
HAL Id: tel-03992998
https://theses.hal.science/tel-03992998

Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New routing algorithms for heterogeneous exaflopic
supercomputers

John Gliksberg

To cite this version:
John Gliksberg. New routing algorithms for heterogeneous exaflopic supercomputers. Networking
and Internet Architecture [cs.NI]. Université Paris-Saclay; Universidad de Castilla-La Mancha, 2022.
English. �NNT : 2022UPASG068�. �tel-03992998�

https://theses.hal.science/tel-03992998
https://hal.archives-ouvertes.fr

T
H

E
S

E
D

E
D

O
C

T
O

R
A

T

N
N

T
:2

02
2U

PA
SG

06
8

New routing algorithms
for heterogeneous exaflopic supercomputers

Nouveaux algorithmes de routage
pour supercalculateurs exaflopiques hétérogènes

Thèse de doctorat de l’université Paris-Saclay
et de l’université de Castilla–La Mancha

École doctorale n°580 : sciences et technologies de l’information
et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et sciences du numérique

Référent : Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)

Thèse préparée dans l’unité de recherche LI-PARAD (Université Paris-Saclay, UVSQ) ;
sous la direction de Devan Sohier, Professeur HDR,

la co-direction de Pedro Javier García García, Professeur équivalent HDR,
et le co-encadrement de Antoine Capra, Ingénieur recherche.

Thèse soutenue à Guyancourt, le 25 novembre 2022, par

John Gliksberg

Composition du jury

Membres du jury avec voix délibérative

Maria Engracia Gómez Requena Présidente
Professeure des universités, UPV
Brice Goglin Rapporteur & Examinateur
Directeur de recherche, Inria Bordeaux - Sud-Ouest
Enrique Vallejo Rapporteur & Examinateur
Maître de conférence, Université de Cantabria
Marc Pérache Examinateur
Directeur de recherche, CEA DAM
Emmanuelle Saillard Examinatrice
Chargée de recherche, Inria Bordeaux - Sud-Ouest

Title: New routing algorithms for exaflopic heterogeneous supercomputers
Keywords: Routing, Algorithms, HPC, Interconnection networks

Abstract: Building efficient supercomputers requires
optimising communications, and their exaflopic scale
causes an unavoidable risk of relatively frequent fail-
ures. For a cluster with given networking capabil-
ities and applications, performance is achieved by
providing a good route for every message while min-
imising resource access conflicts between messages.
This thesis focuses on the fat-tree family of networks,
for which we define several overarching properties so
as to efficiently take into account a realistic super-

set of this topology, while keeping a significant edge
over agnostic methods. Additionally, a partially novel
static congestion risk evaluation method is used to
compare algorithms. A generic optimisation is pre-
sented for some applications on clusters with hetero-
geneous equipment. The proposed algorithms use
distinct approaches to improve centralised static rout-
ing by combining computation speed, fault-resilience,
and minimal congestion risk.

Titre: Nouveaux algorithmes de routage pour supercalculateurs exaflopiques hétérogènes
Mots clés: Routage, Algorithmes, HPC, Réseau d’interconnexion

Résumé: La construction de supercalculateurs per-
formants nécessite d’optimiser les communications, et
leur échelle exaflopique amène un risque inévitable
de pannes relativement fréquentes. Pour un clus-
ter avec un réseau et des équipements donnés, on
améliore les performances en s’assurant que l’on sélec-
tionne une bonne route pour chaque message tout en
minimisant les conflits d’accès aux resources entre
messages. Cette thèse se concentre sur la famille
des réseaux fat-trees, pour laquelle nous donnons
quelques grandes caractéristiques afin de mieux pren-
dre en compte une classe réaliste de cette topologie,

tout en conservant un avantage par rapport aux méth-
odes agnostiques. De plus, une approche d’évaluation
statique partiellement nouvelle du risque de conges-
tion est utilisée pour comparer les algorithmes. Une
optimisation générique est présentée pour certaines
applications sur des clusters avec des équipements
hétérogènes. Les algorithmes proposés forment le ré-
sultat de plusieurs approches distinctes pour apporter
des contributions dans le domaine du routage statique
centralisé, en combinant rapidité de calcul, résilience
aux pannes, et minimisation du risque de congestion.

Titulo: Nuevos algoritmos de encaminamiento para superordenadores heterogéneos a exaescala
Palabras clave: Encaminamiento, Algoritmos, HPC, Red de interconexíon

Resumen: La optimización de las comunicaciones
es un requisito fundamental para la construcción de
superordenadores eficientes. Por otra parte, la es-
cala en el ámbito del "exaflop" de estos superorde-
nadores conlleva un riesgo inevitable de fallos relati-
vamente frecuentes. Para un clúster de computación
con determinadas capacidades de red y aplicaciones,
un buen rendimiento se consigue proporcionando ru-
tas eficientes y minimizando los conflictos de acceso a
los recursos entre los diferentes mensajes. Esta tesis
se centra en la familia de topologías "fat-tree", para
la que definimos varias propiedades generales con-

siderando un superconjunto realista de esta topología,
manteniendo una ventaja sustancial sobre métodos
agnósticos. Además, se utiliza un método relativa-
mente novedoso para la evaluación del riesgo de con-
gestión estática de los diferentes algoritmos. Se pre-
senta una optimización genérica para algunos tipos
de aplicaciones en clústeres con equipos heterogéneos.
Los algoritmos propuestos utilizan enfoques distintos
para mejorar el encaminamiento estático centralizado
combinando velocidad de cálculo, tolerancia a fallos y
minimizando el riesgo de congestión.

ii

Contents

Acknowledgements vii

Translated introduction ix

1 Context and state of the art 1
1.1 Introduction . 1
1.2 Problem model . 2

1.2.1 HPC interconnects . 2
1.2.2 Network definitions . 4
1.2.3 Routing for HPC interconnects . 5
1.2.4 Centralised static routing . 8
1.2.5 Adaptive routing . 8
1.2.6 Approaches to programming routing algorithms 9
1.2.7 Deadlock avoidance . 11
1.2.8 Node-type heterogeneity . 12
1.2.9 Fault resilience . 13

1.3 Topologies . 13
1.3.1 Direct topologies . 14
1.3.2 Indirect topologies . 15
1.3.3 Fat-tree topologies . 17
1.3.4 Irregular fat-trees (IFTs) . 22
1.3.5 Topologies used by interconnect vendors . 23

1.4 Routing algorithms for fat-trees . 23
1.4.1 Ftree . 24
1.4.2 Dmodk . 27
1.4.3 Smodk . 28
1.4.4 Random shortest path routing (RandSP) . 28
1.4.5 Ranking . 30
1.4.6 Fat-tree-specific fault resilience . 31

1.5 Problem statement and plan . 32

2 Quality comparison of routing algorithms 35
2.1 Introduction . 35
2.2 Traffic simulation . 36

2.2.1 Static traffic patterns . 36
2.2.2 Dynamic traffic simulation . 38

2.3 Static metric . 38
2.3.1 The µ static congestion metric . 40
2.3.2 Generic static traffic patterns of choice . 41
2.3.3 Effective diameter . 43

2.4 Example application of static metrics . 45
2.5 OMNeT++-based simulation . 46

iv

3 Routing for heterogeneous fat-trees 47
3.1 Heterogeneous clusters . 47
3.2 Case study topology . 48
3.3 Analysis of a node-type-specific communication pattern 49

3.3.1 Dmodk/Ftree performance . 49
3.3.2 Smodk performance . 52
3.3.3 RandSP performance . 52

3.4 Grouped Xmodk . 53
3.4.1 Reindexing NIDs . 53
3.4.2 Gxmodk case study . 56

3.5 OMNeT++-based simulation of Gdmodk . 57
3.6 Conclusions and future works . 58

4 Fault-resilient routing in fat-trees 59
4.1 Reconfiguration mechanisms . 59
4.2 Dmodc . 60

4.2.1 Preprocessing . 60
4.2.2 Routes computation . 65
4.2.3 Primary results . 66
4.2.4 Congestion risk as a function of degradation 68

4.3 Conclusion . 69

5 Routing irregular fat-trees 73
5.1 Some new IFT-specific routing algorithms . 73

5.1.1 Ftree-Random . 73
5.1.2 Ftree2 . 75
5.1.3 Up*/Down* implementations . 78

5.2 Comparison of algorithms . 81
5.2.1 Progressively degraded fat-tree . 81
5.2.2 Progressively degraded QFT . 83

5.3 Conclusion . 84

Conclusion 93
Contributions . 93
Future research . 95

Translated conclusion 97

Annex 107
1 Routing Leiserson fat-trees . 107
2 Resilient statistical ranking method . 108
3 Routing vPGFTs . 108

Bibliography 111

v

Acknowledgements

I must give mille mercis to my director, Devan, who was key throughout
the process and pushed me towards an academic rigour that can be lacking in
this specific domain, and that I wasn’t naturally striving to uphold more than
necessary. You endeavoured to learn quite a bit about a subject that otherwise
may have seemed rote and undignified, for that I am grateful and I suspect you
found a few interesting surprises on the way. My co-director, Pedro, deserves
heart-felt gracias as well for his continued sympathy and attention to details;
never have I received such amicable praise accompanied with a thoroughly blood-
drenched page of corrections. I hope to enjoy many more meals and matches in
your company. Antoine, you weren’t just a reviewer but also a great inspiration,
and along with Alexandre I have fond memories of the three of us getting Dmodc
working; thank you both. I have received quite a bit of help from the people at
LI-PaRAD, and I must single out Thomas and Pablo for their time and care. I must
thank both reviewers for their helpful remarks and kind words, and the rest of
the jury members for their efforts. On another note, I would be remiss to forget to
acknowledge the character-building challenges brought on by the administrative
entities of both universities. I can only recommend the combination of industrial
doctorate and international cotutelle to students and advisors of tenacious will.

I must thank my mum profusely for the numerous indispensable nitpicks
throughout the manuscript. Please read it only superficially from now on, or you’ll
find yet more mistakes. Thank you, yiddishe papa, for driving me to the interview
back in 2016 and then leaving me to work without any pressure. Thank you
Daphné for your infinite patience and loving application of motivational threats.
You had to bear with my occasional defeated self ever since we were together.

My colleagues at Atos have always been very motivated to see me go through
this doctorate (sometimes more so than myself); and I must thank each of them,
both for their work and their fraternity. Alain, Pierre, Safae, Ravaka, Ben,
Zakaria, Marc, Marwa, Jean-Yvon, Bruno G, Bruno F, etc, etc, thank you. I must
thank Jean-Noël and Pierre V in particular, my first two advisors at Atos. You
placed all the necessary blocks for this thesis, and your back-breaking work on
BXI helped me learn a lot of my trade.

The times I spent in Albacete (no hay ningún sitio mejor que Albacete) were
wonderful, and the people at and around the lab were great to me. Many thanks
to Rocher, German, Juanje, Jesús, Pedro Yébenes, Blas, Raúl, Antonía, Hugo,
Ester, etc, etc.

Finally, I must shout out to all friends and family, who’ve been hearing a
whole lot about this; now we’ll have to find other things to talk about. Thank you,
in no particular order, to Sam, Alex, Guillaume, Sarah, Vincent, Louis-Daniel,
Laure, Matthieu, Marion, Simon, Léopold, Marie-Liesse, and all the others. And
of course, I am eternally indebted to Patate.

vii

Translated introduction

Introduction in French

Les supercalculateurs actuels les plus puissants construits pour le Calcul
Haute-Performance (HPC) sont des grappes de matériel commercial haut-de-
gamme, combinant des millions de cœurs, coûtant des dizaines de millions
d’euros, et consommant plusieurs mégawatts [81] : une telle puissance de
calcul demeure prohibitive en termes de coût et de consommation énergé-
tique. Le réseau d’interconnexion (l’interconnect) d’un tel système permet
aux applications d’être distribuées sur de nombreux nœuds pour accélérer
leur temps d’exécution, ou pour augmenter leur échelle ou leur précision. Les
performances globales du système dépendent fortement des performances de
l’interconnect [24, 3]. En conséquence, les interconnects HPC sont prévus
pour assurer une quasi-totale absence de pannes et minimiser l’utilisation
de mécanismes de résilience aux pannes. Ce réseau finit donc par représen-
ter une part conséquente de la puissance et du matériel alloués aux super-
calculateurs modernes. Néanmoins, l’évolution en termes de puissance et
d’échelle de ces systèmes amène un risque inévitable de pannes matérielles.
Un volume important de la recherche dans le domaine vise à minimiser le
coût et la consommation de ces réseaux tout en maximisant leurs perfor-
mances et leur résilience aux pannes. Le routage joue un rôle vital dans
l’interconnect HPC, qui constitue dans son ensemble un système compliqué
dont les choix architecturaux et l’utilisation impactent le coût, les performances
et la résilience aux pannes. Cette thèse se concentre sur des améliorations de
techniques de routage pour interconnects HPC avec la conception et l’analyse
statique de nouveaux algorithmes de routages, et des modifications applicables
à des algorithmes existants. Cette décision se place à contre-courant de la
majorité de la recherche contemporaine qui se concentre sur des études dy-
namiques d’aspects plus avancés des interconnects HPC (tels que le routage
adaptatif, l’ordonnancement dynamique d’applications, ou autres optimisations
dynamiques basées sur le comportement réel des applications) : une partie
des soucis de performance qui justifient ces méthodes pourraient être évités
en amont au niveau du routage statique. Les techniques de routage proposées
offrent des améliorations de performances et/ou de résilience aux pannes, tout
en relaxant partiellement les contraintes topologiques de la conception du
réseau.

Cette recherche a été motivée par un contexte industriel alors que Bull
construisait un interconnect interne pour ses nouveaux supercalculateurs Bull
eXascale Interconnect (BXI), avec un nouveau fabric manager (le logiciel qui
observe et configure le réseau à un haut niveau, ce qui inclut le calcul d’un
routage fonctionnel et performant). Les switches BXI sont conçus avec un CPU

ix

ARM embarqué et un réseau de gestion séparé de l’interconnect, ainsi que
d’autres spécificités de conception. Pour s’adapter à ces aspects, et profiter de
l’occasion de repartir de zéro, le fabric manager BXI (BXI FM) est organisé
différemment des subnet managers de ses concurrents. Certains algorithmes
et techniques de routage ont été conçus pour ce système pour utiliser pleine-
ment les caractéristiques de switches. Pour améliorer ces techniques, et avec
l’intuition que cette nouvelle architecture de matériel pouvait mener à une ap-
proche différente dans la recherche, le sujet de thèse initial a été planifié. Cette
thèse est menée avec le LI-PaRAD (Laboratoire d’Informatique, Parallélisme,
Réseaux, Algorithmes Distribués) à l’UVSQ (Université de Versailles Saint-
Quentin-en-Yvelines). Cette thèse est également menée avec le laboratoire
RAAP (Redes y Arquitecturas de Altas Prestaciones) à l’UCLM (Universidad
de Castilla-la-Mancha) en Espagne, au travers d’une cotutelle internationalle.
Le contexte industriel a fortement impacté le déroulement de cette thèse, lors
de laquelle plusieurs inventions ont été brevetées et intégrées dans le produit
commercialisé par Atos. En revanche, un effort a été fourni pour étudier des
cas généraux et les résultats sont, dans l’ensemble, applicables à d’autres
situations.

Introduction in Spanish

Los actuales supercomputadores empleados para la computación de altas
prestaciones (High-Performance Computing, HPC) están formados por un
conjunto de componentes comerciales, incluyen millones de núcleos de cómputo
(cores), tienen un coste de decenas de millones de euros, y consumen algunas
decenas de megavatios [81]; en resumen, puede decirse que conseguir altas
potencias de cómputo sigue siendo caro, y consume muchos recursos. La red
de interconexión de estos sistemas permite repartir aplicaciones entre muchos
nodos del sistema para acelerar su tiempo de ejecución, o para aumentar su
escala, resolución, o precisión. Las prestaciones del sistema en su conjunto
dependen enormemente de la red de interconexión [24, 3]. En consecuencia, a
menudo las redes de sistemas HPC se han sobredimensionado para no fallar
prácticamente nunca y para minimizar los mecanismos de recuperación, pero
este enfoque hace que la red represente una fracción muy relevante de los
componentes y del consumo del sistema supercomputador. La importancia
de este problema ha crecido con el incremento de la escala de estos sistemas
(imprescindible para conseguir mayor potencia de cómputo), lo que además ha
ocasionado que la aparición de fallos en los componentes sea casi inevitable. Por
ello, buena parte de la investigación en este campo se orienta a minimizar el
coste y consumo de estas redes, mientras se intenta optimizar sus prestaciones
y su resiliencia ante posibles fallos. En este entorno, el encaminamiento es
un factor esencial en el funcionamiento de la red, cuyo diseño es clave de cara
al coste, las prestaciones y la resiliencia. Esta tesis se centra en mejorar el

x

encaminamiento para redes de sistemas HPC mediante el diseño y análisis de
nuevos algoritmos estáticos de encaminamiento, y mediante extensiones de
otros ya existentes. Este enfoque se basa en la observación de que una gran
parte de la investigación actual en redes de interconexión para sistemas HPC
se orienta hacia estudios de técnicas “dinámicas” tales como encaminamiento
adaptativo, planificación dinámica de procesos, y optimizaciones basadas en
trazas, mientras que muchas de las prestaciones que se pretenden conseguir
con estas técnicas podrían abordarse mejor de antemano mediante algoritmos
de encaminamiento estáticos. Las propuestas de esta tesis ofrecen mejoras
bien respecto a prestaciones, bien respecto a resiliencia ante fallos, o respecto
a ambas, relajando a la vez ciertas restricciones del diseño de la topología.

La investigación recogida en esta tesis se inició en un contexto industrial,
al estar Bull diseñando su nueva tecnología de red de interconexión propia,
llamada BXI (Bull eXascale Interconnect), junto con un nuevo software (fabric
manager) para monitorizar y configurar la red a alto nivel, incluyendo el man-
tenimiento funcional y el encaminamiento eficiente. Los conmutadores BXI in-
tegran una CPU de ARM, y se conectados a una red de control y administración
paralela y separada de la red de interconexión del sistema supercomputador.
Para adaptarse a este entorno, y también para partir de cero, sin ceñirse a
modelos previos, el software de control BXI se organiza de forma distinta a
los equivalentes en otras tecnologías de red. Algunas técnicas y algoritmos de
encaminamiento se diseñaron para este sistema, de cara a optimizar el uso del
diseño de los conmutadores BXI. El tema principal de esta tesis surgió con la
intención de mejorar estas técnicas, y al intuirse que la nueva arquitectura de
hardware BXI permitiría desarrollar la investigación de forma diferente. Esta
investigación se ha desarrollado conjuntamente con el laboratorio LI-PaRAD
(Laboratoire d’Informatique, Parallélisme, Réseaux, Algorithmes Distribués)
de la Universidad de Versailles Saint-Quentin-en-Yvelines (UVSQ) en Francia.
La tesis también se ha desarrollado conjuntamente con el grupo de Redes y
Arquitecturas de Altas Prestaciones (RAAP) de la Universidad de Castilla-La
Mancha (UCLM) en España, mediante una cotutela internacional. El contexto
industrial ha tenido una gran influencia en la investigación desarrollada, y
varias contribuciones de la tesis se han patentado e integrado en productos
comerciales. Sin embargo, se ha tenido especial cuidado en estudiar casos
genéricos, y por tanto en general los resultados del trabajo son aplicables a
otros entornos.

xi

1 — Context and state of the art

1.1 . Introduction

Today’s most powerful supercomputers built for High-Performance Comput-
ing (HPC) are clusters of high-end commodity hardware, composed of millions of
cores, costing tens of millions of euros, and requiring multiple megawatts [81]:
computing power remains prohibitive and resource-consuming. The intercon-
nection network (interconnect) which connects such a system allows appli-
cations to be distributed across many nodes to speed up their run time, or
increase their scale, resolution, or precision. The performance of the system
as a whole is highly dependant on the performance of the interconnect [24, 3].
Correspondingly, the HPC interconnect is over-engineered to almost never fail
so as to minimise layers targeting resilience, and this network represents a
significant fraction of the power and hardware allocated to modern supercom-
puters. However, the increase in power and scale of these systems has caused
hardware failures to become unavoidable. A significant part of the research
in this area aims to minimise the cost and consumption of these networks
while maximising their performance and fault resilience. Routing plays a
vital role in the HPC interconnect, which is overall an intricate system whose
design and usage affect cost, performance, and fault resilience. This thesis
focuses on improving routing techniques for HPC interconnects by designing
and statically analysing new static routing algorithms and extensions to exist-
ing ones. This choice comes from an observation that current research is often
largely about dynamic studies of advanced aspects of HPC interconnects (such
as adaptive routing, dynamic job scheduling, and trace-based optimisations),
whereas many of the underlying performance issues justifying these methods
could be better addressed by the static routing algorithm beforehand. The pro-
posed routing techniques offer improvements in either or both performance and
fault resilience, while partially relaxing a common design constraint (network
topology).

This research was initiated in an industrial context as Bull was designing
an in-house interconnect for its new Bull eXascale Interconnect (BXI) clusters,
alongside a new fabric manager (software to monitor and configure the network
at a high level, which includes maintaining functional and efficient routing).
BXI switches are designed with an integrated ARM CPU and a management
network separate from the interconnect, as well as other design specificities.
To adapt to these aspects, and use the occasion to start from a clean slate,
the BXI fabric manager (BXI FM) is organised differently from competitors’
subnet managers. Some routing techniques and algorithms were designed for
this system to make full use of the switch design. Out of desire to improve
on these techniques, and an intuition that research could be conducted dif-

1

ferently with this new hardware architecture, the initial thesis subject was
drawn out. Research is conducted in conjunction with the LI-PaRAD laboratory
(Laboratoire d’Informatique, Parallélisme, Réseaux, Algorithmes Distribués)
at UVSQ (the Université de Versailles Saint-Quentin-en-Yvelines) in France.
Research is also conducted with the RAAP laboratory (Redes y Arquitecturas
de Altas Prestaciones) at UCLM (the Universidad de Castilla-la-Mancha) in
Spain, through an international cotutelle. The industrial setting has strongly
influenced the research, and several inventions have been patented and inte-
grated in the commercial product during the doctorate. As a whole, however,
care has been taken to focus on general cases and the resulting work is largely
applicable to other settings.

The rest of this chapter covers elements of contexts for HPC interconnects,
routing, and topologies. Firstly, Section 1.2 introduces general elements of
HPC interconnects and their routing. Section 1.3 presents topologies used in
HPC interconnects, as well as an overview of their current usage by the main
HPC vendors, in order to define the target topologies of this thesis as precisely
as possible. From there, Section 1.4 studies several existing fat-tree-specific
static routing algorithms on which this thesis is based. Section 1.5 finally lays
out the problem statement more precisely in the given context, and plans out
the following chapters of contributions accordingly.

1.2 . Problem model

1.2.1 . HPC interconnects
Interconnection networks are designed to allow various devices to communi-

cate. To achieve this goal, switches1 are needed to forward messages from their
sender to their recipient. The devices are called nodes2, or endnodes in some
literature so as to distinguish them from switches. Switches communicate be-
tween one another and with nodes via bidirectional links. Links (either copper
or optical) are plugged into switch ports (via a transceiver pod for optical links).
There may be multiple links connecting the same two switches; multiple ports
of a switch leading to the same remote switch are part of a port group. All the
links in each considered network are considered equivalent, in terms of latency
and bandwidth. In networks where some switches are not directly connected
to nodes (indirect networks, see Section 1.3.2), those connected to at least one
node are distinguished by being called leaf switches or simply leaves. Switch
ports leading to nodes are called endports.

The target communications of the network are those going from node to
node (that is, from endnode to endnode). In the context of BXI, where switches
are managed out-of-band (through a separate network), switches are never the

1Switches differ from routers because switches connect nodes of the same subnet, while
routers connect different subnets together—only single subnets will be considered here.

2Types of nodes include compute blades, service nodes, I/O nodes, and accelerators.

2

source nor the destination of traffic. This makes the node/switch distinction
clear cut, and it will be taken into account in our network model and its
properties. In existing literature, switches are at times considered as nodes
like any other, to the point where many articles do not specify the nature
of graph vertices. Classical graph theory and its results generally do not
distinguish vertices either.

Taking into account this distinction in the network model, we hereafter note
N the set of nodes, and S the set of switches. Each node has a unique identifier
(its NID), decided automatically or manually. A link is defined by the nodes or
switches it connects, and a locally unique identifier corresponding to the port
number, or port rank. We model links with E, the set of directional edges; E
is a subset of (S∪N)2 ×N since no link can connect more than two elements,
and several links can join the same two switches: this network model is a
multigraph, noted G(S, N,E). Elements of E are noted ((i, j),k), denoting links
from i to j, locally indexed k. This is the only difference with the host-switch
graph model [89], if we add the restriction that each node is connected to the
rest of the graph by one link only. This restriction is valid throughout this
thesis, though there also exists research targeting multi-ported host-switch
graphs [90]. From this model we can deduce the set of leaves, noted L:

L = {s ∈ S | ∃ n ∈ N, ((s,n) ,0) ∈ E}

This model of the network is called its (multi)graph or topology; though the
word topology is also used interchangeably with classes of topologies, discussed
in Section 1.3.

Some (classes of) topologies are explicitly defined using up and down direc-
tions, possibly through the definition of non-negative integer levels of switches.
From this, we prepend an up, same, or down directional prefix to the ports,
port groups, links, or neighbouring switches of a switch where it applies. These
are used extensively in indirect topologies, defined in Section 1.3.2. Nodes
and switches are physically organised in racks, often with a top rack (which
may or may not correspond to the topological top level) to facilitate inter-rack
cabling. The physical organisation often directs or constrains the topology,
though sometimes it is the topology design which causes physical organisation
choices.

Interconnection systems such as InfiniBand, Cray and BXI implement some
form of channels, also referred to as virtual channels (VCs), or virtual lanes
(VLs), depending on the context; wherein a single physical port can be used for
multiple traffic flows without affecting one another. VCs require sharing the
port’s buffer space and temporal link usage, either statically or dynamically.
VCs are primarily used for quality of service (QoS), wherein different classes
of messages are guaranteed not to interfere with one another. They are also
used for deadlock avoidance, as mentioned in Section 1.2.7, though the work in
this thesis relies on simple edge-level deadlock avoidance. Furthermore, they

3

are also used to optimise quality of routing for some topologies [8]. Finally,
they are also often used by queueing schemes for congestion avoidance and
management as well [33, 91]. VCs are largely out of the scope of this thesis,
and simple links will be modelled, though there will be several references to
VCs. VCs are defined by an edge and a non-negative integer identifier, the
channel rank. They can be modelled by C, the set of channels, a subset of
E×N, itself a subset of (S∪N)2×N2. Other literature often models topologies
as G(S, N,C).

Specific notations used in this thesis are provided at the end of this Chapter,
in Table 1.1.

1.2.2 . Network definitions
We will now go over several network definitions which will be useful later

on to assess network characteristics for the context and for some contributions.

Definition 1. A path from node a to node b is a sequence of edges (e1, e2, . . . en)
such that the end of e i is the start of e i+1, and such that e1 starts at a and en
ends at b. The number n of edges in the path is its length, or number of hops.

Definition 2. The distance between nodes a and b, noted d(a,b) = d(b,a), is
the shortest length attainable by paths from a to b (and conversely b to a, since
links are bidirectional). Any path whose length is minimal, or equal to the
distance, is called a shortest path.

This distance verifies the triangular inequality.

Definition 3. The diameter of a network G is the largest distance between all
pairs of nodes: D(G)=max {d(a,b) | a,b ∈ N}.

For example, the diameter of a fully-connected network is 1 and the diame-
ter of a bidirectional ring with n nodes is

⌊n
2

⌋
.

Definition 4. A partition of N is a couple (A, A′) such that A ⊂ N, A′ ⊂
N, A∪ A′ = N, A∩ A′ =;.

Definition 5. A cut (A,B) of G(S, N,E) is a partition of S ∪ N. The cut-set
of (A,B) is the set {(u,v) ∈ E | u ∈ A,v ∈ B} of edges that have one endpoint in
A and the other endpoint in B. The node-partition of (A,B) is the partition
(N ∩ A, N ∩B) of N.

