
HAL Id: tel-03991973
https://theses.hal.science/tel-03991973

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radar backscatter contribution to tropical forest
disturbance monitoring

Bertrand Ygorra

To cite this version:
Bertrand Ygorra. Radar backscatter contribution to tropical forest disturbance monitoring. Biodiver-
sity and Ecology. Université de Bordeaux, 2022. English. �NNT : 2022BORD0437�. �tel-03991973�

https://theses.hal.science/tel-03991973
https://hal.archives-ouvertes.fr


Thèse de doctorat 

 de l’Université de Bordeaux 

Ecole doctorale n°304, Sciences de l’environnement 

Spécialité : Physique de l’environnement  

 

Pour obtenir le grade de :  

Docteur de l’Université de Bordeaux 

 

Radar backscatter contribution to tropical 
forest disturbance monitoring 

-  

Apports de la rétrodiffusion radar au suivi de la 
déforestation en forêt tropicale 

Subtitle: Sentinel-1 contribution to forest disturbance 

monitoring: a CuSum-based approach 

Présentée par Bertrand YGORRA 

Soutenue le 14/12/2022 
 

Supervisée par : Frédéric FRAPPART, Jean-

Pierre WIGNERON, Serge RIAZANOFF 

Unité de recherche : INRAE, UMR 1391 ISPA Interactions Sol Plante Atmosphère 
 

Membres du jury : 

M. DARROZES José 
Maître de conférences, Université Toulouse III – Paul 

Sabatier 
Rapporteur 

M. MOUGIN Éric Directeur de recherche CNRS Rapporteur 

M. BAUP Frédéric 
Maître de conférences, Université Toulouse III – Paul 

Sabatier 
Examinateur 

M. CATRY Thibault Ingénieur de recherche IRD Examinateur 

Mme. PORTE Annabel Directrice de recherche INRAE Examinateur 

M. WIGNERON Jean-Pierre Directeur de recherche INRAE Directeur 

M. RIAZANOFF Serge Directeur de l’entreprise VisioTerra Co-directeur 

M.  FRAPPART Frédéric Directeur de recherche INRAE Co-directeur 



 

  



Résumé : La télédétection spatiale est de plus en plus employée dans la surveillance des 

problèmes environnementaux. Son intérêt principal réside dans la capacité des capteurs 

embarqués sur satellites de fournir des informations aux échelles mondiale, régionale et 

locale. La télédétection optique a montré son potentiel dans le suivi des changements de 

couvert forestier. Jusqu’à récemment, les systèmes de suivi de la déforestation étaient basés 

sur l’imagerie satellitaire optique. Dans la bande intertropicale, l’emploi de ce type d’image 

rencontre des limites liées à la temporalité du couvert nuageux. Ce couvert nuageux, fréquent, 

entraîne des délais de détection voir des manquements à cause du manque de disponibilité 

de nouvelles images non-contaminées par les nuages. En effet, des ouvertures d’origine 

humaine dans la canopée peuvent être refermées par la repousse entre deux images optiques 

non-contaminées. 

Les nouveaux systèmes de Radar à Ouverture Synthétique (RSO, SAR) ont ouvert de 

nouvelles perspectives dans le domaine de la surveillance des changements de couvert 

forestier dans les forêts tropicales humides (Sentinel-1, PALSAR-2). Ces capteurs actifs ont 

la capacité de pénétrer le couvert nuageux. La disponibilité des images Sentinel-1 en bande 

C à haute résolution spatiale (5x20m) comme temporelle (6 à 12 jours de revisite) en fait un 

substitut potentiel / complémentaire des systèmes optiques dans le suivi des perturbations du 

couvert forestier. 

Cette thèse s’articule autour de trois parties. La première consiste à développer une 

nouvelle méthode de détection des changements basée sur le Cumulative Sum algorithm 

(CuSum) combiné avec une analyse de bootstrap, appliquée au suivi des changements du 

couvert forestier. La méthode a été appliquée à des séries temporelles d’images Sentinel-1 

Ground-Range-Detected (GRD) en polarisation double (VV, VH) obtenues dans une 

concession forestière légale près de Kisangani, en République Démocratique du Congo. Les 

améliorations apportées consistent en l’intersection des cartes de résultats de VV et de VH 

pour créer la carte de résultats VV x VH. Une recombinaison spatiale d’un seuil critique (Tc) 

haut avec un seuil critique bas a également été réalisée, appelée cross-Tc. Le deuxième axe 

de la thèse est constitué par le développement de la méthode ReCuSum. Ce développement 

se traduit par l’application du CuSum cross-Tc de manière itérative pour changer la nature 

‘single breakpoint’ du CuSum en ‘multiple breakpoints’. Cette amélioration a été réalisée dans 

l’objectif d’améliorer la capacité du CuSum cross-Tc à détecter et qualifier les changements du 

couvert forestier. Le développement se base dans la région du Parà, dans la forêt 

amazonienne brésilienne. Le troisième et dernier axe de cette thèse consiste à développer 

une version quasi-temp-réelle du CuSum cross-Tc. 



Mots clefs : Déforestation, Sentinel-1, Télédétection radar, Cumulative Sum algorithm, 

Détection de changement, Forêts tropicales. 

Abstract: Earth Observations are increasingly used to monitor environmental problems. Its 

interests lie in the ability of sensors aboard satellites to provide information at global, regional 

and local scales. Optical remote sensing has shown great potential for the monitoring of forest 

disturbances. Until recently, deforestation monitoring systems were mainly based on remotely 

sensed optical images. In the intertropical latitudes, such images often face limitations of 

frequent cloud cover, leading to late detection or misdetections due to the temporal availability 

of new images uncontaminated by clouds. In tropical humid forests, regrowth can close canopy 

gaps between two non-cloud-contaminated optical images used for detection. 

New SAR (Synthetic Aperture Radar) systems have opened new perspectives for forest 

disturbance monitoring in tropical humid forests (Sentinel-1, PALSAR-2). These active sensors 

penetrate the clouds. The availability of Sentinel-1 C-band images at high spatial and temporal 

resolutions makes it a potential substitute / complementary of optical systems for monitoring 

disturbances in forest cover. 

This work revolves around three parts. The first part consists in the development of a new 

change detection method for monitoring disturbances in forest cover, based on the Cumulative 

Sum algorithm (CuSum) combined with a bootstrap analysis. The method was applied to time-

series of Sentinel-1 Ground-Range Detected (GRD) dual polarization (VV, VH) images 

obtained in a legal forest concession near Kisangani in the Democratic Republic of the Congo. 

The results from VV and VH polarization were intersected in VV x VH result map, and a spatial 

recombination of a high Critical Threshold (Tc) with a low critical threshold was performed. The 

second part of this work is to develop a multiple-breakpoints version of the CuSum cross-Tc 

called ReCuSum to further enhance the ability to monitor changes in forest cover. The 

development was made by applying the CuSum cross-Tc over a time-series in an iterative 

manner, in the State of Parà, Brazilian Amazon. The third axis of this thesis is to develop a 

Near-Real-Time (NRT) version of the CuSum cross-Tc. 

Keywords: Deforestation, Sentinel-1, Radar remote sensing, Cumulative Sum algorithm, 

Change detection, Tropical forests. 
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Aperçu de la thèse : 

Les forêts tropicales jouent un rôle primordial dans la régulation globale du climat en 

recyclant entre ~2.1 Gt CO2.y-1 (Federici et al., 2015; Nunes et al., 2020) et 7.0 Gt CO2.y-1 

(Harris et al., 2021), Ces dernières années, le taux de déforestation a continué d’augmenter. 

Des études récentes ont monté que globalement, les forêts tropicales jouent à la fois un rôle 

de puit mais aussi de source dans le cycle du carbone avec un bilan global neutre (Fan et al., 

2019). En Afrique et en Amazonie, ces déforestations ont diverses causes, comme les ‘coupes 

sélectives’ légales ou non, ou des coupes pour parfaire aux besoins des populations locales 

(Contreras-Hermosilla and others, 2000; Creese et al., 2019; Gatti et al., 2021; Kleinschroth 

et al., 2019; Lescuyer et al., 2011; Qin et al., 2021; Umunay et al., 2019).  

Pour être en mesure de suivre la déforestation et la dégradation des forêts tropicales, il était 

urgent d’implémenter des systèmes de suivi à grande échelle avec des résolutions spatiale et 

temporelle fines. La télédétection par satellite a été identifiée comme l’outil principal dans 

l’initiative sur la lutte contre la déforestation (Reduced Emissions from Deforestation and 

Degradation initiative, REDD+) orchestrée par l’United Nations Framework Convention on 

Climate Change (UNFCCC, Lynch et al., 2013). 

Il existe deux catégories principales d’Observation de la Terre employées dans le cadre du 

suivi de la déforestation : les micro-ondes actives (RADAR) ou passives (télédétection 

optique). Avec les progrès technologiques, les images optiques ou radar ont pu être acquises 

avec des résolutions spatiales et temporelles de plus en plus fines. L’amélioration de la 

résolution a permis d’obtenir des cartes de perturbation du couvert forestier à plus fine échelle, 

avec des seuils d’aire minimale de détection plus faibles.  

Dans un premier temps, l’imagerie satellitaire optique a été communément utilisée dans le 

suivi des changements de couvert forestier car les méthodes employées produisaient des 

résultats précis sur plusieurs régions (Bullock et al., 2020; Hansen et al., 2013; Tyukavina et 

al., 2018). Pourtant, les systèmes de suivi basés sur ce type d’image sont plus à même de 

produire des informations imprécises dans les régions soumises à un couvert nuageux régulier 

(Doblas et al., 2020; Hansen et al., 2016; Weisse et al., 2019).  

Afin de réduire l’impact du couvert nuageux dans le suivi des perturbations du couvert 

forestier, le potentiel des capteurs actifs type radar a été exploré. En effet, les capteurs actifs 

en bande C et L sont connus pour pénétrer le couvert nuageux (Joshi et al., 2015). 

Le système de Radar à Synthèse d’Ouverture a permis de produire des images en bande 

C et L à une résolution moyenne-haute. La rétrodiffusion des micro-ondes est sensible à la 



biomasse aérienne (Above-Ground Biomass, AGB), et cette sensibilité atteint vite une 

saturation selon la polarisation et la longueur d’onde utilisée (Thuy Le Toan et al., 1992; Kj. 

Ranson and Sun, 1994; Rignot et al., 1994). La déforestation cause une diminution importante 

dans le signal SAR, visible dans le temps (Kellndorfer, 2019). 

Actuellement, seuls les deux satellites de la mission Sentinel-1 de l’Agence Européenne de 

l’Espace sont en cours de fonctionnement avec un capteur SAR en bande C, dont les données 

sont accessibles gratuitement dans le cadre du programme Copernicus. Ces deux satellites 

fournissent des données à une résolution spatiale de 5 x 20 m et temporelle de 6 à 12 jours 

(en mode Interferometric Wideswath) depuis 2014 et 2016 respectivement (Torres et al., 

2012).  

L’objectif principal de cette thèse est d’exploiter le potentiel des images Sentinel-1 pour la 

détection de changements du couvert forestier. Les résolutions spatiale et temporelle des 

images Sentinel-1 ont permis de développer des algorithmes de détection de perturbation du 

couvert forestier en temps quasi-réel et différé pour la réalisation de bilans de déforestation. 

Le produit temps quasi-réel de détection de changement du couvert forestier dans la bande 

intertropicale et l’objectif industriel principal de cette thèse pour l’entreprise VisioTerra. Dans 

ce but, une méthode de détection de changements sur série temporelle, la méthode des 

sommes cumulées des résidus (CuSum), a été employée, améliorée et pourrait être mise à 

disposition sur des plateformes en ligne telles que VtWeb ou FlegtWatch. 

Les objectifs suivants ont été adressés dans ce manuscrit de thèse : 

(i) Proposer une méthode de détection de changement basée sur l’analyse des séries 

temporelles qui pourrait aussi bien en temps quasi-réel qu’en temps différé à partir 

des séries d’image Sentinel-1 pour identifier les changements de couvert forestier. 

Cet objectif a été atteint par la sélection de l’algorithme CuSum qui répond à ces exigences. 

L’algorithme CuSum se base sur la surface séparant la courbe des coefficients de 

rétrodiffusion et la moyenne de cette courbe. Lorsque cette surface atteint un maximum, un 

point de changement potentiel est déclaré et une analyse de bootstrap (rééchantillonnage 

aléatoire de la série temporelle des coefficients de rétrodiffusion) est réalisée pour valider ou 

invalider le changement, en fonction du critère de sensibilité en entrée de l’algorithme (Critical 

Threshold : Tc). L’analyse de la pertinence des cartes de détection a été réalisée par les 

statistiques de matrice de confusion entre une carte de référence produite par interprétation 

visuelle d’images optiques et les cartes de résultat du CuSum. 



Les premiers résultats de l’algorithme appliqué aux acquisitions effectuées en polarisations 

VV et VH indépendamment présentaient des lacunes liées au nombre d’omissions (faux 

négatifs) ou de commissions (faux positifs). En effet, le nombre d’omissions était trop élevé 

lorsque le Tc était élevé, alors que le nombre de commissions était trop élevé dans le cadre 

d’un faible Tc. Il était donc nécessaire d’améliorer l’algorithme pour le rendre plus précis. Les 

détections basées sur VV ou sur VH présentaient également un trop grand nombre de faux 

positifs : l’intersection des deux cartes de résultat a produit de meilleurs résultats (VV x VH). 

(ii) Améliorer l’algorithme de détection pour réduire le nombre de faux positifs et faux 

négatifs dégradant les résultats. 

Cet objectif a été atteint au moyen de trois améliorations majeures. La première 

amélioration de l’algorithme consiste en une recombinaison spatiale des résultats de l’analyse 

temporelle à différents niveaux de seuil critique Tc. Son développement est décrit en plus 

ample détail dans le chapitre IV et a mené à une publication dans le journal scientifique évalué 

par des pairs International Journal of Applied Earth Observation and Geoinformation et une 

note de conférence à l’International Geoscience and Remote Sensing Symposium édition 

2021. Cette recombinaison est réalisée en plusieurs étapes : 

- Premièrement, le CuSum doit être lancé avec une valeur Tc élevée et avec une valeur 

Tc plus basse, dans le cadre de l’étude, Tc = 1.00 et Tc = 0.75 pour obtenir des cartes 

de polygones de changement. 

-  Ensuite, l’intersection entre les polygones issus du haut Tc et ceux du bas Tc est 

analysée : tout polygone du bas Tc ne présentant pas au moins une intersection avec 

un polygone de haut Tc est supprimé. Ainsi, tout polygone de bas Tc repose sur une 

base robuste de haut Tc, diminuant le nombre de faux positifs en sortie par rapport à 

l’ensemble des résultats du bas Tc. Les polygones de bas Tc étant plus larges que ceux 

de haut Tc, le nombre de faux négatifs est réduit par rapport au haut Tc. A l’issu de 

cette recombinaison surnommée cross-Tc, les statistiques ont augmenté par rapport 

au simple Tc pour atteindre une Precision de 0.77, une Accuracy de 0.91, un Recall de 

0.55 et un Kappa coefficient de 0.59 pour les paramètres suivants : VV x VH cross-Tc 

100_75. 

La première version de la méthode ne permettait de détecter qu’un seul changement. Dans 

l’objectif de différencier déforestation et dégradation, une version ‘multiple-breakpoints’, multi-

changements, a été proposée et testée sur une nouvelle zone d’étude au Parà, en Amazonie 

Brésilienne. C’est le développement du ReCuSum, qui produit des cartes de nombre de 

changements par pixel. Son développement et l’analyse des résultats obtenus sont présentés 



dans le chapitre V et font l’objet d’une publication soumise dans L’International Society for 

Photogrammetry and Remote Sensing et d’une note de conférence à l’International 

Geoscience and Remote Sensing Symposium édition 2022. Le ReCuSum se base sur 

l’application du CuSum de manière récursive : si un point de changement valide est détecté 

dans une série temporelle, celle-ci est scindée en deux et le CuSum est relancé 

indépendamment sur chacune des séries. Au cours de l’étude des résultats, il a été mis en 

évidence que le nombre de changements était lié à la nature de la surface du pixel : les zones 

de végétation basse / champs d’agriculture / sols nus présentent plus de changements que 

les zones de coupes ou dégradations situées dans la partie forestière. 

Ce changement de nature Single-breakpoint en Multiple-breakpoints a donc permis de 

définir un seuil basé sur le nombre de changements, Tnbc pour différencier les changements 

situés sur des pixels de forêt des changements situés sur des pixels de non-forêt (sols nus, 

végétation secondaire, champs agricoles). Les pixels présentant un nombre de changement 

dans les polarisations et Tc recommandés supérieur à Tnbc sont supprimés de la carte de 

résultats VV x VH cross-Tc. Réaliser cette étape de seuillage a permis d’augmenter les 

Precision, Accuracy, Kappa Coefficient et F1-score par rapport au CuSum cross-Tc VV x VH 

100_75 : la Precision augmente à 0.49 (+11%), l’Accuracy augmente à 0.89 (+9%), le Kappa 

coefficient à 0.53 (+9%) et le F1-score à 0.59 (+7%). 

Lors de l’analyse des résultats, il était apparu que le CuSum cross-Tc arrivait à détecter 

jusqu’à 90% de la surface végétale non-forestière (Recall = 90%). La troisième et dernière 

amélioration en date du CuSum consiste à créer un masque de non-forêt à partir du CuSum 

cross-Tc lancé sur une période antérieure à la période de suivi (créer une ‘forest baseline’ au 

début de la date de suivi). Cette méthode permettrait d’éliminer 90% des faux positifs liés à la 

végétation secondaire / agriculture / sol nu. Cette étape d’application d’un masque de non-

forêt a été appelé ‘rm_hist’ pour ‘Remove historic’. L’application de cette étape a permis 

d’augmenter sur cette zone la Precision à 0.70, l’Accuracy à 0.94, le Kappa coefficient à 0.70 

et le F1-score à 0.74. 

L’application conjuguée des deux dernières améliorations a permis d’atteindre des valeurs 

de Precision de 0.81 (+43%), d’Accuracy de 0.95 (+11%), de Kappa coefficient de 0.72 (+28%) 

et de F1-score de 0.74 (+22%). Cependant, il faut considérer également que le taux d’omission 

augmente : le Recall diminue à 0.68 (-14%). On ne détecte plus que 68% des aires à détecter. 

(iii) Développer le CuSum version temps quasi-réel et réaliser une comparaison des 

différents produits temps-quasi-réels sur une grande zone d’étude en Amazonie. 



Cette dernière partie a permis de répondre aux objectifs industriels de la société VisioTerra. 

Le CuSum temps quasi-réel connaît une contrainte principale : il doit se baser sur un nombre 

restreint d’images avant / après la date à analyser. Il n’est donc pas possible d’employer le 

ReCuSum dans ce but. Le CuSum-NRT (Near-Real-Time, temps quasi-réel) aura donc les 

améliorations de cross-Tc et de rm_hist, mais pas de Tnbc (voir Figure ci-dessous). De plus, les 

seuils de sensibilité employés dans les études précédentes ont été définis arbitrairement. Une 

analyse complète de l’espace des possibilités des 4 paramètres d’entrée du CuSum-NRT 

(Nombre d’images avant la date à analyser, nombre d’images après la date à analyser, haut 

Tc, bas Tc) a été réalisée dans la même zone que le chapitre V, dans le but de déterminer les 

meilleurs paramètres d’entrée. Les paramètres suivants ont produit les meilleurs résultats de 

l’analyse : 

Polarisation 
Nombre 

d’images avant 

Nombre 

d’images après 

Valeur du haut 

Tc 

Valeur du bas 

Tc 

VV x VH 11 3 100 92 

La Precision obtenue est de 0.68, le Recall de 0.72, l’Accuracy de 0.93, le Kappa coefficient 

de 0.67 et le F1-score de 0.71. Ces valeurs sont proches des valeurs obtenues pour le 

ReCuSum avec application de rm_hist et Tnbc (voir tableau ci-après). 

 
Precision 

(%) 

Recall 

 (%) 

Accuracy 

(%) 
F1-score 

Kappa 

coefficient 

ReCuSum 100_75 81 68 95 0.74 0.72 

CuSum NRT 100_92 68 72 93 0.71 0.67 



 

Modes de fonctionnement et étapes de post-traitement du CuSum-NRT et du ReCuSum 
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1.1. Introduction  

The tropical forests play a critical role in the global climate regulation by recycling between 

~2.1 Gt CO2.y-1 (Federici et al., 2015; Nunes et al., 2020) and 7.0 Gt CO2.y-1 (Harris et al., 

2021). These forests are being deforested at increasing rates. Recent studies have shown that 

tropical rainforests are both a sink / source in the carbon cycle with an overall neutral budget 

(Fan et al., 2019). Increased global awareness of climate change and degradation of tropical 

forests has not decreased deforestation rates over time. According to the Global Forest Review 

published by the  World Resources Institute (WRI) in Washington, DC, USA, in 2021, the 

annual loss of tree cover has increased continuously since the beginning of the monitoring by 

(Hansen et al., 2013), in the year 2000, reaching 12 million hectares in 2020. In Africa and 

Amazonia, the forest losses in carbon stocks  are driven by multiple factors, including legal or 

illegal selective logging causing degradations, or cuts to fulfil the agricultural needs of local 

populations (Contreras-Hermosilla and others, 2000; Creese et al., 2019; Gatti et al., 2021; 

Kleinschroth et al., 2019; Lescuyer et al., 2011; Qin et al., 2021; Umunay et al., 2019).  There 

was an urgent need for a monitoring system at large scale and with fine temporal and spatial 

resolutions. Remote sensing has been identified as a key tool for Reduced Emissions from 

Deforestation and Degradation (REDD+) initiative of the United Nations Framework 

Convention on Climate Change (UNFCCC, Lynch et al., 2013). 

Two main types of Earth Observations are used for deforestation monitoring:  active 

microwave (RADAR) or passive (optical remote sensing). The resolution at which images were 

acquired by both passive / active methods increased with time, as the resolution went from 

kilometres to now decametres, metres and even decimetres. This increase, along with the 

computational capacities / technological evolutions, allowed for monitoring systems to detect 

ever decreasing size of disturbances. 

First, optical remote sensing has been commonly used to monitor changes in forest cover, 

as the methods provided accurate results on many regions (Bullock et al., 2020; Hansen et al., 

2013; Tyukavina et al., 2018). Yet, the monitoring systems based on this kind of images are 

likely to provide inaccurate information over regions strongly affected by cloud cover (Doblas 

et al., 2020; Hansen et al., 2016; Weisse et al., 2019). They were also shown to be less robust 

in regions where forest exhibits strong seasonal variability in the canopy water content 

(Hamunyela et al., 2017). Nevertheless, several operational systems were developed and are 

still issuing forest disturbances alerts to this date (Bullock et al., 2020; Diniz et al., 2015; 

Hansen et al., 2016, 2013). Such systems are an important element in the deforestation rate 

decrease in Brazil (Assunção et al., 2017). 



Chapter I 
General introduction 

Page | 34  
 

In order to reduce the impact of the cloud cover, the potential of active sensors was explored 

for the monitoring of deforestation. Active sensors at C- and L-bands are known to penetrate 

through the clouds (Joshi et al., 2015). The Synthetic Aperture Radar (SAR) allowed to produce 

C-band and L-band images at medium high resolution. Microwave backscatter was found to 

be sensitive to forest total Above-Ground Biomass (AGB). This sensitivity reaches saturation 

for a certain level of AGB depending on polarization and wavelength (Thuy Le Toan et al., 

1992; Kj. Ranson and Sun, 1994; Rignot et al., 1994). The forest backscatter signal is 

dominated by volume scattering at both L and C-bands (Andersen et al., 2006; Thuy Le Toan 

et al., 1992; Shakil Ahmad Romshoo et al., 2002). Deforestation affects the SAR signal, 

causing a backscatter decrease more important than the speckle, visible over time 

(Kellndorfer, 2019). 

Currently, there are two satellite missions providing images at high resolution: Sentinel-1 

with a C-SAR sensor onboard, developed by the European Space Agency (ESA) in the 

framework of the Copernicus program composed of two satellites launched in 2014 and 2016, 

respectively (Torres et al., 2012). It provides SAR images at C-band at 5 x 20 m spatial 

resolution in IW mode (see Chap. 2 for more details). Advanced Land Observing Satellite 2 

(ALOS-2), launched in 2014, is the second satellite currently operating, with a L-SAR (Phased-

Array L-band Synthetic Aperture Radar 2,PALSAR-2)  sensor onboard, from the Japan 

International Cooperation Agency (JICA) – Japan Aerospace Exploration Agency (JAXA), 

acquiring images at 50 m spatial resolution (Arikawa et al., 2014). The current advantage for 

ALOS-2 PALSAR-2 is that L-band is less impacted by the presence of raincells and penetrates 

deeper in vegetation cover compared to C-band. Sentinel-1 has a better spatial and temporal 

resolution, as the revisit time of a scene ranges from 6 to 12 days compared to 42 days (ALOS-

2). 

There is only one operational system working Near-Real-Time based on PALSAR-2 

imagery at the present time. This system uses the JJ-FAST algorithm. It produces a forest 

disturbance alert map at a Minimum Mapping Unit of 2 ha (Watanabe et al., 2018, 2017, 2017). 

More recently, many approaches have been developed using Sentinel-1 SAR images. A new 

approach is to use the shadow created by a change in forest cover in the opposite side of the 

satellite (Ballère et al., 2021; Bouvet et al., 2018; Mermoz et al., 2021). (Reiche et al., 2021; 

Zhao et al., 2022) used machine learning to monitor disturbances in forest cover based on 

Sentinel-1 time-series. (Doblas et al., 2020; Hoekman et al., 2020; Kellndorfer, 2019; Mistry et 

al., 2021; Ruiz-Ramos et al., 2020) used time series change point analysis methods to detect 

disturbances using Sentinel-1. 
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At the beginning of this PhD, only Kellndorfer and Ruiz-Ramos had developed algorithms 

detecting changes in mangroves and temperate forest based on Sentinel-1 time-series of 

image. These processing chains had not been applied as widely as today on tropical 

rainforests. There was a lack of literature on Sentinel-1 capabilities to monitor accurately 

tropical forest disturbances, and this field of research needed to be developed. 

1.2. Thesis objectives and outline 

This PhD was funded by VisioTerra through CIFRE contract managed by ANRT (CIFRE 

number 2019/0457). VisioTerra is a French independent company specialised in scientific 

consulting in Earth Observation. VisioTerra provides several services online, including data 

visualisation, indexes computation, DEM evaluation, oil spill monitoring, … Recently, 

VisioTerra developed a new program for deforestation monitoring in subtropical Africa. This 

PhD was funded for this purpose, with the main objective being the development of an 

algorithm monitoring deforestation near-real-time based on Sentinel-1. 

1.2.1. Thesis objectives 

In the context of monitoring changes in forest cover in tropical regions, the main scientific 

objectives of this doctoral thesis were presented in the previous section. Earlier, we 

emphasized the need for a forest cover change monitoring system based on high resolution 

radar. Early in my PhD, there was a lack of literature on tropical forest cover change monitoring 

using Sentinel-1 SAR time-series. The temporal and spatial resolutions of the Sentinel-1 

images allowed for the development of both offline and Near-Real-Time algorithms monitoring 

changes in forest cover. The combination of both features shows potential for improvement for 

monitoring changes in tropical forest cover. We chose to explore this field to develop a Near-

Real-Time algorithm that would be processed on-the-fly as the achievement of the CIFRE 

industrial objective. 

Thus, the overall purpose of this manuscript is to produce a tropical forest cover change 

NRT monitoring system based on Sentinel-1 time-series of images. In addition, an existing 

method, the CuSum, has been used and improved for this particular objective and could soon 

be available on online platforms such as VtWeb or FlegtWatch. The following objectives have 

been addressed in this doctoral dissertation:  

(i) Selection of a change detection algorithm for time-series that could work in both Offline 

and Near-Real-Time (online) modes and develop it for forest cover change monitoring on 

Sentinel-1 time series. 
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(ii) Improvement of the change detection method to reduce the number of false positives 

and false negatives found to impede the results. 

(iii) Development of the Near-Real-Time version of the CuSum 

To achieve these objectives, we first selected the Cumulative Sum algorithm as the basis 

of our approach to monitor changes in forest cover. This algorithm was described in 

(Kellndorfer, 2019; Manogaran and Lopez, 2018; Ruiz-ramos et al., 2018) and seemed 

promising in terms of application to Sentinel-1 time-series. I first tried it as an offline product 

requiring a long time-series. I then focused on the improvements made to this method, as it 

was initially based only on the temporal aspect of the Sentinel-1 time-series of images. I 

improved the method by adding a spatial recombination of the result using different various 

sensitivity levels in the input settings. Then, the ‘single breakpoint’ feature of the algorithm was 

improved to become a ‘multiple breakpoints’ feature. This feature enabled the definition of a 

threshold that further improved monitoring of changes in forest cover. Using the different 

results of the Offline version, I then developed the NRT version of the CuSum cross-Tc and 

compared it with the ReCuSum. The results from the comparison between CuSum-NRT and 

other NRT operational algorithms (RADD, JJ-FAST, DETER-R, PRODES, DETER-B) will be 

later added to this manuscript. 

1.2.2. Thesis outline 

The results of this doctoral project are presented through 7 chapters, each chapter 

corresponding to a research objective outlined in the preceding section.  

Chapter I lists the context and motivation, the research scope and the objectives of this 

doctoral dissertation. 

Chapter II provides background on RADAR technique, including the presentation of the 

Sentinel-1 mission, whose data were used during this PhD. 

The state-of-the-art of forest cover change monitoring using remotely sensed SAR images 

is described in Chapter III. It includes sensors and methods unused in this manuscript. 

