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Titre: Planification de mouvement mono et multi-agents pour multirotors à haute vitesse
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Résumé: La navigation autonome des drones
aériens a de nombreuses applications réelles qui
peuvent rendre certaines tâches plus rapides et plus
efficaces, telles que la recherche et le sauvetage.
L’approche principale consiste à diviser le prob-
lème de la navigation autonome en sous-problèmes
et à essayer de les résoudre de manière optimale.
Ces sous-problèmes sont généralement considérés
comme étant la perception (localisation et car-
tographie), la planification et le contrôle. Dans ce
travail, nous abordons certains des sous-problèmes
qui constituent des goulots d’étranglement du vol
rapide et agile de la navigation autonome par
drone. Nous mettons l’accent sur l’adaptation de
nos algorithmes aux systèmes embarqués à faible
puissance de calcul. Notre travail se scinde en 4
parties. La première partie concerne un nouvel al-
gorithme de planification hors ligne, en environn-
ment cartographié et statique, qui bat toutes les
méthodes de l’état de l’art en termes de génération
de trajectoire optimale en temps pour les multiro-

tors. La deuxième partie traite de la cartographie
et étudie les limites de l’utilisation d’un GPU pour
transformer une carte de nuages de points générés
par des capteurs en une grille de voxels. L’accent
est mis sur la génération de la grille de voxels dans
le temps de calcul le plus court possible pour la
rendre adaptée aux systèmes embarqués à faible
puissance de calcul. La troisième partie aborde,
en partant d’une grille de voxel, le problème de
la génération de couloirs sûrs qui sont utilisés dans
les méthodes de planification de l’état de l’art pour
planifier des trajectoires sûres et réalisables. Dans
notre travail sur les couloirs sûrs, nous améliorons
l’état de l’art en termes de sécurité, tout en restant
dans les contraintes strictes des systèmes à faible
puissance de calcul. La quatrième et dernière par-
tie utilise nos travaux sur les couloirs sûrs et pro-
pose un nouveau cadre de planification améliorant
l’état de l’art de la planification multirotor dans un
environnement statique/dynamique pour la plani-
fication mono/multi-agent.

Title: Single and multi-agent motion planning for multirotors at high speeds
Keywords: autonomous robotics, motion planning, multirotors, safe corridors

Abstract: Autonomous navigation of aerial drones
has many real-world applications that can make
some tasks faster and more efficient, such as search
and rescue. The main approach is to divide the
problem of autonomous navigation into subprob-
lems and try to solve them optimally. These sub-
problems are usually considered to be perception
(localization and mapping), planning and control.
In this work, we address some of these subprob-
lems that are bottlenecks of fast and agile flight of
autonomous drone navigation. We focus on mak-
ing our algorithms suitable for low compute em-
bedded systems. Our work can be divided into 4
parts. The first part presents a new offline plan-
ning algorithm in a mapped and static environment
that beats all state-of-the-art methods in terms of
time optimal trajectory generation for quadrotors.

The second part addresses mapping and studies
the limits of using a GPU to transform the point-
cloud output of sensors into a voxel grid. The
focus is on generating the voxel grid in the lowest
computation time possible to make it suitable for
low compute embedded systems. The third part
(using voxel grids) tackles the problem of generat-
ing Safe Corridors that are used in state-of-the-art
planning methods to plan safe and feasible trajec-
tories. In our work on Safe Corridors we improve
on the state-of-the-art in terms of safety, while
remaining within the hard constraints of low com-
pute systems. The fourth and final part uses our
work on Safe Corridors and presents a new plan-
ning framework to improve on the state-of-the-art
of multirotor planning in a static/dynamic environ-
ment for single/multi-agent planning.
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1 - INTRODUCTION

In this manuscript, we present our work which tackles some bottlenecks in high
speed autonomous flight of multirotors. It is divided into 4 main parts: Introduc-
tion (chapter 1 - page 11), a preliminary on the Multirotor Model used in our
thesis (chapter 2 - page 27), Contributions (chapters 3 - page 33 to 9 - page 145)
and Conclusion (chapter 10 - page 157). In the Introduction chapter, we start
by stating the motivation behind this work, then we give a global overview of the
autonomous navigation literature of multirotors in the Context subsection. Finally,
in the Related Works subsection, we present the related state-of-the-art works and
indicate how our work improves on them.

The works presented in this manuscript have produced the following papers:

Journal

• C. Toumieh, A. Lambert, Near Time-Optimal Trajectory Generation for Mul-
tirotors using Numerical Optimization and Safe Corridor, Journal of Intel-
ligent & Robotic Systems - Springer, vol. 105, no. 1, pp. 1-10, 2022,
https://doi.org/10.1007/s10846-022-01625-0 [153]

• C. Toumieh, A. Lambert, Voxel-Grid Based Convex Decomposition of 3D
Space for Safe Corridor Generation, Journal of Intelligent & Robotic Systems
- Springer, vol. 105, no. 4, pp. 1-13, 2022, https://doi.org/10.1007/
s10846-022-01708-y [149]

• C. Toumieh, A. Lambert, Multi-Agent Planning using Decentralized Model
Predictive Control and Time-Aware Safe Corridors, IEEE Robotics and Au-
tomation Letters (RAL), vol. 7, no. 4, pp. 11110-11117, Oct. 2022,
https://doi.org/10.1109/LRA.2022.3196777 [152]

Conference

• C. Toumieh, A. Lambert, High-Speed Planning in Unknown Environments
for Multirotors Considering Drag, IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 7844–7850. https://doi.org/10.1109/
ICRA48506.2021.9560773 [148]

Arxiv

• C. Toumieh, A. Lambert, GPU accelerated voxel grid generation for fast
mav exploration [147]
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• C. Toumieh, A. Lambert, Shape-Aware Safe Corridors Generation for Robot
Motion Planning [154]

• C. Toumieh, A. Lambert, MACE: Multi-Agent Autonomous Collaborative
Exploration of Unknown Environments [151]

• C. Toumieh, A. Lambert, Multirotor Planning in Dynamic Environments
using Temporal Safe Corridors [150]

In addition, our work on drone racing allowed us to win an international com-
petition on autonomous drone racing organized at NeurIPS 2019 by Microsoft,
Stanford and ETH Zurich [104]. We won the tier 1 part of the competition which
focused on planning and control.

1.1 . Motivation

The use of autonomous drones for commercial and industrial applications is
gaining track, with more than 320’000 registered commercial drones in the US,
[1] and a global drone service market expected to grow from $4.4B in 2018 to
more than $60B by 2025 as per Business Insider [109], and to over $80B as per
Forbes [4]. Multirotors are some of the most maneuverable and agile aerial drones
[76] [156]. Their use have disrupted many industries such as cinematography,
warehouse inventory tracking, search and rescue, agriculture, and remote sensing.
The ability to use them to their full potential by exploiting their full dynamics and
agility in combination with robust autonomy is of tremendous benefits for some
applications such as agriculture and cinematography, and of crucial importance in
some others such as search and rescue.

In the past few years, autonomous navigation for multirotors have been de-
veloped and offered in multiple consumer products [32] [139], however, they still
underperform compared to human pilots in terms of speed, agility, and robustness.
With drone racing becoming more and more popular [80], the difference between
autonomous navigation and human piloting capabilities became more apparent.
Furthermore, there are economically and socially beneficial applications such as
cinematography, warehouse inventory tracking, package delivery, infrastructure in-
spection, and search and rescue that require a certain level of robust and fast
autonomy that the state-of-the-art lacks. This thesis presents novel planning and
mapping methods for multirotors to improve on the state-of-the-art of autonomous
navigation for aerial drones, multirotors in particular.

1.2 . Context
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Figure 1.1: Classical autonomy pipeline of an autonomous drone. Themodules to which we contribute are shown in green.
Our work tackles some of the bottlenecks in safety, robustness and speed in

autonomous flight, reducing the gap between human pilots and autonomous mul-
tirotors, and in some cases, surpassing human performance. Barring an end-to-end
machine learning approach for autonomous navigation, the main approach is to
divide the autonomous navigation problem into subproblems and try to solve them
each optimally. These subproblems are classically considered to be perception (lo-
calization and mapping), planning and control (Figure 1.1). We improve on the
state-of-the-art in the mapping and planning sections for single/multi-agent plan-
ning.

1.2.1 . Perception

The autonomy pipeline starts with reading sensor measurements. There are
many types of sensors that are used in autonomous systems such as lidars, cameras
and radars [166]. The most common combination for aerial drones is cameras with
inertial measurement units (IMU) [75] [139], as they are lightweight and do not
considerably affect the drone’s weight and agility. The outputs of these sensors are
fused in the perception module to provide an estimation of the position of the drone
while also mapping the surroundings (generally represented as a pointcloud). The
fusion of these two steps is called simultaneous localization and mapping (SLAM)
and has been the subject of many research works recently [21] [73] [77] [176].
However, in high speed flight situations, the localization step of the perception
module lacked accuracy in comparison with low speed flight, which pushed the
research community to create many datasets and localization/SLAM competitions
that motivate and push researchers to improve in this area [30] [6] [159]. These
competitions helped with the emergence of Visual Inertial Odometry (VIO) algo-
rithms that are more and more accurate and robust at high speeds [50] [124] [125]
[107] [123].

Furthermore, since the most convenient sensor to mount on a drone is a cam-
era, using it to generate a dense pointcloud representation of the environment
(mapping) is the common approach. Often, multiple cameras are mounted and
techniques such as stereo-matching [143] [140] [162] [34] [140] and multi-view
stereo [160] [165] [160] [168] are used to transform 2D images into 3D point-
clouds. The use of multiple cameras adds significant robustness compared with
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monocular approaches, hence its use on commercial autonomous drones [139] [32].
These approaches use machine learning techniques since they outperform classical
depth estimation methods.

After generating a pointcloud representation of the environment, the mapping
submodule is also responsible for transforming this representation into one that is
useful for the planning module. The most simplistic and efficient of these repre-
sentations are voxel grids [62] [134]. Other common representations are signed
distance fields [117] [55], kd-trees [133] and octrees [64] [33]. When the environ-
ment is dynamic i.e. we have moving obstacles/agents, some other representations
and methods are used to encode the variation of the environment over time and
predict its state at future times such as dynamic occupancy grids [66] [63] [137].
These dynamic/temporal representations are then used by the planning module to
avoid both static and dynamic obstacles.

1.2.2 . Planning
In general, there are two planning tasks that the state-of-the-art tackles (Fig-

ures 1.2a, 1.2b). The first is navigation to a given goal while exploring the envi-
ronment and avoiding obstacles [146] [170] [88] [87]. This approach is useful in
search and rescue [136] and exploration applications [31]. The second is navigating
to a goal while being forced to go through intermediate waypoints or "wayspaces"
(volumes in which the trajectory must pass) [101] [41]. This approach is useful
in drone racing [106], and delivery and transportation applications [126]. To each
of these tasks there can be single or multiple metrics that are optimized at the
same time such as trajectory time and smoothness. For most applications, both
trajectory time and smoothness are optimized for, putting different weights on each
metric depending on the application. In some particular applications such as drone
racing, we only care about time optimality.

Furthermore, these planning approaches can be divided in two categories:
continuous-time polynomial trajectories (Figure 1.2d) and discrete-time trajecto-
ries (Figure 1.2c). Continuous-time polynomial trajectories [98] [108] [101] use the
multirotors’s differential-flatness property to achieve high computational efficiency.
However, constraining the states of the multirotor to be a polynomial function
can lead to suboptimal trajectories, especially when optimizing for trajectory time.
Time discretized trajectories, on the other hand, use dynamic discretization tech-
niques such as Euler or Runge-Kutta to divide the trajectory into discrete points
and then solve for these points while minimizing some cost function [49] [59] [7].
Some methods use continuous polynomials as a motion primitive in a search based
planning scheme [88] [90]. However, searching the state-space that is discretized in
time can result in high computational costs due to the curse of dimensionality [90].
This is why most methods search in space only for a feasible path (disregarding
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(a) A.1: goal with exploration (b) A.2: goal with waypoints

(c) B.1: discrete trajectory (d) B.2: continuous trajectory

(e) C.1: single-agent planning (f) C.2: multi-agent planning

(g) D.1: static environment (h) D.2: dynamic environment
Figure 1.2: We show the different categories of planning.
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time), then add time using optimization based methods [146] [88] [169].

Planning methods can also be divided into 2 additional categories: single-agent
planning methods (Figure 1.2e) and multi-agent planning methods (Figure 1.2f).
In single-agent planning, we only have control over one multirotor [146] [88] [170],
whereas in multi-agent planning we assume control over multiple multirotors [144]
[120]. Multi-agent planning can further be divided into 2 categories: central-
ized planning where there is a central system that computes the trajectories of
all agents, then sends each trajectory to the corresponding agent to execute [87]
[120]; and decentralized planning where each agent computes its own trajectory
using information sent by other nearby agents [144] [96]. Most recent works on
multi-agent planning fall in the decentralized planning category due to its ease of
implementation and low computation time with respect to centralized planning.

Finally, planning methods make assumptions about the environment: some are
designed to deal with static environments [146] [170] [101] (Figure 1.2g) where all
obstacles are static, whereas others can deal with dynamic environments [144] [90]
(Figure 1.2h) that contain both static and dynamic obstacles. Naturally, dealing
with dynamic environments is considerably harder since it usually also requires to
track and predict the moving obstacles trajectory, in addition to choosing an ap-
propriate environment representation for planning.

1.2.3 . Control
Multirotors are underactuated and have nonlinear dynamics. While they are

amongst the most maneuverable and agile robots, they remain highly unstable sys-
tems in need of feedback control. An ideal control system should be able to utilize
the multirotor dynamics to its full ability while remaining within the actuation lim-
its of the rotors. Furthermore, it is preferable if the control system is able to adapt
to external disturbances and changes in the dynamics/model of the multirotor with
minimal latency.

For some time, classical methods such as cascaded control schemes [61] [35],
geometric control [81] [102] and linear quadratic regulators [127] [128] [40] were
good control options due to their extremely low computation time, even if their
performance was not optimal. However, recent advances in optimization solvers
[44] [157] [43] have made Nonlinear Model Predictive Control (NMPC) solvers
computationally efficient, while delivering optimal performance in multirotor con-
trol [71]. Furthermore, it is able to perform well when the multirotor is subject
to outside disturbances and changes in its dynamics/model [57]. This has made
NMPC a popular choice for multirotor control in general, and for autonomous
drone racing in particular [75].
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1.3 . Related Work

In the past few years, the autonomy and agility of multirotors have been the
focus of many research works that tried to push the state-of-the-art in terms of
speed and agility [60] [100] [51] [122] [139] [102] [93] [105] [135] [170] [83] [118]
[8].

Furthermore, many competitions have been organized in order to push re-
searchers to improve on the state-of-the-art of fast and agile flight and approach/beat
human performance. The autonomous drone racing series that took place in the
recent NeurIPS and IROS conferences [106] [75] [97] as well as the AlphaPilot
challenge [52] [42] are some of the most notable examples of such competitions.

In this section, we provide an introduction to the subjects that we contributed
to (mapping and planning) as well as a summary of the corresponding state-of-
the-art. We also briefly indicate the improvements that our works bring to the
state-of-the-art.

1.3.1 . Drone racing

The primary goal of drone racing is to navigate through waypoints/wayspaces
inside a given number of gates as fast as possible (Figure 1.2b). In order to per-
form well, one needs to complete two subtasks: robust navigation through the
gates without crashing and a fast laptime. The first subtask requires accurate and
precise localization of the drone with respect to the gate as well as (re-)planning,
which was tackled in many works with different approaches such as [75] [39] [82]
[68] [74]. For the second subtask, many state-of-the-art methods have been pro-
posed (both offline and real-time planning methods) each having its advantages
and drawbacks, which we will explore in this section.

Many polynomial methods have been proposed by the state-of-the-art which
primarily rely on the differential flatness of quadrotors [129] [101] [101] [102]. Dif-
ferential flatness allows expressing all states and inputs of the quadrotor in terms of
its position and yaw angle (flat outputs), and their derivatives. This allows them
to simplify the planning problem by transforming the quadrotor dynamics to an
integrator model. These methods generally use waypoints and connect them with
polynomial functions. However, constraining the states of the multirotor (position,
velocity, ...) to a polynomial function leads to suboptimal results. Furthermore,
including nonlinear dynamics such as drag forces in polynomial approaches is not
trivial which is why all polynomial methods do not account for these forces which
are significant at high speeds.

Other methods discretize the state-space and use graph search to find the best
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combination of motion primitives that minimize a certain cost that includes time
[87] [90]. However, much like polynomial methods, this approach does not include
nonlinear dynamics and the optimality of the solution depends on the granularity
of the discretization.

Finally, optimization based methods that discretize the whole trajectory and
formulate the problem in a Model Predictive Control fashion [41] have the advan-
tage of seamlessly including nonlinear dynamics that affect the multirotor such as
gravity and drag forces. However, the work done in [41], while better than the rest
of the literature, does not account for obstacle constraints. In addition, they only
consider linear drag which is not a complete representation of drag forces which
are quadratic in high speed flows [38].

In our work presented in chapter 3 (page 33), we tackle the problem of of-
fline time optimal trajectory generation for multirotors in the context of drone
racing. The planning framework that we created takes into account static obstacle
constraints as well as nonlinear constraints pertaining to the multirotor dynamics.
Prior to our work, no state-of-the-art method included those constraints, mainly
due to the complexity and difficulties they add to the planning problem. This re-
sulted in a considerable performance gap between us and the state-of-the-art. This
was apparent in the drone racing competition Game of Drones [104] (organized by
Microsoft, Stanford and ETH at NeurIPS 2019) that we participated in and won
with a large margin between us and second place.

1.3.2 . Voxel grids
There are many environment representations that are used for planning such

as signed distance fields [117] [55], octrees [64] [33], and voxel grids [134]. These
methods transform the pointcloud output of autonomous navigation sensors such
as lidars and IR sensors into an efficient intermediate representation that can be
used for planning. Among these representations, voxel grids are the most simplis-
tic and minimal in terms of information they provide, which results in a very low
computation time. This made them popular among many state-of-the-art planning
methods [146] [134].

A voxel grid is a regular grid composed of cells of equal dimensions. These
cells are squares in 2D and cubes in 3D. Each cell is considered occupied if it has
non empty intersection with an obstacle, free if it does not have an intersection,
and unknown if the voxel hasn’t been seen yet. After a sensor outputs a pointcloud
by scanning for obstacles in its field of view, the occupied value is assigned to all
the cells that contain any point of the pointcloud. Furthermore, cells that are in
the field of view of the sensor that do do not contain any obstacle point and aren’t
occluded by an obstacle, are assigned the value of free. The cells are freed using
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(a) Sensor measurement with obstaclepoints shown as red crosses. (b) voxel grid corresponding to the sen-sor measurement.
Figure 1.3: Voxel grid generation using pointlcoud output of a sensor.

raytracing algorithms [19] [3]. All remaining cells that are outside the sensors’ field
of view are unchanged, so if they were unknown before the last measurement, they
remain unknown (Figure 1.3).

In our work on voxel grids in chapter 4 (page 51), we investigated the use of
a Graphical Processing Unit (GPU) to generate a voxel grid from a pointcloud,
and compared it to a CPU-only implementation. We showed that the use of GPU
accelerated the voxel grid generation process and reduced computation time es-
pecially in the raytracing section of the algorithm. The reduction in computation
time allows to reduce the latency in the planning pipeline and hence react faster
to changes in the environment. This increases the maximum speed a multirotor
can achieve without risking crashing.

1.3.3 . Safe Corridors

Safe Corridors are a series of overlapping convex shapes that cover only free
space in the environment (Figure 1.4). Generally, these convex shapes are poly-
hedra [88] [29] or ellipses/spheres [47]. They are used in state-of-the-art planning
algorithms as an intermediate and simplified representation of the environment
that allows to generate safe and feasible trajectories [88] [146].

In general, Safe Corridors are generated around a given path between the initial
position and the goal position. This path can be generated using different optimal
pathfinding methods such as A* [132] or Jumping Point Search (JPS) [58]. JPS
preserves the optimality of A* while potentially reducing the computation time by
an order of magnitude, which made it the most popular choice [88] [146]. Once
the path is found, one can use segments or sampled points of the path to generate
convex shapes around them [88].

19



(a) Safe Corridor composed of polyhe-dra. (b) Safe Corridor composed of ellipses.

Figure 1.4: We show Safe Corridor examples composed of polyhe-dra/ellipses that cover only free space.

The quality of a Safe Corridor can be judged according to multiple metrics.
One metric is the average number of convex shapes required to go from the ini-
tial to the goal position. Having a lower number of convex shapes means each
convex shape traverses on average more of the path to the goal. This means
that a trajectory constrained inside a convex shape can travel more distance/have
higher velocity. Another metric is the average number of constraints per convex
shape. Every convex shape will impose constraints on the trajectory to be inside
it. These constraints are generally formulated as inequalities in an optimization
problem [146], and the more inequalities there are, the higher the solving time.
Thus, the number of constraints per convex shape affects the computation time
and the total latency of the planning pipeline. Another important metric is the
volume covered by the Safe Corridor. A bigger volume allows more room for the
planning multirotor to maneuver in, and consequently leads to higher velocity tra-
jectories.

In our work on Safe Corridors (chapter 5 - page 69), we present a novel voxel
grid based Safe Corridor generation algorithm to generate Safe Corridors around a
given path in a voxel grid representation of the environment. Our work outperforms
the state-of-the-art in terms of safety while remaining within the constraints of low
compute embedded systems. It also outperforms the state-of-the-art in terms of
average number of polyhedra in the Safe Corridor (lower than the state-of-the-art)
and average number of constraints per polyhedron (lower than the state-of-the-
art). Our work is then extended by another work to improve the quality of the Safe
Corridor by sensing its surroundings to know the best Safe Corridor fit (shape-aware
approach).

1.3.4 . Single-agent planning
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In this section we will address real-time single-agent planning for multirotors
(unlike drone racing in section 1.3.1 - page 17 where the planning is done of-
fline). The presented planning paradigms can be used for multiple applications
such as exploration, infrastructure inspection and search and rescue. We will di-
vide single-agent multirotor planning in 2 sections: planning in static environments
and planning in dynamic environments.

Static environment

The majority of the literature makes the assumption of a static environment since
it is considerably easier to deal with than dynamic environments where the dynamic
obstacles have to be tracked and their future positions predicted. We will present
an overview of this literature in this section.

Many methods presented in the literature use the differential flatness property
of quadrotors [101]. In general, these methods minimize the squared euclidean
norm of a derivative of the position in order to generate smooth trajectories [101],
[20], [129]. However, none of these methods take into account nonlinear dynamics
such as drag forces, and they are not particularly designed to efficiently deal with
a constantly changing environment in applications such as exploration.

Other planning methods use closed-form solutions/motion primitives and trans-
form the problem into graph search in the state space [87], [89], [90], [169]. These
methods do not account for nonlinearities in the dynamics and are computationally
expensive especially when generating complex maneuvers around obstacles. This
makes them unsuitable for real time planning in complex environments.

There are methods that take into account obstacles while solving for the opti-
mal trajectory. They use Euclidean Signed Distance Fields (ESDF) that transform
the environment into a voxel grid whose voxels contain the distance to the clos-
est obstacle [116], [117], [55], [45]. The resulting optimization problem of these
methods is nonconvex and can lead to local minima and subpar trajectory quality
compared with search based methods.

Another set of methods takes Safe Corridors (presented in section 1.3.3 - page
19) and optimizes for trajectories inside them [88], [161], [47], [78], [131], [146].
These methods escape the local minima problem of planning methods that rely
solely on optimization by using Safe Corridors (since Safe Corridors always connect
the initial position to the goal). None of the state-of-the-art methods account for
drag forces which become significant at high speeds and can lead to unfeasible
trajectories.
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In our work on single-agent planning in static environments (chapter 6 - page
95), we created an algorithm for single-agent multirotor planning in a static en-
vironment that takes into account drag forces to further guarantee feasibility at
high speeds. The planning framework uses our work on Safe Corridors, and is more
computationally efficient than similar state-of-the-art methods [146] while having
better feasibility guarantees.

Dynamic environment

The literature on single-agent planning in dynamic environments is not as rich
as the literature on static environments. However, recent works present different
methods to deal with dynamic environments, each with its own approach and its
own representation of dynamic environments.

A search based planning method have been proposed in [90]. The authors
represent dynamic obstacles as linear velocity polyhedra, and use a voxel grid rep-
resentation for static obstacles. Static obstacles collision check is done by sampling
the generated trajectory and seeing if the sampled points are in an occupied voxel.
Dynamic obstacles collision check is done by using their polyhedral representation
and the polynomial property of the trajectory. However, much like in static envi-
ronment planning, methods based on graph search in the state space lead to high
computation times which makes them unsuitable for real-time applications.

Another method [85] models static and dynamic obstacles as ellipses, and adds
them as constraints in a non-convex Model Predictive Control formulation. The
generated trajectory is a series of discrete points that are outside all the ellipses rep-
resenting the obstacles. However, decomposing all the environment into a series
of ellipses is not trivial and can lead to high overhead computation time. Fur-
thermore, if the environment is complex and contains a relatively high number of
ellipses, the solving time of the optimization problem which now contains a large
number of constraints becomes intractable for real-time applications.

Finally, a combination of a search based method and an optimization based
method is presented in [144]. The result of the search based method is given as
an initial solution for the optimization based method since the optimization prob-
lem is non-convex. The authors assume that all obstacles are given as a series of
overlapping convex polyhedra, which, much like modeling obstacles as ellipses, is
not trivial to generate and adds overhead to the planning pipeline.

In our work on single-agent planning in dynamic environments, we created an
algorithm for single-agent planning in a dynamic environment. The presented ap-
proach is novel and presents some advantages over other state-of-the-art planning
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(a) Centralized planning (b) Decentralized planning
Figure 1.5: We show the 2 types of multi-agent planning: centralizedwhere the agents communicate with a Central Computing System thatcomputes the trajectories of all agents; and decentralized where eachagent computes its own trajectory and broadcasts it to nearby agents.
methods such as the environment representation that it uses for planning (tem-
poral voxel grids). This representation of dynamic obstacles have gained traction
especially in the autonomous driving domain [63], [66], [137].

1.3.5 . Multi-agent planning

Multi-agent planning is of tremendous benefits for applications such as explo-
ration, search and rescue and agriculture. Thus, it has been the focus of many
research works in the literature. Many approaches have been proposed, but in
general multi-agent planning can be divided in 2 categories: centralized and de-
centralized planning (Figure 1.5). In centralized planning, all the trajectories of the
agents are computed on a single computing entity/system that then sends each tra-
jectory to the corresponding agent. In decentralized planning, all agents compute
their trajectories on-board while also taking into account the trajectories generated
by nearby agents. Decentralized planning methods have been the more popular ap-
proach recently due to their convenient implementation and low computation time.

Search based methods have been proposed for both centralized and decentral-
ized planning in a static or dynamic environment [90]. However, much like the
cases of single-agent planning, discretizing the state space and searching for a fea-
sible path using motion primitives is computationally expensive, which makes this
solution unsuitable for real-world applications.

Other methods model other planning agents and obstacles as spheres or ellipses
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and include them as contraints in a Model Predictive Control (MPC) formulation
[2], [70], [175], [85]. However, modeling the entire environment as a union of
ellipses is not trivial and can lead to high solving times when the environment is
complex.

Buffered voronoi cells have also been proposed for multi-agent collision avoid-
ance [174], but they do not take into account static obstacles. Other approaches
use seperating hyperplanes to avoid collision between agents and model other ob-
stacles as ellipsoids to be added as constraints in a decentralized MPC formulation
[96]. Much like other works relying on an ellipsoid decomposition of static obsta-
cles, this method suffers from the fact that there is no trivial method to do such
decompositions and the authors rely on human assisted decomposition instead.

