P by the parameters extremums [ρ, ρ] as:

P := CO{w1, ..., w2np } (5.18)

where wi represent the vertices of P ∀i ∈ I[1, 2np ].
The polytopic approach for LPV control design requires two assumptions: 1) the

system must be strictly proper (D22(ρ) = 0); and 2) the input and output matrices
B2, C2, D12 and D21 must be parameter-independent [15]. For what follows, we then
assume that the LPV system is given as:

G(ρ)


ẋ(t) = A(ρ)x(t) + B1(ρ)w(t) + B2u(t)
z(t) = C1(ρ)x(t) + D11(ρ)w(t) + D12u(t)
y(t) = C2x(t) + D21w(t)

(5.19)

Note that the second assumption doesn’t impose any serious constraints where,
if needed, it can be fulfilled by filtering the input u and output y [7]. Here, ρ belongs
to P and is written as:

ρ =
2np

∑
i=1

αiwi, (5.20)

where
2np

∑
i=1

αi = 1, αi ≥ 0 ∀i. Therefore, the system representation at any operating

point ρ ∈ P is given as a convex combination of the state-space realizations of the
LTI systems given at the vertices wi: A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12
C2 D21 0

 =
2np

∑
i=1

αi(ρ)

 Ai B1,i B2

C1,i D11,i D12
C2 D21 0

 (5.21)

5.5 Multi-Objective Control Interpolation

This section aims to design an interpolation scheme between different multi-objective
controllers based on LPV-YK parameterization. Nowadays, systems are getting more
and more complex leading to control algorithms able to consider online varying ob-
jectives for performance and safety. For instance, the field of autonomous systems,
in particular autonomous vehicles, is indicative of such an evolution. However, it is
difficult to design a single controller covering a large parameter range and achieving
multiple objectives.

Fig. 5.2 shows an interpolation example between two control performances,
where two controllers K(1)(ρ) and K(2)(ρ) are designed over the same convex pa-
rameter region P , satisfying closed-loop quadratic stability. It is assumed that each
controller has been designed separately achieving different closed-loop specification
such as rising time, actuator bandwidth, steady-state error, etc.

The following two sections introduce two LPV-YK control structures aiming to
interpolate between different control objectives satisfying the closed-loop quadratic
stability for any interpolating signal. To do so, the polytopic LPV model G(ρ) (5.19)
is used for both control architectures.
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FIGURE 5.2: Interpolation of multiple control performances

FIGURE 5.3: Interpolation between three polytopic-based LPV con-
trollers along the convex parameter space P . The LPV-YK con-
troller K̃(ρ, γ) interpolates, using γ = [γ1, γ2], between K(0)(ρ) (for

γ = [0, 0]), K(1)(ρ) (for γ = [1, 0]), and K(2)(ρ) (for γ = [0, 1])

Notations. The following notations are used in the next two subsections 5.5.1 and 5.5.2.
The subscript i of a system/matrix/variable of an LPV system (e.g. Gi, Ai, wi) denotes the
local LTI system/matrix/variable at the ith vertex of a polytope P . The superscript (j) denotes
the jth controller (e.g. K(j)) in the set of the designed controllers. For example, A(j)

k,i represents
the LTI state matrix of the jth LPV controller at the ith vertex of P .

5.5.1 Interpolation between polytopic-based LPV controllers

Let K = {K(1)(ρ), K(2)(ρ), . . . , K(j)(ρ), . . . , K(ζ)(ρ)} be a finite set of quadratically
stabilizing LPV controllers of G(ρ) (5.19) that are designed achieving different ob-
jectives and closed-loop specifications. Thus, ∀j ∈ I[0, ζ]:

K(j)(ρ) :

[
A(j)

k (ρ) B(j)
k (ρ)

C(j)
k (ρ) D(j)

k (ρ)

]
(5.22)
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with the polytopic controllers:[
A(j)

k (ρ) B(j)
k (ρ)

C(j)
k (ρ) D(j)

k (ρ)

]
=

2np

∑
i=1

αi(ρ)

[
A(j)

k,i B(j)
k,i

C(j)
k,i D(j)

k,i

]
(5.23)

where A(j)
k (ρ) ∈ Rn(j)

k ×n(j)
k , B(j)

k (ρ) ∈ Rn(j)
k ×mk , C(j)

k (ρ) ∈ Rpk×n(j)
k and D(j)

k (ρ) ∈
Rpk×mk .

Based on the statements on LPV concepts and YK parameterization, a quadrat-
ically stable interpolation procedure between ζ LPV controllers is formulated (as
mentioned by the next theorem). The interpolation is performed using an interpo-
lating signal vector γ = [γ1, . . . , γj, . . . , γζ ].

Let’s assume that

(A.1.1). There exists an LPV output-feedback controller K(0)(ρ) which quadratically stabi-
lizes G(ρ) over P (following the approach in [7]), defined as:

K(0)(ρ) :

[
A(0)

k (ρ) B(0)
k (ρ)

C(0)
k (ρ) D(0)

k (ρ)

]
(5.24)

being, [
A(0)

k (ρ) B(0)
k (ρ)

C(0)
k (ρ) D(0)

k (ρ)

]
=

2np

∑
i=1

αi(ρ)

[
A(0)

k,i B(0)
k,i

C(0)
k,i D(0)

k,i

]
(5.25)

where A(0)
k (ρ) ∈ Rn(0)

k ×n(0)
k , B(0)

k (ρ) ∈ Rn(0)
k ×mk , C(0)

k (ρ) ∈ Rpk×n(0)
k and D(0)

k (ρ) ∈
Rpk×mk .

(A.1.2). A group of ζ LPV controllers K(j)(ρ) (5.22)-(5.23) (j ∈ I[1, ζ]) have been designed
separately to quadratically stabilize G(ρ) achieving different objectives and closed-loop spec-
ifications for all operating conditions.

For illustration, Figure 5.3 represents an example of an interpolation between
three polytopic-based LPV controllers K(0)(ρ), K(1)(ρ), and K(2)(ρ), along the con-
vex parameter space P . The orange solid line represents the chosen nominal LPV
controller K(0)(ρ). The blue/red solid lines are two LPV controllers K(1)(ρ)/K(2)(ρ)
that are designed using the standard polytopic approach, achieving different re-
quired objectives. The overall interpolation is performed using the interpolating
signal γ = [γ1, γ2], and is represented by the LPV-YK controller K̃(ρ, γ).

Notice that for every ρ ∈ P and for every continuous/discontinuous interpolat-
ing signal γ, K̃(ρ, γ) quadratically stabilizes G(ρ). Some interpolation cases can be
mentioned to show how K̃(ρ, γ) recovers a single gain-scheduled controller K(j)(ρ)
by varying γj:

• if γj = 0 ∀j, K̃(ρ, γ) ≡ K(0)(ρ)

• if γj = 1 for j = c ∈ [1, ζ] and γj = 0 ∀j ̸= c, K̃(ρ, γ) ≡ K(c)(ρ)

• else, the performance of K̃(ρ, γ) is interpolated among K(j)(ρ) according to the
chosen γj.

The following theorem proves that K̃(ρ, γ) quadratically stabilizes G(ρ) for every
ρ and for any continuous/discontinuous interpolating vector signal γ.
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Theorem 5. Consider an LPV plant G(ρ) (5.19), and given a set of LPV controllers K
(5.22) that quadratically stabilizes G(ρ). Let us choose K(0)(ρ) as the nominal (central) con-
troller for YK parameterization. Then, the parameterized LPV-YK controller K̃(ρ, γ) (5.28),
represented in Fig. 5.4, stabilizes G(ρ) for any continuous/discontinuous interpolating sig-
nal γ = [γ1, γ2, . . . , γζ ], if there exist symmetric, positive definite matrices Xg ∈ Rnx×nx ,

Xk ∈ Rn(0)
k ×n(0)

k such that:

A(ρ)Xg + Xg AT(ρ) + B2W(ρ) + WT(ρ)BT
2 < 0 (5.26)

A(0)
k (ρ)Xk + Xk A(0)T

k (ρ) + B(0)
k (ρ)V(ρ) + V(ρ)T(ρ)B(0)T

k (ρ) < 0 (5.27)

The state space matrices of the parameterized LPV-YK controller K̃(Q(ρ)) = K̃(ρ, γ) are
written as:

Ãk(ρ, γ) =

 A(ρ) + B2Fg(ρ)− B2Dq(ρ, γ)C2

−B(0)
k (ρ)C2

−Bq(ρ)C2

−B2Dq(ρ, γ)F(0)
k (ρ) B2Cq(ρ, γ)

A(0)
k (ρ) 0

−Bq(ρ)F(0)
k (ρ) Aq(ρ)



B̃k(ρ, γ) =

B2Dq(ρ, γ)

B(0)
k (ρ)

Bq(ρ)



C̃k(ρ, γ) =
[

Fg(ρ)− (D(0)
k (ρ) + Dq(ρ, γ))C2

C(0)
k (ρ)− Dq(ρ, γ)F(0)

k (ρ) Cq(ρ, γ)
]

D̃k(ρ, γ) = D(0)
k (ρ) + Dq(ρ, γ) (5.28)

where
Aq(ρ) = diag(A(1)

q , . . . , A(j)
q , . . . , A(ζ)

q ),

Bq(ρ) =
[

B(1)
q . . . B(j)

q . . . B(ζ)
q

]T
,

Cq(ρ, γ) =
[
γ1C(1)

q . . . γjC
(j)
q . . . γζC(ζ)

q

]
,

Dq(ρ, γ) =
ζ

∑
j=1

γjD
(j)
q ,

(5.29)

being Fg(ρ) = W(ρ)X−1
g , F(0)

k (ρ) = V(ρ)X−1
k , and A(j)

q , B(j)
q , C(j)

q , and D(j)
q the state-

space matrices of Q(j)(ρ, γ) ∀j ∈ I[1, ζ] represented in (5.31). Notice that γj is multiplied
by the output of Q(j)(ρ), i.e. Q(j)(ρ, γ) = γj ×Q(j)(ρ).

Proof 1. According to YK parameterisation concept, the parameterized controller can be
formulated as a Linear Fractional Transformation (LFT) system [269], i.e. K̃(j)(ρ, γ) =
Fl(J(ρ), Q(j)(ρ, γ)) ∀j (see Fig. 5.4), where J(ρ) and Q(j)(ρ, γ)) derived as shown in
(5.30)-(5.31).

J(ρ) =
2np

∑
i=1

αi(ρ)


Ai + B2Fg,i 0 0 B2

−B(0)
k,i C2 A(0)

k,i B(0)
k,i 0

Fg,i − D(0)
k,i C2 C(0)

k,i D(0)
k,i I

−C2 −F(0)
k,i I 0

 (5.30)
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FIGURE 5.4: Polytopic-based LPV-YK general configuration

At each vertex wi, the closed-loop system CLi(γ) (5.33) is derived from the LFT inter-
connection between Gi and K̃i(γ) (see Fig. 5.5).
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FIGURE 5.5: G− K̃ LFT interconnection

Now, the closed-loop state matrix Acl(ρ, γ) =
2np

∑
i=1

αi(ρ)Acl,i(γ) is quadratically stable

if there exist a symmetric, positive definite, parameter-invariant matrix Xcl such that:

Xcl Acl(ρ, γ) + AT
cl(ρ, γ)Xcl < 0 ∀γ (5.34)

To prove this, let T =


I 0 0 0
0 0 0 I
I −I 0 0
0 0 I 0

 be a state transformation matrix which is applied to

CL(ρ, γ), without changing its input-output nature, so T−1 =


I 0 0 0
I 0 −I 0
0 0 0 I
0 I 0 0

.

Due to the block-triangular form of Ācl,i(γ) (5.32) , (5.34) is satisfied if the following
equations hold (check Lemma 2 in [296]):

2np

∑
i=1

αi(ρ)(Yg(Ai + B2Fg,i) + (Ai + B2Fg,i)
TYg) < 0 (5.35)

2np

∑
i=1

αi(ρ)(Yq Aq,i + AT
q,iYq) < 0 (5.36)

2np

∑
i=1

αi(ρ)(Y0A(0)
i +A(0)T

i Y0) < 0 (5.37)

where Yg ∈ Rnx×nx , Yq ∈ Rnq×nq and Y0 ∈ R(nx+n(0)
k )×(nx+n(0)

k ) are symmetric, positive
definite, parameter-invariant matrices, and choosing Xcl = TT diag(Yg, Yq, Y0) T, and

A(0)
i =

[
Ai + B2D(0)

k,i C2 B2C(0)
k,i

B(0)
k,i C2 A(0)

k,i

]
(5.38)

Inequality (5.35) can be linearized by Yg = X−1
g which leads to (5.26) when choosing

W(ρ) =
2np

∑
i=1

αi(ρ)Fg,iXg. Due to the diagonal shape of Aq(ρ), it is quadratically stable if

each diagonal term A(j)
q (ρ) is quadratically stable. Regarding (5.31), the state matrix of each

LPV-YK parameter A(j)
q (ρ) is quadratically stable if there exist symmetric, positive definite,



5.5. Multi-Objective Control Interpolation 87

constant matrices P1 ∈ R(nx+n(1)
k )×(nx+n(1)

k ) and P2 ∈ Rn(0)
k ×n(0)

k such that:

2np

∑
i=1

αi(ρ)(P1A
(j)
i +A(j)T

i P1) < 0 (5.39)

2np

∑
i=1

αi(ρ)(P2(A(0)
k,i + B(0)

k,i F(0)
k,i ) + (A(0)

k,i + B(0)
k,i F(0)

k,i )
TP2) < 0 (5.40)

being,

A(j)
i =

[
Ai + B2D(j)

k,i C2 B2C(j)
k,i

B(j)
k,i C2 A(j)

k,i

]
(5.41)

The condition in (5.39) is verified given that K(j)(ρ) ∈ K quadratically stabilizes G(ρ).

Moreover, the inequality (5.40) satisfies (5.27) by choosing P2 = X−1
k and V(ρ) =

2np

∑
i=1

αi(ρ)F(0)
k,i Xk.

Thus, ∀j ∈ I[1, j] A(j)
q (ρ), is quadratically stable, consequently Aq(ρ), and (5.36) is verified.

Finally, (5.37) is fulfilled given that K(0)(ρ) quadratically stabilizes G(ρ).

Notice that the closed-loop state matrix Acl(ρ, γ) is proved to be quadratically
stable regardless the switching signal γ. It is worth mentioning that this is achieved
without requiring an instantaneous design of all the local LPV controllers including
the interpolating signals.

5.5.2 Interpolation between YK-based LPV controllers

Unlike the previous polytopic-based LPV-YK control, the current section proposes a
more advanced one aiming to reduce the problem conservatism caused by the con-
dition of requiring polytopic-based LPV controllers, i.e. relaxing assumption (A.1.2)
and the LMI condition (5.27). Generally speaking, it has been found that it is not
necessary to have Q(j)(ρ, γ) quadratically stable by design. It is only necessary to
have each Q(j)

i (γ) stable ∀wi. Then, a state transformation (as in Lemma 5) can
be used to obtain a quadratically stabilizing LPV-YK parameter Q̄(ρ, γ). To do so,
and to improve the closed-loop performance, the local LPV controllers are supposed
now to be designed using YK-based gain-scheduling, i.e. the local interpolated LPV
controllers are designed based on YK parameterization of their corresponding LTI
controllers.

As a result, the current section expresses deeply the necessary LMI conditions to
design a quadratically stabilizing LPV-YK interpolation scheme, whereas the LMIs
in Theorem 5 are considered to be sufficient conditions.

Considering the polytopic-based LPV model G(ρ) (5.19), assume that

(A.2.1). There exists an LPV output-feedback controller K(0)(ρ) which quadratically stabi-
lizes G(ρ) over P (following the approach in [7]), defined as:

K(0)(ρ) :

[
A(0)

k (ρ) B(0)
k (ρ)

C(0)
k (ρ) D(0)

k (ρ)

]
(5.42)

being, [
A(0)

k (ρ) B(0)
k (ρ)

C(0)
k (ρ) D(0)

k (ρ)

]
=

2np

∑
i=1

αi(ρ)

[
A(0)

k,i B(0)
k,i

C(0)
k,i D(0)

k,i

]
(5.43)
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FIGURE 5.6: Interpolation between three LPV controllers; two
YK-based gain-scheduled controllers K(1)(ρ) and K(2)(ρ), and a
polytopic-based LPV controller K(0)(ρ) along the convex parameter
space P . The LPV-YK controller K̃(ρ, γ) interpolates, using γ =

[γ1, γ2], between K(0)(ρ) (for γ = [0, 0]), K(1)(ρ) (for γ = [1, 0]), and
K(2)(ρ) (for γ = [0, 1])

where A(0)
k (ρ) ∈ Rn(0)

k ×n(0)
k , B(0)

k (ρ) ∈ Rn(0)
k ×mk , C(0)

k (ρ) ∈ Rpk×n(0)
k and D(0)

k (ρ) ∈
Rpk×mk .

(A.2.2). At each vertex wi (i ∈ I[1, 2np ]) of the polytope P , a group of ζ local LTI controllers
K(j)

i (j ∈ I[1, ζ]) have been designed separately to stabilize Gi achieving different objectives
and performances for all operating conditions.

The objective of the proposed strategy is to:

1. Design a set of gain-scheduled controllers K(j)(ρ), j ∈ I[1, ζ]. Each one is de-
signed by interpolating its corresponding LTI controllers K(j)

i (i ∈ I[1, 2np ])
based on YK parameterization.

2. Create an overall interpolation scheme between the gain-scheduled controllers
K(j)(ρ) (j ∈ I[0, ζ]), by an interpolating signal vector γ, which is referred to as
K̃(ρ, γ), such that the resultant LPV-YK controller K̃(ρ, γ) quadratically stabi-
lizes G(ρ) ∀ρ ∈ P and for every γ = [γ1, ..., γj, ..., γζ ].

Figure 5.6 represents an example of an LPV-YK based interpolation between
three gain scheduled-scheduled controllers K(0)(ρ), K(1)(ρ), and K(2)(ρ), along the
convex parameter spaceP . The orange solid line represents the chosen nominal LPV
controller K(0)(ρ), as defined by (A.2.1). The blue/red points represent the local LTI
controllers K(1)

i /K(2)
i (i ∈ I[1, 2np ]) as defined in (A.2.2). The blue/red dashed line

is the gain-scheduled controller K(1)(ρ)/K(2)(ρ) that is designed by the YK-based
interpolation of the LTI controllers K(1)

i /K(2)
i . The overall interpolation is performed

using the interpolating signal γ = [γ1, γ2], and is represented by the LPV-YK con-
troller K̃(ρ, γ). It is worth mentioning that the difference between this figure and
Fig. 5.3 is that the interpolated LPV controllers K(1)(ρ) and K(2)(ρ) are designed
using the standard polytopic approach in Fig. 5.3, whereas here they are designed
using YK-based gain-scheduling as proposed by [300].
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The LPV-YK controller K̃(ρ, γ) is designed based on a Linear Matrix Inequality
(LMI) optimization problem, where it is defined as

K̃(ρ, γ) :
[

Ãk(ρ, γ) B̃k(ρ, γ)
C̃k(ρ, γ) D̃k(ρ, γ)

]
(5.44)

It is worth mentioning that for every ρ ∈ P and for every continuous/discontinuous
interpolating signal γ, K̃(ρ, γ) quadratically stabilizes G(ρ).

The interpolation cases can be mentioned to show how K̃(ρ, γ) recovers a single
gain-scheduled controller K(j)(ρ) by varying γj:

• if γj = 0 ∀j, K̃(ρ, γ) ≡ K(0)(ρ) =
2np

∑
i=1

αi(ρ)K
(0)
i

• if γj = 1 for j = c ∈ [1, ζ] and γj = 0 ∀j ̸= c, K̃(ρ, γ) ≡ K(c)(ρ) =
2np

∑
i=1

αi(ρ)K
(c)
i

• else, the performance of K̃(ρ, γ) is interpolated among K(j)(ρ) according to the
chosen γj.

The next theorem proves that the LPV-YK controller K̃(ρ, γ) (5.47) quadratically
stabilizes G(ρ) ∀ρ, and for every continuous/discontinuous interpolating vector sig-
nal γ.