The development of the first methodology, CuSum cross-Tc is described in Chapter IV. The 

methodology of the CuSum algorithm with bootstrap is developed and applied to time-series 

of Sentinel-1 images. This purpose of this method is to assess changes in forest cover on 

tropical forest in a forest concession near Kisangani, in the Democratic Republic of the Congo. 

The addition of the cross-Tc step to the original CuSum method includes the spatial dimension 

of the data. The results of the different methods and input parameters are described and 

discussed. 
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Chapter V presents the development of the new ReCuSum approach for forest cover 

change assessment. This product is also offline, thus requiring a long time-series to be 

efficient. This new method enables multiple breakpoints to be found in the time-series, 

comparatively to the single-breakpoint feature of the original / cross-Tc CuSum. The capability 

of the CuSum cross-Tc to monitor all types of cover changes was analysed in order to create 

a non-forest mask through Sentinel-1. New post-processing steps were added, such as the 

application of a threshold based on the number of changes per pixel (Tnbc). The definition and 

application of a non-forest mask based on Sentinel-1 time series was also done in this chapter. 

The development of a new CuSum-based Near-Real-Time method is presented in Chapter 

VI. A parameters sensitivity analysis was performed using Monte-Carlo’s method.  

Chapter VII is a summary of the whole doctoral dissertation, including concluding remarks, 

the limitations of this research, the outlook and insights. 

  



Chapter I 
General introduction 

Page | 38  
 

  



 

 

CHAPTER II.    

RADAR REMOTE 

SENSING  

  



 

 

Table of content  

Chapter 2 – Radar remote sensing 

2.1. The RADAR technique ............................................................................................... 41 

2.2. Instrumental parameters ............................................................................................ 43 

2.2.1. Incidence angle ...............................................................................................43 

2.2.2. Polarisation .....................................................................................................43 

2.2.3. Radar frequency ..............................................................................................44 

2.3. Scattering mechanisms .............................................................................................. 45 

2.4. Synthetic Aperture Radar ........................................................................................... 46 

2.4.1. SAR products processing level ........................................................................49 

2.4.1.1. RAW products ............................................................................................ 49 

2.4.1.2. Single Look Complex (SLC) images ........................................................... 49 

2.4.1.3. Ground Range Detected (GRD) images ..................................................... 50 

2.4.2. Speckle effect..................................................................................................52 

2.4.3. Geometric distortions ......................................................................................53 

2.4.3.1. Foreshortening ........................................................................................... 54 

2.4.3.2. Layover ...................................................................................................... 54 

2.4.3.3. SAR Shadow ............................................................................................. 54 

2.4.4. SAR processing cascade ................................................................................55 

2.4.4.1. Radiometric calibration ............................................................................... 55 

2.4.4.2. Range Doppler Terrain Correction ............................................................. 55 

2.4.4.3. Speckle filter .............................................................................................. 55 

2.5. Sentinel-1  .................................................................................................................. 56 

2.5.1. Sentinel-1 mission characteristics ...................................................................56 

2.5.2. Sentinel-1 preprocessing .................................................................................58 

2.5.2.1. Orbit correction .......................................................................................... 58 

2.5.2.2. Thermal noise removal ............................................................................... 58 

2.5.2.3. Border noise removal ...................................................................................59



Chapter II 
Radar remote sensing 

Page | 41  
 

2.1. The RADAR technique 

RADAR (Radio Detection And Ranging) is an active technique which can be used for Earth 

observations. Radar methods present the advantages of being able to penetrate clouds (as it 

operates in microwaves wavelengths) and to be able to acquire images during the night (as an 

active remote sensing method). Radar sensors operate in the electromagnetic spectrum 

microwave frequency domain (300 MHz to 300 GHz). The principle of radar used for Earth 

observation applications consists in emitting and receiving an electromagnetic wave in a 

selected configuration (incidence angle, frequency and incidence angle, Figure II.1Erreur ! 

Source du renvoi introuvable.). The electromagnetic wave is emitted at a wavelength 𝜆 =
𝑐

𝑓
 

as an impulsion of τp time, from an antenna characterized by a G gain. The distance R to the 

target is determined from the time t between emission and reception following the equation 

𝑅 =  
𝑐𝑡

2
 , with c the wave velocity. The wave energy is partly scattered in the direction of the 

reception antenna (the same as the emission antenna in the case of spaceborne sensors). 

This backscatter depends on the physical properties of the target (morphology, moisture, 

nature of the material, …(Flores et al., 2019)). 

 

Figure II.1: Imaging radar principle. A signal is emitted from the sensor atop the antenna, the 

surface receives the signal and interacts with it before backscattering the electromagnetic 

waves to the antenna. θ and θ’ are the incidence angle. Image modified from lucas Ternynck 

- Satellite from Jose luis Algara and tree image from James Keuning. 

The configuration used in satellite radars is mostly the monostatic configuration, with GNSS-

R being multistatic. In this configuration, the emission antenna is the same as the reception 
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antenna. The echo backscatters from objects interacting with the incident wave and are sorted 

by arrival order.  

The radar impulsions are spaced according to Eq.1: 

 𝑃𝑎  =  
𝑉

𝐼𝑅𝐹
    Eq.1 

where V is the celerity, Pa the distance and IRF the impulsion repetition frequency. The IRF 

is subjected to two main constraints:  

- The minimal frequency is a function of the signal sampling: The sampling needs a 

record number by time unit at least twice higher than the difference between the 

minimal and maximal frequency of the signal it contains according to Shannon-Nyquist 

theorem. For SAR systems, a resolution cell is subjected to two successive impulses. 

The Doppler effect induces a small frequency shift between the two echoes. This 

frequency shift constitutes the minimal frequency, determined by the impulsion 

bandwidth: 𝐵𝐷 = 2
𝑉

𝐿
 where V it the satellite movement speed (km/s) and L the antenna 

length (km). 

- The maximal frequency is a function of the echo physical record: the minimal time for 

the record is δt = F / c, where c is the light celerity and F   the swath width (Eq.2): 

 𝐹 =  
𝜆

𝑊
𝑟 cos 𝜃𝑀      Eq.2 

This leads to the following framing of IRF: 

2𝑉

𝐿
< 𝐼𝑅𝐹 <  

𝑐𝑊

2𝜆𝑟 𝑐𝑜𝑠𝜃𝑀
 

The electromagnetic wave received by the sensor is characterised by its amplitude A 

(obtained from its intensity I = A²), its angular frequency  𝜔 = 2𝜋 𝑓 (Rad.s-1) and its phase 

(Eq.3):  

𝜓(𝑟, 𝑡) = 𝐴 cos ( 𝜔𝑡 +  𝜑)     Eq.3 

The wave intensity I characterises the radar backscatter coefficient σ0 (m².m-2), which is 

related to the observed environment characteristics. It is calculated using the simplified radar 

equation, based on the signals, target characteristics and the system parameters (Eq.4). 

𝑃𝑟 =
𝑃𝑡𝐺2𝜆2

(4𝜋)3𝑅4 𝜎0 ↔ 𝜎0 =  
𝑃𝑟(4𝜋)3𝑅4

𝑃𝑡𝐺2𝜆2𝑆
    Eq.4 

where Pr is the received power (Watts), Pt is the transmitted power (Watts), S is the effective 

surface seen by the antenna (m²), λ is the wavelength (m) and G is the antenna gain. σ0 is 

influenced by the surface backscatter properties (physical parameters, cover, topography, 
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roughness, moisture) and by the radar properties (incidence angle, wavelength, polarisation). 

σ0 behaves similarly to the bidirectional optical reflectance. It is usually set to decibels (dB, 

Eq.5, (Massonnet and Souyris, 2008; Ulaby et al., 2014): 

𝜎0 = 10. 𝑙𝑜𝑔10(𝜎𝑙𝑖𝑛
0 )      Eq.5. 

2.2. Instrumental parameters 

2.2.1. Incidence angle 

The incidence angle θ is the angle between the normal surface and the incident propagation 

direction, in the plane of propagation (see Figure II.1). Sensors can be either mono-angular 

(with a fixed sight / incidence angle) or multi-angular using variable-focus antennas. With these 

antennas, images can be acquired with different incidence angles ranging from 20° to 46° for 

Sentinel-1 images. 

2.2.2. Polarisation 

The polarisation is a property of the electromagnetic wave emitted by the sensor 

emission/reception modes. The polarisation describes the electric field orientation in the plane 

orthogonal to the direction of propagation. If the wave is linear and the field is contained in the 

incident plan (yOz, Figure II.2), the polarisation is vertical. If the electric field is orthogonal to 

the incident plan, the polarisation is horizontal. In the Earth Observation field, only two 

directions are used: vertical or horizontal. This leads to multiple emission/reception polarisation 

possibilities: VV and/or HH for single polarisation and VV, VH, HH, HV for dual polarisations. 

VH stands for Vertical emission, Horizontal reception. 

 

 

Figure II.2: Polarisation as a function of the electromagnetic field and incidence plane. 
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2.2.3. Radar frequency 

Radar systems operate in the microwave wavelength domain. The frequency of a 

transmitted signal is the number of waves emitted during the interval of one second, measured 

in Hertz (Hz). The Table II.1 lists the main bands used by spaceborne Synthetic Aperture Radar 

(SAR) sensors as Sentinel-1, used in this PhD. 

Agency 
Satellite / 

constellation 
Sensor Lifetime Band 

Wavelength 

(cm) 

European Space Agency 

(ESA) 
BIOMASS / 

To be 

launched 
P 70 

 

TanDEM-L 
SAR-L 

TandemL 

To be 

launched 
L 24.6 

German Aerospace 

Center (DLR) 

 

National Space 

Development Agency of 

Japan (NASDA) 

JERS – 1 
JERS-1 

SAR 
1995 - 1998 L 24.6 

Japan Aerospace 

eXploration Agency 

(JAXA) 

ALOS-1 PALSAR 2006-2011 L 24.6 

JAXA ALOS-2 
PALSAR-

2 
2014- L 24.6 

Indian Space Research 

Organization (ISRO) & 

National Aeronautics and 

Space Administration 

(NASA) 

NISAR / 
To be 

launched 
L 24.6 

Argentina space agency 

CONAE 
SAOCOM LBI 2018- L 24.6 
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ESA ENVISAT ASAR 2002-2012 C 5.6 

ESA ERS-1 & 2 
AMI 1991-2001 C 5.6 

AMI 1995-2011 C 5.6 

Canadian Space Agency 

(CSA) 
RADARSAT 

Radarsat-

1 
1995-2013 C 5.6 

Radarsat-

2 
2007- C 5.6 

ESA 
SENTINEL-

1 

Sentinel-

1 
2014- C 5.6 

Table II.1: List of the available space-sensors for C- and L-bands. 

The frequency, linked to the wavelength, is an important factor in vegetation monitoring due 

to the penetration depth it induces. Different frequencies monitor different parts of trees, as 

they are able / unable to penetrate the canopy (Figure II.3, (Flores et al., 2019; Kellndorfer, 

2019)). For example, a C-band signal only penetrates the top layers of the canopy of the forest, 

scattering mostly on the tree branches. L-band and above all P-band signals much deeper 

penetrates the canopy as their wavelength is longer than the C-band. For forest monitoring, 

the C-band scattering is mostly roughness scattering with some volume scattering whereas 

bands with higher wavelength (lower frequency) can experience volume scattering with 

double-bounce scattering on tree trunks or natural corner reflector. 

 

Figure II.3: Signal penetration over a forest according to the band. Image credits: NASA SAR 

handbook. 

2.3. Scattering mechanisms 

The backscattered signal carries information about the structure of the imaged surface. 

There are three main scattering types: double-bounce, surface and volume scattering (Figure 

II.4). Double-bounce scattering is caused by the presence of tree trunks, inundated areas 

below the vegetation (though simple bounce can also occur on inundated areas) or building. 

Rough surface scattering is often caused by bare rough soil or water. It is known to be most 
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sensitive to VV scattering. The volume scattering can be cause by leaves and branches in a 

forest canopy is most sensitive to cross-polarized data (VH, HV). 

 

Figure II.4: The 3 scattering mechanisms: rough surface, volume and double bounce on 

ground, water and buildings. Image credits: NASA SAR Handbook, modified. 

2.4. Synthetic Aperture Radar 

In Earth Observation, the resolution of the images is coarse in order to be compatible with 

the applications. With no processing, a spatial radar system has a native resolution of several 

kilometres. The SAR technique increases the resolution to meters or tenths of meters. The 

resolution is a function of the antenna length: a longer antenna has a better resolution at the 

price of increased weight and clutter.  

The SAR system consists in simulating a long antenna with ad hoc signal processing (Figure 

II.5). The antenna is simulated by the radar movement along the satellite trajectory, creating 

observations from several points of view giving information on phase, amplitude. the SAR 

processing cascade combines those to create an artificial radar signal for the synthetical high-

sized antenna. Similarly to the non-SAR techniques, electromagnetic waves are emitted at a 

given frequency (impulsion frequency, see 2.1). These echoes backscatter from objects 

interacting with the incident wave and are sorted by arrival order. Images are formed from the 

distance and azimuth directions: the sampling of these echoes constitutes the output image 

column (direction called ‘in distance’). The output image rows are constituted by the echoes 

received from impulsions sent during the satellite movement (direction called ‘in azimuth’). 
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Figure II.5: Radar images acquisition geometry (From Lardeux, 2008, modified). 

The targets backscatter coefficients can be presented as an image (azimuth, distance 

axes). Each measure is presented as a pixel of σ0 value. SAR images obtained this way can 

have a high resolution. Each pixel value is the result of the targets physical characteristics 

within. 

The spatial resolution of SAR systems is a factor of two axes: the azimuth and the range 

axes. In the azimuth direction, multiple echoes are sent. The resolution in azimuth is the 

shortest distance separating two distinguishable objects.  Each axis has its own resolution. 

The range resolution Rd (km), also called the radar impulsion width τp, or the system resolution 

in radar geometry is defined by the following equation (Eq.6, Figure II.6) 

𝑅𝑑 =  
𝑐

2𝐵
       Eq.6 

where B is the bandwidth (Maıtre, 2001) and c the wave propagation celerity (km.s-1). A 

factor ½ is applied due to the two-way travelled distance, result of impulsion compression 

techniques (generation of an impulsion with a great bandwidth while maintaining a τp duration 

long enough to keep an adequate impulsion power).  

Near range  Far range 
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Figure II.6: Resolution in range of a SAR image (Lardeux, 2008) 

The effective resolution of the surface image results from the projection of Rd on the ground: 

𝑅𝑑,𝑠 =  
𝑅𝑑

sin 𝜃
=  

𝑐

2𝐵 sin 𝜃
     Eq.7 

where θ is the incidence angle defined as the angle between the radar sight direction and 

the normal to the observed surface.  

In the azimuth direction, the first order of the resolution after SAR processing and 

simplification (as the resolution is a function of all SAR processing parameters) is Ra: 

𝑅𝑎 =  
𝐿

2
     Eq.8 

where L is the antenna width. 

These two parameters result in the following raw radar pixel size Pd: 

𝑃𝑑 =  
𝑐

2𝑃𝑓
     Eq.9 

Where Pf is the backscattered echo sampling frequency on the distance axis, varying the 

observed real ground surface within the pixel, due to the incidence angle. A lower angle results 

in a wider ground area represented by pixel. 

Projected to the ground, Pd becomes Pd,s: 

𝑃𝑑,𝑠 =  
𝑃𝑑

sin 𝜃
=  

𝑐

2𝑃𝑓 sin 𝜃
     Eq.10 
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2.4.1. SAR products processing level 

Radar images obtained using the aforementioned methods are raw with a part coded in the 

complex domain. There are 3 main processing levels: 0 (RAW), 1 (SLC) and 1 (GRD  

2.4.1.1. RAW products 

In the RAW products, the target is part of both l1 and l2 rows backscatter (Figure II.7). This 

effect needs to be accounted for using a deconvolution to SLC images. 

 

Figure II.7: RAW image from ERS-SAR scene dated 27/02/1999 at Naples (Italy). Image 

credits: Riazanoff S. 

2.4.1.2. Single Look Complex (SLC) images 

SLC products are obtained by deconvoluting the RAW images. These images are 

constituted from a single look, thus conserving their base resolution (Figure II.8). They are 

given in slant-range geometry (radar range observation coordinate), defined as the line-of-

sight from the radar to each reflecting object. Each row of pixels represents points along a line 

perpendicular to the satellite track (Sentinel-1 SAR Copernicus user guide). 

8 bits unsigned 
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Figure II.8: SLC result image after RAW image deconvolution. Scene from ERS-SAR dated 

27/02/1999 at Naples (Italy). Image credits: Riazanoff S. 

2.4.1.3. Ground Range Detected (GRD) images 

GRD images are obtained by applying 3 processing steps to the SLC images. Firstly (Figure 

II.9a), the image is compressed in azimuth (factor 
1

𝛼
). The result image is then projected slant-

to-ground (Figure II.9b). Last, the amplitude is computed to obtain the GRD image (Figure 

II.9c). These products are multi-looked. It is also corrected using terrain height, varying in 

azimuth but constant in range. The pixel value is the detected magnitude and the phase 

information is lost (Sentinel-1 SAR Copernicus user guide). 
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Figure II.9: (a) SLC image 
compressed in azimuth, (b) 
SLC module image 
compressed in azimuth and (c) 
GRD, amplitude image. Image 
modified from Riazanoff S. 

GRD 
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2.4.2. Speckle effect 

SAR images are degraded by the speckle phenomena. The speckle effect is a noise 

degrading the image information. It is created by the interaction of elementary targets with the 

signal within the resolution cell limit. It is often modelized as a random multiplicative noise 

(Figure II.10, Goodman, 1975; Elachi, 1988; Ulaby et al., 2014). Each resolution cell will have 

its own target interactions. This results in a SAR image with a noisy granular aspect. Each 

elementary scattering element is characterized by a complex response SnXY of module lSnXYl 

and phase ϕnXY, where X and Y are the polarisations. The backscatter of a resolution cell results 

from the following equation:  

𝑧 = 𝑖 + 𝑗𝑞 =  ∑ 𝑎𝑛𝑋𝑌
. 𝑒𝑗𝜙𝑛𝑋𝑌𝑁

𝑛𝑋𝑌=1     Eq.11 

 

Figure II.10: Representation of the coherent sum of the N = 17 elementary scattering elements 

within a resolution cell. Grey is the scattering of each scattering element and the coherent sum 

appears in red. From Giordano, 2015. 

The intensity is considered as random with a stable mean according to the presence / 

absence of speckle. The intensity variance is a function of this noise: 

𝑉1 =  𝜎0𝑆𝑝      Eq.12 

Where Sp is the backscatter linked to speckle, equal to |SXY| in Figure II.10. 

The SAR images are often depicted as hard to interpret due to their granular aspect. Multiple 

methods have been developed to decrease the impact of speckle on the image. These 

methods are separated in two groups: image noise filtering (Figure II.11) and multi-look 

processing. The image noise filtering allows to keep the pixel resolution. They are based on 

spatial statistics over a fraction of the image surrounding each pixel (Brodu, 2018; Frost et al., 
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1982; Kuan et al., 1985; Lee, 1980; Tomasi and Manduchi, 1998) and/or on the temporal 

statistics of any pixel over a time-series of images (Quegan et al., 2000).   

 

Figure II.11: A detailed image of an urban area; a) the original Radarsat-2 image, and the 

results of its filtration using b) Median filter, c) Frost filter, d) Lee-sigma filter. From (Kupidura, 

2016), modified. 

The multi-look processing consists in computing independent measures of a same scene. 

The mean of the measures is then computed and allows to reduce the variance of the signal, 

decreasing the effect of the speckle. However, a higher number of looks degrades the 

resolution. GRD data are often multi-looked whereas SLC data has only one look. 

2.4.3. Geometric distortions 

As an incidence angle exists between the antenna aperture and the normal to the surface, 

geometric distortions are bound to appear. Often, the ground surface observed in a SAR image 

is composed by numerous slope inversions. There are 3 known artefacts: the foreshortening, 

the layover and the shadow (Figure II.12). 
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Figure II.12: Geometric distortions appearing in SAR images: (a) foreshortening, (b) layover 

and (c) shadow. Image from Kellndorfer, 2019. 

2.4.3.1. Foreshortening 

When the slope is lower than the sensor incidence angle, a visual distance compression 

effect appears in SAR image. This phenomenon is called foreshortening (Figure II.12a). The 

distance between the sensor and the surface is determined using radar echoes, which means 

that a point located on top of a mountain will be seen as ‘nearer’ the sensor than a point located 

at its base. Projected in the image plan, the distance between a and b is seen as shortened. 

2.4.3.2. Layover 

The layover effect is the opposite of the foreshortening. This artefact appears when the 

slope is greatly higher than the signal incidence angle Figure II.12b). The radar echoes reach 

the top of the mountain before its base, leading to a layover effect (Inversion of the target 

points). This phenomenon is visualized as a bright (high backscatter value) pixel in SAR 

images. 

2.4.3.3. SAR Shadow 

The third possible artefact is the SAR shadow. The presence of an obstruction or mask 

between the sensor and its target (e.g. a mountain) disrupts the illumination of the target, 

causing the SAR shadow (Figure II.13, Figure II.12c). It is function of the slope ‘behind’ the 

obstructing object and the incidence angle. The target area appears as dark pixels in the SAR 

image due to the signal absence. 
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2.4.4. SAR processing cascade 

In order to perform analyses, corrections to the signal must be performed to extract a 

performing backscatter coefficient. Multiple stages are necessary and a preprocessing 

cascade is often done on SAR images (Filipponi, 2019), as original SAR data is distributed in 

Single-Look Complex (SLC) to keep the original resolution. Ground Range Detected images 

can also be made available, with the multi-looking process already applied. 

2.4.4.1. Radiometric calibration  

The images obtained through the SAR method are coded in numerical count. The 

radiometric calibration changes the pixel numerical counts to backscatter coefficients linked to 

the targeted surface reflectivity. This step allows to remove the local incidence angle effect 

between the far-ranged and the near-ranged to obtain γ0
lin, the input to the Terrain Correction 

by Small, 2011 (Figure II.13). 

 

Figure II.13: Normalization areas for SAR backscatter. δg is the ground range resolution, δr is 

the slant range resolution. θ is the incidence angle. From (Small, 2011). 

2.4.4.2. Range Doppler Terrain Correction 

After calibrating the signal, a geometric correction needs to be applied as SAR data are 

generally acquired with a varying viewing angle greater than 0°. In order to compensate for the 

aforementioned distortions (layover / foreshortening / shadow), a Digital Elevation Model is 

often applied in the range doppler terrain correction. The said distortions can then be modelled 

and accounted for in the image. This step also allows to project the GRD product on the DEM 

grid to generate a map in the chosen CRS (Small, 2011). 

2.4.4.3. Speckle filter 

The last preprocessing step applied to the SAR image is the despeckling. which consists in 

removing the speckle noise (see 2.4.2. Speckle noise). The speckle noise can be removed 
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efficiently using multilook images, and further image processing noise filtering methods can be 

applied to GRD images. 

2.5. Sentinel-1 

2.5.1. Sentinel-1 mission characteristics 

Sentinel-1 consists in a satellite constellation composed on two satellites allowing a frequent 

access to SAR images over the world surface. It is a spatial system with free access to images, 

developed by the European program Copernicus. Two satellites were launched to constitute 

the constellation: Sentinel-1a and Sentinel-1b respectively launched on 03/04/2014 and 

25/05/2016 (Torres et al., 2012). The satellites are currently orbiting at an altitude of 700 km 

following a heliosynchronous orbit. The imaging takes place on both ascending and 

descending orbits. Each satellite has a 12-day revisit period. The phasing of the two revisit 

periods allows for a revisit period of 6 days mainly for European countries (Figure II.14). Each 

satellite has a C-band SAR imager aboard, producing 5 x 20 m spatial resolution images. 

Sentinel-1 has multiple acquisition modes: Strip Map, SpotLight, ScanSAR and 

Interferometric Wide swath (IW). All Sentinel-1 imagery used in my PhD was obtained using 

the IW mode.  
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Figure II.14 Worldwide coverage frequency of the Sentinel-1 mission. Source: 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario  

Sentinel-1 images have a spatial resolution of 5 x 20 m in Interferometric Wide swath mode. 

The IW mode consists in acquiring large swath images by dividing it into three sub-swaths. 

The sensor acquires bursts alternatively on each sub-swath (Figure II.15). A video describing 

the process is available on the ESA website at: 

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Instrument. 

Sentinel-1 images can be freely accessed at https://www.copernicus.eu/en/. 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-1/Instrument
https://www.copernicus.eu/en/
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Figure II.15: Interferometric Wide swath acquisition mode (IW). From ESA. 

2.5.2. Sentinel-1 preprocessing 

In order to perform analyses, corrections to the signal must be performed to extract a useful 

backscatter coefficient. The preprocessing cascade was described in the previous section. 

Other preprocessing steps are required to obtain an optimal quality of the Sentinel-1 SAR 

images. They are described in the following sub-sections. 

2.5.2.1. Orbit correction 

The metadata information of Sentinel-1 SAR contains orbit state vectors. Those vectors can 

often be not accurate. The precise orbits are determined several days after the generation of 

the product and need to be applied to compute the correct orbit of the satellite at the time of 

the imaging. 

2.5.2.2. Thermal noise removal 

Sentinel-1 intensity image is disturbed by additive thermal noise. This thermal noise can be 

particularly found in the cross-polarisation (VH). These effects are reduced by applying 

routines such as the one described in (Park et al., 2017). The thermal noise is strongly reduced 

in the inter-sub-swath texture and their removal induces a normalisation of the backscatter 

signal within the entire Sentinel-1 scene. Discontinuities at the edge are also reduced. 
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2.5.2.3. Border noise removal 

During the generation of level-1 products, in order to compensate for the change of Earth’s 

curvature, the sampling start time needs to be corrected. A compression also takes place at 

the same time in both azimuth and range, leading to radiometric artefacts at the image borders. 

The low intensity noise and invalid data can be removed using a border noise removal 

algorithm (Ali et al., 2018; Luo and Flett, 2018)  

.  
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3.1. Introduction 

This section presents the different methods currently existing for monitoring forest cover 

change using spaceborne SAR sensors. This chapter’s content is currently being wrote as a 

review paper to be submitted to a peer-reviewed scientific journal and is not completed yet. 

This section summarizes the publication. 

According to a search performed on Clarivate Analytics Web of Science (WoS, 

webofscience.com, last accessed on 25 august 2022), SAR-based forest cover monitoring 

number of published papers have been increasing since 2008. The number of published 

papers has risen from 4.1 over 1994-2003 to 7.2 over 2004-2013, reaching 21.6 over the 2014-

2021 period (Figure III.1). Over this time, many new methods for forest disturbance detection 

were developed. It is possible to define three main different categories of methods (detailed in 

section III.2):  

- Thresholds: As SAR-based parameters present a variation higher than the noise level 

when submitted to cover change, simple thresholds were first developed (Avtar et al., 

2012; Rignot et al., 1997; Santoro et al., 2010); 

- Classifications: Both unsupervised and supervised classification methods were applied 

to discriminate forest, non-forest and deforested areas. These methods were applied 

on InSAR coherence, derived SAR parameters at C, L-bands and directly on SAR 

backscattering. These methods include Multi-image Segmentation, Maximum 

Likelihood Estimator, Maximum Bayesian and Decision Tree (Gaveau et al., 2003; 

Podest and Saatchi, 2002; Saatchi et al., 2000; Servello et al., 2010; Thiel et al., 2006). 

- Machine learning methods: These techniques were also employed in forest cover 

change detection, and include Neural Network, Support Vector Machine and Random 

Forests methods (Kuplich, 2006; Longepe et al., 2011; Milne et al., 2012; Servello et 

al., 2010). 

- Other statistical approaches: Statistical methods were also applied to detect 

disturbances in forest cover. These methods include Fuzzy Logic, Bayesian Approach, 

Adaptative Linear Thresholding and Cumulative Sum (Bujor et al., 2001; Doblas et al., 

2020; Durieux et al., 2020, 2021; Manogaran and Lopez, 2018; Reiche et al., 2015, 

2018b; Ruiz-Ramos et al., 2020;Ygorra et al., 2021b). 

