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Résumé

L’étude de la stabilité des écoulements laminaires satisfaisant un systeme d’équations
hyperboliques a beaucoup attiré I'attention des physiciens et des mathématiciens en
raison de son apparition dans de nombreux modeles en mécanique des fluides, par ex.
Rayleigh-Taylor, Kelvin-Hemholtz, détonation de Zeldovitch-von Neumann-Doring.
En particulier, I'existence de modes normaux pour les problemes linéarisés autour
de ces écoulements stationnaires a conduit a de nombreux résultats théoriques et
numériques. Pendant ce temps, l'utilisation des résultats d’instabilité linéaire pour
obtenir des résultats d’instabilité non linéaire est un défi mathématique en raison du
manque d’'informations sur le spectre complet du probleme linéarisé. Différents cadres
abstraits sont développés pour prouver l'instabilité non linéaire avec des applications
a divers systémes non linéaires en mécanique des fluides. Dans cette theése, nous nous
intéressons a un modele particulier, l'instabilité visqueuse de Rayleigh-Taylor pour
un profil lisse de densité croissante. Le premier objectif est de décrire et d’utiliser
une nouvelle méthode, basée sur la théorie des opérateurs, pour prouver l'existence de
multiples modes normaux au probléme linéarisé. Ces multiples modes normaux, ainsi
que les estimations d’énergie non linéaires, nous aident a prouver une instabilité non
linéaire générale, étendant un cadre célebre de Guo et Strauss et de Grenier. Il semble
pertinent d’appliquer cette méthode a d’autres systémes non linéaires, notamment le
model de bi-fluid ou les équations de détonation de Zeldovitch-von Neumann-Déring

(généralisant les résultats semi-classiques du probleme linéarisé déja connus).






Abstract

The study of the stability of laminar flows satisfying a system of hyperbolic equa-
tions has attracted a lot of attention of physicians and mathematicians due to its
appearance in numerous models in fluid mechanics, e.g. Rayleigh-Taylor, Kelvin-
Hembholtz, Zeldovitch-von Neumann-Doring detonation. In particular, the existence
of normal modes for the linearized problems around this steady flows led to many
theoretical and numerical results. Meanwhile, using the linear instability results to
obtain nonlinear instability results is a mathematical challenge because of the lack of
information about the complete spectrum of the linearized problem. Different abstract
frameworks are developed to prove the nonlinear instability with applications to various
nonlinear systems in fluid mechanics. In this thesis, we are interested in a particular
model, the viscous Rayleigh-Taylor instability for a smooth increasing density profile.
The first goal is to describe and use a new method, based on the operator theory, to
prove the existence of multiple normal modes to the linearized problem. These multi-
ple normal modes, along with nonlinear energy estimates, help us to prove a general
nonlinear instability, extending the previous framework of Guo-Strauss and of Grenier.
It seems relevant to apply that method to other nonlinear systems, including the two-
fluid model or the Zeldovitch-von Neumann-Déring detonation equations (generalizing

the semi-classical results of the linearized problem already known).
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Chapter 0O
Introduction

Many decades ago, the mathematical theory of partial differential equations of non-
linear evolution began with the study of the local/global existence in time of solutions
in some suitable functional spaces. Beyond the local/global existence in time of regular
solutions to the evolution PDEs in fluid mechanics, the stability study of a steady flow
or of a travelling wave solution, including the theoretical and numerical investigation,

is also a vast subject that has attracted both mathematicians and physicians.

Let us quote the definition from Lyapunov in 1892 [56] and from Chandrasekhar
in 1961 [7]. We assume that there is a local existence theorem for the nonlinear and
we consider its perturbed form departing from the equilibrium. From the initial data,
either the perturbation terms measured in a Sobolev norm will moderately slow down,
or at least one of the perturbation terms measured in a Sobolev norm will blow up
and never revert to its initial value. If the former case happens, we say that the
equilibrium is stable with respect to the particular perturbation terms and if the latter

case happens, we say that it is unstable.

There is still another viewpoint on instability, initially formulated by Hadamard in
1902 [39], and is called the instability in the sense of Hadamard. It states that a problem
is Hadamard stable or well-posed if the solution is unique on a time interval (0,7") and
the solution’s behaviour depends continuously on the initial conditions. Otherwise, the

problem is called Hadamard unstable or ill-posed.

The aim of this thesis is the mathematical study of instability properties of a vis-
cous system of conservation laws, described by a nonlinear model. For this purpose,
we follow the definition of nonlinear instability of Grenier [35] and refer to (0.1) for

technical details.

In the first step of studying the stability of the fully nonlinear equations, we intend
to analyze the linearized equations, which are obtained by omitting all nonlinear terms.
This corresponds to a spectral problem depending on various physical parameters.
Once this spectral problem is solved, one looks at the behavior of the linear solutions

using the spectral results. If the linear problem is unstable, the second step is to obtain
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the nonlinear instability from the linear one. The nonlinear results are harder to obtain
and less frequent in the literature, because of the unboundedness of spectral radius and
the effect of nonlinear terms on the control of the exponential growth of any solution
to the linearized equations.

In this introductory chapter, we will present the problem in an abstract setting
and then describe the structure of this thesis. The rest of the manuscript is to present
the three main problems completed during this thesis, which resulted in one paper

published and two papers submitted.

0.1 Abstract problem

We consider a viscous system of conservation laws,

d
QU + > 0a, Fy(U Z 0, (Bi(U)o,,U) + Fuuy(U), zeQcRLt>0, (0.1)
j=1 J,l=1
where U € R", I}, € R", Bj;, is a square matrice of order n, F,. is the external force,
with initial data U(z,0) = Uy(z), which admits a steady-state solution depending only
on gy,

U=U(zq), lim U(zy) =Us. (0.2)

Tq—+00
The domain Q is of type R4, R x R, R x [-1,1],T¢! x R, T x R* or
T x [-1,1]. That type of hyperbolic PDE appears in numerous models of hydrody-
namics, for example, Rayleigh-Taylor [69, 75], Kelvin-Hemholtz [40, 48], Zeldovich-Von
Neuman-Doring detonation [17, 18, 19, 20, 21|, Hodgkin-Huxley [43], etc. A fundamen-
tal question connected to the physical motivations is to study the stability of such a
solution U in the sense of PDE. That is the goal of this thesis.

Writing the perturbation V' = U —U, we obtain another formulation of (0.1) around
U written in (0.2), by writing

d d
OV + Y0 Fj(U+V) = Z (Bu(U + V)0, (U + V) + Fun(T+V), xeQt>0,

j=1
which rewrites

oV + LgV =Ng(V), (0.3)

where L7V is the linearized part
d d B ) )
LoV =Y 0., (0 F) 2 ( 0)0,,V + (aUd Jd(U)ade> v)  0p P (D)W,
=1 =1

and Ny (V) is a nonlinear term on V.

We aim at studying the stability of the solution V' =0 to (0.3). As we said before,

the general strategy contains two steps:
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Step 1. Prove the linear instability, by performing the spectral analysis of the lin-

earized equations.

Step 2. Investigate the nonlinear instability by using the spectral results obtained for

the linear equation and by exploiting some energy estimates.

We discuss first the linear instability. Note that the linearized system
oV + LgV =0 (0.4)
can be rewritten as
L0, Cyy - -y Ozgs Oa2, - - - 5 ﬁxgl)V =0,

where £ is a linear operator from R2?¥*! to R", which coefficients depend only on
x4 through the stationary solution. As the coefficients of £ do not depend on ¢ or

z;(1 < j < d—1), the linear study focuses on solutions of (0.4) of the form
V(t,z) = eMQ(k, x) = eMTikwrt o tikaazaayys (g, (0.5)

Such functions V (¢, x), as well as ReV/ (¢, ), are called normal mode solutions to the
linearized equation. Substituting (0.5) into (0.4), we obtain a system of ODEs of W
in the variable x4,

pe

c(mkl, 7 T R I

o )W ~ 0. (0.6)

The system (0.6) might also be seen as the system obtained on the Fourier transform
in 1,...,24-1 and the Laplace transform in ¢ of a solution V of (0.4). The vector

k = (ki1,...,kq_1) is called the wave number and throughout this thesis, we write

k:z]k|=\/k:%+~--+k;§_1

We call linear growth rate or characteristic value of system (0.6) a value of A € C
(depending on k) such that Re\ > 0 and there exists a non-trivial and bounded solution
Wz, k,\) to (0.6).

In aforementioned cases, some methods have been developed to solve system (0.6).
For the Rayleigh-Taylor instability, we refer to Lafitte [50], Guo-Hwang [29], Helffer-
Lafitte [42] and Guo-Tice [32], where the authors exploit the variational structure of the
linearized equation due to its self-adjoint setting. In case of non self-adjoint problems,
there is a method due to Evans [22, 23, 24, 25], defining a particular function of A,
called now the Evans function, which roots in ReA > 0 are the desired characteristic
values. The Evans function is related to the determinant at an arbitrary point zJ of
the family containing the independent decaying solutions at +o0 and the similar one
at —oo. That method is useful in numerical analysis and has been frequently used by
Zumbrun and his collaborators, see e.g. [28, 63, 2, 57|, to study the stability of shock

waves. Mention also the application of the linear turning point theory for a system
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of ODEs to study the Zeldovitch-Von Neumann-Doéring detonation by Erpenbeck first
[17] and then by Lafitte, Williams and Zumbrun [52, 53] completely.

For the fully nonlinear equation (0.3) in this thesis, we use the following definition

of nonlinear instability of Grenier [35, Definition 2.1].

Definition 0.1. We say that the trivial solution V = 0 of (0.3) is nonlinearly unstable
if there exist positive constants €y and Cy such that for every s arbitrarily large and

every § > 0 sufficiently small, there exists a solution V' of (0.3) satisfying

[V (0, )]

Hs(Q) < 5, and ||V(T6,.Z')HL2(Q) = €

for some times T°, where
T° < Oy(1+1In(1+071).

Based on the existence of normal modes to the linearized equation (0.4), different
frameworks are constructed to prove the nonlinear instability in the sense of Definition
0.1, see e.g. Guo-Strauss [30], Grenier [35], Desjardins-Grenier [12, 13]. These frame-
works were used to study the nonlinear instability in numerous models, e.g. Rayleigh-
Taylor instability by Guo-Hwang [29], Tice-Wang [71], instability of the Lane-Emden
steady star configurations by Jang-Tice [36], instability of solitary waves by Rousset-
Tzvetkov [66, 67, 68], instability of Euler-Korteweg solitons by Paddick [64].

0.2 Plan of this thesis

In this thesis, we study an incompressible model related to the viscous Rayleigh-
Taylor instability, which can be stated as in (0.1)-(0.2). The domain Q is 397! x I,
where ¥ = R or 27LT (L > 0) and I = R,R_ = (—0,0) or (—1,1). The governing

equations are

0ip + 21 O, (pug) = 0,
at(pum) + Zj:l al”j (pumu] + P) = Z?:l al’j (/Jlaxjum) — gpeEad, (07)
Z?:l 5juj = 0,

where eg = (0,...,0,1)T. We are interested in the instability of a hydrostatic equilib-
rium to (0.7),

. dP,
(po(xa),0, Po(zq)), satisfying d—xZ=—gpo. (0.8)

For this function py, we define the characteristic length Lo such that Lj' :=
maXqer |00/ Pol
We recall the classical (inviscid) problem and well-known results in mathematics in

the next part, Section 0.3. In this thesis:
1. The first chapter presents the results of
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[51]: Spectral analysis of the incompressible viscous Rayleigh-Taylor system in R?,

which appeared in Water Waves (to be summarized in Section 0.4). This chapter stud-
ies the spectral analysis of the viscous Rayleigh-Taylor instability around an increasing
density profile pg(x4). For this, we develop an operator method, using the spectral
theory of self-adjoint and compact operators, to prove the existence of multiple char-
acteristic values A(k), i.e.

AM(k) > Aa(k) > ...,

A= sup (k) < /L. (0.9)
k LO

This implies the existence of multiple normal modes {€*®*Q;(k, )} 5, of type (0.5) to

such that

the linearized equations. That result is inspired by the inviscid study of Helffer-Lafitte
[42] and gives more information on the discrete spectrum of the linearized equations
than previous results of Guo-Hwang [29] and Guo-Tice [32] where only the largest

characteristic value A\; (k) is found via the variational approach.

2. In Chapter 2 (to be detailed in Section 0.5) and Chapter 3 (to be detailed in Section
0.6), we continue the investigation of Rayleigh-Taylor instability in other settings,

respectively,
1. [61]: Linear and Nonlinear analysis of the viscous Rayleigh-
Taylor  system  with  Navier-slip  boundary  conditions, preprint,

https://arxiv.org/abs/2204.09857,

2. [62]: Nonlinear Rayleigh-Taylor instability of the viscous surface waves in an

infinitely deep ocean, preprint.

We apply the operator method initiated in [51] to prove the existence of multiple
normal modes to the linearized equations. Furthermore, we prove the nonlinear viscous
Rayleigh-Taylor instability, i.e. the steady state solution (0.8) if the viscous RT system
is nonlinearly unstable. Since the characteristic values \;(k) (j = 1) are bounded by
\/LZO for any k, we use the following procedure:

Step 1. Establish the a priori energy estimate for the local exact solution to the nonlinear

equation of type (0.3) with any initial data,
Step 2. Formulate a linear combination of normal modes to the linearized equation of
type (0.4) to make it to be an approximate solution V?PP, i.e.

VAPP(t 1) Z ;e MQ;(k,x) for any M e N*,

to the nonlinear equation (().3). We then set §V*PP(0,z) (0 < 0 « 1) as the
initial data to the nonlinear equation (0.3). Eq. (0.3) with those initial data has

a unique local exact solution Vet on [0, T™*),



0.3. The classical Rayleigh-Taylor instability 13

Step 3. We then define the difference V4 = yexact _ §/apP which satisfies
atvdiff + LUVdiff _ NU(Vexact» (010)

We deduce the bound in time of V4 (2)||12q) by exploiting energy estimates to
(0.10) and the bound in time of |Vt (¢)]

a priori energy estimates in Step 1,

ms(q), which is obtained thanks to the

Step 4. Conclude on the nonlinear instability by combining these above estimates.

Note that, in the results of Guo-Strauss [30] and of Grenier [35], only the maximal
normal mode eM®*Q, (k,r) was used in Step 2 to derive a solution of the nonlinear
equation whose initial datum 6@, (k,x) (0 < § « 1). Let us emphasize that, our non-
linear results show that a wide class of initial data to the nonlinear problem departing
from the equilibrium give rise to the nonlinear instability. These initial data are de-
duced from a linear combination of normal modes. Beyond the viscous Rayleigh-Taylor
instability, we intend to use our arguments for other models, such as a two-fluid model
initiated by Bresch et. al. [5]. Further discussions are left to the last chapter of this
thesis, Chapter 4.

0.3 The classical Rayleigh-Taylor instability

In 1883, Lord Rayleigh [69] studied the linear stability of the eigenvalue problem
for two layers of gravity-driven incompressible and inviscid fluids, the heavy one is on
the top of the light one and addressed the general stability criterion. Rayleigh’s work
was taken up by Taylor [75] in 1950, in a more general set-up considering the effect of
any accelerating field. This Rayleigh-Taylor (RT) instability appears and plays a key
role in many physical phenomena, e.g., interstellar medium and galaxy clusters [60],
inertial confinement fusion [55], oceanography [11], etc. For a pedagogical presentation
of the mathematical study, we refer to the book of Chandrasekhar [7] in 1961 or a
report of Kull [49] in 1991 and we refer to the physical reports of Zhou [77, 78] for the

summary of applications of RT instability in physics.

We now describe the mathematical problem. Following Rayleigh’s paper [69], we

state the governing equations, which are the incompressible Euler equations in R? as

op + div(pu) = 0,
Or(pu) + div(pu ® u) + VP = —gpes, (0.11)
divu = 0.

We recall that system (0.11) admits a hydrostatic equilibrium state

d
(po(3),0, Po(x3)), satisfying Py = —gpo with ' = . (0.12)



0.3. The classical Rayleigh-Taylor instability 14

Denote by
g =p = Po, U:U—[), q:P_P07

the nonlinear equations read as
0o + pyusz = —u - Vo,

(po + 0)(Cu + u - Vu) + Vg = —goes, (0.13)
divu = 0.

We thus obtain the linearized equations

0o + pyus = 0,
poliu + Vq = —goes, (0.14)
divu = 0.

Studying the linear instability amounts to finding normal modes, which increase in

time, of the form

o(t,r) = eMcos(kyzy + kowo)w(w3),
up(t, z) = eMsin(kymy + koxo)h(z3),
S ua(t, ) = eMsin(kyzy + koxo)0(3), (0.15)

uz(t,r) = eMcos(kizy + kowe)(z3),

Lq(t,z) = e cos(kyxy + kawa)r(xs).

Substituting (0.15) into (0.14), we have

(D + pho = 0,
)\Pow - klr = 07
< )\poﬁ — ]{?27“ = O, (016)

Ap()gz5 +r' = —gw,
\kld} + ]{329 + ¢/ = 0

That implies

_ e And
A k2
and ) )
poT PoT
= 0 = .
(0 o "

Eq. (0.16) reduces to the following second-order ODE on ¢,
N (K2 pod — (pod')') = gk*pyo. (0.17)

These solutions decay to zero at +oo, i.e. ¢ satisfies lim,, .o ¢(x3) = 0.
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Let p+ > 0, Rayleigh considered a discontinuous density profile po(z3) such that

po(T3) = P—Lizs<o0y + P+ Lizy=0}- (0.18)

It has been shown first by Rayleigh, then by Taylor that if p, > p_, then
(po(x3),0, Py(x3)) is linearly unstable, i.e. there are exponentially normal mode so-
lutions of the linearized Fuler equations (0.11) around that profile. Precisely, the

authors proved that there is a unique growth rate

P+ — P-
Ao = |gh——— 0.19
‘ P+ + p— ( )

such that (0.17) has a unique family of solutions, spanned by the function ¢g(x3) =
2vke Hwsl ¢ '(R) (being normalized in L*(R)) with A = )\g. The existence of a
linearly unstable mode for Rayleigh-Taylor instability gives rise to the nonlinear insta-
bility for the fully nonlinear system (0.13). This was shown by a rigorous framework
thanks to Desjardins and Grenier [13].

Let us consider now the case, where py is smooth and satisfies

+o0 > lim po(x3) = py > p_ = lim po(x3) > 0. (0.20)
—Q0

xr3—>+00 T3—

For some particular profiles p, satisfying (0.20), the linear instability is proven, see e.g.
[7, Chapter X], [8]. For profiles satisfying (0.20) and the additional condition

+00

([t =) ™o ([

we refer to [8], [9], [50]. Note that, in [8], a quantization of A (multiple countable

1/2
|po(3) — P+|2d9€3> <+,

normal modes) was shown explicitly and in [9], an asymptotic expansion of the largest
value of A was found under a small perturbation of wave number k. In 2003, the
paper of Hwang and Guo [29] exploited the natural variational structure of the inviscid
problem pointed out in [7] to describe the square of the maximum growth rate \? as

the maximum of the Rayleigh quotient

ng SR p6¢2d$3
Sr Po((¢)? + k2¢?)das

Furthermore, based on its associated normal mode for the linear Euler equations, Guo

and Hwang used the method initiated by Grenier in his celebrated paper [35] to con-
struct an approximate solution to the nonlinear perturbation equations. Combining

with some classical energy estimates, the nonlinear instability follows.

Let us add additional comments on the linear RT result. It can be seen that (0.17)
is a generalized eigenvalue problem. Multiple growth rates of the inviscid problem are
first mentioned by Cherfils and Lafitte [8] through the precise study of the inviscid
ODE for an affine profile. Mention also the paper of Mikaelian [58] for the connection
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between the Rayleigh (0.17) and the Schrédinger equations. Lafitte [50] then observed
that possible growth rates \’s for the classical Rayleigh-Taylor problem (not only the
largest one) are such that \? is an eigenvalue of a suitable self-adjoint operator and
described this spectrum, for large values of k, as the eigenvalues of a 1D Schrodinger
operator. This approach is extended by Helffer and Lafitte [42]. It can be noticed that

the multiple growth rates are given by {)A,...,\;,...}, where A? 41 1s equal to

. gk Sg pod*dxs
vet! §p po((¢)? + k24?)duxy

where Hj1 = {¢p € H'(R), g ¢odndrs = 0,Y] < j}, ¢ is a nontrivial eigenfunction

associated with \;.

We use in this thesis the self-adjoint operator approach for the spectral analysis.

0.4 Spectral analysis of the viscous Rayleigh-Taylor
instability

The first result of this thesis is to obtain the spectral analysis when there is a
viscosity coefficient in the system, using the approach of Helffer-Lafitte [42]. The
RT instability with the presence of viscosity dates back at least to Chandrasekhar [7,
Chapter X]. Let us consider the domain 2 = R? ie. d = 3,¥ = Rand I = R. We
are concerned with the following Navier—Stokes equations describing the motion of a
nonhomogeneous incompressible viscous fluid in the presence of a uniform gravity field
in Ry x Q,

owp + div(pu) = 0,
Oe(pu) + div(pu @ u) + VP = plAu — gpes, (0.21)
divu = 0,
Let ' = d;gg, note that (p,u, P) = (po, 0, Py) with B} = —gpy is still an equilibrium state
of (0.21). The quantities
oc=p—py, u=u—0, p=P—P

satisfy the following nonlinear equations

oo +u-V(pg+ o) =0,
(po + 0)owu + (po + 0)u - Vu + Vp = pAu — og, (0.22)
divu = 0.
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That implies the following linearized system

(9ta + p6u3 = O,
pooiu + Vp = pAu — goes, (0.23)
divu = 0.

Since po depends only on x3, we perform the analysis into normal modes as in [7,

Chapter X, Section 91]. Precisely, we seek the perturbations under the form as (0.15),

M cos(kizy + koo)w(xs),

ra(t, xr)=e
ui(t, z) = eMsin(kymy + koxo)h(z3),
9 U2<t, .13) = e)‘t Sin(l{ill‘l + ]{72132)9(I3), (024)

uz(t, z) = e cos(kiry + koxo)(x3),

| p(t, x) = e cos(kiay + koxa)r(xs),
where k = (k1, k) € R?, A € C\{0} and ReX > 0. We deduce

(A + phyd = 0,
Apoth — kig + p(k* —¢") =0,
3 )\pOQ - kfgq + M(kze - 9”) = O, (025)

Apo¢ + ¢ + p(k*d — ¢") + g¢ =0,
\klw + kge + ¢/ = 0.

Note that ¢ = —%Td). Hence, (0.25), becomes
Nepod + A+ Ml — &) = gho. (0.26)
We multiply (0.25), by ki and (0.25), by ks, then use (0.25), to obtain the equality
Npod' + k*Aq + Au(k*¢' — ¢") = 0.

Deriving this equation, and replacing A\q¢’ through (0.26), we get the following fourth-
order ODE

—X(pok*d — (pod)') = Mu(¢' — 2k>¢" + k*¢) — gk’ piyos. (0.27)

The investigation of normal modes (0.24) amounts to finding regular solutions ¢ €
H*(R) of (0.27). These solutions decay to zero at +o0, i.e. ¢ satisfies

lim  ¢(z3) = 0. (0.28)

xr3—+00

Note that, ¢ € L*(R) is enough to fulfil the condition (0.28).
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In the book of Chandrasekhar [7, Chapter X], the author considered two uniform
viscous fluid separated by a horizontal boundary and generalized the classical result of

Rayleigh and Taylor. Precisely, in the toy model case

po = p—Lizz<oy + P+ Lm0y (0 < p- < ps),

there is a unique strictly positive value of A, such that Eq. (0.27) with A = A, has a

non trivial solution. The equation satisfied by A, is

N X N E2+p_ _ ppetes

A2 = \§ x a Lo see (0.29)
\/k2+/\p+/u \/k2+/\p—/u (pr—p_)2 7
(P4 + ’0*>< P+ + p— ) - kp+pj(p++p—)

where )\ is the classical RT growth rate (see (0.19)). Hence, we have the relation

between A, and ) in the inviscid limit, i.e. g — 0,
Ay =X +0(/p) aspu—0, (0.30)

For the viscous problem with a smooth profile py, Jiang, Jiang and Ni [37] used
a modified variational approach, described by Guo and Tice [32], where a bootstrap
argument yields the largest characteristic value and an associated solution being regular

under the assumption pf, € C(R), infr po > 0 and pj(x3) > 0 for some points z3 € R.

As far as we know, no other authors performed studies of the discrete spectrum of

the viscous linearized RT instability. We then illustrate our spectral analysis.

Let us consider an increasing C! function pg. For such a density profile pg, we show
that:

Lemma 0.1. All characteristic values X for Eq. (0.27)-(0.28) in H*(R) are real and

satisfy that A < 4 /Lio.

In view of Lemma 0.1, a characteristic value satisfies A > 0 and we are left to
look for A > 0. We seek functions ¢ being real and only consider the vector spaces of

real-valued functions in what follows in the linear analysis.

In the case pj = 0 compactly supported, our assumption is
py is a nonnegative function of class Cg(R), supp(p}) = [—a, al, (0.31)
Outside (—a,a), we denote

P as x3 € (—o0, —al,

po(w3) = (0.32)

[ as x3 € [a, +0),
with 0 < p_ < p, are two positive constants. This can be seen, physically speaking,
as the situation of the toy model with a layer, of size 2a, in which there is a mixture

of the two fluids of density p_ and p,.
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Theorem 0.1. Let py satisfy (0.31) and (0.32). There exists an infinite sequence
(Ans @n)nz1 with Ay € (0,4/4) and nontrivial ¢, € HYR) satisfying Eq. (0.27). In
addition, A, decreases towards 0 as n goes to 0.

In the next part, we consider pf, no longer compactly supported. The assumptions

on pg are
po€ CH(R), lirgrloo po(x3) = p+ € (0, 40) (0.33)
r3— T
and
0 < pp(z3) < pm < +o0 for all 23 € R. (0.34)

The second theorem is as follows.

Theorem 0.2. Let py satisfy (0.33) and (0.34). For 0 < €, < 1, there exists N(e,) €
N* such that there exists a finite sequence (An, On)1<n<n(e,) With A\, € [€x, 4 /Lio] and
¢, € HY(R) satisfying Eq. (0.27).

The proof of Theorem 0.1 and Theorem 0.2 shares the same strategy, illustrated

below.

We rewrite (0.27) as a linear system of ODEs on (¢, ¢, ¢”, ¢”)T. As the solution of
this system must tend to 0 when x3 — +00, using the fact that the profile pg goes to p+
at +00, we are able to deduce the stable linear space S, at +oo and the unstable linear
space S_ at —oo, which are vector spaces of dimension two. Hence, we transform the
problem for the normal modes on R into an ODE problem stated on a compact interval
(x_,z,) with appropriate boundary conditions deduced from the outer solutions. Note
that, if pj is compactly supported, the natural choice of x4 is to choose the ends of
supppy. However, if pf, non compactly supported, x4 are deduced from the behavior
at +oo of the outer solutions and depend also on k and A. In the case of a compactly

supported pj (the simplest case of a convergence), they are described by

kr_¢(—a) — (k+1_)¢' (—a) + ¢"(—a) = 0,

(0.35)
ke (k+7)¢(—a) — (K2 + k7 +72)¢/(=a) + ¢"(—a) = 0,

and
krig(a) + (k+70)¢'(a) + ¢"(a) = 0,
k7 (k + 70)0(a) — (K + kry + 77)¢'(a) + ¢"(a) = 0,

where 74 = /k? + Aps/p. In the case of a non compactly supported pf, they are
described by

(0.36)

M) + g/ (e ) + ') =0 0
Ny @(r-) +nypd’ (z-) +¢"(xr-) =0

and
nf1o(xy) +nfhe' (v4) + ¢"(x4) =0,

(0.38)
Ny d(T4) + g’ (74) + ¢" (x4) = 0,
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Constants n:*; depend on x4,k and \.

In order to solve (0.27) on (x_,x4), the crucial tool in our study is to construct
two bilinear forms on H?*((x_,z)), which are continuous and coercive, By, denoted
respectively by B, (see (0.42)) for p, being compactly supported and by B, ..
(see (0.45)) for pf, being strictly positive everywhere. So that the finding of a solution
¢ e HY((x_,z,)) of Eq. (0.27) with the boundary conditions (0.35)-(0.36) or (0.37)-
(0.38) is equivalent to finding a weak solution ¢ € H?*((x_,z,)) to the variational
problem .

AB (¢, w) = gsz phowdzrs for all we H*((x_,x,)) (0.39)

Tr—

and thus improving the regularity of that weak solution ¢.

The expressions of B, , and B, ,. » are given as follows. Let us denote by

kr_(k + 7_)9(~a)o(~a) — kr_¥'(~a)o(~a) ) (0.40)

Pt g ( ~ krd(-a)d(~a) + (k + ) (~a)d (~a)

and

ke (k + 74)9(a)o(a) — k7.0 (a)o(a) ) . (041)

BVaa(®, 0) := p ( — kry9(a)d(a) + (k + 7,)0'(a)d (a)

Define then

Bax(V,0) := BV, (¥, 0) + BV_, (9, 0) + Af po(k*0 + ' ¢')dxs
. —a (0.42)
+ uf (9" 0" + 2k*9 o' + k*Vo)dxs.

—a

Similarly, let

BVy A9, 0) 1= —=A(pod'0)(+) — p(ngy (x4, NI (@) + ngy(zs, N (4))o(2+)
+ p(nfy (@, NI(21) + niy (2, N (24))d (24) — 28 (9 0) ()
(0.43)

and

BV, (0, 0) = Mpo?'0)(a_) + pngs (e_, N(a_) + np(a_, NI () )olz_)
— gy (e N(=) + ny (e, N ()0 (@) + 2620 o) (x-).
(0.44)

We have
T4
Br . (0, 0) =BV, (9, 0) + BV, A(9,0) + AJ po(K*V90 + V' ¢')dx;
v o (0.45)
+ uf (0" 0" + 2k*9 o' + k*Vp)dxs,

xr—
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As we can choose x4 depending on k, A, u and the profile pg such that the bilinear form
B, is coercive on H?((x_,z,)), one thus has 4/By(-,-) is a norm on H*((x_,z.)).
One denotes by (H?((x_,z.)))" the dual space of H*((x_,z)) induced by the norm
\/m . In view of Riesz’s representation theorem, we thus define an abstract oper-
ator

Yae L(H*((2-,24)), (H*((2-,24))'),

such that
Ba(0, 0) = (Y30, 0), forall ¥, oe H*((x_,x.)) (0.46)

From (0.39) and (0.46), we see that the existence of a solution ¢ € H*((x_, z)) of Eq.
(0.27) on (x_,z) with the boundary conditions (0.35)-(0.36) or (0.37)-(0.38) is thus
reduced to the finding of a weak solution ¢ € H*((x_,x,)) of

AYa¢ = gk*pp¢ i (H*((2-,24)))" (0.47)

Restricting o € C°((x_, x4 )) in (0.46), we find the precise expression of Y, in both

cases, i.e. for all ¥ € H*((z_,x)),
VA0 = Mpok®0 — (po?')') + p(0™ — 2k%0" + k*9) (0.48)

in D'((x_,xy)) (see Y, in Proposition 1.3 for pj, = 0 being compactly supported
and Y, ,,  in Proposition 1.9 for p being positive everywhere). Note that py € C*
implies (pp?')" is well-defined. We further use a bootstrap argument to define the
inverse operator Yy ! of Y, from L%((z_,z,)) to a subspace of H*((z_,z,)) requiring
all elements satisfy (0.35)-(0.36) or (0.37)-(0.38). Note that, since ¢ € H*((x_,z)),
these boundary conditions (involving the derivatives ¢”,¢"” of ¢ at x3 = z_ and at
xr3 = x) are well defined. Composing the above operator Y)\_1 with the continuous
injection from H*((x_,z.)) to L?*((z_,x,)), we obtain that Y, ' is a compact and

self-adjoint operator from L*((z_,z)) to itself.

We introduce M the operator of multiplication by 1/p} in L*((x_,x)). Note from
(0.47) that, we will find v satisfying

_ A
MY)\ IMU = WU. (049)

We show that the operator MY, 'M from L?*((z_,z,)) to itself is compact and self-
adjoint, which enables us to use the spectral theory of compact and self-adjoint oper-

ators. Indeed, we obtain

the discrete spectrum of the operator MY/\’lM is an infinite sequence of eigenvalues
(denOted by {fYn()‘)}TBl)

Let v, be an eigenfunction associated with the eigenvalue ~,(\) and let ¢, =
Y, "Moo, € HY((z_,2.)), we have

’Yn()‘)YAan,/\ = M2¢n,)\~ (050)
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From (0.47) and (0.50), it can be seen that, for each n, let us solve the equation

A

- (0.51)

Yu(A)

When g, > 0 is compactly supported, for each n, we will show the existence and
uniqueness of a solution A, to Eq. (0.51) owing first to the differentiability in A of 7, ()
(see Lemma 1.2), which is an extension of Kato’s perturbation theory described in [45],
and to the fact that A\ — 7, () is decreasing in A, through the derivative %(#(/\)) (see
Lemma 1.3) which exists also thanks to a similar argument of [45]. Furthermore, A,
decreases towards 0 as n — oo. For each \,, we have that ¢, ,, = Y/\zlj\/lvn,)\n €
H*((z_,zy)) thanks to Propositions 1.3, 1.9 again. That function ¢, ,, is glued with
the decaying solutions of Eq. (0.27) in the outer regions (—oo,z_) and (z,, +00) by the
boundary conditions at x4, which yields a solution of Eq. (0.27) in H*(R) associated
with A = \,.

When pj > 0 everywhere, unlike in the first case, we lack an easy-to-use expression
of the boundary conditions and we also do not have a uniform control of n:—; We thus do
not have the decrease of 7, (\) or any control of 7, (A) when A goes to 0. Consequently,
for p > 0 everywhere, our arguments only lead to a possibly multiple existence of

positive characteristic values A such that A > €, > 0.

0.5 Nonlinear Rayleigh-Taylor instability of the
incompressible viscous fluid with Navier-slip

boundary conditions

In [61], we consider the domain €2 = 27LT x (—1,1) with L > 0 (i.e. d =2,% =
2rLT and I = (—1,1)) and we are concerned with the viscous RT instability of the

gravity-driven incompressible Navier-Stokes equations, which read as

Oep + div(pu) = 0,
Oe(pu) + div(pu ® u) + VP = pAu — pges, (0.52)
divu = 0.

Let ¥4 = 27 LT x {£1}, the Navier-slip boundary conditions proposed by Navier (see

[59]) are given on X as follows

u-n=0 onX;uX_,

(u(Vu + VuT) ‘), =&@)u on X, UYL, (0.53)

Here, n is the outward normal vector of the boundary, (u(Vu + VuT) - n), is the

tangential component of u(Vu + Vu®) - n and () is a scalar function describing the
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slip effect on the boundary. We assume that £(x) = £, on ¥, and £(z) = £ on X_,

where £, are two nonnegative constants.

Let us recall the steady state (po(x2),0, Po(za)) of Eq. (0.52), where py satisfies
poe C'([-1,1]), ph>0on[-1,1], po(£l) = ps € (0, +0). (0.54)

We now derive the linearization of Eq. (0.52) around the steady state (po(x2), 0, Py(x2)).
The perturbations
g =p— Po, U:U—O, p:P_PO

thus satisfy
oo +u-V(pp+ o) =0,
(po + 0)0u + (po + o)u - Vu+ Vp = uAu — oy, (0.55)
dive = 0.

Note that (u(Vu + Vul) - n), = n x (u(Vu + Vul) - n) x n and that n = (0, £1)7.

Hence, the boundary conditions (0.53) rewrite

Ug = 0, on Eia
WOyt = & uy on ¥, (0.56)
WOz, uy = —&_uy on X_.

The linearized equations read

Oro + pyus = 0,
pooiu + Vp = pAu — og, (0.57)
divu = 0,

with the corresponding boundary conditions remaining (0.56).

The linear RT instability problem is still to seek a normal mode of the form

(O'(t 7) = eMcos(kxy)w(y),

up(t, z) = eMsin(kz1)0(xs), (0.58)
ug(t, ) = eMcos(kxy)d(xs),
La(t, ) = e cos(ka1)q(a2).
where k € L7'Z\{0}, A € C\{0} and Re\ > 0. It follows from (0.57) that
(o + pod =0,
Apol — kq + u(k?0 —6") = 0,
| Avol! = kg u( ) (0.59)
Apod + ¢+ p(k*d — ¢") = —guw,
kO + ¢ =
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and from (0.56) that

G(E1) =0, pf(1) = £.6(1), pf'(~1) = ~£6(-1) (0.60)
We obtain
w=-L0% 9=, g=—SOmd + (ke - ¢").  (06])

Then, we substitute ¢ and w into (0.59); to get a fourth-order ODE (0.27). The
boundary conditions deduced from (0.56) are obtained by assuming the solution to be
in C?([—1,1]),
o(—1) = (1) = 0,
ue"(1) = &40/ (1), (0.62)
pe"(—1) = =&-¢'(-1).
Note that H*((—1,1)) — C3((—1,1)) allows us to write (0.62).

When the density profile p is increasing, we first show that all characteristic values

A are real. We look for positive characteristic values and further obtain the uniform

upper bound , /LiO of \.
We now study the linearized problem, i.e. Eq. (0.27)-(0.62). Note that, it suffices

to seek functions ¢ being real and consider the vector spaces of real-valued functions
in what follows in the linear analysis. Of importance is to construct a continuous

and coercive bilinear form By, as A = 0 and k£ € R\{0} (i.e. we do not restrict

Ae(0,4/7) and k€ L~'Z\{0} at this step) on the functional space

H*((~1,1)) := {p € H*((=1,1)),(£1) = 0},

so that the finding of a solution ¢ € H*((—1,1)) of Eq. (0.27)-(0.62) on (—1,1) is

equivalent to finding a weak solution ¢ € H2((—1,1)) to the variational problem
1
ABiau(o,0) = ngJ phdfdz, for all @ € H*((—1,1)), (0.63)
-1

and thus improving the regularity of that weak solution ¢.
The desired bilinear form By, » , is

1

1
Bru(9, 0) =X f po(k*90 + ' o )dxy + MJ (9" 0" + 2k o' + k"Do)dx, 0.6
-1 -1 .

— V' (=1)d'(=1) = &' (1) (1),
For all A > 0 and k € R\{0}, we will consider a k-supercritical regime of the vis-

cosity coefficient p > p.(k,Z) with = = (£_,&,) (see the precise formula p.(k,Z) in
Proposition 2.1) such that

B0, is coercive if and only if p > p.(k, Z). (0.65)
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It yields that By, is coercive for all A > 0 and p > p.(k,Z). As By, is a coer-
cive form on H2((—1,1)), we have that /By ,(",-) is a norm on H?((—1,1)). Let
(H?((—1,1)))" be the dual space of H?((—1,1)) associated with the norm /By (-, ).
In view of Riesz’s representation theorem, we thus obtain an abstract operator Yj » ,
from H2((—1,1)) to (H?((—1,1)))") such that

Beau(?,0) = Yl 00 for all ¥, 0 € H*((—1,1)). (0.66)

Owing to (0.63) and (0.66), it turns out that the existence of a solution ¢ € H*((—1,1))
of Eq. (0.27)-(0.62) is reduced to the existence of a weak solution ¢ € H?((—1,1) of

)\Yk,/\,u¢ = gk2,0f) in ([:[2((_17 1))>/ (067)

Restricting ¢ € CF((—1,1)) in (0.66), we find that, for all ¥ € H?((—1,1)) (see
Proposition 2.3),

Vi ¥ = Mpok®9 — (po?)') + p(0® — 2829" + k*9)  in D'((—1,1)).

In view of a bootstrap argument, we are able to define the inverse operator Yk;\{#
of Vi, from L%((—1,1)) to a subspace of H*((—1,1)) requiring all elements sat-
isfy (0.62). Composing the above operator Yk:\l,u with the continuous injection from
H*((—1,1)) to L*((—1,1)) (see Proposition 2.4), we obtain that Yk_)\l“ is a compact and
self-adjoint operator from L?*((—1,1)) to itself.

Denoting by M the operator of multiplication by 4/pj in L*((—1,1)). Note from
(0.67) that, we thus find (A, v) such that

A
ﬁv = MYkT)\l,uMU'

Once it is proven that the operator MYk_/\l M is compact and self-adjoint from

L*((—1,1)) to itself, then

the discrete spectrum of the operator MYk_Al /M is an infinite sequence of eigenvalues
(denoted by {7y, (k, A, 1) }nz1)-

Let vk, be an eigenfunction of MY, M associated with the eigenvalue 7, (k, A, 1)
and let ¢, 55, = ij/\17#/\/tvn,k7,\’“ € HY((—1,1)), we have

Yo (ks Ay 1) Yer urkerp = MPOrk o = Pobrkrp- (0.68)

From (0.68), it can be seen that, for each n, we have to solve the equation

Tulk, A, 1) = (0.69)

gk?
We will show that Eq. (0.69) has a unique root A, (k, 1) € R, because of the decrease

of v, in A (see Lemma 2.3), which is an extension of Kato’s perturbation theory of
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the spectrum of operators [45]. In addition, when )\, is a characteristic value, we have

An < 5/ £ foralln > 1.
0

This yields that for any horizontal spatial frequency k € L™'Z\{0}, there exists
a sequence of characteristic values (A, (k, it))n>1, that is uniformly bounded and we
further obtain that A, decreases towards 0 as n — o0. For each )\,, we have that
Pk = Yk}lmuvn,km,# is a solution in H*((—1,1)) of (0.27)-(0.62) associated with
A=A\,

We sum up the above arguments.

Theorem 0.3. Let k€ L71Z\{0} be fized and let py satisfy that (0.54), i.e.
po€ CY[-1,1]), po(£1) = ps € (0,0), pf >0 everywhere on [—1,1].

For all p > p.(k,=Z), there exists an infinite sequence (A, Op)n=1 with A, > 0 decreasing
towards 0 as n — o0 and ¢, € H*((—1,1)), ¢, nontrivial, satisfying (0.27)-(0.62).

Once Eq. (0.27)-(0.62) is solved, we go back to the linearized equations (0.57). For
a fixed k € L7'Z\{0}, we obtain a sequence of solutions to the linearized equations
(0.57)-(0.56) as indicated in Proposition 2.7, which are (eN® U (k, i, 7)) 51, with

Uj(ka s l‘) = (Ujv U’japj)T(ka 2 x)
We now prove the nonlinear instability in the regime

> 3pe(2),  with pe(2) = sup  pe(k, 2). (0.70)
keL—1Z\{0}
The first important things are the local existence of strong solutions to the nonlinear

equations and the a priori energy estimates to those solutions (see [14, Proposition
4.1]).

Proposition 0.1. Suppose that the steady state (po(z2),0, Po(xs)) satisfies (0.54).
Then for any given initial data (0g,ug) € (H'(Q) n L*(Q)) x (H*(Q))?* satisfying
divug = 0, and also being compatible with the boundary conditions (0.53), the nonlin-

ear equations (0.55) has a local strong solution

(o,u,Vq) e C([0,T™>), H'(Q) x (H*(2))* x (L*(Q))?). (0.71)

Let £(t) := \/Ha(t)H?{l(Q) + Hu(t)”fqz(m and § > 0 be sufficiently small, we further get
that if supgc,<; £(s) < 0, there holds
¢
EXt) + [(Va, o) L2 + f (l0eu(s) 0y + lu(s) 7z ds
0 (0.72)

< €20)+ | llon)(s)xayds
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Since p > 3u.(Z), we can choose a constant wy > 0 such that

1> (3 + @o) pe(2). (0.73)

g
To We

Hence, vy = ‘;’igg € (1,2). Since all characteristic values are bounded by

0<A:= sup Mk, p) <4/i (0.74)
keL—12)\{0} Lo

and set By := {k € LT'Z\{0}, \(k, ) > 22A}. For a kg € By, we define N > 1 such
that

define

2,
A= Mi(ko, 1) > Aa(ko, p) > -+ > An(ko, p) > TOA > Avia(ko, i) > ... (0.75)

We introduce a linear combination of normal modes
2 M0, (R, 1, ) (0.76)

to construct an approximate solution to the nonlinear problem (0.55)-(0.56), with con-

stants ¢; being chosen such that

at least one of ¢; (1 < j < N) is non-zero (0.77)
and let j,, :=min{j : 1 < j < N,c; # 0},
1
Q‘ij‘HquHLQ > Z cillujlz2 (o) (0.78)

JZim+1

Eq. (0.55)—(0.56), supplemented with the initial data U (0,z) (0 < § « 1), admits

)

a unique local strong solution (¢°,u%) with an associated pressure ¢° on [0, Tiax) (see

Proposition 0.1). We define the differences
o =g —50M, u? =l —(MM, qd = qa_(qu

They satisfy

0ot + ppusd = —ud - Voo,
podu — pAut + Vg + goley = =0’ — (po + o®)u’ - Vul, (0.79)
divud = 0.

