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Résumé: La Bibliothèque nationale de France
(BnF) a pour mission de collecter, conserver, en-
richir et communiquer le patrimoine documentaire
national. Elle conserve près de quarante mil-
lions de documents. L’une des missions de la
BnF est de maintenir les documents qui com-
posent ses collections en bon état afin d’assurer
leur disponibilité auprès des lecteurs. La défini-
tion d’une politique de conservation/restauration
par les experts suppose l’identification des doc-
uments qui sont en mauvais état ; pour cela,
l’état physique des documents doit être vérifié
régulièrement afin d’identifier ceux qui nécessitent
des interventions urgentes. Mais cette tâche très
chronophage est impossible en pratique en raison
du volume très important de documents. L’objectif
de notre travail est de fournir un support aux ex-
perts dans la définition de leurs politiques de con-
servation/restauration, et de fournir un système
d’aide à la décision permettant de caractériser
l’état physique des documents par l’intégration et
l’analyse des données disponibles dans les bases
de données des différents départements de la BnF.
En considérant que chaque document est décrit
par un historique de conservation/restauration qui

inclut toutes les informations susceptibles d’avoir
un impact sur son état physique, les principales
questions auxquelles nous sommes confrontés sont
d’un part celle de la représentation de ces his-
toriques et leur comparaison en tenant compte
de leur hétérogénéité terminologique, d’autre part
la définition d’un processus d’analyse de ces his-
toriques permettant de caractériser l’état des docu-
ments et de le prédire. Notre travail vise à proposer
des contributions pour un système d’aide à la déci-
sion pour des experts en conservation/restauration
à la BnF. Nous avons proposé une représenta-
tion des historiques de conservation–restauration
sous la forme de trajectoires sémantiques et nous
avons introduit des mesures de similarité adap-
tées permettant de résoudre l’hétérogénéité termi-
nologique des données en utilisant une base de con-
naissance externe, élaborée en collaboration avec
les experts. Nous avons également défini un pro-
cessus d’analyse fondé sur un algorithme de clus-
tering afin de caractériser l’état physique des doc-
uments. Enfin, nous avons proposé une méthode
originale de pondération des concepts qui permet
de définir l’importance de ces derniers en consid-
érant une tâche d’analyse spécifique.
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Abstract: The mission of the National Library of
France (BnF) is to collect, preserve, enrich and
make available the national documentary heritage.
Its collections comprise nearly forty million docu-
ments.

One of the BnF’s missions is to maintain the
documents of its collections in good condition in
order to ensure their availability to readers. The
definition of a conservation/restoration policy by
the experts requires the identification of the doc-
uments in poor condition; to this end, the physi-
cal state of the documents must be checked reg-
ularly to identify those requiring urgent interven-
tions. But this time-consuming task is impossible
in practice due to the large volume of documents.

The objective of our work is to provide a sup-
port to the experts in the definition of their conser-
vation/restoration policies and to provide a deci-
sion support system allowing the characterization
of the physical state of documents by the inte-
gration and analysis of the data available in the
databases of the various departments of the BnF.

Considering that each document is described

by a conservation–restoration history, which in-
cludes all the information likely to have an impact
on its physical state, the main questions we are
faced with are, on the one hand, the representation
of these histories and their comparison taking into
account their terminological heterogeneity, and on
the other hand, the definition of an analysis pro-
cess of these histories enabling to characterize the
state of the documents and to predict it.

Our work aims to propose some contributions
towards a decision support system for conserva-
tion/restoration experts at the BnF. We have pro-
posed a representation of conservation–restoration
histories as semantic trajectories, and we have pro-
posed appropriate similarity measures to resolve
the terminological heterogeneity of the data using
an external knowledge base developed in collabora-
tion with experts. We also have defined an analysis
process based on a clustering algorithm to predict
the documents’ physical state. Finally, we have
proposed a novel concept weighting approach that
allows to define the importance of the concepts
considering a specific analysis task.
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Résumé substantiel en français

La Bibliothèque nationale de France (BnF) a pour
mission de collecter, conserver, enrichir et communi-
quer le patrimoine documentaire national. Elle con-
serve près de quarante millions de documents.

L’une des missions de la BnF est de main-
tenir les documents qui composent ses collections
en bon état afin d’assurer leur disponibilité auprès
des lecteurs. La définition d’une politique de
conservation/restauration par les experts suppose
l’identification des documents qui sont en mauvais
état ; pour cela, l’état physique des documents doit
être vérifié régulièrement afin d’identifier ceux qui
nécessitent des interventions urgentes. Mais cette
tâche très chronophage est impossible en pratique en
raison du volume très important de documents.

L’objectif de notre travail est de fournir un sup-
port aux experts dans la définition de leurs politiques
de conservation/restauration, et de fournir un sys-
tème d’aide à la décision permettant de caractériser
l’état physique des documents par l’intégration et
l’analyse des données disponibles dans les bases de
données des différents départements de la BnF.

En considérant que chaque document est décrit
par un historique de conservation–restauration qui in-
clut toutes les informations susceptibles d’avoir un
impact sur son état physique, les principales questions
auxquelles nous sommes confrontés sont d’un part
celle de la représentation de ces historiques et leur
comparaison en tenant compte de leur hétérogénéité
terminologique, d’autre part la définition d’un proces-
sus d’analyse de ces historiques permettant de carac-
tériser l’état des documents et de le prédire.

Notre travail vise à proposer des contributions
pour un système d’aide à la décision pour des ex-
perts en conservation/restauration à la BnF. Nous
avons proposé une représentation des historiques
de conservation–restauration sous la forme de tra-
jectoires sémantiques et nous avons introduit des
mesures de similarité adaptées permettant de ré-
soudre l’hétérogénéité terminologique des données en
utilisant une base de connaissance externe, élaborée

en collaboration avec les experts.
Nous avons également défini un processus

d’analyse fondé sur un algorithme de clustering afin
de prédire l’état physique des documents. Le proces-
sus d’analyse proposé est formé de différents mod-
ules afin de réaliser une telle prédiction. Il s’appuie
sur le clustering de trajectoires visant à caractériser
chaque classe de document, hors d’usage et commu-
nicable, par un ensemble de trajectoires représenta-
tives. L’état physique d’un document est prédit en
évaluant la similarité entre sa trajectoire et les tra-
jectoires représentatives générées pour déterminer la
classe du document.

Enfin, nous avons proposé une méthode orig-
inale de pondération des concepts qui permet de
définir l’importance de ces derniers en considérant
une tâche d’analyse spécifique. Dans une classifica-
tion de trajectoire, certains événements peuvent avoir
plus d’importance que d’autres dans la distinction en-
tre les classes. Par conséquent, lors de l’analyse des
trajectoires, il est important d’accorder un poids plus
important aux événements à fort pouvoir discrimi-
nant lors de le processus d’analyse. Par exemple,
de tels poids pourraient être pris en compte lors du
calcul des scores de similarité entre trajectoires. Cer-
tains travaux se sont concentrés sur le contenu in-
formationnel des concepts, et d’autres ont abordé le
problème de la pondération des concepts représen-
tés sous forme de structure hiérarchique. Dans ce
travail, nous introduisons une nouvelle approche de
pondération de concept qui prend en compte les
classes prédéfini des trajectoires dans l’ensemble de
données, correspondant à une tache d’analyse spéci-
fique. L’approche transforme une ontologie en un
réseau de neurones personnalisé où chaque nœud
représente un concept de l’ontologie, et les relations
entre les nœuds représentent les relations entre les
concepts. Basée sur la régression, l’approche ap-
prend les poids qui donnent la meilleure séparation
des classes de trajectoires, et attribue des poids pour
les concepts.
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1.1 Context and Motivation

The National Library of France (BnF) manages and maintains almost forty millions of docu-
ments in its collections. Some documents are exposed in the readers’ halls, and the others
are stored in the collection department. The documents are available as either hard copies or
digital versions accessed through the BnF online services.
One of the key missions of the BnF is to define and implement the conservation–restoration
policies to ensure that these documents remain in a good physical state. The physical state of
the documents should be monitored continuously to ensure that they can be made available to
the readers who request a hard copy; if not, the readers will be suggested to access a digital
version. The documents that are in a bad physical state should undergo some conservation or
restoration processes before any other communication to the readers.

In order to identify the documents that are in bad physical state at an early stage, it is
essential to check their physical state continuously. This task is time-consuming and impossible
in practice due to the large volume of documents. To facilitate the identification of the docu-
ments which are the most likely to become unavailable to the readers and which require some
conservation–restoration operations, we aim to propose some contributions towards a decision
support system that can predict a document’s physical state by integrating and analysing the
data stored in the BnF databases.

There are several departments at the BnF to manage the documents, the communication
and the interventions that keep these documents in a good physical state. The collection
department manages the storage, physical state checking and the communication of the doc-
uments to the readers. The conservation–restoration department manages the interventions
on the documents to conserve them in a good physical state and consequently to keep them
available to the readers who request them. These departments generate and store data in their
local databases designed for their specific activities. For example, the collection department
keeps track of all document communication requests and records the date, the reader, and other
details. Additionally, in a separate database, the conservation and restoration department keeps

15



16 CHAPTER 1. INTRODUCTION

informations about how documents are treated and the degradations that have been observed.

The early identification of the documents which are likely to deteriorate would be beneficial
to the experts to prioritize the ones which have to undergo some conservation processes in
order to prevent further major degradations. Unfortunately, continuous physical state checking
is impossible due to the volume of the documents.

Our goal is to propose a set of contributions towards a decision support system supporting
the conservation/restoration experts, capable of integrating the relevant data, analysing it, and
learning to predict the documents’ physical state. The system will help the experts identify the
documents that urgently need some conservation or restoration process. Different problems
face the creation of such a system, such as the integration of the data, the analysis of the
relevant data related to the documents’ physical state, and the implementation of an analysis
pipeline that uses machine learning algorithms to predict the physical state.

1.2 Challenges

Providing a support to the identification of documents requiring conservation–restoration pro-
cesses at the BnF raises several problems. One issue is identifying and integrating the data
related to the documents’ physical state, which should be part of the analysis. For a given
document, these data should include all the events that have occurred in the conservation–
restoration history of this document, as well as any other events that might have an impact on
the physical state of this document. One problem that has to be tackled is to find an appro-
priate representation for these data that can be used for for further analysis and for knowledge
extraction. A critical task in any analysis is the ability to compare the elements on which
the analysis will be performed. In our context, the elements are the conservation–restoration
histories describing the documents.

Data on conservation–restoration histories may have been recorded for a few days or months
but may also have been recorded decades ago. This leads to very heterogeneous terminologies
in the description of the data. One of the problems to be addressed is to propose conservation
history comparison tools that take into account this terminological heterogeneity when com-
paring these events and evaluating their similarity. Such similarity is necessary to identify the
ones sharing similar histories to find some correlations or reasons for their physical state.

The effective prediction of the physical state of a document requires the design of the analy-
sis pipeline suitable for deriving such prediction from the available date describing conservation–
restoration histories. Besides selecting the most appropriate learning processes, this pipeline
should enable the integration of domain knowledge, which integrates whenever possible to en-
hance the analysis. The design of such a pipeline is also a key challenge in our context.

Finally, the analysis pipeline could be enriched by weighting the events that constitute
the conservation–restoration histories. The events that constitute the conservation–restoration
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history might have different importance to the analysis objective. Therefore, giving importance
to the events depending on their impact on the analysis results is another issue we aim to tackle
in our work.

1.3 Contribution

In this work, our aim is to provide some contributions towards a decision support system
for conservation–restoration experts at the BnF. The first part of our contributions is related
to the generation, the representation, and the matching of conservation–restoration histories.
We propose to represent these histories as semantic trajectories consisting of sequences of
conservation–restoration events. In addition, we propose a trajectory-matching process that
takes into account terminological heterogeneity and the semantic relationships between the
elements composing the trajectories. The proposed similarity measure uses an external knowl-
edge base representing the experts’ knowledge to solve this heterogeneity. In order to take this
knowledge into account during the matching, we have defined a set of semantic relationships
between elements based on the structure of the knowledge graph. We have also proposed a
specific knowledge graph describing the conservation–restoration concepts that are used in the
BnF databases.

The second part of the contributions is related to the analysis of the conservation-restoration
histories, represented as semantic trajectories. Numerous analysis pipelines have been proposed
in existing works, with different goals, such as predicting the next element in a trajectory or
classifying trajectories. Our aim is to design an analysis pipeline that enables the prediction
of a document’s physical state. One of the proposed analysis pipeline modules is a trajectory
clustering module aiming to characterize both the class of the deteriorated documents and the
class of available ones by a set of representative patterns. The physical state of a document is
determined by assessing the similarity between its conservation-restoration trajectory and the
generated patterns. The analysis process is based on a knowledge graph representing the do-
main experts’ knowledge. We will show that adding more semantics into the analysis process
improves the prediction results.

Finally, our last contribution is determining the importance of the elements composing the
conservation–restoration trajectories for a specific analysis task. We propose a novel weighting
approach that helps assign weights to the trajectory elements, where the weight is proportional
to the element’s importance for the considered analysis task.

1.4 Organization of the Manuscript

This manuscript consists of five chapters apart from this introduction.
Chapter 2 presents state-of-the-art related to the problems we have addressed. We survey
the recent works on trajectory analysis, including their representation, similarity computation
and trajectory data mining. We present the spatial and semantic trajectories and different
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approaches to compute their similarity. In addition, we survey recent works on trajectory data
mining, especially trajectory filtering, clustering, classification and prediction. We also present
recent works integrating knowledge graphs in the similarity computation, as well as some ap-
proaches aiming to determine the weights of a set of concepts, representing their importance in
a given context. We also present some of the existing knowledge graphs in the cultural heritage
field represented as ontologies.

Chapter 3 deals with our semantic trajectory matching process. The process consists of in-
tegrating the experts’ knowledge to fill the terminological gap between the elements composing
the trajectories. We present the analysis of the BnF databases and the creation of the semantic
trajectories. In addition, we present our proposed similarity measure to compute the similarity
between the semantic trajectories. Finally, an experimental evaluation is provided to compare
the matching results with and without the external source of knowledge.

Chapter 4 presents an analysis pipeline to predict the documents’ physical state. We present
the trajectory clustering process based on the proposed similarity measure. In addition, a fil-
tering and prediction rules creation process is discussed. Furthermore, we present the creation
of the prediction model that predict the documents’ physical state. Finally, an experimental
evaluation is provided to compare the prediction results with and without using the experts’
knowledge represented by the knowledge graph.

In chapter 5, we present a novel weighting method that gives weights for the trajectory
elements based on the considered analysis task. It is based on a neural network representation
of the concepts hierarchy. We present the automatic transformation of the hierarchy into a
customized neural network. In addition, we present the normalization of the neural network.
Finally, we discuss the weights learning using forward and backward propagation.

Finally, we provide a conclusion in chapter 6, where we summarise our contributions and
show how our proposal can help analyse semantic trajectories. We discuss the open problems
and present some future works.
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2.1 Introduction

In many applications domain, the data are represented as trajectories. For instance, the tra-
jectories used in human movement mining could be represented as sequences of time-stamped
locations that show how people move. In the healthcare field, a trajectory could be a sequence
of events that indicates a patient’s medical history. These trajectories may represent a huge
volume of information that can not be analysed manually. In order to learn and extract some
knowledge from a massive trajectory dataset, many works have proposed analysis pipelines re-
lying on machine learning algorithms.

In our context, we are interested in analysing the conservation–restoration histories of the
documents stored at the BnF, which could be represented as semantic trajectories. For this
reason, we are interested in developing a pipeline that analyses these trajectories. Therefore,
we present different works on trajectory analysis related to the tasks that will be part of our
analysis pipeline, such as the similarity measures and the mining approaches. One important
problem is the formalization of trajectory data, which consists in finding the best representation
for the trajectories. Another one is comparing the trajectories because the ability to compute
the similarity between them is crucial for further analysis. In addition, the application of data
mining algorithms to analyse them is used in different contexts.

In addition, we are interested in resolving the terminological heterogeneity of the conservation–
restoration histories during the analysis, which may decrease the accuracy of the analysis
pipeline. Therefore, to resolve the terminological heterogeneity and improve the analysis, we
will present approaches that use external knowledge during the analysis and specifically to com-
pute the similarity between semantic concepts.
Moreover, we are interested in the weighting approaches that refine the analysis by identifying
the importance of concepts. Such weighting could increase the performance by focusing on the
important concepts. The weights can be integrated into the similarity computation process,
where more priority can be given to concepts with higher weights.

Furthermore, one possible way to represent knowledge is to use knowledge-base graphs that
contain nodes representing the concepts, i.e., events, to describe where the edges between them
represent the relationships. One way to express knowledge in a domain is ontologies, and many
ontologies in the cultural heritage field are available and describe concepts and their semantic
relationships. We will present these ontologies and discuss their suitability for our context and
objectives.

In this chapter, we will study some of the approaches that have been proposed in the
semantic-based data mining field, especially for trajectory data. In the first part, presented in
section 2.2, we study different aspects related to the trajectory analysis. Mainly, we will focus
on the representation of the trajectories where we distinguish between the spatial and semantic
trajectories, the similarity measures used on trajectories, and the trajectory data mining, which
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includes trajectory clustering, predicting and classification. The second part is devoted to
knowledge-based similarity computation and presented in section 2.3. We will present the
related works and the challenges raised by this problem. In the third part, presented in section
2.4, we will present the ontologies in the cultural heritage and the conservation-restoration fields
and their limitations to be used in our context. Finally, we will provide a conclusion in section
2.5 highlighting the open problems.

2.2 Trajectory Analysis

Trajectory analysis aims to extract some meaningful knowledge from trajectory data. For
example, this knowledge could be a label for each trajectory, the identification of unusual ones,
extracting patterns characterizing similar ones, or the prediction of their future elements to cite
a few. Many machine learning algorithms could be used in the analysis of the trajectories such
as clustering and classification.

Trajectories can be classified into two categories, the spatial trajectories and the seman-
tic ones. Spatial trajectories are sequences of geographical coordinates. Semantic trajec-
tories are sequences of events or semantic elements. Spatial trajectories are sequences of
time-stamped places that are sorted according to their time [129]. For example, a trajectory
t = [< (long_1, lat_1), 8am >,< (long_2, lat_2), 10am >,< (long_3, lat_3), 5pm >]

can be used to describe the movement of a person who was in (long_1, lat_1) at 8am,
(long_2, lat_2) at 10am, and (long_3, lat_3) at 5pm. A semantic trajectory is one in which
the elements are not geographical coordinates. For example, the trajectory t could be rep-
resented as a sequence of semantic elements t = [< home, 8am >,< work, 10am >,<

restaurant, 5pm >].

The approaches proposed to analyse trajectories rely on different tasks such as their pre-
processing, the computation of the similarity between them, the goal of the analysis and the
appropriate machine learning method. In order analyse trajectories, one problem is to find the
best representation of the elements that constitute the trajectories, which could take the form
of sequences of locations if the trajectories represent spatial data or events if the trajectories are
semantic. Another problem is to find a way to calculate the similarity between the trajectories
and their elements. Finally, the best machine learning algorithm should be selected to perform
the analysis task at hand.

In the sequel, we will provide a broad overview of trajectory representation in section 2.2.1
where we distinguish between the representation of spatial and semantic trajectories. Section
2.2.2 deals with the similarity evaluation between the trajectories where we discuss the mea-
sures used in the fields where the data are represented as sequences or strings. Some of the
existing knowledge extraction and learning algorithms are discussed in section 2.2.3, such as
the trajectory filtering, clustering, prediction and classification. Finally we provide a discussion
in section 2.2.4.
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2.2.1 Trajectory Representation
In this part we give an overview of fields where data are represented as trajectories and highlight
their different types, which are the spatial trajectories and the semantic ones. In section 2.2.1.1
we present how some works represent the data as spatial trajectories. In section 2.2.1.2 we
present some works that represent the data as semantic trajectories, which sometimes are
considered as sequences of events.

2.2.1.1 Spatial Trajectories

The representation of spatial data generated in various fields such as maritime traffic [88] and
people movement analysis [11] is the first fundamental step in analyzing this data. Most of the
analysis works represent this data as spatial trajectories, i.e. sequences of locations ordered by
their timestamp.
Spatial trajectories could also be enriched with more information that helps with the analysis
task. A spatial trajectory is represented as Tr = e1, e2, ..., elenTR

and what differs between
the analysis works is the representation of the elements ei in Tr and the information they
contain.

The authors in [58] represent the trajectories as sequences of multi-dimensional points. For
example, a trajectory TRi is represented by TRi = p1p2...pleni

, where pj is a d-dimensional
point with 1 ≤ j ≤ leni, and leni is the length of the trajectory. In addition, the segments are
clustered in order to discover the common sub-trajectories among the initial set of trajectories.

Similarly in [51], the trajectories are also represented as a sequence of spatio-temporal
points. A trajectory is defined as a list T = {tp0, tp1, ..., tpn}, with tpi = (xi, yi, ti, wi); each
point is characterized by (xi, yi) coordinates, a timestamp ti and a set of numerical features wi.
In this work, trajectories are partitioned into segments, i.e. sub-trajectories, and each segment
is enriched with a semantic label and set of segment features.

The works presented in [97] and [79] enrich the spatial trajectories with the speed informa-
tion. [97] represents a trajectory as a list of spatio-temporal points < p0, p1, ..., pn >, where
pi = (xi, yi, ti) and xi, yi, ti ∈ R, and partitions it in smaller pieces called stops and moves
using the speed feature. The stops are explicitly defined by the user and the moves are the
sequences between two stops, or between t0 and the first stop, or the last stop and tn, or
[t0, tn]. The authors in [79] propose to further partition the stops and moves into sub-stops
and sub-moves in order to enrich more the trajectories.

2.2.1.2 Semantic Trajectories

Semantic trajectories are used in several works to refer to temporally ordered sequences of
time-stamped semantic elements. The elements that constitute these sequences could be,
for example, semantic locations or events. Other works call these sequences simply semantic
sequences, and when the elements forming them are events, some works refer to them as event
sequences [15][67][45].
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In the healthcare field, the approach presented in [86] represents each patient by a temporal

trajectory where the events are healthcare actions on the patient. Consider that ε is the set of
all the events, an event e ∈ ε is a tuple e =< p, action, time > that associates the patient p
to the action at a specific time. For example, e1 =< p1, BMI obese, 05/2017 > means that
patient p1 had a BMI in May 2017 categorizing him as obese. The trajectory of a patient p is
defined as a sequence of temporally sorted events T (p) = {< p, action, time >∈ ε}.
[52] proposes the representation of semantic knowledge on paths by adding additional semantic
layers. [10] transforms the geotagged data into semantic trajectories and represents them by
sequences of location types such as restaurant or park SemT =< type1, type2, ..., typen >.
[56] analyses the maritime traffic and uses the raw data such as the speed and the position to
create a semantic layer of two types of nodes called way-points and traversals.

Another field where the representation is very similar to the semantic trajectories is where
the data is sequences of events. This data can be found in various applications and fields such as
healthcare, marketing analytics and advertising. For example, in Electronic Health Records, the
events could be the patients’ diagnosis, procedure, and medication codes. Different ways exist
to represent the event sequences. The survey presented in [38] identifies five categories of visual
representation: chart-based visualization [69], timeline-based visualization [83], hierarchy-based
visualization [119], sankey-based visualization [96] and matrix-based visualization [80].

2.2.2 Trajectory Similarity Measures

Different similarity measures have been proposed to calculate the similarity or the distance
between sequences. These measures can also be extended and used to calculate the similarity
between spatio-temporal trajectories or semantic ones. In the survey presented in [108], the
authors classify the trajectory distance measures depending on different criteria.

The similarity of spatio-temporal trajectories depends on the geographical proximity between
the points composing them. This does not apply to the semantic trajectories presented in
the section 2.2.1.2. This is because the distance between the elements which constitute the
semantic trajectories can not be calculated using the distance metrics applied for spatio-temporal
ones, such as the euclidean distance for example.

In this section, we survey some of the existing similarity measures and their applicabil-
ity for spatio-temporal trajectories or semantic ones. The measures are classified into two
categories: sequences similarity measures (presented in section 2.2.2.1) and string similarity
measures (presented in section 2.2.2.2). The string similarity measures are compared to the
sequences similarity measures as the strings can be considered as sequences of characters.

2.2.2.1 Sequence Similarity Measures

Sequence similarity measures have been proposed and used for both spatial trajectories and
semantic ones. Recall that in a spatial trajectory, each item represents a geographical location.
In a semantic trajectory, each item can be either an event or a semantic element.
The authors in [86] [85] define a similarity measure to calculate the similarity between semantic
trajectories representing the patients’ healthcare histories. For example, figure 2.1 shows two
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Figure 2.1: Healthcare Trajectories

healthcare semantic trajectories, where the elements of the trajectories are healthcare events
ordered by their time. The similarity measure searches for the matches between the health-
care events and compute the similarity between two trajectories depending on the number of
matches. Once the similarity is computed between the trajectories the authors propose to
create groups containing similar trajectories called “cohorts” using clustering. Two events are
considered as matching events if they have the same name, and their similarity score depends
on their associated time and the length of the trajectories to which they belong. The authors
in [115] compare the similarity measures in event-based data, i.e. data containing sequences
of events, by defining nine features to characterize the event sequences similarity measures and
assess the suitability of these measures to a given context. The authors highlight the necessity
of carefully defining what an event-sequence is because the applicability of the measures may
vary accordingly.
In the survey presented in [108], the authors classify the trajectory similarity measures depend-
ing on the considered data type according to two criteria: (i) the discrete or continuous nature
of the data and (ii) the existence of a temporal dimension for the data.
A trajectory is considered discrete if there is no movement between two consecutive items.
For example, a semantic trajectory composed of events fits this case as there is no link or
path between two events. When a trajectory is discrete, it contains a finite number of items.
The second criterion is whether the measure compares the ordered items in the trajectories
using only the spatial attribute or both spatial and temporal information. In other words, the
second criterion is whether the measure uses the temporal information in the calculation or
not. Distance measures that only depend on the spatial distance between trajectories are called
sequence-only distance measures. Distance measures that apply both the spatial and temporal
distance between trajectories are called spatial-temporal measures.

2.2.2.1.1 Discrete and Sequence-only The first category corresponds to discrete se-
quences. The measures in this category depends only on the spatial dimension. In addition,
the compared sequences contain a finite number of elements. Examples of measures in this
category are the Euclidean Distance (ED) [63], the Longest Common SubSequence (LCSS)
[87] and the Edit Distance on Real sequence (EDR) [75]. The EDR and the LCSS measures
are related, as the LCSS calculates the length of the longest common sub-sequence, and the
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Figure 2.2: Comparison between complete matching and partial matching

edit distance calculates the number of changes needed between the compared sequences.
Measures in this category can be divided into two types, the ones that provide complete match
and the ones that provide a partial match.

For two compared sequences si and sj , complete match strategy requires every sample
elements of si and sj should be in a match pair. On the contrary, partial match strategy does
not require every sample elements of si and sj should be in a match pair.

Figure 2.2 shows two examples of complete (a) and partial (b) matching. We can see that
all of the elements belong to at least one match pair when computing the similarity between
the two sequences using complete matching. On the contrary, using partial matching, we can
see that some items are not matched.

Euclidean distance (ED). The Euclidean distance is the most commonly used distance
measure, also known as L2 − norm. To calculate the distance between two sequences si and
sj having the same length n, the distance between every pair of elements at the same position
in the two sequences is computed. In this case, the complexity of this process is O(n).
In the case of two sequences with two different lengths, the ED measure is used with a sliding
window having a size equal to the shortest length, and the complexity is O(mn) where m is the
difference between the lengths of the two sequences and n is the length of the shortest one.

dEuclidean(Ti, Tj) =

n∑
i=1

d(p1,i, p2,i)

n

(2.1)

dEuclidean(Ti, Tj) =
m−n+1
min
j=1

n∑
i=1

d(p1,i, p2,j+i)

n

(2.2)

Equations 2.1 and 2.2 show the euclidean distance definition when the compared trajecto-
ries or sequences have the same size and different sizes, respectively.
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Figure 2.3: Shifting effect on the ED measure

Figure 2.4: DTW between two sequences

The euclidean distance is a complete match measure. If the two compared sequences have
the same length, every matching pair will contain the elements that have the same index (i.e.
position). If the lengths are different, the complete match requires that all the elements from
the smallest sequence should be in at least one match pair. A limitation of the algorithm is
that one shifting can change the similarity value completely. Figure 2.3 shows the effect of one
shifting on the similarity value between two sequences si and sj where the elements are the
same but in different positions and the ED between the two sequences will be minimal, e.g.
the similarity equal to 0 although the two sequences have a common sub-sequence [x2, ..., x7]
of length equal to six.