Some methods have proposed the use of Safe Corridors [120], where the Safe
Corridor is transformed into a Relative Safe Corridor that allows to mitigate inter-
agent collisions. The generated trajectory is optimized sequentially in a centralized
manner to generate collision free trajectories for all agents. While this method is
computationally efficient for a low number of agents, it suffers the drawbacks of
centralized planning methods which include a computation time that increases sig-
nificantly every time we add a planning agent. Furthermore, the proposed method
generates highly suboptimal trajectories for some agents in terms of trajectory
length and time.

Finally, some methods use a combination of a search based approach and an
optimization based approach in a decentralized manner [144]. They model all
agents and static obstacles as a convex polyhedra and each agent takes the last
generated trajectories of other agents to make sure it doesn’t collide with them
when generating its own trajectory. The problem is formulated as a nonconvex
optimization problem that requires a good initial guess, which is why the authors
use a search based method with motion primitives to find an initial good guess.
This method is relatively computationally expensive since there is a search based
part of the planning method that discretizes the time and the space which means
the search is done in 4 dimensions. Furthermore, much like ellipsoid representation
of the environments, generating a polyhedral representation is not trivial and adds
considerable overhead to the planning pipeline.

In our work on multi-agent planning (chapter 8 - page 125), we created a
framework for multi-agent planning in a static environment. Our work introduced a
new concept which we call time-aware Safe Corridors which is inspired by Relative
Safe Corridors in [120]. This new concept allows to avoid inter-agent collisions
as well as static obstacles by adding the time-aware Safe Corridor constraints in a
decentralized MPC formulation. The framework improves on the state-of-the-art in
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multiple metrics such as traveled distance, trajectory smoothness and computation
time. This work was extended/used in a subsequent project to explore a given
volume in a static environment using multiple multirotors (chapter 9 - page 145).
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2 - MULTIROTOR MODEL

In this section we will present the multirotor dynamics that we will be using
throughout our works. We will use the quadorotor as an example of the multirotor.
However, the final equations of motions are also applicable for drones with more
than 4 rotors since they can be obtained using a similar derivation.

2.1 . Base Model

We derive the equations of motion of the quadrotor using the equations of
motions of a rigid body. All vector and matrix symbols are in bold. The drone
is composed of a transverse structure with a brushless motor (Mi) at the end of
each end whose distance to the center is l. The structure is usually made of a
lightweight material. Motors M1 and M3 rotate counterclockwise, while M2 and
M4 rotate clockwise (Figure 2.1).

In order to represent the position and the attitude of the quadrotor, it is
necessary to define a world frame W = (xW ,yW , zW ) and a body frame B =

(xB,yB, zB). The origin of the local frame can be fixed any place on the surface
of the Earth, whereas the origin of the body frame is the center of gravity of the
quadrotor (Figure 2.1). The axes xW and yW point respectively towards the north
and the east of the Earth, whereas the axis zW is colinear with the vector of gravity
but points in the opposite direction. The axis of the body frame xB is between
the M1 et M2 rotors, and the axis yB is between M2 et M3. The axis zB of the
body frame can be obtain by a vector product between xB and yB.

We define the following position and velocity vectors in the world frame:

pW =

xy
z

 et vW =

ẋẏ
ż

 , (2.1)

We define the attitude vector that represents the rotations around the axes of the
world frame in the ZYX order :

η =

φθ
ψ

 (2.2)

We define the rotation matrix that rotates a point in the body frame to the
world frame, and consequently encodes the attitude of the quadrotor. It is formed
by taking the unit vectors of the body frame expressed in the world frame, and
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Figure 2.1: We show the world and body frames as well as the vectorforces of each quadrotor. We also show the gravity direction and therotation direction of the rotors.

then concatenating them horizontally:

RWB = [xB yB zB]
T (2.3)

We define the angular velocities in the body frame around xB, yB and zB respec-
tively:

ωB =

pq
r

 (2.4)
Furthermore, the rotation of the motor induces effects on the dynamics of

the drone. We define kf and kτ as a constant thrust coefficient and a constant
moment coefficient respectively that depend on the propeller used. The effects on
the drone are a pushing force

fi = kfωi
2, i = 1, 2, 3, 4 (2.5)

and a moment
τi = kτωi

2, i = 1, 2, 3, 4 (2.6)
The sum of all the rotor forces gives a total thrust in the zB direction of:

u = f1 + f2 + f3 + f4, (2.7)
a roll torque (in the xB axis)

τx = l(f1 − f2 − f3 + f4), (2.8)
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a pitch torque (in the yB axis)

τy = l(f1 + f2 − f3 − f4), (2.9)
and a yaw torque (in the zB direction)

τz = τ1 − τ2 + τ3 − τ4. (2.10)
in the total system. Consequently, the quadrotor tilts in the positive roll direction
when ω2 +ω3 > ω1 +ω4, in the positive pitch direction when ω1 +ω2 > ω3 +ω4,
and in the positive yaw direction when ω1 + ω3 > ω2 + ω4.

The equations (2.7), (2.8), (2.9) and (2.10) can be written in the following
matrix form: 

u
τx
τy
τz

 =


1 1 1 1
ka −ka −ka ka
ka ka −ka −ka
kc −kc kc −kc



f1
f2
f3
f4

 , (2.11)

where kc = kτ
kf

et ka = l

The modeling of the quadrotor dynamics is done using the equations of a rigid
body, which are

mv̇W = RWBFB +GW (2.12)
Iω̇B + ωB × IωB = τB (2.13)

where m the mass of the quadrotor, g the gravity and:

FB =

00
u

 (2.14)

GW =

 0
0
−m.g

 (2.15)

τB =

τxτy
τz

 (2.16)

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.17)

In conclusion the full dynamics of the quadrotor can be written as the following
(we drop the subscript indicating the frame of reference in the rest of our work):
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ṗ = v (2.18)
v̇ =

u

m
zB − gzW (2.19)

Ṙ = Rω̂ (2.20)
Iω̇ + ω × Iω = τ (2.21)

where ω̂ is the skew symmetric matrix of ω.

2.2 . Controlled Model

Using the cascaded approach presented in [15], we assume that the vehicle
attitude η is controlled by low level attitude controller. We also assume that the
controller has a low response time and allows for direct control of the attitude’s
rate of change η̇.

Furthermore, we assume that we can control directly the thrust magnitude u
of the quadrotor since the motor dynamics are typically very fast [71].

We use the following state and control vectors:

x =


p
v
φ
θ
ψ

 (2.22)

u =


ccmd
φ̇cmd
θ̇cmd
ψ̇cmd

 (2.23)

The full dynamics are:

ṗ = v (2.24)
v̇ =

ccmd
m
zB − gzW (2.25)

φ̇ = φ̇cmd (2.26)
θ̇ = θ̇cmd (2.27)
ψ̇ = ψ̇cmd (2.28)

These dynamics can also be obtained for a multirotor with an arbitrary number
of rotors using the same approach presented in this chapter as demonstrated in [71].

30



2.3 . Aerodynamic Drag

The previously derived model is sufficient when navigating at relatively low
speeds where aerodynamic drag is negligible. However in order to plan and control
in high speeds, it is imperative to include the drag forces which increase as the
speed increase.

Some works model the drag forces as linear with respect to the velocity of the
quadrotor [119] [41] [35]. However, in this thesis we model the drag forces as
quadratic with respect to the velocity since it is a more realistic representation of
the drag that affects the quadrotor in a turbulent flow [38].

The final model which is the starting point of every work presented in this
paper becomes:

ṗ = v (2.29)
v̇ = −gzW +

ccmd
m
zB −RDRTv||v||2 (2.30)

φ̇ = φ̇cmd (2.31)
θ̇ = θ̇cmd (2.32)
ψ̇ = ψ̇cmd (2.33)

Where the drag force is:

F drag = RDR
Tv||v||2 (2.34)

And the drag matrix D is diagonal and encodes the drag coefficients of the mul-
tirotor in the directions of its body frame (xB,yB, zB).
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3 - DRONE RACING

Trajectory generation is a fundamental problem for every type of robot. In
most applications, the robots should reach their goals in the minimum time possi-
ble. Trajectory smoothness can also be optimized when trying to reach a given goal
in addition to the time. Time-optimal and near time-optimal trajectory generation
allows us to solve this type of problems. The generation of such trajectories for
multirotors has gained traction with new applications in transport, delivery and
search and rescue missions, as well as other applications in sports and entertain-
ment such as drone racing.

The current state-of-the-art of multirotor trajectory generation is heavily based
on polynomial methods and most methods choose a conservative approach when
limiting the velocity or acceleration as a way to account for nonlinearities and guar-
antee feasibility, which limits time optimality and trajectory speed. We overcome
this limitation by proposing a new formulation for multirotors trajectory genera-
tion that takes into account nonlinearities such as gravity and aerodynamic drag,
It allows us to provide more time-optimal solutions then the state-of-the-art. We
present an algorithm that uses our new formulation for near time-optimal trajectory
generation for multirotors subject to obstacles/path constraints. We validate our
approach using a state of the art simulator and compare it with other time-optimal
trajectory generation methods.

3.1 . Introduction

Autonomous Micro-Aerial-Vehicals (MAVs) are gaining a lot of traction re-
cently because of their agility and potential to complete tasks faster then humans
while reducing the risks and costs. Researchers have previously used MAVs for
infrastructure inspection [12], exploration tasks in unknown environment [13] and
search and rescue missions [115]. Moreover, autonomous drone racing is gaining a
growing attention recently with the introduction of competitions with substantial
prizes [91], [104] with the aim to improve the state of the art. For that reason,
many photo-realistic simulators have been developed to facilitate algorithm de-
velopment and testing [138], [52]. In many of the aforementioned applications,
planning time-optimal trajectories is crucial, which is the main motivation behind
this work.

3.1.1 . Related work

In [61], the time-optimal trajectory is found by using the solution of the Hamil-
tonian minimum. In this approach, no obstacle constraints can be set. Further-
more, the maximum acceleration constraint is decoupled which leads to sub-optimal
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solutions.

In [129] and [101] the authors use polynomials to generate minimum snap tra-
jectories then find the time-optimal trajectory by adding time to the cost function
and using gradient descent. The limitations of this approach is that the trajecto-
ries orders are fixed before the time optimization and may not be the ones that
give the best time-optimal trajectory. Furthermore, in [129] feasibility is checked
using a geometric controller that generates the applied thrusts, and checking if the
thrusts hit the maximum allowed limit. This approach suffers from the fact that
this controller does not have optimality guarantees (local or global) such as MPC.

In [87], the authors use linear quadratic minimum time control for motion prim-
itive based planning. They however use the infinite norm of the acceleration to
guarantee feasibility which leads to sub-optimal solutions.

In [46], the authors generate minimum-time piecewise polynomial trajectories
for quadrotor flights. This suffers from the fact that the trajectory is constrained to
be a polynomial which limits optimality. Furthermore, they limit the acceleration
without including the effect of gravity which leads to sub-optimal solutions.

In [20], they use a polynomial method for trajectory generation, which limits
optimality, since the states of the quadrotor are constrained to a polynomial func-
tion. They have soft constraints on the UAV states that can be violated.

In [11], the authors propose an analytical time and energy optimal trajectory
generation method for MAVs. However, optimality is only given for exclusively hor-
izontal movement and waypoints that have either direct line of sight or lie within
an orthogonal environment.

In [141], the authors presented a strategy to address the minimum-time prob-
lem for quadrotors in constrained environments by generating a frame path, and
expressing the quadrotor dynamics in a new set of coordinates (transverse coordi-
nates) with respect to that path. However, they didn’t consider drag forces in the
quadrotor’s model.

In all the previously cited works, drag forces are not included in the planning
framework, which would naturally limit the maximum velocity the robot can at-
tain. They instead use hard constraints which results in sub-optimal or unfeasible
solutions. Furthermore, only [61] accounts for the gravity when limiting the accel-
eration but decouples the directions which also leads to sub-optimal solutions. In
addition, all polynomial methods constrain the states of the robot to polynomial
functions and require to specify waypoints which can limit the solution’s optimality
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when the waypoints are not specifically chosen to optimize trajectory time.

A recent work [41] was inspired by the work presented in this chapter (3) and
presented a planning method that accounts for nonlinearities such as drag forces
as well as gravity. However, the proposed framework takes into account only linear
drag and does not account for quadratic drag (which is a more realistic represen-
tation of the drone dynamics as explained in chapter 2 - page 27). Furthermore,
it does not take obstacles and path constraints in consideration and does not op-
timize the quadrotor’s attitude to minimize drag.

3.1.2 . Contribution

We propose to overcome the aforementioned limitations of state-of-the-art
planning methods by redesigning the problem and by proposing a new algorithm.
There is no planning framework that accounts for all nonlinearities (drag and grav-
ity) while also accounting for obstacle constraints and not constraining the states
to a polynomial function. The main contributions of our work are:

• A novel formulation of the multirotor model for trajectory generation (section
3.2 - page 35) that takes into account all nonlinearites i.e. gravity and drag
forces. The nonlinearities have not been considered by state-of-the-art works
with the exception of [41] that takes into account linear drag rather than
quadratic drag (quadratic drag is a more realistic representation of the real
dynamics of the multirotor).

• A novel algorithm for near time-optimal trajectory generation for multirotors
under obstacles/path constraints (section 3.4 - page 40). The algorithm uses
a new heuristic that allows to transform the optimization problem from a
Mixed Integer Nonlinear Program (MINLP) to an Nonlinear Program (NLP),
and result in better convergence/solutions.

We also present simulation results1 performed in Microsoft’s AirSim simulator [138]
that includes a state of the art physics engine that accurately simulates quadrotor
dynamics and aerodynamic drag.

3.2 . MAV Model

In this section we will present the model of the multirotor that we use for
trajectory generation/optimization. The derivation is mainly taken from [69]. We
assume a low level controller that allows for controlling the attitude and thrust as
presented in chapter 2 - page 27. We use the nomenclature defined in table 3.1.

1https://youtu.be/RIjiDV2woLU
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Table 3.1: Nomenclature
g gravity
m multirotor mass
p position vector x, y, z in world frame
v velocity vector vx, vy, vz in world frame
a modified acceleration vector
j control vector jx, jy, jz in the world frame
zW world frame z
zB body frame z expressed in the world frame
e3 unit vector [0 0 1]T
R rotation matrix from body to world frame
D drag matrix
φ roll angle
θ pitch angle
ψ yaw angle
ccmd total thrust command
||.||2 euclidean norm
d0 drag coefficient in xB and yB
d1 drag coefficient in zB
I3 identity matrix of size 3

The equations of motion are:

ṗ = v (3.1)
v̇ = −gzW +

ccmd
m
zB −RDRTv||v||2 (3.2)

φ̇ = φ̇cmd (3.3)
θ̇ = θ̇cmd (3.4)
ψ̇ = ψ̇cmd (3.5)

Where the drag force is:

Fdrag = RDR
Tv||v||2 (3.6)

We assume that the mutirotor is symmetrical around zB and the drag coeffi-
cient is the same in xB and yB. This gives us the following drag matrix:

D =

d0 0 0
0 d0 0
0 0 d1

 (3.7)
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We then decompose D into the following using d̃0 = d1 − d0:

D = d0 · (I3 − e3 · eT3 ) + d1 · (e3 · eT3 )− d0 · e3 · eT3 + d0 · e3 · eT3 (3.8)
= d0 · I3 + (d1 − d0) · e3 · eT3 (3.9)
= d0 · I3 + d̃0 · e3 · eT3 (3.10)

We then replace the value of D in the equation 3.3:

v̇ = −gzW +
ccmd
m
zB −RDRTv||v||2 (3.11)

= −ge3 +
ccmd
m
Re3 −R(d0 · I3 + d̃0 · e3 · eT3 )R

Tv||v||2 (3.12)
= (

ccmd
m
− C)Re3 − ge3 − d0v||v||2 (3.13)

= T̃Re3 − ge3 − d0v||v||2 (3.14)
With:

C = d̃0 · eT3R
Tv||v||2 (3.15)

T̃ =
ccmd
m
− C (3.16)

Finally, we pose a = T̃Re3− ge3 and we take as control input for the system
j the derivative of a (not to be confused with the jerk of the system). The final
system becomes:

ṗ = v (3.17)
v̇ = a− d0v||v||2 (3.18)
ȧ = j (3.19)

3.3 . Optimal Control Problem

In this section, we will present the optimization problem that we use for trajec-
tory generation. We will first introduce the continuous version of the time optimal
control problem (section 3.3.1 - page 37) without accounting for obstacles. Then
we will explain how to add obstacle constraints (section 3.3.2 - page 38). Finally
we will derive the discrete version of the optimization problem that account for
obstacles and that we solve to generate the near time-optimal trajectory.

3.3.1 . Continuous formulation

With x = [p v a]T , u = j, f(x(t),u(t)) defined by Eq. (3.17), (3.18) and
(3.19), T the total time of the trajectory, the Optimal Control Problem (OCP) is
the following:
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minimize
x(.),u(.),T

T (3.20)
subject to ẋ(t) = f(x(t),u(t)), x(0) = x0 (3.21)

x(T ) ∈XT (3.22)√
ax(t)2 + ay(t)2 + (az(t) + g)2 ≤ amax (3.23)

az(t) ≥ az,min (3.24)
||u(t)||2 ≤ jmax (3.25)

The terminal state constraint XT is a convex space. The upper limit amax is
determined from the maximum thrust of the rotors ccmd,max and the multirotor’s
mass m, and jmax is approximated from the rotors dynamics. We assume that the
rotors provide thrust in only one direction:

amax =
ccmd,max

m
(3.26)

az,min = −g (3.27)
3.3.2 . Obstacles/Path constraints

The continuous formulation presented in the previous section assumes no ob-
stacles are in the environment which is almost never the case. Thus, we need
to add to the optimization problem some constraints that allow the generated
trajectory to avoid obstacles. Obstacles can be be avoided by forming multiple
safe convex spaces that are overlapping. This can be done by decomposing the
space into overlapping polyhedra along a path [88]. However for the purpose of
this work we will generate the overlapping polyhedra manually since the maps are
known beforehand.

3.3.3 . Discrete formulation

The continuous optimization presented in section 3.3.1 (page - 37) is then
discretized using Euler or Runge-Kutta 4th order. Note that We use the discretiza-

tion step h =
T

N
where N is the number of discretization steps. This means

that the discretization step is dependent on a free optimization variable and hence
the constraints of the dynamics will be nonlinear. A Nonlinear Program (NLP) is
an optimization problem where some of the constraints or the objective function
are nonlinear. Hence we have a NLP formulation. The Safe Corridor constraints
which are used to avoid obstacles add binary integer variables to the optimization
formulation. Hence, the final optimization problem is a Mixed Integer Nonlinear
Program (MINLP). We add a small jerk (derivative of the acceleration) cost (the
cost becomes Linear Quadratic Minimum Time - equation 3.28) along the path to
make the convergence faster and the trajectory smoother.
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minimize
xk,uk,bkp,T

T +
ε

N

N−1∑
i=0

||uk||22 (3.28)
subject to x̃k+1 = f̃d(x̃k,uk), k = 0 : N − 1 (3.29)

x0 =X0 (3.30)
xN ∈XT (3.31)√
a2x,k + a2y,k + (az,k + g)2 ≤ amax (3.32)

az,k ≥ az,min (3.33)
||uk||2 ≤ jmax (3.34)
bkp = 1 =⇒ Appk ≤ cp (3.35)
P−1∑
p=0

bkp ≥ 1 (3.36)
bkp ∈ {0, 1} (3.37)

The jerk cost is multiplied by a small value ε in order to prioritize T and have
a near time-optimal solution. It is also divided by N so that the number of points
doesn’t influence the cost. We choose the jerk cost such that it constitutes less
than 5% of the total cost.

Note that we assume that we already know the model of the multirotor and the
model constraints are added directly to the optimization problem which is fed to an
off-the-shelf solver to solve. The model dynamics are included in the optimization
formulation as discrete constraints (equations (3.29) to (3.34)).

We assume that the Safe Corridor that covers the free space is composed of P
polyhedra with overlapping space between every two consecutive polyhedra. The
P polyhedra are described by {(Ap, cp)}, p = 0 : P − 1 (Eqn. (3.35)). We intro-
duce binary variables bkp (P variables for each xk, k = 0 : N − 1). We force all
the points to be in at least one of the polyhedra with the constraint

∑P−1
p=0 bkp ≥ 1.

The constraints for obstacle avoidance (Safe Corridor - equations 3.35 to 3.37)
cannot be directly included in the optimization problem because most MINLP
solvers (IPOPT [158], BONMIN [17], KNITRO [112]) struggle to solve this prob-
lem and all fail to find a feasible solution from a cold start if P > 5. It is thus
necessary to construct a new approach to solve this problem. Consequently, we
designed an algorithm/heuristic to alleviate the problem and turn it from MINLP
to NLP (which still includes the model constraints and dynamics).
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3.4 . Algorithm

In this section we present a novel algorithm to solve the MINLP described in the
previous section by turning it into an Nonlinear Program (NLP). Each discretized
state xk is called a node.

If the position of node k, pk, is in the overlapping space of two consecutive
polyhedra {(Ap, cp)} and {(Ap+1, cp+1)}, this implies that all previous nodes from
0 to k will be in the polyhedra from 0 to p.

It follows that if pk1 is in the overlapping space of two consecutive polyhe-
dra {(Ap1 , cp1)} and {(Ap1+1, cp1+1)}, and pk2 is in the overlapping space of
two consecutive polyhedra {(Ap2 , cp2)} and {(Ap2+1, cp2+1)}, with k2 > k1 and
p2 > p1, this implies that all nodes from k1 to k2 will be in the polyhedra from
p1 + 1 to p2.

This means that by finding and fixing the optimal P − 1 nodes that belong in
the P − 1 overlapped spaces of the polyhedra, we can deduce to which polyhedra
all the other nodes belong i.e. bkp. This allows us to move away from the MINLP
formulation to an NLP formulation with the following algorithm.

We first start with two polyhedra, each adding Ninc nodes to the total number
of nodes in the trajectory (without the initial node). We then optimize the tra-
jectory. We then iteratively add one polyhedra (and Ninc nodes to the trajectory)
and optimize the trajectory until we reach the terminal space. Optimizing the
trajectory every time we add a polyhedra is composed of two steps:

1. Find the initial node index in the overlapping space using the distance heuris-
tic.

2. Use discrete gradient descent on the nodes in all the overlapping spaces
between the polyhedra.

At the end of every iteration/optimization, we find the optimal nodes (or the in-
dexes of the nodes) who should be in the overlapping spaces between the polyhedra
as well as the optimal trajectory up to the last considered polyhedron. The terminal
space at every iteration is the overlapping space between the last added polyhedra
and the polyhedra to be added in the next iteration, until we reach the actual
terminal space (Fig. 3.1).

3.4.1 . Finding initial node index with the distance heuristic
In this section, we present a heuristic that produces a initial guess for the node

index that should be in the overlapping space between 2 consecutive polyhedra
after adding a new polyhedron to the optimization problem. At every iteration,
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(a) legend (b) centroids anddistances usedbythe heuristic

(c) Iteration 1: the index of thenode in the overlapping space isfixed using the distance heuristic
Idx1,1,start = Ntot,1

d1
d1+d2

= 3, with
Ntot,1 = 1 + 2Ninc = 7.

(d) Iteration 1: after running thediscrete gradient descent on thenode we end up with the optimalindex Idx1,1,final = 4.

(e) Iteration 2: Idx2,2,start =
Ntot,2

d1+d2
d1+d2+d3

= 6, with Ntot,2 =
1 + 3Ninc = 10, and Idx1,2,start =
Idx1,1,final ∗ Idx2,2,start/Ntot,1.

(f) Iteration 2: after running thediscrete gradient descent on bothnodes until we converge to a localminimum, we obtain Idx1,2,finaland Idx2,2,final as well as the op-timal trajectory.
Figure 3.1: We showan example of our algorithm that solves theMINLP.It is running on a safe corridor composed of 3 polyhedra (we use rect-angles for simplification) with the terminal space being a subspace ofthe last polyhedron. Every time we add a polyhedron, we also add
Ninc = 3 nodes to the total nodes in the trajectory.
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when we add a polyhedron, we first estimate the fraction of the total trajectory
time that will be spent in this polyhedron. This fraction of time is the same as the
fraction of nodes (from the total nodes) that will be inside the added polyhedron.
In order to estimate the time, we use a distance heuristic.

We first find the centroids of all the overlapping spaces between the polyhedra
(which are also polyhedra). We then calculate the distance between each 2 con-
secutive centroids. The sum of all distances is denoted dtot. The distance between
to centroids i and i+ 1 is denoted di+1 (Fig. 3.1b). The estimated time spent in
the polyhedra is thus calculated with the following heuristic Ti = Tdi

dtot
. This means

that the estimated index of the node is Idxi,i,start =
Ntot,i(dtot−di)

dtot
with Ntot,i the

total number of nodes at iteration i. The first subscript in Idxi,i,start indicates
the index of the overlapping space, the second the total number of overlapping
spaces, and the third whether the index is obtained through the heuristic (start)
or is the final index after the optimization (final). Since the index should be an
integer, Idxi,i,start is rounded to the closest integer. This heuristic assumes that
we traverse the distances with constant velocity.

Once we find the fraction of time Ti, we determine the remaining number of
nodes that will be in the previous polyhedra Nrem = Idxi,i,start, which is the same
as the index of the node in the last overlapping space. We then recalculate the
indexes of the nodes in the previous overlapping spaces Idxj,i,start, 0 < j < i,
by using the results of the last optimization. The indexes are fixed such that the
fraction of time spent in the each of the previous polyhedra is the same as the one
that resulted from the last optimization (Fig. 3.1e).

3.4.2 . Discrete gradient descent

Fixing the indexes of the nodes in the overlapping spaces, allows us to fix all
the binary variables bkp in the MINLP described in section 3.2 (page 35), which
turns it into an NLP.

After finding the start index of the node in the last overlapping space using the
heuristic, and adjusting the other node indexes, we run discrete gradient descent
on all the nodes in the overlapping spaces to find a locally optimal trajectory.

Running the discrete gradient descent on a node in an overlapping space con-
sists of the following: we increase and decrease the index of the node and solve
the new resulting NLPs, then see which direction minimizes the cost function. We
then move in this direction, increasing/decreasing the node index until we reach a
local minimum.

We first run the discrete gradient descent on the node in the last overlapping
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space, while fixing all the node indexes in the other overlapping spaces according to
the last optimization. After finding a local minimum, we then run discrete gradient
descent on the second to last overlapping space while fixing all the others to find
the local minimum. We continue this process of running gradient descent on nodes
in overlapping spaces, moving from the last to the first overlapping space. After
a full back-sweep i.e. running discrete gradient descent on all the nodes in all the
overlapping spaces from last to first, we check whether there has been a change
in the optimal node index in any of the overlapping spaces. If yes, we redo a full
back-sweep of discrete gradient descent and check again. If no change occurs in
the indexes i.e. all nodes are in a local minimum, the algorithm has converged.

3.5 . Simulation Results

We test our algorithm in the context of drone racing. For this purpose we
adapt the algorithm presented in this work to become more specific for this use
case. The gates are considered to be overlapping spaces (or a subspace of the
overlapping spaces) to force the trajectory to pass through them. In some cases,
the space between the gates is free (no obstacle constraints), and we don’t need to
constrain the trajectory inside a polyhedron, but only find the optimal node index
inside the gate space (in the optimization this means the polyhedron is considered
to be the euclidean space R3).

We use the Building99_Hard racing map from [104] (Fig. 3.3). This map has
obstacle constraints between some of the gates which require us to create a safe
corridor of overlapping polyhedra.