This section covers the state-of-the-art change detection algorithms and literature about SAR 

contributions to deforestation monitoring. 
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3.2. Publication 

 

Forest cover change from 

spaceborne SAR sensors: A review 

Frédéric Frappart 1,*, Bertrand Ygorra 1,2, Serge Riazanoff2, Jean-Pierre Wigneron 1 

1 INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 33140 Villenave-d’Ornon, France; 

frederic.frappart@inrae.fr; bertrand.ygorra@inrae.fr; jean-pierre.wigneron@inrae.fr  

2 VisioTerra, 14 rue Albert Einstein, 77420 Champs-sur-Marne, France; 

serge.riazanoff@visioterra.fr  

* Correspondence: frederic.frappart@inrae.fr 

Keywords: deforestation; remote sensing; SAR 

 

3.2.1. Introduction 

Forests play a major role in the carbon cycle as they cover more than 60% of the land 

surfaces and contain 90% of the C in the vegetation and 80% of the C in the soil of the 

terrestrial ecosystems and take around 60% of the CO2 removed from the atmosphere (Gower, 

2003; Grace et al., 2014). Forests were found to be an overall of -2.1Gt of CO2 per year 

between 1990 and 2015, mostly in the tropical and Northern Hemisphere forests (Federici et 

al., 2015; Mitchard, 2018). Change in Land Use/Land Cover (LULC) represented 12.5% of the 

anthropogenic emissions over 1990-2010 (Houghton et al., 2012). Deforestation, i.e., the 

direct, human-induced, conversion of forests to non-forest areas, has been identified as the 

major factor of change in LULC in temperate regions in the past, and, now, in the tropical areas 

(Gower, 2003; Hoang and Kanemoto, 2021). From a sink, tropical areas are likely to become 

a carbon source in the near future (Mitchard, 2018) as the annual forest carbon loss over the 

tropics doubled between 2001-2005 and 2015-2019 (Feng et al., 2022). Different factors can 

account for the forest carbon loss including predominantly agriculture activities, especially in 

Africa and Southeast Asia (Feng et al., 2022), but, also, forest degradation in the Brazilian 

Amazon (Qin et al., 2021), or logging and public roads in the Congo Basin (Kleinschroth et al., 

2019).     

mailto:frederic.frappart@inrae.fr
mailto:bertrand.ygorra@inrae.fr
mailto:jean-pierre.wigneron@inrae.fr
mailto:serge.riazanoff@visioterra.fr
mailto:frederic.frappart@inrae.fr
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Deforestation is the greatest concern in the impact of LULC change, especially in the tropics 

(Kondo et al., 2022), responsible, among over factors such as overgrazing and inappropriate 

irrigation practices, for land degradation (e.g., wind and water erosion, changes in vegetation 

cover, salinization) (Metternicht et al., 2010). The use Earth Observations (EO) images 

combined with ground measurements is essential for monitoring worldwide, and in particular 

in remote areas (Achard et al., 2007). EO was identified has a key source of information for 

Reduced Emissions from Deforestation and Degradation (REDD+) initiative of the United 

Nations Framework Convention on Climate Change (UNFCCC) (Lynch et al., 2013). First 

studies on deforestation were based on the use of optical/multispectral images during the 

1980s (NELSON et al., 1987; Nelson and Holben, 1986). They lead to the first estimate of 

deforestation in the Amazon derived from Landsat Thematic Mapper (TM): 162,000 km² of 

tropical forests were removed between 1978 and 1988 (Skole and Tucker, 1993). Forest 

monitoring was achieved at coarse resolution (8 km) using Advanced Very High Resolution 

Radiometer (AVHRR) images at pantropical scale (DeFries et al., 2002) and, later, at medium 

(250 m using Moderate-resolution Imaging Spectroradiometer - MODIS) and high resolution 

high resolution (30 m using Landsat) at regional scale (e.g., Brazilian Amazon or Indonesia) 

(Margono et al., 2012; Morton et al., 2005). These studies paved the way to operational forest 

cover change product available either globally such as Global Forest Watch (GFW) Tree Cover 

Loss (TCL) (Hansen et al., 2013) or regionally as in the Project for the Satellite Monitoring of 

Deforestation (Projeto de Monitoramento do Desmatamento na Amazônia por Satélites - 

PRODES) in the Brazilian Amazon (Valeriano et al., 2004) or in the GeoBosques platform of 

the National Forest Conservation Program for Climate Change Mitigation (Programa Nacional 

de Conservacion de los Bosques para la Mitigacion del Cambio Climatico - PNCBMCC) of the 

Peruvian Environment Ministry (Ministerio del Ambiente – MINAM) based on the Global Land 

Analysis and Discovery (GLAD) system (Potapov et al., 2014), for instance. Two main factors 

limiting the use of optical images for deforestation alert systems were identified: 

The persistent cloud cover which can strongly affect the availability of the observations, 

especially in the intertropical zone (e.g., (Hansen et al., 2016)). The cautious use of multiple 

EO sensors (optical images from different sources or optical and SAR images) is a solution to 

overcome this issue (Hansen et al., 2008; Reiche et al., 2015); 

The strong seasonal variations in canopy water content and photosynthetic activity of the 

forest (Hamunyela, 2017). 

The potential of satellite Synthetic Aperture Radar (SAR) images in mapping land cover 

types and monitoring deforestation was early identified, in the mid-1990s, over tropical areas 

(Grover and Quegan, 1995; Keil et al., 1995; Saatchi et al., 1997), including mangroves (Lucas 
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et al., 2007), as radar (i.e., active microwave) images offer day and night and all weather 

observations of the Earth surface (except in presence of rain cells at C (4-8 GHz) and X (8-12 

GHz) bands (Marzano et al., 2010; Melshelmer et al., 1996)) contrary to optical images which 

use is limited due to the presence of clouds, especially in tropical areas during the rainy season 

or at temperate latitude during winter. The synergy between optical and SAR images was first 

brought to the forth (Ranson et al., 2003; Rosenqvist et al., 2003; Shimabukuro et al., 2007). 

Optical images were used to detect deforestation while SAR images provided reliable 

information of the vegetation regrowth (da C.F. Yanasse et al., 1997; Rignot et al., 1997; 

Saatchi et al., 1997; Salas and Skole, 1998). The huge interest of SAR acquisitions for 

monitoring deforestation was also noticed analysing either the observations at the different 

polarizations (Kuntz and Siegert, 1999; Rignot, 2000; Souyris et al., 1996) or the Interferometry 

SAR (InSAR) mode (Ribbes et al., 1997; Suga and Takeuchi, 2000). From the first identification 

of the potential of SAR acquisitions from the Shuttle Imaging Radar C (SIR-C), European 

Remote Sensing satellite (ERS-1&2), and Japanese Earth Remote Sensing Satellite (JERS-

1) (da C.F. Yanasse et al., 1997; Grover and Quegan, 1995; Hoekman, 2000; Keil et al., 1995; 

Lawrence et al., 1995) for deforestation monitoring to the current operational approaches used 

to derive early waring/near real-time forest cover loss based on Phased Array L-band Synthetic 

Aperture Radar-2 (PALSAR-2) and Sentinel-1 images (Ballère et al., 2021; Reiche et al., 2021; 

Watanabe et al., 2021), improvements in both technical and theoretical aspects of the radar 

domains were achieved and new methodologies were developed or adapted to be able to 

monitor the deforestation using active microwave images. This review proposes to synthetize 

the major advances achieved in this field. 

This review has the following outline. Section 2 describes the method used to select the 

studies included in the review. Section 3 presents the signatures of the forest in SAR images 

and InSAR data. Section 4 summarizes the different types of approaches to identify the change 

in forest cover from SAR and InSAR data.  

3.2.2. Literature Review on deforestation from SAR remote 

sensing 

To provide the more exhaustive analysis on the topics of the use of remotely-sensed SAR 

images for the monitoring of deforestation, a systematic literature review was performed. For 

this purpose, a search was performed on Clarivate Analytics Web of Science (WoS, 

webofscience.com, last accessed on 25 August 2022) to identify the scientific articles 

published between January 1991 and August 2022 on this topic using the keywords: “remote 

sensing” and “deforestation”. The query link is given in Appendix A. A total of 292 scientific 

articles, conference proceedings, book were found considering the results from “All 
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Databases”. Not relevant publications including airborne SAR acquisitions, land use/land cover 

(LULC) classifications, … were removed. The results exhibit a clear increase in the number of 

studies against time over the last 30 years (Figure III.1). The number of publications per 

decade rose from 4.1 over 1994-2003 (1994 being the year of the first record of our 

bibliographic search) to 7.2 over 2004-2013, and is currently reaching 21.6 over 2014-2021 

(not taking into account 2022 as all the publications are not referred in WOS for the current 

year yet). The number of references per year on deforestation from SAR RS is above 20 after 

2018, and peaking at 34 and 30 in 2020 and 2018, respectively. 

 

 

3.2.3. Forest signatures in SAR observations 

This section will remind the principles of interaction between the radar wave and the forests. 

3.2.3.1. Forest signatures in SAR observations 

Microwave backscatter was found to be sensitive to total above-ground biomass (AGB) of 

forests. This sensitivity is function of the radar wavelength (the lower the frequency, the higher 

the penetration in the vegetation) and of its polarization and reaches saturation for a certain 

level of AGB (T. Le Toan et al., 1992; K. J. Ranson and Sun, 1994; Rignot et al., 1994). 

Figure III.1: Temporal evolution of the number of publications per year related to deforestation 
using SAR RS based on WOS over 1994-2022. 
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Volume scattering dominates the backscatter signal by the forest at both L (1-2 GHz) and 

C (4-8 GHz) bands while surface scattering is dominating at X (8-12 GHz) band (Andersen et 

al., 2006; T. Le Toan et al., 1992; S.A. Romshoo et al., 2002). Surface scattering is related to 

small components of the canopy (i.e., small branches and foliage) which interact with an 

electromagnetic wave of wavelength between 2.5 and 3.75 cm at X band, while volume 

scattering is caused by the interactions of the radar of longer wavelength (between 3.75 and 

7.5 cm at C band and 15 and 30 cm at L band, and eventually P band between 30 and 100 

cm) (Andersen et al., 2006). All microwave frequencies are sensitive to vegetation water 

content (VWC), and for the ones able to reach the surface underneath the vegetation 

(especially L and P (0.3 – 1 GHz) bands for forest cover, soil water content (SWC), as well as 

the vegetation horizontal (row plantations, canopy density) and vertical (crown depth, trunk, 

branching and leaf structure) structure (Lucas et al., 2011; Rignot et al., 1997). Polarization 

also plays an important role through its ability to discriminate between forest and non-forest 

surfaces. The backscatter from the co-polarization (HH and VV) is associated to surface 

scattering while the backscatter from cross-polarization (HV and VH) is associated with volume 

scattering. HV (related to volume scattering) polarization was found to be related to forest 

biomass (Almeida-Filho et al., 2005; da C.F. Yanasse et al., 1997; Green, 1998) and useful for 

detecting new deforestation fronts (Almeida‐ Filho et al., 2009), especially at L band. The SAR 

backscatter exhibits higher values over mature and regrowing forests than over clear-felled 

areas as the contribution of the volume scattering is greater than the direct scattering 

component from the ground (Santoro et al., 2010). 
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Figure III.2: Comparison between the ASAR image dated 10/07/2010 at VV (a) and VH (c) polarisations with the PALSAR image 
dated 19/07/2010 at HH (b) and HV (d) polarisations. The area is located in the Democratic Republic of the Congo. 
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3.2.3.2. Forest characteristics from InSAR 

InSAR was also found to be useful for LULC classification. This technique is based on the 

acquisition of two images under slightly different geometrical configuration. The degree of 

coherence or coherence (γ), which represents the correlation between the two aforementioned 

images is defined as (Bamler and Hartl, 1998; Hanssen, 2001; S. Takeuchi et al., 2001): 

𝛾 =
𝐸(𝑠1𝑠2

∗)

√𝐸(𝑠1𝑠1
∗)𝐸(𝑠2𝑠2

∗)
 (1) 

 

where s1 and s2 are two complex SAR images, and E is the expectation value.*is the conjugate. 

Sources of decorrelation, which degrade the coherence, have multiple origins, related to 

the acquisition system (γsyst), environment properties with both surface (γsurf) and volume (γvol) 

interactions, temporal variations (effects of the wind on the branches and the leaves and 

vegetation growth) (Balzter, 2001; Ribbes et al., 1997): 

𝛾 = 𝛾𝑠𝑦𝑠𝑡 . 𝛾𝑠𝑝𝑎𝑡 . 𝛾𝑡𝑒𝑚𝑝 = 𝛾𝑠𝑦𝑠𝑡 . 𝛾𝑠𝑢𝑟𝑓 . 𝛾𝑣𝑜𝑙 . 𝛾𝑡𝑒𝑚𝑝 (2) 

 

The degree of coherence is lower on forest compared to non-forest due to the move of the 

scattering elements in forest (Le Toan et al., 2004; Takeuchi and Yamada, 2002). The degree 

of coherence at HH and VV polarizations at C band was also found to be the most suited for 

discriminating between forest and non-forest pixels (Souyris et al., 1996). 

The volume component of the coherence can be related to the vertical profile of the 

vegetation and, hence, to the vegetation height, structure, and biomass, through (Neumann et 

al., 2010; Treuhaft et al., 2015, 2009): 

𝛾𝑣𝑜𝑙 =
∫ 𝑔(𝑧)𝑒𝑖𝛼𝑧𝑧𝑑𝑧

+∞

0

∫ 𝑔(𝑧)𝑑𝑧
+∞

0

 (3) 

with 

𝛼𝑧 =
2𝜋𝐵⊥

𝜆𝑟𝑠𝑖𝑛(𝜃)
 (4) 
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Where αz is the vertical interferometric frequency, g(z) is the normalized Fourier transform 

of the radar power profile in the vertical direction z, 𝐵⊥  is the component of the baseline 

perpendicular to the sensor line of sight, λ is the wavelength of the electromagnetic wave 

emitted by the radar, r is the range (i.e., the distance from the sensor to the ground location), 

and θ is the incidence angle. 

Most of the estimates were achieved using P (airborne), L and C bands (Le Toan et al., 

2004). Recent studies demonstrated the feasibility of biomass estimates over tropical forests 

using X-band InSAR from Tandem-X (Treuhaft et al., 2015). The degree of coherence was 

found to be more sensitive to the changes in woody biomass than the backscatter at C and L 

bands (Gaveau et al., 2003). 

3.2.4. Deforestation from SAR images: Methods 

This section will summarize the main approaches used to detect deforestation in the SAR 

images, and present the main products for forest cover change based on radar observations. 

When available, information on band and polarization is mentioned. This latter information is 

sometimes omitted in a few articles, and, hence, cannot be reported in this review. 

3.2.4.1. Thresholds 

Change detection methods applied to SAR images are based on the evidence that one or 

a combination of SAR-based parameters are presenting a variation higher than the noise level 

to be detected when the land cover change from forest to non-forest from one pixel to another 

or from one acquisition to another (e.g., the backscatter at HV polarization at L-band (Fransson 

et al., 2007; Santoro et al., 2010) or at C-band (Zhang et al., 2011)). Based on this observation, 

simple thresholds were first applied to backscatter and/or SAR-derived parameters such as 

the image texture or the Radar Vegetation Index (RVI) defined as the ration between linear 

combinations of cross and co-polarization backscatters (Kim and van Zyl, 2009), to 

discriminate between forest and non-forest areas. For example, forests were reported to be 

characterized by: 

- higher values of the HV backscatter (~8 dB) at L band compared to clear-cut areas in 

Rondonia (Brazil) (Rignot et al., 1997); 

- higher values of the HV backscatter (~10 dB) at L band and RVI (~0.8) than no-forest 

areas, in Cambodia among others (Avtar et al., 2012); 

- higher backscatters at HH polarization ranging from 4 to 7 dB compared to clear-felled 

areas in Malaysia (Igarashi et al., 2003) and Sumatra (Takeuchi et al., 2000); 

- higher backscatter values at HH polarization (~1.5 dB) in comparison to clear-cuts in a 

British forest (Thiel et al., 2006); 
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- higher backscatter at HV polarization, between 2 and 3 dB, at L band in a Swedish 

boreal forest (Santoro et al., 2010); 

- higher backscatter values up to 5 dB at X band and HV polarization compared to clear-

cuts in a boreal forest in Canada (Ranson and Sun, 2000); 

- higher backscatter values at HH polarization at L and VV polarization at C band (2-3 

dB) compared to forests that experienced a disturbance due to logging or fires in 

Siberia (Ranson et al., 2003); 

- higher values of backscatter of 1-2 dB at VV polarization under frozen conditions at C 

band, as well as of 2-4 dB at HH polarization and a change in coherence of 0.4-0.6 

(0.3-0.4) at C(L) band, respectively, compared to deforested areas in Siberia (Gaveau 

et al., 2003; Santoro and Schmullius, 2004). 

But, in many cases, simple thresholds are not sufficient enough to distinguish between 

forests, disturbed forests and logged areas depending on the frequency and the polarizations 

available (e.g., HH polarization at C band over Siberia (Ranson et al., 2003), limited utility of C 

band and multiple polarizations required over most of the equatorial forests (Rignot et al., 

1997)).  The threshold value is often determined empirically as there are difficulties to define 

the threshold automatically in certain regions. 

3.2.4.2. Classification techniques 

Classification techniques (supervised and unsupervised) were widely applied to 

discriminate between forest, non-forest, and deforested areas (Gaveau et al., 2003; Podest 

and Saatchi, 2002; Saatchi et al., 2000, p. 200; Servello et al., 2010; Thiel et al., 2006). These 

techniques were applied on SAR backscattering or on InSAR coherence, or other derived 

parameters, at both C and L bands, and on a wide range of forest types, from the equatorial 

areas to the boreal regions, including temperate forests. Among the different classification 

techniques were used: 

Multi-image segmentation. This technique was applied to the mean SAR backscattering 

coefficients of a series of images acquired at L-band between 1992 and 1998 over temperate 

and boreal forests located in United Kingdom (UK), Germany, Sweden and Siberia. These 

sites are characterized with high forest cover but different forest management practices. 

Detection of forest, non-forest and deforested areas has an overall accuracy (OA) ~90% (Thiel 

et al., 2006) ; 

Maximum likelihood estimator (MLE). This approach was applied either on backscatter 

images and their texture or on coherence. MLE was used on a multi-scale on SAR images 

acquired at L-band during low and high water stages in three test sites in the Amazon, 
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characterized by deforestation, presence of savannas and inundated vegetation, on both their 

backscatter and their textural features defined by (Robert M. Haralick et al., 1973) on 2 x 2, 4 

x 4, and 8 x 8 pixel boxes. Discrimination between forest and no-forest has an OA higher than 

90% (Podest and Saatchi, 2002). It was also applied on a time-series of INSAR coherence at 

C-band over Central Siberia to classify forest woody biomass in terms of growing stock volume. 

An OA of 80% was obtained (Gaveau et al., 2003). To improve the results, MLE was also used 

on a combination of backscattering at C and L bands and coherence at C band. OA above 

70% were obtained over forests in UK, Sweden, and Siberia (Tansey et al., 2004; Wagner et 

al., 2003). MLE was tested on SAR backscattering at C band for Near Real-Time (NRT) 

deforestation in Brazilian Amazonia. Tested on ~6,000 locations in 2019, an OA of 94.4% was 

obtained (Doblas et al., 2020); 

Maximum Bayesian. A two-stage approach was applied to a mosaic of SAR images at L-

band acquired during low water stage over the Amazon on 10 x 10 pixel boxes. The Bayesian 

approach allowed to identify 5 general land categories, and, then textural features were used 

to refine into 14 subcategory classes, including deforested areas. The OA was estimated to 

reach 78% (Saatchi et al., 2000); 

Decision tree. SAR backscattering and coherence at L-band were also included in a multi-

sensor (along with medium resolution multi-spectral images and low resolution radar 

scatterometer) decision tree classification approach for mapping biomass distribution as they 

provide useful information on biomass, structure and cover type which allowed to detect, 

among others, logging and forest degradation with an OA higher than 80% (Saatchi et al., 

2007). 

3.2.4.3. Machine learning techniques 

Machine learning classification techniques were also used to characterize changes in forest 

cover. Among others, the following techniques were applied: 

Neural network (NN). A NN approach was applied on L, C and X bands SAR images at 

various polarizations (H, HV and VV for L and C bands, and only VV for X band) and multi-

spectral images to classify the regenerating forest stages in Amazonia. The use of SAR images 

allowed to discriminate regenerating from mature forests (0A=80%) but cannot differentiate the 

different regenerating stages (OA=30%). When adding multi-spectral bands, 5 classes of 

regenerating forests were determined with an 0A of 87% (Kuplich, 2006); 

Support Vector Machine (SVM). This method was applied on L band SAR images acquired 

at HH and HV polarizations in 2007 in Sumatra. An OA of 70% was reached for LC, including 

clear-cuts and of 87% for natural forest mapping (Longepe et al., 2011). It was also used on 
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multi-spectral and L-band backscattering to map land cover change in Tasmania between 

2007 and 2009, and on L and X backscattering to identify forest degradation and deforestation 

in West Columbia between 2007 and 2008. OA was found to reach 98% in the forest/non-

forest discrimination (Milne et al., 2012); 

Random Forests (RF). Extremely Random Clustering Forests, an extension of classifical 

RF, was applied on full polarimetric (HH, HV, VH, VV) C band SAR backscattering and 

associated phase acquired in 2008 and 2009 to discriminate forest and non-forest areas in 

Brazilian Amazonia. OA were 71% and 89% in 2008 and 2009, respectively, allowing to 

accurately estimate deforestation during this period (Servello et al., 2010). 

3.2.4.4. Other statistical approaches 

Other statistical approaches were also applied to detect forest cover changes. Among them, 

the followings were used to determine forest cover changes: 

Fuzzy logic. A two-step approach based on fuzzy subset theory was applied to two C band 

SAR images acquired before and after a deforestation event that occurred in French Guiana. 

The first step corresponds to the extraction of the changes and the second consists in to the 

information of the first step to build a rule to attribute pixels to forest and deforested areas 

using a probability density function (Bujor et al., 2001);  

Bayesian approach. Bayesian approach was developed to update the conditional probability 

of deforestation using previous and future observations of one or several sensors (Reiche et 

al., 2015). This method was initially applied to merge Normalized Difference Vegetative Index 

(NDVI) from multi-spectral images and L band SAR backscatter at HH and HV polarizations 

for NRT deforestation monitoring. This approach was adapted to combine information from 

backscatter at L band and HV polarization, C band at VV polarization, and NDVI or SAR 

backscatter at C band in VH and VV polarizations (Reiche et al., 2018a). OA of 87.4% in 

evergreen forest plantation in Fiji, 99.8% in Bolivia for tropical dry forests, and above 90% in 

Sumatra were obtained, respectively. A similar Bayesian approach was also developed to 

update deforestation using the ratio between the acquisition at VV and VH polarizations at C 

band, their coherence, and NDVI from multi-spectral images. The Bayesian updating 

deforestation detection (BUDD) showed that better results were obtained combining NDVI, 

backscatter and coherence or NDVI and backscatter than backscatter and coherence in the 

Amazonas and Para states of Brazil over 2018-2019 (Durieux et al., 2020). BUDD was also 

applied on C band VH backscatter and coherence in Sumatra over 2018-2019. An OA of 99% 

was obtained (Durieux et al., 2021); 
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Adaptative linear thresholding. This approach is a statistical method based on the difference 

between the average and the minimum value of the time-series of the SAR backscatter at C 

band under the assumption the backscattering is constant over forest. The threshold to 

differentiate a pixel covered with forest from a pixel non-covered with forest is defined using 

training samples over forest and non-forest areas. It was tested on the same ~6,000 locations 

in the Brazilian Amazonia in 2019 as the MLE presented above. A slightly better OA of 95.9% 

was obtained than for MLE (Doblas et al., 2020);  

Cumulative sum (CUSUM). CUSUM is a statistical method used to detect both abrupt and 

slow variations of a variable measured during a certain time period, based on the cumulative 

sum between the variable values and its temporal average (Manogaran and Lopez, 2018). 

After being widely used in the financial sector, its application for monitoring deforestation and 

forest degradation was proposed by [90]. It was applied on time-series of C band SAR 

backscatter images at VH and VV polarizations acquired i) in Scotland in 2019, with the 

addition of a spatial averaging to account for the effect of seasonality at temperate latitudes 

CUSU-SMC (cumulative sum-spatial mean corrected) (Ruiz-Ramos et al., 2020), in Congo 

over 2018-2020, with a cross threshold recombination (Ygorra et al., 2021a; Ygorra et al., 

2021b). Over these areas, OA were 77% and 91%, respectively. 
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3.3. Contribution and perspectives 

In this chapter, we described the interaction of C- and L-band SAR signal with forest. We also 

described the main methods used to monitor forest cover change. We selected the CuSum as 

a basis for cover change monitoring for both near-real-time and offline monitoring, as described 

in the following chapters. 
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4.1. Introduction 

This section presents the results of the first part of my PhD, published in the International 

Journal of Applied Earth Observation and Geoinformation in August 2021. When I started my 

PhD, several physical-based change detection algorithms based on SAR time-series for 

deforestation monitoring were available online and quickly applicable.  

The study area was defined with VisioTerra. It is located in the Alibuku IFCO concession, 

near Kisangani, Democratic Republic of Congo (DRC). We had the great opportunity to explore 

the performance of Cumulative Sum (CuSum)-based method on tropical forests using 

Sentinel-1 data.  

After comparing the results of the CuSum with the industrial algorithm over a  small area, 

the Cumulative Sum Algorithm was chosen for its high potential in tropical deforestation 

monitoring (Manogaran and Lopez, 2018; Ruiz-ramos et al., 2018). This algorithm was chosen 

for its dual ability to produce offline products (use of a long time-series to establish a 

deforestation rate over a period) and near-real-time products (shorter time-series to be 

updated at each new image acquired, to establish the deforestation localisation in the fastest 

way available,(Kellndorfer, 2019).  

CuSum is an algorithm that can be applied on a time-series of any variable. It is 

characterized by a single input parameter: the critical threshold (TC), computed as a threshold 

based on the confidence level (CL) obtained doing a bootstrap analysis. A high Tc (> 0.9) 

resulted systematically in a low number of commissions but in a high number of omissions, 

whereas a low Tc (< 0.9) resulted systematically in a high number of commissions but a low 

number of omissions. The CuSum method was applied to every pixel of the Sentinel-1 images 

on both VH and VV polarizations. 

As I realised that the CuSum based on the temporal dimension alone would not produce 

sufficiently accurate results in terms of statistics, I decided to take into account the spatial 

dimension of the results in the monitoring.  First, I applied a known spatial filter – the Minimum 

Mapping Unit, set at 300m². Then, I removed all low-Tc polygons which do not have any 

intersection with a high-Tc polygon. This spatial recombination was then named cross-Tc 

recombination, and represents the main innovation in this article, as the numbers of omission 

/ commission decreased compared to their high or low Tc counterparts. The ability of the 

CuSum cross-Tc to monitor deforestation caused by small clearances was validated using a 

couple multi-spectral images. Another sub-study area was defined, where roads made by 

loggers within the concession could be accurately seen using Sentinel-1. This result was 

presented at the IGARSS 2021 (Ygorra et al., 2021a). 
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Several articles using Sentinel-1 data for tropical deforestation monitoring (Ballère et al., 

2021; Doblas et al., 2022, 2020; Mermoz et al., 2021; Mistry et al., 2021; Reiche et al., 2021; 

Ruiz-Ramos et al., 2020), some based on the CuSum  (Mistry et al., 2021; Ruiz-Ramos et al., 

2020) were published during the writing of this publication. 

Data acquisition and processing, methods, findings and discussion of this work are 

presented in the following publication. Following a brief commentary on these results, the 

perspectives of this work in the PhD plan will be presented. 
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Abstract 

The forest decline in tropical areas is one of the largest global environmental threats as the 

growth of both global population and its needs have put an increasing pressure on these 

ecosystems. Efforts are ongoing to reduce tropical deforestation rates. Earth observations are 

increasingly used to monitor deforestation over the whole equatorial area. Change detection 

methods are mainly applied to satellite optical images which face limitations in humid tropical 

areas. For instance, due to frequent cloud cover in the tropics, there are often long delays in 

the detection of deforestation events. Recently, detection methods applied to Synthetic 

Aperture Radar (SAR) have been developed to address the limitations related to cloud cover. 

In this study, we present an application of a recently developed change detection method for 

monitoring forest cover loss from SAR time-series data in tropical zone. The method is based 

on the Cumulative Sum algorithm (CuSum) combined with a bootstrap analysis. The method 
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was applied to time-series of Sentinel-1 ground range detected (GRD) dual polarization (VV, 

VH) images forming a dataset of 60 images to monitor forest cover loss in a legal forest 

concession of the Democratic Republic of Congo during the 2018-2020 period. A cross-

threshold recombination was then conducted on the computed maps.  Evaluated against 

reference forest cut maps, an overall accuracy up to 91% and a precision up to 75% in forest 

clear cut detection was obtained. Our results show that more than 60% of forest disturbances 

were detected before the PlanetScope-based estimated date of cut, which may suggest the 

capacity of our method to detect forest degradation. 

Keywords: Deforestation, Remote Sensing; Sentinel-1; Cumulative Sum Algorithm; Tropical 

Forest; Change Detection. 
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4.2.1. Introduction 

The tropical forests, which play a critical role in the global climate regulation by recycling 

~2.1 Gt CO2 per year (Federici et al., 2015; Nunes et al., 2020), are being  deforested at 

increasing rates. In Africa, the forest losses in carbon stocks  are driven by multiple factors, 

including legal or illegal selective logging causing degradations, or cuts to fulfil the agricultural 

needs of local populations  (Contreras-Hermosilla and others, 2000). Optical satellite remote 

sensing is commonly used to monitor forest cover changes (e.g., Global Forest Watch (Bullock 

et al., 2020; Hansen et al., 2013; Tyukavina et al., 2018)). Yet, the monitoring systems based 

on this kind of images are likely to provide inaccurate information over regions strongly affected 

by cloud cover (Hansen et al., 2016). They were also shown to be less robust in regions where 

forest exhibits strong seasonal variability in the canopy water content (Hamunyela et al., 2017). 

Studies based on the merging of optical and Synthetic Aperture Radar (SAR) datasets, 

showed a better temporal accuracy in the detection of forest cuts by accounting for the 

seasonal changes in the vegetation structure but at the costs of a high computational 

complexity (Hamunyela et al., 2020). With the advances in the spatial and temporal resolutions 

of the satellite observations, the application of change detection algorithms to satellite data 

requires increasing computational platform performances. Some change detection algorithms 

such as the RADD and JJFAST alerts (Watanabe et al., 2021) are currently operational on 

powerful platforms such as Google Earth Engine, (see  (Reiche et al., 2021) for instance). As 

the revisit time of the satellite observations decreases, change detection algorithms based on 

temporal analysis are increasingly used (Duveiller et al., 2008; Hamunyela et al., 2016; Souza 

et al., 2013). Among them, a change detection algorithm analysing the temporal stability of the 

signal through the deviation of a variable to its mean – the cumulative Sum (CuSum) – has 

been used in environmental studies, including for forest monitoring: (Kucera et al., 2007; 

Manogaran and Lopez, 2018; Ruiz-Ramos et al., 2020).The CuSum is a change detection 

method based on statistics to analyse multi-temporal processes, as it allows the detection of 

any type of variation (slow, abrupt) as long as it has an impact on the trend of the time-series. 

