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The study of the stability of laminar flows satisfying a system of hyperbolic equations has attracted a lot of attention of physicians and mathematicians due to its appearance in numerous models in fluid mechanics, e.g. Rayleigh-Taylor, Kelvin-Hemholtz, Zeldovitch-von Neumann-Döring detonation. In particular, the existence of normal modes for the linearized problems around this steady flows led to many theoretical and numerical results. Meanwhile, using the linear instability results to obtain nonlinear instability results is a mathematical challenge because of the lack of information about the complete spectrum of the linearized problem. Different abstract frameworks are developed to prove the nonlinear instability with applications to various nonlinear systems in fluid mechanics. In this thesis, we are interested in a particular model, the viscous Rayleigh-Taylor instability for a smooth increasing density profile. The first goal is to describe and use a new method, based on the operator theory, to prove the existence of multiple normal modes to the linearized problem. These multiple normal modes, along with nonlinear energy estimates, help us to prove a general nonlinear instability, extending the previous framework of Guo-Strauss and of Grenier. It seems relevant to apply that method to other nonlinear systems, including the twofluid model or the Zeldovitch-von Neumann-Döring detonation equations (generalizing the semi-classical results of the linearized problem already known).

Résumé

L'étude de la stabilité des écoulements laminaires satisfaisant un système d'équations hyperboliques a beaucoup attiré l'attention des physiciens et des mathématiciens en raison de son apparition dans de nombreux modèles en mécanique des fluides, par ex. Rayleigh-Taylor, Kelvin-Hemholtz, détonation de Zeldovitch-von Neumann-Döring. En particulier, l'existence de modes normaux pour les problèmes linéarisés autour de ces écoulements stationnaires a conduit à de nombreux résultats théoriques et numériques. Pendant ce temps, l'utilisation des résultats d'instabilité linéaire pour obtenir des résultats d'instabilité non linéaire est un défi mathématique en raison du manque d'informations sur le spectre complet du problème linéarisé. Différents cadres abstraits sont développés pour prouver l'instabilité non linéaire avec des applications à divers systèmes non linéaires en mécanique des fluides. Dans cette thèse, nous nous intéressons à un modèle particulier, l'instabilité visqueuse de Rayleigh-Taylor pour un profil lisse de densité croissante. Le premier objectif est de décrire et d'utiliser une nouvelle méthode, basée sur la théorie des opérateurs, pour prouver l'existence de multiples modes normaux au problème linéarisé. Ces multiples modes normaux, ainsi que les estimations d'énergie non linéaires, nous aident à prouver une instabilité non linéaire générale, étendant un cadre célèbre de 

Introduction

Many decades ago, the mathematical theory of partial differential equations of nonlinear evolution began with the study of the local/global existence in time of solutions in some suitable functional spaces. Beyond the local/global existence in time of regular solutions to the evolution PDEs in fluid mechanics, the stability study of a steady flow or of a travelling wave solution, including the theoretical and numerical investigation, is also a vast subject that has attracted both mathematicians and physicians.

Let us quote the definition from Lyapunov in 1892 [START_REF] Lyapunov | The General Problem of the Stability of Motion[END_REF] and from Chandrasekhar in 1961 [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF]. We assume that there is a local existence theorem for the nonlinear and we consider its perturbed form departing from the equilibrium. From the initial data, either the perturbation terms measured in a Sobolev norm will moderately slow down, or at least one of the perturbation terms measured in a Sobolev norm will blow up and never revert to its initial value. If the former case happens, we say that the equilibrium is stable with respect to the particular perturbation terms and if the latter case happens, we say that it is unstable.

There is still another viewpoint on instability, initially formulated by Hadamard in 1902 [START_REF] Hadamard | Sur les problèmes aux dérivées partielles et leur signification physique[END_REF], and is called the instability in the sense of Hadamard. It states that a problem is Hadamard stable or well-posed if the solution is unique on a time interval p0, T q and the solution's behaviour depends continuously on the initial conditions. Otherwise, the problem is called Hadamard unstable or ill-posed.

The aim of this thesis is the mathematical study of instability properties of a viscous system of conservation laws, described by a nonlinear model. For this purpose, we follow the definition of nonlinear instability of Grenier [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF] and refer to (0.1) for technical details.

Step 1. Prove the linear instability, by performing the spectral analysis of the linearized equations.

Step 2. Investigate the nonlinear instability by using the spectral results obtained for the linear equation and by exploiting some energy estimates.

We discuss first the linear instability. Note that the linearized system B t V `L Ū V " 0 (0.4) can be rewritten as LpB t , B x 1 , . . . , B x d , B x 2 1 , . . . , B x 2 d qV " 0, where L is a linear operator from R 2d`1 to R n , which coefficients depend only on x d through the stationary solution. As the coefficients of L do not depend on t or x j p1 § j § d ´1q, the linear study focuses on solutions of (0.4) of the form V pt, xq " e t Qpk, xq " e t`ik 1 x 1 `¨¨¨`ik d´1 x d´1 W px d q.

(0.5) Such functions V pt, xq, as well as ReV pt, xq, are called normal mode solutions to the linearized equation. Substituting (0.5) into (0.4), we obtain a system of ODEs of W in the variable x d ,

L

´ , ik The system (0.6) might also be seen as the system obtained on the Fourier transform in x 1 , . . . , x d´1 and the Laplace transform in t of a solution V of (0.4). The vector k " pk 1 , . . . , k d´1 q is called the wave number and throughout this thesis, we write

k " |k| " b k 2 1 `¨¨¨`k 2 d´1 .
We call linear growth rate or characteristic value of system (0.6) a value of P C (depending on k) such that Re °0 and there exists a non-trivial and bounded solution W px, k, q to (0.6).

In aforementioned cases, some methods have been developed to solve system (0.6). For the Rayleigh-Taylor instability, we refer to Lafitte [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor[END_REF], Guo-Hwang [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF], Helffer-Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF] and Guo-Tice [START_REF] Guo | Linear Rayleigh-Taylor instability for viscous, compressible fluids[END_REF], where the authors exploit the variational structure of the linearized equation due to its self-adjoint setting. In case of non self-adjoint problems, there is a method due to Evans [START_REF] Evans | Nerve axon equations I: Linear approximations[END_REF][START_REF] Evans | Nerve axon equations II:Stability at rest[END_REF][START_REF] Evans | Nerve axon equations III: Stability of the nerve impulse[END_REF][START_REF] Evans | Nerve axon equations IV: The stable and the unstable impulse[END_REF], defining a particular function of , called now the Evans function, which roots in Re °0 are the desired characteristic values. The Evans function is related to the determinant at an arbitrary point x 0 d of the family containing the independent decaying solutions at `8 and the similar one at ´8. That method is useful in numerical analysis and has been frequently used by Zumbrun and his collaborators, see e.g. [START_REF] Gardner | The gap lemma and geometric criteria for instability of viscous shock profiles[END_REF][START_REF] Oh | Stability of Periodic Solutions of Conservation Laws with Viscosity: Analysis of the Evans Function[END_REF][START_REF] Barker | Stability of Viscous Shocks in Isentropic Gas Dynamics[END_REF][START_REF] Mascia | Spectral stability of weak relaxation shock profiles[END_REF], to study the stability of shock waves. Mention also the application of the linear turning point theory for a system of ODEs to study the Zeldovitch-Von Neumann-Döring detonation by Erpenbeck first [START_REF] Erpenbeck | Stability of steady-state equilibrium detonations[END_REF] and then by Lafitte, Williams and Zumbrun [START_REF] Lafitte | The Erpenbeck high frequency instability theorem for Zeldovitch-von Neumann-Dring detonations[END_REF][START_REF] Lafitte | High-frequency stability of detonations and turning points at infinity[END_REF] completely.

For the fully nonlinear equation (0.3) in this thesis, we use the following definition of nonlinear instability of Grenier [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF]Definition 2.1]. Definition 0.1. We say that the trivial solution V " 0 of (0.3) is nonlinearly unstable if there exist positive constants " 0 and C s such that for every s arbitrarily large and every °0 sufficiently small, there exists a solution V of (0.3) satisfying }V p0, xq} H s p⌦q § , and }V pT , xq} L 2 p⌦q • " 0 for some times T , where T § C s p1 `lnp1 ` ´1qq.

Based on the existence of normal modes to the linearized equation (0.4), different frameworks are constructed to prove the nonlinear instability in the sense of Definition 0.1, see e.g. Guo-Strauss [START_REF] Guo | Instability of periodic BGK equilibria[END_REF], Grenier [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF], Desjardins-Grenier [START_REF] Desjardins | Linear instability implies nonlinear instability for various types of viscous boundary layers[END_REF][START_REF] Desjardins | On Nonlinear Rayleigh-Taylor instabilities[END_REF]. These frameworks were used to study the nonlinear instability in numerous models, e.g. Rayleigh-Taylor instability by Guo-Hwang [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF], Tice-Wang [START_REF] Wang | The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability[END_REF], instability of the Lane-Emden steady star configurations by Jang-Tice [START_REF] Jang | Instability theory of the Navier-Stokes-Poisson equations[END_REF], instability of solitary waves by Rousset-Tzvetkov [START_REF] Rousset | Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's[END_REF][START_REF] Rousset | Transverse nonlinear instability for two-dimensional dispersive models[END_REF][START_REF] Rousset | Transverse instability of the line solitary waterwaves[END_REF], instability of Euler-Korteweg solitons by Paddick [START_REF] Paddick | Transverse nonlinear instability of Euler-Korteweg solitons[END_REF].

Plan of this thesis

In this thesis, we study an incompressible model related to the viscous Rayleigh-Taylor instability, which can be stated as in (0.1)-(0.2). The domain ⌦ is ⌃ d´1 ˆI, where ⌃ " R or 2⇡LT pL °0q and I " R, R ´" p´8, 0q or p´1, 1q. The governing equations are $ ' ' ' & [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF]: Spectral analysis of the incompressible viscous Rayleigh-Taylor system in R 3 , which appeared in Water Waves (to be summarized in Section 0.4). This chapter studies the spectral analysis of the viscous Rayleigh-Taylor instability around an increasing density profile ⇢ 0 px d q. For this, we develop an operator method, using the spectral theory of self-adjoint and compact operators, to prove the existence of multiple characteristic values pkq, i.e.

1 pkq ° 2 pkq °. . . , such that

⇤ :" sup k 1 pkq § c g L 0 .
(0.9)

This implies the existence of multiple normal modes te j pkqt Q j pk, xqu j•1 of type (0.5) to the linearized equations. That result is inspired by the inviscid study of Helffer-Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF] and gives more information on the discrete spectrum of the linearized equations than previous results of Guo-Hwang [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF] and Guo-Tice [START_REF] Guo | Linear Rayleigh-Taylor instability for viscous, compressible fluids[END_REF] where only the largest characteristic value 1 pkq is found via the variational approach.

2. In Chapter 2 (to be detailed in Section 0.5) and Chapter 3 (to be detailed in Section 0.6), we continue the investigation of Rayleigh-Taylor instability in other settings, respectively,

1. [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF]: Linear and Nonlinear analysis of the viscous Rayleigh-Taylor system with Navier-slip boundary conditions, preprint, https://arxiv.org/abs/2204.09857,

2. [START_REF] Nguyπn | Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean[END_REF]: Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean, preprint.

We apply the operator method initiated in [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF] to prove the existence of multiple normal modes to the linearized equations. Furthermore, we prove the nonlinear viscous Rayleigh-Taylor instability, i.e. the steady state solution (0.8) if the viscous RT system is nonlinearly unstable. Since the characteristic values j pkq pj • 1q are bounded by b g L 0 for any k, we use the following procedure: Step 1. Establish the a priori energy estimate for the local exact solution to the nonlinear equation of type (0.3) with any initial data,

Step 2. Formulate a linear combination of normal modes to the linearized equation of type (0.4) to make it to be an approximate solution V app , i.e.

V app pt, xq " M ÿ j"1 c j e j pkqt Q j pk, xq for any M P N ‹ , to the nonlinear equation (0.3). We then set V app p0, xq p0 † ! 1q as the initial data to the nonlinear equation (0.3). Eq. (0.3) with those initial data has a unique local exact solution V exact on r0, T max q, 0.3. The classical Rayleigh-Taylor instability 13

Step 3. We then define the difference V diff " V exact ´ V app , which satisfies

B t V diff `L Ū V diff " N Ū pV exact q. (0.10)
We deduce the bound in time of }V diff ptq} L 2 p⌦q by exploiting energy estimates to (0.10) and the bound in time of }V exact ptq} H s p⌦q , which is obtained thanks to the a priori energy estimates in Step 1,

Step 4. Conclude on the nonlinear instability by combining these above estimates.

Note that, in the results of Guo-Strauss [START_REF] Guo | Instability of periodic BGK equilibria[END_REF] and of Grenier [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF], only the maximal normal mode e 1 pkqt Q 1 pk, xq was used in Step 2 to derive a solution of the nonlinear equation whose initial datum Q 1 pk, xq p0 † ! 1q. Let us emphasize that, our nonlinear results show that a wide class of initial data to the nonlinear problem departing from the equilibrium give rise to the nonlinear instability. These initial data are deduced from a linear combination of normal modes. Beyond the viscous Rayleigh-Taylor instability, we intend to use our arguments for other models, such as a two-fluid model initiated by Bresch et. al. [START_REF] Bresch | Global weak solutions to a generic two-fluid model[END_REF]. Further discussions are left to the last chapter of this thesis, Chapter 4.

The classical Rayleigh-Taylor instability

In 1883, Lord Rayleigh [START_REF] Strutt | Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[END_REF] studied the linear stability of the eigenvalue problem for two layers of gravity-driven incompressible and inviscid fluids, the heavy one is on the top of the light one and addressed the general stability criterion. Rayleigh's work was taken up by Taylor [START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes[END_REF] in 1950, in a more general set-up considering the effect of any accelerating field. This Rayleigh-Taylor (RT) instability appears and plays a key role in many physical phenomena, e.g., interstellar medium and galaxy clusters [START_REF] Nittmann | The dynamical destruction of shocked gas clouds[END_REF], inertial confinement fusion [START_REF] Lindl | Inertial Confinement Fusion[END_REF], oceanography [START_REF] Debnath | Nonlinear Water Waves[END_REF], etc. For a pedagogical presentation of the mathematical study, we refer to the book of Chandrasekhar [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF] in 1961 or a report of Kull [49] in 1991 and we refer to the physical reports of Zhou [START_REF] Zhou | Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I[END_REF][START_REF] Zhou | Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing[END_REF] for the summary of applications of RT instability in physics.

We now describe the mathematical problem. Following Rayleigh's paper [START_REF] Strutt | Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[END_REF], we state the governing equations, which are the incompressible Euler equations in R 3 as $ ' ' ' & ' ' ' % B t ⇢ `divp⇢uq " 0, B t p⇢uq `divp⇢u b uq `rP " ´g⇢e 3 , divu " 0.

(0.11)

We recall that system (0.11) admits a hydrostatic equilibrium state p⇢ 0 px 3 q, 0, P 0 px 3 qq, satisfying P 1 0 " ´g⇢ 0 with 1 " d dx 3 . (0.12)

Denote by " ⇢ ´⇢0 , u " u ´0, q " P ´P0 , the nonlinear equations read as $ ' ' ' & ' ' ' % B t `⇢1 0 u 3 " ´u ¨r , p⇢ 0 ` qpB t u `u ¨ruq `rq " ´g e 3 , divu " 0.

(0.13)

We thus obtain the linearized equations $ ' ' ' & ' ' ' % B t `⇢1 0 u 3 " 0, ⇢ 0 B t u `rq " ´g e 3 , divu " 0.

(0.14)

Studying the linear instability amounts to finding normal modes, which increase in time, of the form $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % pt, xq " e t cospk 1 x 1 `k2 x 2 q!px 3 q, u 1 pt, xq " e t sinpk 1 x 1 `k2 x 2 q px 3 q, u 2 pt, xq " e t sinpk 1 x 1 `k2 x 2 q✓px 3 q, u 3 pt, xq " e t cospk 1 x 1 `k2 x 2 q px 3 q, qpt, xq " e t cospk 1 x 1 `k2 x 2 qrpx 3 q.

(0.15) Substituting (0.15) into (0.14), we have $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % ! `⇢1 0 " 0, ⇢ 0 ´k1 r " 0,

⇢ 0 ✓ ´k2 r " 0, ⇢ 0 `r1 " ´g!, k 1 `k2 ✓ ` 1 " 0. (0.16) That implies ! " ´⇢1 0 , r " ´ ⇢ 0 1 k 2 and " ⇢ 0 r k 1 , ✓ " ⇢ 0 r k 2 .
Eq. (0.16) reduces to the following second-order ODE on , 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q " gk 2 ⇢ 1 0 . (0.17)

These solutions decay to zero at ˘8, i.e. satisfies lim x 3 Ñ8 px 3 q " 0. Let ⇢ ˘°0, Rayleigh considered a discontinuous density profile ⇢ 0 px 3 q such that ⇢ 0 px 3 q " ⇢ ´1tx 3 †0u `⇢`1tx 3 °0u . (0.18)

It has been shown first by Rayleigh, then by Taylor that if ⇢ `°⇢ ´, then p⇢ 0 px 3 q, 0, P 0 px 3 qq is linearly unstable, i.e. there are exponentially normal mode solutions of the linearized Euler equations (0.11) around that profile. Precisely, the authors proved that there is a unique growth rate

0 " c gk ⇢ `´⇢ ⇢``⇢´( 0.19)
such that (0.17) has a unique family of solutions, spanned by the function 0 px 3 q " 2 ? ke ´k|x 3 | P H 1 pRq (being normalized in L 2 pRq) with " 0 . The existence of a linearly unstable mode for Rayleigh-Taylor instability gives rise to the nonlinear instability for the fully nonlinear system (0.13). This was shown by a rigorous framework thanks to Desjardins and Grenier [START_REF] Desjardins | On Nonlinear Rayleigh-Taylor instabilities[END_REF].

Let us consider now the case, where ⇢ 0 is smooth and satisfies `8 °lim

x 3 Ñ`8 ⇢ 0 px 3 q " ⇢ `°⇢ ´" lim x 3 Ñ´8 ⇢ 0 px 3 q °0.
(0.20)

For some particular profiles ⇢ 0 satisfying (0.20), the linear instability is proven, see e.g. [7, Chapter X], [START_REF] Cherfils | Analytic solutions of the Rayleigh equation for linear density profiles[END_REF]. For profiles satisfying (0.20) and the additional condition

´ª 0 ´8 |⇢ 0 px 3 q ´⇢´| 2 dx 3 ¯1{2 `´ª `8 0 |⇢ 0 px 3 q ´⇢`| 2 dx 3 ¯1{2 † `8,
we refer to [START_REF] Cherfils | Analytic solutions of the Rayleigh equation for linear density profiles[END_REF], [START_REF] Cherfils-Cléouin | Asymptotic results for the linear stage of the Rayleigh-Taylor instability[END_REF], [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor[END_REF]. Note that, in [START_REF] Cherfils | Analytic solutions of the Rayleigh equation for linear density profiles[END_REF], a quantization of (multiple countable normal modes) was shown explicitly and in [START_REF] Cherfils-Cléouin | Asymptotic results for the linear stage of the Rayleigh-Taylor instability[END_REF], an asymptotic expansion of the largest value of was found under a small perturbation of wave number k. In 2003, the paper of Hwang and Guo [START_REF] Guo | On the dynamical Rayleigh-Taylor instability[END_REF] exploited the natural variational structure of the inviscid problem pointed out in [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF] to describe the square of the maximum growth rate 2 1 as the maximum of the Rayleigh quotient

gk 2 ≥ R ⇢ 1 0 2 dx 3 ≥ R ⇢ 0 pp 1 q 2 `k2 2 qdx 3 .
Furthermore, based on its associated normal mode for the linear Euler equations, Guo and Hwang used the method initiated by Grenier in his celebrated paper [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF] to construct an approximate solution to the nonlinear perturbation equations. Combining with some classical energy estimates, the nonlinear instability follows.

Let us add additional comments on the linear RT result. It can be seen that (0.17) is a generalized eigenvalue problem. Multiple growth rates of the inviscid problem are first mentioned by Cherfils and Lafitte [START_REF] Cherfils | Analytic solutions of the Rayleigh equation for linear density profiles[END_REF] through the precise study of the inviscid ODE for an affine profile. Mention also the paper of Mikaelian [START_REF] Mikaelian | Connection between the Rayleigh and the Schrödinger equations[END_REF] for the connection between the Rayleigh (0.17) and the Schrödinger equations. Lafitte [START_REF] Lafitte | Sur la phase linéaire de l'instabilité de Rayleigh-Taylor[END_REF] then observed that possible growth rates 's for the classical Rayleigh-Taylor problem (not only the largest one) are such that 2 is an eigenvalue of a suitable self-adjoint operator and described this spectrum, for large values of k, as the eigenvalues of a 1D Schrodinger operator. This approach is extended by Helffer and Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF]. It can be noticed that the multiple growth rates are given by t 2 , . . . , j , . . . u, where 2 j`1 is equal to

max PH 1 j gk 2 ≥ R ⇢ 1 0 2 dx 3 ≥ R ⇢ 0 pp 1 q 2 `k2 2 qdx 3
where H 1 j " t P H 1 pRq, ≥ R l dx 3 " 0, @l § ju, l is a nontrivial eigenfunction associated with l .

We use in this thesis the self-adjoint operator approach for the spectral analysis.

Spectral analysis of the viscous Rayleigh-Taylor instability

The first result of this thesis is to obtain the spectral analysis when there is a viscosity coefficient in the system, using the approach of Helffer-Lafitte [START_REF] Helffer | Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh-Taylor instability[END_REF]. The RT instability with the presence of viscosity dates back at least to Chandrasekhar [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF]Chapter X]. Let us consider the domain ⌦ " R 3 , i.e. d " 3, ⌃ " R and I " R. We are concerned with the following Navier-Stokes equations describing the motion of a nonhomogeneous incompressible viscous fluid in the presence of a uniform gravity field in R `ˆ⌦, $ ' ' ' & ' ' ' % B t ⇢ `divp⇢uq " 0, B t p⇢uq `divp⇢u b uq `rP " µ u ´g⇢e 3 , divu " 0, (0.21)

Let 1 " d dx 3 , note that p⇢, u, P q " p⇢ 0 , 0, P 0 q with P 1 0 " ´g⇢ 0 is still an equilibrium state of (0.21). The quantities " ⇢ ´⇢0 , u " u ´0, p " P ´P0 satisfy the following nonlinear equations $ ' ' ' & ' ' ' % B t `u ¨rp⇢ 0 ` q " 0, p⇢ 0 ` qB t u `p⇢ 0 ` qu ¨ru `rp " µ u ´ g, divu " 0.

(0.22) 0.4. Spectral analysis of the viscous Rayleigh-Taylor instability

That implies the following linearized system $ ' ' ' & ' ' ' % B t `⇢1 0 u 3 " 0, ⇢ 0 B t u `rp " µ u ´g e 3 , divu " 0.

(0.23) Since ⇢ 0 depends only on x 3 , we perform the analysis into normal modes as in [7, Chapter X, Section 91]. Precisely, we seek the perturbations under the form as (0.15), $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % pt, xq " e t cospk 1 x 1 `k2 x 2 q!px 3 q, u 1 pt, xq " e t sinpk 1 x 1 `k2 x 2 q px 3 q, u 2 pt, xq " e t sinpk 1 x 1 `k2 x 2 q✓px 3 q, u 3 pt, xq " e t cospk 1 x 1 `k2 x 2 q px 3 q, ppt, xq " e t cospk 1 x 1 `k2 x 2 qrpx 3 q, (0. [START_REF] Evans | Nerve axon equations III: Stability of the nerve impulse[END_REF] where k " pk 1 , k 2 q P R 2 , P Czt0u and Re • 0. We deduce $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % ⇣ `⇢1 0 " 0, ⇢ 0 ´k1 q `µpk 2 ´ 2 q " 0, ⇢ 0 ✓ ´k2 q `µpk 2 ✓ ´✓2 q " 0, ⇢ 0 `q1 `µpk 2 ´ 2 q `g⇣ " 0, k 1 `k2 ✓ ` 1 " 0.

(0.25)

Note that ⇣ " ´⇢1 0 . Hence, (0.25) 4 becomes 2 ⇢ 0 ` q 1 ` µpk 2 ´ 1 q " g⇢ 1 0 . (0.26)

We multiply (0.25) 2 by k 1 and (0.25) 3 by k 2 , then use (0.25) 4 to obtain the equality 2 ⇢ 0 1 `k2 q ` µpk 2 1 ´ 3 q " 0.

Deriving this equation, and replacing q 1 through (0.26), we get the following fourthorder ODE

´ 2 p⇢ 0 k 2 ´p⇢ 0 1 q 1 q " µp p4q ´2k 2 2 `k4 q ´gk 2 ⇢ 1 0 .

(0.27)

The investigation of normal modes (0.24) amounts to finding regular solutions P H 4 pRq of (0.27). These solutions decay to zero at ˘8, i.e. satisfies lim x 3 Ñ˘8 px 3 q " 0. (0.28)

Note that, P L 8 pRq is enough to fulfil the condition (0.28).

In the book of Chandrasekhar [7, Chapter X], the author considered two uniform viscous fluid separated by a horizontal boundary and generalized the classical result of Rayleigh and Taylor. Precisely, in the toy model case

⇢ 0 " ⇢ ´1tx 3 †0u `⇢`1tx 3 °0u p0 † ⇢ ´ † ⇢ `q,
there is a unique strictly positive value of µ such that Eq. (0.27) with " µ has a non trivial solution. The equation satisfied by µ is

2 " 2 0 ˆ?k 2 ` ⇢ `{µ ⇢ ``? k 2 ` ⇢ ´{µ ⇢ ´´k ⇢ ``⇢ ⇢`⇢ṕ ⇢ ``⇢ ´q´? k 2 ` ⇢ `{µ ⇢ ``? k 2 ` ⇢ ´{µ ⇢ ´¯´k p⇢ `´⇢ ´q2
⇢ `⇢´p ⇢ ``⇢ ´q , (0.29

)
where 0 is the classical RT growth rate (see (0.19)). Hence, we have the relation between µ and 0 in the inviscid limit, i.e. µ Ñ 0, µ " 0 `Op ? µq as µ Ñ 0, (0.30)

For the viscous problem with a smooth profile ⇢ 0 , Jiang, Jiang and Ni [START_REF] Jiang | Nonlinear instability for nonhomogeneous incompressible viscous fluids[END_REF] used a modified variational approach, described by Guo and Tice [START_REF] Guo | Linear Rayleigh-Taylor instability for viscous, compressible fluids[END_REF], where a bootstrap argument yields the largest characteristic value and an associated solution being regular under the assumption ⇢ 1 0 P C 8 0 pRq, inf R ⇢ 0 °0 and ⇢ 1 0 px 0 3 q °0 for some points x 0 3 P R. As far as we know, no other authors performed studies of the discrete spectrum of the viscous linearized RT instability. We then illustrate our spectral analysis.

Let us consider an increasing C 1 function ⇢ 0 . For such a density profile ⇢ 0 , we show that: Lemma 0.1. All characteristic values for Eq. (0.27)-(0.28) in H 4 pRq are real and satisfy that § b g L 0 .

In view of Lemma 0.1, a characteristic value satisfies °0 and we are left to look for °0. We seek functions being real and only consider the vector spaces of real-valued functions in what follows in the linear analysis.

In the case ⇢ 1 0 • 0 compactly supported, our assumption is ⇢ 1 0 is a nonnegative function of class C 0 0 pRq, suppp⇢ 1 0 q " r´a, as, (0.31)

Outside p´a, aq, we denote

⇢ 0 px 3 q "
$ & % ⇢ ´as x 3 P p´8, ´as, ⇢ `as x 3 P ra, `8q, (0.32) with 0 † ⇢ ´ † ⇢ `are two positive constants. This can be seen, physically speaking, as the situation of the toy model with a layer, of size 2a, in which there is a mixture of the two fluids of density ⇢ ´and ⇢ `.

Theorem 0.1. Let ⇢ 0 satisfy (0.31) and (0.32). There exists an infinite sequence p n , n q n•1 with n P p0, b g L 0 q and nontrivial n P H 4 pRq satisfying Eq. (0.27). In addition, n decreases towards 0 as n goes to 8.

In the next part, we consider ⇢ 1 0 no longer compactly supported. The assumptions on ⇢ 0 are ⇢ 0 P C 1 pRq, lim

x 3 Ñ˘8
⇢ 0 px 3 q " ⇢ ˘P p0, `8q (0.33) and 0 † ⇢ 1 0 px 3 q † ⇢ m † `8 for all x 3 P R.

(0.34)

The second theorem is as follows.

Theorem 0.2. Let ⇢ 0 satisfy (0.33) and (0.34). For 0 † ✏ ‹ ! 1, there exists N p✏ ‹ q P N ‹ such that there exists a finite sequence p n , n q 1 §n §N p✏‹q with n P r✏ ‹ , b g L 0 s and n P H 4 pRq satisfying Eq. (0.27).

The proof of Theorem 0.1 and Theorem 0.2 shares the same strategy, illustrated below.

We rewrite (0.27) as a linear system of ODEs on p , 1 , 2 , 3 q T . As the solution of this system must tend to 0 when x 3 Ñ ˘8, using the fact that the profile ⇢ 0 goes to ⇢ ȃt ˘8, we are able to deduce the stable linear space S `at `8 and the unstable linear space S ´at ´8, which are vector spaces of dimension two. Hence, we transform the problem for the normal modes on R into an ODE problem stated on a compact interval px ´, x `q with appropriate boundary conditions deduced from the outer solutions. Note that, if ⇢ 1 0 is compactly supported, the natural choice of x ˘is to choose the ends of supp⇢ 1 0 . However, if ⇢ 1 0 non compactly supported, x ˘are deduced from the behavior at ˘8 of the outer solutions and depend also on k and . In the case of a compactly supported ⇢ 1 0 (the simplest case of a convergence), they are described by $ & % k⌧ ´ p´aq ´pk `⌧´q 1 p´aq ` 2 p´aq " 0, k⌧ ´pk `⌧´q p´aq ´pk 2 `k⌧ ´`⌧ 2 ´q 1 p´aq ` 3 p´aq " 0, (0.35) and $ & % k⌧ ` paq `pk `⌧`q 1 paq ` 2 paq " 0, ´k⌧ `pk `⌧`q paq ´pk 2 `k⌧ ``⌧ 2 `q 1 paq ` 3 paq " 0, (0.36)

where ⌧ ˘" a k 2 ` ⇢ ˘{µ. In the case of a non compactly supported ⇢ 1 0 , they are described by $ & % n 11 px ´q `n1 2 1 px ´q ` 2 px ´q " 0,

n 21 px ´q `n2 2 
1 px ´q ` 3 px ´q " 0 (0.37) and $ & % n 11 px `q `n1 2 1 px `q ` 2 px `q " 0,

n 21 px `q `n2 2 
1 px `q ` 3 px `q " 0, (0.38) 0.4. Spectral analysis of the viscous Rayleigh-Taylor instability 20

Constants n ȋj depend on x ˘, k and .

In order to solve (0.27) on px ´, x `q, the crucial tool in our study is to construct two bilinear forms on H 2 ppx ´, x `qq, which are continuous and coercive, B , denoted respectively by B a, (see (0.42)) for ⇢ 1 0 being compactly supported and by B x ´,x `, (see (0.45)) for ⇢ 1 0 being strictly positive everywhere. So that the finding of a solution P H 4 ppx ´, x `qq of Eq. (0.27) with the boundary conditions (0.35)-(0.36) or (0.37)-(0.38) is equivalent to finding a weak solution P H 2 ppx ´, x `qq to the variational problem

B p , !q " gk 2 ª x x´⇢ 1 0 !dx 3 for all ! P H 2 ppx ´, x `qq (0.39)
and thus improving the regularity of that weak solution .

The expressions of B a, and B x ´,x `, are given as follows. Let us denote by

BV ´a, p#, %q :" µ ˜k⌧ ´pk `⌧´q #p´aq%p´aq ´k⌧ ´#1 p´aq%p´aq ´k⌧ ´#p´aq% 1 p´aq `pk `⌧´q # 1 p´aq% 1 p´aq ¸(0.40)
and BV a, p#, %q :" µ ˜k⌧ `pk `⌧`q #paq%paq ´k⌧ `#1 paq%paq ´k⌧ `#paq% 1 paq `pk `⌧`q # 1 paq% 1 paq ¸.

(0.41) Define then B a, p#, %q :" BV a, p#, %q `BV ´a, p#, %q `

ª a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 3 . (0.42)
Similarly, let BV x `, p#, %q :" ´ p⇢ 0 # 1 %qpx `q ´µpn 21 px `, q#px `q `n2 2 px `, q# 1 px `qq%px `q `µpn 11 px `, q#px `q `n1 2 px `, q# 1 px `qq% 1 px `q ´2k 2 µp# 1 %qpx `q (0.43)

and

BV x ´, p#, %q :" p⇢ 0 # 1 %qpx ´q `µpn 21 px ´, q#px ´q `n2 2 px ´, q# 1 px ´qq%px ´q ´µpn 11 px ´, q#px ´q `n1 2 px ´, q# 1 px ´qq% 1 px ´q `2k 2 µp# 1 %qpx ´q. (0.44)
We have 

B x ´,x `, p#, %q :"BV x ´, p#, %q `BV x `, p#, %q ` ª x x´⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª x x´p # 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx
Y # " p⇢ 0 k 2 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q (0.48) in D 1 ppx ´, x `qq (see Y a, in Proposition 1.3 for ⇢ 1 0
• 0 being compactly supported and Y x ´,x `, in Proposition 1.9 for ⇢ 1 0 being positive everywhere). Note that ⇢ 0 P C 1 implies p⇢ 0 # 1 q 1 is well-defined. We further use a bootstrap argument to define the inverse operator Y ´1 of Y , from L 2 ppx ´, x `qq to a subspace of H 4 ppx ´, x `qq requiring all elements satisfy (0.35)-(0.36) or (0.37)-(0.38). Note that, since P H 4 ppx ´, x `qq, these boundary conditions (involving the derivatives 2 , 3 of at x 3 " x ´and at x 3 " x `) are well defined. Composing the above operator Y ´1 with the continuous injection from H 4 ppx ´, x `qq to L 2 ppx ´, x `qq, we obtain that Y ´1 is a compact and self-adjoint operator from L 2 ppx ´, x `qq to itself.

We introduce M the operator of multiplication by a ⇢ 1 0 in L 2 ppx ´, x `qq. Note from (0.47) that, we will find v satisfying

MY ´1 Mv " gk 2 v. (0.49)
We show that the operator MY ´1 M from L 2 ppx ´, x `qq to itself is compact and selfadjoint, which enables us to use the spectral theory of compact and self-adjoint operators. Indeed, we obtain the discrete spectrum of the operator MY ´1 M is an infinite sequence of eigenvalues (denoted by t n p qu n•1 ).

Let v n, be an eigenfunction associated with the eigenvalue n p q and let n, " Y ´1 Mv n, P H 4 ppx ´, x `qq, we have

n p qY n, " M 2 n, .
(0.50) 0.5. Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions 22 From (0.47) and (0.50), it can be seen that, for each n, let us solve the equation n p q " gk 2 .

(0.51)

When ⇢ 1 0 • 0 is compactly supported, for each n, we will show the existence and uniqueness of a solution n to Eq. (0.51) owing first to the differentiability in of n p q (see Lemma 1.2), which is an extension of Kato's perturbation theory described in [START_REF] Kato | Perturbation theory for linear operators[END_REF], and to the fact that Ñ n p q is decreasing in , through the derivative d d p 1 np q q (see Lemma 1.3) which exists also thanks to a similar argument of [START_REF] Kato | Perturbation theory for linear operators[END_REF]. Furthermore, n decreases towards 0 as n Ñ 8. For each n , we have that n, n " Y ´1 n Mv n, n P H 4 ppx ´, x `qq thanks to Propositions 1.3, 1.9 again. That function n, n is glued with the decaying solutions of Eq. (0.27) in the outer regions p´8, x ´q and px `, `8q by the boundary conditions at x ˘, which yields a solution of Eq. (0.27) in H 4 pRq associated with " n .

When ⇢ 1 0 °0 everywhere, unlike in the first case, we lack an easy-to-use expression of the boundary conditions and we also do not have a uniform control of n ȋj . We thus do not have the decrease of n p q or any control of n p q when goes to 0. Consequently, for ⇢ 1 0 °0 everywhere, our arguments only lead to a possibly multiple existence of positive characteristic values such that • ✏ ‹ °0.

Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions

In [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF], we consider the domain ⌦ " 2⇡LT ˆp´1, 1q with L °0 (i.e. d " 2, ⌃ " 2⇡LT and I " p´1, 1q) and we are concerned with the viscous RT instability of the gravity-driven incompressible Navier-Stokes equations, which read as

$ ' ' ' & ' ' ' % B t ⇢ `divp⇢uq " 0, B t p⇢uq `divp⇢u b uq `rP " µ u ´⇢ge 2 , divu " 0. (0.52)
Let ⌃ ˘" 2⇡LT ˆt˘1u, the Navier-slip boundary conditions proposed by Navier (see [START_REF] Navier | Sur les lois de l'équilibre et du mouvement des corps élastiques[END_REF]) are given on ⌃ ˘as follows

u ¨n " 0 on ⌃ `Y ⌃ ´, pµpru `ru T q ¨nq ⌧ " ⇠pxqu on ⌃ `Y ⌃ ´, . (0.53) 
Here, n is the outward normal vector of the boundary, pµpru `ru T q ¨nq ⌧ is the tangential component of µpru `ru T q ¨n and ⇠pxq is a scalar function describing the 0.5. Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions 23 slip effect on the boundary. We assume that ⇠pxq " ⇠ `on ⌃ `and ⇠pxq " ⇠ ´on ⌃ ´, where ⇠ ˘are two nonnegative constants.

Let us recall the steady state p⇢ 0 px 2 q, 0, P 0 px 2 qq of Eq. (0.52), where ⇢ 0 satisfies

⇢ 0 P C 1 pr´1, 1sq, ⇢ 1 0 °0 on r´1, 1s, ⇢ 0 p˘1q " ⇢ ˘P p0, `8q. (0.54)
We now derive the linearization of Eq. (0.52) around the steady state p⇢ 0 px 2 q, 0, P 0 px 2 qq.

The perturbations " ⇢ ´⇢0 , u " u ´0, p " P ´P0

thus satisfy $ ' ' ' & ' ' ' % B t `u ¨rp⇢ 0 ` q " 0, p⇢ 0 ` qB t u `p⇢ 0 ` qu ¨ru `rp " µ u ´ g, divv " 0. 
(0.55)

Note that pµpru `ru T q ¨nq ⌧ " n ˆpµpru `ru T q ¨nq ˆn and that n " p0, ˘1q T . Hence, the boundary conditions (0.53

) rewrite $ ' ' ' & ' ' ' % u 2 " 0, on ⌃ ˘, µB x 2 u 1 " ⇠ `u1 on ⌃ `, µB x 2 u 1 " ´⇠´u1 on ⌃ ´.
(0.56)

The linearized equations read

$ ' ' ' & ' ' ' % B t `⇢1 0 u 2 " 0, ⇢ 0 B t u `rp " µ u ´ g, divu " 0, (0.57)
with the corresponding boundary conditions remaining (0.56).

The linear RT instability problem is still to seek a normal mode of the form $ ' ' ' ' ' & ' ' ' ' ' % pt, xq " e t cospkx 1 q!px 2 q, u 1 pt, xq " e t sinpkx 1 q✓px 2 q, u 2 pt, xq " e t cospkx 1 q px 2 q, qpt, xq " e t cospkx 1 qqpx 2 q.

(0.58)

where k P L ´1Zzt0u, P Czt0u and Re • 0. It follows from (0.57 We obtain

) that $ ' ' ' ' ' & ' ' ' ' ' % ! `⇢1 0 " 0, ⇢ 0 ✓ ´kq `µpk 2 ✓ ´✓2 q " 0, ⇢ 0 `q1 `µpk 2 ´ 2 q " ´g!, k✓ ` 1 " 0 (0.
! " ´⇢1 0 , ✓ " ´1 k 1 , q " ´1 k 2 p ⇢ 0 1 `µpk 2 1 ´ 3 qq. (0.61)
Then, we substitute q and ! into (0.59) 3 to get a fourth-order ODE (0.27). The boundary conditions deduced from (0.56) are obtained by assuming the solution to be in

C 2 pr´1, 1sq, $ ' ' ' & ' ' ' % p´1q " p1q " 0, µ 2 p1q " ⇠ ` 1 p1q, µ 2 p´1q " ´⇠´ 1 p´1q. (0.62)
Note that H 4 pp´1, 1qq ãÑ C 3 pp´1, 1qq allows us to write (0.62).

When the density profile ⇢ 0 is increasing, we first show that all characteristic values are real. We look for positive characteristic values and further obtain the uniform upper bound b g L 0 of . We now study the linearized problem, i.e. Eq. (0.27)-(0.62). Note that, it suffices to seek functions being real and consider the vector spaces of real-valued functions in what follows in the linear analysis. Of importance is to construct a continuous and coercive bilinear form B k, ,µ as • 0 and k P Rzt0u (i.e. we do not restrict P p0, b g L 0 q and k P L ´1Zzt0u at this step) on the functional space H2 pp´1, 1qq :" t' P H 2 pp´1, 1qq, 'p˘1q " 0u, so that the finding of a solution P H 4 pp´1, 1qq of Eq. (0.27)-(0.62) on p´1, 1q is equivalent to finding a weak solution P H2 pp´1, 1qq to the variational problem

B k, ,µ p , ✓q " gk 2 ª 1 ´1 ⇢ 1 0 ✓dx 2 for all ✓ P H2 pp´1, 1qq, (0.63) 
and thus improving the regularity of that weak solution .

The desired bilinear form B k, ,µ is B k, ,µ p#, %q :"

ª 1 ´1 ⇢ 0 pk 2 #% `#1 % 1 qdx 2 `µ ª 1 ´1p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 2 ´⇠´# 1 p´1q% 1 p´1q ´⇠`# 1 p1q% 1 p1q, (0.64) 
For all • 0 and k P Rzt0u, we will consider a k-supercritical regime of the viscosity coefficient µ °µc pk, ⌅q with ⌅ " p⇠ ´, ⇠ `q (see the precise formula µ c pk, ⌅q in Proposition 2. 

Y k, ,µ # " p⇢ 0 k 2 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´1, 1qq.
In view of a bootstrap argument, we are able to define the inverse operator Y ´1 k, ,µ of Y k, ,µ , from L 2 pp´1, 1qq to a subspace of H 4 pp´1, 1qq requiring all elements satisfy (0.62). Composing the above operator Y ´1 k, ,µ with the continuous injection from H 4 pp´1, 1qq to L 2 pp´1, 1qq (see Proposition 2.4), we obtain that Y ´1 k, ,µ is a compact and self-adjoint operator from L 2 pp´1, 1qq to itself.

Denoting by M the operator of multiplication by a ⇢ 1 0 in L 2 pp´1, 1qq. Note from (0.67) that, we thus find p , vq such that

gk 2 v " MY ´1 k, ,µ Mv.
Once it is proven that the operator MY ´1 k, ,µ M is compact and self-adjoint from L 2 pp´1, 1qq to itself, then the discrete spectrum of the operator MY ´1 k, ,µ M is an infinite sequence of eigenvalues (denoted by t n pk, , µqu n•1 ). the spectrum of operators [START_REF] Kato | Perturbation theory for linear operators[END_REF]. In addition, when n is a characteristic value, we have n § b g L 0 for all n • 1. This yields that for any horizontal spatial frequency k P L ´1Zzt0u, there exists a sequence of characteristic values p n pk, µqq n•1 , that is uniformly bounded and we further obtain that n decreases towards 0 as n Ñ 8. For each n , we have that

n,k, n,µ " Y ´1 k, n,µ v n,k, n,µ is a solution in H 4 pp´1
, 1qq of (0.27)-(0.62) associated with " n .

We sum up the above arguments.

Theorem 0.3. Let k P L ´1Zzt0u be fixed and let ⇢ 0 satisfy that (0.54), i.e.

⇢ 0 P C 1 pr´1, 1sq, ⇢ 0 p˘1q " ⇢ ˘P p0, 8q, ⇢ 1 0 °0 everywhere on r´1, 1s.
For all µ °µc pk, ⌅q, there exists an infinite sequence p n , n q n•1 with n °0 decreasing towards 0 as n Ñ 8 and n P H 4 pp´1, 1qq, n nontrivial, satisfying (0.27)-(0.62).

Once Eq. (0.27)-(0.62) is solved, we go back to the linearized equations (0.57). For a fixed k P L ´1Zzt0u, we obtain a sequence of solutions to the linearized equations (0.57)-(0.56) as indicated in Proposition 2.7, which are pe j pk,µqt U j pk, µ, xqq j•1 , with U j pk, µ, xq " p j , u j , p j q T pk, µ, xq.

We now prove the nonlinear instability in the regime µ °3µ c p⌅q, with µ c p⌅q :" sup kPL ´1Zzt0u µ c pk, ⌅q.

(0.70)

The first important things are the local existence of strong solutions to the nonlinear equations and the a priori energy estimates to those solutions (see [START_REF] Ding | Rayleigh-Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions[END_REF]Proposition 4.1]).

Proposition 0.1. Suppose that the steady state p⇢ 0 px 2 q, 0, P 0 px 2 qq satisfies (0.54).

Then for any given initial data p 0 , u 0 q P pH 1 p⌦q X L 8 p⌦qq ˆpH 2 p⌦qq 2 satisfying divu 0 " 0, and also being compatible with the boundary conditions (0.53), the nonlinear equations (0.55) has a local strong solution p , u, rqq P Cpr0, T max q, H 1 p⌦q ˆpH 2 p⌦qq 2 ˆpL 2 p⌦qq 2 q.

(0.71) Hence, ⌫ 0 " 3`$ 0 2`$ 0 P p1, 3 2 q. Since all characteristic values are bounded by b g L 0 , we define

Let Eptq :" b } ptq} 2 H 1 p⌦q `}uptq}
0 † ⇤ :" sup kPL ´1Zzt0u 1 pk, µq § c g L 0 (0.74)
and set B ⇤ :" tk P L ´1Zzt0u, 1 pk, µq °2⌫ 0 3 ⇤u. For a k 0 P B ⇤ , we define N • 1 such that

⇤ • 1 pk 0 , µq ° 2 pk 0 , µq °¨¨¨° N pk 0 , µq °2⌫ 0 3 ⇤ ° N `1pk 0 , µq °. . . . (0.75)
We introduce a linear combination of normal modes

U M pt, xq " M ÿ j"1
c j e j pk 0 ,µqt U j pk 0 , µ, xq (0.76)

to construct an approximate solution to the nonlinear problem (0.55)-(0.56), with constants c j being chosen such that at least one of c j p1 § j § N q is non-zero (0.77) and let j m :" mintj :

1 § j § N, c j ‰ 0u, 1 2 |c jm |}u jm } L 2 p⌦q °ÿ j•jm`1 |c j |}u j } L 2 p⌦q . (0.78)
Eq. (0.55)-(0.56), supplemented with the initial data U M p0, xq (0 † ! 1), admits a unique local strong solution p , u q with an associated pressure q on r0, T max q (see Proposition 0.1). We define the differences

d " ´ M , u d " u ´ u M , q d " q ´ q M , They satisfy $ ' ' ' & ' ' ' % B t d `⇢1 0 u d 2 " ´u ¨r , ⇢ 0 B t u d ´µ u d `rq d `g d e 2 " ´ B t u ´p⇢ 0 ` qu ¨ru , divu d " 0. (0.79)
The initial condition of (0.79) is

p d , u d qp0q " 0 (0.80)
and the boundary conditions of (0.79

) are $ ' ' ' & ' ' ' % u d 2 " 0, on ⌃ ˘, µB x 2 u d 1 " ⇠ `ud 1 on ⌃ `, µB x 2 u d 1 " ´⇠´u d 1 on ⌃ ´.
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For t small enough, we then estimate the bound in time of }p d , u d qptq} L 2 p⌦q (see Proposition 2.8), that is

}p d , u d qptq} 2 L 2 p⌦q À 3 ´N ÿ j"jm |c j |e j t `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e 2 3 ⌫ 0 ⇤t ¯3.
by exploiting some energy estimates of (0.79)-(0.80)-(0.81) and by using the bound in time } ptq} H 1 p⌦q and }u ptq} H 2 p⌦q , which are deduced from the a priori energy estimate (0.72). The nonlinear result then follows.

Theorem 0.4. Let µ c p⌅q be defined as in (0.70) and µ °3µ c p⌅q. Let ⇢ 0 satisfies (0.54), i.e.

⇢ 0 P C 1 pr´1, 1sq, ⇢ 0 p˘1q " ⇢ ˘P p0, 8q, ⇢ 1 0 °0 everywhere on r´1, 1s.

Let M P N ‹ , there exist a constant m 0 °0 and positive constants " 0 and 0 sufficiently small such that for any P p0, 0 q, the nonlinear equations (0.55) with the boundary conditions (0.56) and the initial data M ÿ j"1 c j U j pxq satisfying (0.77)-(0.78), has a unique local strong solution p , u q with an associated pressure q such that }u pT q} L 2 p⌦q • m 0 ✏ 0 , (0.82)

where T P p0, T max q is given by ∞ M j"jm |c j |e j T " ✏ 0 .

We end this section with the following remark.

Remark 0.1. In the linear analysis, we revise the formula of the critical viscosity coefficient µ c p⌅q " sup k°0 µ c pk, ⌅q of Ding, Li and Xin in [15, Proposition 2.2]. After we uploaded this paper on Arxiv, our computations lead to a corrigendum posted by the above authors recently (see [START_REF] Ding | Correction to: Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions[END_REF]).

Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean

We study, in Chapter 3 of this thesis, summarized in the present section, the nonlinear RT instability in our last setting, the viscous surface wave in an infinitely deep ocean. Let T 2 " 2⇡L 1 T ˆ2⇡L 2 T, the domain of the fluid is ⌦ptq " tx " px h , x 3 q " px 1 , x 2 , x 3 q P T 2 ˆR, x 3 † ⌘pt, x 

B t ⌘ " ũ3 ´ũ 1 B 1 ⌘ ´ũ 2 B 2 ⌘ in ptq.
(0.84)

The unknowns ⇢ :" ⇢pt, xq, ũ :" ũpt, xq and p :" ppt, xq denote the density, the velocity and the pressure of the fluid, respectively. The stress tensor is Sũ " rũ `rũ T . The outward normal vector n of the boundary ptq is given by

n " p´B 1 ⌘, ´B2 ⌘, 1q T a 1 `|B 1 ⌘| 2 `|B 2 ⌘| 2 . (0.85)
The constant p atm is the atmospheric pressure. For a more physical description of the equations (0.84) and of the boundary conditions in (0.84), we refer to [START_REF] Lannes | The water waves problem: Mathematical analysis and asymptotics[END_REF]Sect. 1.8].

To complete the statement of the problem, we must specify the initial conditions. We suppose that the initial surface p0q is given by the graph of the function ⌘p0q " ⌘ 0 , which yields the open set ⌦p0q on which we specify the initial data for the velocity, up0q " u 0 : ⌦p0q Ñ R 3 . We assume that the initial surface function satisfies the "zero-average" condition ª

T 2 ⌘ 0 " 0 (0.86)
and ⌘p0q, up0q satisfy certain compatibility conditions, which we will present in detail later (see Proposition 0.2). Note that, for sufficiently regular solutions of the problem, the condition (0.86) persists in time, that is ª

T 2 ⌘ptq " 0 for all t • 0. (0.87) Indeed, d dt ª T 2 ⌘ " ª T 2 B t ⌘ " ª ptq ũ ¨n " ª ⌦ptq divũ " 0.
The movement of the free boundary ptq and of the domain ⌦ptq create numerous mathematical difficulties. To handle that, following Beale [START_REF] Beale | The initial value problem for the Navier-Stokes equations with a free surface[END_REF], we use the function ⌘ to transform the free boundary problem (0.84) into the equivalent problem (0.95) in a fixed domain ⌦ " T 2 ˆR´( i.e. d " 3, ⌃ " T 2 and I " R ´), which the fixed upper boundary is " T 2 ˆt0u. 0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean 30

We now define the appropriate Poisson sum that allows us to extend ⌘, to be determined on the surface ⌦. For any k P L ´1 1 Z ˆL´1 2 Z, we write

f pkq " ª T 2 f px h q e ´ik¨x h 2⇡ ? L 1 L 2 dx h
and define the Poisson sum on ⌦ by ppf qpx h , x 3 q :" ÿ

kPL ´1 1 ZˆL ´1 2 Z e ik¨x h 2⇡ ? L 1 L 2 e |k|x 3 f pkq (0.88)
We then have p : H s p q Ñ H s`1{2 p⌦q is a bounded linear operator for s °0.

Lemma 0.2. For q P N, let H q h be the usual homogeneous Sobolev space of order q and pf be the Poisson sum of a function f in H q´1{2 h p q. There holds

}r q pf } 2 L 2 p⌦q À }f } 2 H q´1{2 h p q . (0.89)
We extend ⌘ to be defined on ⌦ by ✓pt, xq :" pp⌘qpt, x h , x 3 q (0.90) for all x h P T 2 , x 3 § 0. Lemma 0.2 implies in particular that if ⌘ P H q´1{2 p q, then ✓ P H q p⌦q for q • 0. We introduce the following coordinate transformation: If the function ⌘ is sufficiently small (in an appropriate Sobolev norm), then the mapping ⇥ is a diffeomorphism.

⌦ Q x " px 1 , x 2 , x 3 q fi Ñ px 1 , x
From the definition of ⇥ (0.91), we first compute r⇥ "

¨1 0 0 0 1 0 B 1 ✓ B 2 ✓ 1 `B3 ✓ ‹ '. (0.92) Following [3] again, we denote A " B 1 ✓, B " B 2 ✓, J " 1 `B3 ✓, K " J ´1 (0.93) and A :" ppr⇥q ´1q T " ¨1 0 ´AK 0 1 ´BK 0 0 K ‹ '.
(0.94)

We write the differential operators r A , div A , A with their actions given by pr A f q i :"

3 ÿ j"1 A ij B j f, div A X :" ÿ 1 §i,j §3 A ij B j X i , A f " div A r A f.
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We write N :" p´B 1 ⌘, ´B2 ⌘, 1q T for the non-unit normal vector to ptq, and we also write the stress tensor S A puq as

pS A uq ij " A ik B k u j `Ajk B k u i .
We now define the density ⇢, the velocity u and the pressure p on the domain ⌦ by the composition p⇢, u, pqpt, xq " p⇢, ũ, pqpt, ⇥pt, xqq.