3.5.1 . Controller design

We control our quadrotor using a nonlinear MPC [71], with the ACADOS
toolkit [157]. The MPC minimizes the cost function:

J =

∫ T

t=0
||x(t)− xref (t)||2Qx

+ ||u(t)− uref (t)||2Ru
dt

+ ||x(T )− xref (T )||2P
(3.38)

We use the model described in section 3.2 (page 35) with u = [ccmd φ̇cmd θ̇cmd ψ̇cmd]
T

and x = [p v φ θ ψ]T . The sampling time is h = 0.05s and the horizon Nh = 15

which gives T = 0.75s. The weights are:

P = Qx = diag(10, 10, 10, 0.1, 0.1, 0.1, 0, 0, 0.01) (3.39)
Ru = diag(0, 0.05, 0.05, 0.05) (3.40)
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(a) real and reference position (b) real and reference velocity

(c) reference acceleration (d) roll, pitch and yaw

(e) roll, pitch and yaw rate commands (f) acceleration command
Figure 3.2: Results of the simulation on Building99_Hard. We show thedifferent states that result from the controller tracking as well as thereference states.
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Figure 3.3: Reference and real 3d trajectory tracked by the quadrotorin Airsim on themap Building99_Hard. The gate constraints are the blueboxes and the obstacle constraints are the red boxes forming the safecorridor. Some gates do note require a safe corridor between them asthere are no obstacles. The safe corridor is generated manually.
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All parameters are set by approximation/experimentation and may not be optimal.
They provide however some measurement to the feasibility of the generated trajec-
tory. We limit |φ| ≤ 85 deg, θ ≤ 85 deg, |φ̇cmd| ≤ 120 deg/s, |θ̇cmd| ≤ 120 deg/s

and |ψ̇cmd| ≤ 60 deg/s.

3.5.2 . Trajectory generation parameters
In all generated trajectories, the solver we used for the NLP was KNITRO

(interior/direct algorithm) with the CasADi interface [5]. We choose amax =

16.48m/s2 which is the maximum acceleration the thrusts can achieve. We also
choose az,min = −g, and jmax = 60m/s3. We don’t put any constraints on the
velocity since the drag forces will determine the maximum velocity we can reach.

We also choose the average number of nodes per polyhedron Ninc = 20 and
the jerk cost ε = 0.005. Naturally, we can decrease ε to get more time-optimal
trajectories, however convergence would take more time, and beyond a certain or-
der of magnitude of ε the improvement becomes negligible (less than 5%). Finally,
we choose the drag matrix D = diag(0.01, 0.01, 0.14) (identified from the simu-
lation).

3.5.3 . Results and comparisons

Table 3.2: Comparison between polynomial methods and our methodon the track Building99_Hard. We denote in red the parameters thatlead to unfeasible trajectories, and in bold the overall best result.
Mellinger [101] Burri [20] Richter [129] Our method

amax = 7m/s2

vmax = 7m/s
49 s 38.5 s 47.5 s -

amax = 17m/s2

vmax = 30m/s
27 s 16 s 28 s -

amax = 16.48m/s2 - - - 13.5 s

In Fig. 3.2 we show the reference states generated by our method as well
as the real states tracked by the controller. In Fig. 3.3 we show the reference
trajectory generated by our method as well as the real trajectory of the quadro-
tor. The maximum reached velocity is 13.5 m/s and its average is 9 m/s. The
maximum reference acceleration is 18 m/s2 (table 3.2) and the average accelera-
tion command is 12.72 m/s2. Note that the reference acceleration shown is the
acceleration vector defined in section 3.2 - page 35 (does not include drag forces)
and not the derivative of the velocity (which includes the quadrotor’s thrust, the
gravity and the drag forces).

Note that the maximum acceleration applied on the quadrotor without adding
the drag forces can reach

√
a2max + g2 = 19.18 m/s2 which is the case where the
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quadrotor is at full thrust with a roll/pitch at 90 deg.

In table 3.2 we show how our method performs compared to state-of-the-art
polynomial methods. Our method outperforms these methods even when we allow
them to break the dynamic constraints of the quadrotor. Note that the polynomial
methods which we compare with have been designed for real time use while our
method was designed for offline trajectory generation. However, the comparison
serves to show the limitations of constraining a trajectory to a polynomial form
and neglecting nonlinearities such as gravity and drag forces.

3.5.4 . Tracking performance

We evaluate the trajectory feasibility by evaluating the tracking performance
of the controller. Note that an unfeasible trajectory can be tracked to within a
certain margin of error by an ideal controller; however, the margin of error becomes
larger as the trajectory becomes more unfeasible. We show in Tab. 3.3 the root
mean squared errors (RMSE) e and absolute maximum errors emax in all directions
and in total.

Table 3.3: Tracking errors along all directions on Building99_Hardmap.The values shown are in centimeters.
ex ey ez etot ex,max ey,max ez,max etot,max5.9 8.1 4.6 10.9 13.42 16.2 14.2 19.7

The total RMSE is 10.9 cm and the absolute maximum error is 19.7 cm. Many
factors contribute to tracking errors including but not limited to controller design,
controller latency, and trajectory feasibility. Tracking performance can thus be
increased by optimizing the controller parameters, or by reducing the bounds on
agility and speed such as acceleration or jerk.

The errors shown indicate that our generated trajectory is feasible and safe
if we were to inflate the obstacles by the maximum tracking error (without any
further tuning of controller parameters or agility bounds).

3.5.5 . Game of Drones competition - Microsoft, Neurips 2019

The method presented in this work was used by our team (Dédale) in the Game
of Drones autonomous drone racing competition (Tier 1) organized by Microsoft,
Stanford and University of Zurich at NeurIPS 2019. The competition had 117
registered teams with 16 unique entries on the qualification leaderboard [97]. Our
team won the Tier 1 competition which focused on planning and control. We
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traversed the race track in 39.78 s, well ahead second place (53.49 s)2. A plethora
of methods was used by the competing teams, which allows for a fair evaluation
of other state-of-the-art time-optimal planning methods.

The method was also used in the validation and qualification phase3, beating
the competition by a considerable margin on all maps (in total 5), which have dif-
ferent types and degrees of difficulties. We chose to present in this work the map
that showcases the strength of our method: tight corridors where all the mentioned
state-of-the-art approaches would fail to generate safe trajectories [41], or perform
really poorly (polynomial methods).

3.6 . Limitations and Challenges

The presented approach is currently not suitable for real-time planning. The
trajectory generation can take a few seconds for 2-3 gates, and up to 40 minutes
for the map Building99_Hard which has 13 gates.

Furthermore, in real world experiments, the multirotor is subject to external
disturbances, uncertainties and noises that may render the trajectory unfeasible.
For example a strong gust of wind may deviate the drone from its path making
it hard to recover and track the remainder of the trajectory which already uses
the full dynamics of the drone. One way to remedy this problem is to reduce the
dynamical limits so that we don’t fully use the quadrotor’s dynamics. This would
allow the controller some margin to correct for the disturbances without having to
locally replan. Another way to remedy the problem would be to use an exploration-
exploitation based adaptive control law [155] that would deal with uncertainties
and disturbances in an effective way.

Finally, the non-convex nature of the problem can present convergence chal-
lenges (bad local minima). This problem is present in all non-convex planning
approaches [41]. This was partly remedied by the iterative nature of our algorithm
as well as the heuristic we use, which provides a good initial guess for the opti-
mization.

3.7 . Conclusion and Future Works

2https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/
leaderboard_final.html3https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/
leaderboard.html
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In this work we presented a new multirotor formulation (MINLP) that take into
account nonlinearities (gravity and drag forces) as well as path constraints (over-
lapping polyhedra) for near time-optimal trajectory generation. We then proposed
a new algorithm and heuristic to turn the MINLP into an NLP and solve it locally.
We also presented simulation results that showcase how our algorithm performs
in a drone racing scenario and evaluated the feasibility of the generated trajectories.

So far we have been able to cold start our optimization and rely on KNITRO
with an interior/direct algorithm to find the optimal solution. We plan to inves-
tigate multiple initialization schemes for faster convergence with a warm start.
Furthermore, we plan on testing with parallel computing for the discrete gradient
descent (presented in section 3.4 - page 40) to better investigate the real-time
capabilities of our algorithm.
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4 - VOXEL GRIDS

Regular grids are a commonly used discretized representation of the environ-
ment. Their elementary cells are usually chosen to be cubes (also called voxels).
Voxel grids are a minimal and efficient environment representation that is used for
robot motion planning in numerous tasks. Many state-of-the-art planning algo-
rithms use voxel grids composed of free, occupied and unknown voxels. In this
work we propose a new GPU accelerated algorithm for partitioning the space into
a voxel grid with occupied, free and unknown voxels. The proposed approach is
low latency and suitable for high speed navigation.

This work is used in our following works in trajectory planning and obstacle
avoidance since it is an essential part in the autonomy pipeline (perception and
mapping) that precedes the planning and control stages.

4.1 . Introduction

Many sensors (RGB-D cameras, stereo-matching ...) output dense point-
clouds as measurements and need to be processed and turned into an environment
model/representation for motion planning. Fast 3D environment modelling is cru-
cial for real-time high speed motion planning and exploration.

Many state-of-the art techniques use voxel grids for planning [134] [146] [145].
Some of them use the grid for Safe Corridor generation [88] while others use it for
direct collision checking. They need the grid to be partitioned into occupied, free
and unknown voxels. The fast generation of such grids is the main objective of
this work.

We will first present the related work as well as our main contributions. Then,
we will outline the different steps of the method and show the simulation results.
Finally, we will compare it with mit-acl-mapping1 used in [134]. Our method
is implemented on CPU and GPU and we will discuss the performance difference
throughout the chapter.

4.1.1 . Related work
Numerous 3D space representations exist such as signed distance fields [117]

[55], octrees [64] [33], and voxel grids [134].

1https://gitlab.com/mit-acl/lab/acl-mapping
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Signed distance fields grids [117] [55] include in every voxel information about
the distance and gradient against obstacles and is essential for gradient-based plan-
ning methods. The advantage of voxel grids over signed distance fields is processing
time, since they don’t need to calculate the distance of every voxel to the closest
obstacle.

Octrees are a tree data structure where each node has eight children. Octree
based representations such as Octomap [64] are an efficient probabilistic 3D rep-
resentation of the environment. The advantage of voxel grids over octrees is the
constant voxel access (read/write) time.

Due to the reasons stated above, we choose voxel grids as the environment
representation. Many methods exist for the generation of voxel grids. In [134]
authors use [19] to trace every pixel of the image and free the traversed voxels
between the camera center and the pixel depth. This approach leads to a high
computational cost and become intractable for medium/high resolution RGB-D
cameras.

In [62], the authors use General Purpose Graphics Processing Unit (GPGPU)
to populate the voxel grid. The authors raycast every measurement point in a
Brensenham fashion [19] and update the voxels according to the sensor model.

4.1.2 . Contribution
In this work we propose a new implementation of a voxelization algorithm on

the GPU that tries to minimize computation time as much as possible. It takes as
input a dense point cloud and outputs a local voxel grid centered at the robot with
occupied, free, and unknown cells. However we don’t use a probabilistic approach
as this reduces performance of the GPU in our implementation (requires atomic
operations). We use the GPU since it has the potential to speed up parallelizable
tasks of voxel grid generation such as ray-tracing.

4.2 . Nomenclature

We define the various abbreviations and variables used throughout this chapter
in table 4.1. All distances and coordinates are in meters except for voxel coordinates
which are integers.

4.3 . GPU Architecture

In this section we briefly describe the GPU architecture/nomenclature and how
it executes instructions. This will help make sense of the performance benchmarks
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Table 4.1: Nomenclature
loc_grid local voxel grid
ms_grid measurement voxel grid
grid_sizex grid size in the x direction
grid_sizey grid size in the y direction
grid_sizez grid size in the z direction
vox_size voxel cube side length
fovx camera field of view in the x direction
fovy camera field of view in the y direction
depth IR depth sensor range

vox_depth the depth in number of voxels
vox_width voxels covered by fovx at depth
vox_height voxels covered by fovy at depth

xi voxel x coordinate in the grid frame
yi voxel y coordinate in the grid frame
zi voxel z coordinate in the grid frame
T w
c transform from camera to world frame

T v
w transform from world to grid frame
pco obstacle point in the camera frame
pvo obstacle point in the voxel grid frame
pvc camera position in the voxel grid frame

vox_inf number of voxels to inflate
ray_dir direction of the ray to trace
ray_start starting point of the ray to trace
max_dist maximum ray traversal distance

in the simulation section. We will describe NVIDIA’s Turing architecture which
our GPU (RTX 2060) is built on [113].

The basic building block of a GPU is the Streaming Multiprocessor or SM.
Each SM in the Turing architecture contains 64 cores (2 groups of 32 cores) and
has its own L1 shared memory. In every group of 32 cores, all cores execute the
same instructions simultaneously, but with different data (Single Instruction Mul-
tiple Threads - SIMT). Thus we get 32 threads (called a warp) all doing the same
thing at the same time.

The warps (groups of 32 threads) are grouped into blocks and every block can
be executed on one SM only. A group of blocks is called a grid.
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Figure 4.1: We show a 2D example of the grid with the origin set suchas the robot/camera position is at the center of the grid.

Throughout the chapter we will measure the efficiency of our implementations
through active threads per warp (how many of the 32 cores are active - the higher
the better), and the number of warp cycles per executed instruction (the lower the
better).

Active threads per warp also depend on predication when we have if - else con-
ditional statements. These statements can cause branching when a thread meets
the if condition while another thread meets the else condition. The first thread
will execute the statement under the if condition while the other will be waiting.
Once the execution of the if statement is done, the second thread starts execut-
ing the else statement while the first thread is now waiting. This means there is
idle/wasted execution time. With predication, the GPU evaluates both sides of the
conditional statement and then discards one of the results, based on the value of
the boolean branch condition in each thread. Predication is in general effective for
small branches.

The GPU code is written in CUDA [110].

4.4 . The Method
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The objective is to generate a voxel grid representation of the world around the
robot. The method takes a dense point cloud (stereo matching) or a depth image
(IR depth sensor) in the camera frame, and populates a voxel grid with occupied,
free and unknown cells.

The method consists into updating a sliding local voxel grid centered around the
robot’s position with a measurement grid that represents the latest measurement.
It is divided into 5 steps (functional blocks):

1. Voxel grid setup

2. Populate occupied voxels.

3. Ray-trace to free voxels in camera field of view.

4. Update the local voxel grid with the measurement voxel grid.

5. Shift the local grid to be centered at the robot’s position.

A diagram showing a global view of the execution pipeline of steps 1-4 is shown
in Fig. 4.2.

In the voxel grid setup, we initialize the local voxel grid and measurement voxel
grid. The local grid is only initialized once at the start of the algorithm and is up-
dated at every measurement with the measurement voxel grid that is reset before
each measurement. We then set the voxels that contain obstacles to occupied in
the measurement voxel grid (populate occupied voxels).

An efficient ray-tracing method is used in the third step (Ray-trace to free vox-
els in camera field of view). Instead of tracing each pixel we leverage the voxel grid
structure to reduce considerably the number of rays to trace by using ray bundling
which accelerates the overall processing time. Ray bundling is inspired by [167]
and [117].

We then update the local voxel grid with the measurement one which we pop-
ulated with the occupied voxels and freed its voxels with ray-tracing. Finally we
shift the local grid so that it is always centered at the robot position as the robot
moves. We assume a regular voxel grid, but the method can be generalized for
irregular grids. Each step as well as its GPU implementation are discussed in what
follows.

4.4.1 . Voxel grid setup
We have 2 grids: the local voxel grid that is the representation of all previous

measurements, and the measurement voxel grid that is the representation of the
latest measurement. Both grids are of the same size. It is possible to use only
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Figure 4.2: We show the execution pipeline at iteration k of steps 1-4after receiving a measurement (point cloud). In the presented case, andynamic obstacle moves away from the camera while the robot staysstatic. Free voxels are white, occupied are red, unknown are grey,
unknown and traced are black. The camera field of view is shown ingreen and the point cloud as red circles.

56



Figure 4.3: We show a 2D example of the rays (in green) we trace usingour method. The field of view of the camera is limited by the red lines.
one grid (the local grid). However, this would require clearing all the voxels in the
camera field of view (using ray-tracing) before applying steps (2-4). Otherwise, if
we have an obstacle moving away from the sensor, the previously occupied vox-
els that are now free due to the obstacle’s movement will remain occupied. We
found empirically that this would result in a higher computation time then using 2
grids and merging them together (due to the high computation cost of ray-tracing).

The origin of the local voxel grid is initialized such as the initial robot/camera
position is at the center of the grid. The orientation is the same as the ENU (East
North Up) frame (Fig. 4.1). It is then shifted as the robot moves. All voxels are
initialized as unknown, and will be updated when the measurement voxel grid is
merged with the local voxel grid. The voxels of the measurement voxel grid are set
to unknown before every single measurement. They are then changed by steps 2
and 3.

4.4.2 . Populate occupied voxels

In this step, we set all the voxels in the measurement grid that contain obstacle
points to occupied using Alg. 1.

This is done by first transforming the points from the camera frame to the voxel
grid’s origin (line 2), then dividing the coordinates by the voxel size to get the inte-
ger coordinates of the occupied voxel (lines 3-5). For every measurement/camera
pose, the transformation matrix is the same: T vc = T

v
wT

w
c . It is calculated on the

CPU and passed as an argument to the GPU implementation.
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Algorithm 1 Populate occupied voxels
1: function AddOcc(T v

c , vox_size,pco,ms_grid, vox_inf )2: pvo = T
v
cp

c
o3: xi ← pvo,x/vox_size4: yi ← pvo,y/vox_size5: zi ← pvo,z/vox_size6: for i = xi − vox_inf to xi + vox_inf do

7: for j = yi − vox_inf : to yi + vox_inf do
8: for k = zi − vox_inf to zi + vox_inf do
9: ms_grid[i, j, k]← occupied
10: end for
11: end for
12: end for
13: end function

Furthermore, certain planning methods require inflating the obstacles by a
number of voxels vox_inf . This can be implemented in this step (lines 6-9)
where we set the voxels to the occupied value.

On the GPU, the frame transformation is done in parallel as well as setting
the corresponding voxels to "occupied". If multiple threads in a warp want to
concurrently set the same voxel to "occupied", only one of them succeeds while
the others are discarded [113].

4.4.3 . Ray-trace to free voxels
In this step we free all the voxels in the measurement grid between the center

of the camera and the occupied voxel since if any of them contained an obstacle,
it would have been detected by the dense pointcloud representation.

Instead of tracing every point that is in a dense pointcloud, or every depth
pixel in a depth image, we adopt another approach that significantly decreases the
number of rays to trace (Alg. 2).

First we determine the depth which we want to clear (e.g. range of the IR
depth sensor) and calculate the number of voxels vox_depth covered by it. This
is done by dividing the depth by the voxel size vox_size.

Then, we determine vox_width = 2 ∗ tan(fovx2 ) ∗ vox_depth+ 1 with fovx
the field/angle of view of the camera in the x direction (Fig. 4.3).
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(a) Simple ray-tracing (b) Our ray-tracing
Figure 4.4: We show the points of a dense pointcloud in red, the un-
known voxels in grey, occupied voxels in red, free voxels in whiteand unknown and traced in black. The unknown and traced vox-els will be used to update the local grid unlike the unknown voxels.Our method (b) traces less rays with a close end result to a simpleray-tracing method (a) where every pixel of the camera/measurementof the lidar is traced. Instead of tracing every pixel/measurement, wetrace up to a given voxel in the grid. When we hit an occupied voxel,we continue tracing but set all subsequent voxels to unknown and
traced. This speeds up computation time.
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Algorithm 2 Ray-trace to free voxels
1: function RayTrace(ms_grid,T v

c , xi, yi, zi, vox_size)2: pvc = T
v
c [0 0 0 1]

t

3: ray_start← pvc4: ray_dir ← T v
c [xi yi zi]

t

5: max_dist← vox_size√x2i + y2i + z2i6: traversed_dist← 0
7: vox_val← free
8: while traversed_dist < max_dist do
9: move by a voxel using [3] and set xi, yi, zi tonew traced voxel
10: if loc_grid[xi, yi, zi] == occupied then
11: vox_val← unknown and traced
12: else
13: ms_grid[xi, yi, zi]← vox_val
14: end if
15: traversed_dist← vox_size√x2i + y2i + z2i16: end while
17: end function

We also determine vox_height = 2 ∗ tan(fovy2 ) ∗ vox_depth + 1 with fovy
the field/angle of view angle of the camera in the y direction. Note that vox_size,
vox_width and vox_height are rounded to the closest integer.

Then we execute Algo. 2. Using [3], we trace all the rays who start from the
camera center (lines 2-3), with each ray having as direction one of the vectors
going from the camera center to the voxels (line 4) whose integer coordinates are:

zi = vox_depth

−(vox_height− 1)

2
≤ yi ≤

(vox_height− 1)

2

−(vox_width− 1)

2
≤ xi ≤

(vox_width− 1)

2

We subtract 1 from vox_height and vox_width since by construction they
are odd numbers (Fig. 4.3). Since the camera frame is not always aligned with the
voxel grid frame, we have to transform the ray direction vector from the camera
to the voxel grid origin frame (line 4).

Each ray is stopped when it traverses a predefined distance (e.g. depth dis-

tance or vox_size
√
x2i + y2i + z2i - line 5) Fig. 4.4. The voxels that the ray

traverses before hitting an occupied voxel are set to free. All the voxels traced
after hitting the occupied voxel are set to unknown and traced so they are
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differentiated from the unknown voxels outside the sensor field of view during
the update of the local grid (lines 8-14). This is useful in dynamic environments
where a previously free/occupied voxel can become occluded by a moving obstacle.

This ray-tracing method assumes that all the obstacles in the camera field of
view and within a certain depth are detected, which is ensured with RGB-D cam-
eras or stereo-matching using state-of-the-art methods [143].

On the GPU, we may have concurrent writes by some threads. This results
in an undefined behavior on the GPU, as some voxels may have different values
written to them concurrently by different rays. This only affects voxels on the
borders of a region occluded by an obstacle, where one traversing ray may clear it
while another may set it as free unknown and traced (which happens in Fig. 4.4.
This may not affect the overall performance depending on the application.

4.4.4 . Update the local voxel grid
After populating the measurement voxel grid with occupied voxels and ray-

tracing to free voxels, the local voxel grid is updated with the free, occupied, and
unknown and traced voxels, i.e. the previous values are replaced with the values
of the free, occupied, and unknown and traced voxels of the measurement voxel
grid (Alg. 3, line 2-4).

The grids are 1 dimensional arrays with the index idx = xi+yi×grid_sizex+
zi × grid_sizex × grid_sizey.

On the GPU the update is done in parallel resulting in a significant speed
up. The speed up is due to being able to simultaneously access different memory
addresses of the same array.

Algorithm 3 Update local grid with measurement grid
1: function UpdateGrid(loc_grid,ms_grid, idx)
2: if ms_grid[idx] 6= unknown then
3: loc_grid[idx]← ms_grid[idx]
4: end if
5: end function

4.4.5 . Shift the local voxel grid
Every time the robot moves by a voxel or more, the local map is shifted to be

centered at the new robot position and the new voxels resulting from that shift
are initialized as unknown. This allows to always have the most relevant/close
obstacle information to the robot. The shift is done in voxel units so we can simply
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use/copy voxels from the old local voxel grid (before shifting).

The shift is done after the local map is updated. This way it doesn’t add any
unnecessary latency. This step is solely done on the CPU and can be run on a
single core/thread which doesn’t affect the global computation pipeline (it takes a
few milliseconds depending on the size of the local grid).

4.5 . Simulation Results

We run the simulation on the following hardware setup: for the CPU we use
Intel Core i7-9750H up to 4.50 GHz, and for the GPU we use NVIDIA’s GeForce
RTX 2060 up to 1.62 GHz.

We simulate the robot using mit-acl-gazebo2. The sensor is an RGB-D cam-
era that outputs a depth image with a resolution of 320 × 240. The maximum
depth is 6.5 meters, fovx = 85deg and fovy = 101 deg. The chosen size of
the voxel grid is (grid_sizex = 15 m, grid_sizey = 15 m, grid_sizez = 3 m)

and the voxel size vox_size = 0.15 m. The robot size is rob_rad = 0.3 m

which implies vox_inf =
rob_rad
vox_size

= 2. This results in 200 000 voxels, and

vox_height× vox_width ≈ 8 500 rays to trace. These are the standard param-
eters that we use for the simulation time comparisons unless specified otherwise.

We compare the performance of every step run on the CPU with its GPU
version. We analyse the efficiency of our GPU implementation in terms of warp
state statistics and warp cycles per execution instruction. The occupancy metric
of the GPU is not studied as it depends on other factors than the efficiency of the
algorithm such as the number of blocks and threads resulting from the pointcloud
size/number of rays to trace/number of voxels in a grid. We choose 128 threads
per block (4 warps).

4.5.1 . Populate occupied voxels - simulation

We compare the computation time of the CPU and GPU implementation of
the functional block "populate occupied voxels" (section 4.4.2 - page 57) as the
number of obstacle points increases (Fig. 4.5a). The scale of the x and y axes
is logarithmic. The GPU computation time starts quasi-constant then increases
linearly as the number of points surpasses 20 000. This is due to the GPU not
being fully occupied before reaching the inflexion point. The CPU computation
time scales linearly with the number of points in the pointcloud. This is due to the

2https://gitlab.com/mit-acl/lab/acl-gazebo
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(a) A comparison between the CPUand GPU implementation of step 2(populating occupied voxels) of ourmethod.

(b) A comparison between the CPUand GPU implementation of step 3(ray-tracing to free voxels) of ourmethod.

(c) A comparison between the CPUand GPU implementation of step 4(merging the measurement grid withthe local grid) of our method.
Figure 4.5: A comparison between the CPU andGPU implementation ofsteps 2-4. The CPU implementation is sequential and runs on a singlecore.
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fact that the time complexity of processing one point is constant.

The GPU computation time slope in the linear segment is smaller then that of
the CPU. This is expected due to the SIMT architecture and the efficiency of our
implementation.

The GPU implementation outperforms the CPU implementation 14× for 5 000
points and the difference grows bigger as the number of obstacle points increases.
For 300 000 point the difference in performance is 185×. The difference in per-
formance increases so much due to the fact that the GPU is not fully occupied at
5 000 points. Additionally, it is due to the fact that the slope of the computation
time of GPU is smaller than that of the CPU once the GPU becomes fully occupied
(Fig. 4.5a).

GPU performance

The average active threads per warp (with predication) is 32/32, and the average
not predicated off threads per warp is 29.65/32. The average warp cycles per exe-
cuted instruction (which defines the latency between two consecutive instructions)
is 11.85. This performance shows that our implementation for this step is efficient
on the GPU.

Table 4.2: CPU and GPU average computation time comparison for thedifferent functional blocks using the standard parameters (detailed insection 4.5 - page 62) during an exploration task. The voxel grid setup isnot included (negligible time) and the local grid shifting is not included(done only on the CPU after the local map is updated - doesn’t affectlatency).
Populateoccupied voxels Ray-traceto free voxels Update local gridwith measurement grid CUDAmemory operations Total

CPU 0.1ms 2.2ms 0.2ms - 2.5msGPU 0.007ms 0.044ms 0.007ms 0.712ms 0.77ms

Improvement 14.2× 50× 28.5× - 3.3×

4.5.2 . Ray-tracing to free voxels - simulation
We compare the computation time of the CPU and GPU implementation of

the functional block "ray-tracing to free voxels" as the number of rays to trace
increases (Fig. 4.5b). The scale of the x and y axes is logarithmic.

Both CPU and GPU computation times scale linearly. This is expected as the
computation time of a single ray-tracing function is limited by max_dist and thus
has a constant upper bound. The slope of the GPU computation time is also
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(a) case 1: our method (b) case 1: mit-acl-mapping

(c) case 2: our method (d) case 2: mit-acl-mapping
Figure 4.6: We show the voxel grid generated by our method and mit-acl-mapping during a MAV exploration task using [146]. The occupiedvoxels are shown in orange, the unknown voxels in blue, and the freevoxels are transparent. The two methods deliver close results.
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Figure 4.7: A comparison between mit-acl-mapping [134], the CPU andGPU implementation of our method. The red line represents the me-dian. The lower and upper bounds of the box represent the 25th and75th percentile respectively, and the lower and upper whiskers repre-sent the minimum and maximum respectively.

smaller then that of the CPU in this case. The GPU implementation outperforms
the CPU implementation 8× for 1 000 rays and the difference grows bigger as the
number of rays to trace increases. For 8 500 rays the difference in performance is
52×.