The initial condition of (0.79) is
(0%, u®)(0) =0 (0.80)
and the boundary conditions of (0.79) are

ug =0, on X4,
(g, ud = & ud on X, (0.81)
(O uf = —&_uf on X_.
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For ¢ small enough, we then estimate the bound in time of (o, u?)(¢)|12(0) (see Propo-
sition 2.8), that is

N
d ,d 2 3 At 2,0n8)°
[, u®) ()72 < 0 (Z cjle’ +maX(O,M—N)<N+I?2]?iM|Cj|>e3 0 ) .
J=Im

by exploiting some energy estimates of (0.79)-(0.80)-(0.81) and by using the bound in

time |0 (¢)| ;1) and |[u’ ()| zr2(q), which are deduced from the a priori energy estimate

(0.72). The nonlinear result then follows.

Theorem 0.4. Let u.(Z) be defined as in (0.70) and p > 3u.(Z). Let py satisfies
(0.54), i.e.

po€ CH[~1,1]), po(£1) = ps € (0,0), py >0 everywhere on [—1,1].

Let M € N*, there exist a constant mg > 0 and positive constants €y and g sufficiently
small such that for any ¢ € (0,0y), the nonlinear equations (0.55) with the boundary
conditions (0.56) and the initial data

M
6, ¢Uj(x)
j=1

satisfying (0.77)-(0.78), has a unique local strong solution (o, u°) with an associated

pressure ¢° such that
[u(T°)| 2() = moeo, (0.82)

. . Reald
where T? € (0, Thax) is given by 5ZjM:jm ;e = €.
We end this section with the following remark.

Remark 0.1. In the linear analysis, we revise the formula of the critical viscosity
coefficient p.(Z) = supy- te(k, =) of Ding, Li and Xin in [15, Proposition 2.2]. After
we uploaded this paper on Arziv, our computations lead to a corrigendum posted by the

above authors recently (see [16]).

0.6 Nonlinear Rayleigh-Taylor instability of the

viscous surface wave in an infinitely deep ocean

We study, in Chapter 3 of this thesis, summarized in the present section, the non-
linear RT instability in our last setting, the viscous surface wave in an infinitely deep
ocean. Let T? = 2nL,T x 27L,T, the domain of the fluid is

Q(t) ={z = (zp,r3) = (11,22, 23) € T? x R, 25 < n(t,x1,z2)}, (0.83)
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hence, €(t) is bounded above by the free surface I'(t) = {x3 = n(t, x1, 22)}, where 7 is
an unknown of the problem. We are concerned with the viscous RT instability of the
nonhomogeneous incompressible Navier-Stokes equations without any effects of surface

tension, which read

(0,5 + div(pi) = 0 in Q(t),
o(pu) + div(pu ® u) + Vp = pAu — gpes in Q(t),

{divi = 0 in Q(t), (0.84)
(pld — pSa) - n = pagmn in T'(t),

| O = Uz — 11011 — Uz0an in I'(¢).

The unknowns p := p(t, z), @ := u(t,z) and p := p(t, z) denote the density, the velocity
and the pressure of the fluid, respectively. The stress tensor is St = Vi + Va!. The

outward normal vector n of the boundary I'(¢) is given by

L (==, )T
V1 + [0 + [oan?

(0.85)

The constant pyy, is the atmospheric pressure. For a more physical description of the
equations (0.84) and of the boundary conditions in (0.84), we refer to [54, Sect. 1.8].

To complete the statement of the problem, we must specify the initial conditions.
We suppose that the initial surface I'(0) is given by the graph of the function n(0) = 1,
which yields the open set €(0) on which we specify the initial data for the velocity,
u(0) = up : 2(0) — R? We assume that the initial surface function satisfies the

"zero-average” condition
f no =0 (0.86)
T2

and 7(0), u(0) satisfy certain compatibility conditions, which we will present in detail
later (see Proposition 0.2). Note that, for sufficiently regular solutions of the problem,

the condition (0.86) persists in time, that is
J n(t) =0 forallt=>D0. (0.87)
T2

Indeed,
d

- n:f am:f fL-TL:J diva = 0.
dt Jope T2 () Q@)

The movement of the free boundary I'(t) and of the domain (t) create numerous
mathematical difficulties. To handle that, following Beale [3], we use the function 7
to transform the free boundary problem (0.84) into the equivalent problem (0.95) in a
fixed domain Q = T? x R_ (i.e. d = 3,2 = T? and I = R_), which the fixed upper
boundary is T' = T? x {0}.
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We now define the appropriate Poisson sum that allows us to extend 7, to be

determined on the surface Q. For any k € L7'Z x L;'Z, we write

e—ik~$h

—d
2’71'\/ L1L2 h

flk) = W (zn)

and define the Poisson sum on €2 by

(pf)(zn,25) = > m el f (k) (0.88)

kel 'ZxL;'Z
We then have p : H*(T') — H*"'/2(Q) is a bounded linear operator for s > 0.

Lemma 0.2. For q € N, let H} be the usual homogeneous Sobolev space of order q and
pf be the Poisson sum of a function f in H;f_l/Q(I’). There holds

IV 220y < 1012 (0.89)
We extend 7 to be defined on €2 by

0(t,x) :== (pn)(t, xn, x3) (0.90)

for all z;, € T?,x3 < 0. Lemma 0.2 implies in particular that if n € H9"%/?(T), then

0 e Hi(Q2) for ¢ = 0. We introduce the following coordinate transformation:
Qs x = (21,29, x3) — (T1,29,23 + O(t,2)) = O(t,x) = (y1,v2,y3) € Q).  (0.91)

If the function 7 is sufficiently small (in an appropriate Sobolev norm), then the map-
ping O is a diffeomorphism.

From the definition of © (0.91), we first compute

1 0 0
ve=|[o0 1 o | (0.92)
010 030 1+ 030

Following [3] again, we denote

A=00, B=00, J=1+00 K=J" (0.93)
and
1 0 —AK
A=(Ve)yH' =10 1 —BK |. (0.94)
00 K

We write the differential operators V 4, div4, A4 with their actions given by

(Vaf)i ZAwaf divaX := > A0 Xi, Auf =divaVaf.

j=1 1<,5<3
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We write

N = (=ain, —dan, 1)T

for the non-unit normal vector to I'(t), and we also write the stress tensor S4(u) as
(SAu)ij = Alkékuj + Ajkakui.

We now define the density p, the velocity u and the pressure p on the domain €2 by

the composition
(p.u,p)(t, ) = (p, 4, p)(t, O(t, x)).

We transform (0.84) into the following system in the new coordinates

fﬁtp — K0,003p + div4(pu) = 0 in Q,
p(Oiu — K6i00su + u - V qu) + V 4p — pudivaS qu = —gpes  in €,
L divau =0 in Q, (0.95)
om=u-N on I,
L (pld — MSAU)N = PatmN on .
Let
Cy(R_)3py =0 such that suppp = [—a,0] with a > 0. (0.96)

We denote by
0 < p_ = po(zs) for all z3 < —a, po(0) = py. (0.97)

This means that a layer of finite depth models the heavier fluid before the perturbation.

We will now rewrite (0.95) around the steady-state solution

(p(ta x),u(t,x),p(t, x)an(ta xh)) = (p0($3)v 0, PO(:E3>7 0)7

recalling P} = —gpo and adding the condition Py(0) = paim. We define a particular

density and pressure perturbation by

C=p—po—pot, q=p—Po+gpb. (0.98)

We still call the perturbations of the velocity and of the characterization of surface as

(u,n) respectively. The equations for the perturbation U = ((,u, q,n) write

(0. + phus = Q'(U) in €,
pofiu + Vq — pAu + gles = Q*(U) in Q,

{ dive = Q*(U) in €, (0.99)
o —uz = QY(U) on T,

(¢ — gpsm)Id — pSu)es = Q*(U)  onT.
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The nonlinear terms Q*(U) (1 <4 < 5) (for short Q) are given by

Q' = phus — phoyd + K0,0(05¢ + phy + ppf + phdsh),
—diva((po + pof + Q)u)
Q* = —(C + po)dru — (¢ + po + pof) K00su — (Vap — Vg — gCes)
—(C+ po+ pof)u -V qu — pu(Au — div4 (S au)), (0.100)
Q3 = divu — div 4u,
Q' = —u 01 — us0ay,
Q% = (¢ — gpsn)Id - (e3 — N) — puSues + pu(Squ)N.

The linearized equations are

rﬁtC + ppus =0 in €,
po0iu + Vq — pAu + gCes =0, in €,

{ divu =0 in €, (0.101)
o = ug on I

[ ((¢ = gpsm)Id — pSu)es = 0 onT.

Following again [7, Chapter XI], we look for normal modes U(t,z) = eV (x) of Eq.
(0.101), which are

(Cou,q)(t,z) = eM(w,v,r)(x), nlt,a,) = eMv(ay). (0.102)

The system on (w,v,r,v) is

(o + povs =0 in
Apov + Vr — pAv + gwez =0 in €,
{ dive =0 in §, (0.103)
AV = 3 on I,
L ((r — gpv)Id — pu(Vo + VoT))es =0 on T
That implies
w = —%pgvg, v= %'Ug‘[‘ (0.104)
and
A2 pov + AVr — ApAv — gphuses = 0 in Q,
dive =0 in Q, (0.105)

(A — gpyv3)Ild — Au(Vo + Vol))es =0 onT.
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Let k = (ki, ko) € LT'Z x Ly*Z\{0}, we assume further that

sin(k‘lxl + k2$2 ¢(k7 1‘3),

fvl(:zr) )
vo(x) = sin(kyzy + kaxo)p(k, x3),
( )

(0.106)
v3(x) = cos(kiz1 + kawa)d(k, x3),

(7(x) = cos(kim1 + kaxa)m(k, 73).

Substituting (0.106) into (0.105), we deduce that

(\2pot) — My + Ap(k2Y — ") =0 in R_,
Npop — Mkom + Au(k?p — ") =0 in R_,
Npod + A’ + (k¢ — ¢") = gphd in R_,

(k1Y + Fap + ¢' =0 in R_,

(0.107)

At 3 = 0, we have the boundary conditions

11(k19(0) —¢'(0)) =0,
11(k20(0) — ¢'(0)) = 0, (0.108)
Am(0) = gp+¢(0) — 2Au¢(0) = 0.

We also have the decaying condition at —oo,

lim (¢, p, ¢, 7)(z3) = 0. (0.109)

r3——00

Note that, due to (().1()7)172’4

1 .
T = —ﬁ()\p()(b/ + u(k*¢' —¢") inR_. (0.110)
Hence, from (0.110) and (0.107);, we get a fourth-order ODE for ¢, (0.27), i.e.
N (K?pod — (pod)) + Au(¢') — 2k*¢" + k') = gk* -
The boundary conditions at x3 = 0 deduced from (0.107),, (0.108) and (0.110) are

p(k*6(0) +¢"(0)) =0,  —Aug”(0) + (BAuk® + \2p1)¢'(0) + gk*p1¢(0) = 0 (0.111)
and from (0.109), the function ¢ decays at —oo, i.e.

lim ¢(x3) = 0. (0.112)

r3—>—00

Finding normal modes of the form (0.102) to Eq. (0.101) relies on the investigation
of the characteristic value A € C (ReA > 0) such that Eq. (0.27)-(0.111)-(0.112) has a

nontrivial solution ¢ living at least in H*(R._).

We again show that all characteristic values A are real. Consequently, we look for
positive characteristic values and obtain the uniform upper bound ,/ Lio of \. We still

consider functions ¢ being real.

We state our first theorem solving the ODE (0.27)—(0.111)—(0.112) .
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Theorem 0.5. Let py satisfy (0.96)—(0.97), there exist an infinite sequence (A, dn)n>1

with A, € (0, /1) and nontrivial ¢, € H*(R_) satisfying Eq. (0.27)-(0.111)-(0.112).

Proving Theorem 0.5 is in the same spirit as the proof of Theorem 0.1. We first
look for a solution ¢ € H4(R_).
Indeed, on (—o0, —a), the ODE (0.27) is an ODE with constant coefficients, for

which we can find explicit solutions in Proposition 3.1 which decay to 0 at —oo. We
thus transform the problem for the normal modes on R_ into an ODE problem stated
on the compact interval (—a,0) with appropriate boundary conditions deduced from

the outer solutions. The boundary conditions at x3 = —a are

kr_¢(=a) = (k + 7-)¢'(=a) + ¢"(—a) = 0,

(0.113)
B (k4 7)8(—a) — (K2 + kr_ +72)¢/(~a) + ¢"(~a) = 0,

with 7 = /k%? + Ap_/u, and the boundary conditions at x3 = 0 are (0.111).
In order to solve the fourth-order ODE (0.27) with the boundary conditions (0.113)

and (0.111), the crucial step is to construct a continuous and coercive bilinear form
Bak on H?((—a,0)), such that the finding of a solution ¢ € H*((—a,0)) of Eq. (0.27)-
(0.111)-(0.113) is equivalent to finding a weak solution ¢ € H?*((—a,0)) to the varia-

tional problem
0
ABara(p,w) = gsz pppwdrs  for all we H*((—a,0)), (0.114)

and thus improving the regularity of that weak solution ¢.

The expression of B, \ is given as follows. Let us denote by

BV (¥, 0) = (kJT_(k? + 7 )0(=a)o(—a) — kr_ 9 (—a)o(—a) > |

— kr_9(—a)d (—a) + (k + 7_)0'(—a)d'(—a) (0.115)
/ / k2
BVoal0, 0) = pk(9'(0)e(0) + 9(0)¢/(0) + T 9(0)2(0),
The bilinear form B, . » is
0
Bakr(V,0) := BVop(V, 0) + BV_q (0, 0) + AJ po(k*90 + ' 0')dxs
~a (0.116)

0
+ /LJ (0" 0" + 2k*9 o' + k*9o)dxs.

As one proves that B, » is coercive for all values of the parameters A > 0, x > 0 and
k > 0, we have that /B, (", ") is a norm on H?((—a,0)). Let (H*((—a,0)))’ be the
dual space of the functional space H?((—a,0)), associated with the norm /B, (-, ).
In view of Riesz’s representation theorem, we obtain an abstract operator Y, » from

H?((—a,0)) to (H?*((—a,0)))’, such that

Bora(V,0) = YoraV,0) forald,pe HQ((—CL, 0)). (0.117)
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Hence, from (0.114) and (0.117), we have that the existence of a solution ¢ €
H*((—a,0)) of Eq. (0.27)-(0.111)-(0.113) is thus reduced to the finding of a weak
solution ¢ € H%((—a,0)) of

Y, 120 = gk’phd  in (H?*((—a,0)))". (0.118)

Restricting o € C§°((—a,0)) in (0.117), we find the precise expression of Y, ;.\ (see
Proposition 3.3(1)), i.e. for all ¥ € H*((—a,0)),

Yorat = ME2p09 — (po?)') + p(®@@W — 282" + k*9) in D'((—a,0)). (0.119)

Furthermore, a classical bootstrap argument (see Proposition 3.3(2)) shows that we
are able to define the inverse operator Yajk{/\ of Y, xx, from L?((—a,0)) to a subspace
of H*((—a,0)) requiring all elements satisfy (0.113)-(0.111). Note that, because ¢
belongs to H*((—a, 0)), these boundary conditions (involving the derivatives ¢”, ¢" of
¢ at r3 = —a and at z3 = 0) are well defined. Composing the above operator Ya_kl)\
with the continuous injection from H*((—a, 0)) to L?((—a,0)) (see Proposition 3.4), we

obtain that Ya_kl , is a compact and self-adjoint operator from L*((—a,0)) to itself.
We introduce M the operator of multiplication by 1/pj in L?((—a,0)). Note from
(0.118) that, we thus find v satisfying

A
W’U = MYVC;]C{)\MU.

We show that the operator /\/lYa_k1 \ M is compact and self-adjoint from L*((—a,0)) to
itself (see Proposition 3.5), which enables to use the spectral theory of self-adjoint and

compact operators to obtain that

the discrete spectrum of the operator /\/lY(;k1 4M is thus an infinite sequence of

eigenvalues (denoted by {7y, (X, k)}n=1)-

Let vy, ;. » be an eigenfunction of /\/lYa_k1 \M associated with the eigenvalue v, (), k) and
let ¢ = Yy o xMunix € H*((—a,0)), we obtain

YNy k) Yok rPnkr = M2bnir, = PoPrkr,- (0.120)

From (0.118) and (0.120), we see that the problem of finding characteristic values

of (0.27) amounts to solving all the equations

A
WA k) = —. 0.121
Wb = 2 (0121)
In Proposition 3.6, for each n, we will show the existence and uniqueness of a solution A,
to (0.121) owing first to the differentiability in A of 7, (A, k) (see Lemma 3.5), which is

an extension of Kato’s perturbation theory of the spectrum of operators (see [45]), and
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to the fact that A — v,,(\, k) is decreasing in A (see Lemma 3.6), through the derivative
dcf\( oW ) which exists also thanks to a similar argument (see [45]). Furthermore, we
have that {\,},>1 is a decreasing sequence towards 0.

For each \,, we have that ¢, ;.\, = Yaf,;/\n/\/lvn,k,% € H*((—a,0)) satisfies Eq.
(0.27) with the boundary conditions (0.113)-(0.111) thanks to Proposition 3.3(2) again.
Hence, ¢y, k., is glued with the decaying solutions of (0.27) in the outer region (—0, —a)
by the boundary conditions at x3 = —a to become a solution of (0.27)-(0.111)-(0.112)

in H*(R_) associated with A = \,,. Theorem 0.5 is proven.

Once Eq. (0.27)-(0.111)-(0.112) is solved, we go back to the linearized equations
(0.101). For a fixed k € L;'Z x L,'Z\{0}, we obtain a sequence of real solutions to

the linearized equations (0.101) (see Proposition 3.7), which are

e)\j(k)t‘/](k’ :C) = (e)\j(k)t(Cj (k7 LZ'), uj (k7 ZL'), QJ (k7 :C), 77] (k7 xh))T'

Since all the characteristic values are bounded by , we set
0<A:i=  sup (k) <,/ZL, (0.122)
keL['Zx Ly Z\{0} Lo

and we show that A is the maximal growth rate of the linearized equations, see Propo-
sition 3.9.
We move to show the nonlinear instability.

The local well-posedness of (0.99) in our functional framework can be established
similarly as in [33, Theorem 6.2] for the incompressible viscous surface wave problem,
that is used in [71] for the incompressible viscous surface-internal wave problem and [70]
for the incompressible viscous fluid with magnetic field. Thus we refer to [33, 71, 70] for
the construction of local solutions to (0.99) with some specific compatibility conditions.
We restate it below and then derive the a prior: energy estimate to the nonlinear
equations (0.99) in Proposition 0.3 (see (0.128)).

Let us define the full energy functional £(U(t)) > 0 such that

EFU®)) = In(®)For2(r +2Hf9n\|H4 21( +ZWCU )|

(0.123)
+ lla(t )HHS(Q) + [ duq(t )H%{l(m
and its corresponding dissipation Dy ((u, ¢)(t)) > 0,
2
DH((u, q)(1)) := > [04u(t) |G-y + [0ealr2() + lalrae- (0.124)

1=0
For notational convenience, we only write £¢(¢) and Dy (¢) in this section.

Let us recall the definition of K from (0.93) and A from (0.94) and define Ml = KA,
R = oMM~ and Dyu = d,u — Ru. We also define an orthogonal projection onto the
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tangent space of the surface {x3 = no(x1, z2)} according to
v N
Myv = v — |N—|20N° for Ny = (—dvn, damo, 17 (0.125)
0
Let us write

G** = gpynN on T,

G*' = D,G*° + uS4(Ru)N + (uS qu — qId) OGN + puSs, 4uN on T.
Proposition 0.2. Suppose that there is a sufficiently small constant v, € (0,1) such
that (o, uo, qo,Mo) Satisfying

HCUH%H(Q) + HuUH%I‘l(Q) + HQOH%F”(Q) + H770”§{9/2(F) S
Suppose also that the following compatibility conditions hold for j =0 and 1,
diva, Dlug = 0 in €,

| | (0.126)
o(G*7(0) + uS 4, DiugNo) = 0 onT.

Then, there exist vy > 0 and Tax > 0 such that if £¢(0) < va, Eq. (0.99) with the
initial data (o, w0, qo,M0) Satisfying the compatibility conditions (0.126) has a unique

solution (C,u,q,n) on the time interval [0, Thax). Moreover, we have
Er(t) < (14 Thax)Er(0),

and n 1is such that the mapping O(-,t) defined by (0.91) is a C?*-diffeomorphism for
each t € [0, Tinax)-

With that regular solution (¢, u,q,n) of (0.99) on a finite time interval [0, Tiyax),

we aim at showing a priori energy estimates for the nonlinear equations (0.99).
Proposition 0.3. Let C,,;, be the optimal constant of the Sobolev embedding
H*(Q) — L™(Q)

and let o9 > 0 be sufficiently small such that

P
2C p max (1, maxg_ pj(x3))’

0<é < (0.127)

and (3.279) holds later. Hence, there exists ¢ > 0 sufficiently small such that for all
d € (0,00) if suppcs<; Ef(s) < 0, we have

(1) + L D2(s)ds
< eTE0) + e L 5;(s)ds+a—5f0gf(s)(5;(5>+D§<s>>ds+s—55§(t) (0.128)

# e [ (IG5



0.6. Nonlinear Rayleigh-Taylor instability of the viscous surface wave in an infinitely
deep ocean 38

Thanks to (0.122), we define the non-empty set
. 2A
By = {k € LTVZ x L Z\{0} : \ (k) > ?}.

We further fix a ko € By. There is a unique N = N(kg) € N* such that

2A
A= )\1(k0) > )\Q(ko) > e > )\N(kO) > ? > )\N-i-l(kO) > ... (0129)

Let M € N* be arbitrary. In view of getting infinitely many characteristic values of the

linearized problem, we consider a linear combination of normal modes
Z c; MO (kg ) (0.130)

to be an approximate solution to the nonlinear problem (0.99), with constants c; being

chosen such that

at least one of ¢; (1 < j < N) is non-zero (0.131)
and let j,, := min{j : 1 < j < N,¢; # 0},
1
Helhlze > Y Il (0.132)

JjZim+1

In order to prove the nonlinear instability result, we would like to use U (0, z) as
the initial data for the nonlinear equations (0.99). However, the initial data for the
nonlinear equations (0.99) must satisfy the compatibility conditions (0.126) stated in
Proposition 0.2 to ensure the local existence. In this case, the normal modes V;(ko, z)
do not enjoy (0.126). Thanks to an abstract argument from [36, Section 5C], which
was used in [71, 70], we obtain the modified initial data U™ (z).

Proposition 0.4. There exist a number 69 > 0 and a family of initial data
UM (z) = UM (0,2) + UMM (x) (0.133)
for 6 € (0,00) such that

1. E(UMMY < O3, with C3; being independent of § and Ug’M satisfies the compati-
bility conditions (0.126),

2. the nonlinear equations (0.99) with the above initial data Ug’M has a unique so-
lution UM on [0, T™%) satisfying that supg<; qmax E(USM (1)) < 0.

Note that U?(t) = UM (t) — sUM(t) solves (0.99) with the initial data U4(0) =

§2U%M and the same nonlinear terms Q'(1 < i < 5). Precisely, U? satisfies

(0, + poug = QH(UM) in ,
podiu® — pAul + Ve + gCles = Q*(UM) in Q,

{ divud = Q3(UM) in Q, (0.134)
om® = ud + QH(UM) on I,

L ((¢" = gpyn®)1d — pSu)es = Q°(UM) onT.
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along with the initial condition
U(0) = (¢%u,n?, q%)(0) = UM (0.135)
For ¢t small enough, we deduce the following bound in time (see Proposition 3.18)

1T uh) () F20 + 1) 72y

3 3 Ajt ZAt\3 (0.136)
<67 E |cj|e™ +max(O,M—N)N+r{13}iM]cj|e§ )°,
A VA
J=Jm

by exploiting some energy estimates of Eq. (0.134) and by using the bound in time
of £;(U°M (t)) (see Proposition 3.19), which is obtained thanks to the a priori energy
estimate established in Proposition 0.3. Combining those estimates, we obtain the

nonlinear result.

Theorem 0.6. Assume that py satisfies (0.96)-(0.97). Let M € N*, there exist two
constants €y, 09 > 0 sufficiently small and another constant mqg > 0 such that for any
d € (0,09), the nonlinear equations (0.99) with the initial data (0.133), i.e.

M
) 2 ¢;V;(x) + UMM (),
Jj=1

satisfying (0.131) and (0.132) has a unique local strong solution U™ such that
[ (T°)] 120y = Moo, (0.137)

where T? € (0, Thax) is given by 5ZjM:jm ]cj\e)‘jTé = €.



Chapter 1

Spectral analysis of the viscous

Rayleigh-Taylor instability

This chapter is presented in the paper [51], joint work with Prof. Olivier Lafitte. We
perform the spectral analysis of the viscous Rayleigh-Taylor instability (as mentioned
in Section 0.4). It consists in finding a sequence of characteristic values \,, such that
for these \,, the normal modes problem for the gravity-driven incompressible Navier-
Stokes equations has a non trivial, bounded solution. This problem will be stated
as a generalized eigenvalue problem for a self-adjoint operator. In the case where
the variations of the profile considered pf, are compactly supported, we get, whatever
the viscosity is, a countable infinite sequence of characteristic values, which decrease
towards zero. In the case pj not compactly supported, we are only able to provide a
count of the values of )\, greater than any small constant €, > 0. These two results
are deduced, in the case u > 0, from a variational formulation of the characteristic

problem on a compact set [x_, 2z ], using adapted boundary conditions.

1.1 Preliminaries

Throughout this chapter, we write x instead of x5 for notational convenience.

We begin with some crucial material for the spectral study. The first one is the

differentiability of eigenvalues of self-adjoint and compact operators.

The classical perturbation theory from [45, Chapter VII, $3] has shown the contin-
uous property of the eigenvalues for a family of holomorphic self-adjoint operators in
an infinite-dimensional Hilbert space. If the operators are only differentiable, we will
present a proof of the differentiability of the eigenvalues for compact and self-adjoint
operators in an infinite-dimensional Hilbert space deduced from that one for matrix

functions in a finite-dimensional space (see [45, Chapter 11, $5]).

Theorem 1.1. Let I be a closed interval and H be an infinite-dimensional Hilbert
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space and (A(N))aer be a family of self-adjoint and compact operators in H depending
continuously differentiable on A. Then, all eigenvalues and all eigenvectors of A(X\) are

differentiable functions on .

Proof. Let \g € I be fixed. Since A()g) is a self-adjoint and compact operator in H,
the spectrum of A()\g) is discrete. Let 7o be an arbitrary eigenvalue of A()\g) and
E = Ker(A(X\) — y0ldg), we have the decomposition H = E @® E+. Consequently, for
all Ae I,

AN — Projp(A(A)Projg)  Projgp(A(N)Projg.)
Projgi (A(A)Projg) Projpi(A(N)Projg.)

that we will denote by (A;;()))1<ij<2 for brevity. Notice that

YN0 An(\))

and Ag(Ag) — Yoldpt is invertible.

Let 0 < e « 1 and 7 be an eigenvalue of A(\) being close to vy, i.e. |y — | < €.
We write that

(1.1)

A — 1d = (An()\) —Aldp An(d) ) |

A21(>\) AQQ()\) — ’}/IdEL

If z = (y,2)T is a corresponding eigenvector, we obtain

An(Ny + Ap(N)z = vy,
Ay ( ANy + A (N)z = vz.

Consequently,
(AH()\) — vldE)y + Alg()\)z = 0,

(1.2)
A21(>\)y + (AQQ()\) — ’)/IdEL)Z = 0.

Since Aga(Ng) — Yoldge is invertible, we have that Asy(\) — Yoldge is invertible for
A= Xo| <0 « 1. We further get that Ay(A\) —Idge is also invertible for |A — Ag| < &
and |y — | < €. Hence, we deduce that (1.2) is equivalent to

2= —(Ag(N) —yldge) 1 An (N,

(1.3)
(A1 (A) = Ap(M\)(A22(A) —Idgr) T As (N)y = .

If y =0, Eq. (1.3), implies z = 0, which is impossible. We have y # 0, this means
that if v € (70 —¢,7 + €) is an eigenvalue of A(X), Eq. (1.3), tells us that v is also an
eigenvalue of B()\, ) defined by

BOA) = An(A) — Ain(A\)(Asa(A) — 1) Ao (A) : E — E



1.1. Preliminaries 42

Notice that E is finite-dimensional thanks to Riesz’s theorem. B(\,~) turns out to
be a matrix, having eigenvalues 7v;(A,7)(1 < j < dimF). Then, there exists j such
that v;(A,v) = ~. It follows from [45, Chapter II, $5] that v;(),~) and its associated

eigenvector are differentiable at Ag, so is 7. m

We then state here the key ingredient for our analysis in Section 1.3 due to E. A.
Coddington and N. Levinson [10, Theorem 8.1, Chapter 3].

Theorem 1.2. We consider a linear system
W'(y) = (A + L(y) + R(y))W(y). (1.4)

Let A be a constant matriz with characteristic roots j;,7 = 1,...,n, all of which are
distinct. Let the matrixz L be differentiable and satisfy

0
| 1wy <o (15
0
and let L(y) — 0 as y — . Let the matriz R be integrable and let

foo | R(y)|dy < 0. (1.6)

0
Let the roots of det(A + L(y) — M) = 0 be denoted by \;(y),j = 1,...,n. Clearly, by

reordering the p; if necessary, im, ., A\j(y) = p;. For a given h, let

dni(y) = Re(Mnl(y) — Xi(y))-

Suppose all \;(1 < j < n) fall into one of two classes Hy and Ho, where

Y Y2
NjeHy o oif J dp;(s)ds — 0 as y — oo and J dpj(s)ds = —K (y2 =11 =0),
0

Y1

and "
\j€ Hy if J dpj(s)ds < K (y2 =11 =0),
Y1

where h is fived and K 1is a constant. Let py be the eigenvector corresponding to pp,

i.e. App = pppn. Hence, there is a solution ¢y, of (1.4) and a yo € (0,0) such that
y
ylggo th(y)exp[ — f )\h(s)ds] = Dp.
Yo

We end this section by the proof of Lemma 0.1.

Proof of Lemma 0.1. Multiplying by ¢ on both sides of (0.27) and then integrating by

parts, we obtain that

3 [ (Rpolol + pulo'P)do = | (167 + 240+ K)o

R R (1.7)

—gkzj phd*da.
R
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Suppose that A = A\; + i\y, then one deduces from (1.7) that

0a-x |

R

(K200l6f2 + pol'? ) dw = Aluf (16”2 + 20216/ + Ko ) da
R
(1.8)
~ ok | hlofs
R

and that

“2A00 j (K2polol? + pold/?)dw = Ao f (19712 + 2820/ + k|6 )dw.  (1.9)
R R

If Ay # 0, (1.9) leads us to

2 | (Ralof + plP) o =g [ (167 + 2806 F + KoP)da >0,
R R

which yields a contradiction that A\; < 0. Hence, we have that Ay = 0, i.e. A is real.

Using (1.7) again, we further get that
2 [ o210 + 16 P)d < gk | bl
R R

It tells us that A is bounded by , /Lio. This finishes the proof of Lemma 0.1. O]

1.2 The compactly supported profile

In this section, we consider py satisfying (0.31) and (0.32). We remark that in this

section, we use the notations vy = % and 75 = (k% + Avy)Y2,

1.2.1 The solution in outer regions and reduction to a problem

on a finite interval
We derive, in this subsection, the precise expression of ¢(x) as |z| = a.

Proposition 1.1. There are two linearly independent solutions of (0.27) decaying to

0 at +o0 as x € |a,+0), i.e.
of (x) =e™™ and of (x) =e TH. (1.10)

and two linearly independent solutions of (0.27) decaying to 0 at —o0 as x € (—w0, —al,
i.€.

o7 (x) = e and ¢ (z) = ™", (1.11)
All solutions decaying to 0 at +o0 (respectively at —o0) are spanned by (¢7, ¢3) (re-
spectively by (o1, d;)).
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Proof. For z € [a, +o0), Eq. (0.27) reduces to

M (B — ¢) = 69 — 2026 + Ko,
We seek ¢ as ¢(z) = €. Hence,

g (k2 —r?) =t =2k 4+ kY,

which yields » = +k or r = +(k* + A, )2, Since ¢ tends to 0 at +oo, we get two
linearly independent solutions, which are (1.10),

o1 (v) =™ and  ¢f(x) =
Hence, all solutions ¢ decaying to 0 at +oo are of the form

p(x) = Afe @0 L AreTr@—a) (1.12)

for all = € [a, 400) and for some real constants A and Aj.

Ifre(—oo,—

, —a], the same calculation implies (1.11). Then, all solutions ¢ decaying

to 0 at —oo are of the form
¢( ) A_ k(z+a) —|—A_ T_(z+a) (113)

for all x € (—o0, —a] and for some real constants A] and A . O

Once it is proven that ¢(z) outside (—a,a) is of the form (1.12) or (1.13), we look
for ¢ on (—a,a). That solution has to match with (1.12) and (1.13) well, i.e. there
are some conditions on (¢, ¢', ¢", ¢") at © = ta. We will show the conditions in the

following lemma.
Lemma 1.1. The boundary conditions of (0.27) at x = —a, for ¢ € H*(R), are (0.35)
kr-¢(—a) — (k+ 7-)¢'(—a) + ¢"(—a) =
Bk + 7 )0(=a) — (K2 + k7 + 72)0/(=a) + ¢"(~a) =
and at x = a are (0.36)
krid(a) + (k + 74)¢'(a) + ¢"(a) = 0
—kry (b + 7)0(a) — (K + kry +7) (@) + ¢"(a) = 0

Proof. The boundary conditions of a solution ¢ of (0.27) at z = ta are equivalent to
the fact that ¢ belongs to the space of decaying solutions at +o0. On the one hand, it
can be seen from (1.12) and (1.13) that

é() 1 1
/

A 2

¢ () K &
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and that
¢(x) 1 1
z///ii)) = Af —k(z—a) kf + A;“e_”(m_“) _7_? , forz>=a.
¢ () e _73

On the other hand, the orthogonal complement of the subspace of R* spanned by two

vectors (1, k, k2 k)T and (1,7_,7%,73)T is spanned by
(kt_,—(k+7.),1,0)" and (kr_(k +7_), —(k* + k7 + 72),0,1)".

Similarly, the orthogonal complement of the subspace of R* spanned by two vectors

(1, =k, k?* —k*)T and (1, —74, 72, —73) is spanned by two vectors
(kty, k+71,1,007 and (k7o (k+71y),—(K* + kry +72),0,1)7.

The above arguments allow us to set (0.35) and (0.36) as boundary conditions of Eq.
(0.27) on (—a,a). O

We aim at solving (0.27) on (—a, a) with the boundary conditions (0.35)-(0.36).

1.2.2 A bilinear form and a self-adjoint invertible operator

We study the bilinear form B, (0.42) in the following proposition.

Proposition 1.2. We have that

a

Bon(0, 0) = BVun(d, 0) + BV_un(d, 0) + Af po(k0 + 00 )de

—a

+ ,uf (9" 0" + 2K*0 o' + k*Vo)dx.

—a
is a continuous and coercive bilinear form on H?((—a,a)).

Furthermore, let (H?*((—a,a)))’ be the dual space of H*((—a,a)) associated with the
norm /B (-, ), there exists a unique operator

}/a,)\ € £(H2((—CL, (I)), (H2((—CL, a)))/)v
that is also bijective, such that
3&,)\097 Q) = <Ya,)\ﬁu Q> (]‘]‘4)

for all 9, 0 € H*((—a,a)).
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Proof. Clearly, B, is a bilinear form on H*((—a, a)) since the terms BV, (¥, o) are
well defined. We then establish the boundedness of B, x. The integral terms of B, 5
are < |V p2((—aa)) 0l H2((—a,a))- About the two first terms BV, (1, 0), it follows from
the general Sobolev inequality that

(9(a))* + (9(=0a))* < 97 (—aa-

Similarly,

(' (a)* + (' (=a)® < 9" [i (—a)-
Consequently, we get

[BVian (9, 0)] < ([9(xa)| + ¥ (£a)|)(Je(+a)| + |¢'(+a)])
< [Oll2((- a0 0] r2((~a,a))-

We find that

Ban(@; 0)| < 9] a2 ((—aap ol H2((-a0) (1.15)
i.e. B,y is bounded.

We move to show the coercivity of B, . We have that

Bar(1,9) = BV, A(9,9) + BV_g1(9,9) + )\f po(K*9* + (¥')?)dx

o f (8")2 + 2K2()? + K92)da.
We have that BV, (¢, 7) = 0 follows from the following equality

%B%,A(ﬂa 9) = ki (k + 71)(0(a))® = 2k, 0(a)' (@) + (k + 7,.)(9'(a))?

v 2 kP4 kT + 72
(a)> n T+ T Ty

- kT+(k + 7'+)<19(a) B k + T4+ k+ T4

(' (a))*.
We also obtain that BV_, (¥,9) > 0. Therefore, we deduce that

Baa(9,9) = pmin(k*, 2k, 1)[0] 7 (1.16)

—a,a))"

Two inequalities (3.22) and (3.23) tell us that B, ) is a continuous and coercive bilinear
form on H?*((—a,a)). It follows from Reisz’s representation theorem that there is a
unique operator Y, € L(H?*((—a,a)), (H*((—a,a)))’), that is also bijective, satisfying
(1.14) for all ¥, o € H*((—a, a)). Proof of Proposition 1.2 is complete. O

The next proposition is to devoted to studying the properties of Y, ».
Proposition 1.3. We have the following results.
1. For allY € H*((—a,a)),
Yot = Mpok®0 — (po?')) + (0 — 2k*90" + k')

in D'((—a,a)).
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2. Let f e L*((—a,a)) be given, there exists a unique solution ¥ € H*((—a,a)) of
YU = f in (H*((—a,a))). (1.17)

Moreover, we have that 9 € H*((—a,a)) and satisfies the boundary conditions

(0.35)~(0.36).

Proof. Let g€ CF((—a,a)), it follows from Proposition 1.2 that, for ¥ € H*((—a,a))

)\f po(kK*Vo + 9o )dx + uf (0" 0" + 2k*9 o' + k" o)dx = (Y, 20, 0). (1.18)

—a —a

We respectively define (9”)" and (9”)” in the distributional sense as the first and second
derivative of ¥, which is in L*((—a,a)). Hence, (1.18) is equivalent to

a

)\J po(K*90 + ' o' )dx + “J (2% o' + k*9o)dx + p{(9")", 0) = (Yo 20, 0). (1.19)

—a —a

for all p € C°((—a,a)). We deduce from (1.19) that

fa (AE?po? — (po?)) + p(—2k20" + k*9))odx + pd(9")", 0) = (Yard, 00 (1.20)

for all o € C°((—a,a)). The first assertion follows.

Let f e L*((—a,a)) and ¥ € H*((—a, a)) be the solution of (1.17), we improve the
regularity of the weak solution ¢ of (1.20). Indeed, we rewrite (1.20) as

pl(0")" 0y = | (f + 2uk™0" — k9 — A2 pod) + A(po?")') ode (1.21)

—a

for all o € CP((—a,a)). Since (f + 2uk?9" — pk*d — Mk?ped + M(po?’)’) belongs to
L?*((—a,a)), it then follows from (1.21) that (¢")” € L?((—a, a)).

Furthermore, let x € CF((—a,a)) satisfy {* x(y)dy = 1. From the distribution
theory, we define W € D'((—a,a)) such that

<\I}7 Q> = <(19”)”7 CP> (122)

for all p € C°((—a,a)), where

(o) = ch (g(y) —x(v) Ja g(s)ds> dy for —a<uzx<a.

—a —a

Hence, it can be seen that

(W, 0) = =¥, 0) = ("), ) = ("),

that implies (9”)' + ¥ = constant. In view of (¢¥")" € L*((—a,a)) and (1.22), we know
that (v") € L*((—a,a)). Since ¥ € H*((—a,a)) and ("), (9")" € L*((—a,a)), it tells
us that 9 belongs to H*((—a, a)).
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By exploiting (1.21), we then show that o satisfies (0.35) and (0.36). Indeed,

consider now g € C*((—a,a)), one has, using the integration by parts

| @@ = @ @ete) - (0" (ae(-a) - @a)e' )

—a
a

(") (~a)d(—a) + f 9"(2)¢" (x)dx.

—a

We perform on the other terms of (1.20) the integration by parts, which yields

)\f po(k*o + V' o' )dw + “f (9" 0" + 2K*0 o' + K*Io)dx

—a —a

’ i — 2k*90

a

- Apoﬁ’glf + u(ﬁ”’g

_ 7.9// QI

BE f (Yort)odz.

—a —a

It then follows from the definition of the bilinear form B, ) that

' i —2k*% 0 ’

a

Bva,)\<197 Q) + via,)\(ﬁ, Q) = _)\poﬁ/Q’(ia + M(ﬁmg

_ 19// Ql

) (1.23)

—a

for all p € C*((—a,a)).
By collecting all terms corresponding to o(—a) in (1.23), we deduce that

pkr—(k + 7-)9(—a) — kT_9¥'(—a))
= Apo(—a)d'(=a) — p(9"(~a) — 2k*'(~a)).
It yields
V' (—a) — (K* + kr_ + ) (—a) + kr_(k + 7_)9(—a) = 0
owing to the definition of 7_. Then, we collect all terms corresponding to o(a) or to

o (£a) in (1.23) to conclude that ¥ satisfies (0.35) and (0.36). This ends the proof of
Proposition 1.2. O

We have the following proposition on Y;_Al

Proposition 1.4. The operator Ya_)\1 : L?((—a,a)) — L*((—a,a)) is compact and self-

adjoint.

Proof. Tt follows from Proposition 1.3 that Y, y admits an inverse operator Ya;\l from
L*((—a,a)) to a subspace of H*((—a,a)) requiring all elements satisfy (0.35)—(0.36),
which is symmetric due to Proposition 1.2. We compose Ya;l with the continuous
injection from H*((—a,a)) to L?*((—a,a)). Notice that the embedding H?((—a,a)) —
H%((—a,a)) for p > g > 0 is compact. Therefore, Ya:\l is compact and self-adjoint from
L*((—a,a)) to L*((—a,a)). Proposition 1.4 is shown. O

Remark 1.1. In this paper, we choose to define the operator

¢ — Mpok®d — (po@)') + (0™ — 2k°¢" + k*¢) = Yo 10
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with boundary conditions (0.35)-(0.36) through Riesz’s representation theorem. We can
also define that by the following way.

The operator Y, \ is well defined on
D(Y,») = {¢ € C*((—a,a)), ¢ verifies (0.35) — (0.36)}

and that we can extend Y, over the closure of D(Y, ). Furthermore, Y, with the
domain H*((—a,a)) containing functions that satisfy (0.35)-(0.36) is symmetric and
positive. It follows from Friedrichs extension (see [41, Theorem 4.3.1] e.g.) that Yy »

admits a self-adjoint extension.

1.2.3 A sequence of characteristic values

We continue considering A € (0, 4 /Lio] and study the operator S, := /\/lYa_Al./\/l,
where M is the operator of multiplication by \/;6. Note that this choice prevents to

consider a case where p; could be negative.

Proposition 1.5. The operator S, : L*((—a,a)) — L*((—a,a)) is compact and self-
adjoint, under the hypothesis (0.31).

Proof. Due to the boundedness of pj,, the operator S, is well-defined from L*((—a, a))
to itself. Ya_)\l is compact, so is S, ». Moreover, because both the inverse Y;_AI and M

are self-adjoint, the self-adjointness of S, \ follows. [

As a result of the spectral theory of compact and self-adjoint operators, the point
spectrum of S, , is discrete, i.e. is a sequence {7,(\)},>1 of eigenvalues of S, », associ-

ated with normalized orthogonal eigenfunctions {w@,},>1 in L*((—a,a)). That means
Yn(N)wo, = MYa;\len.
so that with ¢,, = Ya}\l/\/lwn € H*((—a,a)), one has

(AN Yardn = poon (1.24)

and ¢,, satisfies (0.35)-(0.36). Eq. (1.24) also tells us that v,(\) > 0 for all n. Indeed,

we obtain "

fyn()‘)J (Ya,/\¢n)¢ndx = f pi)QSidiE

—a —a

That implies

a

NV Ban (b b0) = f podRdz. (1.25)

Since By x(¢n, ¢n) > 0 and pj > 0 on (—a, a), we know that v, () is positive. Hence, by
reordering and using the spectral theory of compact and self-adjoint operators again,

we have that {7,(A\)},>1 is a positive sequence decreasing towards 0 as n — co.
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For each n, in order to verify that ¢, is a solution of (0.27), we are left to look
for real values of A, such that (0.51). To solve (0.51), we have to prove that v,(\) is

differentiable and decreasing in terms of A, respectively in two next lemmas.