We transform (0.84) into the following system in the new coordinates $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %

B t ⇢ ´KB t ✓B 3 ⇢ `div A p⇢uq " 0 in ⌦, ⇢pB t u ´KB t ✓B 3 u `u ¨rA uq `rA p ´µdiv A S A u " ´g⇢e 3 in ⌦, div A u " 0 in ⌦, B t ⌘ " u ¨N on , ppId ´µS A uqN " p atm N on . (0.95) Let C 8 0 pR ´q Q ⇢ 1 0 • 0 such that supp⇢ 1 0 " r´a, 0s with a °0. (0.96)
We denote by 0 † ⇢ ´" ⇢ 0 px 3 q for all x 3 § ´a, ⇢ 0 p0q " ⇢ `.

(0.97)

This means that a layer of finite depth models the heavier fluid before the perturbation.

We will now rewrite (0.95) around the steady-state solution p⇢pt, xq, upt, xq, ppt, xq, ⌘pt, x h qq " p⇢ 0 px 3 q, 0, P 0 px 3 q, 0q, recalling P 1 0 " ´g⇢ 0 and adding the condition P 0 p0q " p atm . We define a particular density and pressure perturbation by

⇣ " ⇢ ´⇢0 ´⇢1 0 ✓, q " p ´P0 `g⇢ 0 ✓. (0.98)
We still call the perturbations of the velocity and of the characterization of surface as pu, ⌘q respectively. The equations for the perturbation U " p⇣, u, q, ⌘q write

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % B t ⇣ `⇢1 0 u 3 " Q 1 pU q in ⌦, ⇢ 0 B t u `rq ´µ u `g⇣e 3 " Q 2 pU q in ⌦, divu " Q 3 pU q in ⌦, B t ⌘ ´u3 " Q 4 pU q on ,
ppq ´g⇢ `⌘qId ´µSuqe 3 " Q 5 pU q on .
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The nonlinear terms Q i pU q p1 § i § 5q (for short Q i ) are given by

Q 1 " ⇢ 1 0 u 3 ´⇢1 0 B t ✓ `KB t ✓pB 3 ⇣ `⇢1 0 `⇢2 0 ✓ `⇢1 0 B 3 ✓q, ´div A pp⇢ 0 `⇢1 0 ✓ `⇣quq Q 2 " ´p⇣ `⇢1 0 ✓qB t u ´p⇣ `⇢0 `⇢1 0 ✓qKB t ✓B 3 u ´pr A p ´rq ´g⇣e 3 q ´p⇣ `⇢0 `⇢1 0 ✓qu ¨rA u ´µp u ´div A pS A uqq, Q 3 " divu ´div A u, Q 4 " ´u1 B 1 ⌘ ´u2 B 2 ⌘, Q 5 " pq ´g⇢ `⌘qId ¨pe 3 ´N q ´µSue 3 `µpS A uqN . (0.100) The linearized equations are $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % B t ⇣ `⇢1 0 u 3 " 0 in ⌦, ⇢ 0 B t u `rq ´µ u `g⇣e 3 " 0, in ⌦, divu " 0 in ⌦, B t ⌘ " u 3 on ,
ppq ´g⇢ `⌘qId ´µSuqe 3 " 0 on .

(0.101)

Following again [7, Chapter XI], we look for normal modes U pt, xq " e t V pxq of Eq. (0.101), which are p⇣, u, qqpt, xq " e t p!, v, rqpxq, ⌘pt, x h q " e t ⌫px h q.

(0.102)

The system on pw, v, r, ⌫q is

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % ! `⇢1 0 v 3 " 0 in ⌦, ⇢ 0 v `rr ´µ v `g!e 3 " 0 in ⌦, divv " 0 in ⌦, ⌫ " v 3 on , ppr ´g⇢ `⌫qId ´µprv `rv T qqe 3 " 0 on . (0.103) That implies ! " ´1 ⇢ 1 0 v 3 , ⌫ " 1 v 3 | (0.104) and $ ' ' ' & ' ' ' % 2 ⇢ 0 v ` rr ´ µ v ´g⇢ 1 0 v 3 e 3 " 0 in ⌦, divv " 0 in ⌦,
pp r ´g⇢ `v3 qId ´ µprv `rv T qqe 3 " 0 on .
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Let k " pk 1 , k 2 q P L ´1 1 Z ˆL´1 2 Zzt0u, we assume further that $ ' ' ' ' ' & ' ' ' ' ' % v 1 pxq " sinpk 1 x 1 `k2 x 2 q pk, x 3 q, v 2 pxq " sinpk 1 x 1 `k2 x 2 q'pk, x 3 q, v 3 pxq " cospk 1 x 1 `k2 x 2 q pk, x 3 q, rpxq " cospk 1 x 1 `k2 x 2 q⇡pk, x 3 q.

(0.106) Substituting (0.106) into (0.105), we deduce that $ ' ' ' ' ' & ' ' ' ' ' %

2 ⇢ 0 ´ k 1 ⇡ ` µpk 2 ´ 2 q " 0 in R ´, 2 ⇢ 0 ' ´ k 2 ⇡ ` µpk 2 ' ´'2 q " 0 in R ´, 2 ⇢ 0 ` ⇡ 1 ` µpk 2 ´ 2 q " g⇢ 1 0 in R ´, k 1 `k2 ' ` 1 " 0 in R ´, (0.107) At x 3 " 0, we have the boundary conditions $ ' ' ' & ' ' ' % µpk 1 p0q ´ 1 p0qq " 0, µpk 2 p0q
´'1 p0qq " 0, ⇡p0q ´g⇢ ` p0q ´2 µ 1 p0q " 0.

(0.108)

We also have the decaying condition at ´8, lim

x 3 Ñ´8
p , ', , ⇡qpx 3 q " 0. (0.109) Note that, due to (0.107) 1,2,4

⇡ " ´1 k 2 p ⇢ 0 1 `µpk 2 1 ´ 3 qq in R ´. (0.110)
Hence, from (0.110) and (0.107) 3 , we get a fourth-order ODE for , (0.27), i.e.

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 .

The boundary conditions at x 3 " 0 deduced from (0.107) 4 , (0.108) and (0.110) are np ,kq q which exists also thanks to a similar argument (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]). Furthermore, we have that t n u n•1 is a decreasing sequence towards 0.

µpk 2 p0q ` 2 p0qq " 0, ´ µ 3 p0q `p3 µk 2 ` 2 ⇢ `q 1 p0q `gk 2 ⇢ ` p0q " 0 (0.
ª 0 ´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª 0 ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 3 . ( 0 
Y a,k, # " pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´a
For each n , we have that n,k, n " Y ´1 a,k, n Mv n,k, n P H 4 pp´a, 0qq satisfies Eq. (0.27) with the boundary conditions (0.113)-(0.111) thanks to Proposition 3.3(2) again. Hence, n,k, n is glued with the decaying solutions of (0.27) in the outer region p´8, ´aq by the boundary conditions at x 3 " ´a to become a solution of (0.27)-(0.111)-(0.112) in H 4 pR ´q associated with " n . Theorem 0.5 is proven.

Once Eq. (0.27)-(0.111)-(0.112) is solved, we go back to the linearized equations (0.101). For a fixed k P L ´1 1 Z ˆL´1

2 Zzt0u, we obtain a sequence of real solutions to the linearized equations (0.101) (see Proposition 3.7), which are e j pkqt V j pk, xq " pe j pkqt p⇣ j pk, xq, u j pk, xq, q j pk, xq, ⌘ j pk, x h qq T . Since all the characteristic values are bounded by b g L 0 , we set

0 † ⇤ :" sup kPL ´1 1 ZˆL ´1 2 Zzt0u 1 pkq § c g L 0 , (0.122) 
and we show that ⇤ is the maximal growth rate of the linearized equations, see Proposition 3.9.

We move to show the nonlinear instability.

The local well-posedness of (0.99) in our functional framework can be established similarly as in [START_REF] Guo | Local well-posedness of the viscous surface wave problem without surface tension[END_REF]Theorem 6.2] for the incompressible viscous surface wave problem, that is used in [START_REF] Wang | The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability[END_REF] for the incompressible viscous surface-internal wave problem and [START_REF] Wang | Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D[END_REF] for the incompressible viscous fluid with magnetic field. Thus we refer to [START_REF] Guo | Local well-posedness of the viscous surface wave problem without surface tension[END_REF][START_REF] Wang | The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability[END_REF][START_REF] Wang | Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D[END_REF] for the construction of local solutions to (0.99) with some specific compatibility conditions. We restate it below and then derive the a priori energy estimate to the nonlinear equations (0.99) in Proposition 0.3 (see (0.128)).

Let us define the full energy functional E f pU ptqq °0 such that Let us recall the definition of K from (0.93) and A from (0.94) and define M " KA, R " B t MM ´1 and D t u " B t u ´Ru. We also define an orthogonal projection onto the 0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean 37 tangent space of the surface tx 3 " ⌘ 0 px 1 , x 2 qu according to

E 2 f pU ptqq :" }⌘ptq} 2 H 9{2 p q `2 ÿ l"0 }B l t ⌘} 2 H 4´2l p q `2 ÿ l"0 }B l t p⇣, uqptq}
⇧ 0 v " v ´v ¨N0 |N 0 | 2 N 0 for N 0 " p´B 1 ⌘ 0 , B 2 ⌘ 0 , 1q T . (0.125)
Let us write

G 2,0 " g⇢ `⌘N on , G 2,1 " D t G 2,0 `µS A pRuqN `pµS A u ´qIdqB t N `µS BtA uN on .
Proposition 0.2. Suppose that there is a sufficiently small constant ⌫ 1 P p0, 1q such that p⇣ 0 , u 0 , q 0 , ⌘ 0 q satisfying

}⇣ 0 } 2 H 4 p⌦q `}u 0 } 2 H 4 p⌦q `}q 0 } 2 H 3 p⌦q `}⌘ 0 } 2 H 9{2 p q § ⌫ 1 .
Suppose also that the following compatibility conditions hold for j " 0 and 1,

$ & % div A 0 D j t u 0 " 0 in ⌦, ⇧ 0 pG 2,j p0q `µS A 0 D j t u 0 N 0 q " 0 on . (0.126)
Then, there exist ⌫ 2 °0 and T max °0 such that if E f p0q § ⌫ 2 , Eq. (0.99) with the initial data p⇣ 0 , u 0 , q 0 , ⌘ 0 q satisfying the compatibility conditions (0.126) has a unique solution p⇣, u, q, ⌘q on the time interval r0, T max q. Moreover, we have

E f ptq À p1 `Tmax qE f p0q,
and ⌘ is such that the mapping ⇥p¨, tq defined by (0.91) is a C 2 -diffeomorphism for each t P r0, T max q.

With that regular solution p⇣, u, q, ⌘q of (0.99) on a finite time interval r0, T max q, we aim at showing a priori energy estimates for the nonlinear equations (0.99). Proposition 0.3. Let C emb be the optimal constant of the Sobolev embedding H 2 p⌦q ãÑ L 8 p⌦q and let 0 °0 be sufficiently small such that

0 † 0 § ⇢ 2C emb maxp1, max R ´⇢1 0 px 3 qq , (0.127)
and (3.279) holds later. Hence, there exists " °0 sufficiently small such that for all P p0, 0 q if sup 0 §s §t E f psq § , we have

E 2 f ptq `ª t 0 D 2 f psqds À " ´5E 2 f p0q `" ª t 0 E 2 f psqds `"´5 ª t 0 E f psqpE 2 f psq `D2 f psqqds `"´5 E 3 f ptq `"´59 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds.
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Thanks to (0.122), we define the non-empty set

B⇤ :" ! k P L ´1 1 Z ˆL´1 2 Zzt0u : 1 pkq °2⇤ 3 
) .

We further fix a k 0 P B⇤ . There is a unique N " N pk 0 q P N ‹ such that ⇤ • 1 pk 0 q ° 2 pk 0 q °¨¨¨° N pk 0 q °2⇤ 3 ° N `1pk 0 q °. . . . (0.129)

Let M P N ‹ be arbitrary. In view of getting infinitely many characteristic values of the linearized problem, we consider a linear combination of normal modes

U M pt, xq " M ÿ j"1
c j e j pk 0 qt V j pk 0 , xq (0.130)

to be an approximate solution to the nonlinear problem (0.99), with constants c j being chosen such that at least one of c j p1 § j § N q is non-zero (0.131) and let j m :" mintj : 1

§ j § N, c j ‰ 0u, 1 2 |c jm |}u jm } L 2 p⌦q °ÿ j•jm`1 |c j |}u j } L 2 p⌦q . (0.132)
In order to prove the nonlinear instability result, we would like to use U M p0, xq as the initial data for the nonlinear equations (0.99). However, the initial data for the nonlinear equations (0.99) must satisfy the compatibility conditions (0.126) stated in Proposition 0.2 to ensure the local existence. In this case, the normal modes V j pk 0 , xq do not enjoy (0.126). Thanks to an abstract argument from [36, Section 5C], which was used in [START_REF] Wang | The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability[END_REF][START_REF] Wang | Sharp nonlinear stability criterion of viscous non-resistive MHD internal waves in 3D[END_REF], we obtain the modified initial data U ,M 0 pxq. Proposition 0.4. There exist a number 0 °0 and a family of initial data

U ,M 0 pxq " U M p0, xq ` 2 U ,M ‹ pxq (0.133) for P p0, 0 q such that 1. E f pU ,M ‹ q § C ‹ M with C ‹ M being independent of and U ,M 0 
satisfies the compatibility conditions (0.126), 2. the nonlinear equations (0.99) with the above initial data U ,M 0 has a unique solution U ,M on r0, T max q satisfying that sup 0 §t †T max E f pU ,M ptqq † 8.

Note that U d ptq " U ,M ptq ´ U M ptq solves (0.99) with the initial data U d p0q " 2 U ,M ‹ and the same nonlinear terms

Q i p1 § i § 5q. Precisely, U d satisfies $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % B t ⇣ d `⇢1 0 u d 3 " Q 1 pU ,M q in ⌦, ⇢ 0 B t u d ´µ u d `rq d `g⇣ d e 3 " Q 2 pU ,M q in ⌦, divu d " Q 3 pU ,M q in ⌦, B t ⌘ d " u d 3 `Q4 pU ,M q on , ppq d ´g⇢ `⌘d qId ´µSu d qe 3 " Q 5 pU ,M q on .
(0.134) 0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean 39 along with the initial condition , there exist two constants ✏ 0 , 0 °0 sufficiently small and another constant m 0 °0 such that for any P p0, 0 q, the nonlinear equations (0.99) with the initial data (0.133), i.e. where T P p0, T max q is given by

U d p0q " p⇣ d , u d , ⌘ d , q d qp0q " 2 U ,M ‹ . ( 0 
∞ M j"jm |c j |e j T " ✏ 0 .
Chapter 1

Spectral analysis of the viscous Rayleigh-Taylor instability

This chapter is presented in the paper [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF], joint work with Prof. Olivier Lafitte. We perform the spectral analysis of the viscous Rayleigh-Taylor instability (as mentioned in Section 0.4). It consists in finding a sequence of characteristic values n such that for these n , the normal modes problem for the gravity-driven incompressible Navier-Stokes equations has a non trivial, bounded solution. This problem will be stated as a generalized eigenvalue problem for a self-adjoint operator. In the case where the variations of the profile considered ⇢ 1 0 are compactly supported, we get, whatever the viscosity is, a countable infinite sequence of characteristic values, which decrease towards zero. In the case ⇢ 1 0 not compactly supported, we are only able to provide a count of the values of n greater than any small constant ✏ ‹ °0. These two results are deduced, in the case µ °0, from a variational formulation of the characteristic problem on a compact set rx ´, x `s, using adapted boundary conditions.

Preliminaries

Throughout this chapter, we write x instead of x 3 for notational convenience.

We begin with some crucial material for the spectral study. The first one is the differentiability of eigenvalues of self-adjoint and compact operators.

The classical perturbation theory from [45, Chapter VII, $3] has shown the continuous property of the eigenvalues for a family of holomorphic self-adjoint operators in an infinite-dimensional Hilbert space. If the operators are only differentiable, we will present a proof of the differentiability of the eigenvalues for compact and self-adjoint operators in an infinite-dimensional Hilbert space deduced from that one for matrix functions in a finite-dimensional space (see [45, Chapter II, $5]).

Theorem 1.1. Let I be a closed interval and H be an infinite-dimensional Hilbert 1.1. Preliminaries space and pAp qq PI be a family of self-adjoint and compact operators in H depending continuously differentiable on . Then, all eigenvalues and all eigenvectors of Ap q are differentiable functions on .

Proof. Let 0 P I be fixed. Since Ap 0 q is a self-adjoint and compact operator in H, the spectrum of Ap 0 q is discrete. Let 0 be an arbitrary eigenvalue of Ap 0 q and E " KerpAp 0 q ´ 0 Id H q, we have the decomposition H " E ' E K . Consequently, for all P I, Ap q "

˜Proj E pAp qProj E q Proj E pAp qProj E K q Proj E K pAp qProj E q Proj E K pAp qProj E K q ţhat
we will denote by pA ij p qq 1 §i,j §2 for brevity. Notice that

Ap 0 q " ˜ 0 Id E 0 0 A 22 p 0 q ¸,
and

A 22 p 0 q ´ 0 Id E K is invertible.
Let 0 † " ! 1 and be an eigenvalue of Ap q being close to 0 , i.e. | ´ 0 | † ". We write that Ap q ´ Id " ˜A11 p q ´ Id E A 12 p q A 21 p q A 22 p q ´ Id E K ¸.

( ´ Id E qy `A12 p qz " 0, A 21 p qy `pA 22 p q ´ Id E K qz " 0.

(1.2)

Since A 22 p 0 q ´ 0 Id E K is invertible, we have that A 22 p q ´ 0 Id E K is invertible for | ´ 0 | † ! 1. We further get that A 22 p q ´ Id E K is also invertible for | ´ 0 | † and | ´ 0 | † ". Hence, we deduce that (1.2) is equivalent to $ & % z " ´pA 22 p q
´ Id E K q ´1A 21 p qy, pA 11 p q ´A12 p qpA 22 p q ´ Id E K q ´1A 21 p qqy " y.

(1.3)

If y " 0, Eq. (1.3) 1 implies z " 0, which is impossible. We have y ‰ 0, this means that if P p 0 ´", 0 `"q is an eigenvalue of Ap q, Eq. (1.3) 2 tells us that is also an eigenvalue of Bp , q defined by Bp , q :" A 11 p q ´A12 p qpA 22 p q ´ Id E K q ´1A 21 p q : E Ñ E 1.1. Preliminaries

42

Notice that E is finite-dimensional thanks to Riesz's theorem. Bp , q turns out to be a matrix, having eigenvalues j p , qp1 § j § dimEq. Then, there exists j such that j p , q " . It follows from [45, Chapter II, $5] that j p , q and its associated eigenvector are differentiable at 0 , so is .

We then state here the key ingredient for our analysis in Section 1. Theorem 1.2. We consider a linear system W 1 pyq " pA `Lpyq `RpyqqW pyq.

(1.4)

Let A be a constant matrix with characteristic roots µ j , j " 1, . . . , n, all of which are distinct. Let the matrix L be differentiable and satisfy

ª 8 0 }L 1 pyq}dy † 8 (1.5)
and let Lpyq Ñ 0 as y Ñ 8. Let the matrix R be integrable and let

ª 8 0 }Rpyq}dy † 8. (1.6) 
Let the roots of detpA `Lpyq ´ I n q " 0 be denoted by j pyq, j " 1, . . . , n. Clearly, by reordering the µ j if necessary, lim yÑ8 j pyq " µ j . For a given h, let 

d
d hj psqds § K py 2 • y 1 • 0q,
where h is fixed and K is a constant. Let p h be the eigenvector corresponding to µ h , i.e. Ap h " µ h p h . Hence, there is a solution h of (1.4) and a y 0 P p0, 8q such that

lim yÑ8 h pyqexp " ´ª y y 0 h psqds ı " p h .
We end this section by the proof of Lemma 0.1.

Proof of Lemma 0.1. Multiplying by on both sides of (0.27) and then integrating by parts, we obtain that

´ 2 ª R ´k2 ⇢ 0 | | 2 `⇢0 | 1 | 2 ¯dx " µ ª R ´| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 ¯dx ´gk 2 ª R ⇢ 1 0 2 dx.
(1.7)

1.2. The compactly supported profile 43 Suppose that " 1 `i 2 , then one deduces from (1.7) that

´p 2 1 ´ 2 2 q ª R ´k2 ⇢ 0 | | 2 `⇢0 | 1 | 2 ¯dx " 1 µ ª R ´| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 ¯dx ´gk 2 ª R ⇢ 1 0 | | 2 dx (1.8)
and that

´2 1 2 ª R ´k2 ⇢ 0 | | 2 `⇢0 | 1 | 2 ¯dx " 2 µ ª R ´| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 ¯dx. (1.9)
If 2 ‰ 0, (1.9) leads us to

´2 1 ª R ´k2 ⇢ 0 | | 2 `⇢0 | 1 | 2 ¯dx " µ ª R ´| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 ¯dx °0,
which yields a contradiction that 1 † 0. Hence, we have that 2 " 0, i.e. is real. Using (1.7) again, we further get that

2 ª R ⇢ 0 pk 2 | | 2 `| 1 | 2 qdx § gk 2 ª R ⇢ 1 0 | | 2 dx.
It tells us that is bounded by b g L 0 . This finishes the proof of Lemma 0.1.

The compactly supported profile

In this section, we consider ⇢ 0 satisfying (0.31) and (0.32). We remark that in this section, we use the notations ⌫ ˘" ⇢ μ and ⌧ ˘" pk 2 ` ⌫ ˘q1{2 .

The solution in outer regions and reduction to a problem on a finite interval

We derive, in this subsection, the precise expression of pxq as |x| • a.

Proposition 1.1. There are two linearly independent solutions of (0.27) decaying to 0 at `8 as x P ra, `8q, i.e.

1 pxq " e ´kx and 2 pxq " e ´⌧`x .

(1.10) and two linearly independent solutions of (0.27) decaying to 0 at ´8 as x P p´8, ´as, i.e. 1 pxq " e kx and 2 pxq " e ⌧ ´x. (1.11) All solutions decaying to 0 at `8 (respectively at ´8) are spanned by p 1 , 2 q (respectively by p 1 , 2 q).

Proof. For x P ra, `8q, Eq. (0.27) reduces to

´ ⌫ `pk 2 ´ 2 q " p4q ´2k 2 2 `k4 .

We seek as pxq " e rx . Hence,

´ ⌫ `pk 2 ´r2 q " r 4 ´2k 2 r 2 `k4 , which yields r " ˘k or r " ˘pk 2 ` ⌫ `q1{2 . Since tends to 0 at `8, we get two linearly independent solutions, which are (1.10),

1 pxq " e ´kx and 2 pxq " e ´⌧`x .

Hence, all solutions decaying to 0 at `8 are of the form pxq " A 1 e ´kpx´aq `A2 e ´⌧`p x´aq (1.12) for all x P ra, `8q and for some real constants A 1 and A 2 .

If x P p´8, ´as, the same calculation implies (1.11). Then, all solutions decaying to 0 at ´8 are of the form pxq " A 1 e kpx`aq `A2 e ⌧ ´px`aq (1.13) for all x P p´8, ´as and for some real constants A 1 and A 2 .

Once it is proven that pxq outside p´a, aq is of the form (1.12) or (1.13), we look for on p´a, aq. That solution has to match with (1.12) and (1.13) well, i.e. there are some conditions on p , 1 , 2 , 3 q at x " ˘a. We will show the conditions in the following lemma.

Lemma 1.1. The boundary conditions of (0.27) at x " ´a, for P H 4 pRq, are (0.35)

$ & % k⌧ ´ p´aq ´pk `⌧´q 1 p´aq ` 2 p´aq " 0, k⌧ ´pk `⌧´q p´aq ´pk 2 `k⌧ ´`⌧ 2 ´q 1 p´aq ` 3 p´aq " 0.

and at x " a are (0.36) $ & % k⌧ ` paq `pk `⌧`q 1 paq ` 2 paq " 0, ´k⌧ `pk `⌧`q paq ´pk 2 `k⌧ ``⌧ 2 `q 1 paq ` 3 paq " 0.

Proof. The boundary conditions of a solution of (0.27) at x " ˘a are equivalent to the fact that belongs to the space of decaying solutions at ˘8. On the one hand, it can be seen from (1.12) and (1.13) that

¨ pxq 1 pxq 2 pxq 3 pxq ‹ ‹ ‹ ' " A 1 e kpx`aq ¨1 k k 2 k 3 ‹ ‹ ‹ ' `A2 e ⌧ ´px`aq ¨1 ⌧ ⌧ 2 ⌧ 3 ´‹ ‹ ‹ ' for x § ´a and that ¨ pxq 1 pxq 2 pxq 3 pxq ‹ ‹ ‹ ' " A 1 e ´kpx´aq ¨1 ´k k 2 ´k3 ‹ ‹ ‹ ' `A2 e ´⌧`p x´aq ¨1 ´⌧⌧ 2 ⌧ 3 `‹ ‹ ‹ ' , for x • a.
On the other hand, the orthogonal complement of the subspace of R 4 spanned by two vectors p1, k, k 2 , k 3 q T and p1, ⌧ ´, ⌧ 2

´, ⌧ 3 ´qT is spanned by pk⌧ ´, ´pk `⌧´q , 1, 0q T and pk⌧ ´pk `⌧´q , ´pk 2 `k⌧ ´`⌧ 2 ´q, 0, 1q T .

Similarly, the orthogonal complement of the subspace of R 4 spanned by two vectors p1, ´k, k 2 , ´k3 q T and p1, ´⌧`, ⌧ 2 `, ´⌧ 3 `q is spanned by two vectors pk⌧ `, k `⌧`, 1, 0q T and p´k⌧ `pk `⌧`q , ´pk 2 `k⌧ ``⌧ 2 `q, 0, 1q T .

The above arguments allow us to set (0.35) and (0.36) as boundary conditions of Eq. (0.27) on p´a, aq.

We aim at solving (0.27) on p´a, aq with the boundary conditions (0.35)-(0.36).

A bilinear form and a self-adjoint invertible operator

We study the bilinear form B a, (0.42) in the following proposition.

Proposition 1.2. We have that B a, p#, %q :" BV a, p#, %q `BV ´a, p#, %q `

ª a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx.
is a continuous and coercive bilinear form on H 2 pp´a, aqq.

Furthermore, let pH 2 pp´a, aqqq 

p#paqq 2 `p#p´aqq 2 À }#} 2 H 1 pp´a,aqq . Similarly, p# 1 paqq 2 `p# 1 p´aqq 2 À }# 1 } 2 H 1 pp´a,aqq . Consequently, we get |BV ˘a, p#, %q| À p|#p˘aq| `#1 p˘aq|qp|%p˘aq| `|% 1 p˘aq|q À }#} H 2 pp´a,aqq }%} H 2 pp´a,aqq . We find that |B a, p#, %q| À }#} H 2 pp´a,aqq }%} H 2 pp´a,aqq , (1.15) 
i.e. B a, is bounded.

We move to show the coercivity of B a, . We have that

B a, p#, #q " BV a, p#, #q `BV ´a, p#, #q ` ª a ´a ⇢ 0 pk 2 # 2 `p# 1 q 2 qdx `µ ª a ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx.
We have that BV a, p#, #q • 0 follows from the following equality

1 µ BV a, p#, #q " k⌧ `pk `⌧`q p#paqq 2 ´2k⌧ `#paq# 1 paq `pk `⌧`q p# 1 paqq 2 " k⌧ `pk `⌧`q ´#paq ´#1 paq k `⌧`¯2 `k2 `k⌧ ``⌧ 2 k `⌧`p # 1 paqq 2 .
We also obtain that BV ´a, p#, #q • 0. Therefore, we deduce that

B a, p#, #q • µ minpk 4 , 2k 2 , 1q}#} 2 H 2 pp´a,aqq . (1.16) 
Two inequalities (3.22) and (3.23) tell us that B a, is a continuous and coercive bilinear form on H 2 pp´a, aqq. It follows from Reisz's representation theorem that there is a unique operator Y a, P LpH 2 pp´a, aqq, pH 2 pp´a, aqqq 1 q, that is also bijective, satisfying (1.14) for all #, % P H 2 pp´a, aqq. Proof of Proposition 1.2 is complete.

The next proposition is to devoted to studying the properties of Y a, .

Proposition 1.3. We have the following results.

1. For all # P H 2 pp´a, aqq,

Y a, # " p⇢ 0 k 2 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´a, aqq.
1.2. The compactly supported profile 47 2. Let f P L 2 pp´a, aqq be given, there exists a unique solution # P H 2 pp´a, aqq of Y a, # " f in pH 2 pp´a, aqqq 1 .

(1.17)

Moreover, we have that # P H 4 pp´a, aqq and satisfies the boundary conditions (0.35)-(0.36).

Proof. Let % P C 8 0 pp´a, aqq, it follows from Proposition 1.2 that, for # P H 2 pp´a, aqq ª

a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx " xY a, #, %y. (1.18) 
We respectively define p# 2 q 1 and p# 2 q 2 in the distributional sense as the first and second derivative of # 2 , which is in L 2 pp´a, aqq. Hence, (1.18) is equivalent to

ª a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap2k 2 # 1 % 1 `k4 #%qdx `µxp# 2 q 2 , %y " xY a, #, %y. (1.19)
for all % P C 8 0 pp´a, aqq. We deduce from (

1.19) that ª a ´ap pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp´2k 2 # 2 `k4 #qq%dx `µxp# 2 q 2 , %y " xY a, #, %y (1.20) 
for all % P C 8 0 pp´a, aqq. The first assertion follows. Let f P L 2 pp´a, aqq and # P H 2 pp´a, aqq be the solution of (1.17), we improve the regularity of the weak solution # of (1.20). Indeed, we rewrite (1.20) as µxp# 2 q 2 , %y "

ª a ´apf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q%dx (1.21) for all % P C 8 0 pp´a, aqq. Since pf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q
belongs to L 2 pp´a, aqq, it then follows from (1.21) that p# 2 q 2 P L 2 pp´a, aqq.

Furthermore, let P C 8 0 pp´a, aqq satisfy ≥ a ´a pyqdy " 1. From the distribution theory, we define P D 1 pp´a, aqq such that

x , %y " xp# 2 q 2 , ⇣ ⇢ y (1.22)
for all % P C 8 0 pp´a, aqq, where

⇣ ⇢ pxq " ª x ´a ´%pyq ´ pyq ª a ´a %psqds ¯dy for ´a † x † a.
Hence, it can be seen that

x 1 , %y " ´x , % 1 y " ´xp# 2 q 2 , ⇣ ⇢ 1 y " ´xp# 2 q 2 , %y that implies p# 2 q 1 ` " constant. In view of p# 2 q 2 P L 2 pp´a, aqq and (1.22), we know that p# 2 q 1 P L 2 pp´a, aqq. Since # P H 2 pp´a, aqq and p# 2 q 1 , p# 2 q 2 P L 2 pp´a, aqq, it tells us that # belongs to H 4 pp´a, aqq.

By exploiting (1.21), we then show that # satisfies (0.35) and (0.36). Indeed, consider now % P C 8 pp´a, aqq, one has, using the integration by parts ª a ´ap# 2 q 2 pxq%pxqdx " p# 2 q 1 paq%paq ´p# 2 q 1 p´aq%p´aq ´p# 2 qpaq% 1 paq `p# 2 qp´aq% 1 p´aq `ª a ´a # 2 pxq% 2 pxqdx.

We perform on the other terms of (1.20) the integration by parts, which yields ª

a ´a ⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª a ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx ´ ⇢ 0 # 1 % ˇˇa ´a `µ´# 3 % ˇˇa ´a ´#2 % 1 ˇˇa ´a ´2k 2 # 1 % ˇˇa ´a¯" ª a ´apY a, #q%dx.
It then follows from the definition of the bilinear form B a, that

BV a, p#, %q `BV ´a, p#, %q " ´ ⇢ 0 # 1 % ˇˇa ´a `µ´# 3 % ˇˇa ´a ´#2 % 1 ˇˇa ´a ´2k 2 # 1 % ˇˇa ´a¯( 1.23)
for all % P C 8 pp´a, aqq.

By collecting all terms corresponding to %p´aq in (1.23), we deduce that

µpk⌧ ´pk `⌧´q #p´aq ´k⌧ ´#1 p´aqq " ⇢ 0 p´aq# 1 p´aq ´µp# 3 p´aq ´2k 2 # 1 p´aqq. It yields # 2 p´aq ´pk 2 `k⌧ ´`⌧ 2 ´q#
1 p´aq `k⌧ ´pk `⌧´q #p´aq " 0 owing to the definition of ⌧ ´. Then, we collect all terms corresponding to %paq or to % 1 p˘aq in (1.23) to conclude that # satisfies (0.35) and (0.36). This ends the proof of Proposition 1.2.

We have the following proposition on Y ´1 a, .

Proposition 1.4. The operator Y ´1 a, : L 2 pp´a, aqq Ñ L 2 pp´a, aqq is compact and selfadjoint.

Proof. It follows from Proposition 1.3 that Y a, admits an inverse operator Y ´1 a, from L 2 pp´a, aqq to a subspace of H 4 pp´a, aqq requiring all elements satisfy (0.35)-(0.36), which is symmetric due to Proposition 1.2. We compose Y ´1 a, with the continuous injection from H 4 pp´a, aqq to L 2 pp´a, aqq. Notice that the embedding H p pp´a, aqq ãÑ H q pp´a, aqq for p °q • 0 is compact. Therefore, Y ´1 a, is compact and self-adjoint from L 2 pp´a, aqq to L 2 pp´a, aqq. Proposition 1.4 is shown.

Remark 1.1. In this paper, we choose to define the operator

fi Ñ p⇢ 0 k 2 ´p⇢ 0 1 q 1 q `µp p4q ´2k 2 2 `k4 q " Y a,
with boundary conditions (0.35)-(0.36) through Riesz's representation theorem. We can also define that by the following way.

The operator Y a, is well defined on DpY a, q " t P C 4 pp´a, aqq, verifies (0. 

A sequence of characteristic values

We continue considering P p0, b g L 0 s and study the operator S a, :" MY ´1 a, M, where M is the operator of multiplication by a ⇢ 1 0 . Note that this choice prevents to consider a case where ⇢ 1 0 could be negative.

Proposition 1.5. The operator S a, : L 2 pp´a, aqq Ñ L 2 pp´a, aqq is compact and selfadjoint, under the hypothesis (0.31).

Proof. Due to the boundedness of ⇢ 1 0 , the operator S a, is well-defined from L 2 pp´a, aqq to itself. Y ´1 a, is compact, so is S a, . Moreover, because both the inverse Y ´1 a, and M are self-adjoint, the self-adjointness of S a, follows.

As a result of the spectral theory of compact and self-adjoint operators, the point spectrum of S a, is discrete, i.e. is a sequence t n p qu n•1 of eigenvalues of S a, , associated with normalized orthogonal eigenfunctions t$ n u n•1 in L 2 pp´a, aqq. That means

n p q$ n " MY ´1 a, M$ n . so that with n " Y ´1 a, M$ n P H 4 pp´a, aqq, one has n p qY a, n " ⇢ 1 0 n (1.24)
and n satisfies (0.35)-(0.36). Eq. (1.24) also tells us that n p q °0 for all n. Indeed, we obtain

n p q ª a ´apY a, n q n dx " ª a ´a ⇢ 1 0 2 n dx. That implies n p qB a, p n , n q " ª a ´a ⇢ 1 0 2 n dx. (1.25)
Since B a, p n , n q °0 and ⇢ 1 0 °0 on p´a, aq, we know that n p q is positive. Hence, by reordering and using the spectral theory of compact and self-adjoint operators again, we have that t n p qu n•1 is a positive sequence decreasing towards 0 as n Ñ 8.
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For each n, in order to verify that n is a solution of (0.27), we are left to look for real values of n such that (0.51). To solve (0.51), we have to prove that n p q is differentiable and decreasing in terms of , respectively in two next lemmas. Lemma 1.2. For each n, the functions n p q and n are differentiable in terms of P p0,

b g L 0 s. Proof. The family pY a, q Pp0, b g L 0
s is a family of bounded operators owing to Proposition 1.4. It can be seen that the boundary conditions (0.35)-(0.36) differentiable in the parameter will tell us that pY a, q Pp0, b g L 0 s is also a family of differentiable operators on by following a generalized treatment of [45, 

b g L 0 s, so is S a, .
We then apply the differentiable property of eigenvalues of self-adjoint and compact operators, demonstrated in Theorem 1.1 to deduce that n p q and n are differentiable functions.

Lemma 1.3. For each n, the function n p q is decreasing in P p0,

b g L 0 s. Proof. Let z n " d n d . It follows from (1.24) that k 2 ⇢ 0 n ´p⇢ 0 1 n q 1 `Ya, z n " 1 n p q ⇢ 1 0 z n `d d ´1 n p q ¯⇢1 0 n (1.26)
on p´a, aq. In addition, we have that at x " ´a, $ ' ' ' ' ' ' & ' ' ' ' ' ' %

z 2 n p´aq ´pk `⌧´q z 1 n p´aq `k⌧ ´zn p´aq " ⌫ 2⌧ ´ 1 n p´aq ´k⌫ 2⌧ ´ n p´aq, z 3 n p´aq ´pk 2 `k⌧ ´`⌧ 2 ´qz 1 n p´aq `k⌧ ´pk `⌧´q z n p´aq " ´k⌫ 2⌧ ´`⌫ ´¯ 1 n p´aq ´´k 2 ⌫ 2⌧
´`k⌫ ´¯ n p´aq

(1.27) and that at x " a, $ ' ' ' ' ' ' & ' ' ' ' ' ' % z 2 n paq `pk `⌧`q z 1 n paq `k⌧ `zn paq " ´⌫2 ⌧ ` 1 n paq ´k⌫ 2⌧ ` n paq, z 3 n paq ´pk 2 `k⌧ ``⌧ 2 `qz 1 n paq ´k⌧ `pk `⌧`q z n paq " ´k⌫ 2⌧ ``⌫ `¯ 1 n paq `´k 2 ⌫ 2⌧
``k⌫ `¯ n paq.

(1.28)

Multiplying by n on both sides of (1.26) and then integrating by parts to obtain that

ª a ´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx `ª a ´apY a, z n q n dx " 1 n p q ª a ´a ⇢ 1 0 z n n dx `d d ´1 n p q ¯ª a ´a ⇢ 1 0 2 n dx.
(1.29)
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Thanks to the integration by parts, we have ª

a ´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx " ª a ´a ⇢ 0 pk 2 p n q 2 `p 1 n q 2 qdx ´p⇢ 0 1 n n q ˇˇa ´a (1.30)
and ª a ´apY a, z n q n dx "

ª a ´apY a, n qz n dx `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇa ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇa ´a.
(1.31)

Owing to (1.30), (1.31) and also (1.24), Eq. (1.29) becomes ª

a ´a ⇢ 0 pk 2 p n q 2 `p 1 n q 2 qdx `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇa ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇa ´a ´p⇢ 0 1 n n q ˇˇa ´a " d d ´1 n p q ¯ª a ´a ⇢ 1 0 2 n dx.
(1.32)

Using (1.27), we obtain

´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p´aq `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p´aq `⇢´ 1 n p´aq n p´aq " µ ´k2 ⌫ 2⌧
´`k⌫ ´¯p n p´aqq 2 ´µ´k ⌫ 2⌧

´`⌫ ´¯ 1 n p´aq n p´aq ´µ k⌫ 2⌧

´

n p´aq 1 n p´aq `µ ⌫ 2⌧ ´p 1 n p´aqq 2 `⇢´ 1 n p´aq n p´aq. Keep in mind that µ⌫ ´" ⇢ ´, one has ´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p´aq `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p´aq `⇢´ 1 n p´aq n p´aq " k⇢ ´p n p´aqq 2 `⇢2 ⌧ ´p 1 n p´aq ´k n p´aqq 2 .
(1.33)

Similarly, using (1.28), we obtain

´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯paq ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯paq ´⇢´ 1 n paq n paq " k⇢ `p n paqq 2 `⇢2 ⌧ `p 1 n paq ´k n paqq 2 .
(1.34)

Combining (1.32), (1.33) and (1.34), we deduce that

d d ´1 n p q ¯ª a ´a ⇢ 1 0 2 n dx " ª a ´a ⇢ 0 pk 2 2 n `p 1 n q 2 qdx `k⇢ ´p n p´aqq 2 `⇢2 ⌧ ´p 1 n p´aq ´k n p´aqq 2 `k⇢ `p n paqq 2 `⇢2 ⌧ `p 1 n paq ´k n paqq 2 .
(1.35)

1.2. The compactly supported profile 52 It yields that 1 np q is increasing in , i.e. n p q is decreasing in . This ends the proof of Lemma 1.3. Now we are in proposition to solve (0.51).

Proposition 1.6. For each n, there exists only one positive n satisfying (0.51). In addition, n decreases towards 0 as n goes to 8.

Proof. Using (1.25), we know that

1 n p q ª a ´a ⇢ 1 0 2 n dx " ª a ´apY a, n q n dx " B a, p n , n q, that implies 1 L 0 n p q • k 2 `µk 4 ⇢ `.
Consequently, for all n • 1,

lim Ñ b g L 0 n p q °gk 2 . (1.36)
As 0 † 1 np q and it is a increasing function,

1 np q § 1 np 1 2 b g L 0 q for all § 1 2 b g L 0 . That implies lim Ñ0 n p q § lim Ñ0 n p 1 2 b g L 0 q
" 0 for all n • 1.

(1.37)

Combining (1.36), (1.37) and using Lemma 1.3, we deduce that there is only one n P p0, b g L 0 q satisfying (0.51) for each n • 1. We then prove that the sequence p n q n•1 is decreasing. Indeed, if m † m`1 for some m • 1, we have m p m q ° m p m`1 q. Meanwhile, we also have

m p m`1 q ° m`1 p m`1 q. That implies m gk 2 " m p m q ° m`1 p m`1 q " m`1 gk 2 .
That contradiction tells us that p n q n•1 is a decreasing sequence. Suppose that lim nÑ8 n " c 0 °0.

Note that

n pc 0 q • n p n q " n gk 2 .
Let n Ñ 8, we get a contradiction that 0 • c 0 . Hence, n decreases towards 0 as n Ñ 8. We conclude Proposition 1.6. Let n be found from Proposition 1.6 and n pxq " Y ´1 a, n M$ n pxq on p´a, aq. Keep in mind our computations in Section 1.2.1, we extend n to the whole line by requiring n satisfies (1.12) and (1.13) for some constants A n,1 and A n,2 as " n . Those constants A n,1 and A n,2 are defined by

$ & % n paq " A ǹ,1 `Aǹ ,2 , 1 n paq " kA ǹ,1 `ak 2 ` n ⌫ `Aǹ ,2 .
(1.38)

and by

$ & % n p´aq " A ń,1 `Ań ,2 , 1 n p´aq " kA ń,1 `ak 2 ` n ⌫ ´Ań ,2 .
(1.39)

Solving (1.38) and (1.39), we get that .40) and that

A ǹ,1 " a k 2 ` n ⌫ ` n paq ´ 1 n paq a k 2 ` n ⌫ `´k , A ǹ,2 " 1 n paq ´k n paq a k 2 ` n ⌫ `´k . ( 1 
A ń,1 " a k 2 ` n ⌫ ´ n p´aq ´ 1 n p´aq a k 2 ` n ⌫ ´´k , A ń,2 " 1 n p´aq ´k n p´aq a k 2 ` n ⌫ ´´k . (1.41) 
Therefore, the function n P H 4 pRq is a regular solution of (0.27) as " n for each n • 1. Proof of Theorem 0.1 is complete.

The strictly increasing profile case

The proof of Theorem 0.2 remains the same to that one of the first case, but more complicated. We point out the main differences as follows.

Questions concerning the existence of solutions of Eq. (0.27) being bounded at 8 are not straightforward as in the first case. In Section 1.3, we transform Eq. (0.27) into a system of ODEs (1.44). The matrix Lpx, q has 4 eigenvalues ˘k and ˘ak 2 ` ⇢ 0 pxq{µ, which are different for all °0. We then follow [10, Theorem 8.1, Chapter 3], whose statement is Theorem 1.2, to deduce that Eq. (0.27) admits two linearly independent solutions decaying to 0 at `8 (respectively ´8). A suitable interval px ´, x `q is thus determined through a precise calculation of the family of solutions decaying to 0 at ˘8, which yields appropriate boundary conditions (0.37) at x ´and (0.38) at x `in Proposition 1.7.

We solve Eq. (0.27) on the finite interval px ´, x `q with the boundary conditions (0.37)-(0.38). To do that, in Section 1.3.2, we construct the bilinear form B x ´,x `, (0.45) in Proposition 1.8 and continue the same arguments as in Section 1.2 to obtain the solution in the inner region px ´, x `q. Note that, the coercivity of B x ´,x `, relies on the positivity of the terms BV x `, (0.43) and BV x ´, (0.44) stated in Lemma 1.4. Due to the lack of an easy-to-use expression of boundary conditions in this case, it turns out that the positivity of BV x `, and BV x ´, are derived, in Proposition 1.8, by deducing the behavior at ˘8 of coefficients n ȋj (i, j " 1, 2) depending on px ˘, q and appearing in the boundary conditions (0.37)-(0.38). Having the bilinear form B x ´,x `, , we continue our arguments in Propositions 1.9 and 1.10, that follows the same line of Section 1.2, to prove Theorem 0.2.

Note that Lemma 1.4 does not give any control on x ´and x `. It is interesting for computational purposes as well as for a study of particular profiles (for example profiles decaying to ⇢ `at `8 at rate e ´↵`x p↵ `°0q and to ⇢ ´at ´8 at rate e ↵ ´xp↵ ´°0q), to be able to derive an explicit interval on which this is true. Notice that the restriction

• ✏ ‹ °0 of Theorem 0.2 implies that the matrix Rp q (see (1.43)) in Eq. (1.44) is non singular in the region r" ‹ , b g L 0 s. Hence, for a profile such that ⇢ 1 0 °0 everywhere, we devote Section 1.3.4 to establish a control of x ´and x `independent of . In Propositions 1.13 and 1.14, through a careful construction of Volterra series, we can obtain refined estimates of bounded solutions of Eq. ( 1 In this section, let pe 1 , e 2 , e 3 , e 4 q be the canonical basis of R 4 and we pay attention to an increasing profile ⇢ 0 satisfying (0.33) and (0.34). We will use the Frobenius matrix norm } ¨}F and the Euclidean vector norm } ¨}2 .

Solutions decaying to 0 at infinity and reduction to a problem on a finite interval

Let

Lpx, q " ¨0 1 0 0 0 0 1 0 0 0 0 1 ´ k 2 ⇢ 0 pxq µ ´k4 0 ⇢ 0 pxq µ `2k 2 0 ‹ ‹ ‹ ‹ ' (1.42)
and Rp q " ¨0 0 0 0 0 0 0 0 0 0 0 0

gk 2 µ µ 0 0 ‹ ‹ ‹ ‹ ' (1.43)
We set U " p , 1 , 2 , 3 q T and then rewrite (0.27) as

U 1 pxq " pLpx, q `⇢1 0 pxqRp qqU pxq, (1.44) 
The eigenvalues of Lpx, q, ˘k and ˘ 0 px, q, with 0 px, q " b k 2 ` µ ⇢ 0 pxq are different for all °0 and for all x P R. Furthermore, ª `8

´8 |L 1 px, q|dx † `8, ª `8 ´8 |⇢ 1 0 pxqRp q|dx † `8. (1.45)
The inequalities (1.45) allow us to use [10, Theorem 8.1, Chapter 3] (see Section 1.2 for the statement) to find bounded solutions of (1.44) near ˘8. We denote ˘p q " lim xÑ˘8 0 px, q. Then, there exist x´ † x`s uch that we have the existence of bounded solutions U 1,2 on px `, `8q and U 3,4 on p´8, x´q such that in a neighborhood of `8,

e kx U 1 px, q Ñ p´k ´3, k ´2, ´k´1 , 1q T , exp ´≥x x` 0 py, qdy ¯U 2 px, q Ñ p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T , (1.46) 
and in a neighborhood of ´8,

e ´kx U 3 px, q Ñ pk ´3, k ´2, k ´1, 1q T , exp ´´≥ x
x´ 0 py, qdy ¯U 4 px, q Ñ p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T .

(1.47)

Let us prove that U 1 px, q and U 2 px, q are linearly independent. Through Cauchy-Lipschitz's theorem, if they are linearly dependent at a particular x 0 then they are linearly dependent for all x, that is there exists T p q such that U 1 px, q " T p qU 2 px, q.

In particular, as the limit of kx ´≥x x` 0 py, qdy when x Ñ `8 is equal to ´8, one observes that e kx U 1 px, q " T p qexp ´kx ´ª x

x` 0 py, qdy ¯´U 2 px, qexp

´ª x x`
0 py, qdy ¯¯.

The r.h.s. of this identity converges to 0 when x Ñ `8, while the l.h.s. converges to p´k ´3, k ´2, ´k´1 , 1q T when x Ñ `8, contradiction. Similarly, U 3 px, q and U 4 px, q are linearly independent.

The aim of the next proposition is to reduce the study of Eq. (0.27) on the real line to its study on a finite interval as in the previous section. This is really the key of our result for a smooth general profile because it entitles us to use the compact injection of H i ppa, bqq into H j ppa, bqq if i °j.

Proposition 1.7. There exist x 0

´ § x´a nd x 0 `• x`s uch that, for all x ´ § x 0 ´and x `• x 0 `, there are constants n ȋj pi, j " 1, 2q, depending on x ˘and such that equation

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 ,
where P H 4 ppx ´, x `qq, supplemented with the boundary conditions at x ´are (0.37)

$ & % n 11 px ´q `n1 2 
1 px ´q ` 2 px ´q " 0, n 21 px ´q `n2 2 
1 px ´q ` 3 px ´q " 0 1.3.
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$ & % n 11 px `q `n1 2 1 px `q ` 2 px `q " 0, n 21 px `q `n2 2 1 px `q ` 3 px `q " 0, is equivalent to equation 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 ,
where P H 4 pRq.

In this case, on px ´, x `q we have that " and on px `, `8q (respectively p´8, x ´q), is the first component of a linear combination of U 1,2 px, q (see (1.46)) [START_REF] Ishii | Thermo-Fluid Dynamic Theory of Two-Phase Flow[END_REF]. Any decaying solution ⇥ of (1.44) on px `, `8q belongs to the space spanned by U 1 px, q and U 2 px, q, which is of dimension 2 because they are linearly independent. It is equivalent to say that, for any x `• x`, U 1 px `, q ^U 2 px `, q ^⇥px `, q " 0 (1.48) and ⇥px `, q belongs to the space spanned by U 1 px `, q and U 2 px `, q .

(respectively U 3,4 px, q, see (1.47)). Proof. Notice that if is a bounded solution of 2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 , ⇥ " p , 1 , 2 , 3 q T is a bounded solution of (1.
Let us write U ì " pU ì1 , U ì2 , U ì3 , U ì4 q T for i " 1, 2 and U í " pU í1 , U í2 , U í3 , U í4 q T for i " 3, 4. System (1.48) is a system of four equations on the components of ⇥px `, q, hence there exists a couple of equations which are linearly independent (the system being of rank 2). Let us notice that two of these four equations contain, in 2 and 3 , respectively the term pU 11 U 22 ´U 12 U 21 qpx `, q 2 px `, q and pU 11 U 22 ´U 12 U 21 qpx `, q 3 px `, q.

As the limit, when x `Ñ `8, of exp ´kx

``ª x x` 0 py, qdy ¯pU 11 U 22 ´U 12 U 21 qpx `, q is ´1 k 3 2 `p q `1 k 2 3 `p q " ´ ⇢ μk 3 3 
`p qpk ` `q † 0, by continuity there exists a x 0 `• x`s uch that, for all x `• x 0 `,

pU 11 U 22 ´U 12 U 21 qpx `, q † 0 1.3.
The strictly increasing profile case 57 hence the equations for (1.48) on the components e 1 ^e2 ^e3 and e 1 ^e2 ^e4 write as N `⇥px `, q " 0 with N `is a 4 ˆ2 matrix of the form

N `" ˜n1 1 n 12 1 0 n 21 n 22 0 1 ¸.
We are now able to write the couple N `⇥px `, q " 0 as

$ & % n 11 px `, q `n1 2 
1 px `, q ` 2 px `, q " 0,

n 21 px `, q `n2 2 1 px `, q ` 3 px `, q " 0,
In a similar way, there exist n íj pi, j " 1, 2q depending on

x ´and such that $ & % n 11 px ´, q `n1 2 
1
px ´, q ` 2 px ´, q " 0,

n 21 px ´, q `n2 2 1 px ´, q ` 3 px ´, q " 0,
Hence is a solution of the ODE on px ´, x `q:

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 ,
with the boundary conditions (0.37) and (0.38).

Conversely, assume that P H 4 ppx ´, x `qq is a solution of equation

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 ,
with boundary conditions (0.37)-(0.38). From the boundary conditions, we deduce that there exist C j pj " 1, 2q, D ḱ pk " 3, 4q such that

U px `, q " C 1 U 1 px `, q `C2 U 2 px `, q and U px ´, q " D 3 U 3 px ´, q `D4 U 4 px ´, q.
Then, through Cauchy-Lipschitz's theorem,

U px, q " C 1 U 1 px, q `C2 U 2 px, q for all x • x ànd U px, q " D 3 U 3 px, q `D4 U 4 px, q for all x § x ´.
As these are decaying solutions at ˘8 respectively, and as there is no jump at x `(or x ´) for , 1 , 2 , 3 (which have a meaning as is assumed to be in H 4 ppx ´, x `qq), the function

pxq " $ ' ' ' & ' ' ' % C 1 U 11 px, q `C2 U 21 px, q, as x • x ` pxq, as x ´ † x † x D3 U 31 px, q `D4 U 41 px, q, as x § x ´ 1.
3. The strictly increasing profile case 58 belongs to H 4 pRq and solves equation

2 pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q ` µp p4q ´2k 2 2 `k4 q " gk 2 ⇢ 1 0 on R.
Remark that in this proof we have no additional information on the values of x 0 ánd of x 0 `. This will be the aim of Section 1.3.4.