Theorem 6. Consider an LPV plant G(ρ) (5.19), satisfying assumptions (A.2.1) and (A.2.2).
Then, the following generalized LPV-YK controller K̃(ρ, γ) (5.47), as represented in Fig. 5.7,
quadratically stabilizes G(ρ) for any ρ ∈ P and for any continuous/discontinuous interpo-
lating signals γj ∈ [0, 1] (j ≥ 1), if there exist symmetric, positive definite, constant matrices

Xg ∈ Rnx×nx , Xk,i ∈ Rn(0)
k ×n(0)

k , and matrices Wi ∈ Rm×nx and Vi ∈ Rm×n(0)
k such that ∀i:

AiXg + Xg AT
i + B2Wi + WT

i BT
2 < 0 ∀wi (5.45)

A(0)
k,i Xk,i + Xk,i A

(0)T
k,i + B(0)

k,i Vi + VT
i B(0)T

k,i < 0 ∀wi (5.46)

The state-space matrices of K̃(ρ, γ) are

Ãk(ρ, γ) =
2np

∑
i=1

αi(ρ)

 Ai + B2Fg,i − B2D̃q,i(γ)C2

−B(0)
k,i C2

−B̃q,iC2

−B2D̃q,i(γ)F(0)
k,i B2C̃q,i(γ)

A(0)
k,i 0

−B̃q,iF
(0)
k,i Ãq,i



B̃k(ρ, γ) =
2np

∑
i=1

αi(ρ)

B2D̃q,i(γ)

B(0)
k,i

B̃q,i


C̃k(ρ, γ) =

2np

∑
i=1

αi(ρ)
[

Fg,i − (D(0)
k,i + D̃q,i(γ))C2 C(0)

k,i − D̃q,i(γ)F(0)
k,i C̃q,i(γ)

]
D̃k(ρ, γ) =

2np

∑
i=1

αi(ρ)[D
(0)
k,i + D̃q,i(γ)]

(5.47)
where ∀i ∈ I[1, 2np ],
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FIGURE 5.7: LPV-YK general configuration

Ãq,i = diag(Z(1)
i A(1)

q,i (Z(1)
i )−1, . . . , Z(j)

i A(j)
q,i (Z(j)

i )−1, . . . , Z(ζ)
i A(ζ)

q,i (Z(ζ)
i )−1),

B̃q,i =
[

Z(1)
i B(1)

q,i . . . Z(j)
i B(j)

q,i . . . Z(ζ)
i B(ζ)

q,i

]T
,

C̃q,i(γ) =
[

γ1C(1)
q,i (Z(1)

i )−1 . . . γjC
(j)
q,i (Z(j)

i )−1 . . . γζC(ζ)
q,i (Z(ζ)

i )−1
]

,

D̃q,i(γ) =
ζ

∑
j=1

γjD
(j)
q,i ,

(5.48)

A(j)
q,i , B(j)

q,i , C(j)
q,i and D(j)

q,i are the state-space matrices of Q(j)(ρ) given in (5.54) at the poly-

topic vertices wi, Fg,i = WiX−1
g , F(0)

k,i = ViX−1
k,i , and Z(j)

i are state transformation matrices

chosen to satisfy Lemma 5 such that Ā(j)
q (ρ) =

2np

∑
i=1

αi(ρ)Z(j)
i A(j)

q,i (Z(j)
i )−1 is quadratically

stable ∀j ≥ 1.

Proof 2. According to YK parameterization concept, each parameterized controller can be
formulated as a Linear Fractional Transformation (LFT) system [269]. Then, the LPV-YK
controller can be written as K̃(ρ, γ) = Fl(J(ρ), Q̃(ρ, γ)) (see Fig. 5.7), where J(ρ) is

represented in (5.49), and Q̃(ρ, γ) =
ζ

∑
i=1

γj(t)Q̄(j)(ρ) being Q̄(j)(ρ) a transformed system

of Q(j)(ρ) (5.54) satisfying Lemma 5, to be shown later in the proof.

J(ρ) =
2np

∑
i=1

αi(ρ)


Ai + B2Fg,i 0 0 B2

−B(0)
k,i C2 A(0)

k,i B(0)
k,i 0

Fg,i − D(0)
k,i C2 C(0)

k,i D(0)
k,i I

−C2 −F(0)
k,i I 0

 (5.49)

The following proof is achieved by two steps:

1. Prove that the LPV-YK parameter Q̃(ρ, γ) is quadratically stable ∀ρ ∈ P , ∀γ.

2. Prove the closed-loop quadratic stability ∀ρ ∈ P , ∀γ.
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Step 1: Q̃(ρ, γ) can be proved to be quadratically stable ∀ρ ∈ P and ∀γ as follows:
Assuming (A.2.2), and since inequality (5.46) is satisfied, there exist symmetric, positive

definite matrices S(j)
i ∈ R(nx+n(j)

k )×(nx+n(j)
k ) and Ri ∈ Rn(0)

k ×n(0)
k such that ∀i, ∀j ≥ 1:

S(j)
i A

(j)
i +A(j)T

i S(j)
i < 0 (5.50)

(A(0)
k,i + B(0)

k,i F(0)
k,i )Ri + Ri(A(0)

k,i + B(0)
k,i F(0)

k,i )
T < 0 (5.51)

being,

A(j)
i =

[
Ai + B2D(j)

k,i C2 B2C(j)
k,i

B(j)
k,i C2 A(j)

k,i

]
(5.52)

with Ri = Xk,i and F(0)
k,i = ViX−1

k,i . Thus, A(j)
q,i is Hurwitz ∀i, j and there exist symmetric,

positive definite matrices X(j)
q,i = diag(S(j)

i , Ri) ∈ R
n(j)

q,i×n(j)
q,i such that:

X(j)
q,i A(j)

q,i + (A(j)
q,i )

TX(j)
q,i < 0 ∀i, ∀j (5.53)

Following Lemma 5, for any j ≥ 1, there exist transformation matrices Z(j)
i such that the

transformed system Q̄(j)(ρ) is quadratically stable ∀ρ ∈ P (j), choose Z(j)
i = (X(j)

q,i )
1/2. As

a result, Q̃(ρ, γ) =
ζ

∑
j=1

γjQ̄(j)(ρ) is quadratically stable ∀ρ ∈ P and ∀γ ∈ [0, 1].
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Ã
q,

i
B̃ q

,i
D

21

D
12

C̃
q,

i(
γ
)

D
11

,i
+

D
12
(D

(0
)

k,
i
+

D̃
q,

i(
γ
))

D
21

        (5
.5

6)



94 Chapter 5. Advanced LPV-YK Control Structures: Theoretical Proofs

Step 2: The closed-loop system CL(ρ, γ) (5.56) is derived from the LFT interconnection

between G(ρ) and K̃(ρ, γ) (see Fig. 5.5). Its state matrix Acl(ρ, γ) =
2np

∑
i=1

αi(ρ)Acl,i(γ)

is quadratically stable if there exist a symmetric, positive definite, constant matrix Xcl such
that:

Xcl Acl(ρ, γ) + AT
cl(ρ, γ)Xcl < 0 ∀γ (5.57)

Now , let T =


I 0 0 0
0 0 0 I
I −I 0 0
0 0 I 0

 be a state transformation matrix which is applied to CL(ρ, γ)

without changing its input-output nature, with T−1 =


I 0 0 0
I 0 −I 0
0 0 0 I
0 I 0 0

.

Due to the block-triangular form of Ācl(ρ, γ) (5.55) , (5.57) is satisfied if the following
equations hold (check Lemma 2 in [296]):

2np

∑
i=1

αi(ρ)(Yg(Ai + B2Fg,i) + (Ai + B2Fg,i)
TYg) < 0 (5.58)

2np

∑
i=1

αi(ρ)(Yq Ãq,i + ÃT
q,iYq) < 0 (5.59)

2np

∑
i=1

αi(ρ)(Y0A(0)
i +A(0)T

i Y0) < 0 (5.60)

where Yg ∈ Rnx×nx , Yq ∈ Rn(1)
q ×n(1)

q and Y0 ∈ R(nx+n(0)
k )×(nx+n(0)

k ) are symmetric, positive
definite, parameter-invariant matrices, choosing Xcl = TT diag(Yg, Yq, Y0) T, with

A(0)
i =

[
Ai + B2D(0)

k,i C2 B2C(0)
k,i

B(0)
k,i C2 A(0)

k,i

]
(5.61)

Therefore,

• Inequality (5.58) is equivalent to (5.45) by choosing Yg = X−1
g and Wi = Fg,iXg.

• Since Q̃(ρ, γ) is proved to be quadratically stable, inequality (5.36) is satisfied.

• (5.60) is fulfilled given that K(0)(ρ) quadratically stabilizes G(ρ).

It is worth mentioning that the problem complexity refers mainly to find a nom-
inal LPV controller K(0)(ρ) which must quadratically stabilize G(ρ), i.e. assumption
(A.2.1). The rest is carried out using classical LTI control approaches. This shows
an interest since a quadratically stabilizing gain-scheduled controller K(j)(ρ) can be
designed based on an interpolation of LTI controllers, with lower conservatism com-
pared to the standard polytopic design. In addition, the interpolation of several
gain-scheduled controllers, with any finite continuous/discontinuous interpolating
signals γj, provides a general multi-variable and multi-objective controller K̃(ρ, γ)
based on LPV-YK concept.

The next sections introduce LPV-YK control structures aiming to achieve stable
smooth switching between parameter partitions.
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5.6 Switching between Parameter Subsets

This section proposes two different LPV-YK structures aiming to switch between
different parameter subsets. This is usually needed when dealing with large number
of varying parameters or large variations. Thus, the aim is not to change the closed-
loop performance, but to maintain a closed-loop robust performance over the wide
parameter variations. The following two subsections discuss the limitations of both
polytopic and grid-based approaches, and some solutions that have been proposed
in the literature.

5.6.1 Polytopic Approach

As discussed in Chapter 2, the polytopic approach is known to be the most conser-
vative one [14]. One of the main causes is that the polytopic LPV synthesis requires a
constant Lyapunov function to ensure quadratic stability, which increases the prob-
lem conservatism.

Moreover, the overbounding of the parameter set is considered as a main cause
of conservatism. The operating region of the underlying LPV model is defined by
a convex polytope containing the parameter trajectories. This convex parameter re-
gion may include vertices that are not attained by the real plant, resulting in conser-
vatism. The reason is that the construction of the polytope is based on the assump-
tion that all parameters vary independently (in the affine parameter dependency
formulation), whereas they could be related to each other by inherent couplings.
For example, the known bicycle model describing the lateral dynamics of an au-
tonomous vehicle is parameterized by the scheduling parameters "vx" and "1/vx"
[23] (being vx the longitudinal speed). Such a situation might cause unstable models
at the polytopic vertices. In addition, the parameters could be physically correlated
with each other, such that some combinations of extreme values of the parameters
do not occur in real operation. For example, an LPV model describing the vertical
flight dynamics of an aeroplane might be parameterized by the external scheduling
signals (i.e., parameters) “speed” and “altitude.” But usually, the maximum speed is
not reached for minimum altitude and vice versa [24].

Several solutions have been investigated in the literature to find a reduced con-
vex parameter region, as presented in the recent survey [25]. [380] has recently pro-
posed a methodology for polytopic vertices reduction. [26] suggests to construct
convex polyhedrons along given parameter trajectories, and solve the control design
problem using affine parameter-dependent LMIs. Unfortunately, these methods of-
ten result in a huge number of vertices or nonconvex parameter sets and thus in
increased computational burden. Scheduling Dimension Reduction (SDR) approach
is proposed in [24] which reduces the parameter set based on experimental data, and
yields the benefit of tailoring a control design to specific trajectories. In [31], a Deep
Neural Network (DNN) approach is used to develop the SDR methods and achieve
higher model accuracy under scheduling dimension reduction. In [32] and [33], au-
thors develop an LPV switching controller and prove its stability when switching
among the overlapped subsets of a polytopic parameter region.

Concerning YK methods, in [298], a YK configuration is proposed to improve
the performance of a polytopic LPV control. On the other hand, [297] proposes a
YK-based gain-scheduled controller by interpolating LTI controllers designed sepa-
rately at the different vertices of a polytopic parameter region. The interpolation is
performed as a function of the varying parameters of the LPV model. Closed-loop
quadratic stability and performance are guaranteed at intermediate interpolation
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points of the convex domain. In [299], a fixed pole-assignment application is intro-
duced using an LPV YK-based method to preserve the closed-loop poles at the same
location by interpolating between different controllers.

In addition, in our previous work [300], an LPV-YK control scheme has been
proposed to interpolate between two LPV controllers, each one designed over a
full polytopic region, to achieve multiple control performances. On the other hand,
all the previous YK-based solutions are still conservative for systems having over-
bounding polytopic parameter region.

5.6.2 Grid-based Approach

The grid-based approach uses a parameter-dependent Lyapunov function to solve
a set of parameter-dependent LMIs (pLMIs). Since a single parameter-dependent
Lyapunov function could not be efficient for complex designs and large parameter
regions, a first solution has been proposed in [142]. The objective is to design multi-
ple LPV controllers based on multiple parameter-varying Lyapunov functions, each
suitable for a specific parameter subregion, and switch between them to achieve bet-
ter performance. The switching stability has been studied for hysteresis switching
and switching with average dwell-time strategies. This methodology enhances the
use of the switched LPV techniques in several applications, see for instance [173],
[199], [184] ,[206].

On the other hand, it has been stated in [142] that the switched LPV controllers
may not provide a smooth transient response during switching, where aggressive
performance is obtained at switching instants. Such a case may lead to mechanical
damage, decrease material lifetime, or signal saturation which is out of real appli-
cation objectives. Following this work, several research studies have been involved
in solving the switching smoothness. For instance, a bumpless transfer of switching
controllers is proposed in [238] followed by some developments in [239], [229], and
[240].

Finally, a smooth switching LPV controller has been proposed in [208]. It is de-
signed in considering adjustable interpolation functions and a higher order differen-
tial control signal. An iterative descent algorithm is applied to optimize three deci-
sion variables (the parameter-dependent Lyapunov functions, the local controllers,
and the interpolation functions). It also augments the problem to two dimensional
parameter regions. This concept is developed in the recent works [210] and [214],
however, it increases the complexity and the design constraints of the local LPV
controllers to achieve their objectives.

Notations. The following notations are used in the next two subsections 5.6.3 and 5.6.4.
The subscript i of a system/matrix/variable of an LPV plant (e.g. G(ρ)) denotes the LPV
system/matrix/variable of the plant when the varying-parameter ρ ∈ Pi, where Pi is a subset
of the full parameter region P . In addition, the second subscript j, when used, corresponds
to the jth vertex of a polytope. For example, Ak,ij represents the state matrix of the ith LPV
local controller in the polytope Pi at the jth vertex of Pi.

5.6.3 Partitioned Gain-scheduled Control

This section proposes a partitioned gain-scheduled controller which solves the over-
bounding and conservatism problems of the standard polytopic controller. It presents
an LPV-YK control scheme which:

1. Formulates a YK-based gain-scheduling between LTI controllers that have been
already designed separately at the polytopic vertices of each parameter subset.
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2. Switches between the formulated gain-scheduling controllers over the parti-
tioned polytopic subregions.

The closed-loop system is proved to guarantee the quadratic stability for any
continuous/discontinuous switching signals in terms of a set of Linear Matrix In-
equalities (LMIs).

Define P0 as a convex polytope that contains all the parameter trajectories ρ ∈
Rnp . Let Pi, i ∈ ZN = {1, . . . , N}, be the convex polytopic subsets, that could in-
tersect by a boundary or surface, defined in P0 along the parameter trajectories, i.e.
ρ ∈ P =

⋃
i≥1
Pi ⊂ P0. Each Pi (i ≥ 0) is defined as:

Pi := CO{wi1, ..., wi2np } (5.62)

where wij represent the polytopic vertices of Pi ∀j ∈ I[1, 2np ]. ρ is then scheduled as:

∀ρ ∈ Pi, ρ =
2np

∑
j=1

αij(ρ)wij, i ∈ {1, . . . , N} (5.63)

and ∀i
2np

∑
j=1

αij(ρ) = 1, αij(ρ) ≥ 0 ∀i, j, being αij(ρ) the scheduling coefficients in the

convex region Pi.
Fig. 5.8 shows an example of a convex parameter region defined by two varying

parameters ρ1 ∈ [ρ
1
, ρ1], and ρ2 ∈ [ρ

2
, ρ2], with ρ2 = 1/ρ1. The convex region P0

is represented in solid orange, and the convex subregions Pi (i ≥ 1) are bounded
within dashed green polygons.

The LPV representation of G(ρ) is defined over P0 as a convex combination of
the state-space realizations of the local LTI systems G0j at the vertices w0j: A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12
C2 D21 0

 =
2np

∑
j=1

α0 j(ρ)

 A0j B1,0j B2

C1,0j D11,0j D12
C2 D21 0

 (5.64)

Notice that G(ρ) could be defined equivalently in terms of the LTI plants Gij (at wij)
as, for ρ ∈ Pi: A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12
C2 D21 0

 =
2np

∑
j=1

αij(ρ)

 Aij B1,ij B2

C1,ij D11,ij D12
C2 D21 0

 (5.65)

Now, assume that

(A.3.1). There exists an LPV output-feedback controller K0(ρ) which quadratically stabi-
lizes G(ρ) (using the standard polytopic approach in [7]) over the full parameter region P0,
defined as:

K0(ρ) :
[

Ak,0(ρ) Bk,0(ρ)
Ck,0(ρ) Dk,0(ρ)

]
(5.66)

being, [
Ak,0(ρ) Bk,0(ρ)
Ck,0(ρ) Dk,0(ρ)

]
=

2np

∑
j=1

α0j(ρ)

[
Ak,0j Bk,0j
Ck,0j Dk,0j

]
(5.67)
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FIGURE 5.8: Partitioned polytopic regions

where Ak,0(ρ) ∈ Rnk,0×nk,0 , Bk,0(ρ) ∈ Rnk,0×mk , Ck,0(ρ) ∈ Rpk×nk,0 and Dk,0(ρ) ∈ Rpk×mk .

(A.3.2). At each vertex wij (j ∈ I[1, 2np ], i ≥ 1), a local LTI controller Kij is designed
separately to stabilize the local plant Gij. It is worth mentioning that, at each intersecting
boundary, a unique LTI controller should be designed at the intersecting extremums of the
adjacent subsets respectively.

Regarding the example in Fig. 5.8, the local LTI controllers at the intersecting
boundaries wi3 (at Ki3) and w(i+1)2 (at K(i+1)2), ∀i ∈ I[1, N − 1], are designed sim-
ilarly. Consequently, the switching between two successive subsets (Pi and Pi+1)
undergoes using the same LTI controller (Ki3 ≡ K(i+1)2). In such a case, the state and
control input energies, just before and just after switching, are not affected.

The objective of the work in this section is to:

1. Design multiple YK-based gain-scheduled controllers K̃i(ρ), i ∈ I[1, N]. Each
one is designed by interpolating its corresponding LTI controllers Kij (j ∈
I[1, 2np ]) based on YK concept (refer to Fig. 5.8).

2. Create an overall switched LPV-YK controller K̃σ(ρ) to switch between K̃i(ρ),
such that K̃σ(ρ) quadratically stabilizes G(ρ) ∀ρ ∈ P and for every continu-
ous/discontinuous switching signal σ(t). The switched closed-loop system is
represented as

C̃Lσ(ρ) :
[

Ãcl,σ(ρ) B̃cl,σ(ρ)
C̃cl,σ(ρ) D̃cl,σ(ρ)

]
(5.68)

To illustrate the proposed approach, Fig. 5.8 represents an example of a convex
parameter set partitioning. The dashed black curve represents the actual operating
conditions of the parameters (ρ2 = 1/ρ1). The orange solid polygon represents the
nominal LPV controller K0(ρ) designed using standard polytopic approach over the
convex region P0. The blue points represent the local LTI controllers Kij (j ∈ I[1, 4],
i ∈ I[1, N]) designed separately to stabilize Gij at wij using any LTI control ap-
proaches. The green dashed polygons are the subsets chosen along the parameter
trajectory. Over each subset Pi, a gain-scheduled controller K̃i(ρ) is designed based
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on the YK interpolation of the local LTI controllers Kij. The overall switching scheme
between the K̃i(ρ) is represented by the LPV-YK controller K̃σ(ρ).