This method has been found to be less affected by the seasonal variability of vegetation and 

thus more performant to detect abrupt changes in the vegetation structure due to forest cut 

(Ruiz-Ramos et al., 2020).  

To monitor forest cover changes, many studies have used pairwise or single epoque image 

comparison or multi-temporal averages for detecting changes between two dates (Antropov et 

al., 2016; Bouvet et al., 2018; Joshi et al., 2015; Lievens et al., 2017; Reiche et al., 2018b; 

Rüetschi et al., 2019; Tanase et al., 2015, 2010). These methods have known limits: there is 
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often a delay between a change in the vegetation structure and/or cover and a change in the 

SAR backscattering. Due to the SAR sensitivity to changes in the vegetation/soil moisture 

content and surface roughness, vegetation change is difficult to detect or may be detected with 

a delay (Belenguer-Plomer et al., 2019; Reiche et al., 2018a; Ruiz-ramos et al., 2018; 

Watanabe et al., 2018). Moreover, if the revisit time of the satellite is too low, vegetation may 

partially recover after being cut, hindering the detection of the cut (Numbisi and Van Coillie, 

2020; Reiche et al., 2021). Though L-band SAR images can be used for an accurate monitoring 

of the deforestation in tropical environments e.g.,(S Takeuchi et al., 2001; Whittle et al., 2012), 

they are not easily available and often have a lower temporal resolution. The use of time-series 

with a high temporal resolution such as Sentinel-1 allows early detection and permits to detect 

changes at different time scales and to reduce the noise in the backscatter signal due to 

speckle or temporary changes. 

In this study, C-band SAR observations from Sentinel-1 A satellite were used to monitor 

deforestation and other forest cover changes in the living area of a legal forest concession of 

the Democratic Republic of Congo (DRC). This satellite, launched in 2014, has a 12-day revisit 

period over the DRC and a spatial resolution of 20 m x 22 m, allowing to monitor changes in 

vegetation with a high resolution in both space and time. We evaluated the use of the CuSum 

algorithm (Manogaran and Lopez, 2018) applied to dual polarization VV-VH observations, 

taking advantage of the high capability of CuSum to detect vegetation cover change (Ruiz-

Ramos et al., 2020). Results based on the combination of different configurations of the 

CuSum approach are analysed and optimal configurations are presented and discussed. 

4.2.2. Study site and data 

4.2.2.1. Study Site 

For the investigation of forest change in the Congo Basin by developing using our approach, 

we chose to monitor the forest near the living area of a forest concession where degradation 

and deforestation are likely to occur. The concession is the Industrie Forestière du Congo 

(IFCO) COD 018/11 forest concession (Alibuku), located within the North-Eastern region of 

Kisangani in the Democratic Republic of Congo (DRC), in central equatorial Africa (Figure 

IV.1). The climate of the region is characterised by two wet seasons, reaching their peaks in 

terms of rainfall respectively at the end of March / early April and end of September / early 

October and two dry seasons per year. The maps of the forest concessions are available at 

the DRC forest atlas (https://cod.forest-atlas.org/). This concession is formed of yearly allowed 

cut zones where trees are extracted and in a living area for the logger community. The study 
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site was specifically selected based on the nature/typology of the expected forest change. 

Since most of the forest changes were expected to be made by logger communities (over-

exploitation for timber and firewood, agricultural activities (Contreras-Hermosilla and others, 

2000)) instead of commercial logging clear-cuts, the study site was located near the populated 

area of the Alibuku concession. The study site (area = 22.57 km²) is located between 25.4122° 

and 25.4657° E, and 0.9033° and 0.9376° N, in the north-western part of a living area. 
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Figure IV.1: Study site: (a) global view including DRC borders, (b) global view including DRC 

borders with its forest concessions. The study zone is indicated by the red pinpoint. 

PlanetScope 3m surface reflectance image over the study site dated from (c) 2018-01-06 and 

(d) 2019-11-29. 

c    

c 

d 

a 
b 
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4.2.2.2. Data 

4.2.2.2.1. Sentinel-1 SAR images 

The Sentinel-1 mission, developed by the European Space Agency (ESA) in the framework 

of the Copernicus programme, is a constellation composed of 2 satellites positioned on the 

same reference orbit plane with a 180° orbital phasing difference at an altitude of 693 km 

(Torres et al., 2012). The sun-synchronous orbit is near polar, presenting an inclination of 

98.18°. The repeat cycle of each satellite is 12 days over the study site. Sentinel-1A was 

launched on April 3rd of 2014, while Sentinel-1B was launched on April 25th 2016. The main 

instrument onboard both Sentinel-1 satellites is a C-band Synthetic Aperture Radar (SAR) 

referenced as C-SAR. It is operating at a frequency of 5.405 GHz in 4 different modes, of which 

the Interferometric Wide-swath (IW) with a ground resolution of 20m x 22m, at the VV and VH 

polarizations was selected in this study. The images are available in several formats: Slant 

Range, Single Look Complex (SLC), Ground Range, and Multi-Look Detected (GRD). The data 

used in this study are the GRD products in IW mode at the VV and VH polarizations. The 

images used in this study were only acquired from Sentinel-1 A on a single descending orbit 

at the sampling period of 12 days as no Sentinel-1 B images were available on the study area. 

The resulting pixel size is 10 m x 10 m. This product was chosen instead of the SLC as it is a 

good compromise in terms of possible speckle noise reduction and volume of data to get 

accurate data but not increasing too much the computational time.  A total of 60 images that 

formed our time-series on the study site between 01/01/2018 and 01/01/2020 were provided 

by the European Space Agency (ESA) at https://scihub.copernicus.eu and downloaded using 

VtWeb (https://visioterra.org/VtWeb/).  

4.2.2.2.2. PlanetScope optical images 

To evaluate our Sentinel 1 detection algorithm, a reference map of the forest changes was 

created using high-resolution PlanetScope images. We used the level 3B product of 

PlanetScope Ortho Scene obtained from a multispectral Cubesat constellation. This product is 

a 4-band (Red: 605 - 695 nm, Green: 515 - 595 nm, Blue: 450 - 515 nm, NIR: 740 – 900 nm) 

Surface Reflectance (SR) image, orthorectified and scaled, with a pixel resolution of 3 meters. 

The PlanetScope images available during the period ranging from 06/01/2018 to 30/12/2019 

were selected upon the following criteria: (i) Images on which the visual interpretation was not 

possible because of large cloud cover were removed. No strict threshold on cloud cover could 

be used as the visualization depends on the thickness of the clouds. For instance, it was 

possible to perform visual interpretation if the cloud cover corresponds to a thin cloud veil 

covering the whole scene. (ii) Images partially covering the scene and images separated by a 

day or less from one another were removed. After this selection step, only twenty-four images 

https://scihub.copernicus.eu/
https://visioterra.org/VtWeb/
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were kept. Among the kept images, some of them were still affected by the presence of a few 

clouds that did not prevent to perform a visual interpretation. The images were downloaded 

from Planet Explorer at https://www.planet.com. 

4.2.2.2.3. Tree Cover Loss map from Global Forest Watch 

To compare with the results obtained from the CuSum change detection algorithm applied 

to Sentinel-1 SAR images, the performances of the Global Forest Watch (GFW) Tree Cover 

Loss (TCL) map (Hansen et al., 2013) were also evaluated against the visual interpretation of 

the PlanetScope images. Results obtained from this forest change cover analysis were 

subsequently used for assessing the performance of our detector. The TCL map is a dataset 

developed for monitoring forest cover loss worldwide based on Landsat-5 TM, Landsat 7 

ETM+, Landsat 8 OLI/TIRS and MODIS data with a pixel resolution of 30 m (Potapov et al., 

2020). The TCL map over the study site is made freely available at 

https://data.globalforestwatch.org/ (Dataset: ‘Granule 10N 20E’ on GFW website). According 

to the TCL map, the study zone lost about 204 ha of tree cover (Figure IV.2) between 2018 

and early 2020. 

 

Figure IV.2: Tree Cover Loss map (Hansen, 2018-2019) on the PlanetScope 2019-11-29 RGB 

image background. 
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4.2.3. Methods 

4.2.3.1. Pre-processing 

The Sentinel-1 SAR images were pre-processed using VtWeb. VtWeb is an online platform 

enabling users to easily browse free Earth observation data, display it in 2D/3D and process it 

on-the-fly (https://visioterra.org/VtWeb/). The pre-processing performed by VtWeb to obtain 

geo-corrected backscatter images (resulting in γ0
 terrain corrected data) consisted in the 3 

following steps (Figure IV.3):  

- Orbit correction 

- thermal noise removal (Piantanida and Miranda, 2017),  

- terrain flattening as terrain correction to remove topological and incidence 

effects (Small, 2011).  

The speckle was filtered using the bilateral filter made available in the python PyRAT 

Toolbox (Reigber et al., 2019) with a kernel window size of 7x7. This filter is a spatial filter 

presenting the advantage of preserving edges in the images. Its filtering principle relies on the 

replacement of a pixel value with the weighted pixel value average in the kernel (Tomasi and 

Manduchi, 1998). 

  

https://visioterra.org/VtWeb/
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4.2.3.2. Haralick textures and image selection 

VtWeb provides different levels of aggregation of the Sentinel-1 SAR images ranging from 

the highest pixel resolution (10 m) to a very low pixel resolution (40960 m). The Contrast (CON) 

from Haralick textures (Coelho, 2013; Robert M Haralick et al., 1973) was computed on 

aggregated images with a resulting pixel resolution of 1,280 m to monitor changes in the SAR 

backscatter at a larger scale than that of S1 (10m x 10m) as follows:   

𝐶𝑂𝑁 =  ∑ ∑ 𝑝(𝑖, 𝑗) ∗ (𝑖 − 𝑗)²𝑗𝑖     (1) 

where p(i,j) is the frequency of the elements in Grey Level Co-Occurrence Matrix (GLCM),(i,j) 

is the cell index. 

The study zone is located in a region characterized by a high cloud cover during the entire 

year. The presence of raincells has been confirmed on this area. Raincells are known to cause 

either an enhancement and/or a darkening of the SAR images (see an example of this latter 

effect on Figure IV.4).   These two opposite effects are due to the presence of hydrometeors  

which interact with the EM waves emitted by the SAR sensor, causing dark and bright areas, 

on the SAR images, especially at C and X-bands  (Alpers and Melsheimer, 2004; Kellndorfer, 

2019). To detect the presence of large raincells in the SAR images, the Haralick texture 

features were used. The presence of raincell strongly modifies the CON parameter as defined 

in Eq. (1).  

 

Figure IV.4: Sentinel-1 SAR images dated from (a) 20/10/2018 and (b) 13/11/2018 displayed 

in RGB : VV, VH, NDI(VV,VH). The raincell effect is visible on the second image. 

The removal of raincell-contaminated images was automatized using a threshold (τ) defined 

using the temporal dynamics of CON in both the VV and VH polarizations:  

a b 
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𝜏 = 𝐾 ∗ (𝜎𝐶𝑂𝑁 + 𝐶𝑂𝑁̅̅ ̅̅ ̅̅ )    (2) 

where 𝐶𝑂𝑁̅̅ ̅̅ ̅̅  and 𝜎𝐶𝑂𝑁 are respectively the average and the standard deviation (std) of CON 

during the observation period, and K a constant empirically set equal at 2 in this study. If CON 

is greater than t in a Sentinel-1 images for both the VV and VH polarizations, the S1 image is 

removed from the analysis. A large raincell was observed on the image acquired on 

13/11/2018. This image was removed from the analysis (Figure IV.5). 

 

Figure IV.5: Temporal availability of Sentinel-1 C-SAR IW dual polarization and PlanetScope 

3 meters images. The 13/11/2018 Sentinel-1 image was removed due to partial raincell 

contamination. The Contrast is computed from Haralick’s texture (see 3.2), showed on VV 

polarisation. The Mean Contrast is the average contrast of a Sentinel-1 image with a pixel 

resolution of 1 280 m over the study area. 

4.2.3.3. Change detection algorithm 

4.2.3.3.1. CuSum algorithm  

The Cumulative Sum (CuSum) algorithm is a change point detection method based on time-

series analysis. It has been initially used in the financial sector (Manogaran and Lopez, 2018) 

and pioneer studies have applied it for mangrove and temperate forest monitoring (Kellndorfer, 

2019; Ruiz-Ramos et al., 2020). Previous studies showed better performances in deforestation 

detection when this method was applied to filtered and smoothed time-series (Kellndorfer, 

2019). The C-band SAR backscatter signal tends to decrease after a forest cut, according to 



Chapter IV 
Monitoring forest disturbances from Sentinel-1 time-series: a CuSum-

based approach 

Page | 104  
 

literature (Kellndorfer, 2019). The CuSum method is able to detect such changes in the signal 

(Manogaran and Lopez, 2018). The CuSum method consists in 5 steps including the bootstrap 

analysis.  

The first step is to compute the VV and VH backscatter time-series of each pixel of the 

Sentinel-1 image in the study area over a given period. Then, the mean of the time-series (𝛾0̅̅ ̅ 

(j), over each pixel j) is determined at both the VV and VH polarizations and used in the 

computation of the cumulative sum of the residuals, Rsumj: 

𝑅𝑠𝑢𝑚𝑗 =  ∑ 𝑅𝑖𝑗
𝑛𝑖𝑚𝑎𝑔𝑒𝑠

𝑖=1
    (3) 

Where 𝑅𝑖𝑗 =  𝛾𝑖𝑗
0 −  𝛾𝑗

0̅̅ ̅ , nimages is the number of images and j the pixel index.  

The third step consists in determining the maximum and minimum value of the cumulative sum 

of the residuals to compute the amplitude Asumj over the period:  

𝐴𝑠𝑢𝑚𝑗 = 𝑅𝑠𝑢𝑚_𝑚𝑎𝑥𝑗 −  𝑅𝑠𝑢𝑚_𝑚𝑖𝑛𝑗    (4) 

Where Rsum_maxj is the maximum value of Rsumj and Rsum_minj is the minimum value of Rsumj. 

The date of change in the vegetation over the pixel j is assumed to happen at the date when 

Rsumj reaches a maximum. A bootstrap analysis based on Asumj is then conducted to validate 

or invalidate the change. There is no global threshold over the magnitude of the change. A 

threshold is computed individually over each pixel, as the mean value of the time series may 

change from one pixel to another. 

4.2.3.3.2. Bootstrap analysis 

A bootstrap analysis is conducted on the CuSum result. The bootstrap analysis is a mean 

to check the validity of the change detected through an indirect measure of the impact of the 

order sequence on the timeseries. The bootstrap consists in conducting CuSum on a randomly 

modified backscatter timeseries nbootstraps times and check if the generated amplitude of the 

residuals is greater than the original amplitude of the residuals.  nbootstraps is the number of 

bootstraps. It depends on the length of the time-series (Kellndorfer, 2019). Firstly, the original 

backscatter time-series is randomly reorganized, thus modifying the temporal order. Then, the 

CuSum method is applied to the newly reorganized series to compute Rsum_randj_i and Asum_randj_i 

(with i the index of the bootstrap). The next step is to compute the difference of amplitude 

between Asumj and Asum_randj_i (Eq.6)  
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𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠 =  {
𝑛𝑖𝑚𝑎𝑔𝑒𝑠 ! ( 𝑖𝑓 𝑛𝑖𝑚𝑎𝑔𝑒𝑠 ! < 1500) 

1500 (𝑖𝑓 𝑛𝑖𝑚𝑎𝑔𝑒𝑠 ≥ 1500)
   (5) 

Where nimages! is the factorial of the number of images.  

𝐴𝑑𝑖𝑓𝑓𝑗𝑖
= 𝐴𝑠𝑢𝑚𝑗 −  𝐴𝑠𝑢𝑚_𝑟𝑎𝑛𝑑𝑗𝑖

          (6)  

If Adiffj_i > 0, the residual amplitude of the randomly generated reorganized time-series 

(Asum_rand_i) is lower than its original value (before reorganization). This means the original 

residual amplitude (Asumj) is affected by the temporal dimension. The number of times the 

original residual time-series presents a Asumj value greater than the randomly reorganised one 

is estimated and referred to as the index Ngj (Eq. 7). This index is incremented by 1 each time 

Adiffj_i > 0. It is an indirect measure of the sequence effect in the backscatter time-series and a 

sensitivity parameter that intervenes in the computation of the Confidence Level (CLj, Eq. 8). 

𝑁𝐺𝑗 =  ∑ 𝐼𝑛𝑑𝑒𝑥𝐺𝑗𝑖
𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠

𝑖=1
     (7) 

With  𝐼𝑛𝑑𝑒𝑥𝐺𝑗𝑖 =  {
1 𝑖𝑓 𝐴𝑑𝑖𝑓𝑓𝑗𝑖

> 0

0 𝑖𝑓 𝐴𝑑𝑖𝑓𝑓𝑗𝑖
≤ 0

  

𝐶𝐿𝑗 = ( 
𝑁𝐺𝑗

𝑛𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑠
 )      (8) 

CL represents the ratio of bootstraps in which the original backscatter time-series presents 

the amplitude Asumj > Arandj in comparison to the total number of bootstraps. A critical threshold 

value (Tc) can be set as a CL over which the change point is considered as valid by the 

bootstrap analysis. 

4.2.3.3.3. Sensitivity to input parameter 

  The Confidence Level (CL) is a criterion related to the algorithm’s sensitivity.  In this study, 

we evaluated four different critical thresholds Tc based on the Confidence Level over which we 

consider the change as valid: Tc = 0.25, 0.50, 0.75 and 1.00. Higher Tc values resulted 

generally in a lesser number of pixels detected as “change” since only “change” pixel with high 

confidence level will reach the specific threshold, whereas lower Tc values resulted generally 

in a higher number of pixels detected as “change” because the lower specific threshold will be 

crossed on many pixels. 
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4.2.3.3.4. Spatial operations over the CuSum results 

The two maps resulting from application of the CuSum algorithm to the VV and VH SAR 

images were intersected to form the “VV intersect VH” dataset. In that case, a pixel is 

considered to be subject to a change when it is classified as ‘change’ at both the VV and VH 

polarizations. This dataset was made in order to assess if changes affect both volume and 

surface components. As the SAR backscatter is affected by the dominant scattering 

mechanism resulting from the signal/target interaction, the impact on polarisation channels can 

vary. A dominant surface or double-bounce scattering mechanism generally display a higher 

intensity on the VV channel, while a dominant volume scattering will greatly influence the VH 

backscatter signals. The changes affecting an area can modify these interactions, resulting in 

changes being more detected by a polarisation than by the other. 

The maps based on the VV and VH results were joined to form the “VV union VH” dataset. 

In that case, a pixel is considered to be subject to a change when it is classified as “change” 

from at least one of the polarizations (either VV or VH). Our objective with these “intersection” 

and “union” maps were to check the consistency / difference of the results based on both the 

VV and VH polarizations and to evaluate their complementarity. 

High threshold values of Tc (Tc = 1.00) were found to be the most robust values in terms of 

accuracy from preliminary tests. In order to reduce the number of false positives obtained from 

low Tc values in the form of small clusters of change, a spatial recombination of Tc thresholds 

was applied. Results obtained from high Tc values were combined with those obtained from 

low Tc values. The raster images were first converted to vector images containing changes as 

polygons by using a 4-pixel connexion. Secondly, the areas corresponding to “high Tc“ 

polygons (polygons to computed from high TC values) were selected and only polygons of area 

> 300 m² were kept. They composed the base on which the following filter was applied. A filter 

was then applied using lower Tc values. Only the “low Tc“ polygons including a “high Tc“ polygon 

were kept in the analysis (Annexe 2). This resulted in the cross-Tc results, also referred to as 

100_25 (base: Tc = 1.00, low Tc = 0.25), 100_50 (base: Tc = 1.00, low Tc = 0.5) and 100_75 

(base: Tc = 1.00, low Tc = 0.75). 

4.2.3.4. Validation steps 

4.2.3.4.1. Reference map composition 

The resulting maps of the date of forest change occurrence obtained in this study were 

evaluated using the PlanetScope optical images as no in-situ information was available. The 

GFW maps were not used as the visual inspection showed they missed newly deforested areas 

compared to the ones observed on the PlanetScope images, and hence, were considered to 
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be less reliable over the study zone. Eventually, all the areas visually determined as newly 

deforested from the consecutive PlanetScope images over the 2018-2019 period were 

assembled to form the PlanetScope 2018-2019 cover change image. This image was used as 

a reference to assess the accuracy of the change detection method based on the CuSum 

algorithm applied to the Sentinel 1 images. The ‘deforestation’ considered in the following parts 

of this study was the visual interpretation of change from forest to non-forest. The ‘degradation’ 

considered in the following parts of this study was estimated from the visual interpretation of 

PlanetScope images. It corresponds to the changes in the radiance of forested areas before 

their deforestation.  

4.2.3.4.2. Statistics 

There are two types of errors when comparing two binary spatial datasets: i) the false 

positive, which corresponds to the reference map detecting no change while the algorithm 

detects a change, ii) the false negative, which occurs when the reference map detects a 

change whereas the algorithm does not detect it. In order to describe the quality of the 

matching between our S1-based retrieved change map and the reference PlanetScope 

change map, the following classical statistical indicators (Overall Accuracy as Accuracy, 

Recall, Precision, F-score and Kappa Coefficient) derived from the confusion matrix were 

used. Due to class imbalance between Change and No Change, the overall accuracy, recall 

and precision should be studied along with F-score and Kappa coefficient for interpretation. 

The overall accuracy is shown here as an indicative statistic and should not be interpreted by 

itself, as explained in (Olofsson et al., 2014)) which provides exhaustive information about 

good practices for land cover change estimates. The overall accuracy is the ratio between the 

number of correctly classified pixels and the total number of pixels. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (9) 

where TP are the True Positive (pixels classified by both the reference map and the 

algorithm as ‘cover change’), TN are the True Negative (pixels classified by both the reference 

map and the algorithm as ‘no cover change’), FP are the False Positive errors and FN are the 

False Negative errors. The precision corresponds to the ratio between the number of pixels 

correctly classified as ‘cover change’ and the total number of pixels classified as ‘cover change’ 

by the algorithm. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (10) 
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The recall corresponds to the ratio between the number of pixels correctly classified as 

‘cover change’ and the total number of pixels classified as ‘cover change’ by the reference 

map. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (11) 

The F1-score is the weighted average of precision and recall. This score is used when the 

classes are unevenly distributed. 

𝐹1 = 2
𝑟𝑒𝑐𝑎𝑙𝑙 .𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
              (11) 

 

The Kappa Coefficient is a measure quantifying how better the algorithm performs 

compared to a random classification according to the frequency of each class. 

𝜅 =  
𝑃0−𝑃𝑒

1−𝑃𝑒
       (12) 

Where Po is the Observed Accuracy (Eq.9) and Pe the expected accuracy. 

𝑃𝑒 =
𝑇𝑃+𝐹𝑃

𝑇𝑜𝑡𝑎𝑙
.

𝑇𝑃+𝐹𝑁

𝑇𝑜𝑡𝑎𝑙
+  

𝑇𝑁+𝐹𝑁

𝑇𝑜𝑡𝑎𝑙
.

𝑇𝑁+𝐹𝑃

𝑇𝑜𝑡𝑎𝑙
    (13) 

4.2.4. Results 

Results obtained from the investigation of the PlanetScope data revealed a cover change 

area estimated at 341.5 ha (15.1% of the total study area) over the 06/01/2018 – 26/11/2019 

period. 

4.2.4.1. Spatiotemporal distribution of the changes 

The CuSum algorithm was applied on the time-series of backscattering coefficients from 

the Sentinel-1 SAR images acquired at C-band in both the VH and the VV polarisations, for Tc 

values of 0.25, 0.5, 0.75 and 1.00. Cover changes detected by the CuSum approach are 

presented in Figure IV.6-a to d, and Figure IV.7-a to d, respectively for VH and VV. Change 

pixels are developed in continuous and consistent spatial patterns. For all mapping 

configurations (in terms of polarisation and Tc values), the number of pixels affected by a 

change decreases as Tc increases:  the total area presenting a change ranges from a minimum 

value of 113.2 ha (VV intersect VH, Tc = 1) to a maximum value of 1333.6 ha (VV union VH, 
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Tc = 0.25). Smaller clusters affected by changes are generally detected for lower values of Tc 

than for higher values. Besides, the cluster size is also greater for lower values of Tc than for 

higher Tc values. The use of higher Tc values lowers the number of these clusters, but also 

reduces the size of the larger clusters. The latter are most often connected whereas the small 

clusters are not. 

The results of the change detection method were compared with the PlanetScope reference 

map.  Results obtained for a lower Tc value of 0.25 show a better detection of the cut areas 

with lower false negatives (True Positives =  273.7 ha / False Negatives = 67.8 ha for VV union 

VH) than for higher Tc values of 1 (True Positives = 160.5 ha / False Negatives = 181.1 ha for 

VV union VH). However, results obtained for lower Tc values (Tc = 0.25) present a large number 

of false positives (1060.0 ha for VV union VH) compared to higher Tc values of 1 (327.7 ha for 

VV union VH, Table IV.1). It is worth noticing that the larger clusters of change detected for 

any VV and VH combinations and for any Tc values correspond to the areas detected as cut 

in the PlanetScope reference map. 

When comparing the results of the CuSum algorithm applied to the polarization channels, 

the VV channel detects more small clusters of change compared to the results obtained at VH. 

Similar results were obtained when comparing VV with VV union VH results. The area of the 

largest clusters was lower for VV (True Positives = 230.9 ha and False Negatives = 110.6 ha 

for Tc = 0.25, True Positives = 136.6 ha and False Negatives = 205.0 ha for Tc = 1.00). The 

clusters based on the VV polarization are more isolated than those obtained at VH polarization. 

For low Tc values (high sensitivity to changes), less changes are detected using VV than using 

VH, but it is the opposite for a higher Tc value. 
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Base Tc TP (ha) TN (ha) FP (ha) FN (ha) 

VV 

0.25 230.9 1426.1 488.9 110.6 

0.50 227.5 1501.6 413.5 114.0 

0.75 217.8 1641.2 273.9 123.8 

1.00 136.6 1895.4 19.7 205.0 

100_25 219.9 1719.6 195.5 121.7 

100_50 217.1 1764.6 150.5 124.5 

100_75 208.6 1810.5 104.6 133.0 

VH 

0.25 261.3 1029.8 885.2 80.3 

0.50 253.8 1193.9 721.2 87.8 

0.75 239.7 1453.0 462.1 101.9 

1.00 128.2 1893.8 21.3 213.4 

100_25 259.5 1153.3 761.8 82.0 

100_50 249.1 1491.1 424.0 92.4 

100_75 231.6 1718.7 196.4 109.9 

VV union 

VH 

0.25 273.7 855.1 1060.0 67.9 

0.50 269.7 1007.8 907.3 71.9 

0.75 258.4 1296.1 618.9 83.1 

1.00 160.5 1882.3 32.8 181.1 

100_25 273.0 895.9 1019.2 68.5 

100_50 267.7 1257.5 657.6 73.8 

100_75 252.8 1614.6 300.5 88.7 

VV 

intersect 

VH 

0.25 218.9 1599.4 315.6 122.7 

0.50 212.2 1686.5 228.5 129.4 

0.75 199.2 1797.5 117.6 142.3 

1.00 104.9 1906.9 8.2 236.6 

100_25 200.4 1806.2 108.9 141.2 

100_50 196.4 1829.7 85.3 145.2 

100_75 187.4 1858.4 56.7 154.1 

  Legend Legend Legend Legend 

  
<85 

(<25% c) 

<479 

(<25% nc) 

>256 (>75% 

c) 

>256 

(>75% c) 

  
85-171  

(25-50%) 

479-958 

(25-50%) 

256-171 

 (75-50%) 

256-171 

(75-50%) 
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171-256 

(50-75%) 

958-1436 

(50-75%) 

171-85 

 (50-25%) 

171-85 

(50-25%) 

  
>256 

 (>75%) 

>1436 

(>75%) 

<85  

(<25%) 

<85 

(<25%) 

Table IV.1: Comparison between the CuSum results and the reference map. Change area of 

reference (from PlanetScope images) = 341.5 ha, non-change area of reference = 6581.1 ha.   

c = change area, nc = non-change area, TP: True Positives, TN: True Negative, FP: False 

Positive, FN: False Negative. The colour legend is qualitative: red is considered as “poor”, 

orange as “relatively poor”, yellow as “relatively good” and green as “good”. 

According to Table IV.2, the number of separated clusters of change is not proportional to 

the threshold. This could be explained as the bigger clusters can often be dissociated at higher 

Tc, but smaller Tc clusters can disappear at higher Tc. The cross-threshold operations result in 

increasing mean and median areas compared to their simple Tc equivalent. 