GPU performance

The average active threads per warp (with predication) is 24.12/32, and the av-
erage not predicated off threads per warp is 20.57/32. The reason is that we use
the method described in [3] for ray tracing, which includes conditional if-else state-
ments that cause branching. Branching in general degrades GPU performance and
leads to less active threads per warp and wasted cycles. The average warp cycles
per executed instruction is 11.87.

4.5.3 . Update the local voxel grid - simulation
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We compare the computation time of the CPU and GPU implementation of
the functional block "update the local voxel grid" as the number of voxels in the
grid increases (Fig. 4.5c). The scale of the x and y axes is logarithmic.

Both CPU and GPU computation times scale linearly. This is expected as the
computation time is constant (read/write access). The slope of the GPU com-
putation time is also smaller then that of the CPU in this case because of the
concurrent memory access operations that the GPU is capable of. The GPU im-
plementation outperforms the CPU implementation 12.5× for 24 000 voxels and
the difference grows bigger as the number of voxels increases. For 675 000 voxels
the difference in performance is 38×.

GPU performance

The average active threads per warp (with predication) is 29.81/32, and the av-
erage not predicated off threads per warp is 29.18/32. It increase slightly as the
number of voxels in a grid increases. The active warps is not 32/32 due to the if
statement that verifies that a voxel of the measurement voxel grid is not unknown
before merging it with the local voxel grid. The average warp cycles per executed
instruction is 46.75.

4.5.4 . Comparison with mit-acl-mapping
The proposed method vastly outperforms mit-acl-mapping in terms of com-

putation time (Fig. 4.7) while delivering similar results (Fig. 4.6). The reported
computation times are for the setup explained at the beginning of Section 4.5
(page 62), while doing an exploration task using [146]. We show the distribution
of the computation time (Fig. 4.7) as a boxplot. The CPU implementation of our
method takes on average 2.5 ms and is 18× faster then mit-acl-mapping. The
GPU implementation takes on average 0.77 ms and is 3.3× faster than the CPU
implementation. Note that in addition to the kernels’ execution time (steps 2,3
and 4), the GPU time includes allocating (cudaMalloc) and freeing (cudaFree)
memory on the device (GPU), setting this memory (cudaMemset) and transferring
data from the host (CPU) to the device and from the device to the host (cud-
aMemcpy). On average, cudaMalloc takes 308 µs, cudaMemcpy takes 286 µs,
cudaFree takes 97 µs, cudaMemset takes 21 µs and the kernels (launch + execu-
tion) take 58 µs (Table 4.2).

The results (Fig. 4.6) show that our method delivers close results to mit-acl-
mapping but more conservative (less voxels are freed) which is expected since our
ray is stopped when it hits an occupied voxel whereas mit-acl-mapping uses [19] to
trace every pixel of the image (Fig. 4.4a). The method used by mit-acl-mapping
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cannot be implemented on a GPU as is, and the ray-tracing method used [19] can
miss voxels that the ray passes through, unlike [3] which we use.

4.6 . Conclusion

We presented a novel method for the generation of voxel grids with occupied,
free and unknown voxels. The method is efficient while sacrificing little accuracy.
Some undefined behavior may occur on the borders of the occupied voxels, but its
effects depend on the application and are not considerable in the case of multirotor
autonomous navigation. We compared our method to the state-of-the-art and
implemented a GPU version of it which resulted in a considerable speed up. The
CPU and GPU implementations outperform the state-of-the-art in computation
time while delivering similar quality.
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5 - SAFE CORRIDORS

Recently, robot planning methods based on Safe Corridors showed promising
results in fast navigation for micro-aerial vehicles. Safe Corridors are a series of
overlapping convex shapes that cover only obstacle-free space in the environment.
They allow to plan safe and dynamically feasible trajecotires. However, state-of-the
art methods for Safe Corridor generation either generate “unsafe” Safe Corridors
[88], or are not generic enough [67]. In this work we propose a new algorithm for
decomposing 3D space into overlapping convex polyhedra based on a voxel-grid
representation of the 3D space.

The presented method consists of starting with a seed voxel (around which we
want to find the largest convex polyhedron), and expanding it in all directions until
we no longer can according to the rules that we define in this chapter. The entity
that we expand is what we call a convex grid (group of voxel cells), in which we can
inscribe a convex polyhedron. As this convex grid is expanded, the inscribed poly-
hedron is changed and also puts limits as to how the convex grid can be expanded
at the next iteration. The path around which we want to find a Safe Corridor is
sampled into points that serve as seeds for each convex grid/polyhedron of the
Safe Corridor.

In addition, the presented method creates a connectivity graph between poly-
hedra of a given Safe Corridor that allows to know which polyhedra intersect with
each other. The connectivity graph can be used in planning methods to reduce
computation time.

We compared the proposed method with the state-of-the-art in simulation
and showed that it generates Safer Corridors with guarantees that no intersec-
tion exists between the Safe Corridor and the real world obstacles, while staying
within real-time constraints. We also showed that our method outperforms the
state-of-the-art in terms of number of constraints per polyhedron and number of
polyhedra per Safe Corridor, which translates into faster computation time in the
planning/optimization phase.

5.1 . Introduction

Safe Corridors are a series of overlapping convex shapes. The convexity of the
shapes allows existing solvers to efficiently use them for robot planning. The tra-
jectory is constrained to be inside the SC thus guaranteeing collision-free flight. It
is thus of great interest to improve the quality of SC generators in terms of safety
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and computation time.

The quality of an SC generator can be judged using multiple criteria. In this
work we use the following criteria:

• Genericness: it represents the ability to create SCs in an environment that
contains obstacles of arbitrary shapes without the requirement for a large
amount of polyhedra. A good feature of an SC generator is the ability
to generate polyhedra whose faces can potentially have different orthogo-
nal vectors that adapt to the shape of obstacles in the environment. One
measure of genericness is the total number of polyhedra in the SC.

• Volume: the volume covered by the SC gives more room for the planning
robot to plan in, which results in faster or/and smoother trajectories (de-
pending on the cost function used in the optimization stage of planning).

• Computation time: whether the SC generation is real-time on computa-
tionally constrained embedded systems.

• Number of Constraints: since in the majority of planning cases the Safe
Corridor is used in an optimization framework, the number of constraints
per polyhedron affects the number of inequalities added to the optimization
and hence, the solving time.

5.1.1 . Related work

Motion planning

Many methods already use Safe Corridors (SC) for planning for autonomous mobile
robots and static obstacle avoidance: humanoids [10], quadrotors [88] [146] and
ground robots [146].

There are other approaches for robot planning such as [87], [89], [90], [169]
which use motion primitives to change the planning problem into a graph search.
This type of approach is computationally expensive especially when generating
complex maneuvers around obstacles.

Other methods use Euclidean Signed Distance Fields (ESDF) that represent
the 3D space as voxels encoding the distance to the nearest obstacle [116], [117],
[55], [45]. The resulting planning problem is non convex, and can result in local
minima problems.

Recently Safe Corridor based planning methods [146] were presented and com-
pared to other state-of-the-art methods and have proven to be more performing
in the combined metric of computation time, trajectory velocity and trajectory
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smoothness.

Safe Corridors

Many methods in the literature exist for the convex decomposition of free space
for robot planning.

The method proposed in [67] uses an OctoMap [64] and creates a series of
overlapping axes-aligned cubes. While this method is generally computationally
efficient and suitable for low compute systems, it is non-generic: it only performs
well when obstacles are rectangular parallelopipeds (same issue applies when using
cuboids as convex shapes instead of cubes, even if they increase the genericness
of the method).

In [47], the authors use a pointcloud representation of the environment and
decompose free space around a path into overlapping spheres. This approach is
non-generic and can result in a high number of spheres in a relatively low com-
plexity environment (such as a narrow straight corridor).

In [29], the authors search for both an ellipsoid and a set of hyperplanes (con-
vex polyhedron) which separate it from the obstacles (represented as convex poly-
hedra). The ellipsoid/polyhedron is found by solving a nonconvex optimization
problem that maximizes the ellipsoid’s volume. This method is generic: there is no
limitations to the generated convex shape in the sense that it is a cube or a sphere.
However it suffers from a high computation time that is unsuitable for high speed
real-time applications.

Finally, in [88], the authors use a pointcloud representation of the environment.
The point cloud is downsampled before it is fed to the algorithm [146]. Otherwise,
the computation time becomes intractable for real-time applications. The method
consists in inflating an ellipsoid around a seed point/line until it hits an obstacle
point. Then a tangent plane to the ellipsoid is generated at the obstacle point (a
hyperplane), and all obstacle points that are on the side of the hyperplane that
doesn’t contain the seed are removed. Then, the authors of [88] inflate the ellipsoid
further until it hits one of the remaining obstacle points, generate a new hyper-
plane and remove obstacle points in the same manner. This process is repeated
until no obstacle points remain in the pointcloud. The collection of hyperplanes
form a convex polyhedron. However, this approach can create unsafe Safe Corri-
dors that penetrate the obstacles between the downsampled points. This method
is the best performer amongst the state-of-the-art since it is the only one that is
generic and real-time. We will compare our algorithm to it throughout the chapter.
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5.1.2 . Contribution
The main contribution of this work is a new method for Safe corridor generation

that is real-time and generic, and doesn’t suffer from the problems that the only
real-time generic state-of-the-art method suffers from [88]. It guarantees that the
generated Safe Corridor will have an empty intersection with the occupied voxels
of a voxel grid. Furthermore, the generated polyhedra will have a lower number of
faces than [88], which results in a faster optimization time for planning methods
(lower number of inequality constraints). The resulting Safe Corridor can be used
by planning methods such as [146] and the method presented in chapter 6 (page
95) to generate feasible and safe trajectories for robot planning.

This contribution was later improved to create a new framework that will also
be presented in this chapter in section 5.4 (page 80). The main additions of the
improved method are the following:

• The addition of new conditions for expanding a border which makes the new
framework have a better decomposition of the free space.

• The creation of a connectivity graph using the convex grid/polyhedron du-
ality that allows to know which polyhedra intersect with each others.

5.2 . Environment and Definitions

The environment is represented as a voxel grid with occupied (obstacles) and
free cells. Voxel grids can be efficiently generated from pointclouds as shown in
the Voxel Grids section 4 (page 51). In this environment, we want to generate
a series of overlapping polyhedra (Safe Corridor) that connect a starting position
to a goal position. Every polyhedron we generate can have a minimum of 6 faces
(cube) and a maximum of 18 faces (octadecahedron, see Fig. 5.1). It is limited
by the occupied cells and covers only free cells. Every polyhedron is generated by
iteratively expanding a convex grid (around a cell/seed) inside which we fit the
convex polyhedron. The polyhedron doesn’t have to be regular as shown in Fig.
5.1.

The convex grid is a group of adjacent cells in which we can fit a convex
polyhedron that passes through all the borders of the grid. The borders of the
convex grid are defined as the cells with the maximum/minimum coordinates in
every direction (x, y and z). At the beginning of the algorithm the grid is only the
seed voxel. As the algorithm progresses, the grid expands through its borders and
affects/is affected by the inscribed convex polyhedron (Fig. 5.2).

We fix the direction of 6 sides (red in Fig. 5.1) of the polyhedron (2 in the x
direction, 2 in the y direction and 2 in the z direction), and leave the direction of
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Figure 5.1: A convex octadecahedron [28]. The side faces are in red andthe corners in blue. The direction of the 6 faces is fixed. The 12 corners’
position, slope and direction are fixed as the convex grid expands.
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(a) k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5 (f) k = 6

(g) k = 7 (h) k = 8 (i) k = 9

(j) k = 10 (k) k = 11 (l) k = 12
Figure 5.2: We show the evolution of the convex grid (in grey) and theinscribed octadecahedron (in green) as the algorithm progresses. The
obstacles are the red voxels.
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the other 12 corners (blue in Fig. 5.1) to be fixed by the expanding convex grid.
The sides have a single property: position. Since we know the orthogonal vector
of the side, we only need to determine the point (position) through which it passes.

The corners (Fig. 5.3) have the following properties to determine:

1. position: a point through which it passes.

2. slope: the slope of the corner described by number of cells (Fig. 5.3 for
more details). Initialized to 0 (corner doesn’t exist).

3. direction: the direction of the slope. This indicates to which side the
corner is "leaning" i.e. the side with which the corner forms the bigger
inside angle (angle inside the polyhedron). This can take any value from 0
to 5. Initialized to -1.

4. fixed: whether the slope has been fixed or can still change as the convex
grid expands. Initialized to false.

5. steps: this variable indicates how many cells of the corner exist on the side
of the border that is in the opposite direction to the direction of the corner.
Initialized to 0.

An instance of the corner where each property has a unique value is called a
state of the corner. A corner adjacent to a side is a corner that has at least
one intersection segment with the corresponding side. Each side has 4 adjacent
corners (Fig. 5.1).

5.3 . Convex Polyhedron Generation

5.3.1 . Overview

The method consists in finding a convex polyhedron - an octadecahedron in
the extreme case - (Fig. 5.1) inside an expanding convex grid. In this section we
will define the base rules on which we will improve in the Improved method (see
section 5.4 - page 80).

We first start with a seed (one voxel) around which we want to find a convex
polyhedron. We then expand it in 6 directions (positive and negative x, y and
z directions). The order of the cyclic expansion is: −y, x, y, −x, z, −z (Fig.
5.2). Every time we expand in a direction we increment the expansion counter k.
The algorithm is stopped when the expansion counter reaches a predefined limit,
or when we cannot expand in any direction.
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Figure 5.3: We show an example of a corner. The slope is 3 as the ob-stacles form a stair of 3 cells as a step. Since the slope is leaning to side1 (the corner has a bigger inside angle (angle inside the polyhedron)with side 1), the direction is set to 1. Only 2 cells have been traversedon the opposite side (side 2), this means the steps is 2. The slope is
fixed by the obstacles and will not change as we expand the borders.
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(a) step = 1: limits in blue fixed by the maximum coordinates of the bordercells.

(b) step = 2: the blue limits are then modified to the green limits to takeinto account adjacent corners. We show in cyan the borders of the adjacent
corner of the inscribed octadecahedron.
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(c) step = 3: we choose a seed voxel (in green) that is in the green limits. Theseed is chosen by expanding the border cells in the expansion direction (−y)and checking whether the new voxel is inside the green limits or occupied(coincides with a red voxel). The seed is chosen to be close to the center ofthe green limits.

(d) step = 4: we expand the seed to find the largest rectangle inside the greenlimits while taking into account the obstacles (in red). The blue voxels de-note the rectangle borders. The expansion method is shown in Fig. 5.5. Weadded an obstacle for the sake of demonstration. The transparent voxels ofthe rectangle are not in the new border candidate (green and blue voxels) asthey don’t have any grey voxel (belonging to the convex grid) behind them.We show the new inscribed octadecahedron that results from this expansiononce the new border candidate is validated Sect 5.3.3.
Figure 5.4: We show the method for determining the new border can-
didatewhen expanding in the−y direction. These candidates will thenneed to be validated before modifying the adjacent corners and gen-erating the resulting inscribed octadecahedron.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6 (g) Iteration 8 (h) Final rectangleborders in blue.
Figure 5.5: We show the expansion of a seed chosen during the expan-sion of a border of the convex grid. The seed is expanded into a rect-angle that is within the green limits and that is limited by the obstacles(in red). We don’t show Iteration 7 as the rectangle is not expanded atthis iteration due to the green limit.

5.3.2 . Expanding a border

We have 6 borders (one in every direction), each containing cells of the convex
grid that have the maximum coordinate in the expansion direction. At each itera-
tion, we only consider one of them for expansion according to the cyclic expansion
rule defined in 5.3.1.

We first determine the limits of the new border candidate cells. They are set
using multiple steps that include the state of the adjacent corners to the border
side (Fig. 5.4). In the first step we fix the blue limits. These limits are fixed
by the maximum coordinates of the border cells i.e. they represent the minimum
rectangle that includes all the border cells as shown in Fig. 5.4a.

In the second step, the blue limits are modified using the adjacent corners to
generate the green limits. Each adjacent corner affects the side of the blue lim-
its/rectangle that is adjacent to it by shrinking it a distance equal to the corner’s
slope. An illustration can be seen in Fig. 5.4b where the adjacent corner in cyan
(highlighted in the convex grid as well as the inscribed polyhedron) intersects the
blue limits to generate the green limits. This intersection reduces the adjacent
blue limit by a distance equal to the slope of the adjacent corner, which in this
case is 1 voxel.

In step 3, we choose a seed voxel (shown in green in Fig. 5.4c) inside the green
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limits by expanding the border in the expansion direction and checking whether
the expanded voxel is inside the green limits or occupied. The seed is chosen to
be close to the center of the green limits.

In step 4, we expand the seed found in step 3 to find the largest rectangle
inside the green limits while taking into account obstacles as shown in Fig. 5.5.
The blue voxels shown in Fig. 5.4d represent the newly formed rectangle borders
These voxels (in blue in Fig. 5.4) constitute the rectangle borders, and they will
be used to validate the new border candidate and modify the adjacent corners
accordingly. The transparent voxels are not in the new border candidate (which
consists of the green and blue voxels) since they don’t have any grey voxels
(belonging to the convex grid) behind them.

5.3.3 . Adapting the new border candidate and the corners
After finding the new border candidate, we have to check whether it is valid

and to modify the 4 adjacent corners accordingly. We will give an example for one
adjacent corner but the same principle is applied to the other 3 adjacent corners.

We first determine the side of the rectangular borders that affects a given
adjacent corner i.e. the cells of the rectangle that are the closest to the other
adjacent side of the adjacent corner. If this side exists (i.e. the voxels aren’t
transparent Fig. 5.4), we calculate the distance of this side to the corresponding
blue border limit in number of voxels (edge distance Fig. 5.6d). Then depending
on the value of that distance and the state of the adjacent corner we have multi-
ple cases. All of these cases are explored in an exhaustive way and explained with
example illustrations for border candidates in Fig. 5.6. Note that the example
illustrations are only an example of the case which is defined in the subtitle of the
figure (there are configurations that are different than the illustrations and that
obey the conditions of each case). Also note that no configuration exists that
doesn’t obey one of the presented cases (they are exhaustive).

After going through all the cases for the 4 adjacent corners, if one of them
leads to an invalid border, the new border candidate is discarded. Otherwise,
the modified corners are saved, and the new border candidate is added to the
convex grid.

5.4 . The Improved Method

The improved method adds additional heuristics and rules to the base rules
presented in section 5.3 (page 75) in order to make the decomposition of better
quality in terms of adapting to the obstacles shape.
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(a) We show a cross section of a con-vex grid and the edge distance (=2)between a side of the rectangular
border (blue voxels) and the bluelimits shown in Fig. 5.4.

(b) case 1: The corner doesn’t existyet, it is initialized with the slope and
steps equal to the edge distance. Ifthe edge distance is bigger then 1,the direction is set to the expanded
side. The border candidate is valid.

(c) case 2: The corner is fixed andthe direction is the same as the ex-panded side or -1. If edge distance =slope, the border candidate is valid.

(d) case 3: The corner is fixed andthe direction is the same as the ex-panded side or -1. If edge distance
> slope, the border candidate isnot
valid.

(e) case 4: The corner is fixed andthe direction is different then the ex-panded side. If steps = slope and the
edgedistance> 1, theborder candi-
date is not valid.

(f) case 5: The corner is fixed andthe direction is different then the ex-panded side. If steps = slope and the
edge distance = 1, the border candi-
date is valid and steps = 1.
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(g) case 6: The corner is fixed andthe direction is different then the ex-panded side. If steps < slope andthe edge distance > 0, the border
candidate is not valid.

(h) case 7: The corner is fixed andthe direction is different then the ex-panded side. If steps < slope andthe edge distance = 0, the border
candidate is valid and steps is incre-mented by 1.

(i) case 8: The corner is not fixedand the direction is -1. If edge dis-
tance = 0, the border candidate is
valid and steps and slope are incre-mented by 1. The direction is set tothe adjacent side of the corner thatis not expanded.

(j) case 9: The corner is not fixedand the direction is -1. If edge dis-
tance = 1, the border candidate is
valid and the corner is fixed.

(k) case 10: The corner is not fixedand the direction is -1. If edge dis-
tance > 1, the border candidate is
not valid.

(l) case 11: The corner is not fixed andthe direction is equal to the expandedside. The border candidate is valid,the slope is set to edge distance andthe corner is fixed.
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(m) case 12: The corner is not fixedand the direction is different thenthe expanded side or -1. If edge dis-
tance = 0, the border candidate is
valid and the slope and steps are in-cremented by 1.

(n) case 13: The corner is not fixedand the direction is different thenthe expanded side or -1. If edge dis-
tance = 1, the border candidate is
valid, steps is set to 1 and the corneris fixed.

(o) case 14: The corner is not fixed and the direction is different then theexpanded side or -1. If edge distance> 1, the border candidate is not valid.
Figure 5.6: We present all the cases that wemay encounter whenmod-ifying a corner after generating a new border candidate.
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(a) Legend

(b) Invalid expansion (c) Valid expansion
Figure 5.7: We show a 2D example of the heuristic that invalidates aborder expansion. The heuristic that we use is that the number of thenew border candidate should be bigger then the border that we ex-pand in terms of number of voxels. In the first case 5.7b, the new bor-der candidate that results from the expansion has 1 voxel whereas thenumber of voxels that we expanded was 5. In this case the expansionis invalid according to the heuristic. One can see that if we validate it,the new inscribed polyhedron (in green) in the convex grid covers lessspace then the old inscribed polyhedron (in dashed purple). A validexpansion according to the heuristic is shown in 5.7c, where the newborder candidate has 3 voxels (more than half the voxels expanded -in this case 2.5). One can see that the new inscribed polyhedron coversmore space than the old one.

5.4.1 . Polyhedra volume heuristic

We take the rules of expansion defined in section 5.3 (page 75) and add the
following condition: when we find a new border candidate, we only validate it if
the number of voxels in it is bigger then half the number of voxels in the border
we are expanding. This heuristic generally avoids making the volume covered by
the inscribed polyhedron smaller after the expansion. An expansion example can
be seen in Fig. 5.7.

The rules defined in section 5.3 (page 75) in addition to this condition is what
we will refer to as legacy rules in the remainder of this section to validate/invalidate
an expansion.
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5.4.2 . Newly initialized corners

When a new border candidate requires the initialization of a new corner (see
section 5.3 - page 75 for more details on when corners are initialized), we have 2
cases. The first case is when the direction of the corner is fixed (which we will
denote C1), and the other case is when it is not fixed (which will we denote C2)
- see Fig. 5.8. Each case requires additional checks and rules to the legacy rules
(applied to each newly initialized corner) before we validate the new border candi-
date.

First check:

First we check the following condition for each of the newly initialized corners: we
expand all the voxels of the new border candidate that are adjacent to the newly
initialized corner in the same direction as the new border candidate. If all of the
newly expanded voxels are empty and we are in the case C1 then the expansion is
invalid (Fig. 5.8a). If they are empty and we are in C2 then we expand the voxels
in the initial expansion border that are adjacent to the newly initialized corner. If
the newly expanded voxels are also empty then the expansion of the new border
candidate is not valid (Fig. 5.8b).

Second check:

If we have newly initialized corners, and after the first check if the expansion is
still valid, we proceed to the second check which is done for every newly initialized
corner: We first expand the new border candidate in the same expansion direction
that gave us the new border candidate using the legacy rules (we call this expan-
sion E1). This time the expansion is done by assuming that all the newly initialized
corners do not exist, or in other words the cells of the convex grid that are on the
side adjacent to the newly initialized corner do not exist 5.9b. The new expansion
will now modify all corners accordingly.

If the new expansion is valid according to the legacy rules, and if we are in
the case C1, we check if the slope of the corner that we obtain by the new ex-
pansion is smaller then the one obtained by the new border candidate 5.9c. If
that is the case, the expansion is invalid. If we are in case C2, we also expand
the other border adjacent to the newly initialized corner while assuming the newly
initialized corner does not exist yet i.e. we discard the voxels of the new border
candidate from the convex grid (we call this expansion E2 - Fig. 5.10d). If both E1
and E2 result in the newly initialized corner having 0 slope, the expansion is invalid.
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(a) Case C1: direction fixed (b) Case C2: direction unknown
Figure 5.8: We show a 2D example of the 2 cases that are treated byour method. In the first cast 5.8a the corner of the new inscribed poly-hedron (shown in cyan) has a fixed direction according to the legacyrules, whereas in case 2 5.8b the corner direction is not determinedyet. We also show with the magenta arrows the expansion of the vox-els adjacent to corner in each case. These voxels are used to determinewhether the expansion is valid in each case. In the case shown if 5.8a,the expansion is not valid, whereas in 5.8b the expansion is valid be-cause expanding one of the voxels results in an occupied voxel.

Note that these conditions invalidate expansions. In all other cases the expan-
sion is validated (unless invalidated by legacy rules) and the inscribed polyhedron
is modified accordingly.

The ability of the proposed improved method to sense its surroundings before
making a decision on whether to expand in a direction or not is what gives it a
shape-aware characteristic.

5.5 . Generating Safe Corridors

We use the method described above for generating convex polyhedra around a
seed voxel to generate multiple convex polyhedra around a given path. Like [88],
we first find a valid path between the staring point and the goal point using Jump
Point Search (JPS) [58] which requires an occupancy grid. We additionally use the
Distance Map Planner (DMP) [130] to push the path away from obstacles which
results in a better seed decomposition. Note that JPS/DMP do not necessarily
generate the best path in terms of obstacle clearance. Other path planners can
also be used to find a valid path between these two points. The resulting path can
also be used by our method to generate a Safe Corridor as described below.
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(a) Case C1: initial case (b) Case C1: E1 expan-sion - step 1. (c) CaseC1: E1 expansion- step 2.
Figure 5.9: We showa 2Dexample of the caseC1 and the correspondingexpansions (E1). We expand in the same direction that we expandedin to get the new border candidate 5.9b. This is done by ignoring thecells of the convex gird that are on the side adjacent to the newly initial-ized corner (depicted in light gray), which is also the same as saying thenewly initialized corner does not exist. Once the new convex grid andthe corresponding inscribed polyhedron are obtained 5.9c, we checkfor the newly initialized corner in the new inscribed polyhedron (encir-cled in cyan). If it does not exist (which is the case here), the borderexpansion that resulted in the new border candidate is not valid.

We use an iterative decomposition method to determine the seeds of the over-
lapping polyhedra. The first polyhedron is seeded with the starting position, then
we find the intersection between the path and the polyhedron and seed the second
polyhedron at this intersection. If the intersection results in the same seed as the
last polyhedron, we move along the global path by the voxel resolution and choose
a new seed. We continue this strategy until we reach the goal position.

5.6 . Simulation Results

5.6.1 . Simulation setup

The simulation is done on an Intel® Core™ i7-9750H (base 2.60GHz, up to
4.50 GHz). All coordinates and distances are in meters. The environment is of size
50× 12× 12 and is represented as a voxel grid of voxel size 0.3. We generate 400

obstacles of size between 0.9 and 1.5 (using a uniform distribution) i.e contained in
a cube (obstacle cube) whose side length is between 3 and 5 voxels. The shape
of each obstacle is randomized by setting to occupied with a probability of 0.5
the voxels inside the obstacle cube. The position of the obstacles is generated
following a uniform distribution.
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(a) Case C2: initial case (b) Case C2: E1 expan-sion - step 1. (c) Case C2: E1 expan-sion - step 2.