Dynamic time warping (DTW). The DTW [81] is a complete match measure. The
difference with ED is that an element in the first sequence can be matched to more than
one element from the second sequence. Figure 2.4 shows an example of DTW between two
sequences si and sj where the elements at the positions i-1, i and i+1 from si respectively
are matched with the nearest element from sj which is at position i. Equation 2.3 shows the
definition of the DTW measure. The DTW can be extended to be a partial match where the
number of events matters, and for every skipped event, i.e. for each event without a match, a
maximal distance α can be added.

dDTW (Ti, Tj) =


0, if n = 0 and m = 0

∞, if n = 0 or m = 0

d(Head(Ti), Head(Tj)) +min{dDTW (Ti, Rest(Tj)),

dDTW (Rest(Ti), Tj), dDTW (Rest(Ti), Rest(Tj))} otherwise

(2.3)

Piecewise dynamic time warping (PDTW). The PDTW [54] is an extension of the DTW,
which is also a complete match. The goal is to reduce the algorithm’s complexity by merging
each set of sequential elements and representing them by their mean if it can be calculated.
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This measure could be used for spatial trajectories but not for semantic ones.
Consider two spatial trajectories ti = [l1, l2, l3, ...lleni

] and tj = [l′1, l
′
2, l
′
3, ...l

′
lenj

] represented
as sequences of geospatial points. For example, if the merge is performed each three consecu-
tive points, the two trajectories will start by mean(l1, l2, l3) and mean(l′1, l

′
2, l
′
3) respectively.

During trajectory analysis, the evaluation of the similarity will be performed by comparing the
means of the elements instead of the elements themselves.
Event merging cannot be performed in semantic trajectories or any other context in which
the mean of a set of elements cannot be calculated or is meaningless. For example, given a
trajectory of healthcare events T = [< BMIObese, t1 >,< HospitalizationE, t2 >], it is
impossible to calculate the mean of these events, and therefore, the PDTW measure cannot be
applied.

Longest common subsequence (LCSS). The LCSS [87] is a partial match measure. It
is used to calculate the longest common sub-sequence. When using the algorithm on spatial
trajectories, two elements, i.e. locations on two different trajectories, are considered as match-
ing when their distance is less than a threshold ϵ. LCSS can be used with event sequences
by considering that each matching pair should contain events with the same name from the
two different sequences. The order of the elements is essential when using the LCSS measure,
while the index, i.e. the position of the elements in their respective trajectories, is not. In other
words, two elements can be matched regardless of their position, but they can not be matched
if the algorithm has already matched elements with a higher index in the sequence.
Equation 2.4 shows the LCSS distance, and equation 2.5 shows the definition of LCSS measure.

dLCSS(Ti, Tj) = 1− SLCSS(Ti, Tj)

size(Ti) + size(Tj)− SLCSS(Ti, Tj)
(2.4)

SLCSS(Ti, Tj) =


∅, if li = 0 or lj = 0

SLCSS(Rest(Ti), Rest(Tj)) + 1, if d(H(Ti), H(Tj)) ≤ ϵ

max{SLCSS(Ti, Rest(Tj)), SLCSS(Rest(Ti), Tj)}, otherwise

(2.5)

With li and lj representing the length of Ti and Tj respectively. The H function returns
the first element in the trajectory, and the Rest function returns the trajectory without its
first element. For example, given two sequences si=[X1, X2, X3, Y1, X4, X5, X6, X7] and
sj=[X1, X2, X3, Y2, X4, X5, X6, X7], the longest sub-sequence will be s=[X1, X2, X3, X4,
X5, X6, X7], the longest common sub-sequence length will be SLCSS(si, sj) = 7, and the
distance equal to 1− (7/8).

Edit distance on real sequence (EDR). The edit distance [75] is a string metric for
calculating the extent to which two sequences differ. It is a partial match measure defined as
the minimal number of edits needed to transform one string into another and it can be used
for events sequences. The considered edit operations are the insertion, the deletion and the
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substitution. For every unmatching pair of elements, i.e. elements having a distance higher
than a predefined threshold, the required edit operations are determined to transform one ele-
ment to the other. The cost of each operation is equal to one, and the distance is computed as
the sum of the costs of the transformation operations. For example, consider the three health-
care trajectories T1, T2 and T3, with their respective events sequences T1=[<BMI Obese, t1>,
<chronic bronchitis, t2>], T2=[<chronic bronchitis, t1>] and T3=[<BMI Overweight, t1>,
<chronic bronchitis, t2>]. The transformation of T2 to match T3 needs one insert opera-
tion, but the transformation of T3 to match T1 requires one substitution. The cost of each of
the two transformations is equal to one. But we can see that T3 is more similar to T1 than
T2, because T3 and T1 share a BMI element, and should therefore have a smaller distance to T1.

Edit distance with real penalty (EPR). EPR [14] is an extension of EDR, but it does
count not only the number of required operations but also combines Lp-norm and Edit Distance.
After each operation, the distance between each unmatched pair will be taken into consideration,
and unlike EDR, the cost may vary between one operation and another. This measure is best
suited for semantic trajectories if the similarity between the elements could be calculated. For
example, consider the three trajectories T1=[<BMI Obese, t1>, <chronic bronchitis, t2>],
T2=[<chronic bronchitis, t1>] and T3=[<BMI Overweight, t1>, <chronic bronchitis, t2>].
The distance between T1 and T3 should be less than the distance between T1 and T2. The
difference between T1 and T3 is the first element, which is somehow similar but not identical.
If the cost of the substitution operation is less than the cost of the insert operation, this will
lead to a smaller distance between T1 and T3 than T1 and T2.

2.2.2.1.2 Discrete and spatial-temporal After presenting the discrete measures which
depend only on the spatial dimension, we will now present the second category which corre-
sponds to the discrete and spatial-temporal measures.

Some similarity measures in this category use both the temporal and the spatial data to
calculate the similarity; other measures calculate two distinct similarity values, one of which
depends on the spatial information, and another depends on the time dimension. Some of the
measures in this category is the Spatio-Temporal LCSS (STLCSS) introduced by [114] and
used in [109], and the Spatio-Temporal Linear Combine Distance (STLC).

Spatio-Temporal LCSS (STLCSS). STLCSS [114] is an extension of the LCSS measure
which has been created for string matching and not for timestamped data. This extension takes
into consideration the location and the time of each item to calculate the similarities. Two items
are considered the same if the distance between them and the time difference between them
are less than two thresholds ϵ and δ respectively. Equation 2.6 shows the definition of STLCSS.
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Figure 2.5: Example of OWD projection between two sequences

SSTLCSS(Ti, Tj) =



0, if Tri or Trj is empty
1 + SSTLCSS(Rest(Ti), Rest(Tj)), if | Head(Ti).x-Head(Tj).x | < ϵ and

| Head(Ti).y-Head(Tj).y | < ϵ and
| Head(Ti).t-Head(Tj).t | ≤ δ

max{SSTLCSS(Ti, Rest(Tj)),

SSTLCSS(Rest(Ti), Tj)}, otherwise

(2.6)

Spatio-Temporal Linear Combine Distance (STLC). This measure combines the spatial
distance and the temporal distance between the compared trajectories. The algorithm calculates
separately the spatial and temporal dimensions. It is possible in some contexts one dimension is
more important than another. Thus, they can not be treated equally. Similarly to the DTW, an
element from a trajectory can be matched to more than one element from another trajectory.

2.2.2.1.3 Continuous Trajectory Distance Measures In this category, the shape
between elements matters when computing the similarity between trajectories. The shape
between the elements, if they represent locations, can be the road that connects them. The
measures in this category deal with continuous trajectories, with or without considering the
time dimension. These measures can be used on spatial trajectories. Some of the measures
in this category are the Edit Distance with projections (EDwP) [93], the One Way Distance
(OWD) [64] and the Spatio-Temporal Locality In-between Polyline distance (STLIP). However,
in the context of events or semantic trajectories, it is challenging to define a shape between
two events.

The OWD is a continuous sequence-only distance measure. Consider two trajectories T1

and T2. When searching the minimum distance between an element in T1 and T2 in order to
find a match for the element, it is possible that the minimum distance is not with an actual
element from T2. It can be a projection on the shape between two elements. For example, the
figure 2.5 shows the OWD projection of a sequence S1 to another sequence S2 to calculate
their distance. We can see that the projection of p4 is S1 is not to an actual element in S2,
but it is on the linear representation between p3 and p4 of S2. The linear representation of a
sequence is not possible when the trajectories are semantic.
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2.2.2.2 String Similarity Measures

Several string matching algorithms have been proposed to calculate the similarity between two
strings [113]. Some of them can be extended to be used for trajectories or semantic sequences
such as the edit-based, token-based, and sequence-based similarity measures. Other algorithms
can not be used for trajectories. For example when the algorithm rely on the string sound when
spoken, or only on one subset of the string, such as its prefix and postfix. In this section, we
focus on the categories that can be extended and used for trajectories.

2.2.2.2.1 Edit-based Measures
When computing the similarity between two strings, the edit-based measure counts the number
of modifications required to transform one string to another. The simplest distance in this
category is the Hamming distance, which allows only substitution operations when two strings
have the same length, and it only enables the insertion at the end of a string when the lengths
are not equal.
The Hamming distance [99] compares the characters at the same index. If the two compared
characters are not the same, the edit cost increases by one, and one of the characters will be
substituted to be identical.
The second distance in this category is the Levenshtein distance [74], where more operations are
considered. The Levenshtein distance allows the deletion, insertion and substitution operations,
and the cost of each operation is equal to one. The Damerau-Levenshtein distance [73] is an
extension of the Levenshtein distance which allows one additional operation, the transposition
of two adjacent characters. The new operation can reduce the number of operation required.
For example, given two strings si=’xy’ and sj=’yx’, the Levenshtein distance is equal to two
because two operations are required, which are the deletion of ’x’ from the sequence si and
the insertion of ’x’ at the end of this sequence, but the Damerau-Levenshtein distance will be
equal to one as only one transposition operation is required.
Jaro distance [47] is another distance in this category that matches character at different indexes
in two strings within a limited range defined as max(|si|, |sj |)/2 + 1, where |si| and |sj | are
the lengths of the two strings si and sj respectively. Equation 2.7 shows the definition of the
Jaro distance between two string sx and sy, where m is the number of matching characters
and t is half of the number of transpositions.
The Jaro-Winkler distance [117] is an extension of the Jaro distance. It gives more importance
to the first characters of the string, i.e. its prefix of the string. Equation 2.8 shows the definition
of Jaro-Winkler distance, where l is the length of the common prefix (max to 4), and p have a
standard value equal to 0.1.

dj =
1

3
(
m

|sx|
+

m

|sy|
+

m− t

m
) (2.7)

dw = dj + (lp(1− dj)) (2.8)
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Figure 2.6: Relations between some Token based distances

2.2.2.2.2 Token-based Similarity
The distance measures belonging to this category depend on the intersections and the unions
between two strings, i.e. the common characters and the total number of distinct characters in
both strings. The intersection of two strings is the common characters between them regardless
of their index. The Tversky index [112] is token-based, and generalises both the Jaccard index
[41] and the Sorensen-dice index [20]. Figure 2.6 shows the definition of the Jaccard, Sorensen-
dice and Tversky index distances and the relations between them, where X and Y two sets of
elements. The Jaccard index is a specialisation of the Tversky index with α and β equal to one,
and the Sorensen-dice is a specialisation with α and β equal to 0.5.
Another token based distance is the overlap coefficient, that measure the overlap between two

finite sets. Equation 2.9 shows its definition, where X and Y represent two strings.

overlap(X,Y ) =
|X ∩ Y |

min(|X|, |Y |)
(2.9)

2.2.2.2.3 Sequence-based Similarity
The distance measures in this category consider the order of the shared items in the strings.
One of these measures is Ratcliff/Obershelp [94], which computes the number of matching
characters multiplied by two and divided by the total number of characters of both strings. It
starts by searching the longest common substring (LCS) and then searches the next longest
sub-string on both sides of LCS.
The longest common substring and the longest common sub-sequence are very similar. The
only difference between the two measures is that the gap between the common characters in
the longest common substring is not allowed. In other words, the common sub-string should
contain a sequence of consecutive characters.

2.2.2.3 Comparison of the Similarity Measures

As we have seen in the previous sections, many measures have been proposed to compute the
similarity between either sequences or strings. These two categories of measures have some
similarities because a string can also be considered as a sequence of elements. In order to
analyse these measures and find the most suitable one to be used in our context we compare
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the measures using the following five characteristics:

Position dependence. This characteristic indicates whether the matching between the
items from different sequences depends on their positions, i.e. index. For example, using the
euclidean distance, matching items always have the same index in the two compared sequences.
On the contrary, using the LCSS measure, matching items can have different indexes.

Time dependence. This characteristic indicates if the matching between the items from
different sequences depends on the temporal dimension. A measure that depends on the tem-
poral dimension may consider two items are matching only if the difference between their
timestamps is less than a predefined threshold. For example, using the STLC measure, two
items with a high difference in the temporal dimension can not be matched, and therefore this
measure depends on the time.

Order dependence. This characteristic indicates if the items’ matching can intersect. For
example, consider two sequences S1=[p1, p2] and S2=[p2, p1]. If the similarity measure does
not depend on the order, the similarity between the two sequences will be equal to two as the
sequences contain the same items. On the contrary if the measure depends on the order, it will
select only one match, i.e. if p1 is selected from the two sequences to be the first match, p2
can not be selected as its position in S2 is before p1.

Partial and Total match. This characteristic represents, as mentioned in section 2.2.2.1
if the items of a sequence should be at least in one matching pair. Using a partial match, it is
possible that an item does not belong to any matching pair. On contrary, a complete match
requires that each item belongs at least to one matching pair.

Multiple and Single match. This characteristic indicates if an item of a sequence can
have more than one match. A multiple match is similar to 1 to n relationship where one
item can be matched to n items from another sequence. A single match is similar to 1 to 1
relationship where one item can be matched only to one item from another sequence.

Table 2.1 shows the characteristics of the presented measures. The measures are character-
ized by five attributes, and each one represents one of the defined characteristics. We can see
that most of the measures are based on partial matching, which allows focusing on similar parts
of the sequences. Most of the measures take into account the order of the items. In addition,
only two measures of the studied ones depend on the time, but we think that the integration
of the time dimension is possible for most other measures.
Depending on the context, some measures are more appropriate than others. We think that
for the analysis of the semantic trajectories in the our context, choosing a single matching
measure is best because the number of occurrences of the semantic elements is essential. For
example, two documents with the same degradation in their conservation history but one of
them had it two times are distinct as they do not share the same history, therefore, they should
not considered as identical histories. In our context, the measure to compute the similarity
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between the conservation histories should be partial, single, and depend only on the order.

Matching Dependency
Measures Partial/Complete Single/Multiple Position Time Order
ED Complete Single ✓ ✗ ✓

DTW Complete Multiple ✗ ✗ ✓

PDTW Complete Multiple ✗ ✗ ✓

LCSS Partial Single ✗ ✗ ✓

EDR Partial Single ✗ ✗ ✓

EPR Partial Single ✗ ✗ ✓

STLCSS Partial Single ✗ ✓ ✓

STLC Partial Single ✗ ✓ ✓

Levenshtein Partial Single ✗ ✗ ✓

Damerau-Levenshtein Partial Single ✗ ✗ ✓

Hamming Partial Single ✓ ✗ ✓

Jaro/Jaro Winkler Partial Single ✓ ✗ ✓

Tversky index Partial Multiple ✗ ✗ ✗

Sorensen-dice Partial Multiple ✗ ✗ ✗

Jaccard Partial Multiple ✗ ✗ ✗

Overlap coefficient Partial Multiple ✗ ✗ ✗

Ractliff/obershelp Partial Single ✗ ✗ ✓

Table 2.1: Measures characteristics

2.2.3 Mining Trajectory Data
Trajectory data mining approaches [68, 118, 92] aim to provide solutions to extract knowl-
edge from possibly large sets of trajectories. These approaches include clustering [111], which
groups similar trajectories, classification, which classifies the trajectories into different cate-
gories, anomaly and interesting location detection, which identifies the outliers and interesting
locations in trajectories, and the prediction of future locations or elements to cite only a few.
Due to the possibility that the quality of the trajectory data could be low, data preprocessing
[120] is necessary before any further analysis.

In this section, we present some of the most commonly used trajectory data mining ap-
proaches. We present the trajectory filtering techniques. In addition, we give an overview of
recent work on trajectory clustering, prediction of trajectory data, and trajectory classification.

2.2.3.1 Trajectory Filtering

Trajectory filtering is the process of preparing the trajectories to be analysed. Trajectory fil-
tering involves techniques such as noise filtering, data cleaning, and data compression or other
preprocessing techniques such as trajectory segmentation.
Noise filtering is the process of eliminating unexpected mistakes in the data. For example, when
analyzing vehicle trajectories on a given map, their location should always be within a route,
and any noise value should removed or replaced. Most of methods used for noise filtering could
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be categorized into three types, Mean filters [128], Kalman filters [60, 6] and particle filters [43,
39]. Consider the trajectory in figure 2.7 represented as a sequence of points, where the point
p5 is a noise point. Using the mean filter with a sliding window equal to 5 on the z coordinate,
the coordinate of p5 will be modified to be equal to

∑5
i=1 pi.z/5. However, the size of the

sliding window is important because small sliding windows can not filter correctly consecutive
noise points, for example, p10, p11 and p12.

Figure 2.7: Noise points in a trajectory [128]

For spatial-temporal trajectories, stay point detection is the detection of the points where
the geographical position does not change over a relatively long period. This approach could be
used as a preprocessing technique because such points have a special meaning to the moving
objects. For example, such point can help identify the nature of a stop. Many stay point
detection approaches are based on the concepts of density and nearest neighbours. Density-
based clustering [90], nearest neighbour [127, 126], or content-based [116] are among the
algorithms used for stay point detection.

2.2.3.2 Trajectory Clustering

A cluster is a group of similar elements; elements from different clusters are not alike. Clustering
is an important tool in exploratory data analysis and is used in several disciplines, such as
artificial intelligence, pattern recognition, and information retrieval. A clustering algorithm
generates clusters from the definitions of elements, and cluster analysis is the formal analysis
of these algorithms. [46].
Clustering has been used in many applications such as healthcare, security, web search and
outlier detection. In the context of trajectory analysis, clustering can be used, for example, for
trajectory labelling, the extraction of representative trajectories known as “trajectories patterns",
the detection of outliers, and the detection of common sub-trajectories. Furthermore, clustering
could be used as a preliminary step in the development of a trajectory classifier. Most of the
clustering algorithms can be classified into the following categories: partitioning algorithms,
hierarchical algorithms, density-based algorithms and grid-based algorithms.

In this section, we present an overview of clustering algorithms. First, we give an overview
of the basic clustering algorithms. Then, we provide an overview of some approaches that
specifically target trajectory clustering.
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2.2.3.2.1 Clustering Algorithms
Many trajectory analysis approaches rely on clustering algorithms in order to extract meaning-
ful knowledge from the data, such as representative patterns for example. In this section, we
present some of the most widely used clustering algorithms. In [40] the authors identify the
following four categories of clustering algorithms: partitioning, hierarchical, density-based, and
grid-based algorithms. The authors in [7] categorize learning algorithms into three types: unsu-
pervised, supervised, and semi-supervised. In supervised algorithms, a label is associated to each
element in the training set, representing its category. In unsupervised algorithms, the elements
are unlabeled. The semi-supervised algorithms combines a small amount of labeled elements
with a large amount of unlabeled data during training. The unsupervised category contains
the density, hierarchical and spectral models and the supervised category contains the nearest
neighbor algorithm, statistical models and Neural network. The semi-supervised algorithms fall
between the two categories and are based on their algorithms. Unsupervised algorithms aim
to describe the hidden relationships between similar items that belong to the same cluster by
a label. In the unsupervised category, we will present some of these algorithms which are the
density-based spatial clustering of applications with noise (DBSCAN) [26], k-means [42] and
hierarchical clustering [82] (agglomerative and divisive) algorithms. The supervised algorithms
aim to learn a function using a labelled data set, called a training set, to predict items’ labels
from a testing set. Some of the algorithms in this category are the nearest neighbor, statistical
and neural networks algorithms.
We present in the following a brief description of the most widely used supervised and unsu-
pervised clustering algorithms.

DBSCAN [26] Density-based clustering aims to identify dense regions of arbitrary shape,
where the clusters are dense regions and separated by sparse regions. The algorithm relies on
the definition of core objects, which are the ones having a number of neighbors exceeding a
predefined threshold. The algorithm starts by computing, for each item, the number of items
close to it, i.e. those having a distance less than a user-defined threshold α. Another parameter
to be defined by the user is the density threshold, i.e. required number n of close items to a
core item in order to initiates a cluster. In other words, a core item is an item that has n or
more close items. All the core items that are directly reachable to each other, i.e. the distance
between them is less than α belong to the same cluster. For example having three core items
c1, c2 and c3, if c1 is close to c2 then they will belong to the same cluster, and if c3 is close
to c2, regardless its distance to c1, it will be added to the cluster containing c1 and c2. Unlike
core items, non-core items can not extend a cluster. A non-core item can join a cluster if it is
close to a core item in it. The DBSCAN algorithm could be used for any data by providing a
distance matrix that contains the distances between all pairs of items.

K-means [42] The k-means clustering algorithm is a partitioning method that aims to or-
ganize the objects into k clusters. The shape of the clusters is spherical, and each cluster have
a representative which is the mean of the items in the cluster. The algorithm starts by randomly
selecting k items where each will form a cluster. The items will then be added to the most sim-
ilar cluster, i.e. the cluster with the closest mean. The clusters’ means will be updated at each
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iteration, and the distance between the items and the means will be re-computed. The algo-
rithm ends when the clustering becomes stable; in other words, a high percentage of the items
stay in the same cluster after the means update. Other versions of k-means are k-means++
[3], k-medoids [53] and k-modes [13]. K-modes is an extended version of k-means used for
categorical variables where it is not possible to calculate the mean. The most commonly used
method to select the number of clusters k for this algorithm is the elbow method. The K-means
algorithm can be used for trajectory data by providing a suitable similarity measure between
the trajectories.

Hierarchical models [82] There are two types of hierarchical models: agglomerative and
divisive. Agglomerative clustering is a bottom-up algorithm, which starts by comparing all the
items and merging the two most similar into a new cluster. Depending on the items type, a
mean, a centroid or a medoid is used to represent the cluster. It is also possible to compute the
distance between items and clusters according to single-linkage or complete-linkage. Using the
single-linkage approach, the distance between an item and a cluster is the distance between the
item and the closest point in that cluster. Using the complete-linkage approach, the distance
between an item and a cluster is the distance between the item and the farthest point in that
cluster. At each iteration, the algorithm merges clusters or items until generating one cluster
that contains all the items in the data set. Finally, a process of cluster detection, referred to as
tree cutting, is performed to define the resulting clusters. Unlike the agglomerative approach,
the divisive one, begins with a cluster containing all the items and splits it recursively to meet
some predefined requirements such as the number of clusters, the maximum number of items
in the clusters or the maximum distance to the means.

Nearest Neighbor [24] The nearest neighbor is a widely used classification approach that
could be extended to be used for clustering [12]. The nearest neighbor algorithm clusters an
item depending on its neighbors, i.e. the most similar items to it. The most commonly used
algorithm is the K-Nearest Neighbor (KNN) which uses a voting system to determine the cluster
or category of a new coming item. Given a set of labelled items and a new item, the distance
between the new item and all the labelled ones is calculated, and its k nearest neighbors vote
on its label. As a result, labelling each new item necessitates computing its distances to all
labelled items in the data set, which is time-consuming if the data set is vast.

2.2.3.2.2 Trajectory Clustering Approaches

Trajectory clustering approaches for both spatial and semantic trajectories generally rely
on the basic clustering algorithms. Most trajectory clustering algorithms deal with a trajectory
as a single item when grouping trajectories. Some approaches deal with a trajectory as a set
of segments to detect possible common sub-trajectories in dissimilar trajectories. We present
in this section two trajectory clustering algorithms that are based on partition-and-group and
community detection, respectively. In addition, we present an approach to cluster semantic
trajectories taking into account the semantic relationships between the elements constituting
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the trajectories.
When dealing with a trajectory as a single item, it is possible to miss the common characteristics
between trajectories that share some sub-trajectories. [58] introduces the new partition-and-
group approach on spatial trajectories that aims to detect similar trajectories, in addition to,
similar sub-trajectories. The approach is based on the DBSCAN algorithm. Figure 2.8 illus-
trates the clustering process that starts by partitioning each trajectory into a set of segments.
Similar segments are grouped into a cluster represented by a trajectory. The partitioning de-

Figure 2.8: An example of trajectory clustering in the partition-and-group framework [58]
pends on the minimum description length (MDL) and uses predefined distances, depending on
the segments’ angle and length. Therefore, to use this approach for semantic trajectories, it is
necessary to define a new partitioning approach suitable to the context and type of data. After
defining the neighborhood of a segment as the set of segments that are close to it, the core
segment as a segment with a neighborhood higher than a predefined threshold, and conditions
to call a segment reachable or connected, the approach uses an adapted DBSCAN algorithm
that considers the number of segments of the base trajectories. This extension of DBSCAN
prevents the creation of a cluster containing segments extracted from the same or a small
number of trajectories where they should be considered non-reachable or outliers.

The approach presented in [66] uses the k-nearest neighbor network construction approach,
where a node represents each trajectory. For each node n, the algorithm searches the K most
similar nodes and adds an edge between n and these nodes. Finally, a community search
algorithm is applied to generate semantic trajectory clusters on the created network. Figure
2.9 shows a classic example of a graph containing three communities represented in different
colours. We can notice that the nodes that belong to the same community are fully connected
while the number of connections between nodes in other communities is low.
To compute the similarity between the trajectories, the authors define a semantic trajectory
similarity measure based on the work presented in [89, 34] and on the ontology theory. The
ontology is used to match the categorical attributes by searching a common hypernym. The
authors in [33] provide a detailed review and user guide to the methods of community detection
in networks.
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Figure 2.9: Schematic picture of a network with three communities [33]

In the approach presented in [78], the authors test several clustering algorithms on multi-
dimensional semantic trajectories with the use of UMAP [71] for dimension reduction. The
similarity measure used during the clustering has been introduced in [77], where the authors
propose a Contextual Edit Distance CED, a similarity measure for semantic sequences. It is
an extension of the Edit Distance that considers the context similarity between the elements
(events). The value of the semantic similarity between each pair of elements is between 0 and 1.
The calculation is based on a proposed directed acyclic graph that represents the relationships
between the elements. Figure 2.10 shows ten semantic trajectories and a concept hierarchy

Figure 2.10: Ten semantic trajectories and the associated concept hierarchy based on an simpleontology [77]
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representing the semantic elements that constitute the trajectories. The edition cost depends
on the similarity between the element to edit and the most similar element in the another
sequence. The repetition and permutation editions of similar elements have a lower cost.

2.2.3.3 Prediction Approaches for Trajectory Data

Prediction approaches for trajectory data aim to determine the following elements in the tra-
jectory based on the previous ones. In many location-based services, next location prediction is
an essential technique, including route navigation, applications like location-based advertising,
dining location recommendations, and traffic planning and control, to mention a few.
In the survey presented in [120], the authors review the existing location-prediction methods for
temporal and spatio-temporal trajectory data. The prediction methods are divided into different
types such as content-based and pattern-based. The content-based methods use the Markov
model, and the pattern-based methods aim to find common behaviours.
The authors in [123] propose an approach called semantics-enriched recurrent model (SERM)
that enriches the prediction of the next location by semantic information such as a text mes-
sage that describes the activity of the user. The trajectories are considered as sequences
of records, for example, a trajectory of a user ui is represented as a sequence of records
t(ui) = {r1(ui), r2, ..., rK(ui)}. Each record is such that: rk(ui) = (tk, lk, ck), where tk is
the time, lk is the location of the user at time tk, and ck is the text message describing the
activity. To predict the next location, the authors propose a three-layer model. The first layer
embeds the elements in each record, the second layer is a recurrent layer where each node hk
encodes the information observed until step k, and the third layer is the output layer. Finally,
the authors define the objective function and use the Stochastic Gradient Descent and the
backward propagation to learn the parameters to optimize the objective function.