A bilinear form and a self-adjoint invertible operator

The aim of Section 1.3.2 is to study the BV x ˘, terms (0.43), (0.44) which come from the bilinear form (0.45).

Lemma 1.4. Necessary and sufficient conditions to get

BV x `, p#, #q • 0 and BV x ´, p#, #q • 0 (1.49) for all # P H 2 ppx ´, x `qq are n 12 px `, q • 0, n 21 px `, q § 0, pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q § 0, (1.50) 
and

n 12 px ´, q • 0, n 21 px ´, q § 0, pn 11 px ´, q ´n2 2 px
´, q ´k2 ´ 2 0 px ´, qq 2 `4n 12 n 21 px ´, q § 0.

(1.51)

Proof of Lemma 1.4. We treat only the case BV x `, p#, #q • 0. Since µ 2 0 px, q " µk 2 ` ⇢ 0 pxq, we rewrite

1 µ BV x `, p#, #q " ´n2 1 px `, qp#px `qq 2 `n1 2 p# 1 px `qq 2 `pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq#px `q# 1 px `q.
We observe that it is a quadratic polynomial in #px `q, # 1 px `q. The first case is the case where n 12 " n 21 " 0. The inequalities (1.50) imply that BV x `, p#, #q " 0 for all #. The second case is the case where at least one of these two real numbers is not zero. For example, if n 12 ‰ 0, we have that the polynomial Proof. Recall n ȋj pi, j " 1, 2q are given in Proposition 1.7 and that BV x ´, , BV x `, are given in (0.43), (0.44). One observes that one needs to prove that

n 12 t 2 `pn 11 ´n2 2 ´k2 ´ 2 0 qt ´n2
|B x ´,x `, p#, %q| À }#} H 2 ppx ´,x `qq }%} H 2 ppx ´,x `qq (1.52)
and that

B x ´,x `, p#, #q Á }#} 2 H 2 ppx ´,x `qq . (1.53)
For positive , µ and k, we have ª

x x´⇢ 0 pk 2 #% `#1 % 1 qdx `µ ª x x´p # 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx À }#} H 2 ppx ´,x `qq }%} H 2 ppx ´,x `qq
and that ª

x x´⇢ 0 pk 2 # 2 `p# 1 q 2 qdx `µ ª x x´p p# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx Á }#} 2 H 2 ppx ´,x `qq .
Note that the condition µ °0 is necessary to obtain the coercivity on H 2 ppx ´, x `qq.

Note also that the case µ " 0 amounts to the inviscid Rayleigh-Taylor instability, for which similar results are known (and the corresponding problem needs only to be defined in H 1 ). In addition

|BV x `, p#, %q| À p|#px `q| `|%px `q|qp|# 1 px `q| `|% 1 px `q|q, |BV x ´, p#, %q| À p|#px ´q| `|%px ´q|qp|# 1 px ´q| `|% 1 px ´q|q
and the Sobolev embedding yields (1.52). The continuity of B x ´,x `, on H 2 ppx ´, x `qq follows.

To show (1.53), it suffices to prove that (1.49) holds. In view of Lemma 1.4, we verify (1.50). Since N `U 1 px `, q " N `U 2 px `, q " 0, we have that n ìj pi, j " 1, 2q depend on x `and and satisfy $ & % n 11 U 11 px `, q `n1 2 U 12 px `, q `U 13 px `, q " 0,

n 11 U 21 px `, q `n1 2 U 22 px `, q `U 23 px `, q " 0, (1.54) 
and $ & % n 21 U 11 px `, q `n2 2 U 12 px `, q `U 14 px `, q " 0, n 21 U 21 px `, q `n2 2 U 22 px `, q `U 24 px `, q " 0.

(1.55)

Let n ìj p q be the limit of n ìj px `, q as x Ñ `8. When x `Ñ `8, two systems

(1.54)-(1.55) converge to $ & % ´n1 1 p qk ´3 `n1 2 p qk ´2 ´k´1 " 0, ´n1 1 p q ´3 `p q `n1 2 p q ´2 `p q ´ ´1 `p q " 0, (1.56) 
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60 and $ & % ´n2 1 p qk ´3 `n2 2 p qk ´2 `1 " 0, ´n2 1 p q ´3 `p q `n2 2 p q ´2 `p q `1 " 0, (1.57) 
hence n 11 p q " k `p q, n 12 p q " k ` `p q and n 21 p q " ´k `p qpk ` `p qq, n 22 p q " ´pk 2 `k `p q ` 2 `p qq.

One thus has pn 11 p q ´n2 2 p q ´k2 ´ 2 `p qq 2 `4n 12 n 21 p q " ppk ` `p qq 2 ´k2 ´ 2 `p qq 2 ´4k `p qpk ` `p qq 2 " ´4k `p qpk 2 `k `p q ` 2 `p qq † 0.

Hence, by continuity, there exists

x 1 `• x 0 `such that, for all x `• x 1 `, pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q † 0.
The proof of the existence of x 1

´ § x 0 ´such that, for all x ´ § x 1 ´such that pn 11 px ´, q ´n2 2 px ´, q ´k2 ´ 2 0 px ´, qq 2 `4n 12 n 21 px ´, q † 0 follows the same pattern. Hence, by application of Lemma 1.4, the inequality (1.53) follows, which ends the proof of Proposition 1.8.

Mimicking the arguments in Propositions 1.2, 1.3, 1.4 we obtain the following proposition.

Proposition 1.9. Let pH 2 ppx ´, x `qqq 1 be the dual space of H 2 ppx ´, x `qq associated with the norm a B x ´,x `, p¨, ¨q, there exists a unique operator

Y x ´,x `, P LpH 2 ppx ´, x `qq, pH 2 ppx ´, x `qq 1 q,
that is also bijective, such that

B x ´,x `, p#, %q " xY x ´,x `, #, %y (1.58) 
for all #, % P H 2 ppx ´, x `qq. Furthermore, we have

1. For all # P H 2 ppx ´, x `qq, Y x ´,x `, # " pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 ppx ´, x `qq.
1.3. The strictly increasing profile case 61 2. Let f P L 2 ppx ´, x `qq be given, there exists a unique # P H 4 ppx ´, x `qq satisfying the boundary conditions (0.37)-(0.38).

Y x ´,x `, # " f in pH 2 ppx ´, x `qqq 1 , (1.59) 
3. The operator Y ´1

x ´,x `, : L 2 ppx ´, x `qq Ñ L 2 ppx ´, x `qq is compact and self-adjoint.

It is then straightforwad to obtain the following spectral result. The discrete spectrum of MY ´1

x ´,x `, M is a sequence of eigenvalues p n p qq n•1 . The function n p q is a continuous function of for all n from the arguments of Lemma 1.2. The problem of finding a characteristic value amounts to solving the equality (0.51) as before. However, no control is possible on n p q when goes to 0. In addition, no control of x 0 ˘and x 1 ˘(because it may depend on ) is available to have a possibility of having estimates of n p q as well. Having an explicit (even if not optimal) criterion on x 1 ˘such that the inequalities of coercivity (1.50)-(1.51) are true is the aim of the refined estimates of the solutions U 1,2 and U 3,4 (deducing in Propositions 1.13, 1.14 below) which follow. That will be postponed to Section 1.3.4 below.

1.3.3

The finding of characteristic value n and Proof of Theorem 0.2

Let ✏ ‹ °0 be given, we look for n P p✏ ‹ , b g L 0 q satisfying (0.51). However, unlike the previous case with ⇢ 1 0 • 0 being compactly supported, we do not have here the decrease of n on to obtain the uniqueness of n .

Proposition 1.10. For 0 † ✏ ‹ ! 1, there exists N p✏ ‹ q P N such that there is at least one positive n P p✏ ‹ , b g L 0 q satisfying (0.51) for each 1 § n § N p✏ ‹ q.

Proof. We still have lim 

Ñ b g L 0 n p q °gk 2 . (1.60) and b n p✏ ‹ q :" inf •✏‹ n p q °0. Notice that tb n p✏ ‹ qu n•1 is a sequence decreasing to 0 as n Ñ 8. Set N p✏ ‹ q :" sup ! n|b n p✏ ‹ q °✏‹ gk 2 ) P r1, `8q. For 1 § n § N p✏ ‹ q, lim Ñ✏‹ n p q § lim Ñ✏‹ b n p✏ ‹ q " ✏ ‹ b n p✏ ‹ q † gk 2 . ( 1 
P p✏ ‹ , b g L 0 q for 1 § n § N p✏ ‹ q.
Now, we are able to prove Theorem 0.2.
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Proof. Let $ n be an eigenfunction associated with n of MY ´1

x `,x ´, M. That means

MY ´1 x ´,x `, n M$ n " n p n , kq$ n " n gk 2 $ n . Hence, n " Y ´1 x ´,x `, n M$ n P H 4 ppx ´, x `qq satisfies n Y x ´,x `, n n " gk 2 ⇢ 1 0 n on px ´, x `q.
In order to conclude that n is a solution of (0.27), we then extend n on R by continuity.

Let us take " n in the formulas of U 1,2 from (1.46) and in the formulas of U 3,4 from (1.47). Hence, n is of the form

n pxq " B ǹ,1 U 11 px, n q `Bǹ ,2 U 21 px, n q as x • x `and n pxq " B ń,3 U 31 px, n q `Bń ,4 U 41 px, n q as x § x ´for some real constants B ǹ,1 , B ǹ,2 , B ń,3 and B ń,4 . The constants B ǹ,1 , B ǹ,2 are defined by $ & % n px `q " B ǹ,1 U 11 px `, n q `Bǹ ,2 U 21 px `, n q 1 n px `q " B ǹ,1 U 12 px `, n q `Bǹ ,2 U 22 px `, n q.
(1.62)

Similarly, we have the system for B ń,3 and B ń,

4 is $ & % n px ´q " B ń,3 U 31 px ´, n q `Bń ,4 U 41 px ´, n q, 1 n px ´q " B ń,3 U 32 px ´, n q `Bń ,4 U 42 px ´, n q.
(1.63)

Solving (1.62) and (1.63), we obtain that

B ǹ,1 " U 22 px `, n q n px `q ´U 21 px `, n q 1 n px `q pU 11 U 22 ´U 12 U 21 qpx `, n q , that B ǹ,2 " ´U 12 px `, n q n px `q `U 11 px `, n q 1 n px `q pU 11 U 22 ´U 12 U 21 qpx `, n q , that B ń,3 " U 42 px ´, n q n px ´q ´U 41 px ´, n q 1 n px ´q pU 31 U 42 ´U 41 U 32 qpx ´, n q ,
and that

B ń,4 " ´U 32 px ´, n q n px ´q `U 31 px ´, n q 1 n px ´q pU 31 U 42 ´U 41 U 32 qpx ´, n q .
Therefore, we get that n is a regular solution of (0.27) as " n for each 1 § n § N p✏ ‹ q. This ends the proof of Theorem 0.2.

Remark 1.2. 1. For |x ˘| large enough, the investigation of regular solutions to Eq. (0.27) on the real line is equivalent to that one on px ´, x `q with boundary conditions (0.37) and (0.38) at x ˘. More computations are required in the second case due to the lack of compact assumption on ⇢ 1 0 .

2. For |x ˘| large enough, the problem (0.27) on px ´, x `q with boundary conditions (0.37) and (0.38) is equivalent to a weaker version of (0.27) that can be solved by applying Riesz's representation theorem on the bilinear form B x ´,x `, and then improving the regularity.

3. Generally speaking, a problem on the real line with decaying solutions at infinity and transversality hypotheses is equivalent to a problem with the compact setting when we have enough decays on the solutions at ˘8.

Explicit construction and refined estimates of the decaying solutions at infinity

In the regime 0 † ✏ ‹ § § b g L 0 , we notice again that Rp q is uniformly bounded. So that, as 0 † ✏ ‹ § § b g L 0 " we further derive a control of the inner region px ´, x `q independent of in the following proposition, extending the result of Lemma 1.4 and Proposition 1.8. Proposition 1.11. Let ✏ ‹ °0 given and let • ✏ ‹ . Let z `,✏‹ (respectively, z ´,✏‹ ) be the sum of two upper bounds, which are functions decreasing towards 0 at `8 (respectively, at ´8), on the r.h.s. of (1.84) and (1.85) (respectively, (1.88) and (1.89)). There exist positive constants ˘p✏ ‹ q such that, for all x `, x ´satisfy z `,✏‹ px `q § `p✏ ‹ q and z ´,✏‹ px ´q § ´p✏ ‹ q,

(1.64)

we have B x ´,x `, is coercive.
The proof of Proposition 1.11 relies on the refined estimates of the bounded solutions of (1.44) near 8, presented in Propositions 1.13, 1.14. Before going to the proof of Propositions 1.13, 1.14, thus Proposition 1.11, we present some materials. Notice from (1.42) that one has Lpx, q " P px, qDpx, qP px, q ´1, where Dpx, q " diagp´k, ´ 0 px, q, k, 0 px, qq, (1.65)

P px, q " ¨´k ´3 ´ ´3 0 px, q k ´3 ´3 0 px, q k ´2 ´2 0 px, q k ´2 ´2 0 px, q ´k´1 ´ ´1 0 px, q k ´1 ´1 0 px, q 1 1 1 1 ‹ ‹ ‹ ' (1.66)
and P px, q ´1 " µ 2 ⇢ 0 pxq ¨´k 3 2 0 px, q k 2 2 0 px, q k 3 ´k2 k 2 3 0 px, q ´k2 2 0 px, q ´ 3 0 px, q 2 0 px, q k 3 2 0 px, q k 2 2 0 px, q ´k3 ´k2 ´k2 3 0 px, q ´k2 2 0 px, q

3 0 px, q 2 0 px, q ‹ ‹ ‹ ' (1.67)
The columns of matrix P are denoted by P 1 , P 2 , P 3 , P 4 and P 2 , P 4 depend on px, q.

Note that for every positive k, and µ, P and P ´1 are bounded uniformly in R and P ´1 becomes singular when Ñ 0 and x is fixed.

Then, we set U pxq " P px, qV pxq, Eq. (1.44) becomes

V 1 pxq " pDpx, q `⇢1 0 pxqM px, qqV pxq, (1.68) 
where M px, q " P px, q ´1Rp qP px, q ´d 0 px, q d⇢ 0 pxq P px, q ´1 dP px, q d 0 px, q .

Lemma 1.5. Let

p✏ ‹ q :" c k 2 `✏‹ ⇢ μ and s :" d k 2 `c g L 0 ⇢ μ .
For any P r✏ ‹ , b g L 0 s, there hold

sup xPR }P px, q} F § p :" max ´1, 1 k , 1 k 2 , 1 k 3 ¯(1.69)
and

sup xPR }M px, q} F § m p✏ ‹ q :" 1 ⇢ ´✏2 ‹ max ´g´k `1 L 0 ¯, g ´k2 p✏ ‹ q `1 L 0 ¯1 4 p✏ ‹ q c g L 0 max ´2k 2 2 p✏ ‹ q pk ` s q, 5k 2 p✏ ‹ q ` s , k 2 p✏ ‹ q ` s ¯.
(1.70)

Proof. Due to ✏ ‹ § § b g L 0 ,
we get that p✏ ‹ q † 0 px, q § s for all x P R, it yields (1.69). We move to demonstrate (1.70). Let a ˘p q " gk ˘ 2 , b ˘px, q " gk 2 0 px, q ˘ 2 and c ˘px, q " k ˘ 0 px, q, dpx, q " 5k 2 0 px, q ´ 0 px, q.

Direct computations show that

d 0 px, q d⇢ 0 pxq " 2µ ⇢ 1 0 pxq 0 px, q , that P px, q ´1Rp qP px, q " 1 2 2 ⇢ 0 pxq ¨a´k 2 b ´ 2 0 ´a`´k 2 b ` 2 0 ´a´ 2 0 k 2 ´b´a ` 2 0 k 2 ´bà ´k2 b ´ 2 0 ´a`´k 2 b ` 2 0 ´a´ 2 0 k 2 ´b´a ` 2 0 k 2 ´b`‹ ‹ ‹ ‹ ' px, q
and that P px, q ´1 dP px, q

d 0 px, q " µ 2 ⇢ 0 pxq ¨0 ´2k 2 c ` 2 0 0 2k 2 c ´ 2 0 0 d 0 ´k2 0 ` 0 0 2k 2 c ´ 2 0 0 ´2k 2 c ` 2 0 0 ´k2 0 ` 0 0 d ‹ ‹ ‹ ‹ ' px, q.
For all x P R, it is clear that

|a ˘p q| § g ´k `1 L 0 ¯, |b ˘px, q| § g ´k2 p✏ ‹ q `1 L 0 ānd that |c ˘px, q| § k ` s , |dpx, q| § 5k 2 p✏ ‹ q ` s .
Therefore, (1.70) follows. Proof of Lemma 1.5 is complete.

Let x`b e chosen such that ª `8

x`⇢

1 0 p⌧ q}M p⌧, q} F d⌧ § m p✏ ‹ qp⇢ `´⇢ 0 px `qq † 1 2 (1.71)
and x´b e chosen such that

ª x8 ⇢ 1 0 p⌧ q}M p⌧, q} F d⌧ § m p✏ ‹ qp⇢ 0 px ´q ´⇢´q † 1 2 . (1.72)
Let ↵ ˘pxq and ˘px, q be defined ↵ ˘pxq " ˘kpx ´x ˘q, ˘px, q " ˘ª x x˘ 0 py, qdy.

(1.73)

We then study the solutions of (1.68) decaying to 0 at `8.

Proposition 1.12. Eq. (1.68) on px `, `8q admits a unique solution V 1 px, q such that e ´↵`p xq V 1 px, q converges to e 1 as x Ñ `8 and a unique solution V 2 px, q such that e ´ `px, q V 2 px, q converges to e 2 as x Ñ `8. Furthermore, we have the following estimates

}e ↵ `pxq V 1 px, q ´e1 } 2 § 2 m p✏ ‹ q ¨p⇢ `´⇢ 0 pxqq `⇢0 px `qe ´p p✏‹q´kqpx´x `q `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª x x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ‹ ' (1.74) and }e `px, q V 2 px, q ´e2 } 2 § 2 m p✏ ‹ qp⇢ `´⇢ 0 pxqq (1.75)
for all x • x`.

The strictly increasing profile case

Proof. We define the matrices px, q " diagpe ´↵`p xq , e ´ `px, q , e ↵ `pxq , e `px, q q, 1 px, q " diagp0, e ´ `px, q , 0, 0q and 2 px, q " diagpe ´↵`p xq , 0, e ↵ `pxq , e `px, q q.

Then, we consider the equation

V 1 px, q " e ´↵`p xq e 1 `ª x x`
1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ ´ª `8

x 2 px, q p⌧, q ´1⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧.

(1.76)

It can be seen that a solution V 1 of (1.76) satisfies (1.68). We solve (1.76) by the Picard iteration method. Indeed, let V p0q 1 px, q " 0 and

V pj`1q 1 px, q " e ´↵`p xq e 1 `ª x x`
1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV pjq 1 p⌧, qd⌧ ´ª `8

x 2 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV pjq 1 p⌧, qd⌧.

We have that 1 px, q ´1p⌧, q " diagp0, e ´p `px, q´ `p⌧, qq , 0, 0q and that 2 px, q ´1p⌧, q " diagpe ´p↵ `p⌧ q´↵ `pxqq , 0, e ↵ `p⌧ q´↵ `pxq , e ´p `px, q´ `p⌧, qq q.

Hence, we can estimate for x` § ⌧ § x, } 1 px, q ´1p⌧, q} F § e ´p↵ `pxq´↵ `p⌧ qq`≥ x ⌧ pk´ 0 psqqds § e ´p↵ `pxq´↵ `p⌧ qq´p p✏‹q´kqpx´⌧ q (1.77) and for ⌧ • x, } 2 px, q ´1p⌧, q} F § e ´p↵ `pxq´↵ `p⌧ qq .

(1.78)

Using (1.77) and (1.78), we get

e ↵ `pxq }V pj`1q 1 px, q ´V pjq 1 px, q} 2 § m p✏ ‹ q ª 8 x`e ↵ `p⌧ q ⇢ 1 0 p⌧ q}V pjq 1 p⌧, q ´V pj´1q 1 p⌧, q} F d⌧.
Thanks to the induction, we get for all x • x`a nd for all j • 0,

e ↵ `pxq }V pj`1q 1 px, q ´V pjq 1 px, q} 2 § ´1 2 ¯j, (1.79)
1.3. The strictly increasing profile case 67 yielding the uniform convergence of tV pjq 1 px, qu j•0 on any subinterval of px `, `8q. Let V 1 px, q be the limit function.

V pjq 1 px, q is continuous, so is V 1 px, q. Moreover, (1.79) implies that e ↵ `pxq }V pj`1q 1 px, q} 2 § j ÿ i"0 e ↵ `pxq }V pi`1q 1 px, q ´V piq 1 px, q} § j ÿ i"0 ´1 2 ¯i.
That tells us for x • x`, }V 1 px, q} 2 § 2e ´↵`p xq .

(1.80)

Once we have (1.80), we then prove (1.74). Indeed,

e ↵ `pxq V 1 px, q ´e1 " e ↵ `pxq ª x x`
1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ ´e↵ `pxq ª `8

x 2 px, q p⌧, q ´1⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧.

We make use of (1.78) and (1.80) to have that e ↵ `pxq ª `8

x } 2 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, q} 2 d⌧ § 2 m p✏ ‹ qp⇢ `´⇢ 0 pxqq.

(1.81)

From (1.77) and (1.80), we obtain that

}e ↵ `pxq ª x x` 1 px, q ´1p⌧, q⇢ 1 0 p⌧ qM p⌧, qV 1 p⌧, qd⌧ } 2 § 2 m p✏ ‹ q ª x x`⇢ 1 
0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧.

(1.82)

After integrating by parts, we get ª x x`⇢ 1 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ " ´⇢0 px `qe ´p p✏‹q´kqpx´x `q `⇢0 pxq ´p p✏ ‹ q ´kq ª x

x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧.

(1.83)

Combining (1.81), (1.82) and (1.83) gives (1.74).

By considering the eigenvalue ´ 0 px, q of Lpx, q, we continue the idea in Theorem 1.2 and mimic the above arguments to the solution V 2 px, q such that e `px, q V 2 px, q converges to e 2 at `8 and V 2 px, q enjoys (1.75). This ends the proof of Lemma 1.12. Now, we get back to (1.44) to find solutions that are bounded near `8. Proposition 1.13. Eq. (1.44) on px `, `8q admits 1. a unique solution U 1 px, q satisfying that as x Ñ `8, e ↵ `pxq U 1 px, q converges to p´k ´3, k ´2, ´k´1 , 1q T and that for all x • x`, }e ↵ `pxq U 1 px, q ´p´k ´3, k ´2, ´k´1 , 1q T } 2 § 2 p m p✏ ‹ q ¨p⇢ `´⇢ 0 pxqq `⇢0 px `qe ´p p✏‹q´kqpx´x `q `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª x

x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ‹ ',

(1.84)

2. a unique solution U 2 px, q satisfying that as x Ñ `8, e `px, q U 2 px, q converges to p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T and that for all x • x`, }e `px, q U 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T } 2 § ´dgp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q `2 p m p✏ ‹ q ¯p⇢ `´⇢ 0 pxqq.

(1.85)

Proof. We define U j px, q " P px, qV j px, qpj " 1, 2q, with V 1 and V 2 are two solutions of (1.68) satisfying (1.74) and (1.75) respectively. It can be seen that U 1 px, q and U 2 px, q are two solutions of (1.44).

Note that e ↵ `pxq U 1 px, q " P 1 `P px, qpe

↵ `pxq V 1 px, q ´e1 q " p´k ´3, k ´2, ´k´1 , 1q T `P px, qpe ↵ `pxq V 1 px, q ´e1 q.
The inequality (1.84) is then clear due to the estimate (1.74 ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª x x`⇢ 0 p⌧ qe ´p p✏‹q´kqpx´⌧ q d⌧ ˇˇ" 0.

The behavior of U 1 px, q at `8 follows.

To prove (1.85), we write e `px, q U 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T " P 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T `P px, qpe `px, q V 2 px, q ´e2 q.

Since p✏ ‹ q † `p q † s for all P r✏ ‹ ,

b g L 0 s, we bound that }P 2 px, q ´p´ ´3 `p q, ´2 `p q, ´ ´1 `p q, 1q T } 2 2 " 2 µ 2 p⇢ 0 pxq ´⇢`q 2 » - - - 1 2 0 px, q 2 `p qp 0 px, q ` `p qq 2 `1 2 0 px, q 2 `p q
`´ 2 0 px, q ` 0 px, q `p q ` 2 `p q 3 0 px, q 3 `p qp 0 px, q ` `p qq ¯2 fi fl § gp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q p⇢ 0 pxq ´⇢`q 2 .

(1.86)

1.3. The strictly increasing profile case 69 Meanwhile, as a result of (1.75), }P px, qpe `px, q V 2 px, q ´e2 q} 2 § 2 p m p✏ ‹ qp⇢ `´⇢ 0 pxqq.

(1.87)

Thanks to (1.86) and (1.87), we obtain (1.85) hence the behavior of U 2 px, q at `8.

Proof of Proposition 1.13 is complete.

We now fix two positive eigenvalues of Lpx, q, k and 0 px, q and thus follow Theorem 1.2 again. We are able to construct solutions of (1.44), which are bounded near ´8 as in Proposition 1.13. Proposition 1.14. Eq. (1.44) on p´8, x´q admits 1. a unique solution U 3 px, q satisfying that as x Ñ ´8, e ↵ ´pxq U 3 px, q converges to pk ´3, k ´2, k ´1, 1q T and that, for all x § x}

e ↵ ´pxq U 3 px, q ´pk ´3, k ´2, k ´1, 1q T } 2 § 2 p m p✏ ‹ q ¨p⇢ 0 pxq ´⇢´q `⇢0 px ´qe ´p p✏‹q´kqpx ´´xq `ˇˇ⇢ 0 pxq ´p p✏ ‹ q ´kq ª xx ⇢ 0 p⌧ qe ´p p✏‹q´kqp⌧ ´xq d⌧ ˇˇ‹ ', (1.88) 
2. a unique solution U 4 px, q satisfying that as x Ñ ´8, e ´px, q U 4 px, q converges to p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T and that for all x § x´, }e ´px, q U 4 px, q ´p ´3 ´p q, ´2 ´p q, ´1 ´p q, 1q T } 2 § ´dgp4 10 p✏ ‹ q `16 12 p✏ ‹ q `9 4 s q 16L 0 µ 2 16 p✏ ‹ q `2 p m p✏ ‹ q ¯p⇢ 0 pxq ´⇢´q .

(1.89)

We are now in position to prove Proposition 1.11.

Proof. We recall n ìj (i, j " 1, 2) from (1. px `, q " k ` `p q `f1 px `, q 1 `f2 px `, q , 1.4. A remark on the relation between the formulation on rx ´, x `s and the formulation on R of the viscous RT problem 70 where |f j px, q| " Opz `,✏‹ pxqq pj " 1, 2q uniformly in P r✏ ‹ , b g L 0 s as x Ñ 8. Hence, there exists a constant ⇠ `p✏ ‹ q °0 such that

n 12 px `, q • k ` `p q ´⇠`p ✏ ‹ qz `,✏‹ px `q • k ` p✏ ‹ q ´⇠`p ✏ ‹ qz `,✏‹ px `q. That implies n 12 px `, q °0 if z `,✏‹ px `q † k ` p✏ ‹ q ⇠ `p✏ ‹ q . (1.92)
We estimate

`px `, q :" pn 11 px `, q ´n2 2 px `, q ´k2 ´ 2 0 px `, qq 2 `4n 12 n 21 px `, q

From (1.84) and (1.85) again, we obtain from (1.90) and (1.91) that n 11 px `, q " k `p q `Opz `,✏‹ px `qq, n 22 px `, q `k2 ` 2 0 px `, q " ´k `p q `Opz `,✏‹ px `qq, n 21 px `, q " ´k `p qpk ` `p qq `Opz `,✏‹ px `qq.

Hence, there exists a constant w `p✏ ‹ q °0 such that

`px `, q § ´4k `p qpk 2 `k `p q ` 2 `p qq `w`p ✏ ‹ qz `,✏‹ px `q § ´4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq `w`p ✏ ‹ qz `,✏‹ px `q.
The inequality `px `, q § 0 is equivalent to z `,✏‹ px `q § 4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq w `p✏ ‹ q .

(1.93)

Combining (1.92) and (1.93), we take

`p✏ ‹ q " min ´k ` p✏ ‹ q ⇠ `p✏ ‹ q , 4k p✏ ‹ qpk 2 `k p✏ ‹ q ` 2 p✏ ‹ qq w `p✏ ‹ q ¯.
If x `satisfies z `,✏‹ px `q § `p✏ ‹ q, then one has n 12 px `, q °0 • `px `, q, i.e. (1.50). That implies BV x `, p#, #q • 0.

Similarly, we get that, from (1.55), we follow the above arguments to show that there exists ´p✏ ‹ q °0 such that for z ´,✏‹ px ´q § ´p✏ ‹ q, (1.51) holds. It yields BV x ´, p#, #q • 0. Proposition 1.11 is proven.

1.4 A remark on the relation between the formulation on rx ´, x `s and the formulation on R of the

viscous RT problem

We end this chapter by the following remark on the bilinear form B x ´,x `, .

1.4. A remark on the relation between the formulation on rx ´, x `s and the formulation on R of the viscous RT problem 71

Proposition 1.15. For all bounded solutions of (0.27) on R and for all ✓ P H 2 pRq, there holds ª `8

´8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k 2 ✓ 1 `k4 ✓qdx " B x ´,x `, p , ✓q `ªRzrx ´,x `s gk 2 ⇢ 1 0 ✓dx.
(1.94)

We immediately have two remarks from (1.94).

1. In the case of ⇢ 1 0 being compactly supported (supp⇢ 1 0 " r´a, as), we have

ª `8 ´8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k 2 ✓ 1 `k4 ✓qdx " B a, p , ✓q. (1.95) That means B x ´,x `, is independent of x ˘if and only if x ´ § ´a † a § x `.
2. In the case ⇢ 1 0 °0 everywhere, for each px ´, x `q, a penalization of B x ´,x `, by the term ≥

x x ´gk 2 ⇢ 1
0 ✓dx is necessary to obtain the ODE (0.27) on the whole space.

Proof of Proposition 1.15. To prove (1.94), we show two following identities ª `8

x ` ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 x `pk 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª `8
x `gk 2 ⇢ 1 0 ✓dx `BV x `, p , ✓q.

(1.96) and ª

x 8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª x 8pk 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª x 8 gk 2 ⇢ 1 0 ✓dx `BV x `, p , ✓q.
(1.97)

We have the following remark that we state on px `, `8q (a similar expression holds true for p´8, x ´q) that if is a bounded solution of (0.27) on px `, `8q, we then have from Proposition 1.7 that satisfies (0.38) at x `. We integrate by parts to have that ª `8

x ` 2 ✓ 2 dx " 2 ✓ 1 ˇˇ`8 x `´ 3 ✓ ˇˇ`8 x ``ª `8 x ` p4q ✓dx " ´p 2 ✓ 1 qpx `q `p 3 ✓qpx `q `ª `8
x ` p4q ✓dx.

(1.98)

Because of (0.38), we have 2 px `q " ´pn 11 px `q `n1 

x ` 2 ✓ 2 dx " pn 11 px `q `n1 2 1 px `qq✓ 1 px `q ´pn 21 px `q `n2 2 1 px `qq✓px `q `ª `8
x ` p4q ✓dx.

(1.101)

Using the integration by parts again, we deduce that ª `8

x ` 1 ✓ 1 dx " 1 ✓ ˇˇ`8 x `´ª `8 x ` 2 ✓dx " ´p 1 ✓qpx `q ´ª `8 x ` 2 ✓dx (1.102)
and that ª `8

x `⇢0

1 ✓ 1 dx " ´p⇢ 0 1 ✓qpx `q ´ª `8

x `p⇢ 0 1 q 1 ✓dx.

(1.103)

In view of (1.101), (1.102) and (1.103), we obtain ª `8

x ` ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 x `pk 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª `8 x `p pk 2 ⇢ 0 ´p⇢ 0 1 q 1 q `µp p4q ´2k 2 2 `k4 qq✓dx `µpn 11 px `q `n1 2 1 px `qq✓ 1 px `q ´µpn 21 px `q `n2 2 1 px `qq✓px `q ´2k 2 µp 1 ✓qpx `q ´ p⇢ 0 1 ✓qpx `q " ª `8
x `gk 2 ⇢ 1 0 ✓dx `BV x `, p , ✓q.

( 

´8 ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª `8 ´8 p 2 ✓ 2 `2k 2 ✓ 1 `k4 ✓qdx " ª x 8 gk 2 ⇢ 1 0 ✓dx `ª `8 x `gk 2 ⇢ 1 0 ✓dx `BV x ´, p , ✓q `BV x `, p , ✓q `ª x x´ ⇢ 0 pk 2 ✓ ` 1 ✓ 1 qdx `µ ª x x´p k 4 ✓ `2k 2 1 ✓ 1 ` 2 ✓ 2 qdx " ª x 8 gk 2 ⇢ 1 0 ✓dx `ª `8
x `gk 2 ⇢ 1 0 ✓dx `Bx ´,x `, p , ✓q.

(1.105)

It yields (1.94).

Chapter 2 Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions

This chapter is presented in the preprint [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF]. For the Rayleigh-Taylor instability for the incompressible viscous fluid with Navier-slip boundary conditions, the search of normal modes is once again equivalent to the investigation of solutions of a fourth-order ODE on a compact interval p´1, 1q. A point where it differs from the first paper is that, due to the presence of slip coefficients, denoted by ⌅, the spectral analysis is performed in a supercritical regime of µ (µ °µc pk, ⌅q). In this regime, we apply the operator method of the previous chapter to prove the existence of infinitely many characteristic values to the linearized equations. As the spectral analysis is proven, we construct a wide class of initial data, based on the existence of infinitely many normal modes of the linearized equations, to prove the nonlinear Rayleigh-Taylor instability. We are not able to prove the nonlinear instability in the supercritical regime µ °sup kPL ´1Zzt0u µ c pk, ⌅q. We have to add a sharper condition, µ °3 sup kPL ´1Zzt0u µ c pk, ⌅q, to prove the nonlinear instability.

Preliminaries

The first aim is to prove Lemma 2.1, showing that all characteristic values are real for increasing density profile ⇢ 0 . Secondly, we find the exact formula of the k-critical viscosity coefficient µ c pk, ⌅q (see (0.65) above) for all k °0. The last goal is to study the bilinear form B k, ,µ in Section 2.1.3 to prepare for our linear study. Proof. Let P H 4 pp´1, 1qq satisfy (0.27)-(0.62). Multiplying by on both sides of (0.27) and then using the integration by parts, we get that

Positivity of characteristic values

´ª 1 ´1p⇢ 0 1 q 1 dx 2 " ´⇢0 1 ˇˇ1 ´1 `ª 1 ´1 ⇢ 0 | 1 | 2 dx 2 that ´ª 1 ´1 2 dx 2 " ´ 1 ˇˇ1 ´1 `ª 1 ´1 | 1 | 2 dx 2 and that ª 1 ´1 p4q dx 2 " 3 ˇˇ1 ´1 ´ 2 1 ˇˇ1 ´1 `ª 1 ´1 | 2 | 2 dx 2 , we obtain that ´µ ª 1 ´1p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 2 ´⇠´| 1 p´1q| 2 ´⇠`| 1 p1q| 2 ¯ 2 ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 " gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 .
(2.1) Suppose that " 1 `i 2 , then one deduces from (2.1) that

1 ´µ ª 1 ´1p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 2 ´⇠´| 1 p´1q| 2 ´⇠`| 1 p1q| 2 p 2 1 ´ 2 2 q ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 " gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 (2.2)
and that

2 ´µ ª 1 ´1p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 2 ´⇠´| 1 p´1q| 2 ´⇠`| 1 p1q| 2 " ´2 1 2 ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 .
(2.3)

If 2 ‰ 0, Eq. (2.
3) leads us to

´2 1 ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 " µ ª 1 ´1p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 2 ´⇠´| 1 p´1q| 2 ´⇠`| 1 p1q| 2 ,
which yields

´p 2 1 ´ 2 2 q ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 " ´2 2 1 ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 ´gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 .
Equivalently,

p 2 1 ` 2 2 q ª 1 ´1pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 2 " ´gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 .
(2.4)

That implies

p 2 1 ` 2 2 qk 2 ⇢ ´ª 1 ´1 | | 2 dx 2 § ´gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 .
The positivity of ⇢ 1 0 yields a contradiction, then is real. Due to (2.2) again, we further get that

2 ª 1 ´1 ⇢ 0 pk 2 | | 2 `| 1 | 2 qdx 2 § gk 2 ª 1 ´1 ⇢ 1 0 | | 2 dx 2 .
It tells us that is bounded by b g L 0 . This finishes the proof of Lemma 2.1.

Note again that, thanks to Lemma 2.1, in what follows in this section, we only use real-valued functions for the linear analysis.

The threshold of viscosity coefficient

We obtain the precise formula of the critical viscosity coefficient µ c pk, ⌅q for all k P Rzt0u. Note that µ c pk, ⌅q " µ c p´k, ⌅q for all k P Rzt0u, it suffices to find µ c pk, ⌅q for k P R `.

Proposition 2.1. The following results hold.

1. For all k P R `, we have µ c pk, ⌅q " max

P H2 pp´1,1qq ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1pp 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 2 .
(2.5)

Moreover,

µ c pk, ⌅q " 1 4k sinh 2 p2kq ¨psinhp2kq coshp2kq ´2kqp⇠ ``⇠ ´q `˜psinhp2kq ´2k coshp2kqq 2 p⇠ ``⇠ ´q2
`sinh 2 p2kqpsinh 2 p2kq ´4k 2 qp⇠ `´⇠ ´q2

¸1 2 ‹ ‹ ‹ ' .
(2.6)

2. µ c pk, ⌅q is a decreasing function in k P R `and lim kÑ0 µ c pk, ⌅q " sup kPRzt0u µ c pk, ⌅q ": µ s c p⌅q.

(2.7)

We have the asymptotic expansion of µ c pk, ⌅q as k Ñ 0

`, µ c pk, ⌅q " 1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´2 15 ´4p⇠ ``⇠ ´q `4⇠ 2 `´⇠ `⇠´`4 ⇠ 2 á⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯k
2 `Opk 3 q.

(2.8)

That implies µ s c p⌅q "

1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
(2.9)

As k " 1, we obtain the limit

µ c pk, ⌅q § a 2p⇠ 2 ``⇠ 2 ´q k Ñ 0.
(2.10)

3. We have

µ s c p⌅q " max P H2 pp´1,1qq ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2 " 1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
(

The proof is postponed to Section 2.4.

A bilinear form and a self-adjoint invertible operator

In what follows in this section we have • 0 and k P R `being fixed. Let us recall the definition of B k, ,µ from (0.64), B k, ,µ p#, %q :"

ª 1 ´1 ⇢ 0 pk 2 #% `#1 % 1 qdx 2 `µ ª 1 ´1p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 2 ´⇠´# 1 p´1q% 1 p´1q ´⇠`# 1 p1q% 1 p1q.
Lemma 2.2. We have the followings.

• For all µ °0, B k, ,µ is a continuous bilinear form on H2 pp´1, 1qq.

• For all µ °µc pk, ⌅q, B k, ,µ is coercive.

Proof of Lemma 2.2. Clearly, B k, ,µ is a bilinear form on H2 pp´1, 1qq. We then establish the boundedness of B k, ,µ . The integral terms of B k, ,µ are À p 1q}#} H2 pp´1,1qq }%} H2 pp´1,1qq . Meanwhile, it follows from the general Sobolev inequality that

p# 1 p´1qq 2 `p# 1 p1qq 2 À }# 1 } 2 H 1 pp´1,1qq .
Consequently, we get

|B k, ,µ p#, %q| À p1 ` q}#} H2 pp´1,1qq }%} H2 pp´1,1qq , (2.12) 
i.e. B k, ,µ is bounded.

We show the coercivity of B k, ,µ . We have that

B k, ,µ p#, #q " ª 1 ´1 ⇢ 0 pk 2 # 2 `p# 1 q 2 qdx 2 `µ ª 1 ´1pp# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 2 ´⇠´p # 1 p´1qq 2 ´⇠`p # 1 p1qq 2 .
As • 0 and µ °µc pk, ⌅q, we have

B k, ,µ p#, #q • ª 1 ´1 ⇢ 0 pk 2 # 2 `p# 1 q 2 qdx 2
`pµ ´µc pk, ⌅qq

ª 1 ´1pp# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 2
• pµ ´µc pk, ⌅qq

ª 1 ´1pp# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 2 .
(2.13)

It then follows from (2.12) and (2.13) that B k, ,µ is a continuous and coercive bilinear form on H2 pp´1, 1qq.

With the above property of B k, ,µ , we then establish:

Proposition 2.2. Let µ °µc pk, ⌅q and p H2 pp´1, 1qqq 1 be the dual space of H2 pp´1, 1qq, associated with the norm a B k, ,µ p¨, ¨q. There is a unique operator Y k, ,µ P LpH 2 pp´1, 1qq, p H2 pp´1, 1qqq 1 q, which is also bijective, such that

B k, ,µ p#, %q " xY k, ,µ #, %y (2.14) 
for all #, % P H2 pp´1, 1qq.

Proof. It follows from Riesz's representation theorem that there exists an operator Y k, ,µ P Lp H2 pp´1, 1qq, p H2 pp´1, 1qqq 1 q such that B k, ,µ p#, %q " xY k, ,µ #, %y for all % P H2 pp´1, 1qq. Proof of Proposition 2.2 is complete.

Proposition 2.3. We have the following results.

1. For all # P H2 pp´1, 1qq,

Y k, ,µ # " pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q `µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´1, 1qq. 2.1. Preliminaries 78 
2. Let f P L 2 pp´1, 1qq be given, there exists a unique solution # P H2 pp´1, 1qq of

Y k, ,µ # " f in p H2 pp´1, 1qqq 1 . (2.15)
Moreover, we have that # P H 4 pp´1, 1qq satisfies the boundary conditions (0.62).

Proof. It follows from Proposition 2.2 that there is a unique # P H2 pp´1, 1qq such that

ª 1 ´1 ⇢ 0 pk 2 #% `#1 % 1 qdx 2 `µ ª 1 ´1p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 2 " xY k, ,µ #, %y (2.16) 
for all % P C 8 0 pp´1, 1qq. We respectively define p# 2 q 1 and p# 2 q 2 in the distributional sense as the first and second derivative of # 2 which is in L 2 pp´1, 1qq. Hence, (2. [START_REF] Ding | Correction to: Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions[END_REF]) is equivalent to

ª 1 ´1 ⇢ 0 pk 2 #% `#1 % 1 qdx 2 `µxp# 2 q 2 , %y `µ ª 1 ´1p2k 2 # 1 % 1 `k4 #%qdx 2 " xY k, ,µ #, %y (2.17) 
for all % P C 8 0 pp´1, 1qq. We deduce from (2.17) that

ª 1 ´1pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q%dx 2 `µxp# 2 q 2 ´2k 2 # 2 `k4 #, %y " xY k, ,µ #, %y (2.18) 
for all % P C 8 0 pp´1, 1qq. The resulting equation implies that

µpp# 2 q 2 ´2k 2 # 2 `k4 #q ` pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q " Y k, ,µ # in D 1 pp´1, 1qq. (2.19) 
The first assertion holds.

Under the assumption f P L 2 pp´1, 1qq, we improve the regularity of the weak solution # P H2 pp´1, 1qq of (2.19). Indeed, we rewrite (2.19) as µxp# 2 q 2 , %y "

ª 1 ´1pY k, ,µ # `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q%dx 2 for all % P C 8 0 pp´1, 1qq. Since pf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q
belongs to L 2 pp´1, 1qq, it then follows from (2.18) that p# 2 q 2 P L 2 pp´1, 1qq. Let P C 8 0 pp´1, 1qq satisfy ≥ 1 ´1 pyqdy " 1. Using the distribution theory, we define

⌃ P D 1 pp´1, 1qq such that x⌃, ✓y " xp# 2 q 2 , ⇣ ✓ y (2.20)
for all ✓ P C 8 0 pp´1, 1qq, where

⇣ ✓ px 2 q " ª x 2

´1

´✓pyq ´ pyq ª 1

´1 ✓psqds ¯dy for all ´1 † x 2 † 1. We obtain

x⌃ 1 , ✓y " ´x⌃, ✓ 1 y " ´xp# 2 q 2 , ⇣ ✓ 1 y. 2.2. Linear instability 79 Note that xp# 2 q 2 , ⇣ ✓ 1 y " xp# 2 q 2 , ✓px 2 q ´ª x 2 ´1 pyq ª 1 ´1 ✓ 1 psqdsdyy " xp# 2 q 2 , ✓y,
this yields x⌃ 1 , ✓y " ´xp# 2 q 2 , ✓y. Hence, we have that p# 2 q 1 `⌃ " constant. In view of p# 2 q 2 P L 2 pp´1, 1qq and (2.20), we know that p# 2 q 1 P L 2 pp´1, 1qq. Since # P H2 pp´1, 1qq

and p# 2 q 1 , p# 2 q 2 P L 2 pp´1, 1qq, it tells us that # belongs to H 4 pp´1, 1qq and we can take their traces of derivatives of # up to order 3.

By performing (2.18), we then show that # satisfies (0.62). Indeed, for all % P H2 pp´1, 1qq, we perform the integration by parts to obtain from (2.18) that

ª 1 ´1 ⇢ 0 pk 2 #% `#1 % 1 qdx 2 `µ ª 1 ´1p# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 2 ´ ⇢ 0 # 1 % ˇˇ1 ´1 `µ´# 3 % ˇˇ1 ´1 ´#2 % 1 ˇˇ1 ´1 ´2k 2 # 1 % ˇˇ1 ´1¯" ª 1 ´1pY k, ,µ #q%dx 2 .
It then follows from the definition of the bilinear form B k, ,µ that

⇢ 0 # 1 % ˇˇ1 ´1 ´µ´# 3 % ˇˇ1 ´1 ´#2 % 1 ˇˇ1 ´1 ´2k 2 # 1 % ˇˇ1 ´1¯" ⇠ ´#1 p´1q% 1 p´1q `⇠`# 1 p1q% 1 p1q, (2.21) 
for all % P H2 pp´1, 1qq. By collecting all terms corresponding to % 1 p˘1q in (2.21), we deduce that µ# 2 p˘1q " ˘⇠˘# 1 p˘1q.

This yields that # satisfies (0.62). The proof of Proposition 2.3 is complete.

We obtain more information on the inverse operator Y ´1 k, ,µ . Proposition 2.4. The operator Y ´1 k, ,µ : L 2 pp´1, 1qq Ñ L 2 pp´1, 1qq is compact and self-adjoint.

Proof. It follows from Proposition 2.3 that Y k, ,µ , being supplemented with (0.62), admits an inverse operator Y ´1 k, ,µ from L 2 pp´1, 1qq to a subspace of H 4 pp´1, 1qq requiring all elements satisfy (0.62), which is symmetric due to Proposition 2.2. We compose Y ´1 k, ,µ with the continuous injection from H 4 pp´1, 1qq to L 2 pp´1, 1qq. Notice that the embedding H p pp´1, 1qq ãÑ H q pp´1, 1qq for p °q • 0 is compact. Therefore, the operator Y ´1 k, ,µ is compact and self-adjoint from L 2 pp´1, 1qq to L 2 pp´1, 1qq.

Linear instability 2.2.1 A sequence of characteristic values

We continue considering • 0 and k P L ´1Zzt0u being fixed. We study the operator S k, ,µ :" MY ´1 k, ,µ M, where M is the operator of multiplication by a ⇢ 1 0 .

Proposition 2.5. Under the hypothesis (0.54), the operator S k, ,µ : L 2 pp´1, 1qq Ñ L 2 pp´1, 1qq is compact and self-adjoint.

Proof. Due to the assumption on ⇢ 0 (0.54), the operator S k, ,µ is well-defined and bounded from L 2 pp´1, 1qq to itself. Y ´1 k, ,µ is compact, so is S k, ,µ . Moreover, because both the inverse Y ´1 k, ,µ and M are self-adjoint, the self-adjointness of S k, ,µ follows.

As a result of the spectral theory of compact and self-adjoint operators, the point spectrum of S k, ,µ is discrete, i.e. is a sequence t n pk, , µqu n•1 of eigenvalues of S k, ,µ , associated with normalized orthogonal eigenfunctions

t$ n u n•1 in L 2 pp´1, 1qq. That means S k, ,µ $ n " MY ´1 k, ,µ M$ n " n pk, , µq$ n . So that n " Y ´1
k, ,µ M$ n belongs to H 4 pp´1, 1qq and satisfies (0.62). One thus has

n pk, , µqY k, ,µ n " ⇢ 1 0 n (2.22)
and n satisfies (0.62). Eq. (2.22) also tells us that n pk, , µq °0 for all n. Indeed, we obtain n pk, , µq

ª 1 ´1pY k, ,µ n q n dx 2 " ª 1 ´1 ⇢ 1 0 2 n dx 2 .
That implies n pk, , µqB k, ,µ p n , n q "

ª 1 ´1 ⇢ 1 0 2 n dx 2 .
(2.23)

Since B k, ,µ p n , n q °0 and ⇢ 1 0 °0 on p´1, 1q, we know that n pk, , µq is positive. Hence, by reordering and using the spectral theory of compact and self-adjoint operators again, we have that t n pk, , µqu n•1 is a positive sequence decreasing towards 0 as n Ñ 8.

For each n, n is a solution of (0.27)-(0.62) if and only if there are positive n such that (0.69) holds. To solve (0.69), we use the two following lemmas.

Lemma 2.3. For each n,

• n pk, , µq and n are differentiable in .

• n pk, , µq is decreasing in .

Proof. The proof of Lemma 2.3(1) is the same as Lemma 1.2, we omit the details here. We now prove that n pk, , µq is decreasing in .

Let z n " d n d , it follows from (2.22) that k 2 ⇢ 0 n ´p⇢ 0 1 n q 1 `Yk, ,µ z n " 1 n pk, , µq ⇢ 1 0 z n `d d ´1 n pk, , µq ¯⇢1 0 n (2.24) on p´1, 1q. At x 2 " ˘1, we have $ ' ' ' & ' ' ' % z n p´1q " z n p1q " 0, µz 2 n p1q " ⇠ `z1 n p1q, µz 2 n p´1q " ´⇠´z 1 n p´1q.
(2.25)

Multiplying by n on both sides of (2.24), we obtain that

ª 1 ´1pk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx 2 `ª 1 ´1pY k, ,µ z n q n dx 2 " 1 n pk, , µq ª 1 ´1 ⇢ 1 0 z n n dx 2 `d d ´1 n pk, , µq ¯ª 1 ´1 ⇢ 1 2 n dx 2 .
(2.26)

Note that z n enjoys (2.25), then

ª 1 ´1pY k, ,µ z n q n dx 2 " ª 1 ´1pY k, ,µ n qz n dx 2 " 1 n pk, , µq ª 1 ´1 ⇢ 0 z n n dx 2 .
That implies

d d ´1 n pk, , µq ¯ª 1 ´1 ⇢ 1 0 2 n dx 2 " ª 1 ´1pk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx 2 . (2.27) 
Using the integration by parts, we obtain from (2.27) that d d

´1

n pk, , µq

¯ª 1 ´1 ⇢ 1 0 2 n dx 2 " ª 1 ´1 ⇢ 0 pk 2 2 n `p 1 n q 2 qdx °0.
Consequently, n pk, , µq is decreasing in °0.

Proof of Theorem 0.3 and normal modes of the linearized equations

In view of Lemma 2.3, we are able to prove Theorem 0.3.

Proof of Theorem 0.3. For each n, there is only one solution n of (0.69). Indeed, using (2.23), we know that

1 n pk, , µq ª 1 ´1 ⇢ 1 0 2 n dx 2 " ª 1 ´1pY k, ,µ n q n dx 2 " B k, ,µ p n , n q.
Hence, it follows from (2.13) that

1 n pk, , µq ª 1 ´1 ⇢ 1 0 2 n dx 2 • ª 1 ´1 ⇢ 0 pk 2 2 n `p 1 n q 2 qdx 2 `pµ ´µc pk, ⌅qq ª 1 ´1pp 2 n q 2 `2k 2 p 1 n q 2 `k4 2 n qdx 2 • k 2 ª 1 ´1 ⇢ 0 2 n dx 2 `pµ ´µc pk, ⌅qqk 4 ª 1 ´1 2 n dx 2 .
That implies 1 L 0 n pk, , µq

• k 2 `pµ ´µc pk, ⌅qqk 4 ⇢ `. Consequently, for all n • 1, n pk, , µq °gk 2 for large.

(2.28)

Meanwhile, for all n • 1 and

§ 1 2 b g L 0 , n pk, , µq § n pk, 1 2 b g L 0 , µq Ñ 0 as Ñ 0. (2.29)
In view of (2.28), (2.29) and Lemma 2.3, we obtain only one solution n of (0.69) and p n , n q satisfies (0.27)-(0.62). That means for all n, n is a characteristic value, hence it is bounded by b g L 0 . We now prove that p n q n•1 decreases towards 0 as n Ñ 8.