The LPV-YK controllers K̃i(ρ) are designed based on a Linear Matrix Inequality
(LMI) optimization problem, where they are defined as

K̃i(ρ) :
[

Ãk,i(ρ) B̃k,i(ρ)
C̃k,i(ρ) D̃k,i(ρ)

]
(5.69)

The next theorem proves the quadratic stability of the closed-loop system C̃Lσ(ρ)
(5.68) for every ρ ∈ P .

Theorem 7. Consider an LPV plant G(ρ) (5.19), satisfying assumptions (A.3.1) and (A.3.2).
Then, the switched LPV-YK controller K̃σ(ρ) (5.69)-(5.72), represented in Fig. 5.9, quadrat-
ically stabilizes G(ρ) for any ρ ∈ P and for any continuous/discontinuous switching sig-
nals γi ∈ [0, 1] (∀i ≥ 1), if there exist symmetric, positive definite, constant matrices
Xg ∈ Rnx×nx , Xk,ij ∈ Rnk,ij×nk,ij , and matrices Wj ∈ Rm×nx and Vij ∈ Rmk×nk,ij such that:

A0jXg + Xg AT
0j + B2Wj + WT

j BT
2 < 0 ∀w0j (5.70)

Ak,0(wij)Xk,ij + Xk,ij AT
k,0(wij) + Bk,0(wij)Vij + VT

ij BT
k,0(wij) < 0 ∀wij (5.71)

with the state-space matrices of K̃i(ρ) are

Ãk,i(ρ) =
2np

∑
j=1

αij(ρ)

 Aij + B2Fg,ij − B2D̄q,ijC2
−Bk,0(wi,j)C2
−B̄q,ijC2

−B2D̄q,ijFk,ij B2C̄q,ij
Ak,0(wi,j) 0
−B̄q,ijFk,ij Āq,ij


B̃k,i(ρ) =

2np

∑
j=1

αij(ρ)
[
B2D̄q,ij Bk,0(wi,j) B̄q,ij

]
C̃k,i(ρ) =

2np

∑
j=1

αij(ρ)
[
Fg,ij − (Dk,ij + Dq,ij)C2

Ck,0(wi,j)− Dq,ijFk,ij C̄q,ij
]

D̃k,i(ρ) =
2np

∑
j=1

αij(ρ)[Dk,0(wi,j) + D̄q,ij]

(5.72)

∀i ∈ I[1, N],
where Āq,ij = Zij Aq,ij(Zij)

−1, B̄q,ij = ZijBq,ij, and C̄q,ij = Cq,ij(Zij)
−1 ∀i, j, and

Zij are state transformation matrices chosen, to satisfy Lemma 5, such that Āq,i(ρ) =
2np

∑
j=1

αj(ρ)Zij Aq,ij(Zij)
−1 is quadratically stable ∀i ≥ 1. Aq,ij, Bq,ij, Cq,ij and Dq,ij are the

state-space matrices of Qi(ρ) (5.74) at the polytopic vertices wij. In addition, Fg,j = WjX−1
g ,

Fk,ij = Vij(Xk,ij)
−1, and Fg,ij = Fg(wij).

Proof 3. As mentioned in the previous proofs, each parameterized controller can be formu-
lated as a Linear Fractional Transformation (LFT) system [269]. Each LPV-YK controller
can be written as K̃i(ρ) = Fl(J(ρ), Q̄i(ρ)) ∀ρ ∈ Pi (see Fig. 5.9), where J(ρ) is represented
in (5.73), and Q̄i(ρ) is the transformed system of Qi(ρ) (5.74).
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FIGURE 5.9: Partitioned polytopic-based generalized LPV-YK config-
uration

J(ρ) =
2np

∑
j=1

αi j(ρ)


Aij + B2Fg,ij 0 0 B2
−Bk,0(wij)C2 Ak,0(wij) Bk,0(wij) 0

Fg,ij − Dk,0(wij)C2 Ck,0(wij) Dk,0(wij) I
−C2 −Fk,ij I 0

 (5.73)
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The following proof is achieved by two steps: 1) Prove that the LPV-YK parameter Q̄i(ρ)
is quadratically stable ∀ρ ∈ {Pi}i∈ZN ; and 2) Prove the closed-loop quadratic stability ∀ρ ∈
{Pi}i∈ZN , ∀σ.

Step 1:

Knowing that: 1) Kij stabilizes Gij ∀i ≥ 1, ∀j ∈ [1, 2np ]; and 2) (5.71) is satisfied, it can
be shown that the triangular elements of Aq,ij ∀i, j are Hurwitz, and consequently, Aq,ij is
Hurwitz ∀i, j. According to Lemma 5, for any i ≥ 1, there exist transformation matrices
Zij such that the transformed system Q̄i(ρ) is quadratically stable ∀ρ ∈ Pi, choose Zij =

(Xq,ij)
1/2. As a result, Q̄i(ρ) is quadratically stable ∀ρ ∈ Pi.

Step 2:

The switched closed-loop system CLσ(ρ) is derived from the LFT interconnection between
G(ρ) and K̃σ(ρ) (see Fig. 5.9).

The switched closed-loop state matrix Acl,σ(ρ) =
2np

∑
j=1

ασj(ρ)Acl,σj is quadratically stable

if:

1. There exist symmetric, positive definite, constant matrices Xcl,i such that ∀i ≥ 1

Xcl,i Ãcl,i(ρ) + ÃT
cl,i(ρ)Xcl,i < 0 ∀ρ ∈ Pi (5.76)

2. ∀tk ∈ [0, T], V(xcl(tk)) ≤ V(xcl(t−k ))

Taking the same state transformation matrix T =


I 0 0 0
0 0 0 I
I −I 0 0
0 0 I 0

, the transformed

closed-loop state matrix Ācl,i(ρ) is represented in (5.75).
Due to its block-triangular form, (5.76) is then satisfied if the following equations hold

(check Lemma 2 in [296]):

2np

∑
j=1

αij(ρ)(Yg,i(Aij + B2Fg,ij) + (Aij + B2Fg,ij)
TYg,i) < 0 (5.77)

2np

∑
j=1

αij(ρ)(Yq,i Āq,ij + ĀT
q,ijYq,i) < 0 (5.78)

2np

∑
j=1

αij(ρ)(YiAij +AT
ijYi) < 0 (5.79)

where Yg,i ∈ Rnx×nx , Yq,i ∈ Rnq×nq and Yi ∈ R(nx+nk,0)×(nx+nk,0) are symmetric, positive
definite, constant matrices, choosing Xcl,i = TT diag(Yg,i, Yq,i, Yi) T, with

Aij =

[
Aij + B2Dk,0(wij)C2 B2Ck,0(wij)

Bk,0(wij)C2 Ak,0(wij)

]
(5.80)

• Inequality (5.77) is equivalent to (5.70) by choosing Yg,i = X−1
g and Wj = Fg,ijXg for

every ρ ∈ Pi.
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• Since Q̄i(ρ)) is proved to be quadratically stable ∀i, inequality (5.78) is satisfied.

• (5.79) is fulfilled given that K0(ρ) quadratically stabilizes G(ρ) over P0, and conse-
quently over any Pi ⊂ P0.

Therefore condition (5.76) is satisfied.
Assume a sequence of finite switching time over the interval [0, T] is t0, t1, . . . , tn with

t0 = 0, knowing that the closed-loop Lyapunov function is defined as V(xcl) = xT
clXcl,σxcl .

From the YK basic concept, the closed-loop is written as Fl(G, J, Q). Consider a switching
between any two adjacent subsets Pi and Pi+1 ∀i ≥ 1 at time tk, then, the closed-loop dy-
namics switches from Fl(G, J, Qi,3) to Fl(G, J, Qi+1,2), or vise-versa. According to (A.3.2),
Ki,3 ≡ Ki+1,2 ∀i ≥ 1, consequently Qi,3 ≡ Qi+1,2. Then, for any switching time tk,
Fl(G, J, Qi,3) = Fl(G, J, Qi+1,2), and thus V(xcl(tk)) = V(xcl(t−k )).

As a result, the switched closed-loop system CLσ(ρ) is quadratically stable ∀ρ ∈ P , and
for any switching signal σ.

5.6.4 Grid-based LPV-YK Control

In this section, a switching between consecutive parameter partitions is attained
with a closed-loop exponential stability. Recall that the grid-based LPV approach has
shown interesting results for our experimental results shown in Chapter 5. However,
to achieve robust closed-loop performance with large parameter variations, multiple
grid-based LPV controllers can be designed each suitable for its corresponding pa-
rameter subset. Specifically, the nominal LPV controller K0(ρ) and the others Ki(ρ)
(i ∈ {1, . . . , N}) exponentially stabilize the LPV plant. This is performed without
asking an affine parameter dependency assumption of the LPV model. Consider the
general LPV system G(ρ) (5.17) with m inputs and p outputs. All the state-space
data are continuous functions of the parameter vector ρ. Assume that ρ is in a com-
pact set P ⊂ Rs with its parameter variation rate bounded by νk ≤ ρ̇k ≤ νk for
k = 1, 2, ..., s. Moreover, let us assume the following:

• (A(ρ), B2(ρ), C2(ρ)) triple is parameter-dependent stabilizable and detectable
∀ρ ∈ P .

•
[
BT

2 (ρ) DT
12(ρ)

]
and

[
C2(ρ) D21(ρ)

]
have full row ranks ∀ρ ∈ P .

• D22(ρ) = 0.

Suppose that the parameter set P is covered by a finite number of closed subsets
{Pi}i∈ZN , where the index set ZN = {1, 2, . . . , N}, and P =

⋃Pi. At the boundaries
between each adjacent subsets, there exist at least a single intersecting boundary or
an intersecting surface.

Now, assume that

(A.4.1). There exists an LPV output-feedback controller K0(ρ) which exponentially stabi-
lizes G(ρ) at the full parameter region P0 := P . (following the grid-based approach in
[18]),

(A.4.2). Over each parameter subset {Pi}i∈ZN , there exists an LPV controller Ki(ρ) pre-
designed separately and exponentially stabilize G(ρ) over {Pi}i∈ZN . Each Ki(ρ) is designed,
based on grid-based approach, to achieve a suitable performance in its corresponding param-
eter region {Pi}i∈ZN
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FIGURE 5.10: LPV-YK gridded controller

The defined LPV controllers Ki(ρ) (i ≥ 0) are described over Pi as

Ki(ρ) :
[

Ak,i(ρ, ρ̇) Bk,i(ρ)
Ck,i(ρ) Dk,i(ρ)

]
, i ∈ {0, ZN} (5.81)

where Ak,i(ρ, ρ̇) ∈ Rnk,i×nk,i , Bk,i(ρ) ∈ Rnk,i×mk , Ck,i(ρ) ∈ Rpk×nk,i and Dk,i(ρ) ∈
Rpk×mk .

The closed-loop system performance is achieved in each parameter subregion
and under given switching/interpolating logics via YK parameterization concept.
The switching occurs when the parameter trajectory hits one of the subsets bound-
aries. A switching signal could be any continuous/discontinuous switching signal
γ. The LPV closed-loop system of each pre-defined controller Ki(ρ) over Pi can be
described by

CLi(ρ) :
[

Acl,i(ρ, ρ̇) Bcl,i(ρ)
Ccl,i(ρ) Dcl,i(ρ)

]
, i ∈ {0, ZN} (5.82)

where xT
cl,i =

[
xT xT

k,i
]
∈ Rnx+nk,i (i ≥ 0). For any i ∈ {0, ZN}, the closed-loop LPV

system (5.82) is required to satisfy the bounded real lemma over Pi with a perfor-
mance level γ∞,i, i.e. ∥z∥2 < γ∞,i ∥w∥2 and there exists a symmetric, positive definite
matrix functions Xcl,i(ρ), each of them is smooth over the corresponding parameter
subset P , such that

{AT
cl,i(ρ)Xcl,i(ρ) + Xcl,i(ρ)Acl,i(ρ)

+
s
∑

k=1
±{νk, νk}

∂Xcl,i
∂ρk

}
Xcl,i(ρ)Bcl,i(ρ) CT

cl,i(ρ)

BT
cl,i(ρ)Xcl,i(ρ) −γ∞,i Inw DT

cl,i(ρ)

Ccl,i(ρ) Dcl,i(ρ) −γ∞,i Inz

 < 0 (5.83)

The objective of grid-based LPV-YK control structure is to obtain exponential sta-
bility of the closed-loop system based on YK parameterisation. Moreover, a smooth
interpolation scheme K̃(ρ, γ) is formulated between multiple pre-designed LPV con-
trollers Ki(ρ) (i ∈ ZN), using the switching signal γ = [γ1, ..., γi, ..., γN ] , where each
Ki(ρ) is designed to be suitably used for a certain parameter subregion Pi. This
could be achieved by two steps:

1. Parameterize each LPV controller Ki(ρ) with respect to the nominal LPV con-
troller K0(ρ), by an LPV-YK parameter Qi(ρ).

2. At each boundary of two adjacent subsets Pi and Pi+1, the interpolating sig-
nals γi and γi+1 are adjusted in a way to switch smoothly from Ki(ρ) to Ki+1(ρ)



5.6. Switching between Parameter Subsets 105

or vise-versa. As a result, the overall parameterized LPV-YK controller K̃(ρ, γ)
stabilizes G(ρ) ∀ρ ∈ P and for every continuous/discontinuous interpolating
signals γi, i ∈ ZN .

In order to illustrate the approach, Figure 5.10 shows the partitioned parameter
region P with intersecting boundaries. The orange solid line represents the chosen
nominal LPV controller K0(ρ), as defined by (A.4.1). The blue solid lines represent
the local LPV controllers Ki(ρ) (i ∈ ZN) as defined in (A.4.2). The overall switching
controller is performed using the interpolating signal γ = [γ1, ..., γN ] (γi ∈ [0, 1]
∀i), and is represented by the LPV-YK controller K̃(ρ, γ). These LPV and LPV-YK
controllers are designed in the next section.

The overall interpolation scheme which is referred to K̃(ρ, γ) (see Fig. 5.11) is
designed based on a Parametric Linear Matrix Inequality (PLMI) optimization prob-
lem, where its state-space matrices are represented as

K̃(ρ, γ) :
[

Ãk(ρ, γ) B̃k(ρ, γ)
C̃k(ρ, γ) D̃k(ρ, γ)

]
(5.84)

being γ(ρ) the vector of the parameter-dependent switching signals γi(ρ) (i ∈ ZN)
that are chosen here as follows:

• if γi(ρ) = 0 ∀i, K̃(ρ, γ) ≡ K0(ρ).

• For any ρ ∈ Pm, γm(ρ) = 1 and γi(ρ) = 0 ∀i ̸= m, which implies that K̃(ρ, γ)
is equivalent to Fl(J(ρ), Qm(ρ)) that recovers Km(ρ) (refer to Fig. 5.11).

The following theorem aims to prove that K̃(ρ, γ) exponentially stabilizes G(ρ) for
every ρ ∈ P and for every continuous/discontinuous interpolating signals γi.

Theorem 8. Consider an LPV plant G(ρ) (5.17), and that the assumptions (A.4.1) and
(A.4.2) are satisfied. Let K0(ρ) be the nominal LPV controller designed over the full param-
eter region P0. Then, the parameterized LPV-YK controller K̃(ρ, γ) (5.84)-(5.87), as rep-
resented in Fig. 5.11, exponentially stabilizes G(ρ), with an achieved performance ∥z∥2 <
γ∞ ∥w∥2, where γ∞ = max{γ∞,i}i∈ZN , for any continuous/discontinuous bounded switch-
ing signal γi ∈ [0, 1], if there exist symmetric positive definite matrix functions Xg(ρ) ∈
Rnx×nx , Xk,0(ρ) ∈ Rnk,0×nk,0 , and matrices V(ρ) and W(ρ) such that for any ρ ∈ P :

A(ρ)Xg(ρ) + Xg(ρ)AT(ρ) +
s

∑
j=1
±{νj, νj}

∂Xg

∂ρj
+ B2(ρ)V(ρ) + VT(ρ)BT

2 (ρ) < 0

(5.85)

Ak,0(ρ)Xk,0(ρ) + Xk,0(ρ)AT
k,0(ρ) +

s
∑

j=1
±{νj, νj}

∂Xk,0
∂ρj

+ Bk,0(ρ)W(ρ) + WT(ρ)BT
k,0(ρ) < 0

(5.86)
And ∀ρ ∈ P , the state-space matrices of K̃(ρ, γ) in (5.84) are

Ãk(ρ, γ) =

 A(ρ) + B2(ρ)Fg(ρ)− B2(ρ)Dq(ρ, γ)C2(ρ) −B2(ρ)Dq(ρ, γ)Fk,0(ρ)
−Bk,0(ρ)C2(ρ) Ak,0(ρ)
−Bq(ρ)C2(ρ) −Bq(ρ)Fk,0(ρ)

B2(ρ)Cq(ρ, γ)
0

Aq(ρ)

 ,
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FIGURE 5.11: Generalized YK configuration

B̃k(ρ, γ) =
[
B2(ρ)Dq(ρ, γ) Bk,0(ρ) Bq(ρ)

]T ,

C̃k(ρ, γ) =
[
Fg(ρ)− (Dk,0(ρ) + Dq(ρ, γ))C2(ρ) Ck,0(ρ)− Dq(ρ, γ)Fk,0(ρ) Cq(ρ, γ)

]
,

D̃k(ρ, γ) = Dk,0(ρ) + Dq(ρ, γ).
(5.87)

where
Aq(ρ) = diag(Aq,1, . . . , Aq,i, . . . , Aq,N),
Bq(ρ) =

[
Bq,1 . . . Bq,i . . . Bq,N

]T ,
Cq(ρ, γ) =

[
γ1Cq,1 . . . γiCq,i . . . γNCq,N

]
,

Dq(ρ, γ) =
N
∑

i=1
γiDq,i,

(5.88)

being Aq,i, Bq,i, Cq,i, and Dq,i the state-space matrices of Qi(ρ) represented in (5.91), Fg(ρ) =

V(ρ)X−1
g (ρ), and Fk,0(ρ) = Wk,0(ρ)X−1

k,0 (ρ).

Proof 4. According to YK concept, the parameterized controller can be formulated as a
Linear Fractional Transformation (LFT) system [269], i.e. K̃(ρ, γ) = Fl(J(ρ), Q(ρ, γ))
(see Fig. 5.11), where J(ρ) is defined as:

J(ρ) =


A(ρ) + B2(ρ)Fg(ρ) 0 0 B2(ρ)
−Bk,0(ρ)C2(ρ) Ak,0(ρ, ρ̇) Bk,0(ρ) 0

Fg(ρ)− Dk,0(ρ)C2(ρ) Ck,0(ρ) Dk,0(ρ) I
−C2(ρ) −Fk,0(ρ) I 0

 (5.89)

and Q(ρ, γ) =
N
∑

i=1
γi(ρ)Qi(ρ) (see Qi(ρ) in (5.91)). Specifically, a defined LPV controller

Km(ρ) (m ∈ [1, N]) can be formulated asFl(J(ρ), Qm(ρ))), i.e. Km(ρ)≡Fl(J(ρ), Q(ρ, γ))
for γm = 1 and γi = 0 ∀i ̸= m.

The following proof is achieved by two steps: 1) Prove that the LPV-YK parameter
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Q(ρ, γ) is exponentially stable ∀ρ ∈ P and ∀γ; and 2) Prove the closed-loop exponential
stability ∀ρ ∈ P , ∀γ.

Step 1:

Qi(ρ) can be proved to be exponentially stable ∀ρ ∈ {Pi}i≥1 as follows:
Following (A.4.2) and (5.86), there exist symmetric positive definite matrix functions

Pcl,i, and Pk,0 such that ∀ρ ∈ {Pi}i≥1

AT
cl,i(ρ)Pcl,i(ρ) + Pcl,i(ρ)Acl,i(ρ) +

s

∑
k=1

ρ̇k
∂Pcl,i(ρ)

∂ρk
< 0 (5.90a)

AFk(ρ)Pk,0(ρ) + Pk,0(ρ)AT
Fk
(ρ) +

s

∑
k=1

ρ̇k
∂Pk,0(ρ)

∂ρk
< 0 (5.90b)

where AFk(ρ) = Ak,0(ρ) + Bk,0(ρ)Fk,0(ρ).
(5.90a) can be deduced from (5.83) by choosing Pcl,i(ρ) = Xcl,i(ρ), and (5.90b) can be

satisfied from (5.86) by choosing Pk,0(ρ) = Xk,0(ρ) and Wk,0(ρ) = Fk,0(ρ)Xk,0(ρ). Fol-
lowing Lemma 8, Aq,i(ρ), consequently Qi(ρ), is exponentially stable over Pi ∀i ≥ 1. As

a result, Q(ρ, γ) =
N
∑

i=1
γiQi(ρ) is exponentially stable over

⋃Pi = P for every bounded

signals γ ∈ [0, 1].