Content-based methods
These methods learn the probability of the location transition. Given a sequence of location
history, the methods aim to predict the next location based on this history using the Markov
model. In this model, a user’s next location depends on his current location [124]. In a k-order
Markov model, the next location depends on the last k locations in the history. Formally, if
the user trajectory is tr = {l1, l2, ..., ln−k+1, ..., ln}, the k-order context is the sequence
(ln−k+1, ..., ln) and the Markov model is defined as follows:

P (ln+1 = l∗|L(1, n)) = P (ln+1 = l∗|c = (ln−k+1, ln)) (2.10)

Another approach based on the content to predict the next location is the compression-based
location predictors [106]. A trajectory is first partitioned into distinct sub-trajectories. Then a
tree is built to store the sub-trajectories, where each node represents an element and its number
of occurrences at a specific index. For example, consider a trajectory tr = gbdcbgcefbdbde,



40 CHAPTER 2. STATE OF THE ART

the partitioning results is a set of sub-trajectories g,b,d,c,bg,ce,f,bd,bde. The tree representing
the locations occurrences is represented in figure 2.11. The node b:4 indicates that location b
appears four times at the beginning of the sub-trajectories as its position in the tree in the first
layer after the root node. The node d:2 indicates that the location d appears two times in the
second position in the sub-trajectories as its position in the tree in the second layer.
The following equation 2.11 is used to compute the occurrence probability of a location l
given a prefix p, where N(p,l) denotes the number of p occurring as a prefix for p,l in the
sub-trajectories, and L is the location sets.

P (ln+1 = l) =
N(p, l|L)
N(p|L)

(2.11)

Figure 2.11: Example of a tree containing sub-trajectories based on compression [106]

Pattern-based methods
Trajectory pattern mining includes methods based on sequential patterns [35, 55], frequency
patterns [116], integrated data patterns [62], and periodic patters [125].

The basic frequent sequential pattern (FSP) is the problem of finding all the frequent
sequences in a database of sequences TrSet, where each element of each sequence is a times-
tamped set of items. The FSP problem was first introduced in [1]. Elements in the sequence
are arranged according to their time-stamps. A frequent sequence is defined as a subsequence
of a large percentage of sequences of TrSet.

The authors in [35] introduce trajectory patterns as concise descriptions of frequent be-
haviours in terms of space and time. The authors define a trajectory pattern as a pair (S,A),
where S=[(x0,y0), ..., (xk,yk)] is a sequence of points in R2, and A=[α1, ..., αk] is the tem-
poral annotation of the sequence. The trajectory pattern is represented as (S,A)=(x0,y0)

α1−→
(x1,y1)

α2−→ ... αk−→ (xk,yk).
A trajectory pattern is considered frequent if the number of input trajectories that contain this



2.2. TRAJECTORY ANALYSIS 41
pattern is higher than a predefined threshold smin. In addition, the authors define a spatio-
temporal containment relationship ⪯ between a trajectory pattern and an input trajectory,
which determines when a trajectory pattern is considered contained in an input trajectory. The
support(S,A) is defined as the number of input trajectories T such that (S,A) ⪯ T . Finally, a
frequent trajectory pattern is each trajectory pattern (S,A) for which support(S,A) ≥ smin.

2.2.3.4 Trajectory Classification

The goal of trajectory classification tasks is to find trajectories, sub-trajectories or elements
that best discriminate the different classes.
In [103], the authors divide the classification methods into three categories depending on
whether the methods extract local features [8, 18, 105], global features [130, 102, 50], or
both [21, 122, 27].
The approach presented in [21] extracts local and global features from trajectories such as
speed, acceleration and direction change between points. Global features are fix for the entire
trajectory, such as the maximum speed. Once the features are extracted, the authors propose
a process to classify the trajectories. The process starts by selecting the features, followed by
a principal component analysis (PCA) to reduce the number of original features. Finally, the
support vector machine [17] is used to classify the selected trajectories.
The authors in [103] survey the state of the art in trajectory classification and compare existing
methods. A raw trajectory is defined as a sequence of n points Tr=[p1, p2, ..., pn] in which
p={x,y,t}, where x,y is the position of the moving object is space and t is the timestamp at
which the point was collected. A multiple aspect trajectory is defined as a sequence of multiple
aspect points where a point p={x,y,t,A}, for such that x, y is the position in space at time
t, and A is a set with r aspects A = {a1, a2, ..., ar}. The authors separate between the
classification of raw and multiple aspect trajectory classification.
In [59], the authors introduce TraClass for raw trajectories classification, a technique to classify
spatial-raw trajectories. TraClass first divides the space in a grid and iterates to reduce the size
of the grid cells until most trajectories inside a cell belong to the same class. A region space is
considered homogeneous if only one class cmajor has a number of trajectories which is higher
than a predefined threshold, and all the other classes do not. A cell is picked as a feature and
no longer divided into smaller sizes if most of the trajectories it contains belong to the same
class. If not, the splitting process for this cell continues until it reaches the smaller possible
size determined by a predefined threshold.
When considering both the space and time dimensions, different features could be extracted
from the trajectories, such as speed, acceleration etc. When a feature depends on the entire
trajectory, it is called a global feature; when it depends on sub-trajectories or on trajectory
points, it is called a local feature.

For multiple aspect trajectories, the authors in [72] provide a novel approach to represent
and enrich a multiple aspect trajectory, defined as a sequence of points that can be enriched
with three different types of aspects: volatile, long-term, and permanent. Whereas the volatile
aspect of an object, such as the time attribute, frequently changes during the object movement,
the long-term aspect does not change in the same trajectory. It may still change in a future
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trajectory of the same object. The permanent aspect is related to the object and lasts for the
duration of its lifecycle. The authors present a conceptual model for defining an aspect as a
set of attributes.
The work presented in [70] introduces a Recurrent Neural Network RNN-based approach to
classify the multiple-aspect trajectories using space, time and semantic embeddings. Different
methods are used to encode the attributes of the points, such as one-hot and geohash encoding,
depending on the type of each one. Then each encoded attribute is multiplied by its respective
embedding matrix to extract its embedded representation, where all the attributes are embedded
in the Rn space. Finally, the attributes are aggregated, and a vector represents each point in
Rn. The trajectories are then fed to the recurrent module.
The authors in [29] propose a method called movelets that extracts relevant sub-trajectories that
can be used to classify trajectories. A relevant sub-trajectory is defined as a trajectory capable
of discriminating the existing classes. This method extends the shapelets technique used to
analyze time series. The authors consider the sub-trajectory as a contiguous sub-sequences.

2.2.4 Discussion

In section 2.2, we have presented different works related to the trajectories and sequences
analysis, which are similar to the type of analysis we aim to propose to analyze the conservation–
restoration histories at the BnF. In particular, we have presented the representation of the
trajectories, and different approaches related to analysis tasks that are interesting in our work,
such as the methods to compute the similarities between trajectories and existing methods used
for trajectory data mining.

Several representations have been used for trajectories and sequences. Some of these are
used for spatial trajectories where the provided data contains locations, and others for semantic
trajectories. In the existing approaches, the representations used for semantic trajectories could
be used for conservation–restoration trajectories, while the representations of spatial trajecto-
ries can not be used because the conservation–restoration documents’ history are composed of
events representing semantic elements.
Similarly to sequences of events, the conservation–restoration histories are discrete. In addi-
tion, the number of occurrences of their elements should be taken into consideration. Hence,
a history of one treatment of type x is partially similar but not identical to a history containing
two treatments of type x. Therefore, the measures that allow an event to be matched with
multiple events can not be used in our context. Furthermore, conservation–restoration histories
vary in length. As a result, if an event cannot appear in more than one match, a complete
match cannot be used. Regarding the temporal dimension, the order and type of elements
are more important than the time of their occurrence according to the domain experts. The
measure to calculate the similarities between the conservation sequences should therefore be a
discrete and partial match. It should take into consideration the order of the events and give
more importance to their types than their time. As a result, the measure used to calculate the
similarities between conservation event sequences should be a partial and single match, and it
should depend only on the order of the events. As a consequence, six of the measures presented
in section 2.2.2 can be used in our context: the LCSS, EDR and EPR from the trajectories
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similarities measures context, and the Levenshtein with its extension Damerau-Levenshtein and
the Ratcliff/obershelp from the string similarity context. Note that these measures are related,
as the EDR, EPR, Levenshtein and Damerau-Levenshtein are based on the edit distance. The
LCSS and the Ratcliff/obershelp are similar; they calculate the longest common sub-sequence.

Several approaches have been proposed for trajectory and sequence analysis, with different
goals. Depending on the context and objectives, the best suitable approach should be selected
for trajectory data mining to cluster the trajectories, predict the following elements or classify
the trajectories. The analysis method selection also depends on the available data and their
types. One of the limitations of the nearest neighbor method is the required computation of
the distance with all the elements in training set for each new item to classify or to cluster,
and in our context, more than forty million histories exist. Partition-and-group algorithm is
a new idea used on spatial trajectories, and one of its limitations is that it can not be used
on semantic trajectories. The method is based on pre-defined distances depending on the
length and trajectory angle. The adaptation of the method is required to use it on semantic
trajectories.
In our context, we aim to provide a model that predicts the documents’ physical state based on
their conservation–restoration histories. Therefore, we are interested in providing an analysis
pipeline to achieve such a prediction. One module of this pipeline will aim to extract knowledge
using the appropriate clustering and classification approaches. In addition, some adaptions are
required to integrate more semantics into these approaches.
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2.3 Knowledge-based Similarity Computation

As trajectories or sequences are composed of elements, their matching relies on the compar-
ison and evaluation of the similarity between these elements. The matching between spatial
trajectories is based on the selected distance metric and a predefined threshold to find similar
elements.
Matching the elements in semantic trajectories is a complex process, where the elements could
have hidden relationships known only by the domain experts. In addition, it is possible to have
matching problems due to the heterogeneity in the terminology used of the semantic elements.
For example, in our context, it is possible to find two conservation–restoration events with
different names but refer to the same event.
For this reasons, the experts knowledge could be represented to help in matching the semantic
elements.

The knowledge of an expert is heuristic in nature. Because experts often face challenges
articulating the rules of thumb they use to solve problems efficiently, acquiring their expertise
is generally a complex and challenging task. This phenomenon is known as the knowledge ac-
quisition bottleneck [44]. According to [49], "the more competent domain experts become, the
less able they are to describe the knowledge they use to solve problems!". Several knowledge
acquisition techniques are available for facilitating knowledge transfer from experts, including
analysis and interviews protocols. Expert knowledge can take several forms, such as ontologies,
thesauri, and taxonomies of concepts. It can be represented by a graph where the nodes are
the concepts, and the links represent the semantic relationships between them. These represen-
tations store the experts’ knowledge and can be processed automatically to enhance complex
systems. Such knowledge graph could enrich the analysis tasks by integrating semantic infor-
mation along the analysis process. The authors in [104] study the impact of integrating domain
knowledge in the analysis by comparing the results of different data mining classification meth-
ods with and without incorporating domain knowledge and shows that incorporating domain
knowledge improves the classification results.

Some works have been proposed to calculate the similarity between concepts using external
knowledge represented by knowledge graphs. For example, some measures have been proposed
to calculate the similarities between concepts using graphs representing their relationships. In
addition, approaches have been proposed to refine the graph-based similarity calculation by
associating for each concept in the graph a weight based on many criteria such as its position
in the graph. In this section, we will present an overview the concepts similarity computation
methods in section 2.3.1 and graph weighting methods in section 2.3.2.

2.3.1 Concepts Similarity

The matching between concepts could be enriched with domain experts’ knowledge when com-
puting the similarity between semantic trajectories represented as sequences of concepts. This
knowledge could be used to match concepts with different names but share hidden common
characteristics known only by domain experts. The experts’ knowledge could be expressed in
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different ways, such as a knowledge graph representing the relationships between the concepts
or by a set of features enriching the concepts with their characteristics. Therefore, feature-
based measures have been proposed to calculate the similarity between concepts, each one
represented by a set of features. In addition, different methods have been proposed to compute
the similarity between concepts in a graph, and we refer to these as knowledge-based concept
similarity measures. In this section, we present the feature-based concepts similarity measures
in section 2.3.1.1, and the knowledge-based concepts similarity measures in section 2.3.1.2.

2.3.1.1 Feature-based Concepts Similarity Computation

Different approaches have been proposed to compute the similarity between concepts by en-
riching their description with a set of characteristics related to the context. Each concept can
be described by a set of attributes, which we will call features. Given two concepts c1 and
c2 with their set of features f1 and f2 respectively, different characteristics could be extracted
from such representation, such as the number of shared features between the concepts and the
number of features that exist for a concept and do not for the another. We present a set of
operations between the two concepts used in [112] as follows:

• c1 ∩ c2 : the common features between f1 and f2.

• c1 – c2 : the features that belong to f1 but not to f2.

• c2 – c1 : the features that belong to f2 but not to f1.

Using set theory and the ratio model, the authors in [112] define a similarity measure be-
tween concepts based on the ratio of the shared features between the concepts. The similarity
measure is defined as follows:

S(c1,c2) =
f(c1 ∩ c2)

f(c1 ∩ c2) + αf(c1 − c2) + βf(c2 − c1)
(2.12)

Where α, β ≥ 0 and f measures the contribution of any particular feature to the similarity
between objects. By changing α and β the model generalizes several set-theoretical similarity
measures proposed in the literature [37, 25, 9]:

• If α=β=1, S(c1, c2) =
f(c1∩c2)
f(c1∪c2) [37].

• If α=β=1
2 , S(c1, c2) equals 2f(c1∩c2)

f(c1)+f(c2)
[25].

• If α=1 and β=0, S(c1, c2) reduces to f(c1∩c2)
f(c1)

[9].

The authors in [98] propose a method to calculate the similarity between concepts in differ-
ent ontologies. The method is based on the normalization of Tversky’s similarity model [112],
and defined as follows:
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S(c1,c2) =
|c1 ∩ c2|

|c1 ∩ c2|+ α(c1, c2)|c1 − c2|+ (1− α(c1, c2))|c2 − c1|
(2.13)

Where |S| is the cardinality of a set S, and α is a function that defines the importance of
the non-common characteristics depending on the depth of the compared entities in the hier-
archy and it is defined as follows:

α(c1, c2) =


depth(c1)

depth(c1)+depth(c2)
depth(c1) ≤ depth(c2)

1− depth(c1)
depth(c1)+depth(c2)

depth(c1) > depth(c2)

(2.14)

To compute the similarity between two entities from different ontologies, the algorithm starts
by connecting the two ontologies by adding a new imaginary root T , and by making each of the
ontologies’ root a direct descendant of T . The similarity depends on the depth of the concepts
as show in equation 2.14.
For example, figure 2.12 shows the connection between two ontologies through the insertion of
a new root, denoted by “anything”. In order to compute the similarity between the two entities
“building” in the two ontologies (a) and (b) respectively, the depth of a.building is equal to five,
and the depth of b.building is equal to two. Finally, α(a.building, b.building) will be equal to
0.28 based on the equation 2.14.

Figure 2.12: Connecting independent ontologies: (a) partialWordNet ontology and (b) partial SDTSontology. [98]
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Figure 2.13: Depth and distance between concepts

2.3.1.2 Knowledge-based Concepts Similarity Measures

The knowledge-based concepts similarity measures differ from feature-based ones. The knowledge-
based measures depend on the relationships between the concepts and not on a set of features
representing the concepts. These relationships are represented by a graph which will be used by
the considered measure. This section presents an overview of graph-based semantic similarity
measures. The methods are represented by their year of publication in figure 2.14.

Most of the approaches for computing the similarity between two concepts based on a
graph search for their first common hypernym, also called the Least Common Subsumer (LCS)
[16]. These methods rely on some characteristics such as the length of the paths between the
concepts and their LCS, the information content or the weight of the concepts or the depth of
the concepts, i.e. the respective lengths of the paths between each concept and the root of the
hierarchy. The authors in [2] categorise the semantic similarity measures into two types, the
first one is based on the semantic distance between concepts, i.e. number of edges between
concepts, and the second one is based on the statistical distribution of concepts in a given
corpora. Figure 2.13 illustrates the depth δ and distance between concepts φ, where the depth
of concept5 is equal to two, and the distance between concept3 and concept4 is equal to four.

We present in the following the most commonly used semantic similarity measures methods
to calculate the similarity between concepts. Some of the methods are based on the information
content. An information content indicates the amount of information provided by a concept
and its degree of generality. We provide an overview of the methods used to calculate the
information content in section 2.3.2. Three of the methods in this category are based only
on the information content [95] [65] [48]. The others integrate the depth or the length in the
similarity computation.

SimRes [95] was the first to use the information content theory in the calculation of the
similarity between two concepts c1 and c2, which was defined as the information content of
their LCS, as shown in the following definition:

simres(c1, c2) = IC(LCS(c1, c2)) (2.15)
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Figure 2.14: Semantic similarity measures by year of publication

SimJ&C [48] extends the resnik method by calculating the distance between two concepts
as the difference between their IC and the IC of their subsumer. The distance and the similarity
between two concepts is defined as follows:

disj&c(c1, c2) = IC(c1) + IC(c2)− 2× simres(c1, c2) (2.16)
Simj&c(c1, c2) =

1

1 + disj&c(c1, c2)
(2.17)

SimLin [65] is another extension of the resnik method where the similarity between two
concepts is measured as the ratio of the shared information content between them. The
similarity, denoted simlin, is defined as follows:

Simlin(c1, c2) =
2× simres(c1, c2)

IC(c1) + IC(c2)
(2.18)

SimPath [91] uses the distance feature in the calculation of the similarity between two
concepts, and it is defined as follows:

Simpath(c1, c2) =
1

1 + φ(c1, c2)
(2.19)

Simwup [121] is based on the depth of the concepts and their LCS to calculate the similarity.
The similarity is inversely proportional to the distance between the compared concepts and their
LCS, i.e. the difference between their depth and the LCS’s depth in the graph. For example,
when the LCS of two concepts c1 and c2 is low in the hierarchy of concepts, it means these
concepts have many common characteristics. On the contrary, if the LCS of two concepts is at
a very high level in the hierarchy, the two concepts do not have common characteristics. The
definition of the Wup similarity measure is the following:

Simwup(c1, c2) =
2δ(LCS(c1, c2))

δ(c1) + δ(c2)
(2.20)
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Simlch [57] takes into account the depth of the graph in the calculation of the similarity,
i.e. the maximum distance between a leaf concept and the root node, referred to as L, and the
definition of the similarity is the following:

Simlch(c1, c2) = −log

(
φ(c1, c2)

2L

)
(2.21)

SimLi was presented in [61]. The authors investigate the effectiveness of their method by
defining different strategies to combine the depth, the distance and a local density, represented
by the information content, to calculate the similarity between concepts. For example, one of
the strategies combines the depth of two concepts with their shortest length to calculate their
similarity, and its definition is as follow:

Simli(c1, c2) = e−αφ(c1,c2)
(
eq − e−q

eq + e−q

)
(2.22)

Where q = βδ(LCS(c1, c2)), with α and β are two predefined parameters.

Simwpath was presented in [132]. It combines the path information with the information
content of the subsumer, and its definition is as follows:

Simwpath(c1, c2) =
1

1 + φ(c1, c2)kIC(LCS(c1,c2))
(2.23)

Simwic [2] tackles the uniform distance problem of the wpath method. The problem is that
the method provides the same similarity for each pair of concepts having the same distance, i.e.
shortest path, regardless of their level of abstraction. For example, in Figure 2.13, the concepts
pairs (concept5, concept3) and (concept1, concept2) have the same shortest path, and hence
the same similarity regardless that the concepts are in different levels of abstraction and the
concepts concept5 and concept3 are more specific and should be more similar than concept1

and concept2. The authors combine the depth information and the information content of the
subsumer. Their approach extends the Wup measure by calculating the difference between the
depth of the concepts to be compared and their subsumer as follows:

∆ = δ(c1) + δ(c2)− 2δ(LCS(c1, c2)) (2.24)
Then a weight of contribution is defined as follows:

ω =
λ

λ+∆+ 1
(2.25)

Where λ = N or λ = 10−N . Finally the similarity between two concepts is defined as follows:

Simwic(c1, c2) = ω ∗ IC(LCS(c1, c2)) (2.26)
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We can see that the existing knowledge-based semantic similarity measures could be grouped
into three groups. (i) the measures based only on the information content, (ii) the ones that
depend only on structural information, such as the depth and distance between the compared
concepts, and (iii) the ones based on both the information content and the structural informa-
tion.

2.3.2 Considering the Importance of Concepts During Similarity Cal-
culation

The elements of a trajectory do not always have the same importance for a given analysis task.
The elements in a sequence or a semantic trajectory may sometimes require to be given different
weights during the analysis process For example, given an analysis task in the healthcare field
that aims to predict the patient’s condition based on his healthcare history, a heart operation is
an event that significantly impacts the patient’s condition. Therefore, when it is shared between
two patients’ healthcare histories, their similarity score should be strongly affected to be higher.
On the contrary, when an event that does not have a critical impact on the patient’s condition
appears in healthcare history, it does not bring much information or give specificity to the
patient. For example, flu treatment is an event that happens to most patients and is not very
dangerous. Therefore, when shared between two patients’ healthcare histories, the similarity
score should not be affected much.

For this reason, it could be useful to identify the relative importance of the different concepts
that compose semantic trajectories or sequences in the context before analysing the semantic
trajectories. Many works used to compute the information content [100] of the concepts and
use it to express their importance. Other works assign weights to the concepts to represent
their importance. These methods depend either on the frequency of the concepts in a given
corpus or on the concept’s level of abstraction in the graph. More specialized concepts are
considered more important as they contain more information. This section presents the most
commonly used approaches for information content calculation [65] [101] [131] and concept
weighting [30] [31] [19].

2.3.2.1 Information Content

The information Content (IC) of a concept provides an estimate of its degree of general-
ity/concreteness, a dimension which enables a better understanding of concept’s semantics
[100]. The information content of concepts in a graph could be calculated in different ways.
For example, it could depend on the occurrences of each concept in a given corpus or on the
structure of the graph, i.e. the number of hyponyms of each concept. This section provides an
overview of the most widely used graph-based information content calculation methods. Let
us consider the very simple taxonomy shown in figure 2.15 which we will use to illustrate the
different calculation methods.

Inverse Probability-based
Many approaches [65, 48, 95] calculate the information content of a concept in a graph based
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Figure 2.15: An example of concept hierarchy

on its occurrence probability in a given corpus. A corpus is a set of elements represented each by
a set of concepts. The idea behind the inverse probability is that the more frequent a concept,
the less information it contains. For example, the concept Thing appears in every element in
a corpus, regardless of the type of the elements, because based on the hierarchy where Thing

is the root concept, we can say that every concept in the hierarchy is a thing. As a result,
we can not distinguish between the elements or extract more information to characterize them
based on this concept, and the information content of the root of the hierarchy "Thing" is very
low. The information content of a concept x based on the inverse probability is computed as
follows:

IC(x) = −log p(x) (2.27)
The calculation of the IC of a concept x is achieved by computing the probability p(x)

of encountering x or any of its hyponyms in the given corpus. For example, to calculate the
information content of the concept EthnicMeal represented in figure 2.15, we calculate the
appearance probability of it or any of its hyponyms IndianMeal and ThaiMeal. And the
p(x) is defined as follows:

p(x) =

∑
w∈W (x) count(w)

N
(2.28)

Where W (x) is the set of hyponyms of x and N is the total number of corpus terms, i.e. the
total number of concepts representing the corpus elements.

Hyponym-based
This method aims to compute the IC in an intrinsic manner without depending on the corpora.
The idea is that a concept with many hyponyms means that more information and specifications
could be added to the concept to be transformed into another concept at a lower abstraction
level. Concepts with a high number of hyponyms provide less information than the leaf concepts.
The first approach to compute the IC of a concept based on its number of hyponyms was
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introduced in [101]. The corresponding formula is as follows:

ICseco et al(x) = 1− log(hypo(x) + 1)

log(max_nodes)
(2.29)

Where hypo(x) is the number of concepts below x in the graph, i.e. the number of hyponyms,
and max nodes is the total number of concepts in the graph. In this way, the leaves will have
the highest IC, which is equal to one, and the root concept will have the lowest IC, which is
equal to zero. For example, the concept Accommodation have three hyponyms below it in the
graph represented in Figure 2.15, therefore IC(Accommodation) = 1− log(4)

log(11) .

Hyponym and depth-based
One limitation of the hyponym-based method is that two concepts in different abstraction levels
will have the same information content if they have the same number of hyponyms. For exam-
ple, in Figure 2.15 RegularAcc. and CountryResort will have the same information content
value. In order to overcome this limitation, the depth is taken into account in the calculation
of the IC, as proposed in [131], where the IC is calculated as follows:

ICzhou et al(x) = k(1− log(hypo(x) + 1)

log(max_nodes)
) + (1− k)

log(depth(x))

log(max_depth)
(2.30)

Where depth(x) is the distance between x and the root, max_depth is the maximum dis-
tance between two concepts in the graph, and k is a tuning factor. For example, with k equal
to 0.5, the IC of RegularAcc in figure 2.15. will be equal to 0.5(1− log(1)

log(11))+0.5 log(2)
log(3) = 0.81

Leaf-based
The size of a hyponym tree below a concept depends on many criteria such as the degree
of detail and the branching factor, as mentioned in [100]. The authors propose to use only
the leaves to compute the information content of a given concept. The leaves represent the
semantic of the most specific concepts of a domain and they would accurately define its scope.
The leaves are defined as follows:

Definition 1 Consider a knowledge graph G and its set of concepts C, the leaves of a concept
x are defined as follows:
leaves(x) = {l ∈ C |l ∈ hyponyms(x) ∧ l is a leaf}

The method assigns a lower information content to the concepts with many leaves because they
are considered as more general and they subsume the meaning of many other concepts. The
leaves have the highest information content equal to one, and the root has the lowest value,
equal to zero. The leaf-based IC of a concept x is defined as follows:

ICsanchez et al(x) = −log

(
|leaves(x)|+ 1

max_leaves+ 1

)
(2.31)
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Where |leaves(x)| is the number of hyponym leaves of the concept x, and max_leaves is the
number of leaves in the graph. For example, the IC of the concept Gastronomy will be equal
to −log(57).

Leaves and subsumers-based As mentioned in [131], the position of the concept, i.e.
its level of abstraction in the graph should be considered in the calculation of the IC. The
leaf-based IC can be extended to consider this information. [100] extends the leaves-based IC
method by defining and using the subsumers of concepts in the calculation. The subsumers of
a concept x are all the concepts in higher abstraction levels than x, and x is their hierarchical
specialization. The subsumers are defined as follows:

Definition 2 Consider a set of concepts C in a graph, and consider that (≤) indicates the
hierarchical specialization relation, i.e x ≤ c means that x is a specialization of c, The set of
x′s subsumers is defined as:

subsumers(x) = {c ∈ C|x ≤ c} ∪ {x}

The IC of a concept x is defined as:

ICsanchez et al(x) = −log

 |leaves(x)|
|subsumers(x)| + 1

max_leaves+ 1

 (2.32)

As we can see, different methods have been proposed to calculate the information content
of concepts using information related to the structure of the concepts’ hierarchy. The difference
between the existing methods is which information was used.

2.3.2.2 Weighting Methods

Concepts weighting approaches proceed in a similar way to information content evaluation.
In fact, some weighting methods also use the IC in the weight evaluation. Graph concepts
weighting consist in assigning a weight for each concept in the graph, representing its impor-
tance. Several methods compute the weight of a set of concepts. Some are based on a corpus,
and others are based only on the graph’s structure. The corpus contains instances, where a
set of concepts describes each. The graph is an IS-A hierarchy representing the concepts and
their relationships. The methods based on a corpus are called extensional methods, and the
methods based on the structure of a graph are called intensional methods. In this section we
provide an overview of some well-known weighting approaches. We will present two extensional
approaches, namely Concept Frequency (CF) and Annotation Frequency (AF), and two inten-
sional ones, namely the Top-Down Topology-based (TD) and the Bayesian approaches. To
illustrate the extensional methods, consider an example of ten elements representing the corpus
where each one is represented by a set of concepts, defined according to Figure 2.15 as shown
in Table 2.2.

Concept Frequency Method (CF)
As mentioned before, the CF method is extensional and based on the frequency of the concepts.
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Element Annotation concepts
e1 ac1=(Gastronomy, RegularAcc.)
e2 ac2=(FrenchMeal, Accommodation)
e3 ac3=(VegeterianMeal, CozyAcc.)
e4 ac4=(ThaiMeal, CozyAcc.)
e5 ac5=(FrenchMeal, CountryResort)
e6 ac6=(VegeterianMeal, CountryResort)
e7 ac7=(IndianMeal, CountryResort)
e8 ac8=(FrenchMeal, CozyAcc.)
e9 ac9=(EthnicMeal, CozyAcc.)
e10 ac10=(ThaiMeal, CountryResort)

Table 2.2: An example of a dataset of elements represented by concepts

Given a concept x, its frequency is the number of occurrences of x or one of its descendants
in the elements’ annotation concepts divided by the number of occurrences of all concepts in
the graph. Even if an abstract concept does not appear explicitly in an element’s annotation
concepts, the presence of one of its hyponyms indicates its existence. The CF weight of a
concept x is defined as follows:

CF (x) =
n(x+)

N
(2.33)

Where n(x+) is the number of occurrences of a concept x or its hyponyms concepts in the
graph, and N is the total number of the concepts occurrences. Considering the graph in Figure
2.15 and the data set in Table 2.2, the concepts weights according to the concept frequency
method are represented in the Table 2.3.

