
HAL Id: tel-03992889
https://theses.hal.science/tel-03992889v1

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attacks and security proofs of authenticated
key-exchange protocols

Petra Šala

To cite this version:
Petra Šala. Attacks and security proofs of authenticated key-exchange protocols. Computer Science
[cs]. Université Paris sciences et lettres; Université du Luxembourg, 2021. English. �NNT : 2021UP-
SLE051�. �tel-03992889�

https://theses.hal.science/tel-03992889v1
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Préparée à Université du Luxembourg 

Dans le cadre d’une cotutelle avec, École normale supérieure 

Attaques et preuves de sécurité des protocoles 

d'échange de clés authentifiés 

Attacks and Security Proofs of Authenticated Key-Exchange 

Protocols 

Soutenue par 

Petra ŠALA 
Le 15 Septembre 2021 

Ecole doctorale n° 386 

Sciences Mathématiques de 

Paris Centre 

Spécialité 

Informatique 

Composition du jury : 
 

Jean-Sébastian, CORON 

Professor, University of Luxembourg Président 
 

Kristian, GJØSTEEN   Rapporteur 

Professor, Norwegian University of  

Science and Technology  

 

Marc, JOYE 

Chief Scientist, Zama   Rapporteur 

     

Michel, ABDALLA 

Professor, École normale supérieure Examinateur 
 

Manuel, BARBOSA 

Assistant Professor, University of Porto Examinateur 

 

Whitfield, DIFFIE 

Consulting Professor Emeritus, Stanford Examinateur 

 

David, NACCACHE 

Professor, École normale supérieure Directeur de thèse 

 

Peter Y.A. RYAN 

Professor, University of Luxembourg Directeur de thèse

   

 

 

 



“We stand today on the brink of the revolution in cryptography. The development
of cheap digital hardware has freed it from the design limitations of mechanical computing
and brought the cost of high-grade cryptographic devices down to where they can be used
in such commercial applications as remote cash dispensers and computer terminals.
In turn, such applications create a need for new types of cryptographic systems which
minimize the necessity of secure key distribution channels... At the same time, theoretical
developments in information theory and computer science show promise of providing
provably secure cryptosystems, changing this ancient art into a science.”

Diffie and Hellman, 1976



Abstract
The vast majority of communication on the Internet and private networks heavily relies
on Public-key infrastructure (PKI). One possible solution, to avoid complexities around
PKI, is to use Password Authenticated Key-Exchange (PAKE) protocols. PAKE pro-
tocols enable a secure communication link between the two parties who only share a
low-entropy secret (password). PAKEs were introduced in the 1990s, and with the in-
troduction of the first security models and security proofs in the early 2000s, it was
clear that PAKEs have a potential for wide deployment - filling the gap where PKI falls
short. PAKEs’ PKI-free nature, resistance to phishing attacks and forward secrecy are
just some of the properties that make them interesting and important to study. This
dissertation includes three works on various aspects of PAKEs: an attack on an existing
PAKE proposal, an application of PAKEs in login (for password leak detection) and au-
thentication protocols (HoneyPAKEs), and a security analysis of the J-PAKE protocol,
that is used in practice, and its variants.

In our first work, we provide an empirical analysis of the zkPAKE protocol pro-
posed in 2015. Our findings show that zkPAKE is not safe against offline dictionary
attacks, which is one of the basic security requirements of the PAKE protocols. Fur-
ther, we demonstrate an implementation of an efficient offline dictionary attack, which
emphasizes that, it is necessary to provide a rigorous security proof when proposing a
new protocol.

In our second contribution, we propose a combined security mechanism called
HoneyPAKE. The HoneyPAKE construction aims to detect the loss of password files
and ensures that PAKE intrinsically protects that password. This makes the PAKE
part of the HoneyPAKE more resilient to server-compromise and pre-computation at-
tacks which are a serious security threat in a client-server communication. Our third
contribution facilitates the wider adoption of PAKEs. In this work, we revisit J-PAKE
and simplify it by removing a non-interactive zero knowledge proof from the last round
of the protocol and derive a lighter and more efficient version called sJ-PAKE. Fur-
thermore, we prove sJ-PAKE secure in the indistinguishability game-based model, the
so-called Real-or-Random, also satisfying the notion of perfect forward secrecy.



Acknowledgements
First and foremost, my gratitude goes to Professor Peter Y.A. Ryan, who hired

me and entrusted me to do the research work that resulted in this thesis. I thank Prof.
Ryan for his inspiration and continuous support throughout my scientific journey. In
all challenging moments, I could turn to him for advice and guidance. Furthermore,
I am indebted to him for the hard-working and friendly environment in the research
group and funding my participation in eurocrypt’17, latincrypt’17, crypto’18
and esorics’19. Attending those conferences allowed thrilling discussions and efficient
exchange of ideas with distinguished cryptographers. The scientific collaborations born
at these encounters significantly impacted my vision, research and hence my PhD.

I am profoundly honored to have Turing Award winner Prof. Whitfield Diffie in
my defense committee. Prof. Diffie was the first “big name” I came across when I started
my studies in cryptography, and when I discovered for the first time his ground-breaking
1976 paper, “New Directions in Cryptography” I was far from imagining that one day
I would have an opportunity to meet him and have the privilege to discuss my work
with him. Nevertheless, the seminal, signed by Prof. Diffie and his co-author Martin
Hellman achieved eternal fame. Moreover, it yielded the eponymous Diffie-Hellman key
exchange, on which many constructions (including mine) are based.

My thanks also go to my co-supervisor, Professor David Naccache, who initi-
ated my crypto journey and kept inspiring me to learn languages and invent creative
crypto ideas. I am very grateful to him for arranging a co-tutorship with École normale
supérieure de Paris (ENS Paris) and for believing in my abilities. His witty sense of
humor often made me relaxed.

I would like to thank Dr Peter Browne Rønne, for his invaluable guidance, support
and encouragement. I appreciate all his help and preparation every time before my
travels to Paris.

I am also grateful to Professor David Pointcheval, head of the ENS’s Computer
Science Department and Cryptography Laboratory, who admitted me to the ÉNS’ doc-
toral selective program and to whom I could always turn to when I had questions.

I also thank the University of Luxembourg and ÉNS Paris for funding my numerous
research travels to Paris. Those short stays allowed me to refine my scientific results.
I appreciate every moment spent at ÉNS and consider myself lucky to have gotten the
best from both institutions.

I express my affection to the numerous members of the APSIA team from the
University of Luxembourg and the ÉNS’ Cryptography and Security teams. I am grateful
for all the time we spent discussing and encouragement before the submission deadlines.

Words can hardly express my gratitude towards my collaborators, Professor Michel
Abdalla and Professor Manuel Barbosa for their patience and understanding and for

iv



answering each of my questions.
I want to thank my colleague and a friend Dr Marjan Škrobot for all our discussion

and guidance, and for understanding how it is when tackling the problem for the first
time.

I am very thankful to Dame Natacha Laniado, for her support and friendship
during my PhD studies and for always believing in me.

I am indebted to my best friend Dr Sasan Jafarnejad, who taught me to dig deep
to find solutions to problems, who always provided constructive criticism and helped
me become the researcher and person I am today. I would also like to thank my closest
friends Maja and Vanda, for their unconditional support during every challenge met and
every success I made during the past four years.

Most of all, I would like to thank my family, especially my beloved parents, my
mother Zlata and my father Stjepan. They constantly reminded me that every problem
has a solution and that there is nothing I cannot solve. I would also like to thank my
brother Hrvoje, who always supported and admired my work.

This work was conducted at the APSIA group of the University of Luxembourg’s
Faculty of Science, Technology and Medicine (FSTM) and École normale supérieure,
Paris.



Contents

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Key Management and the Public-Key Revolution . . . . . . . . . . . . . . 1

1.1.1 Provable Security Paradigm . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Design of Key-Exchange Protocols . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Password-based Authentication . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Password Authenticated Key-Exchange Protocols under Patents . 6
1.3.2 Security Standardization of Password Authenticated Key-Exchange

Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Motivation for using PAKEs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Device Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Login Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 File Transfer System . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Complexity Theoretic Approaches . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Concrete Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Asymptotic Approach . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Algebraic Group Model . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



Contents vii

2.5.1 Simulation-sound Extractable NIZK . . . . . . . . . . . . . . . . . 18
2.5.2 Schnorr Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Algebraic Simulation-Sound Extractable NIZK . . . . . . . . . . . 21

2.6 Cryptographic Hardness Assumptions . . . . . . . . . . . . . . . . . . . . 23
2.6.1 Computational Assumptions . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Decisional Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.3 Relations Between the Assumptions . . . . . . . . . . . . . . . . . 25

3 Password Authenticated Key-Exchange Protocols 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Password Authenticated Key-Exchange Protocols . . . . . . . . . . . . . . 28

3.2.1 Passwords and Session Keys . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Attacks on PAKE Protocols . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Other Password-based Authentication . . . . . . . . . . . . . . . . 31
3.2.4 Balanced and Augmented PAKEs . . . . . . . . . . . . . . . . . . . 32

3.3 Security properties in PAKE Protocols . . . . . . . . . . . . . . . . . . . . 33
3.4 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Applications of PAKE protocols . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 IETF Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Security Models for Password Authenticated Key-Exchange Protocols 38
4.1 Indistinguishability-based Models . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Proof by Sequence of Games . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Indistinguishability-based Real-or-Random Model . . . . . . . . . . . . . . 41
4.4 Code-based Game-Playing Proofs . . . . . . . . . . . . . . . . . . . . . . . 44

5 An Offline Dictionary Attack against zkPAKE Protocol 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 The zkPAKE Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1.1 Initialization Phase . . . . . . . . . . . . . . . . . . . . . 48
5.2.1.2 Protocol Execution . . . . . . . . . . . . . . . . . . . . . 48

5.3 Offline Dictionary Attack on zkPAKE . . . . . . . . . . . . . . . . . . . . 50
5.3.1 Attack description . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 Attack Implementation . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 HoneyPAKEs 54
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 PAKE-based Access control . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.1 PPK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2 PAKE-based Access Control . . . . . . . . . . . . . . . . . . . . . . 55



Contents viii

6.3 Honeywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 HoneyPAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4.1 The Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.2 Technical Description of Components . . . . . . . . . . . . . . . . 59

6.4.2.1 Login Access . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.3 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.4 HoneyPAKE Construction . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.5 HoneyPAKE Security Analysis . . . . . . . . . . . . . . . . . . . . 62
6.4.6 Variations on a Theme . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.7 HoneyPAKE Without Secondary Password . . . . . . . . . . . . . 65
6.4.8 Index-hiding HoneyPAKE . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Authentication of the Server . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Security Characterization of J-PAKE and its Variants 68
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1.2 Organization of the Chapter . . . . . . . . . . . . . . . . . . . . . . 69

7.2 J-PAKE and its Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 From J-PAKE to sJ-PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.1 Variations of J-PAKE . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Game-based Security Proof of sJ-PAKE . . . . . . . . . . . . . . . . . . . 73
7.5 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 Variants of sJ-PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.6.1 sRO-J-PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.6.2 Security Game-based Proof of sRO-J-PAKE . . . . . . . . . . . . . 87
7.6.3 sCRS-J-PAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6.4 Security Game-based Proof of sCRS-J-PAKE . . . . . . . . . . . . 94

7.7 Efficiency Analysis of J-PAKE, sJ-PAKE and All its Variants . . . . . . . 95

8 Future Work and Conclusion 97
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.1 sJ-PAKE in UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.2 sJ-PAKE with Confirmation Codes . . . . . . . . . . . . . . . . . . 98

8.2 Conclusion and Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 102

A Supplemental material 103
A.1 Game-based code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 Games and adversaries for the proof of Theorem 7.1. . . . . . . . . 103

Abbreviations 126

Bibliography 127



List of Figures

2.1 Simulation of H(·) in the Random Oracle Model . . . . . . . . . . . . . . 17
2.2 Schnorr Identification Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Relationships between the assumptions also shown in [ABM15] . . . . . . 26

4.1 Running a game G with an adversary A. The adversary is interacting
with the game by asking queries i.e. calling the oracles that answer its
queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 The zkPAKE protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 The Honeywords system of [JR13] is composed of the Honeychecker (HC),
the Server (S) and the Client (C). . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 HoneyPAKE system. The Client wants to use the Resource. After run-
ning the HoneyPAKE protocol with the login Server S, the Client can
access the resource. The credential shared between the Resource and C
can be the output of the HoneyPAKE. . . . . . . . . . . . . . . . . . . . . 58

6.3 Login access granted by Resource. . . . . . . . . . . . . . . . . . . . . . . 60

7.1 The J-PAKE protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Related key attack if K = Key. . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 The sJ-PAKE protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Description of game-hops for sJ-PAKE . . . . . . . . . . . . . . . . . . . . 76
7.5 The sRO-J-PAKE protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.6 Simulation of H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.7 The sCRS-J-PAKE protocol. . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.8 Initialization phase for sCRS-J-PAKE . . . . . . . . . . . . . . . . . . . . 95

8.1 Version 1: sJ-PAKE with confirmation codes . . . . . . . . . . . . . . . . 100
8.2 Version 2: sJ-PAKE with confirmation codes . . . . . . . . . . . . . . . . 101

A.1 Game 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 Game 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.3 Reduction for Game 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.4 Game 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.5 Reduction for Game 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.6 Game 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.7 Game 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.8 Game 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.9 Reduction for Game 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.10 Game 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



List of Figures x

A.11 Reduction for Game 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.12 Game 4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.13 Reduction for Game 4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.14 Game 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.15 Game 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.16 Reduction for Game 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.17 Game 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.18 Game 7-8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.19 Reduction for Game 7-8.m.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.20 Game 7-8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.21 Game 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.22 Reduction for Game 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Tables

5.1 Results for dictionary sizes of 1000, 10000, 100000 words. . . . . . . . . . 52
5.2 The group parameters taken from NIST used for implementation of zk-

PAKE Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1 Comparison of Complexity of all J-PAKE(s) and the corresponding as-
sumptions used to prove their security against active attackers. . . . . . . 96

xi



“An expert is a person who has made all the mistakes
that can be made in a very narrow field.”

Niels Bohr

1
Introduction

1.1 Key Management and the Public-Key Revolution

Until about fifty years ago, cryptography (namely symmetric cryptography) has been
used almost exclusively for governmental, diplomatic and military purposes. The pri-
mary use of symmetric cryptography (presently also known as private-key cryptography)
was to ensure the secrecy and integrity of the messages sent over an insecure channel.
To achieve these ends, the parties would need to agree upon a secret key in advance. For
centuries (if not millennia), humans struggled with ways to share keys securely. Typi-
cally, this would be achieved either by moving one party physically towards the other
(meeting) or moving the key physically. In some situations, the parties used courier
services to transport long keys. A nice example of such practice is given in [KL07]:
the “red phone” that connected Washington and Moscow in the 1960s, was encrypted
with keys transported by couriers who moved around the globe, carrying briefcases with
long printed keys1. However, with the advent of electronic communication, one could
not rely anymore on the methods mentioned above, given their impracticality, inconve-
nience, and logistical clumsiness. To illustrate this, let’s consider the case of a company
with N employees wishing to converse privately with each other using private key cryp-
tography. Within this group, each employee would need to manage and store N − 1

secret keys. This places a significant burden on IT administrators and users in terms of
1Printed paper keys are still used today, and only discontinued recently in the US

https://techmonitor.ai/techonology/cybersecurity/punched-tape-ukkpa

1



Introduction 2

key management: preserving the secrecy of many keys, key updates and key revocations
are just some of the issues that need to be addressed (see e.g. [BOM+19]) and [JY98]
for alternative approaches). Introducing a Key-Distribution Center (KDC) as a trusted
entity that helps manage secret keys for employees only partially fixes the problem. One
improvement is that with relying on KDC, employees need to store only one long-term
secret key (shared with KDC) and the other secret keys are short-term and erased once
the communication between the employees ends. One downside is that since all the trust
is given to KDC, a successful attack on KDC would result in a complete breakdown of
the system. The well-known Kerberos [NYHR05] is a good example of a still-used KDC.
However, the Kerberos protocol architecture is not suitable for open systems like the
Internet as it requires a continuous online presence of KDC. Moreover, in open systems
the users typically commence the communication without prior key setup between each
other2. The first ones who suggested a different approach to the key distribution and
management with a ground-breaking work were Whitfield Diffie and Martin Hellman
in 1976, “New Directions in Cryptography”. Diffie and Hellman changed the course of
cryptography by setting foundations for public-key cryptography and made cryptogra-
phy accessible to any person with Internet access. Furthermore, public-key cryptography
yielded new key-exchange protocols that enable establishing a secret key between honest
parties over a public channel. The biggest advantage of the public-key crypto is that
anyone can encrypt a message with the public key, but only the person in possession of
the private key can decrypt and read the message. Later, it was acknowledged that the
established secure channel between the parties must also be authenticated to achieve a
communication secure even with the adversary’s interference. The Diffie-Hellman Key
Exchange protocol (DH-KE) marked the beginning of standardized key-exchange pro-
tocols in a public-key setting. Even though the original DH-KE is not used as it is
prone to a man-in-the-middle attack, it serves as a core of key-exchange protocols based
on public-key which are resilient to man-in-the-middle attacks and are widely used in
practice. One remarkable example where those protocols are used is Transport Layer
Security (TLS) protocol [DR08]. Finally, we stress the main advantages of public-key
cryptography over private-key cryptography:

• Public-key cryptography allows keys distribution to be done over public (but au-
thenticated) channels.

• Public-key cryptography reduces the need to store many secret keys.

• Public-key cryptography is more suitable for parties who have never previously in-
teracted which is a perfect fit for online communication, thus enabling e-commerce.

2Public-key infrastructure, offline TTP



Introduction 3

Now that we clearly stated the main differences between the private-key and the public-
key cryptography, we give an insight into where the Password Authenticated Key-
Exchange (PAKE) protocols fit in. PAKE protocols use a low-entropy password to
derive a strong cryptographic key shared between two parties over an insecure channel.
In other words, PAKEs rely on public-key cryptography, while the long-term secret (i.e.
password) is symmetric in nature.

1.1.1 Provable Security Paradigm

The profound expansion of Modern Cryptography into a public-key setting also encour-
aged the development of interactive protocols more systematically. The cryptographic
schemes are analyzed with a goal to precisely define their security. This means that ev-
ery scheme should undergo rigorous analysis showing that a given construction is secure.
Security proofs typically rely on assumptions that need to be made explicit and mathe-
matically precise. Public-key cryptography yielded new mathematical assumptions and
primitives which form the basis for proving a novel scheme secure. A proof of security
should be constructed to rely on the hardness of the assumption which is considered to
be unbreakable. In other words, the underlying scheme is secure if the adversary cannot
break the assumptions on which the scheme in question relies. More importantly, the
more adversarial capabilities the proof captures, the more confidence cryptographers and
developers will have to use a real-world deployment schemes. Inspired by Diffie-Hellman,
many new mathematical assumptions have been proposed and are often used in security
proofs of interactive key-exchange protocols. To give an example on an intuitive level,
the key-exchange protocol where two parties agree on the same session key is considered
secure in the view of an eavesdropping adversary, if the derived keys look completely
random when shown to the adversary. This is a crux of an indistinguishability-based
model on which the majority of the PAKE protocols base their security proofs and was
first formalized in the 1990s.

1.2 Design of Key-Exchange Protocols

The fundamental role of key-exchange protocols is to establish a secure channel between
two communicating parties via the negotiation of a shared key. Key-exchange protocols
are the most common form of a cryptographic protocol in wider use, teaching us a
lot about designing and analyzing more complex protocols. When designing a key-
exchange protocol, one needs to ensure that parties know exactly whom they are talking
to and that the protocol does not leak any information about the resultant shared key.
We consider the adversaries who monitor, control or modifies traffic. Furthermore,
the adversaries may corrupt the parties (e.g. retrieve the long-term secret) or learn



Introduction 4

session-specific information (session keys) for various reasons. In other words, every key-
exchange protocol should confine the damage of exposure to a minimum. We present a
list of the requirements when designing a proper key-exchange protocol:

• The security model should capture the full capabilities of realistic attackers;

• The protocol should be easy to analyze, both as standalone and in composition
with other protocols;

• The protocol should have formal security proof in the state-of-the-art model;

• The security model should capture forward secrecy;

• The protocol should have low computation and communication costs;

• The protocol should avoid overkill requirements, and it should have a robust im-
plementation.

1.2.1 Authentication

The possibility of establishing confidential channels between remote entities without
having to distribute key material in advance securely was proposed by Diffie and Hell-
man [DH76]. However, mechanisms such a Diffie-Hellman key establishment still require
some mechanism to securely authenticate the parties participating in the protocol and
avoid man-in-the-middle attacks. Various ways of incorporating authentication to such
protocols have been proposed, ranging from approaches that rely on symmetric or asym-
metric long-term setup to those using additional out-of-band channels (e.g., Threema
[Thr12]). Asymmetric approaches include the use of digital signatures or incorporating
long term key material into the computation of the session key, as in the MTI class of
protocols, [MTI86]. However, these assume some way for the parties to be confident
of the public keys associated with the other parties, thus requiring either some form
of a trusted setup (e.g., PKI or a Web of trust, etc). A further possibility is to have
the parties share a (possibly low-entropy) secret in advance and use it to bootstrap the
authenticity of subsequently established session keys. As another possibility one could
use out-of-band channels, authenticated by some other means such as line of sight or
distance bounding, to confirm the identity of parties involved in the protocol. In this
work we consider a low-entropy, symmetric, long-term setup, which is the most widely
used setting for human authentication.

1.3 Password-based Authentication

The way how passwords are used for authentication purposes has been evolving for
more than sixty years. In the beginning, passwords were just used for system entries



Introduction 5

and prevented users from accessing resources that exceeded their authorization. Later, in
the mid-1990s, the attention was on replacing passwords with client certificates via newly
proposed SSL. However, this approach failed due to bad issues with the management of
clients certificates and private keys. Moreover, applying passwords on web-based services
triggered new obstacles such as one-sided authentication and phishing attacks, among
many. The desire and need for stronger security measures encouraged some companies to
develop additional authentication tools such as hardware tokens or smartphones in the
2010s. Still, many studies on models deal with choosing a strong password [BHvOS12,
Bon12], measuring a desirable password entropy, studying user’s behavior, shielding
weak passwords and much more. Despite many well-known limitations of password-
based authentication [GEAR09] this is still the most prevalent way of user authentication
online. Some of the existing password-based authentication methods [Skr17]:

1. Passwords in plain text. Until the early 2000s, it was common practice to
use authentication mechanisms by which passwords are sent in plain text over
an insecure network. The Basic Access authentication method used for client
authentication when making a connection request in Hypertext Transfer Protocol
(HTTP) is probably the best-known example.

2. Hash of password. Another approach, which by today’s standards is insecure
but persists in some network protocols, consists of sending a hash value of a user’s
credentials (username and password) over an insecure network. An old mechanism
that follows this strategy to solve the password authentication problem is Challenge
Handshake Authentication Protocol (CHAP).

3. A Password over TLS. Currently, the Web’s most prominent password authenti-
cation mechanism on the Web is what Manulis et al. [MSKD16] call HTML-forms-
over-TLS. It works as follows: first, a Transport Layer Security (TLS) channel is
established, usually between a client (e.g., user’s browser or mobile application)
and a service providing server. Then, the server sends an HTML form over the al-
ready established TLS channel (encrypted and server-authenticated) to the client,
who is then asked to input its password and username to authenticate. Although
considered secure, this mechanism can be affected by PKI-related security issues
or phishing attacks, for example. These weaknesses can help attackers circumvent
the existing security mechanisms and get into the possession of users’ credentials.

4. Using Password-Authenticated Key Exchange (PAKE). PAKE is a cryp-
tographic primitive that offers a way to bootstrap a low-entropy password into a
high-entropy key without relying on PKI. It is a mature method for password au-
thentication that can be in some scenarios used on its own [AP05, HR10, Mac02]



Introduction 6

or as a building block of more complex protocols (e.g., TLS and PAKE integra-
tion [MSKD16]). However, even though it was proposed more than 25 years ago,
PAKEs have been only recently considered for wide-scale use.

5. Two-factor authentication A desire for stronger security measures encouraged
some services providers to include, in addition to passwords, other authentication
tools such as hardware tokens or smart-phones [SJ15]. Another authentication
method worth mentioning is a device (e.g. YubiKey3) which supports FIDO2
[BBCW20] protocols and the only way the user authenticates himself, in conjunc-
tion with a password, is with a simple touch on the device. However, these new
approaches usually leverage the time component and use the additional secure
channel as well, making the task for attackers much harder.

1.3.1 Password Authenticated Key-Exchange Protocols under Patents

Password authenticated key exchange protocols are deployed as widely in practice as
could have been hoped for (e.g. e-passports use CPACE [BK09]). While some think that
the reason is that they are not well known, others think that it is related to patent is-
sues. For example EKE and PAK were patented by Lucent Technologies [12], SPEKE by
Phoenix Technologies [18] and SRP by Stanford University [28]. As a result new PAKE
protocols were proposed, among which J-PAKE [HR10] and OPAQUE [JKX18] are
worth mentioning. We believe that now that all patents are expired, there should be in-
creased motivation for a broader use of PAKEs, especially for internet-applications where
password-based authentication mechanism is common (e-banking and e-commerce).

1.3.2 Security Standardization of Password Authenticated Key-Exchange
Protocols

The most relevant standards used for the standardization of password authenticated
key-exchange protocols are ISO [ISO09], IEEE [IEE02] and IETF [IET]. While SPEKE
[Jab96] is specified in the ISO/IEC 11770-4 and IEEE P1363.2, PAK and its variants
[Mac02] have been included in IEEE standards; some other PAKE protocols were re-
cently under consideration for standardization by the IETF [HR10, JKX18, AHH21]. In
addition, the Crypto Forum Research Group (CFRG), an IRTF (Internet Research Task
Force) research group, recently conducted a competition to select the password authenti-
cated key-exchange protocol for standardization. The selection process gathered experts
from industry and academy who could nominate any PAKE protocol and participate in
discussions and reviews of proposed candidates. After ten months, two candidates of
password authenticated key exchange were chosen as winners: CPace ([HL18], [AHH21])

3[Yub]



Introduction 7

and OPAQUE [JKX18]. We lay out more details on IETF standardization in Chapter
3.

1.4 Motivation for using PAKEs

Due to being free from public-key infrastructure (PKI), PAKEs protocols have a good
use in practice. Below we provide three different scenarios in which PAKEs are put to
use: in the Internet of Things (IoT) as a part of Device Provisioning Protocols (DPP),
within a login mechanism, and as a part of the software for file transfer. We supply a
concrete example for each scenario and point out exactly which PAKE protocol is used.

1.4.1 Device Provisioning

PAKE protocols are increasingly used is in the IoT networks, where authentication and
device synchronization should be as simple as possible. Most devices in IoT networks
for authentication use low-entropy secrets to avoid complexities around PKI, which is
usually a four-digit PIN. Thus, a perfect fit for PAKEs. A concrete example that uses
the elliptic curve version of J-PAKE is Thread Protocol [Thr16]. J-PAKE protects the
communication from malicious actors by preventing offline dictionary attacks which is
the basic requirement that PAKE protocols need to fulfil. Furthermore, J-PAKE ensures
the secure channel where the PIN is well protected and yields a strong cryptographic
key which used for encrypt further communication between the devices.
Another example that motivates further use of PAKEs is Wi-Fi Easy Connect [Wif18],
developed by Wi-Fi Alliance in 2018. Wi-Fi Easy Connect offers devices a simpler way
to connect them to a Wi-Fi Network while still maintaining the high-security protec-
tion. We stress that among these devices there are also the ones without an interface
(e.g., printers) that usually have a more complicated procedure for connecting them to
a wireless network than a typical smartphone. Wi-Fi Easy Connect uses PKEX [Har18]
(based on SPAKE2 protocol [AP05]) as a password authentication mechanism to ex-
change public keys, which is included in DPP.4

1.4.2 Login Scenarios

Another potential use of PAKE protocols is in login systems. Usually, a client wants to
authenticate himself to a server, to access a particular website provided by the server.
The client is the one who decides to trust the server and inputs his credentials like
username and password directly to the server’s website. We assume that the server

4DPP is a protocol developed by Wi-Fi Alliance that implements Wi-Fi Easy Connect. The exact
specification draft can be found in [Wif18].



Introduction 8

stores passwords5. Here, we explain potential problematic scenarios [Bre19] and we
discuss a solution offered by PAKE below:

• Failure of PKI. A Certificate Authority (CA) could issue void certificates, compro-
mising the user’s passwords. An example of this issue occurred in 2011, when a
dutch CA company DigiNotar [Den11], was compromised, causing impostor web-
sites to have valid certificates. Afterwards, domains such as Google and Mozilla
removed DigiNotar root certificates from their list of trusted roots.

• Phishing attacks. The malicious attacker can obtain a user’s credentials through
a fraudulent website that has a valid certificate.

We stress that the client-server setting becomes problematic when the connection with
an adversary impersonating the server is marked as “secure” due to a valid certificate
that the adversary can obtain through a CA authority. Moreover, we highlight that
TLS just ensures the secure transit of a password but does not prevent an attacker with
a valid certificate to impersonate the server. Fortunately, PAKE protocols do not rely
on PKI and they prevent phishing attacks by authenticating a client to a server without
exposing the password. The following cases show why PAKE protocols are a good fit
for login scenarios [OWT09, EKSS09]. First, we propose establishing a TLS-connection
between the client and a server and then running a PAKE protocol as part of the TLS-
channel, allowing the client to authenticate himself without sending a password. Then,
if the adversary who holds a valid certificate is impersonating the server, the connection
will fail when the password between the fake website and a client would not match.
Then, we suggest another login scenario in which PAKE is integrated into TLS, i.e., for
the client’s web authentication. The main aim of deploying PAKE for web authentication
would be to create a safe and trusted path for the users to input their credentials
and thus mitigate phishing attacks. In addition, authentication through PAKE in a
client-server setting would prevent disclosing the client’s password even when the attack
occurs. However, it is still uncertain whether to deploy PAKE into the application layer
(HTTPS-PAKE [OWT09]) or transport layer (SRP-PAKE [TWMP07]). In [EKSS09],
the authors addressed some of the usability and deployment issues on integrating PAKEs
into TLS. Nevertheless, PAKE-based web authentication shows interesting properties
and reasonable solutions against social engineering attacks. The proof that PAKEs
successfully pave a path for its widespread adoption in TLS is the works [PS20] and
[SKFB21], where SPAKE2 and OPAQUE are proposed as a part of TLS 1.3.

5To avoid immediate password exposure, passwords are usually stored on the server as a hash of a
password or hash of a password together with a unique salt related to only one per password. Later, we
provide more details in Chapter 3.



Introduction 9

1.4.3 File Transfer System

PAKE has shown to be an efficient and practical solution for several different scenarios. A
final example that supports the usage of PAKEs, but differs from the previous examples
is when two parties want to exchange a file between themselves over an insecure network
using a command line. We assume that both parties share a pre-agreed (possibly one-
time) password or even a PIN and are online simultaneously. An example of software that
can ensure a safe file transfer while conditions above are fulfilled is a Magic-Wormhole
[Mag16]. To achieve an authentication of the users involved in the file transfer and offline
dictionary attacks resistance during the initial connection attempt, it uses the SPAKE2
protocol [AP05]. Magic-Wormhole is a straightforward way to transfer files without any
login or web interface despite the various available software. For these reasons, we hope
our work will encourage and motivate its wider use.

1.5 Research Goals

We highlighted some potential risks when passwords are used as an authentication mech-
anism and hinted at the solutions when using PAKEs. In our first work, An offline
dictionary attack against zkPAKE protocol in Chapter 5, we give an example of the
proposed PAKE protocol without security proof and provide a concrete and practical
offline dictionary attack. This work was accepted and presented on IFIP6, 2019.
To support the idea of fitting in PAKE to a login scenario, HoneyPAKEs in Chap-
ter 6, provide a login mechanism, HoneyPAKE, which involves the following: a PAKE
protocol, a simple access control mechanism, and a set of decoy passwords called Hon-
eywords. Furthermore, we show that HoneyPAKE is resistant to server-compromise and
pre-computation attacks, which is why the HoneyPAKE protocol has a real potential
to be considered for real-world deployment. This work was accepted and presented on
Security Protocols XXVI - 26th International Workshop in 2018.
In our third work, Security characterization of J-PAKE and its variants in Chapter
7, we revisited one of the most widely used PAKE protocols, J-PAKE. In addition,
we created a simplified version, sJ-PAKE, by removing one zero-knowledge proof from
the original J-PAKE (on both sides) and provided a security proof of sJ-PAKE in the
indistinguishability-based model. By providing a security proof of sJ-PAKE and confirm-
ing that sJ-PAKE indeed fulfills the standard requirements, we comply with the latest
security guidelines for standardization which will encourage sJ-PAKE for deployment in
practice. In addition, we provide security proofs of sJ-PAKE’s variants and discuss their
differences. In the end, we compare the efficiency of the original J-PAKE to sJ-PAKE

634th IFIP TC-11 SEC 2019 International Conference on Information Security and Privacy Protection



Introduction 10

and conclude that the sJ-PAKE version is more efficient, which puts it higher on the lad-
der of PAKE protocols waiting to be deployed. This work is currently under submission,
but we refer to the eprint version [ABR+21]. For our future work, we explore benefits of
adding explicit authentication to sJ-PAKE protocol by using confirmation codes. Our
initial analysis shows that we can achieve simpler proof compared to sJ-PAKE without
confirmation codes.

1.6 Outline

The outline of the dissertation is the following:
Chapter 2: Preliminaries.
This chapter covers all cryptographic building blocks needed to understand better the
work we present in later chapters.
Chapter 3: Password authenticated key-exchange protocols.
In this chapter we explain in detail Password Authenticated Key-Exchange (PAKE)
protocols, their application, and formally define all security requirements a PAKE needs
to fulfil to be considered for deployment.
Chapter 4: Security models for password authenticated key-exchange proto-
cols.
This chapter analyses complexity-theoretic security models of PAKE protocols and cov-
ers the Indistinguishability-based Real or Random Model.
Chapter 5: An offline dictionary attack against the zkPAKE Protocol.
This chapter demonstrates, both theoretically and practically, an offline dictionary at-
tack against the zkPAKE protocol.
Chapter 6: HoneyPAKEs.
This chapter lays out a new cryptographic mechanism that relies on PAKE protocols
and an additional device that detects whenever the password might be compromised.
Chapter 7: Security characterization of J-PAKE and its variants.
This chapter presents a new variant of the J-PAKE protocol called sJ-PAKE and its
security proof in indistinguishability-based Real-or -Random Model. Furthermore, we
yield new variants of sJ-PAKE, sRO-PAKE and sCRS-J-PAKE, and prove them in the
same fashion as sJ-PAKE. In addition, we layout the game-based code for games and
reductions in Supplementary material.
Chapter 8: Conclusion and future work.
We conclude this dissertation with another idea of the protocol, sJ-PAKE protocol with
confirmation codes. Then, we compare sJ-PAKE without confirmation codes and sJ-
PAKE with confirmation codes, and we give a sketch of the proof of the latter.