If m † m`1 for some m • 1, we have m pk, m , µq ° m pk, m`1 , µq.
Meanwhile, we also have

m pk, m`1 , µq ° m`1 pk, m`1 , µq. That implies m gk 2 " m pk, m , µq ° m`1 pk, m`1 , µq " m`1 gk 2 .
That contradiction tells us that p n q n•1 is a decreasing sequence. Suppose that

lim nÑ8 n " d 0 °0.
Note that for all n, n pk, n , µq " n gk 2 , then

n pk, d 0 , µq • n pk, n , µq " n gk 2 .
Let n Ñ 8, we get that 0 • d 0 , a contradiction. Hence n decreases towards 0 as n Ñ 8. The proof of Theorem 0.3 is complete.

We derive the following property for the largest characteristic value 1 found in Theorem 0.3. Proposition 2.6. Let us recall the bilinear form B k, ,µ on H 2 pp´1, 1qq (0.64) and p 1 , 1 q from Theorem 0.3. We have that

1 gk 2 " max PH 2 pp´1,1qq ≥ 1 ´1 ⇢ 1 0 2 dx 2 1 B k, 1 ,µ p , q , (2.30) 
and the variational problem (2.30) is attained by the function 1 .
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Proof. For all °0, we solve the variational problem pk, , µq " max

´ª 1 ´1 ⇢ 1 0 2 dx 2 ˇˇ P H2 pp´1, 1qq, B k, ,µ p , q " 1 ¯.
Let us define the Lagrangian functional

L B p , q " ª 1 ´1 ⇢ 1 0 2 dx 2 ´ p B k, ,µ p , q ´1q.
Thanks to the Lagrange multiplier theorem, the extrema of the quotient

≥ 1 ´1 ⇢ 1 0 2 dx 2 B k, ,µ p , q
are necessarily the stationary points p ‹ , ‹ q of L B , which satisfy

B k, ,µ p ‹ , ‹ q " 1 (2.31) and ª 1 ´1 ⇢ 1 0 ‹ ✓dx 2 ´ ‹ B k, ,µ p ‹ , ✓q " 0, (2.32) 
for all ✓ P H2 pp´1, 1qq. Restricting ✓ P C 8 0 pp´1, 1qq and following the line of the proof of Proposition 2.3, one deduces from (2.32) that ‹ has to satisfy

‹ Y k, ,µ ‹ " ⇢ 1 0 ‹ (2.33)
in a weak sense. We further get that ‹ P H 4 pp´1, 1qq and satisfies (2.31) and the boundary conditions (0.62). Hence,

‹ is an eigenvalue of the compact and selfadjoint operator S k, ,µ from L 2 pp´1, 1qq to itself, with M ´1Y k, ,µ ‹ P L 2 pp´1, 1qq being an associated eigenfunction. That implies pk, , µq § ´1 1 pk, , µq.

(2.34)

Meanwhile, since the operator S k, ,µ is self-adjoint and positive (see again Proposition 2.5), we thus obtain that 1 pk, , µq " sup

!PL 2 pp´1,1qq xS k, ,µ !, !y }!} 2 L 2 pp´1,1qq
.

Hence, for all ! P L 2 pp´1, 1qq and for " Y ´1 k, ,µ M! P H 4 pp´1, 1qq, we have

1 pk, , µqxY k, ,µ , y § xS k, ,µ !, !y 2 }!} 2 L 2 pp´1,1qq § }S k, ,µ !} 2 L 2 pp´1,1qq .
Equivalently, We now solve the linearized equations (0.57) to prepare for our nonlinear part.

1 pk, , µq § sup ! }M } 2 L 2 pp´1
Proposition 2.7. For each k P L ´1Zzt0u and for all µ °µc pk, ⌅q, there exists an infinite sequence of solutions pn • 1q e npk,µqt U n pk, µ, xq " e npk,µqt p n , u n , p n q T pk, µ, xq " e npk,µqt ¨cospkx 1 q! n pk, µ, x 2 q sinpkx 1 q✓ n pk, µ, x 2 q cospkx 1 q n pk, µ, x 2 q cospkx 1 qq n pk, µ, x 2 q ‹ ‹ ‹ ' to the linearized equations (0.57)-(0.56), such that n P H 2 p⌦q, u n P pH 3 p⌦qq 2 and p n P H 1 p⌦q.

Proof. For each solution n P p0, b g L 0 q of (0.51), we have a solution n " Y ´1 k, n,µ M$ n P H 4 pp´1, 1qq of (0.27)-(0.62) as " n . We now find a solution to the system (0.59) as " n . First, we obtain ✓ n " ´

1 n
k and ! n " ´⇢1 0 n n . Due to (0.61), we get

q n " ´1 k 2 p n ⇢ 0 1 n `µpk 2 1 n ´ 3 n qq P H 1 pp´1, 1qq.
With a solution p! n , ✓ n , n , q n q of (0.59), we then conclude that e npk,µqt p n , u n,1 , u n,2 , p n q T pk, µ, xq " e npk,µqt

¨cospkx 1 q! n pk, µ, x 2 q sinpkx 1 q✓ n pk, µ, x 2 q cospkx 1 q n pk, µ, x 2 q cospkx 1 qq n pk, µ, x 2 q ‹ ‹ ‹ '
is a solution to the linearized equations (0.57)-(0.56).

Nonlinear instability 2.3.1 The local existence

Thanks to Proposition 2.7, we will formulate a sequence of approximate solutions e npk,µq U n pk, µ, xq to the nonlinear equations (0.55)-(0.56), which are solutions to the linearized equations (0.57). Let us fix a k " k 0 P L ´1Zzt0u such that (0.75) holds and µ °3µ c p⌅q. We recall (0.76), p M , u M , q M qpt, xq :" M ÿ j"jm c j e j pk,µqt U j pk, µ, xq, where the constants c j pj • 1q satisfy (0.77)-(0.78).

Keeping in mind that min r´1,1s ⇢ 0 °0, then due to the embedding from H 2 p⌦q to L 8 p⌦q, there exists a constant 0 °0 such that

0 } ÿ j•1 j p0, xq} L 8 p⌦q °1 2 min r´1,1s
⇢ 0 px 2 q.

(2.36)

Hence, for § 0 , 1 2 min r´1,1s

⇢ 0 px 2 q § min ⌦ p⇢ 0 px 2 q ` M p0, xqq
By virtue of Proposition 0.1, the nonlinear equations (0.55)-(0.56) with initial data p M , u M qp0q admits a local solution p , u q P C 0 pr0, T max q, H 1 p⌦q ˆpH 2 p⌦qq 2 q with an associated pressure q P C 0 pr0, T max q, L 2 p⌦qq. Furthermore, we have for all t P r0, T max q, 1 2 min r´1,1s

⇢ 0 px 2 q § inf ⌦ p⇢ 0 px 2 q ` pt, xqq.
In what follows in this chapter, the constants C i pi • 1q are universal ones depending only on physical parameters, M and c j pj • 1q.

Let F M ptq " ∞ M j"jm |c j |e j t and 0 † ✏ 0 ! 1 be fixed later (2.71). There exists a unique T such that F M pT q " ✏ 0 . Let

C 1 " b } M p0q} 2 H 1 p⌦q `}u M p0q} 2 H 2 p⌦q , C 2 " b } M p0q} 2 L 2 p⌦q `}u M p0q} 2 L 2 p⌦q .
We define

T ‹ :" sup ! t P p0, T max q|Ep ptq, u ptqq § C 1 0 u °0, T ‹‹ :" suptt P p0, T max q|}p , u qptq} L 2 p⌦q § 2C 2 F M ptq ) °0.
(2.37)

Note that Ep p0q, u p0qq " C 1 † C 1 0 , we have T ‹ °0. Similarly, we have T ‹‹ °0.

Then for all t § mintT , T ‹ , T ‹‹ u, it follows from the a priori energy estimate (0.72) of Proposition 0.1 that

E 2 p ptq, u ptqq `}B t u ptq} 2 L 2 p⌦q `ª t 0 }rB t u p⌧ q} 2 L 2 p⌦q d⌧ § C 3 2 F 2 M ptq. (2.38)
it yields, for all s P t0, 1, 2u,

}B ⌧ t u M ptq} H s p⌦q § C 7 F M ptq.
In view of (2.38), we then obtain that for s P t0, 1, 2u and ⌧ P t0, 1u,

}B ⌧ t u d ptq} H s p⌦q § }B ⌧ t u M ptq} H s p⌦q `}B ⌧ t u ptq} H s p⌦q § C 8 F M ptq.
To prove (2.42), we use (0.79) 1 and (2.38) again,

} d ptq} H 1 p⌦q `}B t d ptq} L 2 p⌦q § } ptq} H 1 p⌦q ` } M ptq} H 1 p⌦q `C9 }u d 2 ptq} L 2 p⌦q `}u ptq} L 2 p⌦q }r } L 2 p⌦q § C 10 F M ptq.
Lemma 2.4 is proven.

Lemma 2.5. There holds

}B t u d p0q} 2 L 2 p⌦q § C 11 3 .
(2.43)

Proof. From (0.79) 2,3 and the boundary conditions (0.81), we use the integration by parts to obtain that ª

⌦ ⇢ 0 |B t u d | 2 dx " ª ⌦ µ u d ¨Bt u d dx ´ª⌦ p B t u `p⇢ 0 ` qu ¨ru q ¨Bt u d dx ´ª⌦ g d B t u d 2 dx.
Thanks to Lemma 2.4, one has

´ª⌦ p B t u `p⇢ 0 ` qu ¨ru q ¨Bt u d dx § C 12 3 F 3 M ptq. (2.44) 
That implies

}B t u d ptq} 2 L 2 p⌦q § C 13 ´p}u d ptq} H 2 p⌦q `} d ptq} L 2 p⌦q q}B t u d ptq} L 2 p⌦q ` 3 F 3 M ptq ¯.
Using Young's inequality, we further get

}B t u d ptq} 2 L 2 p⌦q § 1 2 }B t u d ptq} 2 L 2 p⌦q `C14 p}u d ptq} 2 H 2 p⌦q `} d ptq} 2 L 2 p⌦q q `C13 3 F 3 M ptq.
That implies

}B t u d ptq} 2 L 2 p⌦q § C 15 ´}u d ptq} 2 H 2 p⌦q `} d ptq} 2 L 2 p⌦q ` 3 F 3 M ptq ¯. (2.45) 
Letting t Ñ 0 in (2.45), we complete the proof Lemma 2.5.
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Lemma 2.6. Let X :" tw P pH 2 p⌦qq 2 , w satisfies (0.53) and divw " 0u.

There holds for all w P H 2 ‹ p⌦q, ª

⌦ g⇢ 1 0 |w 2 | 2 dx `⇤ ª p2⇡LTq 2 p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 § ⇤ 2 ª ⌦ ⇢ 0 |w| 2 dx `⇤µ ª ⌦ |rw| 2 dx.
(2.46)

The proof of Lemma 2.6 is due to the definition of ⇤ (0.74) and Proposition 2.6, that is similar to [14, Lemma 5.1], hence we omit the details here.

Lemma 2.7. There holds for all w P Xzt0u,

sup wPX ≥ 2⇡LT p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 }rw} 2 L 2 p⌦q § µ c p⌅q.
(2.47)

Proof. Let us fix a horizontal frequency k P L ´1Z and introduce the horizontal Fourier transform f pk,

x 2 q " ª 2⇡LT f pxqe ´ikx 1 dx 1 .
For w P X, we write ŵ1 pk, x 2 q " ´i✓pk, x 2 q, ŵ2 pk, x 2 q " pk, x 2 q.

Then, k✓ ` 1 " 0 and p✓, q enjoys (0.60). Following Fubini's and Parseval's theorem, one thus deduces

ª 2⇡LT p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 " 1 2⇡L ÿ kPL ´1Z p⇠ `p|✓pk, 1q| 2 `⇠´| ✓pk, ´1q| 2 q (2.48) and }rw} 2 L 2 p⌦q " 1 2⇡L ÿ kPL ´1Z ª 1 ´1pk 2 p|✓| 2 `| | 2 q `|✓ 1 | 2 `| 1 | 2 qpk, x 2 qdx 2 .
(2.49)

We may reduce to estimate (2.47) when ✓ and are real-valued and continue the estimate to the real and imaginary parts of ✓ and . For any k P L ´1Zzt0u, we have from k✓ ` 1 " 0 that

⇠ `p✓pk, 1qq 2 `⇠´p ✓pk, ´1qq 2 " 1 k 2 p⇠ `pp 1 pk, 1qq 2 `⇠´p 1 pk, ´1qq 2 q (2.50)
and that ª 1

´1

´k2 p✓ 2 ` 2 q `p✓ 1 q 2 `p 1 q 2 ¯pk,

x 2 qdx 2 " 1 k 2 ª 1 ´1pk 4 2 `2k 2 p 1 q 2 `p 2 q 2 qpk, x 2 qdx 2 .
(2.51) 

p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 § 1 2⇡L ¨lim sup kÑ0 1 k 2 p⇠ `p 1 pk, 1qq 2 `⇠´p 1 pk, ´1qq 2 q `ÿ kPL ´1Zzt0u 1 k 2 p⇠ `p 1 pk, 1qq 2 `⇠´p 1 pk, ´1qq 2 q ‹ ‹ ‹ ' § 1 2⇡L ¨lim sup kÑ0 µ c pk, ⌅q k 2 ª 1 ´1pk 4 2 `2k 2 12 ` 22 qpk, x 2 qdx 2 `ÿ kPL ´1Zzt0u µ c pk, ⌅q k 2 ª 1 ´1pk 4 2 `2k 2 12 ` 22 qpk, x 2 qdx 2 ‹ ‹ ‹ ' .
Thanks to Proposition 2.1, we obtain ª

2⇡LT p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 § µ c p⌅q 2⇡L ¨lim sup kÑ0 1 k 2 ª 1 ´1pk 4 2 `2k 2 p 1 q 2 `p 2 q 2 qpk, x 2 qdx 2 `ÿ kPL ´1Zzt0u 1 k 2 ª 1 ´1pk 4 2 `2k 2 p 1 q 2 `p 2 q 2 qpk, x 2 qdx 2 ‹ ‹ ‹ ' .
( 

} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `2µ ª t 0 }B t u d psq} 2 L 2 p⌦q ds ´2 ª 2⇡LT p⇠ `|B t u d 1 pt, x 1 , 1q| 2 `⇠´| B t u d 1 pt, x 1 , ´1q| 2 qdx 1 § ª ⌦ g⇢ 1 0 |u d 2 ptq| 2 dx `C16 3 F 3 M ptq. ( 2 
´2 ª t 0 ª 2⇡LT p⇠ `|B t u d 1 ps, x 1 , 1q| 2 `⇠´| B t u d 1 ps, x 1 , ´1q| 2 qdx 1 ds § ⇤ 2 ª ⌦ ⇢ 0 |u d ptq| 2 dx `⇤µ ª ⌦ |ru d ptq| 2 dx ´⇤ ª 2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 `C16 3 F 3 M ptq § ⇤ 2 ª ⌦ p⇢ 0 ` ptqq|u d ptq| 2 dx `⇤µ ª ⌦ |ru d ptq| 2 dx ´⇤ ª 2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 `C17 3 F 3 M ptq.
(2.55)

On the other hand, we have

d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q " 2 ª ⌦ p⇢ 0 ` ptqqu d ptq ¨Bt u d ptqdx `ª⌦ B t ptq|u d ptq| 2 dx.
Let us recall $ 0 from (0.73) and ⌫ 0 " 3`$ 0 2`$ 0 P p1, 3 2 q. We fix two positive constants m 1,2 such that m 1 " ⌫ 0 `b⌫ 

2 ª ⌦ p⇢ 0 ` ptqqu d ptq ¨Bt u d ptqdx § 1 ⇤m 1 } a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤m 1 } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q .
That will imply

d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q § 1 ⇤m 1 } a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤m 1 } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `C18 3 F 3 M ptq.
(2.58)

With m 2 °0 defined as in (2.57), we obtain from (2.55) and (2.58) that 

d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `m2 }ru d ptq} 2 L 2 p⌦q § ´m1 `1 m 1 ¯⇤} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `´µ m 1 `m2 ¯}ru d } 2 L 2 p⌦q `2 ⇤m 1 ª t 0 ª 2⇡LT p⇠ `|B t u d 1 ps, x 1 , 1q| 2 `⇠´| B t u d 1 ps, x 1 , ´1q| 2 qdx 1 ds ´2µ ⇤m 1 ª t 0 }rB t u d psq} 2 L 2 p⌦q ds `C19 3 F 3 M ptq.
d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `m2 }ru d ptq} 2 L 2 p⌦q § ´m1 `1 m 1 ¯⇤} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `⇤m 1 ´µ m 1 `m2 ¯2 2pµ ´µc p⌅qq ª t 0 }ru d psq} 2 L 2 p⌦q ds `C19 3 F 3 M ptq.
(2.61)

It follows from (2.56) and (2.57) that

⇤m 1 ´µ m 1 `m2 ¯2 2pµ ´µc p⌅qq " ⇤ ´m1 `1 m 1 ¯m2 " 2⌫ 0 ⇤m 2 .
Therefore, (2.61) becomes Because of (0.75), we have j °2 3 ⌫ 0 ⇤ for j m § j § N and j † 2 3 ⌫ 0 ⇤ for j • N `1. It yields that for j m § j § N , ª t 0 e p3 j ´2⌫ 0 ⇤qs ds " 1 3 j ´2⌫ 0 ⇤ pe p3 j ´2⌫ 0 ⇤qt ´1q § 1 3 j ´2⌫ 0 ⇤ e p3 j ´2⌫ 0 ⇤qt (2.65)

d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `m2 }ru d ptq} 2 L 2 p⌦q § 2⌫ 0 ⇤ ´}a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `m2 ª t 0 }ru d psq} 2 L 2 p⌦q ds ¯`C 19 3 F 3 M ptq. ( 2 
and that for j • N `1, ª t 0 e p3 j ´2⌫ 0 ⇤qs ds "

1 3 j ´2⌫ 0 ⇤ pe p3 j ´2⌫ 0 ⇤qt ´1q § 1 2⌫ 0 ⇤ ´3 j . (2.66)
In view of (2.65) and (2.66), we obtain from (2.64) that if M § N ,

}u d ptq} 2 L 2 p⌦q § C 20 3 ´M ÿ j"jm |c j | 3 j ´2⌫ 0 ⇤ e 3 j t ānd if M • N `1, }u d ptq} 2 L 2 p⌦q § C 20 3 ´M ÿ j"jm |c j | 3 j ´2⌫ 0 ⇤ e 3 j t `M ÿ j"N `1 |c j | 2⌫ 0 ⇤ ´3 j e 2⌫ 0 ⇤t ¯.
That means

}u d ptq} 2 L 2 p⌦q § C 21 3 ´N ÿ j"jm |c j |e j t `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e 2 3 ⌫ 0 ⇤t ¯3. (2.67)
To show the bound of } d ptq} L 2 p⌦q , we use Cauchy-Schwarz's inequality to deduce from (0.79) 1 that

d dt } d ptq} L 2 p⌦q § } d ptq} L 2 p⌦q § pmax ⇢ 1 0 q}u d 2 ptq} L 2 p⌦q `}u ptq} L 2 p⌦q } ptq} H 1 p⌦q .
Using (2.38), we obtain

d dt } d ptq} L 2 p⌦q § C 22 p}u d 2 ptq} L 2 p⌦q ` 2 F 2 M ptqq.
Note that d p0q " 0, integrating the resulting inequality in time, we have

} d ptq} L 2 p⌦q § C 22 ª t 0 p}u d 2 psq} L 2 p⌦q ` 2 F 2 M psqqds.
Together with (2.67), we have

} d ptq} 2 L 2 p⌦q § C 23 3 ´N ÿ j"jm |c j |e j t `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e 2 3 ⌫ 0 ⇤t ¯3. (2.68)
The inequality (2.40) follows from (2.67) and (2.68). Proof of Proposition 2.8 is complete.

Proof of Theorem 0.6

Note that

}u M ptq} 2 L 2 p⌦q " M ÿ i"jm c 2 i e 2 i t }u i } 2 L 2 p⌦q `2 ÿ jm §i †j §M c i c j e p i ` j qt ª ⌦ u i pxq ¨uj pxqdx. (2.69)
It can be seen that

}u M ptq} 2 L 2 p⌦q • M ÿ j"jm c 2 j e 2 j t }u j } 2 L 2 p⌦q `2 ÿ jm`1 §i †j §M c i c j e p i ` j qt ª ⌦ u i pxq ¨uj pxqdx ´|c jm |}u jm } L 2 p⌦q ´M ÿ j"jm`1 |c j |}u j } L 2 p⌦q ¯ep jm ` jm`1 qt .
By Cauchy-Schwarz's inequality, we obtain

2 ÿ jm`1 §i †j §M c i c j e p i ` j qt ª ⌦ u i pxq ¨uj pxqdx • ´2 ÿ jm`1 §i †j §M |c i ||c j |e p i ` j qt }u i } L 2 p⌦q }u j } L 2 p⌦q • ´ep jm`1 ` jm`2 qt ´M ÿ j"jm`1 |c j |}u j } L 2 p⌦q ¯2.
This yields

}u M ptq} 2 L 2 p⌦q • M ÿ j"jm c 2 j e 2 j t }u j } 2 L 2 p⌦q ´ep jm`1 ` jm`2 qt ´M ÿ j"jm`1 |c j |}u j } L 2 p⌦q ¯2 ´|c jm |e p jm ` jm`1 qt }u jm } L 2 p⌦q ´M ÿ j"jm`1 |c j |}u j } L 2 p⌦q ¯.
Due to the assumption (0.78), we deduce that

}u M ptq} 2 L 2 p⌦q • M ÿ j"jm c 2 j e 2 j t }u j } 2 L 2 p⌦q ´1 2 c 2 jm e p jm ` jm`1 qt }u jm } 2 L 2 p⌦q ´1 4 c 2 jm e p jm`1 ` jm`2 qt }u jm } 2 L 2 p⌦q .
This yields

}u M ptq} 2 L 2 p⌦q • c 2 jm ´e2 jm t ´1 2 e p jm ` jm`1 qt ´1 4 e p jm`1 ` jm`2 qt ¯}u jm } 2 L 2 p⌦q `M ÿ j"jm`1 c 2 j e 2 j t }u j } 2 L 2 p⌦q .
Notice that for all t • 0,

e 2 jm t ´ep jm ` jm`1 qt ´ep jm`1 ` jm`2 qt • 1 4 e 2 jm t .
Hence, we have

}u M ptq} L 2 p⌦q • C 24 F M ptq, (2.70) 
for all t § minpT , T ‹ , T ‹‹ q.

Let cpM q " max N `1 §j §M

|c j | |c jm | • 0.
We recall the definition of T ‹ and T ‹‹ from (2.37) and the fact that T satisfies uniquely F M pT q " ✏ 0 , provided that ✏ 0 is taken to be

✏ 0 † min ´C2 0 C 3 , C 2 2 2C 4 p1 `McpM qq 3 , C 2 24 4C 4 p1 `McpM qq 3 ¯. (2.71)
We then prove that T § mintT ‹ , T ‹‹ u.

(2.72)

In fact, if T ‹ † T , we have from (2.38) that

Epp , u qpT ‹ qq § C 3 F M pT ‹ q § C 3 F M pT q " C 3 ✏ 0 † C 2 0 .
And if T ‹‹ † T , we have by (2.40) and the definition of T that

}p , u qpT q} L 2 p⌦q § }p M , u M qpT q} L 2 p⌦q `}p d , u d qpT q} L 2 p⌦q § C 2 F M pT q `aC 4 3 2 ´N ÿ j"1 |c j |e j T `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e 2 3 ⌫ 0 ⇤T ¯3 2 .
(2.73)

Notice from (0.75) that for N `1 § j § M ,

|c j | e 2 3 ⌫ 0 ⇤T † |c j | |c jm | p |c jm |e 1 T q † |c j | |c jm | F M pT q " |c j | |c jm | ✏ 0 .
Then, it follows from (2.73) that

}p , u qpT q} L 2 p⌦q § C 2 F M pT q `aC 4 3 2 p1 `McpM qq 3 2 F 3 2 M pT q § C 2 ✏ 0 `aC 4 p1 `McpM qq 3 2 ✏ 3 2 0 . Using (2.71) again, we deduce }p , u qpT q} L 2 p⌦q † 2C 2 ✏ 0 " 2C 2 F M pT q.
which also contradicts the definition of T ‹‹ .

Once we have (2.72), we then get from (2.40) and (2.70) that (2.74)

}u pT q} L 2 p⌦q • }u M pT q} L 2 p⌦q ´}u d pT q} L 2 p⌦q • C 24 F M pT q ´aC 4 3 2 ´N ÿ j"1 |c j |e j T `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e 2 3 ⌫ 0 ⇤T ¯3 2 .
The inequality (0.82) is proven by taking 0 satisfying (2.36), ✏ 0 satisfying (2.71) and m 0 " C 24 2 . This ends the proof of Theorem 0.4.

Proof of Proposition 2.1 2.4.1 The precise value of µ c pk, ⌅q

In this part, we prove Proposition 2.1(1). The equality (2.5) can be seen immediately from the definition of B k,0,µ .

Note that the quotient

⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1pp 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 2
is bounded because of the embedding H 2 pp´1, 1qq ãÑ C 1 pp´1, 1qq. To prove (2.6), let us consider the Lagrangian functional L k p , q " ´ª 1 ´1pp 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 2 ´1q ´p⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 q (2.75)

for any P H2 pp´1, 1qq and ‰ 0. Using Lagrange multiplier theorem, the extrema of the quotient ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1pp 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 2 are necessarily the stationary points of p k , k q of L k , which satisfy

ª 1 ´1pp 2 k q 2 `2k 2 p 1 k q 2 `k4 2 k qdx 2 " 1, (2.76) 
and

k ª 1 ´1p 2 k ! 2 `2k 2 1 k ! 1 `k4 k !qdx 2 " ⇠ ´ 1 k p´1q! 1 p´1q `⇠` 1 k p1q! 1 p1q (2.77)
for all ! P H2 pp´1, 1qq. We obtain from (2.77) after taking integration by parts that

p4q k ´2k 2 2 k `k4 k " 0, and $ ' ' ' ' ' & ' ' ' ' ' % k p 3 k p1q `2k 2 1 k p1qq!p1q " 0, p k 2 k p1q ´⇠` 1 k p1qq! 1 p1q " 0, k p 3 k p´1q `2k 2 1 k p´1qq!p´1q " 0, p k 2 k p´1q `⇠´ 1 k p´1qq! 1 p´1q " 0, for all ! P H2 pp´1, 1qq. This yields $ & % k 2 k p1q ´⇠` 1 k p1q " 0, k 2 k p´1q `⇠´ 1 k p´1q " 0.
(2.78)

Hence, k is of the form k px 2 q " pAx 2 `Bq sinhpkx 2 q `pCx 2 `Dq coshpkx 2 q, with A, B, C, D are four constants such that A 2 `B2 `C2 `D2 °0. Since k P H2 pp´1, 1qq, we get $ & % pA `Bq sinh k `pC `Dq cosh k " 0, p´A `Bq sinhp´kq `p´C `Dq coshp´kq " 0.

It yields

C " ´B tanh k and D " ´A tanh k.

(2.79)

We then compute 1 k px 2 q " pA `kD `kCx 2 q sinhpkx 2 q `pC `kB `kAx 2 q coshpkx 2 q and 2 k px 2 q " p2kC `k2 B `k2 Ax 2 q sinhpkx 2 q `p2kA `k2 D `k2 Cx 2 q coshpkx 2 q.

Substituting these formulas into (2. 

kpsinhp2kq coshp2kq ´2kqp⇠ ``⇠ ´q ˘a k,⌅ 4k 2 sinh 2 p2kq
.

We take the higher value k,`°0 and then solve the system (2.81) as k " k,`.

If ⇠ ´• ⇠ `, we have

4 sinh 2 k ´2kpcoshp2kq ´1q k,`´⇠`p sinhp2kq ´2kq " psinhp2kq coshp2kq ´2kqp⇠ ´´⇠ `q ´2psinhp2kq ´2k coshp2kqq⇠ ``1 k a k,⌅ °0.
Then, we obtain from (2.81) 1 that B " A 2kp1 `coshp2kqq k,`´⇠`p 2k `sinhp2kqq 2kpcoshp2kq ´1q k,`´⇠`p sinhp2kq ´2kq ": Aa k,⌅ .

(2.84) So that pA, B, C, Dq " Ap1, a k,⌅ , ´ak,⌅ tanh k, ´tanh kq with A ‰ 0 and k px 2 q " Az k px 2 q, with z k px 2 q " px 2 `ak,⌅ q sinhpkx 2 q ´tanh kpa k,⌅ x 2 `1q coshpkx 2 q.

We find A from (2.76), such that

A 2 ª 1 ´1ppz 2 k q 2 `2k 2 pz 1 k q 2 `k4 z 2 k qdx 2 " 1.
(2.85)

If 0 † ⇠ ´ † ⇠ `, that will imply 2kpcoshp2kq ´1q k,`´⇠´p sinhp2kq ´2kq °0.

We further get from (2.81) 2 that B " ´A 2kp1 `coshp2kqq k,`´⇠´p 2k `sinhp2kqq 2kpcoshp2kq ´1q k,`´⇠´p sinhp2kq ´2kq ": ´Ab k,⌅ .

So that, we have pA, B, C, Dq " Ap1, ´bk,⌅ , b k,⌅ tanh k, ´tanh kq with A ‰ 0 and k px 2 q " Aw k px 2 q, with w k px 2 q " px 2 ´bk,⌅ q sinhpkx 2 q `pb k,⌅ x 2 ´1q tanh k coshpkx 2 q.

We still find A from (2.76),

A 2 ª 1 ´1ppw 2 k q 2 `2k 2 pw 1 k q 2 `k4 w 2 k qdx 2 " 1. (2.86)
We obtain that µ c pk, ⌅q " max

P H2 pp´1,1qq ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1pp 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 2 " 1 4k sinh 2 p2kq ¨psinhp2kq coshp2kq ´2kqp⇠ ``⇠ ´q `˜psinhp2kq ´2k coshp2kqq 2 p⇠ ``⇠ ´q2 `sinh 2 p2kqpsinh 2 p2kq ´4k 2 qp⇠ `´⇠ ´q2 ¸1 2 ‹ ‹ ‹ ' .
That variational problem is attained by the function k px 2 q " Az k px 2 q, where A satisfies (2.85) or k px 2 q " Aw k px 2 q, where A satisfies (2.86). The equality (2.6) is shown and the first part of Proposition 2.1 then follows.

Asymptotic behavior of µ c pk, ⌅q in low/high regime of wave number

Let us prove Proposition 2.1 [START_REF] Barker | Stability of Viscous Shocks in Isentropic Gas Dynamics[END_REF]. Clearly, we have that µ c pk, ⌅q is a decreasing function in k °0. It yields (2.7).

We first consider k Ñ 0. Let us recall the Taylor's expansion of sinhp2kq and coshp2kq. We have sinhp2kq " 2k `4 3 k 3 `4 15 k 5 `Opk 6 q, and coshp2kq " 1 `2k 2 `2 3 k 4 `Opk 5 q.

We deduce that sinhp2kq coshp2kq ´2k 4k sinh 2 p2kq "

1 6 `2 15 k 2 `Opk 3 q 1 2 `2 3 k 2 `Opk 3 q " 1 3 ´8 15 k 2 `Opk 3 q, that sinhp2kq ´2k coshp2kq 4k sinh 2 p2kq " ´8 3 ´16 15 k 2 `Opk 3 q 16 `64 3 k 2 `Opk 3 q " ´1 6 `7 45 k 2 `Opk 3 q
and that sinh 2 p2kqpsinh 2 p2kq ´4k 2 q 16k 2 sinh 4 p2kq "

16 3 `128 45 k 2 `Opk 2 q 64 `256 3 k 2 `Opk 2 q " 1 12 ´1 15 k 2 `Opk 3 q.
We deduce that lim kÑ0 µ c pk, ⌅q "

1 3 p⇠ ``⇠ ´q `c 1 36 p⇠ ``⇠ ´q2 `1 12 p⇠ `´⇠ ´q2 .
(2.87)

That will imply (2.9), i.e.

µ s c p⌅q "

1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
Furthermore, we have that 

lim kÑ0 µ c pk, ⌅q ´µs c p⌅q k 2 " ´2 15 
`´1 ´4k 2 sinh 2 p2kq ¯p⇠ `´⇠ ´q2 ‹ ‹ ‹ ' 1 2 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' § 1 4k ´2p⇠ ``⇠ ´q `b2p⇠ 2 ``⇠ 2 ´q¯.
That implies (2.10). The proof of the second assertion of Proposition 2.1 is complete.

Proof of Proposition 2.1(3)

In this appendix, we prove Proposition 2.1(3). We first show that µ s c p⌅q " sup

P H2 pp´1,1qq ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2 (2.89)
Indeed, we write μc p⌅q " sup

P H2 pp´1,1qq ⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2
and then prove that µ s c p⌅q " μc p⌅q. Clearly, we have µ c pk, ⌅q § μc p⌅q for all k P Rzt0u. It yields µ s c p⌅q § μc p⌅q. It suffices to show that μc p⌅q • µ s c p⌅q. For any " °0, we fix a function " P H2 pp´1, 1qq such that

⇠ ´p 1 " p´1qq 2 `⇠`p 1 " p1qq 2 ≥ 1 ´1p 2 " q 2 dx 2
• μc p⌅q ´".

Let k ‰ 0 be small enough, we then obtain

⇠ ´p 1 " p´1qq 2 `⇠`p 1 " p1qq 2 ≥ 1 ´1pp 2 " q 2 `2k 2 p 1 " q 2 `k4 2 " qdx 2 °⇠´p 1 " p´1qq 2 `⇠`p 1 " p1qq 2 ≥ 1 ´1p 2 " q 2 dx 2
´".

That implies µ c pk, ⌅q °μ c p⌅q ´2".

We deduce that μc p⌅q " sup kPRzt0u µ c pk, ⌅q, i.e. (2.89). Then, we show that max P H2 pp´1,1qq

⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2 " 1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
(2.90)

Let us consider the Lagrangian functional

L 0 p , q " ´ª 1 ´1p 2 q 2 dx 2 ´1¯´⇠ ´p 1 p´1qq 2 ´⇠`p 1 p1qq 2 .
(2.91)

for any P H2 pp´1, 1qq and ‰ 0. Owing to Lagrange multiplier theorem, we find that the extrema of the quotient

⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2
are necessarily the stationary points p 0 , 0 q of L 0 , which satisfy ª 1

´1p 2 0 q 2 dx 2 " 1, (2.92) 
and

0 ª 1 ´1 2 0 ! 2 dx 2 ´p⇠ ´ 1 0 p´1q! 1 p´1q `⇠` 1 0 p1q! 1 p1qq " 0 (2.93)
for all ! P H2 pp´1, 1qq. We obtain from (2.93) after taking integration by parts that p4q 0 " 0 on p´1, 1q.

and $ & % 2 0 p1q " ⇠ ` 1 0 p1q, 2 0 p´1q " ´⇠´ 1 0 p´1q. (2.94)
Hence, 0 is of the form 0 px 2 q " px 2 2 ´1qpAx 2 `Bq.

Substituting this form of 0 into (2.94), we have that $ & % 0 p3A `Bq " ⇠ `pA `Bq, 0 p3A ´Bq " ⇠ ´pA ´Bq.

Hence, $ & % Ap3 0 ´⇠`q `Bp 0 ´⇠`q " 0, Ap3 0 ´⇠´q ´Bp 0 ´⇠´q " 0.

(2.95) System (2.95) admits a nontrivial solution pA, Bq if and only if p3 0 ´⇠`q p 0 ´⇠´q `p3 0 ´⇠´q p 0 ´⇠`q " 0.

It yields 3 2 0 ´2p⇠ ``⇠ ´q 0 `⇠´⇠`" 0.

(2.96)

The discriminant of (2.96) is

0,⇠ " p⇠ ``⇠ ´q2 ´3⇠ ´⇠`" ⇠ 2 `´⇠ `⇠´`⇠ 2 ´°0.
Then, Eq. (2.96) has two roots 0,˘"

1 3 ´⇠``⇠´˘b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
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We take the higher value 0,`. As 0 " 0,`, we have from (2.95) 2 that Ap3 0,`´⇠´q " Bp 0,`´⇠´q .

It is obvious that

3 0,`´⇠´" ⇠ ``b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´°0.
Then we have A " B 0,`´⇠3 0,`´⇠á nd 0 px 2 q " Bz 0 px 2 q, with z 0 px 2 q "

´ 0,`´⇠3 0,`´⇠´x 2 `1¯p

x 2 2 ´1q.

We continue using (2.92) to find a non-zero B. This yields

B 2 ª 1 ´1pz 2 2 px 2 qq 2 dx 2 " 1.
That is equivalent to

8B 2 ´3 p 0,`´⇠´q 2 p3 0,`´⇠´q 2 `4¯" 1.
this yields B " ˘1 2 ? 2 3 0,`´⇠b 39 2 0,`´3 0 0,`⇠´`7 ⇠ 2

´.

That means, we observe max P H2 pp´1,1qq

⇠ ´p 1 p´1qq 2 `⇠`p 1 p1qq 2 ≥ 1 ´1p 2 q 2 dx 2 " 1 3 ´⇠``⇠´`b ⇠ 2 `´⇠ `⇠´`⇠ 2 ´¯.
That variational problem is attained by the function

0 px 2 q " ˘1 2 ? 2 3 0,`´⇠b 39 2 0,`´3 0 0,`⇠´`7 ⇠ 2 ´´ 0,`´⇠3 0,`´⇠´x 2 `1¯p x 2 2 ´1q.
Combining (2.89) and (2.90), we obtain Proposition 2.1(3).

Comments on the paper of Ding, Zi and Li

In [START_REF] Ding | Rayleigh-Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions[END_REF], the authors Ding, Zi and Li construct an approximate solution generated by the maximal normal mode, p a , u a , q a qpt, xq " e 1 pkqt U 1 pxq with k being fixed such that 2⇤ 3 † 1 pkq † ⇤. Applying Proposition 0.1, the nonlinear equations (0.55)-(0.56) with the initial data p , u , q qp0q " p a , u a , q a qp0q.

admits a strong solution p , u q P C 0 pr0, T max q, H 1 ˆH2 q with an associated pressure q P C 0 pr0, T max q, L 2 q. Let T such that e 1 T " ✏ 0 ! 1. We define T ‹ :" sup ! t P p0, T max q|Ep ptq, u ptqq § C 0 u °0,

T ‹‹ :" suptt P p0, T max q|}p , u qptq} L 2 p⌦q § C e 1 t ) °0.
Then for all t § mintT , T ‹ , T ‹‹ u, we have

E 2 p ptq, u ptqq `}B t u ptq} 2 L 2 p⌦q `ª t 0 }rB t u p⌧ q} 2 L 2 p⌦q d⌧ § C 2 e 2 1 t .
In [14, Proposition 5.2], they claim that the difference functions p d , u d , q d q " p , u , q q ´p a , u a , q a q enjoy }p d , u d q} 2 L 2 p⌦q § C 3 e 3 1 t (2.97) for all µ °0. We believe that (2.97) needs to be corrected, not for all µ °0. Precisely, we are in doubt about inequality (137) in that paper, that is for all

t § mintT , T ‹ , T ‹‹ u, } a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤µ}ru d ptq} 2 L 2 p⌦q `µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds § ⇤ ´ª t 0 } a ⇢ 0 ` psqu d psq} 2 L 2 p⌦q `⇤µ}ru d psq} 2 L 2 p⌦q ⇤} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `C 3 e 3 1 t .
(2.98)

Due to (2.98) and the following inequality

d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q " 2 ª ⌦ p⇢ 0 ` ptqqu d ptq ¨Bt u d ptqdx `ª⌦ B t ptq|u d ptq| 2 dx § 1 ⇤ } a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `C 3 e 3 1 t , (2.99) it is claimed in [14, (138)] that d dt } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `´} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤µ}ru d ptq} 2 L 2 p⌦q § ⇤ ª t 0 ´}a ⇢ 0 ` psqB t u d psq} 2 L 2 p⌦q `⇤µ}ru d psq} 2 L 2 p⌦q ¯ds `⇤} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `C 3 e 3 1 t .
(2.100)

The inequality (2.97) is followed by applying Gronwall's inequality to (2.100).
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We shall explain the arguments of (2.98) in [START_REF] Ding | Rayleigh-Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions[END_REF]. First, we still have

} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `2µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds ´2 ª t 0 ª 2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ds " ª ⌦ g⇢ 1 0 |u d 2 ptq| 2 dx `´ª ⌦ p⇢ 0 ` ptqq|B t u d ptq| 2 dx ¯ˇˇt "0 `ª t 0 ª ⌦ p2B t f psq `2gu psq ¨r psqe 2 ´Bt psqB t u d psqq ¨Bt u d psqds.
(2.101)

We estimate

} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `2µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds ´2 ª t 0 ª 2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ds § ª ⌦ g⇢ 1 0 |u d 2 ptq| 2 dx `C 3 e 3 1 t . (2.102) That implies } a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `2µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds ´2 ª t 0 ª 2⇡LT p⇠ `|B t u d 1 ps, x 1 , 1q| 2 `⇠´| B t u d 1 ps, x 1 , ´1q| 2 qdx 1 ds § ⇤ 2 ª ⌦ p⇢ 0 ` ptqq|u d ptq| 2 dx `⇤µ ª ⌦ |ru d ptq| 2 dx ´⇤ ª 2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 `C 3 e 3 1 t .
(2.103) By using the inequality

⇤µ}ru d } 2 L 2 p⌦q § ⇤ 2 µ ª t 0 }ru d psq} 2 L 2 p⌦q ds `µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds
and the identity 

⇤ ª 2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 " ⇤ 2 ª t 0 ª 2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ds `ª t 0 ª 2⇡LT p⇠ `|B t u d 1 ps, x 1 , 1q| 2 `⇠´| B t u d 1 ps, x 1 , ´1q| 2 qdx 1 ds ´ª t 0 ª 2⇡LT p⇠ `|⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , 1q `⇠´| ⇤u d 1 ´Bt u d 1 | 2 ps, x 1 ,
} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `1 2 ⇤ ´µ}ru d ptq} 2 L 2 p⌦q ´ª2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 1 2 ª t 0 ´µ}rB t u d psq} 2 L 2 p⌦q ´ª2⇡LT p⇠ `|B t u d 1 ps, x 1 , 1q| 2 `⇠´| B t u d 1 ps, x 1 , ´1q| 2 qdx 1 ¯ds § ⇤ 2 } a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q `C 3 e 1 t `3 2 ⇤ 2 ª t 0 ´µ}ru d psq} 2 L 2 p⌦q ´ª2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ¯ds `3 2 ª t 0 ª 2⇡LT p⇠ `|⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , 1q `⇠´| ⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , ´1qqdx 1 ds.
(2.104) Integrating (2.99) in time from 0 to t and using (2.104) and Young's inequality, the authors deduce (2.98) without providing any detailed explanations.

However, we observe by integrating (2.99) in time that

} a ⇢ 0 ` ptqu d ptq} 2 L 2 p⌦q § 1 ⇤ ª t 0 e ⇤pt´sq }B t u d psq} 2 L 2 p⌦q ds `Ce 3 1 t .
Then the l.h.s of (2.98) will be bounded by

} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `⇤µ}ru d ptq} 2 L 2 p⌦q `µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds § ⇤ ª t 0 e ⇤pt´sq }B t u d psq} 2 L 2 p⌦q ds `1 2 ⇤µ}ru d ptq} 2 L 2 p⌦q `1 2 µ ª t 0 }rB t u d psq} 2 L 2 p⌦q ds `3 2 ⇤ 2 µ ª t 0 }ru d psq} 2 L 2 p⌦q ds `⇤ ª 2⇡LT p⇠ `|u d 1 pt, x 1 , 1q| 2 `⇠´| u d 1 pt, x 1 , ´1q| 2 qdx 1 ´⇤2 ª t 0 ª 2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ds `ª t 0 ª 2⇡LT p⇠ `|⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , 1q `⇠´| ⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , ´1qqdx 1 `C 3 e 3 1 t .
(2.105)

We are not clear about the way in [START_REF] Ding | Rayleigh-Taylor instability for nonhomogeneous incompressible fluids with Navier-slip boundary conditions[END_REF] to remove all integral terms over 2⇡LT in the r.h.s of (2.105) to get (2.98) for all µ °0, especially the following term

ª t 0 ª 2⇡LT p⇠ `|⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , 1q `⇠´| ⇤u d 1 ´Bt u d 1 | 2 ps, x 1 , ´1qqdx 1 .

Chapter 3 Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean

This chapter is presented in the paper [START_REF] Nguyπn | Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean[END_REF], mentioned in Section 0.6. We consider the boundary value problem on a moving domain and with a free surface. No surface tension is accounted for. Hence, the first step is to use a Lagrangian transformation to transform the original problem into another problem on the fixed domain ⌦ " T 2 ˆR´.

Let us consider an increasing profile ⇢ 0 such that ⇢ 1 0 is compactly supported. The spectral analysis in this setting is in the same spirit as the one in the first paper [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF] and we obtain infinitely many characteristic values to the linearized equations.

In this case, there are two striking differences to show the nonlinear instability. The first reason is due to the compatibility conditions for the initial data of the nonlinear equations, that are not satisfied in general by the normal modes of the linearized equations. A modification of the normal modes is needed to fulfil the compatibility conditions. The second one is the presence of more nonlinear terms due to the Lagrangian transformation, that requires more efforts to construct the a priori energy estimates, such as using Gagliardo-Nirenberg's inequality. The linear and nonlinear instability occur for all positive viscosity.

Preliminaries

We will employ the Einstein convention of summing over repeated indices. We present here some material.

Proof of Lemma 0.2. Thanks to Fubini's theorem and Parseval's formula, we obtain

}r q pf } 2 L 2 p⌦q À ÿ kPL ´1 1 ZˆL ´1 2 Z ª 0 ´8 |k| 2q | f pkq| 2 e 2|k|x 3 dx 3 À ÿ kPL ´1 1 ZˆL ´1 2 Z |k| 2q´1 | f pkq| 2 .
The inequality (0.89) then follows.

Product estimate. Suppose that ⌃ " ⌦ or , let f P H s 1 p⌃q, g P H s 2 p⌃q,

1. if 0 § r § s 1 § s 2 and s 2 °r `3{2, then fg P H r p⌃q, 2. if 0 § r § s 1 § s 2 and s 1 °3{2, then fg P H r p⌃q.
In both cases, we have

}fg} H r p⌃q À }f } H s 1 p⌃q }g} H s 2 p⌃q , (3.1) 
We refer to [START_REF] Guo | Local well-posedness of the viscous surface wave problem without surface tension[END_REF]Lemma 10.1] for the proof of (3.1).

Gagliardo-Nirenberg's inequality. Let s • 0, ⌃ " ⌦ or and f, g P H s p⌃q X L 8 p⌃q, we have

}fg} H s p⌃q À }f } H s p⌃q }g} L 8 p⌃q `}f } L 8 p⌃q }g} H s p⌃q . (3.2) 
Elliptic estimates. Let r • 2 and P H r´2 p⌦q, P H r´1 p⌦q and ↵ P H r´1{2 p q.

There exist unique u P H r p⌦q and q P H r´1 p⌦q solving $ ' ' ' & ' ' ' %

´ u `rq " in ⌦, divu " in ⌦, pqId ´µSuqe 3 " ↵ on .

Moreover, we have

}u} 2 H r p⌦q `}q} 2 H r´1 p⌦q À } } 2 H r´2 p⌦q `} } 2 H r´1 p⌦q `}↵} 2 H r´3{2 p q . (3.3)
thanks to [START_REF] Guo | Local well-posedness of the viscous surface wave problem without surface tension[END_REF]Lemma A.15] for example.

We also recall the classical regularity theory for the Stokes problem with Dirichlet boundary conditions (see [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]Theorem 2.4] after using the domain expansion technique). Let r • 2 and f P H r´2 p⌦q, g P H r´1 p⌦q and h P H r´1{2 p q such that ª ⌦ g " ª h ¨⌫, where ⌫ is the outward unit normal vector to the boundary.

There exist uniquely u P H r p⌦q and q P H r´1 p⌦q solving

$ ' ' ' & ' ' ' % ´ u `rq " f in ⌦, divu " g in ⌦,
u " h on .

There also holds

}u} 2 H r p⌦q `}q} 2 H r´1 p⌦q À }f } 2 H r´2 p⌦q `}g} 2 H r´1 p⌦q `}h} 2 H r´1{2 p q . (3.4)
Korn's inequality. The following Korn's inequality is proven in [47, Theorem 5.12],

}ru} 2 L 2 p⌦q À }Su} 2 L 2 p⌦q . (3.5)
Commutator estimates.

Let J " a 1 ´B2 1 ´B2
2 and let us define the commutator rJ s , fsg " J s pfgq ´f J s g.

We have

}rJ s , fsg} L 2 p q À }rf } L 8 p q }J s´1 g} L 2 p q `}J s f } L 2 p q }g} L 8 p q .

(3.6)

The proof of (3.6) is similar to that one of [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF]Lemma X1].

Interpolation inequality. It can be found in [START_REF] Adams | Sobolev Space[END_REF]Chapter 5] that

}u} H j p⌦q À }u} 1{pj`1q L 2 p⌦q }u} j{pj`1q H j`1 p⌦q .
That implies for " °0, there is a universal constant Cpjq such that }u} H j p⌦q § "}u} H j`1 p⌦q `Cpjq" ´j }u} L 2 p⌦q .

(3.7)

Coefficient estimates. If }⌘} H 5{2 p q À 1, we have }J ´1} L 8 p⌦q `}N ´1} L 8 p q `}K ´1} L 8 p q À }⌘} H 5{2 p q .

(3.8) Also, the map ⇥ defined by (0.91) is a diffeomorphism. We refer to [START_REF] Guo | Almost exponential decay of periodic viscous surface waves without surface tension[END_REF]Lemma 2.4] for the proof of (3.8). In the following lemma, we provide some additional estimates.

Lemma 3.1. Under the assumption }⌘} H 9{2 p q À 1, the following inequalities hold

}B l t pA, Bq} H s p⌦q À }B l t ⌘} H s`1{2 p q for any 0 § l § 2 and 0 § s § 4, (3.9) and $ ' ' ' ' ' & ' ' ' ' ' % }K ´1} H s p⌦q À }⌘} H s`1{2 p q for 0 § s § 4, }B t K} H s p⌦q À }B t ⌘} H s`1{2 p q for 0 § s § 2, }B 2 t K} L 2 p⌦q À }B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q , }B 3 t K} L 2 p⌦q À }B 3 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q , (3.10) and $ ' ' ' ' ' & ' ' ' ' ' % }pAK, BKq} H s p⌦q À }⌘} H s`1{2 p q for 0 § s § 4, }B t pAK, BKq} H s p⌦q À }B t ⌘} H s`1{2 p q for 0 § s § 2, }B 2 t pAK, BKq} L 2 p⌦q À }B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q , }B 3 t pAK, BKq} L 2 p⌦q À }B 3 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q , (3.11) and $ ' ' ' ' ' & ' ' ' ' ' % }A ´Id} H s p⌦q À }⌘} H s`1{2 p q for 0 § s § 4, }B t A} H s p⌦q À }B t ⌘} H s`1{2 p q for 0 § s § 2, }B 2 t A} L 2 p⌦q À }B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q , }B 3 t A} L 2 p⌦q À }B 3 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q .
(3.12)

Proof. To prove (3.9), we use Lemma 0.2 to obtain

}B l t pA, Bq} H s p⌦q " }B l t pB 1 ✓, B 2 ✓q} H s p⌦q À }B l t ✓} H s`1 p⌦q À }B l t ⌘} H s`1{2 p q .
We then claim (3.10). Since K ´1 " J ´1p1 ´Jq " ´J´1 B 3 ✓, we have

}K ´1} H s p⌦q À }J ´1B 3 ✓} H s p⌦q À }✓} H s`1 p⌦q À }⌘} H s`1{2 p q .
Note that K " J ´1, we have B t K " ´J´2 B t J. Owing to the product estimate (3.1), Lemma 0.2 and the fact that }J ´1} L 8 p⌦q À 1 (3.8), we get

}B t K} H s p⌦q À }J ´2B t B 3 ✓} H s p⌦q À }B t B 3 ✓} H s p⌦q À }B t ⌘} H s`1{2 p q .
Since B 2 t K " ´J´2 B 2 t J `2J ´3pB t Jq 2 , we continue applying Sobolev embedding, Lemma 0.2 and (3.8) to obtain

}B 2 t K} L 2 p⌦q À }J ´2B 2 t B 3 ✓} L 2 p⌦q `}J ´3pB t B 3 ✓q 2 } L 2 p⌦q À }B 2 t B 3 ✓} L 2 p⌦q p1 `}B 3 ✓} H 2 p⌦q q `}B t B 3 ✓} L 2 p⌦q }B t B 3 ✓} H 2 p⌦q À }B 2 t ⌘} H 1{2 p q p1 `}⌘} H 5{2 p q q `}B t ⌘} H 1{2 p q }B t ⌘} H 5{2 p q À }B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q .
Similarly, we have

B 3 t K " ´J´2 B 3 t J `6J ´3B t JB 2 t J ´6J ´4pB t Jq 3 .
This yields

}B 3 t K} L 2 p⌦q À }J ´2B 3 t B 3 ✓} L 2 p⌦q `}J ´3B t B 3 ✓B 2 t B 3 ✓} L 2 p⌦q `}J ´4pB t B 3 ✓q 3 } L 2 p⌦q À }B 3 t B 3 ✓} L 2 p⌦q `}B t B 3 ✓} H 2 p⌦q }B 2 t B 3 ✓} L 2 p⌦q `}B t B 3 ✓} 2 H 2 p⌦q }B t B 3 ✓} L 2 p⌦q À }B 3 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q .
Hence, (3.10) is proven.

We combine (3.9) and (3.10) to prove (3.11). Note that XK " XpK ´1q `X for X " A or B, we use Sobolev embedding and (3.10) to obtain that }XK} L 2 p⌦q À }X} L 2 p⌦q p1 `}K ´1} H 2 p⌦q q À }⌘} H 1{2 p q .