Step 2:

The closed-loop system CL(ρ, γ) (5.92) is derived from the LFT interconnection between
G(ρ) (5.17) and K̃(ρ, γ) (5.87) (see Fig. 5.11).
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The closed-loop state matrix Acl(ρ, γ) is exponentially stable if ∀ρ ∈ P , ρ̇ ∈ [ν, ν], there
exists a symmetric, positive definite matrix function Xcl(ρ) such that ∀γ:

AT
cl(ρ, γ)Xcl(ρ) + Xcl(ρ)Acl(ρ, γ) +

s

∑
k=1

ρ̇k
∂Xcl

∂ρk
< 0 (5.94)

Let T =


I 0 0 0
0 0 0 I
I −I 0 0
0 0 I 0

 be a state transformation matrix which is applied to CL(ρ, γ)

without changing its input-output nature, with T−1 =


I 0 0 0
I 0 −I 0
0 0 0 I
0 I 0 0

.

Due to the block-triangular form of Ācl(ρ, γ) (5.93), (5.94) is satisfied if the following
equations hold ∀ρ ∈ P (check Lemma 8):

Yg(ρ)(A(ρ) + B2(ρ)Fg(ρ))
T + (A(ρ) + B2(ρ)Fg(ρ))Yg(ρ) +

s

∑
k=1

ρ̇k
∂Yg

∂ρk
< 0 (5.95a)

Yq(ρ)AT
q (ρ) + Aq(ρ)Yq(ρ) +

s

∑
k=1

ρ̇k
∂Yq

∂ρk
< 0 (5.95b)

AT
cl,0(ρ)Ycl,0(ρ) + Ycl,0(ρ)Acl,0(ρ) +

s

∑
k=1

ρ̇k
∂Ycl,0

∂ρk
< 0 (5.95c)

where Yg(ρ) ∈ Rnx×nx , Yq(ρ) ∈ Rnq×nq and Ycl,0(ρ) ∈ R(nx+nk,0)×(nx+nk,0) are sym-
metric, positive definite matrix functions, choosing Xcl(ρ) = TT diag(Yg, Yq, Ycl,0) T.

Therefore,

• Inequality (5.95a) can be deduced from (5.85) by choosing Yg(ρ) = Xg(ρ) and con-
sidering that Fg(ρ) = V(ρ)X−1

g (ρ) in (5.85).

• (5.95b) is satisfied since Q(ρ, γ) has been proved in Step 1 to be exponentially stable
over P .

• (5.95c) is fulfilled given that K(0)(ρ) exponentially stabilizes G(ρ) according to (A.4.1).

Now, assume a sequence of finite switching time over the interval [0, T] is t0, t1, . . . , tN
with t0 = 0, knowing that the closed-loop Lyapunov function is V(xcl) = xT

clXcl(ρ)xcl .
From the YK basic concept [269], a parameterized controller K̃ = Fl(J, Q) recovers the
performance of its actual controller K. Thus, the closed-loop performance of Fl(G, K̃) is
equivalent to the performance of Fl(G, K). In the current work, it can be deduced that the
closed-loop performance of CL(ρ, γ) (5.92) is equivalent to that of CLi(ρ) (5.82) within each
parameter subset Pi. Notice that according to (5.83), the following inequality describes the
performance of CLi(ρ) ∀ρ ∈ {Pi}i∈ZN

d
dt
(xT

cl,iXcl,i(ρ)xcl,i) +
1

γ∞,i
zTz− γ∞,iwTw < 0 (5.96)

On the other hand, it is worth mentioning that Xcl(ρ) is independent of the switching
signal γ, so, for any switching time tk, V(xcl(tk)) = V(xcl(t−k )), and thus

V(xcl(tk)) ≤ V(xcl(t−k )) (5.97)
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Given the initial condition xcl(0) = 0, from (5.96)-(5.97), it can be shown that the
inequality

V̇(xcl) +
1

γ∞
zTz− γ∞wTw < 0, γ∞ = max{γ∞,i}i∈ZN (5.98)

holds within each parameter subset. Integrate on both sides, we get

V(xcl(T))−V(xcl(0)) +
1

γ∞
∥z∥2

2 − γ∞ ∥w∥2
2 < 0

Since V(xcl(T)) ≥ 0 and V(xcl(0)) = 0, ∥z∥2 < γ∞ ∥w∥2 is achieved. Therefore, the
closed-loop is exponentially stable with an achieved performance ∥z∥2 < γ∞ ∥w∥2, where
γ∞ = max{γ∞,i}i∈ZN .

5.7 Discussion

This chapter has presented four LPV-YK control structures:

1. Interpolation of polytopic-based LPV controllers: It is used to interpolate
between already designed LPV controllers, knowing that all the interpolated
LPV controllers should quadratically stabilize the LPV model for any parame-
ter variations.

2. Interpolation of YK-based LPV controllers: This structure uses the LTI-YK
parameterization to first design multiple quadratically stabilizing LPV con-
trollers. Then interpolates between these YK-based LPV controllers providing
a whole closed-loop quadratic stability.

3. Switching of partitioned YK-based LPV controllers: It is designed aiming to
solve the conservatism of the quadratic stability problem due to overbounding
(in convex regions), large number of varying parameters, and their large range
of variations. A YK-based LPV controller is designed in each parameter sub-
set, and the switching appears at the intersection boundary between each two
consecutive subsets.

4. Switching of grid-based LPV controllers: This structure is formulated to switch
between multiple grid-based LPV controllers, each is designed to be useful
over its subset. Each parameter subset is gridded and the local LPV controllers
are required to be exponentially stabilizing.

Notice that one can combine multiple parameter subsets with multiple closed-
loop specifications in one structure. Such a structure can be the most generalized
control scheme including parameter-variations, robustness, and different control
objectives. For instance, one can partition P into N parameter subsets, and de-
sign ζ YK-based LPV controllers in each subset Pi. As a result, the LPV-YK con-
troller K̃(ρ, γ) switches and interpolates between (N × ζ) LPV controllers K̃(j)

i (ρ),
i ∈ I[1, N], j ∈ I[1, ζ].
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Chapter 6

Application of the LPV-YK
Structures on Vehicle Lateral
Control

6.1 Introduction

The main thesis motivation behind considering an interpolation scheme between
multiple LPV controllers is the application to autonomous vehicles. Indeed, sev-
eral studies have involved the LPV control approaches to solve the lateral tracking
problem over the full speed-range (speed as the varying parameter) [23]. However,
it is not sufficient to achieve different tracking performances (e.g. smooth and ag-
gressive). On the other hand, [293] has proposed an LTI-YK control structure for
both lane-tracking and lane-changing control performances, but works only for a
constant speed.

Indeed, the driving capabilities have been recently improved for highly, and even
fully, autonomous driving thanks to advanced control theory. A fully autonomous
car needs to perform several tasks including longitudinal control, lateral control,
chassis control, etc. Moreover, the lateral dynamics of an autonomous vehicle varies
significantly with respect to its longitudinal speed [138], [139]. Specifically, at low
speeds, the lateral dynamics becomes harder to be controlled (due to approaching
system singularity), whereas at high speeds, robustness and system stability de-
crease [140]. Even at nominal speeds, the lateral control aims to achieve various ob-
jectives such as lane tracking, lane changing, obstacle avoidance, etc. Consequently,
various performances are required accordingly for different driving situations that
are facing the vehicle.

The following chapter uses the LPV-YK control structures, presented in the pre-
vious chapter, to improve the vehicle tracking performance over a large speed range.
First, the implementation architecture with its designing steps are shown, then, sim-
ulation and experimental results are presented to validate the efficiency of the pro-
posed LPV-YK control structures.

The simulation and experimental results shown in this chapter have been pre-
sented in:

• Multi-Variable and Multi-Objective Gain Scheduled Control Based on Youla-Kucera
Parameterization: Application to Autonomous Vehicles, under review in International
Journal on Robust and Nonlinear Control.

• Advanced LPV-YK Control Design with Experimental Validation on Autonomous
Vehicles, under review in Automatica.
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FIGURE 6.1: Vehicle Bicycle Model

This chapter is organized as follows: Section 6.2 states the formulated LPV mod-
els for the lateral bicycle model. In Section 6.3, the generalized LPV model including
the weighting functions is introduced. Section 6.4 defines LPV/H∞ control design
problem to be used later. The general LPV-YK control scheme is defined in Section
6.5. Section 6.6 presents the implementation of the Interpolation of polytopic-based
LPV controllers. The interpolation of YK-based LPV controllers is depicted in Sec-
tion 6.7. The partitioned LPV-YK controller is presented in Section 6.8. Section 6.9
shows the implementation of the grid-based LPV-YK controller. Finally, a summary
and conclusion is given in Section 6.10.

6.2 LPV Model Formulation

The following section describes the LPV model that is used for each of the LPV-YK
control structures, considering both the general and affine parameter-dependency.

6.2.1 Lateral Bicycle Model

Recall that the lateral bicycle model has been used to control the lateral motion of our
automated car. Notice that the chosen bicycle model is one type of Pacejkas’ models
only [138]. As previously mentioned in Chapter 3, the bicycle model is represented
as shown in Fig. 6.1, with {

v̇y =
Fy f cos δ+Fyr

m − wvx

ẇ =
Fy f l f cos δ−Fyr lr

I

(6.1)

Fy f and Fyr can be modelled using Pacejka’s tire model [138] as follows:

Fy f = c3 sin(c2 tan−1(c1α f )) α f = δ− tan−1(
vy
vx
− l f w

vx
)

Fyr = c3 sin(c2 tan−1(c1αr)) αr = − tan−1(
vy
vx
− lrw

vx
)

(6.2)

where c1, c2 and c3 are constants.



6.3. Generalized LPV Model 113

Assuming small α (refer to Section 3.2.8), the tire forces are linearized resulting
the following:

Fy f = C f (δ−
vy
vx
− l f w

vx
)

Fyr = Cr(−
vy
vx
+ lrw

vx
)

(6.3)

where C f and Cr represent the tires’ stiffness of the front and rear wheels.

6.2.2 LPV Bicycle Model Structures

Referring to Chapter 4, taking ρ(t) = vx ∈ Rnρ as a varying parameter, and assuming
small steering front angles (sin(δ) ≈ δ), and small slip angles, the LPV state-space
representation can be written as:

Σ(ρ)
{

ẋ(t) = AΣ(ρ)x(t) + BΣu(t)
y(t) = CΣx(t) + DΣu(t) (6.4)

where:

x(t) =
[

vy
w

]
∈ Rnx , u(t) = δ, , y(t) = w, BΣ =

[ 1
m C f

1
I C f l f

]
,

AΣ(ρ) =

 −Cr+C f
mρ − l f C f−lrCr

mρ − ρ

− l f C f−lrCr
Iρ −

l2
f C f +l2

r Cr

Iρ

 .
(6.5)

Grid-based Model

The grid-based LPV model is a model interpolated over a set of LTI models that are
linearized at different operating points. This approach considers the general param-
eter dependency of the model (without model reformulation). Thus, the model in
(6.4)-(6.5) can be used for the grid-based LPV-YK control structure. Refer to Section
4.2.2 for more details.

Polytopic Model

Since the polytopic model must be affine with respect to the varying parameters. So,
the state matrix in (6.5) is reformulated as:

AΣ(ρ) =

[
−Cr+C f

m ρ2 −C f l f−Cr lr
m ρ2 − ρ1

−C f l f−lrCr
I ρ2 −

C f l2
f +l2

r Cr

I ρ2

]
, (6.6)

where ρ = [ρ1, ρ2] = [vx, 1
vx
]. Refer to Section 4.2.2 for more details.

6.3 Generalized LPV Model

This section shows the components of the generalized LPV model G(ρ), that is used
later for control design.

6.3.1 Actuator model

The actuator model is included to achieve a more realistic model. Thus, the bicycle
model is extended by considering an identified steering actuator dynamics Σact.
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FIGURE 6.2: Generalized Plant G(ρ)

Recall from Chapter 3 that the steering actuator model is identified at the nom-
inal longitudinal speed vx = 12 m/s as an LTI model. A second order transfer
function has been obtained in the following form:

Σact =
k

s2 + 2ζwns + w2
n

e−Tds (6.7)

where k, ζ, wn, and Td are the static gain, the damping, the natural frequency and
the time delay, respectively. The time delay term- e−Tds is represented as:

e−Tds =
1− Tds

2 + (Tds)2

12

1 + Tds
2 + (Tds)2

12

(6.8)

6.3.2 Weighting functions

In this thesis, the LPV and LTI controllers are designed using the robustH∞ concept.
For control design purpose, two weighting transfer functions We(s) and Wu(s) are
designed to present the closed-loop tracking performance and the actuator limita-
tions respectively. Then, the state-space representation of G(ρ) is obtained from the
generalized plant shown in Fig. 6.2. Having a second order Σ(ρ), Σact of order 4,
We(s) and Wu(s) of first order each, then, the obtained generalized LPV model G(ρ)
is of order 8.

6.4 LPV/H∞ Control Design

In this chapter, all the LPV lateral controllers K(ρ) are designed using the LPV/H∞
control design approaches, either polytopic or grid-based. The objective of the lat-
eral control is to track a given yaw-rate reference r = wre f with rejecting the mea-
surement noises n. Fig 6.3 presents the control design scheme where wr = [wre f n]T

is a vector of the yaw-rate reference wre f and measurement noises n, δc is the steer-
ing control input, and w is the measured yaw-rate of the vehicle. z = [z1 z2]T is
the controlled output vector containing the required yaw-rate tracking performance
z1 = We × (wre f − w) and steering actuator limitations z2 = Wu × δc.

The objective is to minimize the L2 induced gain from the external input wr to
the controlled output z =

[
z1 z2

]T. This is achieved by solving the following L2
induced minimization problem:

∥z∥2 ≤ γ∞ ∥wr∥2
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FIGURE 6.3: LPV/H∞ Control Design Scheme

FIGURE 6.4: LPV-YK control structure

and γ∞ > 0, to be minimized. Note that the obtained controller K(ρ) is an LPV
Dynamic Output Feedback Controller.

6.5 General LPV-YK Control Scheme

In this section, a general implementation scheme of an LPV-YK controller K̃(ρ, γ) is
defined as shown in Fig. 6.4. Note that the LFT representation of the generalized
LPV-YK controller in Fig. 5.11 can be equivalently reformulated as in Fig. 6.4. This
scheme is considered to be general among all the LPV-YK control structures that
are discussed in the previous chapter. Among these structures, the definitions of
M(ρ), N(ρ), U0(ρ), and V−1

0 (ρ) are similar. The only difference between a structure
and another is the LPV-YK parameter Q̃(ρ, γ). The implementation scheme of the
LPV-YK control is formulated using the doubly coprime factorization [272].

6.5.1 LPV Coprime Factorization

LPV-YK parameterisation uses the LPV coprime factorisation concept to reduce the
algebraic complexity of Q computation. Consider the LPV plant G(ρ) stabilized by
a set of LPV controllers Ki(ρ), then they can be factorized (from left and right) as
a product of a stable transfer function matrix and a transfer function matrix with a
stable inverse as shown below:

G(ρ) = N(ρ)M−1(ρ) = M̃−1(ρ)Ñ(ρ)

Ki(ρ) = Ui(ρ)V−1
i (ρ) = Ṽ−1

i (ρ)Ũi(ρ), ∀i
(6.9)



116 Chapter 6. Application of the LPV-YK Structures on Vehicle Lateral Control

where the LPV coprime factors are computed such that M(ρ), N(ρ), M̃(ρ), Ñ(ρ),
Ui(ρ), Vi(ρ), Ũi(ρ), Ṽi(ρ) are stable and proper, and satisfying the following Bezout
Identity:[

Ṽi(ρ) −Ũi(ρ)
−Ñ(ρ) M̃(ρ)

] [
M(ρ) Ui(ρ)
N(ρ) Vi(ρ)

]
=

[
M(ρ) Ui(ρ)
N(ρ) Vi(ρ)

] [
Ṽi(ρ) −Ũi(ρ)
−Ñ(ρ) M̃(ρ)

]
=

[
I 0
0 I

]
(6.10)

The LPV coprime factors are computed at each vertex using the state-space rep-
resentations written in (6.11)-(6.12).

[
M(ρ) Ui(ρ)
N(ρ) Vi(ρ)

]
:


A(ρ) + B2(ρ)Fg(ρ) 0 B2(ρ) 0

0 Ak,i(ρ) + Bk,i(ρ)Fk,i(ρ) 0 Bk,i(ρ)
Fg(ρ) Ck,i(ρ) + Dk,i(ρ)Fk,i(ρ) I Dk,i(ρ)
C2(ρ) Fk,i(ρ) 0 I


(6.11)

[
Ṽi(ρ) −Ũi(ρ)
−Ñ(ρ) M̃(ρ)

]
:


A(ρ) + B2(ρ)Dk,i(ρ)C2(ρ) B2(ρ)Ck,i(ρ) −B2(ρ) B2(ρ)Dk,i(ρ)

Bk,i(ρ)C2(ρ) Ak,i(ρ) 0 Bk,i(ρ)
Fg,i(ρ)− Dk,i(ρ)C2(ρ) −Ck,i(ρ) I −Dk,i(ρ)

C2(ρ) −Fk,i(ρ) 0 I


(6.12)

6.5.2 LPV-YK Control Structure

Choosing K0(ρ) = U0(ρ)V−1
0 (ρ) = Ṽ−1

0 (ρ)Ũ0(ρ) (or K(0)(ρ) as notated in some
structures) as the nominal LPV controller, the LPV-YK controller K̃(ρ, γ) in Fig. 6.4
is then expressed as:

K̃(ρ, γ) =
(

U0(ρ) + M(ρ)Q̃(ρ, γ)
)(

V0(ρ) + N(ρ)Q̃(ρ, γ)
)−1

=
(

Ṽ0(ρ) + Q̃(ρ, γ)Ñ(ρ)
)−1(

Ũ0(ρ) + Q̃(ρ, γ)M̃(ρ)
) (6.13)

The next sections define the LPV coprime factors M(ρ), N(ρ), U0(ρ), V0(ρ), and
the LPV-YK parameter Q̃(ρ, γ), for each of the discussed LPV-YK control structures.

6.6 Interpolation of polytopic-based LPV controllers

This section presents the steps done to design an LPV-YK controller aiming to in-
terpolate between polytopic-based LPV controllers, as has been shown in Fig. 5.3.
Simulation results are also presented after the design steps. The objective of this
method is to:

1. Design three LPV controllers K(j)(ρ), j ∈ I[0, 2]. Each one is designed based on
the standard polytopic approach.

2. Create an overall interpolation scheme between the gain-scheduled controllers
K(j)(ρ) (j ∈ I[0, 2]), by an interpolating signal vector γ, which is referred to as
K̃(ρ, γ), such that the resultant LPV-YK controller K̃(ρ, γ) quadratically stabi-
lizes G(ρ) ∀ρ ∈ P and for every γ = [γ1, γ2].
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6.6.1 Lateral Control Design

Here, the longitudinal speed is bounded in [3, 30]m/s. Indeed it has been observed
that considering speeds lower than 3m/s, the performance of lateral controllers de-
teriorates significantly (due to the conservatism of the polytopic approach). G(ρ) is
written as a convex combination of the vertices of the triangular polytope

P = CO{(ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2)} = CO{(3,
1

30
), (3,

1
3
), (30,

1
30

)} (6.14)

with the state-space representation as described in (6.4)-(6.6). Notice that the fourth
vertex has been removed to decrease the problem conservatism.