Lemma 1.2. For each n, the functions v,(\) and ¢, are differentiable in terms of

Ae (0,4/£].

Proof. The family (Y, ) X0,

1.4. Tt can be seen that the boundary conditions (0.35)-(0.36) differentiable in the pa-
rameter A will tell us that (Y, )

y is a family of bounded operators owing to Proposition
0

A0, \/%] is also a family of differentiable operators on

A by following a generalized treatment of [45, Example 1.15, Chapter VII, $1.6]. Since
Ya_/\1 exists for all A € (0, 4 /Lio], it follows from [45, Theorem 2.23, Chapter IV, $2.6]

that Yaj\l is differentiable for all A € (0, , /], so is S,x. We then apply the differen-
tiable property of eigenvalues of self-adjoint and compact operators, demonstrated in
Theorem 1.1 to deduce that v, ()\) and ¢, are differentiable functions. O

Lemma 1.3. For each n, the function v,(A) is decreasing in A € (0, /]

Proof. Let z, = dd)” . It follows from (1.24) that

1 d 1
k‘2  — Y Y;1 = / " Il / N )

on (—a,a). In addition, we have that at z = —a,

(

2M(—a) — (k+ 1)z, (—a) + kT_z,(—a)
= ;T:gb;z(_a) - ];% (_a’)a

X (1.27)
2(—a) — (K*+ kr_ + 722 (—a) + kT_(k + 7_)2,(—a)
\ = (kL + v >¢’n(—a) - <k =+ k:l/_>¢n( a)
and that at x = a,
rz;’(a) + (k+ 74)z (a) + k12, (a)
_ Vi oy kvy
=~ f0) — 200(0) .

< 2M(a) — (K* + kry + 72)z0(a) — k1 (k 4 74 ) 20(a)
= (gﬁ +V+)¢,( )+ (k - +k’/+)¢n( ).

\

Multiplying by ¢,, on both sides of (1.26) and then integrating by parts to obtain that

a

f (Rpobn — (podl) ) buda + f (Yonza)buda

. i (1.29)

= | Aemsate s () [ st
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Thanks to the integration by parts, we have

| ot — (o 0nds = | oulh2(6, + () — (o)

—a

(1.30)

and

faa(YW\zn)gbnd:v - faa(ya,wsn)zndx + (W0 = 210), = 20220,6,) = Apozion )|

a

— (udzn = 61— 2020 2) — Mooz )

—a

(1.31)
Owing to (1.30), (1.31) and also (1.24), Eq. (1.29) becomes
f po(K2(60)* + (91,)%)dz + ({2l 0 — 210}, — 2K22,00) — Apozhn i
= (62 = Szt = 226, 20) = Modlza) | = (oodhon) (132)

d /1 “
= 5(771()\)) J_a p0¢idm
Using (1.27), we obtain
— (Hatldn = 26, — 2K%2,00) = Mo n ) (—a)
+ (W@ = 012, — 220, 2) = Moodza ) (—a) + p-6,(~a)én(—a)

= (5 4 b ) ou) — (5 4 v ) d(-a)6al—a)
()8, (~a) + () + p- G (~)6u(—a)

Keep in mind that yv_ = p_, one has
— (160 = 2idh, = 2K221,60) = Mozin ) (—)
+ (1020 = 9z = K20, 2) = Apodizn ) (—a) + -l (~a)on(—a)  (1.33)
= kp-(6a(=a))? + £=(¢},(~a) — ko (~a))”.
Similarly, using (1.28), we obtain

(160 = 211, — 2K22160) = Mo2li6n ) (@)

— (1@ — B2ty — 226 20) = Apodia ) (@) = p-h(@dna)  (L34)
= kps(6n(@)? + 5 (6, () — ko (@)
Combining (1.32), (1.33) and (1.34), we deduce that

d 1 “
d\ ('Vn()‘)> J—a PPt
= [ W+ () + o Gu(—0))? + L0 0) — kel (135)

Hhpe(9n(0)* + 35 (91(0) — kon(@)”
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It yields that #(/\) is increasing in A, i.e. 7,(A) is decreasing in A. This ends the proof

of Lemma 1.3. ]

Now we are in proposition to solve (0.51).

Proposition 1.6. For each n, there exists only one positive \, satisfying (0.51). In

addition, \, decreases towards 0 as n goes to 0.

Proof. Using (1.25), we know that

a

7 1_)\) J podidr = J (Yar®n)dndx = Bar(dn, dn),

—a —a

that implies

1 pkt
> M2+ .
Lova(A) P+
Consequently, for all n > 1,
A
lim —— > gk®. (1.36)

Aa\/% Yn(A)

1 e . . . . 1 1 1 9
As 0 < oyl and it is a increasing function, S e \/LIO) for all A < 3 . That

Tn
implies
. A . A
lim —— <lim ———— =0 foralln>1. (1.37)
A=0 Y (A) A0, (1 /g
Ya( )
Combining (1.36), (1.37) and using Lemma 1.3, we deduce that there is only one
An € (0,4/7%) satistying (0.51) for each n > 1.
We then prove that the sequence (\,),>1 is decreasing. Indeed, if \,, < A4 for
some m = 1, we have
Meanwhile, we also have

Y (Amt1) > Y1 (Amt1)-

That implies
>\m )\m+1
gk? gk?

That contradiction tells us that (A,),>1 is a decreasing sequence. Suppose that

= ’Ym()‘m) > /Ym-&-l(/\m-i-l) =

lim A\, = co > 0.
n—00

Note that
An

:W'

Let n — oo, we get a contradiction that 0 > ¢y. Hence, )\, decreases towards 0 as

’Vn<00> = ’Yn</\n)

n — o0. We conclude Proposition 1.6. O
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1.2.4 Proof of Theorem 0.1

Let A, be found from Proposition 1.6 and ¢, (z) = Ya:\ln./\/lwn(x) on (—a,a). Keep
in mind our computations in Section 1.2.1, we extend ¢,, to the whole line by requiring
¢n satisfies (1.12) and (1.13) for some constants Ay, and Ay, as A = \,. Those

constants Ay and A, are defined by

¢n(a) = + An 29 (1 38)
& (a) = k:A+ + VA2 + AL AL

and by
ul=a) = A7y + Ay, o

. (—a) = /{;A,Z}l + k2 AV AL,

Solving (1.38) and (1.39), we get that

VR Ard@) —d@) . d(a) — ken(a) (1.40)

and that

- _ VR A v gn(—a) —d(—a) - ¢h(—a) — kdu(—a)
A = L , A, =% : 1.41
m NGRS VR A — (141
Therefore, the function ¢, € H*(R) is a regular solution of (0.27) as A = ), for each

n = 1. Proof of Theorem 0.1 is complete.

1.3 The strictly increasing profile case

The proof of Theorem 0.2 remains the same to that one of the first case, but more

complicated. We point out the main differences as follows.

Questions concerning the existence of solutions of Eq. (0.27) being bounded at
oo are not straightforward as in the first case. In Section 1.3, we transform Eq.
(0.27) into a system of ODEs (1.44). The matrix L(z, A) has 4 eigenvalues +k and
im, which are different for all A > 0. We then follow [10, Theorem
8.1, Chapter 3], whose statement is Theorem 1.2, to deduce that Eq. (0.27) admits
two linearly independent solutions decaying to 0 at +o0 (respectively —o0). A suitable
interval (z_,x,) is thus determined through a precise calculation of the family of so-
lutions decaying to 0 at +oo, which yields appropriate boundary conditions (0.37) at
z_ and (0.38) at x, in Proposition 1.7.

We solve Eq. (0.27) on the finite interval (z_,z,) with the boundary conditions
(0.37)-(0.38). To do that, in Section 1.3.2, we construct the bilinear form B, ., A

(0.45) in Proposition 1.8 and continue the same arguments as in Section 1.2 to obtain
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the solution in the inner region (z_,z,). Note that, the coercivity of B, ., \ relies
on the positivity of the terms BV,  (0.43) and BV,_, (0.44) stated in Lemma 1.4.
Due to the lack of an easy-to-use expression of boundary conditions in this case, it
turns out that the positivity of BV,, y and BV,_ , are derived, in Proposition 1.8, by
deducing the behavior at +co of coefficients ng: (i,j = 1,2) depending on (x4, ) and
appearing in the boundary conditions (0.37)-(0.38). Having the bilinear form B, ,, i,
we continue our arguments in Propositions 1.9 and 1.10, that follows the same line of

Section 1.2, to prove Theorem 0.2.

Note that Lemma 1.4 does not give any control on z_ and x,. It is interesting for
computational purposes as well as for a study of particular profiles (for example profiles
decaying to p, at +oo at rate e”*+*(ay > 0) and to p_ at —co at rate e*~*(a_ > 0)),
to be able to derive an explicit interval on which this is true. Notice that the restriction
A = €, > 0 of Theorem 0.2 implies that the matrix R(\) (see (1.43)) in Eq. (1.44) is
non singular in the region [e,, Lio] Hence, for a profile such that pj > 0 everywhere,
we devote Section 1.3.4 to establish a control of x_ and z, independent of A. In
Propositions 1.13 and 1.14, through a careful construction of Volterra series, we can
obtain refined estimates of bounded solutions of Eq. (1.44) at oo uniformly in A €
[€x, \/LZO] They allow us to have refined estimates on the coefficients nj; (i,j = 1,2)

uniformly in A € [e,, Lio] Hence, we obtain a criterion for x_ and x, in Proposition

1.11 to fulfill the conditions of Lemma 1.4 and extend Proposition 1.8.

In this section, let (ey, es, €3, €4) be the canonical basis of R* and we pay attention to
an increasing profile pg satisfying (0.33) and (0.34). We will use the Frobenius matrix

norm | - || and the Euclidean vector norm || - .

1.3.1 Solutions decaying to 0 at infinity and reduction to a

problem on a finite interval

Let
0 1 0 0
0 0 1 0
Lz, )\) = 1.42
(z,A) 0 0 0 . (1.42)
_AkQPO(J»’) k4 0 Apo(z) 4 2]{?2 0
1 m
and
0 000
0 0 00
R(\) = 1.43
) 0 0 00 ( )
k2 A
g>\_u " 0 0
We set U = (¢, ¢/, ¢",¢")T and then rewrite (0.27) as

U'(x) = (L(x,A) + po(x) R(A)U (), (1.44)
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The eigenvalues of L(x, ), £k and oo(x, \), with og(z, \) = 4 /k% + ﬁpg(x) are dif-

ferent for all A > 0 and for all x € R. Furthermore,

Jm L (2, )| de <+, Jm 10 (2) ROV |dz < +0. (1.45)

—00 —00
The inequalities (1.45) allow us to use [10, Theorem 8.1, Chapter 3] (see Section 1.2
for the statement) to find bounded solutions of (1.44) near +co. We denote o4 () =
lim, 44 0g(x,A). Then, there exist z_ < Z, such that we have the existence of
bounded solutions U}, on (Z4, +0) and Us, on (—o0, z_) such that in a neighborhood
of 40,

kU (2, \) — (k3 k72, -k~ )T,

x _ _ _ (1.46)
exp( 57 00(y, Ny ) U5 (2, 3) = (=072(0), 072 (N), =0 (1), 1),
and in a neighborhood of —o0,
e F U (2, \) — (K73, k72 k1, 1T,
5 (7,A) = ( ) (1.47)

exp( = 52 o0(y, Ny ) U (2,2) = (623 (N), 0=2(N), 0= (1), 17"

Let us prove that U;" (z, \) and U5 (x, \) are linearly independent. Through Cauchy-
Lipschitz’s theorem, if they are linearly dependent at a particular xo then they are
linearly dependent for all x, that is there exists T'(A) such that

Ul (2,A) = TS (2, ).
In particular, as the limit of kx — S; 0o(y, \)dy when & — +00 is equal to —0, one
observes that

ek:BUl-‘r(x, A) =T (Nexp (k;x — J o0(y, /\)dy) <U2+ (z, A)exp(f

T4 T4

T T

o0y, Ny ).

The r.h.s. of this identity converges to 0 when x — +o0, while the 1.h.s. converges to
(=k73, k72 —k~1,1)T when x — +o0, contradiction. Similarly, U; (z,\) and U, (x, )
are linearly independent.

The aim of the next proposition is to reduce the study of Eq. (0.27) on the real line
to its study on a finite interval as in the previous section. This is really the key of our

result for a smooth general profile because it entitles us to use the compact injection

of H'((a,b)) into H?((a,b)) if i > j.

Proposition 1.7. There exist 2° < Z_ and 2% > Z, such that, for all z_ < 2° and

x4 = x5, there are constants n:—; (1,7 = 1,2), depending on x4 and \ such that equation
N (K2pod = (pod)') + (¢ — 2K2¢" + k*0) = gk®pyo,
where ¢ € H*((z_,x,)), supplemented with the boundary conditions at x_ are (0.37)

np¢(e-) +npd'(z-) + ¢"(z-) = 0,
Ny d(x-) + npd'(r-) + ¢"(x-) =0
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and at x4, are (0.38)

n19(xy) +niyd (v4) + ¢"(xy) = 0,
ny P(x4) + 3¢ (x4) + ¢"(x4) = 0,

15 equivalent to equation
N (K2 po® — (po®')') + Ap(@W — 2k20" + k' ®) = gk?p;, P,

where ® € H4(R).

In this case, on (r_,x,) we have that ® = ¢ and on (r,,+) (respectively
(—o0,z_)), ® is the first component of a linear combination of Uy (z, ) (see (1.46))
(respectively Us 4(x, \), see (1.47)).

Proof. Notice that if ® is a bounded solution of
M(E2po® — (po®')) + Ap(®W — 2k2D" + kD) = gk?p),®,

O = (¢,9,®" )T is a bounded solution of (1.44). Any decaying solution © of
(1.44) on (Z,+) belongs to the space spanned by U; (x,\) and Uy (z, \), which is
of dimension 2 because they are linearly independent. It is equivalent to say that, for
any ry = 4,

U (e, ) AUS (20, A) A O(x4,A) =0 (1.48)

and
O(z,\) belongs to the space spanned by U; (x4, \) and U (x4, \)

Let us write U;" = (U1, UL, UL, U fori =1,2and U; = (U;;, U, Uz, U;;)T for
i = 3,4. System (1.48) is a system of four equations on the components of O(x, \),
hence there exists a couple of equations which are linearly independent (the system
being of rank 2). Let us notice that two of these four equations contain, in ®” and ",

respectively the term
(UI—EUQ-E - UEUi)(ZL‘_;,_, /\)(1)”<JZ+, )‘)

and

(U103 = UpsUsy) (4, A) @™ (24, A).

As the limit, when x, — +00, of

Tt
exp (ke + [ o0y, \ly) (U505, ~ UBUL) w1, )

Ty

18
1 1 APy
. [ 0
Bol(h) T RoI(N)  kelN(k+oy)

by continuity there exists a 2% > Z such that, for all z; > 29,

(UihUs, = UUs ) (x4, A) < 0
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hence the equations for (1.48) on the components e; A e3 A €3 and e1 A e A €4 Write as
N*tO(x,A) =0 with N* is a 4 x 2 matrix of the form

Nt nyy nfy 10 |
Ny Ny 0 1

We are now able to write the couple N*O(z,,\) = 0 as

N (24, A) + 1 ® (24, A) + (24, A) =0,

ng 1 P(z4, A) + ngp® (x4, \) + " (24, ) =0,
In a similar way, there exist n;; (4,7 = 1,2) depending on z_ and A such that

n@(x_, ) + npy®(z_, ) + "(z_,\) =0,

Ny ®(x_, \) + np®(x_,\) + " (z_,\) =0,
Hence @ is a solution of the ODE on (z_, z;):

M (E2pe® — (po®')) + Au(@W — 2k2D" + k1) = gk?p), @,

with the boundary conditions (0.37) and (0.38).

Conversely, assume that ¢ € H*((x_,z)) is a solution of equation
N (K2pod — (po¢)") + (0 — 2k%" + k') = gk?piyo,
with boundary conditions (0.37)-(0.38). From the boundary conditions, we deduce that
there exist C(j = 1,2), D, (k = 3,4) such that
U(‘T-‘m >\) = ClJrUlJr(x-I-? >\) + C;U;(I-‘ra )‘)
and
U(x_,A\) = D3U;s (x_,\) + D;U; (xz_, \).

Then, through Cauchy-Lipschitz’s theorem,
U(z,\) = C{Uf (2, \) + CTUS (x,\) forall z >z,

and
U(z,\) = DUy (x,A\) + DUy (x,\) forallz <z,

As these are decaying solutions at +o0 respectively, and as there is no jump at =, (or
x_) for ¢,¢’,¢",¢" (which have a meaning as ¢ is assumed to be in H*((x_,z))), the
function
CTUL(z, \) + CTUS (z,N), asx >y
O(r) = { ¢(x), asT_ < T < T4

D;Uz (x,\) + Dy Uy (x,N), asaz <a_
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belongs to H*(R) and solves equation
M (E2pe® — (po®)) + A(®@W — 2k2D" 4 k1®) = gk?p,® on R.
O

Remark that in this proof we have no additional information on the values of 2

and of 29. This will be the aim of Section 1.3.4.

1.3.2 A bilinear form and a self-adjoint invertible operator

The aim of Section 1.3.2 is to study the BV, terms (0.43), (0.44) which come

from the bilinear form (0.45).

Lemma 1.4. Necessary and sufficient conditions to get
BV, A(9,9) = 0 and BV, x(¥,9) =0 (1.49)
for allv e H*((x_,xz.)) are

niy(ry,A) =0, ng(vy, ) <0,

(1.50)
(nfi (24, A) = ndy(zi, A) — K — ‘73(347 A)? + dnfyngi (x4, N) <0,
and

n1_2(l'—7>‘) = Oa 712_1(93'_,)\) < 07

1.51
(”f1<$—7 A) — n2_2(x_, A) — k* — Ug(x—’ )‘))2 + 4”1_2”2_1($—7 A) <0. ( )

Proof of Lemma 1./. We treat only the case BV, \(9,9) = 0. Since po(x,\) =
pk? + Apo(z), we rewrite

iBmAw, 9) = —ny (2, N (D(@4))? + nd (9 (24))?
(0 (14, N) — 1y (4, A) — K2 — 02 (4, A0 )9 ().

We observe that it is a quadratic polynomial in J(x),d' (24 ). The first case is the
case where nf, = nj; = 0. The inequalities (1.50) imply that BV, ,(¢,9) = 0 for all
9. The second case is the case where at least one of these two real numbers is not zero.

For example, if nj;, # 0, we have that the polynomial
nht? + (nf, = ngy — k* — og)t —ng,

is always of the sign of nj, hence positive, hence BV, (J,9) = 0 for all ¥ €

H?*((z_,z,)). Lemma 1.4 is proven. O
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Proposition 1.8. There exists 1 < 2%, 2} > 2% such that, for any v < zL and

x4 = at chosen arbitrarily, B, ., x (0.45) is a bilinear form on H*((x_,x4)), that is

continuous and coercive.

Proof. Recall n:*; (,j = 1,2) are given in Proposition 1.7 and that BV, , BV,,  are
given in (0.43), (0.44). One observes that one needs to prove that

1Ba_ e (U, 0)] S 0200 ey Ol m2(@— 20 (1.52)

and that
Bo wp A(0,0) 2 |92 (0 s - (1.53)

For positive A\, i and k, we have

T4 T4
/\J po(k*Vo + ¥ o) dx + uf (0" 0" + 2k*9 o' + k*Vp)dw

xT— Tr—

< [l wiy ol e

and that
T+ T4
/\J po(K*9? + (¥')?)dx + “J ((0")? + 282 (0')* + E'9°)dx 2 |93 2,y

Tr— xr—

Note that the condition g > 0 is necessary to obtain the coercivity on H*((x_,z)).
Note also that the case ¢ = 0 amounts to the inviscid Rayleigh-Taylor instability,
for which similar results are known (and the corresponding problem needs only to be
defined in H'). In addition

[BVa, A (0, 0)] < (19(z4)| + [e(@ ) D19 (z)] + &' (z4)]),
[BVa_ (9, 0)] < ([9(z-)| + [e(z- ) (10 (z-)| + |¢'(z-)])
and the Sobolev embedding yields (1.52). The continuity of B, ., \ on H*((x_,z))

follows.

To show (1.53), it suffices to prove that (1.49) holds. In view of Lemma 1.4, we
verify (1.50). Since N*U" (zy,A) = N*Uy (21, ) = 0, we have that n; (i,5 = 1,2)

depend on z_ and \ and satisfy

nHUL (24, A) + nhUh (a4, ) + U (24, A) =0,

(1.54)
n1+1U2+1($+7)\) + nir2U2J§<x+7 >‘) + UQJE,(.Z‘_;,_, >‘) = Oa
and
ny U (24, A) + ng,Uiy (@4, A) + Uy (24, A) = 0, (1.55)

N3 Usy (24, A) + ngpUsh (24, A) + Uy (24, A) = 0.
Let nj;(A) be the limit of n(z,,\) as 2 — +oo. When x, — +00, two systems
(1.54)-(1.55) converge to

(1.56)
—nﬁ(A)GIS( ) +nh(No*(A) — ot (N) =0,
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and
—no (M)A +np(ME™2 +1 =0, e
“n ) + (Ve + 1= 0,

hence
ni(A) = ko (A), nia(\) =k+o.(N)

and

N3 (A) = =k (A (k+ 0. (N),  nHh(N) = —(k + ko (A) + 0 (V).
One thus has

(nf;(A) = n3(A) = k2 = 03 (N)? + 4nyng, (V)
= ((k+0:(N)* =k — 03 (V) — dko (V) (k + 01.(N))
= —dko, (\)(K* + ko (\) + a2 (\)) < 0.

Hence, by continuity, there exists z1 > 29 such that, for all z, > z!,
(01 (24, A) = 1y (w4, A) — & — 0 (w4, A))? + dnfynsy (w4, A) < 0.
The proof of the existence of 21 < 2° such that, for all z_ < z! such that
(i (-, A) = ngp(w—, \) = & — o5 (v, \))* + dnpny (-, A) <0

follows the same pattern. Hence, by application of Lemma 1.4, the inequality (1.53)
follows, which ends the proof of Proposition 1.8. ]

Mimicking the arguments in Propositions 1.2, 1.3, 1.4 we obtain the following propo-

sition.

Proposition 1.9. Let (H*((x_,z)))" be the dual space of H*((x_,x,)) associated
with the norm /B, ., A(-,-), there exists a unique operator

Yoo won € LOH (2=, 24)), (H*((2-,24))),
that is also bijective, such that
Bo_wn(0,0) = Ya_ o 20, 0) (1.58)
for all 9, 0e H*((x_,zy)). Furthermore, we have
1. For all¥ e H*((xz_,x,)),
Yo ¥ = A po0 — (pot?)') + p(0 — 2k°0" + k*0)

in D'((x_,z,)).
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2. Let f e L*((x_,x.)) be given, there exists a unique 9 € H*((x_,z,)) satisfying
the boundary conditions (0.37)—(0.38).

Yo w0 =fin (H*((z_,2.))), (1.59)

3. The operator Y, * L*((z_,xy)) — L*((z_,zy)) is compact and self-adjoint.

O I N

It is then straightforwad to obtain the following spectral result. The discrete spec-
trum of MY;:M, ,M is a sequence of eigenvalues (7,(\))n>1. The function 7, () is a
continuous function of A for all n from the arguments of Lemma 1.2. The problem of
finding a characteristic value amounts to solving the equality (0.51) as before. How-
ever, no control is possible on 7, (\) when A goes to 0. In addition, no control of :U?i and
2} (because it may depend on \) is available to have a possibility of having estimates
of 7, (\) as well. Having an explicit (even if not optimal) criterion on z} such that the
inequalities of coercivity (1.50)-(1.51) are true is the aim of the refined estimates of the
solutions Ulf 5 and Usy (deducing in Propositions 1.13, 1.14 below) which follow. That
will be postponed to Section 1.3.4 below.

1.3.3 The finding of characteristic value )\, and Proof of The-

orem 0.2

Let €. > 0 be given, we look for A, € (€., /1) satisfying (0.51). However, unlike
the previous case with pj > 0 being compactly supported, we do not have here the

decrease of v, on A to obtain the uniqueness of \,,.

Proposition 1.10. For 0 < €, < 1, there exists N(e.) € N such that there is at least
one positive A, € (€., /=) satisfying (0.51) for each 1 < n < N(e.).

Proof. We still have
A
lim ——— > gk*. (1.60)
Ao [ Tn(A)
and by, (€,) := infy=, 7,(A) > 0. Notice that {b,(€,)},>1 is a sequence decreasing to 0

as n — 0. Set
N(e,) :=sup {n|bn(e*) > E%} € [1, +0).

For 1 < n < N(e,),

A €
i < i _ * k2 1.61
,\l—r}el* V() Al—{rel* bu(€s)  bples) =9 ( )

It then follows from (1.60) and (1.61) that we have at least one desired A, €

(€rsq/75) for 1< n < N(e). O

Now, we are able to prove Theorem 0.2.
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Proof. Let w, be an eigenfunction associated with =, of MY;}L M. That means

An

My, ek

M, = (A, k),

L4y )\
Hence, ¢, = 3/:5__17x+7,\nMwn € H*((x_,z,)) satisfies

/\nY:z:,,:z:Jr,)\n ¢TL = gk2106

on (x_,x). In order to conclude that ¢, is a solution of (0.27), we then extend ¢,, on
R by continuity.

Let us take A = A, in the formulas of U, from (1.46) and in the formulas of Uy,
from (1.47). Hence, ¢, is of the form

On(z) = B:{JUﬂ(x, An) + B;QU;I(L An)

as r > x, and

¢n(x) = B;3U3_1(37, )‘n) + B;4U4_1($’ )‘n)

as © < z_ for some real constants B, |, B, ,, B, 3 and B, ,. The constants B, |, B,
are defined by
On(ry) = BJr Ui, ) + B:{’2U2+l(a:+,)\n) (1.62)
Qb/( ) U12( s A )+B:{,2U2J5($+a)\n)-
Similarly, we have the system for B, ; and B, , is
(T U JAn) + B, U (-, ),
On(z-) = B, 3Usi(z—, An) U ( ) (1.63)

b)) = 3U32( s An) + B;4U4_2<37—a An)-
Solving (1.62) and (1.63), we obtain that

_ U2—5<w+7 An)qbn(x-i-) _ UQ—E(‘(E-H An)qb;z(x-i-)

B, = ,
’ (U1 Uz = UUs1 ) (@4, An)
that . . )
Bt — —Upb (x4, A)on(z4) + Uiy (24, An) By (24)
e (U1Uzs = UiyUs)) (@, An) ’
that B )
B- Up(z—, \n)dn(r-) = Ugy (7, \n) @), ()
e U Ui — UnUs) (o ) ’
and that B B )
B, = —Usp(z—, M) pn(z-) + Ugy (2, An)ﬁbn(x—)

(UsiUsy = UnUsy) (-, An)
Therefore, we get that ¢, is a regular solution of (0.27) as A = A, for each 1 < n
N (e,). This ends the proof of Theorem 0.2. O

N
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Remark 1.2. 1. For |z4| large enough, the investigation of reqular solutions to
Eq. (0.27) on the real line is equivalent to that one on (x_,x,) with boundary
conditions (0.37) and (0.38) at x4.. More computations are required in the second

case due to the lack of compact assumption on py.

2. For |z4| large enough, the problem (0.27) on (x_,x) with boundary conditions
(0.37) and (0.38) is equivalent to a weaker version of (0.27) that can be solved by
applying Riesz’s representation theorem on the bilinear form B, .. » and then

improving the reqularity.

3. Generally speaking, a problem on the real line with decaying solutions at infinity
and transversality hypotheses is equivalent to a problem with the compact setting

when we have enough decays on the solutions at +co.

1.3.4 Explicit construction and refined estimates of the de-

caying solutions at infinity

In the regime 0 < €, < A < /7, we notice again that R(A) is uniformly bounded.
0

So that, as 0 < e, <\ < Lio,, we further derive a control of the inner region (z_,x,)
independent of X in the following proposition, extending the result of Lemma 1.4 and

Proposition 1.8.

Proposition 1.11. Let €, > 0 given and let A > €,. Let z, ., (respectively, z_ ., ) be the
sum of two upper bounds, which are functions decreasing towards 0 at +0 (respectively,
at —0), on the r.h.s. of (1.84) and (1.85) (respectively, (1.88) and (1.89)). There exist

positive constants T'1(e,) such that, for all x,,x_ satisfy
e (JI+) < F+(6*) and Z—ex (ZE_) <TI- (6*>’ (164)
we have B, .., » is coercive.

The proof of Proposition 1.11 relies on the refined estimates of the bounded solutions
of (1.44) near oo, presented in Propositions 1.13, 1.14. Before going to the proof of
Propositions 1.13, 1.14, thus Proposition 1.11, we present some materials. Notice from
(1.42) that one has L(x,\) = P(x, \)D(z, \)P(z,\)~!, where

D(xz,\) = diag(—k, —oo(x, N), k, 00(z, N)), (1.65)

—k7% —oy% (2, ) kTP oyt (x, N)
k72 oy (x,N) k72 ooy (x,N)
—k7Y —og M, N) kY ooy t(x, A)

1 1 1 1

Pz, \) = (1.66)
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and
—k302(x,\)  K?02(z,\) K3 —k?
Pl - | Pab ) R —oiw ) ad | o
20p0(x) | K3o2(x,))  k*o2(z,N) —k? —k?

—k'20'8(1', >\) —kQO'g(.CC, )\) 0-8(:67 >\) 0-(2)(377 )‘)

The columns of matrix P are denoted by Pi, Py, Ps, Py and P», Py depend on (z, ).
Note that for every positive k, A and u, P and P~! are bounded uniformly in R and

P~ becomes singular when X\ — 0 and z is fixed.

Then, we set U(z) = P(z, \)V (z), Eq. (1.44) becomes

V(@) = (D(x,A) + po () M (2, )V (2), (1.68)
where doy(x, \) dP(z, )
M(z,\) = Pz, \) 'R Pz, \) — L2085 g yy-1 22284
(#.0) = Pla ) ROP(a,3) = 00 pr 1 S8
Lemma 1.5. Let
o g P+
0(e,) := 4 k2 + and g = A k2 + 4 [ =——.
(&) H Ly p
For any A € [e., A/ £-], there hold
1 1 1
sup |P(z,\)|r <T,:= max <1’E’E’E> (1.69)

and

sup [M(z, )| r < Ti(e) := é fax <g<k * Li())’g(%i) i Lio»

1 g 22 5k2 k2
+ (e /L—O max (—52(€*> (k+6), 3 + ds, ) + 55>.
(1.70)

Proof. Due to €, < A < /£, we get that d(e.) < og(z,A) < J; for all z € R, it yields

(1.69). We move to demonstrate (1.70). Let

gk?

az(N) = gk £ X%, be(w,A) = oo(x, \) X
0\
and .
Ci(l’; )\) =k+ 0'0(.177)\), d(;p’ )\) = m _ 0'0(13, /\)

Direct computations show that

doo(z,)) X ph(x)
dpo() 2p00(x,A)’



1.3. The strictly increasing profile case 65

that
a_ kg% —a;r —i%*
P RPN = s | T F s E Tl ey
x, T,\) = ——— 2 2 x,
W) | 0 B g, L
—a;gg b S by
and that
0 2k§g+ 0 221;25
_,dP(z,\) 1 0 d 0 —E 40
P A 1 ’ == 2 90 2 ,)\
(CC, ) dUo([B,)\) 2>\p0(l‘) 0 2k ;:, 0 2k 2c+ (ZE )
90 90
0 —5—(2)4-0'0 0 d
For all x € R, it is clear that
1 k2 1
>\<<k—>,b,)\<< —)
e <a(k+ 1) e <o(55+ 1
and that
5k?
lex(z, N)| <k +6ds, |dz,\)] < —— + 6.
d(€x)
Therefore, (1.70) follows. Proof of Lemma 1.5 is complete. O
Let z, be chosen such that
+00 1
| AN rdr < Tl o- — mi@) < (171)
T4
and Z_ be chosen such that
- N 1
| AEIME N rdr < Tt m(a-) - o) < 5. (172
—00
Let ag(z) and B4 (z, A) be defined
as(o) = k(o = 52), BeloN) = £ [ oly Ny (173

+

We then study the solutions of (1.68) decaying to 0 at +oco.

Proposition 1.12. Eq. (1.68) on (Z,,+) admits a unique solution Vi(x,\) such
that e=*+@V,(z,\) converges to e, as * — 40 and a unique solution Vy(x,\) such
that e P+@NVy (2, \) converges to ey as x — +00. Furthermore, we have the following

estimates

(s = pol@)) + pof@ Je e~

+ |po(w) = (0(en) = k) f po(r)e” I dr
(1.74)

e Vi (2, A) = exl2 < 2T(e)

Ty

and
|7+ NV (2, ) = eafls < 20m(en) (p1 — pol2)) (1.75)

forallx > 2,.
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Proof. We define the matrices

U(z,\) = diag(e’a+("3), 67B+(M), em(m)’ 66+(mv)‘))’

Uy (z, ) = diag(0, e+, 0,0)

and
Wy(z, A) = diag(e @+@ 0, 2+ @) hel@A))

Then, we consider the equation
Vi(z, A) = e+ @e; + f 4 (a, ) (7, ) (7) M (7, A Vi (7, N)dr
7 (1.76)
— J Wy (2, \)W (7, \) L ol (1) M (1, \)Vi (T, N)drT.

It can be seen that a solution V; of (1.76) satisfies (1.68). We solve (1.76) by the Picard
iteration method. Indeed, let Vl(o) (x,\) =0 and

VI (2, A) = e @ey 4 | 0y (2, VU (7, A)ply (1) M (7, NV (7, A dr

Ty

- foo W, AT (7, )l () M (7, YV (7, )

T

We have that
Uy (2, VU7, ) = diag(0, e~ P+ @N=A: () g )

and that
Wy (2, \)U~L(7, \) = diag(e™ @+ (D=ax@) o gor(D=as(@) o=(Bs(@A) =B (mA))y

Hence, we can estimate for 7, < 7 < z,

01 (2, )T 7, W) € (a5 et

< e—(Oé+(LL’)—oc+(T))—((S(e*)_k)(x_T) (1.77)

and for 7 > x,
[0y (2, VU7, A < e (7). (1.78)

Using (1.77) and (1.78), we get

e+ @ VI (2 3) = VO (2, A
o0

< Dolen) f e+t () VD (1, 2) = VIV (7, V)| pd.

Ty

Thanks to the induction, we get for all z > Z, and for all j > 0,

, 4 1\J
6a+(x)||V1(J+1)($, A) — VI(J)(JZ, M2 < (§>J7 (1.79)
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yielding the uniform convergence of {Vl(j ) (x, A)}j=0 on any subinterval of (Z., +00). Let
Vi(z, \) be the limit function. Vl(j) (x,\) is continuous, so is Vi (x, A). Moreover, (1.79)
implies that

J

VI N < Y e O, 0) = 1 @, )] i()'

=0

That tells us for x > 7,
Vi, M) < 2e7+), (1.80)

Once we have (1.80), we then prove (1.74). Indeed,

OV (2, 4) - e = e*+0) f Wy, )W (7, M) ph () M (r, Vi (, N)dr

T+

+00
= e [ Wl VW) () M AV N

xT

We make use of (1.78) and (1.80) to have that

e+ f N VU (7 )7 M (7 V(. W < 2o — o))

T

(1.81)
From (1.77) and (1.80), we obtain that
e | W N N ()M AW N
&+ i (1.82)
< 2Fm(e*)f ph(1)e" e =R E=n) g
Zy
After integrating by parts, we get
ﬁ pB(T)e—(cs(e*)—k)(x—T)dT _ —po(j'+)€_(5(6*)_k)(x_i+) + po()
o . (1.83)
— (0(ex) — k)f po(T)e e =RE=m) g
Ty

Combining (1.81), (1.82) and (1.83) gives (1.74).

By considering the eigenvalue —oo(z, A) of L(z, A), we continue the idea in Theorem
1.2 and mimic the above arguments to the solution Va(x, A) such that e’+@NVy(z, \)
converges to es at +oo and Vi(x, \) enjoys (1.75). This ends the proof of Lemma
1.12. 0

Now, we get back to (1.44) to find solutions that are bounded near +co.

Proposition 1.13. Eq. (1.44) on (., +o) admits
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1. a unique solution U} (x, \) satisfying that as x — +o0, e*+@ U (z, \) converges
to (—k=3, k72, k=Y, )T and that for all x > 7,

“€a+($)Uf_($’ )‘) - (_k_37 k_Qv _k_lv 1)TH2
(P4 = po(x)) + po(i e Pl M=) (1.84)
o) = 8l <) |

xT

T

<20, (e) po(r)e~Ge) M= g
+

Y

2. a unique solution Uy (x, \) satisfying that as x — 4+, eM+@ENUS (2, \) converges
to (—o:2(N),0.2(N), =0 (N\), 1)T and that for all x > 7,

HeﬁJr(az,)\)UQ-&- ((L’, /\) o (_0-13(/\)7 0-;2(/\)7 —0'11()\)7 1)TH2
< (\/ 9(49'(e.) +160™2(e.) + 907)

(1.85)

16 Lop25'6 (e, ) + QFPI‘m(e*)> (ps — po(x)).

Proof. We define U} (x, \) = P(z, \)Vj(z, \)(j = 1,2), with V; and V5 are two solutions
of (1.68) satisfying (1.74) and (1.75) respectively. It can be seen that U; (x, \) and
Us (x,\) are two solutions of (1.44).
Note that
2+ @UF (z, ) = Py + Pz, \) (e @V (2, )) — 1)
= (—k2 k72 kL DT 4 P2, A)(e2 @V (2, \) — eq).
The inequality (1.84) is then clear due to the estimate (1.74). According to I’Hopital’s

rule, we have

T O(ex)—k)T e)—k)z
lim Sh po(m)ee B dr = lim po(w)e)=h) __ P+
100 e(8(ex)—k)z T4 ((5(6*) — ]g)e((i(a)*k)x (5(6*) -k’

that implies

T

lim ’po(x) — (6(€x) — k)f po(T)e”CE)=RE=) g — .

Tr—+400 iy
The behavior of U (x,\) at +oo follows.
To prove (1.85), we write
65+(I’)\)U2+ (Z‘, >‘) - (_013(>‘)7 0-472</\)7 _0-11(/\)7 1)T
= Pz, \) — (=0 2(N),072(N), =07 (N), D)7 + P, \) (P @NVy (2, \) — e).
Since d(e.) < 04 (A) < &, for all A€ [e., 4 /£], we bound that

[Pa(, 2) = (=07 (A), 0 72(N), —o 71 (N), D73

1 1
— )‘_2( (2) — py)? as(x, \)or(N)(oo(z,\) + 04 (N)?  od(z,N)a2(N)
= 12 Po P+ N U%(ZL’, )\) + O'o(l’, /\)0’+()\) + o-i()\)>2 (186)
o3 (@, Mot (V) (oo(w, ) + 0+ (N)

g(46%(e,) + 1662 (e, ) + 902
16 Lop2'6(e,)

~
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Meanwhile, as a result of (1.75),
|P(2, ) (e Y Va(w, A) = e2)]2 < 20 (e0) (04 — po(2))- (1.87)

Thanks to (1.86) and (1.87), we obtain (1.85) hence the behavior of U (x, \) at +oo.
Proof of Proposition 1.13 is complete. O]

We now fix two positive eigenvalues of L(x,\), k and o¢(z,\) and thus follow
Theorem 1.2 again. We are able to construct solutions of (1.44), which are bounded

near —o0 as in Proposition 1.13.
Proposition 1.14. Eq. (1.44) on (-0, Z_) admits

1. a unique solution U; (z,\) satisfying that as x — —co, e*~@U; (2, \) converges
to (K73, k72 k=1, )T and that, for all v < 7_

e~ () = (kK2 K7 1)
(po(@) — p_) + poli_)e Ol =R@E——)

T_

+ |po(x) — (d(€x) — k)J po(T)e” Cle)=R=a) g

T

)

<200, (e)
(1.88)

2. a unique solution Uy (x, \) satisfying that as v — —0, @MU (2, \) converges
to (0=*(\),0-2(N\), 0=t (N), )T and that for all x < T_,

[ ENUL (@, 0) = (02%(A), 02 (A), 021 (A), 1) 2

g(4610(e,) + 16612(e,) + 954) ) (1.89)
< 21,1 (ex —p_).
<\/ 16L0/L2(516(6*) + p (6 ) (p()(l') p )
We are now in position to prove Proposition 1.11.
Proof. We recall nf; (i, = 1,2) from (1.54) and (1.55) to have that
+ + + +
LW 1 Uy  —Up Ups
QQ : UiUs, — Uy Uiy \ U5y Uy J\US) T
and
+ + + +
g1 1 Up  —Up Uiy
(xp, A) = — (T4, A). (1.91)
QQ " UpiUp, — Uy Uy \=U5y Uy J\U5 ) T

We are ready to prove the estimates (1.50) needed for Lemma 1.4. Now using (1.84)

and (1.85) into (1.90) yields that

_ Un U — Ui Us
UiUsy = Un U

_ k4o (M) + A3,
(24 2) = L+ fo(zy, ) ’

nfz(lﬁm A)
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where [f;(z,A)| = O(z4.e.(2)) (j = 1,2) uniformly in A € [e., /7] as & — 0. Hence,
there exists a constant &, (e,) > 0 such that
niy (T, A) 2 k+ 0. (A) — &6z e (24)
> b 6(es) — € (60) 7 (04).

That implies niy(x;,\) > 0 if

k+0(e,)
Zie (@) < ——=. 1.92
We estimate
Ay(zg,A) = (nfy (@4, ) = (24, A) = k% = 05 (24, M) + dniong; (x4, A)
From (1.84) and (1.85) again, we obtain from (1.90) and (1.91) that
niy (T4, A) = ko (N) + O(z4 e, (24)),
(14, A) + k2 + 0g(24,A) = ko (N) + Oz . (24)),
gy (T4, A) = —ko (A)(k + 01(A) + O(z4 e (24)).
Hence, there exists a constant w, (e,) > 0 such that
A (1, 3) < —Akos (R + oy () + 0% (V) + w(e)zs e (2)
< —4kS(e,)(k* + kd(e.) + 6%(e2)) + wy () 2y o, (T4).
The inequality A (x4, ) < 0 is equivalent to
4ké(e,) (K + kd(er) + 02(es
(o) < M £ ki) + Fer) o)

W (€x)

Combining (1.92) and (1.93), we take

k+0d(e.) 4ko(e.)(k* + kd(e) + 52(6*))>
Er(en) w (€x) '

If =, satisfies z, ., (z4) < 'y (e), then one has nfy(z,,\) > 0> A, (24, \), i.e. (1.50).
That implies BV, \(¢,¢) = 0.

I') (ex) = min <

Similarly, we get that, from (1.55), we follow the above arguments to show that
there exists I'_(e,) > 0 such that for z_ . (z_) < I'_(e,), (1.51) holds. It yields
BV, A(9,9) = 0. Proposition 1.11 is proven. O

1.4 A remark on the relation between the formula-
tion on [z_, x| and the formulation on R of the

viscous RT problem

We end this chapter by the following remark on the bilinear form B, . .
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Proposition 1.15. For all bounded solutions ¢ of (0.27) on R and for all 6 € H*(R),
there holds

+00 +00
AJ po(K*¢0 + ¢'0)dx + /LJ (¢"0" + 2k + k*p0)da
—o0 —0o0

=B 2.2 (0,0) + J 0 phda.

R\[vax‘F] )\

We immediately have two remarks from (1.94).

1. In the case of p, being compactly supported (suppp, = [—a, a]), we have

+00

A f ” po(K200 + ¢80 )dx + pu J (8"0" + 2K200 + k*¢0)dz = Bor(0,0). (1.95)

—00 —00

That means B, ., » is independent of z, if and only if z_ < —a < a < z4.

2. In the case pj > 0 everywhere, for each (x_,x,), a penalization of B, . \ by
the term Sif L/Z\pé(wdx is necessary to obtain the ODE (0.27) on the whole space.