We make use (3.1) and (3.9), (3.10) to obtain }XK} H 1 p⌦q À }X} H 1 p⌦q p1 `}K ´1} H 3 p⌦q q À }⌘} H 3{2 p q and if s " 2, 3 or 4, we use also Gagliardo-Nirenberg's inequality to have

}XK} H s p⌦q À }X} H s p⌦q p1 `}K ´1} H 2 p⌦q q `}X} H 2 p⌦q p1 `}K ´1} H s p⌦q q À }⌘} H s`1{2 p q .
We further obtain

}B t pXKq} H s p⌦q À }B t X} H s p⌦q `}B t XpK ´1q} H s p⌦q `}XB t pK ´1q} H s p⌦q .
If s " 0, we use Sobolev embedding and (3.9), (3.10) again to have

}B t pXKq} L 2 p⌦q À }B t X} L 2 p⌦q p1 `}K ´1} H 2 p⌦q q `}X} H 2 p⌦q }B t K} L 2 p⌦q À }B t ⌘} H 1{2 p q p1 `}⌘} H 5{2 p q q.
If s " 1 or 2, we use (3.1) and also (3.9), (3.10) to obtain

}B t pXKq} H 1 p⌦q À }B t X} H 1 p⌦q p1 `}K ´1} H 3 p⌦q q `}X} H 3 p⌦q }B t K} H 1 p⌦q À }B t ⌘} H 3{2 p q p1 `}⌘} H 7{2 p q q. or }B t pXKq} H 2 p⌦q À }B t X} H 2 p⌦q p1 `}K ´1} H 2 p⌦q q `}X} H 2 p⌦q }B t K} H 2 p⌦q À }B t ⌘} H 5{2 p q p1 `}⌘} H 5{2 p q q.
Similarly, it can be seen that

}B 2 t pXKq} L 2 p⌦q À }B 2 t X} L 2 p⌦q `}B 2 t XpK ´1q} L 2 p⌦q `}B t XB t pK ´1q} L 2 p⌦q `}XB 2 t pK ´1q} L 2 p⌦q À }B 2 t X} L 2 p⌦q p1 `}K ´1} H 2 p⌦q q `}B t X} L 2 p⌦q }B t K} H 2 p⌦q `}X} H 2 p⌦q }B 2 t K} L 2 p⌦q À }B 2 t ⌘} H 1{2 p q p1 `}⌘} H 5{2 p q q `}B t ⌘} H 1{2 p q }B t ⌘} H 5{2 p q `}⌘} H 5{2 p q p}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q q À }B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q .
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In a same way, we have

}B 3 t pXKq} L 2 p⌦q À }B 3 t X} L 2 p⌦q p1 `}K ´1} H 2 p⌦q q `}B 2 t X} L 2 p⌦q }B t K} H 2 p⌦q `}B t X} H 2 p⌦q }B 2 t K} L 2 p⌦q `}X} H 2 p⌦q }B 3 t K} L 2 p⌦q À }B 3
t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q . Thus, the proof of (3.11) is complete.

Note that

}B l t pA ´Idq} H s p⌦q § }B l t pK ´1q} H s p⌦q `}B l t pAKq} H s p⌦q `}B l t pBKq} H s p⌦q .
Hence, (3.12) follows from (3.9), (3.10) and (3.11).

The linear analysis

We begin with the following lemma.

Lemma 3.2. For any k °0,

• all characteristic values are always real,

• all characteristic values satisfy that § b g L 0 .

Proof. Multiplying by on both sides of (0.27) and then integrating by parts, we obtain that

2 ´ªR ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 ´⇢0 1 ˇˇ0 ´8¯ µ ´ªR ´p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 3 `p 3 ´ 2 1 ´2k 2 1 q ˇˇ0 ´8" gk 2 ª R ´⇢1 0 | | 2 dx 3 .
Using (0.111) and (0.112), we get

2 ´ªR ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 ´⇢` p0q 1 p0q ¯` µ ª R ´p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 3 `p3 µk 2 ` 2 ⇢ `q 1 p0q p0q `gk 2 ⇢ `| p0q| 2 ` µk 2 1 p0q p0q ´2 µk 2 1 p0q p0q " gk 2 ª R ´⇢1 0 | | 2 dx 3 .
This yields

2 ª R ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 ` µ ª R ´p| 2 | 2 `2k 2 | 1 | 2 `k4 | | 2 qdx 3 ` µk 2 p 1 p0q p0q ` 1 p0q p0qq `gk 2 ⇢ `| p0q| 2 " gk 2 ª R ´⇢1 0 | | 2 dx 3 .
Using the integration by parts and (0.111) again, we have

2 ª R ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 ` µ ª R ´p| 2 `k2 | 2 `4k 2 | 1 | 2 qdx 3 " ´gk 2 ⇢ `| p0q| 2 `gk 2 ª R ´⇢1 0 | | 2 dx 3 .
(3.13) Suppose that " 1 `i 2 , then one deduces from (3.13) that

p 2 1 ´ 2 2 q ª R ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 ` 1 µ ª R ´p| 2 `k2 | 2 `4k 2 | 1 | 2 qdx 3 " ´gk 2 ⇢ `| p0q| 2 `gk 2 ª R ´⇢1 0 | | 2 dx 3 (3.14)
and that

´2 1 2 ª R ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 " 2 µ ª R ´p| 2 `k2 | 2 `4k 2 | 1 | 2 qdx 3 . (3.15) If 2 ‰ 0, (3.15) leads us to ´2 1 ª R ´pk 2 ⇢ 0 | | 2 `⇢0 | 1 | 2 qdx 3 " µ ª R ´p| 2 `k2 | 2 `4k 2 | 1 | 2 qdx 3 † 0,
that contradiction yields 2 " 0, i.e. is real. Using (3.13) again, we further get that

2 ª R ´⇢0 pk 2 | | 2 `| 1 | 2 qdx 3 § gk 2 ª R ´⇢1 0 | | 2 dx 3 .
It tells us that is bounded by b g L 0 . This finishes the proof of Lemma 3.2.

Note again that, thanks to Lemma 3.2, in what follows in this section, we only use real-valued functions.

Solutions on the outer region p´8, ´aq and reduction to

an ODE on the finite interval p´a, 0q

Proposition 3.1. Let ⌧ ´" a k 2 ` ⇢ ´{µ. There are two linearly independent solutions of (0.27) decaying to 0 at ´8 as x 3 P p´8, ´as, i.e.

1 px 3 q " e kx 3 and 2 px 3 q " e ⌧ ´x3 .

(3.16)

All solutions decaying to 0 at ´8 are spanned by p 1 , 2 q.

Proof. On the interval p´8, ´aq, Eq. (0.27) is an ODE with constant coefficients,

´ ⇢ ´pk 2 ´ 2 q " µp p4q ´2k 2 2 `k4 q.

(3.17)

We seek as px 3 q " e rx 3 . Hence,

´ ⇢ ´pk 2 ´r2 q " µpr 4 ´2k 2 r 2 `k4 q, which yields r " ˘k or r " ˘pk 2 ` ⇢ ´{µq 1{2 . Since tends to 0 at ´8, we get two independent solutions of (3.17),

1 px 3 q " e kx 3 and 2 px 3 q " e pk 2 ` ⇢ ´{µq 1{2 x 3 .

Hence, we can find all bounded solutions of (3.17) of the form px 3 q " A 1 e kpx 3 `aq `A2 e ⌧ ´px 3 `aq .

(3.18)

Proof of Proposition 3.1 is finished.

Once it is proven that px 3 q outside p´a, 0q is precise, we look for on p´a, 0q. That solution has to match with (3.18) well, i.e. there is a condition on p , 1 , 2 , 3 q at x 3 " ´a. We will show that in the following lemma.

Lemma 3.3. The boundary conditions of (0.27) at x 3 " ´a, for P H 4 pR ´q, are (0.113), i.e.

$ & % k⌧ ´ p´aq ´pk `⌧´q 1 p´aq ` 2 p´aq " 0, k⌧ ´pk `⌧´q p´aq ´pk 2 `k⌧ ´`⌧ 2 ´q 1 p´aq ` 3 p´aq " 0, and at x 3 " 0, are (0.111).

Proof. For a solution of Eq. (0.27) on p´a, 0q, the boundary conditions at x 3 " ´a are equivalent to the fact that belongs to the space of decaying solutions at 8. On the one hand, it can be seen from (3.18) that

¨ px 3 q 1 px 3 q 2 px 3 q 3 px 3 q ‹ ‹ ‹ ' " A 1 e kpx 3 `aq ¨1 k k 2 k 3 ‹ ‹ ‹ ' `A2 e ⌧ ´px 3 `aq ¨1 ⌧ ⌧ 2 ⌧ 3 ´‹ ‹ ‹ ' for x 3 § ´a.
On the other hand, direct computations show that the orthogonal complement of the subspace of R 4 spanned by two vectors p1, k, k 2 , k 3 q T and p1, ⌧ ´, ⌧ 2

´, ⌧ 3 ´qT is spanned by pk⌧ ´, ´pk `⌧´q , 1, 0q T and pk⌧ ´pk `⌧´q , ´pk 2 `k⌧ ´`⌧ 2 ´q, 0, 1q T .

The above arguments allow us to set (0.113) as boundary conditions of Eq. (0.27) at x 3 " ´a. 

A bilinear form and a self-adjoint invertible operator

ª 0 ´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª 0 ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 3 .
We have that B a,k, is a continuous and coercive bilinear form on H 2 pp´a, 0qq.

Furthermore, let pH 2 pp´a, 0qqq 1 be the dual space of H 2 pp´a, 0qq associated with the norm a B a,k, p¨, ¨q, there exists a unique operator Y a,k, P LpH 2 pp´a, 0qq, pH 2 pp´a, 0qqq 1 q, that is also bijective, such that B a,k, p#, %q " xY a,k, #, %y (3.19) for all #, % P H 2 pp´a, 0qq.

Before proving Proposition 3.2, we state our key lemma, whose proof is postponed to Section 3.2.6. This yields the coercivity of B a,k, as it will appear in the proof of Proposition 3.2. Lemma 3.4. We have

min #PH 2 pp´a,0qq ¨2k 2 p# 1 p0q#p0q ´#1 p´aq#p´aqq, # satisfies the constraint ª 0 ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 3 " 1.
‹ ' " ´sinhpkaq `ka 3 sinhpkaq ´ka , and max #PH 2 pp´a,0qq

¨2k 2 p# 1 p0q#p0q ´#1 p´aq#p´aqq, # satisfies the constraint ª 0 ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 3 " 1. ‹ '" 1.
Proof of Proposition 3.2. Clearly, B a,k, is a bilinear form on H 2 pp´a, 0qq since the terms BV a,k, p#, %q and BV 0,k, p#, %q are well defined. We then establish the boundedness of B a,k, . The integral terms of B a,k, are clearly À }#} H 2 pp´a,0qq }%} H 2 pp´a,0qq . About the two boundary value terms, it follows from the general Sobolev inequality that maxp# 2 p0q, # 2 p´aqq À }#} 2

H 1 pp´a,0qq
and that maxpp# 1 p0qq 2 , p# 1 p´aqq 2 q À }# 1 } 2 H 1 pp´a,0qq . Consequently, we get

|BV ´a,k, p#, %q| À p|#p´aq| `|# 1 p´aq|qp|%p´aq| `|% 1 p´aq|q À }#} H 2 pp´a,0qq }%} H 2 pp´a,0qq .
(3.20)

and

|BV 0,k, p#, %q| À `1 p|#p0q| `|# 1 p0q|qp|%p0q| `|% 1 p0q|q À `1 }#} H 2 pp´a,0qq }%} H 2 pp´a,0qq . (3.21) 
In view of (3.20) and (3.21), we find that

|B a,k, p#, %q| À `1 }#} H 2 pp´a,0qq }%} H 2 pp´a,0qq , (3.22) 
i.e. B a,k, is bounded.

We move to show the coercivity of B a,k, . We have that

B a,k, p#, #q " BV 0,k, p#, #q `BV ´a,k, p#, #q ` ª 0 ´a ⇢ 0 pk 2 # 2 `p# 1 q 2 qdx 3 `µ ª 0 ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 p#q 2 qdx 3 .
We have

1 µ BV ´a,k, p#, #q " k⌧ ´pk `⌧´q p#p´aqq 2 ´2k⌧ ´#p´aq# 1 p´aq `pk `⌧´q p# 1 p´aqq 2 " pk `⌧´q ´#1 p´aq `kpk ´⌧´q k `⌧´# p´aq ¯2 `kp⌧ ´pk `⌧´q 2 ´kpk ´⌧´q 2 q k `⌧´p #p´aqq 2 ´2k 2 #p´aq# 1 p´aq • ´2k 2 #p´aq# 1 p´aq.
Therefore, we deduce that

1 µ B a,k, p#, #q • 2k 2 p#p0q# 1 p0q ´#p´aq# 1 p´aqq `ª 0 ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 3 .
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Notice from Lemma 3.4 that

1 µ B a,k, p#, #q • 2psinhpkaq ´kaq 3 sinhpkaq ´ka ª 0 ´app# 2 q 2 `2k 2 p# 1 q 2 `k4 # 2 qdx 3 . (3.23)
The inequalities (3.22) and (3.23) tell us that B a,k, is a continuous and coercive bilinear form on H 2 pp´a, 0qq. It follows from Riesz's representation theorem that there is a unique operator Y a,k, P LpH 2 pp´a, 0qq, pH 2 pp´a, 0qqq 1 q, that is also bijective, satisfying (3.19) for all #, % P H 2 pp´a, 0qq. Proof of Proposition 1.2 is complete.

The next proposition is to devoted to studying the properties of Y a,k, .

Proposition 3.3. We have the following results.

1. For all # P H 2 pp´a, 0qq,

Y a,k, # " pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q ` µp# p4q ´2k 2 # 2 `k4 #q in D 1 pp´a, 0qq.
2. Let f P L 2 pp´a, 0qq be given, there exists a unique solution # P H 2 pp´a, 0qq of

Y a,k, # " f in pH 2 pp´a, 0qqq 1 . (3.24)
Moreover, # P H 4 pp´a, 0qq and satisfies the boundary conditions (0.113)-(0.111).

Proof. It follows from Proposition 3.2 that there is a unique # P H 2 pp´a, 0qq such that

ª 0 ´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª 0 ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 3 " xY a,k, #, %y (3.25) 
for all % P C 8 0 pp´a, 0qq. We respectively define p# 2 q 1 and p# 2 q 2 in the distributional sense as the first and second derivative of # 2 which is in L 2 pp´a, 0qq. Hence, Eq. (3.25) is equivalent to

ª 0 ´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µxp# 2 q 2 , %y `µ ª 0 ´ap2k 2 # 1 % 1 `k4 #%qdx 3 " xY a,k, #, %y (3.26)
for all % P C 8 0 pp´a, 0qq. Eq. (3.26) implies that

µpp# 2 q 2 ´2k 2 # 2 `k4 #q ` pk 2 ⇢ 0 # ´p⇢ 0 # 1 q 1 q " Y a,k, # in D 1 pp´a, 0qq. (3.27)
The first assertion holds.

Under the assumption f P L 2 pp´a, 0qq, we improve the regularity of the weak solution # P H 2 pp´a, 0qq of (3.27). Indeed, we rewrite (3.27) as µxp# 2 q 2 , %y "

ª 0 ´apY a,k, # `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q%dx 3
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118 for all % P C 8 0 pp´a, 0qq. Since pf `2µk 2 # 2 ´µk 4 # ´ k 2 ⇢ 0 # ` p⇢ 0 # 1 q 1 q belongs to L 2 pp´a, 0qq, it follows from (3.26) that p# 2 q 2 P L 2 pp´a, 0qq.

Let 1 P C 8 0 pp´a, 0qq satisfy ≥ 0 ´a 1 pyqdy " 1. Using the distribution theory, we define ⌃ P D 1 pp´a, 0qq such that x⌃, %y " xp# 2 q 2 , ⇣ % y (3.28) for all % P C 8 0 pp´a, 0qq, where

⇣ % px 3 q " ª x 3 ´a
´%pyq ´ 1 pyq ª 0 ´a %psqds ¯dy for all ´a † x 3 † 0. We obtain x⌃ 1 , %y " ´x⌃, % 1 y " ´xp% 2 q 2 , ⇣ % 1 y.

Note that

xp# 2 q 2 , ⇣ % 1 y " xp# 2 q 2 , %px 3 q ´ª x 3 ´a 1 pyq ª 0 ´a % 1 psqdsdyy " xp# 2 q 2 , %y,
this yields x⌃ 1 , %y " ´xp# 2 q 2 , %y. Hence, we have that p# 2 q 1 `⌃ " constant. In view of p# 2 q 2 P L 2 pp´a, 0qq and (3.28), we know that p# 2 q 1 P L 2 pp´a, 0qq. Since # P H 2 pp´a, 0qq and p# 2 q 1 , p# 2 q 2 P L 2 pp´a, 0qq, it tells us that # belongs to H 4 pp´a, 0qq and we can take their traces up to order 3.

By exploiting (3.25), we then show that # satisfies (0.113)-(0.111). Indeed, for all % P H 2 pp´a, 0qq, we use the integration by parts to obtain from (3.25) that ª 0

´a ⇢ 0 pk 2 #% `#1 % 1 qdx 3 `µ ª 0 ´ap# 2 % 2 `2k 2 # 1 % 1 `k4 #%qdx 3 ´ ⇢ 0 # 1 % ˇˇ0 ´a `µ´# 3 % ˇˇ0 ´a ´#2 % 1 ˇˇ0 ´a ´2k 2 # 1 % ˇˇ0 ´a¯" ª 0 ´apY a,k, #q%dx 3 .
It then follows from the definition of the bilinear form B a,k, that

´ ⇢ 0 # 1 % ˇˇ0 ´a `µ´# 3 % ˇˇ0 ´a ´#2 % 1 ˇˇ0 ´a ´2k 2 # 1 % ˇˇ0 ´a¯"
BV 0 p#, %q `BV ´ap#, %q, (3.29) for all % P H 2 pp´a, 0qq. By collecting all terms corresponding to %p´aq in (3.29), we deduce that

⇢ ´#1 p´aq ´µ# 3 p´aq `2µk 2 # 1 p´aq " µk⌧ ´pk `⌧´q #p´aq ´µk⌧ ´#1 p´aq.
This yields,

# 3 p´aq " p⌧ 2 ´´k 2 q# 1 p´aq `2k 2 # 1 p´aq `k⌧ ´#1 p´aq ´k⌧ ´pk `⌧´q #p´aq " pk 2 `k⌧ ´`⌧ 2 ´q#
1 p´aq ´k⌧ ´pk `⌧´q #p´aq.

We just proved that # satisfies (0.113) 2 . Similarly, # also fulfils (0.113) 1 and (0.111). This ends the proof of Proposition 3.3.

We have the following proposition on Y ´1 a,k, .

Proposition 3.4. The operator Y ´1 a,k, : L 2 pp´a, 0qq Ñ L 2 pp´a, 0qq is compact and self-adjoint.

Proof. It follows from Proposition 3.3 that Y a,k, admits an inverse operator Y ´1 a,k, from L 2 pp´a, 0qq to a subspace of H 4 pp´a, 0qq requiring all elements satisfy (0.111)-(0.113), which is symmetric. We compose Y ´1 a,k, with the continuous injection from H 4 pp´a, 0qq to L 2 pp´a, 0qq. Notice that the embedding H p pp´a, 0qq ãÑ H q pp´a, 0qq for p °q • 0 is compact. Therefore, the opearator Y ´1 a,k, is compact and self-adjoint from L 2 pp´a, 0qq to L 2 pp´a, 0qq. Proposition 3.4 is shown.

A sequence of characteristic values

We continue considering P p0, b g L 0 s and we study the operator S a,k, :" MY ´1 a,k, M, where M is the operator of multiplication by a ⇢ 1 0 .

Proposition 3.5. The operator S a,k, : L 2 pp´a, 0qq Ñ L 2 pp´a, 0qq is compact and self-adjoint.

Proof. Due to the assumptions on ⇢ 0 , the operator S a,k, is well-defined from L 2 pp´a, 0qq to itself. The operator Y ´1 a,k, is compact, so is S a,k, . Moreover, because both the inverse Y ´1 a,k, and M are self-adjoint, the self-adjointness of S a,k, follows.

As a result of the spectral theory of compact and self-adjoint operators, the point spectrum of S a,k, is discrete, i.e. is a sequence t n pk, qu n•1 of eigenvalues of S a,k, , associated with normalized orthogonal eigenfunctions t$ n u n•1 in L 2 pp´a, 0qq. That means

n p , kq$ n " S a,k, $ n " MY ´1 a,k, M$ n . So that with n " Y ´1 a,k, M$ n P H 4 pp´a, 0qq, one has n p , kqY a,k, n " ⇢ 1 0 n (3.30)
and n satisfies (0.113)-(0.111). Eq. (3.30) also tells us that n p , kq °0 for all n. Indeed, we obtain n p , kq

ª 0 ´apY a,k, n q n dx 3 " ª 0 ´a ⇢ 1 0 2 n dx 3 .

That implies

n p , kqB a,k, p n , n q "

ª 0 ´a ⇢ 1 0 2 n dx 3 . (3.31)
Since B a,k, p n , n q °0 and ⇢ 1 0 °0 on p´a, 0q, we know that n p , kq is positive for all n. Hence, by reordering and using the spectral theory of compact and self-adjoint 3.2. The linear analysis 120 operators again, we obtain that n p , kq is a positive sequence decreasing towards 0 as n Ñ 8.

For each n, in order to verify that n is a solution of (0.27), we are left to look for real values of n such that (0.121) holds, i.e. n p n , kq " n gk 2 .

To solve (0.121), we need the two following lemmas. Lemma 3.5. For each n, n p , kq and n are differentiable in .

Proof. The proof of Lemma 3.5 is the same as Lemma 1.2, we omit the details here. Lemma 3.6. For each n, n p , kq is strictly decreasing in .

Proof. Let z n " d n d , it follows from (3.30) that

k 2 ⇢ 0 n ´p⇢ 0 1 n q 1 `Ya,k, z n " 1 n p , kq ⇢ 1 0 z n `d d ´1 n p , kq ¯⇢1 0 n (3.32) on p´a, 0q. At x 3 " ´a, we have $ ' ' ' & ' ' ' % z 2 n p´aq ´pk `⌧´q z 1 n p´aq `k⌧ ´zn p´aq " ⇢ 2µ⌧ ´ 1 n p´aq ´k⇢ 2µ⌧ ´ n p´aq, z 3 n p´aq ´pk 2 `k⌧ ´`⌧ 2 ´qz 1 n p´aq `k⌧ ´pk `⌧´q z n p´aq " ´k⇢ 2µ⌧ ´`⇢ μ ¯ 1 n p´aq ´´k 2 ⇢ 2µ⌧ ´`k⇢ μ ¯ n p´aq, (3.33) 
and at x 3 " 0, we also have

$ & % z 2 n p0q `k2 z n p0q " 0, z 3 n p0q ´p3k 2 ` ⇢ μ qz 1 n p0q `gk 2 ⇢ ` µ z n p0q " ⇢ μ 1 n p0q `gk 2 ⇢ ` 2 µ n p0q. (3.34) 
Multiplying by n on both sides of (3.32), we obtain that ª 0

´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx 3 `ª 0 ´apY a,k, z n q n dx 3 " 1 n p , kq ª 0 ´a ⇢ 1 0 z n n dx 3 `d d ´1 n p , kq ¯ª 0 ´a ⇢ 1 0 2 n dx 3 . (3.35) 
Thanks to the integration by parts, we have ª 0

´apk 2 ⇢ 0 n ´p⇢ 0 1 n q 1 q n dx 3 " ª 0 ´a ⇢ 0 pk 2 2 n `p 1 n q 2 qdx 3 ´p⇢ 0 1 n n q ˇˇ0 ´a (3.36) and ª 0 ´apY a,k, z n q n dx 3 " ª 0 ´apY a,k, n qz n dx 3 `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇ0 ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇ0 ´a.
(3.37) 

0 ´a ⇢ 0 pk 2 2 n `p 1 n q 2 qdx 3 `´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯ˇˇ0 ´a ´´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯ˇˇ0 ´a ´p⇢ 0 1 n n q ˇˇ0 ´a " d d ´1 n p , kq ¯ª 0 ´a ⇢ 1 0 2 n dx 3 . (3.38) 
Using (3.33), we obtain

´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p´aq `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p´aq `⇢´ 1 n p´aq n p´aq " ´k2 ⇢ 2⌧ ´`k⇢ ´¯p n p´aqq 2 ´´k⇢ 2⌧ ´`⇢ ´¯ 1 n p´aq n p´aq ´k⇢ 2⌧ ´ n p´aq 1 n p´aq `⇢2 ⌧ ´p 1 n p´aqq 2 `⇢´ 1 n p´aq n p´aq " k⇢ ´p n p´aqq 2 `⇢2 ⌧ ´p 1 n p´aq ´k n p´aqq 2 . (3.39) 
Using (3.34) and (0.111), we also have 

´´µpz 3 n n ´z2 n 1 n ´2k 2 z 1 n n q ´ ⇢ 0 z 1 n n ¯p0q `⇢` 1 n p0q n p0q `´µp 3 n z n ´ 2 n z 1 n ´2k 2 1 n z n q ´ ⇢ 0 1 n z n ¯p0q " gk 2 ⇢ ` 2 p n p0qq 2 . ( 3 
¯ª 0 ´a ⇢ 1 0 2 n dx 3 " ª 0 ´a ⇢ 0 pk 2 2 n `p 1 n q 2 qdx 3 `k⇢ ´p n p´aqq 2 `⇢2 ⌧ ´p 1 n p´aq ´k n p´aqq 2 `gk 2 ⇢ ` 2 p n p0qq 2 . (3.41) 
This yields that 1 np ,kq is strictly increasing in , i.e. n p , kq is strictly decreasing in . This ends the proof of Lemma 3.6. Now we are in position to solve (0.121). Proposition 3.6. For each n • 1, there exists a unique n °0 solving (0.121). In addition, n decreases towards 0 as n goes to 8.

Proof. Using (3.31), we know that

1 n p , kq ª 0 ´a ⇢ 1 0 2 n dx 3 " ª 0 ´apY a,k, n q n dx 3 " B a,k, p n , n q,
Keep in mind the definition of B a,k, (0.116), we deduce that

1 n p , kq ª 0 ´a ⇢ 1 0 2 n dx 3 • ª 0 ´a k 2 ⇢ 0 2 n dx 3 `µ ª 0 ´a k 4 2 n dx 3 , that implies 1 L 0 n p , kq • k 2 `µk 4 ⇢ `.
Consequently, for all n • 1, lim

Ñ b g L 0 n p , kq °gk 2 . (3.42) 
Since n p , kq is a decreasing function, we have

1 np ,kq § 1 np 1 2 b g L 0 ,kq for all § 1 2 b g L 0 . Hence, lim Ñ0 n p , kq " 0. (3.43) 
Combining (3.42), (3.43) and the fact that n is decreasing in , we obtain a unique n solving (0.121). We prove that the sequence

p n q n•1 is decreasing. Indeed, if m † m`1 for some m • 1, we have m p m , kq ° m p m`1 , kq.
Meanwhile, we also have

m p m`1 , kq ° m`1 p m`1 , kq. That implies m gk 2 " m p m , kq ° m`1 p m`1 , kq " m`1 gk 2 .
That contradiction tells us that p n q n•1 is a decreasing sequence.

To conclude Proposition 3.6, we prove that lim nÑ8 n " 0. Indeed, suppose that lim nÑ8 n " c 0 °0, one has that n • c 0 for all n • 1. This yields

n pc 0 , kq • n p n , kq " n gk 2 • c 0 gk 2 .
Letting n Ñ 8, we obtain that 0 • c 0 gk 2 , which is a contradiction. Hence, lim nÑ8 n " 0. Proposition 3.6 is proven.

Proof of Theorem 0.5 and normal modes to the linearized equations

We are in position to prove Theorem 0.5.

Proof of Theorem 0.5. For each n P p0, b g L 0 q being found from Proposition 3.6, let n px 3 q " Y ´1 a,k, n M$ n px 3 q in p´a, 0q. Keep in mind our computations in Section 3.2.1,
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we extend n to R ´by requiring n satisfies (3.18) for some constants A n,1 , A n,2 as " n . Those constants A n,1 , A n,2 are defined by

$ & % n p´aq " A n,1 `An,2 , 1 n p´aq " kA n,1 `An,2 b k 2 ` n⇢μ . (3.44) 
Solving (3.44), we get that

A n,1 " b k 2 ` n⇢μ n p´aq ´ 1 n p´aq b k 2 ` n⇢μ ´k , A n,2 " 1 n p´aq ´k n p´aq b k 2 ` n⇢μ ´k . (3.45) 
Therefore, the function n P H 4 pR ´q is a solution of (0.27) satisfying (0.111) and (0.112) as " n for each n • 1. Using a bootstrap argument, we have n P H 8 pR ´q.

Proof of Theorem 0.5 is complete.

Once we have solutions of (0.27)-(0.111)-(0.112), we go back to the linearized equations (0.101). Proposition 3.7. For each k " pk 1 , k 2 q P L ´1 1 Z ˆL´1 2 Zzt0u, there exists an infinite sequence of normal modes

e npkqt V n pk, xq " e npkqt p⇣ n pk, xq, u n pk, xq, q n pk, xq, ⌘ n pk, x h qq (3.46) 
to the linearized equations (0.101), such that ⇣ n P H 8 p⌦q, u n P pH 8 p⌦qq 3 and q n P H 8 p⌦q.

Proof. For each solution n P p0, b g L 0 q of (0.121), we have a solution n in H 4 pR ´q of (0.27) as " n , being found in Theorem 0.5. Furthermore, n P H 8 pR ´q. We find uniquely ⇡ n P H 8 pR ´q from (0.110) such that

⇡ n pk, x 3 q " ´1 k 2 p n ⇢ 0 1 n `µpk 2 1
n ´ 3 n qqpk, x 3 q. To look for n , we rewrite (0.107) as a second order ODE, ´µ 2 n `p n ⇢ 0 n `µk 2 n ´k1 ⇡ n q " 0. Note from (0.108) and (0.109) that n satisfies that 1 n p0q " k 1 n p0q and that lim x 3 Ñ´8 n px 3 q " 0. By the ODE theory on a bounded interval and the domain expansion technique, we obtain a unique solution n P H 8 pR ´q, where the solution n depends on the known functions n and ⇡ n . We get ' n in a similar way. Hence, p n , ' n , n , ⇡ n q P pH 8 pR ´qq 4 is a solution of (0.107)-(0.108). Following (0.106), we then construct the functions v 1,n pk, xq " sinpk 1 x 1 `k2 x 2 q n pk, x 3 q, v 2,n pk, xq " sinpk 1 x 1 `k2 x 2 q' n pk, x 3 q, v 3,n pk, xq " cospk 1 x 1 `k2 x 2 q n pk, x 3 q, r n pk, x 3 q " cospk 1 x 1 `k2 x 2 q⇡ n pk, x 3 q.
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! n pk, xq " ´1 n pkq ⇢ 1 0 px 3 qv 3,n pk, x 3 q and ⌫ n pk, x h q " 1 n pkq v 3,n pk, x h , 0q.
Hence

p⇣ n pt, k, xq, u n pt, k, xq, q n pt, k, xq, ⌘ n pt, k, x h qq " e npkqt p! n , v n , r n , ⌫ n qpk, xq
is a real-valued solution of the linearized equations (0.101). We claim (3.47) by virtue of p n , ' n , n , ⇡ n q P pH 8 pR ´qq 4 .

Maximal growth rate

We derive the following proposition on the largest characteristic value 1 found in Theorem 0.5. Proposition 3.8. Let us recall the bilinear form B a,k, on H 2 pp´a, 0qq (0.116) and p 1 , 1 q from Theorem 0.5. We have that

1 gk 2 " max PH 2 pp´a,0qq ≥ 0 ´a ⇢ 1 0 2 dx 3 1 B a,k, 1 p , q , (3.48) 
and the variational problem (3.48) is attained by the function 1 restricted on p´a, 0q.

Furthermore, let us define the following bilinear form on H 2 pR ´q,

B k, p , ✓q :" ª R ´⇢0 pk 2 ✓ ` 1 ✓ 1 qdx 3 `µ ª R ´pp 2 `k2 qp✓ 2 `k2 ✓q `4k 2 1 ✓ 1 qdx 3 `gk 2 ⇢ ` p0q✓p0q.
Hence, we have

1 gk 2 " max PH 2 pR ´q ≥ R ´⇢1 0 2 dx 3 1 B k, 1 p , q . (3.49)
The variational problem (3.49) is attained by the function 1 .

Proof of Proposition 3.8. We divide the proof into two parts, proving (3.48) and (3.49), respectively.

Part 1. We show that (3.48) holds. For all °0, we solve the variational problem

↵ 1 p , kq " max ´ª 0 ´a ⇢ 1 0 2 dx 3 ˇˇ P H 2 pp´a, 0qq, B a,k, p , q " 1 ¯. (3.50) 
Let us define the Lagrangian function

L B p⌫, q " ª 0 ´a ⇢ 1 0 2 dx 3 ´⌫p B a,k, p , q ´1q. (3.51) 
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It follows from the Lagrange multiplier theorem that the extrema of the quotient

≥ 0 ´a ⇢ 1 0 2 dx 3 B a,k, p , q
are necessarily the stationary points p⌫ ‹ , ‹ q of L B , which satisfy

B a,k, p ‹ , ‹ q " 1 (3.52) 
and

ª 0 ´a ⇢ 1 0 ‹ ✓dx 3 ´ ⌫ ‹ B a,k, p ‹ , ✓q " 0, (3.53) 
for all ✓ P H 2 pp´a, 0qq. Restricting ✓ P C 8 0 pp´a, 0qq and following the line of the proof of Proposition 3.3, one deduces from (3.53) that ‹ has to satisfy

⌫ ‹ Y a,k, ‹ " ⇢ 1 0 ‹ (3.54)
in a weak sense. We further get that ‹ P H 4 pp´a, 0qq and satisfies (3.52) and the boundary conditions (0.113)-(0.111). Hence, all stationary points p⌫ ‹ , ‹ q of L B satisfy that, ⌫ ‹ is an eigenvalue of the compact and self-adjoint operator S a,k, " MY ´1 a,k, M from L 2 pp´a, 0qq to itself, with

M ´1Y a,k, ‹ " 1 ⌫ ‹ M ‹ P L 2 pp´a, 0qq
being an associated eigenfunction. That implies

↵ 1 p , kq § ´1 1 p , kq. (3.55) 
Meanwhile, since the operator S a,k, is self-adjoint and positive, we thus obtain that

1 p , kq " sup PL 2 pp´a,0qq xS a,k, , y } } 2 L 2 pp´a,0qq
.

Hence, for all P L 2 pp´a, 0qq and for " Y ´1 a,k, M P H 4 pp´a, 0qq, we have xY a,k, , y " xS a,k, , y, which yields

1 p , kqxY a,k, , y § xS a,k, , y 2 } } 2 L 2 pp´a,0q § }S a,k, } 2 L 2 pp´a,0qq .
This yields

1 p , kq § sup ! }M } 2 L 2 pp´a,0qq
xY a,k, , y | P H 4 pp´a, 0qq and M ´1Y a,k, P L 2 pp´a, 0qq

) .

Owing to (3.19), we have that

1 p , kq § sup ! ≥ 0 ´a ⇢ 1 0 2 dx 3 B a,k, p , q | P H 4 pp´a, 0qq and M ´1Y a,k, P L 2 pp´a, 0qq
) .

We thus obtain

´1 1 p , kq § ↵ 1 p , kq (3.56) 
The two inequalities (3.55) and (3.56) tell us that ↵ 1 pk, q " ´1 1 pk, q for all °0, from which we deduce ↵ 1 p 1 , kq " 1 gk 2 and the variational problem (3.48) is attained by the function 1 .

Part 2. We prove that (3.49) holds. We set

↵ 2 p , kq " max PH 2 pR ´q ´ªR ´⇢1 0 2 dx 3 ˇˇ B k, p , q " 1 ¯.
and consider the Lagrangian function

L B p!, q " ª R ´⇢1 0 2 dx 3 ´!pB k, p , q ´1q.
Thanks to Lagrange multiplier theorem again, the extrema of the quotient ≥

R ´⇢1 0 2 dx 3 B k, p , q
are necessarily the stationary points p! ‹ , ‹ q P R `ˆH 2 pR ´q of L B , which satisfy

B k, p ‹ , ‹ q " 1 (3.57) 
and ª

R ´⇢1 0 ‹ ✓dx 3 ´ ! ‹ B k, p ‹ , ✓q " 0 (3.58) 
for all ✓ P H 2 pR ´q.

We now improve the regularity of ‹ . We respectively define p 2 ‹ q 1 and p 2 ‹ q 2 in the distributional sense as the first and second derivative of 2 ‹ which is in L 2 pR ´q. Hence, (3.58) will imply that ª

R ´⇢0 pk 2 ‹ ✓ ` 1 ‹ ✓ 1 qdx 3 `µxp 2 ‹ q 2 , ✓y `µ ª R ´p2k 2 2 ‹ ✓ `4k 2 1 ‹ ✓ 1 `k4 ‹ ✓qdx 3 " 1 ! ‹ ª R ´⇢1 0 ‹ ✓dx 3 (3.59) 
for all ✓ P C 8 0 pR ´q. We deduce from (3.59) that

µpp 2 ‹ q 2 ´2k 2 2 ‹ `k4 ‹ q ` pk 2 ⇢ 0 ‹ ´p⇢ 0 1 ‹ q 1 q " 1 ! ‹ ⇢ 1 0 ‹ in D 1 pR ´q. (3.60) 
Thanks to (3.59) again, we obtain p 2 ‹ q 2 P L 2 pR ´q. Let b °0 be fixed and arbitrary, we have that P H 2 pp´b, 0qq. Let 2 P C 8 0 pp´b, 0qq satisfy ≥ 0 ´b 2 pyqdy " 1. Using the distribution theory, we define

⌃ b P D 1 pp´b, 0qq such that x⌃ b , ✓y " xp 2 ‹ q 2 , ⇣ ✓,b y (3.61)
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⇣ ✓,b px 3 q " ª x 3 ´b
´✓pyq ´ 2 pyq ª 0 ´b ✓psqds ¯dy for all ´b † x 3 † 0. We obtain

x⌃ 1 b , ✓y " ´x⌃ b , ✓ 1 y " ´xp 2 ‹ q 2 , ⇣ ✓ 1 ,b y.
Note that

xp 2 ‹ q 2 , ⇣ ✓ 1 ,b y " xp 2 ‹ q 2 , ✓px 3 q ´ª x 3 ´b 2 pyq ª 0 ´b ✓ 1 psqdsdyy " xp 2 ‹ q 2 , ✓y,
this yields x⌃ 1 b , ✓y " ´xp 2 ‹ q 2 , ✓y. Hence, we have that p 2 ‹ q 1 `⌃b " constant. In view of p 2 ‹ q 2 P L 2 pp´b, 0qq and (3.61), we know that p 2 ‹ q 1 P L 2 pp´b, 0qqq. Since ‹ P H 2 pR ´q and p 2 ‹ q 1 , p 2 ‹ q 2 P L 2 pp´b, 0qq, it tells us that belongs to H 4 pp´b, 0qq. Next, let us take ✓ P C 8 0 pp´8, ´bqq with b °a. Due to (0.96) and (0.97), one has

µpp 2 ‹ q 2 ´2k 2 2 ‹ `k4 ‹ q ` ⇢ `pk 2 ‹ ´ 2 ‹ q " 0 in D 1 pp´8, ´bqq.
As is bounded at ´8, hence we have

‹ px 3 q " a 1 e kx 3 `a2 e pk 2 ` ⇢ ´{µq 1{2 x 3 .
Since ‹ is explicit, we see that ‹ P H 4 pp´8, ´bqq. Consequently, ‹ P H 4 pR ´q and ‹ decays to 0 at infinity. By exploiting (3.58), we show that ‹ satisfies (0.111). Indeed, for all ✓ P H 2 pR ´q, we use the integration by parts to obtain from (3.58) that ª

R ´pk 2 ⇢ 0 ‹ ´p⇢ 0 1 ‹ q 1 q✓dx 3 ` ⇢ 0 1 ‹ ✓ ˇˇ0 ´8 `µ ª R ´pp 2 ‹ `k2 ‹ qp✓ 2 ‹ `k2 ✓ ‹ q `4k 2 1 ‹ ✓ 1 qdx 3 `µ´ 2 ‹ ✓ 1 ˇˇ0 ´8 ´ 3 ‹ ✓ ˇˇ0 ´8 `k2 ‹ ✓ 1 ˇˇ0 ´8 `3k 2 1 ‹ ✓ ˇˇ0 ´8¯`g k 2 ⇢ ` ‹ p0q✓p0q " 1 ! ‹ ª R ´⇢1 0 ‹ ✓dx 3 .
By collecting all terms corresponding to ✓ 1 p0q and ✓ 1 p0q respectively, we obtain that 2 ‹ p0q `k2 ‹ p0q " 0 and that

⇢ ` 1 ‹ p0q ´µ 3 ‹ p0q `3k 2 1 ‹ p0q `gk 2 ⇢ ` ‹ p0q " 0.
This yields that ‹ satisfies (0.111).

We have just shown that ‹ P H 4 pR ´q is a solution to

µp p4q ‹ ´2k 2 2 ‹ `k4 ‹ q ` pk 2 ⇢ 0 ‹ ´p⇢ 0 1 ‹ q 1 q " 1 ! ‹ ⇢ 1 0 ‹ on R ´(3.62)
3.2. The linear analysis 128 satisfying (0.111)-(0.112). Since supp⇢ 1 0 " r´a, 0s, we see that ‹ is a solution of

µp p4q ‹ ´2k 2 2 ‹ `k4 ‹ q ` pk 2 ⇢ 0 ‹ ´p⇢ 0 1 ‹ q 1 q " 0 on p´8, ´aq.
Then, ‹ on p´8, ´aq is of the form (3.18). Mimicking the computations in the proof of Lemma 3.3, we deduce ‹ on p´a, 0q is a solution of

! ‹ Y a,k, p ‹ | p´a,0q q " ⇢ 1 0 ‹ | p´a,0q " M 2 ‹ | p´a,0q
with the boundary conditions (0.113)-(0.111). Set

˜ " M ´1Y a,k, p ‹ | p´a,0q q " 1 ! ‹ M ‹ | p´a,0q P L 2 pp´a, 0qq, (3.63) 
it yields ! ‹ ˜ " MY ´1 a,k, M ˜ " S a,k, ˜ . That means ! ‹ is an eigenvalue of the compact and self-adjoint operator S a,k, from L 2 pp´a, 0qq to itself, with ˜ P L 2 pp´a, 0qq (defined as in (3.63)) being an associated eigenfunction. Hence, we get

↵ 2 p , kq § 1 p , kq. (3.64) 
Let us recall the function 1 from Theorem 0.5. One thus has

↵ 2 p , kq • ≥ R ´⇢1 0 2 1 dx 3 B k, p 1 , 1 q . ( 3.65) 
Note that from the proof of Theorem 0.5,

1 px 3 q " A 1 e kpx 3 `aq `A2 e c k 2 ` 1 ⇢ μ px 3 `aq as ´8 † x 3 † ´a.
Let us write 1 | p´a,0q as the function 1 being restricted on p´a, 0q. Hence, the direct computations show that

B k, p 1 , 1 q " B a,k, p 1 | p´a,0q , 1 | p´a,0q q, (3.66) 
and we keep in mind the assumption supp⇢ 1 0 " r´a, 0s. Then, from (3.65) and (3.66), we have

↵ 2 p , kq • ≥ 0 ´a ⇢ 1 0 2 1 dx 3 B a,k, p 1 | p´a,0q , 1 | p´a,0q q .
It then follows

↵ 2 p 1 , kq • ≥ 0 ´a ⇢ 1 0 2 1 dx 3 1 B a,k, 1 p 1 | p´a,0q , 1 | p´a,0q q " 1 gk 2 . (3.67) 
Combining (3.64) and (3.67) gives us that ↵ 2 p 1 , kq " 1 gk 2 and the variational problem (3.49) is attained by the function 1 . We finish the proof of Proposition 3.8.

Recall the definition of ⇤ from (0.122), we prove that ⇤ is the maximal growth rate of the linearized equations (0.101) in the following sense: Proposition 3.9. For all t • 0, the following inequalities hold

}⇣ptq} 2 H 1 p⌦q `}uptq} 2 H 1 p⌦q `}B t uptq} 2 L 2 p⌦q `ª t 0 }upsq} 2 H 1 p⌦q ds À p}⌘p0q} 2 H 1{2 p q `}up0q} 2 H 2 p⌦q `}⇣p0q} H 1 p⌦q qe 2⇤t , (3.68) 
and

}⌘ptq} 2 H 1{2 p q `}B t ⌘ptq} 2 H 1{2 p q `ª t 0 }B t ⌘psq} 2 H 1{2 p q À p}⌘p0q} 2 H 1{2 p q `}up0q} 2 H 2 p⌦q `}⇣p0q} 2 L 2 p⌦q qe 2⇤t . (3.69) 
The proof of Proposition 3.9 relies on the three lemmas below.

Lemma 3.7. There holds

1 2 d dt ´ª⌦ ⇢ 0 |B t u| 2 ´ª⌦ g⇢ 1 0 |u 3 | 2 `ª g⇢ `|u 3 | 2 ¯`µ 2 ª ⌦ |SB t u| 2 " 0. (3.70) 
Proof. We differentiate (0.101) 2 in time, multiply the resulting equation by B t u and then use (0.101) 1 to obtain ª

⌦ ⇢ 0 B 2 t u ¨Bt u `ª⌦ rB t q ¨Bt u ´µ ª ⌦ B t u ¨Bt u ´ª⌦ g⇢ 1 0 u 3 B t u 3 " 0.
That is equivalent to

1 2 d dt ´ª⌦ ⇢ 0 |B t u| 2 ´ª⌦ g⇢ 1 0 |u 3 | 2 ¯`ª ⌦ rB t q ¨Bt u ´µ ª ⌦ B t u ¨Bt u " 0. (3.71) 
We use the integration by parts over ⌦ to have ª

⌦ rB t q ¨Bt u ´µ ª ⌦ B t u ¨Bt u " ª pB t qId ´µSB t uqe 3 ¨Bt u ´ª⌦ B t qdivB t u `µ 2 ª ⌦ |SB t u| 2
Thanks to (0.101) 3,4,5 , we obtain ª

⌦ rB t q ¨Bt u ´µ ª ⌦ B t u ¨Bt u " ª g⇢ `Bt ⌘B t u 3 `µ 2 ª ⌦ |SB t u| 2 " ª g⇢ `u3 B t u 3 `µ 2 ª ⌦ |SB t u| 2 .
(3.72) Substituting (3.72) into (3.71), we conclude (3.70).

Lemma 3.8. There holds ª

⌦ g⇢ 1 0 |u 3 | 2 § ª g⇢ `|u 3 | 2 `⇤2 ª ⌦ ⇢ 0 |u| 2 `1 2 ⇤ ª ⌦ µ|Su| 2 .
(3.73)
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Proof. Let k " pk 1 , k 2 q P L ´1 1 Z ˆL´1 2 Z be fixed and f be the horizontal Fourier transform of f , i.e. f pk,

x 3 q " ª T f px h , x 3 qe ´ik¨x h dx h .
We write û1 pk, xq " ´i pk, x 3 q, û2 pk, xq " ´i'pk, x 3 q, û3 pk, xq " pk, x 3 q.

Notice that for k " 0, p0, 0q "

ª u 3 " ª ⌦ divu " 0.
Hence, together with Parseval's theorem, we have

ª g⇢ `|u 3 | 2 " 1 4⇡ 2 L 1 L 2 ÿ kPL ´1 1 ZˆL ´1 2 Zzt0u g⇢ `| pk, 0q| 2 . ( 3.74) 
We may reduce to estimate (3.74) when , ' and are real-valued and then continue the estimate to the real and imaginary parts of , ' and

For each k P L ´1 1 Z ˆL´1 2 Zzt0u, we deduce from Proposition 3.8 that ª R ´g⇢ 1 0 2 pk, x 3 qdx 3 § g⇢ `p pk, 0qq 2 ` 2 1 ª R ´⇢0 ´ 2 `p 1 q 2 k 2 ¯pk, x 3 qdx 3 ` 1 µ ª R ´´´ 2 k `k ¯2 `4p 1 q 2 ¯pk, x 3 qdx 3 .
It thus follows from the definition of ⇤ (0.122) that ª

R ´g⇢ 1 0 2 pk, x 3 qdx 3 § g⇢ `p pk, 0qq 2 `⇤2 ª R ´⇢0 ´ 2 `p 1 q 2 k 2 ¯pk, x 3 qdx 3 `⇤µ ª R ´´´ 2 k `k ¯2 `4p 1 q 2 ¯pk, x 3 qdx 3 (3.75) for all k P L ´1 1 Z ˆL´1 2 Zzt0u. Meanwhile, for k ‰ 0, notice that k 1 `k2 ' ` 1 " 0. One thus has p 1 q 2 § pk 1 `k2 'q 2 `pk 1 ' ´k2 q 2 " k 2 p 2 `'2 q, (3.76) 
and

2p 1 q 2 " 2k 2 1 2 `2k 2 2 ' 2 `4k 1 k 2 ' § 2k 2 1 2 `2k 2 2 ' 2 `pk 1 ' `k2 q 2 . (3.77) 
Furthermore, we obtain that

p 2 q 2 § pk 1 1 `k2 ' 1 q 2 `pk 1 ' 1 ´k2 1 q 2 " k 2 pp 1 q 2 `p' 1 q 2 q.
This yields

´1 k 2 `k ¯2 " 1 k 2 p 2 q 2 `2 2 `k2 2 § p 1 q 2 `p' 1 q 2 ´2 pk 1 1 `k2 ' 1 q `k2 2 ,
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Then, in view of Fubini's and Parseval's theorem again, we find that due to (3.76), ª

⌦ ⇢ 0 |u| 2 " 1 4⇡ 2 L 1 L 2 ÿ kPL ´1 1 ZˆL ´1 2 Z ª R ´⇢0 p 2 `'2 ` 2 qpk, x 3 qdx 3 • 1 4⇡ 2 L 1 L 2 ÿ kPL ´1 1 ZˆL ´1 2 Zzt0u ª R ´⇢0 ´ 2 `p 1 q 2 k 2 ¯pk, x 3 qdx 3 (3.79)
and that due to (3.77) and (3.78),

1 2 ª ⌦ µ|Su| 2 " µ 4⇡ 2 L 1 L 2 ÿ kPL ´1 1 ZˆL ´1 2 Z ª R ´˜2p 1 q 2 `2k 2 1 2 `2k 2 2 ' 2 `pk 1 ' `k2 q 2 `pk 1 ´ 1 q 2 `pk 2
´'1 q 2 ¸dx 3

• µ 4⇡ 2 L 1 L 2 ÿ kPL ´1 1 ZˆL ´1 2 Zzt0u ª R ´´´ 2 k `k ¯2 `4p 1 q 2 ¯dx 3 . (3.80) Combining (3.74), (3.75), (3.79) and (3.80) 
, the inequality (3.73) follows, we end the proof here.

We are in position to prove Proposition 3.9.

Proof of Proposition 3.9. Owing to (3.70) and (3.73), we have that ª

⌦ ⇢ 0 |B t uptq| 2 `ª t 0 ª ⌦ µ|SB t upsq| 2 ds " y 1 `ª⌦ g⇢ 1 0 |u 3 ptq| 2 ´ª g⇢ `|u 3 ptq| 2 § y 1 `⇤2 ª ⌦ ⇢ 0 |uptq| 2 `1 2 ⇤ ª ⌦ µ|Suptq| 2 , (3.81) 
where

y 1 " ª ⌦ ⇢ 0 |B t up0q| 2 ´ª⌦ g⇢ 1 0 |u 3 p0q| 2 `ª g⇢ `|u 3 p0q| 2 .
Using Cauchy-Schwarz's inequality, we have that ª

⌦ µ|Suptq| 2 " ª ⌦ µ|Sup0q| 2 `2 ª t 0 ª ⌦ µSupsq : SB t upsqds § ª ⌦ µ|Sup0q| 2 `1 ⇤ ª t 0 ª ⌦ µ|SB t upsq| 2 ds `⇤ ª t 0 ª ⌦ µ|Supsq| 2 ds (3.82)
and that d dt 

ª ⌦ ⇢ 0 |u| 2 § 1 ⇤ ª ⌦ ⇢ 0 |B t u| 2 `⇤ ª ⌦ ⇢ 0 |u| 2 . ( 3 
d dt ª ⌦ ⇢ 0 |uptq| 2 `1 2 ª ⌦ µ|Suptq| 2 § y 2 `2⇤ ª ⌦ ⇢ 0 |uptq| 2 `⇤ ª t 0 ª ⌦ µ|Supsq| 2 ds. (3.84)
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y 2 " y 1 ⇤ `ª⌦ µ|Sup0q| 2 .
In view of Gronwall's inequality, we obtain from (3.84) that ª

⌦ ⇢ 0 |uptq| 2 `1 2 ª t 0 ª ⌦ µ|Supsq| 2 ds § e 2⇤t ª ⌦ ⇢ 0 |up0q| 2 `y2 2⇤ pe 2⇤t ´1q. (3.85) 
Hence,

1 ⇤ ª ⌦ ⇢ 0 |B t uptq| 2 `1 2 ª ⌦ µ|Suptq| 2 § y 2 `⇤ ª ⌦ ⇢ 0 |uptq| 2 `⇤ ª t 0 ª ⌦ µ|Supsq| 2 ds § ´y2 `2⇤ ª ⌦ ⇢ 0 |up0q| 2 ¯e2⇤t (3.86)
Using the trace theorem, we have

y 1 `y2 À }up0q} 2 H 1 p⌦q `}B t up0q} 2 L 2 p⌦q . (3.87) 
Because of (3.85), (3.86) and (3.87), we observe

}uptq} 2 L 2 p⌦q `}Suptq} 2 L 2 p⌦q `}B t uptq} 2 L 2 p⌦q `ª t 0 }Supsq} 2 L 2 p⌦q ds À p}B t up0q} 2 L 2 p⌦q `}up0q} 2 H 1 p⌦q qe 2⇤t . (3.88) 
In view of Korn's inequality (see (3.5)), that implies

}uptq} 2 L 2 p⌦q `}ruptq} 2 L 2 p⌦q `}B t uptq} 2 L 2 p⌦q `ª t 0 }rupsq} 2 L 2 p⌦q ds À p}B t up0q} 2 L 2 p⌦q `}up0q} 2 H 1 p⌦q qe 2⇤t . (3.89) 
Using (0.101) 1 and (3.89) also, we get

}⇣ptq} 2 H 1 p⌦q À }⇣p0q} 2 H 1 p⌦q `ª t 0 }upsq} 2 H 1 p⌦q ds À p}⇣p0q} 2 H 1 p⌦q `}B t up0q} 2 L 2 p⌦q `}up0q} 2 H 1 p⌦q qe 2⇤t . (3.90) 
The inequality (3.68) follows from (3.89) and (3.90).