(d) Case C2: E2 expansion - step 1. (e) Case C2: E2 expansion - step 2.
Figure 5.10: We show a 2D example of the case C2 and the correspond-ing expansions (E1 and E2). The expansion E1 is done as shown in Fig.5.9. The expansion E2 is done by ignoring the new border candidate(depicted in light blue) i.e. assuming the newly initialized corner doesnot exist, and expanding in the adjacent direction of the newly initial-ized corner. The new expansion gives us a new value for the newly ini-tialized corner. If by both expansions the newly initialized corner doesnot exist (which is encircled in cyan in 5.10c and 5.10e), the expansionis invalidated.
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The starting point is (x = 3, y = 6, z = 6) and the goal is (x = 47, y = 6, z =

6). The JPS and DMP combined take on average 6 ms. We optimize Liu et al.
[88] by using the voxel grid to get the obstacle points (centers of the occupied
voxels) that are within a bounding box of the seed. We set this box to 4× 4× 4.
In order to cover the same volume, we set the number of border expansions n = 36

(6 border expansions to do a full rotation and expand by the voxel size in every
direction - Fig. 5.2).

5.6.2 . Simulation results
We compare our base method (section 5.3 - page 75) and our improved method

(section 5.4 - page 80) with the method proposed in [88] in finding a Safe Cor-
ridor (SC) between the same starting and goal points in 10 randomly generated
environments. The comparison metrics are volume covered, number of constraints
per polyhedron, number of polyhedra per SC (genericness), computation time and
SC safety. We show the mean, max, and standard deviation values of the relevant
metrics in Tab. 5.1.

Table 5.1: Comparison between Liu et al. [88], base method and the
improved method proposed in this chapter on 10 randomly generatedmaps of size 50 × 12 × 12 and with 400 obstacles. The mean / max /
standard deviation of every metric is shown. The difference in per-formance between the base and the improvedmethod is shown for the
mean andmax values. The better performer between the 3 methodsis shown in bold.

Volume (m3) Constr/Poly Poly/SC Comp. time (µs) Safe
Liu et al. [88] 482 / 519 / 29.5 15.2 / 26 / 3.2 27.5 / 33 / 2.8 107 / 222 / 37.7 no
Basemethod 414 / 456 / 29.8 10.9 / 16 / 1.7 27.8 / 31 / 2.1 187 / 349 / 54 yes

Improvedmethod 399 / 446 / 35 7 / 12 / 1 27.3 / 31 / 2 191 / 337 / 52 yes
Difference (%) -3.6/-2.4 -35.7/-25 -1.8/0 +2/-3.4 -

Our base methods covers a lower volume then [88] (on average 13.9% less), but
has a lower number of constraints per generated polyhedron (on average 30% less)
which allows faster optimization times while planning. The number of polyhedra
per generated SC is similar between our base method and [88] with a difference
less than 3%. Our base method takes on average 81.1% more time than [88],
however it remains largely within real time constraints and its share of the total
planning time remains negligible as shown in chapter 6 (page 95). Finally, our base
method is safe (in contrast to Liu et al. [88]) and guarantees no intersection exists
between the real world obstacles and the generated SC. To better illustrate this
case, we create a smaller environment with less obstacles as follows.

Our improved method is similar to our base method in terms of volume covered
(on average 3.6% smaller), number of polyhedra per SC (on average 1.8% smaller),
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computation time (on average 2% bigger), and safety (both equally safe). How-
ever, our improved method significantly outperforms our base method in terms of
number of constraint per polyhedron (on average 35.7% smaller) which results in
a lower number of constraints for the trajectory generation optimization problem.
This reduction in the number of constraints results in a reduction in computation
time.

5.6.3 . Case study

While the aforementioned performance metrics provide some insight into the
comparative performance of these methods, we show in Fig. 5.11 an overhead
view of the decomposition of a particular environment to better emphasize the
differences. The shape of the obstacles shown in Fig. 5.11 is visible only in the
x and y directions. The grid limits are [0, 35] in the x direction, [0, 10] in the y
direction and [0, 5] in the z direction. The voxel size is chosen voxel_size = 0.3.

The starting point is (x = 2, y = 5, z = 1.5) and goal (x = 32, y = 5, z = 1.5).
The JPS an DMP combined take 4 ms. We set the bounding box of Liu et al.
[88] to 4× 4× 4 and the number of border expansions of our base and improved
method to n = 36. Since the voxel size is 0.3 and we expand by the voxel size
in all directions every 6 iterations, we get a bounding box (cube) of side length

2 ∗ (n
6
∗ 0.3 +

0.3

2
) = 3.9. The obstacle points shown are the centers of the

occupied voxels in a voxel grid. The overhead view shows a horizontal slice (in the
x− y plane) of the obstacles i.e. the shown obstacle points are repeated at every
voxel level in the z direction to create 3 dimensional obstacles.

In Fig.5.11 we show that the results of [88] and both our methods are some-
what similar in the way they efficiently cover the free space around a path using
overlapping convex shapes. However, using [88] with a downsampled point cloud
can result in a decomposition failure where the polyhedron penetrates the space
between the points (encircled in dark blue in Fig. 5.11a). This is due to the
nature of the algorithm they use (as described in 5.1.1) and to the fact that we
use the voxel grid to downsample the pointcloud to accelerate the convex decom-
position as done in [146]. This problem does not exist in our method. Since many
methods can push the planning agent to the extremities of a polyhedra because
of high speed or because of other planning agents restricting the planning space,
guaranteeing that the Safe Corridor has no intersection with real world obstacles
is crucial to avoid crashes.

In Fig. 5.11b and Fig. 5.11c we compare our improved method directly with
our base method. We encircled in green and yellow the areas of interest that
showcase the difference/similarity between the 2 methods.
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First we encircled in green a part of the Safe Corridor where our method per-
forms clearly better due to the fact that it is shape-aware and it can sense the
surroundings before creating a polyhedron. In the case of the base method (Fig.
5.11b), one can see that in this tight corner (encircled in green), there are still
free spaces that are not covered by the polyhedra of the Safe Corridor. Whereas
in our case, the decomposition covers the free space perfectly, due to the fact
that the algorithm recognizes that there is a sharp corner and doesn’t generate a
polyhedron with faces not parallel to the x and y directions.

In the area encircled in yellow, we show our base method and our improved
method perform in the presence of obstacles that have faces that are not parallel
to the x or y directions i.e. sloped faces. The ability to cover free space around
obstacles of arbitrary slopes/shapes is a measure of genericness of the method.
Both methods succeed in capturing the slope in the polyhedron close to it. This
is to show that while our improved method performs well in environments with
rectangular shaped obstacles, it also performs just as well as base method when
the obstacles have sloped faces.

After finding the Safe Corridor, any method can be used to generate an optimal
feasible trajectory such as the method presented in chapter 6 (page 95) or [88],
[146].

5.7 . Conclusion

In this work, we presented a novel method for the decomposition of free 3D
space into overlapping convex polyhedra (that we call Safe Corridors or SC). The
method leverages a voxel grid representation of the environment to ensure that no
intersection exists between obstacles and the future SC. We introduced the con-
cept of an expanding convex grid in which we inscribe a convex polyhedron that
changes as the convex grid is expanded. This method is then used to create a SC
by sampling a reference path into points and generating convex polyhedra around
these points.

We compared our method (the base and improved versions) to the state-of-
the-art [88] in terms of volume covered, number of constraints per polyhedron,
number of polyhedra per SC, computation time and SC safety. Our method is
outperformed by the state-of-the-art in terms of volume covered and computation
time (while remaining largely within real time constraints), and are roughly similar
in terms of number of polyhedra per SC. However, it outperform the state-of-
the-art in terms of number of constraints per polyhedron. Finally, in terms of SC
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(a) Liu et al’s method [88]

(b) Basemethod

(c) Improvedmethod
Figure 5.11: An overhead view of the Safe Corridor generated around apath using Liu et al. [88], our base method and our improved method.The place where a polyhedron generated by Liu et al.’s method pen-etrates the space between the obstacle points of the downsampledpoint cloud is encircled in dark blue. We encircled in green a placewhere our improved method generates a higher quality decomposi-tion then the base method. We encircled in yellow a place where aslope in the obstacles is captured by our improved method and our
base method to show that the improvement shown in the green el-lipse doesn’t hinder the genericness of our improvedmethod in cover-ing space efficiently around sloped obstacles (encircled in yellow).
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safety, our method is able to guarantee that no intersection exists between the SC
and the real world obstacles which is crucial to avoid crashes during navigation.
This is not the case for [88] which can generate SCs that intersect with real world
obstacles. We also showed how our improved version of the method generates SCs
with significantly less constraints per polyhedron compared to our base version of
the method, which translates into lower trajectory optimization time.

93





6 - SINGLE-AGENT PLANNING - STATIC
ENVIRONMENT

In this work, we propose a new planning scheme for high-speed flight in an
unknown static environment while taking into account drag forces. Drag forces
become non-negligible at high speeds and may lead to unfeasible trajectories. The
method leverages a new Mixed-Integer Quadratic Program/Model Predictive Con-
trol formulation that allows to easily account for drag forces. This formulation
makes use of a state-of-the-art Safe Corridors generator to guarantee safety. It uses
state-of-the-art mapping algorithms and solvers to achieve a higher computational
efficiency than similar state-of-the-art methods. To the best of our knowledge,
our method is the first high-speed planner that generates safe trajectories while
accounting for drag. The proposed method is tested in simulation and compared
to similar state-of-the-art methods for planning in unknown environments in terms
of quality and computation time.

6.1 . Introduction

High-speed navigation in complex environments has numerous applications [26]
such as infrastructure inspection [12], exploration [13], search and rescue [115] and
cinematography [18]. In these applications, high-speed planning is favorable: in
comparison with low-speed planning, high-speed planning allows to cover a larger
distance on a single battery charge.

The motivation behind this work is to create a planner for high-speed flight
(mean: 3.5m/s, max: 6m/s) in unknown environments while taking into account
drag forces and the limitations of embedded computing.

The chapter is organized as follows: we will first present briefly the current
state-of-the-art methods for multirotor planning and state the main contributions
of our work. We will then describe the multirotor model used for planning and
how it accounts for drag forces. The planning method is then presented with each
step explained in a separate subsection. Finally, the simulation results are shown
and comparisons with the state-of-the-art are done.

6.1.1 . Related work

Most of the current state-of-the-art planning methods rely on the differential
flatness property of quadrotors [101]. Differential flatness allows expressing all
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states and inputs of the quadrotor in terms of its position and yaw angle (flat out-
puts), and their derivatives. This allows them to simplify the planning problem by
transforming the quadrotor dynamics to an integrator model. To generate smooth
trajectory, they minimize the squared euclidean norm of a derivative of the position
[101], [20], [129]. Some of these methods take into account static obstacles when
solving the optimization problem, while others account for them after solving it.
None of these methods take into account drag or the unknown aspect of environ-
ments.

Other planning methods use motion primitives or closed-form solutions to trans-
form the planning problem into a graph search in the state space [87], [89], [90],
[169]. These methods usually require a computationally expensive search in order
to be able to generate complex maneuvers around obstacles.

There are methods that take into account obstacles when solving for the op-
timal trajectory by using Euclidean Signed Distance Fields (ESDF) that transform
the 3D space into voxels encoding the distance to the nearest obstacle [116],
[117], [55], [45]. These methods generate problems that are non convex, and lead
to local minima problems. Others use successive convexification to solve the non-
convex problem that results from including obstacles in the problem formulation
[99]. These methods rely heavily on a good initialization and may have some con-
vergence difficulties while handling complex environments.

In [86], obstacles must be decomposed into overlapping convex shapes which
is non trivial when dealing with cluttered environments. Another set of methods
rely on a convex decomposition of the free space: in [88], [161], [47], [78], [131],
[146], polynomials or Bézier curves were used, and drag forces are not accounted
for.

6.1.2 . Contribution
While some control methods account for drag [69], none of the aforementioned

planning methods include drag forces in the planning framework. Our work takes
inspiration from previous planners that use Safe Corridors, notably [88] and [146].
The main contributions of our work are:

• The integration of our state-of-the-art method for Safe Corridor generation
(presented in section 5 - page 69) in a new planning framework.

• A novel planning algorithm that takes into account drag forces, and is signif-
icantly more computationally efficient than similar state-of-the-art methods.

We validate the feasibility of our generated trajectories by testing them in the
simulation engine Airsim [138]. The physics engine of Airsim is state-of-the-art
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and takes into account drag forces.

6.2 . MAV Model

Table 6.1: Nomenclature

g gravity
m multirotor mass
p position vector x, y, z in the world frame
v velocity vector vx, vy, vz in the world frame
a acceleration vector from thrust and gravity in the world frame
j jerk vector jx, jy, jz in the world frame
zW world frame z
zB body frame z
R rotation matrix from body to world frame
D quadratic drag matrix
φ roll angle
θ pitch angle
ψ yaw angle
ccmd total thrust command

We assume a low-level controller that allows for controlling the attitude and
thrust. We use the nomenclature defined in Table 6.1. The equations of motion
are (Figure 6.1):

ṗ = v (6.1)
v̇ = −gzW +

ccmd
m
zB −RDR′v||v||2 (6.2)

φ̇ = φ̇cmd (6.3)
θ̇ = θ̇cmd (6.4)
ψ̇ = ψ̇cmd (6.5)

We reformulate the five equations of motion to get the following:

ṗ = v

v̇ = a−Dlin_maxv

ȧ = j

(6.6)

Dlin_max a diagonal matrix representing the maximum possible linear drag
coefficient in all directions (identified offline). We replace the quadratic drag force
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Figure 6.1: Schematics of the multirotor model with the used coordi-nate systems.

model with a linear worst-case scenario model at any given direction, because this
will allow us to account for drag while maintaining the linearity of the dynamics.
The linearity of the model allows us to solve the MPC problem using solvers that are
very efficient for linear constraints. External forces (such as disturbances identified
online) can also be added to the model to further guarantee feasibility, without
affecting its linearity (and thus computation time). The online estimation of such
forces can be done using [111].

Drag coefficients offline identification

We first identify the z component of the quadratic drag matrix (D3,3) by moving
at full thrust ccmd,max in the zW direction (vx = vy = 0). The velocity approaches
a maximum constant value vmax,z asymptotically. D3,3 is then calculated using
equation (6.2) at the steady state (v̇z = 0): D3,3 = (−g +

ccmd,max
m

)/v2max,z.
Note that in this experiment the rotation matrix R is the identity matrix and
zW = zB. Then we identify D2,2 by moving at full thrust in the y direction
(vz = vx = 0). In this case we need to tilt only around the x axis of the body
frame such that a fraction of ccmd,max compensates the gravity (v̇z = 0), and
the remaining force of ccmd,max is in the y direction. The velocity approaches a
maximum constant value vmax,y asymptotically. By using equation (6.2), we get
1 equation (v̇y = 0) with the only unknown D2,2. We identify D1,1 similarly to
D2,2. Finally, the elements on the diagonal of Dlin_max are all chosen equal to:

max(D1,1,D2,2,D3,3)
min(vmax,x,vmax,y ,vmax,z)

.
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6.3 . The Method

The planner takes as input the position of the multirotor, a voxel grid par-
titioning space into free, occupied, and unknown voxels (centered at the robot
position), and a goal in 3D space. It then proceeds to plan/explore by finding a
global path and optimizing it locally in an iterative fashion until it reaches the goal.

The method is divided into 4 steps:

1. Generating a global path.

2. Creating a Safe Corridor around the global path.

3. Generating a safe local reference trajectory.

4. Solving the Mixed-Integer Quadratic Program (MIQP)/Model Predictive
Control (MPC) problem.

All these steps are run at constant rates in a loop (Fig. 6.2). In the first
step, we generate a global path to the goal. At every iteration, this step takes as
input the current position of the robot and the goal. The second step generates
a Safe Corridor using the last generated global path (last in Fig. 6.2), and the
Safe Corridor and MIQP/MPC solution generated in the previous iteration (k−1).
The third step generates a local reference trajectory using the last generated global
path, the Safe Corridor of the current iteration (k), and the MIQP/MPC solution
and local reference solution generated in the previous iteration (k−1). The fourth
step generates the optimal and safe trajectory using the Safe Corridor and local
reference trajectory of the current iteration (k). The final trajectory is finally fed
to the controller for execution.

Steps 2-4 are run at the same frequency (10Hz) whereas step 1 can be run at
an equal or lower frequency than 10Hz. The controller can be run at an equal or
greater frequency than 10Hz. Our method has the following properties:

• Resolution Completeness: we guarantee that we will find a path from
point A to point B as long as there exists a path and the local grid map
is big enough and fine enough. This property is inherited from Jumping
Point Search (JPS) [58] (used to find a global path). Assuming no external
disturbances affect the dynamics of the multirotor, we can simply accelerate
at the beginning of the first segment of the path and stop at the end of the
segment. Then we turn to the angle of the next path segment and execute
it until we reach its end (where we stop and turn to face the next segment).
In this manner we can prove that the resolution completeness is inherited by
the dynamically generated trajectory, assuming no external disturbances.

• Feasibility: we guarantee feasibility by accounting for drag and limiting
input constraints to the quadrotor’s dynamical limits.
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Figure 6.2: We show the global pipeline of our planning framework atiteration k. The last generated global path is always used at every iter-ation, and some steps use results generated at step k − 1.

100



Figure 6.3: Choosing the intermediate goal when the final goal is out-side the local voxel grid.
• Smoothness and Local Optimality: we get optimality in the sense of
minimizing the jerk on a given time horizon.

• Safety: we guarantee the trajectory is collision-free through Safe Corridors
and by using the Distance Map Planner (DMP) [130] on top of JPS, which
pushes the trajectory away from obstacles (assuming perfect localization and
control).

6.3.1 . Generating a global path
In this step, we will generate a global path from the robot position to the goal

using a local voxel gird generated by [147] using a point cloud.

The local voxel grid spans a given volume. If the goal is outside this volume, we
find the intersection between the borders of the grid and the line from the center
of the multirotor to the goal (Fig. 6.3). This will determine the intermediate goal
to which we plan. We free the intermediate goal voxel as well as all voxels on the
border of the voxel grid to guarantee that we will find a path to the intermediate
goal (if there exists a path).

We use Jumping Point Search (JPS) [58] to find a feasible path between the
position of the multirotor and the goal (or intermediate goal). JPS is a shortest
path algorithm that preserves A*’s optimality, while potentially lowering the com-
putation time by an order of magnitude. We then use the Distance Map Planner
(DMP) [130], to generate a safer path. It uses the artificial potential field to
push away the path from the obstacles (Fig. 6.4). Pushing away the trajectory
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from obstacles not only provides a safety margin for disturbances/uncertainties, but
also allows for better vision/coverage when turning corners i.e. to see/cover more
space behind a corner before turning it. This increases the overall trajectory speed.

The DMP adds time to the computation but as long as the map size is small
enough or the voxel size is big enough i.e. the total number of voxels in the grid
is small enough, the combined computation time of both JPS and DMP is lower
than the MIQP/MPC solving time.

Note that other methods for path planning such as Rapidly exploring Random-
ized Tree (RRT*) [72] or Probabilistic Roadmap (PRM) [16] can be used to find
the global path. However, we chose JPS since it guarantees optimality in finite
time (in contrast to RRT* and PRM), and performs better than RRT* and PRM
in terms of computation time.

6.3.2 . Creating a Safe Corridor around the global path
After finding a path, we decompose the space around the path into overlapping

convex polyhedra (Safe Corridor). Many methods exist in the literature to create
Safe Corridors [88]. We use the algorithm described in section 5 (page 69) as it
provides better safety guarantees and a lower solving time for the MIQP/MPC.
It takes a voxel grid with occupied, free, and unknown voxels, and a path around
which we would like to find a Safe Corridor. It returns a series of overlapping
polyhedra covering only the free space (Fig. 6.4).

At the first planning iteration, we find the convex polyhedron around the voxel
containing the starting position of the global path (seed voxel). Then we find
the intersection between the global path and the convex polyhedron, and find an
additional polyhedron with the voxel containing the intersection as its seed. Some-
times, the voxel containing the intersection is the same seed voxel as the one used
for the last polyhedron (which would result in a duplication of the same polyhe-
dron). In this case, we move further along the global path to find the next closest
voxel outside the last polyhedron. We then use this voxel as a seed for the next
polyhedron. This algorithm is repeated until we reach the maximum number of
polyhedra Phor (polyhedra horizon).

At the next planning iterations, we first determine the minimum number of the
polyhedra generated at the previous iteration (Pmin) that contain the trajectory
generated by the MIQP/MPC at the previous iteration, with preference given to
the newest generated polyhedra. We then generate Prem = Phor−Pmin polyhedra
using the aforementioned algorithm and add them to the Pmin polyhedra. These
polyhedra will be used by the MIQP/MPC to generate a safe trajectory at the
current iteration.
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Figure 6.4: We show the first planning iteration of our algorithm. Theglobal path is generated using JPS and DMP. DMP uses the artificialpotential field (pink) to push the path away from the obstacles. Theconvex polyhedra (blue) span only the free space. A local referencetrajectory is sampled from the global pushed path (green circles). It isthen given with the overlapping convex polyhedra to the MIQP solverto generate a feasible trajectory (yellow circles).
6.3.3 . Generating a safe local reference trajectory

In this step, we use the global path and the Safe Corridor to generate a ref-
erence trajectory for the MIQP/MPC. We denote N the number of discretization
steps and h the time step used in the MIQP/MPC.

We first determine the initial direction of the global path (first two nodes of
the DMP), then we project the velocity vector of the robot along this direction
(dot product). This will determine the initial sampling velocity: if the projection
is negative (the multirotor is moving in the opposite direction to the global path
direction), we set the initial sampling velocity to 0, otherwise it is kept as is. We
then move along the global path for a time h (time step) with the initial velocity,
and the found point is set as the first local reference point (closest green point
to the initial position in Fig. 6.4). The sampling velocity is then updated such
as vsamp,k+1 = min(vsamp,max, vsamp,k + h × asamp) with asamp the accelera-
tion of the sampling (chosen close to the maximum quadrotor acceleration), and
vsamp,max the maximum velocity of the sampling (chosen close to the maximum
quadrotor velocity, which is limited by drag). vsamp,max is set as an upper bound
for the sampling velocity to keep the sampled trajectory close to feasibility. The
next point is sampled starting from the last reference point and with the updated
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sampling velocity. If a generated reference point is outside the Safe Corridor, the
last reference point (which is inside the Safe Corridor) is duplicated and takes its
place. We generate N reference points (the green points in Fig. 6.4).

At each iteration, after solving the MIQP/MPC, we check if the final state is
close enough from the previous final reference point (within thresh_dist). If yes,
we regenerate a new local reference trajectory using the aforementioned algorithm
starting from x1,ref (the closest green point to the initial position in Fig. 6.4).
If no, wait another time step h to give the MPC enough time to reach the final
reference point xN,ref .

6.3.4 . Solving the MIQP/MPC problem

In this step, we generate a safe trajectory to be executed by the multirotor’s
controller using the safe local reference trajectory generated in section 6.3.3 (page
103) and the Safe Corridor generated in section 6.3.2 (page 102). We minimize
the error to the reference trajectory as well as the jerk norm, which results in a
smooth version of the local reference trajectory (Fig. 6.4).

At every iteration, the initial state x0 of the MPC is set to the first state x1

of the last generated trajectory. The terminal velocity vN is set to 0 to make
sure that the multirotor has a safe trajectory to execute in case subsequent MIQP
optimizations fail to find a solution. We can also set aN to 0, but this results in
slower trajectories.

In case the solver fails to find a solution at a given iteration or the computation
time exceeds the time step h, we skip the iteration (the solution is discarded), and
at the next iteration, we solve the MIQP/MPC with the initial state x2 instead of
x1. In case this also fails, we keep offsetting the initial position (which may reach
xN in the worst-case) until the solver converges to a solution within the time step h.

Dynamics

The state vector x is composed of the position p, velocity v and acceleration a,
x = [p v a]T ; the control input is the jerk u = j; the dynamics f(x(t),u(t)) are
defined by Eq. (6.6). The model is discretized using Euler or Runge-Kutta 4th order
(RK4) to obtain the discrete dynamics xk+1 = fd(xk,uk). RK4 is a more pre-
cise approximation of the continuous dynamics since the error in a single step h is
O(h4), whereas Euler is O(h2). However, we choose the Euler method as it results
in faster solving times without any noticeable difference in the generated trajectory.
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State bounds

The acceleration resulting from the thrust and gravity, and the jerk obey the
following equations at every discrete point k:√

a2x,k + a2y,k + (az,k + g)2 ≤ amax (6.7)
az,k ≥ az,min (6.8)√
j2x,k + j2y,k + j2z,k ≤ jmax (6.9)

The velocity is limited by the drag forces. The bounds amax, az,min (= −g) and
jmax are imposed by the dynamical constraints. These constraints are quadratic.
However, since we want them to be linear (faster solving time), each direction is
decoupled and they are transformed into the following conservative constraints:

|ax,k| ≤ ax,max, |ay,k| ≤ ay,max (6.10)
az,k ≤ az,max, az,k ≥ az,min (6.11)
|jx,k| ≤ jx,max, |jy,k| ≤ jy,min, |jz,k| ≤ jz,max (6.12)

The decoupling of the dynamics results in not using the full dynamics of the
multirotor. However we privilege computation time and feasibility over extremely
high agility (which is not the case in the time optimal trajectory generation method
presented in section 3 (page 33) where we prioritize agility). We choose the bounds
of each direction such that:√

a2x,max + a2y,max + (az,max + g)2 ≤ amax (6.13)√
j2x,max + j2y,max + j2z,max ≤ jmax (6.14)

Static obstacle avoidance

This is achieved by forcing every two consecutive discrete points (and thus the seg-
ment formed by them) to be in one of the overlapping polyhedra. Let’s assume we
have P overlapping polyhedra. They are described by {(Ap, cp)}, p = 0 : P − 1.
The constraint that the discrete position pk is in a polyhedron p is described
by Ap.pk ≤ cp. We introduce binary variables bkp (P variables for each xk,
k = 0 : N − 1) that indicate that pk and pk+1 are in the polyhedron p. We
force all the segments to be in at least one of the polyhedra with the constraint∑P−1

p=0 bkp ≥ 1.

Typically, the number of polyhedra considered for optimization Phor is 2 to
avoid high solving times.
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Formulation

We formulate our MPC under the following Mixed-Integer Quadratic Program
(MIQP) formulation. The reference trajectory xk,ref is generated as described in
section 6.3.3 (page 103). Rx, RN and Ru are the weight matrix for the discrete
state errors without the final state, the weight matrix for the final discrete state
error (terminal state), and the weight matrix for the input, respectively.

minimize
xk,uk

N−1∑
k=0

(||xk − xk,ref ||2Rx
+ ||uk||2Ru

)

+ ||xN − xN,ref ||2RN
(6.15)

subject to xk+1 = fd(xk,uk), k = 0 : N − 1 (6.16)
x0 =X0 (6.17)
vN = 0 (6.18)
|ax,k| ≤ ax,max (6.19)
|ay,k| ≤ ay,max, az,k ≤ az,max (6.20)
az,k ≥ az,min, |jx,k| ≤ jx,max (6.21)
|jy,k| ≤ jy,min, |jz,k| ≤ jz,max (6.22)
bkp = 1 =⇒ Appk ≤ cp,Appk+1 ≤ cp (6.23)
Phor−1∑
p=0

bkp ≥ 1 (6.24)
bkp ∈ {0, 1} (6.25)

The MIQP is solved using the Gurobi solver [53].

6.4 . Simulation Results

The simulation is done using a quadrotor in Airsim [138], a photo-realistic
state-of-the-art simulator. The state of the quadrotor is known. The obstacles are
cylinders with a radius of 0.35 m and span a 50 m× 50 m area with a density of
0.1 obs/m2. They are generated randomly, following a uniform distribution. The
Gurobi solver is set to use one thread only as this resulted in faster computation
times during our simulations. All testing is done on the Intel Core i7-9750H up to
4.50 GHz CPU, and for the GPU we use NVIDIA’s GeForce RTX 2060 up to 1.62
GHz.