If you can’t explain it simply, then you don’t under-
stand it well enough.

Albert Einstein

2
Preliminaries

2.1 Introduction

This chapter provides background concepts and definitions to make this dissertation
self-contained and easier to follow. Furthermore, we describe mathematical definitions,
cryptographic primitives, and hardness assumptions required to describe protocols and
in-depth analyse the security proof we provide in Chapter 7.

2.2 Mathematical Background

Notation. We use calligraphic letters to denote adversaries, typically A. We write
d

$←− D for sampling uniformly at random from set D, and |D| to denote the number of
elements in D. Let {0, 1}∗ denote the bit string of arbitrary length while {0, 1}ℓ stands
for those of length ℓ. When we sample elements from Zq, it is understood that they are
viewed as integers in [0 ... q-1], and all operations on these are performed mod q.

2.2.1 Groups

Here, we define groups and their properties [KL07].

Definition 2.1. Let G be a set where ◦ is a binary operation between two elements of
G. Then, (G, ◦) represents a group if the following four axioms are fulfilled:

11



Preliminaries 12

Closure: ∀ g, h ∈ G, g ◦ h is an element in G.

Existence of a neutral element: ∃ a neutral element e ∈ G such that for all g ∈ G
holds that e ◦ g = g = g ◦ e.

Existence of inverses: ∀g ∈ G, there exists an inverse element h ∈ G such g ◦h = e =

h ◦ g, denoted as g−1.

Associativity: ∀g, h, k ∈ G it holds that (g ◦ h) ◦ k = g ◦ (h ◦ k).

Definition 2.2. (Cyclic Group). Let G be a group of finite order z. The group G is
cyclic if there exists a generator g ∈ G such that

{g0, g1, ..., gz−1} = G. (2.1)

We underline that every element h ∈ G, where G is a cyclic group with the generator g,
can be written as gn, for some n ∈ N.

Theorem 2.3. Let G be a finite group with z = |G|. Then, ∀g ∈ G, it holds that gz = 1.

We stress that finding a discrete logarithm n of h = gn ∈ G can be hard and is considered
to be a general problem (discrete logarithm problem (DLP)) in modern cryptography.

Prime-order groups. In cryptography, the most interesting groups are those where
relevant problems, such as discrete logarithm (DLP) (Definition 2.13) and Diffie-Hellman
problems (DHP), are hard to solve. Prime-order cyclic groups are one example of groups
where the DL problem is considered to be hard. One reason is that if a cyclic group
did not have a prime order, DL would become easier to solve using the Pohlig-Hellman
algorithm. Another reason for using a cyclic group is that every group element in
prime-order groups is a generator, and any non-zero exponent is invertible. The lat-
ter is especially important because some cryptographic constructions require computing
multiplicative inverses of certain exponents. Lastly, we stress that the decisional Diffie-
Hellman problem (DDH) (Definition 2.17) is believed to be hard in prime-order groups.
More precisely, given gx, gy, gz ∈ G, where G is prime-order group with a generator g

and gx, gy, gz are a uniform tuple, it is hard to distinguish whether the element gz is
indistinguishable from a uniform group element.
Subgroups of Z∗

p.1 As already stressed, working in prime-order groups is advantageous
if we want to achieve that problems such as DDH are hard to break. Groups like Z∗

p

1An upper script (∗) denotes a multiplicative group.



Preliminaries 13

where p is prime, does not have a prime order. More precisely, DDH problem is not
guaranteed to be hard in such groups. For his reason, we need the right group structure,
such as the subgroup of Z∗

p (defined in Theorem 2.4), which will guarantee the hardness
of the DDH problem.

Theorem 2.4. Let Z∗
p be a group of order p, such that p = rq + 1, with p, q primes.

Then
G := {[hr mod p] | h ∈ Z∗

p} (2.2)

is a subgroup of Z∗
p of order q.

We will use a subgroup G of order q with a generator g ∈ G in Chapter 7.

Definition 2.5. Let a function H : {0, 1}∗ → {0, 1}ℓ be a deterministic cryptographic
function. H is called a (cryptographic) hash function if the following conditions
hold:

• collision resistance: It is computationally infeasible to find m ̸= m′ such that
H(m) = H(m′).

• preimage resistance: Given y = H(m), it is computationally infeasible to find
m.

• second-preimage resistance: Given m, it is computationally infeasible to find
m′ such that m ̸= m′ such that H(m) = H(m′).

Lemma 2.6. (Birthday Problem) Fix N ≥ 0 and let x1, ..., xq be chosen uniformly and
independently at random from a set of size N . Then the probability that there exists
i ̸= j such that xi = xj, is upper bounded by q2

2N . That is,

coll(q,N) ≤ q2

2N
(2.3)

The birthday problem is a standard statistical term used in many cryptographic con-
structions and the game-based provable security for authenticated key-exchange proto-
cols (AKE). Let us consider a scenario in which an adversary tries to break a protocol P
and sees the same hash values in two different sessions. Here, we use a birthday problem
bound for hash functions, meaning that we rely on hardness to find a collision. We
bound the adversary’s probability in finding collisions between hash outputs he receives
with the birthday bound and we use in our security proof in Chapter 7, Section 7.4.

2.3 Complexity Theoretic Approaches

To deploy cryptographic protocols for real-world purposes, one needs to undertake a rig-
orous analysis considering the time and the power of the adversary who might be trying



Preliminaries 14

to learn any information when message material gets leaked. The ideal information-
theoretic secrecy captures the adversaries with unlimited computational power that can-
not learn absolutely anything about the message once the ciphertext gets leaked. How-
ever, information-theoretic complexity is unnecessarily strong and very hard to achieve.
For real-world deployment, protocols generally do not need to guarantee that their se-
curity holds for an unlimited amount of time. In contrast, the protocol’s security needs
to hold for a reasonable amount of time i.e., polynomial time. The notions of efficient
adversaries, security parameters, and negligible chances of success are captured by com-
putational security. Computational security takes into consideration efficient (running
in polynomial time) adversaries and considers protocols to be secure even if there is a
very small chance for them to fail. More accurately, the very small chance should be
so small that, we can disregard it when considering real adversarial success to break
the protocol. More importantly, we can decrease this probability efficiently by adjust-
ing the security parameter of the protocol. Two general approaches precisely define the
relaxations on the adversary’s running time and his chances to potentially succeed in
breaking the protocol’s security: the concrete approach and the asymptotic approach.

2.3.1 Concrete Approach

This approach considers the exact amount of time t and a specific amount of computa-
tional power needed for the adversary to defeat the particular scheme. As mentioned
above, the probability of adversarial success in breaking the scheme’s security ϵ should
be very small. We stress that (t, ϵ) are concrete numbers, and we emphasize that it is
important to precisely define what it means to “break” the security. Providing precise
concrete security claims is something computational security leans towards. However,
concrete and precise security definitions are hard to achieve, so most schemes rely on
the asymptotic approach.

2.3.2 Asymptotic Approach

A security definition in an asymptotic approach requires a definition of what it means
to break the security of the protocol and specification of the power of the adversary.
Both notions include security parameters and efficient adversaries [KL07].
The security parameter is an integer that parameterizes, both, cryptographic schemes
and involved parties. More precisely, when honest parties generate keys, they take n

for the security2. For the simplicity of this analysis, one can think of n being the length
of the key. Furthermore, the security parameter is known to all parties, including the

2Normally, n is chosen by the designer of the system.



Preliminaries 15

adversary. Therefore, to precisely define the security of a particular scheme, we look at
the running time of the adversary and its success probability as functions of the security
parameter, which contrasts with the concrete approach where we use concrete numbers.
Principally, the security parameter, is what differs asymptotic from the concrete ap-
proach.
Efficient adversaries. We consider efficient adversaries3 to be probabilistic4 algo-
rithms running in time polynomial in n. More precisely, there is a polynomial p such that
the adversary ends his computing in p(|x|) number of steps, for every input x ∈ {0, 1}n.
Furthermore, we denote PPT as probabilistic polynomial time and in this dissertation,
we consider all the adversaries (denoted as A in Chapter 6, and A in Chapter 7) to be
PPT adversaries.
Success Probability. When analyzing the scheme’s security, one needs to determine
the probability that the efficient adversary defeats the underlying scheme. In the asymp-
totic approach, the cryptographic scheme is considered to be secure if the adversary has
a probability of breaking the system which can be made efficiently small by increasing
the security parameter, i.e., the probability is negligible (defined in Definition 2.7).

Definition 2.7. (Negligible success probability) A function f : N → R+ is negligible
if ∀ p > 0 ∃N ∈ Z such that ∀ n > N , it holds that f(n) < 1

p(n) .

A negligible function is asymptotically smaller than any inverse polynomial function.
Thus, in provable security, the advantage of the adversary must be shown to be negli-
gible to obtain meaningful security proof of the key-exchange underhand. One of the
advantages of working with negligible functions is that the result stays negligible when
the negligible function is repeated a polynomial number of times. This particular prop-
erty is defined in the form of a Proposition (Proposition 3.6) in [KL07]. A good example
of this property is when we bound the adversary’s success in the game-based proof of
sJ-PAKE (Chapter 7). The adversaries’ capabilities are defined through queries, where
the number of asked queries can be very high (e.g., 260). In this case, it is enough to
prove that the adversary breaks the scheme with negligible probability. Thus, the num-
ber of queries repeated a negligible amount of times is still negligible, implying that the
security of the underlying scheme holds. Finally, we define the security of the scheme
in the asymptotic approach:
A scheme is secure if for every PPT adversary, attacking the scheme, the probability
that the attacker succeeds in the attack is negligible (as defined in Definition 2.7).

3We assume that all the honest parties run are efficient.
4Probabilistic algorithm means that an algorithm can access an unbiased random bit at each step.



Preliminaries 16

2.4 Model Assumptions

As already mentioned, cryptographic security assumptions play a key role when prov-
ing the security of the cryptographic protocols. However, often one needs to adapt the
assumption on the environment of the protocol execution to prove the security notions
of the underlying construction. Here, we define more formally environments and trust
setups, commonly used in the security proofs of key-exchange protocols and other cryp-
tographic primitives. One of the most commonly used idealized assumptions is Random
Oracle (RO) which treats hash functions as idealized objects [BR93] and always provides
a fresh output when a different value is fed into the random oracle. Other primitives,
such as block ciphers and one way-permutations, can also be idealized by the random
oracle. In some cases, protocols need a trusted setup environment, where a trusted third
party generates a random element according to some pre-defined distribution, sometimes
called a public coin. We call such a setup Common Reference String (CRS). In CRS, all
participants, including the adversary, have access to, and no extra information about the
public coin is available to anyone. Another environment where the adversary is compu-
tationally restricted is the Generic Group Model (GGM). GGM is often used to capture
the algorithms that only use group operations and do not use any knowledge about the
group representation. In contrast, The Algebraic Group Model (AGM) assumes that the
representation of group elements is known and captures algorithms only doing algebraic
operations by demanding the algorithm to output a group element. Lastly, we empha-
size that RO, AGM and GGM models can be combined with the CRS setup, and one
example of the security proof where the RO model is combined with CRS is SPAKE2
[AP05].

2.4.1 Random Oracle Model

Here, we describe a RO model which idealizes hash functions (Definition 2.5). There
is a lot of protocols that base their security on the collision-resistant property of hash
functions. However, to provide a fully rigorous proof of security, one must assume the
protocol is being executed in an environment that always provides a consistent output
and makes sure that outputs are random. More precisely, a random oracle treats hash
functions as truly random functions. Although, the random oracle model is considered
to reflect unrealistic properties, it provides a formal methodology that can be used to
analyze proofs in-depth. Moreover, it gives confidence that the scheme in question is
somewhat secure. In addition, the security proofs from the random oracle model are
seen more as evidence that the underlying scheme does not have true design flaws. In
the literature, the random oracle is considered to be a “black box” that responds only
when “queried” an H(x) of a given input x (described in Figure 2.1).



Preliminaries 17

For each fresh RO query H(·), the simulator chooses a random string d
$←− {0, 1}κ

and returns d to A. The simulator administrates all the query - response by adding
them to the list. IfA already asked for H, the simulator simply retrieves the response
d from the list and gives it to A. The number of random oracle queries to H we
denote as nh.

Figure 2.1: Simulation of H(·) in the Random Oracle Model

2.4.2 Algebraic Group Model

The AGM model was formally introduced by Pallier et al. in [PV05] and first used
constructively to prove the security of J-PAKE protocol [HR10] in [ABM15]. Also,
the model was further formalized as the Algebraic Group Model (AGM) in [FKL18]
and [MTT18]. In essence, given a prime order group G, we say that an adversary is
algebraic if whenever it outputs a group element, Z ∈ G, it also outputs a discrete log
representation, r1, . . . , rk, in terms of all the group elements, g1, . . . , gk that it received
so far, i.e. Z = gr11 · · · g

rk
k . More formally:

Definition 2.8. Let G be a cyclic group with the generator g of prime order q. An
adversary Aalg is algebraic if it outputs a group element Z ∈ G such that Z =

∏
i g

ri
i ,

where g = (g1, ..., gn) is a list of all group elements that Aalg obtained during the
execution so far.

Unlike the GGM, the AGM model efficiently exploits the algebraic structure of the
group and, besides equality, also gives the adversary access to an extractor algorithm
that outputs the representation of the group element. Thus, AGM is considered to be
a weaker model than the GGM. In addition, in AGM several important computational
assumptions are proven equivalent, which is not the case in the GGM. For more details
on assumptions and comparison AGM to GGM, we refer to [FKL18]. So far, two works,
[ABB+20] and [FKL18], are known to use algebraic adversaries in their schemes and we
provide the third work with the heavier use of algebraic adversaries, in Chapter 7.

2.5 Zero-Knowledge Proofs

Zero-knowledge proofs are important cryptographic constructions that were formally
introduced by Goldwasser and Micali [GMR89]. Intuitively, the zero-knowledge proof
protocol consists of a prover and a verifier, where the prover wants to prove to the veri-
fier that some statement is true. Zero-knowledge makes sure that the verifier does not
learn anything besides the truthfulness of the statement.



Preliminaries 18

Non-Interactive Zero-Knowledge (NIZK) (extended to the case of labeled Non-
Interactive proof system in [ABM15]) is a system where a prover convinces a verifie,r
that a statement belongs to a certain class of languages in a single message. Further-
more, Blum et al. [BFM88] show we can use a common reference string (CRS) crs,
known to both the prover and the verifier without changing the definition of NIZK. Let
R be the relation between the statement x and the witness w, which can be checked
in PPT, where R(x,w) outputs 0 or 1. Then, we define L as an NP language with a
witness relation R such that L = {x | ∃w,R(x,w) = 1}.
A tuple (Setup,Prv,Ver) is a NIZK proof system for R, where a prover convinces a ver-
ifier that x ∈ L, without revealing the witness w. Since the prover does not actively
interact with the verifier, it only outputs π ← Prv(x,w, ℓ) (for some label ℓ) to the veri-
fier, who can check if the proof is valid by running Ver which takes π, x and ℓ as input.
Furthermore, it outputs 1 if the proof is valid and 0 otherwise. We extend the NIZK
by having the relation R depend on a public, randomly chosen string called common
reference string, crs. Furthermore, two following conditions should hold:

1. Perfect completeness. This property ensures that every honest prover (for any label
ℓ) who knows w, which is in relation to x, can convince the verifier, with the probability
equal to 1, that x ∈ L.

Pr
[
crs $←− Setup(1κ); (ℓ, w, π) $←− A(crs) : Ver(crs, x,Prv(crs, x, w, l), l) = 1 ∧R(x,w) = 1

]
= 1

(2.4)
2. Soundness. This property states that a PPT adversary can convince the verifier that
a false statement is true, i.e., x ∈ L without knowing w, only with negligible probability
ϵ. We define the advantage of the adversary running against the NIZK to be:

Advsound
NIZK () := Pr

[
crs $←− Setup(1κ); (l, x, π) $←− A(crs) : Ver(crs, x, π, l) = 1 ∧ x /∈ L

]
≤ ϵ

(2.5)
We define simulation-soundness and extractability properties in the following section.

2.5.1 Simulation-sound Extractable NIZK

In this section, we define simulation-sound extractable NIZK and its properties, accord-
ing to Groth [Gro06].

Definition 2.9. (labelled) Simulation-sound extractable NIZK (SE-NIZK) is a system
defined by the tuple (Setup,Prv,Ver,Sim1,Sim,Extract) such that (Setup,Prv,Ver) is a
non-interactive proof system with:

• Sim1(1
κ) generates common reference string crs and two trapdoors tds and tde



Preliminaries 19

• Sim(crs, tds, X, l) takes crs, tds, X, some label l, and outputs a simulated proof of
knowledge for X, π

• Extract(crs, tde, X, π, l) extracts a witness x for X from a valid proof of knowl-
edge π, considering some label l, trapdoor tde and common reference string crs, if
possible. Otherwise it aborts.

Furthermore, the following properties hold :

1. Knowledge extraction. Let (Setup,Prv,Ver) be a NIZK proof system for R. The
NIZK system is knowledge extractable if there exists a knowledge extractor Extract =

(Extract1,Extract2) such that for all adversaries A we have

Pr
[
crs← Setup(1k) : A(crs) = 1

]
= Pr

[
(crs, tde)← Extract1(1k) : A(crs) = 1

]
(2.6)

and

Pr
[
(crs, tde)← Extract1(1k); (x, π)← A(crs);w ← Extract2(crs, tde, x, π) :

Ver(crs, x, π) = 0 ∨ (x,w) ∈ R
]
= 1

This property is usually part of a proof technique called rewinding that demonstrates
the security of zero-knowledge proofs. More precisely, the simulator can rewind the
verifier several times using the same randomness to extract the witness. However, we
do not consider the rewinding to be possible here as it would contradict unbounded
zero-knowledge property, defined below.

2. Unbounded zero knowledge. For all PPT adversaries, there exists a simulator
Sim = (Sim1,Sim2) and zero-knowledge holds if the adversary cannot distinguish be-
tween real (produced by NIZK.Prv) and simulated (produced by Sim) proofs. we define
Advuzk

NIZK() as:

Pr
[
crs $←− Setup(1κ) : APrv(crs,·,·,·)(crs) = 1

]
− Pr

[
crs, tds, tde $←− Sim1(1

κ) : ASim(crs,tds,·,·)(crs) = 1
]

where Sim(crs, tds, X, x, l) = Sim2(crs, tds, X, l). The oracles NIZK.Prv and NIZK.Sim
abort if (x,w) /∈ R.

3. Simulation-soundness. This property makes sure that even when the adversary
sees simulated proofs of possibly false statements, he cannot prove any false statement.
Thus, NIZK soundness is preserved.



Preliminaries 20

Pr
[
crs← Sim1(1

k); (x, π)← ASim2(crs,τ,·)(crs); (x, π) /∈ Q∧x /∈ L∧Ver(crs, x, π) = 1
]
≈ 0

(2.7)
where Q consists of simulation queries and responses (xi, πi).

4. Simulation-sound extractability states that we can extract a witness w for x from
a valid proof of knowledge π, even after A sees many simulated proofs. This property
combines the knowledge extraction and simulation-sound property. We define Advext

NIZK()

as:

Pr
[
(crs, tds, tde) $←− SimExtract1(1κ);

(x, π)← ASim2(crs,tds,·,·),Extract(g)(crs,tde,·,·,·)
2 (G, g, crs, tde) : Ver(crs, x, π, l) = 1,

((X, l), π) /∈ Q ∧R(x,Extract2(crs, tde, x, π, l)) = 0
]

where Q is a set of query-response pairs ((X, l), π) for Sim2(crs, tds, ·, ·) and SimExtract1
is an algorithm that outputs (crs, tds, tde) such that (crs, tds) is distributed in the same
way as the output of Sim1.

2.5.2 Schnorr Signatures

A widely used identification scheme based on the hardness of discrete logarithm was
presented by Schnorr [Sch90] and is shown in Figure 2.2. Let there be a PPT algorithm
that takes as input 1k and outputs a description (G, g, q) where G is an underlying
working group, g is its generator, and q is its order. Then, the prover chooses x from
Zq which represents the secret key, and computes X = gx. Furthermore, (G, g, q,X)

represents the public key. Then, the prover wants to convince the verifier that he knows
x and initiates the protocol by computing V = gv, where v

$←− Zq; it sends V as the
initial message. Then the verifier chooses a challenge r from Zq and sends it to the
prover. Finally, the prover computes z = v− rx mod q and sends it to the verifier. The
verifier accepts if and only if V corresponds to the gzXr.
We described an interactive scheme, where the prover convinces the verifier that he
knows the discrete log x of a public element X. By applying Fiat-Shamir transforma-
tion [FS87] (challenge r is replaced by a hash function H(·), we obtain a non-interactive
proof system that is called The Schnorr signature scheme, also shown in [Sch90]. More-
over, Pointcheval and Stern [PS96] established a general technique to prove the Schnorr
signature scheme (Definition 2.10) secure against chosen message attacks in the random
oracle model.



Preliminaries 21

Public: G, g, q,X

Prover Secret: x Verifier

v
$←− Zq

V = gv

V

r
$←− Zq

r

z = v − rx mod q

z

Verify: V = gzXr

Figure 2.2: Schnorr Identification Scheme

Definition 2.10. The Schnorr signature scheme is a tuple of PPT algorithms (KeyGen,
Sign, Verify) where:

• KeyGen is a key generation algorithm that generates a private and public key. The
private key represents x which is randomly selected from Zq, and the public key is
represented by X, computed as X = gx and X ∈ G.

• Sign is a signing algorithm that for chosen message m ∈ {0, 1}∗ and a label l

chooses v from Zq and computes (V, e) where V = gv and e = H(m,V, l) and
z := v − ex mod q. Thus, on input (m, l), Sign algorithm outputs (z, e).

• Verify is an algorithm that verifies if the prover is being truthful by checking if
H(m,V, l) = e where V = gzXe. In the case of equality, Ver outputs 1 and 0

otherwise.

We use a non-interactive Schnorr proof of knowledge instantiated as a weaker simulation-
sound extractable NIZK in the sJ-PAKE protocol in Chapter 7. This notion is shown
and inherited from the original J-PAKE proof [ABM15] and we explain it in Section
2.5.3.

2.5.3 Algebraic Simulation-Sound Extractable NIZK

We substitute the simulation-sound extractability property with a weak algebraic simulation-
sound extractability and base indistinguishability and we obtain a new non-interactive
NIZK construction, algebraic sound extractable NIZK. This result was shown in [ABM15]
to instantiate a non-interactive Schnorr proof of knowledge [Sch90] in the original J-
PAKE protocol [HR10]. We adopt the same construction for the security proof of the
sJ-PAKE protocol in Chapter 7.



Preliminaries 22

The transformation of Schnorr into a SE-NIZK showed no issues for the unbounded zero-
knowledge property as a simulated proof is easily programmable. However, there was
an issue with extractability as there was no possible straight-line extractor when using
Schnorr. To solve this issue, algebraic adversaries were introduced. Additionally, assum-
ing the bases are hard linear and feeding the bases to the extractor is a way the extractor
can extract a witness from the adversarial proof of knowledge. Now, we formally define
algebraic simulation-sound extractable NIZK (alg-SE-NIZK):

Definition 2.11. Labelled Algebraic simulation sound extractable NIZK is a system
that consists of algorithms (Setup,Prv,Ver) for relation R and if there exists a simulator
Sim = (Sim1,Sim2) and an extractor Extract2 and the following conditions hold:

1. Weak algebraic simulation-sound extractability. This property is the same as
in SE-NIZK, except, the extractor Extract2 is given the discrete logarithms of all group
elements in a base g (g

$←− G \ {1}). This is possible because our reduction is algebraic.
More formally, for all PPT adversaries A, we define Advweak−alg:

Pr
[
(crs, tds) $←− Sim1(1

κ); g
$←− G; (x, π)← A(g),Sim2(crs,tds,·,·),Extract2(crs,tde,·,·,·)(crs, tde) :

Ver(crs, x, π, l) = 1, ((x, l), π) /∈ Q ∧R(x,Extract2(crs, tde, x, π, l)) = 0
]

where Q is a set of query-response pairs ((x, l), π) for Sim2(crs, tds, ·, ·).

2. Base indistinguishability. An alg-SE-NIZK has indistinguishable bases if all ele-
ments are indistinguishable when using bases (g

$←− G \ {1}) or (g1, ..., gn)
$←− D. We

define an advantage of any PPT adversary as Advbase−ind:

Pr
[
crs, tds, $←− Sim1(1

κ); (g1, ..., gn)
$←− D :

A(g),Sim2(crs,tds,·,·),Extract2(crs,tde,·,·,·)(G, g1, ..., gn, crs) = 1
]

− Pr
[
crs, tds, $←− Sim1(1

κ); (g1, ..., gn)
$←− D :

A(g1,...,gn),Sim2(crs,tds,·,·),Extract2(crs,tde,·,·,·)(G, g1, ..., gn, crs) = 1
]

where (g1, ...gn) is a hard-linear base defined in Definition 2.12.
The resulting scheme is slightly weaker than SE-NIZK. However, the security proof for
J-PAKE (and therefore for sJ-PAKE), which relies on SE-NIZK proofs, can be updated
only to assume alg-SE-NIZK proofs since all reductions are algebraic and all the bases
used in the proofs are hard-linear (Definition 2.12).

Definition 2.12. Given some distribution (g1, ..., gn)
$←− D, where D is a hard linear

distribution of tuples in Gn, for some n, it is computationally hard to find (µ1, ..., µn) ̸= 0



Preliminaries 23

such that gµ1
1 · · · g

µn
n = 1. More precisely, let Advhard−lin

D (A) be

Pr
[
(g1, ...gn)

$←− D; (µ1, ..., µn)
$←− A(g1, ...gn) : gµ1

1 · · · g
µn
n = 1

]
For more details about alg-SE-NIZK, we refer to [ABM15].

2.6 Cryptographic Hardness Assumptions

Most cryptographic schemes cannot be proven secure unconditionally, meaning the secu-
rity of a cryptographic construction in question must rely on assumptions. Assumptions
are precise mathematical statements that are not proven but only conjectured to be true.
For the assumption to be considered a reliable cryptographic statement, upon which we
could base any security proof, it needs to be validated, studied, and tested for several
years. Therefore, this approach is preferred to the one where we could simply assume
that the construction itself is secure. Furthermore, when we say that the assumption is
considered hard, it means that we have certainty that there is no PPT adversary that
managed to break the assumption so far.
Proofs by reduction. A cryptographic scheme is considered secure if no PPT ad-
versary can break the hard problem on which the scheme relies. More precisely, the
transformation of PPT adversary that is trying to break the scheme into a PPT adver-
sary that is trying to break a hard problem (on which given construction is based on),
is called the reduction. Furthermore, reducing the probability of the adversary breaking
the assumption to a probability of breaking the protocol is called the reductionist ap-
proach.
Tight reductions. Let us say there is a PPT adversary A running in time t(k) with the
probability success of breaking some protocol ϵ(k), for some security parameter k ∈ N.
Let us then say there is a reduction BA that runs A in time t′(k), with the success
probability of breaking a hard assumption (that protocol relies on) ϵ′(k). We consider
the reduction to be tight if t′(k)

ϵ′(k) = c(k) t(k)ϵ(k) , where c(k) is a constant bounded by the
polynomial [BJLS16]. In contrast, a loose reduction means choosing higher security
parameters which can decrease the efficiency of the protocol in question. Thus, a tight
reduction is preferable. Good examples of tight reductions are shown in [CGCG+19]
and [BIO+17].
Finally, proofs by reductions are commonly used when providing security proofs of cryp-
tographic constructions ([Mac02], [ABM15], [BOS19]). In the next sections, we list some
of the standard, computational and decisional, assumptions known to be hard that we
also use in our security proof (in Chapter 7). We then explain the relationships between
them. We consider G to be a multiplicative group, with a generator g and a prime order
q such that |q| := κ, for a given security parameter κ.



Preliminaries 24

2.6.1 Computational Assumptions

Definition 2.13. Discrete Logarithm Problem (DLP). Given gx, where gx ∈ G, compute
x. Let the advantage of an algorithm A in solving the DL problem be:

AdvDL
G (A) = Pr[x $←− Zq : x = A(gx)] (2.8)

For all A running in time t polynomial in κ, AdvDL
G (A) is a negligible function.

Definition 2.14. Computational Diffie-Hellman (CDH) Problem. Given gx, gy, where
{gx, gy} ∈ G, compute gxy. Let the advantage of an algorithm A in solving the CDH
problem be:

AdvCDH
G (A) = Pr

[
x, y

$←− Zq : gxy = A(gx, gy)
]
. (2.9)

For all A running in time t polynomial in κ, AdvCDH
G (A) is a negligible function.

Definition 2.15. Computational Square Diffie-Hellman (CqSDH) Problem. Given gx,
where {gx, gx2} ∈ G, compute gx

2 . Let the advantage of an algorithm A in solving the
CSqDH problem be:

AdvCSqDH
G (A) = Pr

[
x

$←− Zq : gx
2
= A(gx)

]
. (2.10)

For all A running in time t polynomial in κ, AdvCSqDH
G (A) is a negligible function.

Definition 2.16. Computational Triple Group Diffie-Hellman (CTGDH) Problem. Given
gx, gy, gz, gxy, gxz, gyz, where {gx, gy, gz, gxy, gxz, gyz, gxyz} ∈ G and gxy = DH(gx, gy),
gxz = DH(gx, gz), gyz = DH(gy, gz), compute gxyz. Let the advantage of an algorithm
A in solving the CTGDH problem be:

AdvCTGDH
G (A) = Pr

[
(x, y, z)

$←− Z3
q : g

xyz = A(gx, gy, gz, gxy, gyz, gxz)
]
. (2.11)

For all A running in time t polynomial in κ, AdvCTGDH
G (A) is a negligible function.

2.6.2 Decisional Assumptions

Definition 2.17. Decisional Diffie-Hellman (DDH) Problem. Given (gx, gy, gz) ∈ G,
distinguish whether z = xy or z = r, where r is is randomly chosen from Zq. Let the
advantage of algorithm A in solving the DDH problem be:

AdvDDH
G (A) = |Pr

[
(x, y)

$←− Z2
q : 1 = A(gx, gy, gxy)

]
−

Pr
[
(x, y, r)

$←− Z3
q : 1 = A(gx, gy, gr)

]
|.

For all A running in time t polynomial in κ, AdvDDH
G (A) is a negligible function.



Preliminaries 25

Definition 2.18. Decisional Square Diffie-Hellman (DSqDH) Problem. Given (gx, gz),
distinguish whether z = x2 or z = r, where r is randomly chosen from Zq and {gx, gz} ∈
G. Let the advantage of algorithm A in solving the DSqDH problem be:

AdvDSqDH
G (A) = |Pr

[
x

$←− Zq : 1 = A(gx, gx2
)
]
−

Pr
[
(x, r)

$←− Z2
q : 1 = A(gx, gr)

]
|. (2.12)

For all A running in time t polynomial in κ, AdvDSqDH(A) is a negligible function.

Definition 2.19. Decisional Triple Group Diffie-Hellman (DTGDH) Problem. Given
gx, gy, gz, gxy, gxz, gyz, gw where {gx, gy, gz, gxy, gxz, gyz, gw} ∈ G and gxy = DH(gx, gy),
gxz = DH(gx, gz), gyz = DH(gy, gz), distinguish whether w = xyz or w = r, where r is
randomly chosen from Zq. Let the advantage of an algorithm A in solving the DTGDH
problem be:

AdvDTGDH
G (A) = |Pr

[
x, y, z

$←− Zq : 1 = A(gx, gy, gz, gxy, gxz, gyz, gxyz)
]
−

Pr
[
(x, y, z, r)

$←− Z2
q : 1 = Agx, gy, gz, gxy, gxz, gyz, gr)

]
|. (2.13)

For all A running in time t polynomial in κ, AdvDTGDH
G (A) is a negligible function.

2.6.3 Relations Between the Assumptions

A security proof is more meaningful when it relies on a weaker assumption, i.e., implied
by the stronger assumption. We layout the relationships of known assumptions in Figure
2.3. First, we ordered the assumptions from the well-known to least known (from left to
right), and we used the same order to imply the strength of the assumption (for example,
DSqDH is the strongest assumption on the list). Second, the computational assumptions
are considered to be weaker than decisional assumptions. Finally, we base our analysis
on the relations between the assumptions from Figure 2.3 on [ABM15], [BDZ03] and
[STW96]. For the sake of clarity, we provide relations as separate statements below5.
For all PPT algorithms B and BA, running in time t:

• AdvCSqDH
G (B) ≥ AdvCDH

G (BA)

• AdvCDH
G (B) ≥ (AdvCSqDH

G (BA))2

• AdvCTGDH
G (B) ≥ AdvCDH

G (BA)

• AdvCSqDH
G (B) ≥ AdvDL

G (BA)
5We simplify our analysis by ignoring the time of exponentiation (texp)



Preliminaries 26

CDH

DL CSqDH DSqSH

CTGDH DTGDH

DDH

Figure 2.3: Relationships between the assumptions also shown in [ABM15]
.

• AdvCDH
G (B) ≥ AdvDL

G (BA)

• AdvDSqDH(B) ≥ AdvDDH
G (BA)

• AdvDSqDH(B) ≥ AdvCSqDH
G (BA)− 1/q

• AdvDDH
G (B) ≥ AdvCDH

G (BA)− 1/q

• AdvDDH
G (B) ≥ (AdvDTGDH

G (BA))/3

• AdvDTGDH
G (B) ≥ AdvDDH

G (BA)

• AdvDTGDH
G (B) ≥ AdvCTGDH

G (BA)− 1/q



In the sciences, the authority of thousands of opinions
is not worth as much as one tiny spark of reason in
an individual man.

Galileo Galilei

3
Password Authenticated Key-Exchange Protocols

3.1 Introduction

The problem of finding a robust solution for secure client authentication on the Inter-
net is of extraordinary importance, especially today when we are facing a tremendous
increase in the number of IoT-enabled devices and third-party services that require user
authentication1. The potential risk in terms of breaching users’ security and privacy
posed by such development coupled with the amount of content and data generated
and stored in cloud storage can only be imagined. Even though some predicted that
the password would die out, they are still the most widely used tool for authentication.
To maliciously authenticate into password-protected accounts, one needs to perform
so-called password attacks. These attacks are typically performed using software that
facilitates cracking or guessing passwords. The question of how the password is stored on
the server raised serious issues when server compromises occurred in Linkedin [Lin12] in
2012, Facebook in 2019 [Fac19], and the most recent Paxful [Pax21] trading platform in
2021. An adversary can exploit the fact that users re-use the same passwords on several
services. This means that even when the password of the leaked server is changed, an
attacker can still perform a credential stuffing attack where he attempts to log in with

1Most estimates agree that the number of existing IoT-enabled devices surpassed the number of
people in the world.