Definition 6. The bisection (A,B) of a network is a cut whose node-partition
(NA, NB) verifies |#NA −#NB| ≤ 1.

Informally, a cut is a bisection if it splits endnodes evenly. Note that in
graph theory in general, where switches and endnodes are not differentiated, a
bisection splits all nodes evenly. This is one of many cases where we diverge
from general graph theory due to the switch/endnode distinction.

4

Definition 7. The bandwidth of a cut is the number of edges in its cut-set.

In general, bandwidth is computed as the sum of individual link bandwidths,
but we instead assume that all links are equivalent.

Definition 8. The bisection bandwidth of a network, or cross-bisectional band-
width (abbreviated CBB), is the minimum number of links of all the bisections
of a network, defined as:

min{#EC | EC the cut-set of a bisection of G}

For example, the CBB of a fully-connected network with n nodes is
⌊n

2

⌋×⌈n
2

⌉= ⌊(n
2

)2
⌋

and the CBB of a ring is 2. The CBB is a theoretical worst-case
scenario bandwidth of network-wide group communications assuming perfect
path selection. However, the actual path selection might result in significantly
lower effective bandwidths [40].

Definition 9. The blocking factor of a network is the ratio between the greatest
and smallest bandwidths of its bisections, defined as:

max{#EC | EC the cut-set of a bisection of G}
min{#EC | EC the cut-set of a bisection of G}

Informally, the blocking factor represents the maximum variation in worst-
case scenario bandwidth of network-wide group communications, depending
on communication pattern.

Definition 10. A network has constant bisection bandwidth (or constant CBB)
if its blocking factor is equal to 1.

This definition means that all the bisections of a network with constant
CBB have the same bandwidth.

HPC cluster interconnect design often relies on networks being connected
according to specific topologies, which will be discussed in Section 1.3. The aim
is generally to guarantee beneficial network properties such as high CBB and
low diameter, while simplifying routing design for various criteria.

1.2.3 . Routing for HPC interconnects
Routing is the exercise of assigning correct paths to all messages. It is

different from switching, which describes how messages are processed at a
lower level. To provide basic functionality, routing should ensure that messages
will reach their destination in finite time. Firstly, this means that every
message must be directed to its correct destination (and naturally avoid infinite
loops). Furthermore, deadlocks must be avoided: a deadlock situation occurs
when there is a cycle of packets which can never advance because they each
require the next channel to be freed [14], as shown in Figure 1.1. Deadlocks

5

2 2 2

3
3
3

000

1
1
1

N0

N1

N2

N3

Figure 1.1: Example of a deadlock, with four nodes N0 to N3, each sending a
message to the opposite node, and with every buffer full.

are particularly problematic in lossless networks (in which packets cannot
be dropped), which form the majority of HPC networks. More on deadlock
avoidance can be found in Subsection 1.2.7.

It is not sufficient for routing to be functional, it must also result in low
congestion for the supercomputer to perform efficiently. Different implemen-
tations of routing, or routing functions, may affect network performance in
various ways. Network latency may be affected by paths being longer than
necessary (a routing function is minimal if it guarantees shortest paths, and
non-minimal otherwise). Furthermore, the routing function may cause con-
tention of network resources, increasing latency and/or reducing throughput.
Sustained contention, or congestion, is often shown to take the form of points
of contention causing buffers to progressively saturate in routes crossing these
points. These trees of congestion are called congestion trees, and they evolve
towards sources of contending packets. This is sometimes distinguished into
low-order head-of-line (HoL) blocking for so-called hot message flows directly
causing congestion versus high-order HoL blocking for cold message flows
which happen to go through an already congested edge [46].

In commonly used topologies, path length is constrained. Furthermore, path
length has lesser repercussions on application latency than other parameters
such as network congestion. For these reasons, the design of high-quality
routing algorithms mostly aims to reduce or minimise congestion risk, generally
by spreading competing traffic flows across the available resources, or load
balancing. Depending on the granularity, these resources might be switch-
paths, links, or virtual channels. Splitting competing traffic into different
virtual channels reduces head-of-line blocking [24]. However, designing and

6

using more VCs increases latency and hardware complexity, and is only useful
when it provides greater benefits than its own cost.

Other mechanisms attempt reactive congestion management by throttling
(temporarily slowing down) offending message producers [30, 42] with hard-to-
tune results that generally do not scale [102, 31]. However, Cray claims to have
implemented a stable and scalable reactive throttling congestion management
mechanism [13, 18].

The study of quality of routing is approached in various ways in existing
research, where techniques are more often than not studied in experimental
and quantititave approaches, and precise characterisation of HoL blocking is
not practical. Some techniques are studied in general approaches, such as
approximation of effective CBB based on common usage scenarios [40]. Other
techniques are studied under specific use cases (for individual target clusters,
with Deimos [19] being one example among many others) either by experimen-
tation with sample applications (such as specific benchmarks like the NAS
Parallel Benchmark suite in that same cited work, once again with numerous
other examples) or by simulation of synthetic traffic (with hotspot traffic [70]
being a common example to study congestion) or communication traces from
real application runs [9]. The goal is either to directly compare application run
times or to estimate effective network metrics potentially transferable to other
use cases. Common metrics studied using experimentation or simulation are
effective throughput and latency as functions of offered communication load,
from which can generally be interpreted comparable characteristics such as
saturation load and corresponding max throughput.

A simpler approach is to count the number of paths at each edge, or port,
of the network. The maximum value, called edge-forwarding index, reflects
the maximum load of the network under sustained communication between all
nodes [39].

Other techniques taking into account more information such as job place-
ment, communication pattern matrices, or fault tolerance, usually integrate
the corresponding data points in their study. Chapter 2 presents the approach
used in this thesis to study quality of routing which is useful for the scope of
the proposed techniques. A specific use case will be presented in Section 1.2.8.

In case of equipment failure or other unexpected behaviour, routing must
be fault-resilient to remain functional. Fault resilience will be presented in
Section 1.2.9. Contexts for these upcoming subjects are impacted by the types
of routing implementations, which will therefore be presented beforehand
in Sections 1.2.4 and 1.2.5, followed by a categorisation of approaches to
programming routing algorithms in Section 1.2.6.

7

1.2.4 . Centralised static routing

Static—or deterministic—routing is the simple and efficient type of routing
that is most widely available in HPC. Such a routing can be characterised by a
function of the form R : N2 ×S → E, where a message coming from and going
to nodes (in N2) via a switch (in S) is routed via an output edge, which must
naturally start from the considered switch. In the majority of applications of
static routing, however, routing is source-independent, and can be characterised
instead by a function of the form R : E × N → E, where each input port (in
E) and each destination (in N) are associated with a corresponding output
port. In practice, this function is implemented using Linear Forwarding Tables
(LFTs, often referred to as routing tables), with generally one entry per switch
and destination, valid for all the input ports of the switch (with the shape
R : S×N → E). Edges are used in each model for simplicity, though channels
are considered in other works, by substituting E with C. Interconnection
networks for HPC usually have a centralised static routing mechanism wherein
a subnet manager (responsible for its connectivity) computes LFTs off line and
uploads them to the switches. Static routing guarantees in-order delivery in
lossless HPC networks.

Static routing is oblivious insofar as it does not take into account the
current state of the network. However, there are also some dynamic (i.e.
multi-path) routing techniques which are oblivious [24, 17, 36]. The only
dynamic oblivious techniques commonly found in the existing literature involve
a random selection: take for example Valiant routing which chooses a random
intermediary switch to send messages, later performing minimal routing from
that switch to the destination [82].

1.2.5 . Adaptive routing

An adaptive routing algorithm, unlike oblivious ones, takes into account
the state of the network to make routing decisions [24]. Figure 1.2 summarises
algorithmic categories described up to now. This network information may be
local information like port/VC congestion or the number of available credits, or
global information like switch congestion across the network. A good adaptive
routing technique overcomes the inflexibility of static routing by making use of
under-used resources to alleviate congestion. However, adaptive techniques
that eagerly spread traffic onto a large proportion of network resources tend to
increase congestion [70, 71]. Adaptive routing breaks the guarantee of in-order
delivery within communication flows [34].

BXI implements adaptive routing for traffic (marked as authorised for out-
of-order delivery) with a search of lowest contention (measured as buffer usage
across VCs) between the deterministic route and a random set of alternative
routing tables. The set size and activation threshold are configurable. The
alternative routing tables are computed by the routing algorithm and uploaded
by the fabric manager.

8

Oblivious Dynamic

Static Adaptive

Figure 1.2: Categories of routing algorithms

Distributed applications that take advantage of BXI NICs indirectly rely on
the Portals interface [4]. Some communications are implemented using PtlPut,
for which some layer must provide ordering between packets and messages
in each flow. Offloading the Portals matching engine to the NIC imposes
restrictions on the amount of memory available per flow, and reordering at the
destination becomes untenable. Instead, these messages are marked at the
source as non-adaptive, so as to benefit from the in-order delivery guaranteed
by static routing. This is one reason why good quality static routing was
deemed critical and motivated the subject to be explored in this thesis.

1.2.6 . Approaches to programming routing algorithms
Several categories of approaches to programming routing algorithms are

presented below, with references to corresponding example routing techniques.
These are not strictly speaking algorithmic categories, and there is some
overlap, but they do outline to some extent the space of possibilities available
to the programmer.

Dynamic programming and greedy algorithms A dynamic programming
technique breaks down the problem into a sequence of subproblems of the same
type, each easier to solve than the full problem. A greedy algorithm progres-
sively builds a global solution through a series of locally optimal choices. These
approaches might be intuitive insofar as they could generally be described
with the same steps a person might take to solve the problem by hand, such
as assigning routes to each destination one after the other, based on previ-
ous decisions like Dijkstra or Bellman-Ford algorithms. Greedy algorithms
are difficult to distribute or parallelise while also keeping guarantees about
global results. Examples include Ftree [97], SSSP [41] (and its slower but
deadlock-free counterpart DFSSSP [19]), and Nue [21].

9

Closed-form algorithms Some algorithms determine each element of the
solution using a closed-form operation, i.e. based on input alone and no de-
pendency to other elements of the solution. These methods might require a
preprocessing phase to prepare the information each element requires, such as
topological addresses. This phase can be made more efficient when topological
properties are regular. Such a formulation allows implementing a perfectly
parallel computation phase. Examples include Dmodk [95] and Smodk [61, 73].

Randomised algorithms Routing algorithms are sometimes based on ran-
dom choices as a means to approximate agnostic load balancing or congestion
avoidance. Examples include Valiant’s algorithm [82] and Greenberg’s RAN-
DOM [37].

MILP programming Some routing methods describe the constraints of
the problem as a set of linear relationships. This way, load balancing ex-
plicitly becomes an optimisation problem. This approach is used mostly for
communication-pattern-aware routing. Generic Mixed Integer Linear Program-
ming methods can then be used, with potential tweaks corresponding to the
specific nature of the problem space, such as BSOR, BSORM [49], and some
with topology-specific tweaks to achieve better routing run time [66]. BeFS [72]
is another discrete method, using branch-and-bound.

Distributed algorithms In some cases it may be possible to build a globally
correct or optimal solution with no central computation unit. In such situations,
distributed computation units can communicate with one another and use local
information to make decisions. Some routing techniques, especially adaptive
ones, rely on switches computing routes based on local information. This might
provide fast reaction time to network changes or congesting traffic. Examples
include the Chaos router [50] and UGAL [80], two techniques for adaptive
routing.

10

Centralised algorithms are beneficial, because they are generally easier to
design than fully distributed ones, even when multithreaded. Like the majority
of similar products, BXI indeed uses only centralised algorithms to compute
routing tables.

1.2.7 . Deadlock avoidance
Deadlock avoidance is a major aspect of the co-design of switches, topologies

and routing algorithms. Packet dropping is a simple mechanism to guarantee
deadlock-freedom (wherein a packet is simply discarded if it does not advance
fast enough), but HPC interconnects are lossless to improve performance, and
are therefore at real risk of deadlocks.

Most approaches used to guarantee deadlock-freedom rely on the absence
of channel dependency cycles. A channel dependency a → b corresponds to the
potential for channel b to be used by a message after it has used channel a.

Definition 11. The channel dependency graph (CDG), for a given intercon-
nection network, I, and routing function, R, is a directed graph, CDG(I,R)=
G(E,D). The vertices of CDG(I,R) are the edges of I, and its edges are the pairs
of edges connected by R:

D = {
(e i, e j) ∈ E2 | ∃ n ∈ N, R(e i,n)= e j

}
Since there is no route from an edge to itself, there is no 1-cycle in CDG.

Definition 12. Channel dependencies are connected in CDG paths as follows:

[e0, e1, . . .]= [. . . , (e i, e i+1), (e i+1, e i+2), . . .] , ∀ i, (e i, e i+1) ∈ D

Dally proved that cycles in the CDG were a necessary condition for dead-
locks to arise [14]. Figure 1.3 provides an example potential deadlock situation
and the corresponding CDG. From this, it is sufficient to guarantee the absence
of cycles in the CDG to prove deadlock-freedom. This only requires a static un-
derstanding of the routing function, but ignores some deadlock-free situations
that arise dynamically. Guaranteeing cycle-free CDGs is therefore relatively
simple, and is generally implemented through directional routing restrictions,
as will be explored further in Section 1.3. Some research goes further and
explores deadlock-freedom in routing functions which contain cycles in the
CDG [78].

11

A B

CD

A B

CD

A B

CD

A B

CD

(a) A ring of four switches with routes in red

cAB

cBC

cCD

cDA

(b) The cycle in the corre-
sponding CDG

Figure 1.3: Example of a potential deadlock situation. Deadlock occurs if all
the buffers in the cycle become full.

1.2.8 . Node-type heterogeneity
Many large supercomputers are used for varied applications, with varied

resource needs. To provide adequate resources, these supercomputers are often
designed with multiple kinds of available equipments, whose usage impact
network usage. In practice the type of equipments encountered are among the
following:

• Compute nodes, with powerful central processing units (CPUs);

• Storage nodes, with slower remote access to large regions of memory
than local memory;

• General purpose graphic processing units (GPGPUs), with fast parallel
units for specialised SIMD (single instruction multiple data) operations;

• Field-programmable gate array units (FPGAs), with reprogrammable
gate logic for fast processing of general purpose applications;

• Service nodes, operating network management or interacting with exter-
nal networks for user access.

These might be connected directly to other components, or to the inter-
connection network (in which case they are seen as endnodes). There are
approaches to extend usability of directly connected equipment to other nodes,
such as rCUDA for GPUs [26]. That is outside the scope of the interconnection
management layer of the network. On the other hand, use of equipment visible
as endnodes can be strongly affected by the network management layer.

12

In particular, one case in which the network might provide inadequate
performance as a result of node-type heterogeneity is that of applications in
which communications are organised in separate time frames for separate types
of equipment. Observation shows that purely static (and therefore oblivious)
routing in such cases might restrict traffic to each node-type group to a subset of
available network resources and result in lower performance. Such a situation,
which happened during the course of this thesis, is studied in more detailed in
Chapter 3.

1.2.9 . Fault resilience

Network topologies and corresponding routing are often defined statically,
while real operation may require replacing or extending network components.
Furthermore, as the sheer amount and power of equipment increases in current
and future supercomputers, the average rate of equipment failures increases
accordingly [76, 20, 88]. Failures are especially frequent with optical links [12]
typically used to cover long distances in large scale clusters. For these reasons,
fault resilience becomes important to avoid frequent application interruption.
A centralised subnet manager (or fabric manager) can react to equipment
failures that do not break graph connectivity by uploading updated routing
tables. In order to do this, it requires a fault-resilient routing algorithm capable
of rapid re-routing. The challenge is to provide these characteristics while
maintaining high-quality static load balance.

There are various approaches to guaranteeing deadlock-freedom during
transition phases in case of routing change [25, 53], but when possible, a simple
approach is to prove that every possible routing function is part of a super
function which is itself deadlock-free, thus guaranteeing that any transition
step between any two possible routing functions is also deadlock-free [68]. This
is possible for example when a direction restriction applies uniformly to any
degraded state of a network, as will be the case in Section 1.3.2.

More context regarding topology-specific fault resilience will be provided in
Section 1.4.6.

1.3 . Topologies

Topologies are ubiquitous in the design of supercomputers. They help
provide guarantees about performance, resilience, or other design goals through
their network characteristics. For example, a topology with a lower diameter
tends to constrain application latency more, and a topology with a higher CBB
tends to accommodate a higher bandwidth. Other aspects can be considered,
such as required hardware availability and cost, ease of expansion, and ease of
deadlock-free routing.

The purpose of this Section is threefold. Firstly, it should help justify the
focus on fat-trees, which are only one among many other usable topologies.

13

Secondly, it should give some context to help appreciate the pros and cons
of fat-tree-specific routing. Lastly, it should define to some extent what the
specific target topologies are, given the wide array of topologies called fat-tree
in the existing literature.

1.3.1 . Direct topologies
In direct topologies, every switch is connected to nodes (through internal

links) to give them access to the rest of the network (via external links). In
such a case, S = L. By considering each switch and its directly connected nodes
as one vertex of the network graph, this allows simplifying the graph to its
switches and external links. The number of nodes connected to each switch is
sometimes specified in the topology definition. For a given switch radix and
number of nodes, the external connection scheme affects the corresponding
number of switches and links required, directly impacting network cost. Per-
formant direct topologies generally result in networks in which it is difficult
to integrate new equipment. Hop count is given only across external links,
therefore artificially reducing the diameter by 2 hops, assuming nodes are
connected with the same links as inter-switch connections. Examples of direct
topologies are provided below.

Definition 13. A ring topology is a connected graph where each vertex is
connected to exactly two different vertices with one link each. A bus topology is
a ring with one link removed.

Both of these topologies are extremely cheap in terms of link count: with
N = n switches, only n or n−1 links are required. However, they have low
CBB (1 or 2) and high diameter (n−1 or

⌊n
2

⌋
), making them perform poorly

for concurrent applications. Furthermore, rings are easily affected by dead-
locks: guaranteeing cycle-free CDG in a ring or bus requires either direction
restrictions or using multiple VCs.

Definition 14. A mesh topology is a two-dimensional square grid of vertices,
where non-diagonal neighbours are connected with one link. A torus topology is
a mesh where the first and last vertices of each row and column are connected
with one link.

Meshes are also cheap: with N = n× n switches, only 2(N − n) links are
required. They provide a slightly higher CBB of 2

⌈n
2

⌉
and a slightly lower diam-

eter of 2(n−1), but still result in poor performance. To avoid deadlocks, either a
turn order model [35, 60] or separation into distinct VCs is required [15]. Torus
topologies cost only slightly more than meshes (2N links), cut the diameter
down to 2

⌊n
2

⌋
, and raise the CBB to 4

⌈n
2

⌉
.

Definition 15. A Hypercube topology is a higher-dimension 2-by-2 mesh. A
k-ary n-cube topology is a generalisation of a torus with n dimensions and k
vertices in each dimension.

14

Note that hypercubes are 2-ary n-cubes, and that toruses are k-ary 2-cubes.
k-ary n-cubes provide competitive topological characteristics [16] and are com-
monly used in massively parallel processors (MPPs) and HPC interconnects
(such as the Tofu interconnect, used in the K computer and the Fugaku su-
percomputer, with each being the most performant at the network-intensive
HPCG benchmark at the time of their installation [23]), despite difficulties in
cabling, scalability, and deadlock-freedom.

DragonFly (DF) topologies [48] are a more recent field of research. Specific
DFs are defined by specifying groups of switches and the intra-group and inter-
group connection schemes. A common example is a DF with a flattened butterfly
intra-group scheme and a pruned Hamming graph inter-group scheme. Real
DFs have diameters ranging from 2 to 5. Routing DFs requires special attention
in order to guarantee deadlock freedom [32, 57, 56]. Furthermore, DFs provide
low performance for adversarial inter-group traffic patterns unless either
fine-tuned non-minimal3 adaptive routing techniques [48, 44, 67] or group-
spreading job placement policies (RDR or RRR in [43]) are used. Similarly,
when jobs are placed contiguously, all links connecting groups assigned to
different jobs are left unused in case of minimal routing; these links are
referred to as dark links [22].

Other large low-diameter direct topologies have been studied in detail [47].
Designing a diameter-2 topology with high bandwidth, path diversity, and
node count results in networks with structurally guaranteed low congestion
and latency, but requires careful attention and generally requires complicated
routing methods.

1.3.2 . Indirect topologies
An indirect topology contains non-leaf switches, wherein L ⊊ S. This

section will present the only common type of indirect topology, Multistage
Interconnection Networks (MINs).

Definition 16. A non-blocking telephone network is always capable of accom-
modating any new call (from an available caller to an available recipient),
regardless of existing traffic.

Definition 17. A telephone network is rearrangeably non-blocking if for a given
set of calls, there exists a routing function for which the network will not block.

Clos designed indirect topologies for point-to-point telephone networks
(using crossbar switches) to guarantee non-blocking switching at reasonable
cost [11]. These unidirectional multistage interconnection networks (MINs, or
UMINs) are composed of one level of input switches, an odd number of levels of
intermediary switches, and finally one level of output switches. Depending on

3In DFs, minimal and non-minimal often refer to use of intergroup links only, or not,
respectively.

15

the numbers of input ports, output ports, and input switches, a Clos network
can be non-blocking, or only rearrangeably non-blocking.

Unlike UMINs, bidirectional multistage interconnection networks (BMINs),
are composed of bidirectional links and have all leaf switches on one side (the
bottom one, with levels ordered vertically). The height (in number of levels) of
a BMIN is noted h.

Definition 18. In a BMIN, a node is down-accessible from a switch if it can be
reached with a path made up only of downward hops.

Definition 19. The direction of an edge e in a BMIN, noted dir(e), is equal to
the difference of levels incurred by following the edge.

For example, an edge leading from level 4 to level 1 has a direction of -3.

Definition 20. In a BMIN, a topological group is a subgraph connected to the
rest of the graph by up-edges only (with dir> 0), which lead only to switches at
a level greater than all those in the subgraph.

Definition 21. An up–down path (e1 . . . en) is such that:

∃ 1< i ≤ n, ∀ j < i, dir(e j)> 0,
∀ j ≥ i, dir(e j)< 0

Definition 22. An up–down routing function is made up only of up–down
paths.

Property 1. Any up–down routing function is deadlock-free in BMINs.

This advantageous property (applicable to fat-trees, which are described in
Section 1.3.3), is claimed in existing literature [64, 24], and Duato extends the
notion of strict global ordering of links sufficient to prove deadlock-freedom in
UMINs, to a strict local ordering of links in BMINs. A new proof, which doesn’t
rely on extending the UMIN property, is provided here.

Proof. In a BMIN, edge directions are either upwards, samewards, or down-
wards, and each channel dependency in its CDG has a pair of directions based
on starting and ending edges. In an up–down routing function, no such edge is
samewards, and valid pairs of directions can only be up–up, up–down, down–
down (and not down–up). From this, CDG paths (see Definition 12) can only be
formed as a concatenation of a CDG subpath with only upward edges and one
with only downward edges, each of length 0 or more. Deadlock-freedom can be
proven by showing that no valid path in the CDG contains a cycle, as seen in
Section 1.2.7. To have a cycle, there must exist one valid CDG path verifying:

i < j, e i = e j

16

If e i is upwards, then e j must occur in the upward CDG subpath; however, this
CDG subpath is strictly monotonous in terms of levels and cannot contain a
cycle. The same applies symmetrically if e i is downwards. Therefore, there
cannot be any cycle in the CDG.

As described in Section 1.2.7, and defined in [68], up–down super routing
functions in BMINs are deadlock-free, thus guaranteeing transitively deadlock-
free fault-resilient algorithms.

Property 2. Any up*–same?–down* routing function is deadlock-free in BMINs.

Note that * means “any number of times” and ? means “at most once”,
similarly to regular expressions. Informally, this describes routes with at most
one samelink between the upward and downward phases. A novel proof, using
the proof for Property 1, is provided here.

Proof. In an up*–same?–down* routing function in a BMIN, there is no down–
up, down–same, same–up, or same–same dependency in any CDG path. We
will prove deadlock-freedom by showing that there is no cycle in any valid
CDG path. If such a CDG path contains no same edge, then the proof for
up–down routing functions provided in Section 1.3.1 applies, and there cannot
be any cycle. Otherwise, the sameward edge in the CDG path is preceded only
by upward edges, and followed only by downward edges. By virtue of strict
monotonicity, neither side contains a cycle. By virtue of uniqueness (and lack of
any 1-cycle), the sameward edge cannot induce a cycle. Therefore, there cannot
be any cycle in the CDG.

1.3.3 . Fat-tree topologies
A majority of current leading network topologies for HPC clusters are fat-

tree variants: the five most powerful clusters of the June 2019 Top500 list [81]
had fat-tree topologies. The name fat-tree has been used to describe many
different topologies since the original CM-5 version. Despite many differences
in definition, fat-trees are always BMINs with at most one downward switch-
path from any top switch to any leaf switch. Fat-trees are usually regular
and symmetrical. Their “fatness” corresponds to increasing bandwidth when
going up levels, and this increase is often designed to provide a constant CBB.
Many studies associate fat-trees with this property while others distinguish
non-slimmed and slimmed (or oversubscribed) fat-trees. The other impor-
tant beneficial property is that minimal routing in fat-trees is up–down and
therefore deadlock-free.

17

Figure 1.4: Three level binary Leiserson fat-tree. Switches are rectangles (with
leaves in grey) and nodes are circles. Several bisections are shown in dashed
red lines, illustrating constant CBB.

Leiserson fat-trees
Fat-tree topologies were introduced by Leiserson [51] in the CM-5 for their

capacity to accommodate any virtual network for a given size. These fat-trees
are organised like regular trees (with a constant number of connected links
across switches, or arity, k), but with aggregate link bandwidth increasing by a
factor k at each level. Note that in their original declination, this rule was only
precisely defined for so-called universal fat-trees; however, literature generally
considers these only when referring to Leiserson fat-trees. Levels go up from
the leaves to the top switches. An example with k = 2 and n = 3, n being the
number of levels, is shown in Figure 1.4.

Massive Parallel Systems such as the CM-5 implemented fat-trees using
efficient on-chip networks with so-called concentrator switches. Leiserson
fat-trees cannot be implemented using the crossbar switches found in clusters
because they would require an (#N)-port top switch. Were such a switch
available, connecting it to all nodes directly would be the best and cheapest
possible network.

A short section regarding routing in Leiserson fat-trees is provided in annex
Section 1.

K-ary n-trees
K-ary n-trees were subsequently formalised by Petrini [64] and describe an

implementation of fat-trees using fixed-radix crossbar switches organised in
complete bipartite subgroups (wherein two sets of switches in adjacent levels
are fully connected, but only across levels). The diameter of a k-ary n-tree is
twice its number of levels. Bisection bandwidth is constant, which is often
described as being rearrangeably non-blocking. That description relates to the
potential capacity for such a network to have a non-blocking routing function
for any communication permutation4, though that is not possible using static
routing, and non-permutation communications are to be expected as well. The

4The notion of non-blocking routing functions dates back to circuit-switching networks, in
which only permutations can be performed

18

2,0,0 2,0,1 2,1,0 2,1,1

1,0,0 1,0,1 1,1,0 1,1,1

0,0,0 0,0,1 0,1,0 0,1,1

0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

Figure 1.5: A 2-ary 3-tree (with 23 = 8 nodes). Each switch is required to have
4 ports except for the top switches (which have only 2 ports).

connection scheme is defined formally using two rules based on switch and
node addressing, both n-tuples.

Definition 23. In a k-ary n-tree, switches (l,w0, . . . ,wn−2) and (l′,w′
0, . . . ,w′

n−2)
(of level l and l′ respectively, with l′ ≥ l) are connected if and only if l′ = l +1
and w′

i = wi,∀i ̸= l. Leaf switch (0,w0, . . . ,wn−2) and node (w′
0, . . . ,w′

n−2, p) are
connected if and only if wi = w′

i,∀i ∈ [0,n−2], with p ∈ [0,n[.