Proof of Proposition 1.15. To prove (1.94), we show two following identities

+00 +
J Moo(k2¢0 + ¢'0)dx + “J (K*¢0 + 2K*¢'0" + ¢"0")dw
T ey " (1.96)
_ f odz + BV, A(6,)
T4

and

f (08 + ) + J (K60 + 2k20/0 + 60" )de
—00 kz e¢] (197)
- f f“ 90dx + BV, \(6,0).

We have the following remark that we state on (z, +00) (a similar expression holds
true for (—oo,z_)) that if ¢ is a bounded solution of (0.27) on (z,,+00), we then have
from Proposition 1.7 that ¢ satisfies (0.38) at . We integrate by parts to have that

o +00 +00 +00
J §"0"dx = ¢"0'|  — "0  + f oD 0dx
o o o (1.98)
- =)+ @) + [ o

Because of (0.38), we have

¢"(xy) = —(nf10(xy) + nhe () (1.99)

and
¢"(xy) = —(ng,0(x4) + Ny (v4)). (1.100)
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Substituting (1.99) and (1.100) into (1.98), we obtain

J ¢"0"dx = (nfy0(x 1) + nipe (x1))0 (4) — (n3, (x4 ) + n5pd(24))0( )

o (1.101)
+ f opWodzx.
Ty
Using the integration by parts again, we deduce that
+00
J ¢'0dx = '9 J ¢"0dx = —(¢'0)(xy) — ¢"0dx (1.102)
Tt
and that
+00 +00
J pod'0'dx = —(pod'0)(x,) — J (po¢’) Odx. (1.103)
In view of (1.101), (1.102) and (1.103), we obtain
+00 +00
J Moo(k2¢0 + ¢'0)dx + p f (K*¢0 + 2K*¢'0 + ¢"0")dx
o +00 o
= f (A(K?pod — (pod)') + p(6™) — 2k*¢" + k*))0dx
' (1.104)

+ (g 0(xy) + 13y (24))0 (24) — p(ng d(4) + ngyd' (24))0(x4)
— 2B p(¢'0) (2+) — Npod'0) (+)

+0 ]{32/
| Pt + BV a(0.6).

Hence, (1.96) follows from (1.104). Similarly, we obtain (1.97). It follows from (1.96)
and (1.97) that

+00

400
Af po(kK2¢0 + ¢'0')dx + f (8"0" + 2k200 + k' ¢0)dx

—00 —00

2 +0 2./
[ gpar s [P0+ BV, 0(6.0) + BV a(0,0)
I o . (1.105)
+ f Apo(K260 + 0 dx + i f (K60 + 2k26'0' + 0" )dz

Tr— xTr—

T kQ / 400 k.Q
:J %Qﬁ@d;p —|—f g pOQbed + 395 T, )\(¢ 0)

T

It yields (1.94). O






Chapter 2

Nonlinear Rayleigh-Taylor
instability of the incompressible
viscous fluid with Navier-slip

boundary conditions

This chapter is presented in the preprint [61]. For the Rayleigh-Taylor instability
for the incompressible viscous fluid with Navier-slip boundary conditions, the search of
normal modes is once again equivalent to the investigation of solutions of a fourth-order
ODE on a compact interval (—1,1). A point where it differs from the first paper is that,
due to the presence of slip coefficients, denoted by =, the spectral analysis is performed
in a supercritical regime of u (u > p.(k,=)). In this regime, we apply the operator
method of the previous chapter to prove the existence of infinitely many characteristic
values to the linearized equations. As the spectral analysis is proven, we construct a
wide class of initial data, based on the existence of infinitely many normal modes of the
linearized equations, to prove the nonlinear Rayleigh-Taylor instability. We are not able
to prove the nonlinear instability in the supercritical regime i > supyc -1z (0} He (K, Z).
We have to add a sharper condition, y1 > 3 supyc; -1z (o} fc(k, Z), to prove the nonlinear

instability.

2.1 Preliminaries

The first aim is to prove Lemma 2.1, showing that all characteristic values A\ are real
for increasing density profile py. Secondly, we find the exact formula of the k-critical
viscosity coefficient p.(k,=Z) (see (0.65) above) for all & > 0. The last goal is to study

the bilinear form By, » , in Section 2.1.3 to prepare for our linear study.
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2.1.1 Positivity of characteristic values A

Lemma 2.1. For any k € L™'Z\{0},

e all characteristic values \ are always real,

e all characteristic values \ satisfy that X < /7.
0

Proof. Let ¢ € H*((—1,1)) satisfy (0.27)-(0.62). Multiplying by ¢ on both sides of
(0.27) and then using the integration by parts, we get that

1 1
+f ool P

1
—J (s =~
that

1 . 1 1
- [ Baw = s3]+ [ JoPa
—1 - -1

and that

1
_¢//¢ 1+J ’¢”’2d$2,
—1

1 _ 1
f 6D gdzy — ¢
-1 1

we obtain that

1
A | 677 + 206 4 KoYz — |0/~ - &6 )P

R . (2.1)
# 0 [l + ol s = gk | ghlofda
-1 -1
Suppose that A = A; + i\y, then one deduces from (2.1) that
1
M (677 + 20067 4 KoYz — |0/ (-DP - €6 )P
-1
1 1 (2.2)
08 [ (lof? + plo o = g [ shfoPe,
—1 —1
and that
1
ha(i | (677 + 20206/ + KoYy — |0/ (-1 - &6 ()P
—1
(2.3)

1
= —2A1Azf (K?pol@|” + pold'|?)das.
-1

If Ao # 0, Eq. (2.3) leads us to

1

1
on j (2 polf2 + pol¢![2)ders = 1 f (6" + 28262 + K4([2)dacy
-1

-1

— &g (=D =&l (DI,



2.1. Preliminaries 75

which yields
1

1
—8 =) [ (Rl + pold s = ~20% [ (2pulof? + ol P
-1

—1
1
e f ohll2das.
1

Equivalently,

1 1
08+ 8) | (Bplof + poldP)des = ~gk? [ pifoPdra (2.4)
—1 —1
That implies
1 1
0%+ - [ lofdes < ~gk? [ pifofdee
-1 1

The positivity of pf, yields a contradiction, then A is real. Due to (2.2) again, we further

get that
1

1
AZJ po(R2|6] + 16/ 2)ds < ngJ
-1

polol*dzs.
1
It tells us that A is bounded by , /Lio. This finishes the proof of Lemma 2.1. O

Note again that, thanks to Lemma 2.1, in what follows in this section, we only use

real-valued functions for the linear analysis.

2.1.2 The threshold of viscosity coefficient

We obtain the precise formula of the critical viscosity coefficient p.(k,Z) for all
k € R\{0}. Note that u.(k,Z) = pu.(—k, Z) for all k € R\{0}, it suffices to find p.(k, Z)
for ke R,.

Proposition 2.1. The following results hold.

1. For all k € R, we have

Nc(ka E) _ ——— - g*((b/(_l))Q + £+(¢,<1))2 (25)

oe2(-1.0) §1 ((¢7)2 + 2k2(¢))? + k*¢?)dwy
Moreover,

(sinh(2k) cosh(2k) — 2k) (&, + &)
_ 1 1
pie(k,Z) = T | ((sinh(%) — 2k cosh(2k))? (&, + €)? )
+ sinh?(2k) (sinh?(2k) — 4k?) (&, — €_)?
(2.6)
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2. p(k,Z) is a decreasing function in k € Ry and

lim po(k,Z) = sup pe(k, E) =: p(E). (27)
k—0 keR\{0}

We have the asymptotic expansion of u.(k,Z) as k — 07,

he(h,2) = 5 (6 + 6 +4f8 —6 +e2)

2 482 —€,6_ +482 , , (2.8)
_ 1_5(4(5+ +E)+ N 52)!{: +O(R).
That implies .
1e(E) = 5(& +E+ \/fi — &6+ 53). (2.9)

As k> 1, we obtain the limit

oy VAEHE) (2.10)

[k, Z) <
fhe(k, =) ’

3. We have
1 2 / 2
,ui(E) _ ~r2nax é*(qb( 11>> ”—’—2£+(¢ (1))
¢ef2((~1,1)) - (¢")2dxy (2.11)

(e e rE e ve)

The proof is postponed to Section 2.4.

2.1.3 A bilinear form and a self-adjoint invertible operator

In what follows in this section we have A > 0 and k € R, being fixed. Let us recall
the definition of By »,, from (0.64),

1

1
Bru(V, 0) == AJ po(k*00 + V' ¢ )dzs + 1 f (0" 0" + 2k* o' + k*Io)dxs
-1

— V(=1 (=1) = &1 (1).

Lemma 2.2. We have the followings.

o Forall p >0, By, is a continuous bilinear form on H?*((—1,1)).
o For all p > p.(k,Z), By, ts coercive.

Proof of Lemma 2.2. Clearly, By, is a bilinear form on H?((—1,1)). We then
establish the boundedness of By ,. The integral terms of By,, are < (A +
DI g2—11plel a2((-1,1))- Meanwhile, it follows from the general Sobolev inequality
that

(W'(=1))" + (F'(1)* < 193 (-1.0))-
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Consequently, we get

|ka,>\7;¢(19> 9)| S (1 + )‘)WHHz((—M))\|9Hﬁ2((—1,1))a (2-12)

i.e. By is bounded.

We show the coercivity of By » ,. We have that

1 1
Biau(,0) = /\J po(K*9? + (9)?)dzy + ,uj (9" + 2k (V") + k*9?)dxy
—1

-1
—E(0'(-1)* - & (1))
As A =0 and p > p.(k,Z), we have

1
3&)\’“(19,19) = )\J ,00(]{32192 + (19/)2)d.1‘2
-1
1
(= (kD)) J (02 + 22 + K9 dzs  (2.13)
—1
1
> (4 — polk, Z)) J (972 + 22(') + K92)ds.
-1
It then follows from (2.12) and (2.13) that By, is a continuous and coercive bilinear
form on H?((—1,1)). O

With the above property of By ,,, we then establish:

Proposition 2.2. Let ju > pic(k,Z) and (H?*((—1,1))) be the dual space of H*((—1,1)),
associated with the norm /By x (-, -). There is a unique operator

Yiau € LIH((-1,1)), (H*((-1,1)))),
which 1s also bijective, such that
Brau(V, 0) = Y, 0) (2.14)
for all 9, 0 € H*((—1,1)).

Proof. Tt follows from Riesz’s representation theorem that there exists an operator

Vi € L(H?*((—1,1)), (H*((—1,1)))) such that
Brau(?,0) = Yeaud, 0
for all p € H?((—1,1)). Proof of Proposition 2.2 is complete. O
Proposition 2.3. We have the following results.
1. For all ¥ € H*((—1,1)),
Yiad = AR pod = (po?)') + (9" = 2k29" + k*0)

in D'((—1,1)).
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2. Let f € L*((—1,1)) be given, there exists a unique solution 9 € H*((—1,1)) of
Yia,¥ = fin (H*((—1,1))). (2.15)
Moreover, we have that ¥ € H*((—1,1)) satisfies the boundary conditions (0.62).

Proof. Tt follows from Proposition 2.2 that there is a unique ¥ € H2((—1,1)) such that

1

1
)\J po(k*Vo + V' o' )dwy + uf (0" + 2k*9' ¢’ + k'Wo)dzy = (Yer 9,00 (2.16)
-1

-1

for all p € C°((—1,1)). We respectively define (9”)" and (9”)” in the distributional
sense as the first and second derivative of ¥ which is in L?((—1,1)). Hence, (2.16) is

equivalent to

1

1
M| (004 0+ (00 | (20 0 = Vi) (27)
-1

-1

for all o€ C°((—1,1)). We deduce from (2.17) that
A Jll(k2p(ﬂ9 (o) )odas + p(9")" — 262" + K9, 05 = Yerndh o) (2.18)
for all p € C°((—1,1)). The resulting equation implies that
(") = 2k*9" + kM) + A(E?pod) — (po?')’) = Va0 in D'((—1,1)). (2.19)

The first assertion holds.
Under the assumption f € L*((—1,1)), we improve the regularity of the weak
solution ¥ € H?((—1,1)) of (2.19). Indeed, we rewrite (2.19) as

1
(9 0 = | (Yeau® + 2uk®9" — pk* — AP pod) + Apo?')') ods

-1

for all o € CP((—1,1)). Since (f + 2uk®9" — pk*9 — M?ped + M(pe?’)’) belongs to
L*((—1,1)), it then follows from (2.18) that (¢")"” € L*((—1,1)). Let x € C°((—1,1))
satisfy Sil X(y)dy = 1. Using the distribution theory, we define ¥ € D’((—1,1)) such
that

0y = ()", ) (220
for all 0 € C°((—1,1)), where
Gaez) = [ (60 = xtw) | o(s)as)dy

for all —1 < 9 < 1. We obtain

& 0) = =(5,0) = =((9")", G-
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Note that

T2

Y Gy = (Y 0lan) = | xlo) | @ (s)sd) = (Y0,

-1

this yields (3, 0) = —{(9")”, ). Hence, we have that (¢") + ¥ = constant. In view of
(0")" € L*((—1,1)) and (2.20), we know that (¢”)" € L2((—1,1)). Since ¥ € H%((—1,1))
and (9"), (9")" € L*((—1,1)), it tells us that 9 belongs to H*((—1,1)) and we can take

their traces of derivatives of ¥ up to order 3.

By performing (2.18), we then show that ¢ satisfies (0.62). Indeed, for all p €
H?((—1,1)), we perform the integration by parts to obtain from (2.18) that

1 1
)\f po(K*9o + ' o' )dxy + ,uf (9" 0" + 2K*0 o' + k*0o)dxs
-1 -1
1 1 1
_ )\poﬁlg‘ + Iu(ﬁ/llg _ 19//@/
1 _

—2k%9 0
1

-1

1 1
> = f (Yk,)\#ﬁ)gdl’g.
-1

It then follows from the definition of the bilinear form By  ,, that

1 1 1 1

Apo?' 0

—n(97e| —ve| —2we| ) = v (-1 (-1) + &0 (1)), (2:21)
for all p € H?((—1,1)). By collecting all terms corresponding to ¢/(+1) in (2.21), we
deduce that

p" (£1) = +&,9 (+1).

This yields that 9 satisfies (0.62). The proof of Proposition 2.3 is complete. n

We obtain more information on the inverse operator Y, Iy

Proposition 2.4. The operator Yk_/\lu . L?((=1,1)) — L*((—=1,1)) is compact and
self-adjoint.

Proof. 1t follows from Proposition 2.3 that Y} ) ,, being supplemented with (0.62), ad-
mits an inverse operator Y, from L*((—1,1)) to a subspace of H*((—1,1)) requiring
all elements satisfy (0.62), which is symmetric due to Proposition 2.2. We compose
Y\, With the continuous injection from H*((~1,1)) to L*((—1,1)). Notice that the
embedding H?((—1,1)) — H?((—1,1)) for p > ¢ > 0 is compact. Therefore, the
operator Y,y is compact and self-adjoint from L*((—1,1)) to L*((—1,1)). O

2.2 Linear instability

2.2.1 A sequence of characteristic values

We continue considering A > 0 and k € L7'Z\{0} being fixed. We study the

operator Sy, = MY,Q{MM, where M is the operator of multiplication by \/Fg.
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Proposition 2.5. Under the hypothesis (0.54), the operator Sk, : L*((—1,1)) —
L*((—1,1)) is compact and self-adjoint.

Proof. Due to the assumption on py (0.54), the operator Sy, is well-defined and
bounded from L*((—1,1)) to itself. Y,y  is compact, so is Sy x,. Moreover, because

both the inverse Yk_/\1 ., and M are self-adjoint, the self-adjointness of Sy » , follows. [

As a result of the spectral theory of compact and self-adjoint operators, the point
spectrum of Sy, is discrete, i.e. is a sequence {7, (k, A, ft)},>1 of eigenvalues of Si x i,
associated with normalized orthogonal eigenfunctions {w@,},>; in L*((—1,1)). That
means

SkauTn = MYkT,\l,MMWn = Yk, \, p)wo,.
So that ¢, = ij)\l,u./\/lwn belongs to H*((—1,1)) and satisfies (0.62). One thus has

/Yn(kv )‘7 M)Yk,A,u¢n = p6¢n (222)

and ¢, satisfies (0.62). Eq. (2.22) also tells us that 7, (k, A, x) > 0 for all n. Indeed,

we obtain X

1
vﬂ(lﬁ )\7 :u) J_l(m,A,y(bn)(ﬁndl'g = J

Po®nds.
1
That implies

1
(A 1) Brrn (s 1) — flpgsbid:cg. (2.23)

Since By u(én, @) > 0 and py > 0 on (—1,1), we know that ~,(k, A, ) is positive.
Hence, by reordering and using the spectral theory of compact and self-adjoint oper-
ators again, we have that {7, (k, A, 1t)}n>1 is a positive sequence decreasing towards 0
as n — 0.

For each n, ¢, is a solution of (0.27)-(0.62) if and only if there are positive A, such
that (0.69) holds. To solve (0.69), we use the two following lemmas.

Lemma 2.3. For each n,

o v, (k, A\, 1) and ¢, are differentiable in X.
o vu(k,\, ) is decreasing in \.

Proof. The proof of Lemma 2.3(1) is the same as Lemma 1.2, we omit the details here.

We now prove that v, (k, A, i) is decreasing in A.

Let z, = d(%f, it follows from (2.22) that

1 d 1
k% poy, — 'Y +Y, = ————pip + — | ————— ) P ODn, 2.24
o = o) 4 Yoo = 5 e+ gy (g e 220
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n (—1,1). At xo = +1, we have

zn(—1) = z,(1) = 0,

pan(1) = &42,(1),

pzp(—=1) = =€ 2, (=1).
Multiplying by ¢,, on both sides of (2.24), we obtain that

1

1
J (k2p0¢n - (p0¢;,)/)¢ndx2 + f (Yk,)\,uzn)¢nd$2
-1

-1

1 b d 1 1
VTR n nd —_— | — / 2d )
Yo (ky A, ) f_l Po2nPndT2 + o\ <%(k’ )\’M)> f_l PoPpdro

Note that z, enjoys (2.25), then

1 1
1
Y n ) Ondre = Y n ) indly = ———
f_l( kA pin) PndTy f_l( ki ®n)Zndy o )

That implies

d L 1 / ' RV
) | st = [ 02mon ot oo

Using the integration by parts, we obtain from (2.27) that

d 1 o 1 /
ﬁ <'7n(/€, A, M)) f—1 po¢id$2 N J—1 Po(k%ﬁi + <¢n)2)dl’2 > 0.

Consequently, v, (k, A, u) is decreasing in A > 0.

1
’ ) 1

(2.25)

(2.26)

(2.27)

2.2.2 Proof of Theorem 0.3 and normal modes of the lin-

earized equations

In view of Lemma 2.3, we are able to prove Theorem 0.3.

Proof of Theorem 0.3. For each n, there is only one solution A, of (0.69). Indeed, using

(2.23), we know that

1 L 1
k1) fl PoPndrs = f1<Yk,A,p¢n)¢ndx2 — Biau(On, On).

Hence, it follows from (2.13) that

1 ! /g2 Jl 2 12
—_— dzry = A 22 + (¢),)?)d

1
e ek ) [ (@007 + 20657 + K)o

1

1
= [ puodas + (- k. ZDK | e
—1 —1
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That implies

_ =\ 2.4
; > )\kQ + (:u ﬂc(kaH»k )
LO/Yn(kU )‘7 :u) P+
Consequently, for all n > 1,
A > gk? for \ large (2.28)
7n<k> A, ,U) ' )
Meanwhile, for all n > 1 and A < % L%?
A A

< —0as A —0. (2.29)
Tk A ) 5k, L, o

In view of (2.28), (2.29) and Lemma 2.3, we obtain only one solution A, of (0.69) and
(An, ¢n) satisfies (0.27)-(0.62). That means for all n, A, is a characteristic value, hence
it is bounded by , /Lio.

We now prove that (\,),>1 decreases towards 0 as n — o0. If \,,, < \,,,41 for some
m > 1, we have

’Ym(/{?, Am, M) > ’Vm(k% Am+1, ,u)'

Meanwhile, we also have

Y (By A1y 1) > Ymg1 (ks A1, 1)

That implies
\m >\m+l
gk? gk?

That contradiction tells us that (\,),>1 is a decreasing sequence. Suppose that

= /ym(k7/\mwu) > ’7m+1(k,/\m+1,M) =

lim A\, = do > 0.
n—0o0
Note that for all n, v, (k, \p, 1) = g’\T"Q, then

An
Vulkydo, 1) = Yo (ky Apy 1) = =5
gk

Let n — oo, we get that 0 > dj, a contradiction. Hence )\, decreases towards 0 as

n — oo0. The proof of Theorem 0.3 is complete. O]

We derive the following property for the largest characteristic value A; found in
Theorem 0.3.

Proposition 2.6. Let us recall the bilinear form By, on H*((—1,1)) (0.64) and
(A1, ¢1) from Theorem 0.3. We have that

1 4 9
1 dx
—5 = max S_l p0¢ 2 , (230)
gk?  ger2((=1,1) M By, u(0, 0)

and the variational problem (2.30) is attained by the function ¢.
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Proof. For all A > 0, we solve the variational problem

1
Bk ) = masx ([ photdnfo e FP((-L1)), ABan(6.6) = 1),

Let us define the Lagrangian functional

1
La(6, ) = f doddy — B(AByr (6, 6) — 1).

Thanks to the Lagrange multiplier theorem, the extrema of the quotient

Sl_1 p6¢2dx2
ABiu(9:9)
are necessarily the stationary points (5., ¢,) of Lz, which satisfy
ABiau(dss 04) = 1 (2.31)
and )
f po@x0dry — BABy x (04, 0) = 0, (2.32)
-1

for all # € H?((—1,1)). Restricting § € C((—1,1)) and following the line of the proof
of Proposition 2.3, one deduces from (2.32) that ¢, has to satisfy

6*/\Yk,)\,u¢* = p6¢* (233)

in a weak sense. We further get that ¢, € H*((—1,1)) and satisfies (2.31) and the
boundary conditions (0.62). Hence, A, is an eigenvalue of the compact and self-
adjoint operator Sy, from L?((—1,1)) to itself, with MY}, ,¢. € L*((—1,1)) being

an associated eigenfunction. That implies
Bk, X 1) < Xk, A ). (2.34)

Meanwhile, since the operator Sy, is self-adjoint and positive (see again Proposi-
tion 2.5), we thus obtain that

Sk, w
Yi(k, A, ) = sup (iaytr ) ui ),
wer?((—1,) @[z 1))
Hence, for all w € L*((—1,1)) and for ¢ = ij)\l#/\/lw e H*((—1,1)), we have

(S pw, w)?

ol 21,1y

Y1 (b, A, 1) Yra @5 &) < < [ Skl Tz 11y

Equivalently,

Mo
Torr &)

ke, \ 1) < sup{ Vg e HA((~1,1)) and M~y € L2((—1, 1))},



2.3. Nonlinear instability 84

it yields
Ak, A ) < Bk, A, ). (2.35)

Two inequalities (2.34) and (2.35) tell us that B(k, A\, p) = A1y (k, A\, p) for all

A > 0. We thus obtain B(k, A1, u) = g% and the variational problem (2.30) is attained

by the function ¢,. Proof of Proposition 2.6 is complete. m

We now solve the linearized equations (0.57) to prepare for our nonlinear part.

Proposition 2.7. For each k € L7YZ\{0} and for all y > u.(k,Z), there exists an

infinite sequence of solutions (n = 1)

eAn(k’M)tUnUf; 22 1') = eAn(k,u)t(o_m Uny Pn T(k7 H, .’L’)
cos(ka1)wn (k, pt, 22

)
) )
_ alkp)t sin(kz1)0n (K, 1, v2)
cos(kxz1)pn(k, 1, 2)
(kz1) )

(
cos(kx1)q, (k, p, T2

to the linearized equations (0.57)-(0.56), such that
o, € H*(Q),u, € (H*(Q))? and p, € H(Q).

Proof. For each solution A, € (0, /) of (0.51), we have a solution ¢,, = ij)\lmu/\/lwn €

H*((—1,1)) of (0.27)-(0.62) as A = \,,. We now find a solution to the system (0.59) as
A = \,. First, we obtain 6,, = —% and w,, = —pf’\%. Due to (0.61), we get

i = — 25O, + (e, — 6)) € (=1, 1)

With a solution (wy,, 0y, &n, ¢n) of (0.59), we then conclude that
eAn(k,'u)t(o-n7 un,la un,27 pn)T(ku H, I) = 6>\n(k’u)t

is a solution to the linearized equations (0.57)-(0.56). O

2.3 Nonlinear instability

2.3.1 The local existence

Thanks to Proposition 2.7, we will formulate a sequence of approximate solutions

M B, (K, i, ) to the nonlinear equations (0.55)-(0.56), which are solutions to the
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linearized equations (0.57). Let us fix a k = kg € L™'Z\{0} such that (0.75) holds and
p > 3ue(Z). We recall (0.76),

(o™, uM, ™M) = Zc] Uk, p,x),

J=Jm

where the constants c; (j = 1) satisfy (0.77)-(0.78).

Keeping in mind that ming_; 17 pg > 0, then due to the embedding from H?(Q) to
L*(2), there exists a constant §, > 0 such that

1
do| Z 0;(0, )| () > 5 mm po(x2). (2.36)

]>1 [ ]

Hence, for § < do,
1

7 fuin po(w2) < min(po(w2) + 60 (0, 2))
By virtue of Proposition 0.1, the nonlinear equations (0.55)-(0.56) with initial data

§(a™, uM)(0) admits a local solution

(0°,u”) € CO([0,T™), H'(Q) x (H*(Q))?)

with an associated pressure ¢° € C°([0,7T™), L?(€2)). Furthermore, we have for all

t c [O, jﬂmax)7
1

5 fin po(w2) < inf(po(zs) + o’(t,x)).

In what follows in this chapter, the constants C; (i > 1) are universal ones depending
only on physical parameters, M and ¢;(j > 1).

Let Fy(t) = Z].Aijm cjleM® and 0 < € « 1 be fixed later (2.71). There exists a
unique T° such that §Fy (T°) = €. Let

Cy = \/HUM(O)H%I(Q) + [ (0) G2y Co = \/HUM(O)Hiz(Q) + [uM(0)[72 0
We define
T* .= sup {t e (0, T™)|E(o% (1), u (£)) < C1do} > 0,

(2.37)
T = sup{t € (0, 7")||(0°, u)(t) | 20y < 2(}25FM(t)} =~ 0.

Note that £(a?(0),u°(0)) = C16 < C16, we have T* > 0. Similarly, we have T** > 0.
Then for all ¢ < min{T?, T*, T**}, it follows from the a priori energy estimate (0.72)
of Proposition 0.1 that

EX(0’ (1), u’ (1) + o’ ()72 Jwtu Miaydr < C30°Fiy (). (2.38)
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2.3.2 The difference functions

Let

ol =% —oM, wl = —ouM, ¢t =¢° —o¢M.

Since (0%, 1%, ¢°) solves the nonlinear equations (0.55) and (o™, uM, ¢™) solves the

linearized equations (0.57), we have that (0%, u?, ¢?) satisfies (0.79)

Oyt + ppud = —ud - Voo,
podiu — pAut + Vgl = —a%0u’ — (po + o°)ul - Vul — godes,
divud = 0.

along with the initial condition (0.80),
(o, u?)(0) = 0

and the boundary conditions (0.81).

ug =0, on X4,
d d

fi0guy = Euy on X,

(0g,ud = =& uf on X_.

The compatibility conditions read as
ut(0, 21, 1) = uf(0,21,1), divu?(0) = 0. (2.39)

We now establish the error estimate for [[(o%, u?)|12(q)

Proposition 2.8. For all t < min(T°,T*,T**), there holds

N
(0, u) (1) B2 < Cad® (D esle™! + max(0, M — N) _max  [fed)P. (2.40)

N+1<j<M

The proof of Proposition 2.8 relies on Lemmas 2.4, 2.5, 2.6, 2.7 below.

Lemma 2.4. We have the following inequalities

Z |07 u ()| #rs 0y < Cs0Fur(t), (2.41)
0<s<2,0<7<1
and

Proof. For 1 € {0, 1},
M
oruM (t) Z 7c;e'U; ko, ),
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it yields, for all s € {0, 1, 2},
[o7u™ () s () < CrFu(t),
In view of (2.38), we then obtain that for s € {0,1,2} and 7 € {0, 1},
[o7u?(t) s () < O 07u™ (8)]ms (@) + 071’ (8)] s () < CsOFa(2).
To prove (2.42), we use (0.79), and (2.38) again,

lo () @) + 100 () | 220y < [0°) |1 (@) + 8lo™ ()0
+ Collus (8) ] 220y + 4’ (8) | 222 IV 0° | L2
< ChodFu(t).

Lemma 2.4 is proven. O

Lemma 2.5. There holds

Proof. From (0.79), 5 and the boundary conditions (0.81), we use the integration by
parts to obtain that

f pol|ouPdx = J pAut - ouldr — J (0°0uu® + (po + 0°)u’ - V) - dutde
Q Q Q
—J gooulda.
Q
Thanks to Lemma 2.4, one has
—J (0°0,u® + (po + 0°)u’ - V) - duuldr < C1o6°F3(2). (2.44)
Q
That implies
o 030y < o (WO + 10Ol 1" D) 20y + 53 0).
Using Young’s inequality, we further get
1
[0 )20y < 10 OF20) + Crallu (Ol + [0 (OI720) + Crad” Fii(1).
That implies
o (1) By < Cis (10 (8) By + 10 (0) ey + P (1) (2.45)

Letting t — 0 in (2.45), we complete the proof Lemma 2.5. ]
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Lemma 2.6. Let
X = {w e (H*(Q))*, w satisfies (0.53) and divw = 0}.

There holds for all w e H%(Q),

| abtsas e n [ (e DP + (e, D))z,
Q (27 LT)2 (2.46)

< AQJ polw|dz + AHJ |Vw|*dz.
Q )
The proof of Lemma 2.6 is due to the definition of A (0.74) and Proposition 2.6,
that is similar to [14, Lemma 5.1], hence we omit the details here.
Lemma 2.7. There holds for all w e X\{0},

SUF)S2WLT(§+|UH(£1’1)P +'€—|UH(I17“1)P)dx1
weX HVUJH%?(Q)

< pe(E). (2.47)

Proof. Let us fix a horizontal frequency k € L='Z and introduce the horizontal Fourier

transform

~

flk,xo) = f f(w)e_ikxldxl.
2 LT
For w € X, we write
wl(l{,ﬂfz) = —ig(k,l'Q), wg(l{,ﬂfz) = qb(k’,l‘g)

Then, k0 + ¢' = 0 and (6, ¢) enjoys (0.60). Following Fubini’s and Parseval’s theorem,

one thus deduces

f (4 Jun (s, D + €| (21, — 1))y
27 LT

1 (2.48)
= 3 (€O )P + & ok~ 1)P)
keL—17Z
and
1 1
Vuliow = 5oy 2 | (BOF +167) + 07 + [6F)kza)dea (249
ker-1z Y1

We may reduce to estimate (2.47) when 6 and ¢ are real-valued and continue the
estimate to the real and imaginary parts of § and ¢. For any k € L™'Z\{0}, we have
from kO + ¢’ = 0 that

E4(0(k,1))% + & (0(k, —1))* = %(&((cﬁ’(’f, 1)* +&-(¢'(k,~1))) (2.50)

and that

| (2@ s o)+ @7+ @F) ke,
- L (2.51)
=3 71(k4¢2 +2K2(¢')? + (¢")*) (k, m2)da.
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Owing to (2.48), (2.50) and the definition of u.(k, =), we get

[ €t 0 + € oo, -0
2w LT

1
timsup (64 (6/ (5, 1) + € (¢/(k, ~1))?)
B
L+ Y @R D)+ (@ (k -1)))
keL—17\{0}
— 1
lim sup Nc(k’z, Z) f (k*¢? + 2k%¢” + ¢"*)(k, z9)dxo
- 1 k—0 k -1
X T - o 1
2L n Z Mc(kz, =) f (k:4gb2 n 2k2gz5’2 . ¢”2)(k,m2)dx2
keL—17\{0} -1

Thanks to Proposition 2.1, we obtain

[ (el 0P + (o, ~ 1))
2n LT

1

limsup —
fe(Z) -0 K)o

= 1
S [ > % fl(wﬁ +2k%(¢)? + (¢")%) (K, 22)dux

ke L—17)\{0}

(k0" + 2k*(¢)* + (¢)?) (k, w2) s (2.52)

Combining (2.49), (2.51) and (2.52), it gives
|| o 0P + € o, ~DP)in < () Vol
Lemma 2.7 is proven. O
We now prove Proposition 2.8.

Proof of Proposition 2.8. We rewrite (0.79), as
(po + %) o’ — pAu’ + Vg = [ — goes,

where f° = —c°0uM — (po + 0)u’ - Vul. Differentiate the resulting equation with

respect to ¢t and then multiply by d;u?, we obtain after integration that
L 0,0 | Oy |Pd + L(po +0%)%u? - duda
= L pAou? - Opuldr — L Vog? - ouuldr + L((?tf‘s — g0i0%ey) - Oulda.
Since divd,u? = 0, we use the integration by parts to further obtain
L 0,0° (1) |,u’ (t)|2da + L(po + ()P (t) - ou’(t)da
= Jﬂ(é’tf‘s(t) — 90,0 (t)es) - Sl (t)dx — p fﬂ IV oul(t)|2da

n j (640t o1, 1) + €|t 2, —1)P)dar.
2w LT
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That means,

DN | —

A KRR ONCRRUIRE

= —lj 0,0° (t)|0pu (1) |Pda + f (Ouf°(t) — g0 (t)es) - Opul(t)da — uf |Voul(t)|*dx
2 Q Q Q

] (@l m DP + € ot m, -1 )dar
2w LT

Using (0.79),, we then get

d

dt ), ((Po + (1) o (t)]? — gpf)|ug(t)|2> du

+ QMJ |V&tud(t)|2dx - QJ (5+|6tuc1£(t>$17 1)|2 + §—|atut1i(ta x1, —1)|2)d$1
Q 27 LT

_— L 0,00 (£)|0yul () Pdx + 2 L(at FO(8) + gu () - Vod (t)ew) - du(t)da.

Integrating in time variable, we get
t
IV po + o ()0’ (1) |72 + QML [Vowu(s) |22y ds
t
o[ [ (s m DP + ¢ fud(s,m, - D )dods
0 JorLT

(2.53)
= fQ gﬂ’olug(t)ﬁda: + (JQ(/)O + 06(t))’(7tud(t)‘2dx>

t=0

+ L L(Z(?tf‘s(s) +2gu’(s) - Voo (s)ey — 0,0°(s)0ul(s)) - dul(s)ds.

We continue using (2.41), (2.42) and (2.43) to estimate each term of the r.h.s of (2.53).
This yields

t
/o + o 2 (1) gy + 20 f |0 () 2 s
9 f (ot oy, D + E|owd(t, 2, —D)P)dzy  (2.54)
2w LT

< j b ()P + Crod® 2, (1),
Q
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Due to (2.46), we further get that
N+ O Ol + 20 [ 1906 s
9 fL (elond(s,m, D + €[, —1) s
< A2 L polu(t) 2z + A L V(2 2z
At VP + € et 1)) + Cud P ()
< A2 JQ(po T o) ul () 2z + A L IVl (t) 2z

- Af (Exlud(t, zr, D) + Efuf(t, my, —1)|*)day + Cr76°Fyy(t).
27 LT

(2.55)

On the other hand, we have

||x/p0 + 0 HL2 =2 L(po + (1)) u(t) - dpu(t)dw + L 0,0° (1) [u(t)|*d.

Let us recall wy from (0.73) and vy = 31“'0 € (1,3). We fix two positive constants m
such that

my = vy + /15 — 1 (2.56)

and that
my = p(mi—my +1) — p(2)(m3 +1 +\/ —my+ 1) — u(2)(m? +1))2 — pu>m3.
(2.57)

With m; > 0 from (2.56), we use Young’s inequality to observe
QJ (po + a°(t))u’(t) - duu(t)da
Q
—vao + 00 () (1) T2y + A v/ po + o® (0w (1) 720
That will imply

vao + o (t)u (1) 120y < —vao + 0 () O (1) 720
+Am1H\/pg+a5 t HL2 Q)+0185 FM()

With mgy > 0 defined as in (2.57), we obtain from (2.55) and (2.58) that

SN0 T ) gy + mal V() e
il
< (mi+ —)AH\/PO T O ()@ + (- + ma) IV o

L L LT(§+|atUl1i(Sal‘17 D> + &_|oud(s, 2, —1)[*)dx1ds

(2.58)

Am1

f V60u(5) 2o ds + Crod® ELy ().
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Together with (2.47), we deduce

o0+ OO a0y + mal V() o
"
< (i + —)A\I\//)o F OO + (1 +me) IV e (259)
2(:“’ = Ml =
_ A—'rnlJ;) \|V(9tud(s)H%2(Q)ds + 01953F]:\))/[(t>

We use Young’s inequality to get that

(i—l—mg)HVu (t )HL2 = 2(i + Mo f f Vul(s) - Voul(s)dads

2(p — pe(2 d
<A eB) [ Va0 (2.60
Am1 M + m2
+ Vu 2
. M = j [V (5)] 220

Combining (2.59) and (2.60) gives us

H\/ po + 0 (L' ()]72(q) + ma| Vu' (1) 72(q)
< (i + _>AH Voo £ o w0z (2.61)
Am1< + m2>2
2(p — pe(E
It follows from (2.56) and (2.57) that

+

J [V (3)|22 s + Crod® B, (1),

2
Am1< £ 4 m2>
2(p = pe(2))
Therefore, (2.61) becomes

H\/ po + (' (1) 720y + 2 Vu' ()72
¢
< 2V0A<”\/p0 + 05(t)ud(t)H%2(Q) + mgf HVud(s)||2L2(Q)ds> + C190° F3,(1).
0

Recalling that u?(0) = 0, thus, applying Gronwall’s inequality to (2.62), one obtains

t t
[V po + ® (t)u () |72 + m2f |Vul(s)[72()ds < C'195362”0MJ e 0N [ (5)ds.
0

’ (2.63)

(2.62)

Since F3,(t) < M?max;, <j<m |¢;|*Far(3t), we then have from (2.63) that

W2 ()22 < CaodPePoAt Y f cjle@—2aNsgs (2.64)
J=jm
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Because of (0.75), we have \; > %VOA for j, <j < N and \; < I/OA for j > N + 1.
It yields that for j,, < j < N,

t 1 1
(3)\]-—2V0A)sd N N € VR ViV S L NN —— (3Xj—2voA)t 2.65
L ° N 3)\] — QVQA (6 ) 3)‘3 - 2VOAe ( )
and that for j > N + 1,
Jt (38X —=2v00)s 1 ( (3Aj—2voA)t 1) < L (2.66)
e s=———(e 1)< ———F+. :
0 3)\] - 21/0A 2VOA — 3)\]

In view of (2.65) and (2.66), we obtain from (2.64) that if M < N,

M
ds 3 <] 3zt
[u()z2(0) < Ca00 ( Z 3\, — 20pA° )

and if M > N + 1,
M
Ju(8) 22y < 02053(]2] oy ey Z " e ).

That means

N
3
(O 20y < Cond” (5 Iesle™ + max(0, M = N) (| max | [eyf Jedo)" (2.67)
J=Im

To show the bound of ||0%(t)]|z2(n), we use Cauchy-Schwarz’s inequality to deduce
from (0.79), that

d
Zle' @) lz20) < o ()2 < (max pf) [us () |2 + 1 ()20 0" () 110

Using (2.38), we obtain

d
Ellﬁd(t)\\w(m < Oo([lug ()| 20y + 0°F3f (1))

Note that 0¢(0) = 0, integrating the resulting inequality in time, we have

t
lo ()220 < szj (lus ()2 + 62 Fiy(s))ds.

0

Together with (2.67), we have

N

0 (8) 22 < 02353( 2 legle! + max(0, M1 — N)(Ng%}; y |c]\>63”°At> . (2.68)
J=Jm

The inequality (2.40) follows from (2.67) and (2.68). Proof of Proposition 2.8 is com-

plete. O]
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2.3.3 Proof of Theorem 0.6

Note that

M
[ ()72 = D, cle
i=jm

2@ +2 D, cicelV L ui(x) - uj(x)de. (2.69)

It can be seen that
M
Ju( HL2(Q) Z Fe tHu]”L2(Q + 2 Z cicje(Ai“j)tJ wi () - () dx
=i Jm1<i<j<M Q
M
- |ij|HuijL2(Q)( Z |Cj|HUJ‘HL2(Q)>e(>‘jm+>\jm+1)t‘
j:jm+1

By Cauchy-Schwarz’s inequality, we obtain

2 Z cicjetitAt L ui(x) - uj(x)de

JmA1<i<j<M
>-2 > allele® Y uil gy us 20
Jm+1<i<js<M
M 2
> _e(Aj77L+1+>\jm+2)t< Z |C]|||UJHL2(Q)> .
This yields
M 2
WOl > Y, S gl — et (S el
J=jm J=Jm=+1
M
_|ij’e()\jm‘i’)\jmel)tH’U/jmHLQ(Q)< Z ‘CjH‘UjHLQ(Q)).

Due to the assumption (0.78), we deduce that

. 1 Y
[ () [F2) = D) e uylFam) — §C§m€(“m“3m““l\uy‘mHizm)
J=Jjm

1 _ .
= GG g, [

m

This yields

1 1
HUM@)H%Q(Q) > 2 (62>\jmt _ 2 ePim+Ajm+1)t _ Z_1€(>\jm+1+>\jm+2)t> ”uij%Q(Q)

Im
+ Z e w72y
=jm+1

Notice that for all ¢ > 0,

1
ezAJmt — e(Ajm+)‘jm+1)t _ e()‘jm+1+Ajm+2)t > Z62)‘]7‘n,t
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Hence, we have
HUM(t)HLQ(Q) = CouFuy (1), (2.70)
for all ¢+ < min(7°,T*, T*).
Let

¢(M)= max <] = 0.
N+1<<M |cj, |

We recall the definition of 7* and T** from (2.37) and the fact that T satisfies uniquely
§Fy(T?) = €, provided that € is taken to be

_(Cady 3 Cis
_ 2.71
€p < min ( Cs ) 204(1 + ME<M))3’ 404(1 + ME(M>)3> ( 7 )
We then prove that
T < min{T*, T*). (2.72)

In fact, if T* < T, we have from (2.38) that
E((0°,u’)(T*)) < Cs0Fp(T*) < C30Fpr(T°) = Cseq < Cody.
And if T** < T?, we have by (2.40) and the definition of T° that
(o 7“6)(T5)HL2(Q)
< O™ M) (T0) |20y + (0%, u)(T°)] p2 ()

< Co8Fy(T +\/5452(Z|c M7 1 max(0, M — N)( max |cjy>esV0AT5)3.

N+1<j<M
(2.73)
Notice from (0.75) that for N +1 < j < M,

C, C, C;
|C]|563VOAT5 < LJ| (5|ij|6/\1T6) < ‘J’ 5FM(T6) _ |J’ €.

1Cjon i 1Cjin
Then, it follows from (2.73) that

E 3
3 =
b) 2

(0% 0) (1) |20 < CaodFar (1) +\/Cab (1 + MEQM)) 3 F, (1)
3 3
< CQEO + 4/ 04(1 + ME(M))§€§
Using (2.71) again, we deduce
|’(O’6,U6)(T5)HL2(Q) < 20260 = QCg(SFM(T(s)
which also contradicts the definition of T7**.

Once we have (2.72), we then get from (2.40) and (2.70) that

HU(S(T(S)HB(Q)
> 0u™ (T 2@) — |[u(T°)] 2@

> Coy0Fy(T°) — \/(7452 (Z |c;le T 4 max(0, M — N)( max |cj|)ed”°AT5>3.

N+1<j<M
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Therefore,

Cas€g
2
The inequality (0.82) is proven by taking &y satisfying (2.36), €q satisfying (2.71) and

my = % This ends the proof of Theorem 0.4.