Base Tc 
Number mean area 

(ha) 

median 

(ha) 

VV 

0.25 1711 0,4207 0,0544 

0.50 2054 0,3121 0,0453 

0.75 1972 0,2493 0,0453 

1.00 453 0,3449 0,0272 

100_25 122 3,4043 1,65 

100_50 122 3,013 1,4505 

100_75 138 2,2695 1,1785 

VH 

0.25 583 1,9666 0,0453 

0.50 1077 0,9053 0,0635 

0.75 1522 0,4611 0,0725 

1.00 525 0,2847 0,0181 

100_25 41 24,9114 3,6535 

100_50 77 8,7425 2,7016 

100_75 115 3,7219 2,1486 

VV union 

VH 

0.25 574 2,3235 0,0181 

0.50 1041 1,1307 0,0272 

0.75 1953 0,4492 0,0453 

1.00 586 0,3297 0,0181 

100_25 29 44,561 0,5802 



Chapter IV 
Monitoring forest disturbances from Sentinel-1 time-series: a CuSum-

based approach 

Page | 112  
 

100_50 55 16,8254 2,9645 

100_75 117 4,7293 2,1576 

VV 

intersect 

VH 

0.25 1609 0,3322 0,0544 

0.50 1703 0,2587 0,0363 

0.75 1160 0,2731 0,0363 

1.00 240 0,4715 0,0725 

100_25 92 3,3616 2,0229 

100_50 97 2,9045 1,7973 

100_75 101 2,417 1,514 

Table IV.2: Spatial comparison between the CuSum clusters of change detected. 
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Figure IV.6: CuSum algorithm results at VH polarization with Tc = (a) 0.25, (b) 0.50, 

(c) 0.75, (d) 1.00 with PlanetScope reference map cuts as blue-colored polygons.

a b 

c d 
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a 

c 

b 

d 

Figure IV.7: CuSum algorithm results at VV polarization with Tc = (a) 0.25, (b) 0.50, (c) 0.75, (d) 
1.00 with PlanetScope reference map cuts as blue-colored polygons. 
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4.2.4.2. Cross comparison against external datasets using confusion-

matrix derived statistics 

When comparing results obtained for all mapping configurations based on VV, VH and their 

combinations (intersection and union) and for any Tc value (0.25, 0.5, 0.75, 1 and 100_25, 

100_50 and 100_75), the precision ranges from very low (0.21 for VV union VH for Tc=0.25) 

to high (0.93 for VV intersect VH for Tc=1.00). Precision is very similar for all mapping 

configurations for Tc = 1.00 (0.87 to 0.90). The results of the different mapping configurations 

are very scattered for Tc ranging from 0.25 to 0.75. The cross-Tc combination generally 

increases the precision (compared to the simple Tc configuration), for instance the precision 

increased by 11.0% for VH (compared to Tc = 0.5 against 100_50) or by 23.8% for VV intersect 

VH (compared to Tc = 0.25 against 100_25, Table IV.3, Figure IV.8). However, the use of 

cross-Tc does not significantly increase the precision for VV union VH (for Tc = {0.25; 0.50} 

against {100_25; 100_50}) and for VH (Tc = 0.25 against 100_25). Whatever the Tc values, the 

VV intersect VH presents a better precision, followed by simple VV with a difference in 

precision of 0.11 (Table IV.3). 

The accuracy results range from acceptable (50% for VV union VH at Tc = 0.25) to very 

accurate (91% for VV intersect VH at 100_75). The range of results is larger for lower Tc values 

than for higher ones. The use of cross-Tc leads to a narrower range of the accuracy values, 

increasing the accuracy from 2% to 10%. The most stable accuracy values were observed for 

VV intersect VH, with accuracy ranging from 81% to 91%.   For VV intersect VH, the accuracy 

results obtained for Tc = 1.00 are similar to those obtained for cross-Tc = 0.75. 

Lower recall values were obtained for higher Tc values (Table IV.3, Figure IV.8).  The range 

of the Recall values is 0.34 - 0.78 considering all combinations of polarisations. This range is 

larger for Tc = 0.75 than for Tc = 0.25, 0.50 or 1.00 considering all possible combinations of VV 

and/or VH. The best recall values at all Tc and cross-Tc were obtained with VV union VH, 

increasing up to 0.78 for cross-Tc = 100_25.  

The Kappa coefficient values range from very low (0.12) to acceptable (0.59) considering 

all VV and/or VH combinations. The range of the Kappa coefficient values is larger for lower 

Tc values. Use of cross-Tc configurations increases the Kappa coefficient by 13.5%. Overall, 

the higher value of the kappa coefficient is obtained using VV intersect VH. 

The F1-score results range from relatively low (0.33) to acceptable (0.64) considering all 

VV and/or VH combinations. Use of cross-Tc configurations increases the F1-score by 4% up 

to 15%. Overall, the higher value of the F1-score is obtained using VV intersect VH. 
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Base Tc Precision Accuracy Recall Kappa 

coefficient 

F1-

score 

VV 

0.25 0.32 0.73 0.68 0.29 0.44 

0.50 0.35 0.77 0.67 0.33 0.46 

0.75 0.44 0.82 0.64 0.42 0.52 

1.00 0.87 0.90 0.40 0.50 0.55 

100_25 0.53 0.86 0.64 0.50 0.58 

100_50 0.59 0.88 0.64 0.54 0.61 

100_75 0.67 0.89 0.61 0.57 0.64 

VH 

0.25 0.23 0.57 0.76 0.15 0.35 

0.50 0.26 0.64 0.74 0.21 0.38 

0.75 0.34 0.75 0.70 0.32 0.46 

1.00 0.86 0.89 0.38 0.47 0.53 

100_25 0.25 0.63 0.76 0.20 0.38 

100_50 0.37 0.77 0.73 0.36 0.49 

100_75 0.54 0.86 0.68 0.52 0.60 

VV union 

VH 

0.25 0.21 0.50 0.80 0.11 0.33 

0.50 0.23 0.57 0.79 0.16 0.36 

0.75 0.29 0.69 0.76 0.26 0.42 

1.00 0.83 0.91 0.47 0.55 0.60 

100_25 0.21 0.52 0.80 0.12 0.33 

100_50 0.29 0.68 0.78 0.26 0.42 

100_75 0.46 0.83 0.74 0.47 0.57 

VV 

intersect 

VH 

0.25 0.41 0.81 0.64 0.39 0.50 

0.50 0.48 0.84 0.62 0.45 0.54 

0.75 0.63 0.88 0.58 0.54 0.60 

1.00 0.93 0.89 0.31 0.42 0.47 

100_25 0.65 0.89 0.59 0.55 0.62 

100_50 0.70 0.90 0.57 0.57 0.63 

100_75 0.77 0.91 0.55 0.59 0.64 

  

legend 0 – 0.25 0.25 – 0.50 0.50 – 0.75 0.75 - 1   

  

Table IV.3: Confusion matrix - derived statistics obtained by comparing the CuSum results to 

the PlanetScope reference map.
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a 

c 

b 

d 

Figure IV.8: CuSum results statistics based on Planet cut map of reference. (a) Precision, (b) Accuracy, (c) Recall, (d) Kappa coefficient. 
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4.2.5. Discussion  

Raincells are a large source of contamination of the backscatter coefficient over tropical 

forests. When applying the CuSum algorithm, we noted that it is crucial to filter out the images 

affected by the presence of raincells. If not, the inclusion of a contaminated pixel in the 

temporal average of the backscatter is likely to impact the results of the change detection 

method. In the present study, we found that the Contrast parameter from the Haralick’s textures 

provided an efficient way to detect the contaminated images.  

The lack of in-situ data complicates the validation process of the surfaces identified as 

presenting a cover change. By using visual interpretation of PlanetScope high resolution (3 m) 

images, clear cuts, field cuts and field cover changes could be clearly identified. The visual 

interpretation permitted to clearly separate forest and non-forest areas, and the changes 

occurring over these two types of covers. The validation of the method presented above was 

limited to clear cuts from forest areas, but changes over non-forest areas could be also 

detected using our approach, showing that this technique is able to detect forest cuts and forest 

degradation but also crop field cuts and soil cover changes. 

High precision (0.93), recall (0.80), accuracy (91%), were obtained by evaluating the results 

of different parameterizations of the CuSum algorithm against PlanetScope, used as a 

reference, but the value of the Kappa coefficient remains relatively average (0.59 for the best 

configuration). The statistics of the comparison between the GFW map and the PlanetScope 

reference map show that, over the study area, the GFW map presents high accuracy (86%), 

but average precision (0.54), recall (0.57) and Kappa coefficient (0.48). The Tree Cover Loss 

area estimated from GFW dataset was 204 ha (9.0 % of the study area) vs 341.5 ha (15.1 % 

of the study area) for the PlanetScope-based reference map. The results of our method applied 

to Sentinel-1 SAR images has a higher Kappa coefficient than GFW in spite of being impacted 

by large false positives. Several clusters detected using the CuSum approach to the Sentinel-

1 SAR images did not correspond to cuts based on the PlanetScope visual interpretation.  As 

it can be seen in Figure IV.9, several zones were detected “as cover changes” by applying 

CuSum before the zones were visually seen as deforested. The PlanetScope images exhibited 

a change in radiance in these zones but this change is much lower than that due to clear-cut. 

Later on (from a few days to 3 weeks later generally), most of these zones were cut. We 

assumed that the change in radiance in the PlanetScope images corresponds to degradation 

prior to deforestation. As the PlanetScope reference map we made does not consider 

“degradation” but only “deforestation”, the value of the Kappa coefficient and precision may be 
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impacted by the “degradation” events detected by CuSum but unconsidered by the reference 

map, thus remaining relatively low in comparison to the other (recall, accuracy) criteria. 

According to the results some changes are well detected from only one polarization 

configuration (either VV or VH). This means both polarizations are affected differently by 

changes. But, overall, most big clusters of deforestation (showing a wide area labelled as 

deforestation on the reference map) are detected from both polarizations. The detection of a 

change by a polarization seems to be affected by (1) the nature of the change and (2) the 

magnitude of the change.
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Figure IV.9: (a) 10/09/2018 PlanetScope image, (b) 08/11/2018 PlanetScope image, (c) 03/01/2019 PlanetScope image, (d) CuSum results 
based on VV with Tc = 0.75. Blue polygons correspond to PlanetScope cut map. 
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CuSum detected changes in many zones before their estimated dates of cut (64%, 167.3 

ha, Table IV.4, Annex 1). This is consistent with the detection of degradations which occur 

before the reference dates of cut. Due to the relatively low availability of non-cloud-

contaminated Planet images and the difficulty to monitor all degradations using this source, a 

precise estimate of the time-lag between degradation and cut could not be evaluated in this 

study, so that any change corresponding to a cut detected between the two nearest 

PlanetScope images is considered as a good detection.  

Using two PlanetScope images separated by a long period would be suboptimal. Indeed, 

both degradation resulting in canopy gaps and canopy recovery may happen during a long 

period and the PlanetScope visual interpretation would then miss the degradation events that 

happened during that period. The use of a PlanetScope image temporally too close to the 

forest change detected by applying CuSum to Sentinel-1 SAR images can also miss the 

change. Indeed, this image may not be able to detect the forest degradation that was detected 

on the SAR images (as this change may not affect the canopy enough to be visible on the 

image). In both cases (small degradation and recovery), changes detected by the SAR images 

may not be detected by the Planet images. This effect may explain some false positives. 

Note that the date pre-emptively detected is mostly detected within two weeks before the 

actual dates of cut. Nearly no detection of cuts was made later than the dates of cut seen 

through PlanetScope visual interpretation (5.93 % of the study area, corresponding to 15.49 

ha), suggesting that some of the false positives made by applying CuSum are mainly due to 

degradation just before forest cut, and not by false detection of cut forests. Recent studies 

using Sentinel-1 images found that tropical canopy gaps and degraded canopy can be partially 

monitored using High Resolution SAR images ((Numbisi and Van Coillie, 2020; Reiche et al., 

2021). It seems that our results confirm these findings over our study area. 

 

The sensitivity threshold (Tc) plays a crucial role for the precision and recall criteria of the 

algorithm. A high Tc value provides a robust result with many false negatives and very few 

false positives whereas a low Tc value provides results reducing vastly the false negatives but 

Time period 

monitored 

Total TP 

Cut area 

(m²) 

TP change area 

detected in time 

(m²) 

TP change 

area 

detected 

early (m²) 

TP change 

area 

detected 

early (%) 

TP change 

area 

detected 

late (m²) 

TP change 

area 

detected late 

(%) 

2018/01/06 - 

2019/11/26 
2613700 782500 1676300 64,14% 154900 5,93% 

Table IV.4: Temporal evaluation of the CuSum results based on VV with Tc = 0.75. 
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greatly increasing the false positives. The combination of the results based on VV and VH and 

the use of cross-threshold Tc values seems to be a good compromise to optimize both 

accuracy and precision. The number of false positives is relatively large for all configurations, 

but as explained earlier, the reference map is not ground truth as no in-situ data was available 

and it did not account for forest degradation before forest cut. Despite this lack of in situ data, 

spatially & temporally consistent results were obtained in this study, making us confident in our 

evaluation. For instance, a spatial coherence of the cross-threshold results was found (Figure 

IV.10): it seems the detected cuts form clusters which are dis-connected for high Tc values and 

the connection between clusters increase for decreasing Tc values, which could be interpreted 

by the fact roads or forest paths make connection between the different clusters of cut forests. 

It seems that small areas detected with a low Tc threshold and which are disconnected from 

the big clusters disappear for higher Tc values and are less reliable than those estimated with 

the “cross-threshold” clusters. The generalisation of this algorithm to dry forests and deciduous 

forest showing strong seasonal variability needs to be further tested, and the method probably 

adapted, as in (Ruiz-Ramos et al., 2020).
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Figure IV.10: Map of the CuSum spatial results for VH with (a) simple Tc = 100, (b) 

cross Tc =100 and 75, (c) cross Tc = 100 and 50, (d) cross Tc = 100 and 25. 

a b 

c d 
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4.2.6. Conclusion  

Cover change in tropical forests is difficult to monitor due to the lack of in-situ data and the large-scale 

extent of deforestation. Using Sentinel-1 C-SAR dual polarisation images, we were able to monitor cover 

changes in a Democratic Republic of Congo forest concession applying the CuSum approach to the 

Sentinel-1 SAR images.   

According to accuracy assessment derived from the confusion matrix, CuSum applied to VV 

polarisation Sentinel-1 SAR images provides better results than using the VH polarization in terms of 

accuracy (minimal difference between VV and VH results of 1% for Tc = 1.00 up to 16% for Tc = 0.25), 

precision (minimal difference between VV and VH results of 0.01 for Tc = 1.00 up to 0.28 for 100_25) and 

Kappa coefficient (minimal difference between VV and VH results of 0.03 for Tc = 1.00 up to 0.30 for 

100_25). The highest precision, related to the lowest False Negative ratio, was obtained using the 

intersection of VV with VH, with a minimal difference of 0.06 when comparing VV intersect VH Tc = 1.00 

with VV Tc = 1.00 and a maximal difference of 0.33 when comparing VV intersect VH 100_50 with VH 

100_50.  

It is important to note that large differences of forest cut were found between our reference map based 

on PlanetScope (341.5 ha) and the GWF Cover Loss map (204 ha) in this area. It is probably due to the 

fact the tropical forest of DRC is often affected by cloud cover, and the better revisit time and resolution 

provided by PlanetScope OrthoScene led to improved detections.  Our approach based on Sentinel-1 

images is less affected by cloud cover, and the 12-day revisit time allows a good temporal monitoring. 

GFW Cover Loss map presents lower accuracy, precision, recall and kappa coefficient than the modified 

CuSum algorithm with a cross-Tc of 100_50. It also detects less true change area (189 ha) than the 

modified CuSum algorithm (up to 231.6 ha for VH  100_75). 

The combination of the algorithm presenting the least false positives (high Tc value) with algorithms 

presenting more false positives (low Tc value) contributes to reduce the false positive errors obtained for 

low Tc values (minimum difference of 60.9 ha when comparing VV intersect VH Tc = 0.75 to VV intersect 

VH 100_75 to a maximum difference of 297.2 ha when comparing VH Tc = 0.5 to VH 100_50). It also 

contributes to reduce the false negative errors obtained for high Tc value (minimum difference of 72 ha 

when comparing VV Tc = 1.00 to VV 100_75 to a maximum difference of 131.4 ha when comparing VH 

Tc = 1.00 to VH 100_25). Overall, the CuSum parameters that provided the best detection of vegetation 



Chapter IV 
Monitoring forest disturbances from Sentinel-1 time-series: a CuSum-based 

approach 

Page | 125  
 

cover change amongst the different polarisations and Tc configurations is VV intersect VH, cross-Tc 

100_75 (Kappa coefficient: 0.59, Precision: 0.77, Accuracy: 0.91, Recall: 0.55). 

The lack of in-situ data led us to use a PlanetScope-based reference map of the cover changes which 

is only based on remotely sensed optical observations and which present many limitations. In particular, 

degradation effects preceding deforestation were not monitored in this reference map, and canopy gaps 

can recover between two images. This could partially explain why our results, based on Sentinel-1 SAR 

images, exhibit more changes than detected in the reference map. This could also explain the lower 

scores obtained at VH than at VV when applying CuSum to Sentinel-1 images as observations at the VH 

polarisation are more sensitive to the degradation effects than at the VV polarisation (Kellndorfer, 2019). 

This could affect the false positives detected using VH: they are more numerous compared to using VV. 

In conclusion, some of the false positives can be attributed to degradation detected using Sentinel-1 SAR 

images that cannot be identified using optical images as previously noted by Numbisi and van Collie 

(2020) and Reiche et al. (2021).  

The major drawback of our approach is its limitation to the detection of only one change against time. 

Once a pixel is affected by a change, its status does not evolve against time. We are currently working 

on a multi-temporal detection change approach that will be helpful to characterize the evolution of the 

forest cover from degradation to deforestation and then the possible recovery and could also be applied 

for the monitoring of lower vegetation canopy types.   
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Abstract 

Tropical forests are vulnerable to deforestation, and various monitoring techniques have been 

developed based on remotely sensed data to map deforestation, but are facing multiple problems in the 

tropical areas. For instance, the techniques based optical data, which are widely used to monitor 

deforestation, face severe limitations in the humid tropical forest due to high cloud cover. Sentinel-1 C-

SAR dense time series can be used for a temporally more accurate monitoring. In this study, a change 

detection algorithm commonly used in the financial domain, the Cumulative Sum (CuSum) algorithm, was 

modified to be applied on time-series of Sentinel-1 images in a forest concession of Democratic Republic 

of Congo (DRC) near Kisangani.  The validation was made through the visual interpretation of 

PlanetScope OrthoScene images as it missed in-situ data. The results show a precision up to 0.75, an 

accuracy up to 0.95 and a kappa coefficient up to 0.40 for clear cut detection. The algorithm is able to 

detect forest degradation activities before the clear cuts.  

Index Terms— CuSum, Sentinel-1, C-SAR, vegetation cover change, tropical forest, deforestation, 

degradation 
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4.3.1. Introduction 

The tropical forests play a major role in the global climate regulation as they can recycle about 2.1 Gt 

CO2 yearly (Ruiz-ramos et al., 2018). In Africa, deforestation occur for multiple reasons, including illegal 

operations for commercial logging, selective logging causing degradations, or even cuts to fulfil the 

growing needs of local populations (Tyukavina et al., 2018). Coarse scale satellite observations allowed 

to quantify the impact of deforestation in terms of carbon losses (Fan et al., 2019; Wigneron et al., 2020). 

At a much higher spatial resolution change detection methods based on satellite remotely sensed data 

have been developed in order to monitor such changes (Hansen et al., 2013; Tyukavina et al., 2018) but 

encounter limitations over the tropical areas as they rely on optical data, which are very often 

contaminated by clouds. Another study uses SAR shadows to monitor deforestation areas (Bouvet et al., 

2018). Other studies showed a better temporal accuracy in change detection (Hamunyela et al., 2020; 

Reiche et al., 2018a) merging optical and SAR images to account for the sub-annual variability. Yet, such 

methods increase the computational complexity and costs. These state-of-the-art change detection 

algorithms need increasing computational power as the satellite remotely sensed images spatial and 

temporal resolutions continue to increase. 

The method developed in this study is based on the analysis of dense Sentinel-1 C-SAR image time 

series using a CuSum (Kucera et al., 2007; Manogaran and Lopez, 2018; Ruiz-Ramos et al., 2020) that 

we modified. The modified CuSum allows for the detection of any structural change in the time series, 

overlooking most seasonal variability. 

4.3.2. Data and Methods 

4.3.2.1. Data and study site 

Two Earth Observation (EO) datasets were used in this study: Sentinel-1 Ground Range Detected 

(GRD) for the analysis and an optical dataset, PlanetScope Ortho Scene 3 m pixel resolution for the 

validation. Sixty Sentinel-1 IW GRD VV and VH images, provided by the European Space Agency (ESA) 

at https://scihub.copernicus.eu, and two PlanetScope images acquired on 08/01/2018 and 29/12/2019, 

available at https://www.planet.com were downloaded over our study site, located between 25.4122° and 

25.4657° E, 0.9033° and 0.9376° N (Figure IV.11).  

https://scihub.copernicus.eu/
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4.3.2.2. Methods 

4.3.2.2.1. Preprocessing and processing 

Sentinel-1 SAR images were pre-processed using the VtWeb preprocessing routine 

(https://visioterra.org/VtWeb/) consisting of orbit correction, orthorectification, thermal noise removal, 

radiometric correction and terrain correction. PyRAT Toolbox’s bilateral filter (Reigber et al., 2019) was 

then applied to reduce the speckle. The VV and VH images contaminated by the presence of dense 

tropical clouds were removed automatically using a threshold based on the Haralick’s Contrast texture 

(Robert M. Haralick, K. Shanmugam, 1973). The 13/11/2018 image was then removed. 

Figure IV.11: Location of the study area with (a) Borders of the Democratic Republic of Congo (in cyan) 
and (b)The study area (in red) within the IFCO COD-018-11 forest concession (in black), with Natural 
Earth II in background. 

a 

b 
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4.3.2.2.2. CuSum algorithm 

The Cumulative Sum (CuSum) algorithm is a change point detection method based on time series 

analysis. It stems from financial science (Flores et al., 2019; Manogaran and Lopez, 2018).  The method 

is based on analysing, over each pixel, the deviation of the measurements from their mean values (= the 

residual time-series Rsum) considering the temporal sequence of the measurements. 

𝑅𝑠𝑢𝑚 =  ∑ 𝑅𝑖
𝑛𝑖𝑚𝑎𝑔𝑒𝑠

𝑖=1
      (1) 

where    𝑅𝑖 =  𝛾𝑖
0 − 𝛾0̅̅ ̅      (2) 

Extrema are then determined to compute the amplitude Asum: 

𝐴𝑠𝑢𝑚 = 𝑅𝑠𝑢𝑚_𝑚𝑎𝑥 −  𝑅𝑠𝑢𝑚_𝑚𝑖𝑛      (3) 

where Rsum_max is the maximum value of Rsum and Rsum_min the minimum over each pixel. 

The date of change is estimated at the date of Rsum_max. 

A bootstrap analysis is recommended to “validate” the change, i.e., to assess if the change results 

from randomness or from the sequel of values in the time series. It consists in reorganizing randomly the 

backscatter time series nbootstrap times, losing the temporal information then computing the amplitude of 

residuals of the newly arranged series. Its amplitude was computed as well as the Confidence Level (CL), 

a sensitivity criterion, which is the ratio of the number of times the reorganized series amplitude is lower 

than the original amplitude divided by the total number of bootstraps. 

We computed four different critical thresholds Tc over which the change is considered as ‘valid’: 0.25, 

0.50, 0.75, and 1.00. Lower Tc should result in a high detection level with a lot of commissions and few 

omissions whereas higher Tc should result in a very accurate detection: few commissions but many 

omissions. 

Intersections between the polygons of lower Tc and that of higher Tc were selected if their area is 

higher than 200 m².  These formed the datasets 100_25; 100_50 and 100_75. 

The VV by VH product results from the intersection between VV and VH. 
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4.3.2.3. Validation method 

PlanetScope OrthoScene images acquired on 08/01/2018 and 29/12/2019 were used to visually 

assess the changes and clear cuts over the study area and build a reference map of cover changes. This 

reference map was used to compute the statistics derived from confusion matrix analysis: Accuracy, 

Precision, Recall and Cohen’s Kappa coefficient. According to this reference map, 190.5 ha were cut 

over the period 2018-2020. 

4.3.3. Results 

4.3.3.1. Spatial patterns of changes 

Results of the application of the CuSum method applied to the time-series of VH and VV Sentinel-1 

SAR images for different Tc and their combination show linear patterns forming a network throughout the 

map. The changes are mostly located at the roads that were built during the monitoring period, as seen 

on PlanetScope reference map (Figure IV.12) and their vicinity. The log storage areas were detected on 

the road sideways. Numerous clusters of change can be detected outside the roads, most of which seem 

to be connected to the roads. The VV by VH cross-threshold 100_75 detected 364.23 ha as change 

areas. Results obtained for a lower Tc value show a higher number of commissions compared to higher 

Tc value. The VH results map shows a higher area detected as change than the VV results map. The 

algorithm presents few omissions at low Tc (10.92 %). 
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Figure IV.12: (a) PlanetScope image from 29/12/2019, cross-threshold 100-75 results map from (b) VV 

by VH, (c) VV and (d) VH. 

a b 

c d 
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4.3.3.2. Comparison against external datasets 

As shown in Figure IV.13, the overall accuracy is very high (up to 97.3 %) for the VV by VH result map 

for Tc = 1.00. The precision is medium (53.4 %), but the recall is lower (26.4 %) as well as the kappa 

coefficient (34.1 %). When comparing the different critical thresholds and combinations, it is possible to 

see that the VH results are overall less performant than the VV results. The use of simple Tc thresholds 

led to overall lower statistical scores than the spatial combination of thresholds. The highest Kappa 

coefficient (40.0 %) is obtained using the VV by VH cross threshold 100_75 with medium precision (32.1 

%), high accuracy (95.3 %) and good recall (61.4 %). 
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4.3.4. Discussion 

The CuSum algorithm can be applied to a high number of SAR images to detect changes to limit its 

sensitivity to the vegetation seasonal changes and their monitoring depending on the available images. 

The lower precision score can be explained by different factors: the high number of commissions 

compared to the small cut area detected in the reference map, but we can also make the hypothesis that 

Figure IV.13: Statistics derived from the confusion matrix used in the comparison between the reference 
map and the results change map based on VV, VH and VV by VH with different thresholds and cross-
thresholds. (a) Accuracy, (b) Recall, (c) Kappa coefficient. 
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the algorithm is able to detect degradation activities under the canopy that optical dataset cannot monitor, 

thus creating false commissions. This is also what causes the Kappa coefficient low score.  

The CuSum algorithm is able to detect the clear cuts in the tropical forest. The clusters connected to 

the road and unseen from the optical-based reference map exhibit well-organized patterns and can be 

interpreted as forest degradations beneath the canopy. The choice of the CL sensitivity parameter through 

the selection of different Tc thresholds is found to be critical to ensure the best possible detection of the 

changes affecting the forest cover. We also found the combination of several Tc thresholds to improve 

the quality of the results.  

This could explain the high number of commissions between the changes detected by the CuSum and 

those visually interpreted through PlanetScope images: the results based on S1 suggest that the 

reference deforested/degraded area estimated from PlanetScope may be strongly under-estimated. 

The high temporal frequency of the Sentinel-1 images seems to be palliating to the average capability 

of C-SAR for monitoring deforestation in tropical areas. 

4.3.5. Conclusion 

The CuSum algorithm was found to be a very interesting algorithm for change detection in dense 

backscatter time series over tropical forests. CuSum is less sensible to seasonal change in vegetation 

as it is able to detect abrupt changes in the observed time series. The spatial combination of high and 

low Tc thresholds provides better results than simply keeping results for high Tc values. The combination 

of both the VV and VH detection results also enhanced the Kappa coefficient by reducing the number of 

commissions. The results showed an overall accuracy up to 97%. 
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4.4. Contribution to this work and perspectives in the PhD course 

This work brings to light the potential of the CuSum algorithm, previously deemed too imprecise in 

comparison with recent algorithms. The implementation of spatial-temporal CuSum cross-Tc 

recombination has allowed the CuSum to be very effective for monitoring tropical deforestation.  

In this work, changes to forest cover were detected before actual deforestation (viewed via remotely 

sensed optical images) and during what was deemed to be ‘degradation’, with no in-situ data for further 

validation. This assumption would lead to a very important hypothesis, namely that in tropical forests, the 

Sentinel-1 SAR images were able to detect degradation under the canopy that would be invisible to any 

optical monitoring systems.  

The CuSum cross-Tc could detect only one change over a whole time-series, and not differentiate 

between different states if multiple changes occurred. This feature led to the following thinking: would it 

be possible to detect both degradation and deforestation using the CuSum on tropical areas by modifying 

the ‘single point detection’ method inherent to the CuSum?  

This interrogation was the basis of the second part of my PhD, still focused on offline methods to 

produce deforestation assessments over a period of time: the multi-change detection CuSum cross-Tc 

development. 
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5.1. Introduction 

This chapter presents the work developed in the second part of my PhD, the implementation of the 

multi-detection CuSum cross-Tc for deforestation and degradation monitoring, called ReCuSum. The 

development of this algorithm was originally made in order to differentiate the degradation phase from 

the clear-cut phase in the IFCO concession near Kisangani, DRC, but the motive shifted to forest cover 

change monitoring due to the lack of validation data to differentiate degradation from deforestation. The 

area was also moved from DRC to the Amazon Forest in the Para state in Brazil. This study area is a 

test site for the Payment Program for Environmental Services (PSE). 

The development of the method was quite fast, as it was an iterative CuSum method with time-series 

separation at every valid change date found. However, this method was time-consuming and needed to 

be optimized before being used in large areas. The outputs are a map of the number of changes per pixel 

and a raster file containing the maps of date of change.  

The early results further shifted this study object from differentiating degradation and deforestation 

phases to a dual objective. The first objective consists in fine scale forest cover change monitoring, 

whereas the second objective consists of the classification in forest or non-forest, which might be 

differentiated on the number of changes occurrence. The binary classification goal was added because 

the test area had a larger variety of land cover than the study area in the first article. 

Given the results of the binary classification, the capability of the single-change CuSum cross-Tc to 

monitor all changes occurring in an area (forest and non-forest) was assessed. As most changes 

occurring on both covers are correctly monitored, I decided to create a non-forest mask by applying the 

single-change CuSum cross-Tc on an earlier period. This period ends at the starting date of the monitoring 

period. 