To prove (3.69), we use the trace theorem to obtain that

}B t ⌘ptq} 2 H 1{2 p q `ª t 0 }B t ⌘psq} 2 H 1{2 p q ds " }u 3 ptq} 2 H 1{2 p q `ª t 0 }u 3 psq} 2 H 1{2 p q ds § }u 3 ptq} 2 H 1 p⌦q `ª t 0 }u 3 psq} 2 H 1 p⌦q
ds. Together with (3.85), (3.87) and (3.89), we deduce that

}B t ⌘ptq} 2 H 1{2 p q `ª t 0 }B t ⌘psq} 2 H 1{2 p q ds À p}B t up0q} 2 L 2 p⌦q `}up0q} 2 H 1 p⌦q qe 2⇤t . (3.91) 
The resulting inequality tells us that

}⌘ptq} 2 H 1{2 p q § }⌘p0q} 2 H 1{2 p q `ª t 0 }B t ⌘psq} 2 H 1{2 p q ds À p}⌘p0q} 2 H 1{2 p q `}B t up0q} 2 L 2 p⌦q `}up0q} 2 H 1 p⌦q qe 2⇤t . (3.92) 
The inequality (3.69) follows from (3.91) and (3.92). Proposition 3.9 is proven. Note that the quotient

2k 2 p 1 p0q p0q ´ 1 p´aq p´aqq ≥ 0 ´app 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 3 (3.93)
is bounded because of the embedding H 2 pp´a, 0qq ãÑ C 1 pp´a, 0qq. To prove Lemma 3.4, let us consider the Lagrangian functional

L k p , q " ´ª 0 ´app 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 3 ´1¯´2 k 2 p 1 p0q p0q ´ 1 p´aq p´aqq,
for any P H 2 pp´a, 0qq. Using Lagrange multiplier theorem again, we find that the extrema of the quotient (3.93) are necessarily the stationary points p k , k q of L k , which satisfy ª 0

´app 2 k q 2 `2k 2 p 1 k q 2 `k4 2 k qdx 3 " 1 (3.94) and k ª 0 ´ap 2 k ✓ 2 `2k 2 1 k ✓ 1 `k4 k ✓qdx 3 " k 2 p 1 k p0q✓p0q ` k p0q✓ 1 p0q ´ 1 k p´aq✓p´aq ´ k p´aq✓ 1 p´aqq. (3.95) 
for all ✓ P H 2 pp´a, 0qq.

Taking the integration by parts, we obtain that

k ª 0 ´ap p4q k ´2k 2 2 k `k4 k q✓dx 3 ` k p 2 k ✓ 1 ´ 3 k ✓ `2k 2 1 k ✓q ˇˇ0 ´a " k 2 p 1 k p0q✓p0q ` k p0q✓ 1 p0q ´ 1 k p´aq✓p´aq ´ k p´aq✓ 1 p´aqq. (3.96) 
Restricting ✓ P C 8 0 pp´a, 0qq, the resulting equality yields

p4q k ´2k 2 2 k `k4 k " 0 (3.97)
on p´a, 0q. Hence, (3.96) tells us that

$ ' ' ' ' ' & ' ' ' ' ' % k 2 k p0q " k 2 k p0q, k p´ 3 k p0q `2k 2 1 k p0qq " k 2 1 k p0q, k 2 k p´aq " k 2 k p´aq, k p´ 3 k p´aq `2k 2 1 k p´aqq " k 2 1 k p´aq. (3.98) 
Any solution k of (3.97) is of the form k px 3 q " pAx 3 `Bq sinhpkx 3 q `pCx 3 `Dq coshpkx 3 q, (3.99) System (3.104) admits a nontrivial solution pA, C, B, Dq if and only if the determinant of the corresponding matrix is equal to zero. This yields

k 2 p k ´1q 2 ´pkaq 2 tanh 2 pkaqp k ´1q 2 ´´pkaq 2 p k ´1q 2 ´tanh 2 pkaqp3 k `1q 2 ¯¯" 0.
Equivalently,

k 2 p k ´1q 2 ppkaq 2 p k ´1q 2 ´sinh 2 pkaqp3 k `1q 2 q " 0. (3.105) 
We have three possible values of k , which are solutions of (3.105) and ordered as 1 (multiplicity 2) °´sinhpkaq ´ka 3 sinhpkaq `ka °´sinhpkaq `ka 3 sinhpkaq ´ka .

Let us take the maximal value k " 1. Clearly, we obtain A " C " 0 from (3.102) and k px 3 q " B sinhpkx 3 q `D coshpkx 3 q. Substituting the above k into (3.94), we have ª 0

´apB sinhpkx 3 q `D coshpkx 3 qq 2 dx 3 `ª 0 ´apD sinhpkx 3 q `B coshpkx 3 qq 2 dx 3 " 1 2k 4 .
Equivalently,

pB 2 `D2 q ª 0 ´a coshp2kx 3 qdx 3 `2BD ª 0 ´a sinhp2kx 3 qdx 3 " 1 2k 4 .
We directly have

1 2 sinhp2kaqpB 2 `D2 q ´2 sinh 2 pkaqBD " 1 2k 3 .

This yields

$ & % D is arbitrary and Hence, k px 3 q " Az k px 3 q, where z k px 3 q " ´x3 ´psinhpkaq ´kaqpcoshpkaq ´1q 2k sinh 2 pkaq ¯sinhpkx 3 q `´coshpkaq ´1 sinhpkaq

B " 2 sinh 2 pkaq˘bsinh 2 pkaqp2 cosh 2 pkaq`coshp2kaqqD 2 `1 k 3 sinhp2kaq 2 sinhp2kaq . ( 3 
x 3 ´sinhpkaq `ka 2k sinhpkaq ¯coshpkx 3 q.
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To find A, we trace back to (3.94). That means

A 2 ª 0 ´appz 2 k q 2 `2k 2 pz 1 k q 2 `k4 z 2 k qdx 3 " 1. (3.109) 
From the above cases, we conclude that

• max PH 2 pp´a,0qq 2k 2 p 1 p0q p0q ´ 1 p´aq p´aqq ≥ 0 ´app 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 3 " 1.
That variational problem is attained by the function

px 3 q " B sinhpkx 3 q `D coshpkx 3 q,
where B, D satisfy (3.106).

• min

PH 2 pp´a,0qq
2k 2 p 1 p0q p0q ´ 1 p´aq p´aqq ≥ 0 ´app 2 q 2 `2k 2 p 1 q 2 `k4 2 qdx 3 " ´sinhpkaq `ka 3 sinhpkaq ´ka .

That variational problem is attained by the function px 3 q " pAx 3 `Bq sinhpkx 3 q `pCx 3 `Dq coshpkx 3 q, where A, B, C, D satisfy (3.109), (3.108) and (3.107).

A priori energy estimates

With a regular solution p⇣, u, q, ⌘q of (0.99) on a finite time interval r0, T max q, we aim at showing Proposition 0.3, i.e to prove the a priori energy estimate (0.128) for the nonlinear equations (0.99), which is

E 2 f ptq `ª t 0 D 2 f psqds § C 0 ´"´5 E 2 f p0q `" ª t 0 E 2 f psqds `"´5 ª t 0 E f psqpE 2 f psq `D2 f psqqds `"´5 E 3 f ptq C0 " ´59 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds.
(3.110)

Strategy of the proof. Respectively, we derive the a priori energy estimates for the space-time derivatives of ⌘ in Propositions 3.10, 3.11, for the temporal derivatives of u in Proposition 3.12, for the horizontal space-time derivatives of u in Proposition 3.13 and for the space-time derivatives of ⇣ in Proposition 3.14. Then, we derive some estimates thanks to the elliptic regularity theory (see Propositions 3.16, 3.17). In view of these above estimates, we obtain (3.110) and complete the proof of Proposition 0.

In what follows, the constants C i pi • 1q are to indicate some constants, which are referred later and different to constants C i in Chapter 2.

Energy estimates of the perturbation transport

We first derive the a priori energy estimates for ⌘.

Proposition 3.10. The following inequalities hold

}⌘ptq} 2 H 4 p q § C 1 ´E2 f p0q `ª t 0 p"}⌘psq} 2 H 4 p q `"´1 }rupsq} 2 H 4 p⌦q qds C1 ª t 0 E 3 f psqds, (3.111) }B t ⌘ptq} 2 H 2 p q § C 2 ´E2 f p0q `ª t 0 p"}B t ⌘psq} 2 H 2 p q `"´1 }rB t upsq} 2 H 2 p⌦q qds C2 ª t 0 E 3 f psqds, (3.112) 
and

}B 2 t ⌘ptq} 2 L 2 p q § C 3 ´E2 f p0q `ª t 0 p"}B 2 t ⌘psq} 2 L 2 p q `"´1 }rB 2 t upsq} 2 L 2 p⌦q qds C3 ª t 0 E 3 f psqds. (3.113) 
Proof. Let us prove (3.111). For any ↵ P N 2 , |↵| § 4, we have by (4.2) 4 ,

B t B ↵ ⌘ " B ↵ u 3 ´pu 1 B ↵ B 1 ⌘ `u2 B ↵ B 2 ⌘q ´ÿ 0‰ §↵ pB u 1 B ↵´ B 1 ⌘ `B u 2 B ↵´ B 2 ⌘q loooooooooooooooooooooomoooooooooooooooooooooon ":R ↵ 1 .
Using the integration by parts, we obtain

1 2 d dt }B ↵ ⌘} 2 L 2 p q " 1 2 ª pB 1 u 1 `B2 u 2 q|B ↵ ⌘| 2 `ª pB ↵ u 3 ´R↵ 1 qB ↵ ⌘.
So that, we have

1 2 d dt }B ↵ ⌘} 2 L 2 p q À p}B 1 u 1 } L 8 p q `}B 2 u 2 } L 8 p q q}B ↵ ⌘} 2 L 2 p q `p}B ↵ u 3 } L 2 p q `}R ↵ 1 } L 2 p q q}B ↵ ⌘} L 2 p q .
(3.114)

We make use of the trace theorem to obtain that }B j u j } L 8 p q À }u} H 3 p q À }u} H 4 p⌦q , (3.115) that }B ↵ u 3 } L 2 p q À }B ↵ u} H 1 p⌦q (3.116) and that À }ru} H 4 p⌦q }⌘} H 4 p q `E3 f . Using Cauchy-Schwarz's inequality and then integrating the result inequality from 0 to t, we obtain (3.111).

}R ↵ 1 } L 2 p q À ÿ 0‰ §↵ }B u} L 2 p q }B ↵´ ⌘} H 1 p q À }B ↵ u} H 1 p⌦q }⌘} H |↵| p q . ( 3 
We show (3.112). Let ↵ P N 2 , |↵| § 2, we get

B 2 t B ↵ ⌘ " B ↵ B t u 3 ´pu 1 B ↵ B 1 B t ⌘ `u2 B ↵ B 2 B t ⌘q ´ÿ 0‰ §↵ pB u 1 B ↵´ B 1 B t ⌘ `B u 2 B ↵´ B 2 B t ⌘q looooooooooooooooooooooooomooooooooooooooooooooooooon ":R ↵ 2 ´ÿ 0 § §↵ pB B t u 1 B ↵´ B 1 ⌘ `B B t u 2 B ↵´ B 2 ⌘q looooooooooooooooooooooooomooooooooooooooooooooooooon ":R ↵ 3 .
Via the integration by parts, this yields

1 2 d dt }B ↵ B t ⌘} 2 L 2 p q " 1 2 ª pB 1 u 1 `B2 u 2 q|B ↵ B t ⌘| 2 `ª pB ↵ B t u 3 ´R↵ 2 ´R↵ 3 qB ↵ B t ⌘.
Using the trace theorem again, we have

ª pB t B 1 u 1 `Bt B 2 u 2 qB ↵ ⌘B ↵ B t ⌘ À }B t u} H 1 p q }B ↵ ⌘} H 2 p q }B t B ↵ ⌘} H 2 p q À }B t u} H 2 p⌦q }⌘} H 2 p q }B t ⌘} H 2 p q , (3.118) 
and

}B ↵ B t u 3 } L 2 p q À }B t u} H |↵|`1 p⌦q (3.119)
We follow (3.117) to get that

}R ↵ 2 } L 2 p q À ÿ 0‰ §↵ }B u} L 2 p q }B ↵´ B t ⌘} H 1 p q À }u} H 3 p⌦q }B t ⌘} H 2 p q (3.120)
and that Using Cauchy-Schwarz's inequality and then integrating from 0 to t, we obtain (3.112).

}R ↵ 3 } L 2 p q À ÿ 0 § §↵ }B B t u} L 2 p q }B ↵´ ⌘} H 1 p q À }rB t u} H 2 p⌦q }⌘} H 3 p q . ( 3 
We have (3.113) by following the same strategy as for proving (3.112). The proof of Proposition 3.10 is complete. 

H 9{2 p q " ´1 2 
ª pu 1 B 1 |J 9{2 ⌘| 2 `u2 B 2 |J 9{2 ⌘| 2 q `ª pJ 9{2 u 3 ´rJ 9{2 , u 1 sB 1 ⌘ ´rJ 9{2 , u 2 sB 2 ⌘qJ 9{2 ⌘ " 1 2 ª pB 1 u 1 `B2 u 2 q|J 9{2 ⌘| 2 `ª pJ 9{2 u 3 ´rJ 9{2 , u 1 sB 1 ⌘ ´rJ 9{2 , u 2 sB 2 ⌘qJ 9{2 ⌘.
Thanks to (3.6), we have the following estimates, ª

B j u j |J 9{2 ⌘| 2 À }B j u j } L 8 p q }J 9{2 ⌘} 2 L 2 p q À }u} H 3 p q }⌘} 2 H 9{2 p q , (3.123) 
ª J 9{2 u 3 J 9{2 ⌘ À }J 9{2 u 3 } L 2 p q }J 9{2 ⌘} L 2 p q À }J 4 u} H 1 p⌦q }⌘} H 9{2 p q , (3.124) and ª rJ 9{2 , u j sB j ⌘J 9{2 ⌘ À }B j u j } L 8 p q }J 7{2 ⌘} L 2 p q }J 9{2 ⌘} L 2 p q `}J 9{2 u} L 2 p q }B j ⌘} L 8 p q }J 9{2 ⌘} L 2 p q À }u} H 3 p q }⌘} 2 H 9{2 p q `}J 4 u} H 1 p⌦q }⌘} H 3 p q }⌘} H 9{2 p q .

(3.125)

In view of (3.123), (3.124) and (3.125), we get

d dt }⌘} 2 H 9{2 p q À }u} H 3 p q }⌘} 2 H 9{2 p q `}J 4 u} H 1 p⌦q p1 `}⌘} H 3 p q q}⌘} H 9{2 p q À }u} H 5 p⌦q }⌘} H 9{2 p q `E3
f . Using Cauchy-Schwarz's inequality and then integrating from 0 to t, we obtain (3.122).

We provide some additional estimates on ⌘, which will be used later. Lemma 3.9. We have

}B t ⌘} H 7{2 p q À E f `E2 f , (3.126) }B 2 t ⌘} H 3{2 p q À E f `E2 f , (3.127) 
and

}B 3 t ⌘} H 1{2 p q À }B 2 t u} H 1 p⌦q p1 `Ef q `E2 f . (3.128)
Proof. By (4.2) 4 , we have that }B t ⌘} H 7{2 p q À }u 3 } H 7{2 p q `}Q 4 } H 7{2 p q À }u 3 } H 4 p⌦q `}Q 4 } H 7{2 p q .

(3.129)

We use (3.1) and the trace theorem to estimate }Q 4 } H 7{2 p q (see Q 4 in (0.100)) as

}Q 4 } H 7{2 p q À }u} H 7{2 p q }B h ⌘} H 7{2 p q À }u} H 4 p⌦q }⌘} H 9{2 p q ,
Substituting the resulting inequality into (3.129), we have (3.126).

Using (3.1) again, we have

}B t Q 4 } H 3{2 p q À }B t B h ⌘} H 3{2 p q }u} H 7{2 p q `}B t u} H 3{2 p q }B h ⌘} H 7{2 p q À }B t ⌘} H 5{2 p q }u} H 4 p⌦q `}⌘} H 9{2 p q }B t u} H 2 p⌦q .
Together with (3.126), that implies

}B 2 t ⌘} H 3{2 p q À }B t u 3 } H 2 p⌦q `}B t Q 4 } H 3{2 p q À E f `E2
f . One thus has (3.127).

We continue using (4.2) 4 to have that

}B 3 t ⌘} H 1{2 p q À }B 2 t u 3 } H 1{2 p q `}B 2 t Q 4 } H 1{2 p q À }B 2 t u 3 } H 1 p⌦q `}B 2 t Q 4 } H 1{2 p q .
(3.130) As a consequence of the product estimate (3.1) and Sobolev embedding, we obtain

}B 2 t Q 4 } H 1{2 p q À }B 2 t u} H 1{2 p q }pB 1 ⌘, B 2 ⌘q} H 5{2 p q `}B t u} H 1{2 p q }B t pB 1 ⌘, B 2 ⌘q} H 5{2 p q `}u} H 5{2 p q }B 2 t pB 1 ⌘, B 2 ⌘q} H 1{2 p q À }B 2
t u} H 1 p⌦q }⌘} H 7{2 p q `}B t u} H 1 p⌦q }B t ⌘} H 7{2 p q `}u} H 3 p⌦q }B 2 t ⌘} H 3{2 p q . We continue using (3.126) and (3.127) to observe

}B 2 t Q 4 } H 1{2 p q À }B 2 t u} H 1 p⌦q E f `E2 f . (3.131) 
The inequality (3.128) follows from (3.130) and (3.131). Lemma 3.9 is proven.

Temporal estimates for the perturbation velocity

If we use the nonlinear equations in the perturbed form (4.2), there will be no control of the highest temporal derivative of q appearing in the nonlinear term Q 2 . Instead, we switch our original nonlinear equations (0.95) to a new formulation using a geometric transformation of the domain. The equations are $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %

B t ⇣ `div A p⇢ 0 uq " F 1 in ⌦, p⇢ 0 `⇢1 0 ✓ `⇣qB t u `rA q ´µdiv A S A u `g⇣e 3 " F 2 in ⌦, div A u " 0 in ⌦, B t ⌘ " u ¨N on ,
pqId ´µS A uqN " g⇢ `⌘N , on .

(3.132) (3.134)

The terms F j,l with l • 1 and 1 § j § 5 are given as

F 1,l " B l t F 1 ´ÿ 0 †j §l C j l B j t A jk B k p⇢ 0 B l´j t u j q, (3.135) 
F 2,l i " B l t F 2 `ÿ 0 †j §l C j l µpA jk B k pB j t A jm B l´j t B m u i q `Bj t A jk B l´j t B k pA jm B m u i qq ´ÿ 0 †j §l C j l p⇢ 0 B j t A ik B k B l´j t ⇣ `Bj t p⇣ `⇢1 0 ✓qB t pB l´j t u i qq, (3.136) 
F 3,l " ´ÿ 0 †j §l C j l B j t A ik B k pB l´j t u i q, F 4,l " ÿ 0 †j §l C j l B j t N ¨Bl´j t u, (3.137) 
F 5,l i " µ ÿ 0 †j §l C j l pB j t pA ik N m qB k B l´j t u m `Bj t pA mk N m qB k B l´j t u i q `ÿ 0 †j §l C j l B j t N i B l´j t pg⇢ `⌘ ´qq.
(3.138)

We use the convention that F 1,0 " F 1 , F 2,0 " F 2 and F j,0 " 0 for 3 § j § 5. We now derive the following proposition.

Proposition 3.12. For l " 0 and 1, we have

}B l t uptq} 2 L 2 p⌦q `}B l t ⌘ptq} 2 L 2 p q `ª t 0 }rB l t upsq} 2 L 2 p⌦q ds § C 5 ´E2 f p0q `ª t 0 }pu, ⇣qpsq} 2 L 2 p⌦q ds `ª t 0 E 3 f psqds ¯. (3.139)
Proof. For ⌃ " ⌦ or , all quadratic terms }X 1 X 2 } L 2 p⌃q or cubic ones }X 1 X 2 X 3 } L 2 p⌃q appearing in F j,l with 1 § j § 5 will be bounded by using Sobolev embedding, Lemma 0.2 and other inequalities in Section 3.1. Precisely, we have

}X 1 X 2 } L 2 p⌃q À }X 1 } L 8 p⌃q }X 2 } L 2 p⌃q À }X 1 } H 2 p⌃q }X 2 } L 2 p⌃q
and

}X 1 X 2 X 3 } L 2 p⌃q À }X 1 } L 8 p⌃q }X 2 } L 8 p⌃q }X 3 } L 2 p⌃q À }X 1 } H 2 p⌃q }X 2 } H 2 p⌃q }X 3 } L 2 p⌃q .
We only show the estimates of the term F 2,l p0 § l § 2q (see (3.133) and (3.136)), the estimates of others terms are proven in the same way.

For F 2 (see (3.133)), we have

p⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 u " p⇢ 0 `⇢1 0 ✓ `⇣qpK ´1qB t ✓B 3 u `p⇢ 0 `⇢1 0 ✓ `⇣qB t ✓B 3 u.
Thanks to Lemma 0.2 and (3.10), we obtain

}p⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 u} L 2 p⌦q À p1 `}p✓, ⇣q} H 2 p⌦q qp1 `}K ´1} H 2 p⌦q q}B t ✓} H 2 p⌦q }u} H 1 p⌦q À p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q qp1 `}⌘} H 5{2 p q q}B t ⌘} H 3{2 p q }u} H 1 p⌦q À E 2 f . (3.154) 
Note that u ¨rA u " u ¨rA´Id u `u ¨ru, we use Lemma 0.2 and (3.12) to get that 

}p⇢ 0 `⇢1 0 ✓ `⇣qu ¨rA u} L 2 p⌦q À }p⇢ 0 `⇢1 0 ✓ `⇣qu ¨rA´Id u} L 2 p⌦q `}p⇢ 0 `⇢1 0 ✓ `⇣qu ¨ru} L 2 p⌦q À p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q qp1 `}A ´Id} H 2 p⌦q q}u} H 2 p⌦q }u} H 1 p⌦q À p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q qp1 `}⌘} H 5{2 p q q}u} H 2 p⌦q }u} H 1 p⌦q À E 2 f . ( 3 
}B t pp⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 uq} L 2 p⌦q À p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q q}⌘} H 1{2 p q }B t ⌘} H 3{2 p q }u} H 1 p⌦q `p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q qp1 `}⌘} H 5{2 p q q ˆp}u} H 3 p⌦q }B 2 t ⌘} L 2 p q `}B t ⌘} H 3{2 p q }pu, B t uq} H 1 p⌦q q `p}B t ⇣} H 2 p⌦q `}B t ⌘} H 3{2 p q qp1 `}⌘} H 5{2 p q q}u} H 1 p⌦q }B t ⌘} H 3{2 p q À E 2 f .
(3.159)

Next, we compute

B t pp⇢ 0 `⇢1 0 ✓ `⇣qu ¨rA uq " p⇢ 0 `⇢1 0 ✓ `⇣qpB t u i A ij B j u k `ui B t A ij B j u k `ui A ij B t B j u k q `p⇢ 1 0 B t ✓ `Bt ⇣qu i A ij B j u k .
Hence, it follows from Lemma 0. 

}F 2,2 } L 2 p⌦q À }B 2 t F 2 } L 2 p⌦q `}⌘} H 3{2 p q }B t ⌘} H 3{2 p q }rB t u} H 2 p⌦q `}⌘} H 3{2 p q }B 2 t ⌘} H 1{2 p q }u} H 4 p⌦q `}B t ⌘} 2 H 3{2 p q }u} H 3 p⌦q `}B t ⌘} H 3{2 p q }⌘} H 7{2 p q }B t u} H 2 p⌦q `}B 2 t ⌘} L 2 p q }⌘} H 7{2 p q }u} H 4 p⌦q `}B t ⌘} H 3{2 p q }B t ⇣} H 1 p⌦q `}B 2 t ⌘} L 2 p q }⇣} H 3 p⌦q `p}B t ⇣} H 2 p⌦q `}B t ⌘} H 3{2 p q q}B 2 t u} L 2 p⌦q `p}B 2 t ⇣} L 2 p⌦q `}B 2 t ⌘} L 2 p q q}B t u} H 2 p⌦q À }B 2 t F 2 } L 2 p⌦q `Ef pE f `}B
}B 2 t pp⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 uq} L 2 p⌦q À p1 `}⌘} H 3{2 p q `}⇣} H 2 p⌦q qp}⌘} H 5{2 p q `1q ˆ˜}u} H 3 p⌦q }B 3 t ⌘} L 2 p q `}B t u} H 1 p⌦q }B 2 t ⌘} H 3{2 p q `}rB 2 t u} L 2 p⌦q }B t ⌘} H 3{2 p q p1 `}⌘} H 3{2 p q `}⇣} H 2 p⌦q q}B t ⌘} H 5{2 p q ˆ´}B t ⌘} H 3{2 p q }B t u} H 1 p⌦q `}B 2 t ⌘} L 2 p q }u} H 3 p⌦q p1 `}⌘} H 3{2 p q `}⇣} H 2 p⌦q qp}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 1{2 p q q}B t ⌘} H 3{2 p q }u} H 3 p⌦q `p}B t ⌘} H 3{2 p q `}B t ⇣} H 2 p⌦q qp}⌘} H 5{2 p q `1q ˆ´}B 2 t ⌘} L 2 p q }u} H 3 p⌦q `}B t ⌘} H 3{2 p q }B t u} H 1 p⌦q p}B t ⌘} H 3{2 p q `}B t ⇣} H 2 p⌦q q}B t ⌘} H 1{2 p q }B t ⌘} H 3{2 p q }u} H 3 p⌦q `p}B 2 t ⌘} L 2 p q `}B
}B 2 t pp⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 uq} L 2 p⌦q À E f pE f `}rB 2 t u} L 2 p⌦q `}B 3 t ⌘} L 2 p q `}B 2 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q q À E f pE f `}rB 2 t u} L 2 p⌦q q.
(3.163) 

}B 2 t pp⇢ 0 `⇢1 0 ✓ `⇣qu ¨rA uq} L 2 p⌦q À p1 `}⌘} H 3{2 p q `}⇣} H 2 p⌦q qp}⌘} H 5{2 p q `1qp}B 2 t u} H 1 p⌦q }u} H 3 p⌦q `}B t u} 2 H 2 p⌦q q `p1 `}⌘} H 3{2 p q `}⇣} H 2 p⌦q q ˆp}B t ⌘} H 1{2 p q }B t u} H 3 p⌦q `p}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q q}u} H 2 p⌦q q}u} H 3 p⌦q `p}B t ⌘} H 3{2 p q `}B t ⇣} H 2 p⌦q qp}⌘} H 5{2 p q `1q}B t u} H 3 p⌦q }u} H 3 p⌦q `p}B 2 t ⌘} L 2 p q `}B 2 t ⇣} L 2 p⌦q qp}⌘} H 5{2 p q `1q}u} 2 H 3 p⌦q À E f pE f `}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q `}rB
p q `}B t ⌘} 2 H 5{2 p q q}⌘} H 3{2 p q `}B t ⌘} H 3{2 p q }B t ⌘} H 3{2 p q `}⌘} H 5{2 p q }B 2 t ⌘} L 2 p q À E f pE f `}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q q À E 2 f . (3.165)
Consequently, there holds

}B 2 t F 2 } L 2 p⌦q À E f pE f `}rB 2 t u} L 2 p⌦q q
thanks to (3.163), (3.164) and (3.165).

We are left to prove (3.153). From the formula of F 3,2 (see (3.137)), we use Sobolev embedding and (3.12) to get

}F 3,2 } L 2 p⌦q À }B 2 t A} L 2 p⌦q }ru} H 2 p⌦q `}B t A} H 2 p⌦q }rB t u} L 2 p⌦q À p}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q q}u} H 3 p⌦q `}B t ⌘} H 5{2 p q }B t u} H 1 p⌦q .
Owing to (3.126) and (3.127), we deduce that

}F 3,2 } L 2 p⌦q À p}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q qE f `}B t ⌘} H 5{2 p q E f À E 2 f .
(3.166)

Together with (3.8), this yields

}JF 3,2 } L 2 p⌦q À p1 `}J ´1} L 8 p⌦q q}F 3,2 } L 2 p⌦q À E 2 f . (3.167)
We continue using (3.8), Lemma 0.2 and (3.166) to get

}B t pJF 3,2 q} L 2 p⌦q À }B t J} L 8 p⌦q }F 3,2 } L 2 p⌦q `p1 `}J ´1} L 8 p⌦q q}B t F 3,2 } L 2 p⌦q À }B t B 3 ✓} H 2 p⌦q E 2 f `}B t F 3,2 } L 2 p⌦q À }B t ⌘} H 5{2 p⌦q E 2 f `}B t F 3,2 } L 2 p⌦q .
(3.168)

By Sobolev embedding and (3.12), let us estimate that

}B t F 3,2 } L 2 p⌦q À }B 2 t A} L 2 p⌦q }rB t u} H 2 p⌦q `}B t A} H 2 p⌦q }rB 2 t u} L 2 p⌦q `}B 3 t A} L 2 p⌦q }ru} H 2 p⌦q À p}B 2 t ⌘} H 1{2 p q `}B t ⌘} 2 H 5{2 p q q}rB t u} H 2 p⌦q `}B t ⌘} H 5{2 p q }rB 2 t u} L 2 p⌦q `p}B 3 t ⌘} H 1{2 p q `}B t ⌘} H 5{2 p q }B 2 t ⌘} H 1{2 p q `}B t ⌘} 3 H 5{2 p q q}u} H 3 p⌦q . (3.169) 
Combining the resulting inequality (3.167) with Lemma 3.9, we obtain We are in position to prove Proposition 3.12.

}B t F 3,2 } L 2 p⌦q À E f pE f `}rB t u} H 2 p⌦q `}rB
Proof of Proposition 3.12. In view of (3.145) at order l " 0, we have

1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|uptq| 2 `ª g⇢ `|⌘ptq| 2 ¯`1 2 µ ª t 0 ª ⌦ J|S A upsq| 2 ds " 1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|uptq| 2 `ª g⇢ `|⌘ptq| 2 ¯ˇˇt "0 `1 2 ª t 0 ª ⌦ B t pp⇢ 0 `⇢1 0 ✓ `⇣qJq|u| 2 psqds `ª t 0 ª ⌦ JpF 2 ¨u ´g⇣u 3 qds (3.172)
We first estimate the l.h.s of (3.139). Notice that

J}S A u} 2 L 2 p⌦q " }Su} 2 L 2 p⌦q
`ª⌦ pJ ´1q|Su| 2 `ª⌦ JpS A u `Suq : pS A u ´Suq.

Since

S A u ˘Su " pA ik ˘ ik qB k u j `pA jk ˘ jk qB k u j , we use (3.9) to obtain ª

⌦ JpS A u `Suq : pS A u ´Suq " 4 ª ⌦ pA 2 pB 1 u 2 `B2 u 1 q 2 `B2 pB 1 u 3 `B3 u 1 q 2 q À }pA, Bq} 2 H 2 p⌦q }ru} 2 L 2 p⌦q À E 4
f . Note also that }J ´1} L 8 p⌦q À 1 (see (3.8)), we use Korn's inequality (3.5) to have

J}S A u} 2 L 2 p⌦q Á }ru} 2 L 2 p⌦q ´E3 f . (3.173)
Due to the assumption on 0 (0.127) and Sobolev embedding, we then have

inf ⌦ p⇢ 0 `⇢1 0 ✓ `⇣q • ⇢ ´´C emb maxp1, max R ´⇢1 0 px 3 qq}p✓, ⇣q} H 2 p⌦q • 1 2 ⇢ ´. (3.174)
The l.h.s of (3.172) will be estimated as ª As a consequence of (3.184) and (3.139) l"0 , the inequality (3.139) l"1 follows. For l " 2, we use (3.146) at order l " 2 to have that

⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|uptq| 2 `ª g⇢ `|⌘ptq| 2 `µ ª t 0 ª ⌦ J|S A upsq| 2 ds Á }uptq} 2 L 2 p⌦q `}⌘ptq}
1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|B 2 t u| 2 ptq `ª g⇢ `|B 2 t ⌘ptq| 2 ´ª⌦ g⇢ 1 0 |B t u 3 ptq| 2 1 2 µ ª t 0 ª ⌦ J|S A B 2 t upsq| 2 ds " 1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|B 2 t u| 2 `ª g⇢ `|B 2 t ⌘| 2 ´ª⌦ g⇢ 1 0 |B t u 3 | 2 ¯ˇˇt "0 `1 2 ª t 0 ª ⌦ B t pp⇢ 0 `⇢1 0 ✓ `⇣qJq|B 2 t upsq| 2 ds `ª t 0 ª ⌦ JpF 2,2 ¨B2 t u `F 3,2 B 2 t qqpsqds ´ª t 0 ª pg⇢ `B2 t ⌘F 4,2 `F 5,2 ¨B2 t uqpsqds `ª t 0 ª ⌦ g⇢ 0 JF 3,1 B 2 t u 3 psqds ´ª t 0 ª ⌦ g⇢ 1 0 pAB t B 3 u 1 `BB t B 3 u 2 qB 2 t u 3 psqds ´ª t 0 ª ⌦ gJF 1,1 B 2 t u 3 psqds. ( 3 

.185)

We follow the previous arguments to observe that 

}B 2 t uptq} 2 L 2 p⌦q `}B 2 t ⌘ptq} 2 L 2 p q `ª t 0 }rB 2 t upsq} 2 L 2 p⌦q ds À E 2 f p0q `}B t u 3 ptq} 2 L 2 p⌦q `ª t 0 E 2 f psq}pA, Bqpsq} H 2 p⌦q ds `ª t 0 p}J ´1} L 8 p⌦q `1q}pF 1,1 , F 2,2 , F 3,1 qpsq} L 2 p⌦q ds `ª t 0 }pF 4,2 , F 5,2 qpsq} L 2 p q E f psqds `ª t 0 ª ⌦ pJF
}B 2 t uptq} 2 L 2 p⌦q `}B 2 t ⌘ptq} 2 L 2 p q `ª t 0 }rB 2 t upsq} 2 L 2 p⌦q ds À E 2 f p0q `}B t u 3 ptq} 2 L 2 p⌦q `E3 f ptq `ª t 0 E 2 f pE f `}rB t u} H 2 p⌦q `}rB 2 t u} L 2 p⌦q qpsqds.
We obtain (3.140) thanks to the resulting inequality and (3.139) l"1 .

Horizontal estimates of the perturbation velocity

We continue deriving the mixed horizontal space-time derivatives of u. The nonlinear terms Q i p1 § i § 5q in (0.100) are presented by that

Q 1 " ´K⇢ 2 0 ✓u 3 `KB t ✓pB 3 ⇣ `⇢2 0 ✓q ´K⇢ 1 0 ✓pAu 1 `Bu 2 q ´u1 B 1 ⇣ ´u2 B 2 ⇣ ´Ku 3 B 3 ⇣ `KB 3 ⇣pAu 1 `Bu 2 q (3.189) that Q 2 1 " ´p⇣ `⇢1 0 ✓qB t u 1 ´p⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 u 1 `AKpB 3 q ´g⇢ 1 0 ✓q ´p⇣ `⇢0 `⇢1 0 ✓q ´u1 pB 1 u 1 ´AKB 3 u 1 q `u2 pB 2 u 1 ´BKB 3 u 1 q `Ku 3 B 3 u 1 μ ˜pK 2 `A2 `B2 ´1qB 2 33 u 1 ´2AKB 2 13 u 1 ´2BKB 2 23 u 1 pKB 3 KpA 2 `B2 `1q ´B1 pAKq ´B2 pBKq ´AB 1 K ´BB 2 KqB 3 u 1 ¸, (3.190) Q 2 2 " ´p⇣ `⇢1 0 ✓qB t u 2 ´p⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 u 1 `BKpB 3 q ´g⇢ 1 0 ✓q ´p⇣ `⇢0 `⇢1 0 ✓q ´u1 pB 1 u 2 ´AKB 3 u 2 q `u2 pB 2 u 2 ´BKB 3 u 2 q `Ku 3 B 3 u 2 μ ˜pK 2 `A2 `B2 ´1qB 2 33 u 2 ´2AKB 2 13 u 2 ´2BKB 2 23 u 2 pKB 3 KpA 2 `B2 `1q ´B1 pAKq ´B2 pBKq ´AB 1 K ´BB 2 KqB 3 u 2 ¸, (3.191) Q 2 3 " ´p⇣ `⇢1 0 ✓qB t u 3 ´p⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 u 3 `p1 ´KqpB 3 q ´g⇢ 1 0 ✓q ´p⇣ `⇢0 `⇢1 0 ✓q ´u1 pB 1 u 3 ´AKB 3 u 3 q `u2 pB 2 u 3 ´BKB 3 u 3 q `Ku 3 B 3 u 3 pK ´1qpB 2 13 u 1 `B2 23 u 2 q `B1 KB 3 u 1 `B2 KB 3 u 2 ´B1 pAKB 3 u 3 q ´AKB 3 pKB 3 u 1 `B1 u 3 ´AKB 3 u 3 q ´B2 pBKB 3 u 3 q ´BKB 3 pKB 3 u 2 `B2 u 3 ´BKB 3 u 3 q `2pK 2 ´1qB 2 33 u 3 `2KB 3 KB 3 u 3 , (3.192) that Q 3 " p1 ´KqB 3 u 3 `AKB 3 u 1 `BKB 3 u 2 , Q 4 " ´u1 B 1 ⌘ ´u2 B 2 ⌘, (3.193) 
and that

Q 5 " B 1 ⌘ ¨q ´g⇢ `⌘ ´2µpB 1 u 1 ´AKB 3 u 1 q ´µpB 1 u 2 `B2 u 1 ´AKB 3 u 2 ´BKB 3 u 1 q ´µpB 1 u 3 ´AKB 3 u 3 `KB 3 u 1 q ‹ ' `B2 ⌘ ¨´µpB 1 u 2 `B2 u 1 ´AKB 3 u 2 ´BKB 3 u 1 q q ´g⇢ `⌘ ´2µpB 2 u 2 ´BKB 3 u 2 q ´µpB 2 u 3 ´AKB 3 u 3 `KB 3 u 2 q ‹ ' ´µ ¨p1 ´KqB 3 u 1 `AKB 3 u 3 p1 ´KqB 3 u 2 `BKB 3 u 3 2p1 ´KqB 3 u 3 ‹ '. (3.194) 
Note that ⇢ 0 only depends on x 3 . Let " p 1 , 2 q P N 2 and let us apply the horizontal derivative B h " B 1 1 B 2 2 to (0.99), we obtain the following equations. $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % To prove Proposition 3.13, we need the following lemma.

B t B h ⇣ `⇢1 0 B h u 3 " B h Q 1 in ⌦, ⇢ 0 B t B h u `rB h q ´µ B h u `gB h ⇣e 3 " B h Q 2 in ⌦, divB h u " B h Q 3 in ⌦, B t B h ⌘ ´B h u 3 " B h Q 4 on , pB h qId ´µSB h uqe 3 " g⇢ `B h ⌘e 3 `B h Q 5 on . ( 3 
Lemma 3.13. The following inequalities hold

}Q 1 } H 2 p⌦q `}B t Q 1 } L 2 p⌦q `}B t Q 2 } L 2 p⌦q `}Q 2 } H 2 p⌦q `}B t Q 3 } H 1 p⌦q `}Q 3 } H 3 p⌦q `}Q 4 } H 7{2 p q `}Q 5 } H 5{2 p q `}B t Q 5 } H 1{2 p q À E 2 f , (3.198) 
and

}Q 2 } H 3 p⌦q `}B t Q 2 } H 1 p⌦q `}Q 3 } H 4 p⌦q `}B t Q 3 } H 2 p⌦q `}Q 5 } H 7{2 p q À E f pE f `Df q. (3.199) 
Proof. For (3.198), we only present estimates for some terms of the l.h.s, precisely,

}B t Q 3 } H 1 p⌦q `}Q 4 } H 7{2 p q `}Q 5 1 } H 5{2 p q À E 2 f ,
the estimates of the other terms in the l.h.s of (3.198) follow the same way. To get 

}B t Q 3 } H 1 p⌦q À E 2 f ,
}B t pp1 ´KqB 3 u 3 q} H 1 p⌦q À }B t K} H 1 p⌦q }B 3 u 3 } H 3 p⌦q `}K ´1} H 3 p⌦q }B t B 3 u 3 } H 1 p⌦q À }B t ⌘} H 3{2 p q }u 3 } H 4 p⌦q `}⌘} H 7{2 p q }B t u 3 } H 2 p⌦q À E 2 f , (3.200) 
and (3.200) and (3.201). We apply the product estimate (3.1) and the trace theorem to have that

}B t pAKB 3 u 1 `BKB 3 u 2 q} H 1 p⌦q À }B t pAK, BKq} H 1 p⌦q }B 3 u} H 3 p⌦q `}pAK, BKq} H 3 p⌦q }B t B 3 u} H 1 p⌦q À }B t ⌘} H 3{2 p q }u} H 4 p⌦q `}⌘} H 7{2 p q }B t u} H 2 p⌦q À E 2 f . (3.201) Hence, }B t Q 3 } H 1 p⌦q À E 2 f follows from
}Q 4 } H 7{2 p q À }u 1 } H 7{2 p q }B 1 ⌘} H 7{2 p q `}u 2 } H 7{2 p q }B 2 ⌘} H 7{2 p q À }u} H 4 p⌦q }⌘} H 9{2 p q À E 2 f .
Moreover, using (3.1), (3.10), (3.11) again and the trace theorem, we show

}Q 5 1 } H 5{2 p q À E 2 f .
From the expression of Q 5 1 (3.194), we have that

}B 1 ⌘pq ´g⇢ `⌘ ´2µpB 1 u 1 ´AKB 3 u 1 qq} H 5{2 p q À }B 1 ⌘} H 5{2 p q p}pq, ⌘, B 1 u 1 q} H 5{2 p q `}AK} H 5{2 p q }B 3 u 1 } H 5{2 p q q À }⌘} H 7{2 p q p}q} H 3 p⌦q `}u 1 } H 4 p⌦q `}⌘} H 5{2 p q `}AK} H 3 p⌦q }u 1 } H 4 p⌦q q À }⌘} H 7{2 p q p}q} H 3 p⌦q `}u 1 } H 4 p⌦q `}⌘} H 5{2 p q `}⌘} H 7{2 p q }u 1 } H 4 p⌦q q, (3.202) that }B 2 ⌘pB 1 u 2 `B2 u 1 ´AKB 3 u 2 ´BKB 3 u 1 q} H 5{2 p q À }B 2 ⌘} H 5{2 p q }u} H 7{2 p q p1 `}pAK, BKq} H 5{2 p q q À }B 2 ⌘} H 5{2 p q }u} H 7{2 p q p1 `}pAK, BKq} H 3 p⌦q q À }⌘} H 7{2 p q }u} H 4 p⌦q p1 `}⌘} H 7{2 p q q, (3.203) 
and that

}p1 ´KqB 3 u 1 `AKB 3 u 3 } H 5{2 p q À }pK ´1, AKq} H 5{2 p q }B 3 u} H 5{2 p q À }pK ´1, AKq} H 3 p⌦q }u} H 4 p⌦q À }⌘} H 7{2 p q }u} H 4 p⌦q (3.204)
Hence, the inequality }Q 5 1 } H 5{2 p q À E 2 f follows from the three above estimates (3.202), (3.203) and (3.204).

Similarly, for (3.199), we show only

}B t Q 2 1 } H 1 p⌦q `}Q 3 } H 4 p⌦q À E f pE f `Df q. The inequality }Q 3 } H 4 p⌦q À E f D f (see Q 3 in (3. 193 
)) is proven by using (3.1) and (3.10), (3.11),

}Q 3 } H 4 p⌦q À }pAK, BK, K ´1q} H 4 p⌦q }B 3 u} H 4 p⌦q À }⌘} H 9{2 p q }ru} H 4 p⌦q . Let us prove }B t Q 2 1 } H 1 p⌦q À E f pE f `Df q (see Q 2 1 in (3.190))
. In view of (3.1) and Lemma 0.2, we obtain that 

}B t pp⇣ `⇢1 0 ✓qB t u 1 q} H 1 p⌦q À }pB t ⇣, B t ✓q} H 1 p⌦q }B t u 1 } H 3 p⌦q `}p⇣, ✓q} H 3 p⌦q }B 2 t u 1 } H 1 p⌦q À p}B t ⇣} H 1 p⌦q `}B t ⌘} H 1{2 p q q}B t u 1 } H 3 p⌦q `p}⇣} H 3 p⌦q `}⌘} H 5{2 p q q}B 2 t u 1 } H 1 p⌦q À E f pE f `}rB t u 1 } H 2 p⌦q `}rB 2 t u 1 } L 2 p⌦q q. ( 3 
`⇢1 0 ✓ `⇣qKu 3 B 3 u 1 q} H 1 p⌦q À p1 `}p✓, ⇣q} H 3 p⌦q q}B t pKu 3 B 3 u 1 q} H 1 p⌦q `}pB t ⇣, B t ✓q} H 1 p⌦q }Ku 3 B 3 u 1 } H 3 p⌦q À p1 `}p✓, ⇣q} H 3 p⌦q q}B t K} H 1 p⌦q }u 3 } H 3 p⌦q }B 3 u 1 } H 3 p⌦q `p1 `}p✓, ⇣q} H 3 p⌦q qp}K ´1} H 3 p⌦q `1q ˆp}B t u 3 } H 1 p⌦q }B 3 u 1 } H 3 p⌦q `}B t B 3 u 1 } H 1 p⌦q }u 3 } H 3 p⌦q q `}pB t ⇣, B t ✓q} H 1 p⌦q p}K ´1} H 3 p⌦q `1q}u 3 } H 3 p⌦q }B 3 u 1 } H 3 p⌦q .
Thanks to Lemma 0.2 and (3.10), we deduce

}B t pp⇢ 0 `⇢1 0 ✓ `⇣qKu 3 B 3 u 1 q} H 1 p⌦q À p1 `}⇣} H 3 p⌦q `}⌘} H 5{2 p q q}B t ⌘} H 3{2 p q }u} 2 H 4 p⌦q `p1 `}⇣} H 3 p⌦q `}⌘} H 5{2 p q qp}⌘} H 7{2 p q `1q}B t u} H 2 p⌦q }u} H 4 p⌦q `p}B t ⇣} H 1 p⌦q `}B t ⌘} H 1{2 p q qp}⌘} H 7{2 p q `1q}u} 2 H 4 p⌦q À E 2 f . (3.206) Since K 2 ´1 " ´J´2 p2B 3 ✓ `pB 3 ✓q 2 q, let us use (3.1) to obtain }B t ppK 2 `A2 `B2 ´1qB 2 33 u 1 ´2AKB 2 13 u 1 ´2BKB 2 23 u 1 q} H 1 p⌦q À p}pA 2 , B 2 , AK, BKq} H 3 p⌦q `}K 2 ´1} H 3 p⌦q q}B t u 1 } H 3 p⌦q `}B t pA 2 , B 2 , K 2 ´1, AK, BKq} H 1 p⌦q }r 2 u 1 } H 3 p⌦q À p}pA, Bq} 2 H 3 p⌦q `}pAK, BKq} H 3 p⌦q `}B 3 ✓} H 3 p⌦q p1 `}B 3 ✓} H 3 p⌦q qq}B t u 1 } H 3 p⌦q `p}pA, Bq} H 3 p⌦q }pB t A, B t Bq} H 1 p⌦q `}B t B 3 ✓} H 1 p⌦q p1 `}B 3 ✓} H 3 p⌦q qq}r 2 u 1 } H 3 p⌦q `}B t pAK, BKq} H 1 p⌦q }r 2 u 1 } H 3 p⌦q .
Owing to (3.9) and (3.11), we deduce

}B t ppK 2 `A2 `B2 ´1qB 2 33 u 1 ´2AKB 2 13 u 1 ´2BKB 2 23 u 1 q} H 1 p⌦q À }⌘} H 7{2 p q p1 `}⌘} H 7{2 p q q}B t u 1 } H 3 p⌦q `}B t ⌘} H 3{2 p q p1 `}⌘} H 7{2 p q q}r 2 u 1 } H 3 p⌦q À E f pE f `}rB t u 1 } H 2 p⌦q `}ru 1 } H 4 p⌦q q.
(3.207)

We continue using (3.1), Lemma 0.2 and (3.11) to get }B t pAKpB 3 q ´g⇢ 1 0 ✓qq} H 1 p⌦q À }B t pAKq} H 1 p⌦q }pq, ✓q} H 3 p⌦q `}AK} H 3 p⌦q p}B t B 3 q} H 1 p⌦q `}B t ✓} H 1 p⌦q q À }B t ⌘} H 3{2 p q p}q} H 3 p⌦q `}⌘} H 5{2 p q q `}⌘} H 7{2 p q p}B t q} H 2 p⌦q `}B t ⌘} H 1{2 p q q À E f pE f `}B t q} H 2 p⌦q q.

(3.208)
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From the product estimate (3.1), we obtain also

}B t ppKB 3 KpA 2 `B2 `1q ´B1 pAKq ´B2 pBKq ´AB 1 K ´BB 2 KqB 3 u 1 q} H 1 p⌦q À p1 `}K ´1} H 3 p⌦q q}rK} H 3 p⌦q p}pA, Bq} 2 H 3 p⌦q `1q}B t B 3 u 1 } H 1 p⌦q `p}rpAK, BKq} H 3 p⌦q `}pA, Bq} H 3 p⌦q }rK} H 3 p⌦q q}B t B 3 u 1 } H 1 p⌦q `p}B t pKB 3 Kq} H 1 p⌦q p1 `}pA, Bq} 2 H 3 p⌦q q}B 3 u 1 } H 3 p⌦q `}pB t A, B t Bq} H 1 p⌦q }B 3 K} H 3 p⌦q }pAK, BKq} H 3 p⌦q }B 3 u 1 } H 3 p⌦q `}rB t pAK, BKq} H 1 p⌦q q}B 3 u 1 } H 3 p⌦q `p}rB t K} H 1 p⌦q }pA, Bq} H 3 p⌦q `}B t pA, Bq} H 1 p⌦q }rK} H 3 p⌦q q}B 3 u 1 } H 3 p⌦q .
Thanks to (3.1) again and (3.10), let us estimate the term }B t pKB 3 Kq} H 1 p⌦q as follows

}B t pKB 3 Kq} H 1 p⌦q À }B t K} H 1 p⌦q }B 3 K} H 3 p⌦q `p1 `}K ´1} H 3 p⌦q q}B t B 3 K} H 1 p⌦q À }B t ⌘} H 3{2 p q }⌘} H 9{2 p q `p1 `}⌘} H 7{2 p q q}B t ⌘} H 5{2 p q .
Hence, due to (3.9), (3.10), (3.11) and note that }B t ⌘} H 5{2 p q À E f from (3.126), we have 

}B t ppKB 3 KpA 2 `B2 `1q ´B1 pAKq ´B2 pBKq ´AB 1 K ´BB 2 KqB 3 u 1 q} H 1 p⌦q À }⌘} H 9{2 p q p1 `}⌘} H 9{2 p q q}B t u 1 } H 2 p⌦q `}B t ⌘} H 5{2 p q p1 `}⌘} H 9{2 p q q}u 1 } H 4 p⌦q À E 2 f . ( 3 
}B t Q 2 1 } H 1 p⌦q À E f pE f `}rB 2 t u 1 } L 2 p⌦q `}B t q} H 2 p⌦q `}rB t u 1 } H 2 p⌦q q À E f pE f `Df q.
We are in position to show Proposition 3.13.

Proof of Proposition 3.13. For any P N 2 such that 1 § | | § 4, multiplying by B h u on both sides of (3.195) 2 and integrating over ⌦, one has the identity

1 2 d dt ª ⌦ ⇢ 0 |B h u| 2 `ª⌦ prB h q ´µ B h uq ¨B h u `ª⌦ g⇢ 1 0 B h ⇣B h u 3 " ª ⌦ B h u ¨B h Q 2 .
Using the integration by parts and (3.195) 3,5 , one has

1 2 d dt ª ⌦ ⇢ 0 |B h u| 2 `1 2 ª ⌦ µ|SB h u| 2 " ´ª⌦ g⇢ 1 0 B h ⇣B h u 3 `ª⌦ B h u ¨B h Q 2 ´ª g⇢ `B h ⌘B h u 3 `ª⌦ B h qB h Q 3 ´ª B h u ¨B h Q 5 .
(3.210) 

u 3 À }B h ⌘} H ´1{2 p q }B h u 3 } H 1{2 p q À }⌘} H | |´1{2 p q }u 3 } H | |`1{2 p q À }⌘} H 7{2 p q }u 3 } H 5 p⌦q À " 3 }u 3 } 2 H 5 p⌦q `"´3 }⌘} 2
H 7{2 p q . Thanks to (3.7) again, we have

}⌘} 2 H 7{2 p q À " 6 }⌘} 2 H 9{2 p q `"´21 }⌘} 2 L 2 p q .
Hence, ª g⇢ `B h ⌘B h u 3 À " 3 p}⌘} 2 H 9{2 p q `}u 3 } 2 H 5 p⌦q q `"´24 }⌘} 2 L 2 p⌦q .