Ol

|68 (T?) | 12y = Caseo — /Ca(1 + ME(M))2 el > > 0. (2.74)

2.4 Proof of Proposition 2.1

2.4.1 The precise value of u.(k, =)

In this part, we prove Proposition 2.1(1). The equality (2.5) can be seen immedi-

ately from the definition of By .
Note that the quotient
§-(¢'(=1))” + & (¢'(1)?
Fa((9)2 + 2K2(¢)? + K462
is bounded because of the embedding H*((—1,1)) — C*((—1,1)). To prove (2.6), let

us consider the Lagrangian functional

£4(0,8) = B( | (677 + 20 + 6% daa—1) = (€ (0 (D + €4 (D)) (275)

for any ¢ € H?>((—1,1)) and 8 # 0. Using Lagrange multiplier theorem, the extrema

of the quotient
E(¢(=1)* + & (¢'(1))°
£11((6")2 + 2k2()? + k16?)da,

are necessarily the stationary points of (¢, Bx) of Ly, which satisfy

[ o0+ 2w+ W =1, (276)
and
b [ (6 4 2R+ K ddns = € A1) + €AW (2T
for all w e H2((—1,1)). We obtain from (2.77) after taking integration by parts that
6 — 2607 + K'op = 0,

and

( (e (1) + 2k, (1)w(1) =

| (Brdfi(1) = €4 (1) (1) = 0,
Bi(d(—1) + 2k2¢,(~1))w(~1) = 0,

[ (Bedi(—1) + £ (~1)w' (1) = 0,
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for all we H?((—1,1)). This yields

{ﬁm;;(l) — &l (1) =0, (2.78)

Bt (=1) + &~ (1) = 0.
Hence, ¢, is of the form
o (22) = (Azy + B)sinh(kze) + (Czy + D) cosh(kxs),

with A, B,C, D are four constants such that A% + B2 + C? + D? > 0. Since ¢ €
H?((—1,1)), we get

(A+ B)sinhk + (C + D) coshk = 0,
(—A + B)sinh(—k) + (—C + D) cosh(—k) = 0.

It yields
C =—Btanhk and D = —Atanhk. (2.79)

We then compute
&) (12) = (A + kD + kCxy) sinh(kzs) + (C + kB + kAxs) cosh(kxs)
and
"(29) = (2kC + k*B + k* Awy) sinh(kwy) + (2kA + k2D + k*Cxy) cosh(kxy).
Substituting these formulas into (2.78), we have
( 5 ((2kC + k(B + A))sinhk + (2kA + k(D + C)) cosh k;)
. §+((A + k(D + O))sinhk + (C + k(B + A))coshk),

)
B ((2k0 + k(B — A))sinh(—k) + (2kA + K2(D — C)) cosh(—k))
2 ((A + k(D — O))sinh(—k) + (C + k(B — A)) cosh(—k)).

A

\

Thanks to (2.79), that reduces to

(248,(C sinh k + Acosh k)
_ (A + k(D + O)sinhk + (C + k(B + A)) coshk:),
2k (—C'sinh k + A cosh k)
—c ((A + k(D — C))sinh(k) — (C + k(B — A)) cosh(k;)).

\

Equivalently,

{Qkﬁk (A+ B+ (A= B)cosh(2k)) = & ((A— B)sinh(2k) + 2k(A + B)), (2.80)
) .

2% 5y (A B+ (A+B) cosh(?k;)) —c ((A + B)sinh(2k) + 2k(A — B)).
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Then, (A, B) is a solution of the following system

A<2k(1 + cosh(2k)) By — €4 (2k + sinh(2k)) )

- B(Qk(cosh(%) —1)By — &, (sinh(2k) — 2k:)>,
A(Zk(l + cosh(2k)) B — €_(2k + sinh(2k))

- —B(Qk(cosh(%) ~1)By — €_(sinh(2k) — Zk)).

A

(2.81)

\

System (2.81) admits a nontrivial solution if and only

(2k(1 + cosh(2k)) Bk — €, (2k + sinh(2k:))>
x <2k(cosh(2k) —1)By — £_(sinh(2k) — 2k:)>
— <2k(1 + cosh(2k)) By — € (2k + sinh(2k)))

x (2k(cosh(2/<;) ~1)By — €, (sinh(2k) — 2k)>.

(2.82)

We rewrite Eq. (2.82) as a quadratic equation of 3, that is

4k?(cosh?(2k) — 1)B7 — 2k(sinh(2k) cosh(2k) — 2k) (&4 + €-) B

(2.83)
+ (sinh®(2k) — 4k*)€ & =

The discriminant is
Apz = k*(sinh(2k) cosh(2k) — 2k)*(&4 + €.)?
— 4k*(cosh?(2k) — 1)(sinh?(2k) — 4k*)€ &
= k*(sinh(2k) — 2k cosh(2k))? (&, + £_)?
+ k?sinh?(2k)(sinh?(2k) — 4k%) (&, — €2)%
Because tanh(2k) < 2k for all £ > 0 and &2 + £2 > 0, we have Ay is always positive.

Hence, we have that (2.83) has two roots

Bt — k(sinh(2k) cosh(2k) — 2k) (& + &) £ 4/Dk=
e Ak sinh?(2k) '
We take the higher value S > 0 and then solve the system (2.81) as S = [y +.

If & > &, we have

4sinh? k:(Qk(cosh(Qk) ~ 1) — €. (sinh(2k) — 2k)>

= (sinh(2k) cosh(2k) — 2k)(§- — &, ) — 2(sinh(2k) — 2k cosh(2k))E + ’ Ayz
> 0.

Then, we obtain from (2.81), that

2k(1 + cosh(2k))Br.+ — &£+ (2k + sinh(2k))

B = Agk(cosh(@k) — 1B — €, (sinh(2k) — 2h)

=: Aak,g. (284)
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So that
(A,B,C,D) = A(1,ay =, —ar =z tanh k, — tanh k)

with A # 0 and ¢x(z2) = Azg(z2), with
2k(z2) = (x2 + agz) sinh(kxs) — tanh k(ag zxe + 1) cosh(kzs).

We find A from (2.76), such that
1
AQJ ((z)? + 2K*(2)* + k*23)dxq = 1. (2.85)
-1
I[f0 <& <&, that will imply

2k(cosh(2k) — 1)Bk+ — &_(sinh(2k) — 2k) > 0.

We further get from (2.81), that

2k(1 4 cosh(2k)) B+ — £-(2k + sinh(2k))

b= _AQk(cosh(Qk) — 1By — & (sinh(2k) — 2k)

=: —Aby=.
So that, we have
(A,B,C,D) = A(1, —b =, by = tanh k, — tanh k)
with A # 0 and ¢g(z2) = Awy(x9), with
wi(x2) = (xg — brz) sinh(kxy) + (b zv2 — 1) tanh k cosh(kxs).
We still find A from (2.76),

1
AQJ 1((wg)Z + 2k (wp,)? + k*wl)dry = 1. (2.86)

We obtain that

pe(k,Z) = max E-(¢'(-1))” + & (¢'(1)°
T e L (07 + 20207 + ko)
(sinh(2k) cosh(2k) — 2k)(& + &)

1 1
~ Tesmb?@h) | ((sinh(Qk) — 2k cosh(2k))2(&4 + £.)? ) :
+ sinh®(2k)(sinh?(2k) — 4k%) (&, — €.)?

That variational problem is attained by the function ¢y(x2) = Azk(x2), where A satis-
fies (2.85) or ¢y (xe) = Awg(xs), where A satisfies (2.86). The equality (2.6) is shown
and the first part of Proposition 2.1 then follows.
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2.4.2 Asymptotic behavior of p.(k,Z) in low/high regime of

wave number

Let us prove Proposition 2.1(2). Clearly, we have that p.(k,Z) is a decreasing
function in k > 0. It yields (2.7).

We first consider k& — 0. Let us recall the Taylor’s expansion of sinh(2k) and
cosh(2k). We have

4 4 2
sinh(2k) = 2k + gk?’ + 1—5k5 +O(k%), and cosh(2k) =1+ 2k* + §k4 + O(k°).

We deduce that

sinh(2k) cosh(2k) =2k g+ @k +O(K*) 1 8.0, O(k)
Ak sinh?(2k) I+ 2+ 0% 315 ’
that : 8 16 7.2 3
sinh(2k) - 25 cosh(2k) _ —3 —gk + O(k?) _ 1 N 11{:2 L O
4k sinh”(2k) 16 + Sk + O(k3) 6 45
and that
sinh®(2k)(sinh®(2k) —4k%)  F+ ZK +O0K) 1 1 K 1+ O()
16k2 sinh*(2k) S 64+ 2R2 4+ O(kY) 12 15 '
We deduce that
i (5, 5) = 560 +6) #4506 HEPH 6~ €2 (287
L fe (Y, = —3§+ - 36 §+ + & 195+ £-)2. .
That will imply (2.9), i.e.
|
@ =5 (6 e +yfed—ge v ).
Furthermore, we have that
o(k,2) — (2 2 462 — £ 6+ 482
k0 2 15 VE —EE FE

Two limits (2.87) and (2.88) help us to get (2.8).

For high wave number, i.e. Kk — 400, we can see that

sinh(2k) cosh(2k) —2k 1 —e % — 8ke " <9
sinh?(2k) C lte8h—2e 4 T

that

sinh(2k) — 2k cosh(2k) 11— 2k — (1 + 2k)e™**

< 1
sinh?(2k) 2 ek 4 g6k — Qg2
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Hence,
sinh(2k) cosh(2k) — 2k
sinh?(2k) (€4 +&-)
oy - sinh(2k) — 2k cosh(2k)\ 2 )\
pell: =) Ak ( sinh?(2k) ) (& +¢&-)
e e ey
sinh?(2k)/ " 7

< (26 + ) g v e),

That implies (2.10). The proof of the second assertion of Proposition 2.1 is complete.

2.4.3 Proof of Proposition 2.1(3)

In this appendix, we prove Proposition 2.1(3). We first show that

(=2) = su €*<¢/(_1>>2 + £+<¢/(1))2 2.89
Hel=) ¢€H2((E)1,1)) S1_1(¢”)2d372 28

Indeed, we write

o ap EEHED? 6O
deH2((~1.1)) §L,(¢")2dxy
and then prove that 15(Z) = f1.(Z). Clearly, we have u.(k, =) < fi.(Z) for all £k € R\{0}.

It yields p3(Z) < fie(
a function ¢, € Hz((

~~

fie

o
Z). It suffices to show that fi.(Z) = pi(Z). For any € > 0, we fix
1,1)) such that

E-(PL(=1))* + & (¢2(1))°
Sl_l(gbla/)zdl?
Let k # 0 be small enough, we then obtain
QLD+ & (ee(1)® & (de(=1)) + & (de(1)?
T, ((02 + 202002 + kig2)da, L, (or)2dey
That implies

> [i.(Z) — e.

pe(k,Z) > [1.(Z) — 2e.
We deduce that fi.(2) = supyeg (o} He(k, Z), ie. (2.89).
Then, we show that

(P (=D +E (M) 1 2 _ 2
b e aTETYEeCe)

Let us consider the Lagrangian functional

Lo(@.8) = B( f1<¢”>2d:c2 “1) - @D @) (201
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for any ¢ € H%((—1,1)) and 8 # 0. Owing to Lagrange multiplier theorem, we find

that the extrema of the quotient

(¢ (=1)* + & (¢'(1))°
L1 (¢")2day
(¢0, Bo) of Lo, which satisfy

are necessarily the stationary points

f (¢)%dwy = 1, (2.92)

and

1
Bo | ot das — (€-0h(~ 1/ (1) + £ (1) (1) = 0 (299)
-1
for all w e H?((—1,1)). We obtain from (2.93) after taking integration by parts that

o =0 on(-1,1).

and
4(1) = Eon(1). 200
o(—1) = =& ¢p(-1).
Hence, ¢ is of the form
qb()(l’g) = (l’g — 1)(141‘2 + B)
Substituting this form of ¢y into (2.94), we have that
Bo(3A+ B) = (A + B),
Bo(3A—B) = (A - D).
Hence,
A(3Bo — &) + B(Bo — &4+) =0, (2.95)
A(B3By — &) — B(fo —&-) = 0.
System (2.95) admits a nontrivial solution (A, B) if and only if
(360 — &+)(Bo — &-) + (360 — &) (Bo — &+) = 0.
It yields
302 —2(&, + € )+ €& = 0. (2.96)

The discriminant of (2.96) is

Dog= (6 +E)? =366, =€ — &6 +E >0,

Then, Eq. (2.96) has two roots

b =3 (6 +E £/ e 1),
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We take the higher value £y . As By = o+, we have from (2.95), that

A(3Bos+ — &) = B(Bo+ —&-)-

It is obvious that

3o = =G /R 66+ >0

Then we have

_ gl -6
A= 3/30 +— &
and 5
(bo(l’g) = BZO(.TQ), with Zo(LUQ) = (350—:_ 55_ + 1) (.CL’% — 1)

We continue using (2.92) to find a non-zero B. This yields

1
B J (o2 (22))2ds — 1.
—1

That is equivalent to
2
B2 3M +4) = 1.
< (3B0,+ —&-)? )
this yields
1 3P0+ — &

%f¢wﬁ 3084 +TEE

That means, we observe

E (P (=) +&(¢'(1)? 1 -
¢egr2n(?_xl’l)) Sil(ﬁb’/)deQ 3 <5+ +& + \/fi §+6- + 5%).

That variational problem is attained by the function

1 300+ — & ( Bo,+ — &~
22, /3983, — 3080, & + 7€2 o — &

-+

Po(w2) = Ty + 1) (22— 1).

Combining (2.89) and (2.90), we obtain Proposition 2.1(3).

2.5 Comments on the paper of Ding, Zi and Li

In [14], the authors Ding, Zi and Li construct an approximate solution generated
by the maximal normal mode, (02, u?, ¢*)(t,z) = 6e"*®*U (x) with k being fixed such
that 2 < X\;(k) < A. Applying Proposition 0.1, the nonlinear equations (0.55)-(0.56)
with the initial data

(0°,u,¢°)(0) = (o, u?, ¢*)(0).
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admits a strong solution (0%, u%) € CO([0, T™2), H! x H?) with an associated pressure
¢ € CO([0,T™>), L2). Let T% such that deMT" = ¢y « 1. We define

T* :=sup {t € (0, T™)|E(0°(t),u’ () < Cdp} > 0,
T = sup{t € (0,7")|[(0°, u’)(t) | 2oy < C5€m} > 0.

Then for all + < min{T?,T*,T**}, we have
E2(o(t),u (1)) + o (t HLQ J IV ol (T HLQ < Co%e*Mt,

In [14, Proposition 5.2], they claim that the difference functions

(O-d7 udv qd) = (0-57 u(S) qa) - (O-aa u(l7 qa)

enjoy

[0, u?) T2y < C8%™ (2.97)

for all p > 0. We believe that (2.97) needs to be corrected, not for all 4 > 0.
Precisely, we are in doubt about inequality (137) in that paper, that is for all
t < min{T°, T* T*},

IVpo +0° (OIZ2) + Al Vu' ()| 220 +MJ |V 0w (5) 720y ds

2.98
f|vm+ﬁ ey + A1V (5) o)) (298)
+ A/ po + GO (E)ul ()72 + CO°*M.

Due to (2.98) and the following inequality

Hv po + o (H)u (1) 72 q)
—2 L(po + ot (O)ud(t) - dud(t)da + L 0,00 () |u (¢) Pdx (2.99)

< £ Ip0 + 00 (O)3a(e) + Al + (D)) + O,

it is claimed in [14, (138)] that

0+ O Dy + (170 + PO a0y + Al V(1) o))

J (HW )oru(s) 200 +Au\|vud(s)||§2(m)ds (2.100)
+ AV po + 7 () ()2 + COe.

The inequality (2.97) is followed by applying Gronwall’s inequality to (2.100).



2.5. Comments on the paper of Ding, Zi and Li

105

We shall explain the arguments of (2.98) in [14]. First, we still have

t
Vo + o 00 0y + 2 | 19805 s
t
o[ [ (s P + ¢ fud(s,m, -1 )doids
0 J2nLT
= [ bt + (| oo+ o010 0) )
Q Q

+ L L(Qé’tf‘s(s) +2gu’(s) - Voo (s)ey — 0,0°(s)0u’(s)) - Opu(s)ds.

t=0

We estimate
t
Vi O 0l + 20 [ 19006 s
t
o[ [ (s )P + ¢ fud(s,m, ~DP)daids
0 JorrT
< f gpy|us(t)|?de + C§3e3ME,
Q
That implies
t
IV po + o (£)0eu (£) |20 + QML |V 0w (5)] 72 ds
t
2 [ [ (elantts.m P + ¢l (s, m, ~1)R)daids
0 JorLT
< AQJ (po + o () |[u(t)|*dx + Auf IVul(t)|*dx
Q Q
— AJ (& |ud(t, o, VD)2 + E_Juf(t, z1, —1)[})dzy + C53e3ME,
2 LT

By using the inequality

t t
A V720 < AQMJ [Vu(s)]720)ds + MJ IV o (s) 720y ds
0 0

and the identity
A j (6 Jud(t, 20, )P + & ud(t, 21, —1)P)day
2n LT
t
=A2f j (6 (s, 20, 1) + E_ul(s, 21, —1)[2)dads
0 J2r LT

t
+ff (€ |oni (s, 20, D + € |ows(s, 21, —1)P)dards
0 J2xLT

(2.101)

(2.102)

(2.103)

t
- j j (64 [Aud — (s, 01, 1) + E_ [N — P (s, 1, —1))dards,
0 J27wLT
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it is obtained from (2.103) that (see (134) in [14])

Iv/po + 03 (D)0 (1) 20y
4 A (V1) g - f (& it P + € Jud(t,r, ~1))da )
2n LT
1 t
T+ j (uuvatu%s)nim) - f (Elonud(s, 0, 1) + € |ovut (s, w1, ~1) ) ) ds
2

2 7w LT

A?H\/p0-+-05 HLQ +'(7536AN
3
+ /\2J“ (uu<7u Oz - | (a5, DP + € fud(s, 1, =) ) ds
2m

J f (| Aud — OudP(s, 21, 1) + E_|Auf — Ouf|* (s, 21, —1))dz 1 ds.
2 LT
(2.104)

Integrating (2.99) in time from 0 to ¢ and using (2.104) and Young’s inequality, the

authors deduce (2.98) without providing any detailed explanations.

However, we observe by integrating (2.99) in time that

1

t
o+ 00 < 5 | 109 s + O
Then the Lh.s of (2.98) will be bounded by
t
Vi OOy + AT Oy 1 [ 17005 s
t
1
<A [ AN ) s + A VHO e
0
1tvad 2, s+ SA2 tvd 2 iond
+ s IVou®(s)| 12 ds + g H [Vul(s)|120)ds
0 0
A (€l DP + €tz ~DP)da,
2w LT
t
| [ (€t D + ¢ fud(s,m, ~DP)dds
0 J27LT

¢
+ J f (&4 |Auf — o (s, 21, 1) + €| Aud — Sl (s, 21, —1))dx; + O
27 LT
(2.105)

We are not clear about the way in [14] to remove all integral terms over 2r LT in the
r.h.s of (2.105) to get (2.98) for all p > 0, especially the following term

t
j f (6|t — (s, 2, 1) + € Aut — (s, 21, —1))da.
2w LT



Chapter 3

Nonlinear Rayleigh-Taylor
instability of the viscous surface

wave in an infinitely deep ocean

This chapter is presented in the paper [62], mentioned in Section 0.6. We consider
the boundary value problem on a moving domain and with a free surface. No surface
tension is accounted for. Hence, the first step is to use a Lagrangian transformation to
transform the original problem into another problem on the fixed domain Q = T?2xR_.
Let us consider an increasing profile py such that p{ is compactly supported. The
spectral analysis in this setting is in the same spirit as the one in the first paper [51]

and we obtain infinitely many characteristic values to the linearized equations.

In this case, there are two striking differences to show the nonlinear instability.
The first reason is due to the compatibility conditions for the initial data of the non-
linear equations, that are not satisfied in general by the normal modes of the linearized
equations. A modification of the normal modes is needed to fulfil the compatibility
conditions. The second one is the presence of more nonlinear terms due to the La-
grangian transformation, that requires more efforts to construct the a priori energy
estimates, such as using Gagliardo-Nirenberg’s inequality. The linear and nonlinear

instability occur for all positive viscosity.

3.1 Preliminaries

We will employ the Einstein convention of summing over repeated indices. We

present here some material.
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Proof of Lemma 0.2. Thanks to Fubini’s theorem and Parseval’s formula, we obtain

0
HqufH%Q(Q) < Z f ) |k|2q‘f(k)|262\k|:c3dx3

—1 -1 -
kel 'ZxL;'Z

< Y KPR

kel 'ZxL;'Z
The inequality (0.89) then follows.
Product estimate. Suppose that X = Q or T, let f € H*'(X), g€ H®2(X),

1. if0<r <s <sgand sy >r+3/2 then fge H(X),
2.if 0 <r <s; <syand s; > 3/2, then fge H'(X).

In both cases, we have

[ f9lar ) < [f]

We refer to [33, Lemma 10.1] for the proof of (3.1).

Gagliardo-Nirenberg’s inequality. Let s > 0, ¥ = Q or I" and f,g € H*(X) n
L*(X), we have

Hs1(%) lg| H%2(%), (3.1)

I£9]

Elliptic estimates. Let r > 2 and ¢ € H"2(Q), € H™*(Q) and o € H""V*(T").
There exist unique u € H"(Q) and ¢ € H~!(Q) solving

) S [ flaselgloes) + 1o gl s (3.2)

—Au+Vqg=2¢ in €,
divu = 1) in Q,
(qId — pSu)es = « on I
Moreover, we have
ltl 7y + lal7-1 () S 1017m—20) + 11510y + Il Fsnmy- (3:3)
thanks to [33, Lemma A.15] for example.
We also recall the classical regularity theory for the Stokes problem with Dirichlet

boundary conditions (see [76, Theorem 2.4] after using the domain expansion tech-
nique). Let r > 2 and f e H%(Q),ge H™'(Q) and h e H"~Y?(T") such that

f g= J h - v, where v is the outward unit normal vector to the boundary.
Q r
There exist uniquely v € H"(Q) and ¢ € H"~1(Q) solving

—Au+Vqg=f in €2,
divu = g in €,

u=~h on .
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There also holds
HUH%V(Q) + ||Q||%{r—1(9) S Hf”%{r-?(g) + Hg”?jl?"—l(ﬂ) + HhH?{Hm(r)- (3.4)
Korn’s inequality. The following Korn’s inequality is proven in [47, Theorem 5.12],
IVull720) < [1Su]Z2q)- (3.5)

Commutator estimates.

Let J = 4/1 — 0% — 05 and let us define the commutator
(T° flg = T°(F9) = I T°g.
We have
17, Flaleawy < IV Fle=a| T gliawy + 1T flramylglem)- (3.6)

The proof of (3.6) is similar to that one of [46, Lemma X1].
Interpolation inequality. It can be found in [1, Chapter 5] that

1 1 /(741
lullzsay < lul a2 Tuli i,

That implies for € > 0, there is a universal constant C'(j) such that
lullas ) < ellulag) + CGe™ul ) (3.7)
Coefficient estimates. If ||1] 52y < 1, we have
IJ = gy + IV = ey + K = Umay < Inlwoe (33)

Also, the map © defined by (0.91) is a diffeomorphism. We refer to [34, Lemma 2.4]

for the proof of (3.8). In the following lemma, we provide some additional estimates.

Lemma 3.1. Under the assumption |n]gozry < 1, the following inequalities hold

l6,(A, B)

o) < |0 mer2ry forany 0 <1<2and 0 < s <4, (3.9)

and

)
| K =1

ms@) S 1N gerr2@y  for 0<s <4,
<2

10K =) < [0n|gsrreqy  for 0<'s

bl

) ) ) (3.10)
”atKHLZ(Q) < o 77HH1/2(F) + ||at77||H5/2(p),

UK 2@ < 1070y + 10m L asrz w1070 2y + 10m] 3572y
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and
(

I(AK, BK)|gs@) < |7
< |10H(AK, BK)|gs() < [0m|

H@?(AK’ BK)HL2(Q) < ||5t277HH1/2(r) + H5t77||§{5/2(p),

Hs+1/2(1“) fO’/’ 0 < s < 4,

Hs+1/2(D) fOT 0<s< 2, (311)

0P (AK, BK )| r2() < |08l mveqy + 10l sz |00 ey + 10 s/2 0y

and

(A — Id
10 Al

<

162 Al @) < 1L vagey + 10130 ry

() S Hn’HSH/?(F) for 0 < s <4,

@) S [0l gsre@y for0<s<2,

(3.12)

LI0P Al 2y < 10y + 100wz 10E0 a2y + 1002 -
Proof. To prove (3.9), we use Lemma 0.2 to obtain

l,(A, B)

mx(0) = [0,(010, 220)|

Ho@) < 010

HS+1(Q) $ H@in\ Hs+1/2(r).
We then claim (3.10). Since K — 1 = J (1 — J) = —J 1036, we have

| K —=1]

o) < 7100

Ho(Q) S HGHHSH(Q) < Hn\HSH/Z(F).

Note that K = J~!, we have 0,K = —J 2¢;J. Owing to the product estimate (3.1),
Lemma 0.2 and the fact that |J — 1|0 < 1 (3.8), we get

[0K|

ey < 720,050

me(@) < [ 01030

Hs(Q) < Hatn|H5+1/2(1“)~

Since 02K = —J202J +2J73(0;J)?, we continue applying Sobolev embedding, Lemma
0.2 and (3.8) to obtain
102K | L2y < [T7207050) 2y + [T72(0:030) | 2w
< 1107030 L2 () (1 + 030 2(0)) + 1100050 L2 102030 | 122
< Hat277||H1/2(F)(1 + [l gs2ry) + 10 gz [0m| gsz

< loinlme ) + Hathiﬁ/?(F)'

Similarly, we have
OPK = —J 200 J +6J720,J02 ] — 6J7*(0,J)>.
This yields

Ha?KHLZ(Q) S HJ_Qa?ageHLZ(Q) + \|J_38t5395,52(939HL2(Q) + ‘|J_4(at(939)3“l/2(9)
< 07050 L2y + 101030 12 ()| 07 050] 12 () + 0000 Fr2 ) 100050 12 )

< Ha?n”Hl/?(F) + HathHW?(F)Haz?nHHl/?(F) + Ham”?{s/z(r)-
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Hence, (3.10) is proven.

We combine (3.9) and (3.10) to prove (3.11). Note that XK = X(K — 1) + X for
X = A or B, we use Sobolev embedding and (3.10) to obtain that

XK 2@ < [ X 2@ + [ K = a2@) < [0l
We make use (3.1) and (3.9), (3.10) to obtain
XK@ = [ Xmr @ + 1K = Hasw) < [nlgem

and if s = 2,3 or 4, we use also Gagliardo-Nirenberg’s inequality to have

XK i) < [ X)X+ K =1 g2) + [ X[ m20) (1 + [ K = 1 #o0)
< [In]

Hs+1/2(F).

We further obtain
[0(X K)oy < [0 X o) + [0 X (K = Do) + [X (K = 1) |10
If s =0, we use Sobolev embedding and (3.9), (3.10) again to have

10:( X K)||z2() S |0:X |2y (1 + [ K = 1| m2()) + | X | m20) [0 K| 22 (0)
< [0l g2y (T + [0l gorzry)-

If s =1 or 2, we use (3.1) and also (3.9), (3.10) to obtain

[0(XK) 1) € [0 X 110y (1 + [ K = L ms) + 1 X530 0K ()
~ ”aﬂ]Hm/?(r)(l + Hn”HW?(F))‘
or
|0(X K| 120) < 10X |20 (1 + | K = U m2ie) + [ X 20 10K 520
< [0 g2y (1 + [1n] gr2(r))-
Similarly, it can be seen that
|02 (X E) | 12(0) < 107X [12(0) + 07X (K = D20 + [0:X0(K —1)| 120
+ | X (K — 1) 20
S 10X 2@ (L + | K = Lm2i) + [0:X ] r2) | 0K |20
+ X a2 107 K 20
< Enl @y X+ [0l mseay) + 10l vy 1060 asnry
+ 0 52y (050 020y + 10 Frs/2 )
< 070l ey + Haﬁ?HHsm(r)
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In a same way, we have
103X EK) | r20) < 107X 220y (1 + | K — U m2i) + 107X | 2206 0K | 20
+ 06X | 200107 K | 1200 + [ X 20 |07 K [ 120
S ||(9§7IHH1/2(F) + Hatn”Hf’/?(F)HatanHl/Z(F) + HaﬂlHizsm(r)'

Thus, the proof of (3.11) is complete.

Note that
[0(A = 1)@y < 16K = Dlme@ + [0(AK) (@) + [0(BE) [ +(0)-
Hence, (3.12) follows from (3.9), (3.10) and (3.11). O

3.2 The linear analysis

We begin with the following lemma.

Lemma 3.2. For any k > 0,

e all characteristic values X are always real,

e all characteristic values \ satisfy that X < /7.
0

Proof. Multiplying by ¢ on both sides of (0.27) and then integrating by parts, we
obtain that

)\2([ (K pol8]* + pol¢'|*)das — p0¢/$‘0m>

0
—00

+ )\/l(JVR (|¢//|2 —+ 2k2|¢/|2 4 k4|¢|2)d1‘3 + (gb///a . gb//a/ - 2k2¢/$)’ )

= gkzj polo*dus.

Using (0.111) and (0.112), we get

22| ol + poldP)das — pr o013 () + [ (67 + 2640+ Ko

+ (3Ak? + A2p. )¢ (0)8(0) + gh?p4|6(0)|* + Auk?3 (0)(0) — 2A1k?/ (0)6(0)
= gsz polol*da;.

This yields

z2 f (Rp0l6l” + pold/|?)decs + A f (16"P + 20216/ + k*[9[?)ds

# M@ (0)5(0) + 5 0)0(0) + gk 0O = gk | plofdra
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Using the integration by parts and (0.111) again, we have

z2 f (ol + polé'P)das + A f (16" + K26 + 4K\ P)ds

. - (3.13)
= gk lSO) + g | pilofdes
Suppose that A = A; + ¢Ay, then one deduces from (3.13) that
(AT —A2) f (K*pold|* + pol¢'|?)das + Alﬂf (1" + k*0|” + 4k|¢'|*)dx5
- - (3.14)

— R, SO + gk?f ohlo[2des
R_
and that

WY f (Rpol6f + pold'P)das = Agu j (16" + K22 + 42§ des.  (3.15)
R_

If Ao #0, (3.15) leads us to

—2)\1J (K*pol @ + pold'|*)das = Mf (l¢" + K*¢|* + 4k*|¢'|*)dxs < 0,

that contradiction yields Ay = 0, i.e. X is real. Using (3.13) again, we further get that

% f po(k2[0f? + |6/ ) dus < gsz ohl[2das.

It tells us that A is bounded by , /Lio. This finishes the proof of Lemma 3.2. ]
Note again that, thanks to Lemma 3.2, in what follows in this section, we only use

real-valued functions.

3.2.1 Solutions on the outer region (—o, —a) and reduction to
an ODE on the finite interval (—a,0)

Proposition 3.1. Let 7 = A/k?> + Ap_/u. There are two linearly independent solu-

tions of (0.27) decaying to 0 at —o0 as x3 € (—o0, —al, i.e.
bi(as) = €5 and 6 (x5) = . (3.16)
All solutions decaying to 0 at —0 are spanned by (¢7 , Py ).

Proof. On the interval (—o0, —a), Eq. (0.27) is an ODE with constant coefficients,

M- (K¢ — ¢") = (¢ — 2k%¢" + k9). (3.17)
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We seek ¢ as ¢(x3) = e™3. Hence,
—Mo_(kK* —r?) = p(r* — 2k*r? + k),

which yields r = +k or r = £(k% + A\p_/u)"2. Since ¢ tends to 0 at —co, we get two
independent solutions of (3.17),

¢y (w3) = 3 and ¢ (z3) = ek ho—/u)! a5
Hence, we can find all bounded solutions of (3.17) of the form
P(x3) = Apeh@sta) 4 Ayer-(@sta) (3.18)
Proof of Proposition 3.1 is finished. O]

Once it is proven that ¢(z3) outside (—a,0) is precise, we look for ¢ on (—a,0).
That solution has to match with (3.18) well, i.e. there is a condition on (¢, ¢, ", ¢")

at x3 = —a. We will show that in the following lemma.

Lemma 3.3. The boundary conditions of (0.27) at x3 = —a, for ¢ € HY(R_), are
(0.113), i.e.

kr-¢(—a) — (k + 7-)¢'(—a) + ¢"(—a) = 0,
kr_(k+71)p(—a) — (k* + km_ + 72)¢'(—a) + ¢"(—a) = 0,

and at x3 = 0, are (0.111).

Proof. For a solution ¢ of Eq. (0.27) on (—a,0), the boundary conditions at 3 = —a
are equivalent to the fact that ¢ belongs to the space of decaying solutions at co. On
the one hand, it can be seen from (3.18) that

/
k _
z//((xg)) = Al—ek(m3+a) 2 + A2—€7-,(x3+a) 7—2 for x5 < —a.
T3 T
¢///(l,3) ]{3 TE

On the other hand, direct computations show that the orthogonal complement of the

subspace of R* spanned by two vectors (1, k, k%, k%) and (1,7_,7%,73)7 is spanned by

(kr_,—(k+7),1,00" and (kr_(k+71_),—(k* + kr_ +72),0,1)T.

The above arguments allow us to set (0.113) as boundary conditions of Eq. (0.27) at

T3 = —a. ]
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3.2.2 A bilinear form and a self-adjoint invertible operator
Proposition 3.2. Let us recall (0.115),

kr_(k + 7_)9(—a)o(—a) — km_9'(—a)o(—a) >

BV_qkx(V,0) == p ( — kr_9(—a)d (—a) + (k + 7_)0'(—a) ¢ (—a)

BVhsa(0. ) 1= ik (0)0(0) + 9(0)g/(0)) + 22 0(0)e(0).

and (0.116),
0
Bawr(V,0) := BV (9, 0) + BV_q (0, 0) + )\J po(K*V0 + V' ¢')dxs
0
+ ,uf (9" 0" + 2k o' + kK*Io)dxs.

We have that B, is a continuous and coercive bilinear form on H*((—a,0)).
Furthermore, let (H?((—a,0)))" be the dual space of H*((—a,0)) associated with the
norm A/ Ba (-, ), there exists a unique operator

Yo € L(H?((—a,0)), (H*((~a,0)))"),
that is also bijective, such that
Baga(V,0) = Yot 0) (3.19)
for all ¥, 0 € H*((—a,0)).

Before proving Proposition 3.2, we state our key lemma, whose proof is postponed
to Section 3.2.6. This yields the coercivity of B, » as it will appear in the proof of
Proposition 3.2.

Lemma 3.4. We have

2k (¥ (0)9(0) — ' (—a)d(—a)), V¥ satisfies the constraint
min 0
IeH?((~a,0)) J (") + 2k*(9)* + K*9*)dws = 1.
__ sinh(ka) + ka
~ 3sinh(ka) — ka’

and

2k2(9'(0)9(0) — ' (—a)¥(—a)),V satisfies the constraint

max 0 =1.
9eH (20 0) f (0" + 2K2(9')? + K*0%)dacs = 1.
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Proof of Proposition 3.2. Clearly, B,k is a bilinear form on H?((—a,0)) since the
terms BV, pA(0, 0) and BVy (0, o) are well defined. We then establish the bound-
edness of B, . The integral terms of B,z are clearly < |9 p2((—a0))llol #2((=a,0))-
About the two boundary value terms, it follows from the general Sobolev inequality
that

max(#2(0). 9%(~a)) < 9o

and that
max((9'(0))%, (' (=a))?) < 9| F (a0

Consequently, we get

[BV_aka(?; 0)] < ([9(=a)] + [¥'(=a)])(le(=a)| + [¢'(=a)])

(3.20)
S |19 52 ((=a0p | 0]l 52((=a,0))-
and
A+1 , ,
|BVoea(?,0)| < T(W(O)I + [9'(0)])(]e(0)] + [2'(0)])
(3.21)
A+1
S 10lm-aoplel -
In view of (3.20) and (3.21), we find that
A+1
|Ba,kz,)\(19, )| < T\|19\|H2((—a,0))||QHH2((—a,0)), (3.22)

i.e. By is bounded.

We move to show the coercivity of B, ;. We have that
0
Baia(0,9) = BV pa(9,9) + BV_g 1 (9, 0) + )\f po(K*9? + (9)?)dxs
0
+ 1 J (9" + 2k*(9)* + k*(9)?)dx3.
We have
1
;BV_a,kvA(ﬁ, V) = kt_(k + 7_)(9(—a))? = 2k7_9(—a)? (—a) + (k + 7_) (V' (—a))?

= (k4 7) ((~a) + %ﬁ(—@f

N k(r_(k+7.)% —k(k—1_)%)
k+T1_
> —2k*9(—a)¥'(—a).

(0(—a))* - 2k*0(—a)¥'(—a)

Therefore, we deduce that

%Ba,m(ﬁ, ¥) = 2k*(9(0)9'(0) — I(—a)?'(—a)) + fo (9" + 2k*(9)? + k*9%)dxs.
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Notice from Lemma 3.4 that

) ) [ () R (32)

L, (0,0) >
i

The inequalities (3.22) and (3.23) tell us that B, j » is a continuous and coercive bilinear
form on H?((—a,0)). It follows from Riesz’s representation theorem that there is a
unique operator Y, i » € L(H?*((—a,0)), (H*((—a,0)))’), that is also bijective, satisfying
(3.19) for all ¥, o € H?((—a,0)). Proof of Proposition 1.2 is complete. O

The next proposition is to devoted to studying the properties of Y,  ».

Proposition 3.3. We have the following results.
1. For all 9 € H?*((—a,0)),
Yot = A& pod — (po?)’) + (9@ — 229" + k*9)
in D'((—a,0)).
2. Let f e L*((—a,0)) be given, there exists a unique solution ¥ € H*((—a,0)) of
Yool = f in (H2((—a,0)))" (3.24)
Moreover, 9 € H*((—a,0)) and satisfies the boundary conditions (0.113)~(0.111).

Proof. Tt follows from Proposition 3.2 that there is a unique ¥ € H%((—a, 0)) such that

0 0
AJ po(K*00 + ¥ o )dxs + MJ (0" 0" + 2k* o' + k*p)dws = (Yora0, 00 (3.25)

for all o € C((—a,0)). We respectively define (9”)" and (9”)” in the distributional
sense as the first and second derivative of ¥” which is in L?*((—a,0)). Hence, Eq. (3.25)
is equivalent to

0 0
)\f po(K*Vo + ' o' )dxs + ul(9")", 0) + ,uf (220 o' + K"0)dxs = (Y, 120, 0) (3.26)

—a

for all p € C°((—a,0)). Eq. (3.26) implies that
(") = 2K%0" + k*9) + ME*pod) — (po??’)') = Yaurd in D'((—a,0)). (3.27)

The first assertion holds.

Under the assumption f € L?*((—a,0)), we improve the regularity of the weak
solution ¥ € H%((—a,0)) of (3.27). Indeed, we rewrite (3.27) as
0
p(0")" 00 = | (Yaua + 2uk*0" — pk*d — Xk2pot) + A(po?)')") odizs

—a
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for all o € CP((—a,0)). Since (f + 2uk®*9”" — pk*d — Me?pod + A(po?’)’) belongs to
L*((—a,0)), it follows from (3.26) that (9")" € L*((—a,0)).

Let x1 € C((—a,0)) satisty j‘ia X1(y)dy = 1. Using the distribution theory, we
define ¥ € D'((—a,0)) such that

%, 0 =), ¢ (3.28)

for all p € C°((—a,0)), where

e = [ (o) =) [ atoris)ay

—a

for all —a < 3 < 0. We obtain

<Z/7 Q> = *<Z7 Ql> = *<(Q”)”a CQ’>'

Note that

3

(0 Gy = (0 olas) = | ) [ es)dsdy) = (070,

this yields (3, 0) = —{(9")", o). Hence, we have that (")’ + ¥ = constant. In view of
(") € L*((—a,0)) and (3.28), we know that (¢")" € L*((—a,0)). Since ¥ € H*((—a,0))
and (¢")', (9")" € L*((—a,0)), it tells us that 9 belongs to H*((—a,0)) and we can take

their traces up to order 3.

By exploiting (3.25), we then show that ¥ satisfies (0.113)-(0.111). Indeed, for all
o€ H?((—a,0)), we use the integration by parts to obtain from (3.25) that

0 0
)\J po(k*Vo + V' o' )dws + HJ (9" 0" + 2k*9 o' + k*9p)dxs
0 0 0

—2k%Yp

—a

_ )\p0/19/Q _ 19//@/

+ ;L(Tyﬂg

—a —a

0 0
) :f (Yo k0)odxs.

It then follows from the definition of the bilinear form B, j » that

0 0 0

0
—)\poﬁ'g‘i - ,u(ﬁ"”g —2k%% 0

_ 19// Ql

) — BVy(0,0) + BV_o(¥,0), (3.29)

- —a —a

for all o € H*((—a,0)). By collecting all terms corresponding to o(—a) in (3.29), we
deduce that

Mo_ (—a) — p" (—a) + 2uk*Y (—a) = pkr—_(k + 7_)0(—a) — pkt_9'(—a).
This yields,
9" (—a) = (12 — k)Y (—a) + 2k*9' (—a) + k7_9'(—a) — kt_(k + 7_)9(—a)
= (K> + kr_ + 72)¥(—a) — k7_(k + 7_)9(—a).

We just proved that o satisfies (0.113),. Similarly, ¢ also fulfils (0.113), and (0.111).
This ends the proof of Proposition 3.3. m



3.2. The linear analysis 119

We have the following proposition on Y;l_kl 5\

Proposition 3.4. The operator Ya_kl)\ : L*((—a,0)) — L*((—a,0)) is compact and
self-adjoint.

Proof. 1t follows from Proposition 3.3 that Y, j » admits an inverse operator Yafkl’ ) from
L*((—a,0)) to a subspace of H*((—a,0)) requiring all elements satisfy (0.111)-(0.113),
which is symmetric. We compose Ya_k1 , with the continuous injection from H*((—a,0))
to L%((—a,0)). Notice that the embedding H?((—a,0)) < H((—a,0)) forp > ¢ > 01is
compact. Therefore, the opearator Yajkl,/\ is compact and self-adjoint from L?((—a,0))
to L*((—a,0)). Proposition 3.4 is shown. O

3.2.3 A sequence of characteristic values

We continue considering A € (0, , /Lio] and we study the operator S,j, :=
/\/lYaTkl’ WM, where M is the operator of multiplication by +/p.

Proposition 3.5. The operator S, : L*((—a,0)) — L*((—a,0)) is compact and
self-adjoint.

Proof. Due to the assumptions on p,, the operator S,;, is well-defined from
L*((—a,0)) to itself. The operator Y, !, is compact, so is S, 1. Moreover, because

both the inverse Yafk{ 5, and M are self-adjoint, the self-adjointness of S,  follows. [

As a result of the spectral theory of compact and self-adjoint operators, the point
spectrum of S, ; \ is discrete, i.e. is a sequence {7, (k, A\)},>1 of eigenvalues of S, »,
associated with normalized orthogonal eigenfunctions {w,},>1 in L?((—a,0)). That
means

(A, k)wn = S, = MYaTk{/\Mwn.

So that with ¢, = Y,/ \ Mw, € H*((—a,0)), one has

’Yn()w k)Ya,k,/\¢n = p6¢n (330)

and ¢, satisfies (0.113)-(0.111). Eq. (3.30) also tells us that v,(X, k) > 0 for all n.

Indeed, we obtain

0 0
%u,k)f (Yorrbn)budizs = f oo s,
That implies
0
O F) B (s ) =f Ao ds, (3.31)

Since By g (¢Pn, ¢n) > 0 and py > 0 on (—a,0), we know that ~,(A, k) is positive for

all n. Hence, by reordering and using the spectral theory of compact and self-adjoint
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operators again, we obtain that v, (), k) is a positive sequence decreasing towards 0 as

n — o0.

For each n, in order to verify that ¢, is a solution of (0.27), we are left to look for
real values of A, such that (0.121) holds, i.e.

An

A, b
B k) = S

To solve (0.121), we need the two following lemmas.

Lemma 3.5. For each n, v,(\, k) and ¢, are differentiable in X.

Proof. The proof of Lemma 3.5 is the same as Lemma 1.2, we omit the details here. [

Lemma 3.6. For each n, v,(\, k) is strictly decreasing in \.

Proof. Let z, = %, it follows from (3.30) that

e d

2 /\/ _ 1 1 /
K podn — (podi)" + Yapazn = —%O\’ 0 dA( s k>)p0¢n (3.32)

on (—a,0). At z3 = —a, we have

a(—a) = (k +7)z),(=a) + kT_2,(—0a) = L=/, (—a) — 35 du(—a),

2(—a) — (K* + k71— + %)zl (—a) + kt_(k + 7_)2,(—a) (3.33)
— (3= + &) dh(-a) - (5= + 2= )ou(-a),

and at x3 = 0, we also have

2(0) + k22,(0) = 0,

n

2(0) — (3K + 228) 2] (0) + L5222, (0) = 2547,(0) + L226,(0).