6.4.1 . Controller design
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We control our quadrotor using a nonlinear MPC [71], with the acados toolkit
[157]. The MPC minimizes the cost function:

J =

∫ T

t=0
||x(t)− xref (t)||2Qx

+ ||u(t)− uref (t)||2Ru
dt

+ ||x(T )− xref (T )||2P
(6.26)

We use the model described in section 6.2 (page 97) with u = [ccmd φ̇cmd θ̇cmd ψ̇cmd]
T

and x = [p v φ θ ψ]T . The sampling time is h = 0.05s and the horizon Nh = 15

which gives a time horizon T = 0.75s. The weights are:

P = Qx = diag(15, 15, 15, 0.01, 0.01, 0.01, 0, 0, 1) (6.27)
Ru = diag(0.05, 0.1, 0.1, 0.1) (6.28)

All parameters are set by approximation/experimentation and may not be optimal.
They provide however some measurement to the feasibility of the generated trajec-
tory. We limit |φ| ≤ 85 deg, θ ≤ 85 deg, |φ̇cmd| ≤ 120 deg/s, |θ̇cmd| ≤ 120 deg/s

and |ψ̇cmd| ≤ 60 deg/s. These limits are determined by the physical dynamical
limits of the multirotor.

Since the planning frequency is 10Hz and the control frequency is 20Hz, we
interpolate linearly the reference trajectory generated by the planner (which has a
time step of 100 ms) to get the reference trajectory of the controller (which has
a time step of 50 ms). This means that a reference point will be added in the
middle of every 2 consecutive reference points generated by the MIQP solver.

6.4.2 . Voxel grid generation
We use a lidar to have omnidirectional coverage, which also can be provided by

omnidirectional stereo cameras (with stereo matching). The point cloud is trans-
formed into a voxel grid with occupied, free and unknown voxels using the state-of-
the-art GPU accelerated voxelization algorithm [147]. We choose a voxel size (side
length) of 0.3 m and a grid size of (sizex = 16 m, sizey = 16 m, sizez = 3 m).
We inflate the obstacles by one voxel for the convex decomposition and 2 voxels
for the JPS global pathfinding. The inflation is done on the GPU using [147].

6.4.3 . Planner parameters
We choose the following parameters: N = 9, h = 100 ms, ax,max = ay,max =

0.7g, az,max = 0.4g, az,min = −g, jx,max = jy,max = jz,max = 15 m/s2,
vmax,samp = 6m/s, asamp = 7m/s2 Dlin_max = diag(1, 1, 1), thresh_dist =
0.35 m, Phor = 2. The weight matrices are diagonal:
Rx = RN = diag(100, 100, 100, 0, 0, 0, 0, 0, 0) and Ru = diag(0.01, 0.01, 0.01).
Some of these parameters are identified from the quadrotor’s model in Airsim.
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The DMP planner pushes the JPS path 0.6 m away from obstacles (when
possible). The planning frequency for the global path planning is 5Hz and that
of the safe local trajectory generation, Safe Corridor generation, and MIQP/MPC
optimization is 10Hz. However, due to the low computation time (maximum com-
putation time of 19.7 ms), it can be increased up to 50Hz. Increasing the planning
frequency allows to react faster to changes in the environment resulting in faster
trajectories.

6.4.4 . Comparison with the state-of-the-art

Table 6.2: Comparison between FASTER [146] and our planner on 10randomly generated maps of size 50m× 50m and with obstacle den-sity 0.1 obst/m2. The better performer is shown in bold. We show the
mean/max values of each metric.

Success Flight distance Flight velocity Comp. time
FASTER [146] 10/10 81.2/93 m 3.55/6.14 m/s 20.2/102.3 msOur planner 10/10 83.2/92.5 m 3.45/5.95 m/s 6/19.8 ms
Difference - +2.5/-0.5 % -3/-3 % -336/-516 %

We compare our planner with the state-of-the-art FASTER planner [146]. It
was fine-tuned to get a very good performance in terms of controller tracking and
computation time.

The comparison is done using 10 randomly generated maps of obstacles which
span a 50 m× 50 m area with a density of 0.1 obs/m2. We show the trajectories
generated by both methods on one of the maps in Fig. 6.5 and the overall results
over all 10 maps in Table 6.2. Both methods are similar in terms of flight distance
and flight velocity with a slight advantage to FASTER, which outperforms our
method by 2.5% in mean flight distance and 3% in mean flight velocity. How-
ever, in terms of computation time, our method far outperforms FASTER, with an
advantage of 336% for the mean computation time and 516% for the maximum
computation time. This renders our method much more suitable for low compute
embedded systems, which was one of the main objectives of this work.

In Fig. 6.6 we show the breakdown of the computation time of our planner.
The generation of overlapping convex polyhedra i.e. Safe Corridor takes on average
0.15 ms, has a median of 0.178 ms and a max of 0.607 ms. The generation of
a global path through JPS and DMP takes on average 2.07 ms, has a median of
1.948 ms and a max of 7 ms. The MIQP/MPC solver takes on average 3.86 ms,
has a median of 3.68 ms and a max of 18.2 ms. The total planner takes on
average 6 ms, has a median of 5.6 ms and a max of 19.8 ms. Since the global
path planning is run at 5Hz, its mean contribution to the total planning time (run
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(a) FASTER [146]

(b) Our planner
Figure 6.5: The trajectories and velocity of the quadrotor generated byFASTER [146] and our planner on the same map.
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Figure 6.6: Boxplot of the computation times of the different functionalblocks of the planner as well as the total computation time of the plan-ner. The red segment represents the median. The lower and upperbounds of the box represent the 25th and 75th percentile respectively,and the lower and upper whiskers represent the minimum and maxi-mum respectively.
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at 10Hz) is halved. Setting up the Gurobi MIQP/MPC solver at every planning
iteration takes on average 1 ms. The generation of a safe local trajectory (step 3)
takes negligible time.

During our 10 simulated flights, the worst-case computation time for the Safe
Corridor generation, global pathfinding, and MIQP/MPC solver don’t happen at
the same time, otherwise, the maximum total planning time would be the sum of
the 3 maximum computation times + solver setup time. If we assume the worst-
case scenario i.e. worst-case computation time in each step simultaneously (which
can be seen in Fig. 6.6), the maximum total planning time would become 26.8ms.
This means that we can run our planner at 30Hz in the worst-case scenario.

If we take an embedded system like the NVIDIA Jetson Nano [114] whose
CPU runs at 1.43GHz i.e. 3.14× slower then the turbo-boosted clock of our CPU
(4.5GHz), the theoretical worst case computation time would be 3.14 × 26.8 =

82.4 ms. This means that the results produced in this work can be reproduced on
a low-cost embedded system since the worst-case computation time is lower than
the planning period which is 100 ms (since the planner runs at 10Hz).

6.5 . Conclusion

In this work, we presented a novel method for high-speed planning in unknown
environments that leverages the state-of-the-art in mapping (voxelization) and con-
vex decomposition of free space to produce similar results to the state-of-the-art
at a fraction of the computation cost. This makes it suitable for low-powered/low-
cost embedded systems. The proposed planning method is, to the best of our
knowledge, the first in its class to account for drag forces which adds guaran-
tees to the feasibility of the trajectory and allows for better exploitation of the full
dynamics of the multirotor. We also tested our planner in a state-of-the-art simula-
tion environment (Airsim) and compared it with a similar state-of-the-art method.
Our method showed similar results while being significantly more computationally
efficient.
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7 - SINGLE-AGENT PLANNING - DYNAMIC
ENVIRONMENT

in this work, we propose a new method for multirotor planning in dynamic en-
vironments. the environment is represented as a Temporal Occupancy Grid which
gives the current as well as the future/predicted state of all the obstacles. the
method builds on our previous works in safe corridor generation and multirotor
planning to avoid moving and static obstacles. it first generates a global path to
the goal that doesn’t take into account the dynamic aspect of the environment.
we then use temporal safe corridors to generate safe spaces that the robot can be
in at discrete instants in the future. finally we use the temporal safe corridors in an
optimization formulation that accounts for the multirotor dynamics as well as all
the obstacles to generate the trajectory that will be executed by the multirotor’s
controller. we show the performance of our method in simulations.

7.1 . Introduction

Multirotor planning in dynamics environments has many real world industrial,
humanitarian and military applications. That’s why recent research efforts have
been focused on providing solutions or solution elements to this challenging prob-
lem.

A static environment has been the main assumption of multiple multirotor
planning methods [12], [13], [20], [146], [47], [46], [88], [101]. It is the goal of this
work to present a new multirotor planner for dynamic environments.

7.1.1 . Related work

Some works in the literature have addressed the problem of multirotor planning
in dynamic environments using different approaches. Some consider only coopera-
tive dynamic agents i.e. multi-agent planning, while assuming that the rest of the
environment is static [120], [2], [70], [175], [174]. We will only discuss the works
done where the dynamic obstacles are considered non-cooperative since this is the
case that we treat in this work.

In [90], the authors propose a search-based method to avoid collision with all
kind of obstacles (dynamic obstacles, planning agents and static obstacles). The
state-space is discretized in space and time, then a graph search is used to find the
set of trajectories that avoid all obstacles and take the robot closer to the goal.
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However, search-based methods in general result in a high computation time when
planning complex maneuvers due to the curse of dimensionality. This renders them
non suitable for real-time embedded applications.

In [85], the authors model all obstacles (static and dynamic) as ellipses and
include them in a non convex model predictive control formulation that keeps the
planned discrete points outside the obstacle ellipses. While this approach may be
suitable for a specific type of dynamic obstacles, decomposing the whole environ-
ment (including static obstacles) into ellipses is not trivial. One can imagine a tree
with multiple branches, each branch also branching out into multiple branches.
How to determine the number of ellipses that represent the tree or which points
belong to the same ellipse? One would need to compromise between a heavy com-
putational cost or an extremely inefficient representation. Furthermore, decompos-
ing a complex environment into ellipses might result in an inefficient representation
or a large number of ellipses, which when added as constraints to the planner in-
crease computation time.

Finally, in [144] the authors present a method for avoiding all types of obstacles
(static and dynamic). They use a combination of an optimization method and a
search-based method, where the output of the search-based method is given as an
initial guess for the optimization method. This choice is made due to the fact that
the optimization problem is non-convex and requires a good initial guess. This
method represents obstacles as polyhedron. This representation is not trivial to
generate from sensor measurements (camera images or lidar pointclouds), and can
incur a heavy computational burden i.e. higher computation time for the planner.

7.1.2 . Contribution

The main contribution of this work is a new planning framework for dynamic
environments. The method takes as input a Temporal Occupancy Grid i.e. a series
of occupancy grids that represent all obstacle positions at discrete points in finite
future time. We use the Temporal Occupancy Grid to generate Temporal Safe
Corridors which we then use to generate a trajectory that avoids all obstacles in a
Model Predictive Control (MPC) fashion.

7.2 . Agent Model

We use the same simplified/linearized model presented in chapter 6 (page 95)
for the planning agent (Tab. 7.1). The jerk j is the input of the system:
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Table 7.1: Nomenclature

p position vector x, y, z in the world frame
v velocity vector vx, vy, vz in the world frame
a acceleration vector from thrust and gravity in the world frame
j jerk vector jx, jy, jz in the world frame

Dlin_max linear drag matrix

ṗ = v

v̇ = a−Dlin_maxv

ȧ = j

(7.1)

7.3 . The Planner

The planner take as input a Temporal Occupancy Grid and then generates a
trajectory that avoids all obstacles (static and dynamic) within the time horizon of
the Temporal Occupancy Grid. The planner is divided into 3 steps:

1. Generating the Temporal Safe Corridor (TSC): in this step we take the
Temporal Occupancy Grid and use it to generate a TSC.

2. Generating the reference trajectory: in this step we generate a global path
from the position of the agent to the goal using the occupancy grid that
represents all obstacles at the current instant. Then we use the path to
generate a reference trajectory for the next step.

3. Generating the safe trajectory: in this step we use the TSC and the reference
trajectory in a Model Predictive Control (MPC)/ Mixed-Integer Quadratic
Program (MIQP) formulation to generate a safe and locally optimal trajec-
tory.

7.3.1 . Generating the Temporal Safe Corridor
In this section we will discuss the generation and state-of-the-art of Tempo-

ral Occupancy Grids (TOG) as well as the generation of Temporal Safe Corridors
(TSC).

Temporal Occupancy Grids

An occupancy grid partitions the space into regular cubes (voxels or cells) that are
either occupied or free for the agent to move through. Temporal Occupancy Grids
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(TOG) are a series of occupancy grids that represents the state of the environment
at discrete points in time for a given time horizon. Obstacles moving through time
are captured by the change in the voxels that are occupied/free as shown in Fig.
7.1. This representation of the environment is showing promise especially in the
autonomous driving domain [63], [66], [137].

Temporal Safe Corridor

For each occupancy grid of the TOG, we generate a series of polyhedra that cov-
ers free space that the agent can be in at that instant in time. The free space
that we cover is the intersection between the reachable space and the free space
in the occupancy grid. The reachable space depends on the agent dynamics and
grows bigger as we step forward in time as shown in Fig. 7.1. It allows to gen-
erate polyhedra that only cover it, reducing the total number of polyhedra used
in the optimization problem i.e. reducing computation time. The reachable space
is generated using a simplified approach: we use the maximum velocity that the
agent can have an multiply it by the time step (0.5 s in the example shown in Fig.
7.1) to obtain the maximum distance (which we denote dreach) that the agent can
traverse in that time duration. The reachable space in voxels corresponds to the
voxels that cover dreach in all directions (a square with side length dreach).

7.3.2 . Generating the reference trajectory

After generating the TSC, we generate a reference path that goes from the
position of the agent to the goal. We use the first occupancy grid in the TOG
(which corresponds to Fig. 7.1b) to generate the path using Jumping Point Search
(JPS) [58] and Distance Map Planner (DMP) [130]. JPS finds the shortest path
to the goal while DMP pushes the path from the obstacles when possible to create
a clearance margin. Note that this path does not take into account the moving
aspect of the dynamic obstacles and considers them as static.

The path is then used to generate a local reference trajectory for the MIQP/MPC.
At each iteration we sample N points from the global trajectory to be used as ref-
erence for the N discrete positions of the MIQP/MPC. At every iteration l, these
points are sampled using a starting point xl0,ref . At the first iteration this starting
point is the position of the planning agent. From the starting position, we move
along the global path at the sampling speed vsamp (user input) for a time duration
h, where h is the time step of the MIQP/MPC. The point at which we arrive is the
second reference point xl1,ref . We continue sampling in the same fashion until we
reach xlN,ref . At the subsequent iterations, we use the optimal trajectory gener-
ated by the last step (MIQP/MPC) of the previous iteration: we check if the final
state is close enough from the previous final reference point (within thresh_dist).
If yes, the local reference trajectory is generated with the above-mentioned algo-
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(a) Legend

(b) t = 0s to t = 0.5s (c) t = 0.5s to t = 1s

(d) t = 1 to t = 1.5s (e) t = 1.5s to t = 2s

Figure 7.1: We show an example of a Temporal Occupancy Grid as wellas a Temporal Safe Corridor over a duration of 2 seconds and a timestep of 0.5s. Thismeans that the TOG is composed of 4 occupancy gridsand the TSC is composed of 4 Safe Corridors. Each occupancy grid rep-resents the occupied voxels during the whole duration of 0.5s i.e. allthe position that the obstacle occupy during that duration. We showthe occupied static obstacles in red and the occupied dynamic voxels in
blue. The direction of movement of the obstacle is shown with a greenarrow in Fig. 7.1b. The initial position of the agent is shown as a yellowcircle, and the current position is shown in orange (with previous po-sitions being more transparent to indicate a position in the past). Thegoal that we want to reach is shown in green. The reachable space isshown inmagenta. The polyhedra composing the Safe Corridors areshown in green. They are generated using the method described inchapter 5 (page 69). The path generated in section 7.3.2 (page 116) isshown in dotted blue. At each time step, the Safe corridor is gener-ated to cover the reachable space. When planning, the position of theagent at each time step is constrained to be inside one of the polyhedraof the corresponding Safe Corridor.
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rithm starting from xl0,ref = xl−1
1,ref . If no, the local reference trajectory generated

at the previous iteration is used for the current iteration i.e. xl0,ref = xl−1
0,ref .

7.3.3 . Solving the MIQP/MPC problem
In this step, a collision-free optimal trajectory is generated. It uses the local

reference trajectory generated in section 7.3.2 (page 116) and the Temporal Safe
Corridor generated in section 7.3.1 (page - 115). The error between the agent
position and the local reference trajectory as well as the norm of the jerk are
minimized. The resulting optimal trajectory gets us closer to the last sampled
point (Fig. 7.1).

At every iteration l, the initial state xl0 of the MPC is set to the second state
xl−1
1 of the last generated trajectory (except for the first iteration where the initial

state is the initial robot position). The terminal velocity vN is set to 0.

In case the solver fails to find a solution at a given iteration or the computation
time exceeds the time step h, we skip the iteration (the solution is discarded), and
at the next iteration, we solve the MIQP/MPC with the initial state x2 instead of
x1. In case this also fails, we keep offsetting the initial position (which may reach
xN in the worst case).

Dynamics

With the state x = [p v a]T , the control u = j, and the dynamics f(x(t),u(t))
defined by Eq. (7.1), the model is discretized using Euler or Runge-Kutta 4th order
(RK4) to obtain the discrete dynamics xk+1 = fd(xk,uk). We choose the Euler
method as it results in faster solving times (even though RK4 is more accurate).
With a discretization step of h, the discretized dynamics become:

pk+1 = pk + hvk

vk+1 = vk + h(ak −Dlin_maxvk)

ak+1 = ak + hjk

xk = [pk vk ak]
T

uk = jk

(7.2)

State bounds

The agent velocity is limited by the drag forces. The maximum bounds on the
acceleration and the jerk in each direction are determined by the dynamics of the
agent. We define ax,max and ay,max as the maximum L1 norm of the acceleration
in the directions x and y. We define az,max and az,min as the maximum and
minimum values respectively of the acceleration in the z direction. These values
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are deduced directly from the maximum thrust that a multirotor can generate.

Finally, we define jx,max, jy,max and jz,max as the maximum L1 norm of the
jerk in the directions x, y and z respectively. These values represent the limits on
the rotational dynamics of a multirotor.

Collision avoidance

This is achieved by forcing every discrete point k to be in one of the polyhedra of
the corresponding SC of the TSC (SCk). Let’s assume we have Pk polyhedra in
SCk. They are described by {(Akp, ckp)}, p = 0 : P − 1. The constraint that
the discrete position pk is in a polyhedron p is described by Akp.pk ≤ ckp. We
introduce binary variables bkp (Pk variables for each xk, k = 0 : N − 1) that
indicate that pk are in the polyhedron p. We force all the points to be in at least
one of the polyhedra with the constraint

∑Pk−1
p=0 bkp ≥ 1.

Formulation

We formulate our MPC under the following Mixed-Integer Quadratic Program
(MIQP) formulation. We remove the superscript l (which indicates the number of
the iteration) from the reference and state variables for simplification.

minimize
xk,uk

N−1∑
k=0

(||xk − xk,ref ||2Rx
+ ||uk||2Ru

)

+ ||xN − xN,ref ||2RN
(7.3)

subject to xk+1 = fd(xk,uk), k = 0 : N − 1 (7.4)
x0 =X0 (7.5)
vN = 0 (7.6)
|ax,k| ≤ ax,max (7.7)
|ay,k| ≤ ay,max, az,k ≤ az,max (7.8)
az,k ≥ az,min, |jx,k| ≤ jx,max (7.9)
|jy,k| ≤ jy,min, |jz,k| ≤ jz,max (7.10)
bkp = 1 =⇒ Akppk ≤ ckp (7.11)
Pk−1∑
p=0

bkp ≥ 1 (7.12)
bkp ∈ {0, 1} (7.13)
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The reference trajectory xk,ref is generated as described in section 7.3.2 - page
116. Rx, RN and Ru are the weight matrix for the discrete state errors without
the final state, the weight matrix for the final discrete state error (terminal state),
and the weight matrix for the input, respectively.

This optimization problem is solved at every planning iteration to generate an
optimal trajectory with respect to its cost function. The MIQP is solved using the
Gurobi solver [53].

Success Distance (m) Velocity (m/s) Flight time (s) Comp. time (ms) Jerk cost (103m/s3)5/5 51 / 53 / 1.8 2.7 / 4.3 / 1.3 18 / 20 / 0.9 37 / 93 / 13 1/ 1.6 / 0.5
Table 7.2: Results on 5 randomly generatedmaps of size 50m×12m×
12 m and with 250 dynamic obstacles/250 static obstacles. We showthemean / max / standard deviation of each metric.

7.4 . Limitations

Our method constrains each point to be in a polyhedron, unlike the planning
method presented in chapter 6 (page 95) which constrains the whole segment to
be in a polyhedron. Constraining the whole segment to be in a polyhedron al-
lows to guarantee safety and force the trajectory to pass through the intersection
of 2 consecutive polyhedra. This adds an additional constraint that may ren-
der the problem dynamically infeasible. In fact, we opted for constraining points
instead of segments because during our testing, the solver was not finding solu-
tions/converging in some cases when we constrained the whole segment to be in
a polyhedra instead of just the point. This results in our method requiring the
obstacles be further inflated to avoid collision when the segment between 2 points
in 2 different polyhedra passes through an obstacle.

Furthermore, the method we presented is based on MPC and this implies that
the length of the horizon will affect its performance: the method may fail to find
a solution when the dynamics of the agent do not allow it to avoid the moving
obstacles using only the chosen time horizon. Increasing the time horizon would
increase trajectory quality and reduce the amount of times it fails to find a solution,
but this comes at a heavy computational cost.

7.5 . Simulation

7.5.1 . Simulation environment
The simulation is done in a 50 m × 12 m × 12 m environment that is repre-

sented in a voxel grid of voxel size 0.3. It contains 200 static obstacles and 200
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dynamic obstacles that can fit inside a cube of side length 1.5 m i.e. 5 voxels.
Each voxel inside the obstacle cube is occupied with a probability of 0.1. Then
the obstacles are inflated by a voxel to account for the drone radius. The dynamic
obstacles oscillate at a random frequency between π/4 rad/s and π/7 rad/s along
a line whose position, direction and length (between 0 m and 5 m) are generated
randomly (following a uniform distribution). The Gurobi solver is set to use one
thread only as this resulted in faster computation times during our simulations. All
testing is done on the Intel Core i7-9750H up to 4.50 GHz CPU.

7.5.2 . Planner parameters

We choose the following parameters: N = 7, h = 100 ms, g = 9.81 m/s2,
ax,max = ay,max = 2 ∗ g, az,max = g, az,min = −g, jx,max = jy,max =

jz,max = 90 m/s2, vmax = 4 m/s, Dlin_max = diag(1, 1, 1), thresh_dist =
0.4 m. The weight matrices are diagonal: Rx = diag(5, 5, 5, 0, 0, 0, 0, 0, 0),
RN = diag(50, 50, 50, 0, 0, 0, 0, 0, 0) and Ru = diag(0.005, 0.005, 0.005). The
drone radius is drad = 0.2 m.

The DMP planner pushes the JPS path 0.4 m away from obstacles (when
possible). The path finding step is run only once at the beginning of the planning
since we know the environment beforehand, which means the path finding step has
no contribution to the total computation time. The planning time horizon of our
planner (N ∗h = 0.7 s) cannot be too long because of computation time, nor too
short because the agent has to stop at the end of the trajectory and so if it is too
short, the velocity will be low. We find a compromise experimentally.

7.5.3 . Simulation results

The agent goes from the start position of (1, 6, 6) to (49, 6, 6) while avoiding
both static and dynamic obstacles. We show in Tab. 7.2 the results of 5 randomly
generated environments. The agent succeeds in avoiding all obstacles and reaching
the goal in all 5 simulations. The mean flight distance is 51 m, the mean flight
velocity is 2.75 m/s and the mean flight time is 18.5 s. The mean computation
time is 37 ms and the max is 93 ms. This means that even in the worst case, the
computation time is smaller than the time step of the MPC (which is 100 ms). In
case the computation time is higher at a given iteration, we discard the generated
solution and plan the next iteration starting from the second position of the tra-
jectory i.e. we assume the robot continued on its trajectory for a 2 steps without
replanning.

We also run another simulation with only dynamic obstacles (for better visibility
and performance assessment) with the same parameters as before but we change
their positions to be at the same height as the agent and the oscillating direction
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Figure 7.2: Box plots of the computation time for the Safe Corridor gen-eration step, the solver optimization step and the total computationtime which includes both steps. The red segment represents the me-dian. The lower and upper bounds of the box represent the 25th and75th percentile respectively, and the lower and upper whiskers repre-sent the minimum and maximum respectively.

to be along the y axis. The agent still has the same starting position but the
goal is now (99, 6, 6) (the environment has doubled in size in the x direction).
We also change N = 8 which increases the time horizon, and consequentially
the computation time. The computation times for the Temporal Safe Corridor
generation, the MIQP/MPC solver and the total computation time are shown in
Fig. 7.2. In this case there were a few instances where the computation time
exceeded the time step. The performance of the agent is shown in the video
https://youtu.be/2ha8Huqi_qI.

7.6 . Conclusion

In this work, we explored a novel planning methods for multirotors in dynamic
environments. The obstacles are represented as Temporal Occupancy Grids (TOG)
that encode the positions of all obstacles (static and dynamic) at discrete instants
in future time. The method consists in generating a Temporal Safe Corridor (a
novel concept which we defined in this chapter), a local reference trajectory, and
finally using the TSC and the reference trajectory in an MIQP/MPC formulation to
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generate a safe trajectory that avoids all types of obstacles (static and dynamic).
The method is tested in simulations and the limitations and challenges are pre-
sented.
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8 - MULTI-AGENT PLANNING - STATIC
ENVIRONMENT

Multi-agent planning has numerous real-world applications such as autonomous
agriculture, search and rescue, and infrastructure inspection. It is thus of tremen-
dous benefit to improve on the state-of-the-art in multiple metrics to make au-
tonomous multi-agent systems more efficient and a more viable real-world solution.
In this work, we propose a new framework for multi-agent planning in a static en-
vironment that improves upon the existing state-of-the-art in multiple areas such
as computation time, trajectory smoothness, and feasibility.

The proposed method first generates a global path that only avoids static ob-
stacles and then generates a Safe Corridor around it. It then extends the notion of
Safe Corridors and makes them time-aware in order to account for the future posi-
tions of other agents. The time-aware Safe Corridor, along with a local reference
trajectory generated from the global path, are used in an MIQP/MPC formulation
that generates a collision-free optimal trajectory.

The proposed framework is real-time, decentralized, and synchronous. It is
compared to another state-of-the-art method in simulations. It is compared to 2
recent state-of-the-art methods in simulations. It outperforms both methods in
robustness as well as feasibility and computation time.

video: https://youtu.be/eyHYvF9iO0s

8.1 . INTRODUCTION

8.1.1 . Problem statement

There are multiple real world applications (exploration, search and rescue ...)
for multi-agent planning that render research and advances in computation time
and planning performance worthwhile.

A plethora of works have extensively addressed single agent planning in a static
environment [12], [13], [20], [146], [47], [46], [88], [101]. However, the extension
of these methods to multi-agent planning presents new challenges since the agents
have to avoid each other as well as the static obstacles.

It is the purpose of this work to present a new method for multi-agent planning
in a static environment that is also suitable for low compute embedded systems.

125

https://youtu.be/eyHYvF9iO0s


8.1.2 . Related work

Some works in the literature have addressed the problem of multi-agent plan-
ning with collision avoidance by modeling the agent and other obstacles as ellipsoids
or spheres [2], [70], [175], [85]. They add the collision constraints in a Model Pre-
dictive Control (MPC) formulation to guarantee a minimum distance between the
agents and the obstacles. However, partitioning static obstacles into ellipsoids is
not trivial and can be inefficient for complex environments (see section 7.1 - page
113). Furthermore, the computation time increases with the number of added
ellipsoids and may render the planning not suitable for low compute systems in
complex and dense environments.

In [65], the authors present a centralized multi-agent planning framework that
uses time-aware Safe Corridors. The method consists in 3 steps: roadmap gen-
eration, discrete planning and continuous refinement. The authors mention that
the last step can be decentralized. The computation time, however, is not suitable
for online high-speed planning, and the Safe Corridor generation method that they
use requires a polyhedral representation of the environment which is not trivial to
generate (see section 7.1 - page 113).