An article presenting the results obtained in the Para Sate has been submitted to the International 

Society for Photogrammetry and Remote Sensing (ISPRS). ReCuSum's capabilities were also evaluated 

on a temperate maritime pine forest in Aquitaine, north of the Arcachon Basin, Aquitaine, France. The 

results were presented at IGARSS 2022 (Ygorra et al., 2022). 
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Abstract 

Change detection methods based on Earth Observations are increasingly used to monitor rainforest 

in the intertropical band. Until recently, deforestation monitoring was mainly based on remotely sensed 

optical images which often face limitations in humid tropical areas due to frequent cloud cover, leading 

to late detections of disturbance events. After the launch of Sentinel-1, Synthetic Aperture Radar (SAR) 

images have been increasingly used to monitor deforestation owing to the high spatial and temporal 

resolutions offered by this mission composed of two identical satellites. In this study, we propose a multi-

temporal version of the CuSum algorithm, a change detection method we previously applied to time-

series of Sentinel-1 SAR images, to monitor deforestation/degradation in the Congo rainforest. CuSum 

is based on a Cumulative Sum method combined with a spatial recombination of Critical Thresholds 

(CuSum cross-Tc). The new multitemporal CuSum method (ReCuSum) we developed was applied to a 

time-series of 82 Sentinel-1 dual polarization (VH, VV) Ground Range Detected (GRD) images acquired 

in the Parà State, in the Brazilian Amazonia, over the 29/09/2016 - 01/07/2019 period. The ReCuSum 

method consists in iteratively applying the CuSum cross-Tc to monitor multiple changes in a time-series 

by splitting the time-series at each date of change detected and by independently iterating over the time 

periods resulting from the splits. The number of changes in the time-series was then analysed according 

to the vegetation type and showed a difference between non-forest vegetation and forested areas. A 

threshold based on the number of changes (Tnbc) was then developed to differentiate the vegetation type. 

The ability to monitor non-forest vegetation was analysed: the CuSum cross-Tc detected up to 90% of 

the total non-forest vegetation area over the study region in the past period. The non-forest vegetation 

and older disturbances were then removed from the monitored area. After removing past disturbances 

and removing the pixels covered with non-forest vegetations based on Tnbc, the application of the 

multitemporal CuSum led to a precision of 81%, a recall of 68%, a kappa coefficient of 0.72 and a F1-

score of 0.74 in forest disturbance monitoring. 

Keywords: SAR Remote Sensing; Sentinel-1; Cumulative Sum Algorithm; Tropical Deforestation; Multiple 

Change Detection, Forest Benchmark. 
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5.2.1. Introduction 

Tropical rainforests are both a sink and a source in the carbon cycle with an overall neutral budget 

(Fan et al., 2019). These forests are vulnerable to anthropogenic activities, including selective logging or 

clear-cuts and burnings to fulfil the needs of local populations (Contreras-Hermosilla, 2000; Turubanova 

et al., 2018). Recently, the anthropogenic pressure increased, mainly through increased deforestation 

and degradations (Creese et al., 2019; Kleinschroth et al., 2019; Qin et al., 2021). Due to the 

unsustainable or illegal natures of these activities in these regions (Kleinschroth et al., 2019; Lescuyer et 

al., 2011; Umunay et al., 2019), there is an urgent need for a monitoring system at large-scale and with 

fine spatial and temporal resolutions. Remote sensing is a key tool to meet these requirements. 

 Remote sensing has been identified as a major tool for monitoring deforestation (Lynch et al., 2013). 

Several global operational systems producing near real-time forest disturbance alerts have been 

developed using optical remote sensing datasets since early 2000s (Hamunyela et al., 2020; Hansen et 

al., 2013; Vargas et al., 2019). In the inter-tropical band, several national-level systems are now 

operational (Diniz et al., 2015; Wheeler et al., 2014). As the tropical regions are strongly affected by 

clouds, such monitoring systems based on optical observations may provide temporally and spatially 

inaccurate information due to the scarcity of non-cloud-contaminated images over some specific 

regions/periods (Hansen et al., 2016; Reiche et al., 2018a).  

The potential of the Synthetic Aperture Radar (SAR) systems for deforestation monitoring owing to 

cloud penetration ability of the microwaves observations has recently been highlighted (Joshi et al., 

2015). There are currently two main sensors providing SAR images with a sufficient temporal resolution 

(~ weekly or monthly) which can be used for this purpose:  Phased-Array L-band Synthetic Aperture 

Radar-2 (PALSAR-2) onboard the Japan Aerospace Exploration Agency (JAXA) satellite Advanced Land 

Observing Satellite-2 (ALOS-2) operating at L-band (Arikawa et al., 2014) and Sentinel-1, developed by 

the European Space Agency (ESA) in the framework of the Copernicus program and operating at C-band 

(Torres et al., 2012). Their respective advantages are for PALSAR-2, the use of L-band, less impacted 

by the presence of raincells and which penetrates deeper in the vegetation cover, and, for Sentinel 1, a 

free access to the data and better spatial and temporal resolutions (respectively, 6 to 12 days and 5 m x 

20 m for Sentinel-1 against 1.5 month and 50 m for PALSAR-2 (Torres et al., 2012; Watanabe et al., 

2021, 2018, 2017). The PALSAR-2 images are used by JAXA to produce a forest disturbance alert with 

a 1.5 month update and with a minimum mapping unit (MMU) of 2 ha, thus missing small-scale changes. 
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The Sentinel-1 A and B images, offering high spatial and temporal resolutions, allows a better detection 

of forest disturbances compared to optical and PALSAR-2 images (Reiche et al., 2018a). 

Many approaches have been developed to monitor deforestation using C-band images from Sentinel-

1. One approach is to use the shadow created by a change in forest cover in the opposite side of the 

satellite (Ballère et al., 2021; Bouvet et al., 2018). (Doblas et al., 2020; Hoekman et al., 2020; Mistry et 

al., 2021; Ruiz-Ramos et al., 2020;  Ygorra et al., 2021a, 2021b) used time series change point analysis. 

(Nicolau et al., 2021) used classification based on data time-series to build a decision tree. Recently, 

machine learning was used to monitor disturbances occurring in tropical rainforests (Reiche et al., 2021; 

Zhao et al., 2022). Operational alert systems such as JJFAST and RADD, based on the aforementioned 

techniques, were also developed based on L- and C-band images (Reiche et al., 2021; Watanabe et al., 

2018). 

According to Ballère et al., 2021, the algorithms used for deforestation monitoring should use a 

baseline forest benchmark to filter the detected changes, thus removing false alarms due to changes in 

other land use classes, such as agricultural activities in crop fields or pastures. For this purpose, many 

studies have used forest/non-forest masks developed from either optical (Hansen et al., 2013; 

Turubanova et al., 2018), radar (Martone et al., 2018; Watanabe et al., 2021) or lidar sensors (Verhelst 

et al., 2021). For the RADD alerts, multiple Land Use/Land Cover (LULC) products were used to produce 

a benchmark forest map (Reiche et al., 2021). The Global Forest Watch (GFW) canopy cover map in 

year 2000, excluding changes found in the 2000-2018 annual tree cover loss (Hansen et al., 2013), was 

used as a basis for forest benchmark from which they removed the dry tropical forests using the 

evergreen layer of Collection 2 Copernicus Global Land Cover dataset (Buchhorn et al., 2020). The 

produced map was then further refined using the forest benchmark map from Martone et al., 2018. The 

need for a baseline forest benchmark is particularly important for deforestation monitoring algorithms 

based on Sentinel-1 data. Disturbances affecting different covers (agriculture, inundations, urbanization) 

may be wrongly labelled as disturbances affecting forest. 

In this study, we present a change detection method developed for identifying forest disturbances 

based on time-series of Sentinel-1 C-band SAR images. The method is based on the Cumulative Sum 

algorithm (CuSum, Manogaran and Lopez, 2018), that identifies a change in a time-series based on both 

residual cumulative sum and bootstrap analysis. It has been used to monitor forest disturbances in 

tropical regions (Mistry et al., 2021; Ygorra et al., 2021a; Ygorra et al., 2021b).  
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Following (Reiche et al., 2021) and (Ygorra  et al., 2021b), we assumed that C-band SAR images are 

sensitive to both forest degradation patches and clear-cuts. Based on this assumption, the recursive 

application of the CuSum approach on different parts of a time-series for the same pixel would allow 

monitoring land cover changes, including the detection of the degradation or clear-cut dates. The 

application of such a recursive CuSum approach (referred as ReCuSum in the followings) was developed 

and is evaluated in the present study. The evaluation was made in a forest area located in the Para state 

in the Amazonian rainforest of Brazil. 

The capability of the ReCuSum method to monitor disturbances occurring on both forests and other 

land cover types was evaluated. The number of changes computed from ReCuSum was analysed to 

compare the number of changes due to non-forest vegetation and forest disturbances. Then, we 

evaluated the possibility to generate a non-forest vegetation benchmark mask from the number of 

changes estimated over forest and non-forest using a long time-series of C-band SAR images.  

5.2.2. Data and study areas 

5.2.2.1. Study area 

In several states of the Brazilian Amazonia, a payment system is already in place for maintaining 

ecosystem services, biodiversity conservation, watershed services, carbon sequestration or landscape 

conservation (Ruggiero et al., 2019; Wunder, 2015) . The selected area in the present study is a test site 

for the Payment Program for Environmental Services (PSE) evaluation located in Amazon, East of 

Altamira in the Parà State. Multiple remotely sensed image datasets are available on this test site 

(Sentinel-1, Sentinel-2, PlanetScope ortho-scene images, PlanetScope monthly mosaic). The study area 

is equal to ~ 97.2 km² mainly composed of agricultural fields, tropical rainforest, small villages, rivers and 

roads (Figure V.1). We focused the study on the 2017/2019 time period.  
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Figure V.1: Amazon study area seen from (a) Sentinel-2 image acquired on 28/07/2017 at the beginning 

of the monitoring period and (b) from PlanetScope image from June 2019 monthly mosaic, at the end of 

the monitoring period. The red striped polygons correspond to new forest cuts and the blue striped 

polygons correspond to non-forest low vegetation. 
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5.2.2.2. Data 

5.2.2.2.1. Sentinel-1 SAR images 

Deforestation detection was based on time-series of Sentinel-1 images. The Sentinel-1 mission was 

developed in the framework of the Copernicus program by ESA. It is a constellation composed of two 

satellites positioned on the same orbit plane at an altitude of 693 km, with an orbital phasing difference 

of 180°. The repeat cycle of each satellite is 12 days over the Amazon sites of the present study.  

The data used in this study correspond to the Multi-Look Detected (GRD) products. They were 

acquired in Interferometric Wide-Swath (IW) mode at VV and VH polarizations. The resulting pixel size 

is 5 m x 20 m. The images were made available by ESA at https://scihub.copernicus.eu and downloaded 

using VtWeb (https://visioterra.org/VtWeb/). The downloaded images were preprocessed, including orbit 

correction, thermal noise removal, terrain correction, speckle removal and raincell-contaminated images 

removal (see (Ygorra et al., 2021b) for more details on these preprocessings performed by VtWeb). A 

total of 82 images were used on the study area during a period of almost 3 years ranging from 29/09/2016 

to 01/07/2019. Among the 82 images, during the first year of the study period ranging from 29/09/2016 

to 01/09/2017, 29 images were used to define a forest benchmark (referred as ‘past period’). Then during 

the two following years (01/08/2017-01/07/2019) of the study period, 56 images were used for monitoring 

the changes occurring over the study area (referred as “monitoring period”). Note that a few (three) 

images were common to the two periods. As a delay is usually noted for SAR forest disturbance detection, 

if no images were common to both periods, there would be a lack of detection in the ~first three weeks 

before the start of the monitoring period (Hamunyela et al., 2017). 

5.2.2.2.2. Multispectral Optical datasets: Sentinel-2 images and PlanetScope monthly mosaic  

 The level 3B products from PlanetScope Ortho-Scene, obtained from CubeSat constellation, were 

used to produce a mosaic which was used to build a validation dataset for evaluation and validation. 

 The processing of Level 3B PlanetScope images includes conversion of radiance to top of 

atmospheric reflectance, geolocation, atmospheric correction, and cloud masking. The data are 

atmospherically corrected to surface reflectance using the 6S model combined to the spatially and 

temporally closest available MODIS aerosol optical depth (AOD) data (Levy et al., 2013). Per-pixel 

unusable data masks are derived indicating if a pixel is missing, clear, cloudy, shadowed, hazy, or snow 

covered, using a convolutional neural network. Geolocation is based on the matching of the sensed frame 

data with a globally distributed set of Ground Control Points (GCPs) derived from Landsat-8. A DTM is 

also used in the geolocation to remove relief distortion effects (Roy et al., 2021).  

https://scihub.copernicus.eu/
https://visioterra.org/VtWeb/
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/surface-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/modis


Chapter V 
Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum 

Page | 156  
 

 These images consist in 4-band Surface Reflectance (SR) images, scaled and orthorectified with a 

pixel resolution of 5 meters (Red: 605 - 695 nm, Green: 515 - 595 nm, Blue: 450 – 515 nm, Near-InfraRed: 

740 – 900 nm). Those mosaics are produced following a 4 steps procedure:  

- scene selection: the “best” scenes, i.e minimum cloud coverage allowing the maximum amount of 

GCPs to be available for orthorectification, are selected; 

- atmospheric correction: based on seasonal models of Landsat data by applying normalization and 

harmonization of TOAR scene data to SR corrected Landsat data; 

- cloud masking using the UDM2 classification for clouds and cloud shadows 

(https://developers.planet.com/docs/data/udm-2/); 

- radiometric normalization: standard Landsat based reference datasets were updated to create 

tropics optimized normalization targets. 

 They are made available through the NICFI program (https://www.planet.com/nicfi/). A PlanetScope 

monthly mosaic was accessed over the study area in June 2019, at the end of the monitoring period to 

validate the detections of changes.  A multi-spectral Sentinel-2 image (10 m resolution) acquired on 

28/07/2017 was also used to determine non-forest vegetation areas at the beginning of the monitoring 

period as no PlanetScope monthly mosaic was available. 

5.2.3. Methods  

The ReCuSum method we developed and that we evaluate in this study consists in recursively 

applying the single-change CuSum detection proposed by Manogaran and Lopez, 2018 to segment a 

time-series in several sub-periods until no more change is detected. We present successively the two 

methods in this section. 

5.2.3.1 Single-change CuSum detection 

Before describing the multi-change CuSum detection (ReCuSum), the main aspects of the single 

detection CuSum approach, that is the basis of the ReCuSum, are summarized. The CuSum change 

detection method is composed of several steps, performed after the preprocessing of the SAR images 

using VtWeb (see subsection 2.2.2), including implementation of the CuSum method and several post-

processing steps. The CuSum algorithm is based on the detection of the maximum of the Cumulative 

residual Sum series. It is accompanied by a bootstrap analysis based on the number of times the 

https://developers.planet.com/docs/data/udm-2/
https://www.planet.com/nicfi/
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cumulative residual sum series is higher than the cumulative residual sum series obtained from 

randomizing the original backscatter time-series (bootstrap). The number of times the original amplitude 

is higher than the amplitude obtained on the randomized time-series is then normalized by the number 

of iterations in the bootstrap to obtain the Confidence Level (CL). The critical threshold Tc is a threshold 

based on the confidence level.  

A change detected by the CuSum is considered valid if the bootstrap analysis shows a Confidence 

Level (CL) greater than a critical threshold (Tc) previously set. A flowchart of the different post-processing 

steps is given in Figure V.2. The main objective in the post-processing consists in lowering both the 

number of false positives in low Tc map (i.e. maps computed with a low Tc value of 75) and the number 

of false negatives in high Tc map (i.e. maps computed with a high Tc value of 100). 

 The initial post-processing steps are composed of (1) dilatation and erosion (closing) of the result 

maps, (2) combination of the results computed from observations at the VV polarization with those 

computed from observations at the VH polarization, keeping only changes happening in both images, (3) 

application of a Minimum Mapping Unit of 0.03 ha and (4) the cross-Tc spatial recombination. The cross-

Tc recombination consists in keeping all low Tc polygons intersecting with at least one high Tc polygon. 

The cross-Tc step was determined to be a step greatly increasing the quality of the resulting change 

detection compared to either low or high simple Tc. 
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Figure V.2: Commune post-processing cascade for the CuSum and ReCuSum versions. VV x VH is the 

combination of the VV-based result map with the VH-based result map. Tc is the critical threshold, and 

the cross-Tc is the spatial recombination between a high Tc map and a low Tc map. 

  



Chapter V 
Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum 

Page | 159  
 

5.2.3.2. Recursive CuSum multi-detection 

5.2.3.2.1. ReCuSum algorithm 

The ReCuSum method consists in applying the CuSum single change detection adapted for the 

processing of Sentinel-1 images (Ygorra et al., 2021b) in a recursive manner to segment a time-series in 

several sub-periods until no more change is detected (Figure V.3). At each iteration, the CuSum algorithm 

is applied on a time-series of satellite images, along with a bootstrap analysis to obtain a single change 

detection image.  

The first input for the ReCuSum method is composed by the same parameters as the CuSum cross-

Tc. For each pixel, if a change is detected, then the time-series is divided into two periods from the 

detected date of change. The single change CuSum is then separately applied over the two newly formed 

time-series in a recursive manner. If a change is detected in any of these two new periods, the resulting 

time-series is further split and analysed between the new dates of change. This process is recursively 

repeated until the original time-series is split into independent time-series in which the CuSum does not 

detect changes anymore. This approach is independently applied to each pixel of the study area. 
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Figure V.3: Application of ReCuSum on a backscatter coefficient time-series. The vertical black line is 

the date of change found by the first iteration of the CuSum, the vertical grey line is the date of change 

found by the second iteration of the CuSum.  The backscatter time-series is symbolized by an orange 

line, and its mean is symbolized in red (mean over the entire time-series), blue (mean before the first 

change) and green (mean after the first change). 

5.2.3.2.2.  Post-processing steps of the ReCuSum method  

5.2.3.2.2.1. Threshold based on the number of changes: Tnbc 

The application of the ReCuSum approach resulted in maps of the total number of changes which 

occur during the observation period. These maps of number of changes were obtained using multiple 

input parameters: different Tc (100, 95, 75) along with different sensor polarization combinations (VV, 

VH, VV x VH). Classical descriptive statistics (i.e., mean, standard, deviation and 25/75 quartiles) were 

used to describe the pixel populations of both non-forest vegetation and forest classes based on the 
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number of changes found in the ReCuSum result map (boxplots). The maps of the number of changes 

were also visually assessed for spatial consistency.  

We compared the results obtained from the different input parameters (Tc, polarization) to determine 

which combination results in the best forest / non-forest vegetation separability based on the number of 

changes. 

5.2.3.2.2.2. Removal of past changes: determination of radar-active non-forest 

vegetation areas 

The application of the CuSum to a period before the monitoring period was performed. All changes 

found in this past period were considered as non-forest vegetation areas for the monitoring period and 

was excluded from our analysis. The application of this removal is referred to as ‘rm_past’ in the following. 

Different minimum mapping units were tested. 

5.2.3.3. Validation 

A reference map was estimated from visual interpretation of the Sentinel-2 and PlanetScope mosaic 

and was used to distinguish 3 main classes (Figure V.4): 1) non-forest vegetation at the beginning of the 

monitoring period, 2) disturbed forest during the monitoring period and 3) undisturbed forest. A pixel-

based validation was performed using these 3 “reference“  classes. A pixel from the CuSum outputs was 

considered as representing non-forest vegetation if this pixel (1) belongs to the non-forest vegetation in 

the reference map and (2) is labelled as ‘change’ by the algorithm. A pixel was considered as representing 

“disturbed” forest if (1) it belongs to disturbed forest in the reference map and (2) is labelled as ‘change’ 

by the algorithm. For the forest stratum, a pixel was considered “undisturbed forest”’ if (1) it belongs to 

the forest stratum in the reference map and (2) is labelled as ‘no change’ by the algorithm, following the 

recommendation from (Olofsson et al., 2014). 
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Figure V.4: Flowchart of the reference map production. Purple corresponds to the CuSum binary results, 

Red to the non-forest vegetation stratum, yellow-brown to the disturbed forest stratum, and green to the 

undisturbed forest stratum, all estimated from visual interpretation of the Sentinel-2 and PlanetScope 

mosaic. 

5.2.4. Results 

5.2.4.1. Backscatter time series 

Times series of backscatter coefficients in the study area for two vegetation types (forest and non-

forest) and for two cases 1) no change detected and 2) at least one change detected are presented in 

Figure V.5.  Backscatter values over forest ranged from -8 to -4 dB in the VV polarization, and from -16 

to -10 dB for the VH polarization. Backscatter values over non-forest vegetation ranged from -11 to -4 dB 

for the VV polarization and from -18 to -10 dB for the VH polarization. The time-series obtained over 

forest with no detected change and the ones obtained over the non-forest vegetation with no detected 

change are fairly similar, the signal being rather stable, centred at -6.5 dB for the VV polarization. For the 

VH polarization, the signal is centred on -13 dB for both forest and non-forest vegetation. 
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The detected change over forest in Figure V.5.a consists in a significant decrease in the VV signal (-

5 to -10 dB in 08/2018), followed by a further decrease to -13 dB between 08/2018 and 12/2018, and by 

an increase to -9 dB. The detected change also results in a decrease in the VH signal, from -14 to -18 

dB in 2 months, then a recovery to -16 dB.  

Over the non-forest vegetation (Figure V.5.b and Figure V.5.d), the detected changes stem from a 

high variability of the signal. Compared to non-forest vegetation not showing a change, the signal is lower 

from 01/05/2018 to 05/09/2018, then higher for the rest of the study.  

 

Figure V.5: Backscatter time series of (a) VV polarization in forest, (b) VV polarization in non-forest 

vegetation, (c) VH polarization in forest, (d) VH polarization in non-forest vegetation. 
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5.2.4.2. Relationship between the number of changes and the vegetation 

type 

5.2.4.2.1. Number of changes as a function of polarization and Tc  

The number of changes occurring over the Amazonian study area for both different polarizations and 

Tc is presented in Figure V.6. The number of changes decreases with increasing Tc values. This number 

is slightly higher for VV than for VH polarization and slightly lower for VH x VV combination. The VH 100, 

VH 95 and VV x VH 75 are the configurations presenting the highest difference between forest 

disturbance number of changes and non-forest vegetation number of changes. Overall, the number of 

changes is significantly higher (5 to 10 changes more) for the non-forest vegetation class than for the 

forest disturbance class for all polarizations used. 
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Figure V.6: Boxplot of (a) the number of changes of the pixels belonging to the non-forest vegetation 

class and (b) the number of changes belonging to the forest cover change class in the Amazon. 

5.2.4.2.2. Relationship with the vegetation type 

The number of changes per pixel widely varies over the study areas. Estimates of the number of 

changes over forest and non-forest areas were achieved using the CuSum over the forest/non-forest 

vegetation classes obtained in the reference map. In the study area, the relative percentage of area 

corresponding to non-forest vegetation increases with the number of changes per pixel in the VV and VH 

polarizations, 92% of the pixels presenting a number of changes ≥ 18 for VH 100 belonged to the non-

forest vegetation class against 81% for VV 100. 86% of the pixels presenting a number of changes ≥ 19 
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changes for VH 95 belonged to the non-forest vegetation against 76% for VV 95 (Figure V.7.a and Figure 

V.7b). The number of changes obtained at VV x VH is lower and the distribution is very different from the 

former results. Indeed, the percentage of area classified as non-forest is lower than 50% at all boundaries 

for all Tc (Figure V.7.c).  

Figure V.7.d presents the distribution of the number of changes at VH polarization for different Tc. This 

polarization was chosen as it exhibits the best determination of the non-forest areas (Figure V.7.b). Most 

pixels belong to the 1 – 3 changes range. A secondary maximum is observed for 6-9 and 18-20 changes 

for Tc = 100 and Tc = 95, respectively. This secondary maximum is used as the optimum number for the 

automation in the change detection approach. This phenomenon did not appear at Tc = 75, which is why 

the threshold selection was based on Tc = {100,95}. 
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Figure V.7: Area (%) as a function of the minimum number of changes of the non-forest vegetation (brown 

to orange) and vegetation forest disturbance (green) areas at VV polarization (a), (b) the percentage area 

associated to the VH lower number of change boundary, (c) to the VV x VH lower number of change 

boundary in the Amazon study area and (d) the percentage of the total area detected as change for each 

number of changes. 
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5.2.4.3. Spatial visualization of the changes 

In Figure V.8, results are presented with an increasing complexity in the processing, from the lower 

number of post-processing steps (raw cross-Tc) to the highest-end product (cross-Tc with rm_past and 

Tnbc application). The simple cross-Tc product detected both forest disturbances and non-forest 

vegetation classes accurately (Figure V.8.a). The number of changes is higher in the non-forest 

vegetation areas than in the forest affected by disturbances areas. There are very few changes detected 

outside these areas. In Figure V.8.b, the application of Tnbc reduced the number of pixels within all non-

forest vegetation patches, but some pixels from the centres of forest disturbance areas were also 

removed. The pixels located in the corners of non-forest vegetation areas did not exhibit changes 

according to our method. In Figure V.8.c, the rm_past application successfully removed entire patches 

of non-forest vegetation. Few pixels located in the connection zone between forest disturbance and non-

forest vegetation areas were also removed. Some patches of non-forest vegetation were not removed 

using this method.  

In Figure V.8.d, the combination of the two additional post-processing steps allowed for those 

remaining non-forest vegetation areas to be removed. Visually, when comparing Figure V.8.b and Figure 

V.8.c to Figure V.8.d, the pixels removed by both methods are almost the same, meaning the two 

methods fulfil the same role with different characteristics. This will be later confirmed in subsection 5.2.4.4 

using statistical information. 
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Figure V.8: Number of change result map of VV x VH 100_75 (a) algorithm, (b) algorithm after applying 

rm_hist, (c) algorithm after applying Tnbc, (d) algorithm after applying both rm_past and Tnbc. 

Number of changes 
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5.2.4.4. Statistical results 

In the study area, there are 31 disturbances confirmed by the reference map to be detected (Table 

V.1). An event is considered correctly detected if a CuSum result polygon intersects or contains the 

reference polygon. The rm_past Tnbc CuSum systematically detected more than 80% of these 

disturbances, on any polarization or combination used.  

Parameters 

Number of 

disturbances 

correctly detected 

Percentage of 

disturbances 

correctly detected 

(%) 

rm_past VV Tnbc 100_75 30 97 

rm_past VH Tnbc 100_75 30 97 

rm_past VV x VH Tnbc 100_75 25 81 

Table V.1 : Statistics on the number of disturbances correctly detected using the VV, VH or VV x VH 
100_75 rm_past – Tnbc parameters. 

Table V.2 shows the area estimates resulting from the forest disturbance detected by the different 

versions of the CuSum post-processings developed in this study (with the application of rm_past, and / 

or Tnbc) compared to the reference map. The relative error in the estimation is computed from the False 

Positive errors (FP).  The CuSum cross-Tc 100_75 applied on VV x VH data resulted in overestimation 

of the forest disturbance area, + 115% compared to the reference area. This high value results mostly of 

the FP area, as it composes 61.5% of the estimations. The application of Tnbc lowers the estimated area 

and the relative error, showing a value +50.8% higher than the reference area. This overestimation is 

half composed (50.5%) by the FP errors. 

The application of rm_past reduces the estimation error to +10.4% of difference with the reference 

map area. The estimated area is 29.5% composed by the FP errors, compensating the False Negative 

(FN) errors.  The VV x VH 100_75 rm_past is the algorithm providing the closest results to the reference 

forest disturbance derived from the reference map in terms of surface estimates of the deforestation. The 

application of both rm_past and Tnbc lowers the estimated area and the FP errors to an underestimation 

of -16.02% compared to the reference. The FP errors compose 18.19% of these estimations. 
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Algorithm 

Estimated 

disturbed 

forest area 

(ha) 

False 

Positive 

(ha) 

False 

Negative 

(ha) 

Relative 

error 

Comparison 

with 

reference 

Reference map 1020.9 0 0 0% 0% 

VV x VH 100_75 2196.4 1351.4 175.9 61.5% 115.1% 

VV x VH 100_75 

rm_past 
1127.2 332.3 226.0 29.5% 10.4% 

VV x VH 100_75 

Tnbc 

1539.2 777.9 259.6 50.5% 50.8% 

VV x VH 100_75 

rm_past Tnbc 

857.3 155.9 319.5 18.2% -16% 

Table V.2: Estimation of the area detected as forest disturbance. rm_past means with removal of past 
changes, Tnbc means with application of Tnbc. Red is considered as a weak result, orange as an acceptable 
result and green as a good result. 

Figure V.9 shows the number of pixels correctly labelled as change (TP for True Positive), Falsely 

labelled as change (FP), Falsely labelled as not a change (FN) and correctly labelled as not a change 

(TN for True Negative). The TP numbers are high with the VV x VH cross-Tc algorithm (845.0 ha, Figure 

V.9.a), but decrease with the additional post-processing steps. The applying rm_past decreases the TP 

to 794.9 ha (Figure V.9.b), and the application of Tnbc decreases TP to 761.3 ha (Figure V.9.c). The 

application of both steps decreases TP to 701.4 ha, reducing the initial TP by 17.1% (Figure V.9.d). The 

number of FP is very high for VV x VH cross-Tc (2859.1 ha), but decreases to 1730.5 ha (39.5% decrease) 

by applying rm_past. The application of Tnbc decreases FP to 2278.5 ha (20.3% decrease). The 

application of both rm_past and Tnbc decreases FP to 1002.0 ha (65.0% decrease). 
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Figure V.9: Histograms of the TP, FP, FN area of (a) VV x VH 100_75, (b) VV x VH 100_75 with applied 

rm_past, (c) VV x VH 100_75 after applying Tnbc, (d) VV x VH 100_75 after applying both rm_past and 

Tnbc. 

The Figure V.10 shows the statistics for the non-forest vegetation. Statistical results were obtained 

over non-forest vegetation: A precision of 0.48, an accuracy of 0.87, a recall of 0.90, a kappa coefficient 

of 0.56 and a F1-score of 0.63 for the VV x VH 100_75 are reached over non-forest vegetation (Figure 

V.10.a). 