Concepts CF weightThing 1Gastronomy 0.5FrenchMeal 0.15tEthnicMeal 0.2VegetarianMeal 0.1IndianMeal 0.05ThaiMeal 0.1Accommodation 0.5RegularAcc. 0.05CozyAcc. 0.4CountryResort. 0.2
Table 2.3: CF Concept Weights for the Example in Figure 2.15

Annotation Frequency Method (AF)
The AF method is very similar to the CF method in that both are extensional and based on
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the concept occurrences. The difference between the two is that the AF method counts the
number of annotation concepts that contain x or any hyponym while computing the weight
of a concept x. If two hyponyms of x exist in an element’s annotation concepts, they will
be counted as a single occurrence. On the other hand, the CF method counts the number of
occurrences regardless of whether they represent the same element or not. The CF method
divides by the number of occurrences of all the concepts, while the AF divides by the number
of elements. The formula corresponding to the AF method was introduced in [30, 31], and is
defined as follows:

AF (x) =
|Ex+ |
|E|

(2.34)
Where |Ex+ | is the number of elements containing x or one of it hyponyms, and |E| is the
total number of elements. The AF weights of the concepts in Figure 2.15 are represented in
Table 2.4.

Concepts AF weightThing 1Gastronomy 1FrenchMeal 0.3EthnicMeal 0.4VegetarianMeal 0.2IndianMeal 0.1ThaiMeal 0.2Accommodation 1RegularAcc. 0.1CozyAcc. 0.8CountryResort. 0.4
Table 2.4: AF Concept Weights for the Example in Figure 2.15

Top-Down Topology-based Method (TD)
The TD method is intensional and based on the structure of the graph. It is a probabilistic
approach that stars by assigning a weight equal to one to the root concept and adopts a uniform
probabilistic distribution along the ISA hierarchy [19, 30, 32]. The probability of a concept x

is computed as follows:

TD(x) =
TD(parent(x))

|children(parent(x))|
(2.35)

Where |children(parent(x))| is the number of the direct hyponyms of the parent of concept
x. Considering our example in Figure 2.15, the TD weights of the concepts are represented in
Table 2.5.
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Concepts TD weightThing 1Gastronomy 0.5FrenchMeal 0.16EthnicMeal 0.16VegetarianMeal 0.16IndianMeal 0.08ThaiMeal 0.08Accommodation 0.5RegularAcc. 0.25CozyAcc. 0.25CountryResort. 0.25
Table 2.5: TD Concept Weights for the example in Figure 2.15

Bayesian Method The bayesian method is intensional and based on the graph structure in
addition to conditional probabilities. Starting from the specialization relationship between a
node x and its hypernym, the relationship indicates that the weight of x is influenced by the
one of its parent, in other words, parent(x) influences x. The authors in [19] define the bayesian
weight of a concept x by the probability that x is True (T):

wb(x) = P (x = T ) (2.36)
This probability is related to the weight of the parent concept of x and the conditional proba-
bility P (x = T |parent(x) = T ) which is equal to the TD weight of the concept x. The weight
wb(x) of a concept x is computed based on the probability of its parent as follows:

wb(x) = P (x = T |parent(x) = T )P (parent(x) = T )+

P (x = T |parent(x) = F )P (parent(x) = F )
(2.37)

Where P (x = T |parent(x) = F ) is always equal to zero. Therefore, the simplified equa-
tion of wb(x) is the following:

wb(x) = TD(x)Wb(parent(x)) (2.38)
The computation of the bayesian weight is also computed in a top-down manner, starting from
the root with wb(root) = TD(root). The bayesian weights of the concepts in Figure 2.15 are
represented in Table 2.6

2.3.3 Discussion
We have presented two categories of concepts similarity computation approaches. The first
category considers that each concept is represented by a set of features and calculates the simi-
larity based on these features. The second category considers that the concepts are represented
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Concepts Bayesian weightThing 1Gastronomy 0.5FrenchMeal 0.08EthnicMeal 0.08VegetarianMeal 0.08IndianMeal 0.0064ThaiMeal 0.0064Accommodation 0.5RegularAcc. 0.125CozyAcc. 0.125CountryResort. 0.031

Table 2.6: Bayesian Concept Weights for the Example in Figure 2.15

in a hierarchy of concepts. Then, we provided an overview of the techniques that calculate
the importance of the concepts, where we presented the ones that calculate the information
content of the concepts and those that calculate their weight.

After presenting the usefulness of knowledge graphs to represent the relationships between
domain concepts and the calculation of their similarity, we will discuss the limitations of the
existing methods and their applicability in our context. Furthermore, we will discuss the limi-
tations of the information content computation and weighting methods, which are included in
the majority of graph-based similarity measure equations.

Graph-based similarity measures can be grouped into information content-based and graph
structure-based methods.
The position of the compared concepts in the graph is important, and it should be considered
when calculating their similarity. Given two concepts, where one is a subsumer of the second
one, we think that inclusion is a strong relationship, and they should have a higher similarity
than the concepts that are not in this case. The graph-based methods use only the depth and
the path length information in the calculation, which does not help to distinguish such case. In
other words, if the concepts have the same path length, we will get the same semantic similarity
regardless of whether one of them is a subsumer of the another.

The same problem occur for the information content-based methods, where the same sim-
ilarity value will be computed between two concepts if they have and their subsumer the same
information content regardless of their position in the graph.

Information content calculation and the weighting methods are related and aim somehow to
capture the importance of the concepts; they can be grouped into extensional and intensional
methods. The extensional methods rely on the data, while the intensional methods rely on the
structure of the graph. A significant limitation of the weighting methods or the information
content calculation is its assignments of static weights, which are inappropriate for long-lived
systems with different analytics tasks. Given the same data but various analysis tasks and goals,
the extensional methods will give the same weights that rely only on the data. The same holds
for the intensional methods that rely on the graph structure, they will provide the same weights
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regardless of the analysis task.
Therefore, concerning the similarity calculation, we aim to tackle the limitation where the

position of the concepts is not taken into account, where in some cases, the concepts should
have more similarity regarding their position in the graph. Furthermore, the assignment of
weights to concepts could be performed considering a specific analysis task, and it would be
useful to extend the existing approaches so as to provide different weights for different analysis
tasks.
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2.4 Cultural Heritage Ontologies

Ontologies aim to represent rich and complex knowledge about things, groups of things, and
relations between things. In the cultural heritage domain, various ontologies have been devel-
oped in various fields, such as museums, libraries, and academies, among others, because of
the richness and variability of cultural data.

In order to integrate domain experts knowledge at the BnF in the analysis of the conservation–
restoration histories, we have studied the existing ontologies in the field of cultural heritage
which conceptualize the expert knowledge in this field. Many ontologies are designed for
cultural heritage data [84][4][22][76]. Some works have dealt with the unification of the termi-
nologies used in the field of conservation–restoration. One of these works is the CIDOC–CRM
ontology[84] and its extensions CRMCR[4] and CRMSCI [22].

One of the main ontologies in the cultural heritage field is the CIDOC Conceptual Refer-
ence Model (CIDOC–CRM) [84]. Its primary role is to serve as a base for the mediation of
cultural heritage information, providing the semantic glue required to transform today’s dis-
parate, localized information sources into a coherent and valuable global resource. The CIDOC
CRM transforms cultural heritage data from internal institutional databases or catalogues into
a highly valuable public resource. Mapping cultural institutions’ data to CRM will increase
the data’s relevance and significance by enriching the things represented in the data with new
semantics.
This section will provide an overview of some of the well-known ontologies in the cultural
heritage and conservation–restoration field by presenting their most essential dimensions and
concepts. In addition, we discuss their fitness for our specific context.

2.4.1 CIDOC–CRM

The CIDOC–CRM is an ontology that provides definitions and a formal structure for describing
the implicit and explicit concepts and relationships used in cultural heritage documentation and
of general interest for querying and exploring such data. These formal descriptions allow the
integration of data from multiple sources1.
The cultural-heritage concepts are represented by entities in CIDOC–CRM. At the top-level
of the ontology, we can find two concepts : temporal entity and persistent entity. Persistent
entities, such as people, objects, or ideas, are things that last for an indefinite amount of time.
The temporal ones, such as events and actions, are constrained by time. Furthermore, the
ontology provides a concept hierarchy using the generalization relationship.
The “thing” entity in CIDOC–CRM, for example, refers to things with a fixed shape, which can
be natural or man-made, physical or intellectual, and so on. The thing hierarchy is given in
Figure 2.17, where the man-made thing is a direct sub-type of thing with the natural attribute
removed. Everything that is not natural or intellectual is considered a physical man-made item.
This latter concept can be divided into two categories: man-made object and man-made feature,
the former of which is physically separate and the later of which is physically associated.

1https://www.cidoc-crm.org/
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Figure 2.16: Thing Generalisation

The top level of the CIDOC–CRM, which can be used in an integration process, has the
temporal entities concept with its events in a central place. The properties of a temporal
entity can be within a period, at a specific location, where actors can participate in and affect
conceptual objects.

Finally, the CIDOC–CRM facilitates the integration, mediation and interchange of hetero-
geneous cultural heritage information by providing an uniform representation of concepts in this
domain.

2.4.2 CRM–SCI

The CRM SCI (CRM Scientific Observation Model) [22] is a formal ontology that builds on
the CIDOC–CRM ontology. It’s designed to be utilized in research environments and research
data libraries to integrate metadata about scientific observations, measurements, and others.
Its main goal is to make managing, integrating, and accessing research data easier by describing
by providing a formalization of the concepts related to research environments and the semantic
relationships between them.

One of the main concepts in this ontology is the “observable entity” is a subclass of the
CRM entity and superclass of the Temporal entity and the persistent item. This class contains
instances of E2 Temporal Entity or E77 Persistent Item, i.e. physical entities, their behaviour,
states, interactions, or events that may be observed, either directly by human sensory impression
or improved using tools and measuring instruments.

Another concept is the “Alteration”, it is a subclass of the event concept, and a superclass of
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Figure 2.17: CIDOC–CRM top level [23]

modification from CIDOC–CRM. This class includes natural or man-made events that generate,
alter, or change physical objects by permanently altering their form or consistency without
altering their identity, for example, alterations on depositional features-layers by natural factors
or disturbance by roots or insects.

“Physical Feature” is another concept comprises features that are physically attached in an
integral way to particular physical objects. This class is a subclass of the physical thing and the
place, superclass of the man-made feature, site and segment of matter, and it is equivalent to
the physical feature from the CIDOC–CRM.

“Observation” is another class that is a subclass of attribute assignment, and superclass
of measurement and encounter event from the CIDOC–CRM. The action of gaining scientific
knowledge about specific states of physical reality through empirical data, experiments, and
measurements falls under this class. Observation in the natural sciences is described as a
type of human activity in which certain Physical Things and their behaviour and interactions
are observed, either directly by human sensory impression or improved with instruments and
measurement devices, at some Place and within some Time-Span.

2.4.3 CRM–CR

CRM–CR is another extension of CIDOC–CRM. It aims is to support interoperability in the
conservation–restoration domain. Cultural heritage institutions manage different types of ob-
jects to conserve such as historical monuments in the Research Laboratory for Historical Monu-
ments (LRMH2), and artworks held in museums in the French Museum’s Research and Restora-
tion Center (C2RMF3). The conservation–restoration process generates a large quantity of data.
Professionals want to collect and share expertise on the methods employed, the results obtained,

2https://www.lrmh.fr3https://www.c2rmf.fr
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preventive measures taken, and other relevant information. CRM–CR is an ontological model
that represents the concepts related to the conservation–restoration of cultural items and the
relationships between them in a unified way.

CRM–CR enables the description of a cultural object based on its fundamental character-
istics: identity, physical features and locations, events intervening in the cultural object’s life
cycle, which can be either degrading or non-degrading, and the consequences of these events.
It also enables the description of the instruments used during the events/analysis.

A unified ontology in the conservation–restoration sector can address several issues, includ-
ing database heterogeneity, which arises from the fact that institutions manage their conser-
vation and restoration data by creating their own databases; as a result, data is represented
differently, for example the name of the conservation events could be specific in each cul-
tural heritage institution. Another problem is knowledge incompleteness, which occurs when
a database at one institution is lacking information that exists in the databases of another
institution and may be transferred between them. CRM–CR is related to the CIDOC–CRM and
CRM–SCI ontologies. It contains new concepts that specialize those of CIDOC–CRM. For ex-
ample, the “Scientific studies and results” concept is a specialization of the concept “E7 Activity”
in CIDOC–CRM, and a generalization of the concept “S4 Observation” in CRM–SCI. The top-
level concepts of the CRM—CR ontology and the relationships between the two ontologies are
shown in Figure 2.18. Furthermore, new notions such as the cultural object, specific events (al-
terations, scientific studies, documentations, interventions), instruments utilized during events,
and scientific studies results are described.

2.4.4 Discussion
After presenting the existing ontologies in the cultural-heritage and conservation–restoration
fields, we can observe that the extensions of the CIDOC-—CRM are linked to it in different levels
and dimensions. Various ontologies from different domains can be linked in this way. The gen-
eral goal of CIDOC-—CRM is describing temporal entities, events, actors, etc. CRM—SCI adds
new ideas in scientific observation and describe the observation itself, measurement, change,
and the observation entity, among other things. CRM—CR might be considered a supplement
to the CRM—SCI aiming to cover the conservation–restoration domain. This ontology includes
terms to describe the conservation–restoration processes as well as the strategies employed.
These ontologies describe general concepts related to the cultural heritage and conservation–
restoration fields. In some institutions, it is possible that the terminology used to describe the
concepts is different and it is impossible to link directly their data to the existing ontologies.
A gap to fill always exists if an institution finds that its data can not be linked directly with
the existing ontologies. Therefore, new ontologies representing the institution concepts can
be added with links to the existing ones in other ontologies to fill this gap and integrate the
institution data.

In our context at the BnF, the terminology used to describe the events in the conservation–
restoration histories is very specific. None of the existing ontologies includes the used termi-
nology to describe the conservation–restoration histories at the BnF. Therefore, it is impossible
to integrate the domain experts’ knowledge describing the events and their relationships in the
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Figure 2.18: CRM–CR and its relation to CIDOC–CRM and CRM–SCI [5]

analysis process using the existing ontologies.

2.5 Conclusion

This chapter includes three parts : A part on the trajectory analysis, a part on the similarity
computation using external knowledge, and a part on the cultural heritage ontologies. We
have studied the trajectory data preprocessing such as their representation and filtering. In
addition, we have studied different trajectory analysis tasks such as the calculation of their
similarity and the extraction of knowledge from trajectories. We discussed the different possible
representation of the trajectories that can be spatial or semantic depending on the context
and the available data. Concerning the similarity measures, we gave an overview on different
measures that compute the similarity between sequences, strings or trajectories. The selection
of the appropriate similarity measure also depends on the context. In addition, we presented the
widely known mining algorithms that can be used on the trajectories. In addition, we discussed
how external knowledge has been represented by knowledge graphs and integrated into the
computation of the similarity between concepts. Also, we gave an overview of the weighting
methods that give more importance to the relevant concepts. Finally, we gave an overview of
the graphs in the cultural heritage context in which we develop our work on the analysis of
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conservation–restoration histories.

After presenting the different measures used to calculate the similarity between the trajec-
tories, we will mention their limitations and possible extensions. The first category, sequences
similarity measures, contains measures requiring a predefined distance metric to check if two el-
ements can be matched. The semantic trajectories are sequences of concepts, and it is unclear
how to compute their distance. The presented similarity measures match only the identical
ones, i.e. concepts with the same names, and they will miss much semantic information. For
example, some concepts can be similar regardless of their names being different. The same
idea for the second category, string similarity measures that match only the identical characters.
Only identical concepts will be matched if we want to extend these methods to be used on
semantic trajectories. Therefore, we can observe that more semantics should be integrated
when extending these methods on semantic trajectories. Considering the semantic relationships
between the concepts is essential to match the concepts with different names but having some
similarities. We gave an overview in section 2.3 on knowledge-based similarity computation
methods. These methods can help add more semantics to the matching process. The first
aspect that this work target is integrating the experts’ knowledge in the computation of the
similarity between the semantic trajectories. In other words, we aim to adapt and integrate a
knowledge-based similarity computation method in matching semantic trajectories. The knowl-
edge experts will help define the similarities between concepts and refine the similarity measures
with this information. Therefore, we introduce in chapter 3 the integration of domain experts’
knowledge in matching the semantic trajectories.

Different mining approaches were presented in section 2.2.3, such as clustering, classifica-
tion and prediction approaches. The goal of these approaches is to extract knowledge from the
trajectory data. One possible improvement to existing approaches would be to introduce expert
or domain knowledge into the analysis process. External knowledge could be beneficial in differ-
ent tasks in an analysis pipeline. Therefore, we introduce in chapter 4 an analysis pipeline that
analyses the conservation–restoration histories and that takes into account external knowledge
representing the domain experts’ knowledge.

In section 2.3.2, we gave an overview on the methods that calculate the importance of the
concepts, where we presented methods that calculate the information content, and other meth-
ods that evaluate the weight of the concepts. All the existing concept weighting approaches
assign static weights to the concepts, regardless of the analysis task. In other words, when
changing the analysis task, the methods give the same weights as they depend only on the
data or on the concepts’ hierarchy structure. Some methods used to compute the information
content of the concepts are divided into five groups: the probability inverse, hyponym-based,
hyponym and depth, leaves, and leaves and subsumers. Other methods calculate the weight of
the concepts and are grouped into groups which are the Concepts Frequency (CF), Annotation
Frequency (AF), Top-Down Topology-based (TD), and Bayesian methods. In addition, the
weighting methods could be divided into intensional and extensional ones, where the former
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depends on the structure of the knowledge graph, and the latter depends on the data. The
main limitation of the methods that compute the information content or the weight is that
they do not rely on the analysis task. When changing the goal of the analysis, the methods
will give the same results because the structure and the data are the same. For these reasons,
we introduce in chapter 5 a novel approach for graph weighting based on the analysis task.

Finally, in the cultural heritage field, the work to link all the institutions’ data is in the
beginning, and a lot of contribution is needed to comprise all the contexts in this field. We
provided in section 2.4, an overview of some ontologies that exist in the cultural heritage field
in which we test our analysis propositions. The ontologies do not cover the terminology used
in our context, especially the concepts’ names in the semantic trajectories. Therefore a new
graph is needed to represent the knowledge and the relationships between the concepts.

In the upcoming chapters, we will present our contributions to integrating the domain
experts’ knowledge in matching and mining semantic trajectories and the knowledge-based
weighting regarding the analysis task.
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3.1 Introduction

Computing the similarity between trajectories is a key task for trajectory analysis. For example,
to analyse the peoples’ movements represented as trajectories in a city aiming to extract common
behaviours called patterns, a comparison between the trajectories is required to detect those
interested in the same places and who follow a similar path. Trajectory matching is the process
of calculating the similarity between trajectories. When comparing two trajectories composed
of a sequence of elements each, the matching is performed by comparing each pair of elements
constituting them.

As mentioned in section 2.2.1, there are two types of trajectories. Spatial trajectories,
which are sequences of locations, and semantic trajectories, which are sequences of semantic
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elements. There are several ways to measure the similarity between spatial trajectories, but all
of these measures rely on the spatial distance between one location and another. In the case of
semantic trajectories, the elements that constitute them are not characterized by geographical
coordinates, and they should be compared using suitable measures. In addition, hidden rela-
tionships between the elements of the trajectories may exist, and these can only be identified
by domain experts. For example, suppose that the elements of the trajectories are events, and
suppose that despite having different names, they are still very close, according to the domain
experts. An automatic matching process would not succeed in identifying the closeness between
these events, and they will not be considered as matching ones.

In this chapter we are interested in computing the similarity between the conservation–
restoration histories of the documents at the BnF in order to predict their physical state. The
data describing the different services at the BnF are distributed. Our first objective is to identify,
in the different databases, the relevant information related to the documents’ physical state
and integrate these data into a conservation–restoration history associated to each document,
and containing all the data related to its physical state.

We will first present the process of identification, extraction and integration of this relevant
information to create the conservation–restoration histories, and we present in this chapter a
representation of these histories which will be used in the different analysis tasks presented in
chapter 4.

A critical task in these analyses is comparing and calculating the similarity between the
conservation–restoration trajectories, which we represent as sequences of semantic elements.
As the information about the elements constituting these trajectories have been extracted from
different databases, they are usually expressed using different terminologies. This heterogeneity
is due to the evolution of the terms and codifications over time. For example, data stored
for a long period of time, sometimes years, uses different terminology than data inserted more
recently. The first challenge facing similarity computation is to resolve the heterogeneity of the
terminologies used in the different databases.

Another challenge raised by matching the elements constituting semantic trajectories is that
some elements may have hidden common characteristics and hidden relationships. For example,
assume that two documents Di and Dj have undergone a conservation process labelled by
the BnF as “A1 Réemboîtage, dans couverture d’origin” and “A2 Réemboîtage, dans nouvelle
couverture” respectively. Although the two elements seem different, they actually have the same
purpose and share some common characteristics. It is possible that the relationships between
the elements and their common characteristics are not described anywhere in the databases;
they are known only to the domain experts. In this work, we assume that the domain knowledge
specific to the conservation and restoration field is available and formalized as an ontology. The
problem we are interested in is how to inject the knowledge provided by this ontology in the
similarity computation, and consequently in the analysis process.

In this chapter, we will present an approach to match conservation-restoration trajectories
taking into account external knowledge representing the semantic relationships between the
elements that constitute these trajectories. The rest of this chapter is organized as follows.
The problem statement is provided in section 3.2. We present the extraction of the relevant
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information from the BnF data sources, and the creation of the conservation–restoration histo-
ries in section 3.3. We present the representation of the conservation–restoration trajectories is
section 3.4. The events matching using external knowledge is presented in section 3.5. Section
3.6 presents the evaluation of semantic trajectories similarity. The domain knowledge used in
our approach is described in 3.7 and our experiments are presented in section 3.8. Finally, we
conclude the chapter in section 3.9.

3.2 Problem Statement

The BnF stores more than twenty million of documents, which are described by information
registered in different databases. These documents are associated with different events such as
the degradation observed on them or the treatments they have undergone to keep them in a
good state. Various information related to the documents’ physical state should be considered
when performing the analysis tasks aiming to predict their physical state. These information
are part of the of the documents’ conservation–restoration histories.

Consider that each document is described by a conservation–restoration history extracted
from the BnF databases and stored in an integrated database. The first problem we faced is
how to represent these histories? What is the suitable representation of these histories that
is adequate for future analyses to predict the physical state of a document? Consider a set
of documents DC={d1, d2..., dn}. For each document, we aim to associate a conservation-
restoration history that contains all the relevant data related to its physical state and all the
relevant events that have happened over time. We represent these histories as conservation–
restoration trajectories. Each document di will be represented by a trajectory Tri representing
its conservation restoration history. Each trajectory is a sequence of conservation-restoration
elements. One problem when building such trajectories is the identification of the different
types of elements relevant to characterize a document’s conservation–restoration history.

Given a set of conservation restoration trajectories representing the documents, several
analysis tasks can be performed, all of them relying on the comparison of distinct trajectories.
One key issue in our context is to perform such comparison considering the heterogeneity of
the terminology used to describe conservation–restoration elements in distinct data sources and
the integration of the domain’s experts knowledge in the comparison process. This leads to the
second problem tackled in this chapter, which can be stated as follows: how to evaluate the
similarity between two conservation-restoration trajectories corresponding to distinct documents
taking into account the terminology heterogeneity? To this end, two similarity functions should
be defined:

• Sime(ei, ej), which evaluates the similarity between two elements ei and ej ,

• Sims(Tri, T rj), which calculates the similarity between two trajectories Tri and Trj
representing the conservation histories of the documents di and dj respectively.
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The elements constituting the conservation–restoration histories may have been recorded sev-
eral decades ago. Obviously, the names and types of the elements involved in a history can
be highly different according to the time they have been recorded. Moreover, the lack of a
uniform and standardized vocabulary makes the terminology used in naming the elements very
heterogeneous. Evaluating the similarity between elements and trajectories has to take into
account the possible semantic relationships between elements. For example, a conservation
process recorded for a document twenty years ago may have a different name to an another
process recorded this month, but these two processes might still be very similar, which could
only be identified by a human expert. In our approach, we assume that the knowledge of
conservation-restoration experts exists in a knowledge base. Therefore we aim to integrate this
knowledge in the similarity functions Sime and Sims. In the following sections, we will intro-
duce the identifying of the relevant information in the BnF databases and the creation of the
conservation–restoration histories, their representation as conservation–restoration trajectories,
then we will present our proposal to evaluate both the similarity between elements and between
trajectories.

3.3 Identifying theRelevant InformationandCreatingConservation–
Restoration Histories

The available data sources at the BnF, which provide data about documents, are created
and maintained by different departments, and these sources provide data covering different,
possibly overlapping, aspects of document restoration and conservation. For example, the
collections department database provides data describing the communication of the documents
to the readers requesting them, and the observed degradations on these documents, while
the conservation department’s database stores data about the conservation and restoration
processes performed on the documents to keep them in a good physical state. All the databases
have a different structure, different terminologies and attributes. We aim to extract the relevant
information from these databases. In the following, we will present, in section 3.3.1, the BnF
databases analysis aiming to extract the information that have an impact on the documents’
physical state. Such information should be part of further analysis, thus should constitute the
conservation histories. In section 3.3.2 we present the integration of the relevant data.

3.3.1 Identification of Relevant Information
To find the information that is related to the documents’ physical state and could be used for
analytical tasks, we have started by analysing the databases in the different departments.

The databases contain information about different aspects such as the characteristics of the
documents, the history of conservation–restoration treatments and the communications with
readers. The goal of the analysis is to extract all the available information that can help us to
characterize a document and its physical state at a given point in time.
We have studied the existing databases in order to assess their content. Figure 3.1 shows the
percentage of the null values in a table that contains information about the documents’ physical
characteristics. As we can see in the figure, the completeness of the attributes in the table is not
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Figure 3.1: Completeness of the data describing the documents physical characteristics

very high. In addition, some of the characteristics are important as they represent information
related directly to the documents physical state and could be useful for further analysis such
as the paper type, while other features are not relevant.

In this analysis, we have found three types of information with high completeness, and
which are relevant to be in a conservation–restoration history. The first one is related to
the communication of the documents to the readers, the second one is related to the past
degradations recorded for the documents, and the last one describes the past interventions on
the documents.

The first dimension of the analysis is the communication of documents. We have analysed
the documents average number of communications over different periods of time, and the result
is shown in figure 3.2. The results show the documents’ communication average according to
time periods, which highlights the interest of the readers in the 21st century and a slight increase
in interest between 1841 and 1860. At the same time, and by analyzing the physical state of
the documents depending on their publication date, we have identified possible correlations or
impacts of the communication on the physical state. Figure 3.3 shows the percentage of the
out-of-order documents by year of publication. Starting from 1880, we can see a correlation
between the two graphs, where the communication requests increase and the percentage of out-
of-order also increases. Therefore, we can consider that the communication of the documents
should be a part of the conservation–restoration histories.

The other important information we have identified are the past interventions and the
degradations on the documents. Where the interventions are the conservation–restoration
processes done on the documents to conserve their physical state. This information is distributed
on different databases. The old history of interventions, i.e., before 2013, is stored in a separate
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Figure 3.2: Documents’ communication average by publication time period

database from the history of interventions after 2003. In the following sections, we present the
creation of a database that integrates all the identified important information.

3.3.2 Creation of the Conservation–Restoration Histories Database

We have analysed 30 different databases in the different departments at the BnF containing
more than 300 tables in total. We have built an integrated database containing the relevant data
that has to be taken into account when building the trajectories describing the conservation-
restoration histories. Figure 3.4 shows the tables of the integrated database. The database
contains information about almost twenty million documents. The core table of this database
(Document) includes information on the documents and their physical characteristics. Each
tuple in this table represents a document having an ID as an identifier and characterised by
different attributes such as the title, publication date and the author. In addition, three other
tables, communication, degradation, and treatment are integrated into this database and linked
to the documents. Each row in the communication table represents one request of a reader to
access a document. The attributes in this table represent information related to this request,
such as the reader, the requested document, the date and the place. Each row in the degra-
dation table represents a degradation event on a specific document. The attributes represent
information such as the type of degradation represented by the “description” attribute and the
document on which the degradation was detected. Each row in the conservation process table
represents a conservation–restoration event and its characteristics, such as its type and the
document on which it was performed.