27



Password Authenticated Key-Exchange 28

already breached passwords into other uncompromised services, increasing his chances
of successfully impersonating the user. In this chapter, we present Password Authenti-
cated Key-Exchange (PAKE) primitive, which, if properly designed, can mitigate some
of the issues mentioned above in certain use cases. This would include protection against
offline dictionary attacks, phishing, and future password leaks, among others.

3.2 Password Authenticated Key-Exchange Protocols

The idea of bootstrapping a low-entropy secret into high-entropy session keys first ap-
peared in [Mer82]. Protocols supporting this idea and providing authenticity over an
insecure channel are called Password Authenticated Key Exchange protocols (PAKE).
The key challenge in designing a PAKE is to ensure that an attacker cannot derive
sufficient information to execute an offline dictionary attack, i.e. never gets enough
information to (tractably) confirm or deny in an offline computation a guess at the pass-
word. Such attackers might be passive, simply eavesdropping, or active, masquerading
as one or more parties. These two attack models are incomparable. This is essential as
the passwords are typically low entropy and hence vulnerable to brute force attack. Of
course, online guesses are unavoidable, but such attacks are detectable by the honest
parties and can be throttled, by for example, limiting the number of tries. Furthermore,
PAKE is a protocol executed between two honest parties in a concurrent setting, mean-
ing each participant is permitted to have multiple instantiations simultaneously. Thus,
to successfully run multiple sessions, the following properties need to be fulfilled [Kra03].

Key Authentication. When two honest users start communicating, they establish
a session. At the end of each session, each party should be able to verify the other
party’s identity, pid, and both parties should hold the same session key, sk. Further-
more, the session id, sid, should be unique to each pair of users. PAKEs offer two kinds
of authentication mechanisms:

• Implicit key authentication. After the protocol run is completed, two parties hold a
session key sk. Implicit authentication guarantees that only parties who complete
the protocol session can obtain the same session key (on both sides). Conversely, if
a party has not completed the protocol with its desired partner, then the partner
will not hold the same session key as the party. In addition, the execution of the
protocol usually continues until the end-if all the checks during the protocol are
verified. Some of the PAKE protocols with implicit authentication are [HR10],
[AFP05].

• Explicit key authentication. After the protocol have been executed successfully,
both users are certain that the other said is who they say they are. The certainty



Password Authenticated Key-Exchange 29

is usually achieved with confirmation codes. However, the protocol does not neces-
sarily run to the end, meaning that if the confirmation code is in the middle of the
execution as in [Mac02] and the confirmation code does not verify, the protocol
aborts.

Consistency. After A and B execute the protocol, A outputs (skA, sidA, pidA = B)

and B outputs (skB, sidB, pidB = A). Both outputs need to have a consistent view of
who their partner is for that particular session.

Secrecy. No third party should learn anything about the session key, whether by
observing or interfering with the protocol established by two honest parties. Further-
more, the session key should be indistinguishable from any random session key.

3.2.1 Passwords and Session Keys

Passwords are a unique set of characters, conveniently used as a login tool for every per-
son. Key-exchange protocols that use passwords as a means for authentication provide
two main advantages:

• User friendly. Every person can simply choose any password he wants and associate
it with his desired internet or bank activity. Passwords are easy to remember and,
if compromised, easy to replace, making them the most widely used authentication
tool.

• No Public Key Infrastructure (PKI). Sourcing and policy drafting are just some
of the things that make managing certificates costly and time-consuming. Fortu-
nately, PAKEs solely fuel on passwords and do not rely on PKI.

According to Social Media Benchmark report in 2020 [Omn20], each user on average has
8 active social media accounts in the USA. One can assume that this number is much
higher, considering accounts on other applications. The high number of accounts can
somehow affect the quality of passwords. More precisely, users often use the same or
correlated passwords as part of the login credentials for more than one account. This
means, if the adversary cracks the password for one account, he can gain access to other
accounts associated with the same user. Another feature that makes PAKE a strong
cryptographic mechanism is that it delivers strong session keys that can be subsequently
used in the encryption process of some data. To ensure that data is encrypted using
strong session keys, the following properties need to be fulfilled:

• Every communication should be established with a different session key;



Password Authenticated Key-Exchange 30

• Every communication should have an independent session key, meaning, the keys
should not be correlated with any keys (established in previous sessions);

• All session keys should be deleted after the corresponding session expires;

In some cases, PAKE protocols are used just for authentication [1Pa18], making them
an over-kill as the session key agreed at the end of the protocol is not subsequently used.
Instead, one could consider using passwords directly as long-term secrets for encryption.
However, there are a couple of downsides to that approach:

• Using passwords for encryption can lead to partition attacks, as in EKE [BR93].

• One should avoid using the same session key more than once to prevent crypto-
analysis on ciphertexts.

• If there is a password leak at any point in the protocol, whether the adversary is
actively participating or just observing, the protection of session keys in previous
sessions is not guaranteed, i.e. forward secrecy property is not satisfied.

Overall, the simplicity of password-based, free of PKI and forward secrecy, make PAKE
protocols unique and appealing for wider adoption.

3.2.2 Attacks on PAKE Protocols

The fact that passwords are still the most widely used authentication mechanism cer-
tainly raises interest in using PAKEs. However, because of the easy-to-guess nature of
passwords [YBAG04], the following attacks are possible:

Dictionary attacks. Dictionaries are big sets of the most used human-memorable
passwords, that adversaries use to perform dictionary attacks. Depending on whether
the attack takes place online or offline we can distinguish:

• Offline dictionary attack is when an adversary obtains information about the pass-
word without any time limitation and online connection. When building a dictio-
nary, an adversary can use it as a verifier when performing an exhaustive password
search. If the information he obtained matches the verifier with the particular pass-
word input, then the adversary successfully cracked the password, i.e. retrieved
the password in the clear. Some of the already existing dictionaries are HashCat
[Has19] and John the Ripper [joh19]. Our first work in Chapter 5 shows a real-
world example of a PAKE protocol prone to offline dictionary attacks and displays
an empirical analysis of the attack.

• An online dictionary attack is an attack where the adversary interacts with the
website, trying to impersonate the user by simply inputting the candidate password



Password Authenticated Key-Exchange 31

from the dictionary when running the key-exchange protocol. The protocol verifies
whether the password is correct in which case it leads to successful login.

The minimum requirement for security of PAKE protocols is that it is resistant to offline
dictionary attacks and that the adversary is confined to only online dictionary attacks.
More precisely, when performing an online dictionary attack, the attacker is allowed to
test only one password per session.
Another type of attack that captures the scenarios where online guessing is misinter-
preted for network failures is also possible with PAKEs. Furthermore, Roscoe and Ryan
[Rya17] showed that PAKEs could fulfill auditability2 property by developing a new
stochastic approximation to fair information exchange between the honest parties.

Pre-computation attacks. In the client-server setting, passwords are stored on a
server-side in the form of a hash instead of in clear. Even though in this way passwords
are considered to be safer, protocols usually use a deterministic password mapping3

which then attracts the adversary to do computations on passwords beforehand. More
precisely, the adversary can compute a table of values based on a passwords dictio-
nary before comprising a server, which may lead to an immediate password recovery
once the server is compromised. For instance, the adversary computes H(πi), where
{π1, π2, ..., πn} come from a dictionary and builds a hash table. Afterward, the adver-
sary compromises the server and compares it with a pre-computed table, and in case of
a match, he rapidly retrieves the password. A possible PAKE solution that is resistant
to pre-computation attacks is OPAQUE [JKSS18] which we describe in detail below (in
Section 3.2.4).

3.2.3 Other Password-based Authentication

One of the reasons why online dictionary attacks are not problematic is that they are
usually limited to just a couple of login attempts, which seriously mitigates the successful
login entry. Another reason is that the websites usually instruct their users to choose
strong passwords, even hinting at the number and the nature of characters. These
reasons suggest that the adversary needs to be very lucky to perform an online dictionary
attack successfully. Because passwords are a minimum requirement for login accounts,
the most typical authentication is password-based, either on the client-side or the server-
side. Some of the other authentication password-based mechanisms worth mentioning
are:

2A protocol is considered to be auditable if honest parties can distinguish between online guessing
and a communication failure.

3The protocols can also use random salt, transmitted in the clear from servers to users.



Password Authenticated Key-Exchange 32

• Two-factor authentication (TFA), where, besides inputting the password, the user
must provide a digit code chosen from an auxiliary device (e.g., a smartphone or
a USB token).

• Two-factor PAKE with end-to-end security, where, besides the password, the user
uses any device-enhanced PAKE (defined by Jarecki et al. [JKSS18]) and any
Short-Authenticated-String Message Authentication (SAS-MA) (defined by Vau-
denay [Vau05]). This modular construction is efficiently instantiated and is a part
of recent work from Jarecki et al. [JJK+21]. Furthermore, it achieves security
against any attacker, passive or active, attacking any part of the system.

• aPAKE-into-TLS login, described in [SKFB21], is an approach that first establishes
a TLS connection between the user and the server and then uses aPAKE to preserve
the secrecy of the user’s credentials. However, aPAKE-into-TLS is not always the
desired login, as it requires merging the application and the network layer to
integrate aPAKE into TLS successfully. For this reason, Lewi, Mohassel and Roy
[LMR20] introduce a new primitive, credential-hiding login (CHL), which is more
efficient than aPAKE-into-TLS while preserving the same security4 as aPAKE-
into-TLS approach.

• Given one master password, password managers create and store multiple high-
entropy passwords based on the master password [SJKS17].

• An interesting mechanism called HoneyPAKE, based on Juels and Rivest [JR13],
integrates PAKE with another auxiliary device called the HoneyChecker, which
gets triggered, whenever the adversary may attempt to compromise a server. Hon-
eyPAKEs are considered to add another layer of protection to passwords and are
explained in detail, in our second work in Chapter 6.

• Oblivious PAKE (O-PAKE) [KM13] is an interesting PAKE construction where a
client has a set of passwords, among which, only one is shared with a server. The
interesting part is that no information about any password is leaked and a server
uses a special technique called Index Hiding Message Encoding (IHME) to retrieve
the password. The goal of O-PAKE is to improve the efficiency of PAKE protocols
in the scenarios where the client mistypes the password or can not remember the
exact password being used for a particular website.

3.2.4 Balanced and Augmented PAKEs

So far, two types of PAKE protocols have been proposed, depending on how the pass-
word is stored on the server: cleartext or in the form of a hash. PAKE protocols where

4Universal Composability framework [Can01]



Password Authenticated Key-Exchange 33

the server stores a password in clear text are called balanced and augmented otherwise.
Unlike balanced PAKEs, augmented PAKEs are more resistant to server compromise.
Furthermore, if implemented well, clients’ passwords are not immediately revealed once
the password file is leaked since the attacker still has to perform password cracking.
Unfortunately, augmented PAKEs only make it somewhat difficult for the adversary to
retrieve the passwords, but they do not remedy pre-computation attacks.

Resilience to pre-computation attacks. Despite the plethora of PAKE protocols
proposed in the last 25 years, almost all of them are vulnerable to already mentioned
pre-computation attacks. However, the OPAQUE protocol [JKSS18], proposed in 2018
stands out with exactly that property. Pre-computation attacks are possible if the server,
in a client-server setting, sends the salt in the clear to the client, making it possible
for the adversary to pre-compute an offline dictionary and thus do the pre-computation
attack. In most of the PAKE protocols in the Initialization phase, a client receives a
salt in the clear from the server, making it possible for the adversary to impersonate
the client and perform pre-computation attacks. In contrast, OPAQUE gets around the
pre-computation attacks in the following way:

• It does not reveal the salt to the attacker. Furthermore, it uses an efficient oblivious
pseudorandom function (OPRF) to combine the salt with the password, ensuring
that the client does not learn the salt and the server does not learn the password.

• It is possible to take all the hashing work from the the server-side and given to
the client side, freeing the server from a workload so it can use stronger security
settings like hard key derivation function, for instance, scrypt, with large RAM
parameters5, that in the end, significantly slows down (pre)computation process.

In conclusion, the OPAQUE protocol is a sort of new breed of PAKE protocols, called
strong augmented PAKE6, which may take over the reins when the future of the password-
based protocols is considered.

3.3 Security properties in PAKE Protocols

According to [HR10], every PAKE should fulfil the following requirements:

Resistance to Eavesdropping. An adversary should not obtain any information
that would aid him to retrieve the password when observing the protocol execution.

5Standard scrypt parameters are N = 16384, r = 8, p = 1 [scr]
6Sometimes also referred to as asymmetric PAKE



Password Authenticated Key-Exchange 34

Offline Dictionary Attack Resistance. An adversary should not be able to ob-
tain any useful information on which he could perform an offline dictionary attack. A
clear example of an unsafe PAKE protocol where an adversary can perform an offline
dictionary attack is zkPAKE [MRA15] (covered in Chapter 5).

Bounded Online Dictionary Attacks. An adversary should be limited to one pass-
word guess per active session.

Forward Secrecy. One of the benefits of PAKE protocols is achieving forward se-
crecy. This means that if a long-term secret (i.e. password in case of PAKE) gets
compromised, the session keys remain protected. Depending on the participation of the
adversary, there are two levels of forward secrecy.

• Weak forward secrecy (wFS): Session keys are protected after long-term secret is
compromised when the adversary is just eavesdropping.

• Perfect forward secrecy (PFS): Session keys from previous sessions where the ad-
versary was actively interfering (e.g. sending or modifying messages), are protected
if a long-term secret gets compromised.

Perfect forward secrecy is a stronger notion [Kra05]. Moreover, it is required for any
PAKE protocol to be seriously taken under consideration to be deployed. We define
more formally the conditions in the indistinguishability-based models for perfect-forward
secrecy (PFS) and weak-forward secrecy (wFS) in Chapter 4.

3.4 Previous Works

Although there has been an abundance of PAKE protocols, see [BM92, Wu98, Jab96,
JR13, KOY01, Har15, AP05, HR10, TWMP07, BR94, Mac02, BRRS18, HL19, KM13],
in the last two and a half decades, we mention just a representative few relevant to our
work. For a more detailed overview of PAKE research field, we refer to Pointcheval’s
survey [Poi12]. We start with EKE by Bellovin and Merritt [BM92] and SPEKE [Jab96]
which were seminal but shown prone to attacks. The popularity of PAKE protocols grew
as prominent complexity-theoretic security models ([BPR00, AFP05, BMP00, CK01])
precisely defined guidelines to prove PAKE protocols secure. For instance, PAK and
PPK [Mac02], SPAKE2 [AP05], J-PAKE [HR10] are proven secure in the game-based
models [AFP05, BPR00]. Even though game-based models are considered to be the
weakest security proofs models for PAKE(s), they still represent a high-standard bar that
a certain PAKE protocol needs to reach to be taken into consideration for practice use.
Unlike the game-based models, a model that makes no assumptions on the passwords and
captures more real-world adversaries is the Universally Composable (UC) model designed



Password Authenticated Key-Exchange 35

by Canetti et al. [CHK+05]. Protocols like, SPAKE2+ [Sho20], OPAQUE [JKX18] and
CPace ([HL18], [AHH21]), are some of the more recent ones that are proven secure in
the UC framework, guaranteeing security under arbitrary protocol composition. In the
latest work, Gu, Jarecki and Krawczyk introduce the KHAPKE protocol [GJK21], which
is an improved version of OPAQUE that does not rely on the security of the oblivious
pseudo-random function (OPRF), also proven in the UC setting. Until recently, only
protocols that could administrate the scenario where an adversary conducts an online
attack against the session by making a password guess before that session is completed
could be proven UC secure. Because of this property, some of the protocols ([AP05],
[HS14, Jab97, Mac01], [PW17]) could only be proven secure in the game-based setting.
Later, Abdalla et al. [ABB+20] introduced the relaxation of the PAKE functionality in
UC, lazy-extraction PAKE (lePAKE) by allowing the ideal-world adversary to postpone
the password guess even after the session ends. This relaxation allowed the SPAKE2
[AP05], SPEKE [HS14, Jab97, Mac01], and TBSPEKE [PW17] to be proven in relaxed
UC. PAKEs also found their use in PakeMail [SALR21], where they simplify entity
authentication in decentralized, secure email by not relying on PKI nor trusted setup.
Lastly, a new notion of public-key encryption, Password-based Authenticated Public-key
Encryption (PAPKE), was introduced by Jarecki et al. [BCJ+19]. To better understand
this primitive, the authors related it to PAKEs, first, by showing that the PAPKE proto-
col strictly implies PAKE. Second, their work shows that any generic PAPKE-to-PAKE
compiler builds the two-round UC PAKE from UC PAPKE. Finally, looking back on
the more recent previous work on PAKEs and its latest IETF standardization, it seems
that the UC framework has become a standard security model for PAKEs.

3.5 Applications of PAKE protocols

While security proofs are desirable, they are not vital for the protocol to be deployed in
practice. A prime example of that is SRP [Wu98] which is one of the most used PAKEs
due to its implementation compatible nature. Next, we list the concrete applications
and name the protocols they adopted.

• Password manager called 1Password [1Pa18] uses SRP for authentication.

• Apple iCloud Keychain allows users to synchronize their passwords between iCloud-
enabled devices securely. In addition, the SRP is used as an authentication mecha-
nism during the recovery process: the user must prove knowledge of the previously
registered Passcode without revealing it to anyone – not even Apple.



Password Authenticated Key-Exchange 36

• Wi-Fi Protected Access v3 (WPA3) is the standard for secure wireless communi-
cations. It adopted Dragonfly protocol [Har15, Lv15] for authentication to prevent
offline dictionary attacks when a pre-shared key has been leaked.

• The SRP PAKE protocol has been standardized as a TLS cipher suite [TWMP07].
The reason that it failed to be widely adopted [MSKD16] in the TLS cipher suite is:
i) the need for significant modifications to the TLS handshake protocol, ii) required
changes in the web browsers, and iii) abandoning the public-key infrastructure. A
better approach was proposed in [EKSS09, MSKD16], which keeps TLS intact
and only affects the design of the web browser, particularly in the way users input
their credentials. However, for the lack of concrete user-experience studies, this
approach still needs to be confirmed.

• The International Civil Aviation Organization (ICAO) uses PACE protocol [BK09]
to protect the data stored in the chip from unauthorized access and establish a
secure channel between the chip and the passport reader.

• Amazon Cognito is an authentication module developed by Amazon Web Ser-
vices [Ama20], which handles user registration, authentication, and account recov-
ery. It uses the SRP protocol for authentication.

• Magic Wormhole is a software that allows two users to rapidly exchange big files
(ex. video) to avoid trusting the server that uploaded files will not be compromised.
This software uses SPAKE2 [AP05] for authentication.

One of the most widely deployed PAKEs, is J-PAKE [HR10]. Even though J-PAKE
is already mentioned above, some of the other applications that adopted J-PAKE are
Thread protocol (in IoT) [Thr16], Pale Moon [Pal16] and OpenSSL [Ope16] library.

3.6 IETF Standardization

As already mentioned in Section 1.3.2, the winning protocols of the last IETF compe-
tition were CPace ([HL18], [AHH21]) and OPAQUE [JKX18]. Unfortunately, one of
the candidates, J-PAKE, was removed in the early stages of the competition for not
fulfilling the “one round” efficiency requirement. However, we believe there are reasons
why J-PAKE is still an important protocol to consider. One reason is that, compared to
the winning CPace, it does not require hashing into a curve which might cause timing
attacks [VR19]. Another one is that J-PAKE uses short exponents in contrast to CPace
and OPAQUE, making one modular exponentiation in CPace and OPAQUE around 9
times costlier than in J-PAKE. For more technical details, we refer to [Hao21]. Finally,
the third work (Chapter 7) in this dissertation presents and proves the sJ-PAKE protocol



Password Authenticated Key-Exchange 37

as a lighter and more efficient version of J-PAKE, which shows that J-PAKE protocol
still has a lot to offer.



The greatest enemy of knowledge is not ignorance; it
is the illusion of knowledge.

Stephen Hawking

4
Security Models for Password Authenticated

Key-Exchange Protocols

When designing PAKE protocols, one must perform rigorous analysis of its security
and efficiency. Real-world examples, such as SRP [Wu98], 1 have shown that a secu-
rity proof is not vital if there are no known attacks. However, providing the security
proof is a necessary task because of the following reasons: (i) to avoid publishing pro-
tocols that are afterwards shown to be broken [Szy06], [BŠŠ17], [CH14], [MPS00]; (ii)
for a protocol to be considered as a candidate for any type of standardization (IETF,
IEEE, ISO); (iii) for the wide adoption in TLS or some other mechanism. Based on
the works of Bellare and Rogaway ([BR93], [BR95], [BM97]), the first proposed pass-
word authenticated key-exchange protocols complexity-theoretical security models are
indistinguishability-based (IND-based) game-based, so-called Find-then-Guess [BPR00]
and Real-or-Random [AP05], where the security protocol is considered to be breached
if the adversary can distinguish between the real and random session keys. Then, a
simulation-based (SIM-based) model captures an ideal world and a real world protocol.
The security holds if the adversary cannot distinguish whether it interacts with the real
or with an idealized protocol that is secure by definition. One example of the SIM-based
protocol is based on Shoup’s work on authenticated key exchange [Sho99], [BMP00].
Another two examples of the SIM-based model is the UC security model ([CHK+05],
[Can01]) and the relaxed UC model [ABB+20]. SIM-based models are considered to be

1Currently, v6a is in use.

38



Security models for Password Authenticated Key Exchange Protocols 39

stronger models than IND-based, due to more realistic assumptions on passwords and
capturing composability properties. The main reason supporting this statement is that
IND-based models mostly consider password distribution to be uniform, which is less
realistic than the passwords coming from a highly non-uniform distribution, modeled in
simulation-based models. The second reason is that when a certain protocol is secure
in the simulation-based model (e.g. UC), it implies that the same security is preserved
when composed with another protocol, namely encryption. However, Skrobot and Lan-
crenon [SL18] showed that, under certain conditions, the RoR model could be extended
to capture security guarantees when PAKE is composed with a different protocol.

4.1 Indistinguishability-based Models

Both, Real-or-Random (RoR) [AP05] and Find-then-Guess (FtG) [BPR00], models de-
fine the security via games, between an adversary A and the challenger CH, where the
adversary targets the session in which he might be able to distinguish between the real
and random session keys. More precisely, the security captures the adversary’s abilities
to guess the bit b ∈ {0, 1} which represents a real or random session key. In RoR, bit b

is chosen at the beginning of the game, and A may guess the bit b on multiple instances,
while in FtG, A may guess the bit b on only one instance in the security experiment.
For this reason, RoR is considered to be a stronger flavor than the FtG model. For
comparison and deeper analysis of both models, we refer to [AP05]. The proof in both
models follows standard theoretic-complexity methodology [GM84], where the advantage
of the adversary is bounded by the success probability of A solving some hard problem,
i.e. the advantage of the adversary to break the protocol is reduced to a hard problem.

Security reductions. Once we precisely define security notions we wish to achieve
for a particular scheme, we must choose a suitable security model to achieve a concrete
security goal. To exhibit the security of the protocol in question, we need to demon-
strate that the underlying protocol is hard to break only if the underlying assumption
is believed to be hard. Thus, we need to reduce the security of the scheme to a security
of the underlying assumption. We call this approach the reductionist approach. We use
the reductionist approach in the security proof in our final work in Chapter 7.

4.2 Proof by Sequence of Games

As already mentioned, security proofs are vital when a new protocol is considered for
real-world deployment. Security proofs are usually complex and hard to understand, so,
usually, it is a good idea to break it down into smaller, less complex parts. Furthermore,



Security models for Password Authenticated Key Exchange Protocols 40

one needs remember that the proof needs to be a mirror of clarity and straightforward
analysis. In addition, it needs to represent a unity of reasonable mathematical de-
ductions and well defined claims. In this section, we explain a well-known game-based
technique for organizing proofs, demonstrated in [Sho04], that is already widely adopted
when considering (P)AKE protocols. Since we organize a complex proof into game-based
sequence, we have to make sure that the games capture small changes so the transition
between them is “smoother” and straightforward. We compare the probabilities of every
two successive games and show that their difference is less than negligible. We recognize
three different types of games that security proof usually contains.

Transitions based on indistinguishability. When comparing two successive games,
sometimes, we need to base the games differences on indistinguishability. More precisely,
two games are assumed to be indistinguishable if there exists a distinguisher that, given
two distributions (one assigned to Game i and the other to Game i+1), it “interpolates”
between Game i and Game i+1. Typically, one designs the games so that it is possible
for the distinguisher to successfully interpolate, i.e. output 1 if the event that the game
is trying to simulate occurs. Finally, we give an example of such a distinguisher in
Game 4.5 in our proof of sJ-PAKE in Chapter 7, Section 7.4, where we have a DDH
distinguisher which, given (gx, gy, gz) plays Game i, if z = xy, and plays Game i+ 1, if
z is random.

Bridging step. This type of transition is usually used to simplify the transition from
Game i to Game i + 1, when there is no bad event nor indistinguishability based dif-
ference. More precisely, bridging steps are used when certain values need to be reset or
redefined equivalently. Furthermore, this type makes proof easier to follow.
We stress that one game may contain more games of different types. One such example
is Game 8 (Chapter 7, Section 7.4).

Transition based on failure events. Another interesting type, commonly known
to provers, is when two games are identical unless a so-called bad (failure) event occurs.
The bad event refers to a certain random variable that is computed differently in Game
i than in Game i + 1. Furthermore, using the Difference Lemma below (see Definition
4.1), we can bound the winning probability of the adversary in each game hop. Finally,
we give an example of a game based on failure events in Game 6 (Chapter 7, Section
7.4).

Definition 4.1. (Difference Lemma) Let G, H, F be events defined in some probabilistic
distribution and suppose that G ∧ ¬F ⇐⇒ H ∧ ¬F . Then |Pr[G]− Pr[H]| ≤ Pr[F ]

Proof and more details are shown in [Sho04].



Security models for Password Authenticated Key Exchange Protocols 41

4.3 Indistinguishability-based Real-or-Random Model

In this section, we provide more details on the indistinguishability-based, Real-or-Random
(RoR) model [AP05] that we use to prove the security of the sJ-PAKE protocol in
Chapter 7. In RoR, adversary A has complete control of the network and engages in
concurrent executions by actively participating or passively observing.2 Furthermore, it
guarantees the forward secrecy and incorporates all the requirements that PAKE must
fulfil: (i) A can verify at most one password per session; (ii) A cannot learn anything
about the password when just observing the protocol.3 For the security experiment to
work, the games need to be administrated consistently in A’s view. We say that the
adversary wins the game if he can distinguish real session keys from random strings.
More precisely, A’s goal is to guess the bit b, chosen at the beginning of each game,
representing a real or random session key.

Password distribution. One of the downsides of indistinguishability-based models
is that they assume that passwords are independent and uniformly distributed. We can
extend the proof model by assuming that the passwords have minimal entropy. How-
ever, it is not realistic to assume that passwords are not related and independent. Users
usually use the same or correlated passwords across multiple websites to make their life
easier. For this reason, simulation-based models are a preference.

Participants and passwords. Each participant, denoted Πi
U , is either a client C ∈ C

or a server S ∈ S. Each client C holds a password pwC and the server S holds a vector
of passwords pwS =< pwC >C∈C , such that pwS [C] = pwC for all C ∈ C. For simplicity,
in our simulation we assume that passwords are independent and uniformly distributed,
drawn from the password dictionary.

User instances. Each user is allowed to run simultaneously more than one protocol
execution, which is modelled by allowing each user an unlimited number of instances.
Specifically, let Πi

C and Πj
S denote the i-th and j-th instance of client C and server S

respectively.

Protocol execution and initialization phase. The protocol P is an algorithm that
defines how users respond to messages from their environment. We allow each instance
to execute P unlimited times with as many other instances as it wishes. Formally, a bit
is flipped at the beginning of the protocol. Then, we introduce a probabilistic polynomial
time (PPT) adversary A, that has full control of the network and communicates with

2We also consider the adversary who only forwards the messages to be passive.
3Just forwarding messages is considered a stronger notion than just observing the protocol.



Security models for Password Authenticated Key Exchange Protocols 42

each instance according to the rules of P via the following queries:

Send(U, i,m): A message m is sent to instance Πi
U , which proceeds according to P

and its response – if any – is given to A. This query models an active adversary. Fur-
thermore, A is notified about any state change between the instances, such as: (i) reject:
the reason why an instance might reject is if its partner sent a message that requires
verification and fails for some reason. This usually happens when confirmation codes are
not matching or some protocol requirement is not fulfilled. (ii) terminate: An instance
terminates if it has a partner and holds the session id (sid), partner id (pid) and a session
key (sk). The terminate state is usually important for the adversary because instances
that terminate are considered to be fresh. Therefore, to maintain fair play in the game,
A is allowed to ask Reveal or Test query only to fresh instances.

Execute(C, i, S, j): This query triggers an honest run of protocol P between Πi
C and

Πj
S . The transcript of the execution is given to A. This query models an adversary who

is just observing an honest protocol execution. However, the adversary is also consid-
ered to be passive when just forwarding the messages. The difference between the two
scenarios is in the amount of Send queries when bounding the online dictionary attacks.
This means that the non-negligible part in the bound (Equation 4.2) will linearly in-
crease when the adversary just forwards the messages.

Corrupt(C, S): A receives a password pwcs shared between a pair of instances, Πi
C

and Πj
S . In a real-world scenario, this query models the compromise of the long-term

secret due to security violation. More precisely, the adversary can get a hold of the
password in various ways, such as compromising some system or simply performing a
phishing attack on a targeted user.

Reveal(U, i): When A triggers this query, it receives a session key held by Πi
U . For

this query to be valid, an instance must reach the state where it computed the session
key; otherwise, A receives a response marked as ”Invalid” (⊥). This query models a
potential session session key leakage in the real world because of its use in higher-level
protocols.

Test(U, i): At the beginning of the experiment, the challenger flips a coin and sets
a bit b outside of A’s view. Then, whenever A asks this query to some instance Πi

U , it
obtains the following response:

1. If b = 1, A gets the real session key skiU .



Security models for Password Authenticated Key Exchange Protocols 43

2. Otherwise, A gets a random string r
$←− {0, 1}κ. For consistency, if two partnered

instances, Πi
C and Πj

S , receive a Test query, then A gets the same random string.

The adversary can ask this query on multiple fresh instances. Furthermore, we only
model adversarial guess success with this query, which does not correspond to any real-
world scenario.

Partnered instances. Two instances, Πi
C and Πj

S are partnered if both hold the same
partner identity (pid), transcript (sid) and the same session key (sk) and do not expect
any messages to come their way. More precisely, a client with (pidiC , sidiC , skiC) and a
server with (pidjS , sid

j
S , sk

j
S) are partnered if:

1. sidiC = sidjS , skiC = skjS , pidiC=S, pidjS=C.

2. No other instance accepts with the same sid, except with the negligible probability.

We say an instance Πi
U accepts if it holds a session key sk, transcript sid and partner id

pid. A client instance can accept at most once. Two instances terminate if they accept
and do not wish to send any further messages. Usually, PAKE protocols that incor-
porate confirmation codes distinguish accept from terminate. In our work in Chapter,
J-PAKE and sJ-PAKE protocols do not make this difference, meaning that the instance
that accepts also terminates.

Freshness. We define freshness to avoid cases where A might trivially know the bit b,
chosen at the beginning of the protocol. Furthermore, we expand the definition of fresh-
ness from [ABM15] with more explicit conditions [AB19]. An instance Πi

U in protocol
P is fresh if and only if the following conditions hold:

• the instance was not queried to Test or Reveal before;

• the instance accepted;

• At least one of the conditions hold

– There exists more than one partner;

– The instance accepted during a query to Execute;

– No partner instance exists and Corrupt was not called before it accepted

– A unique fresh partner instance exists

Forward secrecy. To precisely define forward secrecy, we model two scenarios where
established keys are protected:



Security models for Password Authenticated Key Exchange Protocols 44

• Weak forward secrecy guarantees secrecy of session keys by handling scenarios
where the adversary is passive and can make a Corrupt(U ′) query any time and
follows up with the Send(U, i,m) query.

• Perfect forward secrecy protects established session keys for scenarios where the
adversary is active, asks a Corrupt(U ′) query before the Test query, and follows up
with the Send(U, i,m) query.

Advantage of the adversary. We formally define the advantage of the adversary in
successfully guessing the bit b, against the protocol P . Let SuccRoR

P (A) be the event that
A asks only Test queries to instances Πi

U that have terminated; at some point A outputs
its guess b′ and wins if b′ = b, where b is selected at the beginning of the protocol. The
advantage of A in breaking the security and guessing b is

AdvRoR
A () = 2Pr

[
SuccRoR

A ()
]
− 1 (4.1)

The protocol P is considered to be secure if adversary A cannot perform any other attack
than just online password guessing during an active intervention of the adversary. More
formally, we require that for all PPT A:

AdvRoR
A () ≤ nse

|D|
+ negl(κ) (4.2)

where nse is the number of Send queries, D is the password dictionary and negl(·) is a
negligible function. As already mentioned, we can extend the Equation 4.2 by assuming
the password set D has a non-uniform distribution, with some minimal entropy m. This
yields

AdvRoR
A () ≤ nse

2m
+ negl(κ) (4.3)

4.4 Code-based Game-Playing Proofs

Capturing the proof difficulties, reducing errors and easier verification are just some of
the reasons Bellare and Rogaway [BR06] created a general framework for game-based
proofs in a game-playing setting. They illustrate a powerful tool that makes complex
techniques in game-playing proofs easily verifiable and less prone to errors. Furthermore,
the game-playing framework translates all the messages (queries) between the adversary
and the challenger into a code-based game playing, see Figure 4.1. More formally, a game
G is a program, viewed as a collection of procedures that are run with an Adversary,
which is also a program, viewed as a single procedure. Each game starts with the
procedure Initialize that is the first to execute, and it gives input to the procedure
Adversary. The Adversary can ask different queries (explained in Section 4.3), called
oracles by calling out the procedures in the code defined by the game. We consider two



Security models for Password Authenticated Key Exchange Protocols 45

subsequent games identical until a bad4 event happens, and the difference of probabilities
of a given outcome is bounded by the probability of that bad event happening. Before
formalizing this result in the Fundamental lemma of game-playing (see Lemma 4.2), we
clarify the following notification, used in the same lemma.
Identical-until-bad games. Let K and L be games (programs) and let bad be a failure
event that occurs in both. Then, K and L are identical-until-bad games if their code is
the same, but the places where the bad occurs is different in both games. We denote
Pr[AK sets bad] or Pr[KA sets bad] as the probability that the failure event bad is true
at the end of the execution of the adversary A with game K. We denote Adv(AK ,AL)

or Adv(KA, LA) as an advantage that an adversary can obtain in distinguishing a pair
of identical-until-bad games.