In [174], the authors use Buffered Voronoi Cells for multi-agent collision avoid-
ance but do not address static obstacles. Others [96] use separating hyperplanes
to avoid inter-agent collisions and model static obstacles as ellipsoid constraints
in a decentralized MPC formulation. However, the authors of [96] do not address
the complexity of decomposing static obstacles into ellipsoids using an automated
algorithm, and use human assisted decomposition instead.

Search-based methods [90] have been proposed to avoid all type of obstacles
(other agents, dynamic obstacles and static obstacles). However, they suffer from
the curse of dimensionality which renders maneuvers highly computationally ex-
pensive and not suitable for real-time, low compute systems.

In [120], the authors find a global path and a Safe Corridor around it. Then
the Safe Corridor is transformed into a Relative Safe Corridor to avoid inter-agent
collisions. The trajectory is then sequentially optimized in a centralized way to find
safe and collision free trajectories for all agents. This method is computationally
efficient for a small number of agents, but can generate highly sub-optimal and
long trajectories for some agents as shown in [120].

In [144] the authors present a new asynchronous multi-agent planning frame-
work for avoiding other planning agents, dynamic obstacles (also called non-
cooperative agents in some works) and static obstacles. They use a combination
of a search-based method and an optimization method at every local planning it-
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eration, where the result of the search-based method is used as an initialization for
the optimization method. This choice is justified by the fact that the optimization
method is non-convex and needs a good initial guess. The method keeps planning
locally in asynchronous iterations until the agent reaches the goal.

Finally, in [121], the authors present an online distributed trajectory generation
method for quadrotor swarm using time-aware Safe Corridors (called Linear Safe
Corridors in [121]). The presented method uses an Octomap representation of the
environment [64]. The Safe Corridor used by the planner is composed of only one
polyhedron which leads to conservative/slow trajectories. The method plans local
trajectories in an iterative fashion until the agent reaches the goal.

8.1.3 . Contribution

The main contribution of our paper is a novel decentralized and synchronous
planning framework that is low compute and takes into account static obstacles and
other planning agents. The proposed method takes inspiration mainly from [148]
with many steps in common. Our global path finding, local reference generation,
Safe Corridor generation, and the MIQP formulation is inspired by [148]. The
temporal Safe Corridor generation is inspired by many works such as [65] [120].
The method is compared to 2 recent works [144] [121] in simulations in terms of
computation time, and trajectory safety and performance.

8.2 . Assumptions

The following assumptions are made for each agent:

• Perfect control: the agent is able to follow the generated trajectory perfectly.

• Perfect localization: we assume the agent knows perfectly its position with
respect to a fixed world frame.

• Peer to peer communication between all agents/no routing involved. The
communication is used to transmit the planned trajectory of each agent to
all the other nearby agents. We assume no communication loss between
agents, but take into account communication delay.

• The communication delay must not exceed the difference between the plan-
ning period (time step of the MPC defined in section 6.3.4) and the compu-
tation time. We detail this assumption in section 8.4.6 and present a trivial
mechanism to relax this hard constraint.

Previous works have done these hypotheses: [144] have the same hypotheses
as presented but with the addition of the hypothesis that no communication delay
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exists between agents.

The hypotheses of perfect control and perfect localization can be discarded by
adding a security margin (inflating each agent’s collision radius) to account for un-
certainties in control and localization. More optimal solutions can be implemented
to take into account control and localization uncertainties, but we leave them for
future works as they are beyond the scope of this work.

8.3 . Agent Model and Definitions

Table 8.1: Nomenclature

p position vector x, y, z in the world frame
v velocity vector vx, vy, vz in the world frame
a acceleration vector from thrust and gravity in the world frame
j jerk vector jx, jy, jz in the world frame

Dlin_max linear drag matrix
M number of planning agents
N number of discretization steps in the MPC
h time step of the MPC
drad drone radius

Each agent is modeled as the following linear model with the jerk j as input
to the system as in [148] (Table 8.1):

ṗ = v

v̇ = a−Dlin_max ·v

ȧ = j

(8.1)

Dlin_max is a diagonal matrix that represents the maximum linear drag coef-
ficient in all directions. This matrix is identified offline as shown in section 6 (page
95). The quadratic drag model is replaced with a linear worst-case scenario model
(to ensure feasibility and safety). Many off-the-shelf solvers are very efficient for
linear constraints, which is why we use a linear model. We suppose we have M
planning agent each starting at a given position and they want to reach a given
goal. The environment contains static obstacles, and the objective for each agent
is to avoid them as well as other planning agents.

8.4 . The planner
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Our decentralized planner is run concurrently on multiple agents whose clocks
are synchronized. It is divided in 2 stages (Fig. 8.1). The first stage takes the
position of the agent, a voxel grid partitioning space into free, and occupied voxels,
and a goal in 3D space as input. It is run only once at the beginning of the planning
and consists of two steps:

1. Generating a global path (section 8.4.1 - page 129).

2. Generating a Safe Corridor (section 8.4.2 - page 130)

In the first step, we generate a global path to the goal. The path is obtained
by deforming an optimal/shortest distance path to push it away from obstacles.
This improves the performance of the planned trajectory. The path serves to avoid
static obstacles and does not consider other agents. In the second step we generate
a series of overlapping convex polyhedra (Safe Corridor) around the global path
while also not considering other agents.

The second stage takes the global path and Safe Corridor generated in the first
stage, and the generated optimal trajectories of all the other agents at the previous
iteration as input. It is run in a loop at a constant rate and consists of 3 steps:

1. Generating a time-aware Safe Corridor (section 8.4.3 - page 130).

2. Generating a local reference trajectory (section 8.4.4 - page 133).

3. Solving the Mixed-Integer Quadratic Program (MIQP)/Model Predictive
Control (MPC) problem to generate a locally optimal trajectory (section
8.4.5 - page 136).

In the first step, we generate a time-aware Safe Corridor using the Safe Corridor and
the generated trajectories of all the other agents at the previous iteration. This en-
sures no collisions happen with other agents (due to the hyperplanes that separate
them as shown in section 8.4.3 - page 130). In the second step, a local reference
trajectory is generated. In the third step, we formulate a convex MIQP/MPC that
takes the local reference trajectory and the time-aware Safe Corridor, and gener-
ates an optimal trajectory that doesn’t collide with obstacles or other agents. This
trajectory can then be sent to the agent’s controller to execute.

8.4.1 . Generating a global path

In this step, we take a voxel grid partitioning the space into free and occupied
voxels and generate the shortest path from the starting voxel position of the robot
to the goal voxel (which we call the global path). The global path is generated as
presented in section 6.3.1 (page 101).
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Figure 8.1: We show the global pipeline of the planning framework of asingle planning agent. It is decomposed into two stages. Stage 1 is runonly once at the beginning of the planning whereas stage 2 is run in aloop.
8.4.2 . Creating a Safe Corridor around the global path

After the global path is found, the free space around the path is decomposed
into overlapping convex polyhedra the same manner as presented in section 6.3.2
(page 102).

The computation time in this step depends on the maximum size of the poly-
hedron that we want to generate: the more free space we want each polyhedron
to cover, the more computation time is required.

8.4.3 . Generating a time-aware Safe Corridor
In this step, we use the generated Safe Corridor (SC) and the trajectories gen-

erated at the previous iteration of all the planning agents in order to generate a
time-aware SC that accounts for other moving agents. We will use an simple illus-
trative example as we explain the algorithm (Fig. 8.2). SC decompose free space
into overlapping convex polyhedra. Our algorithm that generates the time-aware
SC will modify the polyhedron in which the agent exists to take into account other
planning agents. Similarly, we modify a number of subsequent polyhedra that con-
tain the further discrete positions of the trajectory.

We first find the earliest polyhedra in the SC that contains the current plan-
ning agent position. We then use it with the subsequent Phor − 1 polyhedra (with
Phor the polyhedra horizon, i.e., the number of polyhedra we consider for the op-
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timization) as a local SC (Fig. 8.2a - where Phor = 3). The local SC is then
modified into N truncated local SCs, each denoted by SCi (with N the number
of discretization steps of the MPC). This series of truncated local SCs is what we
call time-aware SC, and its generation is described in details in what follows.

Then, we take the generated optimal trajectories of the planning agent as well
as all the other agents at the previous iteration. These trajectories are a series of
N + 1 discrete positions (Fig. 8.2a - N = 3). The second discrete position is
where the agents will be at the beginning of this iteration (since the trajectories
are generated at the previous iteration ). For each discrete position pplan,i of the
planning agent, a hyperplane is generated with each discrete position pj,i of the
other agents, with j a number between 1 and the number of other agents. This
means the number of generated hyperplanes for each pplan,i is equal to the num-
ber of other agents (Fig. 8.2 - M = 1, the hyperplanes are shown in cyan). The
index i is between 1 and N and represents the index of the corresponding discrete
position i.e. the position of the agent at time i ∗ h with h the discretization step
(i is also equal to k + 1 with k defined in section 8.4.5 (page 136) and equation
(8.9)). Each hyperplane has a normal vector nhyp going from the position of the
planning agent to the position of the other agent that we want to avoid using
the hyperplane: nhyp = pj,i − pplan,i. It passes through the point P hyp, which
corresponds to the midpoint between the position of the planning agent and the
position of the other agent, offset by the drone radius drad in the direction of the
planning agent: P hyp =

pj,i+pplan,i
2 −drad

nhyp
||nhyp||2

. The corresponding constraint

is nhyp.(pagent −P hyp) ≤ 0 where pagent is the discrete position that should sat-
isfy the constraint. This constraint makes sure that the minimum distance between
the planning agent and the other agent is 2drad since the hyperplane of the other
agent is also offset by drad in its direction. All the hyperplanes generated using
pplan,i and all the other agents are added to the SC to generate SCi−1 (Fig. 8.2
- we show the generation of 3 SCi). Each SCi will serve as a local SC for the
i − 1 and i discrete positions of the planning agent in the current iteration (i.e.
both discrete positions will be constrained to to be inside SCi−1). In Fig. 8.2,
this means that, in the current planning iteration, p0 and p1 will be constrained
to SC0, p1 and p2 will be constrained to SC1, p2 and p3 will be constrained to
SC2, p3 and p4 will be constrained to SC2 (the last SCi is used twice).

Dealing with stalemates

In some cases, 2 agents can be in a stalemate when they are moving one towards
the other along the direction of nhyp. They end up both being stuck (stationary)
at the borders of the hyperplanes without moving due to the fact that the optimizer
of every agent can’t find a moving/better trajectory to get closer to the goal (Fig.
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(a) Local SC (b) Generation of SC0

(c) Generation of SC1 (d) Generation of SC2

Figure 8.2: We show how a time-aware SC is generated from a local SC.The position of the planning agent is shown as the yellow circles, andthe other agent that we want to avoid is shown as the red circles. Thepositions of the agents become more transparent as we move in time.
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8.4a). There is a wide literature on dealing with stalemates such as the right-hand
rule [96] or priority planning [87]. To deal with this issue, we use a similar approach
to the right-hand rule. We modify the normal of the hyperplane of every local SC
of each agent to make it tilted (Fig. 8.4b). We define the normalized plane normal
nhyp,norm, the right vector r that is the cross product between nhyp,norm and
zW plus the cross product between nhyp,norm and yW , a perturbation m, and
a user chosen coefficient c that defines how tilted the final normal vector of the
hyperplane nhyp,final is with respect to the initial vector nhyp:

nhyp,norm =
nhyp
||nhyp||2

(8.2)
zW = [0, 0, 1]T , yW = [0, 1, 0]T (8.3)

r = nhyp,norm × zW + nhyp,norm × yW (8.4)
npert = (c+m).

r

||r||2
+ c.zW (8.5)

nhyp,final = npert + nhyp,norm (8.6)
Typically, we choose c = 0.1. The perturbation m changes values between 0

and 0.05 at every planning iteration in a continuous fashion (the change between
two consecutive iterations is relatively small). The idea is to continuously perturb
nhyp,norm with a vector npert that slightly and continuously changes direction ev-
ery iteration to avoid stalemates.

8.4.4 . Generating a local reference trajectory

In this step, the global path is used to generate a local reference trajectory for
the MIQP/MPC. At each iteration we sample N points from the global trajectory
to be used as reference for the N discrete positions of the MIQP/MPC. At every
iteration l, these points are sampled using a starting point xl0,ref . At the first it-
eration this starting point is the position of the planning agent. From the starting
position, we move along the global path at the sampling speed vsamp (user input)
for a time duration h, where h is the time step of the MIQP/MPC. The point at
which we arrive is the second reference point xl1,ref . We continue sampling in the
same fashion until we reach xlN,ref . At the subsequent iterations, we use the op-
timal trajectory generated by the last step (MIQP/MPC) of the previous iteration:
we check if the final state is close enough from the previous final reference point or
the first state is close enough from the first reference point (within thresh_dist).
If yes, the local reference trajectory is generated with the above-mentioned algo-
rithm starting from xl0,ref = xl−1

1,ref . If no, the local reference trajectory generated
at the previous iteration is used for the current iteration i.e. xl0,ref = xl−1

0,ref .

8.4.5 . Solving the MIQP/MPC problem

133



Figure 8.3: We showaplanning iteration of our algorithm in a simplified2D case. The global path is generated using JPS andDMP. DMPuses theartificial potential field (pink) to push the path away from the obstacles(in this case by a distance of 1 voxel). The convex polyhedra (blue) spanonly the free space. A local reference trajectory is sampled from theglobal path (green circles). We show the separating hyperplane (cyan)generated between the planning agent and another moving agent us-ing the third predicted position. This hyperplane constraint is added tothe convex polyhedron constraints to create SC1 which will be used asconstraint for the second and third positions in the next planning iter-ation. This procedure is done for all positions to create all SCi (time-aware SC). It is then given at the next iteration with the local referencetrajectory to the MIQP solver to generate a feasible trajectory (yellowcircles).
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(a) Stalemate case

(b) Breaking the stalemate
Figure 8.4: The stalemate happens when each agent wants to go to itsgoal on the other side of its own hyperplane, and there is no move-ment in any direction that makes it close to the goal. By changing thehyperplanes’ normal, the agents can nowmove closer to their goals bymoving along themagenta arrows shown in Fig. 8.4b. This would breakthe stalemate.
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In this step, a collision-free optimal trajectory is generated. It uses the local
reference trajectory generated in section 8.4.4 (page 133) and the time-aware Safe
Corridor generated in section 8.4.2 (page 130). The error between the agent posi-
tion and the local reference trajectory as well as the norm of the jerk are minimized.
The resulting optimal trajectory is a smoothed version of the local reference tra-
jectory (Fig. 8.3).

At every iteration l, the initial state xl0 of the MPC is set to the second
state xl−1

1 of the last generated trajectory (except for the first iteration where
the initial state is the initial robot position). The terminal velocity vN as well as
the terminal acceleration aN are set to 0 to make sure that the agent has a safe
trajectory to execute in case subsequent MIQP optimizations fail to find a solution.

In case the solver fails to find a solution at a given iteration or the computation
time exceeds the time step h, we skip the iteration (the solution is discarded), and
at the next iteration, we solve the MIQP/MPC with the initial state x2 instead
of x1. In case this also fails, we keep offsetting the initial position (which may
reach xN in the worst case). Every time the solver fails, no trajectory is sent to
the other agents, and the other agents assume that the planning agent will follow
the last successfully generated trajectory (which is what actually happens).

Dynamics

With x = [p v a]T , u = j, f(x(t),u(t)) defined by Eq. 8.1, the model is
discretized using Euler or Runge-Kutta 4th order to obtain the discrete dynamics
xk+1 = fd(xk,uk). We choose the Euler method as it results in faster solving
times. With a discretization step of h, the discretized dynamics become:

pk+1 = pk + hvk

vk+1 = vk + h(ak −Dlin_maxvk)

ak+1 = ak + hjk

xk = [pk vk ak]
T

uk = jk

(8.7)

These dynamics are added as equality constraints in the formulation of the MIQP/MPC
to make the generated trajectory adhere to the agent’s dynamics.

State bounds

The agent velocity is limited by the drag forces. The maximum bounds on the
acceleration and the jerk in each direction are determined by the dynamics of the

136



agent. We define ax,max and ay,max as the maximum L1 norm of the acceleration
in the directions x and y. We define az,max and az,min as the maximum and
minimum values respectively of the acceleration in the z direction. These values
are deduced directly from the maximum thrust that a multirotor can generate.

Finally, we define jx,max, jy,max and jz,max as the maximum L1 norm of the
jerk in the directions x, y and z respectively. These values represent the limits on
the rotational dynamics of a multirotor.

Collision avoidance

This is achieved by forcing every two consecutive discrete points k and k + 1

(and thus the segment formed by them) to be in one of the polyhedra of a given
local SC (SCk) that belongs to the agent’s time-aware SC. Since each SCk is
formed by adding constraints to the SC that take into account the position of
all other agents at the discrete position k in the future, this allows the planning
agent to plan in the predicted free space at time h ∗ k in the future. Let’s assume
we have P overlapping polyhedra in SCk. They are described by {(Akp, ckp)},
p = 0 : P − 1. The constraint that the discrete position pk is in a polyhedron p
is described by Akp.pk ≤ ckp. We introduce binary variables bkp (P variables for
each xk, k = 0 : N − 1) that indicate that pk and pk+1 are in the polyhedron p.
We force all the segments to be in at least one of the polyhedra with the constraint∑P−1

p=0 bkp ≥ 1. This means that there must exist an overlapping region between
all polyhedra and that at least one discrete point must belong to this overlapping
region when crossing from one polyhedron to another.

Typically, the number of polyhedra considered for optimization Phor is 3 to
avoid high solving times. We start with the polyhedra that contains the current
position of the agent and take 2 other subsequent polyhedra for the optimization.

Formulation

We formulate our MPC under the following Mixed-Integer Quadratic Program
(MIQP) formulation. We remove the superscript l (which indicates the number of
the iteration) from the reference and state variables for simplification.
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minimize
xk,uk

N∑
k=0

(||xk − xk,ref ||2Rx
+ ||uk||2Ru

)

+ ||xN − xN,ref ||2RN
(8.8)

subject to xk+1 = fd(xk,uk), k = 0 : N − 1 (8.9)
x0 =X0 (8.10)
vN = 0 (8.11)
aN = 0 (8.12)
|ax,k| ≤ ax,max (8.13)
|ay,k| ≤ ay,max, az,k ≤ az,max (8.14)
az,k ≥ az,min, |jx,k| ≤ jx,max (8.15)
|jy,k| ≤ jy,min, |jz,k| ≤ jz,max (8.16)
bkp = 1 =⇒

{
Akppk ≤ ckp
Akppk+1 ≤ ckp

(8.17)
Phor−1∑
p=0

bkp ≥ 1 (8.18)
bkp ∈ {0, 1} (8.19)

The reference trajectory xk,ref is generated as described in section 8.4.4 (page
133). Rx, RN and Ru are the weight matrix for the discrete state errors without
the final state, the weight matrix for the final discrete state error (terminal state),
and the weight matrix for the input, respectively.

This optimization problem is solved at every planning iteration to generate an
optimal trajectory with respect to its cost function. The MIQP is solved using the
Gurobi solver [53].

8.4.6 . Communication between agents
At every planning iteration, each agent needs all the generated trajectories of

the other agents at the previous iteration in order to be able to plan safely. This
means that at every iteration, every agent needs to broadcast his current planned
trajectory to all the other agents as soon as the last step in the planning frame-
work is done, and the trajectory needs to reach all the other agents before the
next planning iteration begins i.e. after h time from the current iteration. If the
computation time of the generated trajectory at the current iteration is tcomp, this
leaves h − tcomp time for the trajectory to reach all the other agents before the
next planning iteration begins for all the agents. It is thus crucial to have a low
computation time to allow for communication latency. In order to account for the
delay in a more active manner, one can simply estimate a fixed communication
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delay td, and assume that we failed to produce a trajectory (which we treat in
section 6.3.4) (page 104) when td + tcomp > h.

Note that practically, not all agents need to transmit their trajectories to all
other planning agents, but only those who are in proximity (within a certain dis-
tance that takes into account each agent’s dynamics). This would allow to remove
constraints from the optimization formulation and reduce computation time. This
can be achieved by preventing the routing of packets between agents and by hav-
ing a signal that is weak enough to not pollute the communication between far
away agents. In this case, it is possible to estimate td by taking into account the
communication protocol and the maximum density of the agents.

8.5 . Simulation Results

All testing is done on the Intel Core i7-9750H up to 4.50 GHz CPU. The
code is written in C++ and we use MATLAB for illustration, and MATLAB and
ROS/Gazebo for animation in the video. The agents are in a symmetrical/circular
configuration and swap positions (Fig. 8.5). Using asymmetrical configurations
results in slightly better performance metrics for all methods, which is why we
only present the hardest configuration (symmetrical). The jerk cost (which is a
measurement of trajectory smoothness) is defined as Jcost =

∫ tfin
tini
||j(t)||2dt where

tini and tfin are the initial and final time of the trajectory. We consider a simulation
not successful when one or more drones fail to reach their goal position or the
safety distance (2 · drad) between the drones was violated at any point in time. For
the computation time metric, we do not include stage 1 (global path finding and
SC generation) of our planning method which is run only once at the beginning
of the planning. Its value depends on the size of the environment as well as the
obstacles inside it. We indicate the computation time of stage 1 in the simulations
when comparing with different environments.

8.5.1 . Planner parameters
We choose the following parameters: N = 7, h = 100 ms, g = 9.81 m/s2,

ax,max = ay,max = 2 ∗ g, az,max = g, az,min = −g, jx,max = jy,max = jz,max =

40 m/s2, vmax,samp = 3.5 m/s, Dlin_max = diag(1, 1, 1), thresh_dist =

0.4 m, Phor = 3. The weight matrices are diagonal:
Rx = diag(200, 200, 200, 0, 0, 0, 0, 0, 0), RN = diag(100, 100, 100, 0, 0, 0, 0, 0, 0)

and Ru = diag(0.01, 0.01, 0.01). All dynamical limits are set to the same values
for all planners that we compare with [144] [121] (when possible).

The voxel grid used for path finding and Safe Corridor generation has a voxel
size of 0.2 m. The DMP planner pushes the JPS path 0.4 m away from obstacles
(when possible). The planning frequency for stage 2 is 10Hz (since the time step
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is h = 100 ms).
The planning time horizon of our planner (N ·h = 0.7 s) cannot be too long

because of computation time, nor too short because the agent has to stop at the
end of the trajectory and so if it is too short, the velocity will be low. We find a
compromise experimentally.

8.5.2 . Comparison with the state-of-the-art

Table 8.2: Comparison between MADER [144] and our planner on 10randomly generated maps of size 20 m × 20 m × 5 m and with ob-stacle density 0.25 obst/m2 for 4 agents. We show the mean / max /
standard deviation of each metric. We also compute the differencein performance for the mean and max values. The better performeris shown in bold.

Success Flight distance (m) Flight velocity (m/s) Flight time (s)
MADER [144] 8/10 21.27 / 24.2 / 0.98 2.77 / 4.3 / 1.1 7.56 / 12.3 / 1.31Our planner 10/10 20.9 / 21.5 / 0.23 2.22 / 3.52 / 1.23 9.29 / 10 / 0.29
Difference (%) - -1.7 / -11.1 -20 / -18.1 +22.9 / -18.2

Computation time (ms) Jerk cost (103m/s3)
MADER [144] 72 / 233 / 54.6 6.91 / 13.9 / 3.37Our planner 4.6 / 26.6 / 1.9 2.02 / 2.78 / 0.41
Difference (%) -93.6 / -88.5 -70.77 / -80

Table 8.3: Comparison between Park et al. [120] and our planner on 10randomly generated maps of size 10 m × 10 m × 3 m and with 10 ran-domly generated obstacles for 4, 8 and 16 agents. We show themean
/ max / standard deviation of each metric. The better performer isshown in bold.

# Success Flight distance (m) Flight velocity (m/s)
4 Park [121] 8/10 8.4 / 9 / 0.24 0.71 / 1.5 / 0.47Our planner 10/10 8.4 / 8.8 / 0.13 1.58 / 3.3 / 1.3
8 Park [121] 8/10 8.9 / 9.94 / 0.54 0.71 / 1.5 / 0.41Our planner 10/10 8.74 / 9.2 / 0.21 1.56 / 3.65 / 1.21
16 Park [121] 7/10 9 / 10 / 0.43 0.68 / 1.5 / 0.41Our planner 10/10 8.7 / 9.7 / 0.23 1.45 / 3.63 / 1.15

# Flight time (s) Computation time (ms) Jerk cost (103m/s3)
4 Park [121] 11.7 / 17.2 / 1.74 7.2 / 30.5 / 2.3 0.14 / 0.2 / 0.03Our planner 5.32 / 5.7 / 0.26 4.1 / 24.4 / 1.8 1.4 / 2.32 / 0.44
8 Park [121] 12.4 / 16.4 / 1.37 8.2 / 40.5 / 2.3 0.16 / 0.25 / 0.04Our planner 5.48 / 6.3 / 0.28 5.7 / 38.2 / 3.5 1.8 / 2.5 / 0.4
16 Park [121] 13 / 16.2 / 1.4 9 / 33.5 / 2.2 0.16 / 0.33 / 0.05Our planner 5.9 / 7 / 0.4 8.9 / 98 / 7 2.13 / 4.2 / 0.5
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(a) Park et al. [121] - 8 agents in a small
environment

(b) Our planner - 8 agents in a small
environment

(c) Our planner - 10 agents in a big environment
Figure 8.5: The trajectories and velocity of the agents (swapping posi-tions) generated by Park et al. [121] and our planner on the same map(an overhead view). We show the obstacles inflated by the drone radiususing a voxel grid. Note that due to the perspective of the overheadview, the trajectories may appear as colliding with the obstacles, whichis not the case (both methods generate collision free trajectories).
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MADER

We compare our planner with the state-of-the-art MADER planner [144]. The
simulation is done in a 25 m× 25 m× 5 m environment that contains 100 obsta-
cles of dimensions 0.2 m × 0.2 m × 3 m (big environment). Their positions are
generated randomly, following a uniform distribution (as shown if Fig. 8.5c). The
drone radius is drad = 0.2 m. This planner requires that all obstacles be modeled
as convex polyhedra. The transformation of a pointcloud representation of the en-
vironment (which is the output of lidar, IR sensors, stereo matching algorithms...)
into a convex polyhedral one is not trivial and can add computational overhead to
the planning framework. This overhead is not considered in our comparisons and
we assume a polyhedral representation is already available.

The comparison is done using 10 randomly generated maps of the environment.
We choose a small number of agents (4) for the comparison in order to better es-
timate a real-world experiment, since all computations are done on the hexa-core
CPU (to better simulate each agent having its own cpu/core since MADER re-
quires heavy computation). The results are shown in Tab. 8.2.

In terms of flight time and flight velocity, MADER outperforms our method
on average by around 20%. This is due to the fact that MADER has no bounds on
the jerk and the acceleration of the trajectory can change instantly. This can lead
to unfeasible trajectories as it can break the rotational dynamics/limits of a mul-
tirotor. During our experiments, the maximum jerk norm of a MADER trajectory
was 188m/s3, whereas our trajectories adhered to the dynamical limits of 40m/s3

at each axis, which results in a total norm of 70 m/s3. This is also reflected in the
jerk cost metric, where on average our trajectory is 3.5× smoother. This is also
due to the fact that we use a short time horizon to minimize computation time. In
fact, if we modify the variables N = 10, vsamp,max = 4.5 m/s, we will outperform
MADER in terms of mean flight velocity and mean flight time by around 10%

(while still maintaining a 100% success rate). However, this would result in an
increase in mean computation time to 5.7 ms (12.8× better than MADER) and
max computation time to 46 ms (5× better than MADER).