The information in the communication table is extracted from the collections department
database. The collections department tracks the documents’ communication by storing infor-
mation about the readers’ requests to access the hard copy of the documents. In addition to
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Figure 3.3: Out-of-Order by publication year

that, more data related to the request are stored, such as the status of the request, and the date
and the reader identification. The information about the degradation of the documents is also
managed by the collections department, but its information is stored in a separate database.
The database contains information about the old physical state degradations of the documents,
where the domain experts define more than two hundred types of degradation. The stored data
describes these degradations, such as the type of degradation, the damaged part of the docu-
ment, and the date of the detection. The information about the treatment of the documents
is managed by the conservation department. The data related to the treatment describes the
type of the conservation–restoration process that is accomplished on the document, its date,
and the service provider.

3.4 Representationof theConservation–RestorationHistoriesAs
Semantic Trajectories

The conservation–restoration histories contain three types of information: communication,
degradation, and the conservation–restoration process. All this information will be represented
as timestamped events. We represent the conservation–restoration histories as semantic trajec-
tories consisting of sequences of events, which can be related either to the communications of
the document to the readers, to the degradations, or to the conservation–restoration processes.
We define a conservation-restoration trajectory as follows:

Definition 3 Conservation-Restoration Trajectory.
A conservation-restoration trajectory is a sequence of events of this document ordered by their
time. The sequence of events corresponding to a document doci is denoted Tri. It is such that
Tri = [e1, e2, ..., ek], where each ei is an event described by a triple < typei, namei, timei >.
Typei represents the type of the event, namei represents the designation of the event and
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Figure 3.4: Integrated database core tables

timei represents the time at which the event occurred. The possible values for typei are P, D
or C, corresponding respectively to a conservation process, a degradation or a communication
event.

The value of namei in a trajectory depends on the type of the corresponding event. If typei =
P, then the value of namei is the designation of the specific conservation process performed on
the document. If typei = D, then the value of namei is the name of the degradation observed
on the document, and if typei = C, the value of namei is the level of communication of the
document, defined as low, average or high. Obviously, the events are ordered in the sequence
according to the ascending order of timei.

An exploration of the integrated database has showed that there were about 150 different
conservation-restoration processes which could be performed on a document, and 250 different
types of degradations observed by experts on the documents composing their collections.
In order to analyse conservation data, each document will be represented as a conservation-
restoration trajectory consisting of a sequence of events that have happened during the doc-
ument’s life. These events can be either a conservation process performed on a document or
a degradation observed on a document, characterized by a specific designation. It can also be
related to the number of readers who have accessed the document, which can obviously affect
its physical state. Therefore, we also consider a specific kind of event capturing the extent to
which the readers have requested this document. We are not interested in the exact number
of times a document has been requested, we would like instead to characterize the extent to
which a document has been requested. We can do so by assigning three distinct values to the
communication event: low (≤ 4), average (between 4 and 8) and high (≥ 8), these values have
been provided by the domain experts.

Figure 3.5 shows an example of history of events for a given document consisting of sev-
eral readers requests, followed by an “Acidification" degradation observed on the document,
then two conservation processes “Deacidification” and “Mechanical Binding" and finally
a request from a reader. We can see at the bottom of this figure how this history of events
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Figure 3.5: Example of History of Events for a Document and the Corresponding Trajectory

is represented as a trajectory Tr according to our definition. Tr is composed of a commu-
nication event for which the name value is “average", representing the six requests from the
readers in the beginning of the history, then a degradation event, “Acidification", followed
by two conservation processes, “Deacidification" and “Mechanical Binding", and finally a
communication event for which the name value is "low", corresponding in the example to the
request of Reader 7.

3.5 Evaluating Events Similarity

The analysis of the documents’ conservation–restoration histories represented as conservation-
restoration trajectories composed of sequences of events requires the evaluation of the similarity
between each pair of trajectories, which in turn requires the matching of pairs of events, taking
into account the terminological heterogeneity of their description.
When matching trajectories, if two compared events have the same name, they will be consid-
ered as the same event. Because of the different terminology used in the databases, some events
may have different names, but they still could be identical, according to the domain experts.
Therefore, only the domain experts could detect a match between such events. Integrating the
domain experts in the matching process could be very useful when matching events with hid-
den similarities. For this reason, we propose to integrate the experts’ knowledge as an external
source to tackle this challenge when comparing the conservation–restoration trajectories.

If the two compared events have different types, i.e. degradation, conservation process or
communication, then they can not be considered as matching events. If the two compared
events have the same type, and if this type is either P or D, corresponding respectively to a
conservation process or a degradation, then their names are compared to determine if they
match or not. If these names are identical then the events are matching ones. But if the names
are different, this does not mean that the events do not match. Indeed, the terminologies
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used in the description of either the degradations or the conservation processes may differ, or
expressed at different levels of detail according to the source they have been extracted from.
In order to overcome this heterogeneity, we suppose that the semantic relationships between the
elements constituting the trajectories are represented in a knowledge graph in the form of an
ontology, where each event is represented by a concept and their relationships are represented
by links between the concepts. We propose to use this ontology in the process of similarity
computation. Assuming that each event in a trajectory corresponds to a concpet in the on-
tology, the idea is to compute the similarity between the two events based on the relationship
between the two concepts.

In our work, we have initiated an ontology, called CRMBnF that contains concepts repre-
senting all the events that constitute the conservation–restoration trajectories. Figure 3.6 shows
an excerpt of this ontology, initiated in close collaboration with domain experts at the BnF. The
figure shows the relations between CRMBnF and three existing ontologies, CIDOC-CRM[84],
CRMCR[4] and CRMSCI [22], which nodes are represented in green color and dotted lines.
We present the process of creating this ontology in section 3.7. Each concept represents ei-
ther one of the 150 existing conservation-restoration processes or to one of the 250 observed
types of degradations. This ontology is expressed using the languages proposed by the W3C
1 Consortium, RDF/S 2 and OWL 3. Figure 3.6 shows the representation of a subset of both
the conservation processes and the degradations related to documents at the BnF. We have
identified twenty subclasses for the “BnF:Conservation Process” class; two of them, “BnF:Short
Maintenance” and “BnF:Consolidation”, are represented in the figure. We have identified twenty-
two subclasses for the “BnF:Degradation” class, one of them, “BnF:Headband”, is represented
in the figure.
The greater the distance between the node and the root, the more precise the name of the
conservation process or the degradation corresponding to this node. The ontology was created
to provide a unified vocabulary for the events in a conservation history and to help identify the
similar ones beyond their terminological heterogeneity. The subclasses of the “BnF:conservation
Process” class represent the most generic conservation processes; we refer to these as semantic
categories. In the same way, we consider that the twenty-two direct subclasses identified for
the “BnF:Degradation” class are also semantic categories. The comparison of two events ei
and ej is performed by computing a similarity score using the domain ontology. Therefore, to
calculate the similarity between the events using the ontology, we distinguish between different
cases, and for each we characterize the type of the relationship between the events and the
corresponding similarity score.
In the following, we define the relationships between the concepts in section 3.5.1, and we
present event similarity in section 3.5.2.

1https://www.w3.org/2001/sw/wiki/Main_Page2https://www.w3.org/RDF/3https://www.w3.org/OWL/
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Figure 3.6: Excerpt of the CRM–BnF Ontology

3.5.1 Defining Concepts Relationships

Considering an ontology that contains concepts representing all the existing events in the tra-
jectories, we propose to evaluate the similarity between the events according to the relationship
between their corresponding concepts in this ontology. In addition, we propose to consider the
position of the concepts in the ontology to define their relationship.
If we consider the case of two events corresponding to two concepts linked by an equivalence
relationship in the ontology, these events are equivalents and should be matched. Now consider
another example in which on of the two concepts is a subsumer of the other, the events should
not be considered as unmatching events as one of them contains all the characteristics of the
other.

We have distinguished between five distinct cases depending on the concepts positions in
the ontology when comparing two events. Let us consider the concepts corresponding to two
events ei =< type, namei, timei >, and < type, namej , timej > respectively in the ontology.
Let us denote Coi and Coj these two concepts. The similarity score is computed considering
the relative position of Coi and Coj in the ontology, and we can identify five different cases
describe below:

• Case 1: The two concepts Coi and Coj are identical, then the two events ei and ej
correspond both to the same concept in the ontology.

• Case 2: The two concepts Coi and Coj are such that there is a path Pij between them
where all the edges in the path correspond to owl : equivalent Class properties. For
example, the two concepts “BnF:J Dep Maintenance Dusting” and “BnF:J1 Dusting” in
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figure 3.6 fit this case.

• Case 3: The two concepts Coi and Coj are such that there is either a path Pij=[(Coi,
P1, Co1), (Co1, P2, Co2), ...(Cok, Pk+1, Coj)] or a path Pji=[(Coj , P1, Co1), (Co1,
P2, Co2), ...(Cok, Pk+1, Coi)] where for all the edges in the path, the property Px is
the rdfs : subclassOf property for 1 < x < k + 1. In this case, the two events ei and
ej are of the same nature, but one of them is more specific than the other. For example,
the two concepts “BnF:J32 canvas cover level 2” and “BnF:Cover Maintenance” in figure
3.6 fit this case.

• Case 4: The two concepts Coi and Coj are such that there is a concept Cok in the
ontology for which the following two conditions hold: (i) both Coi and Coj are included
in Cok, and (ii) Cok is either a semantic category or is included in a semantic category.
For example, the two concepts “BnF:J31 canvas cover level 1” and “BnF:J32 canvas cover
level 2” in figure 3.6 fit this case.

• Case 5: The two concepts Coi and Coj are such that the nearest common ancestor is
either the concept “BnF:Conservation Process” when the two concepts have a type=P or
the concept “BnF:Degradation” when the two concepts have a type=D. In other words,
the two concepts do not belong to the same semantic category. For example, the two
concepts “BnF:J31 canvas cover level 1” and “BnF:Consolidation” in figure 3.6 fit this
case.

Based on the previous cases, we will define the relationships between the concepts. We distin-
guish between four types of relationships between the events: equivalence (case 1 and case 2),
inclusion (case 3), closeness (case 4) and dissimilarity relationships (case 5). In the following,
we provide the possible relationships, and for each, we show how to discover them in a given
ontology.

Equivalence Relationship.
Let us start with the relationship expressing the highest similarity level, the equivalence. When
it exists between two events, this relationship means that they are the same and that they have
the same characteristics, according to the experts’ opinion.

As mentioned before, this relationship exists between two events if their corresponding
concepts fit in the case 1 or 2 described above. In other words, if the two events are correspond
to the same concept in the ontology (case 1), or if there is a path of equivalence relationships
between the two concepts representing the events (case 2).

Figure 3.7 (b) shows an example of the equivalence relation between the two concepts
“BnF:J1 Dusting” and “BnF:J Deep Maintenance Dusting”, expressed by the OWL:equivalentClass
connection between the two concepts. It is also possible that the path length between the two
concepts is higher than one, i.e. more than one OWL:equivalentClass connection exists to reach
a concept starting from the another.

Inclusion Relationship
An event ei is considered included in another event ej if the former is a particular case of the
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Figure 3.7: Inclusion (a) and Equivalence (b) relationships between concepts

latter. In other words, ei is considered included in ej if the corresponding concept to ei in
the ontology is a sub-concept of the concept corresponding to ej . In addition, the connection
between the two concepts can be indirect, i.e. the length of the path between the concepts
could be higher than one. Figure 3.7 (a) shows an example of the inclusion relation between two
concepts where it is represented by the rdfs:subClassOf connection between the two concepts.

Closeness Relationship
An event ei is considered close to another event ej if these events are represented by two
concepts that have a common super concept in the ontology. Consider the events represented
by the concepts c1 and c2, respectively. In addition, let Consider the set of concepts that
include the two concepts c1 and c2 are SuperC1 and SuperC2, respectively. When SuperC1

and SuperC2 have common elements, this means that c1 and c2 have a same hypernym. We
mention that to consider that closeness is the relationship between two events, the conditions
of the equivalence and the inclusion relationships should not be valid, and that because in these
two cases the concepts have also common super concept.

In the case where the concepts hierarchy is a tree, all the concepts are included in the
same concept, which is the root, and consequently, all the concepts will be considered to have
a closeness relationship. Therefore, more constraints should be added, such as the paths’
maximum length between the concepts in the ontology. In this work, we consider two concepts
are close if they are included in the same semantic category, and the semantic category is
defined as follows:

Definition 4 Semantic Category. A semantic category is a sub-graph of the ontology that
starts from a concept and contains all of its sub-concepts. The semantic categories can not
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Figure 3.8: Dissimilarity (a) and Closeness (b) relationships between concepts

intersect. The semantic categories in this work starts from the concepts that are directly
sub-concepts of the conservation process or the degradation concepts.

Figure 3.8 (b) shows an example of the closeness relationship between the two concepts
“BnF:Consolidation document body” and “BnF:Consolidation Document cover”.

Dissimilarity Relationship
The last relationship is when two events are dissimilar, and they do not share any common
characteristics. This relationship is valid when none of the previous relationships is valid. In
other words, this relationship is valid when the concepts representing the two events are in
two different semantic categories. Figure 3.8 (a) shows an example of the dissimilarity relation
between the two concepts “BnF:Consolidation document body” and “BnF:J Dep Maintenance
Dusting”.

3.5.2 Event Similarity Score

The similarity between two events is related to the position of their corresponding concepts
in the ontology. Different information could be derived from the concepts’ positions such as
their relationship type and the distance between them. The distance between two concepts in
a graph is determined by the shortest path of a precise relationship.

In our work, the similarity score ranges between 0 and 1, and we propose to distinguish
between the importance of each relationship by defining a ranking between the different types
of relationships defined in the previous section. The highest score is reached if the concepts



3.5. EVALUATING EVENTS SIMILARITY 81
are identical or equivalent. The lowest score is reached when the concepts are dissimilar. We
consider that the similarity score for the inclusion relationship should always be higher than the
similarity score of the closeness relationship.

Furthermore, when there is an inclusion or a closeness relationship between two concepts,
we consider that the path length between the two concepts should be reflected in the similarity
score: the shorter the path, the higher the score. The similarity score corresponding to each of
them is defined as follows:

Definition 5 Similarity Score. Consider two events ei and ej corresponding to two concepts
Ci and Cj respectively.

• Equivalence. The similarity score for two equivalent events is equal to 1.

• Inclusion. The similarity score for two events ei and ej , such that Ci is included in Cj

is comprised in the range [α, 1[ and defined as follows:

1− (1− α)× |Pij |
depth(CRMBnF )

where |Pij | is the length of the path Pij between Ci and Cj , and the depth function
return the length of the longest inclusion path in CRMBnF , i.e. the longest path with
rdfs : subclassOf properties.

• Closenesss. The similarity score for two events ei and ej , where they corresponding
concepts are both included in a third concept Ck is comprised in the range ]0, α[ and
defined as follows:

α− α×
(|Pik|+ |Pjk|)/2
depth(CRMBnF )

• Dissimilarity. If this relationship holds between two events, the similarity score is equal
to 0.

The equations of the inclusion and the closeness depend on two parameters. The first one
is α, which is an arbitrary value which purpose is only to represent the total order relation
defined between the scores corresponding to equivalence, inclusion, closeness and dissimilarity
relationships.
The second factor is the relative size of the path between the two compared concepts to the
depth of the ontology. When the two concepts are the farthest in the ontology, i.e. longest
possible path, this means that they are the less similar among all the concepts along this path,
and they should have the minimum possible similarity score.

To illustrate why we are interested in the relative size of the path between the two compared
concepts to the depth of the hierarchy, consider the hierarchy in figure 3.9. The depth of the
hierarchy is equal to four, and the relationship between all the concepts is inclusion. It is
obvious how the "Conditioning with custom light box with filler" concept share more common
characteristics with the "conditioning with box" than the concept "treatment". Using the
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Figure 3.9: Hierarchy of conservation concepts

predefined equation to compute the inclusion similarity, its similarity to the two concepts will
be equal to 1-(1-α)×2

4=
α+1
2 , and α respectively. With α+1

2 > α when 0 < α < 1.
The similarity score between two events will be used to define the similarity between

conservation-restoration trajectories which is presented in the following section.

3.6 Evaluating of Trajectories Similarity

Evaluating the similarity between trajectories has been addressed by different streams of works,
such as semantic trajectories analysis, which involves the evaluation of the similarity between the
elements of the trajectory, generally associated with a location, or in the context of string com-
parisons, where the sequence is a string composed of characters and where distance functions
have been proposed to evaluate string similarity. In all of these works, the proposed measures to
calculate trajectory similarity have distinct characteristics, as discussed in the survey presented
in [108].
The requirements for a similarity measure suitable for our context where trajectories represent
histories of conservation events are the followings.

• First, the measure should not depend on the event’s position, i.e. its index. Two similar
events from two trajectories can match regardless of their positions.

• Another requirement is that the measure should depend on the event’s order. For exam-
ple, if there is a match between two events ei and ej from two distinct trajectories, then
any following match between the events ei′ and ej′ is possible only if i′ > i and j′ > j.

• The measure should be independent from the event’s time. Two similar events from two
trajectories can be matched regardless of their time feature.
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• Finally, the measure should rely on a single match for each event, which means that there

is at most one match for a given event.

According to conservation experts, the order and the number of occurrences of the events are
essential. Therefore the matching should be single and depends on the order of the events.
In addition, as the length of the trajectories is different and the matching should be single,
it also should be partial. The time and the event’s position in the trajectory, i.e., index, are
unimportant. After analysing different similarity measures, as shown in chapter 2, we have
chosen the Longest Common SubSequence (LCSS) [87] measure among the ones that respect
the requirements to be the basis of the conservation–restoration trajectory similarity evaluation.
The LCSS measure is a partial match measure. It calculates the longest common subsequence
of two compared trajectories. When applied on spatial trajectories, LCSS considers two points
of two different trajectories to be a match if the distance between the two locations is less than
a given threshold ϵ and for every match it increase the longest common subsequence by one.
We present hereafter the definition of LCSS as stated in [108].

Definition 6 Longest Common SubSequence (LCSS)

SLCSS(Tri, T rj) =



∅, if li = 0 or lj = 0

SLCSS(Rest(Tri), Rest(Trj)) + 1, if d(H(Tri), H(Trj)) ≤ ϵ

max{SLCSS(Tri, Rest(Trj)), SLCSS(Rest(Tri), T rj)}, otherwise

(3.1)

With li and lj representing the length of Tri and Trj respectively. The H function returns the
first event in the trajectory, and the Rest function returns the trajectory without its first event.

The LCSS measure can be also used with semantic trajectories by matching the identical events,
and by increasing the longest common subsequence by one for each matching pair.

Figure 3.10 shows an example of the similarity computation between two semantic trajec-
tories using LCSS. The measure starts by comparing the first events in the trajectories, and as
they are identical, they will be matched, and the similarity will increase by one. The measure
continues with the rest of the two trajectories and considers again the first events, which are
events B and event C, which are not the same. The measure continues to find the second
match between events C in the two trajectories, and the similarity will be increased by one.
Once the end of one of the two trajectories is reached, the final score is the similarity score
between the trajectories, and in this example, the score is equal to two.

In order to take into account the terminology heterogeneity, we propose the Longest Com-
mon Events SubSequence LCESS measure [134], an extended definition of LCSS. LCESS

is an ontology-based measure that calculates the maximum possible matches between two se-
mantic trajectories. When comparing two events, LCESS compute their similarity according
to the event similarity introduced in section 3.5. It is defined as follows:

Definition 7 Longest Common Events SubSequence (LCESS)
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Figure 3.10: Computing the LCSS measure between two trajectories

LCESS(Tri, T rj) =



∅, if li = 0 or lj = 0

LCESS(Rest(Tri), Rest(Trj)) + 1, if Sime(H(Tri), H(Trj)) = 1

max{LCESS(Tri, Rest(Trj)), LCESS(Rest(Tri), T rj),

LCESS(Rest(Tri), Rest(Trj)) + Sime(H(Tri), H(Trj))} if 0 < Sime(H(Tri), H(Trj)) < 1

max{LCESS(Tri, Rest(Trj)), LCESS(Rest(Tri), T rj)} otherwise

(3.2)

With li and lj representing the length of Tri and Trj respectively. The H function returns the
first event in the trajectory, and the Rest function returns the trajectory without its first event.

When matching two events ei and ej from two trajectories, there are three possible cases:

• Sime(ei, ej)=1. The two events are equivalent, they are considered as matching events.

• Sime(ei, ej) ∈ ]0, 1[. The relationship between the two events is either inclusion or
closeness. In this case, they are considered as matching events if there are no other
matching event with a higher similarity score.

• Sime(ei, ej)=0. The two events are dissimilar and they are not matching events.

The similarity score Sims and the distance dis between two trajectories Tri and Trj are defined
as follow:

Sims(Tri, T rj) =
LCESS(Tri, T rj)

li + lj − LCESS(Tri, T rj)
(3.3)
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Figure 3.11: LCSS for Matching Conservation–Restoration Trajectories

dis(Tri, T rj) = 1− sims(Tri, T rj) (3.4)

By using LCSS on sequences of events, only identical elements can be matched. Figure
3.11 shows an example of the similarity computation between two semantic trajectories using
LCSS, where only identical events are considered as matching ones. The algorithm starts by
comparing the first events in the trajectories, i.e., “Digitization” and “Acidification”. As
they are different, it will continue by computing the similarity between Tri and the rest of
Trj , and the similarity between the rest of Tri and Trj , where the rest of a trajectory is the
trajectory without its first event. The first match is between the “Acidification” events as
they are identical. The algorithm continues until it reaches the end of one of the trajectories.
In this example, no new matches are found, and the longest common sub-sequence is equal to
1. Regardless of the similarity between the events in these two trajectories, the LCSS measure
matches only one pair of events.

Therefore, the main difference between LCSS and LCESS is that the latter takes into
consideration the relationships between the concepts corresponding to the events names in the
ontology. For each match, LCESS increases the total score by the similarity score between
the two matching events. Note that in this work, our goal is to refine the matching between
trajectories and propose a measure which enables to identify more matching elements beyond
the identical ones, it is possible to further refine this measure, for example by taking into ac-
count the length of the trajectories.
Note that LCESS can be used to calculate the similarity between semantic trajectories in
other contexts, provided that the suitable domain ontology is provided, representing the seman-
tic relationships between elements in the trajectories of the considered domain.

Figure 3.12 shows an example of the similarity computation between two semantic trajec-
tories using LCESS. Considering the graph containing concepts representing the events A, A’,
and B and their relationships in Figure 3.12 (a). AS A and A’ have a common super concept
B’, the relationship between them is closeness, and the relationship between these two concepts
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Figure 3.12: Example on the LCESS measure

with B’ is inclusion. Therefore the similarities Sime(B
′, A) and Sime(B

′, A′) are higher than
Sime(A,A

′).
The process starts by comparing the first two events from the two trajectories, where the sim-
ilarity is supposed to be equal to 0.6. These two events are a possible match if no better
match exists. Therefore, the search continues to find a better match where the best first match
is between A and B’ with a similarity score equal to 0.8. The measure continues and finds
another match between identical events (Event C) with a similarity equal to one as they have
an equivalence relationship. The process finishes the computation when it achieves the end of
one of the two trajectories, and the final similarity score is equal to 1.8.
By using LCSS on these two trajectories, the similarity score will be equal to one with only one
match between identical events.

Figure 3.13 shows a comparison between the matching using both LCSS and LCESS on
two conservation-restoration trajectories Tri and Trj of two documents Di and Dj respec-
tively.
Using LCESS, the similarity score is increased as new matching pairs of events are iden-
tified. The algorithm starts by comparing the first events. As they are dissimilar, it will
then compute the similarity between Tri and the rest of Trj , and the similarity between
the rest of Tri and Trj , similarly to LCSS. The first identified match is between the two
“acidification” events. The algorithm continues with the rest of the trajectories, and other
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Figure 3.13: LCSS vs LCESS for Matching Conservation-Restoration Trajectories

matches are found, the first between the “Short maintenance" and the “Cleaning” events
as they have an inclusion relationship, and the second between the “Canvas cover level 1”

and “Leather cover level 2” events as they have a closeness relationship. This will result
in a longest common events subsequence of length equal to 1+SIMe( Short Maintenance,
Cleaning) +SIMe( Canvas cover level 1, Leather cover level 2). The relationship be-
tween the “Short maintenance" and the “Cleaning" events is an inclusion relationship, and
the path length between them is equal to one. Assume that the depth of CRMBnF is equal to
6 and α is equal to 0.7. The similarity score between the two events is therefore equal to 0.94.
The relationship between the “Canvas cover level 1" and the “Leather cover level 2" events
is a closeness relationship, as the nearest common ancestor between the concepts corresponding
to the event names is the “BnF : Cover Maintenance" as shown in figure 3.6. The distance
between the two events and their ancestor is equal to 2, therefore, the similarity score between
the two events is equal to 0.47, and the LCESS similarity between the two trajectories is equal
to 2.41.

3.7 TowardsAnontology for Conservation-RestorationAt theBnF

Several ontologies have been proposed in the cultural heritage field, as we have seen in section
2.4. Some of these ontologies are CIDOC − CRM [84], CRMCR[4] and CRMSCI [22]. The
problem is that they are not suitable to our context as they do not cover the terminology used
by the conservation–restoration experts at the BnF. As the existing ontologies are not usable
in our work, we have initiated, in collaboration with domain experts, a core of an ontology
composed of a hierarchy of concepts representing the relationships between them.
We present in this section a terminology extracted from the existing databases and validated by
domain experts which can be used to bridge the terminological gap between different databases
at the BnF. This terminology is expressed as an OWL4 ontology; it represents the concepts
and the relationships between them, and could be used for data integration as well as data

4https://www.w3.org/2001/sw/wiki/OWL
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publishing and exchange between organizations in the conservation domain.
In this section, we introduce the CRMBnF ontology and its creation process. The ontology
describes the field of conservation-restoration at the BnF. The creation process consisted of
three stages. The first one is the identification of the concepts that should be represented in
the ontology, which has been performed through the analysis of the databases in the different
departments of the BnF. During the second stage, the relationships between these concepts are
identified in cooperation with the domain experts. The first two stages are presented in section
3.7.1. The last stage presented in section 3.7.2 transforms the concepts into resources of the
ontology, and the relationships into properties and RDF/OWL5 triples.

3.7.1 Concepts and Relationships Identification

In order to create our ontology, we have first identified the set of relevant concepts. We have
defined these concepts as the ones representing the events in the conservation–restoration tra-
jectories, which will be inserted in the ontology. These concepts have been extracted from the
available databases. We have then identified the relationships between these concepts through
a methodology enabling the expert to assess the nature of the link between each pair of concept,
and derive the appropriate properties to be inserted in the ontology. These two processes are
described hereafter.

Concepts Identification.
According to domain experts, two types of events can affect the documents’ physical state
and that should be represented in the ontology: the conservation-restoration processes and
the degradations. By analysing the integrated conservation–restoration database represented
in section 3.3.2, we have identified all the types of conservation–restoration processes as well
as the types of the possible degradations. The database stores documents’ events history gen-
erated by different departments. We have identified around 250 different types of degradations
and 150 different types of conservation–restoration processes.

In the data instances, there is a codification of the events to indicate their purpose. The
domain experts at the BnF have added these terms to indicate the events with a similar pur-
pose. Based on these terms, we have grouped the events having the same purpose, and we have
identified 19 high-level conservation–restoration groups from the 150 existing events. We have
applied the same process on the degradation events, and we have identified 8 high-level degra-
dation events groups from the 250 recorded degradations. Figure 3.14 shows the eight most
frequent conservation-restoration and degradation events groups and the number the different
events in each group. These groups and events will serve as a basis to identify the concepts of
the CRM–BnF ontology.

5https://www.w3.org/RDF/
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Figure 3.14: Groups of Events in the Existing Databases

Relationships Identification.
In order to identify the semantic links between the concepts, we have considered separately each
of the groups of identified conservation restoration processes as well as the sets of identified
degradation types. For each group, we have analysed with the experts the events it contains and
the relationships between them. We have defined four types of relationships between the events,
which are presented and validated by the domain experts, and for each pair of events ei and ej ,
the experts were asked to choose the most appropriate. The events are considered dissimilar
in case where none of the relationships are applicable. The relationship types are the followings.

Relationships Types

• Equivalence: This relationship expresses the fact that the events ei and ej are equivalent.
It is denoted ei ≡ ej .