Lemma 4.2. (Fundamental lemma of game-playing.) Let K and L be identical-until-bad
games. Let A be an adversary. Then

Adv(AK ,AL) ≤ Pr[AK sets bad] and
Adv(KA, LA) ≤ Pr[KA sets bad].

When the adversary halts, it possibly gives an output that is passed to the Finalize
procedure which outputs a string as an outcome of the game. For the generalization
and the proof of this lemma, we refer to [BR06]. In our work in Chapter 7, we use
the game-playing technique, and for each game and reduction, we provide game-based
code5 in Supplemental material A. Furthermore, we base the indistinguishably of the
games on bad events, meaning the games are indistinguishable unless bad events happen.

Proof strategy. The security games are constructed so that values containing the
passwords are gradually randomized, i.e., until the the Adversary’s view is independent
of the passwords used in fresh sessions. We must make sure that:

• The Adversary is allowed to guess only one password per session.

• The values that we randomize do not leak any information about the password.

• At least one of the forms of forward secrecy is preserved.

• We use the reductionist approach to bound the advantage of the Adversary

For more details on game-playing techniques, we refer to [BR06].

4We use a flag bad as a Boolean variable, setting 1 if a bad event happened and 0 otherwise.
5For simplicity, we write the procedures in pseudo-code.



Security models for Password Authenticated Key Exchange Protocols 46

Game

Input

Procedure Initalize Procedure 

Adversary

Procedure FinalizeProcedure 

Output

Outcome

Figure 4.1: Running a game G with an adversary A. The adversary is interacting
with the game by asking queries i.e. calling the oracles that answer its queries.



Nothing in life is to be feared. It is only to be under-
stood.

Maria Curie

5
An Offline Dictionary Attack against zkPAKE

Protocol

5.1 Introduction

PAKE allows a user to establish a secure cryptographic key with a server, using only
knowledge of a pre-shared password. One of the basic security requirements of PAKE is
to prevent offline dictionary attacks. In this chapter, we revisit zkPAKE, an augmented
PAKE that was proposed by Mochetti, Resende, and Aranha [MRA15]. Our work shows
that the zkPAKE protocol is prone to an offline password guessing attack, even in the
presence of an adversary that has only eavesdropping capabilities. Furthermore, the
results of the performance evaluation show that our attack is practical and efficient.
Therefore, we show that zkPAKE is insecure and should not be used as a password-
authenticated key exchange mechanism.

5.1.1 Our Contribution

In 2015, Mochetti, Resende and Aranha [MRA15] proposed (without exhibiting a secu-
rity proof) a simple augmented PAKE called zkPAKE, which they claim is suitable for
banking applications, requiring the server to store only the image of a password under a
one-way function. Their main idea was to use zero-knowledge proof of knowledge (pass-
word) to design an efficient PAKE. However, here we present an offline dictionary attack
against the zkPAKE protocol. We also provide a prototype and share the benchmarks

47



An Offline Dictionary Attack against zkPAKE Protocol 48

of the attack to demonstrate its feasibility. Our dictionary attack can be carried out in
two ways: passively - by eavesdropping on the zkPAKE protocol execution, or actively
- by impersonating the server and having the client attempt to log in.

5.1.2 Organization

The rest of the paragraph is organized as follows. First, Section 5.2 describes the zk-
PAKE protocol and its variant. Then, in Section 5.3, we present an offline dictionary
attack against the zkPAKE protocol. Furthermore, in the same section, we offer details
about the attack implementation along with the results on the efficiency with different
dictionary sizes.

5.2 The zkPAKE Protocol

In this section, we review the zkPAKE protocol. First, we will start with the variant of
zkPAKE whose description is presented in Figure 5.1, and then point out the differences
with the original design from [MRA15]. The reason for this order of presentation is
because the variant of zkPAKE that is proposed later is slightly more elaborate than
the original zkPAKE. Hence, we want to show that zkPAKE does not stand against our
attack even with proposed modifications.

5.2.1 Protocol Description

zkPAKE, as described in [MRA15] is a two-party augmented PAKE protocol meant to
provide authenticated key exchange between a server S and a client C.

5.2.1.1 Initialization Phase

The protocol starts with an enrollment phase, which is executed for every client only
once. In this phase, a client and a server (e.g., bank) share a secret value of low entropy
that the client can remember. More specifically, in case of zkPAKE, the client must
remember the password π, while the server only stores an image of the password R.
Before the server computes the corresponding image R; public parameters must be
chosen and agreed on: 1) a finite cyclic group G of prime order q and a random generator
g of the group G; 2) Hash functions H1 and H2 whose outputs are k-bit strings, where
k is the security parameter representing the length of session keys.

5.2.1.2 Protocol Execution

Once the enrollment phase is executed and the public parameters are established, the
zkPAKE protocol (see Figure 5.1) will run in three communication rounds as follows:



An Offline Dictionary Attack against zkPAKE Protocol 49

Initialization
Public: G, g, q; H1,H2 : {0, 1}∗ → {0, 1}k;

Server S Client C
Secret: R := gH1(pw) pw

n← Zq

N := gn N

r := H1(pw)

v ← Zq

t := Nv

c := H1(g, g
r, t, N)

u := v −H1(c)r mod q

u,H1(c) skc := H2(c)

t′ := gunRnH1(c)

c′ := H1(g,R, t′, N)

abort if H1(c
′) ̸= H1(c)

sks := H2(c
′) H1(sks)

abort if H1(sks) ̸= H1(skc)

Figure 5.1: The zkPAKE protocol.

1. First, the server S chooses a random value n from Zq, computes N that is supposed
to act both as a nonce and Diffie-Hellman value, and sends it to client C.

2. Once receiving the nonce N , client C inputs his password, computes the hash of
the password-r, chooses a random element v from Zq, and computes t := Nv.
Then, C computes c := H1(g, g

r, t, N) and obtains u := v−H1(c)r that should lie
in Zq. Next, C computes the session key skc := H2(c) and sends u and H1(c) to
the S.

3. Upon receiving H1(c) and u, S recovers t′ by computing gunRnH1(c). Then, S

calculates c′ := H1(g,R, t′, N). Next, S checks if H1(c
′) echoes H1(c). If it does,

S computes the session key sks := H2(c
′) and sends H1(sks) to C. Otherwise; it

aborts the protocol.

4. Similarly, upon receiving H1(sks), C checks if H1(sks) and H1(skc) match. If
values are equal, C saves computed session key skc and terminates.

As we said before, the authors of zkPAKE have presented two variants of it. The original
proposal from [MRA15] differs from the follow-up version in two places: Nonce N is left



An Offline Dictionary Attack against zkPAKE Protocol 50

underspecified, and value t on the client-side is computed without involving received-
nonce. This difference also affects the computation of t′ from the server-side. In more
detail, the original zkPAKE protocol runs as follows:

1. The server sends his nonce N to client C.

2. The client calculates the hash of his password r, chooses a random parameter
v ← Zq, and computes t := gv. Then, C computes c := H1(g, g

r, t, N) and obtains
u := v −H1(c)r in Zq. Next, C computes the session key skc := H2(c) and sends
u and H1(c) to the S.

3. Upon receiving H1(c) and u, S recovers t′ by computing guRH1(c). Then, S cal-
culates c′ := H1(g,R, t′, N). Next, S checks if H1(c

′) echoes H1(c). If it does, S
computes the session key sks := H2(c

′) and sends H1(sks) to C. Otherwise, he
aborts the protocol.

4. Finally, upon receiving H1(sks), C checks if H1(sks) echoes H1(skc). If values are
equal, C saves computed session key skc and terminates.

5.3 Offline Dictionary Attack on zkPAKE

Here, we show that both variants of the zkPAKE protocol are vulnerable to an offline
dictionary attack. Our attack exploits the fact that r, which is a hash of the client’s
password, is of low entropy.

5.3.1 Attack description

Let the enrollment phase be established and let attacker A be allowed only to eavesdrop
on the communication between two honest parties. The attack on the version of zkPAKE
protocol presented in Figure 5.1 proceeds as follows:

Step 1. The execution of the protocol starts, and S sends his first message, N . The
attacker A sees the message and stores it in his memory.

Step 2. C does all the computations the protocol demands and sends u and H1(c) in
the second transmission to S. A observes the second message and obtains u and
H1(c).

Step 3. The adversary now holding N , u and H1(c) from the first two message rounds
may go offline to perform a dictionary attack. His goal is to compute a candidate c′

and then use stored H1(c) as a verifier. The adversary will compute c′ by hashing
H1(g, g

r, t′, N). Two intermediate inputs to the hash function are obtained by first
choosing a candidate password π, and then computing the corresponding r and



An Offline Dictionary Attack against zkPAKE Protocol 51

t′. Note that the adversary can easily compute t′ = Nv, since v := u + H1(c)r.
Finally, the adversary checks if his guess H1(c

′) echoes H1(c).

Step 4. The adversary repeats Step 3 until he guesses the correct password.

As for the original zkPAKE protocol, the same attack works in a very similar way: Steps
1,2, and 4 are the same, while in Step 3, we need to make a minor change:

Step 3a. The adversary now holding N , u and H1(c) from the first two message rounds
may go offline to perform a dictionary attack. Same as above, the adversary aims to
obtain candidate c′i by computing a hash H1(g, g

ri , t′i, N). Here the only difference
is that t′i = gvi , while the formula for computing vi stays the same.

Note that one can mount a similar dictionary attack by impersonating a server. In
this case, the only difference with the eavesdropping attack described above is that
the attacker picks the nonce N value. Such knowledge does not additionally help the
adversary in our attack. Once the adversary receives the client’s reply, he can continue
with Steps 3 and 4 from the eavesdropping attack.

5.3.2 Attack Implementation

We implemented a prototype1 in Python 3 to simulate the attack described above. Our
simulation consists of two steps: in the first step, a password is randomly chosen from
one of three fixed dictionaries that vary in size. First, the zkPAKE protocol is executed
between two honest parties. Then, in the second step (see Algorithm 1), the adversary
is given access to honestly generated values as described in Section 5.3.1. The adversary
can easily perform an offline dictionary attack against the chosen password with this
information in hand.

Algorithm 1: Offline search algorithm
Input: Values N , u, H(c) and a dictionary of passwords P
Output: pw′, K
for each pw’ in dictionary P do

c′ = hash.sha256(pw′)
r = c′ mod q
v = (u+H(c) ∗ r) mod q
t = Nv mod p
R = gr mod p
H(c′) = hash.sha256(g, gr, t, N)
if H(c) == H(c′) then

K = HKDF (c′)
Return (pw′,H(c′),K)

1Available under GPL v3 at https://github.com/PetraSala/zkPAKE-attack.

https://github.com/PetraSala/zkPAKE-attack


An Offline Dictionary Attack against zkPAKE Protocol 52

We performed a set of experiments, using a 224-bit subgroup of a 2048-bit finite field
Diffie-Hellman group2 to determine the time it takes to complete an offline dictionary
attack depending on the size of a selected dictionary. Each set of experiments involved
mounting the attack by enumerating dictionaries that contain 1000, 10000, and 100000
random password elements. In the end, each experiment was performed 50 times.

5.3.2.1 Results

The times it took the adversarial algorithm described above to find a matching password
for each given dictionary are summarized in Table 5.1. Our results demonstrate that

Dictionary size Average Time until the Correct
Password is found (ms) Std Dev

1000 3694 1898
10000 27322 17461
100000 244540 178465

Table 5.1: Results for dictionary sizes of 1000, 10000, 100000 words.

there is a linear relationship between the size of the dictionary and the average time to
find a matching password and shows that an attack is feasible for any adversary with
even a small computational power3. As expected, the total time for cracking a 100000
password-size dictionary is less than 5 min. Thus, we conclude that the attack would
be feasible for dictionaries with significantly more elements. We also note that there
are more powerful tools to create more efficient dictionaries, such as HashCat [Has19]
or John the Ripper [joh19], which would make the offline search even more effective.
The group parameters are taken from the NIST cryptographic toolbox using the 2048
modulus and are shown in Table 5.2.

2Selected group parameters, which are originally coming from the standard NIST cryptographic
toolbox, are specified in Appendix A.

3In all cases the experiments were run under Windows 10 on a 2.8GHz PC with 8GB of memory.



An Offline Dictionary Attack against zkPAKE Protocol 53

Parameter Value (Base 16)

Prime Modulus AD107E1E 9123A9D0 D660FAA7 9559C51F A20D64E5
683B9FD1 B54B1597 B61D0A75 E6FA141D F95A56DB
AF9A3C40 7BA1DF15 EB3D688A 309C180E 1DE6B85A
1274A0A6 6D3F8152 AD6AC212 9037C9ED EFDA4DF8
D91E8FEF 55B7394B 7AD5B7D0 B6C12207 C9F98D11
ED34DBF6 C6BA0B2C 8BBC27BE 6A00E0A0 B9C49708
B3BF8A31 70918836 81286130 BC8985DB 1602E714
415D9330 278273C7 DE31EFDC 7310F712 1FD5A074
15987D9A DC0A486D CDF93ACC 44328387 315D75E1
98C641A4 80CD86A1 B9E587E8 BE60E69C C928B2B9
C52172E4 13042E9B 23F10B0E 16E79763 C9B53DCF
4BA80A29 E3FB73C1 6B8E75B9 7EF363E2 FFA31F71
CF9DE538 4E71B81C 0AC4DFFE 0C10E64F

Generator AC4032EF 4F2D9AE3 9DF30B5C 8FFDAC50 6CDEBE7B
89998CAF 74866A08 CFE4FFE3 A6824A4E 10B9A6F0
DD921F01 A70C4AFA 00C29F52 C57DB17C 620A8652
BE5E9001 A8D66AD7 C1766910 1999024A F4D02727
5AC1348B B8A762D0 521BC98A E2471504 22EA1ED4
09939D54 DA7460CD B5F6C6B2 50717CBE F180EB34
118E98D1 19529A45 D6F83456 6E3025E3 16A330EF
BB77A86F 0C1AB15B 051AE3D4 28C8F8AC B70A8137
150B8EEB 10E183ED D19963DD D9E263E4 770589EF
6AA21E7F 5F2FF381 B539CCE3 409D13CD 566AFBB4
8D6C0191 81E1BCFE 94B30269 EDFE72FE 9B6AA4BD
7B5A0F1C 71CFFF4C 19C418E1 F6EC0179 81BC087F
2A7065B3 84B890D3 191F2BFA

Subgroup order 801C0D34 C58D93FE 99717710 1F80535A 4738CEBC
BF389A99 B36371EB

Table 5.2: The group parameters taken from NIST used for implementation of zk-
PAKE Protocol.



Mathematics reveals its secrets only to those who ap-
proach it with pure love, for its beauty.

Archimedes

6
HoneyPAKEs

6.1 Introduction

This chapter combines two security mechanisms: using a Password-based Authenticated
Key Establishment (PAKE) protocol to protect the password for access control and the
Honeywords construction of Juels and Rivest to detect loss of password files. The re-
sulting construction combines the properties of both mechanisms: ensuring that the
PAKE protocol intrinsically protects the password during transmission and the Honey-
words mechanisms for detecting attempts to exploit a compromised password file. Our
constructions lead very naturally to two-factor type protocols. An enhanced version of
our protocol further provides protection against a compromised login server by ensuring
that it does not learn the index to the true password.

6.1.1 Our Contribution

Building on the idea of Juels and Rivest [JR13] we propose a new protocol model called
HoneyPAKE by merging the design of PAKE with Honeywords, with a goal to add an
additional shield for passwords. The proposed protocols are not trying to prevent an
attacker from compromising the server and stealing the file of hashed passwords, but
to detect such malicious behavior and act accordingly, e.g., raising the silent alarm to
the administrator. The alarm raiser would be an additional, secure, simple hardware,
Honeychecker (HC).

54



HoneyPAKEs 55

6.1.2 Organization

The rest of this chapter is organized as follows. First, in Section 6.2, we describe the
case of access control based on PAKE protocol with an example. Then, in Section
6.3, we give definitions and descriptions of honeywords and the importance of properly
generating them and we define a role of a Honeychecker. Then, in Section 6.4, we lay
out the security model and discuss possible constructions of HoneyPAKEs. Finally, in
Section 6.5, we give an example of how to include authentication of the login server to
the client.

6.2 PAKE-based Access control

6.2.1 PPK

A rather elegant protocol, and the one that we will base our construction on, is the PPK
protocol due to MacKenzie and Boyko [BMP00], here in simplified form for illustration
(H denotes a suitable mapping from the password space to the DH group):

A→ B : X := H(sA) · gx

B → A : Y := H(sB) · gy

A computes KA := (Y /H(sA))
x and B computes KB := (X/H(sB))

y. These keys
match in an honest run if the passwords sA and sB match. Online guessing attacks are
of course always possible against PAKEs, but observe that here if an active attacker
masquerading as one of the parties makes an incorrect guess at the password then the
key computed by the legitimate party will be masked by a non-identity term raised to
the DH random. This foils offline dictionary attack against terms observed during the
protocol and any subsequent key confirmation steps or communications encrypted by
the legitimate parties.

6.2.2 PAKE-based Access Control

PAKEs were principally designed to establish secure channels, but the underlying mech-
anism can be used to protect the password during transmission in an access control
protocol. The key confirmation mechanism can be used to authenticate the client to the
server. Thus, for example we might adapt PPK to provide authentication of C to S:

C → S : ReqC , X := H(sA) · gx

S → C : Y := H(sB) · gy

C → S : H2(KC)



HoneyPAKEs 56

S confirms that H2(KS) = H2(KC), where H2 is a hash function from the group to a
compression space. Notice that we inherit the off-line dictionary attack resistance of the
PAKE when we base access control on a PAKE. Thus, an attacker masquerading as the
login server S will not gain any useful information about the password. This contrasts
with a conventional login protocol where the user’s (possibly hashed) password, will be
revealed to such an attacker.
Remark. In the client-server scenario, the server stores the file F containing password-
related information. It is desired that the passwords in F are hashed with a random
salt to prevent attacks where the pre-computation of possible passwords immediately
discloses the passwords in the clear after the leakage of the file F , e.g. using previously
computed rainbow tables. However, since integrating salted passwords with PAKEs is
not entirely straightforward, either i) PAKEs do not use salted passwords or ii) the
server sends the salt value in clear to the client during the login. Recently Jarecki et al.
[JKSS18] proposed a general transformation of PAKE protocols to secure them against
pre-computation attacks using an Oblivious PRF. This method could also be applied in
our setting.

6.3 Honeywords

Stealing a password file clearly compromises any access control mechanism that uses
it. The first step to counter this threat is the well-known idea of storing not the raw
passwords but rather crypto hashes of the passwords. Now, when the Access Control
(AC) server receives an access request from a user with a password, it computes the hash
of the given password and checks that this agrees with the stored hash. Unfortunately,
the effectiveness of this counter-measure has diminished as password cracking tools have
become more powerful, such as the use of rainbow tables and an increasing number
of brute-forcing algorithms. Incorporating salt into the hashes and using slower hash
functions helps a bit, but still does not prevent a determined attacker who obtains a
password file from extracting the passwords. It thus seems inevitable that password
files will be compromised. Ways to distribute shares of the passwords across several
remote servers have been proposed in [Boy09, FK00] to compromise such files harder.
Still, even this will not guarantee the security of the passwords. Additionally, it would
require network infrastructure for password management, and we want to omit such
difficulty. The first ones who tackled the problem of password file theft were Bojinov et
al. in [BBBB10], where the mention of honeywords first appeared. Honeywords were
decoys of passwords proposed to set a trap for the attacker who steals a database of
passwords to obtain users credentials. The authors in [BBBB10] built a theft-resistant
system that generates decoy password sets and forces the attacker to perform many
online attempts, which major websites would detect and inhibit. Where Bojinov et



HoneyPAKEs 57

Figure 6.1: The Honeywords system of [JR13] is composed of the Honeychecker (HC),
the Server (S) and the Client (C).

al. left off, Juels and Rivest continued in [JR13]. They came up with a very simple
but effective way to mitigate the effects of password file compromise: not to prevent but
rather to detect and perhaps deter exploitation of such a compromise. Instead of storing
just the single, correct password, sugarword, against the user’s identity ID, we store it
alongside a number of decoy honeywords. Together sugarword and honeywords are called
sweetwords. The real password will be placed at an arbitrary point in the list and this
position is not stored in the file. Logging in is similar to the standard mechanism: Client
C provides a putative password, and the Server (S) computes the hash of this, but now
it tries to match this against each of the stored hashes. If the proffered password is valid
then the server should find a match and it now sends the index of the matching term to
the Honeychecker (HC). If S finds no match, it will typically notify C that the password
is incorrect. The HC should be a separate device linked only to S by a minimal channel
able to carry only values of type Index. HC stores the correct index for each user, and
if the index provided by S is correct for the user, it will authorize access. If the index is
incorrect then this indicates that, most likely, an attacker is attempting to log in as C

using information obtained from a compromised password file. The protocol is thus not
fail-safe, but upon intrusion we can let it fail-deadly. Figure 6.1 illustrates the original
Honeywords proposal of Juels and Rivest. The proposal of Juels and Rivest requires the
following assumptions:

• A secure channel between Client and Server prevents an eavesdropper from ob-
taining the client’s password during the authentication phase. In practice, this is
typically implemented via a TLS connection. However, it is vulnerable to phish-
ing attacks. In this work, we aim to eliminate this requirement with the help of
PAKE-based access control mechanisms.

• Flatness on the honey words to ensure that they look plausible alternatives to the
real password, i.e. an attacker trying to exploit a stolen password file does not have
a better than 1/k chance of guessing the true password, where k is the number of
sweetwords for that user. We refer to [BBBB10, JR13] for further details about
honeywords generation.



HoneyPAKEs 58

Figure 6.2: HoneyPAKE system. The Client wants to use the Resource. After
running the HoneyPAKE protocol with the login Server S, the Client can access the
resource. The credential shared between the Resource and C can be the output of the

HoneyPAKE.

6.4 HoneyPAKE

Consider the scenario where C would like to log in to S using his password as means
of authentication. We introduce a mechanism that integrates a PAKE protocol into the
Honeywords proposal of Juels and Rivest, as shown in Figure 6.2. The resulting system
benefits of the security guarantees offered by underlying primitives. More concretely, the
idea is i) to detect whenever the password file stored on the Server has been compromised
and ii) protect the client’s password during its transmission to the S.

6.4.1 The Naive Approach

Incorporating the honeywords idea into PAKEs is not entirely straightforward because
S does not know which (hashed) honeyword to use when running the protocol. However,
the simplest way to address this is simply to have S not inject any password hash term
into the exchanged terms:

C → S : ReqC

S → C : YS := gy

C now computes KC := (YS)
x and ZC := H2(KC) and sends the following back to S:

C → S : XC := H(wC) · gx , ZC

Now S computes, for i ∈ {1, · · · , k}

Wi := H2((XC/H(wi
S))

y)

and compares with ZC to find the correct hashed password. However, this allows an
attacker masquerading as S to launch an off-line dictionary attack: computing Wi for
guesses at the password wi

S until he finds a match. A slightly less naive approach is just
running the PPK protocol k times and find a match in one of the runs. This is clearly



HoneyPAKEs 59

rather inefficient, tedious for the user and could leak the index. Therefore, we consider
an alternative approach: we introduce a secondary password known to both parties.

6.4.2 Technical Description of Components

We consider a system with three components: the Client, the Server and the Honey-
checker which we describe next.

The Client. A legitimate user who would like to connect to server S. Let C =

{C1, . . . , Cn} be the set of clients. Each client Cj holds two passwords: a primary
password and a secondary password, which we simply denote by wC and w′

C and we
assume they are chosen uniformly at random from password dictionaries D and D′ re-
spectively.

The Server is a system in charge of handling clients’ login requests. The server S has
access to file F storing the clients’ passwords. More specifically, the file F stores one
entry per client, each entry containing the secondary password followed by k potential
passwords, i.e.:

F [Cj ] = H(w′
S),H(w1

S), . . . , H(wk
S)

where for each, client Cj ∈ C holding wC and w′
C as primary and secondary password,

it holds that H(w′
S) = H(w′

C) and ∃ i s.t. H(wi
S) = H(wC). The correct index i is not

stored by S.

The Honeychecker: This is an auxiliary and simple device whose only goal is to detect
whenever the password file F has been compromised. It maintains a list L, by storing
the correct index i per client Cj , i.e. L[Cj ] = i. It accepts two commands:

• Set (Cj , i): Sets L[Cj ] to value i.

• Check (Cj , i
′): Checks whether L[Cj ] equals i′. It outputs a r = 1 if L[Cj ] = i′

and r = 0 otherwise.

The connection between S and HC is a minimal channel which we assume is secure.
The idea is to run a PAKE protocol between C and S to allow S to identify the index
i such that H(wi

S) = H(wC). Subsequently, S queries the HC with Check(C, i), and
the latter will check against its records whether the index i is associated with client C

or not. If r = 1, it is an indication that a legitimate client is attempting the login, and
therefore access to the requested resource should be granted. However, r = 0 signals a
possible compromise of the password file. In the next section, we describe how a passive
or active HC may react to each scenario.



HoneyPAKEs 60

Figure 6.3: Login access granted by Resource.

6.4.2.1 Login Access

As described in Figure 6.2 the client wants access to a Resource, e.g., an email service,
which may or may not be co-located with the login server. In the HoneyPAKE protocol
between the client and the login, the server will, in the end, output a shared key which
the server can forward to the resource as a credential for the service (or the established
secure PAKE-channel can be used to create a new credential). We do not explicitly write
these extra steps in the protocols below, since they may depend on context. The HC

can access this login access passively and log the login requests corresponding to correct
or wrong indices. The administrator can then periodically check if an alarm was raised,
or be alerted immediately. Alternatively, the HC can also play a more active role, see
Figure 6.3, and contribute to the decision of whether access is granted or not. The
advantage is that malicious attempts to gain access via honeywords will immediately be
bounced; however, the downside is the need for a more active HC. The possible cases
for login attempts are

• with a correct password, i.e. the sugarword

• with a false password, which is a honeyword

• with a false password, which is not in the honeyword list

The first case will always result in login, while the last possibility will always be blocked
by S. The outcome of the second possibility will depend on whether the HC is active
or passive.

6.4.3 Security Model

In the security model for the HoneyPAKE system, we will generally consider the HC

as being incorruptible. The reasoning behind this assumption is that the HC is a
very simple piece of hardware, only handling simple indices. It has minimal external
channels; it only needs minimal memory storing indices and handling simple comparisons
of indices. On the other hand, the security model does allow the adversary to corrupt
S, but only in the form of stealing the password file F . We will discuss stronger forms



HoneyPAKEs 61

of corruption below. One could speculate that extending this model allows the attacker
to compromise either S or HC, but not both. Indeed, this will also be secure since the
information stored on HC is minimal and would not allow an attacker to compromise
security. Indeed, in case HC is compromised, it should not jeopardize the security level
of communication between client and server as PAKE protocol protects it. Therefore,
in the worst-case scenario, the security level of HoneyPAKEs, even with a corrupted
HC, should be at the same security level of any PAKE protocol [BMP00]. We will,
however, stay in the model above, which is more closely related to the Honeyword idea
and argument of a simple incorruptible HC. Next, we describe the attack scenarios that
we consider in this proposal:

1. Compromised File F : As a result of a security breach, adversary A might get
access to the password file F . Regardless of how the passwords are stored in F ,
e.g. plain text, hashed or hashed and salted, it is reasonable to assume that A can
obtain the passwords in clear by brute-forcing F and then try to masquerade as
C to S [BHvOS15].

2. Standard Operation: We consider an adversary who has full control of the com-
munication C between S, different to [JR13], where they assume the existence of
a secure channel. However, in this scenario, the attacker does not have access to
the password file F .

6.4.3.1 Discussion

Juels and Rivest consider the first attack scenario in [JR13] by introducing the HC as
a secondary server. The motivation in [JR13] is not to prevent the leakage of F but
to detect whenever such an event occurs. The underlying idea is that whenever F gets
compromised, A may observe at most k potential passwords per client, but only one is
correct. Furthermore, F contains no information about the index position of the correct
password. Then the adversary can only select one candidate password at random when
trying to masquerade as C to S. In such a case, the HC could detect the leakage of
F with probability (k − 1)/k for each attempt of A, and subsequent security measures
can be taken e.g., trigger an alarm informing about the compromise of F and asking
the server to reject the login attempt. We augment the proposal of Juels and Rivest by
removing the requirement for a secure channel between C and S. The proposal is to
run a PAKE-style protocol between C and S, after which S can identify if C holds one
of the k potential hashed passwords H(w1

S), . . . , H(wk
S) and ii) the potential index i s.t.

H(wC) = H(wi
S). Then S proceeds as described in [JR13] by querying the HC which

checks if i is the correct index or not. The construction guarantees that if the password
file F is compromised, an active adversary A has at most 1/k chances of masquerade
as C without being detected. In contrast, if F is not compromised, A can masquerade



HoneyPAKEs 62

as C with success probability at most 1/|D|, where D is the password dictionary. The
second scenario above, called standard operation, is close to the standard PAKE model,
and the attacker can be active masquerading as either S or C. However, we do not allow
the password file to be compromised in this scenario. The reason is that an adversary
knowing the honeyword list of passwords, can actively masquerade as S towards C and
do a binary search for the correct password. This would be detectable from the client-
side but might not be practical in the real world. We will discuss this below. However,
it is reasonable to question why one could not simply store the password file in HC or
split it between S and HC and benefit from the assumption that HC is incorruptible.
The reason is that the HC is by design an extremely simple component with minimal
external channels, as mentioned above. In particular, it is not meant to compute hashes
nor to compare or retrieve passwords.

6.4.4 HoneyPAKE Construction

We will now consider our suggestion for a HoneyPAKE protocol. Remember that C holds
the two passwords w′

C , wC and S stores the corresponding password list H(w′
S),H(w1

S), . . . , H(wk
S).

The login protocol now runs as follows:

C → S : ReqC

S → C : YS := H(w′
S) · gy

C now computes Y = (YS/H(w′
C))KC := Y x and ZC := H2(Y, g

x,KC), sk = H3(Y, g
x, gxy)

and sends the following back to S:

C → S : XC := H(wC) · gx , ZC

Now S computes, for i ∈ {1, · · · , k}

Wi := H2(X, gy(XC/H(wi
S))

y)

If Wi = ZC for some i, then:

S → HC : i

and S computes sk = H3(Y, g
x, gxy). HC checks if i agrees with the stored value i∗ for

C, and if i ̸= i∗ then an alarm is raised.

6.4.5 HoneyPAKE Security Analysis

In this section, we make a brief and sketchy security analysis. The security of the
HoneyPAKE relies on the intractability of the CDH problem in group G. Similar to



HoneyPAKEs 63

other security proofs for PAKE protocols in the random model [BMP00, AP05], to
construct a CDH reduction, the confirmation code KC has to be associated with the
identity of the session for which it was computed.1 We proceed to analyze the security
of the HoneyPAKE protocol for passive adversaries and sketch a reduction to CDH
problem. We give only intuition of the security guarantee for the active adversaries and
leave the full security proof for future work. We consider the following scenarios:
Scenario 1: Security against eavesdropper adversaries who may have access to password
file F .

Claim 1. Honest executions of the protocol between C and S do not leak password
information under the CDH assumption.

Proof. Let P0 be the original protocol. We demonstrate that it is possible to simulate P0

such that i) no password information is included in the protocol and ii) an eavesdropper
AE cannot distinguish the original protocol from the simulation except with negligible
probability. Let P1 be such simulation as follows:

C → S : ReqC

S → C : YS := gy

C → S : XC = gx, ZC

where ZC = H(gx, gy, gz) and x, y, z
$←− Zq. By inspection, it follows that P1 does not

contain password information. Let E0 be the event where AE queries the random oracle
for H(gx, gy, gxy) such that i) the terms gx and gy are generated respectively by C and S

in an honest protocol execution. Then obviously, P0 and P1 are identical unless the event
E0 occurs, let Pr[E0] = ϵ0. We build a CDH-solver BAE whose advantage is ϵ0/nro,
where nro is an upper bound to the number of random oracle queries made by AE . Then
it simply follows that P0 and P1 are indistinguishable under the CDH assumption.

Scenario 2: Security against active attackers with no access to password file F . Let
A be an adversary against the HoneyPAKE protocol who fully controls the channel
between C and S and does not have corruption capabilities. The construction of the
HoneyPAKE intrinsically protects the client’s password during the authentication phase,
even for hostile networks. It also limits A to only online dictionary attacks, where she
has to guess the primary and secondary passwords for a client of her choice. Let E2 be
the event where A successfully logs into server S without the HC raising the alarm.

Claim 2. For all adversaries A, Pr[E2]≤ 1/(D · D′) + ϵ(λ), where D and D′ denote the
password dictionaries, ϵ is a negligible function of the security parameter λ.

1Typically the session ID is defined as the concatenation of the messages exchanged between C and
S without the confirmation code.



HoneyPAKEs 64

Scenario 3: Security against active attackers with access to password file F . In this
scenario we allow A to compromise the server S and obtain the password file F , i.e. for
each client, she knows the secondary password w′

C and the list of k potential primary
passwords w1

C · · ·wk
C . Let E3 be the event where A successfully impersonates the client

without the HC raising the alarm.

Claim 3. For all adversaries A with corruption capabilities, Pr[E3]≤ 1/k.

We do not provide proofs for these claims, but they should follow via standard methods
for PAKEs.
Remark. As mentioned above, an adversary, who manages to obtain the password file
F and controls the communication between C and S, could try to masquerade as S

to C, run the HoneyPAKE protocol and use the client C to obtain the i-th position
such that H(wC) = H(wi

S). Even though our protocol does not prevent such situations
from happening, the client could detect such an attack, which could raise the alarm.
Therefore, for our security definition, we assume that an adversary can only compromise
the password file but not masquerade as the server.