Referring to Fig. 5.3, assumptions (A.1.1)-(A.1.2), and Theorem 5 in Section 5.5.1,
a highly robust LPV controller K(0)(ρ), and two gain-scheduled controllers K(1)(ρ)
and K(2)(ρ) are designed to perform different required performances. The three con-
trollers are designed using the standard polytopic-based LPV/H∞ concept follow-
ing a method similar to [7], having the weighting functions as follows:

• K(0)(ρ): A slow transient response and noise rejection performances are re-
quired using the weighting functions W(0)

e and W(0)
u :

W(0)
e (s) = s+2

2s+0.002 , W(0)
u (s) = s+5

0.01s+5 (6.15)

The following closed-loop step responses are obtained:
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FIGURE 6.5: Closed-loop step response with K(0)(ρ)

• K(1)(ρ): needs to perform smooth lateral transitions which is important to pro-
vide comfort riding. This is achieved using the following weighting functions
W(1)

e and W(1)
u :

W(1)
e (s) = s+2

2s+0.002 , W(1)
u (s) = s+10

0.01s+10 (6.16)

The following closed-loop step responses are obtained:

• K(2)(ρ): to perform fast lateral transitions to handle the vehicle when facing
aggressive maneuvers and lateral oscillations. The chosen weighting functions
W(2)

e and W(2)
u are:

W(2)
e (s) = s+20

2s+0.02 , W(2)
u (s) = 10s+25

0.1s+500 (6.17)

The following closed-loop step responses are obtained:
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FIGURE 6.6: Closed-loop step response with K(1)(ρ)
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FIGURE 6.7: Closed-loop step response with K(2)(ρ)

6.6.2 Design the LPV-YK Control Structure

The following steps are done to design the LPV-YK control:

1. According to the method explained in Section 5.5.1 and Theorem 5, the LPV
polytopic-based state-feedback controllers Fg(ρ) and F(0)

k (ρ) are designed us-
ing the LMIs (5.26)-(5.27). After finding the decision variables W(ρ) and Xg

from (5.26), and V(ρ) and Xk from (5.27), Fg(ρ) and F(0)
k (ρ) are computed as

Fg(ρ) = W(ρ)X−1
g ,

F(0)
k (ρ) = V(ρ)X−1

k
(6.18)

2. The state-space representations of M(ρ), N(ρ), U(0)(ρ) and V(0)(ρ) are com-
puted as illustrated in Section 6.5.1. Q̃(ρ, γ) is formulated as:

Q̃(ρ, γ) =
2

∑
j=1

γjQ(j)(ρ) (6.19)

where Q(j)(ρ) are obtained from (5.31), ∀j ∈ {1, 2}.

3. Here, the interpolating signal γ(t) is a vector of dimension two [γ1(t), γ2(t)],
where each γj multiplies its corresponding Q(j)(ρ). In this example, and based
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FIGURE 6.8: Simulation scheme
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FIGURE 6.9: Simulation: Parameter-varying longitudinal speed vx
(m/s)

on an experimental experience, γ2(t) is chosen to vary according to the de-
manded control tasks. Linear relations are proposed between different vari-
ables as follows:

• if θe ≤ 0.1, γ2(t) = sat(−yL + 1.4 + 0.1δ̇, [0, 1])

• if θe > 0.1, γ2(t) = sat(−0.7ye + 1.4, [0, 1])

• γ1(t) = 1− γ2(t)

where θe and ye represent the heading and lateral errors between the vehi-
cle and the current point on the reference path, respectively. δ̇ is the steering
speed, and yL is the lateral error at a look-ahead distance L [353].

More illustration about the choice of the interpolating signals γj is shown in the
next chapter.

6.6.3 Simulation Results

The parameterized LPV-YK controller K̃(ρ, γ) is simulated on a nonlinear full car
model designed for the Renault ZOE vehicle. The simulation is done using a part of
a real trajectory map (Satory) (see Fig. 3.6) where its coordinates are obtained from
a pre-recorded map using the positioning system mounted on the robotized ZOE
car. The simulation in performed with MATLAB/Simulink with fixed sampling-
time= 0.01s using the scheme shown in Fig. 6.8. The real vehicle speed from this
recording is multiplied by 1.7 gain and used as a speed profile reference, to test the
controllers within critical high speeds.

A scenario is chosen to cover several lateral tasks and critical situations as fol-
lows:

1. The vehicle is required to start its Autonomous Driving (AD) with a large lat-
eral error (ye > 2 m).
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FIGURE 6.10: Simulation: Planned and controlled trajectories

2. When t ∈ [10, 40]s, the vehicle performs four successive turns at a high speed
(vx > 20m/s).

3. When t ∈ [40, 50]s, the vehicle is subjected to some sensor noises (due to real
measurements) on a straight stretch.

4. An obstacle is detected when t ∈ [50, 60]s, the navigation modifies the trajec-
tory suddenly as two successive lateral steps (each one of 3 m), aiming to avoid
a collision.

The scenario is tested with different controllers:

• The nominal highly robust controller: K̃(ρ, [0, 0]) ≡ K(0)(ρ),

• The smooth tracker: K̃(ρ, [1, 0]) ≡ K(1)(ρ),

• The aggressive tracker: K̃(ρ, [0, 1]) ≡ K(2)(ρ),

• The proposed LPV-YK controller: K̃(ρ, γ) with γ = [γ1, γ2] varies in real-time

Fig. 6.9 shows the speed profile for all the tests. Fig. 6.10 shows the (X-Y) coordi-
nates of the reference trajectory and the vehicle positioning response of the different
tested controllers. Fig. 6.11a depicts the lateral error from the reference trajectory to
the vehicle Center of Gravity (CoG), and the steering control input is shown in Fig.
6.11b. Fig. 6.11c represents the steering speed which reflects the driving comfort.
Fig. 6.12 shows the evolution of the interpolating signal γ for K̃(ρ, γ).

The results are studied along time evolution as follows:

• At t = 0s, it is shown in Fig. 6.11a that only some of the tested controllers
are activated to start with high lateral error (ye > 2.5m), since both controllers
K(0)(ρ) and K̃(ρ, [0, 1]) can’t deal with large lateral errors (observed from pre-
testing). On the other hand, K̃(ρ, [1, 0]) and K̃(ρ, γ) perform better with the
initial high lateral error, where K̃(ρ, γ) shows a lower overshoot (see Fig. 6.11a
when t ∈ [2, 5]s) with a smoother steering action (see Fig. 6.11b when t ∈
[2, 4]s).
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FIGURE 6.11: Simulation results
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FIGURE 6.12: Interpolating signal γ

• When t ∈ [5, 40]s, during the four successive turns, the four tested controllers
have almost similar tracking performance (check Fig. 6.11a), where there exists
low steering noises using the fast controller K̃(ρ, [0, 1]) as shown in Fig. 6.11c.

• When t ∈ [42, 48]s, on the straight highway, Fig. 6.11a shows that the slow
controllers (K(0)(ρ), K̃(ρ, [1, 0])) have lateral oscillations due to actuator limita-
tions (for smoothness). On the other hand, the fast controller K̃(ρ, [0, 1]) and
K̃(ρ, γ) could handle the vehicle. This is achieved due to the use of the steering
speed in the proposed equations of γ2, γ changes to [0.3, 0.7].

• Finally, when t ∈ [52, 62]s, Fig. 6.10 shows that only K̃(ρ, [0, 1]) could not
perform a fast double lane-change to overcome an obstacle (represented as
"x"). Although the nominal and the smooth controllers K(0)(ρ) and K̃(ρ, [1, 0])
could succeed in performing it, however, the vehicle performs high lateral os-
cillations. On the other hand, K̃(ρ, γ) shows better performance without any
lateral overshoots (see Fig. 6.11a) and with a very smooth and optimized steer-
ing action (see Fig. 6.11b and 6.11c when t ∈ [52, 62]s).

Thanks to the variations of γ which reflects the needed lateral task to the pro-
posed parameterized controller K̃(ρ, γ), obtaining a combination between the de-
signed performances.

The next section introduces the improvement obtained by interpolating between
YK-based LPV controllers instead of polytopic-based.

6.7 Interpolation of YK-based LPV controllers

In this section, a more advanced interpolation scheme is introduced, where the in-
terpolation LPV controllers are designed based on YK parameterization as has been
discussed in Section 5.5.2. The objective of this method is to:

1. Design two of gain-scheduled controllers K(j)(ρ), j ∈ I[1, 2]. Each one is de-
signed by interpolating its corresponding LTI controllers K(j)

i (i ∈ I[1, 2np ])
based on YK parameterization. The nominal controller K(0)(ρ) is design based
on the standard polytopic LPV approach.
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2. Create an overall interpolation scheme between the gain-scheduled controllers
K(j)(ρ) (j ∈ I[0, 2]), by an interpolating signal vector γ, which is referred to as
K̃(ρ, γ), such that the resultant LPV-YK controller K̃(ρ, γ) quadratically stabi-
lizes G(ρ) ∀ρ ∈ P and for every γ = [γ1, γ2].

6.7.1 Lateral Control Design

The first improvement that can be mentioned about using YK-based LPV controllers
instead of polytopic-based, is that the control design conservatism can be decreased.
Consequently, in this section, the longitudinal speed can be considered in [1, 30]m/s
(while it has been in [3, 30]m/s in Section 6.7). G(ρ) is written as a convex combina-
tion of the vertices of the polytope

P = CO{(ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2)} = CO{(1,
1

30
), (1,

1
1
), (30,

1
30

)} (6.20)

with the state-space representation as is described in (6.4)-(6.6).
Referring to Fig. 5.6, assumptions (A.2.1)-(A.2.2) and Theorem 6 in Section 5.5.2,

a highly robust LPV controller K(0)(ρ), and two gain-scheduled controllers K(1)(ρ)
and K(2)(ρ) are designed to perform different required performances as follows:

• The polytopic-based LPV controller K(0)(ρ) is designed using the standard
polytopic approach. A slow transient response and noise rejection perfor-
mances are required for the nominal controller K(0)(ρ) using weighting func-
tions W(0)

e and W(0)
u as follows:

W(0)
e (s) = s+2

2s+0.002 , W(0)
u (s) = s+5

0.01s+5 (6.21)

The closed-loop step responses are obtained as shown in Fig. 6.13.
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FIGURE 6.13: Closed-loop step response with K(0)(ρ)

• LTI controllers K(1)
i are designed separately using LTI/H∞ concept at each ver-

tex wi to perform smooth lateral transitions which is important to provide com-
fort riding. This is achieved using the following weighting functions W(1)

e and
W(1)

u ∀i:
W(1)

e (s) = s+2
2s+0.002 , W(1)

u (s) = s+10
0.01s+10 (6.22)

The closed-loop step responses are obtained as shown in Fig. 6.14.
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1 , K(1)

2 , and K(1)
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the polytopic vertices

• LTI controllers K(2)
i are designed separately using LTI/H∞ concept at each ver-

tex wi to perform fast lateral transitions to handle the vehicle when facing ag-
gressive maneuvers and lateral oscillations. The chosen weighting functions
are W(2)

e and W(2)
u ∀i as:

W(2)
e (s) = s+20

2s+0.02 , W(2)
u (s) = 10s+25

0.1s+500 (6.23)

The closed-loop step responses are obtained as shown in Fig. 6.15.

0 0.2 0.4 0.6 0.8 1

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
m

p
li

tu
d

e

FIGURE 6.15: Closed-loop step response with K(2)
1 , K(2)

2 , and K(2)
3 at

the polytopic vertices

It is worth noting the difference in closed-loop step responses between the ones
in Fig. 6.6 and Fig. 6.14, and Fig. 6.7 and Fig. 6.15. The difference of using polytopic-
based control design and LTI control design is clearly observed at each polytopic
vertex.

6.7.2 Design the LPV-YK Control Structure

The following steps are done to design the LPV-YK control shown in Fig. 6.4:

1. According to the LMIs explained in Section Theorem 6, the LPV polytopic-
based state-feedback controller Fg(ρ), and the LTI state-feedback controllers

F(0)
k,i , ∀i ∈ I[1, 4], are designed. After finding the decision variables Wi (i ∈
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{1, 2, 3}) and Xg from (5.45), and Vi and Xk,i (i ∈ {1, 2, 3}) from (5.46). Then ,

Fg(ρ) and F(0)
k (ρ) are computed as

Fg(ρ) =
3
∑

i=1
WiX−1

g ,

F(0)
k (ρ) =

3
∑

i=1
ViX−1

k,i

(6.24)

2. The state-space representations of M(ρ), N(ρ), U(0)(ρ) and V(0)(ρ) are com-
puted as illustrated in Section 6.5.1. Q̃(ρ, γ) is formulated as:

Q̃(ρ, γ) =
2

∑
j=1

γjQ(j)(ρ) (6.25)

where Q(j)(ρ) are obtained from (5.54), ∀j ∈ {1, 2}.

3. Here, the interpolating signal γ(t) = [γ1(t), γ2(t)] is chosen as in the previous
section as follows:

• if θe ≤ 0.1, γ2(t) = sat(−yL + 1.4 + 0.1δ̇, [0, 1])

• if θe > 0.1, γ2(t) = sat(−0.7ye + 1.4, [0, 1])

• γ1(t) = 1− γ2(t)

The following two sub-sections introduce simulation and experimental results of
the designed LPV-YK control structure.

6.7.3 Simulation Results

The parameterized LPV-YK controller K̃(ρ, γ) is simulated on a nonlinear full car
model designed for a Renault ZOE vehicle. The performed simulation is similar to
the one in the previous section, using the scheme shown in Fig. 6.8. The scenario, the
test track, the longitudinal speed profile are exactly the same used in the previous
section.

The scenario is tested with different controllers:

• The nominal highly robust controller: K̃(ρ, [0, 0]) ≡ K(0)(ρ),

• The smooth tracker: K̃(ρ, [1, 0]) ≡ K(1)(ρ),

• The aggressive tracker: K̃(ρ, [0, 1]) ≡ K(2)(ρ),



126 Chapter 6. Application of the LPV-YK Structures on Vehicle Lateral Control

0 10 20 30 40 50 60 70

Time(s)

-6

-4

-2

0

2

4

6

L
a

te
ra

l 
E

rr
o

r(
m

)
1 2 3 4 5

0

1

2

52 54 56 58 60 62

-2

0

2

42 44 46 48

-0.1

-0.05

0

0.05

(A) Lateral error ye (m)

0 10 20 30 40 50 60 70

Time(s)

-0.4

-0.2

0

0.2

0.4

S
te

e
ri

n
g

 A
n

g
le

(r
a

d
)

1 2 3 4 5

-0.02

0

0.02

0.04

0.06

0.08

52 54 56 58 60 62

-0.1

0

0.1

42 44 46 48

-10

-5

0

5

10-3

(B) Control input steering wheel angle (rad)

0 10 20 30 40 50 60 70

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
te

e
ri

n
g

 S
p

e
e

d
(r

a
d

/s
)

(C) Steering speed δ̇ (rad/s)

FIGURE 6.17: Simulation results
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• The proposed LPV-YK controller: K̃(ρ, γ) with γ = [γ1, γ2] varies in real-time

Fig. 6.16 shows the speed profile for all the tests. Fig. 6.17a depicts the lateral
error from the reference trajectory to the vehicle Center of Gravity (CoG), and the
steering control input is shown in Fig. 6.17b. Fig. 6.17c represents the steering speed
which reflects the driving comfort. Fig. 6.18 shows the evolution of the interpolat-
ing signal γ for K̃(ρ, γ), and Fig. 6.19 shows the (X-Y) coordinates of the reference
trajectory and the vehicle positioning response of the different tested controllers.

• At t = 0s, it is shown in Fig. 6.17a that only some of the tested controllers are
activated to start at high lateral error (ye > 2.5m), since both controllers K(0)(ρ)
and K̃(ρ, [0, 1]) can’t deal with large lateral errors (observed from pre-testing).
On the other hand, K̃(ρ, [1, 0]) and K̃(ρ, γ) perform better with the initial high
lateral error, where K̃(ρ, γ) shows a lower overshoot (see Fig. 6.17a when t ∈
[2, 5]s) with a smoother steering action (see Fig. 6.17b when t ∈ [2, 4]s).

• When t ∈ [5, 40]s, during the four successive turns, the four tested controllers
have almost similar tracking performance (check Fig. 6.17a), where there exists
low steering noises using the fast controller K̃(ρ, [0, 1]) as shown in Fig. 6.17c.

• When t ∈ [42, 48]s, on the straight highway, Fig. 6.17a shows that the slow
controllers (K(0)(ρ), K̃(ρ, [1, 0])) have lateral oscillations due to actuator limita-
tions (for smoothness). On the other hand, the fast controller K̃(ρ, [0, 1]) could
handle the situation, but demanding more steering effort with noises (see Fig.
6.17c when t ∈ [42, 48]s). However, due to the use of the steering speed in the
proposed equations of γ2, γ changes to [0.3, 0.7], and K̃(ρ, γ) achieves a perfect
trade-off between decreasing the lateral oscillations (in Fig. 6.17a) and relaxing
the steering action (in Fig. 6.17b and 6.17c).

• Finally, when t ∈ [52, 62]s, it is clear in Fig. 6.19 that both K(0)(ρ) and K̃(ρ, [0, 1])
could not perform a fast double lane-change to overcome an obstacle (repre-
sented as "x"). Although the smooth controller K̃(ρ, [1, 0]) could succeed in
performing it, however, the vehicle performs high lateral oscillations. On the
other hand, K̃(ρ, γ) shows better performance without any lateral overshoots
(see Fig. 6.17a) and with a very smooth and optimized steering action (see Fig.
6.17b and 6.17c when t ∈ [52, 62]s).

Thanks to the variations of γ which reflects the needed lateral task to the pro-
posed parameterized controller K̃(ρ, γ), obtaining a combination between the de-
signed performances.

Table 6.1 summarizes the conclusions behind the simulation results that are con-
sidered similar between the YK-based and polytopic-based interpolation, with much
performance improvement using the YK-based interpolation.

6.7.4 Experimental Results

The LPV-YK controller K̃(ρ, γ) is tested on the robotized electric Renault ZOE vehi-
cle. Previously in Chapter 4, we have tested a polytopic-based LPV controller K1(ρ)

(see Section 4.5) which has been designed with the weights W(1)
e and W(1)

u (i.e. the
same weights used to design K̃(ρ, [1, 0])), and using the standard polytopic optimisa-
tion problem [12]. Notice that the interpolating signal vector γ is switched manually
during the test. This experimental test mainly aims to:
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TABLE 6.1: Overview of the tested controllers in simulation

Controller
Value of

interpolating
vector γ

Control objective Advantages Disadvantages

K̃(ρ, [0, 0])
≡ K(0)(ρ)

[0,0] Highly robust
High noise rejection due to bad

environment conditions,
sensor faults, etc.

Inaccurate tracking performance
and conservative

K̃(ρ, [1, 0])
≡ K(1)(ρ)

[1,0] Smooth tracker
Good tracking performance

with smooth steering

Oscillatory and cannot
perform well at high
lateral accelerations

K̃(ρ, [0, 1])
≡ K(2)(ρ)

[0,1] Aggressive tracker
Fast tracking performance and

could achieve high
lateral accelerations

Too sensitive to noises

K̃(ρ, γ)
variant as

in Fig. 6.18

Multiple objectives
by varying the

interpolating vector γ.

All the mentioned advantages
and even more by choosing the

optimal combination of controllers by γ

No bad performance
is observed

1. Compare both controllers K1(ρ) and K̃(ρ, [1, 0]).

2. Observe the controller response when γ switches aggressively as a step func-
tion.

The test is done in a part of Satory test-track shown in Fig. 6.20. Fig. 6.21 shows
the variation of the measured longitudinal speed in Kph which is considered to be
coherent with respect to the road curvature. The vehicle starts on a straight highway
using the smooth controller K̃(ρ, [1, 0]). Then, it switches to the faster controller
K̃(ρ, [0, 1]) when approaching two successive maneuvers (at t = 20s) aiming to
achieve the lowest lateral error. After exiting the successive maneuvers, it switches
again to the smooth controller K̃(ρ, [1, 0]) (at t = 50s) and enters a second maneuver
to compare its performance to the previously tested polytopic LPV controller K1(ρ).

Regarding Figs. 6.22a and 6.22b, it is clearly shown that the vehicle performance
is not affected during the switching times (at t = 20s and t = 50s) with negligible
transient response.