• Specialization: This relationship expresses the fact that ej is a higher-level event than
ei. ej has several specialized lower-level events, one of them being ei. The event ei
shares the same characteristics as ej , but can also have specific ones. This relationship
is denoted ei ⊆ ej .

• Generalization: This relationship expresses the fact that ei is a higher-level event than
ej . In other words, ei has several specialized lower-level events, one of them being ej .
This relationship is denoted ei ⊇ ej .

• Similarity: This relationship expresses the fact that the events ei and ej share some
common characteristics, but none of them is a generalization or a specialization of the
other. This relationship is denoted ei ≈ ej .

Constraints over the relationships
In order to avoid introducing some inconsistencies when inserting new triples and properties
in the ontology, we have defined a set of rules. The two first ones ensures that there is no
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Figure 3.15: Mechanical binding group and the relationships between the concepts

inconsistency in both the specified generalisation or the specialisation relationships. The third
one ensures the consistency of the equivalence relationships between the concepts. Automatic
validation is performed to ensure that these rules are not violated. Given three events ei, ej
and ek, we define the three rules as follows:

• Rule 1 : ei ⊇ ej AND ej ⊇ ek → ei ̸≡ ek AND ei ⊈ ek

This first rule aims to avoid the loops in the generalization relationships. If ei ⊇ ej and
ej ⊇ ek, then both the relationships ei ≡ ek and ei ⊆ ek are inconsistent.

• Rule 2 : ei ⊆ ej AND ej ⊆ ek → ei ̸≡ ek AND ei ⊉ ek

This second rule aims to avoid the loops of the specialization relationships. If ei ⊆ ej
and ej ⊆ ek, then both the relationships ei ≡ ek and ei ⊇ ek are inconsistent.

• Rule 3 : ei ≡ ej AND ej ≡ ek → ei ≡ ek

This third rule aims to avoid inconsistent equivalence relationships. If ei ≡ ej and
ej ≡ ek, then the only possible relationship between ei and ek is the equivalence, i.e.,
ei ≡ ek

Figure 3.15 shows one of the events groups called “the mechanical binding”, which contains
nine concepts. The matrix show the relationship between each pair of concepts identified in
collaboration with the domain experts.
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3.7.2 Initiating the CRMBnF Ontology
CRM–BnF is the first step towards a unified terminology in the field of conservation-restoration
in the libraries and towards a well defined vocabulary in this field. This unified terminology
will encourage data sharing and the data exchange between the conservation-restoration de-
partments at the BnF and beyond. To understand the transformation process, we define the
ontology as follows:

Definition 8 (Ontology) An ontology is a formal, explicit specification of a shared conceptu-
alisation [107].
We represent the ontology as a graph G = (N,E) where N is the set of concepts, and E is
the set of edges or properties.

The ontology represents all the types of events that can affect a document physical state. We
have identified and represented two categories of types of events in the ontology. The first type
is the conservation process which represent the events which aim is to improve the physical
state of the documents and to fix the detected degradations. The second type is the degrada-
tion, which represents all the possible alterations in the documents physical state. The creation
process consists firstly in the transformation of each group of events into a specific concept
representing this category in the ontology, then the events are transformed into concepts, each
one represented by a node in the graph. Finally, the properties between concepts are identified,
and added as edges between the corresponding nodes in the graph.

Initializing the Ontology
In the graph G(N, E) representing the ontology, the root node owl : Thing is added to
the set of nodes N . The node Event is then added to N , and the edge < Event, rdfs :

subClassOf, owl : Thing > is inserted in the set E. Two nodes are then introduced,
namely Conservation Process and Degradation, and added to the set N . Then the two
edges < Conservation Process, rdfs : subClassOf,Event > and < Degradation, rdfs :

subClassOf,Event > are added to the set E.

Transforming Groups of Events
In collaboration with the conservation–restoration experts at the BnF, and after identifying the
groups of similar events according to the codification in their name, we have grouped the events
into more specific groups according to their similarity. In the ontology, we propose to represent
the similar events that share some characteristics by concepts that are subclasses of the same
concept that represent these common characteristics. For each group Gi, associated with the
label Li extracted from the corresponding database and representing the purpose of this group,
the following actions are executed:

• A new node ni is added to the set N .

• A new edge < ni, rdfs : label, Li > is added to the set E.

• If Gi is a group representing conservation events, then a new edge < ni, rdfs : subClassOf,

Conservation Process > is added to the set E.
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Figure 3.16: High-Level Concepts in the CRMBnF Ontology

• If Gi is a group representing degradation events, then a new edge < ni, rdfs : subClassOf,

Degradation > is added to the set E.

In the ontology, the nodes will form two rdfs:subClassOf hierarchies: one corresponding to
degradations, and the other to the conservation processes. Figure 3.16 shows the two hier-
archies, with their respective root “Conservation Process” and “Degradation”, represented as
sub-classes of Event. Each child node of both “Conservation Process” and “Degradation” con-
cepts represents a group of events having the same purpose. The upper node in the hierarchical
structure is the Event node created during the initialization step. The figure also shows three
owl : equivalentClass links to external nodes in other existing ontologies in the field of cul-
tural heritage and conservation-restoration, represented in blue.

Transforming the events and defining the properties
In the CRM–BnF ontology, represented by the graph G(N, E), each sub-class ci of the Conser-
vation Process and Degradation nodes represents a group of events having the same purpose,
extracted from the explored databases. For each event ei in the sub-class ci, a node denoted ni

is added in the set N, and the edge < ni, rdfs : subClassOf, ci > is added to the set E. Other
properties are identified considering the relationships stated by the experts. The generalization,
the specialization and the similarity relationships are transformed into new edges in the set E,
corresponding to triples with the rdfs : subClassOf property. The equivalence relationship is
transformed into a new edge in E corresponding to a triple with the owl : sameAs property.
Consider the two events ei and ej with their corresponding nodes ni and nj respectively in the
ontology represented by the graph G(N, E). We define four transformation rules to generate
new properties in the ontology:

Rule 1 If ei ⊇ ej , then a new edge < nj , rdfs:subClassOf, ni > is added in the set E.

Rule 2 If ei ⊆ ej , then a new edge < ni, rdfs:subClassOf, nj > is added in the set E.

Rule 3 If ei ≡ ej , then a new edge < ni, owl:sameAs, nj > is added in the set E.
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Figure 3.17: Adding Concepts and Properties in CRMBnF

Rule 4 If ei ≈ ej , then a new node nk that represents the common characteristics between
the two events is added to the set N ; the experts assign a label Lk to nk, then a new triple
< nk, rdfs : label, Lk > is added to the set E. Finally, the two following triples are added in
the set E:
< ni, rdfs : subClassOf, nk > and < nj , rdfs : subClassOf, nk >.

Figure 3.17 shows an expert of CRMBnF that represents the nodes and the relationships of
the Conditioning group after the application of the transformation rules. Two new nodes
were added by the experts, the “Box" node and the “Pouch" node, to represent the common
characteristics between the pairs of similar events (2, 7) and (4, 5) respectively. For conciseness,
we have denoted some nodes by the ID of the corresponding. Figure 3.18 shows the size of the
ontology after the transformation process, and we provide in the appendix A some dimensions
of the ontology

3.8 Experimental Evaluation

In this section, we evaluate the process proposed in this chapter for the matching between
trajectories. We are interested in showing how much the LCESS measure can increase the
number of matches between events when comparing the trajectories. In addition, we present
how this increase in the number of matches affects the similarity between the trajectories.
Finally, we are interested in showing the quality of the new matches using LCESS by showing
how LCESS increases the similarity between the trajectories of the documents having similar
conservation–restoration histories based on the opinion of the domain experts.
The experiments presented in this section consist of three parts. The first one is related to
event matching, where we show the effectiveness of the use of the ontology for searching for
matching events. The second part of the experiments is related to the trajectory similarity.
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Figure 3.18: CRMBnF Ontology

The third part shows the effectiveness of the ontology and the similarity measure using a set of
clusters generated manually by domain experts as a gold standard.

In the experiments, we have used real datasets from the BnF, with 7,317,558 conservation
events between 2003 and 2020 for 1,946,760 documents. In our datasets, the maximum tra-
jectory length is 1397 events, the minimum length is 1 event, and the average length is 3.75.

3.8.1 Event Matching

This part of the experiments aims to show how the use of the ontology during event matching
improves the results. We run our approach three times on 100 randomly selected trajectories
each time. Figure 3.19 (a) shows a comparison between the number of pairs of matching events
found after running the three tests with and without the use of the ontology. The first test was
done on 100 trajectories containing 120 events in total. The results are shown in figure 3.19
(a), showing that 1242 matching events are retrieved without the use of the ontology, while
1663 are retrieved using the ontology. This represents an increase of 33.89%. The second test
was done on 100 trajectories containing 173 events in total. Without using the ontology, 1481
pairs of matching events are found. Using the ontology, this number rises to 2034, showing an
increase of 37.33%. The third test was done on 100 trajectories containing 295 events in total.
Without using the ontology 2473 matching events are detected, and using the ontology, the
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Figure 3.19: Ontology-Based Event Matching (a) and Trajectory Similarity (b)
number of retrieved matching events is 3288, which represents an increase of 32.95%. These
tests show a good increase of the number of matching events using the ontology, with an
average of 34.72%.

3.8.2 Trajectories Similarity

To show the impact of using the ontology in the evaluation of the similarity between trajecto-
ries, we have randomly selected a trajectory Tr and compared it with a set TrSet of 10000
randomly selected trajectories. We have calculated the similarities between Tr and all the
trajectories in the set TrSet without using the ontology i.e., using the LCSS measure. We
have then selected those having a similarity greater than half of the length of Tr. We have
performed the same experiment using the ontology i.e., LCESS measure. Finally, we com-
pare the number of trajectories having a similarity greater than half of the length of Tr using
the two measures. Figure 3.19 (b) shows the number of trajectories which are similar to the
input trajectory before and after the use of the CRMBnF . The input of the experiment was
a random trajectory Tr = [< C, “High”, t0 − t2 >, < P, “Manual Binding”, t4 >, <

P, “1/2 Cover”, t6 >, < C, “Lowȷ, t9− t10 >] with a length equal to 4. The output shows
the number of trajectories which have a similarity between 2 and 4 with Tr. The number of
trajectories having a similarity greater than 2 without using the ontology was equal to 694.
The number increased to 1504 using the ontology, which is an increase of 116.71%. The total
similarity average without using the ontology is 0.8 and increases to 0.95.

3.8.3 Quality of the Matching Algorithm

This experiment aims to show the effectiveness of using CRMBnF and the LCESS measure by
comparing the computed similarity to a gold standard. In our case, this gold standard is a set
of similarities between trajectories set by the conservation experts at the BnF. We started the
experiment by selecting a random set of trajectories to be clustered manually by the conservation
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experts. We selected a set of 20 trajectories and provided them to the experts. They clustered
14 trajectories into 3 clusters; the 6 remaining trajectories were not assigned to any cluster
as they were not similar to any other trajectory according to the experts. Let us denote the
resulting clusters by Cl1, Cl2 and Cl3. They contain respectively 5, 4 and 5 trajectories. For
the set of considered trajectories, we will compute events matches with and without the use of
CRMBnF , and compare the results. The use of the ontology should significantly increase the
number of matching events inside the clusters defined by the experts. The number of matches
between events from different clusters should not vary significantly.

We distinguish between two situations during event matching, the compared events could
either belong to trajectories from the same cluster or to trajectories from different clusters. For
each cluster, we compute the number of intra-cluster matches between events. For the cluster
Cli, this number is equal to the number of event matches between all the pairs of trajectories
that belong to cluster Cli. We also compute the number of inter-cluster matches between two
clusters Cli and Clj . This number is equal to the number of pairs of matching events (ei, ej)
such that ei is an event of a trajectory in Cli and ej is an event of a trajectory in Clj .
We define these two numbers as follows. In the definitions, we denote EM the function which
returns, for two trajectories, the number of matching events between them.

• Number of intra-cluster matches of the cluster Clx :
Intra(Clx) =

∑
EM(tri, trj) where tri and trj ∈ Clx for 1 < i < n, 1 < j < n and

i ̸= j, and where n is the total number of trajectories in the cluster Clx.

• Number of inter-cluster matches between two clusters Clx and Cly:
Inter(Clx, Cly) =

∑
EM(tri, trj) where tri ∈ Clx and trj ∈ Cy for 1 < i < n,

1 < j < m and i ̸= j, where n and m are the number of trajectories in the clusters Clx
and Cly respectively.

Figure 3.20 (a) shows the number of intra-cluster and inter-cluster event matches for the clusters
defined by the experts using LCSS. The number of intra-cluster matches for the clusters Cl1, Cl2
and Cl3 is equal respectively to 11, 10 and 13. The number of inter-cluster event matches are
as follows: Inter(Cl1, Cl2) is equal to 17, Inter(Cl1, Cl3) is equal to 8 and Inter(Cl2, Cl3)

is equal to 21.
The goal of LCESS is to increase the similarity between the trajectories assigned to the same

cluster by the experts, i.e. the similar ones, which requires the increase of the number of event
matches between them. Therefore, the use of LCESS should notably increase the number of
intra-cluster event matches regardless of the total number of inter and intra matches, which
depends on both the number of the trajectories in the clusters and the length of the trajectories.
We show the effectiveness of using the LCESS measure and the ontology by representing the
increasing percentage of the two types of event matches. Figure 3.20 (b) shows the new
numbers using LCESS. The number of intra-cluster event matches of Cl1, Cl2 and Cl3 is
equal to 21, 17 and 25 respectively. The number of inter-cluster event matches are as follows:
Inter(Cl1, Cl2) is equal to 18, Inter(Cl1, Cl3) is equal to 8 and Inter(Cl2, Cl3) is equal to
27. The total number of inter-cluster event matches is computed as follows: Inter(Cl1, Cl2) +
Inter(Cl1, Cl3) + Inter(Cl2, Cl3). It was equal to 46 and was increased by 7 new matches,
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Figure 3.20: Numbers of Inter-Cluster and Intra-Cluster Event Matches Using LCSS (a) and LCESS(b)
which represents an increase of 15.2%. The total number of inter-cluster event matches is
computed as follows: Intra(Cl1) + Intra(Cl2) + Intra(Cl3). It was equal to 34 and was
increased by 29 new matches, which represents and increase of 85.2%. As we can see, using the
LCSS measure, the total number of the inter-cluster event matches was higher than the total
number of the intra-cluster event matches, which is contradictory considering that trajectories
in same cluster are more similar according to the experts. Using the LCESS measure, the total
number of the intra-cluster event matches is equal to 63 and for the inter-cluster is equal to
53.

The use of the ontology results in a high increase of the number of intra-cluster event
matches, which in turn increases the similarity between the trajectories in the same cluster.
The inter-cluster event matches has increased by 15%, which is not significant, especially
compared to the increase of the number of intra-cluster matches. This result also shows the
validity of the ontology and the identified relations between concepts, as they represent the
actual existing relationships between conservation events and thus enable accurate similarity
evaluation between conservation-restoration trajectories. The results show the usefulness of the
similarity measure based on the ontology where the similarity values between the trajectories
that are similar in the expert’s opinion increase significantly compared to those that are not
similar.
In addition, the results shows that the use of LCESS in the clustering process of the trajectories
provides better results as it matches more events between the similar trajectories

3.9 Conclusion

In this chapter, we have proposed a representation of documents conservation data as conservation-
restoration trajectories. We have proposed a process to evaluate the similarity between two given
events using an external source represented as an ontology. In addition, we have also proposed
an adaptation of an existing trajectory similarity measure to take into account our ontology-
based event similarity measure. Finally, we have introduced an ontological model dedicated to
encompassing the main conservation and restoration concepts at the BnF.
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The proposed process to evaluate the similarity between two given events using an onto-
logical model is based on our proposed relationships between the concepts.We have proposed
the LCESS similarity measure, which is an extension of the LCSS measure that consider the
semantic relationships between the elements constituting the trajectories. It also searches the
maximum possible similarity score. Finally, the introduced ontological model is a first step to-
wards an ontology for conservation-restoration data in libraries. This ontology, called CRMBnF ,
has been initiated to solve the terminological conflicts arising when heterogeneous databases
are compared and integrated. It contains the concepts related to conservation processes as well
as document degradations, and the semantic relationships between them. Both concepts and
relationships have been identified from the data stored in the existing databases, and validated
in collaboration with the domain experts.

The experiments have shown that our approach improves the precision of the matching pro-
cess. This work shows the ontological model’s usefulness for expert knowledge representation
and trajectory similarity computation.

Future works will include further enrichment of the proposed ontological model by introduc-
ing more relevant properties, such as the physical characteristics of the documents, which could
be helpful to be integrated into the analysis process. In addition to extending the proposed
similarity measures exploiting these properties.
Another line of work would be to introduce reasoning capabilities to our similarity computation,
which would enable us to take into account not only the knowledge explicitly provided in the
model but also the one which could be derived through inference.
Finally, we mention that our proposed matching process can be used in different contexts with
different semantic trajectories by providing a suitable external source representing the semantic
relationship between the elements.
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4.1 Introduction

The BnF stores approximately 20 million documents. In order to detect their degradation at an
early stage, it is essential to check their physical state continuously to classify the documents
as available or deteriorated; this task is time-consuming and impossible in practice due to the
large volume of documents. Instead of a manual assessment of the documents, we propose
an approach which analyse the conservation–restoration trajectories introduced in chapter 3 in
order to predict the documents physical state. An early detection of the deteriorated docu-
ments will help to minimize the number of documents which physical state might deteriorate
to the point that they become no longer available to the readers. The early identification of
the documents which are likely to deteriorate would be beneficial to the experts to prioritize
the ones which have to undergo some conservation processes in order to prevent further major
degradations and to define their conservation policies.

Experts define various risk scenarios that should not happen to stop the documents from
degrading. For example, some types of treatment followed by high communication can indicate
that the documents are at risk of being degraded again. But it is impossible for experts to define
all the scenarios or find the all the correlations between the conservation-restoration trajectories

99
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and the physical state.

In this chapter, we propose an analysis pipeline which aims to detect discriminative events
or sequences of events that can serve as a basis to define rules to predict the physical state of
the documents. The prediction relies on the identification of the trajectory patterns which are
most representative of either the deteriorated documents, or the ones in a good physical state.

The prediction of the documents’ physical state based on the analysis of its conservation–
restoration history is a complex problem as no event could help directly identify the physical
state. In addition, documents with similar conservation–restoration history may have different
physical states.
The proposed analysis pipeline is formed of different modules in order to achieve such prediction.
It relies on trajectory clustering aiming to characterize each class of document, deteriorated
and available, by a set of trajectory patterns [133]. The clustering algorithm uses the LCESS
similarity measure introduced in chapter 3. The physical state of a document is predicted
by assessing the similarity between its trajectory and the generated patterns to determine the
document’s class. In this chapter, we present the trajectory analysis pipeline to achieve such
prediction on the documents’ physical state. The rest of this chapter is organized as follows.
The pipeline overview to build the prediction system is presented in section 4.2. Section 4.3
presents the conservation–restoration trajectory clustering, and section 4.4 presents the patterns
extraction and the generation of the prediction rules. A prototype of clustering and filtering is
presented in section 4.5. Our prediction experiments are presented in section 4.6. Finally, we
conclude the chapter in section 4.7.

4.2 Conservation Data Analysis Pipeline

The ability to predict the physical state of documents enables the identification of the deteri-
orated documents without having to manually check their state. Such prediction could done
by analysing the data that is related to the documents physical state, which we represent as
conservation–restoration trajectories composed of relevant events. Based on such prediction,
the conservation experts will be able to target the documents which are at higher risk of dete-
rioration.

Consider the sets of conservation trajectories A and D, corresponding respectively to the
trajectories of the available documents and the trajectories of the deteriorated documents. The
physical state of a document can be predicted based on the similarity of its trajectory to the
two sets A and D. In other words, predicting a document’s physical state requires calculating
its trajectory similarity to the trajectories of the two sets and classifying its trajectory into one
of them. Each set has a wide variety of trajectories, possibly sharing many or them. Comparing
a trajectory to all the ones in A and D might not lead to a meaningful result. The two sets
may share a high number of similar trajectories, and finding the class of a document might not
be straightforward.

For example, consider the distribution of the trajectories in a two-dimensional space accord-
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ing to their similarity presented in figure 4.1. Each element in the space represents a trajectory,
and the classes of the trajectories are represented by the elements’ shape, where two classes
exist, class 1 represented by the red circles and class 2 represented by the blue triangles.

Figure 4.1: Illustration of homogeneous and heterogeneous regions
One problem is that a region may contain trajectories from different classes with different

percentages. In order to predict a trajectory’s class, one way is to compare it to the most
similar ones. This way, there is a risk of false classification depending on the distribution of the
nearest trajectories. For example, the confusion region in the figure shows how the dominant
class in region 6 is class 2. Still, by comparing the trajectory to its nearest trajectories, it will
be assigned to class 1.
Therefore, we aim to predict the trajectory class based on the distribution of the trajectories’
classes in the region where the trajectory falls. This leads us to the next problem we aim
to tackle is that some regions could be heterogeneous and contain trajectories from different
classes with no dominant one.
For that reason, our objective is to extract representative trajectories only from the homo-
geneous regions, called patterns, that represent the classes and can help distinguish between
them. For example, regions 1, 2, 3 and 4 are homogeneous and could be used to extract
patterns to represent their trajectories, which have the same class. On the contrary, region 5 is
heterogeneous and has no dominant class. Therefore, the extracted patterns from this region
can not represent any of the two classes. Finally, we propose to predict the trajectories classes
by comparing them to the extracted patterns.

We propose a trajectory analysis pipeline that first identifies the regions containing similar
trajectories, followed by the extraction of patterns representing the classes and help distinguish
between them. Finally, the extracted patterns will be the base of trajectory classification and
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Figure 4.2: Trajectory Analysis Pipeline

the prediction rules. Figure 4.2 shows our trajectory analysis pipeline composed of four modules,
and in the following we discuss the different modules, their inputs, goal and their outputs.

We propose the physical state prediction of the documents based on the analysis of the
conservation–restoration histories that contain all the information related to the physical state,
such as the communication, degradation and conservation–restoration process.
In chapter 3, we have proposed a representation of these histories as semantic trajectories. The
first module in the pipeline aims to extract the data from the integrated database containing the
relevant information and create the semantic trajectories to be the input of the next module. In
our work, the trajectories are created using SQL queries on the database, and stored manually
in an integrated database. This module could be automatised and abstracted in case new
dimensions are added to this database, which should be part of the trajectories.

The second module in the pipeline takes as input the set of trajectories TR = {tr1, tr2, ..., trn}
and aims to find groups of similar ones. Different methods were discussed in chapter 2, some
of them can not be used in our context, such as the DBSCAN clustering, and others could
be used with some adaptation, such as the k-means. The output of this module will be a set
of clusters CL = cl1, cl2, ..., clm, with m < n. In addition, the clusters will have different
characteristics, such as the number of trajectories, each class percentage, etc.

Pattern extraction is the process of detecting a common behavior when analysing people’s
movements, or similar sequences when analysing semantic trajectories. In the proposed pipeline,
the pattern extraction module aims to extract patterns of sequences of events representing the
common characteristics of the trajectories from the same class. These patterns should help
distinguishing between the two classes, available and deteriorated. The input of this module is
a set of cluster CL = cl1, cl2, ..., clm, and the output is two sets of patterns Pattern_A

and Pattern_D representing the trajectory patterns which are the most representative of the
two classes available and deteriorated respectively.

The last module is to create rules to predict the documents’ physical state based on the
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extracted patterns. Thus, we propose to compare the trajectory of the document in which
we want to predict its physical state to the patterns of the two classes. Finally, based on its
similarity to the patterns, the prediction will be made. If the trajectory is similar to the pat-
terns representing the available (resp. deteriorated) class, it will be predicted as available (resp.
deteriorated).

In the following, we present in detail the three modules. In section 4.3 we present the
clustering module. Section 4.4 is devoted to the pattern extraction module, and the generation
of the prediction rules.

4.3 Trajectory Clustering

Trajectory clustering aims to build clusters containing similar trajectories. The clusters will
be analysed later to identify common characteristics between the trajectories. In this work,
we propose first to cluster the conservation–restoration trajectories to analyse each cluster
separately in order to find correlations between their events and the physical state of the
documents.
We have used the k-means algorithm [28] to cluster the trajectories. The optimal value of the
parameter k is defined using the elbow method.

First, a set of k trajectories are selected randomly, and a cluster is initiated from each of
them. Then, each trajectory is compared with the k-selected trajectories and assigned to the
cluster corresponding to the most similar one. The means are recomputed for each cluster and
the similarity between the trajectories and the new means is evaluated. The trajectories are
re-assigned to the cluster corresponding to the nearest mean. The algorithm iterates until the
clustering becomes stable.

K-medoids could be a good choice when clustering semantic trajectories with the same
length where the most frequent event in each index will be selected. Still, in our context,
the trajectories have different lengths. Therefore, we choose to use the k-means with some
adaptation such as a customized definition of the mean of conservation–restoration trajectories.
The mean of a set of conservation-restoration trajectories is defined as follows:

Definition 9 Mean of a Cluster of Conservation–Restoration Trajectories.
The mean mj of a cluster clj with 1 ≤ j ≤ k is a conservation-restoration trajectory. The
length of mj is the average of the lengths of the conservation-restoration trajectories in clj .
The events of mj are the most frequent events at each position: eij in mj is the most frequent
event at position i in all the trajectories of the cluster.

Given this definition, suppose for example that 60% of the conservation-restoration trajec-
tories in clj start with a binding event and 40% start with communication event. In that
case, the first event in the mean, i.e. at index 0, is the binding event. The events for the other
indexes i of the mean trajectory are defined in the same way.
Figure 4.3 shows a mean calculation example. The mean calculation starts by computing the
average length of trajectories in the cluster, which is equal to three in the example. Afterwards,



104 CHAPTER 4. ANALYSIS OF CONSERVATION–RESTORATION DATA

for each index in the trajectories, the frequencies of the events are calculated and we show the
five top most frequent events in each index. In this example, 53% of the trajectories start with
a low communication event, 12% of the trajectories start with a low communication refusal
or medium communication etc. Therefore, the most frequent event at the beginning of the
trajectories of this cluster is low communication; consequently, the first event in the mean will
be low communication. The most frequent event in the second index in the trajectories is the
treatment T67 with a percentage equal to 63%. And treatment T304 for the third index with
a percentage equal to 53%.

Figure 4.3: An example of a cluster’s mean
The clustering process ends when the clusters become stable, and we define the clusters’

stability as follows:

Definition 10 Stability.
We consider the clustering stable when the percentage of the trajectories that change their
cluster after updating the means is less than a threshold σ.

Algorithm 1 describes the clustering process. It starts by randomly selecting k trajectories
among the input. A k_means iteration is applied to the trajectories and the given means. The
result of the clustering iteration is the number of trajectories which changed their cluster on
this iteration, referred to as moving_trajectories (line 6). After calculating the means of the
new clusters (lines 8-9), the number of the moving trajectories is computed and if this number
is less than a threshold (NbChanges), the process will be considered stable and it will ends.
Algorithm 2 describes a clustering iteration. The distances with the means for each trajectory
are calculated (line 3). Then, the index of the nearest mean is selected and compared to the
trajectory cluster. If the closest mean is not the mean of the cluster to which the trajectory
belongs, the trajectory belongs to a new cluster and is considered a moving trajectory. Finally,
the means of the clusters are recalculated.

Once the clustering is performed and the clusters are stable, the clusters generated by
the clustering algorithm are described by their conservation-restoration mean trajectory and by
other characteristics, such as the number of trajectories in the cluster and the percentage of the
ones corresponding to deteriorated documents. These mean trajectories are the representative
of the clusters.
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Algorithm 1 Clustering Algorithm

Input Trajectories : TR,Number of iteration : NbIt,
Number of changes to break : NbChanges

Output Clusters

means← Generate_Random_means(TR)2: Clusters← []
moving_trajectories← []4: iteration← 0
while iteration ≤ NbIt do6: moving_trajectories, Clusters← k_means_iteration(TR,means)

means← []8: for cluster ∈ Clusters do
means.append(cluster.mean)10: end for

if moving_trajectories ≤ NbChanges then12: break
end if14: end while

return Clusters

Algorithm 2 Clustering Iteration Algorithm
Input Trajectories : TR, Clusters′means : Means
OutputNumber of moved trajectories : moved, Clusters : c
moved← 02: for each tr ∈ TR do

Distances← Calculate_distances_with_means(tr,Means)4: index_new_cluster ← index_min_distance(Distances)
if index_new_cluster! = tr.cluster_index then6: moved← moved+ 1

tr.cluster_index← index_new_cluster8: end if
end for10: new_means← calculate_new_means(TR)
clusters← create_new_clusters(TR, new_means)12: return moved, clusters

4.4 Pattern Extraction and Prediction Rules

Pattern extraction is the process of detecting frequent sequences of events between the anal-
ysed conservation–restoration trajectories. Our goal is to find the most representative patterns
of a class of documents. Recall that we consider two classes of documents, the available doc-
uments and the deteriorated ones. These representative patterns are sequences of events that
are frequent among the trajectory of a given class and not in the other. In other words, we aim
to detect the sequences that can help distinguish between the different classes of documents,
i.e. available and deteriorated.
The input of this module is the set of clusters containing conservation–restoration trajecto-
ries from different classes. For each cluster, the percentage of trajectories corresponding to
documents belonging to both classes is computed. The clusters with a percentage higher
than a predefined threshold of one of the two classes will be selected, and the class with the
higher percentage will be considered the dominant class. For each of the selected clusters, the
conservation–restoration pattern will be extracted to represent the trajectories of this cluster.
We define a conservation-restoration pattern as follows:
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Definition 11 Conservation-restoration Pattern:
Given a cluster of conservation-restoration trajectories cli, the pattern Pi corresponding to this
cluster is defined as the the mean trajectory of the cluster.