On the other hand, our planner is more robust (higher success rate), has a
lower flight distance, and is on average 15× more computationally efficient (stage
1 takes on average 4 ms). The reason for the computation time disparity is the
fact that MADER uses a search-based step to generate a trajectory in the time
space that avoids all types of obstacles (dynamic and static) up to a given time
horizon. This step suffers from the curse of dimensionality. This is in contrast to
our method which finds a path that avoids all static obstacles, and then deals with
the other moving agents in the optimization phase, which results in much faster
computation time for the search-based phase. During the second step of MADER
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(optimization), the obstacles are represented as convex polyhedra, which can lead
to a relatively large number of inequality constraints in complex environments, and
consequently to high solving times.

We also ran simulations for 10 and 16 agents in the big environment using our
method (Fig. 8.5c), which resulted in the same performance metrics as Tab. 8.2,
but with an increase in the average computation time (6.6 ms for 10 agents and
9 ms for 16 agents). We could not run simulations for MADER with 10 and 16
agents on our PC and provide a fair comparison due to the heavy computation it
requires. However, one can observe from the results presented in [144] and in Tab.
8.2, 8.3 that the difference in performance remains similar even when increasing
the number of agents (the authors of MADER [144] use Google Cloud with mul-
tiple instances to simulate each agent).

Park et al.

We compare with Park et al. [121] using up to 16 agents (Tab. 8.3) since it is
significantly more computationally efficient than MADER [144]. The comparison
is done in 10 environments of size 10 m × 10 m × 3 m that contain 10 obsta-
cles (small environment - Fig. 8.5a). The obstacles are generated randomly as
described in [121] . The drone radius is drad = 0.15 m. This planner requires that
all obstacles be modeled as an Octomap [64] (a representation which uses octrees
for multiple map resolutions). However, their methods can also be used with voxel
grids (like our method) which is trivial and efficient to generate from a point cloud
(takes on average 2 ms per pointcloud measurement to generate).

Our method is more robust (higher success rate) and has a slightly lower
flight distance. It also outperforms Park et al. [121] by more than 100% in
terms of flight velocity and flight time. The computation time of our method is
on average lower than [121] (stage 1 takes on average 1 ms), but the maximum
computation time is higher in the case of 16 agents. Finally, Park et al. [121]
has a lower jerk cost due to the fact that it does not use the full dynamics of
the agent and generates very conservative trajectories (despite the fact that, like
MADER, there is no limit on the jerk). This, however, does not result in smoother
trajectories as shown in Fig. 8.5a, 8.5b, due to the fact that the velocity of the
trajectory generated by [121] is much lower.

8.6 . Conclusions and Future Works

In this paper, we presented a novel decentralized, synchronous and real-time
method for multi-agent planning. The proposed method uses time-aware Safe
Corridors in a Model Predictive Control/Mixed Integer Quadratic Program for-
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mulation. Our method is very computationally efficient and is well suited for low
compute embedded systems. We compared our planner to 2 recent state-of-the-art
methods using different environments and different agent sizes. We showed that
our planner is more reliable (higher success rate), more computationally efficient,
and generates smoother trajectories with better feasibility guarantees.
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9 - MULTI-AGENT EXPLORATION - STATIC
ENVIRONMENT

In this paper, we propose a new framework for multi-agent collaborative explo-
ration of unknown environments. The proposed method combines state-of-the-art
algorithms in mapping, safe corridor generation and multi-agent planning. It first
takes a volume that we want to explore, then proceeds to give the multiple agents
different goals in order to explore a voxel grid of that volume. The exploration ends
when all voxels are discovered as free or occupied, or there is no path found for the
remaining undiscovered voxels. The state-of-the-art planning algorithm uses time-
aware Safe Corridors to guarantee intra-agent collision safety as well safety from
static obstacles. The presented approach is tested in a state of the art simulator
for up to 4 agents.

video: https://youtu.be/v7P7HpBRY50

9.1 . Introduction

Multi-agent exploration has numerous real world applications such as search
and rescue, infrastructure inspection and cave exploration. An exploration frame-
work that is computationally efficient and safe is thus tremendously beneficial. It
is the purpose of this paper to present a new method for multi-agent exploration
that is suitable for low compute embedded systems.

9.1.1 . Related work

In this section we will discuss works in single agent planning and how it relates
to our multi-agent planning approach. Also we will discuss the state-of-the-art of
multi-agent planning and exploration: their advantages and their shortcomings.

Single-agent planning

Many works address single quadrotor planning. Recent state-of-the-art contribu-
tions use Safe Corridors to account for unknown/unexplored part of the environ-
ment and guarantee trajectory safety [146]. Safe Corridors are a series of overlap-
ping convex polyhedra that cover only free space. In our work in chapter 6 (page
95), we use Safe Corridors in a MPC/MIQP formulation that is computationally
efficient and accounts for drag forces. Our work is based on the same approach
with modifications to account for other moving agents.
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Multi-agent planning

While some works have addressed multi-agent planning [70], [175], [85], [174],
[96], [88], only few works address the problem of low compute and safe multi-agent
autonomous exploration [173] while avoiding static obstacles and other exploring
agents. In [172] the authors present an autonomous multi-agent planning solu-
tion using only on-board resources. The presented approach does not address full
volume exploration and focuses only on intra-agent collision avoidance as well as
static obstacle collision avoidance.

Exploration

Single quadrotor exploration and frontier analysis/selection (i.e. which side of the
map to explore) has been extensively studied in the literature. Recent work [171]
has shown significant improvement over other methods such as [27], [163], [14].
The proposed method uses a frontier information structure (FIS) that is maintained
incrementally. It is provided to the exploration planner that plans exploration mo-
tions in three sequential steps: it first finds global tours that are efficient i.e. a set
of efficient movements to cover all existent frontiers; then it selects a local set of
optimal viewpoints; finally it generates minimum-time local trajectories. However,
it is unclear how to scale this approach to multi-agent planning and whether the
computational efficiency would be maintained. It is why we inspired our goal se-
lection method from the Classical method [163] for frontier/goal selection, which
scales well for multiple agents i.e. is efficient in terms of computation time.

9.1.2 . Contribution
The main contribution of our paper is a novel exploration framework that is

based on a decentralized and synchronous planning method. The planning method
takes inspiration mainly from our work in chapter 6 (page 95) for single quadro-
tor planning and static obstacle avoidance, our work in chapter 8 (page 125) for
intra-agent collision avoidance, and [163] for goal selection for each agent. The
framework also uses our work on voxel grid generation in chapter 4 (page 51) and
Safe Corridor generation in chapter 5 (page 69), which makes it low compute and
suitable for embedded systems. The planning framework is tested in simulation
using the state-of-the-art Airsim [138] simulator.

9.1.3 . Assumptions
The following assumptions are made:

• The position of each agent is known (communicated between agents) within
a certain range of uncertainty. In the simulation, the position of each agent is

146



known perfectly, but our framework can account for uncertainties by inflating
each agents collision radius.

• All agents can communicate with each other within a certain delay. The
communication only needs to happen when agents are close to each other.

• All agents can communicate with a central hub within a certain delay. The
central hub will be tasked with merging each agent’s map with a global map
and sending goals to each agent. It can be mobile or fixed, or one of the
agents, as long as all agents can communicate with it and it has a certain
amount of compute power.

9.2 . Agent Model

Table 9.1: Nomenclature

p position vector x, y, z in the world frame
v velocity vector vx, vy, vz in the world frame
a acceleration vector from thrust and gravity in the world frame
j jerk vector jx, jy, jz in the world frame

Dlin_max linear drag matrix

We use the same simplified/linearized model presented in chapter 6 (page 95)
for each agent (Tab. 9.1). The jerk j is the input of the system:

ṗ = v

v̇ = a−Dlin_maxv

ȧ = j

(9.1)

9.3 . The Framework

The framework takes a volume that we want to explore, then proceeds to
give all the agents different goals until all the volume is explored. The volume is
represented as a voxel grid, and it is considered fully explored when all the voxels
are either free or occupied, or no agent can find a path to the remaining unknown
voxels. The framework is divided into 2 modules (Figure 9.1):

1. A local module that is run on each agent and that contains mapping, plan-
ning and control submodules.
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Figure 9.1: We show the global pipeline of the exploration frameworkwith 3 agents. The broadcast network communicates the local mapsof each agent to the global module, the goals computed by the globalmodule to the agents, and generated trajectories of all the agents toeach agent.
2. A global module that merges all the measurements of all the agents into

a single global voxel grid. This module then sends goals to each agent to
explore the volume.

Each of these modules as well as each submodule will be detailed separately in this
section.

9.3.1 . Local module - run on each agent
The local module is run on each agent an consists of 3 submodules: mapping,

planning and control.

Mapping

Each agent is equipped with an omnidirectional lidar that allows is to see in all
directions. The output of the lidar is a pointcloud that is transformed into a voxel
grid using a GPU accelerated method (described in chapter 4 - page 51). We

148



remove the points associated to other agents appearing in the lidar scan. This
is done by removing all the points of the scan within a certain distance from the
center of other agents (which we know due to the communication of trajectories
between agents). The local voxel grid moves along with the agent such that the
agent’s position is always in the center of the grid. Each voxel grid is sent to the
global module to be merged into the global voxel grid.

Planning

Each agent plans locally to reach the goal sent to it by the global module. The
planning framework is the same as the one presented in chapter 6 (page 95) with
modifications made to the Safe Corridor part to become time-aware as presented
in chapter 8 (page 125). This allows to avoid collision with other agents as well
as static obstacles.

The planning framework is divided into the following steps that are executed
sequentially and at a constant rate (Figure 9.2):

1. Generate a global path that avoids static obstacles (section 6.3.1 - page
101).

2. Generate a Safe Corridor (section 6.3.2 - page 102).

3. Generate a time-aware Safe Corridor to avoid collision with other agents
(section 8.4.3 - page 130).

4. Generate a local reference trajectory using the global path and the the Safe
Corridor (section 8.4.4 - page 133).

5. Solve the MPC/MIQP problem to generate a trajectory close to the local ref-
erence trajectory and within the constraints of the time-aware Safe Corridor
to guarantee safety (section 8.4.5 - page 136).

Control

Each agent is controlled using a nonlinear MPC [71], with the acados toolkit [157].
The controller is the same as the one presented in section 6.4.1 on page 107.

9.3.2 . Global module - run on a central hub
This module takes a volume that we want to explore, merges the measure-

ments/maps of all the agents, and sends a goal to each agent at a constant rate
until that volume is fully explored. The volume is represented as a voxel grid and
is considered fully explored when all the voxels are either free or occupied, or no
agent can find a path to the remaining unknown voxels.
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Figure 9.2: We show the global pipeline of the planning framework ofa single planning agent.

Merging maps from all agents

Each agent has its local voxel grid that is used for local obstacle avoidance and
navigation. When this map is transmitted to the global module, we are able to
efficiently merge it into the global map if the voxels of the local and global maps
overlap with each others i.e. the vector formed by the origin of the local map
and the origin of the global map has its x, y and z components as multiples of
the voxel size. This can be achieved during the initialization phase, by setting the
initial origin of all maps (local and global) to (0, 0, 0). As presented in chapter 4
(page 51), the origin of the local voxel grid will be always offset in all directions
by a multiple of the voxel size to keep the robot at its center.

We only update a voxel of the global grid if its corresponding voxel in the
local voxel grid is free or occupied. In the case of static environments, we can
add an additional condition to only update a voxel grid in a global grid if its not
occupied (and its corresponding voxel in the local voxel grid is free or occupied).
The uncertainties in the environment/measurements can be encoded in the voxel
grid by setting voxels that we don’t know their value to unknown voxels and by
using filtering methods.

150



Computing goals for agents

After updating the global map with the local voxel grids of all the agents, we
proceed to compute goals for each agent using [163]. We define a neighbour voxel
as a voxel that is reachable by moving at most 1 voxel unit in each direction (i.e.
positive and negative x, y and z directions) from the current voxel. The goals are
computed by doing the following steps sequentially (Figure 9.3):

1. Find the border voxels: this is done by going over all the voxels of the global
map. If a voxel is free and has a neighbour voxel that is unknown, then it is
designated as a border voxel.

2. Cluster the border voxels: we form clusters out of the border voxels using
the following rule: if two border voxel are neighbors, they belong to the
same cluster.

3. Compute cluster centroid: we compute the centroid of each cluster by av-
eraging the positions of all the voxels that belong to that cluster.

4. Compute potential goals: we compute potential goals by finding the voxel
border in a cluster that is the closest to its centroid. If multiple voxels have
the same closest distance, we chose one randomly.

5. Compute goals: the finals goals are computed by first choosing the closest
potential goal to the first agent, and removing it from the potential goals’
list so that two agents don’t get the same goal. From the remaining goals,
we chose the closest one to the second agent and remove it from the list.
We continue in this fashion until all the agents have goals, or no potential
goals exist anymore.

9.4 . Simulation

The simulation is done in a 30 m× 30 m× 3 m environment that contains 90
cylinder obstacles of radius 0.35 m and height 3 m. Their positions are generated
randomly, following a uniform distribution. The environment is generated in Airsim
[138]. The Gurobi solver is set to use one thread only as this resulted in faster
computation times during our simulations. All testing is done on the Intel Core
i7-9750H up to 4.50 GHz CPU and NVIDIA’s GeForce RTX 2060 up to 1.62 GHz.
We simulate up to 4 agents due to the limited computing power to run the Air-
sim simulation, mapping/planning/control for each agent and the global module.
The agents communicate between themselves using a ROS [142] topic. They also
communicate with the global module using a ROS topic.
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Figure 9.3: We show an example of the borders, clusters and computedpotential goals of a voxel grid.
9.4.1 . Mapping parameters

The local map of each agent is of size 20 m× 30 m× 3 m. The global map
size is 30 m × 30 m × 3 m. The voxel size used for both maps is 0.3 m. The
update rate for the local map is 10 Hz (lidar measurement frequency) and the
update rate of the global map is 5 Hz. Every time the global map is updated, a
new set of goals is computed and sent to each agent. The local map update takes
less than 1 ms due to the GPU accelerated method we use (described in chapter
5 - page 69) and the global map update and goal computation takes less than 3ms.

9.4.2 . Planner parameters
We choose the following parameters: N = 12, h = 100ms, asamp = ax,max =

ay,max = az,max = 0.7 ∗ g, az,min = −g, jx,max = jy,max = jz,max = 8 m/s2,
vsamp = 3.5 m/s, Dlin_max = diag(1, 1, 1), thresh_dist = 0.4 m, Phor =

2. The weight matrices are diagonal: Rx = diag(200, 200, 200, 0, 0, 0, 0, 0, 0),
RN = diag(100, 100, 100, 0, 0, 0, 0, 0, 0) and Ru = diag(0.01, 0.01, 0.01). The
drone radius is drad = 0.3 m. The DMP planner pushes the JPS path 0.6 m (2
voxels) away from obstacles (when possible). The planning frequency is 10 Hz.
The planning requires synchronized clocks between the agents. This is satisfied
as all the agents use the same CPU clock during the simulation. In a real world
situation, the clocks can be synchronized at the beginning of the exploration since
the drift is minimal (1 microsecond every second) for the duration of an exploration
task. Other solutions include using methods for synchronizing the clocks during
the exploration such as [54], [9].

9.4.3 . Controller parameters
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(a) Exploration with 1 agent

(b) Exploration with 4 agents
Figure 9.4: The trajectories and velocity of 1 exploring agent and 4 ex-ploring agents on the same map. The initial position of agents are off-set by 3m from each others in the x direction in the case of 4 agents
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The frequency of the MPC controller is 20 Hz. The weights of the controller
are:

P = Qx = diag(15, 15, 15, 0.01, 0.01, 0.01, 0, 0, 1) (9.2)
Ru = diag(0.05, 0.1, 0.1, 0.1) (9.3)

All parameters are set by approximation/experimentation and may not be optimal.
We limit |φ| ≤ 85 deg, θ ≤ 85 deg, |φ̇cmd| ≤ 120 deg/s, |θ̇cmd| ≤ 120 deg/s and
|ψ̇cmd| ≤ 60 deg/s.

9.4.4 . Simulation results

Table 9.2: Comparison between 1,2,3 and 4 agents using our frameworkon 5 randomly generated maps of size 30 m × 30 m × 3 m and withobstacle density 0.1 obst/m2. We show the mean / max / standard
deviation per agent of each metric, except for the Safety ratio.

# Distance (m) Velocity (m/s) Exploration time (s) Comp. time (ms) Safety ratio
1 239 / 263 / 20.5 1.74 / 3.4 / 0.7 139 / 158 / 15.6 9 / 45 / 3.7 -2 129 / 137 / 7.72 1.8 / 3.47 / 0.74 78.2 / 83.3 / 4.67 12 / 49.8 / 4.7 1.123 81.2 / 110 / 13.4 1.9 / 3.62 / 0.81 49.6 / 60.2 / 6.36 13 / 61 / 5.2 1.034 73 / 86.8 / 9.2 2.04 / 3.9 / 0.88 44.9 / 50 / 4.27 14.5 / 64 / 5.3 1.13

We show the results of doing a series of 5 explorations on 5 randomly gener-
ated maps using 1,2,3 and 4 agents in Tab. 9.2. We also show the performance
of 1 agent and 4 agents on the same map (Fig. 9.4). The starting position of
the first agent is (0, 0, 0) m. When using multiple agents, the starting position of
agents are offset from each others 3 m in the x direction (Fig. 9.4b). All agents
stop moving when the exploration is done i.e. all voxels are discovered as free or
occupied, or there is no path found for the remaining undiscovered voxels.

The average flight distance per agent decreases in a way that is approximately
inversely proportional to the number of agents used. The average flight velocity
slightly increases since an agent has less chances of being torn between two close
goals as other agents explore goals that are close to it. The average exploration time
which corresponds to the time required to explore the full volume also decreases
in an approximately inversely proportional way to the number of agents used. The
average computation time increases as we use more agents due to the fact that
there are more constraints that are added to each agent’s MIQP/MPC that corre-
spond to the separating hyperplanes with other agents. Note that the computation
time can be decreased by lowering the number of discretization steps N . Since
the maximum computation time is 64 ms, this would leave 100− 64 = 36 ms to
communicate the trajectory to other agents using a broadcasting network (in our
case a ROS topic). This means that we can modify N to lower the computation
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time enough to satisfy communication constraints. Finally we show the safety ratio
which corresponds to the ratio: (minimum distance between any two agents at any
time during the exploration)/(minimum collision distance). If it is smaller than 1,
this means 2 agents collided at a given time during the exploration. The planner
satisfies safety constraints when using any number of agents.

9.5 . Conclusion

In this paper, we presented a novel framework for multi-agent autonomous
collaborative exploration of unknown environments. The method uses recent ad-
vances in Safe Corridor generation, high-speed mapping and multi-agent planning
to guarantee safety and computational efficiency during the exploration task. The
framework is tested in a state-of-the-art simulator using up to 4 agents.

In the future, we plan to implement the exploration framework in a fully au-
tonomous setting. This requires to add one more submodule in the local module
for localization/odometry. This new module would detect nearby agents and ex-
change the features that it sees with nearby agents (and nearby agents would do
the same) so that all agents can localize relative to each other. This submodule
would also account for localization uncertainty in the planning submodule to guar-
antee safety. We also plan on comparing with other exploration methods, which
we did not do due to the lack of time in the PhD.
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10 - CONCLUSION

10.1 . Work Summary

The objective of this thesis was to improve on some of the bottlenecks in au-
tonomous multirotor navigation from mapping to planning. We first introduced the
scope of our work as well as the related works in the Introduction section (Chapter
1 - page 11). Then we presented the Multirotor Model that was used in our work
(Chapter 2 - page 27). The Contributions were then presented in Chapters 3 to 9.
Finally, we present in this Chapter a Summary of the work done as well as the cur-
rent Challenges and Future Directions of autonomous navigation of multirotors.

The main contributions of our works are the following:

• Chapter 3 - page 33: A novel multirotor model formulation that takes into
account drag forces as well as a novel near time-optimal planning method
that uses the aforementioned model. The proposed planning framework also
takes into account obstacles by using Safe Corridors. This combination of
features (accounting for obstacles and drag forces) was not present in state-
of-the-art methods. Our work was used in a drone racing competition [104]
and won first place in the qualification and final phases by a large margin
(30% decrease in flight time over second place).

• Chapter 4 - page 51: An investigation into the use of GPU in the fast
and efficient generation of voxel grids for fast navigation. We compared the
performance with a typical CPU implementation and showed that it performs
3× better in terms of computation time. We also showed how much each
part of the generation benefited from the heavy GPU parallelization, with
some parts benefiting from a 50× speedup.

• Chapter 5 - page 69: A novel Safe Corridor generation method that is
Safer than other state-of-the-art methods while also being generic and com-
putationally efficient. The method uses a voxel grid representation of the
environment which contributes to its safety attribute (in contrast to a down-
sampled pointcloud representation). The method introduces the concept of
a convex grid : a grid that we inflate around a seed voxel such that the in-
scribed polyhedron inside it remains convex. The method is then improved
upon to make it sense the shape of the obstacle close to it and expand the
convex grid accordingly (shape-aware approach).

• Chapter 6 - page 95: A novel planning framework for high speed planning
of multirotors in unknown environments. This work uses our previous work
on voxel grid (chapter 4 - page 51) and Safe Corridor generation (chapter 5
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- page 69). The method takes into account drag forces for better feasibility
guarantees than the state-of-the-art. Our method performs similarly in terms
of flight speed, smoothness, and flight time with respect to the best state-
of-the-art method. However, it performs significantly better in terms of
computation time (on average 3× lower).

• Chapter 7 - page 113: A novel planning framework for multirotors in a
dynamic and unknown environment. The method uses a temporal voxel grid
as a representation of the environment evolving through a finite horizon of
time. We used our work on Safe Corridors to create temporal Safe Corridors
that represent the free space that a multirotor can occupy at a given future
instant in time. We evaluated the novel approach and showed that it is
computationally efficient and generates smooth and fast trajectories.

• Chapter 8 - page 125: A novel multi-agent planning framework for mul-
tirotors that also avoids static obstacles. It uses a voxel grid representation
of the environment. It extends our work on Safe Corridors to make them
time-aware and account for other planning agents in addition to the static
obstacles. Our work is compared to 2 recent state-of-the-art multi-agent
planning method. It outperforms them in terms of computation time, tra-
jectory length and smoothness while generating high speed trajectories.

• Chapter 9 - page 145: A novel multi-agent collaborative exploration frame-
work. The framework uses all our previous work on voxel grid generation,
Safe Corridor generation and multi-agent planning. We showed how our
algorithm performs while exploring a given volume in an unknown environ-
ment with respect to the number of exploring agents. The metrics we used
were exploration time, traveled distance, trajectory velocity and computation
time. We also evaluated the safety of the trajectories in terms of intra-agent
collision.

10.2 . Challenges and Future Directions

Despite the immense work that has been done on vehicle autonomy in general,
and multirotor autonomy in particular, there are still multiple significant challenges
that autonomy algorithms have to solve before reaching the level of robustness and
reliability that is required in some real-world applications such as search and rescue
and package delivery.

10.2.1 . Dynamic environments
The most glaring challenge is how to deal with dynamic obstacles. Solving this

challenge is of tremendous benefits since this would allow autonomous systems
to navigate through multiple environments robustly such as urban environments
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and forests. This has pushed the research community to organize competitions on
dynamic obstacle avoidance [22] to further motivate researchers to work on this
issue. This challenge have sub-challenges whose solutions are not clear: how to
model obstacles (dynamic and static), and how to choose the appropriate planning
method to use with the chosen obstacle model.

Multiple obstacle model/representations have been presented in the state-of-
the-art such as representing all obstacles (static and dynamic) as ellispoids [85].
Another one is to represent all obstacles as convex polyhedra [144]. Both of
these representations are not trivial to generate, so this may be an area where
the state-of-the-art can improve. Another representation would be temporal occu-
pancy/voxel grids where the position of all obstacles at future discrete times are
represented by occupancy grids [63].

Many planning approaches exist that can be paired with a chosen obstacle
model such as search based methods [90], optimization based methods [85], and
methods that use both approaches [144]. So far no method has been able to
provide a computationally efficient way to model and track all obstacles accurately
and robustly with a computationally efficient way to generate a trajectory that
avoids all obstacles robustly. Since these requirements are essential for some real-
world applications that can have huge economical and societal benefits, we think
it is a good research vector to pursue in the future.

10.2.2 . Stereo/Multiview matching
Multirotors have hard constraints on the weight they can carry since it affects

heavily the distance they can cover per one charge of battery. For this reason,
lightweight sensors such as cameras are favored in comparison with more heavy
sensors such as lidars even if they require more computational overhead to gener-
ate a pointcloud representation of the environment that can be used for obstacle
avoidance.

Since methods such as stereo matching or multiview matching are the only so-
lution to extract 3D pointclouds from 2D images, they are used heavily in commer-
cial and industrial drone solutions [139] [32]. However, stereo/multiview matching
present their own challenges, where one finds himself often trading accuracy for
computation speed. A look at the Kitti low-res two-view leaderboard [103] [48]
which evaluates stereo matching algorithm as well as their computation times,
shows that the best stereo matching algorithms [25] [24] require a level of com-
pute/computation time that is currently intractable for low compute/lightweight
drones. However some real-world applications do not require extreme accuracy
of obstacle positions, and some methods [143] can provide that accuracy with a
relatively low computation time (20 ms on NVIDIA TITAN V GPU). Still, the
current state-of-the-art performs badly around thin objects such as wires and thin
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branches, which leads to restrictions on where current commercial drones can be
used [139] [32].

10.2.3 . Going through Narrow Gaps

One challenge of multirotor autonomous navigation is going through narrow
gaps. These gaps may be tilted and multirotors can only pass through them by
tilting to the exact angle of the gap. Going through narrow gaps has multiple
applications especially in search and rescue where multirotors have to sometimes
go through dense forests or ruins of buildings.

One solution to go through narrow gaps involves using morphing quadrotors
such as the folding drone presented in [37]. The presented drone has adaptive
morphology that allows it to squeeze its body by pulling the rotors closer to the
main body. While this approach allows the drone to pass through gaps it otherwise
couldn’t pass through, there are still some tilted narrow gaps that require it to use
its full dynamics and tilt to pass through, something that is not addressed by the
authors.

The other set of solutions involves using the whole drone dynamics to pass
through a narrow tilted window with the drone tilted exactly at the same angle of
the window. Some have explored solutions designed specifically and only for going
through a tilted window [92] [36] [84]. However these solutions cannot be used to
navigate complex environments and avoid obstacles which makes their usefulness
limited in exploration/search and rescue tasks.

Other approaches solve the problem of traversing tilted and narrow gaps with
a general planning framework that can also be used to navigate and explore en-
vironments. Some use search-based motion planning which is computationally
intractable for low compute systems [89]. Others use Safe Corridors which are not
trivial to generate in narrow gaps and can result in high computational overhead
[164]. We believe that a general planning framework that can take into account
the drone dynamics and shape, and is able to explore complex environments while
also being able to go through tilted and narrow gaps is of huge benefit for some
real-world applications. This makes it an interesting and important research vector.

10.2.4 . Machine Learning

Machine learning approaches have been been recently proposed to solve the
challenges that classical approaches have yet to overcome such as dynamic obsta-
cle avoidance [56], stereo/multiview matching [143] [25] and going through narrow
gaps [84]. Other works use machine learning as an end-to-end solution for drone
acrobatics [76] and exploration [94] [95].

In all of the machine learning approaches that generate trajectories/commands
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to be executed by the multirotor [84] [94] [95], a common criticism is that of
safety. One cannot have guarantees that the generated trajectory will be safe and
feasible since deep neural nets operate like a black box. One solution would be to
add an algorithm that checks for the safety and feasibility of the generated trajec-
tory/command but this would add computational overhead, and is not an elegant
solution.

On the other hand, machine learning approaches that involve the perception
module, especially stereo/multiview matching [143], semantic segmentation [79],
and affordance segmentation [23], are the only viable approach since they outper-
form classical methods by a huge margin. We believe that investigating machine
learning approaches to make stereo/multiview matching more efficient and accu-
rate is of tremendous benefits since this problem is a significant bottleneck in high
speed flight.
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