When routing k-ary n-trees, every pair of nodes has multiple nearest com-
mon ancestors (NCAs). Optimal routing then comes down to distributing NCAs
via which to route to avoid network-congestion from happening in the first
place. Deterministic and adaptive routing algorithms have been provided for
k-ary n-trees [36].

GFTs, XGFTs, m-port n-trees
Generalised Fat-Trees (GFTs), introduced by Ohring [61], describe a more

general class of topologies for which the upward and downward arities can
differ.

Definition 24. A graph defined by the formula

GFT(h; m; w)

is a GFT with h levels, with each switch connected to m switches below and w
switches above. It is constructed recursively from m distinct copies of GFT(h−
1; m; w). Each of these fat-trees, used to build the complete graph, is referred to
as a topological group.

This allows creating oversubscribed fat-trees with smaller and cheaper
networks and only partly reduced overall performance. This process of reducing
the bisection bandwidth of a network is often called pruning. A GFT has mh

19

nodes, and wlmh−l switches at level l. As a result, the total number of switches
is:

h−1∑
l=0

wlmh−l = mh ∑
l

(w
m

)l = mh 1− (w
m

)h

1− w
m

=
{

m mh−wh

m−w , if m ̸= w
hmh, if m = w

In practice, assuming uniform port count for all switches in a network,
GFTs are detrimental since top-switches necessarily have unused ports. This
issue and others can be solved by Extended Generalised Fat-Trees (XGFTs),
introduced alongside GFTs, which provide a per-level definition of arities.

Definition 25. A graph defined by the formula

XGFT(h; m0, . . . ,mh−1; 1,w1, . . . ,wh−1)

is an XGFT with h levels, with each switch of level i connected to mi−1 switches
below and to mi switches above. It is constructed recursively from mh−1 distinct
copies of XGFT(h−1; m0, . . . ,mh−2; 1,w1, . . . ,wh−2), its topological groups.

This definition provides even more flexibility in terms of oversubscription.
For example, one might decide to provide more bisection bandwidth in the
lower levels than in upper levels if few applications are expected to span across
topological groups. As a practical example, this is the case in some BXI clusters,
connected as fat-trees pruned only in the top level. Experience at Atos has
shown that other than benchmarks, few current user applications make strong
use of the total bandwidth provided by the interconnect.

XGFTs also allow designing fat-trees with both constant CBB, often referred
to as rearrangeably non-blocking, and fully-plugged fixed-radix switches. These
graphs respect the following formula:

XGFT(h; k, . . . ,k,2k; 1,k, . . . ,k)

The same topology is also called m-port n-tree [52], with m = 2k.

PGFTs, RLFTs
Parallel Ports Fat-Trees, or Parallel Generalised Fat-Trees (PGFTs), are an

extension to XGFTs allowing for multiple interlinks [95]. The definition allows
for one value of “parallel ports” per level:

Definition 26. A graph defined by the formula

PGFT(h; m0, . . . ,mh−1; 1,w1, . . . ,wh−1; p0, . . . , ph−1)

is an h level PGFT, with each switch of level i connected to mi−1 switches below
(using pi−1 interlinks) and to mi switches above (using pi interlinks).

20

(a) XGFT(2;4,4;1,2) (b) PGFT(2;4,4;1,2;1,2)

Figure 1.6: Best efforts to build a constant-CBB network with 16 nodes and
fully-plugged 8-port switches using XGFT and PGFT topologies.

This allows more link redundancy, but more importantly greater flexibility
in network design. In particular it allows describing networks with constant
CBB for more configurations than XGFTs can. A simple example is provided in
Figure 1.6, which illustrates that a constant-CBB network with 16 nodes and
fully-plugged 8-port switches can be designed using PGFT notation, but not
using XGFT notation.

Real-Life Fat-Trees (or RLFTs) are defined alongside PGFTs to account for
several constraints often expected of fat-trees in real life [95].

Definition 27. Real-Life Fat-Trees (or RLFTs) are constant-CBB PGFTs with
all switches having the same radix and being fully plugged, and each node
being connected to one leaf through one link.

This is identical to the requirements of m-ports n-trees, with the added
possibility of specifying the number of parallel ports at each level. In some
cases, however, RLFTs are equivalent to m-ports n-trees. An RLFT with
h levels, K-port switches, and a vector p describing parallel links, has the
corresponding PGFT definition:

PGFT
(
h;

K
2

, . . . ,
K

2pi
, . . . ,

K
ph−1

; 1, . . . ,
K

2pi
, . . . ; . . . , pi, . . .

)
The PGFT in Figure 1.6.b is an 8-port 2-level RLFT with p = [1,2].
In this thesis, the names fat-tree, or regular fat-tree, will be used for any

topology that can be described as a PGFT. This includes Leiserson fat-trees,
k-ary n-trees, GFTs, XGFTs, RLFTs.

21

1.3.4 . Irregular fat-trees (IFTs)
Terrain observation of real systems shows that clusters labelled as fat-trees

often break properties usually associated with fat-trees. This happens mainly
either because fat-tree connection rules are relatively difficult to respect, or in
order to attempt improving the performance-to-cost ratio of the network. In this
thesis, fat-tree-like networks are categorised as IFTs (a novel nomenclature) if
any of the following irregularities applies:

• Multiple down-switch-paths between a top switch and a leaf;

• Variations in arity between switches in the same level (variations due to
failures do not strongly apply);

• Connections within a level or skipping a level;

• Leaves in levels higher than others.

Two formally defined topologies which count as IFTs are described below.
However, the general case of IFTs does not correspond to formally described
topologies, and instead is at best described as fault resilience, as shown in
Sections 1.2.9 and 1.4.6.

QFTs
Zahavi defined a slight variation to PGFTs that allows building networks

with wider subgroups for a given number of nodes [98]. This Quasi Fat-Tree
(QFT) topology is defined similarly to PGFTs, but with the p vector referring
to cross-connections instead of interlinks: pl = 2 means that at level l, pairs
of groups are linked together. QFTs are defined with the assumption that
there is only one level l at which pl > 1, with generally l = 1. Connecting two
groups together means that every lower element in that group has two distinct
up-switch-paths to every top switch, instead of only one. This breaks a core
property often associated with fat-trees, making load balancing routing more
difficult to express. On the other hand, this is presented as an opportunity for
greater fault-tolerance through greater switch-path diversity.

MegaFly
An indirect variant of the DragonFly, called MegaFly (or DragonFly+ by

Mellanox), uses complete bipartite graphs for the intra-group cabling [10, 79,
28]. The inter-group cabling rules are not stricter than for DFs (there must be
at least one direct link connecting each pair of groups). Two advantages of the
MF topology over DFs are the increased scalability and path diversity, at the
cost of twice the number of switches and an increased average hop count. In
this topology, non-leaf switches (called roots) are connected together through
samelinks. This topology is a BMIN, and therefore accommodates up*–same?–
down* routing in a deadlock-free manner (see Property 2). Minimal routing is

22

up*–same?–down* in MFs, and therefore deadlock-free, unlike minimal routing
in DFs.

Similarly to DFs, literature has focused on non-minimal routing to overcome
low effective bandwidth in MFs for adversarial traffic (potentially resulting
from natural job placement). This requires use of multiple VCs to guarantee
deadlock-freedom, since consecutive samelink hops incur chainable channel
dependencies within the top level.

An alternative strategy to achieve high performance for various job sizes is
for the job placement to scatter nodes between groups while using only minimal
routing. This increases the average minimal distance between nodes of a job,
and risks increasing inter-job interference for the use of inter-group links, but
avoids spreading congestion to other groups.

1.3.5 . Topologies used by interconnect vendors
Other major HPC interconnects nowadays are Infiniband (mostly provided

by Mellanox), Cray Slingshot, Intel Omni-Path, and Fujitsu’s Tofu. Apart from
Tofu, all of the above are actively used for indirect topologies and use some
form of static routing combined with some adaptive behaviours. The choice
of topology is dictated more by client need than by vendors, and in practice
common indirect topologies are FT and MF, and common direct topologies are
DF, Torus, and SlimFly. The latter are treated very differently from the work
in this thesis. The most powerful supercomputers listed in the Top500 tend to
have indirect topologies to accommodate for comfortable bandwidth on shortest-
path routing, but trends evolve rapidly when taking into account equipment
cost and energy consumption compared with actual application requirements.
A majority of the bulk of Top500 supercomputers is accordingly built using
commodity Ethernet equipment, with Infiniband still being used in a large
portion of the remaining systems, followed by the other HPC interconnect
vendors focused on very high end configurations. Data centers arguably now
form a more important source of very large systems than HPC, and there is
more and more overlap in the resulting technologies, with some progressive
convergence of techniques.

1.4 . Routing algorithms for fat-trees

Here are presented several existing topology-specific algorithms specifically
designed for fat-trees, with their advantages and their limitations. As shown in
Section 1.3.2, up–down routing functions in fat-trees are deadlock-free. Some
discussion is provided regarding fat-trees with failed links, but a more in-depth
overview of fault resilience is provided in Section 1.2.9.

There are other algorithms for fat-trees which can be found but which target
other functionalities not specifically focused on here, such as switch-to-switch
routing [8], link-weight aware routing [99], or multi-homed fat-trees [69].

23

1.4.1 . Ftree

Zahavi defines a greedy algorithm to route fat-trees in a perfectly load-
balanced manner for shift-pattern traffic [97]. Improvements to its resilience
are often considered part of its definition [6, 7]. It is applicable to any BMIN
in which every pair of leaves has at least one up–down path. One of its
immediate advantages is that it does not require perfect PGFTs to generate
valid routing. For this reason, it is implemented in the widely used OpenSM
subnet manager (compatible with Infiniband systems) under the name Ftree.
Figure 1.7 illustrates Ftree in an example fat-tree and with one link missing.

Ftree explicitly coalesces all traffic to the same destination node by travers-
ing a tree within the fat-tree starting at the destination and eventually reaching
every other node (viewed as a potential source). Each traversed link is routed
in its opposite direction: the routing table of the next switch is updated for the
routed destination with its output port into which the step was performed. No
switch can be traversed twice thanks to an explicit check of the corresponding
entry in its routing table. The pseudo-code is provided in Algorithm 1. As
defined in [97], Ftree actually requires every top switch to have a direct down
path to every leaf; in an XGFT, this means that any link failure in the top level
renders the network unroutable. Here, Ftree is defined closer to its actual
implementation in OpenSM (with the ∆ counter and the loop at line 10) to
consider fault tolerance explicitly.

Load-balance between routes to different destinations is attempted thanks
to a usage counter for each upport at each switch. Every time the least used
upport of a switch is traversed (in a primary iteration, as defined in line 1),
its usage is incremented. For example, in Figure 1.7b, for destination 3, the
upport of L1-1 connected to L2-0 is traversed since the other upport does not
allow reaching all sources; however its usage is not increased. Alternately, the
same behaviour can be implemented using an index corresponding to the least
recently used upport at each switch.

The traversal goes as far down as possible before going up to guarantee
shortest paths among the traversed switches (in a degraded or perfect PGFT,
this is not necessary).

Limitations of Ftree

Ftree generates load-balancing routing in a PGFT and is also applicable to
PGFT-like topologies, however the load-balancing procedure does not degrade
gracefully to irregular fat-trees, and it is much more susceptible to quality loss
when faced with few link losses, than are agnostic algorithms [7]. This is simply
due to the load balancing method expecting perfect PGFTs: Ftree does not take
into account the specific topology to balance load, only to make sure routing is
correct. Figure 1.7b illustrates how a single missing link can result in imperfect
load balance. (Moving routes to node 2 through top switch L3-3 instead of
L3-0 would have resulted in equal usage of top level links.) Furthermore,

24

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3
(a) Routes in the complete 2-ary 3-tree.

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3
(b) Routes under failure of L1-0 ↔ L2-1.
There are two distinct routes going L3-0
→ L2-0 and none going L3-3 → L2-1.

Figure 1.7: Ftree routes in a 2-ary 3-tree towards the first four destinations.
Dashed arrows represent “secondary” routes that are computed but never used.

25

Algorithm 1: Ftree
1 foreach upport u of each switch s ∈ S do
2 Reset the usage counter of u

3 foreach leaf switch l ∈ L do
4 foreach endport p of l do
5 n is the node connected to p
6 δ is the NID of n
7 ∆← #L /* Remaining number of leaves to route towards

δ */
8 Ascend(l,δ)

9 Function Ascend(s,δ)
10 foreach upport u of s in ascending order of usage do
11 a is the remote switch (above s) connected to p
12 if δ ̸∈LFTa then
13 d is the remote (down) port (of a) connected to u
14 LFTa[δ]← d /* Set (down) route of a to δ via s */
15 if in the first iteration of l. 1 then
16 Increment the usage counter of u

17 Descend(s,δ)
18 Ascend(a,δ)
19 if ∆= 0 then

/* All leaves have been routed towards δ */
20 Break

21 Function Descend(s,δ)
22 if s ∈ L then ∆←∆−1
23 foreach down group g of s do
24 b is the remote equipment (below s) connected to g
25 if b ∈ S and δ ̸∈LFTb then
26 d ← the least used (down) port in g
27 u is the remote (up)port (of b) connected to d
28 LFTb[δ]← u /* Set (up)route of b to δ via s */
29 Descend(b,δ)
30 if ∆= 0 then Break

26

and counter-intuitively, missing nodes also strongly degrade load balance [6].
In oversubscribed fat-trees, Ftree results in overlapping routes to different
destinations (with the same overlapping factor as the blocking factor); using
multiple VLs helps reduce the resulting pattern-dependent imbalance [38].

1.4.2 . Dmodk
The Dmodk routing algorithm and corresponding PGFT topology are de-

scribed in detail in [95]. Dmodk is equivalent to Ftree in undegraded PGFTs
(except that, unlike Dmodk, Ftree only computes primary routes in an unde-
graded PGFT). Zahavi later referred to both algorithms as Dmodk. In this
thesis, Dmodk refers only to the closed-form algorithm presented here, applica-
ble only to perfect PGFTs, as it was implemented in early versions of BXI FM
for example.

The algorithm relies on a closed-form address-based criterion to determine
whether a switch Sa is down-reachable from switch Sb and, if so, which ports
Pb can be selected as output port:

DP (Sa,Pb)=


(l,ah,ah−1, . . . ,al , . . .a1), (k,bh,bh−1, . . . ,bl , . . .b1, q) | l < k
and a j = b j ∀ k < j ≤ l
and ak = q mod mk

Otherwise, an arithmetic formula defines the upport (with index p) to
select:

pup =
⌊

d∏l
k=1 wk

⌋
mod (wl+1 pl+1)

The level-wide constants (or arities) wl and pl respectively denote the
numbers of uplinks and of interlinks of all switches at level l. With this
formula, the routes to each destination are coalesced as early as possible, and
routes to different destinations are spread out as much as possible. We can
justify this strategy by modelling collisions between different routes to the
same destination as being unavoidable by the routing function: it then follows
that a reasonable balancing strategy is to avoid collision between routes to
different destinations, which requires maximising collisions between all routes
to each destination. A more formal justification is provided in Chapter 2. This
distribution of routes is illustrated in Figure 1.8; notice how all secondary
routes are computed. These closed-form steps rely on a given organisation
of addresses of switches and indexing of their ports. Dmodk has very low
complexity and is a perfectly parallel routing algorithm for PGFTs, but it is
not applicable to degraded PGFTs or irregular fat-trees.

Gomez [36] routes k-ary n-trees with a method which applies bitmasks
to the destination number. This method is defined in detail for k = 2; a sim-

27

ilar approach can be extended for higher values of k. This algorithm can be
considered as a specialised version of Dmodk routing.

1.4.3 . Smodk
In some systems, the source of each message, or its input port in each

switch, is known to the routing function. From this a symmetric alternative
to Dmodk can be defined: Smodk, which propagates messages similarly to
Dmodk but based on source node ID rather than destination ID [73]. This
algorithm concentrates together routes from the same source, thus maximising
the number of same-source collisions.

Here we define Smodk using input port notation, with i referring to the
index of the input port of a message. For upward routes, the output upport pup
is determined using i′, the index of i among the ordered set of downports of
the switch:

pup =
⌊
i′
⌋

mod (wl+1 pl+1)

Smodk is not defined specifically for PGFTs, so downport selection in the
case of parallel ports is not precisely defined. One reasonable method is to
select the downport among authorised downports similarly:

pdown = ⌊
i′
⌋

mod pl

An example application of Smodk is shown in Figure 1.9.
In cases where communications are symmetrical between patterns with

several destinations per source and those with several sources per destination,
there is no reason for Dmodk or Smodk to be better than the other. Otherwise
there isn’t necessarily one choice which is always best, but choosing Smodk
for multiple-destination-heavy patterns (and Dmodk for multiple-source-heavy
patterns) is a reasonable heuristic [73].

We refer to Dmodk and Smodk together as a class of algorithms as Xmodk
for the rest of this thesis.

1.4.4 . Random shortest path routing (RandSP)
One approach to balancing the load of deterministic routes in a fat-tree is

to randomly choose minimal routes. Random shortest path routing can be used
here, see Algorithm 2. As hinted in the algorithm, it is possible to implement
a fast criterion for shortest paths in precisely defined fat-trees with known
topological addresses: in the same way that there is a simple rule to determine
the NCAs between two nodes, it is equally easy to determine either the upports
of a switch leading towards the NCAs (in a shortest path) or the downports
leading towards the destination (also in a shortest path). This is used in
existing literature regarding random routing for, or applicable to, fat-trees [37,
29, 73]. In fat-trees, shortest paths are up–down, therefore random shortest
path routing is deadlock-free in fat-trees. Compared with other shortest path

28

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

Figure 1.8: Dmodk routes in a 2-ary 3-tree towards the first four destinations.
For destination 1 at switch L2-3, the first uplink is selected: this illustrates
the pre-modulo integer division (⌊1

2⌋ mod 2= 0).

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

Figure 1.9: Smodk routes in a 2-ary 3-tree from the first four sources.

29

algorithms, random shortest path routing tends to be simple to implement,
fast to execute, and easy to parallelise.

On average, routes are randomly load-balanced: all-to-all traffic will not
cause implicit bias towards any part of the topology. Deviations from the av-
erage will, however, cause routes to overlap and induce network congestion.
Statistically, these deviations are very common and in practice, RandSP pro-
vides low-quality routes compared with systematically load balancing routing.
This will be studied in more detail in Section 2.

Algorithm 2: Random shortest path routing
1 foreach switch s ∈ S do
2 foreach node n ∈ N do
3 P ← ports of s on the shortest path to n (e.g. using topological

addresses in a fat-tree or the Dijkstra algorithm)
4 δ is the NID of n
5 LFTs[δ]← random port among P

1.4.5 . Ranking
Fat-tree algorithms require knowledge of switch levels, or at least link di-

rection. In real subnet managers, this information is automatically determined
after discovery of the network, in a step sometimes called ranking or simply
discovery. During this step, it is possible to find topological inconsistencies
(forbidden links) in case the manager has specific requirements. Algorithm 3
allows ranking upwards, starting at leaf switches, while checking for topologi-
cal inconsistencies (for example, if two leaf switches are connected together, the
check at line 11 will find the inconsistency). If instead top switches are known,
ranking downwards can be done using the same algorithm, by swapping rank
for (l,h− l−1) level pairs afterwards.

Generally speaking, there is little discussion in the existing literature re-
garding ranking. One exception is an article about the application of OpenSM
algorithms to degraded fat-trees [7], which mentions how orphaned leaves are
virtually flipped into high levels by the ranking of Ftree; the recommended
solution is to manually tag each switch so as to force their rank in the tree.
Furthermore, the documentation of OpenSM [62] describes the ranking strate-
gies used in its Fat-tree specific algorithms (Ftree and UPDN). These are as
follows:

• ranking upwards starting at leaf switches (corresponding to level 0) if the
topology is a “pure” fat-tree (defined in terms of coherent arities across
levels, which includes QFTs, a type of IFT);

• ranking downwards starting at manually provided top switches;

30

Algorithm 3: Rank upwards starting at leaf switches
1 rank leaf switches to level 0
2 T ← L
3 while T ̸=Ø do
4 N ←Ø
5 foreach s ∈ T do
6 foreach neighbour s′ of s do
7 if s′ is unranked then
8 rank s′ to level of s + 1
9 N ← N ∪ {s′}

10 else
11 check s′ is ranked directly above or below s

12 T ← N

• ranking downwards starting at statistically determined leaf switches.

Downward methods become necessary if at least one leaf switch is expected
to be higher than others. The latter (statistical) method is defined as follows
(note CAs correspond to channel adapters, interchangeable with compute nodes,
nodes correspond to switches, and root nodes correspond to top switches):

Auto-detect root nodes — based on the CA hop length from any
switch in the subnet, a statistical histogram is built for each switch
(hop num vs number of occurrences). If the histogram reflects a
specific column (higher than others) for a certain node, then it is
marked as a root node. Since the algorithm is statistical, it may
not find any root nodes. The list of the root nodes found by this
auto-detect stage is used by the ranking process stage.

In practice, this statistical method is prone to failure in case of topology
irregularity, with a second column appearing as high as the desirable one. A
novel resilient alternative is provided in Annex 2.

1.4.6 . Fat-tree-specific fault resilience
Some of the research regarding oblivious fault-resilient routing focuses on

techniques that explicitly target degradations to regular fat-trees [98, 68]; there
are several re-routing strategies for these techniques. The UPDN [63] and
Ftree [97] routing engines available in OpenSM can also be applied from scratch
to a degraded fat-tree. PQFT [98] is similar, though it requires a complete list
of faults. The combination of Dmodk as an offline algorithm and Ftrnd_diff
as an online algorithm (available in older versions of BXI FM [85]) aims at
fast reaction to faults with minimal routing changes, by relying on an iterative

31

list of network changes and an up-to-date view of the network. A very similar
method is described by Xu et al. [88], with an observed performance degradation
described as graceful but apparently quite significant. Fabriscale [86] also
provides fast centralised re-routing of fat-trees, by precomputing alternative
routes. Another similar approach through fast hardware reaction is Mellanox’s
SHIELD technology [58].

The random operation chosen in Ftrnd_diff results in progressive degrada-
tion of load balance and incapacity to return to the original routing in case of
fault recovery. Ftrnd_diff does manage to recover rapidly from minor failures;
however, large numbers of simultaneous changes (which happen for example
when entire islets are rebooted) cause computation times to skyrocket in cur-
rent implementations. The strategies of PQFT, Fabriscale and SHIELD which
consist of moving only invalidated routes let one expect somewhat similar load-
balancing issues as with Ftrnd_diff. Studies show topology-agnostic routing
outperforms fat-tree-specific routing under sufficient topology degradations [7,
20].

1.5 . Problem statement and plan

This overview of context has shed light on several aspects of the design of
supercomputers. We find that the interactions between some of these aspects
are lacking in the current context. Indeed, we first find that quality evaluation
methodologies do not provide meaningful metrics without arbitrary simulation
or experimentation. We also find that current resilient fat-tree-specific routing
algorithms do not provide high-quality routing under realistic amounts of
equipment failure. Furthermore, we find that existing fat-tree-specific routing
algorithms do not provide good quality routing in the case of node heterogeneity.
Finally, we find that there is no research targeting better-than-agnostic routing
for the common case of strongly irregular fat-trees.

Correspondingly, Chapter 2 will present techniques to comparatively es-
timate the quality of routing algorithms, including a partly novel one. The
following sections will each present quality analyses using these tools. Chap-
ter 3 will take on a case study for a specific quality problem observed with the
otherwise state-of-the-art routing techniques in some heterogeneous systems,
and present a solution which can extend many existing algorithms. Chapter 4
will present a novel approach to high-quality fault resilience in a common
target topology. Multiple novel approaches to routing irregular fat-trees will be
presented in Chapter 5.

32

O is the big O notation
denotes cardinality

λn is the (only) leaf switch connected to node n

↱ , ↰ respectively denote down and up links, according to rank
Gs is the ordered list of port groups of switch s
Ωg is the remote switch connected to port group g

When considering a single topology:
S is its set of switches
L is its set of leaf switches (L ⊂ S)
N is its set of nodes, indexed by NIDs
E is its set of edges
C is its set of channels

Table 1.1: Topological notations

33

2 — Quality comparison of routing algorithms

2.1 . Introduction

Once the routes of a network are guaranteed to be valid and deadlock-free,
we can start studying the resulting network performance. This chapter first
covers some existing models used for such studies, and then provides some
iterative contributions.

Network performance can be defined directly based on the speed of execu-
tion of target applications, or using other network criteria such as bandwidth
and latency. Specific measures such as the final run time are good measures
insofar as they precisely describe a use case’s performance and, if the use case
is precisely defined (such as a single application or set of concurrent applica-
tions), they have final say. In case of strong run time variability, which can
arise depending or not on concurrent applications, care should be given to
characterising it. In case of concurrency, care should also be given to deter-
mining what compound performance metric best reflects desired behaviour
(such as overall performance or fairness). Generic measures such as effective
network latency and throughput can be seen as attempts to characterise the
network independently of a specific use case (either topology details or commu-
nication scheme) [24]; they can also correspond to performance targets other
than specific application run time, such as overall system efficiency. Literature
relating to network design and evaluation often consider specific metrics based
on these generic ones, such as traffic (measured throughput as a fraction of
network capacity) and measured latency-traffic graphs (with applied load as
a synthetic input parameter); these allow characterising the network rather
than the system as a whole, while being specific to a defined system.

The most generic measures that take into account the routing function
are static metrics, based on the number of paths going through ports (e.g. the
edge-forwarding index [39]). Such a number can be understood as a model for
potential load under uniform traffic, and under the assumption of sustained
traffic as an estimate of congestion risk.

35

2.2 . Traffic simulation

Regardless of the type of study considered, choosing the type of traffic
to simulate is important since the quality of a routing function is strongly
dependent on the traffic then applied. This section presents a few models to
simulate traffic commonly found in existing research.

2.2.1 . Static traffic patterns
All to all (A2A) Some research simply considers all routes possible. For
example, the original article defining the edge-forwarding index computes
it for every possible route in the network. Similarly, the article presenting
Nue applies the edge-forwarding index (only on switch–switch ports) for every
node–node route in the network [21].

Scatter and gather Applications commonly distribute data from a single
node; accordingly they retrieve computation results to the single node. The
corresponding pattern matrices are either a single column or row, placed at
the index of the single node. This is sometimes called a hotspot pattern for the
exacerbated capacity to congest in a single point of the network.

Random A simple model of random communication commonly used is for
each node to send messages to a random destination. Note that with this
pattern there may be destinations with multiple sources, or incoming flows,
and conversely others with no source (i.e. the traffic pattern matrix is not
generally a permutation matrix). Another approach could be to use a matrix
with ones randomly placed; to the best of my knowledge there is no such
communication pattern studied in existing research.

Random bisection One model used to estimate effective CBB [40, 75] is
by randomly splitting the set of nodes into two equal halves and randomly
computing pairs between all elements of both halves. Communications can
either be only from one half to the other (unidirectional) or between both halves
(bidirectional). In the latter case, the traffic pattern matrix is a permutation
matrix. For a network with n nodes, there are 1

2
∏P

i= P
2

i possible bisect commu-

nication patterns; this is unmanageably large and random samplings are used
instead of exhaustive enumeration. Generally, the sample size is not precisely
justified but statistically significant.

36

Random order ring (ROR) A model of communication which is closer to
the behaviour of many applications is to define a ring (or n-cycle) of nodes
communicating between neighbours in either (unidirectional) or both (bidirec-
tional) directions. The order of the ring is chosen at random to model systems
in which application node order is not optimised to correspond to the routing
technique. Unidirectional RORs are permutations.

Shift permutation (SP) Shift permutations are a generalisation of ring
patterns1.

Definition 28. In the k-shift permutation (SPk) of a network with N nodes,
each source s sends a message to the node with rank k, according to the following
function:

SPk(s)= (s+k) mod #N

Shift permutations are particularly interesting because global collectives
can be implemented efficiently as a sequence of shift permutations [45]. Fur-
thermore, for networks with rearrangeable optimality (e.g. Clos networks,
PGFTs), there is a static routing function which is optimal for all shifts. Shifts
are the simplest class of equivalent permutations.