 The application of rm_past (Figure V.10.b) decreases most statistics on non-forest vegetation. The 

precision decreases to 0.15 (-33%), the accuracy to 0.79 (-8%), the recall to 0.14 (-76%), the kappa 

coefficient to 0.03 (-53%), and the F1-score to 0.14 (-49%).  

The application of Tnbc (Figure V.10.c) lowers the statistics up to 46% for the non-forest vegetation. 

The precision decreases to 0.34 (-14%), the accuracy to 0.82 (-5%), the recall to 0.44 (-46%), the kappa 

coefficient decreases to 0.29 (-27%) and the F1-score decreases to 0.38 (-25%). 
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 The combined application of both rm_past and Tnbc (Figure V.10.d) lowers the statistics even more, 

with the precision decreasing to 0.04 (-44%), the accuracy decreased to 0.79 (-8%), the recall is lowered 

to 0.03 (-87%), the kappa coefficient to 0 (-56%) and the F1-score to 0.03 (-60%). 

 

Figure V.10: Precision, Accuracy, Recall, Kappa coefficient, F1-score of the monitoring of non-forest 

vegetation using (a) cross-Tc products, (b) cross-Tc products after applying rm_past, (c) cross-Tc products 

after applying Tnbc [8,19], (d) cross-Tc products after applying Tnbc [8,19] and rm_past. 

For the forest disturbance (Figure V.11), the statistics are lower than those obtained for the non-forest 

vegetation. The precision is lower (0.38). The accuracy is high (0.84), as the recall (0.82). The kappa 

coefficient is also fairly lower (0.44), as the F1-score (0.52). 

 After the application of rm_past, the precision increases to 0.70 (+32%), the accuracy to 0.94 (+10%). 

The recall decreases to 0.77 (-5%), but the Kappa coefficient and the F1-score increase respectively to 

0.7 and 0.74 (+26% and +22%). 
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The application of Tnbc shows similar effects. The precision increases to 0.49, the accuracy to 0.89. 

The recall decreases to 0.74. The Kappa coefficient increases to 0.53 and the F1-score to 0.59. 

The application of both post-processing steps increases the precision to 0.81 (+43%), the accuracy to 

0.95 (+11%). The recall decreases to 0.68 (-14%). The kappa coefficient increases to 0.72 (+28%) and 

the F1-score to 0.74 (+22%). 

 

Figure V.11: Precision, Accuracy, Recall, Kappa coefficient, F1-score of the monitoring of forest 

disturbance using (a) cross-Tc products, (b) cross-Tc products after the rm_past, (c) cross-Tc products 

after applying Tnbc [8,19], (d) cross-Tc products after applying Tnbc [8,19] and rm_past. 

5.2.4.5. Proposed new post-processing cascade 

The upgrades to the CuSum cross-Tc algorithm consist in modifying the post-processing cascade with 

multiple steps (Figure V.12). 
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 The first added step consists in the application of the single-change cross-Tc CuSum algorithm in a 

period past from the monitoring period to identify non-forest vegetation areas and past changes. The 

parameters for this algorithm are VV intersection VH, cross-Tc 100_75, MMU = 0.1 ha. 

Then, the ReCuSum is started on the monitored period as simple Tc for VH, at Tc = 100 and Tc = 95. 

The maps of number of changes and the pixel population dynamics are analysed to produce a threshold 

Tnbc. Pixels showing a number of changes higher than this threshold in VH 100 or VH 95 are then 

considered as non-forest vegetation changes. 

Finally, the ReCuSum is applied to the monitored period with the following parameters: VV intersection 

VH, cross-Tc 100_75, MMU = 0.03 ha, producing the main result map. The pixels considered as changes 

happening over non-forest vegetation from Tnbc are then removed from this image, along with past period 

changes / non-forest vegetation changes. 

 

Figure V.12: New work process proposed for ReCuSum: computation of past changes and Tnbc. 
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5.2.5. Discussion 

The ReCuSum results are similar to the CuSum simple detection results in terms of pure statistics and 

spatial assessments. The algorithm has the ability to detect the changes occurring in the tropical forest 

cover (Recall: 0.82 and F1-score: 0.52 for the VV x VH combination 100_75), but also to monitor the non-

forest vegetation (Recall: 0.9 and F1-score: 0.63 for the VV x VH combination 100_75). 

The number of changes obtained using the ReCuSum approach allows definition of an additional post-

processing step, Tnbc, as a threshold based on the VH polarization at Tc = {100, 95} to mostly discriminate 

the forest disturbance from changes happening in non-forest vegetation areas. The application of this 

threshold decreases significantly the non-forest vegetation statistics, implying a decrease in the ability to 

detect changes in non-forest vegetation areas while reducing the false positives in the forest disturbance 

detection. 

Visually, most pixels removed by the application of Tnbc belong to the non-forest vegetation class, but 

pixels in the patches borders still remain detected as change due to the large window used in the 

despeckling step (7x7, bilateral filter). Only the centres of the patches were successfully removed from 

the map. The forest disturbance areas were less impacted by Tnbc, but some patches had their centres 

removed at a smaller scale. 

The use of Tnbc allows the discrimination of changes occurring in non-forest vegetation from changes 

happening in forested areas, as shown by the sharp decrease in the non-forest vegetation statistics after 

application. The thresholds used are based on the VH at Tc = {100,95}. The number of changes is higher 

in the centre of non-forest vegetation patches but also in the centre of areas affected by forest 

disturbance. The frequency distribution of the number of changes shows a rebound at VH polarization 

for Tc = 100 around 8 changes and at VH polarization for Tc = 95 around 18 changes. The threshold can 

be automatically determined using these distributions, but a user’s visual assessment is expected to 

result to a more accurate threshold estimate. The use of this threshold decreases the relative error in the 

forest disturbance estimation from 67% to 50%. The relative error remains high due to the removal of 

pixels within the forest disturbances area. 

The ability to monitor the non-forest vegetation areas along with the forest disturbance was used into 

another additional post-processing step.  This ability allowed performing a pseudo-classification of the 

zone by applying the CuSum on a period prior to the monitoring period. The pixels found as ‘change’ 

during this period were removed from the monitoring period result maps. This additional step proved to 
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be efficient and should be used over the Amazon rainforest, as shown by the fair increase in precision, 

accuracy, Kappa coefficient and F1-score (respectively 32%, 10%, 26% and 22%). This step removed 

most of the changes located in the non-forest vegetation area (76% decrease in the area mapped as 

‘change happening on non-forest vegetation’). This result suggests that the CuSum results based on 

Sentinel-1 time-series are affected by the LULC and the stability of the signal. The application of rm_past 

decreased the relative error in the forest disturbance estimations from 67% to 29%. The estimations 

made using the CuSum different parameters are nearing the reference forest disturbance area 

estimation, being 10% higher than the reference forest disturbance area. 

Another limit highlighted in this study is related to the CuSum approach in itself, as it needs at least a 

period of stability for the ‘mean’ to be accurate. In forest disturbance, a general short backscatter 

decrease is known to occur, even if hindered by changes either in soil moisture linked to rainfall or in 

roughness. The dates of change detected are delayed but the number of changes is accurate as the 

signal is mostly stable after a short period of regrowth. In a non-forest vegetation area showing multiple 

dates of change, the backscatter signal is not stable. It is often composed of a steep decrease followed 

by a long increase in backscatter coefficient due to regrowth. The application of the cumulative sum is 

then impacted because of the high disparity of the signal and its instable character. This phenomenon 

will create many dates of change as the values are continuously decreasing then continuously increasing, 

showing a time continuity. The dates of change detected will be at the beginning of the monitored period 

or at its end, and will recursively increase by one date. In such cases, the dates of detected change in 

non-forest vegetation areas are incorrect, but the number of changes resulting from this behaviour allows 

the pixels to be labelled as ‘non-forest vegetation’. The application of a filter based on the standard 

deviation before applying the CuSum may remove the pixels showing these behaviours. 

The application of both supplementary steps does not result in significant increases in the F1-score 

and kappa coefficient compared to the application of rm_past. This result is due to the effect of 

compensation: the decrease in the recall is compensated by the increase in precision (the decrease in 

false positives is compensated by an increase in false negatives). Pixel removal in both non-forest 

vegetation and forest disturbance areas leads to a 16% underestimation of the forest disturbance 

compared to the reference map. The map resulting from the application of both post-processing steps on 

VV x VH 100_75 is the most precise but shows the most omissions and an increased difference to the 

validation dataset compared to the map resulting from the application of rm_past on VV x VH 100_75 

dataset. 



Chapter V 
Multiple breakpoints Evolution of the cross-Tc CuSum: ReCuSum 

Page | 178  
 

5.2.6. Conclusion 

The ReCuSum method, based on multiple iterations of the CuSum single-detection approach, 

demonstrated a strong potential for monitoring forest disturbance in tropical areas compared to a single 

iteration of the CuSum (single-detection) method. In these areas, a threshold based on the number of 

changes (Tnbc) can be set either automatically or semi-empirically (better discrimination) to discriminate 

between non-forest vegetation from forest disturbance using Sentinel-1 images, performing a pseudo-

classification (changes occurring in non-forest vegetation against changes occurring in forested areas). 

In this study area, better results were obtained for Tnbc selection using VH polarization at Tc = {100,95}. 

Nevertheless, it is strongly recommended to visually assess the result map to help select the best Tnbc 

threshold minimizing the forest cover change detection loss. 

This method can be used as an alternative when no forest benchmarks are available. As the CuSum 

(single change and multi change) ability to detect non-forest vegetation has been demonstrated in this 

study (precision of 48%, an accuracy of 0.87, a recall of 90%, a kappa coefficient of 0.56 and a F1-score 

of 0.63 have been obtained for the VV x VH combination at Tc = 100_75), the CuSum can be used to 

detect non-forest vegetation subject to disturbances and remove it in an area and past period before the 

wanted monitoring period, thus acting as a forest/non-forest benchmark. The active non-forest vegetation 

areas can be later classified to undisturbed non-forest vegetation in monitoring period, limiting the 

effectiveness as forest/non-forest benchmark. In forest cover change monitoring, combining the 

application of rm_past and Tnbc provides the best results with the VV x VH cross-Tc 100_75 combination 

(precision of 81%, an accuracy of 0.95, a recall of 68%, a kappa coefficient of 0.72 and a F1-score of 

0.74 have been obtained for the VV x VH combination at Tc = 100_75). The application of rm_past in the 

VV x VH cross-Tc 100_75 dataset ensures the best estimations of forest cover change areas 

(overestimation of 10% compared to the reference forest cover change area). 
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Abstract 

Index Terms— CuSum, Sentinel-1, C-SAR, vegetation cover change, temperate forest, 

deforestation, classification 

Earth Observation data is often used for land cover classification or change monitoring. It is 

rarely used for both goals in a single algorithm. The multi-change Cumulative Sum (CuSum) 

algorithm proposed in this study allows both classification and change monitoring in a single 

algorithm using Sentinel-1 C-SAR time series. The multi-change CuSum approach allowed to 

classify pixels belonging to the fused non-forest vegetation and bare soil classes apart from the 

pixels belonging to new cuts. The distinction of each class is better made using the two 

polarizations: VV is more accurate for detecting non-forest vegetation (Kappa coefficient of 0.62) 

and VH for detecting new cuts (Kappa coefficient of 0.65). The algorithm showed an accuracy up 

to 0.82. 
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5.3.1. Introduction 

With the world population growth, the area occupied by forests has been diminishing at an 

alarming rate.  Deforestation monitoring is performed using Earth Observations (EO) on a regional 

to global scale. Until recently, most global products were based on satellite optical images (Karra 

et al., 2021; Santoro et al., 2017). With the launch of Sentinel-1, SAR images have been 

increasingly used owing to the high spatial (#1 at 20 x5 m) and, above all, temporal (6 to 12 days) 

resolutions of these data (Bouvet et al., 2018; Deutscher et al., 2017; Dostálová et al., 2021; 

Haarpaintner and Hindberg, 2019; Hamunyela et al., 2017; Hirschmugl et al., 2017; Reiche et al., 

2021; Ruiz-ramos et al., 2018; Ruiz-Ramos et al., 2020; Sr. et al., 2018; Ygorra et al., 2021b). 

Approaches used for deforestation monitoring are generally based on change detection method 

relying on a reference cover map stemming from a land cover classification. Very few methods 

achieve both the definition of the reference cover map and the detection of the changes. The 

Cumulative Sum algorithm is one of the numerous techniques developed for monitoring changes. 

This method is based on time series analysis. It is used to detect noticeable change in the average 

of a time-series (Manogaran and Lopez, 2018; Ygorra et al., 2021b).   This method has been 

recently applied for the monitoring of temperate and tropical forests (Kellndorfer, 2019; Ruiz-

ramos et al., 2018; Ruiz-Ramos et al., 2020; Ygorra et al., 2021a; Ygorra et al., 2021b). Applied 

to Sentinel-1 time-series in tropical forests, it was found to detect changes earlier than the 

reference date of cut. This technique was applied to detect only one change per pixel in the time-

series of images (e.g., from forest to bare soil, in a 2-years monitoring). Here, we propose a new 

version of the algorithm to detect several changes in the time-series of images. In this study, we 

apply this new method to a time-series of Sentinel-1 SAR images acquired over Les Landes forest 

between 07/2016 and 06/2017. 

5.3.2. Study area and datasets 

5.3.2.1. Study area 

The Les Landes pine forest study area is located in the Aquitaine region near the Arcachon 

Basin, in the southwest of France. The study area is mainly composed by Maritime Pine tree 

forests and wastelands. The study area is located between -1.231° and -1.092° E, 44.777° and 

44.991° N and covers an area of 145 km² (Figure V.13). 
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Figure V.13: Aquitaine study Site, located North from Arcachon Basin, RGB view of the 

Sentinel-2 image acquired 12/08/2016. 
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5.3.2.2 Satellite images 

Three Earth Observation (EO) datasets were used in this study during the time period ranging 

from 21/07/2016 and 29/06/2017: Sentinel-1 Ground Range Detected (GRD) for the analysis, 

Sentinel-2 L2A at 10 m pixel resolution along with a change map from the French National Forest 

Office (ONF) for the validation. 148 Sentinel-1 IW GRD double polarization VV and VH images, 

two Sentinel-2 images acquired on 12/08/2016 and 18/06/2017 were provided by the European 

Space Agency (ESA) at https://scihub.copernicus.eu. 

5.3.2.3. Methods 

5.3.2.3.1. Preprocessing and processing 

Sentinel-1 SAR images were pre-processed using the VtWeb preprocessing routine 

(https://visioterra.org/VtWeb/) consisting of the following steps: orbit correction, orthorectification, 

thermal noise removal, radiometric correction and terrain correction (see (Ygorra et al., 2021b) 

for more details). The PyRAT Toolbox’s bilateral filter (Reigber et al., 2019) with a window of 7 by 

7 pixels was then applied to reduce the speckle. 

5.3.2.3.2. CuSum multi detection algorithm 

The Cumulative Sum (CuSum) algorithm is a change point detection method often combined 

with a bootstrap analysis to identify the significant changes in a time-series (Manogaran and 

Lopez, 2018; Ygorra et al., 2021b).  This method is based on a critical threshold (Tc) over which 

a change is considered valid. This method has been applied to remote sensing data in both 

tropical and temperate areas (Kellndorfer, 2019; Ruiz-ramos et al., 2018; Ygorra et al., 2021; 

Ygorra et al., 2021b) as a single change detection method. The Cross-Tc was also applied in this 

study. The multi-detection version of the CuSum algorithm is composed by the repetition of the 

CuSum algorithm over different time periods. Once the CuSum detected a change, the multi-

detection version splits the original time period into two distinct periods over which the CuSum 

single-change detection is run again. The iteration continues until no further valid date of change 

is found. In this study, the Tc chosen was 0.95. The minimal area unit of 300 m² was applied to 

form the cross-Tc 100_95 dataset. 

5.3.2.4. Validation method 

Sentinel-2 images were used to visually confirm the changes and clear cuts over the study 

area highlighted by the ONF change map composing the ‘cut’ class, along with determining the 

non-forest vegetation / bare soil areas at the start of the study period. Both visually defined 

https://scihub.copernicus.eu/
https://visioterra.org/VtWeb/
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reference and the ONF land cover maps were used to compute the statistics derived from 

confusion matrix analysis: Accuracy, Precision, Recall, Cohen’s Kappa coefficient and F1-score. 

The Random Sampling strategy was applied to ensure the classes are comparable in size. 23 277 

pixels (232,77 ha) were randomly selected in each class (bare soils / non-forest vegetation, cut, 

other). The cut and bare soils / non-forest vegetation classes were studied independently as two 

different reference datasets were available. 

5.3.3. Results 

5.3.3.1. Forest / non-forest vegetation classification 

The number of changes per pixel is an important variable in the class discrimination. As shown 

in Figure V.14, for the VV polarization, the pixels located in the small zones of cut appear to have 

less than 4 changes accounted for by the multi-change CuSum algorithm. Most pixels showing a 

number of change higher than 4 are located in the non-forest vegetation / bare soil class. There 

are also many changes detected in a mixed vegetation / opened forest zone.  
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Figure V.14:  VV 100_95 number of changes map on the Sentinel-2 image acquired 18/06/2017. 
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As shown in Figure V.15, the percentage of area associated with the lower boundary of the 

number of changes interval (e.g. if the lower limit is 5, the total area considered is represented by 

the pixels with 5 or more changes associated) increases with a higher boundary value, for the 

non-forest vegetation / bare soil class in both VV and VH presentations. More than 90% of the 

pixels presenting at least 8 changes are located in the soil / non-forest vegetation class in both 

the VV and VH change maps. In the cut class, the area corresponding to the number of changes 

interval decreases with the lower boundary of this interval. There are no pixels in the cut class 

showing 6 or more changes in the VV change maps and no pixels showing 8 or more changes in 

the VH change map. 

The total area corresponding to each number of changes interval decreases for both classes 

in the VV intersect VH change map. 
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Figure V.15: (a) Histograms of the area percentage in function of the lower number of changes 

interval boundary (a) applied to the cut class and (b) applied to the bare soil / non-forest vegetation 

class. 
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5.3.3.2. Comparison against external datasets 

As shown in Figure V.16, the different polarizations (VV, VH and their intersection) result in 

different statistics. The VV intersect VH recommended as the most precise combination according 

to (Ygorra et al., 2021b) shows the highest precision value for both classes (0.96 for the non-

forest vegetation / bare soils and 0.87 for the cuts). The VH polarization shows the most consistent 

results in the cut class with high precision (0.81), accuracy (0.82), recall (0.85), Kappa coefficient 

(0.65) and F1-score (0.83). The most consistent results for the non-forest vegetation / bare soil 

class are obtained by the VV polarization, with a precision value of 0.87, an accuracy value of 

0.81, a 0.73 recall value, a 0.62 kappa coefficient value and a 0.79 F1-score value. 
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Figure V.16: (a) Histograms of the precision, accuracy, recall, Kappa and F1 statistics 
(a) of the cut class and (b) applied to the bare soil / non-forest vegetation class. 
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5.3.4. Discussion 

The CuSum multi-detection is able to produce a series of dates of change on a single pixel. 

We explored the hypothesis that the number of changes is correlated to the dynamics of a cover 

in terms of backscatter coefficient. The results showed a correlation between the number of 

changes of a pixel and the class of the pixel. The pixels with a high number of changes are mostly 

located in the soil/ low vegetation class, and few to none are located in the cut class. Due to this 

characteristic, the CuSum multi-detection can be used to discriminate non-forest vegetation / bare 

soil from new cuts happening in forest. More than 90 % of the pixels showing a number of change 

greater or equal to 8 are located in the lower vegetation / bare soil class in both VV and VH result 

map.  

The distinction between forest cuts and non-forest vegetation / bare soil classes is not possible 

using this method on the VV intersect VH dataset. Firstly? The purpose of the VV intersect VH 

dataset is to reduce the false positives, only keeping the changes showing a great amplitude 

affecting both VV and VH polarizations. 

The CuSum seems to detect different events according to the polarization. The intersection of 

polarization means an event affected both polarizations, and should be considered as a great 

amplitude event. The VH polarization seems to better detect the cuts in temperate areas than the 

VV and the VV intersect VH polarizations, whereas the VV polarization seems to be able to detect 

changes on the non-forest / bare soils vegetations and thus classify it. The VV intersect VH should 

not be used to classify or to detect small changes in temperate areas. 

5.3.5. Conclusion 

The CuSum algorithm is able to detect changes in different covers (forest, bare soils, non-

forest vegetation). Considering the covers dynamics in terms of radar backscatter, the multi-

detection CuSum is able to differentiate the non-forest vegetation / bare soils from the new cuts 

on a forested area in temperate areas. The changes it detects can vary from a polarization to 

another. Further studies on the importance of the polarization in terms of physical determination 

of the change are needed. 
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5.4. Contribution to this work and perspective 

Sentinel-1 and -2 data were available, with pre-processing already applied on the VtWeb 

platform. I developed the multi-detection, but the optimisation was entirely conducted by B. Pillot, 

Research Engineer IRD working for the Institute of Research for the Development (IRD) at the 

ESPACE-DEV UMR, enabling the CuSum to be used by many users through a Python package.  

This study contributed to demonstrate the flexibility of the CuSum applied on time-series of 

Sentinel-1 images. Firstly, a non-forest mask can be established using CuSum cross-Tc over an 

earlier period. Then, the ReCuSum can be applied to the monitoring period to further discriminate 

forest cover changes from other changes. 

This flexibility is also a strength of the CuSum, as all these algorithms can potentially be used 

on other types of remote sensed data. The intensity of the change can also be considered in order 

to further reduce false positives.  

The development of this method concludes the first two parts of my PhD, which dealt with the 

offline versions of CuSum, to establish deforestation assessments over a given period of time. 

The best product available is the ReCuSum, but it is also the most expensive in terms of 

computational time and resources. 

The third and final part of the PhD deals with the development of a NRT approach, as the 

ReCuSum is an offline method requiring long time-series as input. 
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6.1. Introduction 

This chapter presents the last part of my PhD and is related to its industrial goal. The industrial 

objective of my CIFRE contract was to develop a Near-Real-Time (NRT) algorithm to monitor 

changes in forest cover using Sentinel-1 data, with a focus on the tropical area. I developed the 

CuSum NRT version by applying the CuSum cross-Tc improvement from Chapter 4 to shorter 

time-series and remove changes belonging to non-forest by applying the mask developed in 

Chapter 5. The approach was tested in the same study area as in Chapter 5, in the Para state of 

the Brazilian Amazon. Before this chapter, the CuSum critical threshold (Tc) parameters were 

tested empirically for 5 thresholds in the Democratic Republic of the Congo region: 25, 50, 75, 95 

and 100. Preliminary results from cross-Tc 100_75 and 100_95 indicated that the algorithm was 

more sensitive to speckle with a shorter time-series than the offline versions. This sensitivity was 

analysed thoroughly in this chapter. In order to check the potential of the NRT version, the 

algorithm was then compared with all state-of-the art NRT algorithms currently freely available on 

a site in Parà, near the site used in Chapter 5 and also used in the sensitivity analysis of the NRT 

version. The NRT version was then compared to the ReCuSum to evaluate potential changes to 

the performance. 

In order to achieve an objective comparison of the performance in monitoring changes in forest 

cover between all algorithms, a large validation area was needed. Two Sentinel-2 images were 

used for this purpose along with a monthly PlanetScope mosaic to build a map referencing all 

changes in forest cover which occurred between those dates by visual inspection. The area of 

this map is approximately 6,855 km². An analysis of the effect of disturbance size on the 

algorithm’s detection performance was conducted. Another analysis was conducted to compare 

the algorithm according to the Minimum Mapping Unit used, so that the comparison was objective 

and complete. 
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6.2.1. Introduction 

Tropical forests, which play a critical role in the global climate regulation by recycling between 

~2.1Gt CO2.y-1 (Federici et al., 2015) and  7.0 Gt CO2.y-1  (Harris et al., 2021) are being damaged 

at increasing rates. They are endangered by deforestation, climate change and increasing 

anthropogenic pressure (Creese et al., 2019; Gatti et al., 2021). Recent studies showed that 

tropical rainforests are both a sink and a source in the carbon cycle with an overall neutral budget 

(Fan et al., 2019). Increased global awareness of climate change and degradation of tropical 

forests has not decreased deforestation rates. According to the Global Forest Review published 

by the  World Resources Institute (WRI) in Washington, DC, USA, in 2021, the annual loss of tree 

cover has increased continuously since the beginning of the monitoring by (Hansen et al., 2013), 

in the year 2000, reaching 12 million hectares in 2020. In Amazonia, the forest losses in carbon 

stocks are driven by multiple factors, including legal or illegal selective logging causing 
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degradations, or cuts to fulfil the needs of local populations in terms of agriculture (Creese et al., 

2019; Kleinschroth et al., 2019; Lescuyer et al., 2011; Qin et al., 2021; Umunay et al., 2019). 

Remote sensing has been identified as a major tool for monitoring deforestation (Lynch et al., 

2013). Several operational systems operating in near-real-time were developed to monitor 

deforestation in tropical areas. In the Brazilian Amazon, PRODES has been issuing alerts 1988, 

joined by Near-Real-Time Deforestation Detection System (DETER) since 2004 (Assunção et al., 

2017). These systems are basing their detection on multispectral data. These monitoring systems 

have been improved over time and are still operational to this date (Diniz et al., 2015).The 

limitation of such optical systems lies in the constant cloud cover over Brazilian Amazon regions 

(Weisse et al., 2019). In certain parts of the Brazilian Amazon, mean cloud cover can reach up to 

74% (Doblas et al., 2020; Weisse et al., 2019), delaying the detections in monitoring systems 

based on optical sensors. 

The potential of base surveillance systems on Synthetic Aperture Radar (SAR) has been 

demonstrated (Joshi et al., 2015) as active sensors are less sensitive to the presence of water in 

the atmosphere. Several automatic Near-Real-Time (NRT) forest monitoring systems have since 

been developed, including JJ-FAST (Watanabe et al., 2021, 2018, 2017) using L-band SAR 

images from Phased-Array L-band Synthetic Aperture Radar-2 (PALSAR-2, Arikawa et al., 2014) 

and RAdar for Detection Deforestation alerts (Reiche et al., 2021) using C-band SAR images from 

Sentinel-1 (Torres et al., 2012). More recently, a new version of the DETER system, known as 

DETER-Radar (DETER-R), is using Sentinel-1 images for detecting changes in forest cover 

(Doblas et al., 2022). Sentinel-1 are also used by the Tropisco project to identify the shadow effect 

caused by tree cuts in the SAR images which to detect the boundaries of the deforested areas 

(Ballère et al., 2021; Bouvet et al., 2018; Mermoz et al., 2021). 

The Cumulative Sum (CuSum, (Manogaran and Lopez, 2018; Mistry et al., 2021; Ruiz-Ramos 

et al., 2020; Ygorra et al., 2021b; Ygorra et al., 2021a) applied to Sentinel-1 images was recently 

identified as an efficient tool for deforestation monitoring (Manogaran and Lopez, 2018; Mistry et 

al., 2021; Ruiz-Ramos et al., 2020; B Ygorra et al., 2021b, 2021a)). The objective of this study is 

to develop a near-real-time version of the CuSum cross-Tc. In this study, the calibration of the 

NRT version of the CuSum algorithm is presented. It consists in determining the best choice for 

the number of images before the monitored date, the number of images after the monitored date 

(delay), the high Tc value and the low Tc value in terms of F1-score on a small study area located 

in the Brazilian Amazonia. Then, the performances of the CuSum NRT method are compared 

with the ReCuSum performances. 
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6.2.2. Study areas and data 

6.2.2.1. Study areas 

The study areas consist of two sites located in the State of Parà, in the Amazon rainforest in 

Brazil (Figure VI.1). The first site was used to calibrate and validate the parameter configurations 

of CuSum cross-Tc Near-Real-Time. The ReCuSum and the CuSum NRT were compared using 

this area. This site is a small area of 97.2 km² for an improved calibration speed. This site will be 

later referred as ‘Test site’. The second site will be used for the comparison between the different 

NRT algorithms. It is a large site of 6,855.4 km². This site will be later referred as ‘Main site’. 

 

Figure VI.1: Main site (yellow rectangle) and Test site (cyan rectangle) of the study area in the 

Amazon Forest, State of Para, Brazil. The background is a RGB - Natural colours Sentinel-2 

image acquired on 28/07/2017. 

6.2.2.2. Data 

6.2.2.2.1. Sentinel-1 

RADD, DETER-R and CuSum-NRT alerts are based on time-series of Sentinel-1 C-band SAR 

images. The revisit period of the satellite is 12 days over the study area. 

The data used in this study for the CuSum NRT corresponds to the Multi-Look Detected (GRD) 

products. They were acquired in Interferometric Wide-Swath (IW) mode at VV and VH 

polarizations. The resulting pixel size is 5 m x 20 m. The images were made available by ESA at 

https://scihub.copernicus.eu and downloaded using VtWeb (https://visioterra.org/VtWeb/). The 

downloaded images were pre-processed, including orbit correction, thermal noise removal, terrain 

https://scihub.copernicus.eu/
https://visioterra.org/VtWeb/
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correction, speckle removal and raincell-contaminated images removal (Ygorra et al., 2021b). The 

resolution of the output pixels is 9.55 m².  

A total of 82 images were available on the Test site between 29/09/2016 and 01/07/2019. 

These images were divided into two periods. 26 images were employed for defining a non-forest 

mask using CuSum cross-Tc as described in Ygorra et al., submitted 2023, over the 29/09/2016 

– 01/08/2017 period.  

 56 images were then used in the CuSum – NRT version monitoring during the 01/08/2017 – 

01/07/2019 period. 