The clusters for which the percentage of trajectories corresponding to deteriorated docu-
ments is higher that the threshold are used for the extraction of patterns representing the class
of deteriorated documents. In the same way, the clusters for which the percentage of trajecto-
ries corresponding to available documents is higher that the threshold are used to extract the
patterns representing the class of available documents.
In addition, in the generated clusters, it is possible to find trajectories for which the similarity to
the mean of their cluster is low. These trajectories would have been assigned to their clusters
because their similarity with the means of the other clusters is even lower. In our approach, in
order to identify meaningful pattern trajectories, we propose to filter the clusters by removing
these outliers. It is also possible that two patterns corresponding respectively to A and D are
very similar. Considering them as a good representative of their class may lead to inaccurate
predictions. We propose to exclude these patterns. Consequently, we define the two following
filtering rules:

Rule 1 Outliers filtering. Consider a trajectory Tri in a cluster clj , with 0 ≤ i ≤ n and
1 ≤ j ≤ k; n is the number of trajectories, k is the number of clusters and mj is the mean of
clj . If dLCESS(Tri,mj) > β then the trajectory is deleted.

In other words, this rule aims to delete the trajectories for which the distance with the mean
of the cluster is higher than a predefined threshold β.
The second rule aims to remove the clusters that will lead to possible false predictions. The
second rule depends on the percentage of deteriorated trajectories in the cluster. We determine
the type of the clusters based on this percentage and we define the cluster’s type and the rule
for cluster filtering as follows:

Definition 12 Cluster type. The type of a cluster clj , denoted typej , can be either “available”
or “deteriorated”. Its type is deteriorated (resp. available) if the percentage of trajectories
corresponding to deteriorated (resp. available) documents in the cluster in higher than a
threshold γ. The type of a cluster clj is denoted typej .

Rule 2 Cluster filtering. Consider two clusters cli and clj , typei and typej their respective
types, mi and mj their respective means.

If dLCESS(mi,mj) < α and typei ̸= typej , then cli and clj are not considered.

The filtering is performed on the clustering result provided by the k-means algorithm. The
outliers filtering rules is first triggered. Each trajectory having a distance to the mean higher
than a predefined threshold β is deleted. The means are then re-computed from the set of
remaining trajectories.
After the outliers filtering rule, the cluster filtering rule is triggered. For each pair of clusters
having different types and such that the distance between their respective means is less than
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Figure 4.4: Illustration of the filtering rules

a predefined threshold α, these clusters are discarded. After the application of both filtering
rules, the means of the remaining clusters will be the output of the pattern extraction module.
The means of the clusters for which the type is available will be added to Pattern_A, and the
means of the clusters for which the type is deteriorated will be added to Pattern_D.
Algorithm 3 describes the filtering process. The input is a set of clusters resulting from the

application of the k-means algorithm and represented in the algorithm by C in line 1. The
mean, trajectories and type of a cluster c ∈ C are respectively denoted by c.mean, c.TR and
c.TYPE. The outliers filtering checks the distance between the mean and the trajectories of
each cluster and removes the trajectories having a distance greater than β with the mean (line
2 to line 8). After removing the outliers, the means are updated (line 9). The cluster filtering
will result in a smaller set of clusters after removing the pairs of clusters having a distance
between their means less than a threshold α and having a different type. All the remaining
clusters will be added to the Filtered_Clusters set. The cluster filtering is presented from
line 10 to line 26.
Figure 4.4 illustrates the use of the filtering rules using six distints clusters. The two clusters cl1
and cl2 illustrate the filtering of outliers, where the trajectories having a distance higher than
β with the mean of the cluster were deleted. Two trajectories were deleted in both clusters
cl1 and cl2. In order to illustrate the cluster filtering rule, we consider that α = 2β. Assume
that the type of two clusters cl1 and cl2 is available and deteriorated respectively. The distance
between their respective means m1 and m2 is higher than the threshold α, and the two clusters
should not be discarded. Now consider the two clusters cl3 and cl4 and assume their type is
available and deteriorated respectively. The distance between their respective means m3 and
m4 is less than α, then the two clusters should be deleted. Finally, consider the clusters cl5
and cl6, where the distance between their respective means m5 and m6 is less than α; as the
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Algorithm 3 Filtering Algorithm
C ← k −means(TR)2: for each c ∈ C do

for each tr ∈ c.TR do4: if dis(tr, c.mean)> β thenc.remove(tr)6: end if
end for8: end for

Update_Means(C)10: Filtered_Clusters← ∅
i1 ← 012: while i1 ≤ len(C.means) do

i2 ← 014: Conflict← False
while i2 ≤ len(C.means) do16: if dis(C[i1].mean,C[i2].mean)< α AND C[i1].TYPE ̸= C[i2].TYPE then

Conflict← True18: Break
end if20: i2 ← i2 + 1

end while22: if Conflict == False then
Filtered_Clusters.add(C[i1])24: end if

i1 ← i1 + 126: end while

type of the two clusters is available, these clusters are not deleted.
The pattern extraction and filtering process output a set of patterns representing the class of
the deteriorated documents and a set of patterns representing the class of the available ones. In
addition, the cluster filtering ensure that the patterns representing different classes are dissimilar.

To predict a document’s physical state, we propose to compare its conservation–restoration
trajectory to the patterns representing the two classes of documents, which are the available and
deteriorated classes. Suppose the trajectory of a document is similar to a pattern representing
deteriorated documents. In that case, it is possible to predict that the document has a chance
of also being deteriorated, and it will be classified as deteriorated, the same idea for the available
class. The last module in our proposed pipeline concerns defining the prediction rules. The
prediction rules are defined based on the patterns representing each class.

Consider a document di with its conservation–restoration trajectory Tri, The prediction of
its physical state starts by calculating the distance between Tri and the patterns representing
each of the sets A and D corresponding to the available and deteriorated classes, respectively.
If the trajectory have a similarity, higher than a predefined threshold, to at least one pattern
representing the available (resp. deteriorated) class and if it is not similar to any pattern rep-
resenting the deteriorated (resp. available) class then it will be predicted as available (resp.
deteriorated).
Consider the set Pattern_A and Pattern_D previously defined. The rules of the prediction
model for predicting the class of a document di are defined as follows:
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1. If ∃ Px ∈ Pattern_D | dis(Trx, T ri) ≤ β ∧ ̸ ∃ Px ∈ Pattern_A | dis(Trx, T ri) ≤ β

then PSi = Deteriorated

2. If ∃ Px ∈ Pattern_A | dis(Trx, T ri) ≤ β ∧ ̸ ∃ Px ∈ Pattern_D | dis(Trx, T ri) ≤ β

then PSi = Available

Note that in some cases, the class of a document can not be predicted. For example, if Tri is
not similar to any of the patterns representing the classes or if it is similar to more than one
pattern representing different classes, it will be impossible to classify di.

4.5 Our Trajectory Clustering and Filtering System

In order to evaluate first the clustering and filtering approach proposed in the analysis pipeline,
we have built a system that illustrates the results of these functionalities. This system will help
to analyse the clusters and their homogeneity, the impact of the filtering on the clusters, and
the patterns extracted.
This section presents the developed system to analyse, cluster and filter the trajectories. The
data used in the analysis are extracted from the BnF databases describing real conservation–
restoration histories of documents.
In the following, we show the clustering settings in the system, the clustering and analysis of
the clusters, and the effect of the filtering on the final clustering results. Before the trajectory
clustering, the population on which the clustering will be performed has to be selected. A
population is a set of trajectories with shared characteristics such as length. The domain
experts might perform the tests on different populations to analyse various aspects. For this
reason, we provide the possibility to select some characteristics related to the trajectories or to
set some properties for the clustering process. Figure 4.5 shows the interface of the clustering
and filtering settings. We can see the parameters that can be set by the user. These parameters
are described hereafter.

• Number of deteriorated documents to be used in the experiments (field n°1).

• Percentage of deteriorated documents to be included in the experiments (field n°2).

• Percentage of the testing set (field n°3).

• Minimum and maximum trajectory length (fields n°4 and fields n°5 respectively).

• The number of clusters (field n°6).

• As mentioned previously, trajectory filtering aims to remove the trajectories which are not
similar to the mean of the cluster they belong to. A trajectory is considered not similar to
the mean when the distance between it and the mean is more than a predefined threshold.
This threshold can be set via the interface (field n°7).

• We provide in the system two windows (Canvas) to illustrate the clustering results. The
window in which the results will be illustrated should be selected in the interface (radio
button n°8).
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Figure 4.5: Clustering settings

• We also provide in the system to the user the possibility to choose if he wants to integrate
CRMBnF in the clustering process or not. In other words, the user can choose between
the LCSS measure and LCESS where the former does not use the ontology, and the latter
does (field n°9).

After the user has selected the parameters, the clustering is performed, and the results are
illustrated in a window representing the clusters and their characteristics, such as the percentage
of the deteriorated documents, i.e. out-of-order documents and the number of trajectories in
the cluster etc. Figure 4.6 shows a clustering example after selecting 1000 deteriorated docu-
ments, 30% as percentage of deteriorated documents and 30% as testing set. For the clustering
parameters, the k is equal to 8, the trajectories are considered as outliers f their distance with
the mean is more than 0.5.
We illustrate the clustering results in a window as shown in the figure. A cluster is represented

with a rectangle containing its characteristics. The clusters’ characteristics are the percentage
of the deteriorated documents in the cluster, the average length of the trajectories in the clus-
ter, the average distance between the trajectories and the mean of the cluster, the number of
trajectories in the cluster, and the number of trajectories which are similar to the mean (have
a distance to the mean minimum than the predefined threshold).

The user has the possibility to remove the trajectories that are not similar to the mean, and
analyse the characteristics of the clusters also without these trajectories. In addition, the results
with and without filtering could be illustrated in separated windows (Canvas) to be compared.

Figure 4.7 shows an example of how the results with and without filtering are represented in
two separated windows in the system. The clustering results are illustrated in the left window,
and the results after the filtering are represented in the right window, where each rectangle
represent a cluster and contains their characteristics.

Some clusters are modified by deleting the trajectories whose similarity with the mean is
lower than the predefined threshold, and their mean is therefore recalculated. These clusters
are the ones with a red border, and the clusters which have not been modified are represented
with a greed border.. Three out of eight means are changed after the filtering.
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Figure 4.6: Clustering results illustration example

One of the clusters has a high percentage of deteriorated documents (79%) and contains 455
trajectories (fifth cluster). The average distance between the trajectories in this cluster with its
mean is equal to 0.47. After the filtering, the remaining trajectories in this cluster are 244 with
an average distance equal to 0.29, which is expected as the dissimilar trajectories are removed.
The percentage of deteriorated documents is increased to 80%.

4.6 Experiments

This section evaluates the system’s performance in predicting the documents’ physical state.
For the experiments, we have chosen 8000 documents. The length of the corresponding
conservation-restoration trajectories ranges from 3 to 10. Among these documents, 25% be-
long to the deteriorated class. The experiment comprises two phases: training and testing.
The training phase shows the clustering and pattern extraction results on 70% of the data set.
Based on the generated rules using the patterns in the training phase, the testing phase shows
the classification results for the remaining 30% of the data set.

4.6.1 Training Phase

The hyper-parameters of the training phase begins with selecting the appropriate number of
clusters for our data set and setting the parameters for this phase. The documents’ trajectories
are then clustered using the k-means algorithm and the LCESS similarity metric defined in
chapter 2.
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Figure 4.7: Clustering and filtering illustration example

4.6.2 Hyper-parameter Tuning

Before executing the k-means algorithm, the number k of clusters has to be determined. There
are numerous techniques for calculating this value, the one used in our work is the well-known
elbow method. The approach calculates the within-cluster sum of squared errors (WSS) for
various values of k and chooses the k at which the WSS becomes almost stable. The result of
the elbow method on the BnF documents’ trajectories is shown in Figure 4.8. We set k equal
to 13 based on this result. In addition, we set the parameters used in the training stages as
follow:

• σ: the threshold for the clustering stability is set to 3 because, based on the tests we
have run, the clustering converges to this number.

• β: the threshold for the distance with the mean is set to 0.4. This means that a trajectory
should have a similarity greater than 60% with the mean of the cluster in which it belongs.

• α: the threshold for the distance between the clusters of different type is set to 0.5.

• γ: the threshold used to define the type of the clusters is set to 0.7. This means that a
cluster’s mean is a pattern for the deteriorated documents when the percentage of the
deteriorated trajectories in the cluster is higher than 70%.
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Figure 4.8: Elbow method on the documents

4.6.3 Clustering and Patterns Extraction.
On the training set, we applied the clustering method and we obtained 13 clusters. Two
clusters are removed as a result of the cluster filtering because the high similarity of their mean,
in addition that they represent different classes. The type of nine of the remaining clusters
is available, while the type of the other two is deteriorated. The percentage of deteriorated
trajectories, type, and number of trajectories for each of the 11 clusters are shown in Figure
4.9. We have extracted a pattern that represents each of the remaining clusters.

4.6.4 Testing Phase
We used the remaining 30% of the data set for testing, and based on the detected patterns, we
classified the trajectories as available or deteriorated using the defined rules. First, we ran the
classification on the entire testing set; the results are shown in 4.10, where 310 deteriorated
trajectories out of 600 are correctly identified with a 51% accuracy. From a total of 1800
available trajectories, 1723 are correctly identified with a 95% accuracy and an accuracy equal
to 84.7% on all testing sets. The results show good precision on the available trajectories and
good results on the deteriorated trajectories where more than 50% of the trajectories are well
classified regardless of the unbalanced distribution of the classes where only 25% of the training
set belong to the deteriorated class.
By analysing the misclassified deteriorated trajectories i.e. deteriorated trajectories classified as

available (false negatives), we obtained the distances of the misclassified deteriorated trajectories
to their nearest pattern are shown in the figure 4.11. We can see that some of these trajectories
have a high distance to their nearest pattern, indicating that they should be considered as
outliers and they will be ignored during the classification. As a result, we used a threshold β to
evaluate the classification of the trajectories. A trajectory can only be classified if its distance
to the nearest mean is less than this threshold; otherwise, it can not be classified. Figure
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Figure 4.9: Clusters characteristics

4.12 shows the classification results: 560 among 592 available documents are well classified as
available and 94 among 110 deteriorated documents are well classified as deteriorated. The
model’s predication accuracy is equal to 93.1%. The accuracy on the deteriorated documents
is equal to 85.45%, and the accuracy on the available documents is equal to 94.59%.
Figure 4.13 shows a comparison of the precision, recall and the f-score of the predictive model

with and without the use of a threshold equal to 0.4. The relevant class as mentioned before
is deteriorated, which mean the true positives predictions are the deteriorated trajectories that
are well predicted. We are more interested to increase the recall that indicates the rate of the
well classified deteriorated, which increase from 0.52 to 0.85.

4.6.5 LCSS VS LCESS

We performed another experiment to compare the clustering results using the LCSS measure
without dealing with the heterogeneity of the terminology and the LCESS metric. The ex-
periment uses 1000 trajectories with 30% deteriorated. We ran the training on 70% of the
trajectories, we varied the threshold between 0.1 and 0.9 for testing, and we displayed both the
percentage of successfully predicted trajectories and the recall. Figure 4.14 shows the exper-
iment results where the predictions using LCESS outperform the predictions using LCSS. To
predict the class of at least 50% of the trajectories using LCESS, we need a threshold equal to
0.5 and the precision remains high with a value equal to 0.8. Using LCSS to predict at least the
communicability of 50% of the trajectories, the threshold has to be set to 0.8 and the precision
will be equal to 0.3 which is significantly less than the recall using LCESS.

These results lead us to conclude that integrating the knowledge of the experts in the
analysis process is very beneficial, where it succeeded in refining the computation of the simi-
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Figure 4.10: Classification on all the testing set

larity between the trajectories, which helps add more semantics to the clustering and pattern
extraction processes.

4.7 Conclusion

In this chapter, we have presented a trajectory analysis pipeline that results in prediction rules to
predict the documents physical state based on their conservation–restoration trajectories. The
pipeline comprises four modules: trajectory extraction, which is a data preparation process,
trajectory clustering, pattern extraction, and prediction rules generation.

The trajectory extraction was done manually using SQL queries, which is a weak point be-
cause the extraction process must be redefined if new document characteristics become available
and must be taken into account.
More enrichment is needed for the BnF databases to consequently enrich the conservation-
restoration trajectories with more dimensions to improve the prediction results. In our system,
the total prediction accuracy was equal to 85%, and we believe that the accuracy could be
increased with more enrichment, such as the physical characteristics of the documents. The
physical characteristics could be used to create documents’ profiles and analyse each profile
and its corresponding documents separately. The learning modules, which are the clustering
and the patterns extraction, are tested on the conservation–restoration trajectories, but they
could be used for different types of elements by providing the required information, such as the
similarity between the elements and their classes.

The prediction model succeeds in predicting the physical state of the documents having tra-
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Figure 4.11: Distances of the misclassified deteriorated documents to their nearest pattern

jectories that are similar to some of the patterns. For the other documents, the prediction was
impossible given the available characteristics and data. If more characteristics were provided,
such as the materials used in the treatment processes, the description of the physical charac-
teristics of the documents such as the type of paper, date of publication or type of binding,
then the trajectories could be enriched and the similarity measure could be extended to take
into account such new dimensions, which might improve the predictions.

Future work will include enrichment of different aspects in the analysis and prediction
process such as the materials used in the conservation–events and more physical characteristics
of the documents described in folders called restoration folders. Such enrichment can improve
the prediction by introducing dimensions that can possibly help distinguishing between the two
classes, consequently increasing the number of accurate predictions.
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Figure 4.12: Classification with a threshold β

Figure 4.13: Precision, recall and f-score with and without the threshold β
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Figure 4.14: Predictions precision and prediction percentage using LCESS (a) and LCSS (b) withdifferent values of the threshold β
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5.1 Introduction

As mentioned in the previous chapters, matching the events of semantic trajectories is an im-
portant analysis task. In a trajectory classification, some events may be have more importance
than others in distinguishing between the classes than others. Therefore, when analysing the
trajectories, the events with high discriminative power should be given a higher weight during
the analysis process. For example, such weights could be taken into account during the com-
putation of the similarity scores between trajectories.
For example, in the healthcare field, a patient is associated with a healthcare history composed
of several events related to the prognosis, treatments, and hospitalizations. Some events in this
context can be more potent as an indicator of the patient’s vulnerability, such as heart surgery
or a brain stroke. In our context, an event is a conservation–restoration process, degradation
or communication. According to domain experts, some of these events are better indicators
of the documents’ physical state than others. For example, a “paper acidification” event in a
conservation-restoration trajectory is a stronger degradation indicator than a “document box
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degradation”. Therefore, we propose an approach that determines the weights of the events
composing conservation-restoration trajectories considering a specific analysis task. Our goal
is, given a set of trajectories and a predefined analysis task, to determine automatically the
weight of the events representing their discriminative power in a specific analysis task.
In addition, it is possible that the events are not independent, where semantic relationships exist
between them, which should be considered during weight learning. As presented in chapter 3,
these relationships could be represented by a tree of concepts where the leaf concepts represent
the trajectories’ events. Therefore, we propose to weight the trajectories’ events by taking into
account not only their importance to distinguish between the classes, but also by taking into
account the relationships between them.

Among the proposed approaches for assigning weights to the concepts in a tree or a graph,
some works have focused on the information content of the concepts, and others have addressed
the problem of weighting concepts represented as a hierarchical structure. [100] analyses the
existing ontology-based information content computation methods, which are based either on
the data and the occurrences of the concepts, or on the structure of the graph from which sev-
eral characteristics can be extracted such as the concept’s depth, the number of hypernyms and
hyponyms, or number of leaves concepts. [95] was the first work to introduce the information
content in the computation of the similarity between concepts. It has then been extended in
[65, 48]. According to [19], graph weighting methods can be either extensional and intensional.
The extensional methods rely on the data, while the intensional methods rely on the structure
of the graph to determine concept weighting.

The existing weighting approaches assign the same weights to the concepts regardless of
the analysis task, which can be inappropriate for long-lived systems which might have different
analysis tasks over time. Extensional methods provides the same weights for the input data
regardless of the analysis task at hand, as they rely on the data itself. The same holds for the
intensional methods, which rely on the tree structure. Unless the tree structure changes, the
resulting weights do not vary..
In this chapter, we introduce a novel concept weighting approach that takes into account
a predefined labelling of the trajectories in the dataset, corresponding to a specific analysis
requirement. The approach transforms the tree into a customized neural network where each
node represents a concept from the tree, and the edges between the nodes represent the
relationships between the concepts. Based on regression, the approach learns edges’ weights
that give the best separation of the trajectories’ classes, and attribute weights for the concepts
based on the edges’ weights.

This chapter is organised as follows. In section 5.2, we present a statement of our problem.
Section 5.3 present an overview of the weighting approach. Section 5.4 presents the transfor-
mation of trajectories into vectors. Section 5.5 is devoted to the transformation of the tree
into a neural network. Section 5.6 presents the learning process that enables the definition
of concept weights. Section 5.7 presents our experiments, and finally, section 5.8 provides a
conclusion and some future works.
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5.2 Problem Statement

Let us consider a dataset of trajectories TR = {Tr1, T r2, ...T rm}, and a set of events E =

{e1, e2, ..., en}. Each trajectory Tri is represented by a set of k events Tri = {ei1 , ei2 , ..., eik}
with eij ∈ E for 1 ≤ j ≤ k. In addition, let us consider that the trajectories of TR are classified
into two disjoint classes. Each trajectory Tri is associated to a label lTri representing its class.

Given a set of predefined classes, some events may have higher discriminative power than
others. The discriminative power of an event denotes its ability to distinguish between classes.
For example, an event that appears in trajectories belonging to the same class has high discrimi-
native power and should be given more importance when analysing the trajectories or predicting
the class of a given trajectory than the events that characterize those belonging to different
classes.
Our problem is identifying the importance of the different events for a given analysis task. This
is different from the problem addressed by existing concept weighting approaches, in which
weights are assigned independently from the specific task at hand. In other words, given two
analysis tasks, such that the labels in the first task are l1 and l2, and the ones in the second
task are l3 and l4, our weighting approach would provide two distinct sets of weights to the
concepts, the first one corresponding to their ability to distinguish between l1 and l2, and the
second one to their ability to distinguish between l3 and l4.
In our context, let us consider, for example, two analysis tasks, the first aiming at classifying
the documents into one of the classes available and deteriorated, and the second aiming at
classifying them into the class of documents requiring a binding and the class of the ones that
do not require such action. By analysing the power of the events in distinguishing between the
classes, we find that some events are discriminant for the first analysis task, while they may
not be for the second analysis. For example, sewing in the document can help predict that the
document is available but can not indicate if it needs a binding.
To address this problem, we present a novel weighting approach that assigns weights to the
events based on their importance for a given partition of the considered dataset. In addition,
we suppose that each event is associated to a concept in a tree representing the SubClassOf
relationships between these concepts. In our work, we assume that each event correspond
to a leaf concept in the tree, and the concepts and their relationships are represented by a
tree structure T . Let T.R be the set of edges in the tree, where each edge is of the form
< ci, SubClassOf, cj >. ci and cj are two concepts in the tree, and the edge indicates that
the concept cj is a generalisation of ci. The former is referred to as the child, while the latter
is referred to as the parent. Each event ei ∈ E is represented by a leaf concept ci in T .

Except for one concept, which we refer to as the T.Root concept, we assume that all of
the concepts in T have one parent. In addition, we define the set T.Leafs, which contains
all concepts that do not have a child concept. Figure 5.1 shows a tree representing a set
of concepts, and to simplify the reference to the concepts, we represent each concept with a
unique id. The tree contains five leaf concepts represented by {K,L,N, I, J}. For example,
the concepts I and J are sub-concepts of the concept G. K, L and M are sub-concepts of
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Figure 5.1: Tree representing the hierarchy of concepts
the concept H. The root of the tree is the concept A.

Several research works have proposed approaches for weighting concepts in a knowledge
graph. These methods are either based on statistical computations or on the tree structure,
which are fixed values that do not change if the analysis task changes, in our cases the classes’
labels. Using these methods, the weights of the concepts would be the same regardless of the
classes of the trajectories. The problem tackled in this chapter can be stated as follows. Let
us consider:

• A set E of events that may be used in a trajectory.

• A dataset Tr composed of trajectories Tri, where each trajectory Tri is described by a
set of events in E.

• A tree of concepts T where each edge between two concepts represents an SubClassOf
relationship between them, and where the leaf concepts represent the events describing
the trajectories in Tr.

• A partition of Tr in two subsets, where each subset corresponds to a class. Each
trajectory Tri in Tr is labelled by its class lTri .

Our problem is to determine the weight of each concept in the tree based on its discriminative
power to distinguish between the different classes in Tr, taking into account the hierarchical
links existing between concepts provided by the input tree. The results of the weighting is a
set of weights W = {weightT (ei)}, where weightT (ei) is the weight of the event ei ∈ E

regarding the tree T .
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5.3 Approach Overview

In this chapter, we propose an approach that introduces a novel concept weighting principle
customized for a given analysis task considering some domain knowledge represented by an
SubClassOf tree of concepts and a set of labels defined for the trajectories of the considered
dataset. We aim to find the ones that give the highest accuracy for predicting the class of the
trajectories. The weight learning of the proposed approach is based on a customized neural
network, and the importance of the concepts in the tree are learned using regression on a loss
function defined according to the classes of the trajectories. Besides, our approach considers
the relationships between the concepts during weight computation.

Figure 5.2: General Overview of our Concept Weighting Approach
Figure 5.2 shows the different phases of our weighting approach. The method consists of

three phases. The first one is the data preparation which aims to transform the input trajecto-
ries into vectors of elements. The second phase builds a neural network based on the concepts’
tree. Finally, the third one aims to learn the weights based on regression.

Data Preprocessing
The aim of data preprocessing is to transform the trajectories into a uniform representation
capturing the type of events composing them as well as the number of occurrences of each
type of event. Each trajectory Tri is represented by vector vTri to indicate which events exist
in Tri and those that do not. The output of this phase is an input of the weights learning phase.

Concepts Hierarchy to Neural Network
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As the concepts have relationships represented in an SubClassOf tree, we are interested in con-
sidering this information during the weights learning. In this approach, we propose transforming
the tree representing the concepts and their relationships into a customized neural network. In
this way, a calculation process based on the concepts relationships become possible. Therefore
the second phase of this method is to transform the tree into a neural network and adapt its
dimension to be normalized to facilitate the subsequent weight learning process. With this
transformation, a learning process that considers semantic relationships becomes possible. In
other words, performing the forward and backward propagation in the neural network with a
structure, i.e. layers and nodes, representing the events and their relationships is advantageous
to consider these relationships during the learning.

Weights Learning
In the final phase, the weights of the concepts are learned to indicates their power in distin-
guishing between the classes. The weights learning is based on the created neural network, as
well as the vectors representing the trajectories. In our approach, regression is used in order
to learn the weights of the links in the neural network to minimize a predefined loss function
that depends on the class of the trajectories. Finally, the links weights in the neural network
are considered as the contribution of each concept in distinguishing between the input classes.
They are used to extract the concepts’ weights.