Shift permutations are only interesting given a global node numbering,
since shifts on a random numbering are equivalent to random permutations.

Application traffic pattern matrix Instead of standard patterns, custom
matrices corresponding to a specific application can be used if they are known
in advance, which is only the case for applications with deterministic commu-
nication behaviour. Care should be taken to respect the node ordering used by
the routing algorithm and the one used by the application’s communication
layer.

Topology-specific adversarial traffic In certain topologies, some traffic
patterns are famously difficult to sustain in a performant way. For example,
DFs have few links connecting each pair of groups (in comparison with fat
trees), hence a static pattern which stresses this situation is for each node to
send to a destination in the next group. With a natural node ordering, these
patterns represent a subset of shift permutations.

1Unidirectional rings correspond to either SP1 or SP−1 = SP#N−1. Furthermore, shifts are
rings iff gcd(k,n)= 1.

37

2.2.2 . Dynamic traffic simulation
Another class of traffic simulation takes into account temporal or dynamic

behaviour as well. Examples include communication traces recorded from real
application runs (temporal order is used to determine message dependencies),
as well as synthetic traffic generation schemes such as uniform random traffic
from all nodes with a given load ratio, or hotspot traffic (in a gather pattern)
to a single destination with a given load ratio as well. Detailed simulations
integrate details such as individual message size or target type.

2.3 . Static metric

This thesis focuses mostly on oblivious routing techniques, therefore static
metrics seem adapted to describe the quality of routing since they use similar
data to that available to the routing function. As described previously, static
metrics are based on counting paths crossing each port for a set of routes. The
simplest such metric is the edge-forwarding index metric:

Definition 29. The edge-forwarding index (noted ξ) of a network, is the maxi-
mum number of paths crossing any single edge for all routes in a network [39].

On all switch–node (resp. node–switch) edges, all paths to (resp. from) the
node are counted; these values are generally much higher than at any switch-
–switch edge without being affected by the routing function. This effectively
prevents the study from distinguishing routing functions, a simple alternative
is therefore to count only switch–switch edges (resulting in a metric noted Ξ).
In either case, the complexity of determining this edge-forwarding index is of
the order of traversing all routes and the memory requirement is of the order
of one integer (large enough to store up to the number of routes considered) for
each port.

The number of paths traversing each port models a maximal theoretical
load applied to the port in case of sustained message flow without taking into
account how the rest of the network would throttle each flow. In this sense, the
edge-forwarding index relates to sustained flow situations at a simpler level
than queueing, flow, or Markov/Petri models. Choosing to focus on a simple
static metric means disregarding performance effects due to dynamic behaviour
of communications and local behaviour of congestion propagation. Instead,
static metrics represent a simple model of worst-case scenario congestion risk
based on maximal theoretical load. Comparing risks for the same traffic pat-
terns on different routing functions provides a simple estimate of contention
risk under sustained traffic; in practice, this reflects actual comparative ex-
perimentation with representative situations [27]. One approach to explain
comparative static metric analysis could be to define a congestive value esti-
mating the ratio between edge capacity over node production or consumption
capacity; from this a scenario with a static metric greater than the congestive

38

value can be generally considered of lower quality than one with a metric
below this value (as a simple predictive model of congestion happening at all).
This would limit analysis to cases with differing comparisons to the congestive
point and be specific to network characteristics, while a simple comparison
of static metrics without scale or reference allows comparison between any
routing functions. Throughout the remainder of this thesis, a simple static
metric applied to two generic traffic patterns (all presented in more detail in
the upcoming sections) are used primarily for quality comparisons of routing
algorithms on test network topologies.

We will note fp(P) the congestion metric f applied to the edge/port p
with the set of paths P. The maximum value across a network G(S, N,E) is
fG(P) = maxp∈E(fp(P)). The set of paths for A2A under the routing function
R is A2A(R). The edge-forwarding index previously described is therefore
ξG(A2A(R)). For example, a fully connected network GF of 5 switches and 10
nodes (with 2 nodes connected to each switch) under shortest path routing RS
has the following edge-forwarding indices:

ξGF (A2A(RS))= #N −1= 9

ΞGF (A2A(RS))=
(
#N
#S

)2
= 4

The ξ value is attained at each node–switch (resp. switch–node) edge since
all the other nodes are destinations (resp. sources) of paths crossing the edge.
The Ξ value is attained at each switch–switch edge since it carries all paths
from the nodes connected to the incoming switch, to the nodes connected to the
outgoing switch.

Adding to the example a routing function R′
S, defined from RS by moving a

single path to go through any extra switch, the two edges receiving the extra
path see their ξ value increased by one. In this case we can see how only Ξ
reflects the increased risk of congestion and therefore how it can help compare
routing functions better than ξ:

ξGF (A2A(R′
S))= 9

ΞGF (A2A(R′
S))= 5

39

s p d

s p

(a) s = 1

s p d

p d

(b) d = 1

p

(c) s > 1 and d > 1

Figure 2.1: Cases of s sources and d destinations routed through a port p
illustrating the maximal theoretical flow model inducing µG(P).

2.3.1 . The µ static congestion metric
An improvement over the edge-forwarding index metric is the min(src,dst)

metric (here noted µ). It was introduced for a branch and bound routing algo-
rithm [72]. This metric follows the idea that the number of flows estimated by
the edge-forwarding index does not correspond to an attainable sustained load
when taking into account the production and consumption rates of each node.
Under the assumption that all nodes are identical in capability and that their
production rate is equal to their consumption rate, the estimate for maximal
sustained load, or congestion risk, between s sources and d destinations can
be reduced as follows:

• If s = d = 0, there is no possible flow. (Note that one cannot be nil while
the other is not.)

• If s = 1 (Figure 2.1a), then d does not affect the maximal load, equal to
the production rate of the source node. Furthermore, assuming uniform
production rate and port capacity greater than node production rate, no
port subject to only these flows will contend.

• If d = 1 (Figure 2.1b), then s does not affect the maximal sustained
load, equal to the consumption rate of the destination node. Potential
contention in case the combined production rate is greater than the port’s
capacity can be disregarded since it is lesser than the HoL blocking
coming from the destination under sustained load.

• If s > 1 and d > 1 (Figure 2.1c), the maximal load is greater than each
node’s capacity. More specifically, the maximal load is min(s,d) times
greater than node capacity.

From this model of flow congestion, we can compute the maximal theoretical
load using each port’s number of sources and destinations for a given set of
paths P (respectively srcp(P) and dstp(P)) as:

µp(P) :=min(srcp(P),dstp(P))

40

Correspondingly for a complete network G(S, N,E):

µG(P) :=max
p∈E

(min(srcp(P),dstp(P)))

Interestingly, this metric brings a similar benefit to Ξ: switch–node and
node–switch edges do not contribute to µG . This reflects the idea that potential
congestion at these edges cannot result from sub-optimal routing.

A limitation of this metric is that it does not take into account how flows
throttled at one port will not contribute as much to other ports’ maximal load.
Designing a static routing algorithm optimised for this metric is nonetheless
a reasonable approach to designing a routing algorithm well-balanced in the
worst case for the considered communication pattern. Each port’s number of
sources and destinations must be known at the same time in order to compute
this metric; it therefore requires two passes over every route followed by one
pass over every port (to get its minimum), with at least two integers per
port. This remains inexpensive compared with the complexity of most routing
algorithms.

2.3.2 . Generic static traffic patterns of choice

Without knowledge of real traffic behaviour, a simple approach is to compute
µG(A2A(R)), considering the worst possible communication pattern. However,
real traffic in supercomputers is not well represented by the A2A pattern:
since networks are at best designed to accommodate any permutation (like
Clos telephone networks), it is strictly more efficient to decompose collective
communications into sequences of permutations (using communication trees
decomposed in Bruck patterns for example) than to push every point-to-point
communication into the network [40]. In practice, this is always done by at
least one communication layer. Accordingly, we limit our study of congestion
risk to permutation patterns only. For network G(S, N,E), we denote SN the
set of all permutation patterns (the symmetric group of N).

Not only is studying permutations more realistic than the all-to-all com-
munication pattern, it is also more useful to understand differences between
routing functions. Indeed, A2A cannot be optimised more than spreading traffic
in some way, but each permutation might perform very differently depending
on routing function.

An immediate collateral benefit to this specialisation is that for any per-
mutation, every node has exactly one source and one destination (potentially
itself) and, as a result, we have the following property:

∀P ∈SN , ∀p ∈ E, µp(P(R))= srcp(P(R))= dstp(P(R))

This allows simplifying computation of the µ metric to the same complexity
as the Ξ metric.

41

Unlike A2A, SN is a set of #N! patterns that cannot be studied exhaustively.
This raises two issues: how to sample meaningful patterns, and how to reduce
the results to one or few meaningful values.

Random permutations
The first (oblivious) choice of sampling is random sampling. This can be

used with the aim of representing typical behaviour, in which case a reasonable
approach is to compute statistics: mainly the median value which can be
complemented with 1st and 3rd quartiles (or 1st and 39th 40-quantiles to
estimate a 95% credible interval). We note the median value for a random
sampling RP(r) of r permutations as follows:

µRP(r)
G (R) :=median

P∈RP(r)
(µG(P(R)))

Alternately, the maximum µG value for the considered sample could be ex-
tracted as a way to estimate maxP∈SN µG(P(R)). Its accuracy depends strongly
on sampling size and distribution shape, and knowledge of the worst-case per-
mutation does not help understand the behaviour of individual permutations,
therefore we do not try to estimate this value.

In many scenarios, applications running on real systems generate traffic
which behaves like random permutations. This might be due to job placement
strategies progressively degrading to fragmented placements with regards to
topology locality, and/or due to non-regular communication patterns (which
can be unavoidable when using custom communicators in MPI). Regardless of
the cause or how avoidable this behaviour is, it is realistic and should be taken
into consideration when evaluating a routing algorithm.

The number of permutations r is hard to choose in advance but can be
estimated conservatively large (if available processing power and time allow)
based on statistics on similar prior cases. Alternately, a dynamic stop criterion
could be computed online based on statistics over the growing set of µRP values,
such as standard deviation of a statistically significant number of µRP values.

Shift permutations
The second choice of sampling is the full set of shift permutations (SP),

since some communication layers are expected to decompose collective com-
munications in subsets of shift patterns [96]. This follows the property of
rearrangeable optimality described in Subsection 2.2.1 with the convention of
targeting the simplest class of equivalent permutations. Global collectives can
be decomposed in sequences containing any shift permutation, so congestion
risk under shift patterns is characterised using the following single static
metric:

µSP
G (R) :=max

k
(µG(SPk(R)))

42

An interesting use of this metric is that it computationally allows deter-
mining the blocking factor of a network for a given routing function, or of the
network itself if the considered routing function is optimal for shift permu-
tations. For example, an RLFT has µSP(Dmodk) = 1, corresponding to its
non-blocking nature.

The assumption that traffic actually traverses the network as shift patterns,
realistically expands to the following assumptions:

• Communication layers decompose global collectives as shift permutations
on the global order,

• Jobs are not fragmented on the global order,

• For programs using MPI, either they do not use custom communicators,
or MPI preserves the global numbering for custom communicators.

2.3.3 . Effective diameter
The studied metrics only model quality in terms of load or congestion.

When possible and useful, this can be complemented by another static metric
based on the effective distances between nodes under a given routing function,
to model effective uncongested latency (also called effective diameter). The
effective distance from nodes s to d under routing function R is noted νs,d(R)
and corresponds to the number of edges in the path from s to d. Much like a
network’s overall latency for global communications is modelled by its diameter,
the effective overall latency for a specific job is modelled by the maximum
effective distance between its nodes. However, job placement is not known
beforehand in general, and average effective distance νG for all nodes, reflecting
effective latency of individual communications, can complement diameter; it is
computed as such for a network G(S, N,E):

νG(R)=mean
s,d∈N

(νs,d(R))

This models average uncongested latency well when job placement is uni-
form and communications are independent from one another. Alternately,
median distance could be used to model representative uncongested latency,
but it provides little insight over diameter when the distance separating most
pairs is the same as the diameter (such as in most fat trees). If job size is
known, and if global communications are expected instead of independent ones,
then average or median effective diameter for such jobs could be computed
instead, in a much more difficult way. However, in the general case, study-
ing diameter complemented with average distance is enough to give insight
regarding effective network uncongested latency.

This metric doesn’t bring any insight when comparing minimal routing
functions in the same network, but it can allow obliviously comparing networks

43

(a) GP = PGFT(3;4,2,4;1,2,2;1,2,1) (b) GQ =QFT(3;4,2,4;1,2,2;1,2,1)

Figure 2.2: Example of recabling to reduce effective diameter

or routing functions. As an example, µ and ν can be used to show how a QFT
allows recabling an existing PGFT with the same load properties but with
lower effective diameter: Figure 2.2 shows a PGFT GP and a QFT GQ , both
non-maximal topologies with 20 8-port switches, 32 nodes, and 80 links, and
with half of the ports unused in the third level. This last fact corresponds in
both cases to a blocking factor of 2:

µSP
GP

(Dmodk)=µSP
GQ

(PQFT)= 2

We can differentiate the networks using the newly defined average distance
metric. In both cases, the routing function is minimal, and we can look at
distance instead of effective distance. In GP , each node is 2 hops from 3 others,
4 hops from 4 others, and 6 hops from 24 others. In GQ , each node is 2 hops
from 3 others, 4 hops from 12 others, and 6 hops from 16 others. As a result,
we find the averages:

νGP (Dmodk)= 2×3+4×4+6×24
3+4+24

≈ 5.35

νGQ (PQFT)= 2×3+4×12+6×16
3+12+16

≈ 4.84

In this case, switching to the QFT brings the average distance down by
nearly 10% (and doubles the size of diameter-4 groups) in exchange for a more
complicated routing algorithm.

Effective diameter is a contribution that can be used to quantitatively
compare routing functions and topologies in contexts where they affect path
length. A similar concept with the same name already exists in the context of
the Internet, but instead describing the minimum distance at which a given
proportion of all nodes is attainable from a given node [65].

44

Figure 2.3: Example topology G2 (XGFT(2;4,8;1,4))

Algorithm µSP
G2

µRP(1000)
G2

Dmodk 1,1,1,1,1,1 5,5,5,5,5,5
Ftree 1,1,1,1,1,1 5,5,5,5,5,5

RandSP 9,7,7,9,7,8 5,5,5,5,5,5
Minhop 1,1,1,1,1,1 5,5,5,5,5,5

Table 2.1: Static metrics applied to G2

2.4 . Example application of static metrics

As a simple example to illustrate the kind of insight static metrics can
provide, let’s consider a 2-level 8-switch RLFT topology G2 (corresponding to
formula XGFT(2;4,8;1,4) as shown in Figure 2.3), routed with Dmodk, Ftree,
RandSP, or OpenSM’s Minhop. As described in Section 2.3.2, µSP

G2
(Dmodk) is

equal to 1 since G2 is an RLFT. For RP patterns, we arbitrarily sample 1000
random permutations. Since all considered algorithms are minimal, effective
diameter metrics are not interesting. OpenSM’s Minhop is computed as a black
box, testing the hypothesis that it chooses randomly among equivalent paths.
The other algorithms were presented in Section 1.4 and are known (Dmodk
and Ftree are deterministic and RandSP is non-deterministic). Each algorithm
is run and analysed 6 times to determine statistical behaviour for RandSP and
Minhop (since they are at least potentially non-deterministic) and to estimate
RP stability for the chosen sample size, with results displayed in Table 2.1.

Results show that:

• the chosen sample size appears sufficiently large for the considered
topology (since µRP(1000)

G2
doesn’t vary for each run),

• Dmodk and Ftree behave as expected (being optimal and equivalent in
PGFTs),

• RandSP behaves poorly for shift permutations,

• Minhop behaves better than RandSP (and is seemingly deterministic)
and performs as well as Ftree/Dmodk in this small RLFT,

45

• all runs resulted in the same median congestion risk for random permu-
tations.

In turn, this leads to the conclusion that any one of these algorithms is
adapted to this topology for general use, though RandSP is inadapted for shift
permutations.

2.5 . OMNeT++-based simulation

As described in Subsection 2.2.2, the behaviour of a network under commu-
nications with known temporal behaviour can be simulated, for example at flit
level using OMNeT++ [83, 84]. There are many examples of simulations based
on OMNeT++ [59, 54, 5]. Such a simulation is more precise than the previous
ones which use static traffic patterns, since it doesn’t rely on a sustained load
assumption. Instead, it simulates congestion behaviour across all ports at each
time step, with an arbitrary precision depending on how simulated decision
making precisely reflects reality. The limitation of such a simulation is that it
does not reveal global network behaviour, which is instead at best estimated
by simile, by comparing simulations across a variety of realistic use cases.

We simulate a use case with OMNeT++ in Section 3.5, as a partial attempt
at verifying legitimacy of the static metric used everywhere else. It was outside
of the scope of this work to design simulation parameters that reflected a wide
array of use cases, and instead an existing simulation tool for HPC systems
was used: Sauron [92]. This tool, based on the OMNeT++ framework, has been
used in several studies of HPC routing techniques [93, 94], including several
combining queueing schemes and adaptive routing [55, 70, 71] and energy
saving techniques [101]. Within this framework, simple parameters were
chosen to model a network small but large enough to exhibit the behaviour
studied in that case.

46

3 — Routing for heterogeneous fat-trees

Section 1.2.8 presents node-type heterogeneity. For applications which are
aware of unusual node types, the implementation of their communications
often results in node-type-specific communication phases: at any given time,
source nodes of a single type are sending messages to destination nodes of a
single type. The aim of this chapter is first to show in what ways existing load-
balancing routing algorithms (Dmodk/Ftree and Smodk) can result in avoidable
congestion during node-type-specific communication phases. Secondly, this
chapter proposes a new routing technique extending many existing algorithms,
providing the same load-balance for node-type-specific patterns as the base
algorithms do for type-unspecific ones.

Section 3.1 describes the existing context in more detail to present com-
mon placement strategies. A sample heterogeneous topology is presented
in Section 3.2, alongside one of the previously presented common placement
strategies. A corresponding adversarial communication pattern is chosen in
Section 3.3, and three routing algorithms are then analysed in detail to show
how they under-utilise available network resources. Section 3.4 then presents a
new technique to use these resources more efficiently without losing properties
of the existing algorithms, and provides a static study of this new technique for
the considered case study. The study is reproduced with a dynamic simulation
in Section 3.5. Finally, Section 3.6 concludes on this chapter.

3.1 . Heterogeneous clusters

Supercomputers are often clusters made of several types of nodes, rather
than the common description of a single type of computing nodes. Secondary
nodes can include storage nodes for short and long-term data storage; service
or management nodes for login, node reservation, deployment, monitoring,
fault-tolerance; GPGPU and FPGA nodes for optimised computations.

There are various strategies to place secondary nodes in existing clusters,
which are usually not described in research material. In the case of fat-trees,
strategies can include placing a constant number of secondary nodes at every
leaf, adding an irregular subgroup with secondary nodes connected to the
top switches like the other regular subgroups (this generally breaks fat-tree
properties), or connecting the cluster to an external topology via routers. This
last possibility is common with storage systems such as the Lustre parallel
filesystem, where routers can be nodes of the cluster connecting it with an
array of storage servers of which the fabric management and routing algorithm
are not aware.

As a practical example affecting secondary node placement, first generation

47

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6316 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Figure 3.1: Example topology G3 with storage nodes in grey, and only two out
of six groups shown. The pathological case study pattern is shown in red.

48-port BXI leaf switches have either zero or three optical ports. The optical
ports are numbered identically on all switches of the same model and are
dedicated to nodes physically far within the network; in practice, secondary
nodes. As we will see, this impacts both placement and routing, potentially
exacerbating performance issues.

3.2 . Case study topology

The canonical situation we are studying here which exacerbates avoidable
congestion, as a result of node-type heterogeneity, arises when the blocking
factor is greater than 1:1, when all nodes of a given type are connected to
the same port numbers on leaf switches, and when applications communicate
by node-type-specific phases. Accordingly, we have chosen as a case study to
consider a 6-port, 3-level fat-tree topology G3 with blocking factor 4:1, defined
as XGFT(3;4,4,6;1,2,2), shown in Figure 3.1. Nodes are indexed by port rank
on their leaf and by leaf address comparison between leaves. The last node
connected to each leaf (or more precisely, every node with an NID congruent to
3 modulo 4) is a storage node. Every other node is a computing node.

48

3.3 . Analysis of a node-type-specific communication pattern

This case study is based on a communication pattern one might find in
some distributed memory applications: data collection from computing nodes
to storage nodes. In this case, a pathological case with all routes crossing top
switches: computing nodes with NID n communicate to the storage node of the
fourth next leaf, with NID d:

d =
((⌊n

4

⌋
+4

)
mod 32

)
×4+3

For example, nodes with NIDs 36, 37 and 38 send to the node with NID d′:

d′ = ((9+4) mod 32)×4+3= 55

For a given routing function R, we call C2IO(R) the subset of routes used
by this pattern.

3.3.1 . Dmodk/Ftree performance
G3 is an XGFT, therefore Dmodk routing and Ftree routing provide the

same result. With both routings, routes going upwards from leaves are com-
puted using the formula p = d mod 2 equal to 1 for all considered destinations,
therefore always using the 2nd up port. Ports are ordered by other-end switch
address, and all routes go through switches (1,∗,1). Next up, routes going
upwards from these switches are computed using the formula p = ⌊d

2

⌋
mod (2),

equal to 1 for all considered destinations, therefore always using the 2nd up
port. All routes go through switch (2,1,1). Finally, routes go down to the
correct destination through the only shortest path. These routes are shown
in Figure 3.2, with corresponding number of sources and destinations at each
edge.

The highest congestion risk arises in each edge of 6 top-level links, wherein
all 12 computing nodes of a group are sources to all 4 storage nodes of another
group. As a result, we have:

µG3(C2IO(Dmodk))=µG3(C2IO(Ftree))= 4

To reformulate this result: for the given communication pattern, 3 top
switches are unused while each port of the remaining top switch is at risk of
congestion under the load of 4 distinct flows.

Even though 4 sustained flows on an edge might not induce congestion (de-
pending on characteristics of the considered network), large realistic examples
can result in much larger congestion risks. Regardless, this distribution of
routes is intuitively sub-optimal.

49

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6316 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

3

12

3

12

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

(a) number of sources

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6316 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1

4

1

4

1 1 1 1 1 1 1 1

(b) number of destinations

Figure 3.2: C2IO routes in G3 under Dmodk routing.

50

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6316 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

2 1

4
8

2 1

4
8

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

(a) number of sources

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 6316 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1

4

1

4

1 1 1 1 1 1 1 1

(b) number of destinations

Figure 3.3: C2IO routes in G3 under Smodk routing.

51

3.3.2 . Smodk performance
With Smodk, routes from computing to storage nodes are spread per source.

With the same process as Dmodk for computing nodes as destinations, we
determine which ports are used with Smodk for computing nodes as sources.
These routes are shown in Figure 3.3.

Each leaf switch spreads its 3 routes going upwards among its 2 up ports
using the p = s mod 2 formula. This places 2 routes on the 1st up port and
1 route on the 2nd up port. At the next level, the 3 routes are spread using
the p = ⌊ s

2

⌋
mod 2 formula over the 3 first up ports of the 2 switches in the

group. Downroutes take the only resulting minimal path. With this process
duplicated to all leaves, 4 sources and 4 destinations are routed through each
of these 3 top-level links. This leaves these links as the highest congestion risk,
with 4 distinct flows:

µG3(C2IO(Smodk))= 4

3.3.3 . RandSP performance
The previous algorithms make an unnecessarily large number of unrelated

routes overlap, because the modulo operation depending on NIDs has no
information about the communication pattern. RandSP does not depend on
NID; it spreads all routes according to a uniformly random distribution over
the available ports and, as a result, every subset of routes is on average spread
uniformly. Therefore, C2IO(RandSP) does not have particularly coalesced
routes.

However, distributing each set of 12 routes into its corresponding 4 top-
ports practically always causes collisions between distinct flows. To estimate
the probability, we first define a collision as a port whose µ value is greater
than 1. Then, we notice that the communication pattern is made up of groups
of 3 sources sending to 1 destination, from which we deduce that the number
of sources is never smaller than the number of destinations at any port. As a
result, we can replace the µ metric with the number of destinations. To keep
this metric at 1, each distribution of 12 routes (with 4 destinations) over 4
ports must assign each destination to a separate port. Given that each route
is independently chosen at random, the probability of each set of 3 coalesced
sources to be assigned the same port is given by

(1
4

)2. In turn, the probability
of all 4 sets to each be on a single port is given by

(1
4

)2×4. Furthermore, the
probability that these ports are distinct from one another is given by:

3
4
× 2

4
× 1

4
= 6

43

Altogether, the probability for the metric to be equal to 1 in each subgroup is:

1
48 × 6

43 = 6
411 ≈ 1.4×10−6

52

Considering all 6 groups, this comes down to:(
6

411

)6
≈ 8.6×10−36

Therefore, we can safely state that µG3(C2IO(RandSP)) is practically
strictly larger than 1. Repeated computation of RandSP for the given topology
and communication pattern resulted in µG3(C2IO(RandSP)) values of either
3 or 4: i.e. rarely better than Xmodk.

RandSP will often give better results than Dmodk or Smodk when the
communication patterns have a given bias, but it will always leave some ports
with avoidable congestion.

3.4 . Grouped Xmodk

In the previous section we show that the existing routing algorithms do not
balance the load correctly when the topology has mixed node types.

Just as Xmodk algorithms aim to compute perfect routes for the general
worst-case scenario, we want to compute perfect routes for the node-type-
specific worst-case scenario. To improve routing for node-type-specific com-
munication patterns, we can use knowledge of node types and modify Xmodk
algorithms accordingly. The aim is to optimise resource usage depending on
node type. For example the optimisation should achieve the best throughput
for communications towards storage proxies or computing nodes. We suggest
balancing each group of nodes separately to improve load-balancing under
worst-case node-type-specific patterns.

3.4.1 . Reindexing NIDs
Grouped Xmodk algorithms, or Gxmodk, consist of preprocessing NIDs.

For this we use the type of each node n, noted type(n), and we choose to call
gNID(n) its reindexed NID. Knowing the type of all nodes, the algorithms begin
by updating the NIDs accordingly, as shown in Algorithm 4.

Algorithm 4: Reindex NIDs by type
1 x ← 0
2 foreach t ∈ {type(n) | ∀n ∈ N}, in a deterministic order do
3 foreach n ∈ N | type(n)= t, in order of NIDs do
4 gNID(n)← x
5 x ← x+1

Note that original order is preserved within groups, as defined in line 3.
Xmodk is then applied as usual but with gNIDs instead of NIDs.

53

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

24 25 26 80 27 28 29 81 30 31 32 82 33 34 35 83 36 37 38 84 39 40 41 85 42 43 44 86 45 46 47 87

3

3

3

3

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

(a) number of sources

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

24 25 26 80 27 28 29 81 30 31 32 82 33 34 35 83 36 37 38 84 39 40 41 85 42 43 44 86 45 46 47 87

1

1

1

1

1 1 1 1 1 1 1 1

(b) number of destinations

Figure 3.4: C2IO routes in G3 under Gdmodk routing, with gNIDs.

54

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

24 25 26 80 27 28 29 81 30 31 32 82 33 34 35 83 36 37 38 84 39 40 41 85 42 43 44 86 45 46 47 87

1 2

3

1 2

3

1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

(a) number of sources

0,2,0 0,2,1 0,2,2 0,2,3 0,3,0 0,3,1 0,3,2 0,3,3

1,2,0 1,2,1 1,3,0 1,3,1

2,0,0 2,0,1 2,1,0 2,1,1

0,1,30,1,20,1,10,1,00,0,30,0,20,0,10,0,0 0,4,0 0,4,1 0,4,2 0,4,3 0,5,0 0,5,1 0,5,2 0,5,3

1,0,0 1,0,1 1,1,0 1,1,1 1,4,0 1,4,1 1,5,0 1,5,1

24 25 26 80 27 28 29 81 30 31 32 82 33 34 35 83 36 37 38 84 39 40 41 85 42 43 44 86 45 46 47 87

1

4

1

4

1 1 1 1 1 1 1 1

(b) number of destinations

Figure 3.5: C2IO routes in G3 under Gsmodk routing.