Y

(3.34)

Multiplying by ¢,, on both sides of (3.32), we obtain that

0

0
f (kzp()(ﬁn - (Po¢/n)/)¢nd3?3 + J (Ya,k,,\zn)¢nd$3
- . - (3.35)

= —’Yn()\, 5) JO PoZnOnds + dci\( & k)> JO podudis.

Thanks to the integration by parts, we have

0

0
f (K*podn — (po@},) ) pndas = J po(k*¢r, + (¢),)°)dxs — (pod),dn) (i

—a

(3.36)

and

0 0 0
f (Y:z,k,)\zn)qbndx3 = f (Ya,k,kgbn)anx?) + </'L( ,”¢ - Z”¢ - 2]{322/ ¢n) )‘pOZ;L¢n>

—a —a

0

— (wl6ltz0 = Ozt = 2K2120) = Ao

—a

(3.37)
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Owing to (3.36), (3.37) and (3.30), Eq. (3.35) becomes

0
|| a6+ @+ (6, = 216 — 2500) ~ )|

—a

~(podhtn)|  (3.39)

(60— 0~ 2K, ) — Aoz 3
;
- %(%(i,k)> f hondrs
Using (3.33), we obtain
— (100 = 261, — 26220,60) = Mpozhn ) (—a)
+ (62 = izt = 2K260,20) = Moz ) (—a) + p-df,(~a)n(—a)
= (52 + k0. ) Gul-a))? — (2= 4 p Yot (-a)iul—a) (339
A (a0 (a) + L6 () + i~ a)6u(—a)

= kp-(6a(=a))? + £=(¢}(~a) — kén(~a))’.

Using (3.34) and (0.111), we also have
— (0 — 21— 22 00) — Ao,04)(0) + 98l (0)6,(0)
k?
+ (16 = 01, = 20%0)20) = Aoodiza ) (0) = L5200 (0))°,

Combining (3.38), (3.39) and (3.40), we deduce that

(3.40)

d 0 /.9 0 2 2
a(%&,m) f o R = j po(k26% + (81,))dy + kp—(6n(—a) -

2 g(-a) — k() + L6, )2

This yields that m is strictly increasing in A, i.e. 7, (A, k) is strictly decreasing in
A. This ends the proof of Lemma 3.6. O

Now we are in position to solve (0.121).

Proposition 3.6. For each n > 1, there exists a unique X\, > 0 solving (0.121). In

addition, A, decreases towards 0 as n goes to 0.

Proof. Using (3.31), we know that

oo, 0
5 ()\ ]{I) f p0¢id$3 = J (Ya,k,)\¢n)¢ndiﬂ3 = Ba,k,A(¢n,¢n),

Keep in mind the definition of B, » (0.116), we deduce that

1 0 0 0
WJ phdidrs = )\J k2 pog2das + uj k*¢2 das,
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that implies

k’4
P
LO’Yn()‘a k) P+
Consequently, for all n > 1,
| A ,
lim > gk*. (3.42)

A_’\/LI}) 'Yn()‘v k)

Since v, (), k) is a decreasing function, we have L ) for all A < §,/-.

1
<

InAE) (34 k Lo

Hence,

A
lim —— = 0. 3.43
AIE(I) YA, k) ( )

Combining (3.42), (3.43) and the fact that 7, is decreasing in A, we obtain a unique
A solving (0.121).

We prove that the sequence (\,),>1 is decreasing. Indeed, if A, < A, 41 for some

m > 1, we have
’ym(Ama k) > ’ym(/\m+17 k)

Meanwhile, we also have

Y (Ams1, £) > Ymr1 (A1, k).

That implies
)\m )\m+1

gk? gk? ~

That contradiction tells us that (A,),>1 is a decreasing sequence.

= 7m<)\m7 k) > '7m+1(>\m+17 k) =

To conclude Proposition 3.6, we prove that lim,, ., A, = 0. Indeed, suppose that
lim,, o A\, = ¢o > 0, one has that A\, > ¢q for all n > 1. This yields

/\n> Co

Yn(co, k) = Yn(An, k) = w - gﬁ

Letting n — oo, we obtain that 0 > g%, which is a contradiction. Hence, lim,, ,, A, =

0. Proposition 3.6 is proven. 0

3.2.4 Proof of Theorem 0.5 and normal modes to the lin-

earized equations
We are in position to prove Theorem 0.5.

Proof of Theorem 0.5. For each A, € (0, Lio) being found from Proposition 3.6, let

On(z3) = nfk{AnMwn(xg) in (—a,0). Keep in mind our computations in Section 3.2.1,
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we extend ¢,, to R_ by requiring ¢,, satisfies (3.18) for some constants A, 1, A4, 2 as
A = A,. Those constants A, 1, A,, 2 are defined by

d)n(_a) = An,l + An,27

3.44
Ol (—a) = kAp 1 + Apoy /K2 + 2ne= (3.44)

Solving (3.44), we get that

M%(—a) ~ ¢!,(—a) ¢ (—a) — ke, (—a)
AL - T , Apg = \/ﬁ—k . (3.45)

Therefore, the function ¢, € H*(R_) is a solution of (0.27) satisfying (0.111) and
(0.112) as A = A, for each n > 1. Using a bootstrap argument, we have ¢,, € H*(R_).

Proof of Theorem 0.5 is complete. O

Once we have solutions of (0.27)-(0.111)-(0.112), we go back to the linearized equa-
tions (0.101).

Proposition 3.7. For each k = (ky,ky) € L7'Z x Ly;'Z\{0}, there exists an infinite

sequence of normal modes

Wk, 7) = 0 (G, ), un (), guk, 7)) (3.46)
to the linearized equations (0.101), such that

(o€ H®(Q),u, € (H*(Q))? and q, € H*(Q). (3.47)
Proof. For each solution A, € (0, \/LZO) of (0.121), we have a solution ¢,, in H*(R_) of
(0.27) as A = A, being found in Theorem 0.5. Furthermore, ¢, € H*(R_). We find
uniquely 7, € H*(R_) from (0.110) such that
e Ovupodly + (K65, — 61)) (b, ).
To look for v, we rewrite (0.107) as a second order ODE;,
— 1)y + (Anpothn + pk*th, — kamy) = 0.

Note from (0.108) and (0.109) that 1, satisfies that ¢/ (0) = k1¢,(0) and that
limg, o ¥n(z3) = 0. By the ODE theory on a bounded interval and the domain

7Tn(k, 1‘3) = —

expansion technique, we obtain a unique solution v, € H*”(R_), where the solution
¥, depends on the known functions ¢, and m,. We get ¢, in a similar way. Hence,
(Yn, Py Pny ) € (H®(R_))* is a solution of (0.107)-(0.108).

Following (0.106), we then construct the functions

ULn(k JI) = sin(klxl + 1{72372)1/}” k, XT3

Y

, L3

9

(k, 23)
von(k, ) = sin(kiz1 + kaza)pn(k, z3),
(k, z3)
(k, .Ig).

) = )
vg(k, ) = cos(kiz1 + kax2)on(k
) = )

(
T’n<k, xT3) = COS(]{le’l + k’gZ‘Q Tn
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Keep in mind (0.104), let us define also

1 1
)\n(k>06(333)1’3,n(k75”3> and v, (k, 1) = Ta{)vg,n(

wn(k,z) = — k, z;,0).

Hence
(Calt, k), un (t, Kk, @), Gu(t, K, ), 00 (K, 21)) = X (w0, 70, 1) (K, )

is a real-valued solution of the linearized equations (0.101). We claim (3.47) by virtue
of (Yn, ns by ) € (HP(R-))™ -

3.2.5 Maximal growth rate

We derive the following proposition on the largest characteristic value A; found in

Theorem 0.5.

Proposition 3.8. Let us recall the bilinear form B,y on H*((—a,0)) (0.116) and
(A1, 1) from Theorem 0.5. We have that

0 /2
1 dz
—5 = max Ly phedes , (3.48)
gk?  ¢en2((~a.0) M Bo g, (0, 0)

and the variational problem (3.48) is attained by the function ¢, restricted on (—a,0).

Furthermore, let us define the following bilinear form on H*(R_),

Bi(9,0) := /\J po(k*¢0 + ¢'0')dxs + “J ((¢" + K*¢)(0" + k20) + 4k*¢'0 ) dx5

k.2
L

L26(0)6(0)

Hence, we have
1 SR_ p6¢2dl’3
— = max —————.
gk?  ¢er2(R-) MBy )y, (6, 0)

The variational problem (3.49) is attained by the function ¢;.

(3.49)

Proof of Proposition 3.8. We divide the proof into two parts, proving (3.48) and (3.49),

respectively.

Part 1. We show that (3.48) holds. For all A > 0, we solve the variational problem

ar(\, k) = max (f p6¢2da:3‘¢ e H*((~a,0)), ABuir(d,d) = 1). (3.50)

Let us define the Lagrangian function

0
Lg(v,¢) = J pod*drs — v(ABg g (d, @) — 1). (3.51)
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It follows from the Lagrange multiplier theorem that the extrema of the quotient

{*, pho*das
ABa (9, 0)
are necessarily the stationary points (v, ¢.) of Lg, which satisfy
/\.Ba,k,k(gb*;(b*) =1 (352)
and .
J p6¢*9dx3 - AV*ga,k,A(¢*; 0) = 07 (353)

for all § € H*((—a,0)). Restricting 6 € C°((—a,0)) and following the line of the proof
of Proposition 3.3, one deduces from (3.53) that ¢, has to satisfy

)\V*Ya,k,)\@b* = p6¢* (354)

in a weak sense. We further get that ¢, € H*((—a,0)) and satisfies (3.52) and the
boundary conditions (0.113)-(0.111). Hence, all stationary points (v, ¢.) of Lg satisfy
that, Av, is an eigenvalue of the compact and self-adjoint operator S, = ./\/lYa_k1 WM

from L%((—a,0)) to itself, with
1

Uy

M_l}/a,k,)\qb* = M¢* € L2((_a7 O))

being an associated eigenfunction. That implies
041(/\, k?) < /\_1’71()\, ]{?) (355)
Meanwhile, since the operator S, is self-adjoint and positive, we thus obtain that

Sakr®,
WO = sp  Swradd)
¢eL?((—a,0)) H¢|’L2((—%0)>

Hence, for all ¢ € L*((—a,0)) and for ¢ =Y, '\ M¢ € H*((—a,0)), we have

<Ya,k,>\1/}7 ¢> = <Sa,k,)\¢) ¢>7
which yields

(Sapr®, 0)*

71()\7 k><Ya,k,/\w7 1/}> < 2
|o172((—a0)

< [ Saknl72((—a0)-

This yields
[ MBI Z a0y
Yo a0, ¥)
Owing to (3.19), we have that
2, phPdes
Ba,k,)\<w7 w)

nO k) < sup{ e H*((~a,0)) and MY, \t € L2((—a, 0))}.

m(\ k) < sup{ v e H*((—a,0)) and MY, ;¢ € L*((—a, 0))}
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We thus obtain

A (O E) < ar(\ k) (3.56)
The two inequalities (3.55) and (3.56) tell us that aq(k, \) = A=y (k, \) for all X > 0,
from which we deduce ay (A1, k) = g% and the variational problem (3.48) is attained
by the function ¢;.

Part 2. We prove that (3.49) holds. We set

az(A k) = max (JR_ P6¢2d903’)\Bk,/\(¢, ¢) = 1)-

eH2(R.)

and consider the Lagrangian function

Li(w, 6) = f sy — w(Bra(6,6) — 1).

Thanks to Lagrange multiplier theorem again, the extrema of the quotient

SR_ p6(]§2d:1:'3
)\Bk,)\(¢7 ¢)

are necessarily the stationary points (w,, ®,) € Ry x H*(R_) of Ly, which satisfy
ABj, (0., ®,) = 1 (3.57)

and
J Po®@.0dxs — A\, By A (P4, 0) = 0 (3.58)

for all # € H*(R_).
We now improve the regularity of ®,. We respectively define (®7)" and (®7)” in the

distributional sense as the first and second derivative of ®” which is in L?(R_). Hence,
(3.58) will imply that

AJ po(K*®,0 + .0 )dws + ul(®7)",0) + ’“‘f (2Kk2®70 + 4K*®.0 + k'®,0)dx;

1 /
= ®,0d
Ao JR Po I3

(3.59)

for all # € C°(R-). We deduce from (3.59) that

1
ph®, inD'(R.). (3.60)

p((®7)" — 2K*®" + k*®,) + Ak po®. — (po®.)) = o

Thanks to (3.59) again, we obtain (®”)” € L?(R_). Let b > 0 be fixed and arbitrary,
we have that ® € H*((—b,0)). Let xo € C((—b,0)) satisfy S(ib X2(y)dy = 1. Using the
distribution theory, we define ¥, € D'((—b,0)) such that

(E, 0) = ()", Gowy (3.61)



3.2. The linear analysis 127

for all # € C°((—b,0)), where

T3

o) = [ (00— eto) [ 63

—b

for all —b < 23 < 0. We obtain
(S, 0) = (5, 0") = =((27)", Cor p)-

Note that

(DY G = ()" Bx) — f

—b

T3

0
) [ sy = (@2)".0)
b
this yields (33;,0) = —{(®7)", 0). Hence, we have that (®7)' + %, = constant. In view of
(@7)" € L*((—b,0)) and (3.61), we know that (®?)" € L*((—b,0))). Since ®, € H*(R_)
and (®7)', (®Y)" € L*((—b,0)), it tells us that ® belongs to H*((—b,0)).
Next, let us take 6 € C§°((—0, —b)) with b > a. Due to (0.96) and (0.97), one has

N2 1 KAD,) + Apy (K2, — B) = 0 in D ((—o0, —b)).
p((P))" = 2K°0] + K'®.) + Apy (K@, — D)) =0 in D' b
As @ is bounded at —oo, hence we have

O, (z3) = are™ + age(k2+)‘07/u)1/2:c3.

Since @, is explicit, we see that ®, € H*((—o0, —b)). Consequently, ®, € H*(R_) and
®, decays to 0 at infinity.
By exploiting (3.58), we show that @, satisfies (0.111). Indeed, for all § € H*(R_),

we use the integration by parts to obtain from (3.58) that

0

)\J (K*po®, — (po®.)")0dzs + \po®.0

+ “J (D) + k2®,)(0) + k20,) + 4k>®.0)das

0 0 0 0 k2
+ u(@ﬁ@’ ) i} i} 700) + 7 A”* .(0)6(0)

1
— Aw* JR_ p6¢*0dx3-

By collecting all terms corresponding to 6'(0) and ¢'(0) respectively, we obtain that
7(0) + k*®,(0) = 0 and that

_ (I)//le
o *

+ k29,0
o0

+ 3K*90
oo

gk?p
)

A4 @ (0) — u®”(0) + 3K*®.(0) + ®,(0) = 0.

This yields that ®, satisfies (0.111).

We have just shown that ®, € H*(R_) is a solution to

1
po®. on R_ (3.62)

(W — 2k20) + k1®,) + ME2pp®, — (po®,)') = v
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satisfying (0.111)-(0.112). Since supppf, = [—a, 0], we see that @, is a solution of
(@Y — 2k20" + E'D,) + A2 p®. — (po®.)) =0 on (—0, —a).

Then, ®, on (—o0, —a) is of the form (3.18). Mimicking the computations in the proof

of Lemma 3.3, we deduce ®, on (—a,0) is a solution of
)\W*Y;z,k‘,)\(q)*kfa,())) = pé)q)*|(fa,0) = MZ@*‘(*(I,O)

with the boundary conditions (0.113)-(0.111). Set
1

AW,

= MY n (D] (Can) = ——MP.|(_a0) € L*((—a,0)), (3.63)

it yields
Aw,® = MY, LMD = S, 1,9

That means Aw, is an eigenvalue of the compact and self-adjoint operator S \ from
L*((—a,0)) to itself, with ® € L*((—a,0)) (defined as in (3.63)) being an associated

eigenfunction. Hence, we get

Let us recall the function ¢; from Theorem 0.5. One thus has

SR, pégb%dl’?)

Note that from the proof of Theorem 0.5,

k(zz+a) k24 210= (z3+a)
¢1(x3) = A7 TY 4+ Age # as — o0 < 13 < —a.
Let us write ¢1](_q,0) as the function ¢; being restricted on (—a,0). Hence, the direct

computations show that

Bk,)\(¢17 (bl) = Ba,k,)\(¢1 ‘(—a,O)a ¢1‘(—a,0))7 (366)

and we keep in mind the assumption supppf, = [—a,0]. Then, from (3.65) and (3.66),

we have 0
- §_, Podides
" ABuin (1] (—a0)s D1l (—a0)

(0%) (>‘7 k)
It then follows

0 phidas 1
as(A, k) = —a = —, 3.67
2( ! ) >\1Ba,k,,\1(¢1|(—a,0)7¢1|(—a,0)) gk? ( )

Combining (3.64) and (3.67) gives us that as(A, k) = g% and the variational problem
(3.49) is attained by the function ¢;. We finish the proof of Proposition 3.8. O
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Recall the definition of A from (0.122), we prove that A is the maximal growth rate

of the linearized equations (0.101) in the following sense:

Proposition 3.9. For allt = 0, the following inequalities hold

ISz @) + Tu®En @) + 10u®) 7o) Jlu )i @)

< (IO + [4(0) 720y + 1€(0)z22))e*™,

(3.68)

and

6 ey + 10Oy + [ 10005

< (InO) vy + w(0) 20y + 1€(0)[72())e

(3.69)
2At.

The proof of Proposition 3.9 relies on the three lemmas below.

Lemma 3.7. There holds

1d /
§d—<f polvul” —f gp6|us|* +f gplusl?) + HJ Soul? = 0. (3.70)
t Q Q T 2 0

Proof. We differentiate (0.101), in time, multiply the resulting equation by d;u and
then use (0.101), to obtain

J po0iu - Opu + J Vo - Oyu — uf Adwu - Opu — J gpousfuz = 0.
0 Q 0 0

That is equivalent to

1d
5@” poldrul* = J gpi)lu3|2> + f Vg - Opu — “J Adpu - dyu = 0. (3.71)
Q Q Q Q

We use the integration by parts over () to have

J Voiq - Osu — [LJ Ao - Opu = f (0iqld — uSou)es - ou — J 0rqdivosu
Q Q r Q

+HJ ISOul?
2 Jo

Thanks to (0.101), , 5, we obtain

f Voiq - Opu — /LJ Adu - pu = J gp+O0moyus + = J So,ul?
@ @ (3.72)

fgp+u3§tu9, + = J ISo,ul?.
Substituting (3.72) into (3.71), we conclude (3.70). O

Lemma 3.8. There holds

1
f gphlus* < J gp+|us|® + AQJ polul® + §AJ |Sul?. (3.73)
0 r 0 0



3.2. The linear analysis 130

Proof. Let k = (ki,ks) € L7'Z x L;'Z be fixed and f be the horizontal Fourier

transform of f, i.e.
fk, z3) = J f(an, x3)e” S dxy,.
T

We write

u(k,z) = —ip(k,x3), us(k,z) = —ip(k,x3), us(k,z)= ¢k, x3).

$(0,0) — L s — L divis — 0.

Hence, together with Parseval’s theorem, we have

]‘ 2
J9/9+| 3|° = S IeLL, 21 gp+lo(k, 0)]. (3.74)
keLy'Zx Ly Z\{0}

Notice that for k = 0,

We may reduce to estimate (3.74) when 1, ¢ and ¢ are real-valued and then continue

the estimate to the real and imaginary parts of ¥, ¢ and ¢
For each k € L7'Z x L;'Z\{0}, we deduce from Proposition 3.8 that

(cb’)

| ootz < g o0 + 5% | o6+ L0 e

_ R_

o L_ ((q; + k¢) (¢’)2) (K, 3)dxs.

It thus follows from the definition of A (0.122) that
72
[ onotman < apote 0+ 47 [ po(6+ O ) e
- " (3.75)
¢ "2
A —+k k, xz3)d
* “L«k o)+ 4(0')?) (k)

for all k e L7'Z x Ly;'Z\{0}.
Meanwhile, for k # 0, notice that k19 + kow + ¢’ = 0. One thus has

(&) < (k1 + ko) + (k1o — kat))? = B2 (7 + %), (3.76)
and
2(¢)? = 2k21p? + 2k20% + dkikorh < 2k2p? + 2k20% + (k1o + kat))?. (3.77)
Furthermore, we obtain that
(@) < (ki + ka)? + (k10" = at')? = B2 ((¢)" + (¢')7).
This yields

(01 208" + K6 < (W) + (/) — 200kt + ko) + 267

(%Qﬁ” - k¢>2 Tk



3.2. The linear analysis 131

so that . )
(0" + ko) < (ko —v)? + (koo — )" (3.78)
Then, in view of Fubini’s and Parseval’s theorem again, we find that due to (3.76),

1
2 2 2
- + k
Lp0|u\ yECT E f o(* + 0+ )(k, x3)dxs

kel 'ZxL;'Z

. (3.79)
=z — 47T2L1L2 1 Z ) f . Qb + ]{,‘2 )(k I3)d$3
keLy'Zx L, 'Z\{0}
and that due to (3.77) and (3.78),
1
i Sul?
5 LM ul
’ f (%¢>+2kw-+%€ <h¢+kﬂ¥>
_ s
47T2L1L2 ke L_1Z><L_1Z (k1¢ 1/} ) (k2¢ - (10,)2 (380)

I S (5 o) a2

> -
= 2
Am= Ly Ly kel Zx Ly Z\{0}

Combining (3.74), (3.75), (3.79) and (3.80), the inequality (3.73) follows, we end the
proof here. O]

We are in position to prove Proposition 3.9.

Proof of Proposition 3.9. Owing to (3.70) and (3.73), we have that

t
fmwwW+ffmwmm%wwujﬁ%mmﬁ—fwmmmz
Q 0 JQ Q T

' (3.81)
<y + AQJ polu(t)|® + §AJ p|Su(t)?,
Q Q
where
w = | mloa)F = | gotlus(0)? + | gpelus(0)P.
Q Q r
Using Cauchy-Schwarz’s inequality, we have that
t
J p|Su(t)|? = J 1|Su(0)]? + QJ f uSu(s) : Soyu(s)ds
@ @ (3.82)
f w|Su(0) f J 1| Scu(s QdS—l-Af f 1|Su(s)|*ds
and that p
pr p0|u]2 AJ poldeul® + AJ polul?. (3.83)

Three inequalities (3.81), (3.82) and (3.83) imply that

d 1 t
plutt) + 5 [ e < v 2n [ platof 4 A [ sutoPas. (380
dt 29 Q 0 JQ
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where
w= B | sy,

In view of Gronwall’s inequality, we obtain from (3.84) that

| et f | lsuPas < | mluF + Z@ -1, (389

Hence,

1 1 t
1 f polu(®)? + f WSu)P < o + A f polu(®)? + A f f Su(s)|2ds

< <y2 + QAJ PO\U(O)P)‘QQM
Q

Using the trace theorem, we have
v+ 42 < [u(0) 5 () + [0(0)]Z2(q)- (3.87)
Because of (3.85), (3.86) and (3.87), we observe

[u®) L) + [1Su(t) 220y + | Cru(t) 120, fSu $)12(0)ds

(3.88)

< ([00u(0) 20 + [u(0) 711 0y)e*™.

In view of Korn’s inequality (see (3.5)), that implies

¢

)+ 1900 o+ 1)y + [ V00 s

< (loru(0) 2@y + u(0)F g)e*™.

Using (0.101), and (3.89) also, we get
t 2 1 1 f (% 1

IO @) = 1<) [F 0 u(s) 7 @)d (3.90)

< (/< )Hm(m + 100u(0) |72 + [u(0)177: () e*™.
The inequality (3.68) follows from (3.89) and (3.90).

To prove (3.69), we use the trace theorem to obtain that
|Cen(t )HH1/2 ”87577 W32 pyds = s ()1 /2 r) HU3 HHI/2 ryds
I ) ( )

< 03 o +f s (5) s oy
0
Together with (3.85), (3.87) and (3.89), we deduce that
[0en(®) 172y J [0an(s) ey ds < (0u(0)|F2iqy + [u(0)[Fr(@)e™ . (3.91)
The resulting inequality tells us that
t
IO ey < 10O ey + | 10005 s

< (In(0) vy + 1000720y + [1(0)[ 7))
The inequality (3.69) follows from (3.91) and (3.92). Proposition 3.9 is proven. O

(3.92)
2At.
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3.2.6 Proof of Lemma 3.4

Note that the quotient

2k%(¢'(0)p(0) — ¢'(—a)p(—a))
(6" + 2k2(¢)? + k92 das

is bounded because of the embedding H?*((—a,0)) — C'((—a,0)). To prove Lemma

3.4, let us consider the Lagrangian functional

(3.93)

£20.8) = B( | (@7 + 286 4 W6y — 1) — 2 (0)0(0) ~ ¢ (~a)o(~a)),

for any ¢ € H?((—a,0)). Using Lagrange multiplier theorem again, we find that the
extrema of the quotient (3.93) are necessarily the stationary points (¢, Bx) of Ly, which

satisfy .
|| 6 2wy + w1 (3.9

and

0
6]9J ( 29” + 2]62(%69/ + k‘4¢k9)dl‘3

(3.95)
= k*(04,(0)0(0) + ¢x(0)60'(0) — ¢(—a)0(—a) — gr(—a)t/(—a)).
for all # € H*((—a,0)).
Taking the integration by parts, we obtain that
0 0
B L( W 2k2G + ki pn)0ds + Bl — 60 + 2K760) 3y (3.96)
= k*(61,(0)0(0) + 6x(0)6'(0) — ¢(—a)f(—a) — ¢r(—a)¥ (—a)).
Restricting 6 € C°((—a,0)), the resulting equality yields
o) — 2k + kg, = 0 (3.97)
on (—a,0). Hence, (3.96) tells us that
[ 5:61.(0) = K61(0),
A 2 4/ — L2
J Bu-ef1(0) + 20%¢40) = K60}, 509

Broi(—a) = k*pp(—a),
| Br(=9f (—a) + 2K ¢ (—a)) = k*¢p(—a).

Any solution ¢, of (3.97) is of the form

ér(r3) = (Axs + B)sinh(kz3) + (Cxs + D) cosh(kxs), (3.99)
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with A, B, C, D are four constants such that A? + B2+ C? + D? > 0. Let us compute
from (3.99) that

&) (x3) = (A+ kD + kCx3) sinh(kxs) + (C + kB + kAx3) cosh(kxs),
oy (x3) = (2kC + k*B + k* Ax3) sinh(kx3) + (2kA + k*D + k*Cx3) cosh(kxs).
and
oy (z3) = (BK*A + k°D + k*C) sinh(kxs) + (3k*C + k* B + k* Ax3) cosh(kas).

Substituting these formulas into (3.98), we obtain

2 _ 1.2
{@(%A + k2D) = k2D, 100

Be(—k*C + k*B) = k*(C + kB),
and
f@( — (2kC + k(B — Aa))sinh(ka) + (2kA + k*(D — Ca)) cosh(k;a))
) = k?(—(B — Aa) sinh(ka) + (D — Ca) cosh(ka)),
Bk( — (3k2A + kK3(D — Ca))sinh(ka) + (3k2C + k3(B — Aa)) cosh(ka))
= k2(28, — 1)( — (A + k(D — Ca))sinh(ka) + (C + k(B — Aa)) cosh(ka)).

(3.101)
System (3.100) is equivalent to
k(B —1)B = (Bk + 1)C, (3.102)
k(Br —1)D = =25, A.

We also obtain that (3.101) is equivalent to
( ((—6k(k:a sinh(ka) + 2 cosh(ka)) + ka sinh(k:a))A + (B — 1)k sinh(ka) B

+ ((2sinh(ka) + kacosh(ka)) By — ka COSh(k(L))C' + (=B + 1)k cosh(ka)D = 0,
( — (B + 1) sinh(ka) + (Bx — 1)ka cosh(ka))A + (=B + 1)k cosh(ka)B

+((—5k + 1)kasinh(ka) + (B, + 1) cosh(ka))C + (By — 1)ksinh(ka)D = 0.

A

(3.103)
Substituting (3.102) into (3.103), we deduce
katanh(ka)(—pB, + 1)A + ((308k + 1) tanh(ka) + ka(B;, — 1))C = 0,
(—(36k + 1) tanh(ka) + ka(Br — 1))A + (=5 + 1)katanh(ka)C = 0.
Hence, system (3.98) is equivalent to
(81 +1)C = k(B —1)B =0,
26kA+ k(B — 1)D = 0,
< B (Be — 1) (3.104)

katanh(ka)(—p) + 1)A + (tanh(ka)(35r + 1) + ka(By — 1))C = 0,
| (—tanh(ka)(38, + 1) + ka(By — 1))A + katanh(ka)(—5, + 1)C = 0.
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System (3.104) admits a nontrivial solution (A, C, B, D) if and only if the determinant

of the corresponding matrix is equal to zero. This yields
K2(6) — 1)2((ka)2tanh2(ka)(6k 12 ((k:a)Z(Bk ~1)2 — tanh?(ka) (36, + 1)2)) —0.
Equivalently,

12(Br — 1)%((ka)*(Bx — 1)? — sinh?(ka) (38, + 1)) = 0. (3.105)

We have three possible values of S, which are solutions of (3.105) and ordered as

_ sinh(ka) —ka _  sinh(ka) + ka
3sinh(ka) + ka 3sinh(ka) — ka’

1 (multiplicity 2) >

Let us take the maximal value 3 = 1. Clearly, we obtain A = C' = 0 from (3.102)
and
or(z3) = Bsinh(kzz) + D cosh(kxs).

Substituting the above ¢y, into (3.94), we have

0 0
1
J (Bsinh(kxs) + D cosh(kxs))?drs + J (D sinh(kx3) + B cosh(kxs))?drs = o
Equivalently,
0 0 1
(B + DQ)J cosh(2kx3)drs + 2BD |  sinh(2kzs3)drs = TR
We directly have
1 1
3 sinh(2ka)(B? + D?) — 2sinh®*(ka) BD = OTER
This yields
D is arbitrary and
2 sinh2(ka)i\/sinh2 (ka)(2 cosh? (ka)-+cosh(2ka)) D2+ k%” sinh(2ka) (3 106)
- 2 sinh(2ka)
Let us consider the minimal value £ = —% It can be seen from (3.104)
that inh(ka) + k h(ka) — 1
p_ _sin ( a) + ka | _ cosl (ka) — | (3.107)
2k sinh(ka) sinh(ka)
and inh(ka) — ka)(cosh(ka) — 1
B _ (sinh(ka) — ka)(cosh(ka) — )A. (3.108)

2k sinh? (ka)
Hence, ¢y (x3) = Az(x3), where
B (sinh(ka) — ka)(cosh(ka) — 1)
au(ws) = (1 2k sinh?(ka)
(Cosh(ka) -1 sinh(ka) + ka
: T3 — :
sinh(ka) 2k sinh(ka)

> sinh(kx3)

> cosh(kxs).
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To find A, we trace back to (3.94). That means
0
A2f ((z)? + 2K*(2,)* + K*'27)dxs = 1. (3.109)

From the above cases, we conclude that

e 2E(P(0)9(0) — ¢'(—a)g(=a)) _
vt (—a0) (0 ((¢")2 + 2k2(¢')? + k1¢?)da

That variational problem is attained by the function

¢(z3) = Bsinh(kzs) + D cosh(kzxs),

where B, D satisfy (3.106).

2k2(¢'(0)9(0) — ¢'(—a)é(—a)) _  sinh(ka) + ka

min - .
$eH?((~a,0)) SSQ«W)Q + 2K2(¢)? + k1) das 3sinh(ka) — ka

That variational problem is attained by the function

¢(x3) = (Azz + B)sinh(kx3) + (Cxs + D) cosh(kxs),

where A, B, C, D satisty (3.109), (3.108) and (3.107).

3.3 A priori energy estimates

With a regular solution (¢, u,q,n) of (0.99) on a finite time interval [0, Tinax), We
aim at showing Proposition 0.3, i.e to prove the a priori energy estimate (0.128) for

the nonlinear equations (0.99), which is
t
EF(t) + L D3 (s)ds
t t
< Co(=€0) +5f £3(s)ds + J £4(s)(E}(s) + D (s))ds + =€) (3110)
0 0

T o f (G )3 oy + [7(5) |2y )ds.

Strategy of the proof. Respectively, we derive the a priori energy estimates for
the space-time derivatives of n in Propositions 3.10, 3.11, for the temporal derivatives
of v in Proposition 3.12, for the horizontal space-time derivatives of u in Proposition
3.13 and for the space-time derivatives of ¢ in Proposition 3.14. Then, we derive some
estimates thanks to the elliptic regularity theory (see Propositions 3.16, 3.17). In view

of these above estimates, we obtain (3.110) and complete the proof of Proposition 0.3.

In what follows, the constants C; (¢ > 1) are to indicate some constants, which are

referred later and different to constants C; in Chapter 2.
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3.3.1 Energy estimates of the perturbation transport

We first derive the a priori energy estimates for 7.

Proposition 3.10. The following inequalities hold

t

IOy < C1(£0) + [ )y + =1 V(o) B )ds)

.0 (3.111)
+ C4 f Ef(s)ds,
0
t
Jom(®)er < C2(£30) + f (el 2um(3) 3z ey + &IV ut(3) g )l )
. (3.112)
+ CQJ E}(s)ds,
0
and
t
|0 ()]32(r) < C3(£3(0) + (elan(s) i + =V ERu(s) 220y
(3.113)

¢
+ O f E7(s)ds.

0
Proof. Let us prove (3.111). For any « € N?, |a| < 4, we have by (4.2),,

(%&an = &O‘u;g — (ulaaam + u2(30‘&217) — Z (aﬁulﬁo‘*ﬁ&m + (35u280‘7*3§2n) .
0#B<a

>

=:R{
Using the integration by parts, we obtain

1d 1
3ol = 5 [ @+ lotnP + [ (00 = R
r r

So that, we have

1d

5@“”””%2@) < (l0rua |l ooy + [ Gaua] ooy |02y (3.114)
+ ([0%us| 20y + [ RY | z2)) [0%nll 22(ry.-
We make use of the trace theorem to obtain that
|05ui ey < lullesry < [umae, (3.115)
that
HaaU3HL2(F) < H@auHHl(Q) (3116)
and that
IR 2y £ . 1%l a0 nllmry < 10 ulm @l e (3.117)

0#B<a
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By summing over « € N?| |a| < 4, it follows from (3.114), (3.115), (3.116) and (3.117)
that
d, .5 2
oMy = [Vulms@lnlae + lulme 0@ @
< IVl aoynllas ) + &

Using Cauchy-Schwarz’s inequality and then integrating the result inequality from 0
to t, we obtain (3.111).

We show (3.112). Let o € N2, |a| < 2, we get

83@”77 = 6a8tu3 — (ulaaalam + ugaaﬁgam)
— > (@Pue*P010m + 0%up0° " 050,m)

0#B<a

0 ~— _
— ) (0%0u0°7Poin + 0% Opund® P oom) .

0<f<a

N ~ )

Via the integration by parts, this yields
1d

1
S loemlza = 5 f (Orur + Oaus) |00 + f (0 0uus — RS — RY)0“0m.
T I

Using the trace theorem again, we have

J ((9t(31u1 + (?t(92u2)(9°‘7]8°‘8t7] S H(?tuHm (I HaanHHZ(F) H@t(?anHHz(p)
r

(3.118)
< 0] g2 @yllnll g2y [ 0en | 2y
and
]\(7“(3tu3HL2(p) $ HatuHH‘aHl(Q) (3119)
We follow (3.117) to get that
|RS |2y = D, 0%l 2|0 Poml i ey < Jull sl ol mer) (3.120)
0#8<a
and that
IR 2@y < D, 10%0u oy |0° Pl ey < [Vl mraqon Inll o ry- (3.121)
0<f<a

Combining (3.119), (3.120) and (3.121), we deduce that

d
Euaﬂ?”%{?(r) < Vol g2 lomll az ey + &5

Using Cauchy-Schwarz’s inequality and then integrating from 0 to ¢, we obtain (3.112).

We have (3.113) by following the same strategy as for proving (3.112). The proof
of Proposition 3.10 is complete. O]
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Proposition 3.11. There holds

)32y < Ca(E3(0) +

t

(el ey + & ) s

t
+ C4J 5;’(8)ds

0
Proof. To prove (3.122), we borrow the idea from [71, Lemma 3.9]. Let J =
1— 0} — 02. We apply J”2 to (4.2), and then multiply the resulting equation by
J?n. Hence, we find that
1

d
ey = =5 | (@] + usdal T nf?)
dt 2 Jr

+ f (T %y — [T, w0 — [T, us)oan) T2
T

(3.122)

1
-3 L(alul + Oaus) [TV

+ J (jg/Qus - [‘79/2’ u]01n — [jg/Z, Uz]azﬂ)jg/Qn-
r
Thanks to (3.6), we have the following estimates,

L 0| T < 05| e | T2l 2 ey < Nl ooy ooy (3.123)

J TPus TP < | T Pus| 2o | T 0l ey < 1Tl i) 0l oz oy (3.124)
r
and

L 172, u,10,mT°n < 150 | Tl 2o |72

3.125
T2 g2y | 257 oy | T 20l 2o (3.125)

< lullmeay Il + 1T ul @ Il za 1] s )-
In view of (3.123), (3.124) and (3.125), we get
d
Ty < Jetls oy Il gora oy + 1Tl (1 + Inllassey) Il aroracry

< Jullars oy |1l o2 oy + E2-

Using Cauchy-Schwarz’s inequality and then integrating from 0 to ¢, we obtain (3.122).

m
We provide some additional estimates on 7, which will be used later.
Lemma 3.9. We have
[0l ey < Ef + E5, (3.126)
|00 ooy < Er + &, (3.127)

and
1070 2y < 107 ull @) (1 + &) + EF. (3.128)
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Proof. By (4.2),, we have that

[0l ey < lusl ey + 194 arew) < luslaaq) + 12 mre ). (3.129)

We use (3.1) and the trace theorem to estimate |Q*|| 72y (see Q* in (0.100)) as

1QY grrzry < el eyl Onnl ey < |l mageyInl oy
Substituting the resulting inequality into (3.129), we have (3.126).
Using (3.1) again, we have
HatQ4”H3/2(F) < HatahnHH3/2(F)||u||H7/2(1") + HatuHH3/2(F)||ah77HH7/2(F)
< |0l msrzmyllul ma) + 1] gor [ 0cul 2 (q)-
Together with (3.126), that implies
1070 ooy < |0sus| 2oy + 110:Q ooy < Ef + EF-
One thus has (3.127).
We continue using (4.2), to have that
el < [l us + [or Q) < [ 0fusl ) + 107 Q1 (3.130)
¢ N a2y = 10 Us | H1/2(T) t HY2(T) = | U3||HY(Q) t HY2(T)- .
As a consequence of the product estimate (3.1) and Sobolev embedding, we obtain
167 Q% r2ry < 0%l vz | (@unms G252y + 1 Gel ey | 06(O1m, Com) sz
+ [l iz ey |07 (011, Gom) | vy
< lefullm eyl oy + 100l a0 vz ey + Il @) |05l o r)-
We continue using (3.126) and (3.127) to observe
107 Q* vz ey < |07 ull i)y + €5 (3.131)

The inequality (3.128) follows from (3.130) and (3.131). Lemma 3.9 is proven. O

3.3.2 Temporal estimates for the perturbation velocity

If we use the nonlinear equations in the perturbed form (4.2), there will be no
control of the highest temporal derivative of ¢ appearing in the nonlinear term Q2.
Instead, we switch our original nonlinear equations (0.95) to a new formulation using

a geometric transformation of the domain. The equations are

rﬁtﬁ + div(pou) = F* in €,
(po + Pl + C)Ou + V aq — pdiv4Sau + gles = F2 in Q,

$divqu =0 in Q, (3.132)
om=u-N on I,

((¢/d — pSau)N = gp,nN, on I
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Here,

= Kai0(pp0 + 03¢) — diva((pof + Qu),

3.133
F? = —(po + ppf + O)(—Ko003u + u - V qu) — gpp(AKO, BKO, (1 — K)§)*. ( )

Applying the temporal differential operator ¢! (I > 1) to (3.132), the resulting
equations are

(at(ﬁig) + diva(pooiu) = F1 in €,
(po + pbf + €)0s(Otu) + V 40lq — pdivaSa0lu + gdlCes = F21 in Q,

{ divdlu = F3! inQ, (3.134)
oi(0ln) = du - N+ FH on T,

L (Otqld — pS 40u)N = gp,ON + Fo! onT.

The terms F7! with [ > 1 and 1 < j < 5 are given as

FY = 3 F — N o] Apdu(podl T uy), (3.135)

0<j<l

F?' = 0F* + Z Cf (A0 (0] A0y 0is) + 0 A0y O (A Ormts)

st L (3.136)
— 3 Cpod] Audrdl ¢ + A1(C + ph0)2n(d1 ),
0<j<li
F3 = — 3 CJo] Audn(0 ),
0<j<l
o , 3.137
FY = N CloIN -, (3457)
0<y<li
PPl = C (0] (AN )00t O3 (ApeNon ) 00
i /LZ 1 (0 (AN ) 00y + 0 (AN ) Oy )
0<j<li
(3.138)
+ > CLoINiG (gpsn — q)-
0<j<l

We use the convention that F19 = F1 F20 = 2 and F7° = 0 for 3 < j < 5. We now

derive the following proposition.

Proposition 3.12. For [l =0 and 1, we have
loru(t) 22 + [0 |72 J [Votu(s)|zz)ds

(3.139)
< (&) + [ 10 rts + [ £Fo1as).
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We also have

t
|67 u®)| L) + 10 |12 + f [V éFu(s)Zz ) ds
0 (3.140)

t t
< o0+ [ 1.6 s + | &eF+ Dhs + ).
The proof of Proposition 3.12 relies on Lemmas 3.10, 3.11 and 3.12 below.

Lemma 3.10. Let J be defined as in (0.93). For any scalar function ¥ € R and any

vector function o € R3, there holds

J (V) - Jo— J IN - ) — f T9divso. (3.141)
Q r Q
Proof. We have from the integration by parts that

J (VAig) : J,Q = J J.Az-j(?jﬁgi = J 19<JA13QZ) — J ﬁaj(J.AUQZ) (3142)

Q Q r Q
Note that JA;30; = N - 0, hence
| o0rAue) = [ 9w o) (3.143)
r r

Note also that
(%(JAM) =0 foralll<i<3,

this implies
J 00;(J Aijoi) = J VJAi;050i = J Judiv 40. (3.144)
Q Q Q
Substituting (3.143), (3.144) into (3.142), we obtain (3.141), i.e. Lemma 3.10. O

Lemma 3.11. There holds for alll = 0,

1d / L, 12 1 12 1 J 112
2dt<L(p0 + oo + ¢)J|0pul” + Lgm\@m\ ) +g# | JISadtu
1
- §f 0u(po + P + €)1yl +f J(F2 - du— gdlColus + F¥alg)  (3.145)
Q@ Q
- L(gm@inF‘“ + FOL o),

Ifl > 1, one has

1d _ 1

335 (| (vt i+ 100 + [ gpeldinl? = | goplot usl) + 3n | TiSadtul
1 r
>

J

J

ou(po + s + O) D)kl + f J(F .l + F¥alg)
Q

(gpLOnFY 4+ FoL . olu) + J gpod F3 1 0lus
0

bﬁﬁﬁb

gph (A0 0guy + B Ogug)dlug — f gJEM 10y,
Q
(3.146)
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Proof. We multiply by Jolu on both sides of (3.134), to have that

1d / I, 12
331 (| o+ sio+ 0 1200r)

1
= §f 0r((po + pof + C)J)|0kul* — J Vadiq - Jou + f p(div4S40ku) - Jolu (3.147)
Q Q Q
— J gJ o' ¢ + f JE?. oy,
Q Q
Thanks to Lemma 3.10, one deduces

— J V 40lq - Jolu + f p(div 4S 40) - Jolu
¢ . (3.148)

1
= J (US40 — gl d)N - lu + J J(div40ku)olq — 5 f 1 J|S 400u)?
r Q Q

Substituting (3.148) into (3.147), we have
Ld / [, 12 1 L, 12
st (| st 0g1EtP) + 3 | wisadtal
1 , .
=5 | A i+ it + | Itaivacidla (3.149)
+ J (uS 40 — OlqId)N - Otu — J gJ oL Dy + f JF? . ol
r Q Q

Using (3.134), , 5, We obtain (3.145) from (3.149).
To prove (3.146), we use (3.134), at order [ — 1 to get that

- | gdtcatus = [ gdivatoet Mu)ctuy — [ g7FH 0l
Q Q Q
= f 9P usdtus + J gpod F3 1 0lug (3.150)
Q Q
— J ng)(Aai_lagul + Bé’i_l&guz)&iug — J gJFl’l_léiu;),.
Q Q
Combining (3.150) and (3.145), we obtain (3.146). Lemma 3.11 is proven. O

Lemma 3.12. The following inequalities hold

> (IE™, B2 B3 oy + (P, F™) | iary) < €3 (3.151)
=0
(F2, F22) |y + (42, F) 20y < E7(Er + Voo + | VFul agey), (3.152)
and

I, JF) |y < €3 10(TF*) g2y < E5(Ef + Vol mzqa + [V 3ul12(a)).
(3.153)
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Proof. For ¥ = Q or I, all quadratic terms | X;Xs||z2(s) or cubic ones | X1 X5Xs5|12(x)
appearing in F7' with 1 < j < 5 will be bounded by using Sobolev embedding, Lemma

0.2 and other inequalities in Section 3.1. Precisely, we have

1X1Xo| 2y < [ Xl zow) [ Xal 22wy S 1Xillm2m) [ X2 20y

and
1 X1 Xo X5 22(s) < 11Xl 2o o)1 X2l oo () | X3 £2(3)
< [ Xl 2| Xo| w2y | X5 ] 22(s)-

We only show the estimates of the term F*/(0 < 1 < 2) (see (3.133) and (3.136)), the

estimates of others terms are proven in the same way.