5.4 Transforming Trajectories into Vectors of Elements

In our context, we consider semantic trajectories representing conservation-restoration histo-
ries. These trajectories are represented as sequences of elements with different lengths, each
element being a conservation–restoration event. Our goal is to determine the importance of
the events based on their frequency in the trajectories and their ability to discriminate between
two considered classes, which correspond, in our case, to the class of trajectories corresponding
to available documents and the class of the ones corresponding to deteriorated documents.
Therefore, the input of the neural network is vectors representing the trajectories in addition
to their labels. In order to unify the size of the inputs of the neural network, we propose to
transform the trajectories into equal sized vectors.
We would like to consider not only the events in a trajectory but also their number of occur-
rence. For this reason, the vectors represent the number of occurrences of the events in the
trajectories. The size of the vectors is equal to the number of possible events that exist in the
database. For example, consider a set of possible events E = {e1, e2, e3, e4, e5} that contains
five events. In addition, consider two trajectories Tr1 and Tr2 composed of events in E, where
Tr1 = {e2 → e4 → e1 → e4} and Tr2 = {e1 → e4 → e3 → e5 → e3}. The two trajectories
have different lengths and contain different events. Using the proposed uniform representation,
Tr1 and Tr2 are represented by the vectors vTr1 and vTr2 respectively. The size of the vectors
is the number of events in E, which is five. The two vectors representing Tr1 and Tr2 respec-
tively are vTr1 = (1, 1, 0, 2, 0) and vTr2 = (1, 0, 2, 1, 1). Each value in vectors represents the
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number of occurrences of an event in the trajectory. For example, in vTr1 , the first component
indicates that the event e1 has occurred once in Tr1. The third component indicates that the
event e3 has not occurred in Tr1, and the forth component indicates that the event e4 has
occurred twice in Tr1.

5.5 Transforming the Tree of Concepts to Neural Network

During the computation of the concepts’ weights, it is important to consider their relationships.
For this reason, We propose to build a neural network that considers the concepts and their
relationships. The neural network is a transformation of the tree representing the concepts’ hi-
erarchy. The neural network structure is based on the structure of the hierarchy. For example,
the number of layers in the neural network equals the size of the longest path between the root
and a leaf concept in the hierarchy.

5.5.1 Neural Network Layers
The structure of the neural network, i.e., the number of layers, the size of each layer, and
the links between nodes, depends on the structure of the tree representing the concepts and
their relationships. Therefore in order to build the customized neural network, the following
characteristics of the neural network have to be identified.

Input layer. The first layer in the neural network, i.e. the input layer, represents the leaf
concepts in the tree. The number of nodes in the input layer is equal to the size of the vectors
describing the trajectories. Thus, each event corresponds to a node in the input layer.

Number of layers. Considering a tree that represent the concepts’ SubClassOf hierarchy
as defined in section 5.2. We define the tree depth T.depth as the path length between the
root concept T.Root and the farthest leaf concept in T.Leafs, which indicates the number of
layers in the neural network. For example, the longest path between the root and the leaves in
figure 5.1 is the path between the concepts A and N , and it is equal to six.
Once the number of layers is calculated, the root concept is represented by a node in the output
layer, i.e. the last layer in the neural network, and the distance between the root and every
concept in the hierarchy which is neither the root nor a leaf node is computed.

Each concept ci in the tree is represented by a node denoted by nci in the neural net-
work. The layer L of a node nci that represents the concept ci is defined as L = T.depth-
distance(root, ci).

Neural Network Links. Each parent concept is a generalisation of its children concepts.
Therefore if a concept exists in a trajectory’s representation, then implicitly, its parent also
exists.

We therefore consider that the input of a node nci is the output of all the nodes ncj such
that ci is a specialization of cj . In other words, the input of a node representing a concept
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Algorithm 4 Transforming Concepts’ Hierarchy to A Neural Network
Input Concepts′ Hierarchy : H
Stack ← []2: NN_Size← H.depth
AddToNN(concept = Root, layer = NN_Size)4: for each c ∈ H.leaf_concepts do

AddToNN(concept = c, layer = 0)6: Stack.push(c)
end for8: while Stack is NOT EMPTY do

c← Stack.pop()10: Parent← GetParentConcept(c)
if Parent ̸= Root And Parent Not In NN then12: ParentLayer ← NN_Size− distance(root, Parent)

AddToNN(concept = Parent, layer = ParentLayer)14: Stack.push(Parent)
end if16: end while

Figure 5.3: Neural network layers
ci is the output of all the nodes representing the children of ci. Using this principle, the core
semantics of the specialization relationship is preserved. The presence of a child concept in
a vector representing a trajectory implies the presence of its parent. As a result, the output
value of a node representing a concept ci is determined by the output values of its children.
Therefore the links between the nodes in the different layers depend on the relationships between
the concepts in the tree.

Algorithm 4 describes the transformation process. The input of the algorithm is the con-
cepts’ hierarchy, and the process starts by setting the neural network size, i.e. number of layers
equal to the depth of the hierarchy (line 2). The root concept is represented by a node in the
final layer (line 3). Then, each leaf concept is added to the first layer in the neural network
and is added to a stack to process its parents’ concepts (lines 4 to 7). Next, for each concept
added to the neural network that still exists in the stack, the algorithm searches for its parent
in the hierarchy, calculates its layer, and adds it to the neural network and the stack if it is not
already added. The process ends when all the concepts are added to the neural network, i.e.
stack is empty (lines 8 to 16).

Figure 5.3 shows the result of the transformation of the tree represented in figure 5.1 into
a neural network. We can see that seven layers have been created. The input layer L0 contains
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five nodes, each of them representing a leaf concept in the hierarchy. The first hidden layer in
the neural network, L1, contains one node representing the concept M , and the input of this
node is the output of the node N in the input layer.

5.5.2 Normalizing the Neural Network Structure

As mentioned before, each trajectory in the training set is represented by a vector of size l,
which represents the number of leaf concepts in the hierarchy, and which also corresponds to
the number of nodes in the input layer. Each value in a vector vTri representing a trajectory
Tri corresponds to a specific leaf concept in the tree. This value represents the number of
occurrences of the concept in Tri. The input of the neural network is the set of vectors
representing all the trajectories in the training set that is used to learn the weights in the neural
network. We recall in the sequel some of the well-known definitions related to neural networks
[36]. We define an input vector as follows:

Definition 13 Input Vector
We define an input vector as a vector of l dimensions, where l is the number of nodes in the
input layer, and we denote a single input vector as a[0].

For the example in figure 5.3, the input layer consists of five nodes; therefore, each trajec-
tory Tri is represented by a five-dimensional vector. For instance, the vector representing the
trajectory Tri is vTri = (1, 0, 0, 1, 1), which means that the concepts K, I and J exist in the
trajectory Tri and that they occur once, and the value of each node in the input layer is equal
to the corresponding value in the vector.

For each node in the neural network we define a weight vector as follows:

Definition 14 Weight Vector
A weight vector determines the importance of the inputs of a node n in a hidden layer or the
output layer, and is used to calculate the node output. We denote a weight vector of a node
n in layer Li as wn. The size of the weight vector is equal to the number of nodes in the layer
Li−1.

In our example, the node M in the first hidden layer L1, should only take as input the third
value from the previous layer because it is related only to the node representing the concept N .
Therefore, the weight vector of the node M is equal to wM=(0, 0, v3, 0, 0) and the node’s
output is equal to zM = wM .a[0] + bM , where bM is the bias term for M .
The node H in the second hidden layer L2 takes as input values from different layers. H

takes the output of the node M and of two nodes in the input layer, which are K and L.
Therefore it is difficult to define the size of the weight vector wH . In addition, the nodes
in layer L3 have input values from different layers, and the length of their weight vectors is
different. Consequently, it is difficult to vectorize the calculations in each layer. As a solution,
we propose to introduce empty nodes in the layers, defined as follows:
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Figure 5.4: Neural network layers after adding the empty nodes
Definition 15 Empty Node
An empty node aims to fill a gap in the neural network where a node in a layer Li should take
an input from a node in a layer that precedes Li−1. An empty node in a layer Li takes its input
from only one node in the layer Li−1 and provides the same value as an input to a single node
in the layer Li+1.

Adding the empty nodes ensures that each node in a layer Li takes inputs only from nodes in
layer Li−1 and the size of the weight vectors of all the nodes in a layer Li is the same, and is
equal to the number of nodes in the layer Li−1.
We mention that we refer to every node that is not an empty node by actual node.

Figure 5.4 shows the neural network after adding the empty nodes. In layer L1, four empty
nodes were added to provide the value of the nodes K, L, I and J from the input layer. The
gap between nodes I and J with their parent was equal to two, i.e. the number of layers
between L0 and L3. As a result, empty nodes for these two nodes were also added to the layer
L2. Once the empty nodes are added, the computation in each layer can be vectorized, and
the value vector of a layer to calculate is defined as follows:

Definition 16 Value Vector of a Layer
The value vector of a layer depends on the nodes’ weight vectors, input vectors and the nodes’
bias terms in the layer. We denote the values calculated in a layer Li by z[i]:

z[i]
n×1

= w[i]

n×m
.a[i−1]
m×1

+ b[i]
n×1

(5.1)
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Where:

• w[i] is a matrix of n ×m dimensions containing the transpose of the weight vectors of
the nodes in layer Li, n is the number of nodes in the layer Li, and m is the number
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of nodes in the layer Li−1. Each row r in the matrix represents the weight vector of a
node x in the layer Li.

• a[i−1] is a matrix of m × 1 dimensions containing the output values of the layer Li−1
with a[0] is the input of the neural network.

• b[i] is a matrix of n× 1 matrix containing the bias terms of the nodes in the layer Li.

Finally, we define the output of a layer Li as follows:

Definition 17 Output of layer Li

The output of a layer depends on its values vector and the used activation function. We denote
the output as act(z[i]), where act is the activation function used in the nodes of this layer.

In the example of figure 5.4, the layer L2 contains three nodes, therefore w[2] is equal to:w
[2]
1,1 w

[2]
1,2 w

[2]
1,3 0 0

0 0 0 w
[2]
2,4 0

0 0 0 0 w
[2]
3,5


The values in w[2] indicate that the first node in the layer L2, which is H, takes inputs only
from three nodes from L1 with the weights w

[2]
1,1, w

[2]
1,2 and w

[2]
1,3 corresponding to the first,

second and third nodes in L1 respectively. Each empty node in the second layer takes its input
from only one node from the previous layer.

5.6 Weights Learning

The weights learning aims to assign for each concept in the hierarchy a weight indicating its
power in distinguishing between the classes. The learning process is based on the neural network
that depends on the structure of the hierarchy.
The weights learning starts by initializing the neural network parameters, which are, the initial
weight vectors of the actual and empty nodes, and the bias terms. Then, in each iteration,
forward and backward propagation [110] is performed to calculate the prediction loss and update
the weights in order to decrease the loss.

Forward propagation is executed to calculate the prediction loss with the given parameters.
Then backward propagation is performed to update the parameters so as to minimize the loss.
Once the minimum loss is achieved, the final parameters are used to compute the weights of
the concepts in the tree.

5.6.1 Parameters Initialization
Before weight computation, for each layer Li, the bias terms b[Li] and the weight vectors w[Li]

of the neural network nodes are initialized. w[Li] is a n×m matrix where n is the number of
nodes in the layer Li and m is the number of nodes in the layer Li−1. w

[Li]
s is the weight vector

of the node at the position s in the layer Li with 1 < s < n, and w
[Li]
s,p represent the weight
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between this node and the node at the position p in the layer Li−1. b[Li] is n × 1 matrix and
each row contains the bias term of a node.

In the initialization, we distinguish between the actual nodes and the empty nodes. For a
real node representing a concept c, the weights of the neural network links between this node
and all the nodes representing the direct children of c in the previous layer are initialized by
assigning a random strictly positive value, and the other weights in the weight vector of this
node are equal to zero. The bias term is also be initialized to a random value.
Considering an empty node ex at layer Li having a predecessor node x from layer Li−1, the
weight between ex and x is initialized to 1 and the other weights in the weight vector of this
node is equal to zero. The bias term of this node is equal to zero. For example, the weights of
the layer two w[2] corresponding to the neural network in the figure 5.4 are the following:r1,1 r1,2 r1,3 0 0

0 0 0 1 0
0 0 0 0 1


5.6.2 Forward Propagation

As mentioned in section 5.2, our goal is to assign weights to the concepts in the tree according
to their importance in distinguishing between the classes. Each trajectory Tri is represented
by an l-dimensional vector vTri , where l is the number of nodes in the input layer. In addition,
Tri has its label lTri . In a binary prediction, lTri takes one of two possible values. In our work
we consider that lTri ∈ {0, 1}.
In forward propagation, the input of the neural network is a set of vectors representing the
training set denoted by A[0]. The input is a n×m matrix, where n is the number of nodes and
m is the number of trajectories in the training set.

The output of each layer Li is A[Li] = tanh(Z [Li]) with 1 ≤ i ≤ TL− 1 where TL is the
total number of layers, and Z [Li] = w[Li]A[Li−1] + b[Li].
For the output layer, we use the sigmoid activation function, A[LTL] = 1

1+eZ
[LTL] , and the loss

is calculated using the logarithmic loss function:

L = − 1

m

m∑
x=1

(lex)(logA
[TL]
x ) + (1− lex)(1− logA[TL]

x ) (5.2)

5.6.3 Backward Propagation

Once the loss is calculated at the end of each forward propagation iteration, the weights and
the bias terms for each layer are updated.

In the case of empty nodes, the weights should not be modified and they should always
provide the same value of a node in a previous layer to a node in a next layer. Therefore,
the weight vector of an empty node contains zeros except for one value equal to one, which
corresponds to the node in the previous layer where the empty node provides its output value.
In addition the bias term of an empty node is equal to zero. Therefore, in order to maintain
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the objective of the empty nodes, which is to provide the same value from a node in a previous
layer, their weight vectors and their bias terms should not be modified.

In addition, the weight vector of each actual node is initialized depending on the relationship
between the corresponding concepts in the tree, i.e., given two nodes ns and np in the layer
Li and Li−1 respectively, where ns represents a concept cs, and np represents a concept cp,
the weight between the two nodes should be always equal to zero if there is no SubClassOf

relationship between the two concepts in the tree.
Consequently, when updating the weight w

[Li]
s,p between the sth and the pth nodes ns and

np representing the concepts cu and cv in the layer Li and Li−1 respectively, we distinguish
between the following cases:

• Case 1: The nodes ns and np are actual nodes and there is an SubClassOf relationship
between cu and cv. In this case, the weight w[Li]

s,p is updated depending on the learning
rate α and the derivative of the loss with respect to w

[Li]
s,p .

• Case 2: The node ns is an actual node and np is an empty node that should pass the
value to the node ns. Similarly to the first case, the weight w[Li]

s,p is updated depending
on the learning rate α and the derivative of the loss with respect to w

[Li]
s,p .

• Case 3: The nodes ns and np are actual nodes and there is no a SubClassOf relationship
between cu and cv. In this case, the weight w[Li]

s,p is always equal to zero.

• Case 4: The node ns is an empty node. In this case the weight vector of the node np

should not be modified as it is an empty node.

In the first two cases, the equation to update the weight vectors is as follows:

w[Li]
s,p = w[Li]

s,p − α
∂L

∂w
[Li]
s,p

(5.3)
To generalize the weights update, we define for each layer Li a n × m matrix called

V alid_Input[Li], where n is the number of the nodes in layer Li and m is the number of
nodes in layer Li−1. The definition is given hereafter.

Definition 18 Valid Input Matrix
The valid input matrix indicates which values in the weight vectors could be changed according
to the cases defined above.

The element V alid_Input
[Li]
s,p is equal to one if the weight between the sth node in the

layer Li and pth node in the layer Li−1 w
[Li]
s,p can be updated, and zero if it can not be updated.

The updated weight vector matrix w[Li] of layer Li is computed as follows:

w[Li] = w[Li] − α
∂L

∂w[Li]
V alid_Input[Li] (5.4)

The bias terms in the nodes are updatable in the actual nodes only. For this reason we
also define, for each layer Li a n× 1 matrix called Nodes_Type[Li] where n is the number of
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nodes in the layer Li, and the element Nodes_Type
[Li]
s is equal to one if the sth node in the

layer is an actual node and zero if it is an empty node. The equation to update the bias terms
in the layer Li is:

b[Li] = b[Li] − α
∂L

∂b[Li]
Nodes_Type[Li] (5.5)

5.6.4 Concepts Weights Calculation

Once the minimum loss is reached, we assume that the influence of the nodes on the loss result
represent their importance. In other words, the impact of a node representing a concept ci
on the prediction result, i.e. the neural network’s final output, is the partial derivative of the
final output with respect to this node’s value. We use this principle to calculate the weights
of the leaf concepts. The weights of the concepts at higher abstraction levels are calculated
following a bottom-up approach depending on the children’s weights. The impact of a node
nci representing a leaf concept ci is defined as follows:

impactnci
=

∣∣∣∣∣∂A[TL]

∂nci

∣∣∣∣∣ (5.6)

The weight of the concept ci is the normalization of the impact of the corresponding node:

weightci =

impactnci
− min

c∈G.Leafs
(impactnc)

max
c∈G.Leafs

(impactnc)− min
c∈G.Leafs

(impactnc)
(5.7)

The weight of a non-leaf concept ci is computed as the average of its children weights and
defined as follows:

weightci = AV Gc∈hyponym(ci)(weightc) (5.8)

5.7 Evaluation

In the evaluation, we aim to test our weighting approach and compare it to state-of-the-art
weighting methods. The goal is to assign high weights for the concepts that can help distinguish
between the classes and low weights for the concepts that are not. The experiments presented
in this section show that the proposed weighting method enables the accurate detection of the
concepts that discriminate between the classes. High weights are assigned to these concepts.
The results of our experiments show that our approach allows to capture the importance of
the concepts as it derives higher weights to the concepts that discriminate between the two
considered classes. The data used in the experiments is related to the Conservation-Restoration
field and was extracted from the National Library of France (BnF) databases.
In the following, we will present the datasets used in our experiments. Then we will present the
results of our weighting approach and compare them to the weights generated by some of the
well-known weighting approaches.
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5.7.1 Data
In order to test our weighting approach, we have used the CRMBnF ontology introduced
in [133] [134] which contains concepts representing conservation–restoration events and their
generalization/specialization hierarchy.

The data used is a set of documents D = {d1, d2, ..., dn}, where each document di is
represented by a sequence of events Si representing the conservation–restoration history of the
document. Each sequence Si is transformed into a set of events. Conceptsdi contains all the
concepts representing the events that occurred in the conservation–restoration history of di.
Each document di is associated with a label ldi representing its physical state where it can
either be “Available′′ or “out − of − order′′. The evaluation is done on 11603 documents,
and the number of distinct events in their conservation–restoration histories is equal to 262.

5.7.2 Concept Weighting Results
The goal of this experiment is to assess the effectiveness of our weighting approach in detecting
the concepts that can help distinguish between the documents classes. After adding the empty
nodes, the transformation of the tree that represent the concepts and their generalization
hierarchy results in a neural network of 7 layers. The input layer contains 262 nodes representing
the leaf concepts of CRMBnF , and five hidden layers l1, l2, l3, l4 and l5 containing 261, 249,
110, 26, 2 nodes respectively, and a output layer of one node representing the root concept
of the ontology, i.e. Event. The weights are calculated then normalized, and the resulting
values range in the interval [0, 100], where 0 indicates that the concept is not at all relevant for
distinguishing between the two classes, and its discriminative power is null and 100 indicates
that this feature characterizes documents belonging to one of the two classes only. Table 5.1

Occurrences in classes
ID Concepts Available(/6962) Out-of-order(/4641) Weight3 Couture sur cahiers 687 28 7772 Restauration reliure 59 0 1004 Couture sur surjets 493 20 6812 Couvrure Pleine toile 2425 123 37165 COUV COINS Usure 15 127 37152 MORSSUP Coupé 335 359 0.28119 COUV PLATSUP Usure 503 577 0.12144 COUV DOS Salissures 948 788 0.9122 COUV Décollement 821 1227 0.65147 COUV DOS Lacunes 800 1145 5.2

Table 5.1: Analysis-based Weighting Results
shows results that assert that the values of the weights converge to 0 or 100 depending on the
distribution of the concepts in the two classes. The table contain the names the leaf concepts
of the hierarchy, their occurrences in the two classes and their extracted weights. Five of them,
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represented in green colour, have significant weights and the rest of the concepts, represented in
red colour, have low weights. The concept “Restauration Reliur” has the highest weight, equal to
100, and by analysing its occurrences, we can see that this concept appears only in the available
class. In other words, having a document containing this concept in its features indicates that
the label of this document can be predicted to be “available” with a 100% accuracy. The same
holds for the other concepts with high weights; we can see that their distribution among the
classes is not balanced, and they can be used to accurately predict the documents’ labels. If we
consider the concepts with low weights, we can see that their distribution among the different
classes tends to be uniform, and therefore they have low discriminative power.

Concept’s ID Our Approach AF CF TD Bayesian3 77 27 37 95 5072 100 51 58 95 504 68 31 41 95 5012 37 14 26 72 9165 37 47 55 76 22152 0.28 29 40 70 21119 0.12 25 36 99 23144 0.9 19 31 99 23122 0.65 18 30 99 23147 5.2 19 31 99 23
Table 5.2: Concepts Weights Using AF, CF, TD, Bayesian and Analysis-based methods

The weights of the concepts are shown in table 5.2 using the weighting methods presented in
section 2.3.2. Based on the occurrences of the concepts, the AF and CF methods give weights to
the five non-relevant concepts greater than the concept “12”, which should be more important.
Furthermore, given that the weights are very close, the concepts are not distinguished using
these extensional weighting methods. Depending on the graph structure, the TD approach
provides the highest weight to three non-relevant concepts. Finally, the Bayesian method does
not distinguish between the concepts, where the highest weights are equal to 50, and all the
non-relevant concepts have a weight greater than the concept “12”. We can see that the other
weighting methods assign the weight regardless of the distribution of the concepts in the two
classes. Our proposed approach successfully detects the ones that can help distinguish between
the classes.

5.8 Conclusion

In this chapter, we have proposed a novel concept weighting method based on a neural network
approach. The workflow corresponding to our approach starts by transforming the trajectories
to vectors and the concepts’ hierarchy to a neural network. Then the weights are learned using
regression on a predefined loss function that depends on the classes considered for the analysis
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task.

The trajectory transformation aims to unify the dimensions of the neural network input.
Therefore, the vectors representing the trajectories have the same size and represent the events
occurrences. The introduced process to transform the concepts’ hierarchy into a customized
neural network represents each concept by a node in the neural network and its relationships
are respected and represented by edges between nodes. The neural network size, layers and
edges depend on the structure of the concepts’ hierarchy.

In the weights learning process, we have proposed different adaptation of the forward and
backward propagation processes to take into account the relationships between the concepts
and to distinguish between the different types of nodes, i.e. actual and empty nodes.
The experiments have shown that our method outperforms the existing weighting methods to
detect the useful concepts to distinguish between the classes. The method gives high weights for
the concepts that frequently appear only in one class and low weights for those that frequently
appear in more than one class. The proposed approach give the possibility to give different
weights for the elements that compose the trajectories when the analysis task is different.
In this approach, we considered the SubClassOf relationship between concepts, but we could also
propose extensions that allow taking into account more semantic relationships of another type.
In addition, we could also introduce algorithms to weight concepts that are not represented by
a hierarchy but by graphs of different types, such as RDF graphs or property graphs in graph
databases.





6 - Conclusion

The aim of our work is to propose contributions towards a decision support system for the
conservation–restoration experts to help in predicting the documents’ physical state. To this
end, we have addressed different problems posed by the design of an analysis pipeline tailored
to supporting the experts in the definition of their conservation-restorations policies.

The first of these problems is the identification of the relevant data in the heterogeneous
distributed BnF databases to generate a conservation–restoration trajectory for each of the
documents and to define a suitable representation for these trajectories. The second problem is
related to the definition of an enhanced trajectory matching process that can solve the termi-
nological heterogeneity between the trajectories by considering the heterogeneous terminology
used in the elements constituting them. In addition, this work tackled different problems in the
advanced analysis of these histories, such as proposing an analysis pipeline that integrates ex-
perts’ knowledge to result in good predictions. Another problem we have addressed is identifying
the events’ weight that represents their importance in the analysis task.

6.1 Summary of the Contributions

Our first contribution, described in Chapter 3, is related to the generation, representation and
matching of the semantic trajectories representing conservation–restoration histories. We have
proposed a representation of these histories as semantic trajectories, which are sequences of
events. In addition, in this chapter, we introduced a novel similarity measure that tackles the
terminological heterogeneity of the events composing the trajectories. The proposed similarity
measure uses an external knowledge source representing the domain experts’ knowledge. We
have initiated a conceptualization of this knowledge as an ontology where each concept repre-
sents an event, and we have defined different types of relationships between the events using
this ontology.

The second contribution, presented in chapter 4, is related to the analysis of the conservation–
restoration trajectories in order to predict the documents’ physical state. We proposed an anal-
ysis pipeline that predicts the document’s physical state based on its conservation–restoration
trajectory. The proposed pipeline is formed of different modules. We have proposed to trans-
form the conservation–restoration histories into trajectories. In addition, we have introduced an
approach to identify similar trajectories based on clustering, where we have used the k-means
algorithm with adaptation to our context on calculating the means. Finally, we have proposed a
filtering process to identify the relevant clusters from which we extract patterns to represent the
different classes. Finally, in the last module, we propose prediction rules based on the extracted
patterns.

In order to capture the importance of the events for a specific analysis task, we have
proposed a novel approach for weighting the types of events composing a trajectory. We have
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proposed to give each element a weight representing its importance. The weights learning is
based on regression using a customized neural network that we propose to build based on the
concepts hierarchy representing the trajectories elements and their relationships.
Learning the weights starts with data preprocessing, where we have proposed transforming the
trajectories into element vectors. In addition, we have proposed an approach to transform the
concepts hierarchy into a neural network and to normalize the neural network structure. Finally,
we have proposed to learn the weights using regression. The learning is based on forward and
backward propagation, and the loss function is related to the class of the trajectories. Therefore
by changing the goal of the analysis, i.e., trajectories’ classes, the method gives different weights.

6.2 Future Works

Our work still has a high potential for future improvements. For conservation–restoration his-
tory creation, the integrated database could be further enhanced in future works by adding
more relevant properties, such as the preservation materials employed and more physical char-
acteristics of the documents detailed in restoration folders (unstructured data). Therefore, the
suggested ontological model could also be enhanced in future works by adding new dimensions
representing these characteristics. In addition, adding reasoning capabilities to our similarity
computation would allow us to consider the knowledge explicitly supplied in the model and the
knowledge that can be inferred. This would be another area of research. Moreover, the similar-
ity computation should also be adapted to take into consideration more semantic relationships
related to these new dimensions. Such enrichment can improve the prediction by introducing
dimensions that can possibly help in the analysis task, consequently increasing the number of
accurate predictions when predicting the documents physical state.

Regarding the proposed weighting method, it could be more automatized and generalized.
For example, the is-a relationships between the concepts in the hierarchy were implicitly trans-
formed into output and input links between the neural network nodes. When adding more
complex relationships to the ontology, more complex transformation rules could be defined
when transforming the ontology into a neural network.
In addition, some constraints on the trajectories could be removed. For example, a trajectory
could be represented by concepts at any level of the hierarchy; therefore, the input will affect
different layers in the neural network. Finally, the weights of the events could be integrated
into the analysis process to analyze their impact on the prediction results. The weight could be
used when matching the events and calculating the similarity between the trajectories.



A - Appendix : CRM BnF

The CRMBnF ontology contains more than four hundred concepts representing the events
constituting the conservation–restoration trajectories or new concepts that we add to represent
the group of similar ones. In this appendix, we present some of the dimensions of this ontology.

The root of the ontology is the event concept, and its direct sub-concepts are the conservation–
restoration process, i.e. treatment, and degradation. We have identified 19 groups of the
conservation–restoration processes; in other words, we have identified 19 different purposes of
these events.
Figure A.1 shows the different groups of the conservation–restoration processes.

Figure A.1: Conservation–restoration processes groups
Concerning the degradations, we have identified 11 different types of these events. Figure

A.2 shows the direct sub-concepts of the degradation concept.
The consolidation is a conservation–restoration group containing different types of con-

solidation events. Figure A.3 shows the concepts in this group. Some concepts were added
to represent similar events, such as “Japon” and “cuir”. A double path between the events
represents the equivalence relationship. For example, the three sub-concepts of “Japon” are
equivalent.

The degradation concepts was grouped depending on the degraded part in the document.
Figure A.4 shows the different concepts in this group.
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Figure A.2: Degradation types

The longest path in the ontology is between the root concept “événement” and the concept
“B3 Boite à comb lage” equal to seven. Figure A.5 shows this longest path.
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Figure A.3: Consolidation Group

Figure A.4: Body degradation concepts
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Figure A.5: Longest Path in the ontology
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