55

For the given case study, let’s suppose that computing nodes are reindexed
first: there are 72 so they are assigned gNIDs 0 to 71; storage nodes are
assigned gNIDs 72 to 95.

3.4.2 . Gxmodk case study
Gdmodk performance

Using Gdmodk, each subgroup’s storage destinations are spread out evenly
on the 4 top switches, with 1 destination per top switch. For example, the node
with NID 59 and gNID 86 is assigned (2,1,0). Every pair of routes from distinct
sources to distinct destinations (within C2IO) therefore uses disjoint paths.
Figure 3.4 shows how Gdmok distributes routes optimally when considering
this node-type-specific communication pattern.

µG3(C2IO(Gdmodk))= 1

Gsmodk performance
Using Gsmodk, the 16 computing sources of each group are spread out

evenly on the 4 top switches, with 3 sources per top switch. Figure 3.5 shows
how Gsmodk spreads routes efficiently for node-type-specific patterns, though
not as efficiently for this pattern as Gdmodk.

µG3(C2IO(Gsmodk))= 3

On the symmetrical communication pattern, we would see the same im-
provement as we do between Dmodk and Gdmodk for the considered communi-
cation pattern. In general, if pattern P is symmetrical to Q, we should always
find:

µG(P(Dmodk))=µG(Q(Smodk))
µG(Q(Dmodk))=µG(P(Smodk))
µG(P(Gdmodk))=µG(Q(Gsmodk))
µG(Q(Gdmodk))=µG(P(Gsmodk))

56

Figure 3.6: Effective throughput in sample pruned fat-tree using Sauron
simulation

3.5 . OMNeT++-based simulation of Gdmodk

A similar study was conducted using dynamic simulation with Sauron,
described in Section 2.5. The study was conducted on a sample fat-tree
XGFT(3;4,3,2;1,2,2) with a blocking factor of 2:1, on which static analysis
predicts lower congestion risk for Gdmodk routing on type-based communica-
tion patterns. The simulation framework was extended to allow simulation
of any PGFT. Both node-type-specific and type-unspecific synthetic random
communication patterns were simulated. The node-type-specific communica-
tion pattern is made up of a phase from storage to computing nodes, followed
by a phase between computing nodes, and finally followed by a phase from
computing to storage nodes again; each switch’s node with the largest port
rank was selected as storage node. On the other hand, the type-unspecific
pattern has all nodes communicating randomly regardless of type.

Results are presented in Figure 3.6. Expected results are verified in this
simulation: in the sample pruned fat-tree, Gdmodk improves maximal through-
put for node-type-specific patterns but strongly reduces maximal throughput
for type-unspecific patterns.

57

3.6 . Conclusions and future works

This chapter provides a realistic node-type-specific communication pattern
which is present on production clusters shipped by Atos. Existing solutions are
shown to result in unnecessary congestion faced with this real-life scenario.
A new method is outlined, providing minimal congestion risk in the example.
This method has been published [103], patented [105], and is used in BXI
clusters.

The congestion issue of Xmodk stems from nodes of a same type having the
same NID, modulo arities. This also affects communications unrelated to node-
type, but optimising for these means knowing about application usage. Gxmodk
aims only to improve the situation when node-type is known; having early
knowledge of applications’ communication matrices would warrant writing
specific deterministic algorithms.

This preprocessing method is applicable to other arithmetic algorithms
targeting IFTs, such as those shown in Sections 4.2, 5.1.2, 9, and 11.

58

4 — Fault-resilient routing in fat-trees

4.1 . Reconfiguration mechanisms

As presented in Section 1.2.9, current and future large-scale systems are
expected to continue working even in the case of unpredictable network changes
(failure and restore of any equipment among nodes, switches and links) with
potentially low median time between failures (MTBF); though there isn’t any
known algorithm targeting PGFTs which provides high-quality routing tables
with fast enough computation run time. An example degraded topology is
shown in Figure 4.1. Proposals addressing this issue must be correct, should be
fast, and might result in routing functions with varying levels of quality (as can
be studied using the static metrics defined in Chapter 2). A common approach
is to use an algorithm which accepts degraded fat-trees (namely OpenSM’s
Ftree, described in Section 1.4.1) and apply it on the new state of the topology
for any network change; this is not only somewhat slow (as will be shown at the
end of this Chapter), but also degrades ungracefully with even a few faults [7].
Another existing technique is based on precomputation of all potential tables
to avoid spending time computing the correct one upon failure [86]; this is
unfeasible when considering large networks (with many potential points of
failure) and short MTBF. Alternately, Dmodk (fast but specific to perfect fat-
trees, as presented in Section 1.4.2) can be used for the offline phase, with
an algorithm moving only invalidated routes for the online phase [98, 85],
though this tends towards badly load-balanced routing for realistic network
changes over time. Another potential approach is to first compute valid but
unbalanced tables fast and then slowly compute high-quality tables; however
this also does not scale to networks with short MTBF. Most existing proposals
rely on a centralised manager to compute and upload routing tables, while
one distributed technique has switches reacting to failures and updating new
deterministic paths locally [58], providing fast reaction. Instead, this Section
will present and study a fast and high-quality centralised proposal which was
developed, implemented, and published during this thesis with the help of both
my academic advisors and my colleagues at Atos [104, 106].

59

0 1 2 3 4 5 6 7 8 9 10

Figure 4.1: Example degraded PGFT(3;2,2,3;1,2,2;1,2,1) with leaf switches
shown in grey, and failed/removed equipment in dashed red lines.

4.2 . Dmodc

This novel approach aims to tackle the challenge of routing for PGFTs
with fast computation time and low congestion risk even under large-scale
equipment failure. It does so by applying the closed-form arithmetic formula of
Dmodk while relaxing its topological constraint. For that purpose, it computes
shortest paths explicitly rather than relying on an addressing scheme, and it
balances load based on locally propagated information rather than relying on
level-wide constants. These two goals are addressed together during a partially
sequential preprocessing phase.

We call this algorithm Dmodc. The c in Dmodc refers to the neighbouring
switches explicitly determined to be closer to the destination among which
paths are chosen. The aim is fast centralised computation of routing tables for
degraded PGFTs, providing optimal or well-balanced deterministic routes even
under heavy fabric degradation. The algorithm begins with a preprocessing
phase (with steps that can be multi-threaded) followed by a strongly parallel
computation phase.

4.2.1 . Preprocessing
The aim of the preprocessing phase is to compute equivalents to the values

used in the Dmodk formula, with methods that will be detailed in this Sub-
section. Firstly, the modulo operation (and the selection process in general)
requires a set of target ports: a cost metric is computed throughout the network
to later speed up determination of ports leading to neighbours closer to the
destination. Secondly, the division by the number of uplinks at each lower level
is replaced by a propagation of dividers upwards through the network, attempt-
ing to replicate the values which would be found in a corresponding PGFT, even
under degradation. Finally, the destination NID is replaced with another num-
ber (the topological NID), to improve route quality of target communication
patterns.

These computations rely on knowledge of levels ranks (or ranking, as
described in Section 1.4.5), which can be done with any of the processes defined
in Section 1.4.5 and Annex 2. Groups of ports linked to the same switch

60

∞ 0

∞∞ ∞

∞
0.

∞ 0

1∞ 1

∞
1.

4 0

13 1

2

2.–4.

2 0

13 1

2

5.

Figure 4.2: Example sequence of cost propagation steps in a degraded part
of a network. Costs to the bottom-right switch are shown in switches. At
each propagation step, the updated costs are in grey. Note that in steps 3–5,
some propagations are interrupted due to the cs,l +1 < cs′,l condition in the
procedure. They could have been achieved with a simple cs′,l =∞ condition
instead; however this would have also interrupted the propagation of 2 in
step 5. As a result, the long path on the left would not have been avoided. For
PGFTs (degraded or not), such cases are actually impossible and the simple
condition would suffice; but it would not guarantee shortest up–down paths in
fat-tree-like topologies.

are prepared and sorted by globally unique identifier (GUID) to help with
same-destination route coalescing.

Cost and divider (and the complexities of their computation) are described
separately, but the divider computation can be integrated in the upward phase
of the cost computation. As a result, their combined computation complexity in
big O notation is equivalent to that of cost alone.

Cost
We define the cost cs,l of a switch s to a leaf switch l to be the minimum

number of hops between one another under up–down restrictions according to
rank, as defined in Algorithm 5 and illustrated in Figure 4.2. This later allows
us to determine valid paths by exploring neighbouring switches and comparing
costs. That exploration could be done at this point to prepare sets of output
ports, but it’s better to leave it for later since each set is only used once (see
Subsection 4.2.2). Other all-pairs shortest paths methods could be substituted
here.

Thanks to the up–down restriction, the complexity of this procedure is in
O (#E#L). This restriction is only for efficiency, it does not enforce up–down
paths (and therefore deadlock-freedom). Some fat-tree-like topologies would
result in up–down–up–down paths (if such shortcuts appear in neighbouring
switches), since path selection does not distinguish up and down neighbours.
Avoiding this requires a slightly different method: an extra integer (downcost)
must be stored, similar to cost but only for downpaths (propagated only up-
wards). A version of this method using only link direction instead of rank is
provided in Algorithm 6, and more detail is given in Section 4.2.2.

61

In our partially parallel implementation, each worker thread obtains a block
of switches to propagate with one barrier per-level upwards, then downwards.

Algorithm 5: Compute costs and dividers
1 foreach s ∈ S do
2 foreach l ∈ L do
3 cs,l ←∞
4 Πs ← 1

5 foreach l ∈ L do
6 cl,l ← 0

7 foreach s ∈ S sorted in ascending rank order do
8 π←Πs ×#{s′ ↱ s}
9 foreach s′ ↱ s do

10 foreach l ∈ L | cs,l +1< cs′,l do
11 cs′,l ← cs,l +1

12 foreach s′ ↱ s | Πs′ <π do
13 Πs′ ←π

14 foreach s ̸∈ L sorted in descending rank order do
15 foreach s′ ↰ s do
16 foreach l ∈ L | cs,l +1< cs′,l do
17 cs′,l ← cs,l +1

Divider
Dmodc is based on the same arithmetic formula as Dmodk: prior to the

modulo operation, it begins with an integer division by the product of #{s′ ∈
S | s′ ↱ s} (the upward arity of s) of switches at each lower level. This value
represents the number of consecutive destinations to route through the same
port. It is multiplied when going up levels to mirror the number of consecutive
choices by switches below before each switch is chosen again.

To reflect the actual state of the network (in which switches of the same
level may have different arities), only local information must be considered;
in turn, this operation is based on a divider value (noted Πs), computed using
the products of up-to-date counts of upswitches (switches connected above), as
defined in Algorithm 5. Each downpath corresponds to a potential divider value,
and we choose to keep only the maximum (as illustrated in Figure 4.3). The
underlying motivation is to generate the same values as in the non-degraded
PGFT, as long as the topological subgroup is not systematically degraded. In
general, this results in a little over-aggregation in case of failures, whereas
any other choice of downpath would instead result in larger amounts of under-

62

Algorithm 6: Compute costs c, downcosts c′ and dividers π
Data: link directions

1 foreach s ∈ S do
2 foreach l ∈ L do
3 cs,l ←∞
4 c′s,l ←∞
5 Πs ← 1

6 foreach l ∈ L do
7 cl,l ← 0
8 c′s,l ← 0

9 repeat
10 ∆←⊥ /* Was there any propagation? */
11 π←Πs ×#{s′ ↱ s}
12 foreach s ∈ S do
13 foreach s′ ↱ s do
14 foreach l ∈ L | cs,l +1< cs′,l do
15 cs′,l ← cs,l +1
16 c′s′,l ← cs,l +1 /* Propagated upwards only */
17 ∆←⊤

18 foreach s′ ↱ s | Πs′ <π do
19 Πs′ ←π

20 until ∆=⊥
21 repeat
22 ∆←⊥
23 foreach s ̸∈ L do
24 foreach s′ ↰ s do
25 foreach l ∈ L | cs,l +1< cs′,l do
26 cs′,l ← cs,l +1
27 ∆←⊤

28 until ∆=⊥

63

3 2 3

1 1 1

0.

3 2 3

6 6 1

π= 3×2

1.

3 2 3

6 6 4

π= 2×2

2.

3 2 3

9 9 9

π= 3×3

3.

Figure 4.3: Example sequence of divider propagation steps in a degraded part
of a network. Dividers are shown in switches. At each propagation step, the
updated dividers are in grey. Note that in step 2, the first upswitch is not
updated because π= 2×2≤ 6. Even though there are multiple degradations in
the considered case, all top switches end up with the divider that they would
have had in the complete network.

aggregation. Experiments did not provide any strong argument for or against
this choice instead of other arbitrary choices of downpath. The complexity of
this procedure is in O (#E).

Topological NID

The arithmetic nature of Dmodc guarantees load-balancing only if NIDs
(on which the modulo operation is applied) are topologically contiguous. We ex-
plicitly determine each node’s topological NID using previously computed costs
in Algorithm 7. In our implementation, finding the l′ leaves is accomplished
through a qsort1 call, with the comparison function first comparing cost, then
UUID. This choice can be justified by the fact that for every iteration, X0 is
different (and therefore each sort is independent), and because in our case
there is no guarantee on the starting order of leaves. Each qsort call covers
#X values, which is decreasing and smaller than #L after the first iteration,
and with the number of iterations being equal to the number of level-1 groups.
In the case of a k-ary n-tree, this gives a complexity in O

(#N
k #L log#L

)
. This

algorithm is multithreaded in our implementation, by splitting X recursively
into blocks with progressively decreasing interleaf cost.

Alternately, an implementation using a single qsort call could be efficiently
designed by preprocessing group-wise UUIDs and using the comparison rule
defined in Equations (4.1) through (4.4):

1Qsort is the default array sorting function provided in standard C libraries [87], which is
generally single-threaded, in-place but non-stable, and in O (n logn) except for worst-cases.

64

Algorithm 7: Compute topological NIDs
1 t ← 0
2 X ← L sorted by UUIDs
3 while X ̸=Ø do
4 l ← X0
5 µ←minl′∈X\{l}(cl,l′)
6 foreach l′ = l, then l′ ∈ X | cl,l′ =µ (in order of UUIDs) do
7 foreach n ↰ l′ in port rank order do
8 tn ← t
9 t ← t+1

10 X ← X \{l′}

∀ l, l′ ∈ L, Γl,l′ = {l′′ ∈ L | cl,l′′ < cl,l′} (4.1)
∀ l, l′ ∈ L, γl,l′ = min

l′′∈Γl,l′
(U(l′′)) (4.2)

∀ n ∈ N, tn ∈ [0,#N[(4.3)
∀ n,n′ ∈ N, γλn,λn′ < γλn′ ,λn ⇒ tn < tn′ (4.4)

Note that (4.1) provides a cost-based definition of relative groups, from
which (4.2) defines a group-wise UUID. Using this object, (4.3) and (4.4) define
a total ordering of topological NIDs between nodes of different leaves. Nodes
linked to the same leaf switch are ordered according to their port rank.

4.2.2 . Routes computation
The deterministic output port ps,d and the alternative output ports Ps,d of

every switch s for every destination d ∈ N (not directly linked to s) are selected
with a closed-form formula based on the results previously determined. First,
port groups leading closer to λd are selected in (4.5) (without taking ranking
into account), setting corresponding alternative output ports in (4.6):

Cs,λd ←
{
g ∈Gs | cΩg,λd < cs,λd

}
(4.5)

Ps,d ←{p ∈ g | g ∈ Cs,λd } (4.6)

C is an array ordered by the GUID of port groups’ remote switches: individ-
ual groups are accessed with indices i ∈ [0,#Cs,λd [using the Cs,λd [i] notation.
Note that it is possible for a switch to have no valid up–down path towards a
destination, which corresponds to #Cs,λd = 0, in which case that destination is
skipped. From this, the output port group is chosen in (4.7) and the port within
that group in (4.8):

65

3

4

2

4

2Cs,λ20

(4.5)

Ps,20

(4.6)

Π= 4
gs,20

(4.7)

ps,20

(4.8)

Figure 4.4: Example route computation with s in grey, Πs = 4, and d = 20.
Costs to λ20 are shown in switches. Indices are ordered from left to right. The
top-right group is chosen as gs,20 because ⌊20/4⌋ mod 2= 1, and the right port
in gs,20 is chosen as ps,20 because ⌊20/(4×2)⌋ mod 3= 2.

gs,d ← Cs,λd [
⌊

d
Πs

⌋
mod #Cs,λd] (4.7)

ps,d ← gs,d[
⌊

d
Πs ×#Cs,λd

⌋
mod #gs,d] (4.8)

Routes are computed in a loop over leaves so that Cs,λ is determined only
once for all nodes connected to λ (with Ps,d also unchanging ∀ d | ∃ λd).
Figure 4.4 illustrates assignments (4.5), (4.6), (4.7), and (4.8).

The cost variant for up–down restriction described in 4.2.1 requires (4.5) to
compare c values for upswitches and the downpath cost value for downswitches.
Alternately, the downpath cost value can be omitted by taking ranking into
account (and disregarding downgroups if any upgroup is available).

4.2.3 . Primary results
The algorithm was implemented in BXI FM; the same code has been used

for validation, simulation and in production.

Validity
Routing is valid for degraded PGFTs if and only if the cost of every leaf

switch to every other leaf switch is finite: this reflects every node pair having
an up–down path. Our implementation includes a pass through all leaf switch
pairs to verify this condition. The up–down path restriction is sufficient to
guarantee deadlock-freedom within degraded PGFTs [68].

66

1ms

10ms

100ms

1s

10s

1min

10min

 256 512 1024 2048 4096 8192 16384 32768 65536

A
lg

o
ri

th
m

 r
u
n
ti

m
e

RLFT size (in number of nodes)

Dmodc (1 thread)
Dmodc (20 threads)
UPDN
MinHop
Ftree
SSSP

Figure 4.5: Algorithm run time on a 2.50GHz Intel Xeon E5-2680 v3 for Real-
Life Fat-Trees of varying sizes (in log–log scale; lower is better).

Run time
Our C99 [2] implementation has computation of cost, divider, and routes

spread over POSIX threads [1] fetching work with a switch-level granularity.
Figure 4.5 reports complete algorithm execution time. Additionally, we included
the routing run times of four applicable routing engines from OpenSM 3.3.21,
measured by adding timers in the source code, all running on the same machine.
For each number of nodes, a corresponding realistic RLFT is generated, with
largely proportional numbers of switches and links. The representation of
run time of every algorithm on this log–log scale plot is close to a line (when
considering networks with more than a thousand nodes), their complexity is
therefore largely polynomial to the amount of equipment (whether it be nodes,
switches or links, since they are nearly proportional). Overall, it seems the
main difference between these lines is the intercept (hinting at significantly
different multiplicative factors) with the slope maybe increasing the distance
between these lines as well (hinting at slightly different exponents). Finally, the
run time of Dmodc is at least fifteen times faster than all compared OpenSM
routing algorithms; with the parallel implementation running approximately
an extra ten times faster when executed on twenty cores.

For clusters ranging up to many tens of thousands of nodes, Dmodc provides
fast enough re-routing for a centralised fabric manager to react to faults before
applications are interrupted.

67

4.2.4 . Congestion risk as a function of degradation
Analysis of the routing algorithm’s quality under failure is undertaken

similarly to existing similar research [20]. Random degradation is simulated
on an 8640 node PGFT (with blocking factor of 4) using hundreds of throws for
each considered routing algorithm and type of equipment to degrade (switches
or links). The integer amount of equipment a ∈ [0,2m[to remove at each throw
is chosen using a shifted log-uniform distribution. This distribution is chosen
to test degradation uniformly across multiple scales and include non-degraded
tests; it is defined in the following formula using the uniformly random number
u ∈ [0,1]:

a ← ⌊
2m×u −1

⌋
The chosen amount of equipment is then randomly removed from the

complete topology. The resulting degraded (or complete) topology is routed at
this point, and linear forwarding tables are dumped for analysis.

Evaluation of these tables is performed using static metrics µ, µSP , and
µRP(1000), defined in Section 2.3. The effective diameter metric ν is not studied
because it does not change for shortest up–down routing in fat-trees and
degraded fat-trees. To justify the choice of 1000 samples for µRP , we generated
one instance of the 8640 node PGFT with 256 switches randomly removed;
for which the µRP values are the largest considered, generally around 20, and
for which sampling variability is the highest. The standard deviation for 100
random runs of µRP(1000) was measured at 0.96. This illustrates the stability
of these runs and justifies the sampling choice. Justifying this study using
standard deviation inspired the proposal to base an automatic stop criterion
for µRP in the Random permutations subsection in Section 2.3.2.

Congestion risk results are shown in Figures 4.6 and 4.7. When consid-
ering existing routing algorithms, Ftree provides the best performance for
complete PGFTs (especially regarding SP for which the maximum conges-
tion risk approaches theoretical optimal), but SSSP provides better stability
under massive degradation, confirming results of the studies mentioned in
Section 1.2.9. UPDN and MinHop provide visually identical results in this
analysis: in fact, in a full PGFT they are equivalent and vary only slightly
under degradation. They both provide comparatively poor results for SP and
A2A throughout the observed scale, however for RP they surprisingly improve
significantly under massive degradation.

Dmodc provides minimal congestion risk throughout the considered range of
degradations when compared with existing oblivious algorithms. In particular,
it is even more stable than Ftree for SP under minimal degradation and nearly
as stable as SSSP for A2A and RP under massive degradation.

68

4.3 . Conclusion

The simulation results in Sections 4.2.3 and 4.2.3 show that Dmodc pro-
vides high-quality centralised fault-resilient routing for PGFTs at a fraction
of the run time of existing algorithms, without relying on partial re-routing.
Dmodc is also applicable to fat-tree-like topologies (as mentioned in Figure 4.2)
but with lower quality load balancing. As defined here, no effort has been
made to minimise the size of updates to be uploaded to switches throughout
the fabric.

This method is patented [107]; and has been successfully deployed to an
8490 node PGFT production network in which it helps provide fault resilience,
even when faced with thousands of simultaneous changes.

If one wants to minimise size of updates without interstate knowledge, one
strategy is to pad NIDs. Existing research instead uses interstate knowledge by
explicitely sorting LFTs compared with old ones [100]. Alternately, if the fabric
manager is aware of placement of failed nodes, ghost nodes can be inserted
to easily obtain the intended behaviour (similarly to place-keeper nodes in
Section 3.2 in the original paper detailing Ftree [97]). The latter has been
successfully implemented, but not studied for quality under degradation.

69

4
8

12
16
20
24
28
32
36
40

4
8

12
16
20
24
28
32
36

4
8

12
16
20
24
28
32
36

4
8

12
16
20
24
28
32
36

4
8

12
16
20
24
28
32
36

0 2 8 32 128

UPDN

µRP(1000)

µSP

MinHop

SSSP

Ftree

Dmodc

Number of randomly removed switches

Figure 4.6: Maximum congestion risk in an 8640 node PGFT with blocking
factor of 4, under random switch degradation (in log scale; lower is better).

70

4
8

12
16
20
24
28

4
8

12
16
20
24

4
8

12
16
20
24

4
8

12
16
20
24

4
8

12
16
20
24

0 2 8 32 128 512 2048

UPDN

µRP(1000)

µSP

MinHop

SSSP

Ftree

Dmodc

Number of randomly removed links

Figure 4.7: Maximum congestion risk in an 8640 node PGFT with blocking
factor of 4, under random link degradation (in log scale; lower is better).

71

5 — Routing irregular fat-trees

As described in Section 1.3.4, there are various common variants to canoni-
cal fat-trees, either with precise definitions for a specific purpose (QFTs, MFs),
simply taking into account incomplete FTs (due to failure or design constraints),
or finally taking into account core design differences. These Irregular Fat-Trees
(IFTs) describe variants to PGFTs, whose variations result either from degra-
dation or from structural change to cabling logic. For the sake of formality,
IFT-specific routing algorithms must however remain functional for a gener-
alised class of BMINs, wherein leaves can be in any level, as long as every
pair of leaves is connected via an up–down path. The more irregularity is
introduced, the less optimally balanced IFT-specific routing can be expected.
Some of the work presented in Section 1.2.9 regarding fault-resilient routing
for fat-trees is applicable, with varying resulting levels of quality, to IFTs.
Furthermore, existing algorithms can be extended at little cost to accept IFTs
with leaves in levels higher than others, in part by ranking from top switches
as defined in Section 1.4.5.

Section 5.1 will first present novel attempts at efficiently routing IFTs.
Section 5.2 will then provide some quantitative quality comparisons of these
algorithms and existing ones, using the congestion risk metric methodology
fleshed out in the previous chapters.

5.1 . Some new IFT-specific routing algorithms

5.1.1 . Ftree-Random

As an alternative to fat-tree specific algorithms, random algorithms can
be applied. Some research uses random routing in fat trees [37, 29, 73]
and degraded fat-trees as a benchmark. Random routing in general refers
to random choices within shortest paths, called RandSP in Section 1.4.4; it
is therefore deadlock-free if shortest path routing is deadlock-free (such as
in PGFTs wherein shortest paths are up–down and consequently deadlock-
free) but not in general. Random routing can also refer to a specific fat-tree
implementation where each pair of nodes is routed through one of their NCAs,
explicitly selected at random. The benefits of random routing are complete
agnosticism, ease of implementation, and speed of execution. The problem in
this version of random routing is that congestion is highly probable, due to the
extremely probable lack of correlated route coalescing.

A potential improvement would be to coalesce routes to the same destina-
tion, similarly to Ftree and Dmodc, while randomly spreading subtrees to dis-
tinct destinations. There is such an algorithm (called Random-NCA-Down [73]),
which applies Dmodk after randomizing numbering. This algorithm presents

73

benefits in terms of performance, but is only defined in the case of undegraded
PGFTs since it directly uses Dmodk. Ftree-Random is a similar but novel
fat-tree-specific random routing algorithm which trades off some agnosticism
in exchange for correlated route coalescing; however, while also providing
fault-resilience. This algorithm, defined in Algorithm 8, is a small modification
to Ftree, with the same traversal behaviour but using random choices instead
of usage counters. It could, additionally, be implemented closer to Random-
NCA-Down using the cost pre-computation steps of Dmodc but with a random
port selection during the parallel routes computation phase.

Algorithm 8: Ftree-Random
1 foreach leaf switch l ∈ L do
2 foreach endport p of l do
3 n is the node connected to p
4 δ is the NID of n
5 LFTl[δ]← p
6 ∆← #L
7 Ascend(l,δ)

8 Function Ascend(s,δ)
9 foreach up port u of s in random order do

10 a is the remote switch (above s) connected to p
11 if δ ̸∈LFTa then
12 d is the remote port (of a) connected to p
13 LFTa[δ]← d
14 Descend(s,δ)
15 Ascend(a,δ)
16 if ∆= 0 then Break

17 Function Descend(s,δ)
18 if s ∈ L then ∆←∆−1
19 foreach down port d of s in random order do
20 b is the remote switch (below s) connected to p
21 if δ ̸∈LFTb then
22 u is the remote port (of b) connected to p
23 LFTb[δ]← u
24 Descend(s,δ)
25 if ∆= 0 then Break

Figure 5.1 shows an example situation to highlight how RandSP might
strongly spread out routes to a destination, while illustrating the choices
available to Ftree-Random during its selection. Of course, the selected example

74

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3
(a) RandomSP

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3
(b) Ftree-Random

Figure 5.1: Example routes towards the first destination in a 2-ary 3-tree.
Discarded choices are shown in dashed arrows, secondary routes are ignored.

for RandomSP has particularly uncoalesced routes to exacerbate the potential
congestion risk with the routes to other destinations. Furthermore, note that
nothing stops Ftree-Random from selecting overlapping routes going towards
the second destination, potentially also resulting in avoidable congestion risk.