For F? (see (3.133)), we have
(po + pof + Q) K,003u = (po + pyf + C)(K — 1)0,005u + (po + pof + €),005u.
Thanks to Lemma 0.2 and (3.10), we obtain

< (L4 [0, Ol i) (X + K = 1 m2i) 00 20wl i1 (0
< (L4 K@) + Il seay) (L + |0l sz |10 sz @y [ ul 70
< E&F

(3.154)

Note that
u-Vau=u-Vy qu+ u- Vu,

we use Lemma 0.2 and (3.12) to get that

[(po + pof + Q) - Vgt 22y
< [(po + po8 + Q)u - Vacrau|r2ge) + (oo + p0 + Qu - Vul 2o
< (L4 [Clrz@) + Inlasza) (X + A = 1d]| g2@) vl m20) | ul 7@ (3.155)
< (T + €z + [l gsey) (U4 (0] gseza) [l 2@ llul m @
<&
Due to Lemma 0.2 again and (3.10), (3.11), we have

I(AKO, BKO, (1 — K)0)|r2(0) < [(AK, BK, K — 1)|m2(0)[0] r2(0)

< [l g2y Il 22 o) (3.156)
<&

It follows from (3.154), (3.155) and (3.156) that | F?|L2q) < &£F.
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For F?! (see (3.136)), we obtain

I 2y < [0cF* 2@y + (1 + |A = 1d ) [eAl i o | Ve a2
+ (1 + H.A - IdHHS(Q))HV2uHH2(Q)”atAHH1(Q) + HCHH3(Q)H61€AHL2(Q)
(3.157)

According to Lemma 0.2 and (3.12), it follows from (3.157) that

|F* 2y < 10cF |2y + (1 + [l 2oy 10l ooy 1l o)
¢l Il + (12 + |6l el iy (3.158)
< 0|2 + 5.

We calculate each term of 0,F?,

2u((po + Pl + OV K,805u) = (po + pof + O) (0K 0005u + K 32005u + K0,00,03)
+ (p68t0 + @tC)Kﬁteﬁgu,

which will be bounded as follows

10¢((po + pof + Q) K 0,005u) 2 ()
< (L + (0, Ol m2@) 0K | 22 (0) |00 20 ] 11 ()
+ (1 + [0, Ol r2) (1K = 1a20) + 1)
x (|1 05u 2| 070 2(2) + 0:0] 2 e[| (s Goa) [ 1)
+ 10048, 0| 2 () (|1 I — 1 2 () + 1) (060 mr2 ()| | 111 02)-

Using Lemma 0.2 and (3.10), we deduce that

[0:((po + pof + () K 1003u) | L2
< (L4 1Clez) + Inll g 0l vz ll0ml gy lul g
+(1+ HCHHQ(Q) + ”77HH3/2(F))<1 + H77HH5/2(F))
< (lulms | GFnllz ey + 10m ] srm ) (w, O) 1)
+ (10 ) + [10n] g2y ) (X + [0l o2 o)) [l ) [enl 52 oy
< &7

(3.159)

Next, we compute
((po + pof + Qu - V. au)

= (po + p6(9 + C)(@tulAzﬁjuk + uiatAijﬁjuk + uiAijﬁtﬁjuk)
+ (pé&,ﬁ + 6t§)uw4”é’]uk
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Hence, it follows from Lemma 0.2 and (3.12) that

[0:((po + pof + Qu - V au)| 20
< (1 + 08, Ol @) (A = 1d] 20y + D)l|ul s |0l ao)
+ (L4100, )2 ) [l Fs 0y 1 00A] L2
+ (00, 2Ol ) ([ A = Id] w20y + D) ul a2 [u] m o)
< (L + Kz + Inllasewy) (Il asewy + Dl gzl o] g
+ (1 + [Nz + Il mareey) ez @) | 0m ey
+ ([0l 2 () + 10enl zsr20y) (Il o2 oy + Dl 20 [l 1 )
< &7

(3.160)

Using again Lemma 0.2 and (3.10), (3.11), one has

|0:(AKY, BKO, (1 — K)0)| 20
< (AR, B K 1)l 8]0 + 10AKBI K =Dl oo
S H77HH5/2(F)H5t77||L2(F) + Hatn”Hl/Q(F)Hn”H3/2(F)
< E&F
We deduce [[0F?|2) < &€F from (3.158), (3.159), (3.160) and (3.161). So that,
[F% L2 () < €F.
For F%? (see again (3.133)), we use the product estimate (3.1) and Sobolev embed-
ding to obtain that
[F22] 2y < |02 F?] p2) + [Alm20) (106A] 5200 | VOul mr2(0) + 07 Al 10 [V mr3(62)
+ [0l 12 () ([ 00Al 2 VUl 2 () + [ Al 2 9) [V Ol @)
+ 07 Al () | Al (o) |Vl a6y + [00Al 20 [10:C 0
+ ”atQ'AHLZ(Q)HVC”H?(Q) + [ (e, ate)HH2(Q)Hat2uHL2(Q)
+ ||(at2Ca539)||L2(Q)Hatu\|1{2(9)-

We make use of Lemma 0.2 and (3.12) to further get that

1 F?2)| 20y < 107 2y + [0 oz oy 106 | e ooy | V Oea]| 2
+ Il sy 10200 zrvva oy Nl s ey + 10 s/2 0y e 113 )
+ [0l o2 oy [ vz oy |0t gy + 10 2y [0 ar7re oy el sy
+ 0l sy 10l ey + 1070 20y € 13
+ (10Cll 20y + 10 20y 07l 220
+ (107¢0 2y + 107 ] 220y vl 20
S NOFF? 120 + E¢(Er + 1070 2y + VO] m2(0)-
Together with (3.127), we deduce from the resulting inequality that

[ E*2|1200) < 107 F | r20) + E(E + [Vl @)
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Hence, in order to show that
|22 12(0) < E5(Ef + |Vl nz(0) + [Vl r2(0)),
we will prove that
[0 F? |20y < E4(Ef + V7 ulL20)-
We now estimate each term of 0? 2. Due to Sobolev embedding, one has that
107 ((po + P4 + Q) K 01003u) | 2
< X+ 100, Ollmz@) (1K — L@ + 1)
y <||53U|H2(Q)||539|L2(Q) + |5t53U|L2(Q)|5t29||H2(Q)>
+ (|07 3] 2(62) | 0| 12 )
+ (1 + (0, Ol 20|10 K ] 20
< (108l |0l 1) + 1830 2oyl rsen
+ (14 100, Ol @) 107 K | 2200|060 | 112 e ] 1236
+ (248, 0:Q) | 2 ) (1K — 1 20 + 1)
< (16201 2@ llull sy + 140 vl o)
+ (020, 0:Q) | 20 |0 K | 22 () [ 60| 112 2y [l 723 ()
+ (670, 07O 2@ (1K = a2y + 1108 2oy ] s -
Thanks to Lemma 0.2 and (3.10), this yields
107 ((po + P40 + ) K 01005u) | 120y
< (L4 Inllasewy + 1€lm2@) (Il gsee + 1)

y <||U||H3(Q)|5?77|L2<r) + ||5tu|H1(Q)||9t27IH3/2(r))
+ HvatZUHLQ(Q)Hat77HH3/2(r)

+ (1 + Il gsreay + 1< a2@) 10 2521
% (10 ey vl oy + 1080] ooy el o) (3.162)
+ (1 + [n] garzry + HC”H2(Q))(HatzﬁHHl/z(r) + H(?mH?{l/z(p))HﬁmHHsm(r)HuHHs(m
+ ([ 9] g2y + 10:C] 2 ) Unll o2y + 1)
< (I08nl2eylul sy + Vounlaracry ol o
+ (Haﬂ?HHw(r) + HatCHHQ(Q))”atWHHl/Z(r)HamHHS/2(F)HUHH3(Q)
+ (10701 2y + 105¢ z2e)) Inllsqy + DGl mon oy lul o)
Using (3.127) and (3.128), we thus have from (3.162) that
107 ((po + pof + ) K 01003u)| 20
< E(Er + IV ull ) + 10iml 2wy + |08 mrzey + [0m s ry) (3.163)
< Ep(&r + VUl rae))-
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In a same way, we have

107 ((po + P48 + Cu - V.au)| 120

< (1410, Ol rz@) (A = 1] 2 ) + V(107 oyl 3 ) + [ 0ulrz o))
+ (1410, Ollaz) (106A] 2 @ |0 13 ) + 107 All 2 |l 52 ) |l a5 0
+ 1120, Q) [ 2@ (| A — 1d| 529y + D) Gsul (e ] 3 @)
+ 10670, 07O 2y (A — 1] 20y + 1) w73 (-

Thanks to Lemma 0.2 and (3.12), we further get that

107 ((po + pof + Ou - Vau) |2 (e
< (L + 0l sy + 1€ z2@) Ul gsezay + 1)(”%““1{1(9)HUHHB(Q) + ”&tuH%ﬂ(Q))
+ (L + |l sz@) + (¢ m20)
< (|0l vyl 0cull sy + (070 ey + 10 Fgs/2 o) [l mr20) el 23
+ ([0 a2y + 10:C] 2 0)) Ul mrsrzry + DGl s ) |ull 30
+ (1080 ] 2y + 107¢ 2@ Ul oy + 1) lullFraq)
< Ep(&r + 02l oy + 10 Fgsrary + VO ul r2())-
Due to (3.127), we obtain
107 ((po + pof + Q- Vau)|r20) < Er(Es + [V ul r20)- (3.164)
Furthermore, thanks to (3.127) again and Lemma 0.2, (3.10), (3.11), one has
|67 (AK6, BKO, (1 — K)0)| r2()
< |67 (AK, BK, K = 1) |20 |0 n2() + [0:(AK, BK, K — 1) 2(0) |00 2
+ |[(AK, BK, K = 1)| 20676l 120
< (H(9t277HH1/2(F) + Hath?ﬁ/?(F))Hn”H3/2(F) + [0l g2 0y [ 0emll g2y
+ HUHHW?(F)”OEUHL?(F)
S ‘9f(5f + Hat277HH1/2(F) + Hath?{w(r))
<&
(3.165)

Consequently, there holds
107 F?| 2y < E5(Ef + |V Fu]2(0)

thanks to (3.163), (3.164) and (3.165).
We are left to prove (3.153). From the formula of F*? (see (3.137)), we use Sobolev
embedding and (3.12) to get
1F22 20y < 107 Al 2oy [Vul o) + 106A] 20 [V O] 20

< (16l ey + 10mlze o) lul 2@ + 10l moew) | Ol g
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Owing to (3.126) and (3.127), we deduce that

152 iaioy < (100l cey + 10 Broage) S5 + 1oimlmsicey

(3.166)
2
< &5
Together with (3.8), this yields

We continue using (3.8), Lemma 0.2 and (3.166) to get
IOUTE*) iz % 10T e @iy + (14 17 = ) 0F* iz
< 0030l 2(0) EF + 10:F>? | 12 (3.168)
< 0l s €F + 10eF2 120
By Sobolev embedding and (3.12), let us estimate that
105> paqa) < 107 Al 2oy IVl 20y + |06A 20 [V O] 120
+ Al 2@ [Vul 20
< (HatQUHHlﬂ(F) + HamH?qs/z(p))HWtUHH2<m + HathHf’/? HVﬁQUHH Q)

+ (|0l vy + [0l o2y |05l ey + 10352 ) [l o).

(3.169)
Combining the resulting inequality (3.167) with Lemma 3.9, we obtain
[0 F52 20y < E5(Ef + [V Orul 2y + [V ulL2(@)). (3.170)
Combining (3.126), (3.168) and (3.170) gives us that
[0 (TE?2) [ 12(0) < E5(Ef + |V Ol 20y + [ VUl £2(0)- (3.171)
The inequality (3.153) follows from (3.166), (3.167) and (3.171). O

We are in position to prove Proposition 3.12.

Proof of Proposition 3.12. In view of (3.145) at order | = 0, we have

1 /
5[t o+ Q1o + [ aoatn7) + 30 [ [ I8.auts)as
1 2
=5 (], oo+ st + QTP + | gpiln)P)] (3.172)
J J ((po + pof + €)T)|ul?(s d3+f J 2w — gQug)ds
We first estimate the Lh.s of (3.139). Notice that

J[Saul72iq) = [Suliz@) + J (J —1)[Sul® + J J(Sau+ Su) : (Sau — Su).
0 0
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Since
Squ + Su = (Azk + 6lk)8kuj + (Agk + 5jk)5kuj,
we use (3.9) to obtain

f J(Squ+ Su) : (Spu—Su) = 4f (A2%(01uy + Gouy)* + B*(01us + dsuq)?)
0 Q

< (A, B) i) VUl )
<&
Note also that |J — 1||=q) < 1 (see (3.8)), we use Korn’s inequality (3.5) to have
T[Saul7zq) 2 [Vulieq — & (3.173)

Due to the assumption on dy (0.127) and Sobolev embedding, we then have

1

inf(po + 40 +C) > p- — Comy max(L, max py(2))| (0, Ol ey = 5 (3.174)

The Lh.s of (3.172) will be estimated as

[Lov 0+ a1 + [ apta@P o [ [ Tsautas
@ r 0 Je (3.175)

t t
2 () sy + [000) By + j V(5) 2y s — j £3(s)ds.

We now estimate the r.h.s of (3.172). By Gagliardo-Nirenberg’s inequality (see (3.2))

and Sobolev embedding, one has

10:((po + p60 + ¢)T) L= ()
< (o + 0o + )0 |20y + (P00 + 0:C) T || L2 ()
< (L + 1100, Ol z2@) 100 a3y + [(0e8, 0:0) | 20 (1 + [T — 1| o))

Together with Lemma 0.2, (3.126) and (3.8), we observe
10:((po + pob + C)J) |l L0

< (U Il + 1€l a2@) 10 sy + 10m] g2y + 10:C H2(0) (3.176)
< &,

which yields
t t
| oo+ i+ Onlupsrds < | dopas (3177)
0 Jo 0
Furthermore, thanks to (3.8) and (3.151), we get
L J(F? - u— gQus) < (|7 = Lo + DUF 2@ lulzz) + [l luslzae)

< &+ [l 2 lusl 2 (-
(3.178)
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Substituting (3.173), (3.175), (3.177) and (3.178) into (3.172), we deduce (3.139),_.
For [ = 1, we make use of (3.146) at order [ = 1 to have that

1 / /
5 (| oo+ sip+ 10RO + | goulom®l - | gotlu)F)
Q T Q
H ' 2
+ §L ISadu(s)]72(q)ds
1 / 2 2 / 2
=5 ([ oot st 0100+ [ gpilem? = | arifusl)|
Q r Q

1 t t
- §Jo L A((po + pof + C)J)|Ovul(s)ds + Jo L J(F*! - 0u+ F>10,q)(s)ds

t t
- J J (gpLOmF*t + F5' . ou)(s)ds — f J gpo(Adzuy + Blsug)us(s)ds
0 Jr 0 Jo

¢
—f J gJ F'0us(s)ds.
0 Jo
(3.179)

By a similar argument as the proof of (3.175), we estimate the Lh.s of (3.179) as
| o+ 0+ @) + [ apeien® = [ abfusto)?
Q r Q
t
1| 18a8u(s) Eaqods
0

t t
2 072y + 072y + L [Vowu(s) |22y — lus(t)| 2y — L £} (s)ds.
(3.180)

For the r.h.s of (3.179), we use (3.176) to obtain that
t t
|| oo+ i+ OnjaaPs)ds < | 3opas (3.181)
0 Jo 0
Next, thanks to (3.9), we see that
t t t
f J gpo(Adsuy + Blsug)dyus(s)ds < J €?||(A, B)| w2 (s)ds < J Eﬁ(s)ds. (3.182)
0 Jo 0 0
Let us use (3.8) and (3.151) to estimate that

t t
|| ot Fog = gP e ()ds - || (gputnF + O ()i
0 JQ 0 JI

rt

< ] (1 = U ooy + DIE F2LFH)(5) |2 + IEH F2) () 220))Ep(s)ds

rt
< 8?(3)6[3.
0

(3.183)



3.3. A priori energy estimates 152

Combining (3.180), (3.181) and (3.183), we obtain

t
loeu(t)[ 220y + 022y + J [Voru(s) |72 (qds
0 (3.184)
< 6']%(0) + Hu;;(t)”%z(m + L 5?(3)6[3.

As a consequence of (3.184) and (3.139),_, the inequality (3.139),_; follows.
For [ = 2, we use (3.146) at order [ = 2 to have that

1 / /
3 ([ oo+ aig+ iaap + [ gpdt - | aptlomoP)
Q T Q
1 t
+ é,uf J J|S40?u(s)|*ds
0 JQ
]' / /
= 5([9(% + o0 + Q) |7l + J gp+loil” - L gpblosl®)|
) _
1 t . t
+ 3 f JQ or((po + pob + C)J)|8t2u(s)|2ds + f JQ J(F*?. 6t2u + F?”Qé’fq)(s)ds
0 0
t t
| | topedinrrz s o Gy + || apnTFous s
0 JI 0 JQ

t t
— J f 9P (A0, 03uy + BoyOsus)dius(s)ds — J J gJFH 02us(s)ds.
0 Jo 0 Ja

(3.185)
We follow the previous arguments to observe that
67 u(®) |72 + 107072 J [Vatu(s)|zao)
< E7(0) + [ Grus (1) 720 +J F()(A, B) ()] 2o ds
0 (3.186)

¢
] 017 = Ay + DI F22 P05 s
t
+ J |(F*2, F5’2)(5)HL2(F)5f(s)d5 + J J (JF*202q)(s)ds
0 0 Jo
Since 07¢q does not appear in & or Dy, we use the integration in time to have
[ [uraaeis = [ @arran - [ @arrao
Q Q
t
_ f J 019(5)00(JF2)(5)ds.
0 Jo
Thanks to (3.153), we observe

f J (TF*232q)(s)ds < €2(0) + E3(t) Jsf E5 + Vol oy + |Vl 12 (5)ds.
(3.187)
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It follows from (3.8), (3.151) and (3.152) that

t
L((!J = U ooy + DIE2 AL FE)(8) |2 + | (FY F)(s) 120 Er (s)ds

t
< J 5?(6} + Vo] gy + Vo7 ullz2()) (s)ds.
0
(3.188)

Using (3.186), (3.187), (3.188) and (3.9), we deduce that

|07 u() 720y + 1070() 72y f IV oZu(s) |72
< EF(0) + [ Qrus(t) 72y + EF(E) + fo EF(Er + Vol () + [ VFull L2 (s)ds.

We obtain (3.140) thanks to the resulting inequality and (3.139),_,. O

3.3.3 Horizontal estimates of the perturbation velocity

We continue deriving the mixed horizontal space-time derivatives of u. The non-
linear terms Q'(1 <7 < 5) in (0.100) are presented by that
Q = *Kp 9’&3 + K&t (é’g( + pSQ) Kp’OG(Aul + BU,Q)

(3.189)
— u181§ - UQ&QC - KU383C + K83C(Au1 + Bu2)

that
Qf = — (¢ + pof)drur — (po + pof + ) K Cf0s5u1 + AK (03q — gpif)
- (C + £o + p{ﬂ) <u1(81u1 — AKagul) + uz(52u1 - BK@gul) + KU353U1>
(K? + A% + B* — 1)033u; — 2AK 0}3u; — 2BK 035uy
W
)O3

(KOsK(A* + B> + 1) — 0,(AK) — 02(BK) — A0, K — Bo,K
(3.190)

Q3 = —(C + pof)druz — (po + pof + Q) K0003u1 + BE (339 — gp0)
— (¢ + po + ppf) (ul(é’luQ — AK O3ug) + us(0Oaus — BK Ozus) + Ku363u2>
(K? + A* + B? — 1)035uy — 2AK 033uy — 2BK 035us
: <(K63K(A2 + B*+1) — 0,(AK) — 03(BK) — A0, K — BagK)ag,W)
(3.191)
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Q3 = —(C+ pof)dus — (po + pof + Q) K,003u3 + (1 — K) (039 — gpf)
— (¢ + po + pof) <u1(81u3 — AK d3u3) + ug(Oyuz — BK dzug) + Ku383u3)
+ (K — 1)(0f3u1 + 033us) + 01 K d3uy + 0y K d3usy
— 01(AK03u3) — AK03(Kd3uy + dyug — AK dsus)
— 0y(BK 03u3) — BK03(K 03uy + douz — BKdsu3)
+ 2(K? — 1)035u3 + 2K 03 K d3us,
(3.192)
that
Q® = (1 — K)dsus + AK05u; + BK O3us, (3.193)
Q4 = —u1011 — Uz051),

and that

q — gp+n — 2u(Crur — AK O3uy)
Q5 = 517] —/,L(@ﬂig + 62u1 — AK&?,UQ — BK&gul)
—u(81u3 - AK(93U3 + K(93U1>
—/L<01U2 + (72U1 — AK(?qu — BKag'U,l)
+ 091 q— gp+n — 2u(0Oaus — BK Ozus) (3.194)
—,u(é’gu3 — AK&gUg + Ké’qu)

(1 — K)ﬁgul + AK@gUg

— U (1 — K)aglLQ + BKdsus
2(1 — K)(93U3

Note that py only depends on z3. Let 8 = (Bi,52) € N? and let us apply the

horizontal derivative 65 — 07" 0% to (0.99), we obtain the following equations.

(007¢ + pooyus = 0Q" in ©,
pods0iu + Vol q — uAou + gl Ces = 00 Q% in Q,

S divofu = o) 9 in Q, (3.195)
0,00 — 0Yug = 05 Q°F on T,

\ (00qld — uSdlu)es = gp.oines + 00 Q° on I

Proposition 3.13. The following inequalities hold

t
Y (10O + | 198006 aats)

BeN2,1<|B]<4

< Cr(£0) + f (E2(s) + [ Vua(s) By s + f

Ot : Er(EF + Di)(s)ds) (3.196)

t
e f (s (5) 22 + [1(5) 22 ),
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and
t
D (|8féku(t)|%2“))%—~[ V7 0ru(s) a0 ds)
BeN2 1<|B|<2 0
t t
<Cs (5?((’) + €3J (&7 (s) + IVus(s) 7)) ds + f E:(E2 + D})(s)ds> (3.197)
0 0

t
e f (Jus(s) 22 + 1522 ds.

To prove Proposition 3.13, we need the following lemma.

Lemma 3.13. The following inequalities hold

19 2y + 10:Q | 220) + 16:Q% 1200y + 197 |rr2(0) + 10:Q% |12 ()

(3.198)
+ Q% ms) + 1Q a2y + 197 5wy + 10:Q° ey < €7

and

Q% 3@y + 10:Q% @) + 12| 1) + 16:Q° |2 () + 197 ey

(3.199)
< gf(gf + Df)

Proof. For (3.198), we only present estimates for some terms of the Lh.s, precisely,
10:Q% () + 1Q a2y + Q1 52y < EF

the estimates of the other terms in the Lh.s of (3.198) follow the same way. To get
10:Q% |1 () < EF, we use (3.1) and (3.10), (3.11) to bound each term of Q* (3.193).

Indeed, we have

10:((1 — K)d3us3) | a1y S |0 K | a1yl O3us| a3y + | K — 1] g | 0:03us| a1 (q)
< |oml gsrmyllusl ma) + [0l gz mlldvus| g2 (3.200)
<&,
and

(AR gy + BE Syus) ey
S |O(AK, BK) |1 ()05t s ) + [(AK, BK)| 13 |0: 05t 1) (3.201)
< 0| g2yl vl ze@) + 00 g7z ey | O] 20
< &7
Hence, [|0,Q°|m1o) < &7 follows from (3.200) and (3.201). We apply the product

estimate (3.1) and the trace theorem to have that

HQ4HH7/2(F) S HulHH7/2(F)”6177HH7/2(F) + Hu2HH7/2(F)H8277HH7/2(F)
< lull a0l oy
< &7
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Moreover, using (3.1), (3.10), (3.11) again and the trace theorem, we show
HQ?”HW?(F) < 5?-
From the expression of Q} (3.194), we have that

|ovn(a — gp4n = 2p(01ur — AKO3ur))| oz ry
< ol ez (g, m, Ovun) sz wy + |AK sy | Osual

() (3.202)
< Inllzze ey gl m2 ) + vl ms@) + [0l asz@y + 1AK [ 53@) lu | 4(0)

< Inllamz@ alas @) + luillma@) + 0l asewy + [0l ez ludlma@),
that
102m(C1ug + Oyuy — AK O3us — BK O3uy)|| grss2ry
< |02n| sy lull 7z @) (1 + |(AK, BE)| go2ry)
< 102n] o2yl a7z (1 + [(AK, BK)| 3(a))
< Il gyl ze @) (1 + [0l g7z,

(3.203)

and that
I(1 = K)0suy + AK dzus| o2y < (K — 1, AK) | o2y | O3 g2y
S (K =1, AK)| msoy |[w] a0 (3.204)
< Il gz ey w2 o)

Hence, the inequality [ Q7] gs/2ry < €7 follows from the three above estimates (3.202),
(3.203) and (3.204).

Similarly, for (3.199), we show only
10:Qi 2 (@) + Q% a0y < E(E5 + Dy).

The inequality [Q*|ps) < EDy (see Q* in (3.193)) is proven by using (3.1) and
(3.10), (3.11),

|Q% 3y < I(AK, BE, K — 1) | sy | 05ul 130 < [l ove oy | Vel 113 -

Let us prove [0,Q%|miq) < Ei(Er + Dy) (see QF in (3.190)). In view of (3.1) and

Lemma 0.2, we obtain that

16:((C + py0)rur) () S 11(6:C, 8:0) |1 sy |0seea | sy + (S, 0) | azs e | 020 | 1
S (Ha"/CHHl(Q) + |’6t77HH1/2(F))Hatu1HH3(Q)
+ (¢ @) + Il s 167w | o)
< Er(Er + Vo] na) + [V u|2))-
(3.205)
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We further use (3.1) to have

10:((po + pof + ) Kuzdsur)| 1 (a)
< (L4 [0, Ol @) |0 (Kusdsur) [ me) + (0, 00) | 1o | Kusdsua | s
< (L + 00, Ol @) 0K | (o lusll 3 (ol 93w [ 13 ()
+ (1 + (8, Ol ) (1K = L) + 1)
X (| Cpus| g1 o | O3t | 3y + || OeOsur || iy lusl s (o))

+ [(0:C, 0:0) | 1) (|1 K — U ms ey + 1)l|us| sl 3] m3q)-

Thanks to Lemma 0.2 and (3.10), we deduce

10:((po + po0 + ¢) Kuzdsur)| 1 (a)

< (L + ¢ a3 + H77HH5/2(F))”athHW?(F)HUH%{‘*(Q)
+ (L4 [Clmz) + [nlmsem) (0l gy + DIoeu] rz@)|ul g (3.206)
+ (10l ) + 0 ey Unl gz ey + 1)”“”?{4(9)

< &7

Since K2 —1 = —J72(2030 + (036)?), let us use (3.1) to obtain

10,((K? + A? + B* — 1)0%u; — 2AK 033u; — QBK6§3u1)HH1(Q)

< (|(A% B*, AK, BK)| us() + [ K* — 1 u3@) | 0rur ]| s o)
+]0,(A%, B* K* — 1, AK, BK)|| i1 (0| V?u1 | 30

< (I(4, B)H%ﬁ(Q) + |(AK, BK)|| g3y + [ 930] m3 () (1 + (|30 g3 (02)) ) || Orten | 113 )
+ (I(A, B)ll @014, 6:B) | () + 10:050] 11 () (1 + (1050 s () [ V20 | 3
+ | 0(AK, BK) | 11(0) [V s -

Owing to (3.9) and (3.11), we deduce

10,((K? + A% + B? — 1)0%,u; — 2AK 0%uy — 2BK 0%u1) | i1y
S Il a2y (U4 (0]l gz ey) | Osun | 3@y + 10l grsre gy (1 + H77HH7/2(F))||V2U1||H3(Q)
< gf(gf + ||V8tu1||Hz(Q) + ‘|VU1HH4(Q))

(3.207)
We continue using (3.1), Lemma 0.2 and (3.11) to get
[0:(AK (03q — 9p00)) | 120
< |0(AK) [l (g, ) 30y + [AK] 130 ([ 0:5qll 1) + [0e0] 1r1.0)) (3.208)

< 0 g2y (lal ms ) + 10l mszay) + 0l grze) (100l g2 @) + |0 mrrzy)
< Er(Er + 0] m20))-
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From the product estimate (3.1), we obtain also

|10 (KO3 K (A* + B* + 1) — 01(AK) — 05(BK) — A0\ K — B02K)03u1) |1 ()
S (U4 K = as@)[VE a0y ([ (A, B)|Fs() + 1)]|0fsu | 10
+ (IV(AK, BK) | g3y + (A, B) | m3@) |V K| #3(0)) 010311 | 710
+ (|0 (K05 K) | () (1 + (A, B) 336 | 05w | 3 0
+ (@A, 6 B) | (o103 K || 3o [(AK, BK) | 3o | 03ua | 13 (0
+ [Vo(AK, BK)|m @) |05 | g3
+ (VoK mol (A, B)[m3@) + [10:(A, B)[m1 @) |VE |3 0) [ 3w ]| ()
Thanks to (3.1) again and (3.10), let us estimate the term ||0;(K 03K)| g1 as follows

10( KOs K )| (o) < [0:K || 5oy | 03K |3y + (1 + [ K — 1| m3)) | 0:03 K | m1(a)
< |0l gsez oyl gorzary + (L + [0l gz 0] sy

Hence, due to (3.9), (3.10), (3.11) and note that [0 gs2ry < & from (3.126), we

have
Hat((K(agK(Az + B2 + ].) — 81<AK) - (92(BK> - AalK - B(92K)(93u1)||H1(Q)
S Inllaoey (X + Inllgsve ) Ovun [ m20) + [0l sz (1 + [0l oz ual oy (3.209)
<&

Combining (3.205), (3.206), (3.207), (3.208) and (3.209), we conclude

10:QF | 1) < Ep(Ef + [V Tur| 120y + 101 m20) + [V O | r2(0)
< gf(gf + Df)

We are in position to show Proposition 3.13.

Proof of Proposition 3.15. For any 8 € N? such that 1 < |3| < 4, multiplying by 6,€u
on both sides of (3.195), and integrating over €2, one has the identity

%% L poloful? + L(V&,fq — AP ) - P+ L gPsOrColus = L P - 00 Q2.
Using the integration by parts and (3.195), 5, one has
14
2dt J,
= — L gph0lColus + L o - 0 Q% — Lg,mjfn&,’fu?, (3.210)

1
ploful® + 5 | uisaul
Q

+J aﬁqa}ffg?’—J o - 0] Q0.
Q r
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We estimate each integral in the r.h.s of (3.210). For the first integral, we use Young’s
inequality and (3.7) to get that

[ anticotus < 1o luslnso
Q

_ 3.211
< ¢y + & sl 2oy (3:211)

< (¢ + luslFs ) + € usl 7z
For the third integral, it follows from the trace theorem and Young’s inequality that
|2 e P
r

< Inllzs-ve ey lusl sz o)
S H77||H7/2(1“)HU3HH5(Q)

< lusl s @) + e 0l ry-
Thanks to (3.7) again, we have
HUH?{W(F) S 56”77“?{9/2@) + 5_21“77H%2(F)'
Hence,
| gpsdindgun < Hnttnny + lialioey) + € Hnlioey 3212

For the fourth integral, we use Cauchy-Schwarz’s inequality to have
| 14070° < o) @iy < D11 + D) (3.213)
Q

For the second and fifth integral, we split into two cases. For 3 € N? such that

1 < |B| < 3, we use trace theorem to bound

L oiu-0i Q% — f - 38 0 < Jul s @iy + Il sy @ sy

3.214
< Jullas@)|Q2 | ms ) + Tl sy 197 a3y (3:214)
< 5?(5]0 + Df).
For 3 = (31, B2) € N? such that |3] = 4, we assume 3; > 1 and write
Bo= (B —1,8) and By = (B +1,05). (3.215)
Hence, we estimate that
[ ot oie| =] [ dru-ar @] < 100 ula o) Plus
Q Q
(3.216)

< HUHH5(Q)HQ2HH3(Q)
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Thanks to the trace theorem, we have

[ o] || aue o @) < 10 - |7 @l
I I

<l giss 1172y | Q2] gio-terrz oy (3.217)
< s 1Q° 72y
< Sf(SJ% + DJZc)

Substituting (3.211), (3.212), (3.213), (3.214), (3.216), (3.217) into (3.210), we obtain

d t
a aﬁu2+J Saﬂwsegf E2 + |Vus| %) + E4(E2 + D?
ai |, polonul”+ | niScyu]  Er+ Veslin@) +EE DD 5o

+ &7 (luslZz) + InlZzr)-

By Korn’s inequality (3.5), one has
|| uisaqu = 198ulzq0

Hence, we deduce from (3.218) that

d _
o QPOW?“P + Hvan”%?(Q) S 53(5]% + HVU3H%{4(Q)) +eé 27(HU3H%2(Q) + ||77||%2(r))

+ (C/‘f((c/‘]% + 'D;),

Integrating the resulting inequality in time, we obtain (3.196).

To prove (3.197), we compute from (3.195) that

pod200u + V0,00 q — uNo, O u — gphluses = —gol Qles + 0,00 Q% in

divé,0fu = 6,00 Q3 in €,
(@é’fqld — uSo“té’,fu)eg = gp+6,€U363 + gp+5,€Q4e3 + 8595 on I
(3.219)

For any 8 € N? with |3| = 1 or 2, multiplying by &ﬁfu on both sides of (3.219), and

integrating over €2, one has the identity
1d
2dt Jq
- [ ottt + 2aje? actu)
Q

(pol@diul® — gpplofus|?) + f (V&,0)q — nAéyopu) - 0,00 u
Q

Using the integration by parts, one has

1d )
35 (| mledial? = | anpiofu) + [ @ajatd - psacfuges o
Q Q r

_ J 0,07 qdive, 0 u — g f S0,00ul? + f (—g0; Q*0,0) us + 0,0, Q% - 8,0, u)
Q Q Q
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By (3.219), 5, we observe

1d / 1
m(L polddyul® + Lgp+|a,€u3\2 - j grblogusl®) + 5 j 1[S00 uf?

— J (_g(}}fglat(}glbg + (3@?@2 . (}t(}fu) + J (}‘t(}gq(}t(’)gg?) (3.220)
Q@ Q

— f (6,0 Q° + gp,0F Qes) - &0 u.
T

We now estimate each integral in the r.h.s of (3.220). For the first and third integral,

we use Cauchy-Schwarz’s inequality to have

j 08 Q1 0,0us + f 0,0240,0 Q* < |ovusmaien | Q' |z + [O0le(en |10 Q% ey
Q [9]

< E(E2+ DY).
(3.221)

With the same notations S+ (3.215), we bound the second integral as

U Q- 00p Q% = | J 0l - 0y Q) < 0l o1y 10: Q% 1o 1
Q Q

2292
< vl syl ey (3.222)

For the fourth integral, we have

‘ f ata,fu-ata,fgﬂ = U 0,0y u- 0,0, Q| < 00y ull vy |60 Q% ey
r r

< H5tU||Hw+|—1/2(F)\|5tQ5HH|ﬁ,\+1/2(p)
< | 0vul 3oy 00 Q% e ry

(3.223)
Thanks to the trace theorem and (3.198), we bound the fifth integral as
[ 2tusdiof < 100 uslla-ve |7 @y
r
< [ Ovus| miei-12(0) | Q7 | prie 12y (3.224)

< l0vus| a2 | Q1 o2y
<&}

In view of (3.221), (3.222), (3.223) and (3.224), we get

d /
E(J polévdfu)? + J 9o |0 us|? — J gp0|8,ﬂlu;),|2) + f S0 ul? < E(E7 + D7).
0 r Q 0
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Integrating in time and using Korn’s inequality (3.5), we obtain
t
070 o+ | 190:5005) s
5 t
< E2(0) + [0 us(D) 22y + L £/(E2 + D2)(s)ds.

Combining the resulting inequality and (3.196), the inequality (3.197) follows. Proof
of Proposition 3.13 is complete. n
3.3.4 Estimates of the perturbation density

We continue deriving the energy evolution of the space-time derivatives of . Notice
from (4.2), 5 that

0,¢ = K,005¢ — uj AjorC — phus — poQ° + QY (3.225)
where
Q' = pyK00,0 — qAnrvu; — Aur(phbur) — (A — )0 (pows).- (3.226)
We first present the estimate of Q.
Lemma 3.14. There holds
1Q" ey < Er(Er + Dy). (3.227)
Proof. We use (3.1), (3.10) and Lemma 0.2 to have that

|65 00:0) a0y < (L + | K — 1 mag)) 0] 40y [6:0] 40
< (L + [l zorw)nl gz @y 0l gre w-
Combining (3.126) and the resulting inequality, we have

|Pg K600 rraey < €7 (3.228)

Using Lemma 0.2 again and (3.1), (3.12), one has

| Ak (pobw) | oy < (1 + A —1d| gage)) |6
< (L + 1m0l gorz ) I o2yl 225 ) (3.229)
< Er(&r + | Vulgaey)

H5(Q) ) H5(Q)

and

[(Aw = 0w ) ok (pour) [ o) < A = 1d]maoy [ulmo) < Er(Er + [Vulmie).  (3.230)
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Thanks to Gagliardo-Nireberg’s inequality also and (3.12), we obtain

HqukakUl||H4(Q) S (1 + HA - Id||H4(Q))(HQHH2(Q)||VUHH4(Q) + HqHHAL(Q)HVUHHQ(Q))
< E(&r + [ almae) + VU] o)),
(3.231)

Those above estimates, (3.228), (3.229), (3.230) and (3.231) imply
19" sy < Er(Er + lallmay + [Vul i) < Er(Ef +Dy).
Lemma 3.14 is proven. O

We derive the following proposition.

Proposition 3.14. The following inequality holds

6@ ey < Co (sﬁm) +el j (16() By + Huz(s)llip : >ds)
(3.232)

Proof. 1t can be seen from (4.2)1 that

1d
57 122 = —J pousC +J Q'¢ < (Juslrz@) + 12" 2@) ¢ 2
Q Q

Due to (3.198), we thus have

%HCH%Q(Q) < usl2@) €] 2@y + &7

This yields
IO < 10+ [ s s + [ €16

) (3.233)
< £2(0) + j (¥ s () oy + £ C(3)] 2o s + f £3(s)ds

For o € N* 1 < |a| < 4, we have from (3.225) that

0:0°C = K00050°C — ujdjnfpd®C + Y OP(K0,0)0° P a5
0#B<a
— > P (uiAp) " PoC + 0% (—phus — poQ° + Q).
0#8<a

We deduce from (3.234) that

1d
2dt

(3.234)

—Zf

0+#B<a Vi

J 0% (K 0,0)0° P ds¢

0#£8<a

6ﬂ(ujAjk)6a_60kC + J 80‘(—p’0u3 - p0Q3 + Ql)aac.

(3.235)
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We bound each integral in the r.h.s of (3.235). Using the integration by parts, one has
2J (K010050°C — ujA;jr0,0%C)0%¢ = J (K6,003]0%C)* — u; Ajr0x|0C|?)
Q Q
= J (K00 — ujAjs) |0l
r

B L(az(fw) — Ok Azp))|0°C .

On I, we have K0,0 — u;Aj3 = 0 by the definition of A (0.94) and by (0.95),. This
yields

2J (K0,0050°C — ujAj0,0°C)0°C = —J (03(K0) — Ok (u; Asx))|0°C|*
Q Q
Due to Sobolev embedding and the product estimate (3.1), it can be seen that
| @uto) = v
Q

< 0s(K0) = O (ujAsn) | 2 () IC | Fra
S (1K = U + DI0las@) + lulms@ (A = 1d]lgs@) + 1) ¢l m)-
Owing to Lemma 0.2 and (3.10), (3.12), we have

H5/2(T) + ‘|UHH3(Q)>HCHH4(Q)

L@(K@) — Ok (ujAie)|0°CI* < (1 + Il ez (Il
3
< &
(3.236)
Let us bound the fourth integral. Thanks to Young’s inequality, we have
L 0%(pous)0°C < 10°Cllrz@ usl mai) < 210772 ) + e sl
By Young’s inequality again and (3.7), this yields
L 0%(pous)0°C < 2|0°C| Loy + €72 (€ usl Faqay + €7 us| ()

< 10°Cl a0 + luslis ) + e uslZ2q)-

(3.237)

Thanks to (3.199) and (3.227), we have

L 0*(=poQ° + @10°C < (1Q° (@) + 1Q @) <o

< & (& + Dy).

(3.238)

We use (3.1), (3.10) and Lemma 0.2 also to bound the second integral in the r.h.s of
(3.235) as follows

D f 03 (K 00)0"505¢ < VK |arscon |00l s o | Clarvce

0#8<a

S nlzory ol o) €l @)
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By (3.126), we further obtain

> J 0P (Ka,0)0° 03¢ < &} (3.239)
Q

0#B8<a

Next, for the third integral, one has

B | A0t < (1 =1l + Dl o
0#£8<a
” (3.240)

S (L Inlmorm el as@ <l r@

174\
o =

Y

thanks to (3.12).
In view of (3.236), (3.237), (3.238), (3.239) and (3.240), we get

d . .
1070y < (Il + luslis @) + &7 uslZa) + E¢(€F + DF).

Integrating the resulting inequality from 0 to ¢, together with (3.233), one has (3.232).
Proof of Proposition 3.14 is complete. O

In addition, we have the following estimate.

Proposition 3.15. There holds
10l 20y + 107€1720) < CrollluslFraay + 10|20y + £)- (3.241)

Proof. 1t follows directly from (4.2), and (3.198) that

10l 20y < luslr@) + 19 @) < luslizg) + € (3.242)

and
107¢1172 () S l0wsliz) + 10:QM72(q) S l0wslizq) + E;- (3.243)
Hence, we obtain (3.241) by combining (3.242) and (3.243). O

3.3.5 Elliptic estimates
We use the elliptic estimate (3.3) to derive some inequalities.

Proposition 3.16. There holds

||U||§{4(Q) + Hq”%ﬂ(ﬂ) + HatuH%{?(Q) + Hﬁtqu%Il(Q)

(3.244)
< CU(H&?””%Q(Q) + HU3H%Q(Q) + HCH?JQ(Q) + Hn”ilf)/?(l“) + H@mH?p/zm + 5?)-
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Proof. We derive from (4.2) that
—pAdu + Vg = —podiu — goiCes + 0,Q* in Q,
divou = 0,93 in Q, (3.245)
(0rqld — pSoyu)es = gpydmes + 0, Q° on I
Applying the elliptic estimate (3.3) to (3.245), it tells us that
HatuH%JQ(Q) + Hﬁtqllium S ”at?uH%?(Q) + ”atC”%Q(Q) + HatﬁH}qum(r)
+ HatQQH%Q(Q) + ||at93“?{1(9) + HatQE’Hipm(r)-
Note that from (4.2), that ,
10:¢172) S luslZa) + 12720
Hence, we have
HatUH?#(Q) + Hat(l”?{l(sz) S H&EUH%%Q) + Haﬂ]Hipm(r) + HU:&H%%Q) + HQlH%Q(Q)
+ HatQQH%%Q) + HatQSH%{l(Q) + HatQE)Hipm(r)-
Due to (3.198), this yields
HatuH%ﬁ(Q) + HatQH%n(Q) S ”atzuH%Q(Q) + ||U3H%2(Q) + HatﬁH%rm(r) + 5;‘- (3.246)
Meanwhile, we obtain from (4.2) that
—Au+ Vq = —pooyu — gles + Q2 in Q,
divu = Q3 in €, (3.247)
(qId — uSu)es = gpynes + Q° on I

Owing to (3.198) and by applying the elliptic estimate (3.3) again to (3.247), we observe
that

lulFragy + a7y S I0ulFe@y + 1¢1 7@ + 1937 + 19°5s @)
+ Hnﬂiﬁ/z(r) + HQ5||§{5/2(F) (3.248)
< 0l bz ) + 1€ 2 () + ‘|T7H§{5/2(F) + &

Combining (3.246) and (3.248), one has (3.244). Proof of Proposition 3.16 is complete.