6.4.6 Variations on a Theme

There are several possibilities for handling the secondary password, that we describe
here. We also mention an alternative approach that avoids the need for the secondary
password but at a penalty in terms of efficiency. This latter approach does however have
some interesting features such as not directly revealing the correct index to S.
Naive Approach: The simplest option is simply to store the hash of the secondary
password on the server-side, and either have the user input it each time or store it on
the user’s device. The former is obviously inconvenient for the user, while the latter
makes the protocol device-dependent.
Derived Secondary Password: Rather than storing or re-inputting each time, the
secondary password could be computed as a short hash H∗ of the H(wi), where the
honeywords for a given user are chosen; they all yield the same short hash value. This,
of course, means that there will be a small loss of entropy, a few bits, concerning the
already rather low entropy of the usual passwords, but this is probably acceptable.
Secondary Password as Nonce: In place of the secondary password H(w′

C) in the
protocol above, we could use a nonce generated by a token for a two-factor type authen-
tication. We assume that each user is provided with a hardware token that will generate
short nonces in sync with a similar generator at the server-side, as is done for many
internet banking protocols. Such nonces will typically be quite short, low-entropy and
easy for the user to type in, so maybe six-digit strings. The purpose of the secondary
password, or nonce, is to counter an attacker masquerading as S from launching offline



HoneyPAKEs 65

dictionary attacks. Suppose that such an attacker has managed to guess this value cor-
rectly, then this will cancel the value injected by C in computing ZC . Knowing y, the
adversary can now test guesses at the password at leisure by checking for guesses at wY :

H2((XC/H(wY ))
y) = ZC

Thus, it is enough for the nonce space to be sufficiently large for the chance of guessing
correctly to be reasonably small. This is analogous to accepting that there will be a
non-negligible chance of a successful online guessing attack against a PAKE. So, the
protocol is, as above, with the nonce replacing the hash of the shared password.

6.4.7 HoneyPAKE Without Secondary Password

As remarked earlier, the use of a secondary password may impact usability. Therefore,
we can avoid introducing a secondary password, and we discuss some constructions in
this section. The setup is as before but without the secondary password.

C → S : ReqC

S → C : X1 := (H(w1
S))

y , · · · , Xk := (H(wk
S))

y

C now computes for i ∈ {1, · · · , k} Yi := Xx
i , and Yk+1 := H2((H(wC))

x) and sends the
following back to S:

C → S : Y1 , Y2 , · · · , Yk+1

S now checks if H2(Y
1/y
i ) = Yk+1 for some i, and if true then:

S → HC : i

This version is less efficient than those presented above and does allow an adversary
masquerading as S to have k guessing attempts per faked login. Still, it, avoids the need
for a secondary password.

6.4.8 Index-hiding HoneyPAKE

To reduce the scope of online guessing attacks in the last subsection, we can reintroduce
the nonce mechanism mentioned above. Further, if C cyclically shifts the terms in
the list, we can prevent an honest but curious S from learning the correct password.
This addresses a threat scenario that is discussed in [GLRS17]: that of the login server
being corrupted and simply recording and later replaying the correct index, perhaps
triggered by a cryptic knock. Then, of course, we have to communicate the shift to HC

to check if the index is correct. We thus assume that the nonces can be broken into two



HoneyPAKEs 66

concatenated pieces, Nonce = Nonce1||Nonce2 such that C sees the full string but S

sees Nonce1, and HC sees only Nonce2. Thus, Nonce1 protects against online attacks,
and Nonce2 disguises the index, and both can be low entropy as above.

C → S : ReqC

S → C : X1 := H(Nonce1) · (H(w1
S))

y, · · · , Xk := H(Nonce1) · (H(wk
S))

y

C now computes for i ∈ {1, · · · , k} Yi := (Xi/H(Nonce1))x, and Zc := H2((H(wC))
x),

and cyclically shifts the indices:

Zi := Yi+Nonce2 (mod k)

and sends the following back to S:

C → S : Z1 , Z2 , ... , Zk , Zc

Now S checks if, for some j ∈ {1, · · · , k}

H2(Z
1/y
j ) := Zc

If so, then:
S → HC : j

Finally, HC will remove the Nonce2 shift: j′ := j − Nonce2 (mod k) and check if j′

agrees with the stored index. Note that this does not prevent an active adversary who
controls S to learn the correct password by replacing passwords in the honeyword list,
and check if login is still possible; however, we could make this statistically detectable
and auditable by adding an extra round of confirmation codes to be checked by C. An
advantage of this protocol over the one in Section 6.4.4, is that an adversary guessing
or knowing Nonce1 cannot launch an offline dictionary attack against the password. It
follows that if a client accidentally types a password for another service, a malicious
S cannot derive this password. A drawback of the protocol in this and the previous
subsection is that a malicious client can purposely trigger the honeychecker alarm by
changing the order of the returned terms. This could be countered in more advanced
but less efficient versions of the protocol. The security of these protocols is based on
the CDH or DDH assumption, depending on the type of attack to be prevented. The
proofs need a subtly different model than standard PAKE due to the use of secondary
passwords. Session Ids and Ids, in general, have been omitted above, but can easily be
added for the security proofs.



HoneyPAKEs 67

6.5 Authentication of the Server

In the above, we have focused on authentication of C to S, as befits an access control
mechanism. However, it seems wise in certain situations to also authenticate S to C.
Our protocols with ephemeral nonces are readily transformable to versions in which S

is authenticated to C first, allowing C to abort early if authentication fails. To achieve
this C supplies a masked DH term along with the initial request. S can now compute
a confirmation code derived from the putative session key which is transmitted back
to C in the second message. To illustrate, let us consider a transform of the previous
protocol where S also authenticates to C via the shared nonce. The round efficiency is
preserved by appending new cryptographic data to the first message which previously
only contained the login request:

C → S : ReqC , V := H(Nonce1) · gz

S calculates the confirmation term X−1 := H2((V /H(Nonce1))y) and sends it back along
with

S → C : X−1 , X0 := H(Nonce1 + 1)gy , X1 := H(Nonce1 + 1) · (H(w1
S))

y,

· · · , Xk := H(Nonce1 + 1) · (H(wk
S))

y

C now confirms that X−1 = H2((X0/H(Nonce1+1))z) and then proceeds exactly
as before:

C → S : Z1 , Z2 , ... , Zk , Zc

with Zi as above except 1 is added to Noncei. And finally S can check whether
H2(Z

1/y
j ) := Zc for some j ∈ {1, · · · , k}.



Mathematics knows no races or geographic bound-
aries: for mathematics, the cultural world is one coun-
try.

David Hilbert

7
Security Characterization of J-PAKE and its

Variants

7.1 Introduction

The J-PAKE protocol is a Password Authenticated Key Establishment protocol whose
security rests on Diffie-Hellman key establishment and Non-Interactive Zero-Knowledge
proofs. It has seen widespread deployment and has previously been proven secure,
including forward secrecy, in a game-based model. Here, we investigate the extension of
such proofs to a significantly more efficient variant of the original J-PAKE, which drops
the second round of Non-Interactive Zero-Knowledge proofs, that we call sJ-PAKE.
Adapting the proofs to this lightweight variant proves highly-non trivial and requires
novel proof strategies in the algebraic group model (AGM). This means that J-PAKE
implementations can be made more efficient by simply deleting parts of the code while
retaining security under stronger assumptions. We also investigate the security of two
further new variants that combine the efficiency gains of dropping the second round
NIZK proofs with the gains achieved by two earlier, lightweight variants: RO-J-PAKE
and CRS-J-PAKE. The earlier variants replaced the second Diffie-Hellman terms from
each party by either a hash term or a CRS term, thus removing the need for half of the
NIZK proofs in the first round. We conclude our work by comparing all the variants of
J-PAKE and give a brief analysis of efficiency.

68



Security Characterization of J-PAKE and its variants 69

7.1.1 Our Contribution

Our starting point is the optimization of J-PAKE shown in Figure 7.3, which we call
sJ-PAKE. Compared to the original design, sJ-PAKE drops the zero-knowledge proofs
for α and β in the original protocol. In addition, we add a hashing step to derive the
shared key. We show that further simplifications that naively omit the zero-knowledge
proofs in the first round of the protocol result in insecure protocols. Furthermore, adding
an explicit hashing step is also necessary, as the protocol is vulnerable to a related key
attack without it.

We then consider the question of formally proving that sJ-PAKE is secure. Our
results show that the proposed optimization leads to a surprisingly hard to prove protocol
and requires completely different techniques than those used in the original proof of J-
PAKE.

Furthermore, we could not find a close adaptation of the original proof of J-PAKE
that applies to sJ-PAKE. Nevertheless, we give proof that sJ-PAKE achieves game-based
security and provides perfect forward secrecy in the random oracle model, using proof
techniques similar to those used for SPAKE2 [AB19]. However, in contrast to SPAKE2,
the proof must be carried out in the algebraic group model, even in the case of weak
forward secrecy. Intuitively, the reason for this is that SPAKE2 fixes a common reference
string that is totally out of the attacker’s control in which it is possible to embed a hard
problem instance. In contrast, in sJ-PAKE, the adversary has some additional power in
choosing the group elements that are used to compute the secret key.

7.1.2 Organization of the Chapter

The rest of the chapter is organized as follows. In Section 7.3 we describe the evolution
from J-PAKE to sJ-PAKE. Further, we describe the variants of sJ-PAKE and give a
full security game-based proof of sRO-J-PAKE and sCRS-J-PAKE proof in Section 7.6.
Finally, in Section 7.7, we compare J-PAKE and sJ-PAKE to all their variants and give a
brief conclusion. In addition, we supply game-based code of sJ-PAKE in Supplementary
material in A.1.

7.2 J-PAKE and its Variants

For better understanding and clarity of J-PAKE’s variants, we first give a brief descrip-
tion of J-PAKE, which is shown in Figure 7.1.
The J-PAKE description. The protocol is symmetric and consists of two rounds. In
the first round, a Client chooses two random values x1 and x2 from Zq and computes
X1 = gx1 and X2 = gx2 . Then it generates proof of knowledge for π1 for X1 and π2 for
X2. A Server does the same, only with x3 and x4, computing X3 = gx3 and X4 = gx4



Security Characterization of J-PAKE and its variants 70

and generating π3 and π4 for X3 and X4, respectively. Then, both sides exchange a
tuple of Identity, Values, Corresponding proofs, without any order who goes first. Then,
both sides verify the proofs π1, π2, π3, π4 and abort if verification fails.

In the second round, the Client computes α = g(x1+x3+x4)x2pw, along with corre-
sponding proof πα for exponent x2pw, and sends α and πα to the Server. The Server
does the same: computes β = g(x1+x2+x3)x4pw, generates corresponding proof πβ for
exponent x4pw and sends β and πβ to the Client. Both sides verify the proofs πα, πβ
and abort if verification fails.

In the last step, the Client computes Key = (βX−x2pw
4 )x2 and the Server com-

putes Key = (αX−x4pw
2 )x4 , which results in both sides holding the same key Key =

g(x1+x3)x2x4pw. The session key follows as K = H1(Key), where H1 is a hash function
mapping into {0, 1}κ, and κ is the security parameter.

Client C Server S

Initialization

Public information: G, g, q, σ $←− Setup(1κ); H1 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zp, pw ̸= 0

x1, x2
$←− Zp x3, x4

$←− Zp

X1 ← gx1 X3 ← gx3

X2 ← gx2 X4 ← gx4

π1 ← Prv((X1, g), x1, C) π3 ← Prv((X3, g), x3, S)

π2 ← Prv((X2, g), x2, C) π4 ← Prv((X4, g), x4, S)

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Abort if X4 = 1 Abort if X2 = 1

Check Ver((X3, g), π3, S) Check Ver((X1, g), π1, C)

Check Ver((X4, g), π4, S) Check Ver((X2, g), π2, C)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

πα ← Prv((α,X1, X3, X4), x2pw, C) πβ ← Prv((β,X1, X2, X3), x4pw, S)
α,πα
β,πβ

Check Ver((β,X1X2X3), πβ, S) Check Ver((α,X1X3X4), πα, C)

Key← (βX−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← H1(Key) K ← H1(Key)

Figure 7.1: The J-PAKE protocol



Security Characterization of J-PAKE and its variants 71

7.3 From J-PAKE to sJ-PAKE

The initial idea of our sJ-PAKE protocol was to slightly modify the J-PAKE protocol by
omitting NIZK proofs in the second round and prove the sJ-PAKE secure in the same
fashion as Abdalla et al. in [ABM15]. Note that removing the first round NIZK proofs
leads to simple offline dictionary attacks in which the receiver incorporates X−1

1 in X3 or
X4 resulting in X1 cancelling out in the computation of α. However, omitting NIZKs in
the second round and computing K = Key as in J-PAKE leads to so-called Related key
attack [AP05], where the adversary acts as a man-in-the-middle and succeeds in inducing
the parties to hold keys with a known relationship. This scenario is not desired, as an
adversary can easily create different sessions with related key values. In Figure 7.2, we
show the attack, which we describe below.

Client C Adversary Server S

Public information: G, g, q, σ $←− Setup(1κ)
Secret information: pw ∈ Zp, pw ̸= 0

X1, X2, π1, π2 X3, X4, π3, π4

(C,X1, X2, π1, π2) (S,X3, X4, π3, π4)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

a
$←− Zp

β′ = βga

Key← (β′X−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← KeyXa
2 K ← Key

Figure 7.2: Related key attack if K = Key.

The first round goes in the same manner as in J-PAKE, with an adversary just forwarding
the messages. In the second round, πi

C computes α and sends it to πj
S who also computes

β and sends it to πi
C . Then, because there is no proof of knowledge for β, the adversary

steps in: intercepts β from πj
S and computes its own β′ as β′ = βga, for some a

$←− Zp

and sends it to πi
C . Then, πi

C receives β′, computes Key as usual and gets KC = KeyXa
2 ,

while πj
S computes its session key and gets KS = Key. Notice that session keys are

linked, and if the adversary tests one instance, it could obtain its session key K and
all the adversary needs to do is to compute the other party’s session key as KS = KC

Xa
2

.
Furthermore, that attack works also for the other party (with resp. to α). Therefore,
to prove sJ-PAKE (shown in Figure 7.3) secure, we add the hashing step (the sid, Key
and pw included) to derive the session key, which is in any case good practice.



Security Characterization of J-PAKE and its variants 72

Client C Server S

Initialization

Public information: G, g, q, σ $←− Setup(1λ); H1 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zq, pw ̸= 0

x1, x2
$←− Zq x3, x4

$←− Zq

X1 ← gx1 X3 ← gx3

X2 ← gx2 X4 ← gx4

π1 ← Prv((X1, g), x1, C) π3 ← Prv((X3, g), x3, S)

π2 ← Prv((X2, g), x2, C) π4 ← Prv((X4, g), x4, S)

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Abort if X4 = 1 Abort if X2 = 1

Check Ver((X3, g), π3, S) Check Ver((X1, g), π1, C)

Check Ver((X4, g), π4, S) Check Ver((X2, g), π2, C)

α← (X1X3X4)
x2pw β ← (X1X2X3)

x4pw

α

β

Key← (βX−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

K ← H1(C, S,X1, X2, K ← H1(C, S,X1, X2,

X3, X4, α, β,Key, pw) X3, X4, α, β,Key, pw)

Figure 7.3: The sJ-PAKE protocol.

7.3.1 Variations of J-PAKE

After J-PAKE was proven secure, two more variations of J-PAKE, CRS-J-PAKE and
RO-J-PAKE, were proposed and proven secure in the same manner as the original
[LST16]. The major difference between them is that CRS-J-PAKE and RO-J-PAKE
omit one computation in the first round on each side, for a client-side X1 = gx1 and a
server-side X3 = gx3 . This idea stems from the observation that x1 and x3 are not in
fact required to compute α, β and K. However, we cannot simply drop the x1 and x3 as
it is essential for the security to have additional terms in the exponents of α, β and K

that are unknown to the parties (other than the x2 unknown to S and x4 unknown to
C). Thus, the X1 and X3 are replaced by terms computed as hashes or by a single CSR
term. Fortunately, we can derive variations for sJ-PAKE, sCRS-J-PAKE and sRO-J-
PAKE in the same manner. We describe these variations further in the text, explain
the differences and compare the efficiency with sJ-PAKE in Section 7.7. The tables
of sCRS-J-PAKE and sRO-J-PAKE are shown in Figure 7.5 and Figure 7.7. Keeping



Security Characterization of J-PAKE and its variants 73

NIZK proofs in two rounds made both CRS-J-PAKE and RO-J-PAKE provable in the
same fashion as [ABM15]. However, this is not the case with sJ-PAKE as πα and πβ are
omitted in the second round, which makes its proof very different from [ABM15] and
[LST16].

7.4 Game-based Security Proof of sJ-PAKE

This section gives a full detailed proof of sJ-PAKE followed by the security reductions.
Further, in Theorem 7.1 we define an advantage of the attacker that uses other attackers
as a subroutine running against difficult problems, to break the security of sJ-PAKE.

Theorem 7.1. Let sJ-PAKE be the protocol described in Fig. 7.3. Take an alge-
braic RoR attacker A, against sJ-PAKE, making at most nse, nex, nre, nco, nte, nro

queries to Send, Execute, Reveal, Corrupt, Test and RO, respectively. For every such at-
tacker A, there exist attackers: B4 against Computational Triple Group Diffie-Hellman
problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against Decisional
Diffie-Hellman problem, B6 against Computational Squared Diffie-Hellman problem,
B7−8.1 against Decisional Squared Diffie-Hellman problem and B9 against Computa-
tional Squared Diffie-Hellman problem such that

AdvsJ−PAKE
A () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+ Advuzk
NIZK() + 2nseAdvext

NIZK()

+ nronexAdvCTGDH
B4

() + AdvDDH
B4.5.1

() + AdvDDH
B4.5.2

()

+ nsen
2
roAdvCSqDH

B6
() + 2nseAdvDSqDH

B7−8.1
() + nsenroAdvCSqDH

B9
()

where Advuzk and Advext are advantages for the security of the SE-NIZK, formally
defined in Chapter 2, (Definition 2.9).

Proof. The proof uses a sequence of games G0, G1, . . . , G9. We follow [BPR00] by in-
cluding initialize and finalize oracles; the adversary is only allowed to call Initialize as its
first query and Finalize as its final query; games compute their final results as a result
of the call to Finalize.

The main challenge in the proof with respect to [ABM15] is that we cannot extract
the discrete logarithms of adversarial α and β, since ZK-PoK proofs are removed for
these elements in the simplified protocol. Instead we must use the RO queries to extract
relevant information about the adversary’s actions and, in particular, to detect when
the adversary is successful in a password guessing attack.

The proof strategy is typical of PAKE protocols. We first modify the security
game gradually until the view of the adversary is independent of the passwords used
in fresh sessions, which are the ones in which it can obtain an advantage. Then bound



Security Characterization of J-PAKE and its variants 74

the number of password guesses that the attacker can make to win the game: in the
random oracle model, this comes down to bounding the number of RO queries that can
be consistent with the trace of a fresh session. In the case of sJ-PAKE we show that,
unless the adversary solves a hard problem, only one RO query will satisfy this consis-
tency constraint. This means that the total number of useful password guesses is nse

and hence that the adversary’s guessing advantage is at most nse
N . We give an overview

of the sequence of games in Figure 7.4.

Remarks. We denote RO as a random oracle and describe it in Chapter 2 (Section
2.4.1). Furthermore, we describe the model and all queries in Chapter 4 (Section 4.3).
In addition, we use the game-playing technique explained in Chapter 4 (Section 4.4),
and we display the code of all games and adversaries in Appendix A.1.1.

Useful notation. For each client-server pair (C, S), the game uniformly chooses a
password sampled from a password space P, denoted pwcs. In addition, we use notation
T [x] to denote access to a dictionary/table T at index x.

• Table T consists of random oracle queries (sid,Key, pw), where a query was as-
signed to a random value from the game. If there was a query that T does not
contain, then the game assigns a new random value and records it; otherwise, it
returns the value that was previously assigned to that query.

• Table Ts consists of random oracle queries sid, without including the Key and the
pw. It is just a new simulation of T where we replace one random value with
another. We call Ts for sessions where the adversary is active.

• Table Te consists of random oracle queries (sid,Key, pwcs). We use Te for sessions
where the adversary is passive i.e. for Execute queries.

• List Corr consists of corrupted instances, and whenever a corruption occurs, we
add (C,S) to the list. Thus, there are no fresh instances on the list, Corr.

• List Tst consists of all instances for which A queried Test query. An instance is
fresh if it is not on the list Tst.

Matching sessions. We define matching sessions whenever two honest instances, πi
C

and πj
S , accept with the same session transcript, sid. More precisely, all sessions result-

ing from Execute query or matching Send query, where there was no Send query from



Security Characterization of J-PAKE and its variants 75

A for that session, are matching sessions. Note, we consider all sessions resulting from
Execute query to be fresh.

Instance state. Each ith instance is denoted as πi
U has a tuple (e, sid,K, ac) that

describes:

• e is a pair of the dlogs of Xl and Xl+1, (xl, xl+1) for l = 1, 3.

• sid is a session transcript of the form (C, S,X1, X2, X3, X4, α, β).

• K is the accepted session key.

• ac is a boolean value that indicates whether the instance accepted (ac = T) or not
(ac = F).

Further in the proof, we will use πi
U .e, πi

U .sid, πi
U .K, πi

U .ac as the individual component
of the state.

Freshness. We define a function Fresh(P, i) which checks if an instance is fresh by
checking all the conditions stated in Chapter 3 (Section 4.3). This function is used in
all games until Game 3, and we incorporate it in Game-based code in Supplemental
material A. Details about freshness are covered in Game 3.



Security Characterization of J-PAKE and its variants 76

G0 Original Protocol: The original protocol P .

G1 Simulate ZK-PoK proofs: For Send and Execute query use the NIZK simula-
tor to simulate proof of knowledge. bad1 is set whenever the adversary detects the
difference between the simulated and real proofs.

G1.5 Extract discrete logs from adversarial proofs. For Send queries use the
NIZK extractor to extract witnesses x′

1, x
′
2, x

′
3, x

′
4. bad1.5 is set whenever the adversary

submits the proof for which extraction fails.

G2 Force unique values: Repetition of any X values selected from the game are
not allowed. bad2 is set whenever values repeat. We bound the advantage of the adversary
by the statistical term.

G3 Freshness condition: Having a unique sid makes the freshness condition ex-
plicit in the game. Therefore, instead of running function Fresh and checking all conditions
from freshness definition, we check for freshness in every Send query, and we add fr in each
state of the instance.

G4 Randomize session keys for Execute queries: Session keys are randomized
by calling Te for passive adversaries, and bad4 is set whenever there was a query in which
the correct Key has been computed using pwcs. Thus, the probability of bad4 happening is
reduced to the CTGDH problem.

G4.5.1 Randomize α for Execute queries: α is randomized for all passive adver-
saries, and the advantage of the adversary is reduced to the DDH problem.

G4.5.2 Randomize β for Execute queries: β is randomized for all passive adver-
saries, and the advantage of the adversary is reduced to the DDH problem.

G5 Randomize session keys for Send queries: Session keys are randomized by
calling Ts, for active adversaries and bad5 is set whenever there was a query in which the
correct Key has been computed using pwcs. bad5 is not bounded.

G6 Detect duplicates: bad6 is a sub-event of bad5 and is set whenever there are
two queries with the same sid for pw1 ̸= pw2. bad5 is not bounded and bad6 is reduced to
the CSqDH problem.

G7 Add algebraic representation: In Send queries with α and β, we add alge-
braic representation of α and β. bad5 is not bounded.

G8 Randomize α and β for Send queries: Algebraic adversaries are introduced,
and a hybrid argument is used, and the game is split into two hops G7−8.m.1 and G7−8.m.2,
for 1 ≤ m ≤ nse.

• G7−8.m.1: We tackle the bad scenarios of α and β for Corrupt queries. The advantage
of the adversary is reduced to the DSqDH.

• G7−8.m.1: α and β are randomized and the advantage of the adversary to break the
DDH is zero unless bad5 occurs.

G9 Perfect forward secrecy. There are new entries in bad5, where A asks for a Corrupt
query after the instances accept but before it asks a random oracle query. bad1

9 may occur
if there are new entries where A tests pw ̸= pwcs in β′ (resp. α′) and asks a query with
the correct key. If there was a query with the correct key and A tests pw = pwcs, then
bad2

9 is set. Furthermoer, bad5 is bounded by the term nse

|D| , bad1
9 is reduced to the CSqDH

problem, and bad2
9 is bounded by nse

|D| .

Figure 7.4: Description of game-hops for sJ-PAKE



Security Characterization of J-PAKE and its variants 77

Game 0: Original Protocol.
The first game is the original security game instantiated with sJ-PAKE, so we have

AdvsJ−PAKE
A () =| Pr[G0 ⇒ T]− 1

2
|

Game 1: Simulate ZK-PoK proofs.
For SendInit-C1, SendInit-S1, and Execute queries, we use SE-NIZK to simulate the
proofs of knowledge π1, π2, π3, π4 for X1, X2, X3, X4 .

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ Advuzk
NIZK()

Game 0 and Game 1 are the same unless the adversary distinguishes real from simu-
lated proofs, and it does it with the advantage Advuzk

NIZK. We show a reduction for this
game in Lemma 7.2. We particularly have use of simulated proofs of knowledge in the
reductions, where we will not know the witness for a given challenge.
In this game, we additionally create a list List, where we add only values generated from
honest instances, X1 and X2 from the client-side, and X3 and X4 from the server-side.
We need List to clearly distinguish between the values coming from honest instances and
values coming from A. This is necessary for Game 1.5, where we will run NIZK.Extract
only for adversarial values. In Game 2, we will insist on uniqueness only on the X1, X2,
X3 and X4 values from List.

Game 1.5: Extract discrete logs from adversarial proofs.
For Send-C2 and Send-S2 queries, whenever A outputs a proof π for a generated X, we
run NIZK.Extract(crs, tde, X, π, l) which extracts a witness x for X from a valid proof of
knowledge π, considering label l (C or S), trapdoor tde and CRS crs. If the extraction
fails, we set bad1.5. Thus, Game 1 and Game 1.5 are the same unless bad1.5 occurs.

|Pr[G1 ⇒ T]− Pr[G1.5 ⇒ T]| ≤ Pr[G1.5 ⇒ bad1.5]

The reduction in Lemma 7.3, to justify this hop, guesses a pair (X,π) where the first
bad1.5 happens and, when this event occurs it submits (X,π). The probability that it
chooses the correct pair where the extraction failed with the advantage Advext

NIZK can be
bound:

Pr[G1.5 ⇒ bad1.5] ≤ 2nseAdvext
NIZK()

Game 2: Force unique values
Repetition of any values X1, X2, X3 or X4, previously seen in an execution, is not
allowed. We set bad2 whenever values, X1, X2, X3 or X4, repeat. Game 2 is the same
as Game 1, unless bad2 occurs. More precisely, we have two values for SendInit-C1 and



Security Characterization of J-PAKE and its variants 78

SendInit-S1, four values for Execute queries and the size of the group q:

Pr[G1.5 ⇒ T]− Pr[G2 ⇒ T] ≤ (2nse + 4nex)
2

q

This means that 2nse+4nex is a maximal number of values that can repeat, and we can
bound the bad event by the birthday paradox bound in case X1, X2, X3 or X4 collide.
In case of a bad event, we mark an instance for which values repeat as ”Invalid”.

Game 3: Adding freshness.
Now that we have unique sessions, and we add explicit freshness conditions for all ses-
sions. These are initially false and then set to their correct value when the session
accepts in Send-C3 and for Send-S3. A fresh session may later become unfresh if its key
is given to the adversary as a result of a Reveal query. We also remove all bad events.
This change does not affect the view of the adversary, so we have:

Pr[G3 ⇒ T] = Pr[G2 ⇒ T]

Game 4: Randomize session keys for matching sessions.
We no longer use the random oracle for matching sessions to derive the key. We use a
totally random key instead. We keep these removed entries in a new list Te. If a random
oracle query is placed at any point that could cause an inconsistency in the adversary’s
view, we set a bad flag bad4. Note, for Send queries; we check if the sessions are matching
in Send-S3 and Send-C3.

|Pr[G3 ⇒ T]− Pr[G4 ⇒ T]| ≤ Pr[G4 ⇒ bad4]

The reduction to justify this hop guesses the lth Execute query where the first bad4
happens and, when this event occurs, it solves an instance of the Computational Triple
Group problem, CTGDH, so we have:

Pr[G4 ⇒ bad4] ≤ nronexAdvCTGDH
B4

()

Game 4.5: Randomize alpha/beta for Execute queries.
We randomize α and β for sessions resulting from Execute queries using two intermediate
games where we first randomize α in Game 4.5.1, then β in Game 4.5.2.

Game 4.5.1 Randomize α.
We randomize α in sessions resulting from Execute queries. Game 4.5.1 is indistinguish-
able from Game 4 unless A solves the DDH problem. The reduction is shown in Lemma



Security Characterization of J-PAKE and its variants 79

7.5.
|Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T]| ≤ AdvDDH

B4.5.1
()

Game 4.5.2 Randomize β.
Now, we randomize β in sessions resulting from Execute queries. Game 4.5.2 is indistin-
guishable from Game 4.5.1 unless A solves the DDH problem. The reduction is shown
in Lemma 7.6.

|Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T]| ≤ AdvDDH
B4.5.2

()

Game 5: Randomize session keys for Send queries.
We randomize session keys for all Send queries, i.e. for active attacks. Concretely, we no
longer use the random oracle to compute the output key of such sessions when they are
fresh and use a totally random key instead. We introduce a table Ts to keep track of the
inputs excluded from the random oracle input. In case of a random oracle query that
could cause an inconsistency in the adversary’s view, we set a bad flag bad5. Therefore,
we naturally have:

|Pr[G4.5.2 ⇒ T]− Pr[G5 ⇒ T]| ≤ Pr[G5 ⇒ bad5]

Game 6: Detect duplicates.
Rather than checking for bad5 in the game we, construct a list of random oracle queries
that would cause bad5 and, at the end of the game, we divide the checking for bad5 into
two sub-events. Firstly, we set a new bad flag if ever there are two entries in the list of
problematic random oracle queries that are consistent with the same sid, i.e., if there exist
queries (sid,Key1, pw1) and (sid,Key2, pw2), where Key1 and Key2 are computed correctly,
for pw1 ̸= pw2. Such a pair of queries we call duplicates and whenever we detect them,
we set bad6. Secondly, if this event does not occur and the list of problematic queries is
not empty, we set bad5. In this game, by bounding bad6, we restrict the set of executions
where bad5 may occur, so we have:

Pr[G5 ⇒ bad5] ≤ Pr[G6 ⇒ bad5] + Pr[G6 ⇒ bad6]

The reduction for this game guesses the lth session where the first bad6 happens, together
with the indices of the two problematic random oracle queries, and reduces the bad event
to the Computational Square Diffie-Hellman problem, CSqDH. This implies:

Pr[G6 ⇒ bad6] ≤ nsen
2
roAdvCSqDH

B6
()

The reduction is shown in Lemma 7.7.



Security Characterization of J-PAKE and its variants 80

Game 7: Add algebraic representation.
In this hop, we keep the check for bad5 as before, and we introduce algebraic adversaries
by adding algebraic representation whenever there is Send query with α or β. Therefore,
we have:

Pr[G6 ⇒ bad5] = Pr[G7 ⇒ bad5]

Game 8: Randomizing α and β for Send queries.

Pr[G7 ⇒ bad5]− Pr[G8 ⇒ bad5] ≤ 2nseAdvDSqDH
B7−8.1

()

We use a hybrid argument to randomize α and β for all Send queries, one session at a
time. This means, if we consider the mth session, then all sessions before mth will have
random α and β, and for all sessions after mth, we will compute α and β normally. How-
ever, we cannot randomize messages with α and β in one go, because of the following
scenario. Let us say A communicates with a client instance. In the second round, the
Client chooses α randomly and sends it to A. Then A decides to corrupt and send β′

as β′ = X
′x2pwcs
4 gs, where s is something that only A knows. Here, we face a problem

because A can fix any s it wants, and our reduction will not be able to detect what A is
doing and respond with the appropriate key. For this reason, we assume we are dealing
with algebraic adversaries, meaning, that whenever A outputs β′, it also outputs alg′

that gives the representation of β′ in terms of other group elements it observed during
the game. These group elements are g, and honestly generated X1, X2 and α. This
analysis means that any group element that A produces can be rewritten as a represen-
tation of the form alg′ = [(ga), (Xb

1), (X
c
2), (α

d)]. We start the change for mth session,
for 1 ≤ m ≤ nse and we split Game 8 into two games: Game 7 − 8.m.1 where A sends
β′ with alg′, we compute α honestly and use alg′ to decompose β′ and Game 7− 8.m.2,
where we randomize α.

Game 7-8.m.1 We make the change in all instances before the mth session, and for
all instances after mth, we simulate as in Game 7. Let us say, algebraic adversary
corrupts the session with an honest client instance right after it receives an honestly
computed α, i.e. α = (X1X

′
3X

′
4)

x2pwcs , but before sending β′. Then A sends β′ with
alg′ = [(ga), (Xb

1), (X
c
2), (α

d)], and we use Rewrite that rewrites β′ as β′ = gaXb
1X

c
2α

d.
Then, we reduce the construction of Key = ( β′

X
′x2pwcs
4

)x2 by checking two cases:

(a) In the case of Corrupt, if Xc
2α

d ̸= X
x′4pwcs
2 , then A gets a random key. Further-

more, A needs to solve a Decisional Square Diffie-Hellman problem, DSqDH to compute
the key.
(b) In the case of Corrupt, if Xc

2α
d = X

x′4pwcs
2 , then we compute the real key, i.e.

Key = ( β′

X
x2pwcs
4

)x2 . Furthermore, in case (b), after rearranging the exponents, we get



Security Characterization of J-PAKE and its variants 81

Key = g(x2a+x1x2b) = gx2agx2x1b. Now, the final thing we need to do in (b), is to embed
α in the Key preparing for the next hop, and we get Key = gx2a( α

1
pwcs

gx2(x
′
3+x′4)

)b. We tackle
the keys for fresh sessions as before. We stress that the only change in Game 7− 8.m.1

is in case of corruption in Send-C3 or Send-S3. If that does not happen we simulate
everything as in Game 7.

|Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T]| ≤ 2nseAdvDSqDH
B7−8.1

()

We reduce the advantage of the adversary in Game 7-8.m.1 to the DSqDH, shown in
Lemma 7.8.

Game 7-8.m.2. For all instances before mth, we make the change, and for all in-
stances after mth, we simulate as in Game 7-8.m.1. In this hop we randomize α.

|Pr[G7−8.m.1 ⇒ T ]− Pr[G7−8.m.2 ⇒ T ]| ≤ Pr[G8 ⇒ bad5]

In this game, the test bit b is perfectly hidden in fresh sessions, so the adversary has
zero advantage in noticing that α is randomized. Therefore, Game 7-8.m.1. and Game
7-8.m.2. are the same unless bad5 occurs. We stress that we do the same hybrid analysis
for randomizing β.