Before providing any quantitative analysis of Ftree-Random, we can both
expect it to perform better for the target µ metrics than non-coalescing random
algorithms, and also expect it to perform worse than Ftree/Dmodc for µSP

metrics on regular Fat-trees. Indeed, similarly to the analysis of RandSP in
Section 3.3.3, it is nearly impossible for Ftree-Random to perfectly spread
subtrees on available resources by chance.

5.1.2 . Ftree2

As described in Section 1.4.1, Ftree is often used in degraded or slightly
irregular fat-trees, but it has some limitations in terms of quality. We propose
a cheap approach to largely overcome these limitations, by modifying Ftree
slightly, taking into consideration remote switch usage before local port usage,
as defined in Algorithm 9. This is a novel contribution called Ftree2. Like
Ftree, the up port usage counters can be implemented using one least-recently-
used up port index per switch. On the other hand, asc-usage and desc-usage
counters are remotely accessed from multiple entry points. They must therefore
be implemented using individual counters and be explicitly accessed by remote
switches. The overall aim of Ftree2 is to provide a compromise between the
simplicity of Ftree, and the quality of Dmodc.

Figure 5.2 presents Ftree2 routes in the same case (network Gd) as Fig-
ure 1.7b (which presented Ftree routes). This example shows how Ftree2
balances routes better throughout the network by using remote information
early: in Figure 1.7b, we can see that 3 distinct routes go from L1-2 and L1-3
to L2-2, while in Figure 5.2, we can see that 2 distinct routes go from L1-2 and
L1-3 to L2-2 and L2-3. Formulated differently:

75

Algorithm 9: Ftree2
1 foreach switch s ∈ S do
2 Reset the asc-usage counter of s
3 Reset the desc-usage counter of s
4 foreach up port u of s do
5 Reset the usage counter of u

6 foreach leaf switch l ∈ L do
7 foreach endport p of l do
8 n is the node connected to p
9 δ is the NID of n

10 LFTl[δ]← p
11 ∆← #L
12 Ascend(l,δ)

13 Function Ascend(s,δ)
14 U ← ordered up ports of s, sorted first by remote switches’ asc-usage,

second by their own usage
15 foreach u ∈U in increasing order do
16 a is the remote switch (above s) connected to p
17 if δ ̸∈LFTa then
18 d is the remote port (of a) connected to p
19 LFTa[δ]← d
20 Update usage counter of u
21 Update asc-usage counter of a
22 Descend(s,δ)
23 Ascend(a,δ)
24 if ∆= 0 then Break

25 Function Descend(s,δ)
26 if s ∈ L then ∆←∆−1
27 D ← ordered non-endport down ports of s, sorted first by remote

switches’ desc-usage, second by their own usage
28 foreach d ∈ D in increasing order do
29 b is the remote switch (below s) connected to d
30 if δ ̸∈LFTb then
31 u is the remote port (of b) connected to d
32 LFTb[δ]← u
33 Update usage counter of d
34 Update desc-usage counter of b
35 Descend(b,δ)
36 if ∆= 0 then Break

76

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

L3-0 L3-1 L3-2 L3-3

L2-0 L2-1 L2-2 L2-3

L1-0 L1-1 L1-2 L1-3

4 5 6 70 1 2 3

Figure 5.2: Ftree2 routes in a 2-ary 3-tree (under failure of L1-0 ↔ L2-1)
towards the first four destinations. Dashed arrows represent “secondary”
routes that are computed but never used.

µGd (A2A(Ftree))= 3
µGd (A2A(Ftree2))= 2

Considering remote switch usage helps to build a more thorough view of the
overall available resources, at a controlled cost. It is reasonable to imagine that
for fat-trees over 3 levels in height, this approach might be insufficient, and
an even more thorough approach considering resource usage one step beyond
could be envisioned instead. For the foreseeable future, however, 4-level fat-
trees are not being constructed, due to their high diameter and hard-to-justify
network cost. In this context, Ftree2 might prove sufficient to improve real-life
performance in the majority of actively used fat-tree topologies.

77

5.1.3 . Up*/Down* implementations
As an alternative approach to relaxing topological constraints in topology-

specific algorithms, a generic agnostic routing algorithm can be specialised
using existing fat-tree-specific load-balancing techniques.

This agnostic routing algorithm is Up*/Down* [77], which has been ex-
tensively studied and modified in existing research. Up*/Down* guarantees
deadlock-free routing in any connected network by first constructing a directed
spanning tree with an arbitrary switch as root node. Second, any routing
function whose paths are up–down with regards to the directed spanning tree
is guaranteed deadlock-free. It is up to specific implementations to decide on
traversal method, such as breadth-first search (BFS), depth-first search (DFS);
and route selection method, such as MinHop.

This section describes novel attempts at incorporating the previously de-
scribed topology-specific algorithms inside directed spanning trees, with the
aim of designing a routing algorithm both providing competitive load balance
in fat-trees and degrading gracefully in any irregular topology. The attempts
use a BFS spanning tree because it’s the most widely used in existing literature
and because it preserves BMIN direction and structure throughout most of the
network in PGFTs when the root node is selected among leaf switches. Further
work could introduce variants using DFS and the heuristics introduced by
Sancho et al. [74].

The BFS method that was settled on only keeps strictly oriented links (no
same level link), and is defined in Algorithm 10.

All implementations use precomputed costs and downcosts, as was de-
scribed in Section 4.2.1. The complete method to determine such data is given
in Algorithm 6, using link directions provided by the BFS.

BFS-Random The first implementation of Up*/Down* to consider is the
most agnostic one, BFS-Random, providing deadlock-free random shortest-
path routing. It is an obvious implementation which we present as a base-level
alongside the other (novel) implementations of Up*/Down*, in a fair context.
BFS-Random is defined in Algorithm 11. Note that it is equivalent to RandSP
(defined in Section 1.4.4) in BMINs when the root of the BFS is selected among
leaf switches. However, it also provides deadlock-free routing for any topology.

78

Algorithm 10: Breadth-First Search (BFS)
Data: a root switch L0 (selected from L)
Result: directions for all links

1 D ←; /* Set of done switches */
2 T ← {L0} /* Set of to-do switches */
3 while T ̸= ; do
4 N ←; /* Set of next switches */
5 foreach s ∈ T do
6 foreach g ∈Gs do
7 if Ωs ∈ D then
8 Add s ↰ Ωs to spanning tree

9 else
10 Add s ↱ Ωs to spanning tree
11 if Ωs ̸∈ T then
12 N ← N ∪ {Ωs}

13 D ← D∪ {s}

14 T ← N

Algorithm 11: BFS-Random
Data: link directions from BFS (Algorithm 10)
Data: costs and downcosts (Algorithm 6)

1 foreach s ∈ S do
2 foreach d ∈ N do
3 Cs,λd ←Ø
4 foreach g ∈Gs do
5 s′ ←Ωg
6 if (s′ ↰ s and c′s′,λd

< c′s,λd
) or

(s′ ↱ s and cs′,λd < cs,λd) then
7 Cs,λd ← Cs,λd ∪ {g}

8 if #Cs,λd > 0 then
9 ps,d ← random port from Cs,λd

79

BFS-Dmodc BFS-Dmodc is a novel variant of Dmodc which guarantees up–
down paths, and is simple to implement. It is detailed in Algorithm 12 in the
context of BFS-computed link directions. Note that this implementation is
given instead of just relying on the existing computation phase of Dmodc from
Section 4.2.2, because that one does not guarantee up–down paths.

Algorithm 12: BFS-Dmodc
Data: link directions from BFS (Algorithm 10)
Data: costs, downcosts and dividers (Algorithm 6)

1 foreach s ∈ S do
2 foreach d ∈ N do
3 Cs,λd ←Ø
4 foreach g ∈Gs do
5 s′ ←Ωg
6 if (s′ ↰ s and c′s′,λd

< c′s,λd
) or

(s′ ↱ s and cs′,λd < cs,λd) then
7 Cs,λd ← Cs,λd ∪ {g}

8 if #Cs,λd > 0 then
9 Ps,d ← {p ∈ g | g ∈ Cs,λd }

10 gs,d ← Cs,λd [
⌊

d
Πs

⌋
mod #Cs,λd]

11 ps,d ← gs,d[
⌊

d
Πs×#Cs,λd

⌋
mod #gs,d]

Ftree-based BFS implementations Ftree, Ftree2, and Ftree-Random fol-
low the same structure which is immediatly compatible with Up*/Down* (since
they only use link direction). From this, three novel implementations of
Up*/Down* are provided, using link directions from the BFS (Algorithm 10):

• BFS-Ftree (see Algorithm 1),

• BFS-Ftree2 (see Algorithm 9),

• BFS-Ftree-Random (see Algorithm 8).

Annex 3 presents an alternative approach to routing one kind of IFTs,
wherein virtually merging switches in a specific way results in regular PGFTs.
This approach was left out of this chapter since it is not generalisable and
intrinsically leaves out available resources, but it is still novel.

80

5.2 . Comparison of algorithms

5.2.1 . Progressively degraded fat-tree

Similarly to the comparison work done in Section 4.2.4, BFS algorithms are
compared in a sample 8490-node fat-tree topology with a blocking factor of 4,
which corresponds to the real system on which the 8640-node PGFT was based,
but taking missing nodes into account. These nodes are missing from the real
system due to restrictions on ports imposed by that generation of BXI switches,
but similar situations are found in many other real fat-tree systems [6]. Here,
the comparison was done on the same progressively randomly degraded net-
work, and not on individually degraded networks at random amounts (as in
Section 4.2.4); this choice is discussed below. Twelve algorithms are considered
in this study, including 3 from OpenSM, shown in blue in the top row, and 9
from BXI FM, shown in yellow (including the 7 presented in this Chapter).
Figures 5.3 and 5.4 show static metrics for the computed routes on the same
network on which switches are randomly removed one by one. Figures 5.5
and 5.6 show static metrics for the computed routes on the same network on
which links are randomly removed one by one.

The choice of computing congestion risk as degradation is progressively
applied was made in order to improve intuitive understanding of the simu-
lation behaviour. One downside to this method is that the analysis might
be biased due to the specific random sequence considered. However, there
isn’t any specific bias known to favour any algorithm, and a second random
sequence was added, in order to give some weight to the idea that compari-
son is fair even if the specific evolution of congestion risk is potentially not
representative of the quality behaviour under degradation in general. Indeed,
though congestion risk behaves slightly differently from one random sequence
to another (e.g. µSP

GFT
(Dmodc) < µRP(1000)

GFT
(Dmodc) holds throughout the sec-

ond switch-degradation sequence, and not in the first sequence), comparisons
between algorithms hold across sequences (e.g. BFS-Ftree-Random performs
worse than Ftree-Random for all considered cases). The choice of progressive
random degradation versus random-amount random degradation is subjective
and the latter disperses bias to some extent, though only a single statistical
value per metric (e.g. the median) can be comfortably displayed; while in the
former each metric can be displayed with multiple statistical values (e.g. the
median with errorbars at chosen quantiles).

The supplementary 1st and 39th 40-quantiles provided in Figures 5.3
to 5.10 show 95% credible intervals for µRP metrics. This gives us more
detail as to how performance evolves. We can observe that the 1st 40-quantile
is at most very slightly lower than the median in all studied cases, while
the 39th 40-quantile is sometimes significantly larger than the median. We
can conclude that regardless of routing function, random permutations mostly
perform homogeneously, with a proportion performing worse, to varying degrees

81

best for µRP
GFT

best for µSP
GFT

also good
agnostic SSSP BFS-Ftree2 BFS-Random
topology-specific Dmodc Dmodc, Ftree2 Ftree (BXI)

worst for µRP
GFT

and µSP
GFT

also bad
agnostic BFS-Ftree-Random, BFS-Ftree BFS-Dmodc
topology-specific UpDn

Table 5.1: Summary of results for GFT

depending on routing function.
From Figures 5.3 and 5.4, we infer that in the considered fat-tree with

switch degradations only, the algorithms providing best performance even un-
der large-scale degradation are SSSP, Dmodc, BFS-Random, and BFS-Dmodc
for random permutations (each with µRP(1000)

GFT
< 15 for all considered cases); and

Dmodc, Ftree2, and BFS-Ftree2 for shift permutations (each with µSP
GFT

< 15 for
all considered cases). From Figures 5.5 and 5.6, we infer that in the same case
but with link degradations only, the algorithms providing good performance
even under large-scale degradation are all but UpDn, BFS-Ftree-Random,
and BFS-Ftree for random permutations; and for shift permutations, Dmodc
performs significantly better than all the other algorithms in both sequences
(with µSP

GFT
(Dmodc)≤ 10 in all considered cases).

To summarise these simulations, the all-around best-performing and most
resilient algorithms are presented in Table 5.1, as well as the worst-performing
and least resilient algorithms. In this table, SSSP is defined as an agnostic
algorithm, which is technically untrue, but its results are equivalent to DFSSSP
(which is entirely topology agnostic) in the target topologies.

This case study foremost outlines an example use of the congestion metric
presented in Chapter 2 in a methodology to perform a quantitative evaluation
of potential routing algorithms for a given network under potential failure
scenarios. Secondarily, the algorithms performing poorly on this rather sim-
ple target network can be written off for the general case right away as not
being competitive enough. However, this case study is not meant as a way to
determine the best algorithms for the general case based on its specific results.

The worst performing algorithms presented in Figures 5.3 to 5.6 are BFS-
Ftree-Random, BFS-Ftree, BFS-Dmodc, and UpDn (which performs particu-
larly poorly in the undegraded network).

82

best for µRP
GQFT

best for µSP
GQFT

agnostic SSSP, BFS-Ftree2 SSSP
BFS-Random BFS-Ftree2

topology-specific Ftree, Ftree2 Ftree, Ftree2

worst for µRP
GQFT

and µSP
GQFT

agnostic BFS-Dmodc
topology-specific UpDn

Table 5.2: Summary of results for GQFT

5.2.2 . Progressively degraded QFT

A second case study was conducted on a QFT called GQFT under random
degradation to extend the range of IFTs studied here. This QFT topology
corresponds to the network of a real supercomputer constructed by Atos. It
was sold as a 3-level fat-tree, and it is based on 2-level fat-trees packaged as
648-port director switches used for the higher levels (chosen for their cheaper
cost compared with bulk switches and links from the external provider). The
interconnection pattern used between the L2 switches and the L1 leaf switches
does not respect PGFT logic, since it provides multiple switch-paths between
L3 top switches and L1 leaves. Instead, it corresponds to QFT cabling, since
the lower level is properly organised in complete bipartite subgroups. This
situation is similar to that of the JuRoPA supercomputer [6], and other real-
world IFTs designed around hardware constraints.

As discussed in the previous section, the comparison was also done on
the same progressively randomly degraded network, and not on individually
degraded networks at random amounts. The same twelve algorithms are
considered in this study. Figures 5.7 and 5.8 show static metrics for the
computed routes on the same network on which switches are randomly removed
one by one. Figures 5.9 and 5.10 show static metrics for the computed routes
on the same network on which links are randomly removed one by one.

We can first observe that quantiles overall appear to behave identically
to the first case study. From Figures 5.7, 5.8, 5.9 and 5.10, we infer that in
GQFT with either switch faults or link faults, the algorithms providing best
performance even under large-scale degradation are SSSP, Ftree2, BFS-Ftree2,
Ftree, and BFS-Random for random permutations (each with µRP(1000)

GQFT
< 8 for

all considered cases); and Ftree, Ftree2, and BFS-Ftree2 for shift permutations
(each with µSP

GQFT
< 8 for all considered cases, and a perfect µSP

GQFT
= 3 in the

complete network).
To summarise these simulations, the all-around best-performing and most

resilient algorithms are presented in Table 5.2, as well as the worst-performing
and least resilient algorithms.

83

Among the algorithms which performed particularly poorly for GFT , both
BFS-Ftree-Random and BFS-Ftree performed much less poorly on GQFT
(though this specific result does not qualify them as viable algorithms in
the general case), while BFS-Dmodc and UpDn remained as the only partic-
ularly poor performers. Among the Up*/Down* implementations considered,
BFS-Random appears to be a reasonable pure agnostic choice, and BFS-Ftree2
as surprisingly competitive with fat-tree-specific algorithms while being func-
tionally topology-agnostic.

5.3 . Conclusion

Real-world interconnection networks blur the precise lines of topology
definition, and require more effort to determine adapted routing techniques.
This work showcases a methodology to quantitatively compare congestion
risk for a set of routing algorithms, given one network. For both an existing
and a new selection of agnostic and topology-specific algorithms, we showed
how varied congestion risk evolved as random degradation accumulated. This
makes it simpler to discern viable routing algorithms by reducing the risk
of congestion to only a couple of comparable values. Other aspects might
be considered as well, such as execution run time, composability with other
techniques, etc.

This methodology allowed us to show how some of the novel algorithms
(namely BFS-Ftree-Random, BFS-Ftree, and BFS-Dmodc) did not perform
competitively on the realistic case studies, and can therefore be written off
from general use. On the other hand, the other novel algorithms (in particular
Ftree2, BFS-Ftree2, and BFS-Random) show promising capabilities in the
considered case-studies.

84

0
5

10
15
20
25
30
35
40

Number of removed switches

Ftree UpDn SSSP

0
5

10
15
20
25
30
35

Ftree (BXI) Dmodc Ftree2

0
5

10
15
20
25
30
35

Ftree-Random BFS-Random BFS-Ftree-Random

0
5

10
15
20
25
30
35

0 10 20 30 40

BFS-Ftree

0 10 20 30 40

BFS-Dmodc

0 10 20 30 40 50

BFS-Ftree2

µRP(1000)

µSP

Figure 5.3: First sequence of progressively randomly switch-degraded 8490-
node fat-tree (GFT)

85

0
5

10
15
20
25
30
35
40

Number of removed switches

Ftree UpDn SSSP

0
5

10
15
20
25
30
35

Ftree (BXI) Dmodc Ftree2

0
5

10
15
20
25
30
35

Ftree-Random BFS-Random BFS-Ftree-Random

0
5

10
15
20
25
30
35

0 10 20 30 40

BFS-Ftree

0 10 20 30 40

BFS-Dmodc

0 10 20 30 40 50

BFS-Ftree2

µRP(1000)

µSP

Figure 5.4: Second sequence of progressively randomly switch-degraded 8490-
node fat-tree (GFT)

86

0
5

10
15
20
25
30
35
40

Number of removed links

Ftree UpDn SSSP

0
5

10
15
20
25
30
35

Ftree (BXI) Dmodc Ftree2

0
5

10
15
20
25
30
35

Ftree-Random BFS-Random BFS-Ftree-Random

0
5

10
15
20
25
30
35

0 50 100 150

BFS-Ftree

0 50 100 150

BFS-Dmodc

0 50 100 150 200

BFS-Ftree2

µRP(1000)

µSP

Figure 5.5: First sequence of progressively randomly link-degraded 8490-node
fat-tree (GFT)

87

0
5

10
15
20
25
30
35
40

Number of removed links

Ftree UpDn SSSP

0
5

10
15
20
25
30
35

Ftree (BXI) Dmodc Ftree2

0
5

10
15
20
25
30
35

Ftree-Random BFS-Random BFS-Ftree-Random

0
5

10
15
20
25
30
35

0 50 100 150

BFS-Ftree

0 50 100 150

BFS-Dmodc

0 50 100 150 200

BFS-Ftree2

µRP(1000)

µSP

Figure 5.6: Second sequence of progressively randomly link-degraded 8490-
node fat-tree (GFT)

88

0

5

10

15

20

25

30

Number of removed switches

Ftree UpDn SSSP

0

5

10

15

20

25

Ftree (BXI) Dmodc Ftree2

0

5

10

15

20

25

Ftree-Random BFS-Random BFS-Ftree-Random

0

5

10

15

20

25

0 10 20 30 40

BFS-Ftree

0 10 20 30 40

BFS-Dmodc

0 10 20 30 40 50

BFS-Ftree2

µRP(1000)

µSP

Figure 5.7: First sequence of progressively randomly switch-degraded 1036-
node quasi-fat-tree (GQFT)

89

0

5

10

15

20

25

30

Number of removed switches

Ftree UpDn SSSP

0

5

10

15

20

25

Ftree (BXI) Dmodc Ftree2

0

5

10

15

20

25

Ftree-Random BFS-Random BFS-Ftree-Random

0

5

10

15

20

25

0 10 20 30 40

BFS-Ftree

0 10 20 30 40

BFS-Dmodc

0 10 20 30 40 50

BFS-Ftree2

µRP(1000)

µSP

Figure 5.8: Second sequence of progressively randomly switch-degraded 1036-
node quasi-fat-tree (GQFT)

90

0

5

10

15

20

25

30

Number of removed links

Ftree UpDn SSSP

0

5

10

15

20

25

Ftree (BXI) Dmodc Ftree2

0

5

10

15

20

25

Ftree-Random BFS-Random BFS-Ftree-Random

0

5

10

15

20

25

0 50 100 150

BFS-Ftree

0 50 100 150

BFS-Dmodc

0 50 100 150 200

BFS-Ftree2

µRP(1000)

µSP

Figure 5.9: First sequence of progressively randomly link-degraded 1036-node
quasi-fat-tree (GQFT)

91

0

5

10

15

20

25

30

Number of removed links

Ftree UpDn SSSP

0

5

10

15

20

25

Ftree (BXI) Dmodc Ftree2

0

5

10

15

20

25

Ftree-Random BFS-Random BFS-Ftree-Random

0

5

10

15

20

25

0 50 100 150

BFS-Ftree

0 50 100 150

BFS-Dmodc

0 50 100 150 200

BFS-Ftree2

µRP(1000)

µSP

Figure 5.10: Second sequence of progressively randomly link-degraded 1036-
node quasi-fat-tree (GQFT)

92

Conclusion

Contributions

The interactions between multiple aspects of the design of supercomputers
and their interconnect are key elements to consider when working to improve
their real-life performance. Such aspects include network topology, static and
adaptive routing, communication patterns, deadlock-freedom, fault resilience,
node-type heterogeneity. This multiplicity of potential interactions leads to
many potential worthwhile improvements; it also reflects an intricate situation,
and the challenge of evaluating the performance of a given system. The
progression through each chapter reflects a series of specific problems coming
from the industrial context, as well as the improvements we propose to solve
them. We begin this progression with a focus on performance evaluation so
that subsequent steps can be evaluated quantitatively. Each consideration on
interactions to study, and attempt to take explicitly into account in the design
of routing algorithms, also brings the cost of added intricacy. The software that
was developed alongside this research was designed to be as elegant and fast as
possible considering the multiplicity of algorithms and configurable techniques
it had to implement. This was possible, first thanks to the fact that the original
BXIFM was written from scratch years after such existing software was made
available (and extensively studied in recent research). Second, it was rewritten
entirely (as BXI AFM) after most research contributions from this thesis had
been largely fleshed out. The latter rewrite took into account these results:
for example, removing the offline/online distinction was pivotal in focusing on
closed-form algorithms like Dmodc.

This work was partly done in an industrial context and research exploration
was guided by the technological state of the art, to apply and extend existing
theoretical research. Even though this thesis aims to promote and improve
on high-level models and algorithm definitions, experience from the accompa-
nying development work highlighted how important low-level details were to
effective performance and quality. Throughout the work combining research
and industrial implementation, a large part of the effort spent was taken by
the iterative design of data structures and algorithms modelling the desired
routing techniques. It became quite apparent how closely coupled routing en-
gines are to the rest of a fabric manager and how providing both a high-quality
and an efficient routing software requires a good overall understanding of the
fabric manager.

Combining existing elements of research regarding quality measurement
of static routing functions and a simple congestion model, Chapter 2 presents
a framework in which to perform quantitative static estimation of congestion
risk for a static routing function in a given network topology for sample com-

93

munication patterns. Rather than provide direct measurements of realistic
network characteristics, this instead provides a tool to compare performance
between multiple routing algorithms in a given situation. This framework was
then used in the three subsequent chapters to help evaluate efficiently the
quality of static routing tables computed by the existing and novel approaches
compared fairly for the considered problems.

The first such problem considered (in Chapter 3) was that of heteroge-
neous supercomputers, affected by avoidable network congestion in realistic
worst-case scenarios. After evaluating the problem quantitatively (in terms
of congestion risk) for the existing static routing function, an intuitive prepro-
cessing step was presented and evaluated, and ultimately shown to potentially
improve the existing routing algorithms, assuming the considered worst-case
scenario is actually happening. A traditional dynamic simulation confirmed
the results evaluated using the static metrics. This is one glaring case in
which real requirements caused the common theoretical model to entirely fail
to predict the congestion risk, and where solving this problem at the static
routing level can be an efficient approach. However, this approach stresses
a common (but potentially undesirable) expectation that communications to
different node-types happen at different times.

The second problem considered (in Chapter 4) was the apparent lack of fast
routing algorithm for PGFTs, providing high-quality / low-congestion-risk rout-
ing even under large-scale equipment failure. A new algorithm was presented
to fill this gap, using a combination of a largely sequential network discovery
preprocessing phase and a parallel computation phase. This algorithm was
also evaluated statically to show how it reacts gracefully to equipment failure
while incurring only a fraction of the run time of current routing engines in our
implementation. Incidentally, this algorithm is used in production in multiple
large supercomputers and was helpful in developing the new fabric manager
for Atos in-house interconnects.

Lastly, the scope of the problem was widened to a more generalized network
topology in Chapter 5; taking into account both a wider class of realistic
networks and fault resilience, while aiming to provide better performance than
topology-agnostic techniques. A large selection of both existing and new routing
algorithms was presented and fairly compared to show potential improvements
applicable to a variety of realistic use-cases even under large-scale equipment
failure, while showcasing a varied use of the static evaluation framework.

These proposals are often composable, and care was taken in algorithmic
design and programming to implement fast algorithms. These proposals can
improve the performance of HPC clusters, but they require some amount
of attention as to their applicability and some parameters might affect re-
sults according to application. This reflects the trade-offs revealed by these
approaches, which must be navigated to take into account the gap between
theoretical systems and real supercomputers.

94

Future research

Up-and-coming supercomputers are made up of nodes with more and more
cores. Since each node is connected to the rest of the network through one link,
this means that for a given number of cores, both the number of nodes and the
network size are going down. Accordingly, switch radix and bandwidth tend to
go up with every new generation, to accommodate nonetheless increasing node
demands while decreasing network size. With these aspects in mind, it seems
that interconnect routing requirements are only decreasing. However, several
elements indicate that large-scale interconnects are going to keep expanding
in the coming future, and thus require demanding research. First, overall
performance demands have been increasing for over half a century, and the
largest supercomputers are accordingly increasing in core count every year.
This trend seems to be continuing in this same way for the coming future.
Second, memory requirements in many distributed applications result in the
use of more nodes than computation requirements would justify. Third, the
introduction of multi-slot NICs [90] increases the network requirements for
a given node count, which might in turn impact routing requirements. For
these reasons, continuing research on improving HPC interconnects is still
very much warranted.

Focusing on a specific contribution, one of the goals of this thesis was to
provide a useful static flow metric from which we deduce probable congestion to
quantitatively compare algorithms. Even applied to deterministic routing, this
doesn’t capture all dynamic behaviour; and this approach goes against the grain
of most recent research measuring routing performance. For these reasons,
we intend on producing a more thorough analysis of the relationship between
this metric and actual congestion depending on fine-grain communication
interaction. A corresponding study of the new algorithms (other than Gxmodk)
based on simulation rather than only a static congestion metric will also provide
more realistic results for some edge cases.

Some of the investigations that have been undertaken in parallel to this
thesis focus on optimising adaptive route selection, alongside nonminimal adap-
tive routing of MegaFly networks. We are working on proposing a configurable
multi-step selector with understanding of VCs, per-destination least-recently
used output port, and the minimal/non-minimal nature of output ports. They
also focused on separation of deterministic, minimal adaptive and nonminimal
adaptive traffics into three separate VCs (for each traffic flow where adaptive
routing will be available). These investigations will also include detailed simu-
lations as well as attempts at reduction to static analysis, in the vein of this
thesis.