(3.212)

For the fourth integral, we use Cauchy-Schwarz's inequality to have ª

⌦ B h qB h Q 3 À }q} H 4 p⌦q }Q 3 } H 4 p⌦q À E f D f pE f `Df q. (3.213)
For the second and fifth integral, we split into two cases. For P N 2 such that

1 § | | § 3, we use trace theorem to bound ª ⌦ B h u ¨B h Q 2 ´ª B h u ¨B h Q 5 À }u} H 3 p⌦q }Q 2 } H 3 p⌦q `}u} H 3 p q }Q 5 } H 3 p q À }u} H 3 p⌦q }Q 2 } H 3 p⌦q `}u} H 4 p⌦q }Q 5 } H 3 p q À E 2 f pE f `Df q.
(3.214)

For " p 1 , 2 q P N 2 such that | | " 4, we assume 1 • 1 and write

´" p 1 ´1, 2 q and `" p 1 `1, 2 q.

(3.215)

Hence, we estimate that ˇˇª

⌦ B h u ¨B h Q 2 ˇˇ" ˇˇª ⌦ B h u ¨B h Q 2 ˇˇÀ }B h u} L 2 p⌦q }B h Q 2 } L 2 p⌦q À }u} H 5 p⌦q }Q 2 } H 3 p⌦q À E f pE 2 f `D2 f q.
(3.216)
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Thanks to the trace theorem, we have ˇˇª 

B h u ¨B h Q 5 ˇˇ" ˇˇª B h u ¨B h Q 5 ˇˇÀ }B h u} H ´1{2 p q }B h Q 5 } H 1{2 p q À }u} H | `|´1{2 p q }Q 5 } H | ´|`1{2 p q À }u} H 5 p⌦q }Q 5 } H 7{2 p q À E f pE 2 f `D2 f q. ( 3 
d dt ª ⌦ ⇢ 0 |B h u| 2 `ª⌦ µ|SB h u| 2 À " 3 ª t 0 pE 2 f `}ru 3 } 2 H 4 p⌦q q `Ef pE 2 f `D2 f q `"´27 p}u 3 } 2 L 2 p⌦q `}⌘} 2 L 2 p q q. ( 3 
⌦ ⇢ 0 |B h u| 2 `}rB h u} 2 L 2 p⌦q À " 3 pE 2 f `}ru 3 } 2 H 4 p⌦q q `"´27 p}u 3 } 2 L 2 p⌦q `}⌘} 2 L 2 p q q `Ef pE 2 f `D2 f q,
Integrating the resulting inequality in time, we obtain (3.196).

To prove (3.197), we compute from (3.195 

) that $ ' ' ' & ' ' ' % ⇢ 0 B 2 t B h u `rB t B h q ´µ B t B h u ´g⇢ 1 0 B h u 3 e 3 " ´gB h Q 1 e 3 `Bt B h Q 2 in ⌦, divB t B h u " B t B h Q 3 in ⌦, pB t B h qId ´µSB t B h uqe 3 " g⇢ `B h u 3 e 3 `g⇢ `B h Q 4 e 3 `B h Q 5 on . ( 3 
d dt ª ⌦ p⇢ 0 |B t B h u| 2 ´g⇢ 1 0 |B h u 3 | 2 q `ª⌦ prB t B h q ´µ B t B h uq ¨Bt B h u " ª ⌦ p´gB h Q 1 B t B h u 3 `Bt B h Q 2 ¨Bt B h uq.
Using the integration by parts, one has

1 2 d dt ´ª⌦ ⇢ 0 |B t B h u| 2 ´ª⌦ g⇢ 1 0 |B h u 3 | 2 ¯`ª pB t B h qId ´µSB t B h uqe 3 ¨Bt B h u " ª ⌦ B t B h qdivB t B h u ´µ 2 ª ⌦ |SB t B h u| 2 `ª⌦ p´gB h Q 1 B t B h u 3 `Bt B h Q 2 ¨Bt B h uq By (3.219) 2,3 , we observe 1 2 d dt ´ª⌦ ⇢ 0 |B t B h u| 2 `ª g⇢ `|B h u 3 | 2 ´ª⌦ g⇢ 1 0 |B h u 3 | 2 ¯`1 2 ª ⌦ µ|SB t B h u| 2 " ª ⌦ p´gB h Q 1 B t B h u 3 `Bt B h Q 2 ¨Bt B h uq `ª⌦ B t B h qB t B h Q 3 ´ª pB t B h Q 5 `g⇢ `B h Q 4 e 3 q ¨Bt B h u. (3.220) 
We now estimate each integral in the r.h.s of (3.220). For the first and third integral, we use Cauchy-Schwarz's inequality to have ª

⌦ B h Q 1 B t B h u 3 `ª⌦ B t B h qB t B h Q 3 À }B t u 3 } H 2 p⌦q }Q 1 } H 2 p⌦q `}B t q} H 2 p⌦q }B t Q 3 } H 2 p⌦q À E f pE 2 f `D2 f q. (3.221)
With the same notations ˘(3.215), we bound the second integral as

ˇˇª ⌦ B t B h u ¨Bt B h Q 2 ˇˇ" ˇˇª ⌦ B t B h u ¨Bt B h Q 2 ˇˇÀ }B t u} H | `|p q }B t Q 2 } H | ´|p⌦q À }B t u} H 3 p⌦q }B t Q 2 } H 1 p⌦q À E f pE 2 f `D2 f q. (3.222) 
For the fourth integral, we have

ˇˇª B t B h u ¨Bt B h Q 5 ˇˇ" ˇˇª B t B h u ¨Bt B h Q 5 ˇˇÀ }B t B h u} H ´1{2 p q }B t B h Q 5 } H 1{2 p q À }B t u} H | `|´1{2 p q }B t Q 5 } H | ´|`1{2 p q À }B t u} H 3 p⌦q }B t Q 5 } H 3{2 p q À E f pE 2 f `D2 f q. (3.223)
Thanks to the trace theorem and (3.198), we bound the fifth integral as 

ª B t B h u 3 B h Q 4 À }B t B u 3 } H ´1{2 p q }B Q 4 } H 1{2 p q À }B t u 3 } H | |´1{2 p⌦q }Q 4 } H | |`1{2 p q À }B t u 3 } H 2 p⌦q }Q 4 } H 5{2 p q À E 3 f . ( 3 
d dt ´ª⌦ ⇢ 0 |B t B h u| 2 `ª g⇢ `|B h u 3 | 2 ´ª⌦ g⇢ 1 0 |B h u 3 | 2 ¯`ª ⌦ |SB t B h u| 2 À E f pE 2 f `D2 f q.
Integrating in time and using Korn's inequality (3.5), we obtain

}B t B h uptq} 2 L 2 p⌦q `ª t 0 }rB t B h upsq} 2 L 2 p⌦q ds À E 2 f p0q `}B h u 3 ptq} 2 L 2 p⌦q `ª t 0 E f pE 2 f `D2 f qpsqds.
Combining the resulting inequality and (3.196), the inequality (3.197) follows. Proof of Proposition 3.13 is complete.

Estimates of the perturbation density

We continue deriving the energy evolution of the space-time derivatives of ⇣. Notice from (4.2) 1,3 that

B t ⇣ " KB t ✓B 3 ⇣ ´uj A jk B k ⇣ ´⇢1 0 u 3 ´⇢0 Q 3 `Q 1 , (3.225) 
where

Q1 " ⇢ 2 0 K✓B t ✓ ´qA lk B k u l ´Alk B k p⇢ 1 0 ✓u l q ´pA lk ´ lk qB k p⇢ 0 u l q. (3.226) 
We first present the estimate of Q1 .

Lemma 3.14. There holds 

} Q1 } H 4 p⌦q À E f pE f `Df q. ( 3 
} Q1 } H 4 p⌦q À E f pE f `}q} H 4 p⌦q `}ru} H 4 p⌦q q À E f pE f `Df q.
Lemma 3.14 is proven.

We derive the following proposition.

Proposition 3.14. The following inequality holds

}⇣ptq} 2 H 4 p⌦q § C 9 ´E2 f p0q `"3 ª t 0 p}⇣psq} 2 H 4 p⌦q `}u 3 psq} 2 H 5 p⌦q qds C9 
´"´27 ª

t 0 }pu 3 , ⇣qpsq} 2 L 2 p⌦q ds `ª t 0 E f pE 2 f `D2 f qpsqds ¯. (3.232) Proof. It can be seen from (4.2) 1 that 1 2 d dt }⇣} 2 L 2 p⌦q " ´ª⌦ ⇢ 1 0 u 3 ⇣ `ª⌦ Q 1 ⇣ À p}u 3 } L 2 p⌦q `}Q 1 } L 2 p⌦q q}⇣} L 2 p⌦q .
Due to (3.198), we thus have

d dt }⇣} 2 L 2 p⌦q À }u 3 } L 2 p⌦q }⇣} L 2 p⌦q `E3 f .
This yields

}⇣ptq} 2 L 2 p⌦q À E 2 f p0q `ª t 0 }pu 3 , ⇣qpsq} 2 L 2 p⌦q ds `ª t 0 E 3 f psqds À E 2 f p0q `ª t 0 p" 3 }u 3 psq} 2 L 2 p⌦q `"´3 }⇣psq} 2 L 2 p⌦q qds `ª t 0 E 3 f psqds (3.233) For ↵ P N 3 , 1 § |↵| § 4, we have from (3.225) that B t B ↵ ⇣ " KB t ✓B 3 B ↵ ⇣ ´uj A jk B k B ↵ ⇣ `ÿ 0‰ §↵ B pKB t ✓qB ↵´ B 3 ⇣ ´ÿ 0‰ §↵ B pu j A jk qB ↵´ B k ⇣ `B↵ p´⇢ 1 0 u 3 ´⇢0 Q 3 `Q 1 q.
(3.234)

We deduce from (3.234) that

1 2 d dt }B ↵ ⇣} 2 L 2 p⌦q " ª ⌦ pKB t ✓B 3 B ↵ ⇣ ´uj A jk B k B ↵ ⇣qB ↵ ⇣ `ÿ 0‰ §↵ ª ⌦ B pKB t ✓qB ↵´ B 3 ⇣ ´ÿ 0‰ §↵ ª ⌦ B pu j A jk qB ↵´ B k ⇣ `ª⌦ B ↵ p´⇢ 1 0 u 3 ´⇢0 Q 3 `Q 1 qB ↵ ⇣.
(3.235)

A priori energy estimates 164

We bound each integral in the r.h.s of (3.235). Using the integration by parts, one has

2 ª ⌦ pKB t ✓B 3 B ↵ ⇣ ´uj A jk B k B ↵ ⇣qB ↵ ⇣ " ª ⌦ pKB t ✓B 3 |B ↵ ⇣| 2 ´uj A jk B k |B ↵ ⇣| 2 q " ª pKB t ✓ ´uj A j3 q|B ↵ ⇣| 2 ´ª⌦ pB 3 pK✓q ´Bk pu j A jk qq|B ↵ ⇣| 2 .
On , we have KB t ✓ ´uj A j3 " 0 by the definition of A (0.94) and by (0.95) 4 . This yields

2 ª ⌦ pKB t ✓B 3 B ↵ ⇣ ´uj A jk B k B ↵ ⇣qB ↵ ⇣ " ´ª⌦ pB 3 pK✓q ´Bk pu j A jk qq|B ↵ ⇣| 2 .
Due to Sobolev embedding and the product estimate (3.1), it can be seen that ª

⌦ pB 3 pK✓q ´Bk pu j A jk qq|B ↵ ⇣| 2 À }B 3 pK✓q ´Bk pu j A jk q} H 2 p⌦q }⇣} 2 H 4 p⌦q À pp}K ´1} H 3 p⌦q `1q}✓} H 3 p⌦q `}u} H 3 p⌦q p}A ´Id} H 3 p⌦q `1qq}⇣} H 4 p⌦q .
Owing to Lemma 0.2 and (3.10), (3.12), we have ª

⌦ pB 3 pK✓q ´Bk pu j A jk qq|B ↵ ⇣| 2 À p1 `}⌘} H 7{2 p q qp}⌘} H 5{2 p q `}u} H 3 p⌦q q}⇣} H 4 p⌦q À E 3 f . (3.236)
Let us bound the fourth integral. Thanks to Young's inequality, we have ª

⌦ B ↵ p⇢ 1 0 u 3 qB ↵ ⇣ À }B ↵ ⇣} L 2 p⌦q }u 3 } H |↵| p⌦q À " 3 }B ↵ ⇣} 2 L 2 p⌦q `"´3 }u 3 } 2 H 4 p⌦q
By Young's inequality again and (3.7), this yields ª 

⌦ B ↵ p⇢ 1 0 u 3 qB ↵ ⇣ À " 3 }B ↵ ⇣} 2 L 2 p⌦q `"´3 p" 6 }u 3 } 2 H 5 p⌦q `"´24 }u 3 } 2 L 2 p⌦q q À " 3 p}B ↵ ⇣} 2 L 2 p⌦q `}u 3 } 2 H 5 p⌦q q `"´27 }u 3 } 2 L 2 p⌦q . ( 3 
⌦ B ↵ p´⇢ 0 Q 3 `Q 1 qB ↵ ⇣ À p}Q 3 } H 4 p⌦q `} Q1 } H 4 p⌦q q}⇣} H 4 p⌦q À E 2 f pE f `Df q. ( 3 
d dt }B ↵ ⇣} 2 L 2 p⌦q À " 3 p}⇣} 2 H 4 p⌦q `}u 3 } 2 H 5 p⌦q q `"´27 }u 3 } 2 L 2 p⌦q `Ef pE 2 f `D2 f q.
Integrating the resulting inequality from 0 to t, together with (3.233), one has (3.232). Proof of Proposition 3.14 is complete.

In addition, we have the following estimate. 

}B t ⇣} 2 H 2 p⌦q À }u 3 } 2 H 2 p⌦q `}Q 1 } 2 H 2 p⌦q À }u 3 } 2 H 2 p⌦q `E4 f (3.242) and }B 2 t ⇣} 2 L 2 p⌦q À }B t u 3 } 2 L 2 p⌦q `}B t Q 1 } 2 L 2 p⌦q À }B t u 3 } 2 L 2 p⌦q `E4 f . ( 3 

Elliptic estimates

We use the elliptic estimate (3.3) to derive some inequalities. 

`}B t Q 2 } 2 L 2 p⌦q `}B t Q 3 } 2 H 1 p⌦q `}B t Q 5 } 2 H 1{2 p q . Note that from (4.2) 1 that , }B t ⇣} 2 L 2 p⌦q À }u 3 } 2 L 2 p⌦q `}Q 1 } 2 L 2 p⌦q .
Hence, we have (3.198) ' ' ' ' ' % C 1," " pC 1 `C2 `C3 `C4 q" 3 `C5 `C6 `C7 `C8 `C9 , C 14 " ∞ 9

}B t u} 2 H 2 p⌦q `}B t q} 2 H 1 p⌦q À }B 2 t u} 2 L 2 p⌦q `}B t ⌘} 2 H 1{2 p q `}u 3 } 2 L 2 p⌦q `}Q 1 } 2 L 2 p⌦q `}B t Q 2 } 2 L 2 p⌦q `}B t Q 3 } 2 H 1 p⌦q `}B t Q 5 } 2 H 1{2 p q . Due to
i"1 C i , C 2," " pC 1 `C2 `C3 `C4 q" `pC 7 `C8 `C9 q" 3 , C 3," " C 5 `C6 `pC 7 `C8 `C9 q" ´27 .

We obtain from Propositions 3.10, 3.11, 3.12, 3.13, 3.14 that " 2 ´}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 t ⌘ptq} 2 L 2 p q `}⌘ptq} 

Nonlinear instability

Thanks to Proposition 3.7, we will consider a sequence of approximate solutions e npkq V n pk, xq to the nonlinear equations (0.99), which are solutions to the linearized ones (0.101). Let us fix a k " k 0 P B⇤ such that (0.129) holds. We recall (0.130), U M pt, xq :" M ÿ j"1 c j e j pk 0 qt V j pk 0 , xq and require that the coefficients c j satisfying (0.131)-(0.132). From Proposition 0.4, we have that there exists a family of initial data (0.133), i.e. has a unique solution U ,M on r0, T max q satisfying that sup 0 §t †T max E f pU ,M ptqq † 8. Since U ,M solves the nonlinear equations (0.99) and U M solves the linearized equations (0.101), we have that U d satisfies (0.134), i.e. $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %

The difference functions

B t ⇣ d `⇢1 0 u d 3 " Q 1 pU ,M q in ⌦, ⇢ 0 B t u d ´µ u d `rq d `g⇣ d e 3 " Q 2 pU ,M q in ⌦, divu d " Q 3 pU ,M q in ⌦, B t ⌘ d " u d 3 `
Q4 pU ,M q on , ppq d ´g⇢ `⌘d qId ´µSu d qe 3 " Q 5 pU ,M q on .

The initial condition for (0.134) is (0.135),

U d p0q " p⇣ d , u d , ⌘ d , q d qp0q " 2 U ,M ‹ .
Let }U } E f :" E f pU q, which is defined as in (0.123). Let F M ptq " ∞ M j"jm |c j |e j t and 0 † ✏ 0 ! 1 be fixed later (3.326). There exists a unique T such that F M pT q " ✏ 0 . Let We define T ‹ :" sup ! t P p0, T max q|}U ,M ptq} E f § 2C 19 0 u, T ‹‹ :" suptt P p0, T max q|}p⇣ ,M , u ,M qptq} L 2 p⌦q `}⌘ ,M ptq} L 2 p q § 2C 20 F M ptq

) .

(3.292) Note that

}U ,M p0q} E f § }U M p0q} E f `}U d p0q} E f § C 19 `C‹ M 2 † 2C 19 0 ,
we then have T ‹ °0. Similarly, we have T ‹‹ °0.

The aim of this part is to derive the bound in time of }p⇣ d , u d qptq} L 2 p⌦q `}⌘ d ptq} L 2 p q in the following proposition. Proposition 3.18. For all t § minpT , T ‹ , T ‹‹ q, there holds In order to prove Proposition 3.18, we need the following bound in time of }U ,M ptq} E f . Proposition 3.19. For all t § mintT , T ‹ , T ‹‹ u, there holds }U ,M ptq} E f § C 22 F M ptq for all t § mintT , T ‹ , T ‹‹ u.

(3.294)

Proof. We fix a sufficiently small constant " such that Note that ª ⌦ pB t Q 2 pU ,M q ´gQ 1 pU ,M qe 3 q ¨Bt u d À p}B t Q 2 pU ,M q} L 2 p⌦q `}Q 1 pU ,M q} L 2 p⌦q qp}B t u ,M } L 2 p⌦q ` }B t u M } L 2 p⌦q q.

C 0 " § M 4 ( 
In view of (3.198) and the definition of U M and F M , we have ª ⌦ pB t Q 2 pU ,M q ´gQ 1 pU ,M qe 3 q ¨Bt u d À }U ,M } 2 E f p}U ,M } E f ` }B t u M } L 2 p⌦q q À 3 F 3 M ptq.

(3.304)

Similarly, we observe ª ⌦ B t q d B t Q 3 pU ,M q À }B t Q 3 pU ,M q} L 2 p⌦q p}B t q ,M } L 2 p⌦q ` }B t q M } L 2 p⌦q q À 3 F 3 M ptq.

(3.305)

We continue applying (3.198) and use the trace theorem to get ª pB t Q 5 pU ,M q `g⇢ `Q4 pU ,M qe 3 q ¨Bt u d À p}B t Q 5 pU ,M q} L 2 p q `}Q 4 pU ,M q} L 2 p q q}B t u d } L 2 p q À p}B t Q 5 pU ,M q} H 1{2 p q `}Q 4 pU ,M q} H 1{2 p q q}B t u d } H 1 p⌦q À 3 F 3 M ptq.

( To estimate }⌘ d ptq} L 2 p q , we use (0.134) 4 and the trace theorem to obtain d dt }⌘ d } 2 L 2 p q § }⌘ d } L 2 p q p}u d 3 } L 2 p q `}Q 4 pU ,M q} L 2 p q q À }⌘ d } L 2 p q p}u d 3 } H 1 p⌦q `}Q 4 pU ,M q} L 2 p q q. This yields d dt }⌘ d } L 2 p q À }u d 3 } H 1 p⌦q `}Q 4 pU ,M q} L 2 p q . Thanks to (3.198) }p⇣ ,M , u ,M qpT q} L 2 p⌦q `}⌘ ,M pT q} L 2 p q § }p⇣ d , u d qpT q} L 2 p⌦q `}⌘ d pT q} L 2 p⌦q ` p}p⇣ M , u M qpT q} L 2 p⌦q `}⌘ M pT q} L 2 p q q § a C 21 Using (3.326) again, we deduce }p⇣ ,M , u ,M qpT q} L 2 p⌦q `}⌘ ,M pT q} L 2 p q † 2C 20 ✏ 0 " 2C 20 F M pT q, which also contradicts the definition of T ‹‹ in (3.292). So, (3.325) holds. Chapter 4

Conclusions and Perspectives

Conclusions

In this thesis, we study rigorously a well-known phenomena in fluid mechanics, which is the Rayleigh-Taylor instability with an influence of constant viscosity coefficient. Of concern is the instability of the equilibrium p⇢ 0 px d q, 0, ´g ≥

x d 0 ⇢ 0 pyqdyq pd " 2 or 3), such that the density profile ⇢ 0 is a smooth increasing function. There are two contributions of this thesis, that we sum up below.

The first contribution is to develop a novel method, based on the spectral theory of self-adjoint and compact operators, to prove the existence of multiple characteristic values to the linearized equations. Study on the linearized equations relies on the investigation of regular solutions to a fourth-order ordinary differential equation on a compact or non-compact interval I. In the first paper [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF], we have that I is the whole line R. The key point in our analysis is to reduce the finding of bounded solutions of the ODE on R to the finding of solutions of the ODE on a compact interval with boundary conditions obtained from the outer solutions. That ODE on a compact interval turns out to be equivalent to a variational problem with suitable boundary conditions, so that we can apply the spectral theory of self-adjoint and compact operators to obtain the main results. In the case ⇢ 1 0 compactly supported, there exists an infinite sequence of characteristic values and in the case ⇢ 1 0 positive everywhere, for any ✏ ‹ °0, a finite number of characteristic values, greater than ✏ ‹ , is found.

The second paper [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF] deals with the same fourth-oder ODE stated in a compact interval I " p´1, 1q with the boundary conditions deduced from the Navier slip boundary conditions of the original problem. Due to the influence of the slip coefficients, we need to work on a supercritical regime of the viscosity µ, i.e. µ °µc p⌅q to apply our operator method. In this supercritical regime, we deduce the existence of infinite characteristic values to the linearized equations. In the third paper, after a change of variables, we obtain the same fourth-order ODE in the half-line I " R ´with the boundary conditions at 0 deduced from the boundary conditions of the nonlinear problem at the top

  Guo et Strauss et de Grenier. Il semble pertinent d'appliquer cette méthode à d'autres systèmes non linéaires, notamment le model de bi-fluid ou les équations de détonation de Zeldovitch-von Neumann-Döring (généralisant les résultats semi-classiques du problème linéarisé déjà connus). a À b a § Cb with a generic constant C a Á b a • Cb with a generic constant C

0. 3 .
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1 c

 1 j V j pxq ` 2 U ,M ‹ pxq, satisfying (0.131) and (0.132) has a unique local strong solution U ,M such that }u ,M pT q} L 2 p⌦q • m 0 ✏ 0 , (0.137)

  3 due to E. A. Coddington and N. Levinson [10, Theorem 8.1, Chapter 3].

1. 3 . 53 1. 2 . 4

 35324 The strictly increasing profile case Proof of Theorem 0.1

  .44) at 8 uniformly in P r✏ ‹ , b g L 0 s. They allow us to have refined estimates on the coefficients n ȋj pi, j " 1, 2q uniformly in P r✏ ‹ , b g L 0 s. Hence, we obtain a criterion for x ´and x `in Proposition 1.11 to fulfill the conditions of Lemma 1.4 and extend Proposition 1.8.

Lemma 2 . 1 .

 21 For any k P L ´1Zzt0u, • all characteristic values are always real, • all characteristic values satisfy that § b g L 0 .

2. 4 .

 4 Proof of Proposition 2.1 96 Therefore, }u pT q} L 2 p⌦q • C 24 ✏ 0 ´aC 4 p1 `McpM qq

  .83) Three inequalities (3.81), (3.82) and (3.83) imply that

3. 2 . 3 . 2 . 6

 2326 The linear analysis 133 Proof ofLemma 3.4 

  we use (3.1) and (3.10), (3.11) to bound each term of Q 3 (3.193). Indeed, we have

  .209) Combining (3.205), (3.206), (3.207), (3.208) and (3.209), we conclude

  .224) In view of (3.221), (3.222), (3.223) and (3.224), we get

  .243) Hence, we obtain (3.241) by combining (3.242) and (3.243).

  M p0, xq ` 2 U ,M ‹ such that 1. E f pU ,M ‹ q § C ‹ M † 8and U ,M 0 satisfies the compatibility conditions (0.126), 2. the nonlinear equations (0.99) with the aobve initial data U ,M 0

Set U d

  pt, xq " U ,M pt, xq ´ U M pt, xq.

C 19 "

 19 }U M p0q} E f , C 20 " b }p⇣ M , u M qp0q} 2 L 2 p⌦q `}⌘ M p0q} 2 L 2 p q . (3.291) 

|e 2 3

 2 }p⇣ d , u d qptq} 2 L 2 p⌦q `}⌘ d ptq} 2 L 2 p q § C 21 3 ´N ÿ j"jm |c j |e j t `maxp0, M ´N q max N `1 §j §M |c j ⇤t ¯3.

( 3 .}⇣ d ptq} 2 L 2 p⌦q

 322 319)Note that F M ptq § " 0 § 1 for any t § T . Hence, we have|c j |e 3 j t . (3.320) Combining (3.316), (3.317) and (3.320), we deduce from (3.319) that, if M § N , |c j |e 3 j t `M ÿ j"N `1 |c j |e 2⇤t ¯.(3.322)

| e 2 3

 2 |c j |e j T `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e2⇤T {3 ¯3{2 `C20 F M pT q. (3.327) Notice from (0.129) that for N `1 § j § M , |c j ⇤T † |c j | |c jm | p |c jm |e jm T q † |c j | |c jm | F M pT q " |c j | |c jm | ✏ 0 .Then, it follows from (3.327) that}p⇣ ,M , u ,M qpT q} L 2 p⌦q `}⌘ ,M pT q} L 2 p q § C 20 F M pT q `aC 21 3{2 p1 `McpM qq 3{2 F 3{2 M pT q § C 20 ✏ 0 `aC 21 p1 `McpM qq 3{2 ✏ 3{2 0 .

3. 4 .• C 28 F• 1 2 C

 4282 Nonlinear instability 184 Once we have (3.325), it follows from (3.293) and (3.324) that}u ,M pT q} L 2 p⌦q • }u M pT q} L 2 p⌦q ´}u d pT q} L 2 p⌦q |c j |e j T `maxp0, M ´N q ´max N `1 §j §M |c j | ¯e2⇤T {3 ¯3{2.Thanks to (3.326) again, we conclude that}u ,M pT q} L 2 p⌦q • C 28 ✏ 0 ´aC 21 p1 `McpM qq 3{2 ✏ 3{2 0 28 ✏ 0 °0.Theorem 0.6 follows by taking 0 satisfying Propositions 0.3, 0.4 and the inequality (3.297), " 0 satisfying (3.326) and m 0 " 1 2 C 28 .

  As we can choose x ˘depending on k, , µ and the profile ⇢ 0 such that the bilinear form B is coercive on H 2 ppx ´, x `qq, one thus has a B p¨, ¨q is a norm on H 2 ppx ´, x `qq. One denotes by pH 2 ppx ´, x `qqq 1 the dual space of H 2 ppx ´, x `qq induced by the norm a B p¨, ¨q. In view of Riesz's representation theorem, we thus define an abstract operator Y P LpH 2 ppx ´, x `qq, pH 2 ppx ´, x `qq 1 q, such that B p#, %q " xY #, %y, for all #, % P H 2 ppx ´, x `qq (0.46) From (0.39) and (0.46), we see that the existence of a solution P H 4 ppx ´, x `qq of Eq. (0.27) on px ´, x `q with the boundary conditions (0.35)-(0.36) or (0.37)-(0.38) is thus reduced to the finding of a weak solution P H 2 ppx ´, x `qq of

3 , (0.45)

Y " gk 2 ⇢ 1 0 in pH 2 ppx ´, x `qqq 1 .

(0.47)

Restricting % P C 8 0 ppx ´, x `qq in (0.46), we find the precise expression of Y in both cases, i.e. for all # P H 2 ppx ´, x `qq,

  Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions 25It yields that B k, ,µ is coercive for all • 0 and µ °µc pk, ⌅q. As B k, ,µ is a coercive form on H 2 pp´1, 1qq, we have that a B k, ,µ p¨, ¨q is a norm on H 2 pp´1, 1qq. Let p H2 pp´1, 1qqq 1 be the dual space of H2 pp´1, 1qq associated with the norm a B k, ,µ p¨, ¨q. In view of Riesz's representation theorem, we thus obtain an abstract operator Y k, ,µ from H2 pp´1, 1qq to p H2 pp´1, 1qqq 1 q such that B k, ,µ p#, %q " xY k, ,µ #, %y for all #, % P H2 pp´1, 1qq.

			(0.66)
	Owing to (0.63) and (0.66), it turns out that the existence of a solution P H 4 pp´1, 1qq of Eq. (0.27)-(0.62) is reduced to the existence of a weak solution P H2 pp´1, 1q of
	Y k, ,µ " gk 2 ⇢ 1 0	in p H2 pp´1, 1qqq 1 .	(0.67)

1) such that B k,0,µ is coercive if and only if µ °µc pk, ⌅q. (0.65) 0.5. Restricting % P C 8 0 pp´1, 1qq in (0.66), we find that, for all # P H 2 pp´1, 1qq (see Proposition 2.3),

  Let v n,k, ,µ be an eigenfunction of MY ´1 k, ,µ M associated with the eigenvalue n pk, , µq and let n,k, ,µ " Y ´1 k, ,µ Mv n,k, ,µ P H 4 pp´1, 1qq, we have

	n pk, , µqY k, ,µ n,k, ,µ " M 2	n,k, ,µ " ⇢ 1 0 n,k, ,µ .	(0.68)
	From (0.68), it can be seen that, for each n, we have to solve the equation	

n pk, , µq " gk 2 .

(0.69)

We will show that Eq. (0.69) has a unique root n pk, µq P R `because of the decrease of n in (see Lemma 2.3), which is an extension of Kato's perturbation theory of 0.5. Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions 26

  2 H 2 p⌦q and °0 be sufficiently small, we further get that if sup 0 §s §t Epsq § , there holds E 2 ptq `}prq, B t uq} 2

	L 2 p⌦q	`ª t

0 p}B t upsq} 2 H 1 p⌦q `}upsq}

2 H 2 p⌦q qds À E 2 p0q `ª t 0 }p , uqpsq} 2 L 2 p⌦q ds. (0.72) 0.5. Nonlinear Rayleigh-Taylor instability of the incompressible viscous fluid with Navier-slip boundary conditions 27 Since µ °3µ c p⌅q, we can choose a constant $ 0 °0 such that µ °p3 `$0 qµ c p⌅q. (0.73)

  Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely deep ocean 29 hence, ⌦ptq is bounded above by the free surface ptq " tx 3 " ⌘pt, x 1 , x 2 qu, where ⌘ is an unknown of the problem. We are concerned with the viscous RT instability of the nonhomogeneous incompressible Navier-Stokes equations without any effects of surface

	tension, which read	
	$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % B t ⇢ `divp⇢ũq " 0 B divũ " 0 ppId ´µSũq ¨n " p atm n	in ⌦ptq, in ⌦ptq, in ptq,

1 , x 2 qu, (0.83) 0.6. t p⇢ũq `divp⇢ũ b ũq `rp " µ ũ ´g ⇢e 3 in ⌦ptq,

  Let pH 2 pp´a, 0qqq 1 be the dual space of the functional space H 2 pp´a, 0qq, associated with the norm a B a,k, p¨, ¨q. In view of Riesz's representation theorem, we obtain an abstract operator Y a,k, from H 2 pp´a, 0qq to pH 2 pp´a, 0qqq 1 , such that B a,k, p#, %q " xY a,k, #, %y for all #, % P H 2 pp´a, 0qq.

	0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely
	deep ocean		35
	Hence, from (0.114) and (0.117), we have that the existence of a solution H 4 pp´a, 0qq of Eq. (0.27)-(0.111)-(0.113) is thus reduced to the finding of a weak P solution P H 2 pp´a, 0qq of
	Y a,k, " gk 2 ⇢ 1 0	in pH 2 pp´a, 0qqq 1 .	(0.118)
	Restricting % P C 8 0 pp´a, 0qq in (0.117), we find the precise expression of Y a,k, (see Proposition 3.3(1)), i.e. for all # P H 2 pp´a, 0qq,
			.116)
	As one proves that B a,k, is coercive for all values of the parameters °0, µ °0 and k °0, we have that a B a,k, p¨, ¨q is a norm on H 2 pp´a, 0qq. (0.117)

  of Y a,k, , from L 2 pp´a, 0qq to a subspace of H 4 pp´a, 0qq requiring all elements satisfy (0.113)-(0.111). Note that, because belongs to H 4 pp´a, 0qq, these boundary conditions (involving the derivatives 2 , 3 of at x 3 " ´a and at x 3 " 0) are well defined. Composing the above operator Y ´1

	0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely
	deep ocean		36
	to the fact that Ñ n p , kq is decreasing in (see Lemma 3.6), through the derivative d d p 1
		, 0qq.	(0.119)
	Furthermore, a classical bootstrap argument (see Proposition 3.3(2)) shows that we
	are able to define the inverse operator Y ´1 a,k, a,k,
	with the continuous injection from H 4 pp´a, 0qq to L 2 pp´a, 0qq (see Proposition 3.4), we obtain that Y ´1 a,k, is a compact and self-adjoint operator from L 2 pp´a, 0qq to itself. We introduce M the operator of multiplication by a ⇢ 1 0 in L 2 pp´a, 0qq. Note from (0.118) that, we thus find v satisfying
	gk 2 v " MY ´1 a,k, Mv.	
	We show that the operator MY ´1 a,k, M is compact and self-adjoint from L 2 pp´a, 0qq to itself (see Proposition 3.5), which enables to use the spectral theory of self-adjoint and
	compact operators to obtain that		
	the discrete spectrum of the operator MY ´1 a,k, M is thus an infinite sequence of eigenvalues (denoted by t n p , kqu n•1 ).
	Let v n,k, be an eigenfunction of MY ´1 a,k, M associated with the eigenvalue n p , kq and let n,k, " Y ´1 a,k, Mv n,k, P H 4 pp´a, 0qq, we obtain
	n p , kqY a,k, n,k, " M 2	n,k, n " ⇢ 1 0 n,k, n .	(0.120)
	From (0.118) and (0.120), we see that the problem of finding characteristic values
	of (0.27) amounts to solving all the equations		
	n p , kq " gk 2 .	(0.121)
	In Proposition 3.6, for each n, we will show the existence and uniqueness of a solution n
	to (0.121) owing first to the differentiability in of n p , kq (see Lemma 3.5), which is an extension of Kato's perturbation theory of the spectrum of operators (see [45]), and

  hj pyq " Rep h pyq ´ j pyqq.

	Suppose all j p1 § j § nq fall into one of two classes H 1 and H 2 , where ª y ª y 2
	j P H 1 if	0	d hj psqds Ñ 8 as y Ñ 8 and	y 1	d hj psqds • ´K py 2 • y 1 • 0q,
	and			ª	y 2
			j P H 2 if	y 1

  Clearly, B a, is a bilinear form on H 2 pp´a, aqq since the terms BV ˘a, p#, %q are well defined. We then establish the boundedness of B a, . The integral terms of B a, are À }#} H 2 pp´a,aqq }%} H 2 pp´a,aqq . About the two first terms BV ˘a, p#, %q, it follows from the general Sobolev inequality that

	1.2. The compactly supported profile
	Proof.	
	norm	1 B a, p¨, ¨q, there exists a unique operator be the dual space of H 2 pp´a, aqq associated with the a
		Y a, P LpH 2 pp´a, aqq, pH 2 pp´a, aqqq 1 q,
	that is also bijective, such that
		B a, p#, %q " xY a, #, %y	(1.14)
	for all #, % P H 2 pp´a, aqq.

  35) ´(0.36)u and that we can extend Y a, over the closure of DpY a, ). Furthermore, Y a, with the domain H 4 pp´a, aqq containing functions that satisfy (0.35)-(0.36) is symmetric and positive. It follows from Friedrichs extension (see [41, Theorem 4.3.1] e.g.) that Y a, admits a self-adjoint extension.

  Example 1.15, Chapter VII, $1.6]. Since Y ´1 a, exists for all P p0,

	b	
	that Y ´1	g L 0 s, it follows from [45, Theorem 2.23, Chapter IV, $2.6]

a, is differentiable for all P p0,

  `chosen arbitrarily, B x ´,x `, (0.45) is a bilinear form on H 2 ppx ´, x `qq, that is continuous and coercive.
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	Proposition 1.8. There exists x 1 ´ § x 0 ´, x 1 `• x 0 `such that, for any x ´ § x 1 ´and x `• x 1

1 is always of the sign of n 12 hence positive, hence BV x `, p#, #q • 0 for all # P H 2 ppx ´, x `qq. Lemma 1.4 is proven.

  . A remark on the relation between the formulation on rx ´, x `s and the formulation on R of the viscous RT problem 72

	Substituting (1.99) and (1.100) into (1.98), we obtain
	ª `8

2 1 px `qq

(1.99) and 3 px `q " ´pn 21 px `q `n2 2 1 px `qq.

(1.100)

1.4

  Two inequalities(2.34) and(2.35) tell us that pk, , µq " ´1 1 pk, , µq for all °0. We thus obtain pk, 1 , µq " 1 gk 2 and the variational problem (2.30) is attained by the function 1 . Proof of Proposition 2.6 is complete.

	it yields		
	´1	1 pk, , µq § pk, , µq.	(2.35)

,1qq xY k, ,µ , y | P H 4 pp´1, 1qq and M ´1Y k, ,µ P L 2 pp´1, 1qq

) ,

  2.3. Nonlinear instability 89 Owing to (2.48), (2.50) and the definition of µ c pk, ⌅q, we get ª

	2⇡LT

  , 1q| 2 `⇠´| B t u d 1 pt, x 1 , ´1q| 2 qdx 1 .

	That means,				
	1 2 " d dt ´1 2 ª ⌦	p⇢ 0 ` ptqq|B t u d ptq| 2 dx ª ⌦ B t ptq|B t u d ptq| 2 dx `ª⌦	pB t f ptq ´gB t	d ptqe 2 q ¨Bt u d ptqdx	´µ ª ⌦	|rB t u d ptq| 2 dx
	`ª2⇡LT 1 pt, x 1 Using (0.79) 1 , we then get p⇠ `|B t u d			
	d dt	ª ⌦ `2µ ´p⇢ 0 ` ptqq|B t u d ptq| 2 ´g⇢ 1 0 |u d 2 ptq| 2 ¯dx ª ⌦ |rB t u d ptq| 2 dx ´2 ª
	Integrating in time variable, we get
	} a ⇢ 0 ` ptqB t u d ptq} 2 L 2 p⌦q `2µ t ª ´2 ª 0 ⌦ g⇢ 1 0 |u d 2 ptq| 2 dx `´ª 0 `ª t ª	ª 0 t	}rB t u d psq} 2 L 2 p⌦q ds ¯ˇˇt	"0
				ª	`ª⌦	p⇢ 0 ` qB 2 t u d ¨Bt u d dx
			"	⌦	µ B t u d ¨Bt u d dx	´ª⌦	rB t q d ¨Bt u d dx	`ª⌦	pB t f ´gB t	d e 2 q ¨Bt u d dx.
	Since divB t u d " 0, we use the integration by parts to further obtain ª

.52) Combining (2.49), (2.51) and (2.52), it gives ª 2⇡LT p⇠ `|w 1 px 1 , 1q| 2 `⇠´| w 1 px 1 , ´1q| 2 qdx 1 § µ c p⌅q}rw} 2 L 2 p⌦q . Lemma 2.7 is proven. We now prove Proposition 2.8. Proof of Proposition 2.8. We rewrite (0.79) 2 as p⇢ 0 ` qB t u d ´µ u d `rq d " f ´g d e 2 , where f " ´ B t u M ´p⇢ 0 ` qu ¨ru . Differentiate the resulting equation with respect to t and then multiply by B t u d , we obtain after integration that ª ⌦ B t |B t u d | 2 dx ⌦ B t ptq|B t u d ptq| 2 dx `ª⌦ p⇢ 0 ` ptqqB 2 t u d ptq ¨Bt u d ptqdx " ª ⌦ pB t f ptq ´gB t d ptqe 2 q ¨Bt u d ptqdx ´µ ª ⌦ |rB t u d ptq| 2 dx `ª2⇡LT p⇠ `|B t u d 1 pt, x 1 , 1q| 2 `⇠´| B t u d 1 pt, x 1 , ´1q| 2 qdx 1 . 2⇡LT p⇠ `|B t u d 1 pt, x 1 , 1q| 2 `⇠´| B t u d 1 pt, x 1 , ´1q| 2 qdx 1 " ´ª⌦ B t ptq|B t u d ptq| 2 dx `2 ª ⌦ pB t f ptq `gu ptq ¨r ptqe 2 q ¨Bt u d ptqdx. 2⇡LT p⇠ `|u d 1 ps, x 1 , 1q| 2 `⇠´| u d 1 ps, x 1 , ´1q| 2 qdx 1 ds " ª ⌦ p⇢ 0 ` ptqq|B t u d ptq| 2 dx ⌦ p2B t f psq `2gu psq ¨r psqe 2 ´Bt psqB t u d psqq ¨Bt u d psqds. (2.53) We continue using (2.41), (2.42) and (2.43) to estimate each term of the r.h.s of (2.53). This yields
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	it is obtained from (2.103) that (see (134) in [14])

  B a,k, p#, %q :" BV 0,k, p#, %q `BV ´a,k, p#, %q `

	Proposition 3.2. Let us recall (0.115),
	BV ´a,k, p#, %q :" µ BV 0,k, p#, %q :" µk 2 p# 1 p0q%p0q `#p0q% 1 p0qq ˜k⌧ ´pk `⌧´q #p´aq%p´aq ´k⌧ ´#1 p´aq%p´aq ´k⌧ ´#p´aq% 1 p´aq `pk `⌧´q # 1 p´aq% 1 p´aq ¸, `gk 2 ⇢ ` #p0q%p0q,
	and (0.116),

  .117) By summing over ↵ P N 2 , |↵| § 4, it follows from (3.114), (3.115), (3.116) and (3.117) that d dt }⌘} 2 H 4 p q À }ru} H 4 p⌦q }⌘} H 4 p q `}u} H 4 p⌦q }⌘} 2

	H 4 p q

  ⌘} 2 H 2 p q À }rB t u} H 2 p⌦q }B t ⌘} H 2 p q `E3

		.121)
	Combining (3.119), (3.120) and (3.121), we deduce that
	d dt	}B t

f .

  KB t ✓p⇢ 2 0 ✓ `B3 ⇣q ´div A pp⇢ 1 0 ✓ `⇣quq, F 2 " ´p⇢ 0 `⇢1 0 ✓ `⇣qp´KB t ✓B 3 u `u ¨rA uq ´g⇢ 1 0 pAK✓, BK✓, p1 ´Kq✓q T .
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	Here,	
	F 1 " (3.133)
	Applying the temporal differential operator B l t pl • 1q to (3.132), the resulting equations are
	$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % B t pB l t ⇣q `div A p⇢ 0 B l t uq " F 1,l p⇢ 0 `⇢1 0 ✓ `⇣qB t pB l t uq `rA B l t q ´µdiv A S A B l t u `gB l t ⇣e 3 " F 2,l div A B l t u " F 3,l B t pB l t ⌘q " B l t u ¨N `F 4,l pB l t qId ´µS A B l t uqN " g⇢ `Bl t ⌘N `F 5,l	in ⌦, in ⌦, in ⌦, on , on .

  BK✓, p1 ´Kq✓q} L 2 p⌦q À }pAK, BK, K ´1q} H 2 p⌦q }✓} L 2 p⌦q À }⌘} H 5{2 p q }⌘} L 2 p q } L 2 p⌦q À }B t F 2 } L 2 p⌦q `p1 `}A ´Id} H 2 p⌦q q}B t A} H 1 p⌦q }ru} H 2 p⌦q `p1 `}A ´Id} H 3 p⌦q q}r 2 u} H 2 p⌦q }B t A} H 1 p⌦q `}⇣} H 3 p⌦q }B t A} L 2 p⌦q `p}B t ⇣} H 2 p⌦q `}B t ✓} H 2 p⌦q q}B t u} L 2 p⌦q . } L 2 p⌦q À }B t F 2 } L 2 p⌦q `p1 `}⌘} H 7{2 p q q}B t ⌘} H 3{2 p q }u} H 4 p⌦q `}⇣} H 3 p⌦q }B t ⌘} H 1{2 p q `p}B t ⇣} H 2 p⌦q `}B t ⌘} H 3{2 p q q}B t u} L 2 p⌦q À }B t F 2 } L 2 p⌦q `⇣qKB t ✓B 3 uq " p⇢ 0 `⇢1 0 ✓ `⇣qpB t KB t ✓B 3 u `KB 2 t ✓B 3 u `KB t ✓B t B 3 uq `p⇢ 1 0 B t ✓ `Bt ⇣qKB t ✓B 3 u,which will be bounded as follows}B t pp⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 uq} L 2 p⌦q À p1 `}p✓,⇣q} H 2 p⌦q q}B t K} L 2 p⌦q }B t ✓} H 2 p⌦q }u} H 1 p⌦q `p1 `}p✓, ⇣q} H 2 p⌦q qp}K ´1} H 2 p⌦q `1q ˆp}B 3 u} H 2 p⌦q }B 2 t ✓} L 2 p⌦q `}B t ✓} H 2 p⌦q }pu, B t uq} H 1 p⌦q q `}pB t ✓, B t ⇣q} H 2 p⌦q p}K ´1} H 2 p⌦q `1q}B t ✓} H 2 p⌦q }u} H 1 p⌦q .

	For F 2,1 (see (3.136)), we obtain	
	}F 2,1 (3.157)
	According to Lemma 0.2 and (3.12), it follows from (3.157) that	
	f . }F 2,1 `E2	(3.158)
	We calculate each term of B t F 2 ,	
	B t pp⇢ 0 0 ✓ Using Lemma 0.2 and (3.10), we deduce that `⇢1	
		.155)
	Due to Lemma 0.2 again and (3.10), (3.11), we have	
	f . }pAK✓, À E 2	(3.156)
	It follows from (3.154), (3.155) and (3.156) that }F 2 } L 2 p⌦q À E 2 f .	

  2 and (3.12) that }B t pp⇢ 0 `⇢1 0 ✓ `⇣qu ¨rA uq} L 2 p⌦q À p1 `}p✓, ⇣q} H 2 p⌦q qp}A ´Id} H 2 p⌦q `1q}u}H 3 p⌦q }B t u} H 1 p⌦q `p1 `}p✓, ⇣q} H 2 p⌦q q}u} 2 H 3 p⌦q }B t A} L 2 p⌦q `}pB t ✓, B t ⇣q} H 2 p⌦q p}A ´Id} H 2 p⌦q `1q}u} H 2 p⌦q }u} H 1 p⌦q À p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q qp}⌘} H 5{2 p q `1q}u} H 3 p⌦q }B t u} H 1 p⌦q `p1 `}⇣} H 2 p⌦q `}⌘} H 3{2 p q q}u} 2 H 3 p⌦q }B t ⌘} H 1{2 p q `p}B t ⇣} H 2 p⌦q `}B t ⌘} H 3{2 p q qp}⌘} H 5{2 p q `1q}u} H 2 p⌦q }u} H 1 p⌦q }B t pAK✓, BK✓, p1 ´Kq✓q} L 2 p⌦q À }pAK, BK, K ´1q} H 2 p⌦q }B t ✓} L 2 p⌦q `}B t pAK, BK, K ´1q} L 2 p⌦q }✓} H 2 p⌦q À }⌘} H 5{2 p q }B t ⌘} L 2 p q `}B t ⌘} H 1{2 p q }⌘} H 3{2 p q We deduce }B t F 2 } L 2 p⌦q À E 2 f from (3.158), (3.159), (3.160) and (3.161). So that, }F 2,1 } L 2 p⌦q À E 2 f . For F 2,2 (see again (3.133)), we use the product estimate (3.1) and Sobolev embedding to obtain that }F 2,2 } L 2 p⌦q À }B 2 t F 2 } L 2 p⌦q `}A} H 2 p⌦q p}B t A} H 2 p⌦q }rB t u} H 2 p⌦q `}B 2 t A} H 1 p⌦q }ru} H 3 p⌦q q `}B t A} H 2 p⌦q p}B t A} H 2 p⌦q }ru} H 2 p⌦q `}A} H 3 p⌦q }rB t u} H 1 p⌦q q `}B 2 t A} L 2 p⌦q }A} H 3 p⌦q }ru} H 3 p⌦q `}B t A} H 2 p⌦q }B t ⇣} H 1 p⌦q `}B 2 t A} L 2 p⌦q }r⇣} H 2 p⌦q `}pB t ⇣, B t ✓q} H 2 p⌦q }B 2 t u} L 2 p⌦q `}pB 2 t ⇣, B 2 t ✓q} L 2 p⌦q }B t u} H 2 p⌦q . We make use of Lemma 0.2 and (3.12) to further get that

	(3.160)
	À E 2 f .
	Using again Lemma 0.2 and (3.10), (3.11), one has
	(3.161)
	À E 2 f .

  2 t ⌘} H 1{2 p q `}rB t u} H 2 p⌦q q. Together with (3.127), we deduce from the resulting inequality that}F 2,2 } L 2 p⌦q À }B 2 t F 2 } L 2 p⌦q `Ef pE f `}rB t u} H 2 p⌦q q. } L 2 p⌦q À E f pE f `}rB t u} H 2 p⌦q `}rB 2 t u} L 2 p⌦q q, we will prove that }B 2 t F 2 } L 2 p⌦q À E f pE f `}rB2 t u} L 2 p⌦q q. We now estimate each term of B 2 t F 2 . Due to Sobolev embedding, one has that }B 2 t pp⇢ 0 `⇢1 0 ✓ `⇣qKB t ✓B 3 uq} L 2 p⌦q À p1 `}p✓, ⇣q} H 2 p⌦q qp}K ´1} H 2 p⌦q `1q ˆ˜}B 3 u} H 2 p⌦q }B 3 t ✓} L 2 p⌦q `}B t B 3 u} L 2 p⌦q }B 2 t ✓} H 2 p⌦q `}B 2 t B 3 u} L 2 p⌦q }B t ✓} H 2 p⌦q p1 `}p✓, ⇣q} H 2 p⌦q q}B t K} H 2 p⌦q ˆ´}B t ✓} H 2 p⌦q }B t u} H 1 p⌦q `}B 2 t ✓} L 2 p⌦q }u} H 3 p⌦q p1 `}p✓, ⇣q} H 2 p⌦q q}B 2 t K} L 2 p⌦q }B t ✓} H 2 p⌦q }u} H 3 p⌦q `}pB t ✓, B t ⇣q} H 2 p⌦q p}K ´1} H 2 p⌦q `1q ˆ´}B 2 t ✓} L 2 p⌦q }u} H 3 p⌦q `}B t ✓} H 2 p⌦q }B t u} H 1 p⌦q }pB t ✓, B t ⇣q} H 2 p⌦q }B t K} L 2 p⌦q }B t ✓} H 2 p⌦q }u} H 3 p⌦q `}pB 2 t ✓, B 2 t ⇣q} L 2 p⌦q p}K ´1} H 2 p⌦q `1q}B t ✓} H 2 p⌦q }u} H 3 p⌦q .
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	Hence, in order to show that	
	}F 2,2 Thanks to Lemma 0.2 and (3.10), this yields	

  2 t ⇣} L 2 p⌦q qp}⌘} H 5{2 p q `1q}B t ⌘} H 3{2 p q }u} H 3 p⌦q .

	(3.162)
	Using (3.127) and (3.128), we thus have from (3.162) that

  `⇣qu ¨rA uq} L 2 p⌦q À p1 `}p✓, ⇣q} H 2 p⌦q qp}A ´Id} H 2 p⌦q `1qp}B 2 t u} H 1 p⌦q }u} H 3 p⌦q `}B t u} 2 H 2 p⌦q q `p1 `}p✓, ⇣q} H 2 p⌦q qp}B t A} L 2 p⌦q }B t u} H 3 p⌦q `}B 2 t A} L 2 p⌦q }u} H 2 p⌦q q}u} H 3 p⌦q `}pB t ✓, B t ⇣q} H 2 p⌦q p}A ´Id} H 2 p⌦q `1q}B t u} H 1 p⌦q }u} H 3 p⌦q `}pB 2 t ✓, B 2 t ⇣q} L 2 p⌦q p}A ´Id} H 2 p⌦q `1q}u} 2 H 3 p⌦q . Thanks to Lemma 0.2 and (3.12), we further get that
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	In a same way, we have
	}B 2 t pp⇢ 0	`⇢1 0 ✓

  2 t u} L 2 p⌦q q. `⇣qu ¨rA uq} L 2 p⌦q À E f pE f `}rB 2 t u} L 2 p⌦q q. BK, K ´1q} L 2 p⌦q }✓} H 2 p⌦q `}B t pAK, BK, K ´1q} L 2 p⌦q }B t ✓} H 2 p⌦q `}pAK, BK, K ´1q} H 2 p⌦q }B 2 t ✓} L 2 p⌦q À p}B 2 t ⌘} H 1{2

	Due to (3.127), we obtain
	}B 2 t pp⇢ 0	`⇢1 0 ✓ (3.164)
	Furthermore, thanks to (3.127) again and Lemma 0.2, (3.10), (3.11), one has
	}B 2 t pAK✓, BK✓, p1 ´Kq✓q} L 2 p⌦q À }B 2 t pAK,

  }B t pJF 3,2 q} L 2 p⌦q À E f pE f `}rB t u} H 2 p⌦q `}rB 2 t u} L 2 p⌦q q.