A total of 115 images are available between 01/01/2018 and 01/01/2022 over the Main site. 

The non-forest mask definition was based on 58 images over the 01/01/2018 – 01/01/2020 period. 

6.2.2.2.2. Sentinel-2 

6.2.2.2.3. PlanetScope monthly mosaic 

The level 3B products from PlanetScope Ortho-Scene, derived from the multi-spectral images 

acquired by the CubeSat constellation, were used to produce monthly mosaics. They consist in 

4-band Surface Reflectance (SR) images, orthorectified and scaled with a 5m pixel resolution 

(Red: 605 – 695 nm, Green: 515 – 595 nm, Blue: 450 – 515 nm, Near-InfraRed: 740 – 900 nm). 

 They are made available through the NICFI program (https://www.planet.com/nicfi/). Two 

PlanetScope monthly mosaics were accessed on the study area respectively in June and 

December 2019.  

6.2.3. Methods  

6.2.3.1. Reference map composition 

The calibration and validation phases were achieved on two different study areas (referred as 

Test and Main sites) on different periods of time. The calibration of the CuSum NRT over the Test 

site was performed between 01/08/2017 and 01/07/2019 due to the availability of a Sentinel-2 

image and a PlanetScope mosaic to perform the visual interpretation of forest cover changes 

(Figure VI.2). The interpretation was made on RGB colour compositions. According to this map, 

a total of 10.2 km² of forested areas showed a change in cover during the time period. 

https://www.planet.com/nicfi/
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Figure VI.2: Over the Test site (blue rectangle), forest cover changes (red hatches) were identified 

between 01/08/2017 and 01/07/2019 through visual inspection. They are superimposed on the 

PlanetScope monthly mosaic of 06/2019. 

For the same reason (i.e., the availability of the multi-spectral images), the reference map of 

the Main site was created through visual interpretation of Sentinel-2 images and a monthly 

PlanetScope mosaic. Several reference maps were produced, using (1) Sentinel-2 acquired 

between 23/06/2019 and 11/08/2021 and (2) monthly PlanetScope mosaic acquired in 12/2019. 
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First, the forest cover changes were identified using the two Sentinel-2 images, producing the 

01/07/2019 – 01/08/2021 reference map. Then, changes that occurred before 12/2019 (identified 

using the monthly PlanetScope mosaic) were removed to form the 01/01/2020 – 01/08/2021 

reference dataset. This latter operation was achieved due to the common availability period of all 

the NRT products used in the comparison. 

The difference in spatial resolution between monthly PlanetScope mosaic and Sentinel-2 

images did not affect the manual delimitation of the changes removed from the 01/07/2019 – 

01/08/2021 dataset as they were manually removed. 

The 01/01/2020 – 01/08/2021 forest cover change reference map was used on the Main site 

for the algorithm comparison (Figure VI.3). Approximately 223.5 km² of the Main site forested 

areas showed a cover change during this period. Changes found after the end of the monitoring 

period for algorithms (01/08/2021) and before 11/08/2021, date of the end of the reference 

dataset, were considered negligible. This assumption is likely to be responsible for a small 

increase in false negatives. 

Two classes were considered: forest changes and not-a-forest-change (including forest non-

change, non-forest non-change and changes occurring on other different land covers). The ‘Not-

a-forest-change’ class was considered as the reference for True Negatives and False Positives. 

With such an area (6,855.4 km²) to visually interpret, the reference map itself may be lacking 

some detections, most under the MMU of the algorithms. The missed forest cover change may 

increase the number of False Positives of the algorithm and should be accounted for in the 

interpretation. 
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Figure VI.3: Main site 01/01/2020 – 01/08/2021 forest cover change reference map. (a) whole site 

and (b) a zoom to illustrate. View: Natural colours of Sentinel-2 image acquired 11/08/2021. 
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6.2.3.2. NRT CuSum 

6.2.3.2.1. NRT CuSum sensitivity analysis 

The NRT CuSum has been developed based on the CuSum cross-Tc. The CuSum cross-Tc 

analyses long time-series in order to find a change with different critical thresholds (Tc) and then 

spatially recombines higher Tc polygons of detected change with lower Tc polygons of detected 

change. The NRT version of the algorithm works on smaller time-series, with varying length. 

 CuSum NRT input parameters differ from the ReCuSum and the CuSum single-change cross-

Tc. The post-processing cascade is similar to the CuSum single-change cross-Tc not including 

Tnbc the threshold based on the number of changes applied to the ReCuSum. The additional input 

parameters consist in the number of images considered in the time-series before the monitored 

image and the number of images considered after the monitored image, forming the length of the 

time-series. The parameters ‘Low Tc’ and ‘High Tc’ of the spatial recombination were also 

analysed. The sensitivity analysis was achieved over the Test site to determine the best cross-Tc 

thresholds as well as the best number of images to take into account before and after the 

monitored date.  

6.2.3.2.2. Sensitivity analysis validation parameter 

The input parameters possibilities were analysed using Monte-Carlo’s method. All parameters’ 

configurations within the boundaries shown in Table VI.1 were computed. The maps of changes 

obtained were then analysed using the Test site reference map. This is the same reference map 

as in Ygorra et al., 2023 in the Amazon Basin. The statistic used to analyse and to compare the 

results is the F1-score, as it is less affected by the population of pixels imbalance between change 

pixels and non-change pixels. 

 High Tc Low Tc  Number of 

images before 

Number of 

images after 

Range 96 – 100  80 – 95  6 – 12  0 – 6  

Table VI.1: Parameters of the CuSum NRT. 

6.2.3.3. ReCuSum 

The ReCuSum method was used in this study to estimate deforestation for the area and period 

considered. The method is further described in Ygorra et al., 2023. It involves the iterative 

application of the CuSum cross-Tc, thus changing the ‘single breakpoint’ feature of the CuSum to 

‘multiple breakpoints’. The ‘multiple breakpoints’ feature is obtained by splitting the time-series 
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into two parts at the first breakpoint, then running the CuSum independently on each time-series. 

The input parameters used were: 1) MMU of 300 m², 2) cross-Tc of 100_75 and 3) Tnbc (threshold 

based on the number of changes) of 8 for VH at Tc = 100 and 19 at Tc = 75. 

The removal of previous changes was also applied in order to eliminate changes that occur on 

non-forested areas, with a MMU of 1000 m², a cross-Tc of 100_75. The ReCuSum was applied to 

both Main and Test sites. 

6.2.3.4. Validation statistics 

The different NRT datasets were compared using the Main site forest cover change reference 

map. The comparison between CuSum-NRT and ReCuSum was performed using the Test site 

forest cover change reference map. Confusion matrix statistics such as False Positives (FP), 

False negatives (FN), True positives (TP) and True negatives (TN) were computed and analysed. 

Using these variables as input, the kappa coefficient, recall, precision, accuracy and F1-score 

were computed. The classes ‘Forest Change’ and ‘Not-a-Forest-Change’ are unbalanced, the 

latter being wider. This imbalance led to a necessity to interpret these variables altogether 

(Olofsson et al., 2014).  

6.2.3.5. Comparison between CuSum NRT and ReCuSum 

On both Test and Main sites, the CuSum cross-Tc NRT was used as a simulation over a period 

to establish a deforestation assessment. The ReCuSum was also used over this whole period to 

establish a similar deforestation assessment. The two obtained maps of changes were compared 

to the reference map, obtaining the aforementioned statistics. The two results were compared in 

terms of statistics. 

6.2.4. Results 

6.2.4.1. CuSum cross-Tc NRT sensitivity analysis 

6.2.4.1.1. Low Tc and high Tc combination analysis 

The results were analysed sequentially. Firstly, the F1-scores were analysed in function of the 

cross-Tc combination values of low Tc with high Tc (Figure VI.4). On Figure VI.4, it is possible to 

see that the VV and the VH polarisation results are systematically lower than the VV x VH results. 

For these two polarisations, a higher value of low Tc increases slightly the results by 0.05. The 

value of high Tc does not seem to significantly change the resulting F1-score compared to the low 

Tc value.  
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The VV x VH results show the best F1-score value, up to 0.70. An increased low Tc value does 

not systematically result in an increased F1-score, as a low Tc higher than 92 results in a lower 

maximum F1-score value (0.69 for low Tc = 93, 0.68 for 94 and 0.67 for 95). The highest F1-score 

at each low Tc value are obtained using a high Tc value of 100. A higher Tc value does not 

systematically result in a higher F1-score value, as the number of images before/after the 

monitoring date may influence the F1-score. Only values showing a F1-score > 0.60 were kept 

for the analysis of the optimal number of changes before / after for deforestation monitoring 

purposes. 

 

Figure VI.4: Graph of the F1-score obtained according to the polarisation, low Tc and high Tc 

values set in the parameters. 

6.2.4.1.2. Analysis of the number of dates before / after targeted S1 image 

The results aforementioned were further analysed to determine the influence of the number of 

images before / after the date targeted used to form the time-series (Figure VI.5). The number of 

images taken before the monitoring date to form the time series were analysed from 8 to 11 
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images. The maximum F1-score value was reached at 11 images before, this value decreasing 

for 10 and 9 images taken before. The F1-score value further decreases at 8 images.  

The number of images taken ‘after’ the monitoring date (delay) was also analysed. Results 

show an optimum obtained at 3 images taken after the monitoring date. 

 

Figure VI.5: Graph of the F1-score obtained according to the values of number of images before 

/ after the monitored date set in the parameters. 

The parameters used in the NRT CuSum for this study were Tc high = 100, Tc low = 92, number 

of images considered in the time series before the monitored date = 11 and number of images 

considered in the time series after the monitored date = 3. 

6.2.4.2. CuSum inter-comparison: NRT vs ReCuSum (Test site) 

The ReCuSum and CuSum cross-Tc NRT were compared at the Test site. The ReCuSum is 

the upgraded offline version of the CuSum cross-Tc used to produce forest cover change 
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assessment over an extended period of time. On the Test site, the ReCuSum showed 701 ha TP 

for 319 ha FN compared to 731 ha TP and 290 ha FN for the NRT version. 

The ReCuSum showed a precision value of 0.81, meaning that 81% of the alerts are validated 

changes in forest cover against 68 % for the NRT version (Table VI.2: Precision, Recall, Accuracy, 

F1-score and Kappa coefficient values obtained by comparing ReCuSum and CuSum NRT to the 

disturbance reference map.. The recall value is 68%: the ReCuSum detected 68% of the total 

forest cover change area to detect against 71 for the NRT version. 

The Kappa coefficient value is 0.72 for the ReCuSum compared to 0.66 for the NRT version. 

The f1-score value is 0.74 for the ReCuSum against 0.70 for the NRT version. 

 
Precision 

(%) 

Recall 

 (%) 

Accuracy 

(%) 
F1-score 

Kappa 

coefficient 

ReCuSum 

100_75 
81 68 95 0.74 0.72 

CuSum NRT 

100_92 
68 72 93 0.71 0.67 

Table VI.2: Precision, Recall, Accuracy, F1-score and Kappa coefficient values obtained by 

comparing ReCuSum and CuSum NRT to the disturbance reference map. 

6.2.5. Discussion 

In this article, the CuSum cross-Tc NRT was developed and analysed. The VV, VH and VV x 

VH results were compared. The VV x VH map provided the best results as mentioned in (Ygorra 

et al, 2021a; Ygorra et al., 2021b; Ygorra et al., 2022; Ygorra et al, 2023). The Tc thresholds used 

in offline-versions were chosen in a semi-empiric way and no detailed parameter analysis was 

done. Both low and high Tc combinations were analysed in order to define the optimal Tc 

parameters for cross-Tc in NRT version. A greater value of high Tc translated into a higher f1-

score. This could be interpreted as the basis for recombination needing to be as robust as 

possible. Low Tc analysis is more complex, as lower values lead to wider polygons of change and 

more connexions between polygons. The pure number of polygons also decreases, along with 

the number of False Negatives. A lower value also increases the number of False Positives and 

True Positives. A higher low Tc value reduces the polygons’ width and increases the number of 

polygons by splitting some polygons apart. This also results in a higher FN value against a lower 

FP and TP values. The switching threshold between more TP against more FP seems to be at Tc 



Chapter VI 
Development of the CuSum cross-Tc as an NRT algorithm 

Page | 215  
 

= 92, as the f1-score of low Tc < 92 or > 92 decreases. This threshold was calibrated for Brazilian 

Amazon forest cover change and should not be applied as ‘best’ in all tropical forests, even though 

it would work to some extent. A different climate, soil exploitation or degradation could easily alter 

the low Tc ‘best’ value for NRT cross-Tc to 90-94. 

Previously, we wrote that a higher number of images considered ‘after’ the monitoring date 

resulted in a lower f1-score. Previous and unpublished results on CuSum cross-Tc offline versions 

showed that a longer time-series (Two years versus one year) resulted in more accurate results. 

The opposition between NRT and offline versions could be explained by several factors. First, the 

number of images before a change should be considered, as there seems to be a balance 

between the before / after numbers of images to successfully monitor a change. This behaviour 

was also seen in the offline version in the form of difficulties to detect changes occurring near the 

beginning / end of the time-series. Second, the stability of the time-series, shorter in NRT than in 

offline, may be impacted by the regrowth phenomenon. This phenomenon would result in a higher 

number of false positives, thus a lower f1-score value. A higher number of images taken after the 

monitored date would lead to a greater regrowth and a lower f1-score. 

Finally, the CuSum NRT was compared to ReCuSum. The results showed a small f1-score 

difference between the two versions. This means that the CuSum NRT is as capable as the 

ReCuSum to monitor changes. This statement could be explained as ephemeral changes may 

not be correctly detected by the ReCuSum due to the stability of the time-series, as opposed to 

the shorter NRT time-series version. Thus, ReCuSum may miss the appearance and 

disappearance of small roads due to the regrowth of the canopy. The opposite phenomenon can 

also occur, as a progressive forest cover change and modification of the SAR backscatter can be 

seen on the offline version and not on the NRT version. The change can be too slow compared 

to the length of the NRT time-series and would be dismissed by the bootstrap analysis. 

6.2.6. Conclusion 

This study presented the development of the CuSum cross-Tc near real time version, as well 

as the sensitivity analysis of its input parameters. The CuSum cross-Tc NRT was designed to 

monitor disturbances in forest cover even during prolonged periods of cloud cover in tropical 

forests, the main limit of the optical systems. The NRT version was then compared to the original 

ReCuSum to identify the differences in detection performance. The NRT was 4% less effective 

than the ReCuSum, resulting in a f1-score value of 0.71 compared to 0.74 for the ReCuSum. The 

sensitivity analysis was conducted using Monte-Carlo’s method and revealed that the CuSum-
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NRT was very sensitive to the low Tc parameter. The best low and high Tc to form the cross-Tc 

spatial recombination were determined in this study to be 92 and 100, respectively. As for the 

detection delay, the analysis determined that the NRT version needed 3 images after a change 

to better detect it (highest f1-score). More images considered after a change led to a decline in 

f1-scores. The number of images to take before a change into the time-series is correlated to the 

number of images taken after a change. Too few images would create an unstable time-series 

that is more prone to false positives, whereas too many images would hinder the detection of 

small changes, as well as getting near to the offline time-series in terms of length. In this study, 

considering all 11 images in the time-series before a change gave the better f1-score. 

A possible upgrade to the CuSum-NRT version would be to implement a Bayesian update 

system after the first detection with increasing probabilities of being a real change. 

Research should be conducted on multi-scale detection and fusion. Algorithms currently 

working at high resolution should be also implemented on aggregated images with degraded 

resolution in order to alter the scale of the detections. 
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6.3. Contribution and perspectives 

This study demonstrated that the NRT version of the CuSum was very sensitive to the low Tc 

used in the cross-Tc spatial recombination. The importance of the number of images in the length 

of the time-series before / after a change was also significant. This study also showed that the 

NRT version produced similar results to the ReCuSum version, with a minimal difference of 0.04 

in f1-score.  

The results obtained from the comparison between RADD, DETER-R, DETER-B, PRODES, 

JJ-FAST and CuSum-NRT will be later added to this chapter in the manuscript.
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7.1. Conclusion 

My PhD thesis work focused on the development of a new approach to monitor changes in 

tropical forest cover using Sentinel-1 C-band SAR data (Torres et al., 2012). This was a 

requirement from VisioTerra for a future use of my developments in a NRT deforestation system. 

Two different types of change detection algorithms were developed: offline breakpoint algorithms 

requiring long time-series, and Near-Real-Time (NRT, online) algorithm requiring shorter time-

series. I first worked on the analysis of the potential of the Cumulative Sum algorithm (CuSum, 

(Kellndorfer, 2019; Manogaran and Lopez, 2018; Ruiz-Ramos et al., 2020) for such application, 

estimating its performance in terms of the detection of changes in the forest cover. This method 

is based on the estimation of a confidence level (CL) by applying a bootstrap analysis to the time-

series, to validate the estimated breakpoint. The Critical Threshold (Tc) is the main input 

parameter based on the value of the confidence level. All pixels showing a CL < Tc are removed.  

The CuSum was first tested in the forest concession of Alibuku, in the Democratic Republic of the 

Congo. The results showed that a high Tc value resulted in many false negatives and few false 

positives, opposite of a low Tc value that resulted in few false negatives but many false positives.  

Next, I improved the original CuSum, which was only based on the temporal dimension, by 

conducting a spatial recombination of high Tc with low Tc result maps of change, called cross-Tc. 

This recombination keeps the low-Tc polygons which show at least one intersection with a high-

Tc polygon. This step allowed to remove the low-Tc polygons constituting the false positives, and 

to keep only those that have a robust base of high-Tc. The base CuSum is a single-breakpoint 

algorithm. The continuity of my work consisted of changing the single-breakpoint nature of the 

algorithm to multiple-breakpoint and build better estimates of disturbance in the forest canopy. 

Finally, I developed a NRT version of the CuSum cross-Tc and compared its detection 

performance with other operational NRT algorithms developed by (Diniz et al., 2015; Doblas et 

al., 2022; Hansen et al., 2013; Reiche et al., 2021; Wheeler et al., 2014) on a study area of 6,855 

km² located in the Brazilian Amazon. The results will be presented during the defence and added 

later to the manuscript. 

In the first tested area, the forest concession Alibuku in Democratic Republic of the Congo, 

each polarisation was tested and the intersection of the results maps from both VV and VH 

polarisations was evaluated. The CuSum cross-Tc 100_75 provided the best results with the VV 

x VH intersection map of results (Kappa coefficient: 0.59, Precision: 0.77, Accuracy: 0.91, Recall: 

0.55). Another major finding was revealed during this study, as the date of change data hinted 
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that the algorithm was detecting degradation before actual deforestation. These degradations 

may be invisible to optical sensors as it can happen beneath the canopy (Reiche et al., 2021). 

Small degradations opening the canopy may also be undetectable between two available optical 

images as the fast regrowth happening in these biomes may have closed the canopy gap (Reiche 

et al., 2021).  The major drawback of this approach was the limitation of the single-breakpoint 

algorithm. The status of a pixel did not change over time once it was detected as ‘change’ or ‘not 

change’. In order to solve that issue, ReCuSum was developed. 

To overcome the single-breakpoint limitations of the CuSum cross-Tc, I developed the 

ReCuSum, a multiple-breakpoints detection algorithm and tested it in a study area near the study 

zone used for the algorithm comparison, located in the Brazilian Amazon. It is based on a 

recursive iteration of the CuSum cross-Tc, splitting time-series into two independent time-series 

at the validated date of change. A key finding of this study was that the CuSum cross-Tc was 

capable to detect accurately non-forest vegetation (90% recall, 0.63 f1-score). I applied it to create 

a non-forest vegetation mask to remove changes found on these areas, calling this step rm_hist 

(remove_history). The ReCuSum map of number of changes could also be used to differentiate 

changes occurring on forested areas from changes occurring on non-forested vegetation areas. 

This was achieved by applying a threshold based on the number of changes in the VH at Tc 100 

and VH at Tc 95 maps of number of changes, called Tnbc. The ReCuSum achieved a precision of 

81%, a recall of 68% and a f1-score of 0.74 for the VV x VH combination at cross-Tc 100_75. The 

application of both Tnbc and rm_hist led to an average 16% underestimation of the disturbances 

in forest cover, whereas the application of only rm_hist resulted in an average 10% overestimation 

of disturbances in forest cover. The application of Tnbc greatly decreases the number of false 

positives at the cost of false negatives. The ReCuSum showed a limitation due to the instability 

of time-series showing transitional regrowth, leading to an abnormal number of detected changes. 

In order to eliminate this artefact, increasing the length of the time-series would work, as a stability 

period would be present after the transition periods. Thus, the ReCuSum method was found 

unsuitable for near-real-time monitoring because it provided better results using longer time-

series. Long time-series are needed to better differentiate between changes in non-forest 

vegetation and changes in forested areas.  

I based the development of the NRT version of the CuSum on the cross-Tc version. The mask 

step described above was added to the cross-Tc version for NRT monitoring. I conducted the 

Monte-Carlo’s analysis on the Tc parameters as well as the number of images to consider before 

a change / after a change. The best results were obtained using cross-Tc 100_92 with 11 images 
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before a change and 3 images after, with a 0.70 f1-score. The algorithm was found to be highly 

sensitive to the low Tc value at this length of time-series. The series being shorter, it is more 

unstable, leading to higher low Tc value being more accurate.  The comparison of the results 

obtained by this method with the ReCuSum results, it is possible to see an overall similar F1-

score (0.74 for ReCuSum, 0.71 for CuSum-NRT). The CuSum-NRT has more false positives than 

ReCuSum, but detects more of the disturbed area (0.72 Recall for CuSum-NRT against 0.68 for 

ReCuSum). 

7.2. Perspectives 

7.2.1. Understanding C-SAR response to forest degradations 

During this PhD, we obtained forest disturbance detection maps using the CuSum-based 

algorithms and reference maps made through visual interpretation. Sometimes, there were 

detections with coherent structure and localisation in the CuSum result map that did not appear 

in the reference map. These detections were too coherent to be simply dismissed as false 

positives. Sometimes, the images used to form the reference map are very spaced in time and 

can miss small degradation events (Reiche et al., 2021). As we lacked in-situ evidence that the 

detected disturbances were true degradations, we considered these changes as false positives, 

with the hypothesis that such events are degradations. The C-SAR based algorithms can monitor 

forest degradations unseen by optical means, meaning the reference maps made through visual 

interpretation will always lack some disturbances. 

Radar backscatter values seem to decrease in both degradation and deforestation event. But 

as highlighted in Chapter IV, degradation events are more detected using the VH polarisation 

than using the VV polarisation. The opposite occurs for the VV polarisation: clear-cut deforestation 

events are more detected using it than using the VH polarisation. These results mean that clear-

cut deforestation and degradation affect differently the backscatter. As the VH polarisation is more 

linked with volume changes and the VV polarisation with surface changes (Kellndorfer, 2019), we 

can make the following hypothesis:  

- Degradation events affect the penetration of C-band by creating gaps in the canopy, 

reducing the volume backscatter but affecting less the surface backscatter 

- Clear-cut events affect more the surface backscatter, transitioning from ‘forest canopy’ 

surface backscatter to ‘Rough transitioning soil’ surface backscatter. 
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7.2.2. Fusion of operational methods based on Sentinel-1 

Currently, there are multiple algorithms based on Sentinel-1 images analysis working 

operationally on the Brazilian Amazon. Those algorithms work separately and are freely available. 

As they rely on different methods for the analysis, each produces different results. The nature of 

the detection should be analysed with in-situ data to understand the strength and weaknesses of 

each algorithm in the categories of detection: forest clear-cut for agricultural use, illegal mining 

operation, degradation by selective logging, ... The algorithms could be complementary in the 

different categories, thus, the fusion of the results from these algorithms should be conducted. 

 This fusion would result in a map of probability of detection, with each algorithm weighting in 

the probability system according to their overall precision. 

7.2.3. On CuSum utility 

7.2.3.1. CuSum for forest monitoring: upgrades 

In this PhD thesis, we showed the potential of the CuSum based on Sentinel-1 data in terms 

of forest disturbance monitoring. We found some post-processing steps enhancing the results, 

such as the cross-Tc spatial recombination to reduce the number of false positives of lower Tc 

values and reduce the number of false negatives of high Tc values. The CuSum cross-Tc is an 

algorithm based on time-series of images, as it uses information from the space dimension. 

Thus, CuSum cross-Tc is an algorithm applicable to all time-series of images. It is not applicable 

only to Sentinel-1 VV and VH data. Further tests should be performed on the polarisation ratio 

𝜎𝑉𝑉
0

𝜎𝑉𝐻
0 , the Normalised Difference Index NDI applied on Sentinel-1 data 

𝜎𝑉𝑉
0  − 𝜎𝑉𝐻

0

𝜎𝑉𝑉
0 + 𝜎𝑉𝐻

0 . 

 Further testing should be also done on the potential of the cross-Tc CuSum to detect forest 

disturbances based on L-band SAR data and on HH, HV polarisations.  

The CuSum cross-Tc should also be tried on different optical indexes and bands, such as the 

Normalized Difference Vegetation Index (NDVI), or on the thermal InfraRed, known to be sensitive 

to vegetation changes. Algorithms based on the fusion of optical and SAR data have already been 

developed and tested (Hamunyela et al., 2017; Reiche et al., 2018a). In the aforementioned study, 

the fusion increased the statistics compared to only optical or SAR inputs, along with the temporal 

resolution, reducing the detection delays. 
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 In the case of the CuSum cross-Tc, the crossing of these results may further enhance the 

quality of the results, but at the cost of computational time. 

7.2.3.2. CuSum application to inundation monitoring 

Other results, highlighted in Ygorra et al., 2022, demonstrated the possibility of using the 

CuSum cross-Tc on Sentinel-1 images to monitor ephemeral lakes and inundations. This 

hypothesis is backed by similar results seen in the Amazon region, as changes were 

systematically detected in the river bends. These events were detected at the same time in 

different locations of the river. Inundations can impact the soil moisture durably, leading to a 

persistent change in the C-band backscatter that would be detected by the CuSum. These results 

should be confirmed and further tested, to qualify the sensitivity level of the CuSum to moisture 

changes. 

7.2.3.3. CuSum for agricultural use? 

The high number of changes in ReCuSum’s non-forest change class can be attributed to 

vegetation regrowth. In the case of monitoring forest disturbances, we dismissed such pixels as 

false positives. Further research with in-situ data should be conducted to determine the nature of 

the correlation between the number of changes found and the regrowth. There are several 

explanations possible, as the CuSum needs at least part of the time-series to be stable. The first 

hypothesis is that the number of changes in the case of regrowth is an artefact caused by the 

backscatter time-series values ever increasing, not letting a period to be stable long enough. This 

hypothesis can be checked by increasing the length of the time-series to reach the ‘plateau’ of 

saturation. Another explanation would be the cyclic character of agriculture with fast regrowth in 

tropical regions. The capabilities of the CuSum in terms of agricultural use should be assessed 

with strong in-situ data on a long period. 
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Annexes 

 

Annexe 1: Explicative schema of the Cross-Tc computation. 
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Time period 

monitored 

Cut area 

(m²) 

Change area 

detected in time 

(m²) 

Change 

area 

detected 

early (m²) 

Change 

area 

detected 

early (%) 

Change 

area 

detected 

late (m²) 

Change area 

detected late 

(%) 

2018/01/06 - 

2018/02/02 
52700 22100 0 0,00% 30600 58,06% 

2018/02/02 - 

2018/03/17 
56700 30000 4400 7,76% 22300 39,33% 

2018/03/17 - 

2018/04/19 
5600 800 3000 53,57% 1800 32,14% 

2018/04/19 - 

2018/06/15 
29400 23300 1900 6,46% 4200 14,29% 

2018/06/15 - 

2018/08/17 
18200 13000 2700 14,84% 2500 13,74% 

2018/08/17 - 

2018/09/10 
3400 0 1500 44,12% 1900 55,88% 

2018/09/10 - 

2018/11/08 
110700 60500 22400 20,23% 27800 25,11% 

2018/11/08 - 

2018/12/19 
565400 214300 324100 57,32% 27000 4,78% 

2018/12/19 - 

2019/01/06 
386000 143300 229500 59,46% 13200 3,42% 

2019/01/06 - 

2019/01/22 
359200 88500 260300 72,47% 10400 2,90% 

2019/01/22 - 

2019/02/02 
193200 24100 163500 84,63% 5600 2,90% 

2019/02/02 - 

2019/03/03 
484400 93600 384800 79,44% 6000 1,24% 

2019/03/03 - 

2019/03/31 
108900 11000 97500 89,53% 400 0,37% 

2019/03/31 - 

2019/05/03 
11100 100 10200 91,89% 800 7,21% 

2019/05/03 - 

2019/08/06 
70600 23100 47100 66,71% 400 0,57% 

2019/08/06 - 

2019/11/10 
46200 28700 17500 37,88% 0 0,00% 
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2019/11/10 - 

2019/11/26 
112000 6100 105900 94,55% 0 0,00% 

Total 2613700 782500 1676300 64,14% 154900 5,93% 

Annexe 2: Table of the detection time of the change. 
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a b 

c d 

Annexe 3 : Map of the results of the CuSum based on VV union VH with Tc = (a) 0.25, (b) 0.50, (c) 0.75 and (d) 1.00. 



 
References 

Page | 251  
 

 

a b 

c d 

Annexe 4 : Map of the results of the CuSum based on VV intersect VH with Tc = (a) 0.25, (b) 0.50, (c) 0.75 and (d) 1.00. 
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Annexe 5 : Map of the results of the CuSum based on VV intersect VH with (a) Tc = 1.00, (b) cross-Tc 100_75, (c) cross-Tc 100_50 and (d) 
cross-Tc 100_25. 
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Annexe 6 : Map of the results of the CuSum based on VV union VH with (a) Tc = 1.00, (b) cross-Tc 100_75, (c) cross-Tc 100_50 and (d) cross-
Tc 100_25. 