Regarding the offline/online distinction which is not required for closed-form
algorithms such as Dmodc: this obliviousness helps focus on good quality fast
routing, however recovering some knowledge of network history can be useful.

95

For example, it allows developing strategies to mitigate large scale routing
table changes on frequent network updates. This should limit out-of-order
delivery of messages for some cases (as a more involved generalisation of the
technique described in the last paragraph of Section 4.3). I am participating in
the development of an approach merging two parallel routing tables, and this
technique will be introduced in a future version of BXI AFM.

Instead of enforcing local distributions of routes (from the bottom switches
for sequential algorithms), route selection can be reorganised to enforce dis-
tribution of routes at the center of the network (so-called top switches). This
can be done explicitly when computing routing functions which have source
or destination coalescing points, mapping these onto the set of top switches
for example. This global decision-making process can be described as a closed
formula, allowing similar parallel designs to those making up Dmodc for per-
formance and repeatability. However, care should be taken to verify whether
such a top–down approach might not cause unnecessary congestion to happen
in very irregular topologies due to intractable route collisions at the local scale
resulting from preference given to global scale distribution. I have developed
such a routing engine as a proof of concept during the course of my thesis.

The techniques proposed in this thesis could be combined with existing tech-
niques providing job-placement-aware static routing. For example, introducing
job-placement (or some other accurate estimation of communication pattern)
as a primary factor in topological NID renumbering should easily make Dmodc
adapt well to changing job placements, potentially reducing congestion in cases
of job fragmentation or custom communicators.

96

Translated conclusion

Conclusion in French

Contributions

Lorsqu’on travaille à améliorer les performances réelles des supercalcu-
lateurs, une approche clé consiste à étudier les intéractions entre plusieurs
aspects de leur design. Parmi ces aspects, on retrouve la topologie du réseau,
le routage statique et adaptatif, les schémas de communication, la garantie
d’absence de deadlocks, la résilience aux pannes, l’hétérogénéité de types de
nœuds. Cette pluralité d’intéractions amène de nombreux axes d’améliorations
potentiels ; mais c’est également le reflet d’une situation épineuse, et la source
de difficultés à évaluer les performances d’un système donné. Le cheminement
des chapitres suit une série de problématiques spécifiques émanant du contexte
industriel, ainsi que des améliorations proposées pour y répondre. Ce chemine-
ment débute avec un effort particulier sur l’évaluation de performance, afin
de pouvoir évaluer quantitativement les étapes suivantes. À chaque fois que
l’on choisit d’étudier une certaine intéraction, et de la prendre en compte dans
la construction des algorithmes de routage, s’ajoute le coût du couplage. J’ai
cherché à développer les codes qui accompagnent cette thèse de manière aussi
élégante et rapide que possible, lorsqu’on considère la diversité des algorithmes
et des techniques configurables qu’ils accomplissent. Le premier élément qui a
aidé à aller dans cette direction est le fait que le logiciel BXIFM initial a été
développé à zéro, alors que des systèmes concurant existaient (et avaient été
étudié publiquement) déja depuis des années. Par la suite, il a été entièrement
réécrit (sous la forme de BXI AFM) après que la majeure partie des contribu-
tions de cette thèse avaient été entreprises. Cette réécriture a impacté la suite
de la thèse : par exemple, le retrait de la distinction offline/online a permi de
se concentrer sur des algorithmes à forme close tels que Dmodc.

Ces travaux ont partiellement eu lieu dans un contexte industriel, et la
recherche a suivi l’état de l’art technologique, afin d’appliquer la recherche
théorique existante et de l’approfondir. Même si le but de cette thèse est
de promouvoir et améliorer des modèles à haut niveau et la définition des
algorithmes, le travail de développement logiciel a révélé combien les détails
d’implémentation ont une importance sur les performances effectives et la
qualité résultante. Au cours de l’effort combinant recherche et implémentation
industrielle, une large partie du travail a été dédiée au design itératif des
structures de données avec les algorithmes accomplissant les techniques de
routage désirées. Il apparût comme une évidence à quel point les fonctions
calculant les tables de routage sont fortement couplées au reste du fabric
manager, et que le calcul de routes de bonne qualité de manière efficiente

97

requiert une connaissance approfondie de ce dernier.
Combinant la recherche existante au sujet de la mesure de qualité des fonc-

tions de routage statiques avec un modèle simple de congestion, le Chapitre 2
présente une méthode permettant d’estimer le risque statique de congestion de
manière quantitative pour une fonction de routage statique dans une topologie
et pour un schéma de communication donnés. Plutôt que de mesurer des carac-
téristiques réseau réalistes, cet outil permet de comparer les performances de
plusieurs algorithmes de routage dans une situation donnée. Cette méthode
est ensuite utilisée dans les trois chapitres suivants pour aider à évaluer effi-
cacement la qualité des tables de routage statiques calculées par les approches
existantes et nouvelles, en les comparant équitablement dans le contexte des
problématiques étudiées.

La première de ces problématiques étudiée (dans le Chapitre 3) est celle
des supercalculateurs hétérogènes, pouvant être impactés par de la congestion
réseau évitable dans des scénarios de pire cas, mais réalistes. Après une
étude quantitative du problème (en terme de risque de congestion) pour une
fonction de routage statique existante, un étape de précalcul intuitive a été
présentée, étudiée, et enfin montrée comme pouvant améliorer les algorithmes
de routage existant, si tant est que le scénario de pire cas ait vraiment lieu.
Une simulation dynamique traditionnelle a confirmé les résultats obtenus à
l’aide des métriques statiques. Ce cas met en exergue comment des conditions
réelles peuvent mettre en échec complet la capacité au modèle théorique de
prédire le risque de congestion, et comment il peut être viable de résoudre ce
problème au niveau du routage statique. En revanche, cette approche souligne
également comment l’organisation courante des communications en différentes
phases temporelles peut être indésirable.

La seconde problématique considérée (dans le Chapitre 4) est celle du
manque apparent d’algorithmes de routage rapides pour les PGFT, fournissant
un routage de haute qualité (à faible risque de congestion) même en cas de nom-
breuses pannes. Pour combler ce manque, un nouvel algorithme est présenté,
combinant une phase partiellement séquentielle de précalcul pour la décou-
verte du réseau et une phase parallèle de calcul des routes. Cet algorithme a
aussi été évalué avec la métrique statique, montrant comme il reste faiblement
impacté par les pannes matérielles, tout en ne coûtant (dans notre implémenta-
tion) qu’une fraction du temps d’exécution des algorithmes de routage courants.
En outre, cet algorithme est utilisée en production dans plusieurs grands su-
percalculteurs et a aidé au développement du nouveau fabric manager pour
l’interconnect produit par Atos.

Enfin, la problématique a été élargie à une classe de topologie plus général-
isée dans le Chapitre 5 ; ceci prenant en compte une classe plus large de
réseaux réalistes et la tolérance aux pannes, tout en conservant une meilleure
performance que les techniques complètement génériques à n’importe quelle
topologie. Une sélection étendue d’algorithmes de routage aussi bien exis-

98

tants que nouveaux est présentée et comparée équitablement pour montrer les
améliorations potentielles applicables à une variété de cas d’usage réalistes
même en cas de nombreuses pannes matérielles, tout en affichant un panel
varié d’utilisations de la méthode d’évaluation statique.

Ces propositions sont pour la plupart modulaires, et un effort partic-
ulier a été entrepris dans l’écriture algorithmique et la programmation pour
l’implémentation de routage rapide. Ces propositions peuvent améliorer les
performances de clusters HPC, mais elles nécessitent une certaine attention
au sujet de leur applicabilité et paramétrisation pouvant affecter les résultats
selon les applications. Ceci reflète les intéractions subtiles motivant ces ap-
proches, pour lesquelles il faut chercher un équilibre si on veut prendre en
compte l’écart entre la théorie et la réalité des supercalculateurs.

Travaux futurs

Les supercalulateurs à venir sont composés de nœuds contenant de plus
en plus de cœurs. Vu que chaque nœud est connecté au reste du réseau via
un seul lien, ceci signifie que pour un nombre de cœurs donné, le nombre de
nœuds baisse (et avec lui la taille totale du réseau). Ce faisant, le nombre de
ports et la bande passante des switches tend à augmenter avec les générations
matérielles, pour réduire la taille totale du réseau tout en accomodant une
demande nonobstant croissante en nœuds. Avec ces éléments à l’esprit, il
peut sembler que les performances requises du routage tenderont à décroître.
Pourtant, plusieurs éléments indiquent que les interconnect vont continuer à se
développer dans les années à venir, et ainsi continuer à motiver des recherches.
Premièrement, les besoins en performance ont continuellement augmentés
depuis plus d’un demi-siècle, et les supercalculateurs les plus puissants ont de
fait augmenté en nombre de cœurs d’année en année. Cette tendance semble
continuer ainsi pour le futur à venir. Deuxièmement, les besoins en mémoire
de nombreuses applications distribuées poussent à utiliser encore plus de
nœuds que les simples besoins en calcul ne justifieraient. Troisièmement,
l’introduction de NIC à plusieurs slots [90] augmente les dimensions du réseau
pour un nombre de nœuds donné, impactant alors la charge du routage. Pour
ces raisons, il demeure utile de continuer la recherche pour améliorer les
interconnects HPC.

Au niveau des contributions spécifiques, un des buts de cette thèse était de
fournir une métrique statique de flux de laquelle on puisse déduire les risques
de congestion, afin de pouvoir comparer les algorithmes de manière quanti-
tative. Même en se restreignant au routage déterministe, ceci ne permet pas
de décrire les comportements dynamiques potentiels ; de plus, cette approche
va à contre-courant de la majorité des études faisant de la mesure de perfor-
mance de routage. Pour ces raisons, nous voulons produire une analyse plus
approfondie de cette métrique par rapport à la congestion réellement induite,
prenant en compte les intéractions de bas-niveau entre communications. En ce

99

sens, une étude des nouveaux algorithmes (à part Gxmodk) qui reposerait sur
de la simulation plutôt que la métrique de congestion statique apporterait du
détail dans les résultats.

Certaines des études réalisées en parallèle de cette thèse ont porté sur
l’optimisation de la sélection de routes adaptatives, ainsi que le routage adap-
tatif non-minimal sur les réseaux MegaFly. Nous travaillons à fournir un
arbitre configurable à plusieurs niveaux, qui aurait notion des VC, du port
de sortie utilisé le plus récemment (pour chaque destination), et de la nature
minimale ou non de chaque port de sortie. Ces études visent à séparer les
traffics déterministes, adaptatif minimal, et non-minimal, en trois VC distincts
(pour chaque flux qui peut être routé adaptativement).

Le fait de ne pas séparer le routage en composantes offline/online (comme
dans Dmodc) permet de se concentrer à fournir dès que possible des routes
de bonne qualité, mais il peut être bénéfique de réintroduire un certain degré
d’historique de l’évolution du réseau. Par exemple, cela permet de développer
des stratégies pour mitiger le volume des modifications des tables de routage
lors de mises-à-jour fréquentes de l’état du réseau. Une telle mitigation réduit
le volume de messages arrivant dans le désordre dans certains cas (et forme une
généralisation plus ardue de la technique décrite dans le dernier paragraphe
de la section 4.3). J’ai participé au développement d’une approche qui combine
deux tables de routage calculées en parallèle, qui sera livrée dans une version
future de BXI AFM.

Au lieu de répartir les routes en considérant des choix à petite échelle
(depuis les switches du bas pour les algorithmes séquentiels), la sélection des
routes peut être réorganisée afin de garantir la bonne distribution des routes
au milieu du réseau (au niveau des switches de plus haut niveau). Ceci peut
être réalisé de manière explicite pour les fonctions de routage qui agglutinent
par source ou destination, en distribuant les points agglutinants sur les top
switches. Ce processus de prise de décision à un niveau global peut être décrit
par une formule close, permettant une implémentation parallélisée similaire à
celle de Dmodc, performante et déterministe. En revanche, il conviendra de
vérifier si une telle approche de haut en bas ne causerait pas de la congestion
évitable dans des topologies très irrégulières, suite à des collisions de routes
à une échelle locale qu’on ne pourrait séparer suivant la préférence donnée
à la distribution à plus haute échelle. J’ai développé le prototype d’un tel
algorithme de routage durant ma thèse.

Les techniques proposées dans cette thèse pourraient être combinées avec
des techniques existantes pour calculer le routage déterministe en fonction
du placement des jobs. Par exemple, prendre en compte le placement des
jobs (ou toute autre élément apportant une estimation précise des schémas de
communication) en tant que facteur primordial dans la renumérotation des
« topological NID » mènerait Dmodc naturellement à s’adapter aux change-
ment de placement des jobs, réduisant ainsi le risque de congestion lors de la

100

fragmentation des jobs, ou de l’utilisation de communicateurs mal optimisés.

Conclusion in Spanish

Conclusiones
Las interacciones entre los múltiples aspectos del diseño de los supercom-

putadores y sus redes de interconexión son elementos clave a considerar cuando
se trabaja para mejorar sus prestaciones en sistemas reales. Dichos aspectos
incluyen la topología de la red, el encaminamiento estático o adaptativo, los
patrones de comunicación, las garantías de ausencia de interbloqueo, la toler-
ancia a fallos, la heterogeneidad de los nodos finales, etc. Esta diversidad de
potenciales interacciones posibilita muchas mejoras potenciales que merece la
pena explorar; también refleja una situación compleja, y hace que evaluar con
precisión el rendimiento de un sistema dado constituya un reto. Cada capítulo
de esta tesis refleja una serie de problemas específicos provenientes del contexto
industrial, así como las mejoras que proponemos para resolverlos. La tesis
comienza centrándose en la evaluación de prestaciones para que las propuestas
posteriores puedan evaluarse cuantitativamente. Cada consideración sobre las
interacciones a estudiar, y cada intento de tenerlas en cuenta explícitamente
en el diseño de algoritmos de encaminamiento, también conlleva el coste de
una complejidad añadida. El software de control de la red que se desarrolló en
paralelo a esta investigación fue diseñado para ser lo más elegante y rápido
posible, considerando la multiplicidad de algoritmos y técnicas configurables
implementadas. Esto fue posible, en primer lugar, gracias al hecho de que el
software de control original (BXIFM) se creó desde cero años después de que
software similar estuviese disponible (y fuese estudiado exhaustivamente). En
segundo lugar, el software de control se reescribió por completo (con el nombre
de BXI AFM) después de que la mayoría de las contribuciones de esta tesis se
hubiesen desarrollado. Efectivamente, esta última reescritura tuvo en cuenta
los resultados de esta tesis: por ejemplo, eliminar la distinción entre offline y
online fue fundamental para centrarse en algoritmos de forma cerrada como
Dmodc.

Los trabajos de esta tesis se desarrollaron parcialmente en un entorno
industrial, y en general la investigación estuvo orientada hacia la aplicación a
tecnologías punta de la investigación teórica existente, extendiendo la misma.
A pesar de que esta tesis intenta impulsar y mejorar los modelos de alto nivel
y las definiciones de algoritmos, durante su desarrollo se hizo evidente cuán
importantes son en la práctica los detalles de bajo nivel para el rendimiento y la
calidad. Al combinar a lo largo del trabajo la investigación y la implementación
industrial, una gran parte del esfuerzo invertido se dedicó al diseño iterativo de
estructuras de datos y algoritmos que modelan las técnicas de encaminamiento
deseadas. Se hizo bastante evidente cuán estrechamente unidos están los
encaminamientos con el resto de aspectos configurables del sistema, y cómo

101

el proporcionar un software de encaminamiento eficiente y de alta calidad
requiere una buena comprensión general de todos estos aspectos.

En el Capítulo 2 de esta tesis se combinan elementos de investigación ex-
istentes sobre la medición de la calidad de las funciones de encaminamiento
estático con un modelo simple de congestión, para presentar un marco en el
que realizar una estimación estática cuantitativa del riesgo de congestión,
para una función de encaminamiento estático en una topología de red dada, y
para muestras de patrones de comunicación. En lugar de proporcionar medi-
ciones directas de características de red realistas, este enfoque proporciona
una herramienta para comparar el rendimiento de varios algoritmos de en-
caminamiento en una situación determinada. Este marco se usó luego en
los tres capítulos siguientes para evaluar la calidad de las tablas de encam-
inamiento estático calculadas tanto por las técnicas existentes como por las
nuevas propuestas, comparando unas y otras de forma justa en los escenarios
considerados.

El primero de tales escenarios (en el Capítulo 3) fue el del problema de los
supercomputadores heterogéneos afectados por congestión evitable, en casos
extremos pero realistas. Una vez evaluado este problema cuantitativamente
(en términos de riesgo de congestión) para la función de encaminamiento
estático existente, se presentó y evaluó una fase de preprocesamiento intuitiva
que, finalmente, se demostró que mejora potencialmente los algoritmos de
encaminamiento existentes, asumiendo que el peor de los casos considerado
está sucediendo realmente. Además, una simulación dinámica tradicional
confirmó los resultados obtenidos utilizando las métricas estáticas. Este es
un caso evidente en el que los requisitos reales hicieron que el modelo teórico
común fallara por completo en la predicción del riesgo de congestión, y para
el que resolver este problema a nivel de encaminamiento estático puede ser
un enfoque eficiente. Sin embargo, en este enfoque subyace una expectativa
común (pero potencialmente indeseable) de que las comunicaciones con tipos
diferentes de nodos ocurren en diferentes momentos.

El segundo problema considerado (en el Capítulo 4) fue el de la aparente
falta de un algoritmo de encaminamiento rápido para las topologías de tipo
Parallel Generalized Fat-Tree (PGFT), que proporcionase un encaminamiento
de alta calidad y bajo riesgo de congestión, incluso en caso de fallos a gran escala
en la red. Para llenar este vacío se presentó un nuevo algoritmo, que utiliza
una combinación de una fase de preprocesamiento para descubrir la red (en
gran parte secuencial) y una fase de cálculo paralelo. Este algoritmo también se
evaluó estáticamente, demostrándose que reacciona eficientemente ante fallos
de los componentes de la red, a costa de aumentar sólo una fracción el tiempo de
ejecución de las actuales implementaciones software del encaminamiento. Por
cierto, este algoritmo se usa realmente en varios grandes supercomputadores,
y fue útil en el desarrollo del nuevo software de control de las interconexiones
internas de Atos.

102

Por último, en el Capítulo 5 se extendió el escenario a una topología de red
más generalizada, teniendo en cuenta tanto una clase más amplia de redes
realistas como la tolerancia a fallos, e intentando siempre ofrecer mejores
prestaciones que las técnicas agnósticas respecto a la topología. Se presentó
una gran selección de algoritmos de encaminamiento nuevos y existentes, y
se aplicó el marco de evaluación estático para compararlos de manera justa
y finalmente detectar mejoras potenciales aplicables a una variedad de casos
realistas, incluyendo casos de fallos a gran escala en la red.

Varias de estas propuestas son combinables, y en su implementación soft-
ware se puso especial énfasis en el diseño y la programación algorítmica,
de cara a obtener algoritmos rápidos. Estas propuestas pueden mejorar el
rendimiento de los clústeres de computación paralela de altas prestaciones
(High-Performance Computing, HPC), pero requieren cierto cuidado respecto
a su aplicabilidad, y el valor de algunos parámetros puede afectar a los resul-
tados dependiendo de la aplicación. Esto refleja las ventajas y desventajas de
estos enfoques, que deben para tener en cuenta la brecha entre los sistemas
teóricos y los supercomputadores reales.

Trabajo futuro

Los supercomputadores modernos están formados por nodos finales que
incluyen cada vez más y más núcleos. Puesto que cada nodo está conectado al
resto de la red a través de un enlace, esto significa que, para una cantidad total
concreta de núcleos, tanto la cantidad de nodos finales como el tamaño de la
red están disminuyendo. Al mismo tiempo, el número de puertos (radix) y el
ancho de banda del conmutador tienden a aumentar con cada nueva generación,
para adaptarse a las crecientes demandas de los nodos, mientras se reduce
el tamaño de la red. Teniendo estos aspectos en cuenta, parecería que los
requisitos que debe satisfacer el encaminamiento de la red de interconexión
estarían disminuyendo. Sin embargo, varias circunstancias indican que las
redes de interconexión a gran escala seguirán expandiéndose en el futuro
próximo y, por lo tanto, requerirán una investigación profunda. En primer
lugar, la demanda general de prestaciones ha aumentando constantemente
durante más de medio siglo y, en consecuencia, los supercomputadores más
grandes están aumentando en número de núcleos cada año. Esta tendencia
tiene visos de continuar en el futuro próximo. En segundo lugar, los requisitos
de memoria en muchas aplicaciones distribuidas dan como resultado el uso
de más nodos de los que cubrirían las necesidades de computación. En tercer
lugar, la introducción de interfaces de red (network interface cards, NICs) de
múltiples ranuras [90] aumenta los requisitos que debe satisfacer la red para
un número total de nodos determinado, lo que a su vez podría afectar a los
requisitos que debe satisfacer el encaminamiento. Por estas razones, continuar
investigando para mejorar las redes de altas prestaciones par sistemas HPC
todavía está plenamente justificado.

103

Centrándonos en una contribución específica, uno de los objetivos de esta
tesis es obtener una métrica de flujo estática que sea útil para deducir la
probabilidad de congestión, de cara a comparar algoritmos cuantitativamente.
Sin embargo, incluso aplicado al encaminamiento determinista, este enfoque
no captura todo el comportamiento dinámico; además, no va en consonancia
con la granularidad de investigaciones recientes que miden el rendimiento del
encaminamiento. Por estas razones, nuestra intención es realizar un análisis
más completo de la relación entre esta métrica y la congestión real, en función
de las interacciones de comunicación de grano fino. En este sentido, un estudio
de los nuevos algoritmos (aparte de Gxmodk) basado en simulación en lugar
de sólo una métrica de congestión estática, proporcionaría resultados más
realistas para algunos casos extremos.

Algunas de las investigaciones que se han llevado a cabo en paralelo a esta
tesis se centran en optimizar la selección de rutas adaptativas, junto con el
encaminamiento adaptativo no mínimo de las topologías MegaFly. Estamos
trabajando actualmente para proponer un selector de rutas configurable de
varios pasos que considere los canales virtuales (Virtual Channels, VCs), el
puerto de salida menos utilizado recientemente para alcanzar cada destino, y
la naturaleza mínima/no mínima de la ruta a la que conducen los puertos de
salida. Las investigaciones también se han centrado en la separación de los
tráficos determinista, adaptativo mínimo y adaptativo no mínimo, en tres VCs
separados (para cada flujo de tráfico donde el encaminamiento adaptativo esté
disponible). Estas investigaciones también incluirán simulaciones detalladas,
así como intentos de reducción al análisis estático, en la línea de esta tesis.

Por otra parte, no tener en cuenta la distinción offline/online en los algorit-
mos de forma cerrada (como Dmodc) ayuda a centrarse en el encaminamiento
rápido de buena calidad, pero recuperar algo de conocimiento del historial
de la red también puede ser útil. Por ejemplo, esto permite desarrollar es-
trategias para mitigar cambios a gran escala en la tabla de encaminamiento
debido a actualizaciones frecuentes de la red. Esto debería limitar la entrega
fuera de orden de mensajes en algunos casos (como una generalización de la
técnica descrita en el último párrafo de la Sección 4.3). Actualmente esta-
mos participando en el desarrollo de un enfoque para fusionar dos tablas de
encaminamiento paralelas, lo que se incluirá en una versión futura de BXI
AFM.

Además, en lugar de usar distribuciones locales de rutas (desde los con-
mutadores inferiores para los algoritmos secuenciales), la selección de rutas
se puede reorganizar para imponer la distribución de rutas en el centro de la
red (o sea, desde los llamados conmutadores superiores). Esto se puede hacer
explícitamente cuando se calculan funciones de encaminamiento que tienen
puntos convergentes de origen o destino, mapeándolos en el conjunto de conmu-
tadores superiores, por ejemplo. Este proceso global de toma de decisiones se
puede describir como una fórmula cerrada, que permite diseños paralelos simi-

104

lares a los que componen Dmodc en cuanto a rendimiento y repetibilidad. Sin
embargo, se debe tener cuidado para verificar si tal enfoque desde arriba hacia
abajo podría causar una congestión innecesaria en topologías muy irregulares,
debido a colisiones de rutas difíciles o imposibles de evitar a escala local, que
resultan de la preferencia otorgada a la distribución a escala global. Durante
el curso de esta tesis, se ha desarrollado una implementación de este tipo de
encaminamiento, como prueba de concepto.

Las técnicas propuestas en esta tesis podrían combinarse con técnicas
existentes que proporcionen encaminamiento estático en función del mapeo de
trabajos a nodos. Por ejemplo, la introducción del mapeo de trabajos a nodos
(o alguna otra estimación precisa del patrón de comunicación) como un factor
principal en la renumeración de los identificadores de los nodos (NIDs) de la
topología debería hacer que Dmodc se adapte bien a los cambios del mapeo
de trabajos, lo que podría reducir la congestión en casos de fragmentación del
trabajo o de nodos comunicándose fuera del patrón estimado.

105

Annex

1 . Routing Leiserson fat-trees

Shortest switch-path selection is simply going up until reaching the near-
est common ancestor (NCA) of the source and destination, and then going
down towards the destination. Leiserson implements this using cheap binary
operations on source and destination node indices. The routing algorithms
provided to schedule message sets into delivery frames through the available
channels cannot be translated to modern cluster interconnects. However, if
considering the switches as crossbar switches, it is relatively straightforward
to design a “perfect” static routing algorithm, with each source being assigned
a unique uppath to the top and conversely each destination a unique downpath
from the top. This is easily implemented using input port index as shown in
Algorithm 13.

Algorithm 13: Non-blocking static routing for Leiserson fat-trees.
Data: switch s, input port i (in s) to destination d
Result: output port p (in s)

1 if d is down-accessible from s then
2 D is the ordered set of down ports of s that lead towards b
3 p ← D[d mod #D]
4 else
5 D is the ordered set of down ports of s
6 i′ is the index of i in D
7 U is the ordered set of up ports of s
8 p ←U[i′]

The resulting static routes illustrate how under exclusive point-to-point
communications, new paths are always available regardless of existing traffic
(as shown in Figure 11). This is equivalent to the non-blocking nature of Clos
networks with m ≥ 2n−1, even though it does not reflect other communication
patterns that are commonly found in HPC applications.

107

0 1 2 3 4 5 6 7
(a) 0→ 4 and 1→ 5

0 1 2 3 4 5 6 7
(b) 0→ 5 and 1→ 4

Figure 11: Distinct paths under non-blocking static routing in two different
point-to-point communication patterns.

2 . Resilient statistical ranking method

As an alternative statistical method to determine top switches (to that
presented in Section 1.4.5), I propose a similar criterion, based on the general
hierarchical nature of fat-tree-like topologies, defined in Algorithm 14.

Algorithm 14: Resilient statistical top switch criterion
1 Compute each switch’s distance from every compute node
2 Find each switch’s smallest most frequent distance from nodes (D̄s)
3 Select all switches with D̄s =min∀s′(D̄s′) as top switches

The intuition behind this criterion is that non-top switches are at a greater
distance from most nodes than top switches are. Note that this is based on real
shortest path distance, and not up–down shortest path distance, since this step
must come before determining levels or direction. As a result, the method (like
OpenSM’s) has a complexity of O (#E3) if implemented using repeated Dijkstra.

One advantage of the method is that it guarantees that at least one switch
will be selected as top switch.

3 . Routing vPGFTs

Some IFTs in which there are multiple shortest paths from top switches to
leaf switches can be converted into PGFTs by splitting up each switch (of one
or several levels) into two or more switches. Such topologies can be referred
to as vPGFTs, and an example is provided in Figure 12. A valid method of
routing vPGFTs is to compute routing tables for the corresponding PGFT,
using either Dmodk or Ftree, and joining the tables of each part of each switch
into the physical tables. This can be done without conflict for source-based
or input port-based deterministic routing because each set of routes stays
within its subset of ports. (In such a case, this approach has the potential

108

(a) vPGFT (b) Corresponding PGFT with virtual
switches in grey.