O
Let us define the "horizontal" dissipation D, > 0 as follows,
Dj := Z HV(}??UH%“Z(Q) + Z HV&,?@UH%Q(Q) + HV(}?UH%%Qy (3.249)
BeNZ,|8]<4 BeNZ | 3|<2

The next proposition is to compare Dy (0.124) and Dy, (3.249).
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Proposition 3.17. Assuming &y sufficiently small (see (3.279)), there holds

D} < Cia (D} + %67 + (¢ w)Eagey + Imlery) + 5). (3:250)

To prove Proposition 3.17, we use the two lemmas below.

Lemma 3.15. For any s > 0, there holds

1 ey S 1 Gnnm + D0 100 f2pe) (3.251)
BeN2 |B|=5
Proof. Since I' = 2n11Z x 2w LyZ x {0}, we exploit the definition of the Sobolev norm
on I' to have that

[f 32y = 25 L+ [Py 21 ()2,

neZ?

where f is the Fourier series of f. By Cauchy-Schwarz’s inequality, one has

£ ey < 20 A+ 2P+ 30 X A+ )2’ f(n),
neZz? BeN2 | B|=s neZ?
which immediately yields (3.251). O

Lemma 3.16. Let us write

W= 3 ICRagq + [l + e + E3
The following inequalities holds

and

Proof. Let us show (3.252) first. Multiplying by d;u on both sides of (4.2),, we obtain

f P0|5tu|2 = _J Vqﬁt“‘h“f Auﬁtu—f gC&tu3+J QQ'atU
9 Q Q Q Q

= — J (gld — pSu)es - dyu + f qdivi,u — %J Su : So,u
r Q

0
- f gCoyug + f Q2. o,
Q Q

after using the integration by parts. Using (4.2), 5, this yields
f poldpul® = _f gp+noguz — f Q° - dyu + f g0 Q° + ,Uf Su : Sopu
Q r r Q Q

(3.254)
— J gCouz + f Q2 O,u.
Q Q
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By Young’s inequality, we have

Q Q

Using also the trace theorem, we have

| gpnos =l ol o (3.256)
T

Because of (3.198) and the trace theorem again, one has

| @ au [ aagi+ | @ ous (1@ + 190 0l
r Q Q
3.257
+10:Q° (o lal o) (3:257)
< &}
Combining (3.255), (3.256) and (3.257), we obtain from (3.254) that

|72y S I0rull 2 (In] 2wy + lulla @) + 1¢] 2 @)
+ Vo] 2 (|9l L2y + lull g 0)) + £F-

Using Young’s inequality, we further get for any v > 0,
[0iul72() < vIdwulie ) + IVau|72q) + (1 + v )W, (3.258)

Let v > 0 be sufficiently small, the inequality (3.252) follows from (3.258).

To prove (3.253), we differentiate (4.2), ; with respect to ¢ and then eliminate the
terms 0;C, 0;n by using (4.2), , to deduce that

pol?u + Vg — pAdyu — gphuzes = 6,9 — gQles in €,
diVatU = (9,5 Q3 in Q, (3259)
(0rqld — pSou)es = gpyues + gpy Qes + 06,Q° on I

Multiplying both sides of (3.259), by é7u, we obtain that

J pold?ul? + J (Vorq — pAdyu) - 0Fu — f gpuzdiug = f (0,9% — gQ'es) - Ou.
Q Q Q Q
(3.260)

Using the integration by parts, we have that
J pold?ul? = — J (0iqld — puSdyu)es - oyu + J 0yqdivou — ﬁf Sou : Sou
Q r Q 2 Ja

- J gﬂf)u?’afuzs + J (5tQ2 — 99163) : 8fu.
Q Q
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Substituting (3.259), ; into the resulting equality yields

J Po|a,52u|2 = _J 9/)+U3(3t2u3 - J (9P+Q4€3 + atQ5) . atQU + J 0140 Q°
@ r r @ (3.261)

- gJ Sou : S6iu — J gphusdiug + f (0,9% — gQles) - u.
Q Q Q

We estimate each integral in the r.h.s of (3.261). For the first integral, we use the trace

theorem to have
—f gp+usliug < us| (o) |07 us| () (3.262)
r

For the fourth and fifth integral, we bound as

Q Q

(3.263)
For the other integrals, we use (3.198) to obtain
j (9% — gQ'es) - u + f 0,00,Q°
Q Q
3.264
< (1269 2y + 19 2@ 620l 2@y + 20l 212 Q% 2oy (3.264)
< &7,
and use the trace theorem also to obtain
J (gp+Q'es + Q%) - Gju < (HQ4||L2(F) + \|5tQ5HL2(F))H@?UHHl(Q)
r (3.265)
< S?H&quHl(Q).
Substituting (3.262), (3.263), (3.264) and (3.265) into (3.261) yields
|07ulZ2 ) < (lullave) + 0wl a @) + EDNGFula@) + £F (3.266)
< (lullm @) + 0wl + EH IVl L2y + Ef).-
Combining (3.266) and (3.252) gives us that
|2ul3aiey < (IV0liz@ + W) (Il 20 + W), (3.267)

Thanks to Cauchy-Schwarz’s inequality, the resulting inequality (3.267) implies (3.253).

Lemma 3.16 is shown.
We are able to show Proposition 3.17.
Proof of Proposition 3.17. We apply the elliptic estimate (3.4) to

—pAdu + Vg = —podiu + g(phus — Q) + :Q*  in Q,
diVatU = 5t Q3 in Q,

oiu = Oy on I
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to have that

||atu”§{3(n) + ”atQH%*{?(Q) S HatZUH%{l(Q) + ||U3H%11(Q) + ||(Ql7atQZ)H%11(Q)
+[0:Q% 2y + HatUHstm(r)'

This yields

||5tu|@13(9) + ”atQH%{?(Q) S ||5t2UH%{1(Q) + |\U3H12ql(sz) + || O] qusm(r) + 5?(5,% + D]%),

(3.268)

due to (3.199) also. It follows from (3.251) and the trace theorem that

HatUH?ﬁ/z(r) S HatUH?{l/z(r) + Z Haffatu“ipm(r)
BeN?,|B]=2

< 0wl F gy + Z ||656tu||§{1(9).
BeNZ,|8|=2

(3.269)

Combining (3.268) and (3.269) gives us that

HatuH?{?’(Q) + Hat(l”%{?(sz) < [[(u, o, 9?“)”%{1(9) + Z ”ag(}tu”?ﬂ(m
BeN?,|B]=2 (3.270)

+EF(EF + D7).
Thanks to the interpolation inequality (3.7), we get that, for v > 0,
H&,’f&‘tuH%g(Q) S HatuH%{?(Q) 5 VH(atu”%{S(Q) + V_2H5tu‘|%2(g)-
Hence, it follows from (3.270) that

||5tu|\§13(9) + ||5tQH%12(Q) < [ (u, G, @ZU)H%{WQ) + V||atu|\%13(m

+ Y IV dulia g + EFHEF + D).
peN?,|B|=2

Let v > 0 be sufficiently small, one has

HatuH?ﬂ(Q) + Hatq”?{?((l) < [(u, A, af“)”?{l(sz) + Z ||valfatuH%2(Q)
BeN?,|B|=2 (3.271)

+EF(EF + D).
Meanwhile, applying the elliptic estimate (3.4) to
—puAu + Vq = —pydyu — glez + Q2 in Q,

divu = Q3 in €,

u=1u on I,
we have

luls 0y + lalEay S 10ullfsq) + 1<Ts@ + 1% 58 @

+ Q% Frsay + lulFporery-
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Using (3.271) and (3.199), we further obtain

HUH%F’)(Q) + HQH%{‘l(Q) < [(u, dru, (77&2’“)”?{1(9) + HC”?W(Q) + HUH?{W?(F)

) Vool + EHER + DY), (3:272)
BeN?,|B=2

Using (3.251) again and the trace theorem, we obtain that

HUH%{W?(F) S HUH%W(F) + Z HagUH}%ﬂm(r)

2 18|=
) perripl= o (3.273)
< Jullf) + Z 10 w3 (-
BeN?,|B|=4
Notice from (3.7) again that, for v > 0,

Hafﬁzu”%?(m S ||UH?{4(Q) 5 VHUH%{F’(Q) + V_4||U||%2(Q)- (3.274)

In view of (3.273) and (3.274), we deduce from (3.272) that
HUH%F”(Q) + HQH%H(Q) < [ (u, dpu, 53“)”?{1(9) + ”CH?F’(Q) + VHUH?“{F’(Q) (3.275)

+D; + (€7 + DF).
Let v > 0 be sufficiently small, the inequality (3.275) implies that
[ulFrs) + lalaq) < 1(u, O, Fu)lFn) + 1<) + Dh + EF(EF +Dj). (3.276)
We obtain from (3.271) and (3.276) that

”U”%ﬁ)(ﬂ) + Hétu”%ﬁ(ﬂ) + aniﬂ(ﬂ) + HatQHJQLﬂ(Q)
< Dy + || (w, G, 07w [y + €7y + EF(EF + DY)

That implies
D2 < D} + (u, 02 Bagqy + €Iy + EXER+ D). (3.277)
Thanks to Lemma 3.16, we deduce from (3.277) that
D} < Dy + lullin ) + <) + Inliz + €7 + €7D
We continue using (3.7) to further have
D} < Dj + & (Julfeiy + €131 0y) + e lulZ2) + €77 IC172) + 10172y
+ &+ E;DL.
That means
D2 < Oy (D,% + 32 + (¢, W) 2agy + Il32qry) + EF + 5;731%). (3.278)
Restricting further
01353 <

we obtain (3.250) from (3.278). Proposition 3.17 is proven. O

: (3.279)

N | —
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3.3.6 Proof of Proposition 0.3

Let us denote

r

Cre = (C1+ Cy+ C3+ Cy)ed + Cs + Cg + C7 + Cs + Cy,
JCua= >, G,

Coe = (Cy 4+ Cy+ C3 + Cy)e + (C7 + Cg + Cog)e?,
| C3. = C5 + Cs + (Cr + Cs + Cy)e™".

We obtain from Propositions 3.10, 3.11, 3.12, 3.13, 3.14 that
52(””@)”?&14(1“) + |0 ) 32y + 1070720y + ||77(t)”12qg/2(r)>

t
+ SO [Frs(ey + 1w, O, u) (8)] L2y + L IV (u, O, 6 u) (5) |12y s

t t
b N [ X | VA s (5

BENZ,1<|B| <4 BEN2,1<|8|<2

t t
< 01,58]%(0) + CG(C:?(t) + 014€3f g]%(S)dS + 02’€J D;(s)ds
0 0

4 t
+ G [ (106 + 1) B + Coc [ 4(6F + D251,
0 0
Keep in mind the definition of Dj, (3.249). It follows from (3.280) that
2 (100 sy + 10 By + 1200 ey + (0o

t
+ SOy + 11w, dru, 37u) (1) 720y + L Di(s)ds
t ¢ (3.281)
< CLE2(0) + CoE(t) + Crad® f £2(s)ds + O f D2(s)ds
0 0

t t
+ Gy L (I, ) () 2y + ()2 (ry)ds + Cl,eL E4(€F + Dj)(s)ds.

Chaining (3.281) with (3.250) in Proposition 3.17, we get that
€2<H77(t)\|?{4<r) + [0y + 1000 |22y + I G2y + HC(t)HfLﬂ(Q))
1w o O + o [ Dol
< C1E1(0) + Cef(t) + (Cra + 1)E° f: EF(s)ds + Cae Jot D3 (s)ds

+ Cye L (I (s ()220 + [0(8)[Z2(r) s + (Che + 1) fo Es(EF + Dj)(s)ds,
(3.282)

where Cy = Cs . + 7. Let 0 < € < 1 be sufficiently small such that

1

Cy. < .
2,e 2012
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So that, the inequality (3.282) implies
52<|!77(t)H12q4(r) + [0 2wy + 10700 |22y + 1) [For2ry + HC(t)H?ﬂ(Q))

1 t
2, B0 Oy + 5 | D)

< C1E5(0) + (Cg + 1)e? Lt EF(s)ds + (Cre + 1) f: E(EF + Dj)(s)ds (3:259)
+ Oy Lt(\(u, OS2y + [11() |72y ds + CoE(1).
By dividing both sides of (3.283) by &2, we have
[ o2y + [ Fraey + 10 20y + 1000 |22y
1O + 10, G0 + [ Do)
(3.284)

< Cys (8*25?(0) +e f: EF(s)ds + 72 Jo Er(EF + D?)(s)ds)
+ Cise™ f:(l(@ w)(8)| 20y + [0(5) |22y )ds + Crse2E} ().
Combining (3.244) and (3.284), one has
51/4(”“(75)“%14(9) + ()7 ) + 0eu(t) G20y + HatQ(t)ﬁIl(Q))
+ O o2y + 1) [Fraey + 100 720y + 100012y
+ O gy + (s G, ) (8) 720y + E Di(s)ds
< Cue (1100, us) (8) 2y + 160 ragay + 00 oy + 10m @ ey + EXE))
+ O (5—25§(0) te L t £2(s)ds + ¢ fot E4(E2 + D?)(s)ds)

t
+ Cpse™™ L (16w (s) 220y + [n(8) |22y s + Crse™>ER(2).
(3.285)

Let us refine € so that ]
01181/4 < 5,
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it follows from (3.285) that
() By + 0Dy + 100(t) Braqey + 100a(8) By oy
45 (1@ )0y + 1COrncay + 1900 ey + 160 oy
lalfn + 10800 e + [ D39
< Cis <5_25]%(0) + 5L EF(s)ds + 5_2f0 Er(EF + D?)(s)ds)

t
+ Crse™™ L (¢, w)(8) 72 + In(s) 72y )ds + Crse 2ER(t) + Cue' €L (D).

(3.286)
Dividing both sides of (3.286) by /4, one has
2 -
D Uofu() sy + 10O Fa-s0y) + 1O N0y + Il ey
7=0
a0l + 10Ol + [ D30
(3.287)

< Cis (5’9/452(0) + 53/4f EF(s)ds + 89/4J Er(&F + D?)(s)ds)
0
+ Cige 117/4f (1(¢, w)($)|Z2(@) + () [72r))ds + Cree™*1ER ().

Combining (3.287) and (3.241) in Proposition 3.15, we obtain
2 .
D Uofu() -y + 100 Fa-210)) + 1O N0y + Il ey

7=0

t
+ lq(@) 7 ) + l0a(®) 710y + L Di(s)ds + 51/4(”@(”%12(9) + [02¢)122()
t t
< Cig (s—9/45]%(0) + 3 f EF(s)ds + 5—9/4f Er(EF + D;%)(s)ds)
0 0

t
T Cpge 17 f (16 0)($) 2oy + 10(5) Baqey)ds
+ Croe Y1) + Croc " (Juslagey + [P0t 2oy + EX(L).
(3.288)

We continue refining € so that

01081/4 < 1

[\
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It follows from (3.288) that
2
S o) sy + 100 Bncasry) + ICOEay + Il
7=0
¢
+ a0y + 10:a(D) 310y + f D}(s)ds + ([0 ) + 167¢1720)
0
¢ ¢
< Ciy (5’9/482(0) + 83/4J EF(s)ds + 59/4f Er(E7 + D?)(s)ds)
0

+ Cre ”7/4J (1S, w)(9) 720y + [11(5)[72(ry)ds + Car(e™1EF (1) + €/ 1EH(1)).
(3.289)

Let us recall the definition of & (0.123) and divide both sides of (3.289) by &'/4 to

deduce
t
+ J Di(s)ds

0

t t
< Cs (5’5/25]%(0) + el J E7(s)ds + g2 J Er(&F + D;)(s)ds> (3.290)
0 0
t
+ Chge™™? L (1 w)($)1 72y + [0() 72y ds + Crse™2ER(H).

Switching €!/2 by ¢ in (3.287), one has (3.110). Proof of Proposition 0.3 is finished.

3.4 Nonlinear instability

Thanks to Proposition 3.7, we will consider a sequence of approximate solutions
MMV (k, x) to the nonlinear equations (0.99), which are solutions to the linearized
ones (0.101). Let us fix a k = ko € B, such that (0.129) holds. We recall (0.130),

M
= D¢V (ko, z)
j=1

and require that the coefficients c; satisfying (0.131)-(0.132). From Proposition 0.4,
we have that there exists a family of initial data (0.133), i.e

Up™ () = 6UM(0,z) + 62U
such that
1. E,(UM) < O, < o0 and UP™M satisfies the compatibility conditions (0.126),

2. the nonlinear equations (0.99) with the aobve initial data UJ™ has a unique
solution UM on [0, 7™) satisfying that supge;.pmax (UM (1)) < 0.
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3.4.1 The difference functions

Set
Ult, ) = UM(t,2) — SUM(t, z).

Since U%M solves the nonlinear equations (0.99) and U solves the linearized equations
(0.101), we have that U satisfies (0.134), i.e.

¢ + phud = QHUM) in Q,
podut — pAut + Vgt + glles = QX(UM)  in Q,
{ divu? = Q3(U*M) in €,
om® = ud + QHUM) on T,
L ((¢* — gpen®)Id — pSut)es = Q> (UM) onT.

The initial condition for (0.134) is (0.135),
U(0) = (¢, u',n?,q)(0) = 8°UM.

Let |Ule, := &€;(U), which is defined as in (0.123). Let Fj(t) = ij\ijm |cjle?? and
0 < € « 1 be fixed later (3.326). There exists a unique 7° such that §Fy(T°) = e.
Let

Cro = [UM(O)ey: Cao = A /IS uM)(O) B + [V (0) 2y (3.291)
We define
T* := sup {t € (O,Tmax)|HU5’M(t)H5f < 2C1960},

T* = sup{t € (0, T")[| ("™, ) ()] 2) + 1™ () |2 () < 20205FM(t)}-
(3.292)

Note that
|U54(0) e, < 81U ), + [UO)]le, < Crod + C318* < 2Crabo,

we then have T > 0. Similarly, we have T™* > 0.

The aim of this part is to derive the bound in time of | (¢, u®)(t)|r2) + [7(¢) | L2

in the following proposition.

Proposition 3.18. For all t < min(T°, T*, T**), there holds

[(¢H, uh) () 20y + I (B2

N
; gt Coan)? (3.293)

< Cy10 (Z lc;le" + max(0, M — N) N+r{1$;;M|c]|eB > .

J=Jm
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In order to prove Proposition 3.18, we need the following bound in time of

[TM ()] e, -
Proposition 3.19. For all t < min{T?, T*, T**}, there holds
UM () ||e, < CoaFa(t)  for all t < min{T°,T*,T*}. (3.294)

Proof. We fix a sufficiently small constant € such that

A
Coe < 2M 3.295
1

and Proposition 0.3 holds. Hence, it follows from (3.110) that

t
2t +f Di(s)ds

< Af E2(s)ds + Ch,, (5]%(0) + L E4(E2 + D2)(s)ds + 5;’3(75)) (3.296)

Oy, f (16 0) () 2oy + 19(5) 2oy )ds.

Refining also 9y, we get

A
Ch,, 00 < TM,

and C),,0p < (3.297)

N

one thus has

)\ t
_5f J Df C/\zwg]%(()) + <TM + (5C>\M> J{; 5?(S)d8

e j <u<<,u><s>ui2(m £ 7(8)] oy )ds
) (3.298)

2
e f <||<<:,u><s>||%z<m + 0(8) 220y ds.
Consequently, for all t < min{T°, T*, T**},
U ()1, < 205, [V O, + A | e )2, ds
L0y, f (1M, uPM)(8) 2aqqy + I () o) ds
< Ay Lt HU‘S’M(S)H?Sfds + 02352F]%/[(t).

Applying Gronwall’s inequality, the resulting inequality tells us that

U5 (1)12, < Can (P F34 (1) + f M B (5)ds ). (3:299)

0
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Note that A\yy < A; for all 1 < j < M — 1, we have

t
Jv )\A{(t S)FM M2 Z J )\M t S ‘C |2 2)\ SdS

0
I=m (3.300)
(2/\ )\M)t

< M Z 5

J=Jm

Substituting (3.300) into (3.299), this yields (3.294). We deduce Proposition 3.19. [
We now prove Proposition 3.18.

Proof of Proposition 3.18. Differentiating (().134)2’5 with respect to ¢ and then elimi-
nating the terms 0,¢?, 0;n? by using (0.134), ,, we deduce from (0.134) that

podZul + Vouq? — pAdwud — gphudes = 0,01 (U*M) — gQL (UM )es in Q,

divouu? = 0,Q3(UM) in €,
(0iq?1d — pSdut)es = gpyudes + gpy QU UM)es + 0,Q5(UM) onT.
(3.301)

Multiplying both sides of (3.301), by d,u?, we obtain that

1d
2dt

= (8tQ2(U5’M) — ng(U‘S’M)eg) - Opu.

JQ

p0|8tud| + J (Vorq® — pAdu?) - dpu® — J gphuloul
(3.302)

Using the integration by parts, we deduce from the resulting equality that

1d/(
——( polou®)? — J gpu|udl?) + J (Opqld — puSou)es - O,u’
2dt\ Jg 0 r
— J Ovq divou® — %J ISou®)? + J (0, Q*(UM) — gQY(U*M)es) - dyu’.
Q Q Q
Substituting (3.301), 5 into (3.302), we have
Ld J d)2 J 11, d)2 J dn, d
—— polowu® | — | gpolu + | gpsousou
i | ol = | gptfudl?) + | oo
+ [ Q@) + g9, QU e)
r
J 8tqda Q3 U§M J |Satud 2 J (atQ2<U§,M) _gQ1<U5,M)63> . atud'
Q
This yields
1£<J poldru? — f gpplugl* + J gp-|ug 2) + HJ [Sou|®
2dt\ J, o o r ’ 2 Jo

= f (@tQQ(U(S’M) — ng(U(S’M)@g) . 5tud + f 5tqd6tQ3(U6’M) (3303)
Q Q

— f (0, Q°(U™M) + gp, QY (UM)es) - o,
I
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Note that

.[@Q%WM%wﬁWkaﬁﬂmd
Q

< (122U | 2y + 11U 20 (105 [ 2y + 0™ | 2

In view of (3.198) and the definition of UM and Fy;, we have

L(atQZ(U‘S’M) —gQ (U™ )es) - du < [UMM2, (JUY |, + ] 0u™ | L2(ey)

S 0P F(1).

Similarly, we observe

L 0:q%0, Q3 (UM < ||o, QS(U(S’M)||L2(Q)(H5tq5’M||L2(Q) + 5HathHL2(Q))

< BF ().
We continue applying (3.198) and use the trace theorem to get

f (2 Q°(UM) + gp Q' (UM )es) - dpu’
T
10, 2°(U™)] L2ry + |21 U™) | r2(ry)l| 0| 2y

N

Fyy(#).

Substituting (3.304), (3.305) and (3.306) into (3.303), we obtain that

J poloul(t)]? + J J 1|Soul(s)|2ds

<a+jgm%@|—jmmW@P+@m%%m
(9] T

where

a=LMMMW—LWMWW+JWMMW-
I

Thanks to Lemma 3.8, we deduce from (3.307) that

t
JWWWWP+JJMBWﬂﬂ%8
(9] 0 JOQ

1
< A [ ol + A [ aiSutOF + Cd (0
Q Q

Using Cauchy-Schwarz’s inequality, we have that

Lu|8ud(t)| J/ASU |2+QJJMSU ) Soul(s)ds

f p|Su?(0 f f 1|Sou(s st—i—Af J p|Su’(s)|*ds

< (
< (10.Q° W) iz ey + 11U ) vy G’ e
§F

Q))-

(3.304)

(3.305)

(3.306)

(3.307)

(3.308)

(3.309)
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and that )
<+ ou’)? + A 4. 3.310
)t < 5 [l n | ol (3310
Three above inequalities (3.508), (3.309) and (3.310) imply that

d 1
pldOF + 5 [ satoF <3+ [ aisuO)F +20 [ mlue)?

) (3.311)
+ Af J p|Sut(s)|2ds + Cou8® Fip (1),
0 Jo
It follows from U4(0) = §2USM that z; < 6*, this yields
Lov | usato)f < 5t
Hence, the inequality (3.311) implies
Al T 1f |Sud(t)|2<2Af (¢ +Aff Sut(s)Pds
at J, " 2 ), = po s (3.312)
+ Cos0° F3, (),
In view of Gronwall’s inequality, we obtain from (3.312) that
f polu ()2 + J J ulSul(s)[2ds < 02553J 2M0-3) 3 () s
(3.313)
< 026(53J eQA(t’S)FM(?)s)ds.
0
Due to (0.129), we obtain for 1 < j < N,
[[emmaas = oty < e g
0 3\ — 2A T3\ - 2A ‘
and for j > N + 1,
Jt (3/\j—2A)sd _ 1 ( (3X\;—2A)t 1) 1 (3 315)
0 TN — 20 2N — 3\, ‘
Substituting (3.314) and (3.315) into (3.313), we observe that if M < N,
[ (2220 + J t V()2 ds < C 53( f | e%t) (3.316)
2 2 < 26 N A~ a .
ey ) L2 A3 20
and if M > N + 1,
) e+ [ 1906
(3.317)

\02653<]Z 3)\|i‘2A 3Nt 4 Z 2A|C]‘3)\ 2At>'

j=N+1
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We then estimate ||?(¢)]2(q). Due to (0.134),, we obtain

t
[C )220y < 1€ (O0)[220) + L (Jus(s) 7o) + QU M)(s)[720))ds.  (3.318)

Note that (4(0) = §2¢>M and thanks to (3.198) also, the inequality (3.318) implies

t

IO 2 ) < 0" + f (lug ()| 22y + UM (5)]e, )ds
0 (3.319)

t
sﬁ+£ﬂ@@%mﬁwﬁﬁ@m&

Note that 6 Fy(t) < g9 < 1 for any t < T°. Hence, we have

t t t
(54f Fy(s)ds < 63f F3(s)ds < 53f Fu(3s)ds,
0 0 0
this yields
+ M
54J F(s)ds 6% Y |ejle®". (3.320)
0 J=Jjm

Combining (3.316), (3.317) and (3.320), we deduce from (3.319) that, if M < N,

M
IC4 ) 7210y < Cord® D lejle! (3.321)
J=jm
and if M > N + 1,
M M
1¢H () 72(0) < 02753( Mlgle™t+ > \cj|e2At>. (3.322)
J=jm j=N+1

To estimate [n®(¢)] 2y, we use (0.134), and the trace theorem to obtain

%lﬁdlizm < [0l 2y (gl 2y + 1Q1T*M) 12y
< 2y (sl iy + 1QHUM) [22r))-
This yields
%Hﬁdm(r) < gl + 1QHUM) 2y
Thanks to (3.198), we further get

t
I @22y < In*(O)Z2) + L (lus(s) 310y + 1UY]2, )ds

t
sM+Lu@@zmﬁwwwmw.

Using (3.316), (3.317) and (3.320) again, we have that ||77d(t)||%2(r) is bounded above
like (3.321) or (3.322). Together with (3.316), (3.317), (3.321) and (3.322), Proposition
3.18 is proven. O
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3.4.2 Proof of Theorem 0.6

Since j,, = min{j : 1 < j < N,c¢; # 0}, we have

[u™ ()] Z2(0) = ZC

M2 +2 D) cigelt Luu; (3.323)

i=jm Fm<i<j<M
It can be seen that
WO > 3 S e 2 Y e [,
J=jm GmH1<i<j<M Q
M
- |ij|Hujm”L2(Q)< Z |Cj|HujHL2(Q)>€(A +)‘]m+1)

By Cauchy-Schwarz’s inequality, we obtain

i+t
2 Z cicje( 2 J Uj - Uy
Q

JmA1<i<j<M
>-2 ) allegle®imAam e | o o) us | 2oy
Im<i<j<M
M 2
>_e(>\jm+1+>\jm+2)t< Z |Cj‘”UjHL2(Q)) .
Jj=jm+1
This implies
M
2
HU HL2 Z C262>\tHuﬂH2 m+1+/\jm+2)t< Z |CjH|ujHL2(Q)>
J=Jm J=jm+1
M
_|ij|e(>\jm+>\jm+1)tHujm||L2(Q)( 2 |CJ|HUJHL2(Q)>
Due to the assumption (0.132), we deduce that
[ ()20 Z ;e w22y — —c eLumatam 2t 3,
J=Jjm
1 2 ()\ + X +1) 2
~ 5%m¢ m Huijm(Q)

This yields

HUM(t)H%z(Q) > 2 <€2Ajmt — %e()‘jm+l+>\jm+2)t _

Jm

1 ;
ée(AmMJnLH)t) ||Ujm H%Z(ﬂ)

M
+ Z Fe w72
Jj=jm+1
Notice that for all ¢ > 0,

2)‘jmt _1 (Ajm+1+)‘jm+2)t _ 1 ()‘ +Ajm+1)t — 2)‘Jmt
(& € = —e .
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Hence, we have
[ (#) ] 2() = CasFuu(t), (3.324)
for all ¢+ < min{T?, T*, T**}.
Let

¢(M)= max <] = 0.
N+1<<M |cj, |

Now, we show that

T < min{T*, T**) (3.325)
by choosing
. (2C1900 Ch Cls
) 3.326
Eo < min < 022 ) 021(1 + ME(M))S’ 4021(1 + ME(M))2> ( )

Indeed, if T* < T?, we have from (3.294) that
HU(S’M(T*)”gf < OQQ(SFM(T*) < CQQ(SFM(T(s) = 02280 < 201950,

which contradicts the definition of T* in (3.292). If T** < T°, we obtain from the
definition of Cyy (3.291) and the inequality (3.293) that

1M u M N T) ey + ™M (T°) 22y
< (¢! u) (T 2y + [In*(T°) |22y + (M, w™)(T) |2y + ™ (T°) | z2ry)

s 3/2
S \/07215%< 2 |Cj’€/\jT5 + max(0, M — N)( max \cj|>eZAT6/3>

, N+I<j<M
J=Im

+ Cgo(SFM(T(S)
(3.327)

Notice from (0.129) that for N +1 < j < M,

Cj Cj .
|Cj|5€%AT‘5 < i(5|cjm|e>\jmT5) < MCSFM(T‘S) _ | J’ €o.
|ij’ ’C]'m’ ‘ij‘

Then, it follows from (3.327) that

[( M M) (T g2y + [0 (T 2y
< Cond Fag(T°) + /Cord®2(1 + ME(M) P2y (T7)
< 02060 + 4/ 021(1 + ME(M))3/263/2

Using (3.326) again, we deduce
[(CM, uP M) (T0) | 2y + 1M (T°) |20y < 2Ca0€0 = 20206 Far (T°),

which also contradicts the definition of 7** in (3.292). So, (3.325) holds.
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Once we have (3.325), it follows from (3.293) and (3.324) that

WM (T) | r2(a)
> §|u™(T) |12 — IW(T°) |20
= ng(SFM(T(S)

al 3/2
_ 4/02153/2< Z |Cj|e)\jT5 + max(0, M — N)( max |Cj|>€2AT5/3> .

e N+1<j<M
Thanks to (3.326) again, we conclude that
1
HU(S’M(T(;)||L2(Q) = 02860 — A/ 021(1 + Me(M))3/263/2 = 502860 > 0.

Theorem 0.6 follows by taking dy satisfying Propositions 0.3, 0.4 and the inequality
(3.297), e satisfying (3.326) and mg = 3Cbs.



Chapter 4

Conclusions and Perspectives

4.1 Conclusions

In this thesis, we study rigorously a well-known phenomena in fluid mechanics,
which is the Rayleigh-Taylor instability with an influence of constant viscosity coeffi-
cient. Of concern is the instability of the equilibrium (pg(4),0, —g §3 po(y)dy) (d = 2
or 3), such that the density profile py is a smooth increasing function. There are two

contributions of this thesis, that we sum up below.

The first contribution is to develop a novel method, based on the spectral theory
of self-adjoint and compact operators, to prove the existence of multiple characteristic
values to the linearized equations. Study on the linearized equations relies on the
investigation of regular solutions to a fourth-order ordinary differential equation on a
compact or non-compact interval I. In the first paper [51], we have that I is the whole
line R. The key point in our analysis is to reduce the finding of bounded solutions of the
ODE on R to the finding of solutions of the ODE on a compact interval with boundary
conditions obtained from the outer solutions. That ODE on a compact interval turns
out to be equivalent to a variational problem with suitable boundary conditions, so
that we can apply the spectral theory of self-adjoint and compact operators to obtain
the main results. In the case pj compactly supported, there exists an infinite sequence
of characteristic values and in the case pf, positive everywhere, for any e, > 0, a finite

number of characteristic values, greater than ¢,, is found.

The second paper [61] deals with the same fourth-oder ODE stated in a compact in-
terval [ = (—1, 1) with the boundary conditions deduced from the Navier slip boundary
conditions of the original problem. Due to the influence of the slip coefficients, we need
to work on a supercritical regime of the viscosity p, i.e. u > p.(Z) to apply our operator
method. In this supercritical regime, we deduce the existence of infinite characteristic
values to the linearized equations. In the third paper, after a change of variables, we
obtain the same fourth-order ODE in the half-line / = R_ with the boundary condi-

tions at 0 deduced from the boundary conditions of the nonlinear problem at the top
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side. For the profile pj, compactly supported, we have the similar spectral analysis and
we prove the existence of an infinite sequence of characteristic values to the linearized

equations.

The second contribution of this thesis is to construct a wide class of the initial data
to the nonlinear problem to give rise to nonlinear Rayleigh-Taylor instability in [61]
and [62]. Indeed, we consider a linear combination of normal modes to set its value at
initial time ¢ = 0 as an initial datum of the nonlinear problem of size a small parameter
9 > 0. In [61], this step is straightforward. In [62], due to the complicated structure of
the nonlinear equations caused by the Lagrangian transformation, a term of order §2
has to be constructed and added to ensure that the initial data satisfy the compatibility
conditions. The nonlinear equations with the above initial data have a unique local-in-
time solution with a suitable regularity. By exploiting some energy estimates thanks
to Cauchy-Schwarz’s inequality, Sobolev embedding and Gronwall’s inequality for the
nonlinear equations, we prove in [61] the nonlinear Rayleigh-Taylor instability in a
high regime of viscosity u > 3u.(Z). Similarly, using further Gagliardo-Nirenberg’s
inequality for the nonlinear terms in the last case [62], these nonlinear terms being
more complex than those ones in [61], we conclude on the nonlinear Rayleigh-Taylor

instability for all positive viscosity.

We highlight that our nonlinear results extend the previous framework of Guo-
Strauss [30] and of Grenier [35], where only the maximal normal mode was used to

construct the initial data and this gives rise to the nonlinear instability.

4.2 Perspectives

In the last part of this thesis, we introduce our future works.

4.2.1 Nonlinear Rayleigh-Taylor instability for Navier-Stokes-

Korteweg equations

In the book of Chandrasekhar [7], as well as viscosity, the impact of other of phys-
ical factors has been considered in the RT instability, such as, magnetic field, surface
tension, etc. One of our ideas is to study the influence of capillary coefficient. The
Navier—Stokes—Korteweg equations describing the motion of a nonhomogeneous incom-
pressible viscous fluid in the presence of a uniform gravitational field in a horizontally
periodic domain 2 = (27 LT)? x R, are

Orp + div(pu) = 0,
G(pu) + div(pu @ u) — vdiv(pVu) + oVpAp + Vp = —gpes, (4.1)
divu = 0,
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where t > 0,2 = (x1,29,23) € Q. The unknowns p := p(z,t), v := u(z,t) and
P := P(z,t) denote the density, the velocity and the pressure of the fluid, respectively,
while v > 0 is the viscosity coefficient, ¢ > 0 is the capillary number, g > 0 being the

gravity constant.

A hydrostatic state (pg(z3), 0, Py(z3)) such that
VP = —=0VpyApy — gpoes,
is a steady state solution of (4.1). The perturbations
(=p—po, u=u—0, p=P-F
thus satisfy

(0,¢+u-V(py+1) =0,
< (po + C)0u + (po + Q)u - Vu + Vp

(4.2)
= vdiv((po + Q)Vu) = a(pgVE + V(po + OAC) — gles,
[ divu = 0.
It implies the linearized equations
0¢ + Vpo - u =0,
polru+ Vp = —a(VpoA¢ + pgV () + vdiv(poVu) — gCes, (4.3)

divu = 0.

In the same manner of Section 0.4, the search of normal modes to the linearized equa-

tions (4.3) implies to the existence of nontrivial and bounded solutions of the following

ODE:

N (=(pod)" + Ko@) + Av((po¢”)" — 2k*(pod’)" + k" pog)) (4.4)
= ok*((Ipo*¢") = k*1pbI"0) + gk* o,
with the limits lim,, . ¢(x) = 0.

Let the capillary number o > 0 be given and the effect of the viscosity be omitted
(v = 0), Bresch, Desjardins, Gisclon and Sart [6] showed the asymptotic limit of the

characteristic value A under a small perturbation of wave number k in the spirit of [9].

Let us consider the density profile py, which is increasing and satisfies (0.31)-(0.32),

le.
py is a nonnegative function of class Cy(R), supp(p}) = [—a, al,
and outside (—a, a), we denote

p— as x3 € (—o0, —al,
po(zs) =
Py as x3 € [a, +0),
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with 0 < p_ < p, are two positive constants. With the presence of the viscosity
and the capillary number, the first goal is to find the effect of ¢ on the existence of
infinitely many characteristic values in the ODE (4.4) and the second goal is to prove
the nonlinear Rayleigh-Taylor instability for Eq. (4.1) in a suitable regime of capillary

number.

4.2.2 Nonlinear instability of a two-fluid model

Note that, in this thesis, we focus on a fluid model, where the density is continuous.
Meanwhile, the two-phase interface systems, i.e. the density has a jump, appear in lots
of problems, e.g. describing propagation of waves between air and water. Hence, we

propose to continue our method on a two-fluid model.

We refer to the book [74] for the description of various mathematical models for
mixtures of several phases being already studied. We describe for example a model for

a mixture of two phases for densities p; and velocities u;

drpi + div(piu;) = 0,
tpi + div(piu;) (4.5)

In this equation, b; is the specific external body force, and m; is the momentum supply
due to the interaction between the i*" constituent and other constituents (interactive
body force). The term o; represents the stress term, typically of the form o; = —p;Id +
7;, where p;Id represents the pressure part and 7; is a viscous part. These two fluids

are separated by a free surface z = 1 and on which, we have the kinematic relation
O + Ui 10xM) + Ui 20,1 = U3,

and the pressure is continuous across this surface.

Instead of (4.5), a method by means of averaged equations will help us to simplify
the complexity of of multiphase flows, see e.g. [44]. By using volume-averaging, one
then obtains averaged equations for mass, momentum and energy expressed in terms
of some volume-averaged quantities. As a part of this procedure, the volume fraction
variable 0 < a™ < 1 of the liquid (water) and 0 < a~ < 1 of the gas (air) appears
and it yields a generic two-phase compressible system without free surface in (0,77) x Q
Q< RY),

(0~ +at = 1,

< Oi(a®p®) + div(aTptut) = 0,

Oi(atptut) + div(aFprut @ ut) + a* VP (p*) = div(a*rt),
(PP (p") = P (p-) = fla"p7).

(4.6)
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pt ut and PE(pt) = A*(p*)7" are, respectively, the densities, the velocity of each
phase, and the two pressure functions. It is assumed that are y* > 1 and A* = 1. The

capillary pressure f € C3(R,) and 7% are the viscous stress tensors, given by

™ = pF(Vu® + VIu®) + Mdivet1d.
where the constants u* and A* are shear and bulk viscosity coefficients satisfying

p* >0 and 2u* + 3\F > 0.

In [5], Bresch, Desjardins, Ghidaglia and Grenier studied a general system of the
form (4.6) by adding the influence of capillarity effects o* > 0, hence a third order
derivative of a*p* which accounts for internal capillary pressure forces by the so-called
Korteweg model. With additional assumptions, i.e. PT = P~, u* depending on p*
and A* = 0, the authors investigated the global well-posedness of that general system
in Q = T3,

Let us discuss about (4.6) in = R3, that was treated by Evje, Wang and Wen.
Being inspired by the reformulation of Bresch et. al., Evje et. al. rewrite (4.6) in a

perturbed form around the constant state (a®p™, ut, o p~,u") = (1,0,1,0), that is

raﬂfr + pydivet = F1,

out + f1Vnt + BoVnT — v Aut — v divVuT = F?
< on~ + Budivu™ = F3,
(Oiu™ + BsVnt + B Vn~ — v Aut — vy divVu = F,

(4.7)

with initial data
(n*,u,n" u ) |mo = (nd,ud g, uy )(x) — 0 as |z| — 0.

Here, F'(1 < i < 4) are the nonlinear terms and 3;(1 < i < 4) are positive constants
satisfying that

B283 — (184 has the same sign as f'(1).
In [26], Evje, Wang and Wen prove the global stability of the trivial equilibrium state
for (4.7) when f/'(1) < 0. The stability is still true if f'(1) = 0 and has been proven
recently by Wu, Yao, Zhang [72]. In contrast, if f’(1) > 0, the same authors show that

the trivial state is nonlinearly unstable in [73].

We begin the investigation of that problem in the case, where €) is a bounded

domain in R3.

4.2.3 Nonlinear instability of the Zeldovitch-von Neumann-

Doring detonation

Another problem we can study is the ZND detonation. The ZND system, used to

study combustion, for the unknowns specific volume v, particle velocity u = (ug, uy, u,),
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entropy S, and mass fraction of reactant A are

(6tv+u-Vv—vV-u:O,
<8,5u+u~Vu+va=O,

S +u-VS =—rAF/T =: ®,
(A +u-VA=r.

where p = p(v, S, \) is pressure, T' is temperature, F is the free energy increment, and

r =r(v,S,A) is the reaction rate function.

In three space dimensions with coordinates (x,y, z) a steady planar strong det-
onation profile is a weak solution of this system depending only on z with a jump
(the stationary von Neumann shock) at = = 0. Hence, we study profiles of the form
w(z) = (v,u,0,0,5,\)(x). The solution wu is constant and supersonic (u > ¢g, where ¢
is the sound speed at x) in # < 0 (the quiescent zone) and u has an exponential decay
at +00. A suitable Rankine-Hugoniot condition at x = 0 for u is required to make u to
be a weakly well-defined solution in the vicinity of x = 0. Furthermore, there is a need
of defining a limiting state wy, = lim,_, o w(z), which represents a state of chemical
equilibrium.

Erpenbeck [17] was the first one to perform a study of linearized ZND detonations.
After writing the perturbations as normal modes e t#1¥+#221/ (1) he reduces the linear
study into the investigation of a 5x5 system of ODEs. A different point here is that no
variational formulation can be found due to the non self-adjointness of the ODE system
of odd order. Erpenbeck defined a stability function V(7,k) (k = A/k? + k3), whose
zeros in the right half plane Rer > 0 correspond to the characteristic values in our set-
up in this thesis. For certain classes of steady ZND profiles, he provided some rigorous,
and also non-rigorous arguments to prove the existence of unstable zeros of V' in the
high frequency regime k& — o0. A method based on linear turning point theory was used
by Lafitte, Williams and Zumbrun [52, 53] to complete the linear stability /instability.
In particular, for the instability result, the authors obtain a sequence {k,},>1 such that
ReA(k,) > 0. It would be interesting to state the main results of [52, 53] as a spectral
result in the same spirit of this thesis and then extend the linear study to the nonlinear
one, if possible.

As a last point, we hope to revisit the second theorem of the first paper [51], that
only shows the existence of possibly multiple characteristic values to the linearized
equations. We expect that the method initiated by [53] would be helpful to show the
existence of infinitely many characteristic values for the density profile py such that

|po(z) — po(o0)| < Ce=P7l for some positive constants C and 3.
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