Game 9: Perfect forward secrecy.
In this hop, it remains to bound bad5 and address the cases where A asks for a Corrupt
query after the instances accept but before it asks a random oracle query. Everything
is randomized in Send and Execute; therefore, we can delay password sampling until the
end or in case of corruption. Now, among new entries that might cause bad5, there
could be entries where A sends a message with β′ (resp. α′), where it tested a different
password, pw′ ̸= pwcs and then later asked a query with pwcs. In that case, we set a
bad flag bad19. Now, it might also happen that A sent β′ (resp. α′) where pw′ = pwcs.
In that case, we set a bad flag bad29. More precisely, we split bad5 after corruption into
bad19 and bad29. Let us say, A sent β′ with alg′ and then accepted. Then, A corrupts
and asks for a random oracle query (sid,Key, pwcs). Thanks to the algebraic adversary,
we can use alg of β′ it produced in terms of g, X1, X2 and α, which it observed in
the game. These elements are computed honestly, by the game, X1 = gx1 , X2 = gx2

and α = gw, w $←− Zq. In other words, β′ can be rewritten as a representation of the
form alg′ = [(ga), (Xb

1), (X
c
2), (α

d)]. Therefore, we use the function Rewrite to decom-
pose β′ to β′ = gaXb

1X
c
2α

d. Then, in case of corruption, we reduce the construction of
Key = ( β′

X
′x2pwcs
4

)x2 by checking two cases:

(a) In the case of Corrupt, if gx2c ̸= X
x2pwcs
4 , then pw′ ̸= pwcs. And we set bad19.



Security Characterization of J-PAKE and its variants 82

In this case, A needs to solve a Computational square Diffie-Hellman problem to com-
pute the correct key.
(b) In the case of Corrupt, if gx2c = X

x2pwcs
4 , we set bad29. It means that pw′ = pwcs and

A submitted the winning query. To compute the key, the expressions cancel, and we
get Key = g(x2a+x1x2b+x2wd) = gx2(a+x1b+wd).
We check bad5 as before. Note that bad19 and bad29 are disjoint. So, we have the following
bound

Pr[G8 ⇒ bad5] ≤ Pr[G9 ⇒ bad5] + Pr[G9 ⇒ bad19] + Pr[G9 ⇒ bad29]

The entries where bad5 might happen are in the list which size is now at most nse, so
we have:

Pr[G9 ⇒ bad5] ≤
nse

| D |

We reduce the probability of bad19 to Computational Square Diffie-Hellman, and we show
the reduction in Lemma 7.9, where we plug in the challenge for the lth session and guess
the entry for which bad19 might have occurred. For this reason, we have

Pr[G9 ⇒ bad29] ≤ nsenroAdvCSqDH
B9

()

Finally, the number of remaining entries that can cause bad29 is at most nse
|D| , so we have

Pr[G9 ⇒ bad29] ≤
nse

| D |

This completes the proof and yields the bound.

AdvsJ−PAKE
A () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+ Advuzk
NIZK() + 2nseAdvext

NIZK()

+ nronexAdvCTGDH
B4

() + AdvDDH
B4.5.1

() + AdvDDH
B4.5.2

()

+ nsen
2
roAdvCSqDH

B6
() + 2nseAdvDSqDH

B7−8.1
() + nsenroAdvCSqDH

B9
()

7.5 Reductions

Here, we prove auxiliary lemmas supporting the proof of Theorem 7.1.

Lemma 7.2. For every attacker A, there exists an attacker Buzk
NIZK such that

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ Advuzk
BNIZK()



Security Characterization of J-PAKE and its variants 83

Proof. Further, we consider Buzk
NIZK attacker in Figure A.3 and we prove that the attacker

distinguishes real from random proofs with the advantage Advuzk
BNIZK . We simulate proofs

in the following queries. For SendInit-C1(C, i, S), Buzk
NIZK generates X1 = gx1 and X2 =

gx2 and calls simulation oracle SimO that takes X1 and C and outputs π1. Then SimO

takes X2 and C and outputs π2. For SendInit-S1(S, i, C), Buzk
NIZK generates X3 = gx3 and

X4 = gx4 and calls SimO that takes X3 and S and outputs π3. Then SimO takes X4 and
S and outputs π4. For Execute(C, S, i, j), Buzk

NIZK generates X1 = gx1 , X2 = gx2 , X3 and
π4 for X4 and calls SimO to simulate π1, π2, π3, π4 for the corresponding X1, X2, X3,
and X4. The attacker interpolates between Game 0 and Game 1, meaning if it knows it
is playing Game 0, it outputs 1, and if it knows it is playing Game 1, it outputs 0.

Lemma 7.3. For every attacker A, there exists an attacker Bext
NIZK such that

Pr[G1.5 ⇒ bad1.5] ≤ 2nseAdvext
BNIZK()

Proof. We consider Bext
NIZK attacker in Figure A.5. We set a bad flag bad1.5 whenever

the extractor fails, and we denote the advantage of the attacker as Advext
BNIZK . Further,

we check if the extractor returns the correct witness in the following queries. In Send-
C2(C, i, S,X ′

3, X
′
4, π

′
3, π

′
4), we check if the received value X ′

3 comes from the adversary
(not in List) in which case we call NIZK.Extract(crt, tde, X ′

3, π
′
3, S) which outputs a wit-

ness x′3. Now, we check if X ′
3 = gx

′
3 , in which case the witness is valid. Otherwise,

either the extraction fails and bad1.5 occurred, or the witness is not valid. In either
case we add the pair (X ′

3, π
′
3) to a list ListExt. We do the same for X ′

4 and in Send-
S2(S, i, C,X ′

1, X
′
2, π

′
1, π

′
2) for X ′

1 and X ′
2. At the end of the game, Bext

NIZK guesses one
pair (X ′, π′) from ListExt for which bad1.5 might have occurred. Thus, we can bound the
probability of bad1.5 happening with 2nseAdvext

BNIZK .

Lemma 7.4. For every attacker A, there exists an attacker B4 such that

Pr[G4 ⇒ bad4] ≤ nronexAdvCTGDH
B4

()

Proof. We consider a CTGDH attacker B4 in Figure A.9. The attacker B4 gets a challenge
of the form (X,Y, Z,DXY , DXZ , DY Z) and finds CTGDH(X,Y, Z,DXY , DXZ , DY Z). B4
uses the challenge for the ℓth Execute query to compute X1 = gx1 , X2 = X, X3 = Y ,
X4 = Z, α = (DXY DXZX

x1)pwcs and β = (DXZDY ZZ
x1)pwcs . If there is a query with

a collision in T , we add it to the list T4. Then, when the game finishes, the reduction
guesses one query from T4 for which bad4 might have occurred. If the guess was suc-
cessful, it means that bad4 occurred and A solved CTGDH(X,Y, Z,DXY , DXZ , DY Z) so
B4 can recover gxyz by computing:



Security Characterization of J-PAKE and its variants 84

gxyz =
Key

1
pwcs

Dx1
XZ

For Send queries, the attacker runs everything as in Game 4.

Lemma 7.5. For every attacker A, there exists an attacker B4.5.1 such that

Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T] ≤ AdvDDH
B4.5.1

()

Proof. We consider a DDH attacker B4.5.1 in Figure A.11. The attacker B4.5.1 gets
a generalized challenge of the form (X1, ..., Xnse , Y1, ..., Ynse , Z1, ..., Znse) and submits
b = 1 if (Xk, Yk, Zk) is a real DDH tuple and b = 0 if it is a random DDH tuple, for
some 1 ≤ k ≤ nex. The problem is tightly equivalent to DDH by self-reducibility. The
attacker uses the challenge for each Execute query to compute X1 = Xk, X2 = Yk,
X3 = gx3 , X4 = gx4 , α = (ZkX

x3+x4
2 )pwcs and β = X

x4pwcs
2 g(x1+x2)x4pwcs . Further, B4.5.1

interpolates between Game 4 and Game 4.5.1, meaning if (Xk, Yk, Zk) is a real DDH
tuple, it is playing Game 4, and otherwise, it is playing Game 4.5.1.

Lemma 7.6. For every attacker A, there exists an attacker B4.5.2 such that

Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T] ≤ AdvDDH
B4.5.2

()

Proof. We consider a DDH attacker B4.5.2 in Figure A.13. The attacker B4.5.2 gets
a generalized challenge of the form (X1, ..., Xnse , Y1, ..., Ynse , Z1, ..., Znse) and submits
b = 1 if (Xk, Yk, Zk) is a real DDH tuple and b = 0 if it is a random DDH tuple, for some
1 ≤ k ≤ nex. The problem is tightly equivalent to DDH by self-reducibility. The attacker
uses the challenge for each Execute query to compute X1 = gx1 , X2 = gx2 , X3 = Xk,
X4 = Zk, α $←− G and β = (ZkX

x1+x2
4 )pwcs . Further, B4.5.2 interpolates between Game

4.5.1 and Game 4.5.2, meaning, if (Xk, Yk, Zk) is a real DDH tuple, it is playing Game
4.5.1, and otherwise, it is playing Game 4.5.2.

Lemma 7.7. For every attacker A, there exists an attacker B6 such that

Pr[G6 ⇒ bad6] ≤ nsen
2
roAdvCSqDH

B6
()

Proof. We consider a CSqDH attacker B6 in Figure A.16. The attacker B6 gets a chal-
lenge X and finds the solution to CSqDH. The attacker B6 guesses the ℓth fresh ses-
sion, where it uses the challenge for SendInit-C1(C, i, S) query to compute X1 = gx1 ,
X2 = X, and for Send-C2(C, i, S,X ′

3, X
′
4, π

′
3, π

′
4) to compute α = X

(x1+x′3+x′4)pwcs
2 . We

add all queries where bad6 might have occurred to Tbad. At the end of the game, B6
guesses one query from Tbad. If the guess was successful, it means A solved CSqDH and



Security Characterization of J-PAKE and its variants 85

B6 can recover gx
2 in the following way:

Key1 = (
β′

Xx′4pwcs
)x = (

g(x1+x′3)x
′
4pw1Xx′4pw1

Xx′4pwcs
)x = X(x1+x′3)x

′
4pw1gx

2x′4(pw1−pwcs) (1)

Key2 = (
β′

Xx′4pwcs
)x = (

g(x1+x′3)x
′
4pw2Xx′4pw2

Xx′4pwcs
)x2 = X(x1+x′3)x

′
4pw2gx

2x′4(pw2−pwcs) (2)

where x is unknown. From (1) and (2) follows:

gx
2
= (

Key1
Key2X(x1+x′3)x

′
4(pw1−pw2)

)
1

x′4(pw1−pw2)

We do the same procedure on the server-side and plug-in the challenge for SendInit-
S1(S, i, C). Note, in the case of a Corrupt query in ℓth session, the session is no longer
fresh, and bad6 cannot occur. Furthermore, it means that the attacker made the wrong
guess, so we abort.

Lemma 7.8. For every algebraic attacker A, there exists an attacker B7−8.1 such that

Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T] ≤ 2nseAdvDSqDH
B7−8.1

()

Proof. We consider a DSqDH attacker B7−8.1 in Figure A.19. The attacker B7−8.1 gets
a challenge (X,Y ) and submits b = 1 if (X,Y ) is a real DSqDH tuple or b = 0 other-
wise. The attacker uses a hybrid argument and for the fresh mth session, to plugs-in
the challenge for SendInit-C1(C, i, S) to compute X1 = gx1 , X2 = X, and for Send-
C2(C, i, S,X ′

3, X
′
4, π

′
3, π

′
4) to compute α = X

(x1+x′3+x′4)pwcs
2 . In Send-C3(C, i, S, β′, alg′)

where alg′ = [((g, a), (X1, b),

(X2, c)), (α, d)], in case of Corrupt, we rewrite β′ as β′ = gaXb
1X

c
2α

d. Then we check:

(a) If Xc
2α

d ̸= X
x′4pwcs
2 , we compute Key = Xa

2 (
α

1
pwcs

X
(x′3+x′4)
2

)bY (c+d(x1+x′3+x′4)pwcs−x′4pwcs).

This means if Y = gx
2 then the key is real and random otherwise.

(b) If Xc
2α

d = X
x′4pwcs
2 , we embed α in the key and we compute it as Key = X

(a+x1b)
2 =

Xa
2 (

α
1

pw

X
(x′3+x′4)
2

)b.

We say A interpolates between the two games, meaning, if Y = gx
2 then it is play-

ing Game 7, and otherwise, it is playing Game 7-8.m.1. Note, we do the same analysis
on the server’s side, for SendInit-S1(S, i, C), Send-S2(S, i, C,X ′

1, X
′
2, π

′
1, π

′
2) and Send-

S3(S, i, C, α′, alg′), to tackle with problematic cases of α′ (coming from A) .

Lemma 7.9. For every algebraic attacker A, there exists an attacker B9 such that

Pr[G9 ⇒ bad29] ≤ nsenroAdvCSqDH
B9

()



Security Characterization of J-PAKE and its variants 86

Proof. We consider a CSqDH attacker B9 in Figure A.22. The attacker B9 gets a chal-
lenge X and finds the solution to the CSqDH. The attacker guesses the ℓth fresh session,
where instances accept, and there was a Corrupt query, and a query (sid,Key, pwcs) where
there was β′ (resp. α′) with pw ̸= pwcs. Further, B9 plugs-in the challenge for SendInit-
C1(C, i, S) query to compute X1 = gx1 , X2 = X, and for Send-C2(C, i, S,X ′

3, X
′
4, π

′
3, π

′
4)

to compute α = gw, for w
$←− Zq. We add all queries where bad19 might have occurred to

a list T9. At the end of the game, the attacker guesses one query from T9. If the guess
was successful, it means A solved CSqDH and B9 can recover gx

2 :

gx
2
= (

Key
X(a+x1b+wd)

)
1

c−x4pwcs

We do the same procedure on the server-side and plug-in the challenge in SendInit-
S1(S, i, C).

7.6 Variants of sJ-PAKE

This section describes the sRO-J-PAKE (Figure 7.5) and sCRS-J-PAKE (Figure 7.7)
protocols in full detail. Moreover, we provide the security proof of both protocols in the
same model as sJ-PAKE. We analyze both proofs in depth by going through games of
sJ-PAKE and only point out the differences with sJ-PAKE. For simplicity, we leave the
names and the number of games, bad events and reductions the same as the one in sJ-
PAKE (Section 7.5). In addition, all changes in games and reductions of sRO-J-PAKE
and sCRS-J-PAKE imply the changes in code-based proof. Most of the changes in the
proof for sRO-J-PAKE and sCRS-J-PAKE occur in the reductions where we plug-in
challenges differently compared to sJ-PAKE due to missing values X1 and X3. Lastly,
we use the same assumptions as in sJ-PAKE.

7.6.1 sRO-J-PAKE

Description. Let H0 be a full-domain hash mapping {0, 1}∗ to G. H1 is a hash func-
tion from {0, 1}∗ to {0, 1}κ. A function f is used to ensure that both parties sort values
identically. Function D, basically, plays the role of (X1X3). In the first round, a client
C generates X1 and the proof of knowledge, π1 for discrete log x1 and transmits the
identity, X1 and π1 to a Server S, while S does the same computation only with X2

and π2 and sends the identity, X2 and π2 to C. When both parties receive the mes-
sage from the first round, they compute the common value D = H0(f(C, S,X1, X2)).
Then C generates α = (DX2)

x1pw and sends it to S, and at the same time, S generates
β = (DX1)

x2pw and sends it to C. After receiving α and β, both parties compute the
key by the protocol Key = (βX−x1pw

2 )x1 (resp. Key = (αX−x2pw
1 )x2 ). In the end, both

parties hold the same session key K = H1(C, S,X1, X2, α, β,Key, pw).



Security Characterization of J-PAKE and its variants 87

Client C Server S

Initialization
Public: G, g, q; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}κ

Secret: pw ∈ Zq, pw ̸= 0

x1
$←− Zp x2

$←− Zp

X1 ← gx1 X2 ← gx3

π1 ← Prv((X1, g), x1, C) π2 ← Prv((X2, g), x2, S)

(C,X1, π1)

(S,X2, π2)

Abort if X2 = 1 Abort if X1 = 1

Check Ver((X2, g), π2, S) Check Ver((X1, g), π1, C)

D := H0(f(C, S,X1, X2)) D := H0(f(C, S,X1, X2))

α := (DX2)
x1pw β := (DX1)

x2pw

α

β

Key← (βX−x1pw
2 )x1 Key← (αX−x2pw

1 )x2

K ← H1(C, S,X1, X2, α, β,K, pw) K ← H1(C, S,X1, X2, α, β,K, pw)

Figure 7.5: The sRO-J-PAKE protocol.

7.6.2 Security Game-based Proof of sRO-J-PAKE

Before the analysis of the game-based proof, we stress that adding full domain hash H0

to the protocol means that our simulator will have to administer two random oracles:
one oracle that responds to H1(C,S,X1, X2, α, β,Key, pw) queries1 and another oracle
that responds to D = H0(f(C,S,X1, X2)) queries. Both oracles have to make sure that
responses are consistent. We define RO to respond in case A asks H0(f(C,S,X1, X2))

in Figure 7.6.
As already mentioned, function D in the sRO-J-PAKE protocol substitutes the X1X3

term. Thus, the only way the security proof will work is to simulate H0 as D = gd, where
the simulator knows d. Since d is known and x1 (resp. x2) can be extracted from the
ZK-PoK, the simulator will have all the information it needs to simulate the responses
to any query that A asks. That being said, we give a formal proof of sRO-J-PAKE
(Figure 7.5), and we only state the differences with respect to sJ-PAKE protocol. We

1This oracle is already defined and administrated in sJ-PAKE proof in Section 7.4.



Security Characterization of J-PAKE and its variants 88

For each fresh RO query H0(f(C, S,X1, X2)) the simulator computes D := gd, where
d

$←− Zp and returns D to A. The simulator administrates all the query - response
by adding them to the list. If A already asked for H0, the simulator simply retrieves
the response D from the list and gives it to A. The number of random oracle queries
to H0 we denote as nh0.

Figure 7.6: Simulation of H0

also refer the reader to [LST16], where the proof of RO-J-PAKE is displayed in detail,
and we claim that sRO-J-PAKE has the same differences with sJ-PAKE as RO-J-PAKE
has with J-PAKE. Furthermore, we stress that we modify all games by changing X1,
X2, X3 and X4 to X1, X2, and π1, π2, π3 and π4 to π1, π2, and we add the second
oracle that simulates random oracle queries for H0. Now, we formally define security of
sRO-J-PAKE in the following theorem:

Theorem 7.10. Let sRO-J-PAKE be the protocol described in Figure 7.5. Take an
algebraic RoR attacker A against sRO-J-PAKE, making at most nse, nex, nre, nco,
nte, nro, nho queries to Send, Execute, Reveal, Corrupt, Test and RO, respectively. For
every such attacker A, there exist attackers: B4 against Computational Triple Group
Diffie-Hellman problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against
Decisional Diffie-Hellman problem, B6 against Computational Squared Diffie-Hellman
problem, B7−8.1 against Decisional Squared Diffie-Hellman problem and B9 against Com-
putational Squared Diffie-Hellman problem such that

AdvsRO−J−PAKE
A () ≤ 2nse

| D |
+

(nse + 2nex)
2

q

+ Advuzk
NIZK() + 2nseAdvext

NIZK()

+ nronexAdvCTGDH
B4

() + AdvDDH
B4.5.1

() + AdvDDH
B4.5.2

()

+ nsen
2
roAdvCSqDH

B6
() + 2nseAdvDSqDH

B7−8.1
() + nsenroAdvCSqDH

B9
()

where Advuzk and Advext are advantages for the security of the SE-NIZK (defined in
Chapter 2).

Proof. Game 0: Original protocol.

AdvsRO−J−PAKE
A () =| Pr[G0 ⇒ T]− 1

2
|

Game 1: Simulate ZK-PoK proofs.
This game is the same as in Game 1 of sJ-PAKE, except we simulate only proofs of
knowledge of X1 and X2. Everything else stays the same. We have



Security Characterization of J-PAKE and its variants 89

Pr[G0 ⇒ T]− Pr[G1 ⇒ T] ≤ Advuzk
NIZK()

Game 1.5: Extract discrete logs from adversarial proofs.
This game is the same as in Game 1.5 of sJ-PAKE, except we extract only from adver-
sarial proofs of knowledge π1 and π2. Everything else stays the same. We have

|Pr[G1 ⇒ T]− Pr[G1.5 ⇒ T]| ≤ 2nseAdvext
NIZK()

Game 2: Force unique values
This game is the same as in Game 2 of sJ-PAKE except, we force the uniqueness of X1

and X2. We bound this change

Pr[G1.5 ⇒ T]− Pr[G2 ⇒ T] ≤ (nse + 2nex)
2

q

Game 3: Adding freshness. The description of this game is the same as in Game 3
of sJ-PAKE. There is no change in the bound.

Pr[G3 ⇒ T] = Pr[G2 ⇒ T]

Game 4: Randomize session keys for matching sessions.
The description of this game is the same as in Game 4 of sJ-PAKE, except for the
natural change of X1, X2, X3 and X4 to X1, X2. This change implies a modification
in the reduction to the CTGDH problem. We state the differences with the reduction
described in Lemma 7.4:
Given the challenge (X,Y, Z,DXY , DXZ , DY Z), we build an attacker B4 that finds
CTGDH(X,Y, Z,DXY , DXZ , DY Z). We plug-in the challenge in X1 = X and X2 = Y

while the values Z is embedded as the output of H0(C, S,X1, X2) and we set α =

(DXY DXZ)
pwcs and β = (DXZDY Z)

pwcs . Then, when the game finishes, the attacker
guesses one query for which bad4 might have occurred. If the guess was successful, it
means that bad4 occurred and A solved CTGDH(X,Y, Z,DXY , DXZ , DY Z), and B4 can
recover gxyz by computing:

gxyz = Key
1

pwcs

Therefore, we have the same bound:

|Pr[G3 ⇒ T]− Pr[G4 ⇒ T]| ≤ nronexAdvCTGDH
B4

()



Security Characterization of J-PAKE and its variants 90

Game 4.5: Randomize alpha/beta for Execute queries.
The description of this game is the same as in Game 4.5 of sJ-PAKE. The only change
we do is in the reduction to the DDH problem when randomizing both α and β in Games
4.5.1. and 4.5.2. We state the differences with the reductions described in Lemma 7.5
and Lemma 7.6:
Similar to Lemma 7.5 (when randomizing α), B4.5.1 is given a generalized challenge
(X1, ..., Xnse , Y1, ..., Ynse , Z1, ..., Znse), and submits b = 1 if (Xk, Yk, Zk) is a real DDH
tuple and b = 0 if it is a random DDH tuple, for some 1 ≤ k ≤ nex. The problem is
tightly equivalent to DDH by self-reducibility. The attacker uses the challenge and for
every Execute query sets X1 = Xk, X2 = gx2 and α = (Xx2

k Zk)
pwcs where D = Yk.

Similar to Lemma 7.5 (when randomizing β), B4.5.2 is given a generalized challenge
(X1, ..., Xnse , Y1, ..., Ynse , Z1, ..., Znse), and submits b = 1 if (Xk, Yk, Zk) is a real DDH
tuple and b = 0 if it is a random DDH tuple, for some 1 ≤ k ≤ nex. The problem is
tightly equivalent to DDH by self-reducibility. The attacker uses the challenge and for
every Execute query sets X1 = gx1 , X2 = Xk and β = (Y x1

k Zk)
pwcs where D = Yk. The

bounds for Game 4.5.1 and Game 4.5.2 do not change with respect to the same games
as in s-JPAKE:

Pr[G4 ⇒ T]− Pr[G4.5.1 ⇒ T] ≤ AdvDDH
B4.5.1

()

Pr[G4.5.1 ⇒ T]− Pr[G4.5.2 ⇒ T] ≤ AdvDDH
B4.5.2

()

Game 5: Randomize session keys for Send queries. The description of this game
is the same as in Game 5 of sJ-PAKE, so the bound does not change:

|Pr[G4.5.2 ⇒ T]− Pr[G5 ⇒ T]| ≤ Pr[G5 ⇒ bad5]

Game 6: Detect duplicates.
The description of this game is the same as in Game 6 of sJ-PAKE, except for mod-
ification in the reduction to the CSqDH problem. We state the differences with the
reduction described in Lemma 7.7:
Given the challenge X, we build an attacker B6 that finds solution to the CSqDH prob-
lem. Let us say that B6 plugs-in the challenge in the ℓth session on the client’s side, in
X1 = X and it sets α = X(x′2+d)pwcs , where x′2 is the witness extracted from adversarial
proof π′

2 and d is the discrete log of D which represents the output of H0(C, S,X1, X2).
Then, when the game finishes, B6 guesses one query for which bad6 might have occurred.
If the guess was successful it means A solved CSqDH and B6 can recover gx

2 in the fol-
lowing way:



Security Characterization of J-PAKE and its variants 91

Key1 = (
β′

Xx′2pwcs
)x = (

(XD)pw1

Xx′2pwcs
)x = Xdx′2pw1gx

2x′2(pw1−pwcs) (1)

Key2 = (
β′

Xx′2pwcs
)x = (

(XD)pw2

Xx′2pwcs
)x = Xdx′2pw2gx

2x′2(pw2−pwcs) (2)

where x is unknown. From (1) and (2) follows:

gx
2
= (

Key1
Key2Xdx′2(pw1−pw2))

1
x′2(pw1−pw2)

We do the same procedure on the server’s side and plug-in the challenge in X2 = X and
set β = X(x′2+d)pwcs . The bound and other remarks do not change:

Pr[G5 ⇒ bad5] ≤ Pr[G6 ⇒ bad5] + nsen
2
roAdvCSqDH

B6
()

Game 7: Add algebraic representation.
The description of this game is the same as in Game 7 of sJ-PAKE. Thus, the bound
does not change:

Pr[G6 ⇒ bad5] = Pr[G7 ⇒ bad5]

Game 8: Randomizing α and β for Send queries.
The description of this game is the same as in Game 8 of sJ-PAKE. The only change
we do is in the reduction to the DSqDH problem when bounding bad cases of α and β

in Game 7-8.1. We state the differences with the reduction described in Lemma 7.8:
Given the challenge (X,Y ), we build an attacker B7−8.m.1 that submits b = 1 if (X,Y )

is a real DSqDH tuple and b = 0 if it is a random DSqDH tuple. Further, B7−8.m.1 uses a
hybrid argument, and for a fresh mth session, it plugs-in the challenge for the client-side
X1 = X and sets α = X(x′2+d)pwcs where d is selected by the attacker and x′2 is extracted
from adversarial proof of knowledge. We consider having algebraic adversary A, and
whenever it sends β′, it also sends (a, b, c), so in case of Corrupt, we rewrite β = gaXb

1α
c.

Then we check:

(a) If Xb
1α

c ̸= X
x′2pwcs
1 the key is computed as Key = Xa

1Y
(b+dpwcs) = α

a
(x′2+d)pwcs Y (b+dpwcs).

This means if Y = gx
2 then the key is real and random otherwise.

(b) If Xb
1α

c = X
x′2pwcs
1 , we embed α in the key and compute it as Key = α

a
(x′2+d)pwcs .

We say A interpolates between the two games, meaning, if Y = gx
2 then it is playing

Game 7, and otherwise, it is playing Game 7-8.m.1. The analysis is the same on the



Security Characterization of J-PAKE and its variants 92

server’s side. Furthermore, the bounds and other remarks for Game 7-8.1 and Game
7-8.2 do not change with respect to the same games in s-JPAKE. Thus, we have:

Pr[G7 ⇒ T]− Pr[G7−8.m.1 ⇒ T] ≤ 2AdvDSqDH
B7−8.1

()

and
|Pr[G7−8.m.1 ⇒ T ]− Pr[G7−8.m.2 ⇒ T ]| ≤ Pr[G8 ⇒ bad5]

Game 9: Perfect forward secrecy.
The description of this game is the same as in Game 9 of sJ-PAKE, except for modifica-
tion in the reduction to the CSqDH problem. We state the differences with the reduction
described in Lemma 7.9:
Given the challenge X, we build an attacker B9 that finds solution to CSqDH prob-
lem. Let us say that B9 plugs in the challenge in the ℓth session on the client’s side, in
X1 = X and it sets α = gw, for w

$←− Zq. When A sends β′ with (a, b, c), we rewrite
it as β′ = gaXb

1α
c. Then, when the game finishes, B9 guesses one query for which bad19

might have occurred. If the guess was successful, it means A solved CSqDH and B9 can
recover gx

2 in the following way:

gx
2
= (

Key
X(a+wc)

)
1

b−x′2pwcs

We do the same procedure on the server-side and plug in the challenge for X2 = X and
set β = gw, for w

$←− Zq. The bound and other remarks do not change, so we have

Pr[G9 ⇒ bad19] ≤ nsenroAdvCSqDH
B9

()

7.6.3 sCRS-J-PAKE

Description. At the beginning of the protocol, sCRS-J-PAKE sets up a common
reference string U (as in CRS-J-PAKE). Basically, U plays the role of (X1X3). The first
round is the same as in sRO-J-PAKE (RO-J-PAKE), with the X1, X3 and proofs π1 and
π3 eliminated. In the second round, after receiving the first message, a Client computes
α = (UX2)

x1pw, and a Server β = (UX1)
x2pw and they exchange α and β. Both parties

compute the key as Key = (βX−x1pw
2 )x1 (resp. Key = (αX−x2pw

1 )x2) and hold the same
session key, K = H1(C, S,X1, X2, α, β,Key, pw).



Security Characterization of J-PAKE and its variants 93

Client C Server S

Initialization
Public: G, g, q, U ∈ G; H1 : {0, 1}∗ → {0, 1}κ

Secret: pw ∈ Zq, pw ̸= 0

x1
$←− Zp x2

$←− Zp

X1 ← gx1 X2 ← gx3

π1 ← Prv((X1, g), x1, C, U) π2 ← Prv((X2, g), x2, S, U)

(C,X1, π1)

(S,X2, π2)

Abort if X2 = 1 Abort if X1 = 1

Check Ver((X2, g), π2, S, U) Check Ver((X1, g), π1, C, U)

α := (UX2)
x1pw β := (UX1)

x2pw

α

β

Key← (βX−x1pw
2 )x1 Key← (αX−x2pw

1 )x2

K ← H1(C, S,X1, X2, α, β,Key, pw) K ← H1(C,S,X1, X2, α, β,Key, pw)

Figure 7.7: The sCRS-J-PAKE protocol.



Security Characterization of J-PAKE and its variants 94

7.6.4 Security Game-based Proof of sCRS-J-PAKE

We formally define the security of the sCRS-J-PAKE in the following theorem:

Theorem 7.11. Let sCRS-J-PAKE be the protocol described in Figure 7.7. Take an
algebraic RoR attacker A against sCRS-J-PAKE, making at most nse, nex, nre, nco,
nte queries to Send, Execute, Reveal, Corrupt, Test and RO, respectively. For ev-
ery such attacker A, there exist attackers: B4 against Computational Triple Group
Diffie-Hellman problem, B4.5.1 against Decisional Diffie-Hellman problem, B4.5.2 against
Decisional Diffie-Hellman problem, B6 against Computational Squared Diffie-Hellman
problem, B7−8.1 against Decisional Squared Diffie-Hellman problem and B9 against Com-
putational Squared Diffie-Hellman problem such that

AdvsCRS−J−PAKE
A () ≤ 2nse

| D |
+

(2nse + 4nex)
2

q

+ Advuzk
NIZK() + 2nseAdvext

NIZK()

+ nronexAdvCTGDH
B4

() + AdvDDH
B4.5.1

() + AdvDDH
B4.5.2

()

+ nsen
2
roAdvCSqDH

B6
() + 2nseAdvDSqDH

B7−8.1
() + nsenroAdvCSqDH

B9
()

where Advuzk and Advext are advantages for the security of the SE-NIZK (defined in
Chapter 2).

Proof. The proof of sCRS-J-PAKE is the same as sRO-J-PAKE in Section 7.6.2 with
the differences:

• We do not need an additional random oracle to simulate H0. Instead, we have
CRS U , known to both parties.

• In the reduction described in Lemma 7.4, we embed a challenge Z in place of U
in α (resp. β)

• We add Game 3.5 (explained below), where we explicitly save a discrete log of U
during the execution, needed for simulation in later hops.

Game 3.5: Keep the discrete log of the public parameter.
During the initialization phase described in Figure 7.8, the discrete log u is saved as a
record (U, u) on the list for future hops. More precisely, the simulator can retrieve the
record (U, u) from the list at any time of the execution of the protocol.



Security Characterization of J-PAKE and its variants 95

Initialization:
Choose u

$←− Zp.
Compute U = gu and save the record (u,U) to the list.
For C ∈ C, S ∈ S: pwcs

$←− P;
crs $←− NIZK.Setup(1κ);
CRS← (G, g, q, crs);
Return U , CRS, C, S;

Figure 7.8: Initialization phase for sCRS-J-PAKE

7.7 Efficiency Analysis of J-PAKE, sJ-PAKE and All its
Variants

In this section, we only focus on J-PAKE and its variants and provide a concrete analysis
of complexity that also is a result of this work. Conversely, a comparison of J-PAKE
with other known PAKE protocols is shown in [ABM15]. We mainly rely on empiri-
cal results and performance analysis of J-PAKE, RO-J-PAKE, CRS-J-PAKE shown in
[LST16] and convey the same analysis on sJ-PAKE, sRO-J-PAKE and sCRS-J-PAKE.
Furthermore, we explicitly highlight the differences in computation costs, given in Table
7.1, and conclude which protocol(s) are the most efficient one(s). In terms of com-
munication, J-PAKE weighs 6 groups elements plus 12 ZK-PoK scalars in Zq and 28
exponentiations in terms of computation which makes J-PAKE the least efficient among
them all. Then, sJ-PAKE follows with 2 ZK-PoKs dropped in the second round, re-
sulting in 22 exponentiations. Then, RO-J-PAKE and CRS-J-PAKE drop 2 ZK-PoKs
and 2 group elements in the first round, counting a total of 20 exponentiation. Here,
we stress that even though the difference in computation with sJ-PAKE is only two ex-
ponentiation, sJ-PAKE is a more desirable ”lightweight” version, as it requires minimal
changes to the current J-PAKE implementation. In contrast, RO-J-PAKE and CRS-J-
PAKE implementations require more changes due to the additional trusted setup for the
CRS-J-PAKE and additional cost of a hash H0 for the RO-J-PAKE. Our final analysis
includes sRO-J-PAKE and sCRS-J-PAKE. The total computation cost drops to only 14
exponentiations when dropping two ZK-PoKs in the first round (along with two group
elements) and dropping two ZK-PoKs in the second round. Compared to J-PAKE,
sRO-J-PAKE and sCRS-J-PAKE have a significant drop in exponentiation, making the
proof of sJ-PAKE beneficial as it suggests that sRO-J-PAKE and sCRS-J-PAKE can be



Security Characterization of J-PAKE and its variants 96

Table 7.1: Comparison of Complexity of all J-PAKE(s) and the corresponding as-
sumptions used to prove their security against active attackers.