	2 t u} L 2 p⌦q q.	(3.170)
	Combining (3.126), (3.168) and (3.170) gives us that	
		(3.171)
	The inequality (3.153) follows from (3.166), (3.167) and (3.171).	

  `⇣qB t J} H 2 p⌦q `}p⇢ 1 0 B t ✓ `Bt ⇣qJ} L 8 p⌦q À p1 `}p✓, ⇣q} H 2 p⌦q q}B t ✓} H 3 p⌦q `}pB t ✓, B t ⇣q} H 2 p⌦q p1 `}J ´1} L 8 p⌦q q. 3{2 p q `}⇣} H 2 p⌦q q}B t ⌘} H 5{2 p q `}B t ⌘} H 3{2 p q `}B t ⇣} H 2 p⌦q JpF 2 ¨u ´g⇣u 3 q À p}J ´1} L 8 p⌦q `1qp}F 2 } L 2 p⌦q }u} L 2 p⌦q `}⇣} L 2 p⌦q }u 3 } L 2 p⌦q q À E 3 f `}⇣} L 2 p⌦q }u 3 } L 2 p⌦q . `⇣qJ|B t u| 2 ptq `ª g⇢ `|B t ⌘ptq| 2 ´ª⌦ g⇢ 1 0 |u 3 ptq| 2 pAB 3 u 1 `BB 3 u 2 qB t u 3 psqds À p⌦q `1q}pF 1 , F2,1 , F 3,1 qpsq} L 2 p⌦q `}pF 4,1 , F 5,1 qpsq} L 2 p q qE f psqds

	Substituting (3.173), (3.175), (3.177) and (3.178) into (3.172), we deduce (3.139) l"0 . Combining (3.180), (3.181) and (3.183), we obtain
	For l " 1, we make use of (3.146) at order l " 1 to have that 1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|B t u| 2 ptq `ª g⇢ `|B t ⌘ptq| 2 ´ª⌦ g⇢ 1 0 |u 3 ptq| 2 2 ª t 0 }S A B t upsq} 2 " 1 2 ´ª⌦ p⇢ 0 `⇢1 0 ✓ `⇣qJ|B t u| 2 `ª g⇢ `|B t ⌘| 2 ´ª⌦ g⇢ 1 "0 μ `1 2 ª t 0 ª ⌦ B t pp⇢ 0 `⇢1 0 ✓ `⇣qJq|B t u|psq 2 ds 0 ⌦ JpF 2,1 ¨Bt u `F 3,1 B t qqpsqds ´ª t 0 ª pg⇢ `Bt ⌘F 4,1 `F 5,1 ¨Bt uqpsqds 0 ⌦ g⇢ 1 0 pAB 3 u 1 `BB 3 u 2 qB t u 3 psqds 0 ⌦ gJF 1 B t u 3 psqds. ´ª t ª ´ª t ª `ª t ª 0 |u 3 | 2 ¯ˇˇt L 2 p⌦q ds }B t uptq} 2 L 2 p⌦q `}B t ⌘ptq} 2 L 2 p q `ª t 0 }rB t upsq} 2 L 2 p⌦q ds À E 2 f p0q `}u 3 ptq} 2 L 2 p⌦q 0 E 3 f psqds. `ª t (3.184)
					(3.179)
	By a similar argument as the proof of (3.175), we estimate the l.h.s of (3.179) as
	ª			
	2 L 2 p q }S A B t upsq} 2 L 2 p⌦q ds `ª t 0 We now estimate the r.h.s of (3.172). By Gagliardo-Nirenberg's inequality (see (3.2)) }rupsq} 2 L 2 p⌦q ds ´ª t 0 E 3 (3.175) ⌦ p⇢ 0 `⇢1 t 0 ✓ `µ ª 0 f psqds. Á }B t uptq} 2 L 2 p⌦q `}B t ⌘ptq} 2 L 2 p q `ª t 0 }rB t upsq} 2 L 2 p⌦q ´}u 3 ptq} 2 L 2 p⌦q ´ª t 0 E 3 f psqds.
	and Sobolev embedding, one has				(3.180)
	}B t pp⇢ 0 For the r.h.s of (3.179), we use (3.176) to obtain that `⇢1 0 ✓ `⇣qJq} L 8 p⌦q À }p⇢ 0 `⇢1 ª t 0 ª ⌦ B t pp⇢ 0 `⇢1 0 ✓ `⇣qJq|B t u| 2 psqds À 0 ✓ Together with Lemma 0.2, (3.126) and (3.8), we observe Next, thanks to (3.9), we see that	ª 0 t	E 3 f psqds.	(3.181)
	}B t pp⇢ 0 ⌦ ª g⇢ 1 0 ª `⇢1 0 ✓ `⇣qJq} L 8 p⌦q 0 t À p1 `}⌘} H À E f , Let us use (3.8) and (3.151) to estimate that ª t 0 E 2 f }pA, Bq} H 2 p⌦q psqds À	ª 0 t	(3.176) f psqds. (3.182) E 3
	which yields ª t 0 ª ⌦ JpF 2,1 ¨Bt u `F 3,1 B t q ´gF 1 B 3 uqpsqds ª t 0 ª ⌦ B t pp⇢ 0 `⇢1 0 ✓ `⇣qJq|u| 2 psqds À ª ´ª t 0 pg⇢ `Bt ⌘F 4,1 `F 5,1 ¨Bt uqpsqds ª t 0 E 3 f psqds. (3.177) ª t
	Furthermore, thanks to (3.8) and (3.151), we get ª À 0 ª t pp}J ´1} L 8 À 0 E 3 f psqds.			
					(3.183)
					(3.178)

⌦

  does not appear in E f or D f , we use the integration in time to have ª L 8 p⌦q `1q}pF 2,2 , F 3,1 , F 1,1 qpsq} L 2 p⌦q `}pF 4,2 , F 5,2 qpsq} L 2 p q qE f psqds
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	It follows from (3.8), (3.151) and (3.152) that
		ª	t		
		0 pp}J ´1} À ª t 0 E 2 f pE f `}rB t u} H 2 p⌦q `}rB 2 t u} L 2 p⌦q qpsqds.
						(3.188)
	Using (3.186), (3.187), (3.188) and (3.9), we deduce that
						(3.186)
						3,2 B 2 t qqpsqds.
	Since B 2 t q t	ª		ª
			0	⌦	pJF 3,2 B 2 t qqpsqds "	⌦ ´ª t pB t qJF 3,2 qptq ª 0 ⌦ B t qpsqB t pJF 3,2 qpsqds. ´ª⌦ pB t qJF 3,2 qp0q
	Thanks to (3.153), we observe
	ª 0 t	ª ⌦	pJF 3,2 B 2 t qqpsqds À E 2 f p0q `E3 f ptq	`ª t 0	E 2 f pE (3.187)

f `}rB t u} H 2 p⌦q `}rB 2 t u} L 2 p⌦q qpsqds.

  u 3 À }⇣} H 4 p⌦q }u 3 } H 4 p⌦q À " 3 }⇣} 2
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	We estimate each integral in the r.h.s of (3.210). For the first integral, we use Young's
	inequality and (3.7) to get that
	ª	
	⌦	g⇢ 1 0 B
		H 4 p⌦q À " 3 p}⇣} 2 H 4 p⌦q `}u 3 } 2 `"´3 }u 3 } 2 H 5 p⌦q q `"´27 }u 3 } 2 L 2 p⌦q . H 4 p⌦q	(3.211)
	For the third integral, it follows from the trace theorem and Young's inequality that
		ª
		g⇢ `B h ⌘B h

h ⇣B h

  .219) For any P N 2 with | | " 1 or 2, multiplying by B t B h u on both sides of (3.219) 1 and integrating over ⌦, one has the identity

	1
	2

  K✓B t ✓} H 4 p⌦q À p1 `}K ´1} H 4 p⌦q q}✓} H 4 p⌦q }B t ✓} H 4 p⌦q À p1 `}⌘} H 9{2 p q q}⌘} H 7{2 p q }B t ⌘} H 7{2 p q . }A lk B k p⇢ 1 0 ✓u l q} H 4 p⌦q À p1 `}A ´Id} H 4 p⌦q q}✓} H 5 p⌦q }u} H 5 p⌦q À p1 `}⌘} H 9{2 p q q}⌘} H 9{2 p q }u} H 5 p⌦q À E f pE f `}ru} H 4 p⌦q q lk qB k p⇢ 0 u l q} H 4 p⌦q À }A ´Id} H 4 p⌦q }u} H 5 p⌦q À E f pE f `}ru} H 4 p⌦q q. (3.230) 3.3. A priori energy estimates 163 Thanks to Gagliardo-Nireberg's inequality also and (3.12), we obtain }qA lk B k u l } H 4 p⌦q À p1 `}A ´Id} H 4 p⌦q qp}q} H 2 p⌦q }ru} H 4 p⌦q `}q} H 4 p⌦q }ru} H 2 p⌦q q À E f pE f `}q} H 4 p⌦q `}ru} H 4 p⌦q q,

	.227) (3.228) (3.229) }pA lk ´ (3.231) Proof. We use (3.1), (3.10) and Lemma 0.2 to have that }⇢ 2 0 Combining (3.126) and the resulting inequality, we have }⇢ 2 0 K✓B t ✓} H 4 p⌦q À E 2 f . Using Lemma 0.2 again and (3.1), (3.12), one has and Those above estimates, (3.228), (3.229), (3.230) and (3.231) imply

  A jk qB ↵´ B k ⇣ À p}A ´Id} H 4 p⌦q `1q}u} H 4 p⌦q }⇣} H 4 p⌦q À p1 `}⌘} H 9{2 p q q}u} H 4 p⌦q }⇣} H 4 p⌦q
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	By (3.126), we further obtain
				ÿ 0‰ §↵	ª ⌦	B pKB t ✓qB ↵´ B 3 ⇣ À E 3 f .	(3.239)
	Next, for the third integral, one has
	ÿ 0‰ §↵	ª ⌦	f , B pu j À E 3	(3.240)
	thanks to (3.12).	
	In view of (3.236), (3.237), (3.238), (3.239) and (3.240), we get
					.238)
	We use (3.1), (3.10) and Lemma 0.2 also to bound the second integral in the r.h.s of
	(3.235) as follows	
			ÿ	ª
		0‰ §↵	

⌦ B pKB t ✓qB ↵´ B 3 ⇣ À }rK} H 3 p⌦q }B t ✓} H 4 p⌦q }⇣} H 4 p⌦q À }⌘} H 9{2 p q }B t ⌘} H 7{2 p q }⇣} H 4 p⌦q .

  Proposition 3.15. There holds }B t ⇣} 2 H 2 p⌦q `}B 2 t ⇣} 2 L 2 p⌦q § C 10 p}u 3 } 2 H 2 p⌦q `}B t u 3 } 2

	L 2 p⌦q	`E4 f q.	(3.241)
	Proof. It follows directly from (4.2) 1 and (3.198) that		

  Proposition 3.16. There holds}u} 2 H 4 p⌦q `}q} 2 H 3 p⌦q `}B t u} 2 H 2 p⌦q `}B t q} 2 H 1 p⌦q § C 11 ´}B 2 t u} 2 L 2 p⌦q `}u 3 } 2 L 2 p⌦q `}⇣} 2 H 2 p⌦q `}⌘} 2 H 5{2 p q `}B t ⌘} 2 ´µ B t u `rB t q " ´⇢0 B 2 t u ´gB t ⇣e 3 `Bt Q 2 in ⌦, divB t u " B t Q 3 in ⌦,pB t qId ´µSB t uqe 3 " g⇢ `Bt ⌘e 3 `Bt Q 5 on . }B t u} 2 H 2 p⌦q `}B t q} 2 H 1 p⌦q À }B 2 t u} 2 L 2 p⌦q `}B t ⇣} 2 L 2 p⌦q `}B t ⌘} 2
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	Proof. We derive from (4.2) that		
	$ ' ' ' &		
	' ' ' %		(3.245)
	Applying the elliptic estimate (3.3) to (3.245), it tells us that		
	H 1{2 p q		
	H 1{2 p q	f `E4	¯. (3.244)

  , this yields }B t u} 2 H 2 p⌦q `}B t q} 2 H 1 p⌦q À }B 2 t u} 2 L 2 p⌦q `}u 3 } 2 L 2 p⌦q `}B t ⌘} 2Owing to(3.198) and by applying the elliptic estimate(3.3) again to (3.247), we observe that}u} 2 H 4 p⌦q `}q} 2 H 3 p⌦q À }B t u} 2 H 2 p⌦q `}⇣} 2 H 2 p⌦q `}Q 2 } 2 H 2 p⌦q `}Q 3 } 2Proposition 3.17. Assuming 0 sufficiently small (see (3.279)), there holdsTo prove Proposition 3.17, we use the two lemmas below.Lemma 3.15. For any s • 0, there holds}f } 2 H s`1{2 p q À }f } 2 H 1{2 p q `ÿ Proof. Since " 2⇡L 1 Z ˆ2⇡L 2 Z ˆt0u, we exploit the definition of the Sobolev norm on to have that }f } 2 H s`1{2 p q " ÿ nPZ 2 p1 `|n| 2 q s`1{2 | f pnq| 2 ,where f is the Fourier series of f . By Cauchy-Schwarz's inequality, one has}f } 2 H s`1{2 p q À ÿ nPZ 2 p1 `|n| 2 q 1{2 | f pnq| 2 `ÿ PN 2 ,| |"s ÿ nPZ 2 p1 `|n| 2 q 1{2 |n f pnq| 2 ,which immediately yields (3.251).}B t u} L 2 p⌦q À }rB t u} L 2 p⌦q `W,(3.252) and }B 2 t u} L 2 p⌦q À }rB t u} L 2 p⌦q `}rB 2 t u} L 2 p⌦q `W. (3.253) Proof. Let us show (3.252) first. Multiplying by B t u on both sides of (4.2) 2 , we obtain ª }B t u} 2 H 3 p⌦q `}B t q} 2 H 2 p⌦q À }B 2 t u} 2 H 1 p⌦q `}u 3 } 2 H 1 p⌦q `}pQ 1 , B t Q 2 q} 2 H 1 p⌦q `}B t Q 3 } 2 H 2 p⌦q `}B t u} 2 H 5{2 p q . This yields }B t u} 2 H 3 p⌦q `}B t q} 2 H 2 p⌦q À }B 2 t u} 2 H 1 p⌦q `}u 3 } 2 H 1 p⌦q `}B t u} 2 .199) also. It follows from (3.251) and the trace theorem that}B t u} 2 H 5{2 p q À }B t u} 2 H 1{2 p q `ÿ PN 2 ,| |"2 }B h B t u} 2 H 1{2 p q À }B t u} 2 H 1 p⌦q `ÿ PN 2 ,| |"2 }B h B t u} 2 H 1 p⌦q . }B t u} 2 H 3 p⌦q `}B t q} 2 H 2 p⌦q À }pu, B t u, B 2 t uq} 2 H 1 p⌦q `ÿThanks to the interpolation inequality (3.7), we get that, for ⌫ °0,}B h B t u} 2 L 2 p⌦q À }B t u} 2 H 2 p⌦q À ⌫}B t u} 2 H 3 p⌦q `⌫´2 }B t u} 2 L 2 p⌦q .Hence, it follows from (3.270) that}B t u} 2 H 3 p⌦q `}B t q} 2 H 2 p⌦q À }pu, B t u, B 2 t uq} 2 H 1 p⌦q `⌫}B t u} 2Let ⌫ °0 be sufficiently small, one has}B t u} 2 H 3 p⌦q `}B t q} 2 H 2 p⌦q À }pu, B t u, B2 t uq} 2 H 1 p⌦q `ÿ H 5 p⌦q `}q} 2 H 4 p⌦q À }B t u} 2 H 3 p⌦q `}⇣} 2 H 3 p⌦q `}Q 2 } 2 H 3 p⌦q `}Q 3 } 2 H 4 p⌦q `}u} 2 H 9{2 p q . Using (3.271) and (3.199), we further obtain }u} 2 H 5 p⌦q `}q} 2 H 4 p⌦q À }pu, B t u, B 2 t uq} 2 H 1 p⌦q `}⇣} 2 H 3 p⌦q `}u} 2 }B h u} 2 L 2 p⌦q À }u} 2 H 4 p⌦q À ⌫}u} 2 In view of (3.273) and (3.274), we deduce from (3.272) that }u} 2 H 5 p⌦q `}q} 2 H 4 p⌦q À }pu, B t u, B 2 t uq} 2 H 1 p⌦q `}⇣} 2 H 3 p⌦q `⌫}u} 2 °0 be sufficiently small, the inequality (3.275) implies that }u} 2 H 5 p⌦q `}q} 2 H 4 p⌦q À }pu, B t u, B 2 t uq} 2 H 1 p⌦q `}⇣} 2 H 5 p⌦q `}B t u} 2 H 3 p⌦q `}q} 2 H 4 p⌦q `}B t q} 2 .3.6 Proof of Proposition 0.3
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	to have that					
	D 2 f § C 12 Let us denote $ ' ' ' ' ' &	´D2 h	`"3 E 2 f `ÿ `"´9 p}p⇣, uq} 2 L 2 p⌦q `}⌘} 2 L 2 p q q `E3 f ¯. H 9{2 p q PN 2 ,| |"2 }rB h B t u} 2 L 2 p⌦q `E2 f pE 2 f `D2 f q.	(3.250) (3.272)
	PN 2 ,| |"s Using (3.251) again and the trace theorem, we obtain that }B h f } 2 H 1{2 p q . H 5{2 p q `E2 f pE 2 f }u} 2 H 9{2 p q À }u} 2 H 1{2 p q `ÿ }B h u} 2 H 1{2 p q PN 2 ,| |"4 À }u} 2 H 1 p⌦q `ÿ PN 2 ,| |"4 }B h u} 2 H 1 p⌦q . due to (3(3.269) (3.251) `D2 f q, (3.268) (3.273) Notice from (3.7) again that, for ⌫ °0,
						H 5 p⌦q	`⌫´4 }u} 2 L 2 p⌦q .	(3.274)
	Combining (3.268) and (3.269) gives us that		
	H 1{2 p q }B h B t u} 2 H 1 p⌦q f . H 5 p⌦q `E2 PN 2 ,| |"2 Let ⌫ H 3 p⌦q Lemma 3.16. Let us write b `E2 `D2 h `E2 f pE 2 f `D2 f q. f pE 2 f `D2 f q. `D2 h f pE 2 f `D2 f q. (3.276) (3.246) (3.270) (3.275) `E4 W :" }⇣} 2 L 2 p⌦q `}u} 2 H 1 p⌦q `}⌘} 2 L 2 p q `E3 We obtain from (3.271) and (3.276) that f . Meanwhile, we obtain from (4.2) that $ ' ' ' & ' ' ' % ´ u `rq " ´⇢0 B t u ´g⇣e 3 `Q2 in ⌦, divu " Q 3 in ⌦, pqId ´µSuqe 3 " g⇢ `⌘e 3 `Q5 on . (3.247) The following inequalities holds }u} 2 H 2 p⌦q À D 2 h `}pu, B t u, B 2 t uq} 2 H 1 p⌦q `}⇣} 2 H 3 p⌦q `E2 f pE 2 f `D2 f q. H 3 p⌦q `ÿ }rB h B t u} 2 L 2 p⌦q `E2 f pE 2 f `D2 That implies f q. PN 2 ,| |"2 D 2 f À D 2 h `}pu, B t u, B 2 t uq} 2 L 2 p⌦q `}⇣} 2 H 3 p⌦q `E2 f pE 2 f `D2 f q. (3.277)
	H 3 p⌦q Combining (3.246) and (3.248), one has (3.244). Proof of Proposition 3.16 is complete. `}⌘} 2 H 5{2 p q `}Q 5 } 2 H 5{2 p q À }B t u} 2 H 2 p⌦q `}⇣} 2 H 2 p⌦q `}⌘} 2 H 5{2 p q `E4 f . (3.248) ⌦ ⇢ 0 |B t u| 2 " ´ª⌦ rq ¨Bt u `µ ª ⌦ u ¨Bt u ´ª⌦ g⇣B t u 3 `ª⌦ Q 2 ¨Bt u " ´ª pqId ´µSuqe 3 ¨Bt u `ª⌦ qdivB t u ´µ 2 PN 2 ,| |"2 }rB Thanks to Lemma 3.16, we deduce from (3.277) that h B t u} 2 L 2 p⌦q `E2 f pE 2 f `D2 (3.271) D 2 f À D 2 h `}u} 2 H 1 p⌦q `}⇣} 2 H 3 p⌦q `}⌘} 2 L 2 p q `E3 f `E2 f . f D 2 f q. We continue using (3.7) to further have ª ⌦ Su : SB t u ´ª⌦ g⇣B t u 3 `ª⌦ Q 2 ¨Bt u, Meanwhile, applying the elliptic estimate (3.4) to $ ' ' ' & ' ' ' % ´µ u `rq " ´⇢0 B t u ´g⇣e 3 in ⌦, D 2 f À D 2 h `"3 p}u} 2 H 2 p⌦q `}⇣} 2 H 4 p⌦q q `"´3 }u} 2 L 2 p⌦q `"´9 }⇣} 2 L 2 p⌦q `}⌘} 2 L 2 p q `E3 f `E2 f D 2 f . `Q2 divu " Q 3 That means in ⌦, u " u on , D 2 f § C 13 ´D2 f `E2 f D 2 f ¯. (3.278)
	we have Restricting further					
	}u} 2		C 13	2 0 §	1 2	,	(3.254) (3.279)

Let us define the "horizontal" dissipation D h °0 as follows,

D 2 h :" ÿ PN 2 ,| | §4 }rB h u} 2 L 2 p⌦q `ÿ PN 2 ,| | §2 }rB h B t u} 2 L 2 p⌦q `}rB 2 t u} 2 L 2 p⌦q . (3.249)

The next proposition is to compare D f (0.124) and D h (3.249).

after using the integration by parts. Using (4.2) 3,5 , this yields

ª ⌦ ⇢ 0 |B t u| 2 " ´ª g⇢ `⌘B t u 3 ´ª Q 5 ¨Bt u `ª⌦ qB t Q 3 `µ ª ⌦ Su : SB t u ´ª⌦ g⇣B t u 3 `ª⌦ Q 2 ¨Bt u. h `"3 E 2 f `"´9 p}p⇣, uq} 2 L 2 p⌦q `}⌘} 2 L 2 p q q `E3

we obtain (3.250) from (3.278). Proposition 3.17 is proven.

3

  upsq} 2 L 2 p⌦q ds § C 1," E 2 f p0q `C6 E 3 f ptq `C14 " 3Keep in mind the definition of D h(3.249). It follows from (3.280) that" 2 ´}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 t ⌘ptq} 2 L 2 p q `}⌘ptq} 2Chaining (3.281) with (3.250) in Proposition 3.17, we get that" 2 ´}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 t ⌘ptq} 2 L 2 p q `}⌘ptq} 2 H 9{2 p q `}⇣ptq} 2So that, the inequality (3.282) implies" 2 ´}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 t ⌘ptq} 2 L 2 p q `}⌘ptq} 2 H 9{2 p q `}⇣ptq} 2By dividing both sides of (3.283) by " 2 , we have}⌘ptq} 2 H 9{2 p q `}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 t ⌘ptq} 2 L 2 p q `}⇣ptq} 2 H 4 p⌦q `}pu, B t u, B 2 t uqptq} 2 1{4 ´}uptq} 2 H 4 p⌦q `}qptq} 2 H 3 p⌦q `}B t uptq} 2 H 2 p⌦q `}B t qptq} 2 C 11 " 1{4 ´}pB 2 t u, u 3 qptq} 2 L 2 p⌦q `}⇣ptq} 2 H 2 p⌦q `}⌘ptq} 2 H 5{2 p q `}B t ⌘ptq} 2 1{4 ´}uptq} 2 H 4 p⌦q `}qptq} 2 H 3 p⌦q `}B t uptq} 2 H 2 p⌦q `}B t qptq} 2 H 4´2j p⌦q `}B j t ⌘ptq} 2 H 4´2j p q q `}⇣ptq} 2 H 4 p⌦q `}⌘} 2 H 9{2 p q `}qptq} 2 H 3 p⌦q `}B t qptq} 2 ´9{4 E 3 f ptq `C10 " 1{4 p}u 3 } 2 H 2 p⌦q `}B t u 3 } 2 H 4´2j p⌦q `}B j t ⌘ptq} 2 H 4´2j p q q `}⇣ptq} 2 H 4 p⌦q `}⌘} 2 H 9{2 p q `}qptq} 2 H 3 p⌦q `}B t qptq} 2Let us recall the definition of E f (0.123) and divide both sides of (3.289) by " 1{4 to deduce L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C18 " ´5{2 E 3 f ptq. 1{2 by " in (3.287), one has (3.110). Proof of Proposition 0.3 is finished.

	it follows from (3.285) that It follows from (3.288) that
	2 H 9{2 p q E f pE 2 f L 2 p q qds `C6 E 3 t 0 ª D 2 f psqds f psqds `pC 1," `1q L 2 p⌦q `1 2C 12 t uqptq} 2 B t u, B 2 f p0q `pC 14 `1q" 3 § C 1," E 2 ª t 0 E 2 ª t 0 `C4," ª t 0 p}pu, ⇣qpsq} 2 L 2 p⌦q `}⌘psq} 2 f ptq. " H 1 p⌦q }⇣ptq} (3.286) H 4 p⌦q }pu, `D2 f qpsqds (3.283) 1 2 ´}pB 2 t u, uqptq} 2 L 2 p⌦q `}⇣ptq} 2 H 4 p⌦q `}⌘ptq} 2 }⌘} 2 ÿ j"0 t uptq} 2 p}B j H 9{2 p q `}B t ⌘ptq} 2 H 2 p q 2 H 4 p q `}B 2 t ⌘ptq} 2 L 2 p q `ª t 0 D 2 f psqds § C 15 ´"´2 E 2 f p0q `" ª t 0 E 2 f psqds `"´2 ª t 0 E f pE 2 f `D2 f qpsqds C15 " ´29 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C15 " ´2E 3 f ptq `C11 " 1{4 E 4 H 1 p⌦q `ª t 0 D 2 f psqds `"1{4 p}B t ⇣} 2 H 2 p⌦q `}B 2 t ⇣} 2 L 2 p⌦q q § C 17 ª t ª t C17 ´"´9{4 E 2 f p0q `"3{4 0 E 2 f psqds `"´9{4 0 E f pE 2 f `D2 f qpsqds " ´117{4 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C17 p" ´9{4 E 3 f ptq `"1{4 E 4 f ptqq. f ptq. (3.289)
	2 H 4 p⌦q `}pu, B t u, B 2 t uqptq} 2 L 2 p⌦q `ÿ PN 2 ,1 §| | §4 ª t 0 }rB h upsq} 2 L 2 p⌦q ds `ÿ `ª t 0 }rpu, B t u, B 2 t uqpsq} 2 L 2 p⌦q ds PN 2 ,1 §| | §2 ª t 0 }rB t B ª t 0 E 2 f psqds `C2," ª t 0 D 2 f psqds `C3," ª t 0 p}pu, ⇣qpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C1," ª t 0 E f pE 2 f `D2 f qpsqds. H 9{2 p q }⇣ptq} (3.280) 2 H 4 p⌦q `}pu, B t u, B 2 t uqptq} 2 L 2 p⌦q `ª t 0 D 2 h psqds § C 1," E 2 f p0q `C6 E 3 f ptq `C14 " 3 ª t 0 E 2 f psqds `C2," ª t 0 D 2 f psqds `C3," ª t 0 p}pu, ⇣qpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C1," ª t 0 E f pE 2 f `D2 f qpsqds. (3.281) H 4 p⌦q }pu, B t u, B 2 t uqptq} 2 L 2 p⌦q `1 C 12 ª t 0 D 2 f psqds § C 1," E 2 f p0q `C6 E 3 f ptq `pC 14 `1q" 3 ª t 0 E 2 f psqds `C2," ª t 0 D 2 `C4," ª t 0 p}pu, ⇣qpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `pC 1," `1q ª 0 E f pE 2 f `D2 f qpsqds, C 10 " 1{4 § 2 . 1 t We continue refining " so that f psqds L 2 p⌦q `ª t 0 D 2 Dividing both sides of (3.286) by " 1{4 , one has f psqds § C 15 ´"´2 E 2 f p0q `" ª t 0 E 2 f psqds `"´2 ª t 0 E f pE 2 f `D2 f qpsqds C15 " ´29 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C15 " ´2E 3 f ptq. (3.284) Combining (3.244) and (3.284), one has " H 1 p⌦q }⌘ptq} 2 H 9{2 p q `}⌘ptq} 2 H 4 p q `}B t ⌘ptq} 2 H 2 p q `}B 2 L 2 p q `}⇣ptq} 2 H 4 p⌦q `}pu, B t u, B 2 t uqptq} 2 L 2 p⌦q 0 D 2 f psqds § H 1{2 p q `E4 f ptq C15 ´"´2 E 2 f p0q `" ª t 0 E 2 f psqds `"´2 t 0 E f pE 2 f `D2 f qpsqds C15 " ´29 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C15 " ´2E 3 f ptq. (3.285) C 11 " 1{4 § 1 2 , `C16 " L 2 p⌦q `E4 (3.288) f ptqq. Let us refine " so that `}qptq} 2 H 3 p⌦q `}B t qptq} 2 H 1 p⌦q 0 D 2 f psqds `"1{4 p}B t ⇣} 2 H 2 p⌦q `}B 2 t ⇣} 2 L 2 p⌦q q § C 16 f p0q `"3{4 0 E 2 f psqds `"´9{4 0 E f pE 2 f `D2 f qpsqds 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds " ´117{4 t ª ´"´9{4 E 2 ª t ª t C16 `ª t ª 2 ÿ j"0 p}B j t uptq} 2 H 4´2j p⌦q `}B j t ⌘ptq} 2 H 4´2j p q q `}⇣ptq} 2 H 9{2 p q H 4 p⌦q `}⌘} 2 `ª t Combining (3.287) and (3.241) in Proposition 3.15, we obtain t ⌘ptq} 2 2 ÿ j"0 p}B j t uptq} 2 H 1 p⌦q `ª t 0 D 2 f psqds § C 16 ´"´9{4 E 2 f p0q `"3{4 ª t 0 E 2 f psqds `"´9{4 ª t 0 E f pE 2 f `D2 C16 (3.287) E 2 f ptq `ª t 0 D 2 f psqds § C 18 ª t ª t C18 ´"´5{2 E 2 f p0q `"1{2 0 E 2 f psqds `"´5{2 0 E f pE 2 f `D2 (3.290) f qpsqds ª t " ´59{2 0 p}p⇣, uqpsq} 2 f qpsqds " ´117{4 ª t 0 p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds `C16 " ´9{4 E 3 f ptq. Switching "
	(3.282)

h

where C 4," " C 3,"

`"´9 . Let 0 † " § 1 be sufficiently small such that

C 2," § 1 2C

12

.

  3.295) and Proposition 0.3 holds. Hence, it follows from (3.110) that Consequently, for all t § mintT , T ‹ , T ‹‹ u,}U ,M ptq} 2 E f § 2C M }U ,M p0q} 2 E f ` M , u ,M qpsq} 2 L 2 p⌦q `}⌘ ,M psq} 2 L 2 p q qds § M

		E 2 f ptq § M `ª t 0 4 ª t 0 E 2 D 2 f psqds f psqds `C M t ª	´E2 f p0q	`ª t 0	E f pE 2 f	C f ptq f qpsqds `E3 `D2 (3.296)
					M	0	p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds.
	Refining also 0 , we get			
							C M 0 §	1 2	and C M 0 §	M 4	,	(3.297)
	one thus has						
	1 2	E 2 f ptq	`1 2	ª 0 t	D 2 f psqds § C M E 2 f p0q `´ ª t	M 4	` C M	¯ª t 0	E 2 f psqds
								`C M	0	p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds ª t	(3.298)
							§ C M E 2 f p0q ` ª t	M 2	0	E 2 f psqds
								`C M	0	p}p⇣, uqpsq} 2 L 2 p⌦q `}⌘psq} 2 L 2 p q qds.
										ª	t
									ª	t	0	}U ,M psq} 2 E f ds
							`2C M	0	p}p⇣ ,M

ª t 0 }U ,M psq} 2 E f ds `C23 2 F 2 M ptq.

Applying Gronwall's inequality, the resulting inequality tells us that

}U ,M ptq} 2 E f § C 23 ´ 2 F 2 M ptq ` 2 ª t 0 e M pt´sq F 2 M psqds ¯.

(3.299)

  u d psq| 2 ds § z 1 `ª⌦ g⇢ 1 0 |u d 3 ptq| 2 ´ª g⇢ `|u 3 ptq| 2 `C24 |B t u d p0q| 2 ´ª⌦ g⇢ 1 0 |u d 3 p0q| 2 `ª g⇢ `|u d 3 p0q| 2 . |B t u d ptq| 2 `ª t |B t u d | 2 `⇤ ª ⌦ ⇢ 0 |u d | 2 . (3.310) Three above inequalities (3.308), (3.309) and (3.310) imply that It follows from U d p0q " 2 U ,M ‹ that z 1 À 4 , this yields z 1 ⇤ `ª⌦ µ|Su d p0q| 2 À 4 . We then estimate }⇣ d ptq} L 2 p⌦q . Due to (0.134) 1 , we obtain }⇣ d ptq} 2 L 2 p⌦q À }⇣ d p0q} 2 L 2 p⌦q `}Q 1 pU ,M qpsq} 2 L 2 p⌦q qds. (3.318) Note that ⇣ d p0q " 2 ⇣ ,M ‹ and thanks to (3.198) also, the inequality (3.318) implies }⇣ d ptq} 2 L 2 p⌦q À 4 `ª t
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	and that ⇢ 0 d d dt ª ⌦ ⇢ 0 |u d | 2 § ª 1 ⇤ ⌦ L 2 p⌦q `ª t 0 p}u d 3 psq} 2 dt ª ⌦ ⇢ 0 |u d ptq| 2 `1 2 ª ⌦ µ|Su d ptq| 2 § z 1 ⇤ `ª⌦ `⇤ ª 0 µ|Su d p0q| 2 `2⇤ t ª ⌦ µ|Su d psq| 2 ds `C24 ª ⌦ ⇢ 0 |u d ptq| 2 3 F 3 0 p}u d 3 psq} 2 L 2 p⌦q `}U ,M psq} 4 E f qds M ptq, À 4 `ª t 0 p}u d 3 psq} 2 L 2 p⌦q ` 4 F 4 M psqqds.	(3.311)
	Hence, the inequality (3.311) implies	
	d dt	ª							t 0	ª ⌦	µ|Su d psq| 2 ds	(3.312)
								`C25	3 F 3 M ptq,
	In view of Gronwall's inequality, we obtain from (3.312) that
		ª	ª	t	ª			ª	t	.306)
				0	⌦	µ|Su d psq| 2 ds § C 25	3	0 ª t	e 2⇤pt´sq F 3 M psqds	(3.313)
	Substituting (3.304), (3.305) and (3.306) into (3.303), we obtain that § C 26 3 0 e 2⇤pt´sq F M p3sqds.
	ª Due to (0.129), we obtain for 1 § j § N , ª t 0 e p3 j ´2⇤qs ds " 1 3 j ´2⇤ pe p3 j ´2⇤qt ´1q § where z 1 " ª ⌦ and for j • N `1, ª t 0 e p3 j ´2⇤qs ds " 1 3 j ´2⇤ pe p3 j ´2⇤qt ´1q § 1 3 j ´2⇤ 2⇤ ´3 j 3 F 3 e p3 j ´2⇤qt M ptq, 1 . ⇢ 0 Thanks to Lemma 3.8, we deduce from (3.307) that ª ª Substituting (3.314) and (3.315) into (3.313), we observe that if M § N ,	(3.307) (3.314) (3.315)
	0 ⇢ 0 |u d ptq| 2 `1 2 ⌦ µ|SB t u d psq| 2 ds ⇤ ª ⌦ µ|Su d ptq| 2 `C23 }ru d psq} 2 ª ⌦ `ª t `⇤2 L 2 p⌦q § z 1 }u d ptq} 2 0 L 2 p⌦q ds § C 26 3 ´M ÿ j"jm |c j | 3 j ´2⇤ 3 F 3 e 3 j t ¯(3.316) (3.308) M ptq. Using Cauchy-Schwarz's inequality, we have that and if M • N `1,
	ª	}u d ptq} 2 L 2 p⌦q § C 26 `ª t 0	L 2 p⌦q ds }ru d psq} 2 3 ´M ÿ j"jm |c j | 3 j ´2⇤	e 3 j t `M ÿ j"N `1	2⇤ ´3 j |c j |	e 2⇤t	¯.	(3.309) (3.317)

⌦ ⇢ 0 |B t u d ptq| 2 `ª t 0 ª ⌦ µ|SB t ⌦ ⇢ 0 ⌦ µ|Su d ptq| 2 " ª ⌦ µ|Su d p0q| 2 `2 ª t 0 ª ⌦ µSu d psq : SB t u d psqds § ª ⌦ µ|Su d p0q| 2 `1 ⇤ ª t 0 ª ⌦ µ|SB t u d psq| 2 ds `⇤ ª t 0 ª ⌦ µ|Su d psq| 2 ds ⌦ ⇢ 0 |u d ptq| 2 `1 2 ª ⌦ µ|Su d ptq| 2 § 2⇤ ª ⌦ ⇢ 0 |u d ptq| 2 `⇤ ª ⌦ ⇢ 0 |u d ptq| 2 `1 2

  , we further get }⌘ d ptq} 2 L 2 p q À }⌘ d p0q} 2 Using (3.316), (3.317) and (3.320) again, we have that }⌘ d ptq} 2 L 2 p q is bounded above like (3.321) or (3.322). Together with (3.316), (3.317), (3.321) and (3.322), Proposition 3.18 is proven. Hence, we have }u M ptq} L 2 p⌦q • C 28 F M ptq, (3.324) for all t § mintT , T ‹ , T ‹‹ u. Indeed, if T ‹ † T , we have from (3.294) that}U ,M pT ‹ q} E f § C 22 F M pT ‹ q † C 22 F M pT q " C 22 " 0 † 2C190 , which contradicts the definition of T ‹ in (3.292). If T ‹‹ † T , we obtain from the definition of C 20 (3.291) and the inequality (3.293) that

	Let Now, we show that		cpM q " max N `1 §j §M	|c j | |c jm |	• 0.
				T § mintT ‹ , T ‹‹ u	(3.325)
	by choosing					
	" 0 † min	´2C 19 0 C 22	,	C 2 20 C 21 p1 `McpM qq 3 ,	C 2 28 4C 21 p1 `McpM qq 2 ¯.	(3.326)
				L 2 p q	`ª t 0	p}u d 3 psq} 2 H 1 p⌦q `}U ,M } 2 E f qds
		À 4 `ª t 0	p}u d 3 psq} 2 H 1 p⌦q ` 4 F 4 M psqqds.

Remerciements

The difference functions

Let d " ´ M , u d " u ´ u M , q d " q ´ q M . Since p , u , q q solves the nonlinear equations (0.55) and p M , u M , q M q solves the linearized equations (0.57), we have that p d , u d , q d q satisfies (0.79) $ ' ' ' & ' ' ' % B t d `⇢1 0 u d 2 " ´u ¨r , ⇢ 0 B t u d ´µ u d `rq d " ´ B t u ´p⇢ 0 ` qu ¨ru ´g d e 2 , divu d " 0.

along with the initial condition (0.80), p d , u d qp0q " 0 and the boundary conditions (0.81).

$ ' ' ' & ' ' ' %

The compatibility conditions read as u d 1 p0, x 1 , ´1q " u d 1 p0, x 1 , 1q, divu d p0q " 0.

(2.39)

We now establish the error estimate for }p d , u d q} L 2 p⌦q .

Proposition 2.8. For all t § minpT , T ‹ , T ‹‹ q, there holds Proof. For ⌧ P t0, 1u,

⌧ j c j e j t U j pk 0 , xq, with A, B, C, D are four constants such that A 2 `B2 `C2 `D2 °0. Let us compute from (3.99) that 1 k px 3 q " pA `kD `kCx 3 q sinhpkx 3 q `pC `kB `kAx 3 q coshpkx 3 q, 2 k px 3 q " p2kC `k2 B `k2 Ax 3 q sinhpkx 3 q `p2kA `k2 D `k2 Cx 3 q coshpkx 3 q. and 3 k px 3 q " p3k 2 A `k3 D `k3 Cq sinhpkx 3 q `p3k 2 C `k3 B `k3 Ax 3 q coshpkx 3 q. Substituting these formulas into ( We also obtain that (3.101) is equivalent to

We also have

The proof of Proposition 3.12 relies on Lemmas 3.10, 3.11 and 3.12 below.

Lemma 3.10. Let J be defined as in (0.93). For any scalar function # P R and any vector function % P R 3 , there holds ª

Proof. We have from the integration by parts that ª

Note also that B j pJA ij q " 0 for all 1 § i § 3, 

´ª pg⇢ `Bl t ⌘F 4,l `F 5,l ¨Bl t uq.

(3.145) Lemma 3.12. The following inequalities hold

By Young's inequality, we have

Using also the trace theorem, we have ª g⇢ `⌘B t u 3 À }⌘} L 2 p q }B t u} H 1 p⌦q .

(3.256)

Because of (3.198) and the trace theorem again, one has 

f . Using Young's inequality, we further get for any ⌫ °0,

Let ⌫ °0 be sufficiently small, the inequality (3.252) follows from (3.258).

To prove (3.253), we differentiate (4.2) 2,5 with respect to t and then eliminate the terms B t ⇣, B t ⌘ by using (4.2) 1,4 to deduce that

Multiplying both sides of (3.259) 1 by B 2 t u, we obtain that ª

Using the integration by parts, we have that ª 

(3.261)

We estimate each integral in the r.h.s of (3.261). For the first integral, we use the trace theorem to have

For the fourth and fifth integral, we bound as

For the other integrals, we use (3.198) to obtain ª

and use the trace theorem also to obtain We are able to show Proposition 3.17.

Proof of Proposition 3.17. We apply the elliptic estimate (3.4) to

Note that M † j for all 1 § j § M ´1, we have 

(3.301) Multiplying both sides of (3.301) 1 by B t u d , we obtain that

(3.302)

Using the integration by parts, we deduce from the resulting equality that

Substituting (3.301) 2,3 into (3.302), we have

This yields Since j m " mintj : 1 § j § N, c j ‰ 0u, we have

It can be seen that

By Cauchy-Schwarz's inequality, we obtain

This implies

Due to the assumption (0.132), we deduce that

side. For the profile ⇢ 1 0 compactly supported, we have the similar spectral analysis and we prove the existence of an infinite sequence of characteristic values to the linearized equations.

The second contribution of this thesis is to construct a wide class of the initial data to the nonlinear problem to give rise to nonlinear Rayleigh-Taylor instability in [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF] and [START_REF] Nguyπn | Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean[END_REF]. Indeed, we consider a linear combination of normal modes to set its value at initial time t " 0 as an initial datum of the nonlinear problem of size a small parameter °0. In [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF], this step is straightforward. In [START_REF] Nguyπn | Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean[END_REF], due to the complicated structure of the nonlinear equations caused by the Lagrangian transformation, a term of order 2 has to be constructed and added to ensure that the initial data satisfy the compatibility conditions. The nonlinear equations with the above initial data have a unique local-intime solution with a suitable regularity. By exploiting some energy estimates thanks to Cauchy-Schwarz's inequality, Sobolev embedding and Gronwall's inequality for the nonlinear equations, we prove in [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF] the nonlinear Rayleigh-Taylor instability in a high regime of viscosity µ °3µ c p⌅q. Similarly, using further Gagliardo-Nirenberg's inequality for the nonlinear terms in the last case [START_REF] Nguyπn | Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an infinitely deep ocean[END_REF], these nonlinear terms being more complex than those ones in [START_REF] Nguyπn | Linear and Nonlinear analysis of the Rayleigh-Taylor system with Navier-slip boundary conditions[END_REF], we conclude on the nonlinear Rayleigh-Taylor instability for all positive viscosity.

We highlight that our nonlinear results extend the previous framework of Guo-Strauss [START_REF] Guo | Instability of periodic BGK equilibria[END_REF] and of Grenier [START_REF] Grenier | On the nonlinear instability of Euler and Prandtl equations[END_REF], where only the maximal normal mode was used to construct the initial data and this gives rise to the nonlinear instability.

Perspectives

In the last part of this thesis, we introduce our future works.

Nonlinear Rayleigh-Taylor instability for Navier-Stokes-Korteweg equations

In the book of Chandrasekhar [START_REF] Chandrasekhar | Hydrodynamics and Hydromagnetic Stability[END_REF], as well as viscosity, the impact of other of physical factors has been considered in the RT instability, such as, magnetic field, surface tension, etc. One of our ideas is to study the influence of capillary coefficient. The Navier-Stokes-Korteweg equations describing the motion of a nonhomogeneous incompressible viscous fluid in the presence of a uniform gravitational field in a horizontally periodic domain ⌦ " p2⇡LTq where t • 0, x " px 1 , x 2 , x 3 q P ⌦. The unknowns ⇢ :" ⇢px, tq, u :" upx, tq and P :" P px, tq denote the density, the velocity and the pressure of the fluid, respectively, while ⌫ °0 is the viscosity coefficient, °0 is the capillary number, g °0 being the gravity constant.

A hydrostatic state p⇢ 0 px 3 q, 0, P 0 px 3 qq such that

is a steady state solution of (4.1). The perturbations

´ pr⇢ 0 ⇣ `⇢2 0 r⇣q `⌫divp⇢ 0 ruq ´g⇣e 3 , divu " 0.

In the same manner of Section 0.4, the search of normal modes to the linearized equations (4.3) implies to the existence of nontrivial and bounded solutions of the following ODE:

with the limits lim |x 3 |Ñ8 pxq " 0.

Let the capillary number °0 be given and the effect of the viscosity be omitted (⌫ " 0), Bresch, Desjardins, Gisclon and Sart [START_REF] Bresch | Instability results related to compressible Korteweg system[END_REF] showed the asymptotic limit of the characteristic value under a small perturbation of wave number k in the spirit of [START_REF] Cherfils-Cléouin | Asymptotic results for the linear stage of the Rayleigh-Taylor instability[END_REF].

Let us consider the density profile ⇢ 0 , which is increasing and satisfies (0.31)-(0.32), i.e.

0 is a nonnegative function of class C 1 0 pRq, suppp⇢ 1 0 q " r´a, as, and outside p´a, aq, we denote

Perspectives 188 with 0 † ⇢ ´ † ⇢ `are two positive constants. With the presence of the viscosity and the capillary number, the first goal is to find the effect of on the existence of infinitely many characteristic values in the ODE (4.4) and the second goal is to prove the nonlinear Rayleigh-Taylor instability for Eq. (4.1) in a suitable regime of capillary number.

Nonlinear instability of a two-fluid model

Note that, in this thesis, we focus on a fluid model, where the density is continuous. Meanwhile, the two-phase interface systems, i.e. the density has a jump, appear in lots of problems, e.g. describing propagation of waves between air and water. Hence, we propose to continue our method on a two-fluid model.

We refer to the book [START_REF] Rajagopal | Mechanics of mixtures[END_REF] for the description of various mathematical models for mixtures of several phases being already studied. We describe for example a model for a mixture of two phases for densities ⇢ i and velocities

In this equation, b i is the specific external body force, and m i is the momentum supply due to the interaction between the i th constituent and other constituents (interactive body force). The term i represents the stress term, typically of the form i " ´pi Id ⌧i

, where p i Id represents the pressure part and ⌧ i is a viscous part. These two fluids are separated by a free surface z " ⌘ and on which, we have the kinematic relation

and the pressure is continuous across this surface.

Instead of (4.5), a method by means of averaged equations will help us to simplify the complexity of of multiphase flows, see e.g. [START_REF] Ishii | Thermo-Fluid Dynamic Theory of Two-Phase Flow[END_REF]. By using volume-averaging, one then obtains averaged equations for mass, momentum and energy expressed in terms of some volume-averaged quantities. As a part of this procedure, the volume fraction variable 0 § ↵ ` § 1 of the liquid (water) and 0 § ↵ ´ § 1 of the gas (air) appears and it yields a generic two-phase compressible system without free surface in p0, T q ˆ⌦ p⌦ Ä R 3 q, $ ' ' ' ' ' & ' ' ' ' ' % ↵ ´`↵ `" 1, B t p↵ ˘⇢˘q `divp↵ ˘⇢˘u˘q " 0, B t p↵ ˘⇢˘u˘q `divp↵ ˘⇢˘u˘b u ˘q `↵˘r P ˘p⇢ ˘q " divp↵ ˘⌧ ˘q, P `p⇢ `q ´P ´p⇢ ´q " f p↵ ´⇢´q . (4.6) 4.2. Perspectives 189 ⇢ ˘, u ˘and P ˘p⇢ ˘q " A ˘p⇢ ˘q ˘are, respectively, the densities, the velocity of each phase, and the two pressure functions. It is assumed that are ˘• 1 and A ˘" 1. The capillary pressure f P C 3 pR `q and ⌧ ˘are the viscous stress tensors, given by ⌧ ˘" µ ˘pru ˘`r T u ˘q ` ˘divu ˘Id.

where the constants µ ˘and ˘are shear and bulk viscosity coefficients satisfying µ ˘°0 and 2µ ˘`3 ˘°0.

In [START_REF] Bresch | Global weak solutions to a generic two-fluid model[END_REF], Bresch, Desjardins, Ghidaglia and Grenier studied a general system of the form (4.6) by adding the influence of capillarity effects ˘°0, hence a third order derivative of ↵ ˘⇢˘w hich accounts for internal capillary pressure forces by the so-called Korteweg model. With additional assumptions, i.e. P `" P ´, µ ˘depending on ⇢ ȃnd ˘" 0, the authors investigated the global well-posedness of that general system in ⌦ " T 3 .

Let us discuss about (4.6) in ⌦ " R 

with initial data pn `, u `, n ´, u ´q| t"0 " pn 0 , u 0 , n 0 , u 0 qpxq Ñ 0 as |x| Ñ 8.

Here, F i p1 § i § 4q are the nonlinear terms and i p1 § i § 4q are positive constants satisfying that

´ 1 4 has the same sign as f 1 p1q. In [START_REF] Evje | Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model[END_REF], Evje, Wang and Wen prove the global stability of the trivial equilibrium state for (4.7) when f 1 p1q † 0. The stability is still true if f 1 p1q " 0 and has been proven recently by Wu, Yao, Zhang [START_REF] Wu | Global well-posedness and large time behavior of classical solutions to a generic compressible two-fluid model[END_REF]. In contrast, if f 1 p1q °0, the same authors show that the trivial state is nonlinearly unstable in [START_REF] Wu | On instability of a generic compressible twofluid model in R 3[END_REF].

We begin the investigation of that problem in the case, where ⌦ is a bounded domain in R 3 .

Nonlinear instability of the Zeldovitch-von Neumann-

Döring detonation

Another problem we can study is the ZND detonation. The ZND system, used to study combustion, for the unknowns specific volume v, particle velocity u " pu x , u y , u z q, where p " ppv, S, q is pressure, T is temperature, F is the free energy increment, and r " rpv, S, q is the reaction rate function.

In three space dimensions with coordinates px, y, zq a steady planar strong detonation profile is a weak solution of this system depending only on x with a jump (the stationary von Neumann shock) at x " 0. Hence, we study profiles of the form wpxq " pv, u, 0, 0, S, qpxq. The solution u is constant and supersonic (u °c0 , where c 0 is the sound speed at x) in x † 0 (the quiescent zone) and u has an exponential decay at `8. A suitable Rankine-Hugoniot condition at x " 0 for u is required to make u to be a weakly well-defined solution in the vicinity of x " 0. Furthermore, there is a need of defining a limiting state w 8 " lim xÑ`8 wpxq, which represents a state of chemical equilibrium.

Erpenbeck [START_REF] Erpenbeck | Stability of steady-state equilibrium detonations[END_REF] was the first one to perform a study of linearized ZND detonations. After writing the perturbations as normal modes e ⌧ t`ik 1 y`ik 2 z V pxq, he reduces the linear study into the investigation of a 5ˆ5 system of ODEs. A different point here is that no variational formulation can be found due to the non self-adjointness of the ODE system of odd order. Erpenbeck defined a stability function V p⌧, kq pk " a k 2 1 `k2 2 q, whose zeros in the right half plane Re⌧ °0 correspond to the characteristic values in our setup in this thesis. For certain classes of steady ZND profiles, he provided some rigorous, and also non-rigorous arguments to prove the existence of unstable zeros of V in the high frequency regime k Ñ 8. A method based on linear turning point theory was used by Lafitte, Williams and Zumbrun [START_REF] Lafitte | The Erpenbeck high frequency instability theorem for Zeldovitch-von Neumann-Dring detonations[END_REF][START_REF] Lafitte | High-frequency stability of detonations and turning points at infinity[END_REF] to complete the linear stability/instability. In particular, for the instability result, the authors obtain a sequence tk n u n•1 such that Re pk n q °0. It would be interesting to state the main results of [START_REF] Lafitte | The Erpenbeck high frequency instability theorem for Zeldovitch-von Neumann-Dring detonations[END_REF][START_REF] Lafitte | High-frequency stability of detonations and turning points at infinity[END_REF] as a spectral result in the same spirit of this thesis and then extend the linear study to the nonlinear one, if possible.

As a last point, we hope to revisit the second theorem of the first paper [START_REF] Lafitte | Spectral analysis of the incompressible viscous Rayleigh-Taylor system[END_REF], that only shows the existence of possibly multiple characteristic values to the linearized equations. We expect that the method initiated by [START_REF] Lafitte | High-frequency stability of detonations and turning points at infinity[END_REF] would be helpful to show the existence of infinitely many characteristic values for the density profile ⇢ 0 such that |⇢ 0 pxq ´⇢0 p8q| § Ce ´ |x| for some positive constants C and .