• When t ∈ [20, 50]s, K̃(ρ, [0, 1]) achieves smaller lateral error compared to K1(ρ)
(see Fig. 6.22a), but with low steering noises as shown in Fig. 6.22b. No-
tice that these steering noises has been observed also in simulation section for
K̃(ρ, [0, 1]).

• When t ∈ [65, 85]s, K̃(ρ, [1, 0]) shows lower lateral error during maneuvering
compared to K1(ρ). This appears since the LPV-YK controller K̃(ρ, [1, 0]) is less
conservative than the polytopic LPV controller K1(ρ).

The next two sections implements the LPV-YK control structure to switch be-
tween multiple parameter subsets aiming to maintain a unique closed-loop perfor-
mance over the whole parameter region.

6.8 Partitioned LPV-YK controller

This section implements the partitioned LPV-YK controller, proposed in Section 5.6.3,
to the lateral dynamics of an autonomous vehicle, since it contains a non-affine
scheduling parameter which causes an overbounding convex parameter region when
implementing the polytopic approach. Designing steps and experimental results are
depicted in the following subsections.
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FIGURE 6.23: Partitioned parameter region

The longitudinal speed is assumed to vary within the range vx[5, 30] m/s. Since
the system dynamics changes significantly in this speed range, it could be conser-
vative to design a single LPV controller over the full parameter region. Thus, the
parameter region is divided into 5 subsets as:

vx ∈ [5, 10] ∪ [10, 15] ∪ [15, 20] ∪ [20, 25] ∪ [25, 30] (6.26)

The objective of this method is to:

1. Design multiple YK-based gain-scheduled controllers K̃i(ρ), i ∈ I[1, 5]. Each
one is designed by interpolating its corresponding LTI controllers Kij (j ∈
I[1, 2np ]) based on YK concept (refer to Fig. 6.23).

2. Create an overall switched LPV-YK controller K̃σ(ρ) to switch between K̃i(ρ),
such that K̃σ(ρ) quadratically stabilizes G(ρ) ∀ρ ∈ P and for every continu-
ous/discontinuous switching signal σ(t).

6.8.1 Lateral Control Design

G(ρ) is written here as a convex combination of the vertices of a triangular poly-
tope P0 = CO{(ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2)} as shown in Fig. 6.23 with the state-space
representation as is described in (6.4)-(6.6). This section aims to design the parti-
tioned polytopic-based LPV-YK control. Five triangular convex subsets (P1 . . .P5)
are chosen along the parameter trajectory as shown in Fig. 6.23.

The nominal LPV controller K0(ρ) is designed, based on (A.3.1), using the weight-
ing functions We,0 and Wu,0 defined as:

We,0(s) = s+2
2s+0.002 , Wu,0(s) = s+5

0.01s+5 (6.27)

The following closed-loop step responses are obtained as shown in Fig. 6.24.
In addition, at the polytopic vertices wij ∀i ∈ I[1, 5], ∀j ∈ I[1, 3], LTI controllers

Kij are designed, based on (A.3.2), separately using the same weighting functions
We and Wu chosen to present the tracking performance and the actuator limitations
respectively. as:
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FIGURE 6.24: K0(ρ) ∈ P0

We(s) = s+2
2s+0.002 , Wu(s) = s+10

0.01s+10 (6.28)

The closed-loop step responses are shown in Fig. 6.25.

6.8.2 Design the LPV-YK Control Structure

Referring to Fig. 6.23, assumptions (A.3.1)-(A.3.2) and Theorem 7 in Section 5.6.3,
the design of the partitioned polytopic-based LPV-YK (shown in Fig. 6.4) is done
according to the following steps:

1. According to the LMIs in Theorem 7, the LPV polytopic-based state-feedback
controller Fg(ρ), and the LTI state-feedback controllers Fk,i(ρ), ∀i ∈ I[1, 5], are
designed. After finding the decision variables W0j (j ∈ {1, 2, 3}) and Xg from
(5.70), and Vij and Xk,ij (i ∈ I[1, 5],j ∈ {1, 2, 3}) from (5.71). Then, Fg(ρ) and

F(0)
k (ρ) are computed as

Fg(ρ) =
3
∑

j=1
W0jX−1

g ,

F(0)
k,i (ρ) =

3
∑

j=1
Vij(Xk,ij)

−1, ∀i ∈ I[1, 5]
(6.29)

2. The state-space representations of M(ρ), N(ρ), U0(ρ) and V0(ρ) are computed
as illustrated in Section 6.5.1. Q̃(ρ, γ) is defined here as Qσ(ρ), recall that σ
represents the switching signals which changes at the intersecting boundaries
of the parameter subsets. Qi(ρ) are obtained from (5.74), ∀j ∈ {1, 5}. It is
worth mentioning that the switching signal is called σ instead of γ, since the
signal does not appear in the closed-loop state matrix, whereas the closed-loop
state matrix switches from one to another.

3. Here, the switching signal σ depends only on the varying parameter ρ, where
switching occurs at the intersecting boundaries of the parameter subsets.

The current structure has been directly experimentally validated on the ZOE ve-
hicle as shown in the next shown.
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(A) K11, K12, and K13 ∈ P1
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(B) K21, K22, and K23 ∈ P2
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(C) K31, K32, and K33 ∈ P3
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(D) K41, K42, and K43 ∈ P4
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(E) K51, K52, and K53 ∈ P5

FIGURE 6.25: Closed-loop step response with Kij ∀i ∈ I[1, 5] and ∀j ∈
I[1, 3]
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FIGURE 6.26: Experimental planned and controlled trajectories
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FIGURE 6.27: Experimental longitudinal speed vx (Kph)
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FIGURE 6.29: Partitioned polytopic-based LPV-YK control
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FIGURE 6.30: Multiple Parameter Subregions

6.8.3 Experimental Results

To validate the improvement caused by the proposed partitioned polytopic-based
LPV-YK control, the vehicle performance is analyzed and compared to a gain-scheduled
LPV-YK controller. The gain-scheduled LPV-YK controller is referred to a YK-based
polytopic LPV controller that is designed over the whole parameter region P0 (for
instance, as the design on K(1)(ρ) in the previous section). Notice that, in all the
tests, a restarting mode of the navigation systems appears at the end of the highway.
Consequently, the results analysis doesn’t concern the boarded part marked "NAV".

The experiments shown here have been carried out on the Renault ZOE vehicle.
The test results of the designed controllers are discussed concerning their imple-
mentation and the analysis of the obtained performance. The tests are done in a
private test track in Satory as shown in Fig. 6.26. The first part of the test describes
the response of the controllers at a straight highway with high speeds. The second
part concerns the precision of lateral control at optimal speeds chosen coherently
depending on the road curvature.

The longitudinal speed is considered as an external parameter of the LPV mode
that is shown in Fig. 6.27. Fig. 6.28 presents the operating parameter subset that
switches according to the speed evolution. Fig. 6.29a depicts the lateral error from
the reference trajectory to the vehicle Center of Gravity (CoG). Fig. 6.29b represents
the yaw rate of the vehicle, and the steering control input is shown in Fig. 6.29c.

It is shown in Fig. 6.29a that both controllers, the proposed partitioned and gain-
scheduled LPV-YK, could successfully achieve lateral error minimization. On the
other hand, the gain-scheduled LPV-YK controller leads to higher steering oscilla-
tions, compared to the partitioned LPV-YK controller, as shown in Figs. 6.29b and
6.29c.

When t ∈ [28.3, 28.5]s, it is observed in Fig. 6.28 switches hysterically back and
forth between the subsets P3 and P4. However, the hysterical switching of the parti-
tioned LPV-YK controller between both subsets didn’t affect the performance of the
steering input and consequently the yaw rate (see the zoomed part in Figs. 6.29c and
6.29b). This is expected since, at that instants, the operating controllers at that inter-
secting boundary are dynamically equivalent, i.e. Fl(G, J33, Q33) ≡ Fl(G, J42, Q42).
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6.9 Grid-based LPV-YK controller

This section implements the grid-based LPV-YK controller, proposed in Section 5.6.4,
to the lateral dynamics of an autonomous vehicle, aiming to achieve robust perfor-
mance. Designing steps and experimental results are depicted in the following sub-
sections.

As in the previous section, the parameter region is divided into 5 subsets as:

ρ ∈ [5, 10] ∪ [10, 15] ∪ [15, 20] ∪ [20, 25] ∪ [25, 30] (6.30)

Each parameter subset is gridded with six grid points spaced equally.
The objective of grid-based LPV-YK control structure is to obtain exponential sta-

bility of the closed-loop system based on YK parameterisation. Moreover, a smooth
interpolation scheme K̃(ρ, γ) is formulated between multiple pre-designed LPV con-
trollers Ki(ρ) (i ∈ I[1, 5]), using the switching signal γ = [γ1, , ..., γ5] , where each
Ki(ρ) is designed to be suitably used for a certain parameter subregion Pi. This
could be achieved by two steps:

1. Parameterize each LPV controller Ki(ρ) (i ∈ I[1, 5]) with respect to the nominal
LPV controller K0(ρ), by an LPV-YK parameter Qi(ρ).

2. At each boundary of two adjacent subsets Pi and Pi+1, the interpolating sig-
nals γi and γi+1 are adjusted in a way to switch from Ki(ρ) to Ki+1(ρ) or vise-
versa. As a result, the overall parameterized LPV-YK controller K̃(ρ, γ) sta-
bilizes G(ρ) ∀ρ ∈ P and for every continuous/discontinuous interpolating
signals γi, i ∈ I[1, 5].

6.9.1 Lateral Control Design

In this section, G(ρ) is not required to have affine parameter-dependency, so it is
written as shown in (6.4)-(6.5), over the parameter region presented in Fig. 6.30.

• The nominal LPV controller K0(ρ) is designed using We,0 and Wu,0 in (6.27)
over the full parameter region P satisfying (A.4.1).

The following closed-loop step responses are obtained:
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FIGURE 6.31: K0(ρ) ∈ P0

• Following (A.4.2), the controllers Ki(ρ) are designed separately over Pi (i ∈
[1, 5]), with the same weighting functions We and Wu in (6.28).

The closed-loop step responses are shown in Fig. 6.32
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(B) K2(ρ) ∈ P2
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(C) K3(ρ) ∈ P3
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FIGURE 6.32: Closed-loop step response with Kij ∀i ∈ I[1, 5] and ∀j ∈
I[1, 3]
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6.9.2 Design the LPV-YK Control Structure

Referring to Fig. 5.10, assumptions (A.4.1)-(A.4.2) and Theorem 8 in Section 5.6.4,
the design of the grid-based LPV-YK (shown in Fig. 6.4) is achieved accordingly to
the next steps:

1. Following the conditions of Theorem 8, the LPV state-feedback gains Fg(ρ)
and Fk,0(ρ) are designed using the LMIs (5.85)-(5.86), where the multiple parameter-
dependent Lyapunov functions at each subset are specified as affine and smooth
functions of scheduling parameters. That is,

Xg(ρ) = X0
g + X1

g ρ, Xk,0(ρ) = X0
k,0 + X1

k,0 ρ,

where matrices X j
g and X j

k,0, j = 0, 1 are the optimization variables to be deter-
mined.

2. The state-space representations of M(ρ), N(ρ), U0(ρ) and V0(ρ) are computed
as illustrated in Section 6.5.1. Q̃(ρ, γ) is formulated as:

Q̃(ρ, γ) =
5

∑
i=1

γiQi(ρ) (6.31)

where Qi(ρ) are obtained from (5.91), ∀i ∈ I[1, 5].

3. γi(ρ) is switched between {0,1} when ρ(t) touches the switching boundaries.
Qi(ρ) are obtained from (5.74), ∀j ∈ {1, 5}. Then, the LPV-YK controller
K̃(ρ, γ) is ready to be implemented.

The current structure has been directly experimentally validated on the ZOE ve-
hicle as shown in the next shown.

6.9.3 Experimental Results

To validate the proposed grid-based LPV-YK control, the vehicle performance is an-
alyzed and compared to an LPV-switched controller designed using the Theorem
presented in [142]. Similarly to the previous section, a restarting mode of the nav-
igation systems appears at the end of the highway, and the results analysis doesn’t
concern the boarded part marked "NAV". The scenario in this experiment is exactly
the same to the previous experiment with the reference trajectory and the longitudi-
nal speed are as shown in Fig. 6.26 and 6.27 respectively.

Fig. 6.33a depicts the lateral error from the reference trajectory to the vehicle
Center of Gravity (CoG). Fig. 6.33b represents the yaw rate of the vehicle, and the
steering control input is shown in Fig. 6.33c.

Both controllers achieve minimized lateral error as show in Fig. 6.33a. However,
Fig. 6.33b and 6.33c emphasize a clear difference in performances during switching
from one subset to another. The zoomed parts in Fig. 6.33c show that the switching
effect is negligible using the proposed grid-based LPV-YK controller, which is not
the case for the switched LPV controller.

Moreover, it is worth mentioning that the control input response at high speeds
is not noisy. However, it has been shown previously in Section 4.5 that designing a
single LPV grid-based controller over the whole parameter region may cause noisy
performance at high speed.
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FIGURE 6.33: Grid-based LPV-YK control
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6.10 Conclusion

This chapter has implemented the LPV-YK control structures proposed in the pre-
vious chapter. First, it has been used to improve the system performance, while
dealing with various objectives and situations. The application to the autonomous
vehicle lateral control is carried out. The simulation shows interesting results re-
garding the efficiency of the proposed method of providing high performance and
ensuring safety at critical situations. In addition, experimental results are shown to
validate its real performance by testing the approach on a real Renault ZOE vehicle.

Then, the partitioned and grid-based LPV-YK control structures have been im-
plemented to maintain unique closed-loop specifications over the whole parameter
region. Both structures have shown remarkable experimental results when com-
pared to the standard LPV control appraoches.

Finally, it is worth mentioning that that the LPV-YK control structure facilitates
adding any new controller, by introducing its corresponding LPV-YK parameter to
the YK configuration (as shown in Fig. 5.9), without recalling all the control design
procedure. This enhances real applications, such as in industries, where the systems
are subjected to frequent instrumentation changes such as autonomous vehicles.

An interest appears to study the optimal choice of γ, and how to find always
the best combination of a larger set of controllers, which will improve more the pre-
sented work. This study will be investigated in the next chapter.
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Chapter 7

About The Interpolation Logic of
LPV-YK Control: An Example
Using Reinforcement Learning

7.1 Introduction

In this chapter, the structure of interpolation between YK-based LPV controllers is
concerned aiming to find an optimal interpolation according to the required objec-
tives. In Section 6.7, the interpolating signal γ has been chosen according to our
previous experience in autonomous vehicle lane-tracking and lane-changing. The
interpolation has shown good results, however, it could not be optimal. Since the
whole closed-loop system can be complex including the LPV-YK control and the
nonlinear vehicle model, Artificial Intelligence (AI) tools are proposed to learn how
to find the optimal solution of γ.

Reinforcement Learning (RL) algorithms are highly recommended to find op-
timal actions according to a certain reward function. The reward function can be
designed according to engineering experience, and the optimization objective is to
maximize the reward function regarding the current vehicle and surrounding envi-
ronment situations. Thanks to the stability conditions of the LPV-YK control, the in-
terpolating signal γ can be any ad-hoc physically based, continuous/discontinuous,
external or internal signal. Consequently, using the RL method does not affect the
stability of the closed-loop system.

The current chapter proposes an RL-based LPV-YK interpolation scheme aiming
to achieve an optimal performance with guaranteeing closed-loop quadratic stabil-
ity. First, it is shown how the interpolating signals affect the closed-loop specifi-
cations using time-domain analysis. Then, the RL model is trained and simulated
using the same simulation environment as in Section 6.7.

The results in this chapter has been represented in:

• Intelligent Control Switching for Autonomous Vehicles based on Reinforcement Learn-
ing, published in 2022 33rd IEEE Intelligent Vehicles (IV) Symposium Conference,
refer to [381].

The chapter is organized as follows: Section 2 discusses the related works to
our contribution. Section 3 defines some preliminaries on the fundamentals of Rein-
forcement Learning. A proof on control performance recovery of the LPV-YK control
structure is shown in Section 4. A time-domain analysis on the affect of the inter-
polating signal on the closed-loop performance is depicted in Section 5. Section 6
represents the RL-based LPV-YK interpolation architecture. The training and testing
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results of the RL model are shown in Section 7. Finally, some concluding remarks
are given in Section 8.

7.2 Related Works

In the last decades, autonomous driving has involved different main domains such
as automatic control theory and Artificial Intelligence (AI). For instance, [23] has pre-
sented the design and experimental validation of three Linear Parameter-Varying
(LPV) control approaches for autonomous vehicles. On the other hand, a review
has investigated Deep Reinforcement Learning (DRL) algorithms and provides au-
tomated driving tasks where DRL methods have been employed [382]. Each of these
domains has proposed different kinds of approaches to solve the longitudinal and
lateral control problems of autonomous driving.

On the other hand, recent studies have proposed AI learning tools due to its pow-
erful performance, such as Reinforcement Learning (RL) [382],[383]. [384] presents
a deep RL based approach for lateral motion control. Deep RL has proved to be
able to solve many control tasks in different fields, however there is no stability
guarantees for its behavior in real-world scenarios. Several studies have been inves-
tigated to provide stability guarantees either by adding dynamic constraints [385] or
by combining deep RL with a theoretical optimization control [386],[387]. Moreover,
recent works have proposed RL algorithms for decision-making and performance
optimization for vehicles lane change [388],[389],[390].

As mentioned before, automated steering control should be able to address any
circumstances such as activating the vehicle away from its reference trajectory with
a significant error, or performing step lane changes. For ensuring stability and per-
formance in such situations, a single controller could not be able to satisfy all critical
situations. This chapter aims to propose an LPV-YK control interpolation based on
RL to handle situations as large lateral deviations. Such deviations can be caused
either by a first system activation, avoidance maneuver or even a localization dis-
continuity.

7.3 Preliminaries

This section presents some fundamentals of Reinforcement Learning to be used later
in the chapter, readers can refer to [391] for more details.

7.3.1 Reinforcement Learning Elements

In order to explain the elements of the RL algorithms some definitions for the inter-
action to achieve a goal will be explained. The learner and decision-maker is called
the agent, for e.g. the ego vehicle. The agent interacts with what is called the environ-
ment which includes everything outside the agent, in this case is the racetrack, the
obstacles and the surrounding vehicles. The agent selects actions and the environ-
ment changes accordingly, which make them interact continually. This interaction
is received by the agent with some representation of the environment described as
State which includes information about its situation, it could be information about
coordinates or speed of other vehicles, features of the road, among others. Refer to
Fig. 7.1 to visualize the connection between these components.

The main sub-elements of RL algorithms are:
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FIGURE 7.1: The agent–environment interaction in RL

• Policy: Is a mapping from perceived states of the environment to actions to be
taken in those actions. It is sufficient to determine the behavior, policies may
be stochastic.

• Reward: Defines the goal that is send as a number by the environment. The
objective of the agent is to maximize the cumulative reward received over the
long run. This value depends on the agents current action and the current
state of the agent’s environment at any time. The only way the agent can in-
fluence the reward signal is through its actions, which can have a direct effect
on the total reward, or an indirect effect through changing the environment’s
state. The policy may be changed to select the action that will be followed by
a higher reward on that situation in the future. Generally, reward signals may
be stochastic functions of the state of the environment and the actions taken.

• Value function: Specifies what is good in the long run defined as episode. The
value of a state can be described as the total amount of reward an agent can
expect to accumulate over the future, starting from that state. Whereas rewards
determine the immediate, intrinsic desirability of environmental states, values
indicate the long-term desirability of states after taking into account the states
that are likely to follow, and the rewards available in those states.

• Model: Is a representation of the behavior of the environment. When an ac-
tion is made given a state the model might predict the resultant next state and
reward due to this action. The model is used for planning and to consider
possible future situations before they actually happen. There are two types
of methods, model-free that are trial-and-error learners and model-based that
integrate model and planning.

7.3.2 Reinforcement Learning Theory

The interaction between the agent and the environment occur at a sequence of dis-
crete time steps t in which it receives some representation of the environment’s state
St ∈ S in the S set of possible states, and it selects an action At ∈ A(St) whereA(St)
is the set of actions available in state St. One time step later, in part as consequence
of its action, the agent receives a numerical reward Rt+1 ∈ R ⊂ R and finds itself in
a new state St+1. The Fig. 7.1 represents the agent-environment interaction.