Protocol Complexity Hardness
Ass.1

Forward
se-

crecy
Communication2 Computation

J-PAKE 6×G+ 12× Zq 28 | p |-bit exp 3 DSqDH PFS4

RO-J-
PAKE 4×G+ 8× Zq

20 | p |-bit
exp+2H0

5 DSqDH PFS

CRS-J-
PAKE 4×G+ 8× Zq 20 | p |-bit exp DSqDH PFS

sJ-PAKE 6×G+ 8× Zq 22 | p |-bit exp CSqDH PFS
sRO-J-
PAKE 4×G+ 4× Zq

14 | p |-bit
exp+2H0

CSqDH PFS

sCRS-J-
PAKE 4×G+ 4× Zq 14 | p |-bit exp CSqDH PFS

1 DSqDH stands for Decisional Square Diffie-Hellman, while CSqDH stands for Computational
Square Diffie-Hellman
2 G denotes a group element, Zq a scalar
3 exp. denotes exponentiation in G. ZK-PoK costs three exponentiation each (one to create
and two to verify)
4 Perfect Forward Secrecy
5 H0 : {0, 1}∗ → G

proven secure in the same manner. To confirm, we lay out the security proof of sRO-
J-PAKE and sCRS-J-PAKE in Section 7.6. Furthermore, with the sJ-PAKE protocol
and its security proof, there is a stronger motivation for implementing sRO-J-PAKE and
sCRS-J-PAKE in practice.



No great discovery was ever made without a bold
guess.

Sir Isaac Newton

8
Future Work and Conclusion

8.1 Future Work

For each work, presented in this dissertation, we provide future directions:

1. Since zkPAKE protocol core design is flawed beyond repair and many mature
PAKE alternatives already exist, we do not pursue further study to improve the
zkPAKE protocol.

2. We leave the possibility for a full security proof of HoneyPAKEs and perhaps,
generalizing the transformation of any PAKE to HoneyPAKEs composition.

3. We plan to extend the research of our latest result sJ-PAKE protocol (presented
in Chapter 7) and follow two directions: in one, we try to prove sJ-PAKE secure
in the UC relaxed model [ABB+20], and in the other, we propose sJ-PAKE with
confirmation codes that we can prove secure in the stronger (UC) model [CHK+05].

Finally, in the following sections, we continue discussing the directions concerning sJ-
PAKE protocol with confirmation codes.

8.1.1 sJ-PAKE in UC

It is unclear whether we can prove sJ-PAKE (sRO-J-PAKE and CRS-J-PAKE, respec-
tively) in a UC framework setting. We stress that the proof of sJ-PAKE resembles the
proof for perfect forward secrecy of SPAKE2 [AB19], which has security proof in the UC

97



Future Work and Conclusion 98

relaxed model. However, unlike SPAKE2, proving sJ-PAKE in the relaxed UC seems
like a more difficult task due to heavier use of algebraic adversaries (see Game 8 and
Game 9 in Section 7.4). Furthermore, without assuming algebraic adversary in Game 6,
it seems that sJ-PAKE cannot be proven secure in the relaxed UC at all.1 For now, we
pay more attention to adding confirmation codes to the sJ-PAKE protocol. We think
there is already substantial research out there on security proofs for key-exchange pro-
tocols with confirmation codes than on security proofs with algebraic adversaries in the
UC and UC relaxed model.

8.1.2 sJ-PAKE with Confirmation Codes

We propose a new protocol, sJ-PAKE with confirmation codes, that might have a tighter
and more straightforward security proof than sJ-PAKE, and a better chance to be proven
secure in the UC model. Therefore, we anchor our analysis of sJ-PAKE with confirmation
codes mostly on sJ-PAKE and its proof. Furthermore, our idea is to have two variations
of sJ-PAKE with confirmation codes. In the first one, Figure 8.2, we add the first code k1
on the server’s side, just after computing β. Then the client would verify k1 and compute
the Key and the confirmation code k2. Note that this would break the symmetry of the
protocol and might additionally complicate the proof. In the second version (Figure
8.1), we add the third round, where both parties exchange confirmation codes, without
disrupting the symmetry of the protocol. We stress that each party computes the session
key in both versions after confirmation codes are verified. In addition, both versions are
interesting from three aspects:

1. With confirmation codes, we gain explicit authentication for both parties. This is
very useful for two reasons: First, when having confirmation codes, usually one
obtains tighter reductions; thus, we can gain better security bounds. Secondly,
protocols that obtain session keys from PAKEs would receive information from
explicitly authenticated PAKE whether the session is successfully completed. This
is a beneficial property for the following reason: consider a PAKE protocol that
provides only implicit authentication. This would mean that an adversary who is
making a wrong password guess (thus holding a non-matching session key) would
still get a chance to interact with the protocol communicating with PAKEs, which
would not be the case if explicitly authenticated PAKE would be used.

2. Assuming that the new protocol initially satisfies weak forward secrecy, when com-
bined with confirmation codes, the protocol then satisfies perfect forward secrecy
(PFS) [Mac02, BPR00, Sho99].

1If the adversary is algebraic in Game 6, we can extract the password guesses from the second-round
messages.



Future Work and Conclusion 99

3. By introducing confirmation codes, we hope to omit algebraic adversaries presented
in Game 8 and Game 9 of the sJ-PAKE protocol. Without algebraic adversaries
and having access to another password commitment before the session key is gen-
erated, we believe we could prove perfect forward secrecy more straightforwardly.

4. Minimal change to the implementation. For now, there is no implementation of
sJ-PAKE. However, once the implementation becomes public, only a few lines of
code should be added to obtain a new variant of sJ-PAKE with confirmation codes.

We stress that disrupting the symmetry as in version 2 (Figure 8.2) would mean that
there is an order in the message flow to send the message in each round. However, it
might lead to a more complicated proof.

Sketch of the proof. Usually, confirmation codes are considered to improve the
protocol in question, which is precisely our motivation for sJ-PAKE with confirma-
tion codes. However, these improvements usually increase the number of rounds, which
means that the new protocols have higher communication and latency costs than sJ-
PAKE. [Mac02, Kra05]. Nevertheless, we believe that most of the proof of sJ-PAKE
with confirmation codes would require minor tweaks with respect to the existing proof
of sJ-PAKE. For instance, in Game 8 and Game 9, we would not have problematic cases
due to additional information that confirmation codes provide and verify before com-
puting the keys. We think that we could achieve perfect forward secrecy in Game 5, and
probably Game 9 would be non-existent.
To conclude our analysis, both versions of sJ-PAKE with confirmation codes would
transitively yield new variants (as sRO-J-PAKE and sCRS-J-PAKE in sJ-PAKE). Fur-
thermore, we believe that security proof of both versions of sJ-PAKE with confirmation
codes would be simpler than that of sJ-PAKE. Lastly, we underline the possibility of
proving sJ-PAKE with confirmation codes in the UC relaxed model [ABB+20].



Future Work and Conclusion 100

Initialization

Public information: G, g, q, σ
$←− Setup(1κ); H1,H2,H3 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zp, pw ̸= 0

C S

x1, x2
$←− Zq x3, x4

$←− Zq

X1 ← gx1 , X2 ← gx2 X3 ← gx3 , X4 ← gx4

Generate π1, π2 Generate π3, π4

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Verify π3, π4, X4 Verify π1, π2, X2

α← (X1X
′
3X

′
4)

x2pw β ← (X1X2X3)
x4pw

α

β

Key← (βX−x2pw
4 )x2 Key← (αX−x4pw

2 )x4

k1 ← H1(C, S,X1, .., X4, α, β,Key, pw) k2 ← H2(C,S,X1, .., X4, α, β,Key, pw)

k1

k2

Verify k2 Verify k1

sk ← H3(C, S,X1, .., X4, α, β,Key, pw) sk ← H3(C, S,X1, .., X4, α, β,Key, pw)

Figure 8.1: Version 1: sJ-PAKE with confirmation codes



Future Work and Conclusion 101

Initialization

Public information: G, g, q, σ
$←− Setup(1κ); H1,H2,H3 : {0, 1}∗ → {0, 1}κ

Secret information: pw ∈ Zp, pw ̸= 0

C S

x1, x2
$←− Zq x3, x4

$←− Zq

X1 ← gx1 , X2 ← gx2 X3 ← gx3 , X4 ← gx4

Generate π1, π2 Generate π3, π4

(C,X1, X2, π1, π2)

(S,X3, X4, π3, π4)

Verify π3, π4, X4 Verify π1, π2, X2

α← (X1X
′
3X

′
4)

x2pw β ← (X1X2X3)
x4pw

α

Key← (αX−x4pw
2 )x4

k1 ← H1(C,S,X1, .., X4, α, β,Key, pw)

β, k1

Verify k1

Key← (βX−x2pw
4 )x2

k2 ← H2(C, S,X1, .., X4, α, β,Key, pw)

k2

Verify k2

sk ← H3(C, S,X1, .., X4, α, β,Key, pw) sk ← H3(C, S,X1, .., X4, α, β,Key, pw)

Figure 8.2: Version 2: sJ-PAKE with confirmation codes



Future Work and Conclusion 102

8.2 Conclusion and Final Remarks

So far, PAKE protocols have been studied intensively as a cryptographic primitive and
have successfully been used in practice, e.g., for Internet authentication and e-passports.
This dissertation not only provides new protocols with clear advantages and provable
security, but also presents novel scenarios where one could benefit from PAKEs. Fur-
thermore, our work also confirms that the protocol that comes with the proof provides
substantial confidence that it is secure to use for real-world deployment and set a corner-
stone for standardization. Finally, we lay out three different works that offer different
lines of research on PAKEs and we summarize them in the following points:

1. We showed an efficient offline dictionary attack in practice on the PAKE protocol,
zkPAKE. We stress that cryptographers should be more careful when designing a
protocol and ensure that it meets its formal security requirements. Furthermore,
we underline that security proof is necessary when proposing a new protocol.

2. We have presented a new login scenario – a way of merging PAKE-based access
control with Honeywords to get the benefits of both:

• Intrinsic protection of the password during the login phase.

• Detection of attempts to exploit the compromise of a password file.

We also demonstrated a variant that incorporates a two-factor mechanism in a
very natural way, where the token-generated nonce plays the role of the secondary
password. Further, we presented a variant of the protocol in which the honey
server S does not directly learn the index of the correct (hashed) password.

3. We have proposed a lightweight version of J-PAKE, sJ-PAKE, that avoids the
NIZK proofs of knowledge in the second round, thus significantly improving the
efficiency both in terms of computation and communication. Moreover, we explic-
itly show the challenging parts of the proof (Game 8 and Game 9) where we use
algebraic adversaries to prove perfect forward secrecy. At the first sight, sJ-PAKE
seems to fill the requirements to be proven secure in the UC relaxed framework
[ABB+20]. Still, it seems that without heavier use of algebraic adversaries achiev-
ing the sJ-PAKE secure in any UC framework is not possible. In addition, we
provide arguments that the efficiency gains of earlier lightweight variants of J-
PAKE, RO-J-PAKE and CSR-J-PAKE, that reduce the number of NIZK proofs
in the first round can be combined with those of sJ-PAKE, thus providing ultra-
light variants, and we provide game-based proofs of security for these variants as
well.



A
Supplemental material

A.1 Game-based code

A.1.1 Games and adversaries for the proof of Theorem 7.1.

103



Supplemental material 104

Game 0: Original Protocol
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

crs $←− NIZK.Setup(1κ);
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1
$←− Prv(crs, (X1, g), x1, C);

π2
$←− Prv(crs, (X2, g), x2, C);

πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3
$←− Prv(crs, (X3, g), x3, S);

π4
$←− Prv(crs, (X4, g), x4, S);

πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π4, S) = F then π

j
S
← Invalid;

α← (X1X3.X
′
4)

x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π2, C) = F then πi
C ← Invalid;

β ← (X′
1X

′
2X3)

x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
π1

$←− Prv(crs, (X1, g), x1, C);
π2

$←− Prv(crs, (X2, g), x2, C);
π3

$←− Prv(crs, (X3, g), x3, S);
π4

$←− Prv(crs, (X4, g), x4, S);
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.1: Game 0



Supplemental material 105

Game 1: Simulate ZK-PoK proofs.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← NIZK.Sim(crt, tds, X1, C);

π2 ← NIZK.Sim(crt, tds, X2, C);

List← List ∪ {X1, X2};

πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← NIZK.Sim(crt, tds, X3, S);

π4 ← NIZK.Sim(crt, tds, X4, S);

List← List ∪ {X3, X4};

πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π4, S) = F then π

j
S
← Invalid;

α← (X1X
′
3X

′
4)

x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π2, C) = F then πi
C ← Invalid;

β ← (X′
1X

′
2X3)

x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
π1 ← NIZK.Sim(crt, tds, X1, C);

π2 ← NIZK.Sim(crt, tds, X2, C);

π3 ← NIZK.Sim(crt, tds, X3, S);

π4 ← NIZK.Sim(crt, tds, X4, S);

List← List ∪ {X1, X2, X3, X4};

α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.2: Game 1



Supplemental material 106

Reduction for Game 1
Initialize (crs)
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← SimO(X1, C);

π2 ← SimO(X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← SimO(X3, S);

π4 ← SimO(X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π4, S) = F then π

j
S
← Invalid;

α← (X1X
′
3X

′
4)

x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π2, C) = F then πi
C ← Invalid;

β ← (X′
1X

′
2X3)

x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
π1 ← SimO(X1, C); π2 ← SimO(X2, C);

π3 ← SimO(X3, S); π4 ← SimO(X4, S);
List← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α

′, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = 1 return 1;
Else return 0;
Abort.

Figure A.3: Reduction for Game 1



Supplemental material 107

Game 1.5: Extract discrete logs from
adversarial proofs.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; ListExt ← {}; List← {};
bad1.5 = T ; For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C, X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (C, X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then bad1.5 = T;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then bad1.5 = T;

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S,i,C,X′
1,X′

2, π′
1, π′

2)
If πi

S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)
return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;

If X′
1 /∈ List then:

x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then bad1.5 = T;

If X′
2 /∈ List then:

x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then bad1.5 = T;

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

Key ← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
π1

$←− NIZK.Sim(crs, tds, X1, C);
π2

$←− NIZK.Sim(crs, tds, X2, C);
π3

$←− NIZK.Sim(crs, tds, X3, S);
π4

$←− NIZK.Sim(crs, tds, X4, S);
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b′ = b;

Figure A.4: Game 1.5



Supplemental material 108

Reduction for Game 1.5
Initialize (crs, tde)
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

π1 ← SimO(X1, C);
π2 ← SimO(X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

π3 ← SimO(X3, S);
π4 ← SimO(X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then ListExt ← ListExt ∪ {X′

3, π
′
3};

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 do ListExt ← ListExt ∪ {X′

4, π
′
4};

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

2 = 1 Abort;
If Ver(crs, (X′

1, g), π
′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;

If X′
1 /∈ List then:

x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then ListExt ← ListExt ∪ {X′

1, π
′
1};

If X′
2 /∈ List then:

x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then ListExt ← ListExt ∪ {X′

2, π
′
2};

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
π1

$←− NIZK.Sim(crs, tds, X1, C);
π2

$←− NIZK.Sim(crs, tds, X2, C);
π3

$←− NIZK.Sim(crs, tds, X3, S);
π4

$←− NIZK.Sim(crs, tds, X4, S);
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T );

πi
S = ((x3, x4), sid, K, T );

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (X′, π′)
$←− ListExt do NIZK.Finalize(X′, π′);

Return b = b′;

Figure A.5: Reduction for Game 1.5



Supplemental material 109

Game 2: Force unique values
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

bad2=F;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then bad2=T; πi
C ← Invalid;

If X2 ∈ List then bad2=T; πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then bad2=T; π
j
S
← Invalid;

If X4 ∈ List then bad2=T; π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥, F,⊥

);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F,⊥)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥, F,⊥

);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T,⊥);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T,⊥);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;

If X1 ∈ List then bad2=T; πi
C ← Invalid;

If X2 ∈ List then bad2=T; πi
C ← Invalid;

If X3 ∈ List then bad2=T; π
j
S
← Invalid;

If X4 ∈ List then bad2=T; π
j
S
← Invalid;

π1
$←− NIZK.Sim(crs, tds, X1, C);

π2
$←− NIZK.Sim(crs, tds, X2, C);

π3
$←− NIZK.Sim(crs, tds, X3, S);

π4
$←− NIZK.Sim(crs, tds, X4, S);

List← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

Return πi
U .K;

Test(U, i)

If Fresh(πi
U ) = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.6: Game 2



Supplemental material 110

Game 3: Adding freshness.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {}
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, F);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;

fr← (C, S) /∈ Corr;

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);

fr← ∃j, (sid = π
j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;

Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 = gx1 ; X2 = gx2 ; X3 = gx3 ; X4 = gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1
$←− NIZK.Sim(crs, tds, X1, C);

π2
$←− NIZK.Sim(crs, tds, X2, C);

π3
$←− NIZK.Sim(crs, tds, X3, S);

π4
$←− NIZK.Sim(crs, tds, X4, S);

List← List ∪ {X1, X2, X3, X4};
α = g(x1+x3+x4)x2pwcs ;
β = g(x1+x2+x3)x4pwcs ;
Key = g(x1+x3)x2x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
K = H(sid, Key, pwcs);
πi
C = ((x1, x2), sid, K, T);

πi
S = ((x3, x4), sid, K, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;

Return πi
U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.7: Game 3



Supplemental material 111

Game 4: Randomize session Keys for
passive adversaries.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

Te ← {}; bad4 = F;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ Abort;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α← g(x1+x3+x4)x2pwcs ;
β ← g(x1+x2+x3)x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);

Key∗ ← g(x1+x3)x2x4pwcs ;

If (sid, Key∗, pwcs) ∈ T then bad4 = T;

Te ← Te ∪ {sid, Key∗, pwcs};

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

If ∃ (sid, Key, pw) ∈ Te then bad4 = T;
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.8: Game 4



Supplemental material 112

Reduction for Game 4
Initialize (X, Y, Z,DXY , DXZ , DY Z)

b
$←− {0, 1};

T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

Te ← {}; T4 ← {}; bad4 = F

l
$←− {1, ...nex}; p← 0; r ← 0;

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r ← r + 1;

If r ̸= l

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If r = l

X1 ← gx1 ; X2 ← X; x2 ←⊥;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r ← r + 1;

If r ̸= l

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If r = l

X3 ← Y ; x3 ←⊥; X4 ← Z; x4 ←⊥;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Else

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

Else
Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

p← p + 1;

x1
$←− Zq ; X1 ← gx1 ;

If p = l

X2 ← X; X3 ← Y ; X4 ← Z;

x2 ←⊥; x3 ←⊥; x4 ←⊥;
Else

x1, x2, x3, x4
$←− Zq ;

X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};

If x2 =⊥ ∨ x3 =⊥ ∨ x4 =⊥

α← (DXY DXZXx1 )pwcs

β ← (DXZDY ZZx1 )pwcs

sid = (C, S,X1, X2, X3, X4, α, β);

If (sid, Key, pwcs) ∈ T then T4 ← T4 ∪ {sid, Key, pwcs};

Else

α← g(x1+x3+x4)x2pwcs ;
β ← g(x1+x2+x3)x4pwcs ;
sid = (C, S,X1, X2, X3, X4, α, β);
Key∗ ← g(x1+x3)x2x4pwcs ;
If (sid, Key∗, pwcs) ∈ T then bad4 = T;
Else Te ← Te ∪ {sid, Key∗, pwcs};

K
$←− K;

πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

If ∃ (sid, Key, pwcs) ∈ Te then T4 ← T4 ∪ {sid, Key, pwcs};

If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];
Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)

For (sid, Key, pwcs)
$←− T4 do B4.Finalize(gxyz);

Abort.

Figure A.9: Reduction for Game 4



Supplemental material 113

Game 4.5.1 Randomize α

Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
If X′

1 ∈ List then πi
C ← Invalid;

If X′
2 ∈ List then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};

α
$←− G;

β ← g(x
′
1+x′

2+x3)x4pwcs

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.10: Game 4.5.1



Supplemental material 114

Reduction for Game 4.5.1.
Initialize (X1, ...Xex, Y1, ..., Yex, Z1, ..., Zex)

b
$←− {0, 1};

T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

k ← 0;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

k = k + 1;

X1 ← Xk; x1 ←⊥;

X2 ← Yk; x2 ←⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};

α← (ZkX
x3+x4
2 )pwcs ;

β ← X
x4pwcs
2 g(x1+x2)x4pwcs ;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = 1 return 1;
Else return 0;
Abort.

Figure A.11: Reduction for Game 4.5.1



Supplemental material 115

Game 4.5.2 Randomize β

Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};

α
$←− G; β

$←− G;
sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.12: Game 4.5.2



Supplemental material 116

Reduction for Game 4.5.2
Initialize (X1, ...Xex, Y1, ..., Yex, Z1, ..., Zex)

b
$←− {0, 1};

T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

k ← 0;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
Key← ( α′

X
x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

k = k + 1;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

X3 ← Xk; x3 ←⊥;

X4 ← Yk; x4 ←⊥;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G;

β ← (ZkX
x1+x2
4 )pwcs ;

sid = (C, S,X1, X2, X3, X4, α, β);
Te ← Te ∪ {sid, k, pw};
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
If b′ = b return 1;
Else return 0;
Abort.

Figure A.13: Reduction for Game 4.5.2



Supplemental material 117

Game 5: Randomize session Keys for
Send queries.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

Ts ← {}; bad5=F;
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);

Else if sid ∈ Ts then (S, (x3, x4), K)← Ts[sid];

Else

∀(sid, Key, pw) ∈ T ∧ pw = pwcs then

Key∗ ← ( β′

X
′x2pwcs
4

)x2 ;

If Key∗ = Key then bad5=T; Abort.

K
$←− K;

Ts[sid]← (C, (x1, x2), K);

πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( α′

X
′x4pwcs
2

)x
′
2 ;

K ← H(sid, Key, pwcs);

Else if sid ∈ Ts then (C, (x1, x2), K)← Ts[sid];

Else

∀(sid, Key, pw) ∈ T ∧ pw = pwcs then

Key∗ ← ( α′

X
′x4pwcs
2

)x4 ;

If Key∗ = Key then bad5=T; Abort.

K
$←− K;

Ts[sid]← (S, (x3, x4), K);

πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)

∀sid ∈ Ts ∧ pw = pwcs then

If Ts[sid] = (C, (x1, x2), K)

Key∗ ← ( β′

X
′x2pwcs
4

)x2 ;

If Ts[sid]← (S, (x3, x4), K)

Key∗ ← ( α′

X
′x4pwcs
2

)x4 ;

If Key∗ = Key then bad5=T; Abort.
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
Return b = b′;

Figure A.14: Game 5



Supplemental material 118

Game 6: Detect duplicates
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
bad5=F; bad6 = F; T6 ← {};

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x3, x4), K)← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (C, (x1, x2), K);
πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else If sid ∈ Ts then (C, (x1, x2), K)← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (S, (x3, x4), K);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K);
Key∗ ← ( β′

X
′x2pw
4

)x2 ;

If Ts[sid] = (S, (x3, x4), K);
Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;

If ∃ pw ̸= pw′

(sid, Key, pw)
$←− T6 ∧ (sid, Key′, pw′)

$←− T6 do bad6 = T;

If bad6=F ∧ T6 ̸= ∅ then bad5=T;

Return b = b′;

Figure A.15: Game 6



Supplemental material 119

Reduction for Game 6.
Initialize (X)
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {};
T6 ← {}; Tbad ← {};

l
$←− {1, ...nse}; r ← 0;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r = r + 1;

x1
$←− Zq ; X1 ← gx1 ;

If r = l

X2 ← X; x2 ←⊥;
Else
x2

$←− Zq ; X2 = gx2 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r = r + 1;

x3
$←− Zq ; X3 ← gx3 ;

If r = l

X4 ← X; x4 ←⊥;
Else
x4

$←− Zq ; X4 ← gx4 ;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
If x2 =⊥

α← X
(x1+x′

3+x′
4)pwcs

2 ;

Else
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;

If x4 =⊥

β ← X
(x′

1+x′
2+x3)pwcs

4 ;

Else
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If x2 ̸=⊥

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
If x2 =⊥

If ∃ (sid, Key, pwcs) ∈ T then Abort. (”Wrong
guess”)
Else if sid ∈ Ts then (S, (x3, x4), K)← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

If x2 ̸=⊥

Key∗ ← ( β′

X
′x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If x2 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (C, (x1, x2), K);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′)

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If x4 ̸=⊥

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
If x4 =⊥

If ∃ (sid, Key, pwcs) ∈ T then Abort. (”Wrong
guess”)
Else if sid ∈ Ts then (C, (x1, x2), K)← Ts[sid];
Else ∀ (sid, Key, pw) ∈ T then

If x4 ̸=⊥

Key∗ ← ( α′

X
x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw}
If x4 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (S, (x3, x4), K);
πi
S = ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If x2 =⊥ ∨ x4 =⊥

Tbad ← Tbad ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)}; Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;

If ∃ pw ̸= pw′

(sid, Key, pw)
$←− Tbad ∧ (sid, Key′, pw′)

$←− Tbad do

B6.Finalize(gx
2
); Abort.

If Tbad ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Figure A.16: Reduction for Game 6



Supplemental material 120

Game 7: Adding algebraic representa-
tion.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {}; T6 ← {};
bad5=F;
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′, alg′ )

If πi
C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;

If πi
C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( β′

X
x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else ∀sid ∈ Ts then (S, (x3, x4), K, alg )← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;

Ts[sid]← (C, (x1, x2), K, alg′ );

πi
C ← ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′ )

If π
j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else If sid ∈ Ts then (C, (x1, x2), K, alg )← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;

Ts[sid]← (S, (x3, x4), K, alg′ );

πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If ∀Ts[sid] = (C, (x1, x2), K);
Key∗ ← ( β′

X
′x2pw
4

)x2 ;

If Ts[sid] = (S, (x3, x4), K);
Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)}; Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;
If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Figure A.17: Game 7



Supplemental material 121

Game 7-8.1: Randomizing α and β.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {}; T6 ← {};
bad5= F; t← 0;

For C ∈ C, S ∈ S do pwcs
$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

t← t + 1;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t);
Return (C,X1, X2, π1, π2);

SendInit-S1(S,i,C)
If πi

S ̸=⊥ return ⊥;
t← t + 1;

X3 ← gx3 ; X4 ← gx4 ;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
α← g(x1+x′

3+x′
4)x2pwcs ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
β ← g(x

′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X
′
3X

′
4)

d·pwcs ̸= X
′pwcs
4 then

K
$←− K;

Else

Key = g(x2a+x1x2b) = gx2a( α

1
pwcs

g
x2(x′

3+x′
4)

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′

3, x
′
4), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T do
Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′
1X

′
2X3)

d·pwcs ̸= X
′pwcs
2 then

K
$←− K;

Else

Key = g(x4a+x3x4b) = gx4a( β

1
pwcs

g
x4(x′

1+x′
2)

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else If sid ∈ Ts then (C, (x1, x2), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);
Key∗ ← ( β′

X
′x2pw
4

)x
′
2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);
Key∗ ← ( α′

X
′x4pw
2

)x
′
4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)};
Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;
If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Figure A.18: Game 7-8.1



Supplemental material 122

Reduction for Game 7-8.m.1
Initialize (X, Y )

b
$←− {0, 1};

T ← {}; Tst← {}; Corr← {}; List← {}; T6 ← {};
bad5= F;
For C ∈ C, S ∈ S do pwcs

$←− P;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1
$←− Zq ; X1 ← gx1 ;

If t ≤ m

X2 ← X;

If t > m

x2
$←− Zq ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t);
Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3
$←− Zq ; X3 ← gx3 ;

If t ≤ m

X4 ← X;

If t > m

x4
$←− Zq ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
If t ≤ m

α← X
(x1+x′

3+x′
4)pwcs

2 ;

If t > m

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;

If t ≤ m

β ← X
(x′

1+x′
2+x3)pwcs

4 ;

If t > m

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];

If gc(X1X
′
3X

′
4)

d·pwcs ̸= X
′pwcs
4 then

Key = Xa
2 ( α

1
pwcs

X
(x′

3+x′
4)

2

)bY (c+d(x1+x′
3+x′

4)pwcs−x′
4pwcs);

Else

Key = Xa
2 ( α

1
pwcs

X
(x′

3+x′
4)

2

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′

3, x
′
4), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T do
Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];

If gc(X′
1X

′
2X3)

d·pwcs ̸= X
′pwcs
2 then

Key = Xa
4 ( β

1
pwcs

X
(x′

1+x′
2)

4

)bY (c+d(x′
1+x′

2+x3)pwcs−x′
2pwcs);

Else

Key = Xa
4 ( β

1
pwcs

X
(x′

1+x′
2)

4

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else ∀sid ∈ Ts then (C, (x1, x2), K, alg)← Ts[sid];
Else if ∃(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid,Key,pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);
Key∗ ← ( β′

X
′x2pw
4

)x
′
2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);
Key∗ ← ( α′

X
′x4pw
2

)x
′
4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)
Corr← Corr ∪ {(C, S)}; Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;
If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
If b′ = b return 1;
Else return 0; Abort.
Return b = b′

Figure A.19: Reduction for Game 7-8.m.1



Supplemental material 123

Game 7-8.m.2.
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {}; T6 ← {};
bad5= F;
(crs, tds, tde)

$←− NIZK.Backdoor( );
CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t);
Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F, t);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
If t ≤ m

α
$←− G;

If t > m

α← g(x1+x′
3+x′

4)x2pwcs ;
πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr, t);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥

, F, F, t) return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;

If t ≤ m

β
$←− G;

If t > m

β ← g(x
′
1+x′

2+x3)x4pwcs ;
πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr, t);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr, t) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X

′
3X

′
4)

d·pwcs ̸= X
′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′

3+x′
4)

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( β′

X
′x2pwcs
4

)x2 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′

3, x
′
4), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T do
Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr, t);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr, t) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

If t ≤ m

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′

1X
′
2X3)

d·pwcs ̸= X
′pwcs
2 then

K
$←− K;

Else

Key = gx4a( β

1
pwcs

g
x4(x′

1+x′
2)

)b;

K = H(sid, Key, pwcs);
Else if t > m

Key← ( α′

X
′x4pwcs
2

)x4 ;

K ← H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg)← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr, t);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);
Key∗ ← ( β′

X
′x2pw
4

)x
′
2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);
Key∗ ← ( α′

X
′x4pw
2

)x
′
4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)

Corr← Corr ∪ {(C, S)}; pwcs
$←− P;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;
If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;
Return b = b′;

Figure A.20: Game 7-8.2



Supplemental material 124

Game 9: Perfect forward secrecy.
Initialize
b

$←− {0, 1};
T ← {}; Tst ← {}; Corr ← {}; List ← {}; T6 ← {};
T9 ← {};
bad5=F; bad19=F; bad29=F;

(crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

x1, x2
$←− Zq ; X1 ← gx1 ; X2 ← gx2 ;

If X1 ∈ List then πi
C ← Invalid;

If X2 ∈ List then πi
C ← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

x3, x4
$←− Zq ; X3 ← gx3 ; X4 ← gx4 ;

If X3 ∈ List then π
j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
w

$←− Zq ; α← gw ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
w

$←− Zq ; β ← gw ;

πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X

′
3X

′
4)

d·pwcs ̸= X
′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′

3+x′
4)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′

3, x
′
4), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T do
Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′

1X
′
2X3)

d·pwcs ̸= X
′pwcs
2 then

K
$←− K;

Else

Key = gx4a( β

1
pwcs

g
x4(x′

1+x′
2)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg)← Ts[sid];
Else if ∃(sid, Key, pw) ∈ T then

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
K

$←− K;
Ts[sid]← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg′);
Key∗ ← ( β′

X
′x2pw
4

)x
′
2 ;

If Ts[sid] = (S, (x3, x4), K, alg′);
Key∗ ← ( α′

X
′x4pw
2

)x
′
4 ;

If Key∗ = Key
If (C, S) /∈ Corr do T6 ← T6 ∪ {sid, Key, pw};

If (C, S) ∈ Corr ∧ pw = pwcs ∧ bad29 = F

then T9 ← T9 ∪ {sid, Key, pw};
If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)

Corr← Corr ∪ {(C, S)}; pwcs
$←− P;

∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg);

Rewrite alg = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′
1X

′
2X3)

d·pwcs = X
′pwcs
2 do bad29=T;

If Ts[sid] = (S, (x3, x4), K, alg);

Rewrite alg = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X
′
3X

′
4)

d·pwcs = X
′pwcs
4 do bad29=T;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;
If T6 ̸= ∅ ∧ pw = pwcs then bad5=T;

For (sid, Key, pwcs)
$←− T9 do bad19=T;

If bad29=T then bad19=F;
Return b = b′;

Figure A.21: Game 9



Supplemental material 125

Reduction for Game 9
Initialize
b

$←− {0, 1};
T ← {}; Tst← {}; Corr← {}; List← {}; Corr← {};
T6 ← {}; Tbad9 ← {}; Tbad5 ← {};

bad29=F; (crs, tds, tde)
$←− NIZK.Backdoor( );

CRS← (G, g, q, crs);
Return CRS;

SendInit-C1(C, i, S)

If πi
C ̸=⊥ return ⊥;

r = r + 1;

x1
$←− Zq ; X1 ← gx1 ;

If r = l

X2 ← X; x2 ←⊥;
Else
x2

$←− Zq ; X2 = gx2 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
List← List ∪ {X1, X2};
πi
C ← ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F);

Return (C,X1, X2, π1, π2);

SendInit-S1(S, i, C)

If πi
S ̸=⊥ return ⊥;

r = r + 1;

x3
$←− Zq ; X3 ← gx3 ;

If r = l

X4 ← X; x4 ←⊥;
Else
x4

$←− Zq ; X4 ← gx4 ;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X3, X4};
πi
S ← ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F);

Return (S,X3, X4, π3, π4);

Send-C2(C, i, S,X′
3, X

′
4, π

′
3, π

′
4)

If πi
C ̸= ((x1, x2), (C, S,X1, X2,⊥,⊥,⊥,⊥),⊥, F, F)

return ⊥;
If X′

4 = 1 then π
j
S
← Invalid;

If Ver(crs, (X′
3, g), π

′
3, S) = F then π

j
S
← Invalid;

If Ver(crs, (X′
4, g), π

′
4, S) = F then π

j
S
← Invalid;

If X′
3 /∈ List then:

x′
3 ← NIZK.Extract(crs, tde, X′

3, π
′
3, S);

If X′
3 ̸= gx

′
3 then π

j
S
← Invalid;

If X′
4 /∈ List then:

x′
4 ← NIZK.Extract(crs, tde, X′

4, π
′
4, S);

If X′
4 ̸= gx

′
4 then π

j
S
← Invalid;

fr← (C, S) /∈ Corr;
w

$←− Zq ; α← gw ;