Figure 12: Example vPGFT, with corresponding PGFT. Note that a
PGFT(3;2,2,2;1,2,1;1,1,2), an RLFT, could have been used instead of the
vPGFT, using the same equipment.

drawback that available resources are discarded since no route is allowed to go
across virtual switches.) Otherwise, there might be deterministic routes to the
same destination computed in several virtual switches; these conflicts must be
resolved to determine which route must be kept in the vPGFT. If any secondary
deterministic route is guaranteed correct, any choice of conflict resolution is
correct, albeit potentially nonoptimal. Since the vPGFT is a BMIN, and merged
routes are up–down, the resulting routing function is deadlock-free.

109

Bibliography

[1] IEEE 1003.1c-1995. Threads extensions. Standard. Institute of Electrical and
Electronics Engineers, June 1995.

[2] ISO 9899:1999. Programming languages — C. Standard. International Orga-
nization for Standardization, Dec. 1999.

[3] Ahmad Chadi Aljundi, Jean-Luc Dekeyser, M Tahar Kechadi, and Isaac
D Scherson. “A study of an evaluation methodology for unbuffered multi-
stage interconnection networks”. In: Proceedings International Parallel and
Distributed Processing Symposium. IEEE. 2003, 8–pp.

[4] Brian W. Barrett et al. The Portals 4.3 Network Programming Interface.
Tech. rep. SAND2022-8810. Albuquerque, New Mexico: Sandia National
Laboratories, 2022. URL: https://www.sandia.gov/portals/.

[5] Maciej Besta, Marcel Schneider, Marek Konieczny, Karolina Cynk, Erik
Henriksson, Salvatore Girolamo, Ankit Singla, and Torsten Hoefler. “Fat-
Paths: Routing in Supercomputers and Data Centers when Shortest Paths
Fall Short”. In: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE. 2020, pp. 365–382.

[6] Bartosz Bogdanski, Frank Olaf Sem-Jacobsen, Sven-Arne Reinemo, Tor Skeie,
Line Holen, and Lars Paul Huse. “Achieving predictable high performance
in imbalanced fat trees”. In: 16th International Conference on Parallel and
Distributed Systems (ICPADS). IEEE. 2010, pp. 381–388.

[7] Bartosz Bogdanski, Bjørn Dag Johnsen, Sven-Arne Reinemo, and Frank Olaf
Sem-Jacobsen. “Discovery and routing of degraded fat-trees”. In: 2012 13th
International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT). IEEE. 2012, pp. 697–702.

[8] Bartosz Bogdanski, Sven-Arne Reinemo, Frank Olaf Sem-Jacobsen, and
Ernst Gunnar Gran. “sFtree: A fully connected and deadlock-free switch-to-
switch routing algorithm for fat-trees”. In: ACM Transactions on Architecture
and Code Optimization (TACO) 8.4 (2012), p. 55.

[9] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. “Investiga-
tion of leading HPC I/O performance using a scientific-application derived
benchmark”. In: Proceedings of the 2007 ACM/IEEE conference on Super-
computing. 2007, pp. 1–12.

111

https://www.sandia.gov/portals/

[10] Dong Chen, Philip Heidelberger, Craig Stunkel, Yutaka Sugawara, Cyriel
Minkenberg, Bogdan Prisacari, and German Rodriguez. “An evaluation of
network architectures for next generation supercomputers”. In: 2016 7th
International Workshop on Performance Modeling, Benchmarking and Simu-
lation of High Performance Computer Systems (PMBS). IEEE. 2016, pp. 11–
21.

[11] Charles Clos. “A study of non-blocking switching networks”. In: Bell System
Technical Journal 32.2 (1953), pp. 406–424.

[12] Tiffany Connors, Taylor Groves, Tony Quan, and Scott Hemmert. “Simulation
Framework for Studying Optical Cable Failures in Dragonfly Topologies”. In:
2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE. 2019, pp. 859–864.

[13] Cray. Slingshot: the Interconnect for the Exascale Era (White Paper). 2019.

[14] William J Dally and Charles L Seitz. Deadlock-Free Message Routing in Multi-
processor Interconnection Networks, Dept. of Computer Science, California
Institute of Technology. Tech. rep. Technical Report 5206: TR: 86, 1986.

[15] William J. Dally and Hiromichi Aoki. “Deadlock-free adaptive routing in
multicomputer networks using virtual channels”. In: IEEE transactions on
Parallel and Distributed Systems 4.4 (1993), pp. 466–475.

[16] William James Dally. “Performance Analysis of k-ary n-cube Interconnection
Networks”. In: IEEE transactions on Computers 39.6 (1990), pp. 775–785.

[17] William James Dally and Brian Patrick Towles. Principles and practices of
interconnection networks. Elsevier, 2004.

[18] Daniele De Sensi, Salvatore Di Girolamo, Kim H McMahon, Duncan Roweth,
and Torsten Hoefler. “An In-Depth Analysis of the Slingshot Interconnect”.
In: arXiv preprint arXiv:2008.08886 (2020).

[19] Jens Domke, Torsten Hoefler, and Wolfgang E Nagel. “Deadlock-free oblivious
routing for arbitrary topologies”. In: International Parallel & Distributed
Processing Symposium. IEEE. 2011, pp. 616–627.

[20] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. “Fail-in-place network
design: interaction between topology, routing algorithm and failures”. In: In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis (SC). IEEE. 2014, pp. 597–608.

[21] Jens Domke, Torsten Hoefler, and Satoshi Matsuoka. “Routing on the depen-
dency graph: A new approach to deadlock-free high-performance routing”. In:
25th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC). ACM. 2016, pp. 3–14.

112

[22] Jens Domke and Torsten Hoefler. “Scheduling-aware routing for supercom-
puters”. In: International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC). IEEE. 2016, p. 13.

[23] Jack Dongarra and Piotr Luszczek. HPCG list. www.top500.org/lists/hpcg.
2017–2020.

[24] José Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks.
Morgan Kaufmann, 1997.

[25] José Duato, Olav Lysne, Ruoming Pang, and Timothy Mark Pinkston. “A
theory for deadlock-free dynamic network reconfiguration”. In: IEEE Trans-
actions on Parallel and Distributed Systems 16.5 (2005), pp. 412–427.

[26] José Duato, Antonio J Pena, Federico Silla, Rafael Mayo, and Enrique S
Quintana-Ortí. “rCUDA: Reducing the number of GPU-based accelerators
in high performance clusters”. In: 2010 International Conference on High
Performance Computing & Simulation. IEEE. 2010, pp. 224–231.

[27] Peyman Faizian, Md Atiqul Mollah, Md Shafayat Rahman, Xin Yuan, Scott
Pakin, and Mike Lang. “Throughput models of interconnection networks:
the good, the bad, and the ugly”. In: 25th Annual Symposium on High-
Performance Interconnects (HOTI). IEEE. 2017, pp. 33–40.

[28] Mario Flajslik, Eric Borch, and Mike A Parker. “Megafly: A topology for exas-
cale systems”. In: International Conference on High Performance Computing.
Springer. 2018, pp. 289–310.

[29] Jose Flich, Manuel P Malumbres, Pedro Lopez, and Jose Duato. “Improving
routing performance in Myrinet networks”. In: 14th International Parallel
and Distributed Processing Symposium (IPDPS). IEEE. 2000, pp. 27–32.

[30] Sally Floyd. “TCP and explicit congestion notification”. In: ACM SIGCOMM
Computer Communication Review 24.5 (1994), pp. 8–23.

[31] Yixiao Gao, Yuchen Yang, Tian Chen, Jiaqi Zheng, Bing Mao, and Guihai
Chen. “DCQCN+: Taming large-scale incast congestion in RDMA over eth-
ernet networks”. In: 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE. 2018, pp. 110–120.

[32] Marina García, Enrique Vallejo, Ramón Beivide, Miguel Odriozola, and Mateo
Valero. “Efficient routing mechanisms for dragonfly networks”. In: 2013 42nd
International Conference on Parallel Processing. IEEE. 2013, pp. 582–592.

[33] Pedro Javier García, Francisco J Quiles, Jose Flich, Jose Duato, Ian Johnson,
and Finbar Naven. “Efficient, scalable congestion management for intercon-
nection networks”. In: IEEE Micro 26.5 (2006), pp. 52–66.

[34] Patrick Geoffray and Torsten Hoefler. “Adaptive routing strategies for modern
high performance networks”. In: 16th Annual Symposium on High Perfor-
mance Interconnects (HOTI). IEEE. 2008, pp. 165–172.

113

www.top500.org/lists/hpcg

[35] Christopher J Glass and Lionel M Ni. “The turn model for adaptive routing”.
In: ACM SIGARCH Computer Architecture News 20.2 (1992), pp. 278–287.

[36] Crispín Gómez, Francisco Gilabert, María Engracia Gómez, Pedro López,
and José Duato. “Deterministic versus adaptive routing in fat-trees”. In:
International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
2007, pp. 1–8.

[37] Ronald I Greenberg and Charles E Leiserson. “Randomized routing on fat-
tress”. In: 26th annual symposium on Foundations of Computer Science
(SFCS 1985). IEEE. 1985, pp. 241–249.

[38] Wei Lin Guay, Bartosz Bogdanski, Sven-Arne Reinemo, Olav Lysne, and Tor
Skeie. “vFtree-A fat-tree routing algorithm using virtual lanes to alleviate
congestion”. In: International Parallel & Distributed Processing Symposium
(IPDPS). IEEE. 2011, pp. 197–208.

[39] Marie-Claude Heydemann, Jean Claude Meyer, and Dominique Sotteau.
“On forwarding indices of networks”. In: Discrete Applied Mathematics 23.2
(1989), pp. 103–123.

[40] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. “Multistage Switches
are not Crossbars: Effects of Static Routing in High-Performance Networks”.
In: International Conference on Cluster Computing (CLUSTER). IEEE. 2008,
pp. 116–125.

[41] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. “Optimized routing
for large-scale InfiniBand networks”. In: 17th Annual Symposium on High
Performance Interconnects (HOTI). IEEE. 2009, pp. 103–111.

[42] IEEE. 802.1Qau – Congestion Notification. 1.ieee802.org/dcb/802-1qau/.
retrieved 2020.

[43] Nikhil Jain, Abhinav Bhatele, Xiang Ni, Nicholas J Wright, and Laxmikant
V Kale. “Maximizing throughput on a dragonfly network”. In: SC’14: Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE. 2014, pp. 336–347.

[44] Nan Jiang, John Kim, and William J Dally. “Indirect adaptive routing on
large scale interconnection networks”. In: ACM SIGARCH Computer Archi-
tecture News 37.3 (2009), pp. 220–231.

[45] Gregory Johnson, Darren J Kerbyson, and Michael Lang. “Application specific
optimization of infiniband networks”. In: PAL Roadrunner, LAUR 06 7234
(2006).

[46] Michael Jurczyk and Thomas Schwederski. “Phenomenon of higher order
head-of-line blocking in multistage interconnection networks under nonuni-
form traffic patterns”. In: IEICE Transactions on Information and Systems
79.8 (1996), pp. 1124–1129.

114

1.ieee802.org/dcb/802-1qau/

[47] Georgios Kathareios, Cyriel Minkenberg, Bogdan Prisacari, German Ro-
driguez, and Torsten Hoefler. “Cost-effective diameter-two topologies: Anal-
ysis and evaluation”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM. 2015,
p. 36.

[48] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. “Technology-driven,
highly-scalable dragonfly topology”. In: 2008 International Symposium on
Computer Architecture. IEEE. 2008, pp. 77–88.

[49] Michel A Kinsy, Myong Hyon Cho, Tina Wen, Edward Suh, Marten Van Dijk,
and Srinivas Devadas. “Application-aware deadlock-free oblivious routing”.
In: Proceedings of the 36th annual international symposium on Computer
architecture. 2009, pp. 208–219.

[50] Smaragda Konstantinidou and Lawrence Snyder. “The chaos router”. In:
IEEE Transactions on Computers 43.12 (1994), pp. 1386–1397.

[51] Charles E Leiserson. “Fat-trees: universal networks for hardware-efficient
supercomputing”. In: IEEE transactions on Computers 100.10 (1985), pp. 892–
901.

[52] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. “A multiple LID routing
scheme for fat-tree-based InfiniBand networks”. In: 18th International Paral-
lel and Distributed Processing Symposium, 2004. Proceedings. IEEE. 2004,
p. 11.

[53] Olav Lysne, Timothy Mark Pinkston, and José Duato. “A methodology for
developing deadlock-free dynamic network reconfiguration processes”. In:
IEEE Transactions on Parallel and Distributed Systems 16.5 (2005), pp. 428–
443.

[54] Daniel Maag. “Congestion-aware Simulation of Large-scale HPC Networks”.
B.S. thesis. ETH Zurich, 2016.

[55] German Maglione-Mathey, Pedro Yebenes, Jesús Escudero-Sahuquillo, Pedro
Javier García, and Francisco J Quiles Flor. “Combining openfabrics soft-
ware and simulation tools for modeling InfiniBand-based interconnection
networks”. In: 2016 2nd IEEE International Workshop on High-Performance
Interconnection Networks in the Exascale and Big-Data Era (HiPINEB).
IEEE. 2016, pp. 55–58.

[56] German Maglione-Mathey, Pedro Yebenes, Jesús Escudero-Sahuquillo, Pe-
dro Javier García, Francisco José Quiles Flor, and Eitan Zahavi. “Scalable
deadlock-free deterministic minimal-path routing engine for infiniband-based
dragonfly networks”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 29.1 (2017), pp. 183–197.

115

[57] German Maglione Mathey, Pedro Yebenes, Pedro Javier García, Francisco
José Quiles Flor, and Jesús Escudero-Sahuquillo. “Analyzing available rout-
ing engines for infiniband-based clusters with dragonfly topology”. In: 2015
International Conference on High Performance Computing & Simulation
(HPCS). IEEE. 2015, pp. 168–171.

[58] Mellanox. The SHIELD: Self-Healing Interconnect (White Paper). 2019.

[59] Cyriel Minkenberg and Germán Rodriguez. “Trace-driven co-simulation of
high-performance computing systems using OMNeT++”. In: Proceedings of
the 2nd International Conference on Simulation Tools and Techniques. 2009,
pp. 1–8.

[60] Lionel M. Ni and Philip K. McKinley. “A survey of wormhole routing tech-
niques in direct networks”. In: Computer 26.2 (1993), pp. 62–76.

[61] Sabine R Ohring, Maximilian Ibel, Sajal K Das, and Mohan J Kumar. “On
generalized fat trees”. In: Proceedings of the 9th International Parallel Pro-
cessing Symposium. IEEE. 1995, pp. 37–44.

[62] OpenSM. Current OpenSM Routing. retrieved 2007.

[63] OpenSM. Current OpenSM Routing § UPDN Routing Algorithm. retrieved
2007.

[64] Fabrizio Petrini and Marco Vanneschi. “k-ary n-trees: High performance
networks for massively parallel architectures”. In: Proceedings of the 11th
International Parallel Processing Symposium. IEEE. 1997, pp. 87–93.

[65] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis.
“Fast shortest path distance estimation in large networks”. In: Proceedings of
the 18th ACM conference on Information and knowledge management. 2009,
pp. 867–876.

[66] Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg, and Torsten Hoe-
fler. “Fast pattern-specific routing for fat tree networks”. In: ACM Transac-
tions on Architecture and Code Optimization (TACO) 10.4 (2013), p. 36.

[67] Bogdan Prisacari, German Rodriguez, Marina Garcia, Enrique Vallejo, Ra-
mon Beivide, and Cyriel Minkenberg. “Performance implications of remote-
only load balancing under adversarial traffic in dragonflies”. In: Proceedings
of the 8th International Workshop on Interconnection Network Architecture:
On-Chip, Multi-Chip. 2014, pp. 1–4.

[68] Jean-Noël Quintin and Pierre Vignéras. “Transitively Deadlock-Free Routing
Algorithms”. In: 2nd International Workshop on High-Performance Intercon-
nection Networks in the Exascale and Big-Data Era (HiPINEB). IEEE. 2016,
pp. 16–24.

116

[69] Sven-Arne Reinemo, Bartosz Bogdanski, and Bjørn Dag Johnsen. “Multi-
homed fat-tree routing with InfiniBand”. In: 2014 22nd Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing.
IEEE. 2014, pp. 122–129.

[70] José Rocher-Gonzalez, Jesús Escudero-Sahuquillo, Pedro Javier García, and
Francisco José Quiles Flor. “On the Impact of Routing Algorithms in the
Effectiveness of Queuing Schemes in High-Performance Interconnection
Networks”. In: 25th Annual Symposium on High-Performance Interconnects
(HOTI). IEEE. 2017, pp. 65–72.

[71] José Rocher-Gonzalez, Jesús Escudero-Sahuquillo, Pedro Javier García, Fran-
cisco José Quiles Flor, and Gaspar Mora. “Towards an efficient combination
of adaptive routing and queuing schemes in Fat-Tree topologies”. In: Journal
of Parallel and Distributed Computing 147 (2021), pp. 46–63.

[72] German Rodriguez, Ramon Beivide, Cyriel Minkenberg, Jesús Labarta, and
Mateo Valero. “Exploring pattern-aware routing in generalized fat tree net-
works”. In: 23rd International Conference on Supercomputing. ACM. 2009,
pp. 276–285.

[73] German Rodriguez, Cyriel Minkenberg, Ramon Beivide, Ronald P Luijten,
Jesús Labarta, and Mateo Valero. “Oblivious routing schemes in extended
generalized fat tree networks”. In: International Conference on Cluster Com-
puting and Workshops. IEEE. 2009, pp. 1–8.

[74] José Carlos Sancho and Antonio Robles. “Improving the up*/down* routing
scheme for networks of workstations”. In: European Conference on Parallel
Processing. Springer. 2000, pp. 882–889.

[75] Timo Schneider, Torsten Hoefler, and Andrew Lumsdaine. “ORCS: An oblivi-
ous routing congestion simulator”. In: Indiana University, Computer Science
Department, Tech. Rep (2009).

[76] Bianca Schroeder and Garth A Gibson. “A large-scale study of failures in
high-performance computing systems”. In: Transactions on Dependable and
Secure Computing 7.4 (2009), pp. 337–350.

[77] Michael D. Schroeder, Andrew D Birrell, Michael Burrows, Hal Murray, Roger
M. Needham, Thomas L. Rodeheffer, Edwin H. Satterthwaite, and Charles P.
Thacker. “Autonet: A high-speed, self-configuring local area network using
point-to-point links”. In: IEEE Journal on Selected Areas in Communications
9.8 (1991), pp. 1318–1335.

[78] Loren Schwiebert. “Deadlock-free oblivious wormhole routing with cyclic
dependencies”. In: Transactions on Computers 50.9 (2001), pp. 865–876.

117

[79] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak
Gafni, and Eitan Zahavi. “Dragonfly+: Low cost topology for scaling data-
centers”. In: 2017 IEEE 3rd International Workshop on High-Performance
Interconnection Networks in the Exascale and Big-Data Era (HiPINEB).
IEEE. 2017, pp. 1–8.

[80] Arjun Singh. “Load-balanced routing in interconnection networks”. PhD
thesis. Stanford University, 2005.

[81] Erich Strohmaier, Jack Dongarra, Hort Simon, Martin Meuer, and Hans
Meuer. TOP500 list. www.top500.org. 1993–2020.

[82] Leslie G Valiant and Gordon J Brebner. “Universal schemes for parallel
communication”. In: Proceedings of the thirteenth annual ACM symposium
on Theory of computing. ACM. 1981, pp. 263–277.

[83] András Varga. “The OMNeT++ Discrete event simulation system”. In: Proc.
of the European Simulation Multiconference (ESM’2001). 2001, pp. 1–7.

[84] András Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation
environment”. In: Proceedings of the 1st international conference on Sim-
ulation tools and techniques for communications, networks and systems &
workshops. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). 2008, p. 60.

[85] Pierre Vignéras and Jean-Noël Quintin. “Fault-Tolerant Routing for Exascale
Supercomputer: The BXI Routing Architecture”. In: International Conference
on Cluster Computing (CLUSTER). IEEE. 2015, pp. 793–800.

[86] Jesús Camacho Villanueva, Tor Skeie, and Sven-Arne Reinemo. Routing
and Fault-Tolerance Capabilities of the Fabriscale FM compared to OpenSM.
Tech. rep. Tech. rep. July, 2015.

[87] ANSI X3.159-1989. Programming Language C. Standard. American National
Standards Institute, 1989.

[88] Jiaqing Xu, Dongjing Cai, Jie He, and Fuqiao Tang. “A Fault-Tolerant Rout-
ing Strategy with Graceful Performance Degradation for Fat-Tree Topology
Supercomputer”. In: 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th International Conference
on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE. 2019, pp. 405–412.

[89] Ryota Yasudo, Michihiro Koibuchi, Koji Nakano, Hiroki Matsutani, and
Hideharu Amano. “Designing high-performance interconnection networks
with host-switch graphs”. In: IEEE Transactions on Parallel and Distributed
Systems 30.2 (2018), pp. 315–330.

118

www.top500.org

[90] Ryota Yasudo, Koji Nakano, Michihiro Koibuchi, Hiroki Matsutani, and
Hideharu Amano. “Designing low-diameter interconnection networks with
multi-ported host-switch graphs”. In: Concurrency and Computation: Practice
and Experience (2020), e6115.

[91] Pedro Yébenes, Jesús Escudero-Sahuquillo, Crispín Gómez Requena, Pedro
Javier García, Francisco José Quiles, and José Duato. “BBQ: a straightfor-
ward queuing scheme to reduce HoL-blocking in high-performance hybrid
networks”. In: European Conference on Parallel Processing. Springer. 2013,
pp. 699–712.

[92] Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro Javier García, and Fran-
cisco José Quiles Flor. “Towards modeling interconnection networks of exas-
cale systems with OMNeT++”. In: 2013 21st Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing. IEEE. 2013,
pp. 203–207.

[93] Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro Javier García, and Fran-
cisco José Quiles Flor. “Straightforward solutions to reduce HoL blocking
in different Dragonfly fully-connected interconnection patterns”. In: The
Journal of Supercomputing 72.12 (2016), pp. 4497–4519.

[94] Pedro Yébenes, Jesús Escudero-Sahuquillo, Pedro Javier García, Francisco
José Quiles Flor, and Torsten Hoefler. “Improving non-minimal and adap-
tive routing algorithms in slim fly networks”. In: 2017 IEEE 25th Annual
Symposium on High-Performance Interconnects (HOTI). IEEE. 2017, pp. 1–8.

[95] Eitan Zahavi. “D-Mod-K routing providing non-blocking traffic for shift per-
mutations on real life fat trees”. In: CCIT Report 776 (2010).

[96] Eitan Zahavi. “Fat-tree routing and node ordering providing contention free
traffic for MPI global collectives”. In: Journal of Parallel and Distributed
Computing 72.11 (2012), pp. 1423–1432.

[97] Eitan Zahavi, Gregory Johnson, Darren J Kerbyson, and Michael Lang.
“Optimized InfiniBand™ fat-tree routing for shift all-to-all communication
patterns”. In: Concurrency and Computation: Practice and Experience 22.2
(2010), pp. 217–231.

[98] Eitan Zahavi, Isaac Keslassy, and Avinoam Kolodny. “Quasi fat trees for
HPC clouds and their fault-resilient closed-form routing”. In: 22nd Annual
Symposium on High-Performance Interconnects (HOTI). IEEE. 2014, pp. 41–
48.

[99] Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdanski, Bjørn Dag Johnsen, and
Tor Skeie. “A weighted fat-tree routing algorithm for efficient load-balancing
in infini band enterprise clusters”. In: 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. IEEE.
2015, pp. 35–42.

119

[100] Feroz Zahid, Ernst Gunnar Gran, Bartosz Bogdanski, Bjørn Dag Johnsen,
and Tor Skeie. “SlimUpdate: Minimal Routing Update for Performance-Based
Reconfigurations in Fat-Trees”. In: International Conference on Cluster Com-
puting (CLUSTER). IEEE. 2015, pp. 849–856.

[101] Felix Zahn, Pedro Yebenes, Jesús Escudero-Sahuquillo, Pedro Javier García,
and Holger Fröning. “Effects of Congestion Management on Energy Saving
Techniques in Interconnection Networks”. In: 2019 International Workshop
of High-Perfomance Interconnection Networks in the Exascale and Big-Data
Era (HiPNEB). IEEE. 2019, pp. 9–16.

[102] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. “ECN or Delay:
Lessons Learnt from Analysis of DCQCN and TIMELY”. In: Proceedings of
the 12th International Conference on emerging Networking EXperiments and
Technologies. 2016, pp. 313–327.

Contributions

[103] John Gliksberg, Jean-Noël Quintin, and Pedro Javier García. “Node-type-
based load-balancing routing for Parallel Generalized Fat-Trees”. In: 2018
IEEE 4th International Workshop on High-Performance Interconnection Net-
works in the Exascale and Big-Data Era (HiPINEB). IEEE. 2018, pp. 9–
15.

[104] John Gliksberg, Antoine Capra, Alexandre Louvet, Pedro Javier García,
and Devan Sohier. “High-Quality Fault-Resiliency in Fat-Tree Networks
(Extended Abstract)”. In: 2019 IEEE Symposium on High-Performance Inter-
connects (HOTI). 2019, pp. 9–12. DOI: 10.1109/HOTI.2019.00015.

[105] Jean-noël Quintin and John Gliksberg. Method for establishing communi-
cation routes between nodes of a computer cluster, corresponding computer
program and computer cluster. FR 3 078 220; US Patent App. 16/280,678.
2019.

[106] John Gliksberg, Antoine Capra, Alexandre Louvet, Pedro Javier García, and
Devan Sohier. “High-Quality Fault Resiliency in Fat Trees”. In: IEEE Micro
40.1 (2020), pp. 44–49.

[107] John Gliksberg, Alexandre Louvet, and Antoine Capra. Rapid method for
establishing communication routes between computers of a supercomputer.
FR 3 100 069; US Patent App. 16/999,262. 2021.

120

https://doi.org/10.1109/HOTI.2019.00015

	Acknowledgements
	Translated introduction
	Context and state of the art
	Introduction
	Problem model
	HPC interconnects
	Network definitions
	Routing for HPC interconnects
	Centralised static routing
	Adaptive routing
	Approaches to programming routing algorithms
	Deadlock avoidance
	Node-type heterogeneity
	Fault resilience

	Topologies
	Direct topologies
	Indirect topologies
	Fat-tree topologies
	Irregular fat-trees (IFTs)
	Topologies used by interconnect vendors

	Routing algorithms for fat-trees
	Ftree
	Dmodk
	Smodk
	Random shortest path routing (RandSP)
	Ranking
	Fat-tree-specific fault resilience

	Problem statement and plan

	Quality comparison of routing algorithms
	Introduction
	Traffic simulation
	Static traffic patterns
	Dynamic traffic simulation

	Static metric
	The µ static congestion metric
	Generic static traffic patterns of choice
	Effective diameter

	Example application of static metrics
	OMNeT++-based simulation

	Routing for heterogeneous fat-trees
	Heterogeneous clusters
	Case study topology
	Analysis of a node-type-specific communication pattern
	Dmodk/Ftree performance
	Smodk performance
	RandSP performance

	Grouped Xmodk
	Reindexing NIDs
	Gxmodk case study

	OMNeT++-based simulation of Gdmodk
	Conclusions and future works

	Fault-resilient routing in fat-trees
	Reconfiguration mechanisms
	Dmodc
	Preprocessing
	Routes computation
	Primary results
	Congestion risk as a function of degradation

	Conclusion

	Routing irregular fat-trees
	Some new IFT-specific routing algorithms
	Ftree-Random
	Ftree2
	Up*/Down* implementations

	Comparison of algorithms
	Progressively degraded fat-tree
	Progressively degraded QFT

	Conclusion

	Conclusion
	Contributions
	Future research

	Translated conclusion
	Annex
	Routing Leiserson fat-trees
	Resilient statistical ranking method
	Routing vPGFTs

	Bibliography