At each time step, the agent implements a mapping from states to probabilities
of selecting each possible action. This mapping is called the agent’s policy and is
denoted πt, where πt(a | s) is the probability that At = a if St = s. Reinforcement
learning methods specify how the agent changes its policy as a result of its experi-
ence. The agent’s goal, roughly speaking, is to maximize the total amount of reward
it receives over the long run.
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An agent can increase the long-term reward by exploiting knowledge learned
about the discounted sum of expected future rewards of different state-action pairs.
The learning agent has to exploit what it already knows in order to obtain rewards,
but it also has to explore the unknown in order to make better action selections in
the future. One of the main challenges in reinforcement learning is managing the
trade-off between exploration and exploitation [382].

For some stochastic control problems when the models for sequential decision
making outcomes are uncertain, Markov Decision Processes (MDP) are used. The
MDP model consists of decision epochs, states S, actions A, rewards R, and transition
probabilities T; a tuple < S, A, T, R >. Choosing an action a in a state s generates a
reward R(s,a) and determines the state at the next decision epoch s’ through a transi-
tion probability function T(s,a,s’). Policies are instructions of which action to choose
under any occurrence at every future decision. The agent look for policies which are
optimal. The mathematical representation of the policy which is a mapping from
the state space to a probability over the set of actions, and πt(a | s) represents the
probability of choosing action a at state s. The goal is to find the optimal policy π∗

at time k, defined as:

π∗ = arg max
π

Eπ{
H−1

∑
k=0

γkR(sk, ak) | s0 = s} := arg max
π

Vπ(s) (7.1)

Where γ is the discount factor that controls how an agent consider future re-
wards. When γ is low the agent will maximize short term rewards, on the contrary
with high values of γ the agent will try to maximize rewards over a longer time
frame. Eq. (7.1) represents the highest expected sum of discounted rewards in a
time horizon H in the MDP. From the models directly, RL agents may learn value
function estimates, policies and/or environment. Finding a policy π that maximizes
the expected discounted sum of rewards over trajectories in the state space is what
solving a RL task means.

7.3.3 Actor Critic Approach

Actor-critic methods are hybrid methods that combine value-based and policy-based
algorithms. One actor is the one that selects the actions and this is the policy-
structure. After an action is made by the ’actor’, the estimated value function evalu-
ates the action and this is known as the ’critic’. The value-based methods are model-
free Temporal Difference (TD), are methods that can learn directly from raw expe-
rience without a model of the environment’s dynamics and learn estimates of the
utility of individual state-action pairs represented in Eq. (7.2). This scalar signal is
the sole output of the critic and drives all learning in both actor and critic, as shown
in Fig. 7.2

Qπ(s, a) = Eπ{
H−1

∑
k=0

γkR(sk, ak) | s0 = s, a0 = a} (7.2)

Q-learning will learn (near) optimal state-action values provided a big number of
samples are obtained for each pair. Agents implementing Q-learning update their Q
values according to the update rule of Eq. (7.3):

Q(s, a)←− Q(s, a) + α

[
r + γ max

α′∈A
Q(s′, a′)−Q(s, a)

]
(7.3)
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FIGURE 7.2: The actor–critic architecture

Where Q(s, a) is an estimate of the utility of selecting action a in state s; α is the
learning rate which controls the degree to which Q values are updated at each time
step.

The policy-based methods aim to estimate the optimal policy directly, and the
value is a secondary. Typically, a policy πθ is parameterized as a neural network.
Policy gradient methods use gradient descent to estimate the parameters of the pol-
icy that maximize the expected reward. The result can be a stochastic policy where
actions are selected by sampling, or a deterministic policy. When selecting actions,
exploration is performed by adding noise to the actor policy. To stabilize learning
a replay buffer is used to minimize data correlation. A separate actor-critic specific
target network is also used. Normal Q-learning is adapted with a restricted number
of discrete actions the optimal Q-value and optimal action as Q∗ and a∗.

Q∗(s, a) = max
π

Qπ(s, a) , a∗ = arg max aQ∗(s, a) (7.4)

By correcting the Q-values towards the optimal values using the chosen action, the
policy is updated towards the optimal action proposition. Thus two separate net-
works work at estimating Q∗ and π∗.

7.3.4 Soft-Max Policy Approximation

In policy gradient methods, the policy π(a|s, θ) can be formulated in any way, as
long as it is differentiable with respect to its parameters θ; i.e. as long as ∇π(a|s, θ)
(the column vector of partial derivatives of π(a|s, θ) with respect to the components
of θ) exists and is finite for all s ∈ S , a ∈ A(s), and θ ∈ Rd′ .

In practice, parameterized numerical preferences h(s, a, θ) ∈ R, for each state–action
pair, is chosen if the action space is discrete and not too large. Usually, an exponen-
tial soft-max distribution is used so that the actions having the highest preferences,
in each state, are given the highest probabilities to be selected, the policy is then
formulated as follows:
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π(a|s, θ) =
eh(s,a,θ)

∑b eh(s,b,θ)
, (7.5)

where e = 2.71828 is the base of the natural logarithm. This policy parameteri-
zation is known as sof-max in action preferences. Notice that the action preferences
h(s, a, θ) can be parameterized by a DNN or can be any linear function in features.
An example which is usually used:

h(s, a, θ) = θTx(s, a), (7.6)

where x(s, a) is a state-action pair feature.
An advantage of the soft-max policy approximation is that the approximate pol-

icy can approach a deterministic policy.

7.4 Different Kinds of Interpolating Signals

In the autonomous vehicle field, an interpolation scheme with any ad-hoc interpo-
lating signal can be beneficial to link between the decision-making and control sys-
tems, i.e. as a control supervisor. It can be expressed as a list of characters, floats or
binaries which describes the decision taken. For example:

• As a character: it indicates the general task which should be taken by the ve-
hicle, i.e. smooth/aggressive lane tracking, slow/fast lane change, far/ emer-
gency collision avoidance, parking, autonomous-mode initialization, decrease
lateral acceleration noises, sudden brake, etc.

• As a float: it represents all the ego vehicle information, i.e. position, lat-
eral/longitudinal speed, lateral/longitudinal acceleration, vehicle parameters’
change (mass, tire stiffness estimation, etc.), and others. Moreover, it gives the
surrounding information such as: fixed/moving objects using cameras and Li-
DAR (vehicles, pedestrians, etc.), road conditions (holes, friction, slope, wet/
humid, traffic lights/ marks, lane lines, etc.), environment condition (weather,
wind speed, etc.)

• As a binary: it displays driving conditions due to a certain situation, i.e. sport/
classic drive, emergency calls (heart attack), etc.

In this chapter, the interpolating signal is considered to be float ranging in [0, 1].
Considering the LPV-YK control structure in Section 6.7, the next section proves

the control recovery of each already designed LTI controller.

7.4.1 Local LTI Control Performance Recovery

Regarding Fig. 5.7, the interpolation cases can be mentioned to show how K̃(ρ, γ)
recovers a single gain-scheduled controller K(j)(ρ) by varying γj:

• if γj = 0 ∀j, K̃(ρ, γ) ≡ K(0)(ρ) =
2np

∑
i=1

αi(ρ)K
(0)
i

• if γj = 1 for j = c ∈ [1, ζ] and γj = 0 ∀j ̸= c, K̃(ρ, γ) ≡ K(c)(ρ) =
2np

∑
i=1

αi(ρ)K
(c)
i
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• else, the performance of K̃(ρ, γ) is interpolated among K(j)(ρ) according to the
chosen γj.

In this section, the performance recovery of each pre-designed local LTI con-
troller K(j)

i (i ∈ [1, 2np ], j ≥ 1), from the LPV-YK controller K̃(ρ, γ), is verified. Let

us choose an LTI controller K(c)
l (i.e. γc = 1 and γj = 0 ∀j ̸= c, and ρ = wl). The

following derivation shows the performance recovery of of K(c)
l from K̃(ρ, γ):

Substitute the vertex w(c)
l and γ = [0 . . . 0 γc = 1 0 . . . 0] (denoted by γ∗c = 1) in

(6.13),

K̃(wl , γ∗c = 1) =
(

U(0)
l + MlQ̄

(c)
l

)(
V(0)

l + NlQ̄
(c)
l (ρ)

)−1
(7.7)

Since the input-output performance of Q and Q̄ is similar (according to the state
transformation concept), Q̄(0)

l ≡ Q(0)
l . According to [269], (7.7) can be written as

K̃(wl , γ∗c = 1) = U(0)
l (V(0)

l )−1 + (Ṽ(0)
l )−1Q(c)

l

(
I + (V(0)

l )−1N(0)
l Q(c)

l

)−1
(V(0)

l )−1

(7.8)
Referring to YK concept, Q(c)

l = Ũ(c)
l V(0)

l − Ṽ(c)
l U(0)

l , after some derivations:

Q(c)
l = Ṽ(c)

l (Ṽ(c)
l )−1Ũ(c)

l V(0)
l − Ṽ(c)

l U(0)
l (V(0)

l )−1V(0)
l

= Ṽ(c)
l K(c)

l V(0)
l − Ṽ(c)

l K(0)
l V(0)

l

= Ṽ(c)
l (K(c)

l − K(0)
l )V(0)

l

(7.9)

Substitute and shape it, then

K̃(wl , γ∗c = 1) = K(0)
l + [Ṽ(c)

l V(0)
l + (K(c)

l − K(0)
l )NlṼ

(0)
l ]−1 × (K(c)

l − K(0)
l ) (7.10)

Knowing that K(c)
l = (Ṽ(c)

l )−1Ũ(c)
l , and applying the Bezout identities (1), we get:

Ṽ(c)
l V(0)

l + (K(c)
l − K(0)

l )NlṼ
(0)
l = I. (7.11)

Then,
K̃(wl , γ∗c = 1) = K(0)

l + K(c)
l − K(0)

l = K(c)
l . (7.12)

Therefore, it is shown that the performance achieved by the LPV-YK controller K̃(ρ, γ)
at any vertex wl is equivalent to the performance of its corresponding LTI controller
K(c)

l .

7.5 Variation of Closed-loop Performance With Respect to
The Interpolating Signal

The objective of this section is to show how the closed-loop performance changes
with respect to the interpolating signal γ. The analysis performed here can help
later understand the change in the LPV-YK control performance while changing γ
to certain values. The LPV-YK control structure designed in Section 6.7 is used here.
Recall that the objective of this structure is to interpolate between three LPV con-
trollers K(j)(ρ), j ∈ {0, 1, 2}, being:
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• The highly robust polytopic-based LPV controller K(0)(ρ) is designed using the
standard polytopic approach, achieving a slow transient response and noise
rejection performances.

• The smooth YK-based LPV controller K(1)(ρ) designed to perform smooth lat-
eral transitions to provide comfort riding.

• The fast YK-based LPV controller K(2)(ρ) achieving fast lateral transitions to
handle the vehicle when facing aggressive maneuvers and lateral oscillations.

Figs. 7.3a, 7.3b, 7.3c show the closed-loop step responses of each LPV controller
at the three polytopic vertices. In the following, the objective is to analyze the change
of the closed-loop step response, at each vertex separately, when γ1 changes from
0 to 1, while always ensuring γ2 = 1 − γ1. It is shown in these figures that the
closed-loop specifications (i.e. rising time, overshoot, settling time, etc.) stay always
between the two interpolated controllers K(1)

i and K(2)
i wherever γj’s (j = {1, 2})

vary between 0 and 1 with γ1 +γ2 = 1. To clarify this point, Figs. 7.4a and 7.4b show
the monotonic decreasing of both rising and settling times when changing from the
slow controller K(1)

i to the faster one K(2)
i , with respect to γ = [γ1, 1− γ1]. Notice

that the colored points (from blue to red) in these figures correspond to the same
legends in the Fig. 7.3a. Thus, multiple closed-loop specifications can be achieved
from the interpolation of two LPV controllers, each corresponds to a certain value
of γ, which can be used later to choose the required specifications during online
implementation.

7.6 RL-based LPV-YK Interpolation Architecture

Reinforcement learning can teach how an agent act by interacting with its envi-
ronment in order to maximize the expected cumulative rewards for a certain task.
There are two general categories of RL algorithms, namely value-based method and
policy-based method. While value-based methods can approximate the value func-
tion using neural networks in an off-policy way, the primary advantage of policy-
based methods, such as the actor-critic [392], is that they can directly optimize the
quantity of advantage, while remaining stable during function approximations. Our
study thus focuses on policy-based RL methods. A detailed explanation of the actor-
critic methods can be found in chapter 13 in [391].

7.6.1 Problem Description

In Section 6.7, it has been shown that using the LPV-YK interpolation is important
to maintain an optimal performance for different lateral maneuvers, such as large
lateral deviations. In our formulation, we focus on situations where explicit lane
change intentions are already given by the trajectory planner as a 3 meters lateral
step. Our task is to decide when and how to interpolate between the two designed
controllers based on states of the ego vehicle with respect to the environment and
the reference trajectory. Once a decision is made by the RL model, the LPV-YK con-
trol scheme achieves a new closed-loop performance and regulates the lateral move-
ments. The applicable switching signal policy to be learned should incorporate the
following three functionalities:

• Avoiding collisions with the lanes boundaries
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FIGURE 7.3: Closed-loop step responses at the three polytopic ver-
tices with different γ values
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FIGURE 7.4: Closed-loop specifications at the three polytopic vertices
with different γ values
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FIGURE 7.5: System architecture of RL-based switching

• Achieving high driving efficiency

• Executing smooth maneuvers

7.6.2 System Architecture

The overall system architecture for enabling automated switching is shown in Fig.
7.5. The system is composed of two main components:

1. Learner Model: uses the actor-critic algorithm to train the switching logic of
the LPV-YK control scheme (agent), to learn a high-level policy while interact-
ing with the environment.

2. Simulation Environment: includes the road network and different task scenar-
ios, is generated using a RENAULT simulator on MATLAB, for a real auto-
mated ZOE car, that has been already used in the previous chapters, and it
interacts with the training agent.

The vehicle and controllers information can be accessed, taking into account the
vehicle and control dynamics generated in the simulation model. To enable safe,
smooth, and efficient driving behaviors on highways, the learner model first receives
the vehicle current state with respect to the reference trajectory from the simulator,
which are passed through the policy network. Next, the learner model determines
the high-level switching policy, which then sends the switching action back to the
simulator to model the controllers’ and vehicle’s movement in the next time step,
and compute the corresponding reward. Notice that the controller output is the
steering angle δ.

7.6.3 Simulation Environment

The simulation environment in presented in Fig. 7.6. For a chosen value of the
interpolating signal γ, the dynamics of the LPV-YK controller K̃(ρ, γ) is adapted
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FIGURE 7.6: Simulation Environment

leading to an interpolated closed-loop performance from the yaw-rate reference wre f
to the measured vehicle yaw-rate w.

The vehicle model contains the nonlinear dynamics of the automated ZOE vehi-
cle. This model provides all the needed observations and the state-space variables
to be used in the learner model. The simulation environment is designed on MAT-
LAB/Simulink with a fixed step-size Ts = 0.01s. The frequency of the interpolating
signal γ is considered here to be similar to the closed-loop frequency. However, it
can be taken slower for smoother interpolation.

7.6.4 Learner Model

The learner model is chosen here to be an RL model using the policy-based actor-
critic method. The pseudo-code for the actor-critic algorithm can be expressed as
follows [391]:

Algorithm 1 Actor-Critic method to estimate the policy πθ ≈ π∗

Input: a differentiable policy parameterization π(a|s, θ)
Input: a differentiable state-value function parameterization v̂(s, w)
Algorithm parameters: λw ∈ [0, 1], λθ ∈ [0, 1], αw > 0, αθ > 0, αR̄ > 0
Initialize R̄ ∈ R (e.g., to 0)
Initialize state-value weights w ∈ Rd and policy parameters θ ∈ Rd′ (e.g., to 0)
Initialize S ∈ S (e.g., to s0)
zw ← 0 (d-component eligibility trace vector)
zθ ← 0 (d′-component eligibility trace vector)
for Loop forever (for each time step) do

A ∼ π(.|S, θ)
Take action A, observe S′ (next state), R (reward)
∆TD ← R− R̄ + v̂(S′, w)− v̂(S, w)
R̄← R̄ + αR̄∆TD
zw ← λwzw +∇v̂(S, w)
zθ ← λθzθ +∇ ln π(S, w)
w← w + αw∆TDzw

θ ← θ + αθ∆TDzθ

S← S′

end for

Two Deep Neural Network (DNN) models are to be trained expressing the policy
π and the state-value function v̂. Their weighting parameters θ and w, the average
reward R̄ are initialized by zeros. The initial state s0 can be chosen depending on the
initial state of the vehicle with respect to its surroundings. At each time-step:
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1. The action is estimated from the trained policy (actor). This action is entered
to the Simulation Environment resulting the reward R and the next state S′.

2. The Temporal-Difference error ∆TD is then computed, and the average reward
R̄ is updated.

3. The weighting parameters of both actor and critic DNNs are updated using
the gradient-descent method.

4. The current state is updated to the next state, and continue to the next time-
step.

State Space

Before getting into the definition of the state space, we introduce an observation
space to help modeling the surrounding environment. The observation of a vehicle
consists of six variables {vx, yL, θe, ye, δ̇, yL × θe}, where vx, yL , θe , ye , δ̇ are the ve-
hicle speed, lateral error at the look-ahead distance L, vehicle heading error, vehicle
lateral error, and the steering speed, respectively. yL × θe is used to identify if the
vehicle is going toward or away from the trajectory depending on its sign.

In real traffic flow, a driver can neither observe nor process all the above obser-
vations precisely and continuously. A human can possibly observe whether he is in
close or far distance, approaching or moving away. Therefore, it is suggested here to
discretize the observations into grids (4 grids for each). As a result, we end up with
a state space S including 46 = 4096 states.

Action Space

In this study, the action space A represents the switching signal γ which is dis-
cretized as {0, 0.2, 0.4, 0.6, 0.8, 1}. So, there are six actions achieving different closed-
loop performances, and thus different vehicle behavior. Notice that we have already
presented the possible closed-loop performances resulting from each γ action in the
previous sections.

Reward Function

The reward function is designed to incorporate key objectives of this study, which is
to develop an automated switching strategy to provide safety, efficiency, and com-
fort. Specifically,

1. Efficiency : evaluation of the relative distance toward the reference trajectory.

2. Comfort : evaluation of steering speed, which relates proportionally the yaw
acceleration.

3. Safety : evaluations of collision risks and high lateral overshoots.

The sub-reward functions can be expressed as:

Re f f = −vx × (a.|ye|+ b.|yL|+ c.|θe|)
Rcom f = −vx × (d.|δ̇|)
Rsa f e = −100

(7.13)
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where a, b, c, and d are the weights chosen according to the required driving type,
i.e. comfort or sportive driving. Then , the total reward function R is:

R = Re f f + Rcom f + Rsa f e (7.14)

Actor-Critic Model

A one-step softmax actor-critic episodic algorithm is used, see chapter 13 in [391]
for more details. The state-action feature vector is formulated using a tile coding
with 1 tilings and four tiles for each state. Having 46 states and 6 actions, results
in 6× 1× 46 = 24576 features. Notice that only one tiling has been chosen due to
computation cost, and since it has achieved our requirements as presented in the
next section. The actor and critic weights, Θ and W respectively, are initialized by
zeros. The discount factor is 1. The actor and critic step-sizes are αΘ = 0.0625 and
αW = 1 respectively.

7.7 Simulation Experiment

The simulation is done using the nonlinear full car model designed for a Renault
ZOE vehicle. The scenario is chosen as the one used in [369]. This scenario cov-
ers several lateral steps at different speeds. Fig. 7.8 depicts the planned and the
controlled trajectories, and the longitudinal speed profile is shown in Fig. 7.9.

The first step is to train the actor-critic model. After training, tests are performed
to compare the resultant performance using the RL-based switching with another
switching logic. The averaged RMS of the TD-error is computed and represented in
Fig. 7.7. It is shown how the TD-error is optimized and decreases along the number
of episodes. In order to evaluate the trained policy of γRL, it is compared to the
switching logic already used Section 6.7, which has been designed according to our
experience.