πi
C ← ((x1, x2), (C, S,X1, X2, X

′
3, X

′
4, α,⊥),⊥

, F, fr);
Return α;

Send-S2(S, i, C,X′
1, X

′
2, π

′
1, π

′
2)

If πi
S ̸= ((x3, x4), (C, S,⊥,⊥, X3, X4,⊥,⊥),⊥, F, F)

return ⊥;
If X′

2 = 1 then πi
C ← Invalid;

If Ver(crs, (X′
1, g), π

′
1, C) = F then πi

C ← Invalid;
If Ver(crs, (X′

2, g), π
′
2, C) = F then πi

C ← Invalid;
If X′

1 /∈ List then:
x′
1 ← NIZK.Extract(crs, tde, X′

1, π
′
1, C);

If X′
1 ̸= gx

′
1 then πi

C ← Invalid;
If X′

2 /∈ List then:
x′
2 ← NIZK.Extract(crs, tde, X′

2, π
′
2, C);

If X′
2 ̸= gx

′
2 then πi

C ← Invalid;
fr← (C, S) /∈ Corr;
w

$←− Zq ; β ← gw ;

πi
S ← ((x3, x4), (C, S,X′

1, X
′
2, X3, X4,⊥, β),⊥

, F, fr);
Return β;

Send-C3(C, i, S, β′, alg′)
If πi

C .sid ̸= (C, S,X1, X2, X3, X4, α,⊥) then ⊥;
If πi

C ̸= ((x1, x2), sid,⊥,⊥, F, fr) return ⊥;
sid = (C, S,X1, X2, X3, X4, α, β′);
fr← ∃j, (sid = π

j
S
.sid) ∧ (π

j
S
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X1, b), (X2, c)), (α, d)];
If gc(X1X

′
3X

′
4)

d·pwcs ̸= X
′pwcs
4 then

K
$←− K;

Else

Key = gx2a( α

1
pwcs

g
x2(x′

3+x′
4)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (S, (x′

3, x
′
4), K, alg)← Ts[sid];

Else ∀(sid, Key, pw) ∈ T do
If x2 ̸=⊥

Key∗ ← ( β′

X
x2pw
4

)x2 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If x2 =⊥

Tbad5 ← Tbad5 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (S, (x3, x4), K, alg′);
πi
C = ((x1, x2), sid, K, T, fr);

Return T;

Send-S3(S, i, C, α′, alg′)
If π

j
S
.sid ̸= (C, S,X1, X2, X3, X4,⊥, β) then ⊥;

If πi
S ̸= ((x3, x4), sid,⊥,⊥, F, fr) return ⊥;

sid = (C, S,X1, X2, X3, X4, α
′, β);

fr← ∃j, (sid = π
j
C
.sid) ∧ (π

j
C
.fr = T);

fr← fr ∨ (C, S) /∈ Corr;
If ¬fr then

Rewrite alg′ = [((g, a), (X3, b), (X4, c)), (β, d)];
If gc(X′

1X
′
2X3)

d·pwcs ̸= X
′pwcs
2 then

K
$←− K;

Else

Key = gx4a( β

1
pwcs

g
x4(x′

1+x′
2)

)b;

K = H(sid, Key, pwcs);
Else if sid ∈ Ts then (C, (x1, x2), K, alg)← Ts[sid];
Else ∀(sid, Key, pw) ∈ T then

If x4 ̸=⊥

Key∗ ← ( α′

X
′x4pw
2

)x4 ;

If Key∗ = Key then T6 ← T6 ∪ {sid, Key, pw};
If x4 =⊥

Tbad5 ← Tbad5 ∪ {sid, Key, pw};

K
$←− K;

Ts[sid]← (S, (x3, x4), K, alg′);
πi
S ← ((x3, x4), sid, K, T, fr);

Return T;

Execute(C, S, i, j)

If πi
C ̸=⊥ ∨π

j
S
̸=⊥ return ⊥;

x1, x2, x3, x4
$←− Zq ;

X1 ← gx1 ; X2 ← gx2 ; X3 ← gx3 ; X4 ← gx4 ;
If X1 ∈ List then πi

C ← Invalid;
If X2 ∈ List then πi

C ← Invalid;
If X3 ∈ List then π

j
S
← Invalid;

If X4 ∈ List then π
j
S
← Invalid;

π1 ← NIZK.Sim(crs, tds, X1, C);
π2 ← NIZK.Sim(crs, tds, X2, C);
π3 ← NIZK.Sim(crs, tds, X3, S);
π4 ← NIZK.Sim(crs, tds, X4, S);
List← List ∪ {X1, X2, X3, X4};
α

$←− G; β
$←− G;

sid = (C, S,X1, X2, X3, X4, α, β);
K

$←− K;
πi
C ← ((x1, x2), sid, K, T, T);

πi
S ← ((x3, x4), sid, K, T, T);

Return sid;

H(sid, Key, pw)
∀sid ∈ Ts then

If x2 =⊥ ∨ x4 =⊥

If (C, S) /∈ Corr do Tbad5 ← Tbad5 ∪ {sid, Key, pw};

If (C, S) ∈ Corr ∧ pw = pwcs ∧ bad29 = F

do Tbad9 ← Tbad9 ∪ {sid, Key, pw};

If T [sid, Key, pw] =⊥ then
T [sid, Key, pw]

$←− K;
Return T [sid, Key, pw];

Corrupt(C, S)

Corr← Corr ∪ {(C, S)}; pwcs
$←− P;

∀sid ∈ Ts then

If Ts[sid] = (C, (x1, x2), K, alg);

Rewrite alg = [((g, a), (X3, b), (X4, c)), (β, d)]

If gc(X′
1X

′
2X3)

d·pwcs = X
′pwcs
2 do bad29=T;

If Ts[sid] = (S, (x3, x4), K, alg′);

Rewrite alg = [((g, a), (X1, b), (X2, c)), (α, d)]

If gc(X1X
′
3X

′
4)

d·pwcs = X
′pwcs
4 do bad29=T;

Return pwcs;

Reveal(U, i)

If πi
U .ac ̸= T ∨ (U, i) ∈ Tst return ⊥;

∀(j, V ) s.t. (π
j
V

.sid = πi
U .sid) do π

j
V

.fr = F;
Return πi

U .K;

Test(U, i)

If πi
U .fr = F return ⊥;

K0 ← Reveal(U, i); K1
$←− K;

Tst← Tst ∪ (U, i);
Return Kb;

Finalize(b′)
For (C × S) ∈ (C × S)\Corr do pwcs

$←− P;

For (sid, Key, pwcs)
$←− Tbad9 do B9.Finalize(gx

2
);

Return b = b′;

Figure A.22: Reduction for Game 9



Abbreviations

AC Access Control 56
AGM Algebraic Group Model 16
AKE Authenticated Key-Exchange Protocol 13
alg-SE-NIZK Algebraic Simulation Sound Extractable Non-Interactive Zero-Knowledge

Proof 22

CDH Computational Diffie-Hellman 63
CHL Credential-hiding Login 32
CRS Common Reference String 16
CSqDH Computational Square Diffie-Hellman 90
CTGDH Computational Triple Group Diffie-Hellman 89

DDH Decisional Diffie-Hellman 12
DH-KE Diffie-Hellman Key-Exchange 2
DHP Diffie-Hellman Problem 12
DLP Discrete Log Problem 12
DPP Device Provisioning Protocol 7

FtG Find then Guess 39

GGM Generic Group Model 16

HC Honey Checker ix

KDC Key-Distribution Center 2

NIZK Non-Interactive Zero-Knowledge 18

PAKE Password authenticated key exchange iii
PFS Perfect Forward Secrecy 34
PKI Public-Key Infrastructure iii
PPT Probabilistic Polynomial Time 15

RO Random Oracle 16
RoR Real or Random 39

SAS-MA Short-Authenticated-String Message Authentication 32
SE-NIZK Simulation Sound Extractable Non-Interactive Zero-Knowledge Proof 22
SSL Secure Sockets Layer 5

TFA Two-Factor Authentication 32

UC Universally Composable 34

wFS Weak Forward secrecy 34

126



Bibliography

[1Pa18] 1Password Security Design. https://1password.com/files/1Password,
27-02-2018.

[AB19] M. Abdalla and M. Barbosa. Perfect forward security of SPAKE2. Cryp-
tology ePrint Archive, Report 2019/1194, 2019. https://eprint.iacr.
org/2019/1194.

[ABB+20] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Uni-
versally composable relaxed password authenticated key exchange. Cryp-
tology ePrint Archive, Report 2020/320, 2020. https://eprint.iacr.
org/2020/320.

[ABM15] M. Abdalla, F. Benhamouda, and P. MacKenzie. Security of the J-PAKE
password-authenticated key exchange protocol. In 2015 IEEE Symposium
on Security and Privacy, pages 571–587. IEEE Computer Society Press,
May 2015.

[ABR+21] M. Abdalla, M. Barbosa, P. B. Rønne, P. Y. Ryan, and P. Šala. Security
characterization of j-pake and its variants. Cryptology ePrint Archive,
Report 2021/824, 2021. https://ia.cr/2021/824.

[AFP05] M. Abdalla, P. Fouque, and D. Pointcheval. Password-Based Authenticated
Key Exchange in the Three-Party Setting. In Public-Key Cryptography –
PKC 2005, LNCS 3386, pages 65–84. Springer, 2005.

[AHH21] M. Abdalla, B. Haase, and J. Hesse. Security analysis of cpace. Cryptology
ePrint Archive, Report 2021/114, 2021. https://eprint.iacr.org/2021/
114.

[Ama20] Amazon, Inc. Amazon Cognito: User Authentication Flow, April 2020.
https://aws.amazon.com/cognito/, as of December 14, 2021.

[AP05] M. Abdalla and D. Pointcheval. Simple password-based encrypted key ex-
change protocols. In CT-RSA 2005, LNCS 3376, pages 191–208. Springer,
Heidelberg, February 2005.

[BBBB10] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage: Loss-
resistant password management. In Computer Security – ESORICS 2010,
pages 286–302, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BBCW20] M. Barbosa, A. Boldyreva, S. Chen, and B. Warinschi. Provable secu-
rity analysis of fido2. Cryptology ePrint Archive, Report 2020/756, 2020.
https://eprint.iacr.org/2020/756.

[BCJ+19] T. Bradley, J. Camenisch, S. Jarecki, A. Lehmann, G. Neven, and J. Xu.
Password-authenticated public-key encryption. Cryptology ePrint Archive,
Report 2019/199, 2019. https://eprint.iacr.org/2019/199.

127

https://1password.com/files/1Password
https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2019/1194
https://eprint.iacr.org/2020/320
https://eprint.iacr.org/2020/320
https://ia.cr/2021/824
https://eprint.iacr.org/2021/114
https://eprint.iacr.org/2021/114
https://aws.amazon.com/cognito/
https://eprint.iacr.org/2020/756
https://eprint.iacr.org/2019/199


Bibliography 128

[BDZ03] F. Bao, R. Deng, and H. Zhu. Variations of diffie-hellman problem. In
ICICS 2003, LNCS 2836, pages 301–312. Springer, 2003.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing - STOC 1988, pages 103–112.
ACM, 1988.

[BHvOS12] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest
to Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes. In IEEE Symposium on Security and Privacy, SP
2012, pages 553–567. IEEE Computer Society, 2012.

[BHvOS15] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. Passwords and
the evolution of imperfect authentication. Commun. ACM, 58(7):78–87,
June 2015.

[BIO+17] J. Becerra, V. Iovino, D. Ostrev, P. Šala, and M. Škrobot. Tightly-secure
pak(e). Cryptology ePrint Archive, Report 2017/1045, 2017. https://ia.
cr/2017/1045.

[BJLS16] C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight
cryptographic reductions. In Advances in Cryptology – EUROCRYPT 2016,
pages 273–304, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[BK09] J. Bender and D. Kuegler. Introducing the pace solution. https://bit.
ly/3iybFFN/, 25-02-2009.

[BM92] S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks. In 1992 IEEE Symposium
on Research in Security and Privacy, SP 1992, pages 72–84, 1992.

[BM97] S. Blake-Wilson and A. Menezes. Entity Authentication and Authenti-
cated Key Transport Protocols Employing Asymmetric Techniques. In Se-
curity Protocols, 5th International Workshop, LNCS 1361, pages 137–158.
Springer, 1997.

[BMP00] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In EUROCRYPT 2000,
LNCS 1807, pages 156–171. Springer, Heidelberg, May 2000.

[BOM+19] M. Beunardeau, F.-E. E. Orche, D. Maimut, D. Naccache, P. B. Roenne,
and P. Y. Ryan. Authenticated key distribution: When the coupon collector
is your enemy. Cryptology ePrint Archive, Report 2019/1499, 2019. https:
//ia.cr/2019/1499.

[Bon12] J. Bonneau. Guessing human-chosen secrets. PhD thesis, University of
Cambridge, UK, 2012.

[BOS19] J. Becerra, D. Ostrev, and M. Skrobot. Forward secrecy of spake2. Cryptol-
ogy ePrint Archive, Report 2019/351, 2019. https://eprint.iacr.org/
2019/351.

https://ia.cr/2017/1045
https://ia.cr/2017/1045
https://bit.ly/3iybFFN/
https://bit.ly/3iybFFN/
https://ia.cr/2019/1499
https://ia.cr/2019/1499
https://eprint.iacr.org/2019/351
https://eprint.iacr.org/2019/351


Bibliography 129

[Boy09] X. Boyen. Hidden credential retrieval from a reusable password. In Pro-
ceedings of the 4th International Symposium on Information, Computer,
and Communications Security, ASIACCS ’09, pages 228–238, New York,
NY, USA, 2009. ACM.

[BPR00] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange
secure against dictionary attacks. In EUROCRYPT 2000, LNCS 1807,
pages 139–155. Springer, Heidelberg, May 2000.

[BR93] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution.
In Advances in Cryptology — CRYPTO 1993, LNCS 773, pages 232–249.
Springer, 1993.

[BR94] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In CRYPTO’93, LNCS 773, pages 232–249. Springer, Heidelberg, August
1994.

[BR95] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:
the three- party case. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’95, pages 57–66. ACM, 1995.

[BR06] M. Bellare and P. Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Advances in Cryptology - EU-
ROCRYPT 2006, pages 409–426, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[Bre19] J. M. L. Brecerra. Provable Security Analysis for the Password Authen-
ticated Key Exchange Problem. PhD thesis, University of Luxembourg,
2019.

[BRRS18] J. Becerra, P. B. ROnne, P. Y. A. Ryan, and P. Sala. Honeypakes. In
Security Protocols XXVI - 26th International Workshop, Cambridge, UK,
March 19-21, 2018, Revised Selected Papers, Lecture Notes in Computer
Science 11286, pages 63–77. Springer, 2018.

[BŠŠ17] J. Becerra, P. Šala, and M. Škrobot. An Offline Dictionary Attack against
zkPAKE Protocol. Cryptology ePrint Archive, Report 2017/961, 2017.
https://eprint.iacr.org/2017/961.

[Can01] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

[CGCG+19] K. Cohn-Gordon, C. Cremers, K. Gjøsteen, H. Jacobsen, and T. Jager.
Highly efficient key exchange protocols with optimal tightness – enabling
real-world deployments with theoretically sound parameters. Cryptology
ePrint Archive, Report 2019/737, 2019. https://ia.cr/2019/737.

[CH14] D. Clarke and F. Hao. Cryptanalysis of the Dragonfly Key Exchange Pro-
tocol. IET Information Security, 8(6):283–289, 2014.

[CHK+05] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally
Composable Password-Based Key Exchange. In Advances in Cryptology –
EUROCRYPT 2005, LNCS 3494, pages 404–421. Springer, 2005.

https://ia.cr/2019/737


Bibliography 130

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In EUROCRYPT 2001, LNCS 2045, pages
453–474. Springer, Heidelberg, May 2001.

[Den11] F. Dennis. What you need to know about the diginotar hack. https:
//bit.ly/3fSGeV9, 2011.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DR08] T. Dierks and E. Rescorla. The transport layer security (tls) protocol ver-
sion 1.2. RFC 5246, RFC Editor, August 2008. http://www.rfc-editor.
org/rfc/rfc5246.txt.

[EKSS09] J. Engler, C. Karlof, E. Shi, and D. Song. Is it too late for PAKE? In Web
2.0 Security and Privacy Workshop 2009 (W2SP 2009), May 2009.

[Fac19] Server-compromise facebook. https://reut.rs/35vPQ2v, 25-02-2019.

[FK00] W. Ford and B. S. Kaliski, Jr. Server-assisted generation of a strong secret
from a password. In Proceedings of the 9th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, WETICE ’00, pages 176–180, Washington, DC, USA, 2000. IEEE
Computer Society.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and
its applications. In CRYPTO 2018, Part II, LNCS 10992, pages 33–62.
Springer, Heidelberg, August 2018.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Advances in Cryptology — CRYPTO’
86, pages 186–194, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[GEAR09] R. Giot, M. El-Abed, and C. Rosenberger. Greyc keystroke: a benchmark
for keystroke dynamics biometric systems. In 2009 IEEE 3rd International
Conference on Biometrics: Theory, Applications, and Systems. IEEE, 2009.

[GJK21] Y. Gu, S. Jarecki, and H. Krawczyk. Khape: Asymmetric pake from key-
hiding key exchange. Cryptology ePrint Archive, Report 2021/873, 2021.
https://ia.cr/2021/873.

[GLRS17] Z. A. Genc, G. Lenzini, P. Y. A. Ryan, and I. V. Sandoval. A security
analysis, and a fix, of a code-corrupted honeywords system. 2017.

[GM84] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Com-
puter and System Sciences, 28(2)/ 270-299, 1984.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on computing, 18(1):186–208,
1989.

[Gro06] J. Groth. Simulation-Sound NIZK Proofs for a Practical Language and
Constant Size Group Signatures. In Advances in Cryptology - ASIACRYPT
2006, LNCS 4284, pages 444–459. Springer, 2006.

https://bit.ly/3fSGeV9
https://bit.ly/3fSGeV9
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://reut.rs/35vPQ2v
https://ia.cr/2021/873


Bibliography 131

[Hao21] F. Hao. Prudent practices in security standardization. Cryptology ePrint
Archive, Report 2021/839, 2021. https://eprint.iacr.org/2021/839.

[Har15] D. Harkins. Dragonfly Key Exchange. RFC 7664, RFC Editor, November
2015.

[Har18] D. Harkins. Public Key Exchange. Internet-Draft draft-harkins-pkex-06,
Internet Engineering Task Force, August 2018. Work in Progress.

[Has19] T. Hashcat. hashcat - advanced password recovery. https://hashcat.
net/hashcat/, 25-02-2019.

[HL18] B. Haase and B. Labrique. Aucpace: Efficient verifier-based pake protocol
tailored for the iiot. Cryptology ePrint Archive, Report 2018/286, 2018.
https://ia.cr/2018/286.

[HL19] B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE pro-
tocol tailored for the IIoT. IACR TCHES, 2019(2):1–48, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/7384.

[HR10] F. Hao and P. Ryan. J-PAKE: Authenticated Key Exchange without PKI.
Transactions on Computational Science, 11:192–206, 2010.

[HS14] F. Hao and S. Shahandashti. The speke protocol revisited. 12 2014.

[IEE02] Standard Specifications for Password-Based Public Key Cryptographic
Techniques. Standard, IEEE Standards Association, Piscataway, NJ, USA,
2002.

[IET] Internet Engineering Task Force. https://www.ietf.org/.

[ISO09] ISO/IEC 11770-4:2006/cor 1:2009, Information Technology – Security tech-
niques – Key Management – Part 4: Mechanisms Based on Weak Se-
crets. Standard, International Organization for Standardization, Genève,
Switzerland, 2009.

[Jab96] D. P. Jablon. Strong Password-Only Authenticated Key Exchange. ACM
SIGCOMM Computer Communication Review, 26(5):5–26, 1996.

[Jab97] D. P. Jablon. Extended password key exchange protocols immune to dic-
tionary attack, 1997.

[JJK+21] S. Jarecki, M. Jubur, H. Krawczyk, N. Saxena, and M. Shirvanian. Two-
factor password-authenticated key exchange with end-to-end security. ACM
Trans. Priv. Secur., 24(3):17:1–17:37, 2021.

[JKSS18] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena. Two-factor authen-
tication with end-to-end password security. In Public-Key Cryptography –
PKC 2018, pages 431–461, Cham, 2018. Springer International Publishing.

[JKX18] S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An Asymmetric PAKE Pro-
tocol Secure Against Pre-Computation Attacks. In Advances in Cryptology
– EUROCRYPT 2018, LNCS. Springer, 2018.

[joh19] John the ripper password cracker. https://www.openwall.com/john/,
25-02-2019.

https://eprint.iacr.org/2021/839
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://ia.cr/2018/286
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://www.ietf.org/
https://www.openwall.com/john/


Bibliography 132

[JR13] A. Juels and R. L. Rivest. Honeywords: making password-cracking de-
tectable. In ACM CCS 2013, pages 145–160. ACM Press, November 2013.

[JY98] M. Joye and S. Yen. Id-based secret-key cryptography. ACM SIGOPS
Oper. Syst. Rev., 32(4):33–39, 1998.

[KL07] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman & Hal-
l/CRC, 2007.

[KM13] F. Kiefer and M. Manulis. Oblivious pake: Efficient handling of password
trials. Cryptology ePrint Archive, Report 2013/127, 2013. https://ia.
cr/2013/127.

[KOY01] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated
key exchange using human-memorable passwords. In EUROCRYPT 2001,
LNCS 2045, pages 475–494. Springer, Heidelberg, May 2001.

[Kra03] H. Krawczyk. Sigma: The ‘sign-and-mac’ approach to authenticated diffie-
hellman and its use in the ike protocols. In Advances in Cryptology -
CRYPTO 2003, pages 400–425, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[Kra05] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman proto-
col. In CRYPTO 2005, LNCS 3621, pages 546–566. Springer, Heidelberg,
August 2005.

[Lin12] Server-compromise linkedin. https://www.linkedin.com/help/
linkedin/answer/69603/notice-of-data-breach-may-2016, 25-
02-2012.

[LMR20] K. Lewi, P. Mohassel, and A. Roy. Single-message credential-hiding login.
Cryptology ePrint Archive, Report 2020/1509, 2020. https://eprint.
iacr.org/2020/1509.

[LST16] J. Lancrenon, M. Skrobot, and Q. Tang. Two more efficient variants of
the J-PAKE protocol. In ACNS 16, LNCS 9696, pages 58–76. Springer,
Heidelberg, June 2016.

[Lv15] J. Lancrenon and M. Škrobot. On the Provable Security of the Dragonfly
Protocol. In International Conference on Information Security, pages 244–
261. Springer, 2015.

[Mac01] P. MacKenzie. On the Security of the SPEKE Password-Authenticated
Key Exchange Protocol. Cryptology ePrint Archive, Report 2001/057,
2001. http://eprint.iacr.org/2001/057.

[Mac02] P. MacKenzie. The PAK Suite: Protocols for Password-Authenticated Key
Exchange. DIMACS Technical Report 2002-46, 2002.

[Mag16] Magic Wormhole. https://github.com/warner/magic-wormhole, 2016.

[Mer82] M. Merritt. Key reconstruction. In CRYPTO’82, pages 321–322. Plenum
Press, New York, USA, 1982.

https://ia.cr/2013/127
https://ia.cr/2013/127
https://www.linkedin.com/help/linkedin/answer/69603/notice-of-data-breach-may-2016
https://www.linkedin.com/help/linkedin/answer/69603/notice-of-data-breach-may-2016
https://eprint.iacr.org/2020/1509
https://eprint.iacr.org/2020/1509
https://github.com/warner/magic-wormhole


Bibliography 133

[MPS00] P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key
exchange based on rsa. In Advances in Cryptology — ASIACRYPT 2000,
pages 599–613, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[MRA15] K. Mochetti, A. C. D. Resende, and D. F. Aranha. zkpake : A simple
augmented pake protocol. 2015.

[MSKD16] M. Manulis, D. Stebila, F. Kiefer, and N. Denham. Secure Modular Pass-
word Authentication for the Web Using Channel Bindings. International
Journal of Information Security, 15(6):597–620, 2016.

[MTI86] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-
distribution systems. IEICE TRANSACTIONS (1976-1990), 69(2):99–106,
1986.

[MTT18] T. Mizuide, A. Takayasu, and T. Takagi. Tight reductions for diffie-hellman
variants in the algebraic group model. Cryptology ePrint Archive, Report
2018/1220, 2018. https://ia.cr/2018/1220.

[NYHR05] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The kerberos network
authentication service (v5). RFC 4120, RFC Editor, July 2005. http:
//www.rfc-editor.org/rfc/rfc4120.txt.

[Omn20] Omnicom. Social media benchmark report. https://www.
omnicoreagency.com/social-media-statistics/, 2020.

[Ope16] OpenSSL. https://www.openssl.org/, April 2, 2016.

[OWT09] Y. Oiwa, H. Watanabe, and H. Takagi. Pake-based mutual HTTP authen-
tication for preventing phishing attacks. CoRR, abs/0911.5230, 2009.

[Pal16] Pale Moon. http://www.palemoon.org, April 2, 2016.

[Pax21] Server-compromise paxful. https://bit.ly/3iQAH3x, 25-02-2021.

[Poi12] D. Pointcheval. Password-Based Authenticated Key Exchange. In Public
Key Cryptography - PKC 2012, LNCS 7293, pages 390–397. Springer, 2012.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
Advances in Cryptology - EUROCRYPT 1996, LNCS 1070, pages 387–398.
Springer, 1996.

[PS20] C. Patton and T. Shrimpton. Quantifying the security cost of migrating
protocols to practice. Cryptology ePrint Archive, Report 2020/573, 2020.
https://ia.cr/2020/573.

[PV05] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In ASIACRYPT 2005, LNCS 3788, pages 1–20.
Springer, Heidelberg, December 2005.

[PW17] D. Pointcheval and G. Wang. Vtbpeke: Verifier-based two-basis password
exponential key exchange. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security, ASIA CCS ’17, pages
301–312, New York, NY, USA, 2017. ACM.

https://ia.cr/2018/1220
http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.rfc-editor.org/rfc/rfc4120.txt
https://www.omnicoreagency.com/social-media-statistics/ 
https://www.omnicoreagency.com/social-media-statistics/ 
https://www.openssl.org/
http://www.palemoon.org
https://bit.ly/3iQAH3x
https://ia.cr/2020/573


Bibliography 134

[Rya17] P. Y. A. Ryan. Auditable pakes: Approaching fair exchange without a
ttp (transcript of discussion). In Security Protocols XXV, pages 298–305,
Cham, 2017. Springer International Publishing.

[SALR21] I. V. Sandoval, A. Atashpendar, G. Lenzini, and P. Y. A. Ryan. Pake-
mail: authentication and key management in decentralized secure email
and messaging via PAKE. CoRR, abs/2107.06090, 2021.

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO’89, LNCS 435, pages 239–252. Springer, Heidelberg, August
1990.

[scr] scrypt-parameters. https://blog.filippo.io/
the-scrypt-parameters/.

[Sho99] V. Shoup. On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, Report 1999/012, 1999. http://eprint.iacr.org/1999/012.

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in security
proofs. IACR Cryptology ePrint Archive, 2004:332, 2004.

[Sho20] V. Shoup. Security analysis of spake2+. Cryptology ePrint Archive, Report
2020/313, 2020. https://eprint.iacr.org/2020/313.

[SJ15] M. Stapelberg and S. Josefsson. Universal 2nd Factor (U2F) Authentication
for Secure Shell (SSH). Internet-Draft draft-josefsson-secsh-u2f-00, Internet
Engineering Task Force, February 2015. Work in Progress.

[SJKS17] M. Shirvanian, S. Jarecki, H. Krawczyk, and N. Saxena. SPHINX: A pass-
word store that perfectly hides passwords from itself. In ICDCS, pages
1094–1104. IEEE Computer Society, 2017.

[SKFB21] N. Sullivan, D. H. Krawczyk, O. Friel, and R. Barnes. OPAQUE with TLS
1.3. Internet-Draft draft-sullivan-tls-opaque-01, Internet Engineering Task
Force, February 2021. Work in Progress.

[Skr17] M. Skrobot. On the Composability and Security of Game based Password
Authenticated Key Exchange. PhD thesis, University of Luxembourg, 2017.

[SL18] M. Skrobot and J. Lancrenon. On composability of game-based password
authenticated key exchange. In 2018 IEEE European Symposium on Secu-
rity and Privacy (EuroS P), pages 443–457, 2018.

[STW96] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key distribution
extended to group communication. In Proceedings of the 3rd ACM Con-
ference on Computer and Communications Security, CCS ’96, page 31–37,
New York, NY, USA, 1996. Association for Computing Machinery.

[Szy06] M. Szydlo. A note on chosen-basis decisional diffie-hellman assumptions.
In Financial Cryptography and Data Security, pages 166–170, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

[Thr12] Threema: The messanger that puts the security and privacy first. https:
//threema.ch/en, 2012.

[Thr16] Thread Protocol. http://threadgroup.org/, April 2, 2016.

https://blog.filippo.io/the-scrypt-parameters/
https://blog.filippo.io/the-scrypt-parameters/
http://eprint.iacr.org/1999/012
https://eprint.iacr.org/2020/313
https://threema.ch/en
https://threema.ch/en
http://threadgroup.org/


Bibliography 135

[TWMP07] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin. Using the secure
remote password (srp) protocol for tls authentication. RFC 5054, RFC
Editor, November 2007.

[Vau05] S. Vaudenay. Secure communications over insecure channels based on short
authenticated strings. In Advances in Cryptology – CRYPTO 2005, pages
309–326, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[VR19] M. Vanhoef and E. Ronen. Dragonblood: Analyzing the dragonfly hand-
shake of wpa3 and eap-pwd. Cryptology ePrint Archive, Report 2019/383,
2019. https://ia.cr/2019/383.

[Wif18] Wifi easy to connect. https://www.wi-fi.org/discover-wi-fi/
wi-fi-easy-connect/, 2018.

[Wu98] T. D. Wu. The secure remote password protocol. In NDSS’98. The Internet
Society, March 1998.

[YBAG04] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability
and security: Empirical results. IEEE Security and Privacy, 2(5):25–31,
September 2004.

[Yub] Yubikey. https://www.yubico.com/.

https://ia.cr/2019/383
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect/
https://www.wi-fi.org/discover-wi-fi/wi-fi-easy-connect/
https://www.yubico.com/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RÉSUMÉ 

 

 



 

 

 

KEYWORDS 

 

 


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Key Management and the Public-Key Revolution
	1.1.1 Provable Security Paradigm

	1.2 Design of Key-Exchange Protocols
	1.2.1 Authentication

	1.3 Password-based Authentication
	1.3.1 Password Authenticated Key-Exchange Protocols under Patents
	1.3.2 Security Standardization of Password Authenticated Key-Exchange Protocols

	1.4 Motivation for using PAKEs
	1.4.1 Device Provisioning
	1.4.2 Login Scenarios
	1.4.3 File Transfer System

	1.5 Research Goals
	1.6 Outline

	2 Preliminaries
	2.1 Introduction
	2.2 Mathematical Background
	2.2.1 Groups

	2.3 Complexity Theoretic Approaches
	2.3.1 Concrete Approach
	2.3.2 Asymptotic Approach

	2.4 Model Assumptions
	2.4.1 Random Oracle Model
	2.4.2 Algebraic Group Model

	2.5 Zero-Knowledge Proofs
	2.5.1 Simulation-sound Extractable NIZK
	2.5.2 Schnorr Signatures
	2.5.3 Algebraic Simulation-Sound Extractable NIZK

	2.6 Cryptographic Hardness Assumptions
	2.6.1 Computational Assumptions
	2.6.2 Decisional Assumptions
	2.6.3 Relations Between the Assumptions


	3 Password Authenticated Key-Exchange Protocols
	3.1 Introduction
	3.2 Password Authenticated Key-Exchange Protocols
	3.2.1 Passwords and Session Keys
	3.2.2 Attacks on PAKE Protocols
	3.2.3 Other Password-based Authentication
	3.2.4 Balanced and Augmented PAKEs

	3.3 Security properties in PAKE Protocols
	3.4 Previous Works
	3.5 Applications of PAKE protocols
	3.6 IETF Standardization

	4 Security Models for Password Authenticated Key-Exchange Protocols
	4.1 Indistinguishability-based Models
	4.2 Proof by Sequence of Games
	4.3 Indistinguishability-based Real-or-Random Model
	4.4 Code-based Game-Playing Proofs

	5 An Offline Dictionary Attack against zkPAKE Protocol
	5.1 Introduction
	5.1.1 Our Contribution
	5.1.2 Organization

	5.2 The zkPAKE Protocol
	5.2.1 Protocol Description
	5.2.1.1 Initialization Phase
	5.2.1.2 Protocol Execution


	5.3 Offline Dictionary Attack on zkPAKE
	5.3.1 Attack description
	5.3.2 Attack Implementation
	5.3.2.1 Results



	6 HoneyPAKEs
	6.1 Introduction 
	6.1.1 Our Contribution
	6.1.2 Organization

	6.2 PAKE-based Access control
	6.2.1 PPK
	6.2.2 PAKE-based Access Control

	6.3 Honeywords
	6.4 HoneyPAKE
	6.4.1 The Naive Approach
	6.4.2 Technical Description of Components
	6.4.2.1 Login Access

	6.4.3 Security Model
	6.4.3.1 Discussion

	6.4.4 HoneyPAKE Construction
	6.4.5 HoneyPAKE Security Analysis
	6.4.6 Variations on a Theme
	6.4.7 HoneyPAKE Without Secondary Password
	6.4.8 Index-hiding HoneyPAKE

	6.5 Authentication of the Server

	7 Security Characterization of J-PAKE and its Variants
	7.1 Introduction
	7.1.1 Our Contribution
	7.1.2 Organization of the Chapter

	7.2 J-PAKE and its Variants
	7.3 From J-PAKE to sJ-PAKE
	7.3.1 Variations of J-PAKE

	7.4 Game-based Security Proof of sJ-PAKE
	7.5 Reductions
	7.6 Variants of sJ-PAKE
	7.6.1 sRO-J-PAKE
	7.6.2 Security Game-based Proof of sRO-J-PAKE
	7.6.3 sCRS-J-PAKE
	7.6.4 Security Game-based Proof of sCRS-J-PAKE

	7.7 Efficiency Analysis of J-PAKE, sJ-PAKE and All its Variants

	8 Future Work and Conclusion
	8.1 Future Work
	8.1.1 sJ-PAKE in UC
	8.1.2 sJ-PAKE with Confirmation Codes

	8.2 Conclusion and Final Remarks

	A Supplemental material
	A.1 Game-based code
	A.1.1 Games and adversaries for the proof of Theorem 7.1.


	Abbreviations
	Bibliography