7.7.1 Testing Results

The parameterized LPV-YK controller K̃(ρ, γ) is structured as shown in Section 6.7
and simulated on the Renault simulator with the trained switching policy. The simu-
lation is done on a designed trajectory containing consecutive lateral deviation steps
over different longitudinal speeds.

The chosen scenario is tested with different controllers: K̃(ρ, [1; 0]) = K(1)(ρ)
(smooth tracker), K̃(ρ, [0; 1]) = K(2)(ρ) (aggressive tracker), the LPV-YK controller
with experienced switching logic K̃(ρ, γ f ), and the proposed RL-based LPV-YK switch-
ing control K̃(ρ, γRL). Fig. 7.9 shows the speed profile for all the tests. Fig. 7.10a
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depicts the lateral error from the reference trajectory to the vehicle Center of Gravity
(CoG), and the steering control input is shown in Fig. 7.10b. Fig. 7.10c represents
the steering speed which reflects the driving comfort. Fig. 7.11 shows the evolution
of the interpolating signals γ f and γRL.

First, it is important noticing that neither K(1)(ρ) nor K(2)(ρ) could achieve an
optimal performance regarding the lateral error optimization and steering comfort.
Specifically, Fig. 7.10a shows the high lateral oscillations caused by K(1)(ρ), whereas
K(2)(ρ) leads to steering speed noises, as shown in Figs. 7.10b and 7.10c, which
affects the riding comfort.

On the other hand, the interpolation between both controllers using the LPV-
YK control scheme achieves better performance on both tracking and steering speed
noise attenuation, i.e. reaching more optimized performance. This is shown re-
garding the performance of K̃(ρ, γ f ) and K̃(ρ, γRL) compared to K(1)(ρ) and K(2)(ρ).
According to Fig. 7.11, it is presented how both switching logic γ f and γRL have sim-
ilar evolution with respect to time. This means that the trained RL-based switching
model is close to what have been previously proposed based on our experience.

Regarding the zoomed parts in Figs. 7.10a, 7.10b, and 7.10c, it is shown that the
overall vehicle performance is even better using the RL-based LPV-YK switching
control. The steering angle and the steering speed are clearly shown to be smoother
and optimized. Concerning the lateral error, Fig. 7.10a presents how K̃(ρ, γRL) per-
forms the smoothest lateral deviations with lowest overshoot. The RMS are calcu-
lated for both K̃(ρ, γ f ) and K̃(ρ, γRL) obtaining the following:

RMS f
ye = 0.47, RMSRL

ye
= 0.452 (7.15)

7.8 Conclusion

This chapter has proposed an new combination between reinforcement learning
and automatic control tools, to ensure both stability and high performance for au-
tonomous vehicles. The LPV-YK switching control scheme is chosen since it en-
sures the closed-loop stability for any continuous/discontinuous interpolating sig-
nal. This signal can be used to incorporate any ad-hoc physically-based interpola-
tion.
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A rising topic, such as reinforcement learning, is used to supervise the switching
logic to provide an optimized performance. Instead of estimating the switching logic
depending on our experience and knowledge, a softmax actor-critic RL model has
been used to observe the vehicle states with respect to the reference trajectory, and
choose the best switching scenario.

The LPV-YK switching control with the highly performant RL model has pro-
vided interesting results in simulation. It has achieved safety, efficiency, and comfort
compared to other simulated controllers. It is important mentioning that the LPV-YK
control structure can be generalized to multiple controllers, and facilitates adding
any new controller without recalling all the control design procedure. This can en-
courage to design a family of multiple controllers, and train an RL-based supervisor
to interpolate between them depending on the vehicle-surrounding situation.

As future work, an interest appears to experimentally validate the proposed sys-
tem architecture on the automated ZOE car. Moreover, the proposed architecture
could aid also to strengthen the link between the decision-making and the control
systems which leads to higher vehicle performance.
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Chapter 8

Discussion

In this chapter, a summary and some concluding remarks are presented concerning
the proposed LPV-YK controllers with their benefits on the lateral control of au-
tonomous vehicles. In addition, several future perspectives are reported to aid the
continuation of the thesis work.

8.1 Thesis Summary

The deployment of autonomous driving aims to avoid accidents, reduce fuel con-
sumption, improve traffic flow. It also provides safety and passenger comfort in
critical situations and make it possible to car travelling for everyone regardless of
their abilities or conditions. However, control of autonomous vehicles is not trivial
since it is required to handle various situations that may lead to use the maximum
capabilities of the vehicle. This thesis have developed multi-variable and multi-
objective control schemes aiming to achieve various control performances covering
the whole vehicle speed range.

A general summary of each of the included chapters is shown below:

• Chapter 1 has introduced the main objectives and novelties of this thesis. In
addition, the thesis organization is mentioned. Resulted publications such as
journals, conferences, and patents are presented at the end of the chapter.

• Chapter 2 has reviewed the use of different switching and interpolating LPV
control approaches in control fields. The most applied applications have been
illustrated and classified over time evolution. The discussed approaches can
be described as follows: 1) Standard LPV control: polytopic, grid-based, LFT:
designed using one single (constant or parameter-dependent) Lyapunov func-
tion; 2) Switched-LPV control: designed using multiple parameter-dependent
Lyapunov functions, and leads to aggressive controller states and output jumps
at the switching instants; 3) Smooth LPV switching: designed sequentially
or instantaneously, and uses iterative methods to smooth the switching tran-
sitions; 4) LPV interpolation based-on bumpless-transfer: tries to minimize
the controller states or output differences at the switching transitions; and 5)
LPV-YK control interpolation: designed by parameterizing the local controllers
with respect to a single nominal controller. A timeline is provided at the end
classifying their main applications.

• Chapter 3 has presented the autonomous vehicle architecture including the
perception, motion planning, and control. A specific literature review is done
on lateral control of autonomous vehicles based on the look-ahead approach.
In addition, the simulation and experimental environments, that have been
used in the work of this thesis, have been introduced.
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• Chapter 4 has introduced a theoretical and experimental comparison of the
LPV approaches for the lateral control of autonomous vehicles. It has been
shown that the grid-based model has the simplest structure with less conser-
vatism in optimization among the others. The weighting parameters used in
the LPV/H∞ control design can physically translate the real actuator limita-
tions to a filter added to the optimization problem. The practical limitations
of each approach have been discussed by observing the simulation results
which were obtained from different chosen critical scenarios. Then, the real
experiments showed interesting results regarding the minimization of the lat-
eral error, which encourages the application of LPV/robust approaches on
autonomous vehicles. A comparison table with pros and cons of each ap-
proach has been represented at the end. In fact, such approaches help to con-
trol parameter-variant systems and to handle with environmental disturbances
(wind speed, bad road conditions/slopes, etc...).

• Chapter 5 has proposed four LPV-YK switching/interpolating methods to ob-
tain smooth interpolation between different closed-loop specifications, and
switching between consecutive parameter subregions. The switching signal
can be parameter-dependent or any ad-hoc continuous/discontinuous signal.
The main advantages behind these approaches, compared to the previous LPV-
switched controllers in the literature are: 1) The pre-designed LPV controllers
are parameterized with respect to a nominal LPV controller, instead of requir-
ing the redesign in new constrained LMIs; 2) The design conditions proposed
for LPV-YK switching control are more smooth and can be satisfied assuming
just the LPV stabilizability of the system; 3) The interpolated/switched con-
trollers can be designed using different control approaches, i.e. PID, H∞, etc;
and finally 4) The proposed LPV-YK control schemes don’t pose any condi-
tions or limitations on the switching signals.

• Chapter 6 has shown the implementation steps of the LPV-YK control schemes
proposed in the previous chapter. These approaches improve the system per-
formance, while dealing with various objectives and situations. An application
to the autonomous vehicle lateral control has been carried out. The simulations
have shown interesting results regarding the efficiency of the proposed meth-
ods of providing high performance and ensuring safety at critical situations. In
addition, experimental results have been presented to validate their real per-
formance by testing the approaches on a real Renault ZOE vehicle. Finally,
notice that the LPV-YK control structures facilitate adding any new controller,
by introducing its corresponding LPV-YK parameter to the YK configuration,
without recalling all the control design procedure. This enhances real applica-
tions, such as in industries, where the systems are subjected to frequent instru-
mentation changes such as autonomous vehicles.

• Chapter 7 has proposed a new combination between Reinforcement Learning
(RL) and automatic control tools, to ensure both stability and high performance
for autonomous vehicles. The LPV-YK switching control scheme is chosen
since it ensures the closed-loop stability for any continuous/discontinuous in-
terpolating signal. This signal can be used to incorporate any ad-hoc physically-
based interpolation. A rising topic, such as reinforcement learning, is used to
supervise the switching logic to provide an optimized performance. Instead of
estimating the switching logic depending on our experience and knowledge, a
softmax actor-critic RL model has been used to observe the vehicle states with
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respect to the reference trajectory, and choose the best switching scenario. The
LPV-YK switching control with the highly performant RL model has provided
interesting results in simulation. It has achieved safety, efficiency, and com-
fort compared to other simulated controllers. It is important mentioning that
the LPV-YK control structure can be generalized to multiple controllers, and
facilitates adding any new controller without recalling all the control design
procedure. This encourages to design a family of multiple controllers, and
train an RL-based supervisor to interpolate between them depending on the
vehicle-surrounding situation.

8.2 Conclusions and Future Perspectives

To continue developing the work of this thesis, different future works are highly
encouraged to be investigated regarding the obtained conclusions:

• The LPV-YK parameterization has shown significant improvement in the field
of LPV switching control, where it simply ensures closed-loop stability without
requiring an instantaneous design of the local LPV controllers. In addition, it
achieves negligible switching effect, on the systems states and control inputs,
at the switching instants. On the other hand, it is worth mentioning that it
is important to analyze the output response of the LPV-YK parameter Q̃(ρ, γ)
which affects the performance of the LPV-YK controller K̃(ρ, γ). A future work
can be done to study the choice of the dynamics of Q̃(ρ, γ), i.e. how to choose
the best design of the LPV state-feedback gains Fg(ρ) and Fk,0(ρ), and how they
affect the closed-loop performance.

• The LPV approaches, specifically the polytopic one, have achieved lower per-
formance at high vehicle speeds which is resulted from dynamic model un-
certainties. The actuator model has been identified as a speed-independent
model, whereas in reality, it changes its dynamics with respect to the vehicle
speed. Thus, it is suggested to identify the steering actuator model as an LPV
model in the future works to obtain a more realistic LPV vehicle model. Then,
implement again the LPV approaches and analyze the performance improve-
ment at high vehicle speeds.

• The proposed LPV-YK control structures have shown interesting simulation
and experimental results. In comparison with the LPV controllers, they have
achieved better driving comfort at high vehicles speeds. Moreover, smoother
switching transitions are resulted using the LPV-YK controllers. A next step
can be done by testing them in more complex environments, i.e. friction drop,
gust wind, higher lateral accelerations.

• Concerning the multi-objective LPV-YK control structures, their importance
is shown by implementing them in different driving situations such as lane
changing, lane tracking, collision avoidance. This has been achieved by regu-
lating the interpolating signals accordingly with the vehicle-surrounding situ-
ations. For more development, an interest appears to study the optimal choice
of the interpolating signals γ, and how to find always the best combination of
a larger set of controllers, which will improve more the presented work.

• The LPV-YK switching control with the highly performant RL model has pro-
vided interesting results in simulation. It has achieved safety, efficiency, and
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comfort compared to other simulated controllers. Such a combined architec-
ture can be used in the future to strengthen the link between the decision-
making and the control systems which leads to higher vehicle performance.
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Appendix A

LMI-based LPV/H∞ Solution

Theorem 9. LMI-based LPV/H∞ Solution

Assume that the dynamical output-feedback LPV/H∞ controller has the form K(ρ)=
[

Ak(ρ) Bk(ρ)
Ck(ρ) Dk(ρ)

]
.

This controller is obtained after solving the following LMIs in (X(ρ), Y(ρ), A(ρ), B(ρ), C(ρ), D(ρ))
while minimizing γ∞, 

M11 (∗)T (∗)T (∗)T

M21 M22 (∗)T (∗)T

M31 M32 M33 (∗)T

M41 M42 M43 M44

 < 0

[
X(ρ) In

In Y(ρ)

]
> 0

(A.1)

Where:

M11 = Ap(ρ)X(ρ) + X(ρ)AT
p (ρ) +

∂X(ρ)
∂ρ ρ̇ + B2C(ρ) + C

T
(ρ)BT

2

M21 = A(ρ) + AT
p (ρ) + CT

2 DT
(ρ)BT

2

M22 = Y(ρ)Ap(ρ) + AT
p (ρ)Y(ρ) +

∂Y(ρ)
∂ρ ρ̇ + B(ρ)C2 + CT

2 BT
(ρ)

M31 = BT
1 (ρ) + DT

21(ρ)D
T
(ρ)BT

2

M32 = BT
1 (ρ)Y(ρ) + DT

21(ρ)B
T
(ρ)

M33 = −γ∞ Inu

M41 = C1(ρ)X(ρ) + D12(ρ)C(ρ)
M42 = C1(ρ) + D12(ρ)D(ρ)C2
M43 = D11(ρ) + D12D(ρ)D21(ρ)
M44 = −γ∞ Iny

(A.2)

Then, we obtain the dynamical controller K(ρ) as follows (for ∂X(ρ)
∂ρ ρ̇ = 0 ):

Dk(ρ) = D(ρ)
Ck(ρ) = (C(ρ)− Dk(ρ)C2(ρ)X(ρ)M(ρ))−T

Bk(ρ) = N−1(ρ)(B(ρ)− Y(ρ)B2(ρ)Dk(ρ))
Ak(ρ) = N−1(ρ)(A(ρ)− Y(ρ)Ap(ρ)X(ρ)− Y(ρ)B2(ρ)Dk(ρ)C2(ρ)X(ρ)

−N(ρ)Bk(ρ)C2(ρ)X(ρ)− Y(ρ)B2(ρ)Ck(ρ)MT(ρ))M−T(ρ)

(A.3)

where M(ρ) and N(ρ) are defined such that M(ρ)NT(ρ) = In −X(ρ)Y(ρ)
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Appendix B

H∞ Control Theory

The H∞ robust control is one of the most controllers used nowadays. The word
robust means that, if a system is influenced by input external disturbances, model
uncertainties, or sensors’/actuators’ failure, theH∞ controller will ensure the stabil-
ity of the system to remain in the safe zone. TheH∞ control design is a mathematical
optimization problem where it can be applied to multivariable systems. FIGURE B.1
represents how theH∞ problem statement is expressed: Where:

FIGURE B.1: H∞ Control Design Configuration

• P is represented as a state space called the generalized plant which contains
the LTI or LPV model system in addition to the weights that are added to the
controlled outputs to achieve the required performances.

• K is theH∞, static state-feedback or dynamic output-feedback, controller to be
designed.

• w is the external input vector containing tracking references, input or output
disturbances, or noises on the measured output.

• u is the controlled input to the LTI (LPV) model.

• y is the measured output from the LTI (LPV) model which will result an output-
feedback dynamic controller K (a state-feedback controller is obtained if y = xp
where xp is the state vector of the generalized plant P).

• e is the controlled output which describes the objective of the controller.
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The main objective of the mathematical optimization is to minimize the H∞ norm
of the energy-to-energy gain, which is the closed loop function Tew(s) in (B.1), from
the external input w(t) to the controlled output e(t) (L2 to L2 norm). The H∞ norm
is defined as the maximum singular value of a function along the whole frequencies
(In SISO systems, it is the highest magnitude reached by the transfer function). It
is computed numerically using several algorithms where LMI method is the most
popular one.

∥Tew(s)∥∞ = sup
w∈R

σ(Tew(jw)) = sup
w(s)∈H2

∥e(s)∥2
∥w(s)∥2

= max
w(t)∈L2

∥e(t)∥2
∥w(t)∥2

∥Tew(s)∥∞ ≤ γ∞

(B.1)

Where γ∞, to be minimized, represents how the demanded performance is achieved.
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Résumé

De nos jours, les systèmes deviennent de plus en plus complexes, ce qui nécessite
des algorithmes de contrôle capables de prendre en compte en ligne des objectifs
variables de performance et de sécurité. Le domaine des systèmes autonomes, en
particulier les véhicules autonomes, est révélateur d’une telle évolution. En effet,
leurs capacités de conduite ont été récemment améliorées pour une conduite haute-
ment, voire totalement, autonome grâce à une théorie de contrôle avancée. Une
voiture entièrement autonome doit effectuer plusieurs tâches dont le contrôle lon-
gitudinal, le contrôle latéral, le contrôle du châssis, etc. La présente thèse propose
différentes structures de contrôle multi-objectifs visant à adapter les performances
du véhicule en couvrant toute la plage de vitesse.
Cette thèse présente de nouvelles architectures de contrôle pour commuter/interpoler
entre plusieurs controleurs linéaires à paramètres variants (LPV), en considérant
la vitesse du véhicule comme un paramètre variable. Le schéma de commutation
ou d’interpolation est réalisé sur la base du paramétrisation de Youla-Kucera (YK).
L’architecture de contrôle LPV-YK peut incorporer plusieurs contrôleurs LPV ou
LTI qui peuvent commuter/interpoler entre eux en garantissant la stabilité. Elle
peut être utilisée pour interpoler entre différentes performances de contrôle visant
à atteindre différentes spécifications en boucle fermée dans différentes situations
de conduite (c’est-à-dire changement de voie, évitement d’obstacles), ou pour bas-
culer entre des sous-ensembles de paramètres cloisonnés lorsqu’on a affaire à de
grandes variations de paramètres (c’est-à-dire à des vitesses de véhicule faibles et
élevées). La stabilité en boucle fermée est garantie pour tout signal d’interpolation
continu/discontinu en termes d’un ensemble d’inégalités linéaires matricielles (LMI).
Les structures de contrôle proposées peuvent aider les systèmes multi-variables et
multi-objectifs à atteindre des performances élevées dans différentes conditions de
fonctionnement et différentes situations critiques, quel que soit le taux d’interpolation.
Des exemples numériques sont simulés pour montrer l’importance des méthodes
proposées pour atteindre différents objectifs pour le contrôle latéral des véhicules
autonomes. En outre, les différentes structures de contrôle ont été testées sur un
véhicule Renault ZOE réel pour valider leurs performances réelles et les comparer
aux contrôleurs LPV standard.

Mots Clés

Contrôle latéral; Contrôle LPV; Paramétrisation Youla-Kucera; Contrôle de switch;
Contrôle robuste; Véhicules autonomes.
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Abstract

Nowadays, systems are getting more and more complex leading to control algo-
rithms able to consider online varying objectives for performance and safety. The
field of autonomous systems, in particular autonomous vehicles, is indicative of
such an evolution. Indeed, their driving capabilities have been recently improved
for highly, and even fully, autonomous driving thanks to advanced control theory.
A fully autonomous car needs to perform several tasks including longitudinal con-
trol, lateral control, chassis control, etc. The current thesis proposes different multi-
objective control structures aiming to adapt the vehicle performance with covering
the full speed range.
This thesis presents novel control architectures to switch/interpolate between mul-
tiple Linear Parameter-Varying (LPV) controllers, by considering the vehicle speed
as the varying parameter. The switching or interpolation scheme is achieved based
on Youla-Kucera (YK) parameterization. The LPV-YK control architecture can in-
corporate multiple LPV or LTI controllers which can switch/ interpolate between
them with ensuring stability. It can be used to interpolate between different con-
trol performances aiming to achieve different closed-loop specifications in different
driving situations (i.e. lane change, obstacle avoidance), or to switch over parti-
tioned parameter subsets when dealing with large parameter variations (i.e. at low
and high vehicle speeds). The closed-loop stability is guaranteed for any continu-
ous/discontinuous interpolating signals in terms of a set of Linear Matrix Inequal-
ities (LMIs). The proposed control structures can help multi-variable and multi-
objective systems to achieve high performances at different operating conditions and
different critical situations regardless of the interpolation rate.
Numerical examples are simulated to show the importance of the proposed meth-
ods to achieve different objectives for lateral control of autonomous vehicles. In
addition, the different control structures have been tested on a real Renault ZOE ve-
hicle to validate their real performance, and compare them with the standard LPV
controllers.

Keywords

Lateral control; LPV control; Youla-Kucera parameterization; Switching control; Ro-
bust control; Autonomous vehicles.
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